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Abstract 

Understanding how much genetic diversity exists in populations, and the processes that 

maintain that diversity, has been a central focus of population genetics. The evolutionary 

processes that determine patterns of genetic diversity depend on underlying ecological 

processes such as dispersal and changes in population size. In this thesis, I examine the 

influence of dispersal and population dynamics on neutral and adaptive genetic variation 

in a naturally occurring network of populations of the alpine butterfly, Parnassius 

smintheus.  

My first objective was to determine the combined consequences of demographic 

bottlenecks and dispersal on neutral genetic variation within and among populations. 

Using microsatellite markers, I genotyped samples collected from across the network of 

populations over multiple years and tracked changes in genetic diversity and 

differentiation of populations across two documented bottlenecks. I also drew on long-

term mark-recapture data characterizing population size and movement. I demonstrated 

that connectivity among populations rescues genetic diversity that is lost as a result of 

demographic bottlenecks. I also showed that levels and spatial patterns of genetic 

differentiation in the network change cyclically due to continual shifts in the relative 

dominance of genetic drift versus gene flow as populations fluctuate in size.  

My second objective was to examine relationships between adaptive genetic 

variation and dispersal among populations. Using RNA sequencing, I compared gene 

expression patterns among individuals with differing dispersal histories. Individuals that 

had moved between patches (dispersers) upregulated genes involved in energy 
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metabolism, muscle development and stress responses compared to individuals that 

remained in the same patch (non-dispersers). I also examined whether variation at a 

candidate locus, the gene encoding the metabolic enzyme phosphoglucose isomerase 

(PGI), is associated with dispersal and movement. I found that individuals possessing the 

rare allele at each of two non-synonymous Pgi single nucleotide polymorphisms were 

either more likely to disperse or dispersed longer distances.  

My work demonstrates how population size fluctuations, dispersal, and 

landscape structure interact to shape levels and patterns of genetic diversity. My work 

also provides insight into how two key global change factors, habitat fragmentation and 

climate change, may work synergistically to erode genetic diversity in natural 

populations. 

Keywords 

Alpine butterfly, Connectivity, Demographic bottleneck, Dispersal, Flight, Gene 

expression, Gene flow, Genetic differentiation, Genetic diversity, Isolation by distance, 

Molecular ecology, Parnassius smintheus, Pgi, Population dynamics, RNA sequencing, 

Single-nucleotide polymorphism, Spatial genetic structure, Thoracic temperature 
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Chapter 1 

1 General Introduction 

Biodiversity is the variation among all living things on earth (Rao and Hodgkin 2002; 

Benton 2016). Genetic diversity is that component of biodiversity represented by 

heritable variation among individuals and populations within a species (Rao and Hodgkin 

2002). Genetic diversity represents the most fundamental level of biological diversity. 

Genetic diversity in populations is important for persistence (Saccheri et al. 1998) and the 

ability to adapt to environmental change (Lande and Shannon 1996); therefore, genetic 

diversity is arguably the foundation on which higher levels of biodiversity, namely 

species and ecosystem diversity, depend. 

 

 

1.1 Dynamics of genetic diversity 

The question of how much genetic diversity is contained in natural populations, and how 

that variation arises and is maintained over time, has been a central question of population 

genetics since the inception of the field (Charlesworth and Charlesworth 2017). There are 

four fundamental evolutionary processes that affect allele frequencies, and therefore 

levels of genetic diversity: mutation, gene flow, genetic drift, and selection (Hartl and 

Clark 1989). 
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Mutation is the ultimate source of genetic variation and leads to new alleles that 

can be acted upon by the other evolutionary forces (Fox and Wolf 2006; Frankham et al. 

2010). Gene flow is the movement of alleles between populations; it occurs by movement 

of individuals or propagules followed by reproduction or establishment, and affects all 

parts of the genome. By introducing novel alleles into populations, gene flow increases 

genetic diversity within populations and also homogenizes allele frequencies between 

populations (Bohonak 1999; Keyghobadi et al. 2005; Fox and Wolf 2006).  

Genetic drift is the change in allele frequencies due to random sampling of 

gametes from one generation to the next (Hartl and Clark 1989). Like gene flow, genetic 

drift affects all parts of the genome. In contrast to gene flow however, genetic drift 

reduces genetic variation within populations and increases, on average, differentiation 

among populations (Masel 2011). A variety of factors, including founder effects and 

demographic bottlenecks, determine the strength of genetic drift by influencing the 

effective number of breeding individuals in a population (Fox and Wolf 2006). 

Finally, selection alters allele frequencies via the differential survival and 

reproduction of individuals with different genotypes. Selection acts on specific loci or 

regions of the genome, with nearby physically-linked regions potentially also being 

affected through ‘hitchhiking’ (Chevin et al. 2008). Selection can act to increase or 

decrease genetic diversity in populations depending on the exact nature of fitness 

differences among individuals with different genotypes. Balancing selection, for example, 

can maintain polymorphisms within populations, while purifying or directional selection 

can reduce variation at a given locus. 
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The fundamental evolutionary forces of gene flow, drift and selection are 

determined, in turn, by underlying ecological processes. Thus, dispersal and movement 

underlie gene flow (Ronce 2007). Population dynamics and mating structure within 

populations have a strong influence on levels of genetic drift (Kliman et al. 2008). 

Selection operates through differential ability of individuals to survive and reproduce 

within a given environment and ecological context (Pianka 2000).  

With respect to genetic variation, a distinction is often made between neutral and 

adaptive variation (Holderegger et al. 2006; Frankham et al. 2010). In the case of neutral 

genetic variation, different possible alleles at a particular gene or locus do not have any 

direct effect on individual fitness. Synonymous substitutions in DNA sequences, which 

do not lead to differences at the amino acid level, are an example of potentially neutral 

variation. In the case of adaptive genetic variation, in contrast, different possible alleles at 

a gene or locus lead to differences in individual fitness. Adaptive variation is arguably 

most relevant to a population’s persistence and growth, as it determines the population’s 

direct response to environmental conditions (Fox and Wolf 2006; Forester et al. 2016). 

All genetic variation is influenced by mutation, gene flow, and genetic drift, but 

only adaptive variation is also influenced by selection (Holderegger et al. 2006). The 

study of neutral genetic variation therefore allows us to understand the interplay between 

mutation, gene flow, and genetic drift that provides the backdrop against which selection 

can then act (Holderegger et al. 2006; Pélabon et al. 2010). Furthermore, the combined 

examination of both neutral and adaptive variation is needed to provide a complete 

picture of the dynamics of genetic variation in populations. 
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From the 1940s through the 1960s, there was considerable debate among 

theoretical population geneticists about both the expected levels of genetic diversity in 

populations and the processes that most strongly influence that variation (Crow 2010; 

Charlesworth and Charlesworth 2017). A ‘classical’ view of genetic variation suggested 

that, through the action of directional selection, most genes in populations would be 

represented by a single, favourable allele with alternative, deleterious alleles present only 

at very low frequencies (Muller 1950). In contrast, the ‘balanced’ view suggested that 

there might be many genes with alternative alleles that occurred at intermediate 

frequencies, as a result of balancing selection (Dobzhansky 1955).   

Similarly, there was disagreement about the relative importance of selection in 

general relative to genetic drift, represented most famously by the arguments of the early 

theoreticians, Sir Ronald Fisher and Sewall Wright, respectively (Crow 2010). This 

debate continued in the 1960s and early 1970s with the introduction of the ‘neutral 

model’, which suggested that high levels of genetic variation within and between species 

could be maintained by genetic drift acting on neutral allelic variants (Kimura and Crow 

1964; Clarke 1970). 

One factor that made it difficult to resolve these debates was limited empirical 

data on levels and patterns of genetic variation in natural populations. Through the 1940s, 

1950s and much of the 1960s, most available data on genetic variation was in the form of 

quantitative trait variation and visible chromosomal variation, along with a few, model 

cases of discrete morphological variation, such as banding patterns in the snail, Cepaea 

nemoralis (Lamotte 1959; Cain et al. 1960), or the wing-spot patterns of butterflies (Ford 

1975). In many of these cases, the number of genes involved in determining the measured 
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traits and whether those genes had weak or strong effects was not known, making it 

difficult to infer levels of underlying genetic variability and examine the processes 

responsible for maintaining that diversity. 

 

 

1.2 A brief history of molecular genetic variation studies 

It was not until the mid-1960s that the first molecular-level data on genetic variation in 

natural populations became available. Over the next 50 years, the introduction of 

increasingly sophisticated yet affordable molecular techniques and tools for studying 

genetic variation led to an explosion of empirical data. In turn, there has been rapid 

progress in understanding levels of natural genetic variation, both within and among 

populations, and the underlying driving processes (Freeland et al. 2011). Technological 

innovations that have repeatedly revolutionized genetic data collection, and integration 

with theoretical studies and powerful data analysis methods, have allowed researchers to 

develop an increasingly accurate and complex understanding of genetic variability, even 

in non-model organisms (Manel et al. 2010; Rowan et al. 2011; Charlesworth and 

Charlesworth 2017).  

The first studies to quantify population variability at a molecular level were by 

Lewontin and Hubby (1966) and Harris (1966). These studies used starch gel 

electrophoresis to differentiate enzyme variants of different charges, in fruit flies 

(Drosophila pseudoobscura) and humans, respectively. Although not measuring variation 

directly at the genetic level, such studies nonetheless provided a much clearer view of 
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natural genetic variation than previous studies based on morphological or chromosomal 

traits. These landmark studies opened the door to the use of protein electrophoresis to 

assay variation in a large potential set of markers, and researchers began studying levels 

of allozyme variability and characterizing genetic variation in a range of species. 

Allozyme surveys of wild populations increased rapidly through the 1970s and provided 

preliminary estimates of genetic variation in diverse taxa (Hamrick and Allard 1972; 

Harris and Hopkinson 1978; Allendorf 2017). They also provided a window into the 

processes, such as drift and balancing selection, that maintain genetic variation in nature 

(Watt 1997). 

By the late 1970s, mapping of restriction enzyme sites was applied for detecting 

variation directly at the DNA level in natural populations (Loenen et al. 2014). Studies by 

Avise et al. (1979a, b) on restriction site variation in mitochondrial DNA of the pocket 

gopher, Geomys pinetis, represent the first studies that interpreted variation at the DNA 

level in the context of ecological and historical factors. These classic papers also 

represent the birth of the field of phylogeography. The first DNA sequencing study that 

characterized variation in a natural population was performed shortly after by Kreitman 

(1983), and revealed a large amount of previously hidden polymorphism at the alcohol 

dehydrogenase locus of Drosophila melanogaster.  This study revealed abundant 

diversity, particularly at synonymous sites, as well as small DNA insertions and deletions.  

The development of microsatellite DNA loci, tandemly repeated short DNA 

sequences, as genetic markers in the 1990s represented another major step in studies of 

genetic variation. Because of high mutation rates that occur through a process of slipped 

strand mutation (Li et al. 2002), microsatellites are very variable. As a result, these 
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genetic markers had the resolution to uncover previously undetected genetic structure 

within and among natural populations, as well as the power to uniquely identify 

individuals and estimate relatedness among even close relatives (Blouin et al. 1996; 

Wagner et al. 2006; Lowe et al. 2010).   

In the 1990s and 2000s, researchers also became increasingly interested in 

describing patterns of variation not just at a select few markers, but more widely across 

genomes. A large number of studies characterized genome-wide variation with hundreds 

to a few thousand markers using amplified fragment length polymorphism (AFLP), and 

related methods (Meudt and Clarke 2007; Bensch et al. 2008). In the mid-2000s, with the 

advent of DNA microarray and next generation sequencing technology, it became 

possible to characterize variation in non-model organisms at many thousand, genome-

wide single nucleotide polymorphisms (SNPs; Davey and Blaxter 2010; Narum and Hess 

2011; Schmitt et al. 2012). Today, whole genome sequencing is becoming more 

accessible to researchers working on natural populations, while next-generation 

sequencing of reduced representation libraries, through methods such as Restriction Site 

Associated DNA Sequencing (RADSeq; Davey and Blaxter 2010) and Genotyping by 

Sequencing (GBS: Elshire et al. 2011) are allowing genome-wide surveys of variability 

using hundreds to thousands of SNP markers.  
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1.3 The ecological context of genetic variation 

As much as the ability to describe genetic variation in natural populations has been 

important, the ability to interpret the observed patterns within an ecological context has 

also been critical for improving our understanding of how those patterns arise and are 

maintained. We have, since the first characterizations of molecular-level variation in the 

1960s (Harris 1966; Lewontin and Hubby 1966), developed a much stronger 

understanding of the balance of evolutionary forces that determine genetic variation, 

including the importance of drift (Crow 2010; Charlesworth and Charlesworth 2017). 

Studies in ecological genetics (Ford 1975; Conner and Hartl 2004), in turn, have revealed 

the detailed ecological basis of those evolutionary processes. Many studies have explored 

the complex links between dispersal and gene flow (Bohonak 1999; Keyghobadi et al. 

2005; Derycke et al. 2013), population dynamics and genetic drift (Caplins et al. 2014) 

and individual survival and reproduction and selection (Wheat et al. 2006; Orsini et al. 

2009). 

Studies of the ecological basis of genetic variation patterns have themselves been 

spurred on over the past few decades by important technological advances in other areas. 

In particular, advances in remote sensing of the environment, and the analysis of spatial 

and geographic data, have allowed the use of spatial landscape data to flourish in diverse 

areas of ecology (Turner 1990). In the context of understanding genetic variation, these 

advances have allowed for in-depth analysis of the links among landscape structure, 

movement, and patterns of genetic variation. Thus, the field of ‘landscape genetics’ 

(Manel et al. 2003) has seen dramatic growth since the mid-2000s (Manel and 

Holderegger 2013; DiLeo and Wagner 2016).  
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Today, researchers are able to investigate genetic variation within natural 

populations using a variety of different tools and approaches. Researchers can target 

specific candidate genes that are known to code for a trait of interest (Mahamdallie and 

Ready 2012; Du et al. 2016) or whose dynamics are well understood in other systems 

(Wheat 2010). Researchers can also specifically target neutral loci, such as microsatellites 

(Keyghobadi et al. 1999; Lowe et al. 2010), or chose to study both neutral and adaptive 

variation in genome-wide studies (Whitehead and Crawford 2006; Candy et al. 2015). 

Researchers are also increasingly able to link the observed patterns of genetic variation to 

underlying ecological processes (Hughes et al. 2008). 

 

 

1.4 Global change factors affecting genetic diversity 

Biodiversity, including genetic diversity, is currently threatened by various global change 

factors. These include habitat loss and fragmentation, overexploitation of species, spread 

of invasive species, pollution, and climate change (Sala et al. 2000; Debinski and Holt 

2000; Bax et al. 2003; Crow 2010). With respect to genetic diversity, the effects of habitat 

loss and fragmentation have probably been the most extensively studied (Takami et al. 

2004; Keyghobadi 2007; Ortego et al. 2015). Researchers are also urgently attempting to 

understand the effects of climate change on genetic diversity (Pauls et al. 2013; 

Schierenbeck 2017). 
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  Effects of habitat loss and fragmentation on genetic diversity 

Urban, industrial, and agricultural expansion result in loss of natural habitats and 

decreases in the size of habitat patches (i.e., habitat loss), as well as greater isolation of 

habitat patches by unfavorable intervening land covers (i.e., habitat fragmentation) 

(Fahrig et al. 2011). Because of reduced availability of resources and smaller patch sizes, 

habitat loss leads to lower local effective population sizes, which enhances genetic drift 

(Young et al. 1996; Keyghobadi 2007).  Loss and fragmentation of habitat both lead to a 

loss of connectivity among populations (Keyghobadi et al. 2005).  

Connectivity, in a general sense, is the extent to which energy and material can 

move among populations, communities and ecosystems (Bishop et al. 2017). 

Connectivity depends on landscape structure, which is the relative abundance 

(‘composition’) and spatial arrangement (‘configuration’’) of different types of land cover 

and other geographic features (Turner 1989). However, connectivity among populations 

of organisms is ultimately a function of the interaction of those structural elements of the 

landscape (i.e., structural connectivity) with the movement behavior of individual species 

(i.e., functional connectivity) (Hanski 1994; Tischendorf and Fahrig 2000). Connectivity 

can be defined and studied at the level of the entire landscape (i.e., ‘landscape 

connectivity’) or individual habitat patches (‘patch connectivity’).  

Connectivity among populations is necessary for gene flow (Keyghobadi 2007). 

Because gene flow introduces potentially novel alleles into populations, it is a process 

that tends to increase genetic variation within populations and counters the loss of 

diversity due to drift. Loss of connectivity is therefore predicted to be accompanied by 

reduced genetic diversity within populations and greater differentiation among 
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populations (Witkowski et al. 1997). These processes will be further accelerated if 

populations are experiencing greater levels of drift as a result of smaller population sizes. 

Therefore, habitat loss and fragmentation are expected to result in an erosion of genetic 

diversity from many populations (Keyghobadi 2007).  

 

  Effects of climate change on genetic diversity  

Climate change as a result of increased atmospheric concentrations of greenhouse gases is 

driving increases in mean global temperature, and is also creating more variable local 

weather patterns (precipitation and temperature) worldwide (IPCC 2014). Climate change 

and associated climatic instability may result in unstable population dynamics and more 

frequent and severe fluctuations in population size, including demographic bottlenecks 

(i.e. severe but temporary reductions in population size) (Parmesan et al. 2000; Roland 

and Matter 2013).  These unstable population dynamics could arise in response to greater 

variability in availability of resources or, particularly in ectotherms, direct effects of 

extreme weather conditions on individual survival (Roland and Matter 2016). 

Population size is a key determinant of the rate of genetic drift, with smaller 

populations experiencing higher levels of drift (Slatkin 1987; Gauffre et al. 2008). In 

populations that fluctuate in size, the lowest population sizes experienced have the 

strongest influence on drift (Rich et al. 1979; Bouzat et al. 1998). As a result, when 

populations experience demographic bottlenecks, a considerable amount of genetic 

diversity can be lost due to drift (Bouzat et al. 1998; Spielman et al. 2004). The increased 

variability in population size that may accompany climate change is therefore predicted to 
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lead to lower genetic diversity in populations. At the same time, strong selective forces 

associated with a changing climate may arise and lead to directional selection on adaptive 

variation for traits such as body size (Gardner et al. 2011), dispersal (Thomas et al. 2001; 

Hill et al. 2011), and reproductive timing (Franks et al. 2007). These selective forces will 

undoubtedly affect patterns of adaptive genetic variation, although we still have a very 

limited understanding of the actual genes likely to be important for climate change 

adaptation (Franks and Hoffmann 2012).  

 

  Synergistic effects of global change factors 

In general, most studies examining effects of global change factors on biodiversity have 

focused on the effects of a single factor, such as habitat loss or climate change. 

Potentially important interactions and synergies between different global change factors 

have been recognized however. Brook et al. (2008) suggested that extinction risk for 

many species has been underestimated because of failure to account for such synergies. 

They emphasized that better understanding of potential interactions between climate 

change and the other global change factors was needed, and that conservation actions 

focused on a single factor would be insufficient to prevent biodiversity loss (Brook et al. 

2008; Metcalf et al. 2016; Davidson et al. 2018).  

In recent years, more effort has been devoted to understanding how interactions 

and synergies among different causes of population decline affect biodiversity. Using an 

example of historical biodiversity loss, Metcalf et al. (2016) demonstrated that the 

combination of climate warming and human presence, rather than one of those factors 
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alone, drove the extinction of South American megafauna during the late Pleistocene. 

More recently, ecologists have explored combined effects of climate change and nutrient 

loading on terrestrial and aquatic ecosystems (Davidson et al. 2018). Despite the potential 

importance of such synergies, their effects on genetic diversity have not been studied as 

extensively as the effects of single factors acting in isolation.  

Both habitat fragmentation and climate change may cause losses of genetic 

diversity in natural populations. However, the process by which this will occur is 

different in each case. The effects of habitat fragmentation are likely to be driven 

primarily by loss of connectivity and gene flow among populations, while the effects of 

climate change are more likely to be driven by lower effective population sizes and 

increased drift. Given that these two factors will affect genetic diversity through different 

mechanisms, there is a strong potential for synergies that will accelerate loss of diversity. 

That is, lack of connectivity due to fragmentation could exacerbate the effects of climate 

change, and vice versa. 

In this thesis I examine neutral and adaptive genetic variation in a network of 

interconnected populations (a ‘metapopulation’; Levins 1969). I integrate data on neutral 

and putatively adaptive variation with data on dispersal and population dynamics. In 

Chapters 2 and 3 I focus explicitly on the effects of connectivity among habitat patches, 

the effects of fluctuations in population size (specifically, demographic bottlenecks), and 

their interaction, on genetic diversity. In doing so I address the first objective of my 

thesis, which is to examine potential synergies between habitat fragmentation (which 

reduces connectivity) and climate change (which increases demographic variability) on 

genetic diversity. 
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1.5 Genetic variation and dispersal 

Dispersal, through its effect on gene flow, plays an important role in determining levels of 

genetic diversity within and among populations (Keyghobadi et al. 2005). However, the 

converse relationship, the effect of genetic variation on dispersal ability or tendency, is 

also of considerable interest to researchers (Niitepõld 2010; Edelsparre et al. 2014). 

In many organisms, individuals display variation in dispersal ability or tendency. 

In some cases, differences in dispersal ability among individuals are a result of obvious, 

external morphological differences, such as winged and wingless forms (Roff 1986; 

Schwander and Leimar 2011). In other cases, the source of dispersal variation is more 

subtle and may include less obvious morphological differences (e.g., size of underlying 

muscle or relative wing size), behavior, or physiology (Bonte et al. 2012). There has been 

considerable interest in understanding the basis of variation in dispersal ability, including 

the underlying genetics (Saastamoinen et al. 2018). 

Dispersal traits (i.e. morphological, physiological and behavioral aspects of 

dispersal) are often quantitative traits showing continuous variation within populations 

and potentially under polygenic control (Saastamoinen et al. 2018). The heritability of 

dispersal and associated traits (i.e., the proportion of phenotypic variation that is due to 

genetic variation) has been estimated in a variety of taxa using quantitative genetic 

approaches (reviewed in Zera and Brisson 2012, and Saastamoinen et al. 2018). These 

studies demonstrated a significant heritability of dispersal-related traits across many 

species, with a moderate average value of 0.35 in insects (Saastamoinen et al. 2018).  

Although such studies point to an important role of additive genetic variation in 
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determining dispersal, they also highlight that environmental variation and epigenetic 

effects, which modify gene expression patterns, can also explain much of the phenotypic 

variation in dispersal (Saastamoinen et al. 2018). 

Some studies have incorporated genetic markers and mapping to assess the 

genetic architecture of dispersal (i.e., number of genes, their location, and relative effect), 

in particular using quantitative trait loci (QTL) approaches. This kind of genetic mapping 

approach has revealed that the genetic architecture underlying dispersal varies 

considerably among species, such that dispersal variation can be controlled by a single 

gene, a few genes (each of large effect), or by additive and interactive effects of many 

genes (Roff and Fairbairn 2001, 2007; Caillaud et al. 2002).  

More recently, researchers have used transcriptome profiling, which reveals gene 

expression patterns at the RNA level, to evaluate gene expression differences associated 

with dispersal-related behaviours (e.g., long-distance flight) and have thereby identified 

large numbers of genes potentially important for dispersal (Margotta et al. 2012; 

Somervuo et al. 2014; Jones et al. 2015; Kvist et al. 2015).  For example, in the cotton 

bollworm (Helicoverpa armigera), flight performance was linked to the differential 

expression of a suite of candidate genes involved in flight muscle structure and lipid 

metabolism (Jones et al. 2015). In the Glanville fritillary butterfly, Melitaea cinxia, long 

distance flight resulted in differential expression of over 1500 genes, including genes 

involved in energy metabolism, ribosome biogenesis and RNA processing, stress 

responses, and immunity (Kvist et al. 2015). 

Finally, in a relatively small number of cases, individual genes and nucleotide 

variants with a large effect on dispersal have been identified. These include the forager 
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gene with rover and sitter alleles in Drosophila melanogaster (Sokolowski 1980; 

Edelsparre et al. 2014), the G-protein coupled receptor gene neuropeptide receptor-1 

(npr-1) in Caenorhabditis elegans (de Bono and Bargmann 1998), and the 

phosphoglucose isomerase gene (Pgi) in the Glanville fritillary butterfly, M. cinxia 

(Saastamoinen et al. 2018). Allelic variation at the for gene in D. melanogaster influences 

larval foraging behaviour, as well as adult dispersal propensity and the probability of 

long-distance dispersal (Edelsparre et al. 2014). Likewise, variation at the G-protein 

coupled receptor npr-1 leads to a behavioural polymorphism in C. elegans that is in 

analogous to the rover and sitter phenotypes associated with the Drosophila for gene (de 

Bono and Bargmann 1998). In the Glanville fritillary, Pgi allelic variation has been linked 

directly to movement, dispersal and flight metabolic rate in the field (Haag et al. 2005; 

Niitepõld et al. 2009). 

Dispersal is critically important to the ecology and evolution of spatially 

structured populations and communities (Clobert et al. 2012; Travis et al. 2013). The 

second objective of my thesis is to explore the genetic basis of dispersal using 

transcriptomics (Chapter 4) and using Pgi as a candidate locus (Chapter 5). By 

developing a better understanding of not just how dispersal affects genetic variation 

(Chapters 2 and 3), but also how genetic variation influences dispersal (Chapters 4 and 5), 

we can develop a more complete and rich appreciation of the dynamics of genetic 

variation in spatially structured populations. 
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1.6 Pgi as a candidate gene in ecology and evolution 

The gene Pgi encodes the enzyme phosphoglucose isomerase (PGI), which catalyzes the 

second step in glycolysis, converting glucose-6-phosphate (G6P) into fructose-6-phosphate 

(F6P) (Berg et al. 2002). Because this reaction is reversible, and since G6P can enter 

alternative pathways of the pentose phosphate shunt or glycogen biosynthesis, PGI is 

considered a branch-point enzyme (Wheat and Hill 2014), However, F6P is normally 

rapidly consumed in the next step of glycolysis so that it is unlikely to undergo the reverse 

reaction in most circumstances (Berg et al. 2002). Through the process of glycolysis, the 

high-energy compounds adenosine triphosphate (ATP) and reduced nicotinamide adenine 

dinucleotide (NADH) are produced, providing energy to sustain cellular activities.  

The gene Pgi has been well-studied in ecological and evolutionary contexts 

(Wheat 2010). Many studies have demonstrated polymorphism in Pgi sequences (Haag et 

al. 2005; Hoffman 1981; Filatov and Charlesworth 1999; Wheat 2010), evidence for 

selection on Pgi (Watt 2003; Orsini et al. 2009), and effects of Pgi alleles on diverse aspects 

of performance and fitness (Watt 1983; Watt et al. 1983; Haag et al. 2005). In addition to 

effects on flight and dispersal, Pgi variants have also been shown to influence mating 

success, oviposition, running speed, thermal performance, and even population growth rate, 

across a wide range of taxa (Filatov and Charlesworth 1999; Dahlhoff and Rank 2000; 

Orsini et al. 2009; Wheat et al. 2010). Because of extensive evidence for selection on Pgi, 

as well as documented effects on ecologically relevant performance traits, this gene is 

considered by many to be a candidate adaptive locus for ecologically important traits, 

including movement and dispersal, particularly in arthropods (Wheat and Hill 2014). 

Although very different in structure, function and evolutionary history, the role of Pgi as a 



18 
 

 
 

candidate locus for arthropods is somewhat analogous to the role of the major 

histocompatibility (MHC) genes in vertebrates (Wheat 2010). 

 

 

1.7 Introduction to study species and a model system  

The Rocky Mountain apollo butterfly, Parnassius smintheus, occupies high-altitude 

alpine meadows (above ca. 2100 m) separated to varying degrees by montane forests in 

the North American Rocky Mountains (Fownes and Roland 2002; Ross et al. 2005). 

Parnassius smintheus has one generation per year. Adults have a single annual flight in 

July–August, during which they mate, and the females lay eggs. Individuals overwinter as 

a pharate larva inside the egg. The aposomatic larvae hatch the following year in May and 

feed on the main host plant, lanceleaf stonecrop (Sedum lanceolatum), and to a lesser 

degree, ledge stonecrop (Rhodiola integrifolia) (Fownes and Roland 2002; Matter et al. 

2011). Adults do not disperse more than a few kilometers during their adult lifespan 

(Matter et al. 2011), and movement is hindered through forested areas (Roland et al. 

2000). Parnassius smintheus is an ideal subject to study spatially-structured populations, 

dispersal, and gene flow because of its patchy distribution in mountain landscapes.  

My thesis research was conducted on a network of populations of P. smintheus 

that occupy patches of alpine meadow habitat along Jumpingpound Ridge, and the 

adjacent Cox Hill and Lusk Ridge, in the Kananaskis region of Alberta, Canada (50° 

57'N, 114° 54'W; Figure 1.1). The meadow patches are located above treeline, 

approximately 2100 m above sea level, and range in area from 0.2 ha to 22.7 ha. The 
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meadow patches are separated to varying degrees by intervening forest (Roland and 

Matter 2007). The total distance between pairs of patches, measured along ridge-tops and 

between the centroids of butterfly captures within each patch, range from ~ 150 m to 

~11.18 km. This particular network of populations of P. smintheus has been studied 

continuously since 1995 through yearly mark-recapture studies and long-term collection 

of tissue samples for genetic analysis. The effects of both landscape structure and climate 

variation on population dynamics and dispersal in this system have been studied in detail 

(Roland and Matter 2007).
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Figure 1.1 Map of the study patches occupied by a network of Parnassius smintheus populations, in Kananaskis, Alberta, 

Canada (50° 57'N, 114° 54'W). Black circles with letter labels show the location of 16 habitat patches sampled along ridge-

tops in this study. Map data: Google, DigitalGlobe 2018.
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The size of the adult population in P. smintheus varies from year to year (Roland 

et al. 2000; Matter et al. 2014). In the Jumpingpound network, Roland and Matter (2016) 

have shown that population dynamics of P. smintheus is largely driven by early winter 

weather, which they found was a strong descriptor of annual population growth. 

Specifically, increased mortality of overwintering, pharate larvae is associated with 

extreme weather, including both cold and warm temperatures, and reduced snowfall in 

November. In my study site, two severe network-wide demographic bottlenecks have 

been documented (starting in 2003 and 2010, respectively) and these were likely driven 

by low overwinter survival of larvae as a result of reduced early winter snow cover. In 

general, such bottlenecks are predicted to occur regularly in this system, on the order of 

every decade, as a result of year-to-year variation in winter weather conditions (Roland 

and Matter 2016). 

Basic aspects of the dispersal of adult P. smintheus have been described in my 

study system (Roland et al. 2000; Matter et al. 2004). Mark-recapture data suggest most 

movements occur within habitat patches and indicate that within a flight season the mean 

net displacement is ~ 150 m and the maximum net displacement is ~ 2 km (Roland et al. 

2000). Movement and dispersal decline exponentially with distance, but at a more rapid 

rate over forested areas than over open meadows (Roland et al. 2000; Matter et al. 2004; 

Keyghobadi et al. 2005). Thus, in this system, forest represents a barrier to movement and 

the amount of forest in the landscape determines functional connectivity (Roland et al. 

2000; Roland and Matter 2007) with important implications for the level of synchrony in 

population dynamics (Roland and Matter 2007; Matter et al. 2014) and for gene flow and 

genetic structure (Keyghobadi et al. 1999). Adult females are more cryptic and harder to 
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capture than males, such that mark-recapture datasets are typically dominated by data 

from males. However, using data collected over multiple years, Goff et al. (2018) showed 

that although the sexes display similar mean dispersal distances, females are less sensitive 

to the effects of intervening forest than males. Population size and density also influence 

dispersal, as butterflies are more likely to leave lower density populations and immigrate 

to higher density populations (Roland et al. 2000; Matter et al. 2004). 

 

 

1.8 Overview of thesis 

In this thesis, I explore the dynamics of genetic variation in a network of interconnected 

populations that experience regular fluctuations in size. I take advantage of, and 

contribute to, a unique, long-term dataset comprising demographic, genetic, and 

movement data from the spatial population network of P. smintheus. My thesis consists of 

four data chapters, which were designed as separate studies for independent publication. 

Chapter 2 has been published (Jangjoo et al. 2016), Chapter 3 is under review (Jangjoo et 

al. submitted), and Chapters 4 and 5 will soon be submitted for publication. 

In Chapters 2 and 3 I focus on the consequences of demographic bottlenecks for 

neutral genetic variation (assessed using microsatellite markers), taking into account the 

effects of landscape structure. In Chapter 2, I test the hypothesis that habitat patch 

connectivity contributes to the rescue of genetic diversity after a demographic bottleneck 

by facilitating immigration and gene flow. In Chapter 3, I investigate how patterns of 

genetic differentiation among populations respond to repeated demographic bottlenecks.  
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Specifically, I document changes in neutral genetic structure associated with two cycles 

of population size collapse and recovery across the entire network.  

In Chapters 4 and 5 I focus on developing a better understanding of the genetics 

underlying dispersal in this species. In Chapter 4 I determine if there are differences in 

gene expression between individuals that moved between habitat patches (dispersers) and 

those that remained in the same habitat patch (non-dispersers). More specifically, I use 

RNA-Seq technology to assemble a transcriptome for P. smintheus thoracic muscle tissue 

and to compare gene expression patterns among individuals with differing dispersal 

histories and caught flying under different temperature conditions. In Chapter 5 I 

describe, for the first time, the coding sequence of the candidate gene Pgi in P. smintheus. 

I also develop assays for variation at SNPs in Pgi and assess whether Pgi genotype 

predicts variation in movement and dispersal among individuals. 

Overall, I aim to contribute to the rich literature on the genetics of spatially 

structured populations, as well as to the literature exploring effects of habitat 

fragmentation and climate change on genetic diversity. 
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Chapter 2 

2 Connectivity rescues genetic diversity after a 
demographic bottleneck: empirical evidence from a 
butterfly population network1 

2.1 Introduction 

Genetic diversity is the most fundamental level of biological diversity. Loss of genetic 

diversity is a central concern in conservation biology because populations with low 

genetic diversity may suffer from inbreeding and reduced fitness, lack the potential to 

adapt to future environmental change, and be more vulnerable to extinction (Saccheri et 

al. 1998; Spielman et al. 2004). Genetic diversity can be lost from populations through 

various mechanisms, with random drift in finite populations and demographic bottlenecks 

(temporary but severe reductions in population size), being of greatest relevance in 

conservation (Lacy 1987; Bouzat et al. 1998). 

Immigration into a genetically impoverished population can rescue genetic 

diversity, and can be achieved artificially through translocations or through natural 

movement of individuals (Ehrich and Jorde 2005; Frankham 2015). Natural immigration 

requires connectivity within the landscape, where connectivity measures the extent to 

which movement and gene flow can occur among populations (Tischendorf and Fahrig 

                                                           

1 A version of this chapter has been published in Proceedings of the National Academy of Sciences of the 

United States of America 
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2000). Connectivity can be defined at the level of the landscape or individual habitat 

patches, and is a function of structural elements of the landscape in combination with the 

movement behavior of individual species (Hanski 1994; Tischendorf and Fahrig 2000).  

There is considerable interest in managing landscapes to improve connectivity 

among natural populations as this provides a variety of ecological and genetic benefits 

(Luque et al. 2012), including the potential for natural genetic rescue. Correlations 

between connectivity and genetic diversity shown in numerous systems suggest that 

connectivity contributes to maintenance of genetic diversity on some time scale 

(Keyghobadi et al. 2005; Vandewoestijne et al. 2008). However, the temporal scales 

involved in the establishment of such correlations are poorly understood. Although 

predicted by theory, the ability of connectivity to rescue genetic diversity rapidly after a 

demographic bottleneck has not, to our knowledge, been demonstrated in a natural 

system.  Consequently, the extent to which connectivity may contribute directly to genetic 

diversity via immigration of novel alleles, versus indirectly via effects on population size 

and stability is also not well understood.  

A network of populations of the Rocky Mountain Apollo butterfly, Parnassius 

smintheus, occupying patches of alpine meadow habitat in Alberta, Canada has been 

monitored and studied continuously since 1995 and effects of both landscape structure 

and climate variation on population dynamics and dispersal have been described (Roland 

et al. 2000; Roland and Matter 2013) (Figure 1.1). Population dynamics of P. smintheus 

are influenced by climate variation, with the Pacific Decadal Oscillation (PDO) index 

being a strong descriptor of annual population growth. More frequent extremely cold or 

warm winters, which can be expected as a result of climate change, are predicted to 
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increase the occurrence of years with negative population growth for P. smintheus 

(Roland and Matter 2013). 

In this study site, two severe demographic bottlenecks have been documented 

and linked to poor overwintering weather conditions: in 2003 and 2010 (Figure 2.1). The 

bottleneck that began in 2010 was more protracted with population sizes remaining low in 

2011 and recovering more slowly than after the 2003 bottleneck (Figure 2.1). The reason 

for the differing nature of these two events may be more severe overwintering conditions 

in 2010, leading to higher egg mortality (Roland and Matter 2013). A study comparing 

genetic diversity prior to and after the 2003 demographic bottleneck (Caplins et al. 2014) 

yielded a key result: no overall loss of diversity across the network was detected, but an 

interaction between patch connectivity and severity of the demographic collapse affected 

loss of allelic richness within individual habitat patches. This result suggested some role 

of connectivity in maintaining genetic diversity in populations experiencing demographic 

bottlenecks.
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Figure 2.1 Changes in Parnassius smintheus population size and allelic richness (AR) in 

the network over different years. (A) Mean AR over seven microsatellite loci in 2008, 

2010, 2011 and 2013 (with rarefaction to four genes). Significant predictors of AR change 

were: 2010 population size during phase (I), none during phase (II), and 2012 

connectivity during phase (III). (B) Boxplots of yearly P. smintheus abundance estimates 

for all populations, showing interquartile range (IQR; boxes), maximum and minimum 

estimates up to 1.5  IQR (whiskers), and outliers beyond 1.5  IQR (open circles).
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Here, I assess effects of the more protracted 2010 demographic bottleneck on 

genetic diversity by comparing samples collected prior to (in 2008), during (in 2010 and 

2011) and after (in 2013) the event. I show that across this bottleneck, connectivity plays 

a clear and significant role in recovery of genetic diversity, highlighting the importance of 

conserving connectivity in fluctuating populations. 

 

 

2.2 Materials and Methods 

 Sample collection and study region 

Wing-clips from adult P. smintheus have been collected since 1995, and yearly since 

2005, from populations along Jumpingpound Ridge, in the Kananaskis region of Alberta, 

Canada (50° 57'N, 114° 54'W; Figure 1.1). Here, P. smintheus occupies meadows above 

treeline (~2100 m), and Roland et al. (2000) delineated habitat patches that range in area 

from 0.2 ha to 22.7 ha and are separated from each other by either intervening forest or 

open meadow habitat. Butterflies were captured with hand-nets, individually marked, and 

approximately 0.2 cm2 of wing tissue was removed using forceps or iris scissors and 

stored immediately in 95-100% ethanol. To assess genetic diversity before and after the 

2010 demographic bottleneck, I focused on individuals sampled from the same patches in 

2008 (pre-bottleneck) and 2013 (post-bottleneck). These are the years closest to the 

bottleneck in which larger samples from several patches were available (Figure 2.1A). 

Supporting analyses also included individuals sampled during the low population size 

years of 2010 and 2011. The number of individuals sampled per population was by 



39 
 

 
 

necessity small in the bottleneck years because of the low population sizes in those years. 

However, an equal or even larger proportion of the total population was sampled in these 

years, as well as in 2013, compared to 2008, as reflected in the ratios of sample size to 

index of population size for the different years (Table A2).  

 

 Mark-recapture study and estimates of patch connectivity 

Mark-recapture studies of P. smintheus have been conducted in the population network 

since 1995, and are described extensively elsewhere (Roland et al. 2000; Roland and 

Matter 2013). Adults were individually marked, and spatial locations of captures and 

recaptures were recorded. An index of population size in each habitat patch was 

determined using Craig’s method, which provides an estimate of the number of adults in 

the population on a single day of sampling (Craig 1953; Matter and Roland 2004). I used 

the maximum Craig’s estimate from three to five different sampling days per year as an 

index of population size in each patch, each year. Rates of movement among patches 

were estimated with the virtual migration model (VMM) (Hanski et al. 2000). 

I defined the connectivity of patch k as its relative attractiveness and accessibility 

to emigrants from all other patches in the network. This was estimated as the sum, over 

all other patches, of the probabilities of individuals leaving each other patch and reaching 

k (Hanski et al. 2000): 

𝜓𝑘 =  ∑
𝐴𝑘

𝜁
𝑒(−𝛼𝑓𝑑𝑗𝑘𝑓−𝛼𝑚𝑑𝑗𝑘𝑚)

𝜆
𝑆𝑗

+  𝑆𝑗

𝑛

𝑗=1
𝑗≠𝑘

 

where 
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𝑆𝑗 =  ∑ 𝐴𝑘
𝜁

𝑛

𝑘=1
𝑘≠𝑗

𝑒(−𝛼𝑓𝑑𝑗𝑘𝑓−𝛼𝑚𝑑𝑗𝑘𝑚) 

Ak is the area of patch k; djkf and djkm are the distances through forest and 

meadow habitat between patches j and k, respectively; and λ is mortality during dispersal.  

Additional parameters describe the effect of forest and meadow on movement (αf and αm, 

respectively), and the scaling of immigration with patch area (). Connectivity for each 

patch, each year was calculated using parameters estimated from the mark-recapture data 

for that year. Since movements of P. smintheus are restricted along ridge-tops (Roland et 

al. 2000), I calculated pairwise distances between patches along ridge-tops between 

centroids of butterfly capture in each patch (Figure 1.1). The total distance between any 

two patches was divided into two components, the distance comprised of forest and 

distance comprised of open meadow, which were estimated from digitized aerial photos. 

 

 DNA extraction and Microsatellite analysis 

DNA was extracted from wing-clips using a DNeasy Blood and Tissue Kit (QIAgen, 

Germantown, MD), with a final elution volume of 200 µl. Each sample was genotyped at 

seven highly variable microsatellite loci ((Ps50, Ps76, Ps81, Ps85, Ps163, Ps165 and 

Ps262; Keyghobadi et al. 1999, 2002). PCR amplification of microsatellites occurred in 

two multiplex amplifications (multiplex 1: Ps 50, Ps 81and Ps 85, and multiplex 2: Ps 76 

and Ps 163), and two individual locus amplifications (Ps 262 and Ps 165).  PCR reactions 

occurred in a final solution of volume 10μL; each amplification contained 1× AmpliTaq 

buffer (10 mM Tris, pH 8.8, 0.1% Triton X100, 50 mM KCl), 3.125 mM MgCl2, 0.075 to 
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0.275 µM of each primer, 0.25 mM dNTP, 0.0625 U of AmpliTaq DNA polymerase 

(Applied Biosystems, Foster City, CA), 0.15 µg bovine serum albumin (BSA) and 3µl of 

genomic DNA. PCR amplifications were performed in a PTC 0200 DNA Engine Cycler 

(BioRad, Hercules, CA). One of the two primers (forward primer) was labeled with a 

fluorescent dye to allow visualization of PCR products.  

Thermal cycling profiles followed one of two protocols: 1) multiplex 

amplification: Denaturation for 60 s at 94 °C; followed by 3 cycles at of 30 s at 94°C, 30 

s at 56°C annealing, and 30 s at 72°C; 10 touchdown (TD) cycles when annealing 

temperature was reduced 0.5 °C per cycle and all hold times were reduced to 15 s; 27 

additional cycles of 15 s at 94°C, 15 s at 51°C, and 15 s at 72°C; and final elongation at 

72°C for 180 s.; and 2) individual locus amplification: Denaturation for 60 s at 94 °C; 

followed by 3 cycles of 30 s at 94°C; 20 s at 54°C, and 10 s at 72°C; followed by 32 

cycles of 15 s at 94°C; 20 s at 54°C; 5 s at 72°C; and final elongation at 72°C for 30s. 

Ramp speed was set to 1 °C per second for all thermal cycling. 

PCR products were visualized and sized on an Applied Biosystems® 3730S 

capillary DNA analyzer, using LIZ-500 size standard. All loci (the PCR products) for 

each individual were multi-loaded in a single lane of the DNA analyzer. 

Electropherograms generated by the DNA analyzer were viewed and processed using 

GeneMapper software ver. 4.0 (Applied Biosystems) to score microsatellite genotypes. 

All genotypes were checked manually and loci that failed to amplify were re-run up to 

two more times. If a locus failed to amplify in an individual after three attempts, the 

individual was considered null homozygous for that locus. However, any individuals with 

two or more failed loci were removed altogether from the dataset. 



42 
 

 
 

 Linkage disequilibrium and Hardy–Weinberg tests 

For each of the four years separately (2008, 2010, 2011, 2013), linkage disequilibrium 

and conformity to Hardy-Weinberg proportions were tested for each locus in each 

population using Genepop v.4.2 (Raymond and Rousset 1995). For linkage tests, 

significance was assessed using a Markov chain method of 100 batches of 1,000 iterations 

per batch. Hardy-Weinberg tests used the Markov chain method and approximation of 

Fisher’s exact test implemented in Genepop (Guo and Thompson 1992). Consistent with 

previous analyses of these loci (Keyghobadi et al. 1999, 2002, 2005; Caplins et al. 2014) 

there was no evidence for linkage disequilibrium but there were significant deviations 

from expected Hardy-Weinberg genotypic proportions. Of a total of 203 tests of 

conformity to Hardy-Weinberg proportions, 115 indicated significant homozygote excess, 

which was observed at all loci and in each time period (in 46 of 63 tests for 2008, 21 of 

49 tests for 2010, 16 of 28 tests for 2011, and 32 of 63 tests for 2013). Homozygote 

excess at these loci is known to be a result of null alleles (Keyghobadi et al. 1999, 2002), 

which are non-amplifying alleles that result from variation in microsatellite flanking 

regions. Null allele frequencies were estimated, and frequencies of other alleles 

simultaneously re-estimated, using the ‘ENA’ method in the software FreeNA (Chapuis 

and Estoup 2007).  

 

 Changes in genetic diversity 

For each year, within-population genetic diversity was quantified using two metrics: 1) 

unbiased expected heterozygosity (HE) calculated using null-corrected allele frequencies 
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for each locus (Nei and Roychoudhury 1974) and then averaged over all loci in each 

population; and 2) allelic richness (AR) estimated in HP-Rare software (Petit et al. 1998; 

Kalinowski 2005), also averaged over all loci in each population. Allelic richness is a 

count of visible alleles at each locus, corrected for the number of sampled gene copies by 

rarefaction to the smallest sample size in the dataset (Leberg 2002), and is expected to 

show a stronger response to demographic bottlenecks than heterozygosity (Nei et al. 

1975). Allelic richness also allows for robust comparisons of genetic diversity despite 

very unequal sample sizes (Pruett and Winker 2008). Because null allele frequency was 

consistent between sampling periods (mean of 10.8% in 2008 and 7.9% in 2013, with 

overlapping confidence intervals; Table A1), the presence of null alleles should not affect 

temporal changes in allelic richness, which are estimated using the visible alleles 

(Chapuis et al. 2008). For comparisons between 2008 and 2013, I focused my analyses on 

the nine populations in which a minimum of five individuals were sampled in each year 

(Table A1), thus allowing us to estimate AR with rarefaction to ten gene copies. For 

supplementary analyses involving samples from the bottleneck years of 2010 and 2011, 

the number of available samples was necessarily very small (Table A3). Inclusion of only 

those populations in which I could rarefy to ten, or even as few as six, gene copies left me 

with very few populations (two or three for some pairs of years) to examine effects of 

connectivity and crash severity on AR change. Rarefaction to two gene copies allowed me 

to include more populations, but rarefaction to this small number of samples produced 

high variability in the AR estimates and patterns of change that were not consistent with 

those detected when rarefaction was to four or more gene copies. Therefore, for the 

supplementary analyses involving 2010 and 2011 samples, I included populations with 

two or more individuals sampled in those years, and estimated AR for all years based on 
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rarefaction to four gene copies. In comparisons of AR between 2008 and 2013, rarefaction 

to four or ten gene copies gave highly consistent results although linear models for AR 

change had slightly less explanatory power with rarefaction to four gene copies. I used 

the nonparametric Wilcoxon-Mann-Whitney test to determine whether levels of genetic 

diversity differed between years. 

I tested for evidence of genetic bottleneck signatures, separately for each 

population, using the software BOTTLENECK v.1.2.02 (Cornuet and Luikart 1997; Piry 

et al. 1999). Wilcoxon signed-rank tests (WSR) were used to compare the observed 

heterozygosity to that expected from the observed number of alleles, given the sample 

size, under the assumption of mutation-drift equilibrium, for each locus in each 

population. The infinite allele model (IAM) and the two-phase model (TPM) of mutation 

were used to simulate mutation-drift equilibrium. For TPM, two values (10 and 30) were 

tested for the variance of the geometric distribution with a low probability of single-step 

mutations (70%). I did not include the strictly stepwise mutational model (SMM), 

because it is inappropriate here due to the occurrence of flanking-sequence insertions or 

deletions (Keyghobadi et al. 1999, 2002). 

 

 Relationship to patch connectivity and severity of the 
demographic bottleneck 

I examined whether the level of genetic diversity within populations before the bottleneck 

(in 2008) affected bottleneck severity, by separately testing each of AR and HE as 

predictors of the 2010 and 2011 population size indices, using linear regression. 
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To examine factors affecting changes in allelic richness between years, I first 

quantified the proportional loss or gain of AR between time periods. To improve 

interpretability of the results and minimize reference to negative changes in AR, I 

quantified changes in AR between years as either proportional loss or gain of AR 

depending on whether allelic diversity, on average across all populations, decreased or 

increased between the time periods considered. For pairs of years where AR had, on 

average, declined between the two time periods I estimated proportional loss of AR as:  

(𝐴𝑅 in first period – 𝐴𝑅 in second period)

𝐴𝑅  in first period
 

 

Where AR had, on average, increased between the two time periods I estimated 

proportional gain of AR as:  

(𝐴𝑅 in second period – 𝐴𝑅 in first period)

𝐴𝑅  in first period
 

I examined the effect of connectivity on AR change using linear regression. I also 

included severity of the demographic bottleneck and the two-way interaction term as 

predictors in my models. Each population was considered a random effect. Proportional 

changes in AR were arcsine transformed before being included as response variables in 

the regression analyses. For changes in AR between 2008 and 2013, I tested separately the 

effects of connectivity in each of the years 2010, 2011 and 2012. Since I was interested in 

whether connectivity facilitated genetic rescue after the demographic bottleneck, it was 

most relevant to use connectivity estimated for these years, starting with the initial year in 

which population size crashed (2010) and up to the year before the 2013 samples were 

collected. The population size indices in the two years of lowest abundance (2010 and 

2011) were used separately as measures of the severity of the demographic bottleneck in 
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each population. I therefore tested models that included all possible combinations of 

connectivity for one of the three years, and bottleneck severity for one of the two years, 

and compared the performance of models based on the corrected Akaike Information 

Criterion (AICc) (Table A4). For supplementary analyses examining changes in AR in the 

distinct phases of demographic decline (2008 to 2010) and recovery (2011 to 2013), the 

same sets of predictors were used. While I would not expect causal relationships between 

some of the predictors and changes in AR during these phases (e.g., I would not expect an 

effect of 2012 connectivity on AR change between 2008 and 2010), I nonetheless 

examined all models so that I could have more confidence in the interpretation of factors 

affecting AR change across the entire period of 2008 to 2013; for example, I wanted to 

confirm that the significant effect of 2012 connectivity on AR change from 2008 to 2013 

was indeed via immigration during the recovery stage and did not represent an artefact of 

processes operating during the decline phase (Table A5). The predictors used in each 

model were not collinear (r2 < 0.4). All linear regressions were performed using the ‘lm’ 

function of the ‘Stats’ package in R v.3.1.2 (R Development Core Team 2013). I 

confirmed that model residuals were not spatially autocorrelated using Moran’s I (all P > 

0.05) executed in the ‘ape’ package in R, based on the coordinates of the centroid of each 

sampled patch. 
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2.3 Results and Discussion 

I assessed genetic diversity using a panel of seven highly variable microsatellite loci. 

Prior to the demographic bottleneck, I observed a total of 132 different alleles across all 

these loci, and 123 cases of an allele within a patch having an observed frequency below 

2%. Thus, with a large number of alleles per locus, these markers would have been 

particularly sensitive to changes in allelic diversity (Spencer et al. 2000). I first 

established there were no effects of pre-bottleneck allelic richness (AR) or expected 

heterozygosity (HE) on 2010 or 2011 population size, indicating that levels of neutral 

genetic diversity did not predict or determine the severity of the demographic decline in 

each patch (2010: AR, P = 0. 0.33, HE, P=0.86; 2011: AR, P =0.39, HE, P = 0.95). 

Allelic diversity across the population network declined after the 2010 

demographic bottleneck. Averaging over all patches and loci, AR (rarefied to ten genes) 

was reduced significantly from 4.76 (S.E, ± 0.026) in 2008 to 4.08 (S.E, ± 0.17) in 2013 

(Wilcoxon-Mann-Whitney test, W= 77.5, P = 0.001). This represents a mean loss of 14% 

(0.14 ± 0.039; Table A1) of the allelic richness present before the bottleneck. These 

results contrast with the 2003 demographic bottleneck where no overall loss of allelic 

diversity across the network occurred (Caplins et al. 2014), and reflect differences in 

duration and recovery from the two events; a longer duration at low abundance has a 

stronger negative effect on genetic diversity (Williamson-Natesan 2005). Expected 

heterozygosity also declined after the demographic bottleneck, from a mean of 0.71 (S.E, 

± 0.005) across patches in 2008 to 0.67 (S.E, ± 0.016) in 2013, although the difference 

was non-significant (Wilcoxon-Mann-Whitney test, W= 62, P = 0.061). The weaker 

response of heterozygosity is consistent with theoretical expectations that allelic diversity 
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should respond more strongly and rapidly to a demographic bottleneck than 

heterozygosity (Nei et al. 1975). 

Despite the clearly documented demographic bottlenecks in this system, and the 

significant reduction in allelic diversity across the 2010 event, significant signatures of 

genetic bottlenecks using the program BOTTLENECK were not detected in samples 

collected before or after the 2010 event, using either the infinite allele model or two-

phase model (all P > 0.05 for Wilcoxon tests). The low power of single sampling-period 

bottleneck detection methods has been previously noted (Berthier et al. 2005; Peery et al. 

2012), and in my study system, the effectiveness of such methods may be particularly 

limited by immigration, which can erase a genetic bottleneck signature in two to three 

generations (Keller et al. 2001; Busch et al. 2007). 

I observed substantial variation among populations occupying different habitat 

patches in the amount of allelic diversity lost from 2008 to 2013, with the proportional 

loss of AR (averaged across loci) ranging from -0.03 (AR increased slightly in one site) to 

0.31 (31% of AR lost). I examined the ability of patch connectivity to explain these 

changes in AR using a connectivity measure that accounts for both landscape structure 

(areas and distances between patches, and the nature of the intervening matrix) and 

movement parameters estimated from mark-recapture data. Severity of the demographic 

bottleneck, measured as population size during the lowest abundance years of 2010 or 

2011, and the interaction between connectivity and bottleneck severity were included in 

the models analyzed. A measure of patch connectivity that was based on movement 

parameters from 2012 was the single best predictor of change in AR from 2008 to 2013 (r2 

= 0.81, F1, 7 = 30.38, P = 0.0009). Populations in patches with greater connectivity 
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retained more allelic diversity through the demographic bottleneck (Figure 2.2). There 

were no significant effects of bottleneck severity, measured as either 2010 or 2011 

population size, on the loss of AR. Compared to the 2003 demographic bottleneck 

therefore, where the effect of connectivity on loss of AR was complicated by an 

interaction with severity of local population size decline (Caplins et al. 2014), across this 

more protracted event I observed a very distinct and clear effect of connectivity on the 

loss of AR.  
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Figure 2.2 Relationship between the proportional loss of allelic richness (AR) across a 

demographic bottleneck and habitat patch connectivity in Parnassius smintheus. 

Proportional loss of allelic richness was measured from 2008 and 2013, and was best 

explained by connectivity in 2012. Solid dots indicate individual patches. Least-square 

line of best fit is shown.
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Connectivity in 2012 was also a stronger predictor of AR change from 2008 to 

2013 than connectivity estimated using movement parameters from either 2010 (r2 = 0.62, 

F1, 7 = 11.49, P = 0.011) or 2011 (r2 = 0.71, F1, 7 = 17.17, P = 0.004). This result supports 

the hypothesis that the effect of connectivity on AR change was via facilitation of 

immigration into patches, since this process should be acting most strongly during the 

demographic recovery phase (2011 to 2013) than during the initial decline (2008 to 

2010). To examine this further, and to characterize the behaviour of AR through the 

demographic bottleneck, I genotyped samples collected in 2010 and 2011; sample sizes in 

these years were necessarily small, therefore a smaller number of patches and fewer 

individuals per patch could be analyzed. I then examined effects of patch connectivity and 

population size in various years, and their interactions, on changes in AR (rarefied to four 

gene copies because of smaller sample sizes in 2010 and 2011) during the demographic 

decline phase and the recovery phase, separately. 

Mean AR declined from 2008 to 2010, accompanying the demographic 

bottleneck. Mean AR dropped even further in 2011 with the continued time at low 

population size, and then increased from 2011 to 2013 as population sizes recovered, 

although not fully returning to pre-bottleneck (2008) levels (Figure 2.1). Using the same 

number of populations as in my comparisons between 2008 and 2013, I found that loss of 

AR from 2008 to 2010 was best explained by population size in 2010 (r2 = 0.57, F1, 7 = 

9.38, P = 0.018; Figure 2.1). This indicates that severity of the demographic bottleneck, 

but not connectivity, determined the loss of genetic diversity during the demographic 

decline phase.  In contrast, the increase in AR from 2011 to 2013 was best explained by 

connectivity in 2012 (r2 = 0.91, F1, 2 = 19.46, P = 0.047; Figure 2.1). While this latter 

analysis of AR gain was based on only four populations, overall my results do suggest that 



52 
 

 
 

the effect of connectivity on AR change observed across the entire demographic 

bottleneck (2008 to 2013) reflects the importance of connectivity during the recovery 

phase, rather than through any effect of connectivity on the loss of AR during the initial 

population decline. The results are therefore consistent with the hypothesis that 

connectivity rescued genetic diversity via immigration and gene flow during the recovery 

phase. No predictors explained the additional losses of AR between 2010 and 2011 

(Figure 2.1) that likely resulted from genetic drift. Compared to the contracted episode of 

population decline and recovery that occurred in 2003, it appears that across this more 

protracted, recent episode I was able tease apart the effects of the severity of demographic 

decline, which affects loss of AR from populations, and connectivity, which affects 

recovery of AR, that were previously found to interact. 

Immigration accompanied by gene flow is a key process leading to recovery of 

genetic diversity after a demographic bottleneck (Keller et al. 2001; McEachern et al. 

2011), allowing populations to maintain genetic diversity despite fluctuating dynamics 

(Ehrich and Jorde 2005). While immigration is mediated by patch or landscape 

connectivity, empirical evidence for a direct effect of connectivity in rescuing genetic 

diversity had been lacking. My study provides evidence in a natural system for a direct 

effect of connectivity in recovery of genetic diversity following a demographic 

bottleneck. My study also underlines the importance of maintaining connectivity in the 

face of climate change, as natural populations are expected to experience more frequent 

and severe fluctuations in size as result of increasing climatic instability (Vandenbosch 

2003; Roland and Matter 2013). The two global change factors of loss of habitat 

connectivity and climate change may act together in this and other systems to reduce 

genetic diversity of populations.  
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Chapter 3 

3 Demographic fluctuations lead to rapid and cyclic shifts 
in genetic structure among populations of an alpine 
butterfly, (Parnassius smintheus) 

3.1 Introduction 

Genetic structure, the distribution of genetic variation within and among populations 

(Epperson and Allard 1989), is an important property of population networks that reflects 

their potential to respond to environmental change through local adaptation or migration 

(Balloux and Lugon-Moulin 2002; Toro and Caballero 2005). Genetic variation among 

populations typically arises when gene flow is at least somewhat limited, providing the 

opportunity for divergence in allele frequencies, primarily through drift or difference in 

selection pressure among populations (Wright 1978). Under stable conditions, genetic 

structure reaches a state of equilibrium where these evolutionary processes are balanced, 

and patterns of variation within and among populations are constant across generations 

(Varvio et al. 1986). However, conditions are often not stable and genetic structure 

among many natural populations may not be at equilibrium (Whitlock 1992). 

Population size is an important determinant of genetic structure, primarily 

through its influence on the effective number of breeding individuals (Slatkin 1987; 

Gauffre et al. 2008), and thereby the levels of genetic drift (Kalinowski and Waples 

2002). Population size is rarely constant, and may fluctuate considerably, even on very 

short time scales. Fluctuations in population size can have a variety of causes, including 

both density-dependent factors such as disease and predator-prey interactions, and 
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density-independent factors such as extreme weather events (Hansen et al. 1999; 

Bjørnstad and Grenfell 2001). When population size fluctuates, the lowest population 

sizes experienced exert the strongest influence on levels of genetic drift (Rich et al. 1979; 

Bouzat et al. 1998). As a result, demographic bottlenecks (severe but temporary 

reductions in population size) can have a strong effect on genetic variation within and 

among populations (Bouzat et al. 1998; Spielman et al. 2004). 

The effects of demographic bottlenecks on genetic variation have received 

considerable attention. Specifically, many studies document the effects of bottlenecks on 

genetic variation within single populations. These studies demonstrate that demographic 

bottlenecks can erode genetic diversity, and result in inbreeding and reduced fitness 

(Hoelzel et al. 2002; Spielman et al. 2004). Some such studies invoke an effect of 

immigration from other populations in rescuing genetic variation that might otherwise 

have been lost from the focal population (Keller et al. 2001; Pilot et al. 2010; McEachern 

et al. 2011). However, relatively few studies address the effects of demographic 

bottlenecks on genetic structure among populations, or examine directly how immigration 

and gene flow interact with bottlenecks in determining patterns of genetic variation (e.g., 

Le Gouar et al.  2008; Ehrich et al. 2009; Chapter 2). Furthermore, the effects of repeated 

cycles of demographic decline and recovery on the genetic structure of natural population 

networks have not been widely described. There is therefore a significant gap in 

evolutionary research as theoretical analyses indicate that fluctuations in demographic 

parameters such as population size and gene flow can have important evolutionary 

consequences (Whitlock 1992). Fluctuations in these parameters can lead to fluctuations 

in the genetic variation among populations, potentially creating temporary opportunities 
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for certain evolutionary scenarios such as group selection or shifting-balance dynamics 

(Wright 1978; Whitlock 1992). 

Here, I investigate changes in genetic structure in response to fluctuations in 

population size and repeated demographic bottlenecks in an interconnected network of 

populations of the Rocky Mountain Apollo butterfly, Parnassius smintheus. These 

populations have been studied continuously since 1995, providing insight into the effects 

of both landscape structure and climate variation on dispersal and population dynamics 

(Figure 1.1, Roland et al. 2000; Roland and Matter 2007). Population dynamics of P. 

smintheus in this network are largely driven by early winter weather, which is a strong 

descriptor of annual population growth. Specifically, increased mortality of 

overwintering, pharate larvae is associated with extreme weather, including both cold and 

warm temperatures, and reduced snowfall in November (Roland and Matter 2016). 

In this study site, two severe network-wide demographic bottlenecks have been 

documented and attributed to low overwinter survival of larvae as a result of reduced 

early winter snow cover: in 2003 and also 2010 (Matter and Roland 2010; Roland and 

Matter 2016, Figure 3.1). In general, such bottlenecks are expected to occur regularly in 

this system in response to highly variable early winter conditions (Roland and Matter 

2016). The effects of the 2003 demographic bottleneck on genetic structure were 

described by Caplins et al. (2014) who compared samples collected before (in 1995) and 

after (in 2005) the event. The bottleneck resulted in increased genetic differentiation 

among populations and loss of spatial patterns of genetic structure measured two years 

(generations) after the collapse in population size. Specifically, the bottleneck led to a 

breakdown of isolation-by-distance and disrupted associations between genetic 
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differentiation and both landscape variables and contemporaneous movement. These 

effects were largely attributable to genetic drift during the rapid collapse in population 

sizes. During the second bottleneck that began in 2010, the time spent at low population 

size was longer than in the 2003 event.  Populations stayed at very low size for two years, 

and recovered relatively slowly thereafter, in contrast to the 2003 bottleneck in which 

population sizes immediately rebounded the following year (Figure 3.1). An important 

effect of patch connectivity in facilitating recovery of within-population genetic diversity 

following the second bottleneck has been demonstrated (Chapter 2). The latter result 

highlights the key role of dispersal and immigration in maintaining genetic diversity in 

this natural system, despite the occurrence of regular demographic bottlenecks
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Figure 3.1 Parnassius smintheus population size over time. The population index is estimated based on mark-recapture of 

uniquely marked adults. For each day on which a particular habitat patch is visited during the flight period, the adult population 

size on that day was estimated using Craig’s method (Craig 1953). The maximum daily estimate for each patch in each year 

was then used as the population size index for that patch in that year (Matter et al. 2014) Boxplots display yearly P. smintheus 

abundance indices for all populations in the network, showing interquartile range (IQR;boxes), maximum and minimum 

estimates up to 1.5 × IQR (whiskers), and outliers beyond 1.5 × IQR (open circles).
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In systems where demographic parameters fluctuate over time, corresponding 

responses in genetic structure may be marked by temporal lags. This is because genetic 

variation does not necessarily respond immediately to changes in population size and 

demography, but can take several generations to approach new equilibrium values 

(Varvio et al. 1986). As a consequence, current genetic structure may reflect the influence 

of past population sizes and demographic events (Keyghobadi et al. 2005; Orsini et al. 

2008). The rate at which genetic structure responds to changes in population size depends 

on the population size itself, as well as several additional factors such as generation time, 

size of the population network, direction of population size change (increase or decrease), 

and rates of gene flow (Epps and Keyghobadi 2015). In some situations, patterns of 

genetic variation require hundreds or thousands of generations to approach a new 

equilibrium (Varvio et al. 1986). In other cases, however, time lags are very short and 

genetic structure responds quickly to changes in demography. For example, Orsini et al. 

(2008) demonstrated a lag of only 6-7 years (generations) in the response of genetic 

structure to changes in demographic structure in the Glanville fritillary butterfly.  

In my study system, Caplins et al. (2014) have already documented a rapid 

increase in genetic differentiation, and loss of spatial patterns of genetic structure, 

immediately after a bottleneck, due to the effect of drift. If bottlenecks erase spatial 

patterns of genetic structure in this way, and are expected to occur regularly and 

frequently in this system (on the order of approximately every decade; Roland and Matter 

2016), then a question that arises is why spatial genetic structure is ever observed (as in 

Keyghobadi et al. 1999), given the potential for time lags to affect the recovery of spatial 

patterns? I hypothesize that in this population network the recovery of spatial patterns of 
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genetic structure after bottlenecks, through the effects of immigration and gene flow, 

occurs very quickly (Caplins et al. 2014). Here, I test this hypothesis and characterize the 

recovery of spatial patterns of genetic structure following the first documented 

demographic bottleneck. I also examine whether the effects of the second demographic 

bottleneck on genetic structure are consistent with those of the first. The central questions 

I address are what changes in genetic structure accompany recovery from a demographic 

bottleneck, and whether patterns of genetic variation among populations can return 

rapidly to pre-bottleneck levels under some circumstances? I take advantage of a unique, 

long-term dataset comprising demographic, genetic, and movement data from a spatial 

population network to analyze how immigration and gene flow interact with fluctuating 

population size to shape patterns of genetic structure over time.  

 

 

3.2 Material and Methods 

 Study site and sample collection 

My study was conducted in a network of populations that occupy patches of alpine 

meadow along three ridge-tops in the Kananaskis region of Alberta, Canada (50° 57'N, 

114° 54'W; Figure 1.1). The meadows are located above treeline (2100 m), range in area 

from 0.2 ha to 22.7 ha, and are separated by either intervening forest or non-forested 

habitat (Roland and Matter 2007).  

Since 1995, adult butterflies from these populations have been captured and their 

wing tissue sampled for genetic analysis. Keyghobadi et al. (1999) and Caplins et al. 
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(2014) previously described genetic structure among these populations at specific time 

points, 1995 and 2005, the latter being two years after a demographic bottleneck in 2003. 

Here, I describe genetic structure at two additional time points: in 2008 and 2013. The 

2008 samples allow us to assess change in genetic structure as the populations continued 

to recover from the demographic bottleneck that began in 2003. The 2013 samples allow 

us to test the effects on genetic structure of a second, more protracted bottleneck that 

began in 2010. Combining my new data with those from Caplins et al. (2014), I therefore 

consider changes in genetic structure across two demographic transition periods: the 

period of continued demographic recovery and stability after the first bottleneck 

(comparing data from 2005 and 2008), and the period spanning the second bottleneck 

(comparing 2008 and 2013). The years 2008 and 2013 are the ones closest to the 2010 

bottleneck in which sufficient numbers of samples were available for a robust analysis of 

genetic structure (Figure 3.1). Population sizes in 2013 were still relatively low however, 

and therefore a smaller number of patches and fewer individuals per patch could be 

analyzed compared to the earlier sampled time points (Table 3.1).   
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Table 3.1 Sample size and genetic diversity for populations of Parnassius smintheus 

sampled at four different time points. Data for 1995 from Keyghobadi et al. (1999, 2005) 

and for 2005 from Caplins et al. (2014) and are included here to provide further context 

and show changes over time. 

Patch/ Population NO. genotyped individuals HE 
 

1995 2005 2008 2013 1995 2005 2008 2013 

E 40 31 28 - 0.70 0.69 0.75 - 

F 41 11 27 - 0.73 0.75 0.72 - 

G1 40 20 51 16 0.69 0.73 0.70 0.65 

g2 40 5 17 9 0.74 0.71 0.74 0.71 

I 21 9 - 11 0.76 0.72 - 0.62 

J 31 15 46 17 0.72 0.67 0.69 0.71 

K 40 11 20 16 0.75 0.74 0.73 0.68 

L 40 26 72 12 0.71 0.75 0.70 0.67 

M 38 56 41 37 0.71 0.73 0.69 0.69 

O 12 6 30 6 0.67 0.71 0.70 0.64 

R 24 6 13 - 0.72 0.70 0.75 - 

S 14 15 17 - 0.63 0.76 0.68 - 

Z 41 54 33 7 0.70 0.73 0.70 0.67 

No. genotyped individuals is the number of genotyped individuals that amplified at seven 

microsatellite loci.  Expected heterozygosity, HE, is averaged across loci.
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 Tissue sampling and genotyping 

Tissue samples were collected from adult butterflies using non-lethal sampling (Koscinski 

et al. 2011). All samples were small wing clippings (approximately 0.2cm2) removed 

from either the hind- or fore-wings, and individually stored in 95-100% (vol/vol) ethanol. 

DNA was extracted from wing samples using a DNeasy Blood and Tissue Kit (QIAgen, 

Germantown, MD) following the manufacturer’s protocol. Samples were genotyped at 

seven highly variable microsatellite loci (Ps50, Ps76, Ps81, Ps85, Ps163, Ps165 and 

Ps262) (Keyghobadi et al. 1999, 2002), as described previously (Chapter 2). 

Microsatellite genotypes were scored using GeneMapper software Ver. 4.0 (Applied 

Biosystems). I checked all genotypes manually, and re-ran at least two additional times 

any loci that initially failed to amplify. If a locus failed a third time, but all other loci in 

the same individual amplified clearly, then I considered the individual null homozygous 

at the failed locus. I omitted from the dataset any individuals that failed at two or more 

loci.  

 

 Linkage disequilibrium and Hardy–Weinberg tests  

For each locus in each population, linkage disequilibrium and conformity to Hardy–

Weinberg proportions were tested for each year separately (2008 and 2013) using 

Genepop v.4.2 (Raymond and Rousset 1995). No linkage disequilibrium was detected 

based on 189 pairwise comparisons in the years 2008 and 2013, but significant deviations 

from expected Hardy–Weinberg genotypic proportions occurred at all loci for both time 

periods. Departures from equilibrium were all due to heterozygote deficiencies (in 46 of 
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63 tests for 2008, and 32 of 63 tests for 2013). Homozygote excess at these loci has 

previously been shown to be a result of null alleles, which are non-amplifying alleles that 

result from variation in microsatellite flanking regions (Keyghobadi et al. 1999, 2002). 

Null allele frequencies were estimated, and frequencies of other alleles simultaneously re-

estimated, using the software FreeNA (Chapuis and Estoup 2007). 

 

 Spatial genetic structure over time 

I estimated global and pairwise FST, corrected for presence of null alleles, within 

sampling periods using the software FreeNA (Chapuis, and Estoup 2007). In this system, 

pairwise FST displays the strongest patterns of isolation by distance compared to 

alternative genetic distance measures (Caplins et al. 2014). To evaluate isolation by 

distance, I considered geographic distances between pairs of habitat patches based on the 

centroids of butterfly capture within each patch. These distances were measured along the 

ridge-tops (Figure 1.1), rather than ‘as the crow flies’, since movements of P. smintheus 

are largely restricted to ridge-tops (Roland et al. 2000). Furthermore, to evaluate 

relationships between intervening land cover and genetic differentiation of populations, 

two different types of distances between patches were determined from digitized aerial 

photos: distance over non-forested habitat, mainly alpine meadow, and distance over 

forest. That is, the total distance between any two patches was measured along the ridge-

tops (called ‘total distance’ from here on), and partitioned into that distance occurring 

over forest cover and that over open meadow (Roland et al. 2000).  
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For each year separately, I tested for isolation by distance by correlating pairwise 

FST to total distance using Mantel tests (Mantel 1967). I examined the effects of 

intervening land cover on genetic differentiation using partial Mantel tests (Smouse et al. 

1986): I correlated FST to the distance through forest, controlling for the distance through 

meadow, and vice-versa, as in previous studies in this system (Keyghobadi et al. 1999; 

Caplins et al. 2014). I executed all Mantel and partial Mantel tests in the vegan package in 

R (Oksanen et al. 2013), with 10,000 permutations and using Pearson correlations. After 

demographic bottlenecks, random divergence of allele frequencies among populations is 

expected to lead to higher variance in pairwise FST estimates and a reduced association of 

pairwise FST with geographic distance and intervening landscape. Such effects are 

described well by changes in Mantel correlation coefficients across time periods. 

However, Mantel and partial Mantel tests have received criticism as tests of the statistical 

significance of those correlation coefficients (i.e., H0: r = 0; (Raufaste and Rousset 2001; 

Legendre and Fortin 2010)). I therefore also used maximum likelihood population effects 

(MLPE) models as a supplementary approach to assess the significance of relationships 

between my pairwise variables. MLPE models are linear mixed models with a covariance 

structure that accounts for the pairwise nature of the data in distance or similarity matrices 

(Clarke et al. 2002). For each year separately, I used MLPE to model FST as a function of 

total distance, and FST as a function of forest distance only, meadow distance only, and 

both forest and meadow distance. I first scaled all predictors and then fit MLPE models 

by either maximum likelihood (ML) or restricted log-likelihood (REML) estimation, 

using the ‘gls’ function in the R package ‘lme4’ (Bates et al. 2015) and using the 

correlation structure implemented by the ‘corMLPE’ package (Pope 2014). I used REML 

to obtain estimates of unbiased regression coefficients. To examine the effects of 



68 
 

 
 

intervening landscape on genetic differentiation, I used ML to compare the three 

landscape models (forest distance only, meadow distance only, or both forest and 

meadow distance) based on the corrected Akaike Information Criterion (AICc) to 

determine which model best explained genetic differentiation between sites.  

As a result of low population sizes in 2005 and 2013, sample sizes for most 

patches were smaller in those years as compared to 2008 (Table 3.1). To ensure that any 

observed differences in spatial genetic structure between years were not driven by the 

larger sample sizes in 2008, I evaluated genetic structure and spatial patterns using 

subsampled individuals from the 2008 dataset. Because my central focus was on the 

change in genetic structure accompanying demographic recovery from 2005 to 2008, 25 

datasets were randomly subsampled, without replacement, from the 2008 dataset with 

within-patch sample sizes matched to those in 2005. Global and pairwise FST values were 

estimated for each subsampled dataset. I also conducted the Mantel and partial Mantel 

tests for each subsampled dataset, and determined the significance of the median 

correlation coefficient from all subsampled datasets using Wilcoxon signed rank (WSR) 

tests.  

 

 Genetic structure and movement patterns 

Mark-recapture studies of P. smintheus have been conducted in the population network 

since 1995 to determine indices of population size and estimate movement parameters 

(Matter et al. 2014). Adults were captured with hand nets, individually marked, and 

spatial locations of captures and recaptures were recorded. Following Caplins et al. 
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(2014), I used the Virtual Migration Model (VMM; Hanski et al. 2000) to obtain 

maximum likelihood estimates of movement between patches in each year using the 

mark-recapture data from that year. The estimated number of individuals moving in both 

directions between each pair of patches (e.g., the number moving from L to M, plus the 

number moving from M to L) was used as an index of total flow of individuals between 

patches. To assess the link between genetic structure and contemporaneous movement 

patterns, within each sampling year I determined the relationship between pairwise FST 

and the log-transformed estimate of total flow of individuals between pairs of patches, 

using Mantel tests with 10,000 permutations. As for the isolation by distance analyses, 25 

random subsamples of the 2008 dataset were used to assess the effect of sample size on 

my conclusions. As a supplementary approach to the Mantel test, I also used MLPE 

models, as described above. I removed population E from these analyses due to missing 

mark–recapture data from that site. 

 

 Direct test of change in spatial genetic structure over time 

In addition to characterizing differences in spatial genetic structure among separate years, 

I performed direct tests of the effect of year on genetic differentiation and spatial 

structure, using data for all available years (1995, 2005, 2008 and 2013) simultaneously. I 

fit three separate MLPE models to pairwise FST. Each model included one of total 

distance, intervening forest distance, or estimated movement as a focal predictor, and also 

included year, and the interaction between the focal predictor and year, as additional 

factors. The model for forest distance also included intervening meadow distance as a 
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control variable. Year was treated as a categorical factor and REML estimates of year 

effects used 1995 as a reference for contrasts. 

 

 

3.3 Results 

 Recovery of spatial genetic patterns following a demographic 
bottleneck 

Across the demographic recovery period, from 2005 to 2008, global FST for the 

population network decreased from 0.018 (95% confidence interval CI: 0.013–0.024) to 

0.013 (95% CI: 0.009-0.018). Although overall genetic differentiation declined only 

slightly across the recovery period, with overlap of 95% CIs, there was a marked change 

in the spatial patterning of genetic structure. As previously reported by Caplins et al. 

(2014), the correlation between pairwise FST and total distance in 2005 was weak and 

non-significant (Mantel r = 0.15, P = 0.20; Figure 3.2). Using MLPE fit by REML to 

evaluate the same relationship in 2005, I found that the estimated effect of total distance 

on FST was also not significant (P= 0.26; Table 3.2). By contrast, a significant positive 

correlation between pairwise FST and total distance was re-established in 2008 (Mantel r 

= 0.53, P = 0.001; Figure 3.2), indicating a recovery of isolation by distance after the 

bottleneck (Table 3.2). For the 25 subsampled datasets from 2008, the median correlation 

coefficient (r) between pairwise FST and total distance was 0.36, and was significantly 

greater than zero (WSR test: V = 325, P < 0.001; Table B1).  Using MLPE fit by REML 
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to evaluate isolation by distance in 2008, the effect of total distance on FST was also 

significant (P= 0.002; Table 3.2). 

 Across the demographic recovery period, from 2005 to 2008, associations 

between intervening forest cover and genetic differentiation re-established, as did a 

significant correlation between genetic differentiation and estimated contemporaneous 

movement between populations. In 2005 there had been no correlation between forest 

distance and pairwise FST, controlling for meadow distance (Mantel r = -0.04, P = 0.36;  

Caplins et al. 2014), or vice-versa (Mantel r = 0.08, P = 0.26; Caplins et al. 2014). My 

evaluation of intervening land cover effects using MLPE corroborated this result. In 2005, 

models with forest distance and meadow distance only were equally well supported (∆ 

AICc < 0.3; models fit using ML), and neither forest distance nor meadow distance were 

significant predictors of pairwise FST (P for forest = 0.33 and P for meadow = 0.27; 

models fit using REML). In contrast, in 2008, there was a significant positive correlation 

between forest distance and pairwise FST after controlling for meadow distance (Mantel r 

= 0.40, P = 0.03; Table 3.3), but not vice versa (Mantel r = 0.10, P = 0.22). Across 25 

subsampled datasets from 2008, the median partial correlation coefficient (r) between 

forest distance and FST, controlling for meadow distance, was 0.22 and was significantly 

greater than zero (WSR test: V= 326, P < 0.001; Table B1). In contrast, the median partial 

correlation (r) between meadow distance and FST, controlling for forest distance, was 

0.025 and was not significantly different from zero (WSR test: V = 210, P =0.10; Table 

B1). MLPE analyses corroborated these results for 2008.  The model with forest distance 

as the only predictor was the best model explaining pairwise FST (∆ AICc > 2; models fit 

using ML; Table 3.4) and the estimated effect of forest distance was significant (P< 

0.001; model fit using REML). 
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Figure 3.2 Change in the relationship between pairwise genetic differentiation (FST) and 

total geographical distance between populations over time, in a network of populations of 

Parnassius smintheus. (a) a pattern of isolation by distance was observed before a 

demographic bottleneck in 1995 (b) no pattern of isolation by distance is detected in 2005, 

two years after the beginning of the demographic bottleneck, (c) a pattern of isolation by 

distance is re-established only three years later, in 2008, and (d) the next bottleneck led to 

a breakdown of isolation by distance in 2013. I have shown the results of Mantel tests of 

correlation for each year.
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Table 3.2 Summary of Mantel tests and maximum likelihood population effects (MLPE) models testing the relationship 

between pairwise genetic distance (FST) and total geographical distance between populations of Parnassius smintheus at four 

different time points. Data for 1995 from Keyghobadi et al. (1999, 2005) and for 2005 from Caplins et al. (2014) and are 

included here to provide further context and show changes over time. 

r: Mantel correlation coefficients; β: MLPE regression coefficient, ± SE. Significant values are in bold typeface

 1995 2005 2008 2013 

Model type Mantel MLPE Mantel MLPE Mantel MLPE Mantel MLPE 

 r  

(P) 

β ±SE 

(P) 

r  

(P) 

β ±SE 

(P) 

r  

(P) 

β ±SE 

(P) 

r  

(P) 

β ±SE 

(P) 

Total 

distance 

 

0.72 

(0.001) 

 

0.0013 ± 0.0004 

(0.002) 

 

0.15  

(0.20) 

 

0.001 ± 0.001 

(0.26) 

 

0.53 

(0.001) 

 

0.001±0.0004 

(0.002) 

 

      0.32 

     (0.10) 

 

0.004±0.00

3 

(0.22) 
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Similarly, in 2005 there had been no correlation between pairwise FST and 

estimated movement between populations in that year (Mantel r = -0.08, P = 0.31; 

Caplins et al. 2014). The MLPE model confirmed that the estimated effect of 

contemporaneous movement in 2005 was not significant (P= 0.504; model fit using 

REML; Table 3.5). In 2008, pairwise FST was significantly negatively correlated with the 

number of estimated individuals moving between each pair of populations that year 

(Mantel r = -0.34, P = 0.04; Table 3.5). Across all 25 subsamples, the median correlation 

coefficient (r) was -0.25 and was significantly less than zero (WSR test: V = 0, P< 0.001; 

Table B1). In this one case however, results of MLPE analysis were not consistent with 

the Mantel test results. The MLPE estimate of the effect of contemporaneous movement 

on pairwise FST for 2008 was stronger than for 2005, but still not significant (P= 0.11; 

model with using REML; Table 3.5). 

  

 Genetic consequences of the next demographic bottleneck 

Across the demographic bottleneck that started in 2010, I observed similar and even 

stronger changes in genetic structure as documented for the 2003 bottleneck (Caplins et 

al. 2014). Global FST was significantly higher after the bottleneck (2013 global FST = 

0.041, 95% CI: 0.029–0.055) than before (2008 global FST = 0.013, 95% CI: 0.009–

0.018). The second bottleneck also affected spatial patterning of genetic structure in the 

same manner as the first bottleneck. Specifically, I observed a breakdown of isolation by 

distance, reflected in lack of correlation between pairwise FST and total distance in 2013 

(Mantel r = 0.32, P = 0.10; MLPE effect of total distance: P= 0.22; model fit using 

REML; Table 3.2). In 2013, I also saw a loss of any observable effect of intervening 
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forest cover on genetic differentiation. The partial Mantel test between pairwise FST and 

forest distance, controlling for meadow distance, was no longer significant (Mantel r = -

0.01, P = 0.40; Table 3.3). MLPE analyses supported the partial Mantel test results. The 

model with meadow distance as the only predictor was marginally better in explaining 

pairwise FST than the model with forest distance only (∆AICc = 1.9), although all land 

cover models were equally well supported (∆AICc < 2, models fit by ML; Table 3.4). 

Furthermore, coefficient estimates for all land cover models in 2013 were not significant 

(P > 0.05, models fit by REML; Table 3.4). Finally, similar to the first documented 

bottleneck in 2003, the next bottleneck in 2010 disrupted any association between 

pairwise FST and estimated contemporaneous movement between populations (Mantel test 

for 2013: r = -0.33, P = 0.13; MLPE results: P= 0.30; Table 3.5).  
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Table 3.3 Summary of partial Mantel tests results showing the effects of intervening land 

cover on genetic differentiation among populations of Parnassius smintheus at four 

different time points. Data for 1995 from Keyghobadi et al. (1999, 2005) and for 2005 

from Caplins et al. (2014) are also included here to provide further context and show 

changes over time. Partial Mantel tests were conducted for pairwise genetic distance (FST) 

against distance through forest controlling for the distance through meadow (Forest 

effect), and vice versa (Meadow effect). 

 r: Partial mantel correlation coefficients. Significant values are in bold typeface. 

 

 Model type 1995 2005 2008 2013 

 r (P) r (P) r (P) r (P) 

 Forest effect 0.59 (0.01) -0.04 (0.36) 0.40 (0.03) -0.01 (0.40) 

 Meadow effect 0.15(0.14) 0.08 (0.26) 0.10 (0.22) 0.32 (0.07) 
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Table 3.4 Summary of maximum likelihood population effects (MLPE) models explaining genetic differentiation (FST) 

between populations of Parnassius smintheus as a function of intervening land cover at four different time points. Data for 

1995 from Keyghobadi et al (1999, 2005) and for 2005 from Caplins et al. (2014) are also included here to provide further 

context and show changes over time. 

Models               1995                2005              2008              2013 

 ∆AICc 
β ±SE 

(P) 
∆AICc 

β ±SE 

(P) 
∆AICc 

β ±SE 

(P) 
∆AICc 

β ±SE 

(P) 

Forest distance only 

 

0 0.006 ±0.001 

(<0.001) 

0.26 0.0027±0.002 

(0.33) 

0 0.004±0.001 

(<0.001) 

1.97 0.003±0.014 

(0.80) 

Meadow distance only 

 

13.55 

 

0.001 ±0.0005 

(0.03) 

0 

 

0.0011±0.001 

(0.27) 

7.53 

 

0.0012±0.0006 

(0.034) 

0 

 

0.005±0.003 

(0.16) 

Forest+ Meadow 2.28 

 

Forest effect: 

0.006± 0.001 

(<0.001) 

 

Meadow effect: 

0.0001±0.001 

(0.90) 

2.19 

 

Forest effect: 

0.001± 0.003 

(0.77) 

 

Meadow effect: 

0.0010±0.001 

(0.56) 

2.28 

 

Forest effect: 

0.004± 0.001 

(0.007) 

 

Meadow effect: 

0.0001±0.001 

(0.86) 

2.21 

 

Forest effect: 

-0.015± 0.018 

(0.43) 

 

Meadow effect: 

0.007±0.004 

(0.12) 

∆ AICc is the difference in corrected Akaike Information Criterion from the top ranked model. β: MLPE regression coefficient ± SE. 

Significant values are in bold typeface. Models were fit using ML for model comparisons and using REML for coefficient estimation. 
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Table 3.5 Summary of Mantel tests and maximum likelihood population effects (MLPE) models testing the relationship 

between pairwise genetic distance (FST) and estimated contemporaneous movement between populations of Parnassius 

smintheus at four different time points. Data for 1995 from Keyghobadi et al. (1999, 2005) and for 2005 from Caplins et al. 

(2014) are included here to provide further context and show changes over time. 

r: Mantel correlation coefficient; β: MLPE regression coefficient ± SE. Significant values are in bold typeface

 1995 2005 2008 2013 

Model type Mantel MLPE Mantel MLPE Mantel MLPE Mantel MLPE 

 r  

(P) 

β ±SE 

(P) 

r  

(P) 

β ±SE 

(P) 

r  

(P) 

β ±SE 

(P) 

r  

(P) 

β ±SE 

(P) 

Movement 
–0.47 

(0.005) 

-0.0003±0.0001 

(0.05) 

–0.08 

(0.31) 

-0.0002 ± 0.0003 

(0.50) 

-0.34 

(0.04) 

-0.0003±0.0002 

(0.11) 

-0.33 

(0.13) 

-0.0003±0.0003 

(0.30) 
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 Direct test of change in spatial genetic structure over time 

Combining all years of available data, MLPE models fit by REML indicated that pairwise 

FST values in 2005 and 2013 were significantly higher than in 1995 and 2008 (Table B2). 

There was a significant interaction between total distance and year on pairwise FST, which 

indicated that isolation by distance patterns were also significantly different in 2005 and 

2013 as compared to 1995 and 2008 (P ≤ 0.03; Table B2). Similarly, there was a 

significant interaction between intervening forest distance and year on pairwise FST 

(controlling for meadow distance in the model); in this case, the effect of intervening 

forest on FST in 2005 was different than in 1995 (P = 0.01), but the effect in 2008 and 

2013 was not different than in 1995 (P > 0.05). No interaction between estimated 

contemporaneous movement and year was detected with this analysis (P > 0.05; Table 

B2). 

 

 

3.4 Discussion 

Demographic bottlenecks can have significant effects on genetic variation, leading to a 

loss of genetic diversity (Nei et al. 1975), particularly allelic diversity (Maruyama and 

Fuerst 1985; Osborne et al. 2016), and increased differentiation among populations 

(Kekkonen et al. 2011). While many empirical studies have characterized the genetic 

effects of a single bottleneck, typically in a single population, I tracked changes in the 

genetic structure of a population network across two demographic bottlenecks, as well as 

through the intervening period of demographic recovery. Previous work in this system 
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has shown that the first demographic bottleneck, in 2003, led to the loss of spatial patterns 

of genetic variation in the population network of the butterfly P. smintheus (Caplins et al. 

2014). Here, I show that spatial genetic structure recovered rapidly, within five years, as 

population sizes rebounded. Specifically, isolation by distance and a significant 

correlation between genetic differentiation and intervening land cover could be detected 

in the network by 2008. I also show that the second demographic bottleneck, which began 

in 2010, had similar effects to the first bottleneck, and that these effects were even 

stronger, concordant with the populations staying at a very low size for a longer time 

during the second bottleneck. 

 

 Temporally dynamic interplay of drift and gene flow 

Network-wide demographic bottlenecks in this system appear to consistently drive 

random divergence of allele frequencies among populations, resulting in increased 

differentiation of populations and loss of spatial pattern such as isolation by distance 

(Caplins et al. 2014). My results indicate that subsequent rapid recovery of spatial genetic 

patterns occurs. This recovery is most likely driven by gene flow among populations, 

countering the effects of genetic drift that occurs when population sizes suddenly and 

dramatically collapse. As population sizes rebound, dispersal and accompanying gene 

flow redistribute genetic variation across the network so as to reduce differentiation 

among nearby populations. Furthermore, because dispersal and gene flow in this system 

are known to be spatially limited and strongly affected by intervening landscape 

(Keyghobadi et al. 1999; Roland et al. 2000), their action after a bottleneck event also 
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results in re-establishment of spatial patterns of genetic structure, specifically isolation by 

distance, as well as correlation between intervening land cover and genetic 

differentiation. At the same time, a correlation between estimated contemporaneous 

movement rates and genetic differentiation may also be re-established. Previously I 

showed that bottlenecks in this system reduce allelic diversity of populations (Chapter 2) 

and that recovery of allelic diversity immediately after bottlenecks can be explained by 

population connectivity within the network (Chapter 2). This effect of connectivity 

supports the hypothesis that dispersal and gene flow are the key processes driving the 

restoration of genetic variation, and patterns of genetic structure, after bottlenecks.  

In my study system, rapid and cyclic changes in genetic structure occur because 

genetic drift and gene flow are continually shifting in dominance as populations 

experience repeated, dramatic fluctuations in size. As a result, this system is likely never 

in a state of gene flow-drift equilibrium. My results confirm theoretical expectations that 

genetic structure among populations (e.g., as measured by FST) fluctuate over time as a 

result of fluctuations in demographic parameters (Whitlock 1992). Such cycling of 

genetic structure could, in turn, have interesting evolutionary consequences. For example, 

such dynamics may create the opportunity for a type of shifting-balance evolution where 

a combination of drift and selection allow beneficial genetic variants to increase in 

frequency in some populations during and immediately after bottlenecks, while gene flow 

in the periods between bottlenecks allow those variants to spread through the network. 
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 Rapid recovery of spatial genetic patterns 

A key aspect of my results is the very rapid return of spatial genetic structure after a 

bottleneck. While there was no spatial pattern detectable in 2005, two years after the 

initial collapse in population sizes, within only three additional years (i.e., generations) 

spatial patterns were largely re-established. I had hypothesized that re-establishment of 

spatial genetic structure would occur very rapidly. Given that bottlenecks are expected to 

occur regularly in this system (Roland and Matter 2016), and that they consistently act to 

erase spatial patterns of genetic structure (Caplins et al. 2014 and this study), only a very 

rapid recovery of these patterns could explain my ability to nonetheless observe isolation 

by distance and effects of intervening landscape on genetic differentiation at some 

timepoints (Keyghobadi et al. 1999). 

Several factors may facilitate a particularly rapid recovery of spatial genetic 

patterns in this system. Short generation time (in this case, one generation per year) 

clearly makes an important contribution. However, even when measured in numbers of 

generations, the rate at which spatial genetic structure returned after the bottleneck is 

remarkable. Additional characteristics of the population network also contribute to this 

rapid response. First, the populations are essentially distributed linearly, or in one 

dimension, along the main ridge top (Figure 1.1), and isolation by distance patterns are 

known to develop more quickly in one- versus two-dimensional networks (Slatkin 1993). 

Furthermore, this particular network is characterized by moderate to high levels of gene 

flow that drop off rapidly with distance, fluctuating and relatively small local population 

sizes, and a moderately large number of populations (Keyghobadi et al. 1999; Roland et 

al. 2000; Roland and Matter 2013). All of these characteristics can contribute to short 
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genetic time lags and more rapid shifts in spatial genetic structure (Epps and Keyghobadi 

2015). For example, Varvio et al. (1986) simulated that a larger number of populations of 

small effective size reach gene flow-drift equilibrium more quickly than do fewer, large 

populations. In other systems where time lags may be expected to be longer (e.g., where 

effective population size is larger or gene flow is more limited), demographic bottlenecks 

likely have longer-lasting effects on genetic structure and its spatial patterning. 

Researchers often assume that genetic structure changes only very slowly over 

time, particularly when it is measured at the population level and using allele frequency 

based measures of genetic structure and differentiation such as FST (Landguth et al. 2010). 

However, my results clearly indicate that genetic structure, even when measured using F-

statistics, can be dynamic on very short time scales. These short-term changes could lead 

to inaccurate, or at least incomplete, inferences about genetic structure and its 

relationships to landscape variables or estimated movement rates if genetic variation is 

only characterized at a single time point. Among populations that show considerable 

fluctuations in size in particular, spatial genetic structure may not remain constant over 

time. In the context of landscape genetic studies specifically, my results show that 

associations between landscape variables and genetic variation can change quickly in 

response to population size fluctuations. Therefore, the observed genetic structure among 

populations may reflect how landscape variables actually affect movement more or less 

accurately, depending on the temporary predominance of drift versus gene flow at a 

particular point in time. For example, in my study system sampling in the years 

immediately after bottleneck events would lead to a failure to detect effects of intervening 

forest on genetic differentiation which are observable at other time points (Keyghobadi et 
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al. 1999) and which reflect known effects of land cover on movement (Roland et al. 

2000). My results therefore suggest a certain degree of caution in the interpretation of 

spatial patterns of genetic structure that have been measured at a single point in time, 

which is currently the case in most studies.  

With increased variation in yearly weather conditions as a result of climate 

change, specifically winter weather extremes affecting overwintering eggs, P. smintheus 

populations may experience more frequent demographic bottlenecks (Roland and Matter 

2013, 2016). At the same time, rising tree line in alpine areas, also driven by climate 

change (Gehrig-Fasel et al. 2007), and the resulting increased isolation of habitat patches 

would reduce gene flow across the network. I therefore expect that over time, although 

drift and gene flow will continue to cycle in dominance as population sizes fluctuate, the 

relative influence of drift in these populations will increase overall. Increased isolation of 

populations and lower levels of gene flow could also mean a longer time for spatial 

patterns to re-establish after bottlenecks, although these effects could be counteracted by 

lower effective population sizes resulting from more severe bottlenecks and smaller 

habitat patch sizes (Epps and Keyghobadi 2015). 

 

 

3.5 Conclusion 

In conclusion, I have demonstrated that spatial genetic structure, and the degree of 

correlation between genetic differentiation and both landscape and movement patterns, 

can be highly dynamic over short time periods due to the cyclical predominance of gene 
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flow versus drift in a network of populations of fluctuating size. My results show the 

potential for genetic structure and its spatial patterning, as well as the underlying neutral 

processes of drift and gene flow, to fluctuate regularly and rapidly in natural systems.  
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Chapter 4 

4 Gene expression associated with dispersal history in 
the alpine butterfly, Parnassius smintheus  

4.1 Introduction 

Dispersal, the movement and settlement of individuals away from their natal 

habitat patch, drives the dynamics, persistence and evolutionary trajectories of spatially-

structured populations (Bowler and Benton 2005; Clobert et al. 2012; Travis et al. 2013). 

Dispersal among patches is advantageous because it can reduce competition among 

relatives for resources, facilitate escape from natural enemies or poor environmental 

conditions, and help avoid inbreeding (Bowler and Benton 2005; Ronce 2007). However, 

dispersal requires longer, more sustained movements than the foraging, mating or other 

routine movements within a habitat patch. Thus, dispersal is also physically and 

energetically costly, and increases the risk of injury and mortality (Bonte et al. 2012); 

these costs of dispersal increase with travel distance, particularly if inter-patch habitats 

are inhospitable (Sekar 2012). Consequently, dispersal exerts strong selection pressure: 

dispersal tendency or ability responds to changes in population size, habitat quality (i.e. 

resource availability) and landscape structure (Fraser et al. 2001; Meylan et al. 2009; 

Edelsparre et al. 2014). For example, habitat fragmentation can induce strong selection 

for adaptions that alter rates of emigration and dispersal (Gibbs and Dyck 2010; Gomez 

and van Dyck 2012). 

 In flying animals, flight capacity is an important determinant of whether 

individuals disperse or not (Niitepõld et al. 2009). In poikilothermic insects, in turn, flight 
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and therefore dispersal is sensitive to environmental and body temperature (Niitepõld et 

al. 2009; Jones et al. 2015).  Because the thorax contains the flight muscles, thoracic 

temperature plays a central role in flight and needs to be regulated to meet flight 

requirements (Wickman 2009). A minimum thoracic temperature is necessary for the 

initiation and continuation of flight (Vogt and Heinrich 1983; Heinrich 1993). At the 

same time, the thoracic muscles have extremely high metabolic rates during flight 

(Heinrich 1995; Mattila 2015) such that there is a risk of overheating of the muscles, 

which can result in reduced flight ability, injury or mortality (Mattila 2015). If thoracic 

temperature exceeds either the upper or lower limit, enzymatic activities involved in 

flight metabolism and flight muscle function may be impaired. Thus, insects have a 

critical thoracic temperature range within which flight can be sustained. This range is 

highly variable among species. For example, during flight the butterfly genera Papilio 

and Colias experience thoracic temperatures between 28 °C and 42 °C (Kingsolver 1985; 

Srygley and Chai 1990), while in the alpine genus Parnassius much lower flight thoracic 

temperatures of 17 °C to 20 °C have been documented (Guppy 1986).  

Insects use a number of different mechanisms to regulate thoracic temperature in 

preparation for, and during, flight. To gain heat at low ambient temperatures and prior to 

flight, insects may use muscular shivering or basking in sunlight (Masters et al. 1988; 

Heinrich 1995). For example, in the monarch butterfly (Danaus plexippus) both behaviors 

cause rapid warming of the thoracic muscles to the flight threshold (12.7 °C - 16.0 °C) at 

ambient temperatures as low as 9 °C (Masters et al. 1988). In Colias butterflies in 

contrast, most heat gained both in preparation for flight occurs via solar flux (Tsuji et al. 

1985). Solar heat flux and muscular activity can also contribute to thoracic heat gain 
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while in flight. During flight, excessive heat gain is a primary concern for insects and to 

avoid overheating they may minimize solar exposure or use evaporative cooling. Both of 

these activities can be augmented by appropriate wing opening and closing behaviours, 

and by adjustment of wing and body position relative to the sun or wind (Masters et al. 

1988; Prange 1995; Berwaerts et al. 2001). Since the thoracic temperature of insects may 

be influenced by ambient temperature, solar radiation and muscular activity (Wickman 

2009; Mattila 2015), its regulation is an important potential cost of flight, particularly 

during long flights associated with dispersal events. 

In many organisms, individuals display variation in dispersal ability or 

propensity. In some cases, dispersal variation is manifested via obvious morphological 

differences, such as winged and wingless morphs in insects (Roff 1986; Schwander and 

Leimar 2011). In other cases, dispersal variation is associated with more subtle 

differences among individuals in morphology, behavior, or physiology (Bonte et al. 

2012). This variation has, in several cases, been shown to be heritable and in some 

animals specific genes associated with dispersal have been identified (e.g., in Drosophila 

and in the Glanville fritillary butterfly, Melitaea cinxia; Edelsparre et al. 2014; 

Saastamoinen et al. 2018). Furthermore, in insects, variation in dispersal and flight ability 

is often also linked to variation in thermoregulation. For example, in the Glanville 

fritillary, polymorphism in the thermal stress-related heat‐shock protein (Hsp) gene is 

associated with variation in male flight metabolic rate and thoracic temperature at take-off 

(Mattila 2015). Variation in dispersal ability or tendency among individuals, and related 

thermoregulatory traits, may be reflected in differences in gene expression. In the 

Glanville fritillary, baseline differences in gene expression among individuals from 
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different populations are related to differences in flight metabolic rate and dispersal 

ability (Kvist et al. 2015). However, flight activity in insects also induces significant short 

and long term changes in gene expression (Margotta et al. 2012; Kvist et al. 2015), so that 

differences in gene expression patterns could potentially be either a cause of variation in 

dispersal propensity or a consequence of dispersal at some point in the past. 

The Rocky Mountain Apollo, Parnassius smintheus, is an alpine butterfly that 

occupies naturally patchy, high-altitude habitats and in which some important population 

dynamic and genetic consequences of dispersal have been documented (Roland et al. 

2000; Keyghobadi, et al. 2005; Chapter 2). Here, I examine potential differences in gene 

expression between dispersing and non-dispersing individuals in this system. Specifically, 

I used mark-recapture data to identify individuals that moved between habitat patches 

(dispersers) and those that remained in the same habitat patch (non-dispersers). I then 

used RNA−sequencing to profile a de novo transcriptome for this species and to perform 

a comparative transcriptomics analysis of thoracic gene expression changes associated 

with dispersal history (i.e., dispersers versus non-dispersers). I focused specifically on 

gene expression in the thorax because of the thorax’s central role in insect flight. Because 

of the importance of regulating thoracic temperature during insect flight, I also measured 

thoracic temperature (relative to ambient) for all sampled individuals. 

I hypothesized that expression of genes linked to physiological and 

morphological traits, specifically energy mobilization, thermoregulation, and muscle 

regulation, could either be a consequence or cause of long-distance flight associated with 

dispersal. In terms of potential gene expression differences that are a consequence of 

dispersal, I expected to detect only those flight-associated gene expression changes that 
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are relatively long lasting (i.e., on the order of one or more days), since I was not 

capturing dispersing individuals during or immediately after the dispersal event. 

I had two competing hypotheses for the role of thoracic temperature in dispersal, 

related to whether long-distance flight in this species is limited primarily by the ability to 

maintain a high enough thoracic temperature or whether it is limited by the ability to 

dissipate the heat that accumulates as a result of muscular activity and elevated 

metabolism. First, low temperatures in this temperate, high-altitude environment may be a 

key factor limiting activity, including flight, in P. smintheus. Those individuals that are 

generally able to maintain a higher thoracic temperature could therefore be more likely to 

initiate and complete dispersal movements (Mattila 2015; Wong et al. 2016). Under this 

hypothesis, I predicted higher thoracic temperature (relative to ambient temperature) in 

those individuals that were dispersers. On the other hand, once flight is initiated, the 

ability to prevent overheating in the thoracic muscles may be the key determinant of 

whether an individual can successfully complete a long-distance displacement. In that 

case, I predicted lower thoracic temperature (relative to ambient temperature) in those 

individuals that were dispersers. Both hypotheses also led to a prediction of potential 

differences in gene expression between thoraxes of individuals with high versus low 

thoracic temperature (relative to ambient temperature). Such differences in gene 

expression could represent baseline differences among individuals that underlie 

differences in dispersal ability or tendency, as have been documented in other butterflies 

(Somervuo et al. 2014; Kvist et al. 2015), and represent a cause rather than consequence 

of dispersal. 
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4.2 Material and methods 

 Collection of samples and field data 

I collected 12 adult individuals, three females and nine males, of P. smintheus from seven 

different patches of alpine meadow along Jumpingpound Ridge, in the Kananaskis region 

of Alberta, Canada (50°57’ N, 114°54’ W) in the summer 2015 (Figure 1.1; Table 4.1). 

The meadows are located above treeline (2100 m), range in area from 0.2 ha to 22.7 ha, 

and are separated by either intervening forest or open meadow habitat (Roland and Matter 

2007).  

I captured individuals in flight using a hand net and measured thoracic temperature 

for each individual within 5 seconds of capture using a digital thermometer (OMEGA 

HH91, Norwalk CT) attached to a copper thermocouple (OMEGA type T, Norwalk CT) 

housed within a disposable hypodermic needle (precisionGlide 19-Gauge needle, BD 

Medical, Franklin Lakes NJ). To avoid any direct contact between the butterfly’s body and 

my hands, I inserted the needle into the thorax through the net to measure body temperature. 

I used the same thermometer to measure ambient air temperature at the time and location 

of capture. In my subsequent analyses, I corrected for variation in ambient air temperature 

by using the difference between thoracic temperature and ambient temperature for each 

individual as a variable of interest. Immediately after recording thoracic temperature, I 

separated the thorax from the rest of the body, and from the wings and legs, using a clean 

scalpel and placed the entire thorax, which contains the flight muscles, into a 1.7 ml 

microcentrifuge tube containing 1.5 ml RNAlater solution (Qiagen, Germantown MD). I 

stored all samples at -20°C until I conducted RNA extraction   
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Sampling for the current study was concurrent with a larger mark-recapture study 

across Jumpingpound Ridge (Matter et al. 2014). Every individual sampled for my study 

had already been uniquely marked, and the spatial coordinates of all capture locations had 

been recorded (Matter et al. 2014), such that each individual could be classified as either 

as a disperser (having been re-captured in a patch different from the one in which it was 

originally marked) or a non- disperser (re-captured in the same patch in which it was 

originally marked).  

 

  Experimental designs 

With both dispersal history and thoracic temperature available for each individual (Table 

4.1), I was able to set up two different experimental designs: a) All 12 individuals sorted 

into two groups according to their dispersal histories: dispersers and non-dispersers. I had 

six biological replicates (different individuals) for each group. b) All 12 individuals 

sorted into two groups according to the difference between their thoracic temperature and 

ambient air temperature: thoracic temperature either higher or lower than ambient 

temperature. In this design, I had eight biological replicates in the first category (thoracic 

higher than ambient temperature) and four biological replicates in the second category 

(thoracic lower than ambient temperature). 
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Table 4.1 Information about the samples used for gene expression analysis in this study. Patch indicates the individual’s final 

capture location (Figure 1.1), when tissue for RNA analysis was sampled. Every individual was either classified as a disperser 

or non-disperser based on their mark-recapture history. For dispersers, the patch where the individual was initially marked is 

given in brackets. The difference between thoracic and ambient temperature at the time of sampling was calculated for each 

individual. The number of days between initial marking of the individual and sampling for this study (Time since marking) are 

also provided.

Patch Disperser/ 

non-disperser 

Sex Thoracic temp. 

(°C) 

Ambient temp. 

(°C) 

Thoracic- ambient temp. 

(°C) 

Time since 

marking 

F Non-disperser male 25.8 13.3 12.5 19 

Z Non-disperser female 22.3 15.8 6.5 13 

Q Non-disperser female 30.8 24.7 6.1 14 

Q Non-disperser male 32.6 22 10.6 27 

Q Non-disperser female 26 23 3 0 

Q Non-disperser male 29 21 8 12 

M Disperser (P) male 21 20 1 15 

L Disperser (Q) male 19.5 22.4 -2.9 12 

L Disperser (J) male 21.2 22.6 -1.4 7 

J Disperser (K) male 20 24.8 -4.8 5 

L Disperser (P) male 19.1 23.4 -4.3 10 

Q Disperser (M) male 24.2 22.3 1.9 2 
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  RNA extractions, and mRNA sequencing 

Total RNA was extracted from each thorax sample using the RNeasy Mini Kit (Qiagen) 

according to the manufacturer’s protocol. An aliquot of total RNA for each individual, 

containing from 2–6 µg of RNA in a maximum volume of 20 µL, was sent to the Next-

Generation Sequencing Services at Genome Québec (McGill University, Montréal, 

Québec; MGU-GQ) for 100 bp paired-end mRNA sequencing on an Illumina HiSeq 

platform (Illumina, San Diego CA). All RNA samples successfully passed the Quality 

Control with an RNA integrity number greater than ‘8’ (Bioanalyzer 2100, Agilent 

Technologies). For each sample, mRNA was purified from the total RNA and indexed 

with a unique barcode used in library preparation at the MGU-GQ facilities using the 

Illumina TruSeqmRNA Library Prep Kit v2. All 12 mRNA libraries were sequenced on 

four lanes of an Illumina HiSeq 2000 flow cell. 

 

  Sequence data processing & de novo transcriptome 
assembly 

I trimmed raw reads of adapter sequence and removed any reads that had low base quality 

scores (<30) or that were shorter than 36 bp using TRIMMOMATIC v.0.36 (Bolger et al. 

2014). The remaining pair-matched reads were assessed for overall quality in FASTAQC 

v.0.11.5 (Andrews 2010). All clean, high-quality reads were normalized with a maximum 

of 30 reads coverage per contig using in silico normalization in TRINITY v.2.5.0 (Grabherr 

et al. 2011) to improve efficiency of the transcriptome assembly by reducing the quantity 

of input reads. 
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I pooled the resulting 998,970,648 million normalized reads from all 12 

individuals to assemble a de novo reference transcriptome using three different 

assemblers, TRINITY v2.5.0, CLC Genomics Workbench v8.5 (CLC Bio-Qiagen) and 

Oases v0.2.08 (Schulz et al. 2012), under the default settings. I then carried out a 

comparison of the three assemblers for construction of an optimal reference transcriptome 

for downstream analyses. I compared N50 and average contig length between assemblies, 

which are commonly used metrics of assembly quality, to assess the effectiveness of each 

de novo assembly. The completeness of the three de novo assemblies was also evaluated 

via Benchmarking Universal Single-Copy Orthologs (BUSCO v2; Simão et al. 2015). 

BUSCO quantitates assembly completion by determining whether assembled transcripts 

align to highly conserved, single-copy amino acid sequences within its database, and by 

classifying matches as complete or fragmented. 

 

  Functional annotation of genes 

I performed sequence homology searches via BLASTX against well-annotated sequences 

from a custom-made insect gene database (Table 4.2) to verify insect origin of genes in 

my reference assembly. BLASTX translates a given nucleotide query sequence and 

compares it to the database sequences using all six possible reading frames (three in each 

direction). Only contigs that showed a minimum 70% amino acid identity (E-value 

threshold 10-3) with at least one other insect gene were kept in the transcriptome 

assembly. I identified genes in my final reference transcriptome assembly and assigned 

putative functions to them using the following steps. First, contigs in the final reference 

transcriptome were translated to predicted amino acid sequences using 
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TRANSDECODER (v2.0.2; Haas et al. 2013). Then, BLASTX and BLASTP were used 

to identify annotated homologs (significant thresholds of e-value < 1e-5) within Swiss-

Prot database (UniProt 2014). HMMER (v3.1; Eddy 2011) was also used to determine 

homology of protein domains against those in the Protein Family Database (Pfam v29.0; 

Finn et al. 2015). I integrated the results from the gene- and domain-level analyses of 

amino acid sequences in the TRINOTATE program (v.3.0.2; Haas et al. 2013) to create a 

comprehensive annotation report for the reference transcriptome.  

 

 Differential gene expression analysis 

Trimmed paired-end reads (not normalized) from each library were mapped back to the 

reference assembly using the splice-aware aligner Bowtie2 (v2.3.0; Langmead and 

Salzberg 2012) with default settings. I then used the program RSEM (v1.2.25; Li and 

Dewey 2011) to count the number of raw reads that aligned to each contig for each 

individual library. Before estimating differentially expressed genes (DEGs), the mapped 

read counts were normalized for differences in gene length and library size (total reads) 

using the Trimmed Mean of M-values (TMM) method which is implemented in the R 

Bioconductor package edgeR (v 3.5; Robinson et al. 2010). 

According to my two different potential experimental designs, I could compare 

differential expression patterns between disperser and non-disperser individuals (grouped 

regardless of thoracic temperature), as well as between individuals with thoracic 

temperature higher versus lower than ambient temperature (grouped regardless of 

dispersal history). All differential gene expression analyses were performed using the 

package edgeR. Expression differences between groups were considered significant after 



101 
 

 
 

correction for multiple testing using a false discovery rate (FDR) of less than 0.05, and 

also a minimum four-fold expression change.  In each experimental condition, I estimated 

Pearson’s correlation for each possible pair of individuals to examine how individuals 

sorted based on similarity in their expression patterns. Hierarchical clustered heatmaps 

were also constructed to visualize how DEGs and individuals were related according to 

their gene expression patterns. I visualized the number of DEGs between dispersers and 

non-dispersers, and different body temperatures, by Venn diagrams generated using 

Venny (accessible at http://bioinfogp.cnb.csic.es/tools/venny/index.html).  

Since all three female individuals sampled were non-dispersers, to ensure that 

any observed differential expression patterns were not influenced by sex-specific gene 

expression, I also conducted the analyses for both experimental designs (i.e., based on 

dispersal history and relative thoracic temperature) without females.  

 

  Enrichment analysis 

To determine the potential function of DEGs, I performed gene ontology (GO) 

enrichment analysis using the GOseq R package (1.22.0; Young et al. 2010). I considered 

a FDR-corrected P- value less than 0.05 as the threshold to determine significantly 

enriched GO terms. To gain insight into the functional categories associated with DEGs 

in each gene set, I specifically focused on only GO terms assigned to ‘biological 

processes’. I also used Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis (Kanehisa and Goto 2000) to identify potential pathways involved in the 
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differentially expressed gene sets. I then visualized differentially expressed pathways 

using ClustVis (Metsalu and Vilo 2015). 

 

 

4.3 Results 

 Thoracic temperature and dispersal history 

I observed flight thoracic temperatures in P. smintheus ranging from 19.1 °C to 32.6 °C. 

Recorded ambient temperatures ranged from 13.3 °C to 24.8 °C, and the difference in 

thoracic and ambient temperature for individual butterflies ranged from – 4.8 °C to + 

12.5°C. Individuals classified as dispersers tended to have thoracic temperatures lower 

than ambient (mean difference from ambient = -2.01 ± 2.3 °C), while individuals 

classified as non-dispersers consistently had thoracic temperatures higher than ambient 

(mean difference from ambient = 7.78 ± 3.4 °C). The difference in mean thoracic 

temperature of dispersers and non-dispersers was significant (t9.10= 5.83, P < 0.001). 

 

  Transcriptome sequencing & de novo reference assembly 

Illumina sequencing yielded a total of 1,267,460,876 raw reads from 12 libraries. After 

trimming and quality control, 1,172,691,325 high-quality reads were retained with the 

average quality score greater than 30, for use in de novo transcriptome assembly. Among 

the three assemblers (Trinity, Oases and CLC), Trinity produced the assembly with 

longest N50 length and highest average contig length (Table 4.3). An analysis of 
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transcriptome completeness by BUSCO also indicated that Trinity performed best in 

terms of having the highest complete arthropod BUSCOs and fewest missing and 

fragmented arthropod BUSCOs, followed by Oases and CLC (Table 4.3). I therefore 

selected the Trinity assembly as the reference for all downstream gene expression 

analyses.  

The raw Trinity assembly generated 344,367 ‘contigs’ that represented 508,833 

transcripts, and after cross-referencing to my insect gene database, the final assembled 

transcriptome had a total of 33,165 Trinity ‘genes’ that represented 72,469 transcripts 

(Table 4.4).  Cross-referencing for homology to insect genomes improved the quality of 

the assembly, resulting in a higher N50 value (from 847 to 1976 bp), a longer average 

contig length (from 585 to 1217 bp), and fewer missing genes identified by BUSCO 

(from 288 to 179). Queries against the Swiss-Prot database identified matches with 

annotated proteins for 15,118, or 47%, of total genes. 
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Table 4.2 The insect gene database used to reduce the number of spurious genes and 

verify the insect origin of transcripts in the reference transcriptome. 

 

 

 

 

 

 

Order Species Reference 

Lepidoptera Melitaea cinxia Ahola et al. 2014 

 
Heliconius numata Wallbank et al. 2016 

 
Papilio machaon Li et al.2015 

 
Danaus plexippus Zhan et al. 2011 

Diptera Drosophila melanogaster Attrill et al. 2016 

Hymenoptera Bombus terrestris Sadd et al. 2015 

 
Apis mellifera Weinstock et al. 2006 
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Table 4.3 Summary of de novo assemblies’ quality using common statistical metrics: 

N50 (which represents the distribution of contig lengths in an assembly), average contig 

length, and BUSCO’s evaluation metrics that quantify assembly completion by aligning 

all transcripts to highly conserved proteins within its dataset. 

 

Assembler 
N50 

length 

Average contig 

length (bp) 

Missing 

BUSCOs% 

Complete 

BUSCOs% 

Fragmented 

BUSCOs% 

Trinity 1976 1217.61 6.7 80.7 6 

Oases 386 300.28 11.36 73 15 

CLC 272 261.72 26.7 54.2 20 



106 
 

 
 

Table 4.4 Summary statistics of sequencing and Parnassius smintheus de novo reference 

transcriptome assembly. 

Raw reads 1,267,460,876 

Trimmed reads 1,172,691,325 

Normalized reads 998,970,648 

Trinity assembly statistics  

Number of contigs 344,367 

Number of transcripts 508,833 

N50 length 847 

Average contig length (bp) 585.25 

GC content (%) 37.62 

After crossing reference to insect gene database (≥70% amino acid identity) 

Number of contigs  33,165 

Number of transcripts  72,469 

N50 length 1976 

Average contig length (bp) 1217.61 

GC content (%) 40.8 
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  Differential gene expression as a function of dispersal history 

I identified 94 genes differentially expressed (FDR-corrected P-value < 0.05) between 

dispersers and non-dispersers. These unique DEGs were strongly associated with 

dispersal as all the individuals clustered based on their dispersal history (disperser or non-

disperser) (Figure 4.1). Furthermore, hierarchical clustered heatmaps detected two main 

clusters encompassing uniquely co-regulated genes associated with dispersal history 

(Figure 4.2). A larger cluster included genes upregulated in dispersers and conspicuously 

down-regulated in non-dispersers (gene set I; n= 56 or 60 % of DEGs), while a second, 

smaller cluster of genes were upregulated in non-dispersers and conspicuously down-

regulated in dispersers (gene set II; n= 38 or 40% of DEGs). In gene set I, I found 

‘ubiquinol-cytochrome c reductase core protein 2’ (UQCRC2), involved in the 

mitochondrial respiratory chain, ‘glycogen synthase’ (GYS), involved in glycogenesis, 

and ‘isocitrate dehydrogenase1, 2’ (IDH1/IDH2), involved in the citric acid cycle to be 

the most highly significantly upregulated genes in dispersers (FDR < 0.00001).  In gene 

set II, the three top genes showing highly significant upregulation in non-dispersers were 

F-type H+-transporting ATPase’ (ATPeF0F6), involved in ion transporting, 

‘diacylglycerol O-acyltransferase’ (DGAT), involved in triacylglycerol synthesis, and 

‘phospholipid: diacylglycerol acyltransferase‘ (PDAT), involved glycerolipid metabolism 

(FDR < 0.00001). None of the DEGs were shared between disperser and non-disperser 

individuals (Venn: Figure C1a).  
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Figure 4.1 Cluster analysis based on Pearson correlation coefficients showing similarity 

of gene expression profiles in Parnassius smintheus samples. Samples are classified 

based on their dispersal history as inferred by mark-recapture data. Red is indicative of 

similarity, while grey is indicative of dissimilarity in the level of gene expression. Each 

cell represents the average correlation coefficient of a set of n = 94 dispersal-related 

genes. The diagram is symmetric across the red-cell diagonal.
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Figure 4.2 Heat map matrix of 94 genes differentially expressed between disperser and 

non-disperser Parnassius smintheus (FDR <0.05 and minimum four-fold change). The 

colour code represents the relative expression, where yellow represents upregulation, 

purple represents down-regulation, and black represents no change in expression. Genes 

were clustered by means of a hierarchical clustering algorithm presenting two gene sets, I 

and II (vertical axis).  
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After removing the females from the analysis, the results still showed significant 

differential gene expression among males with different dispersal histories (Figures C2 

and C3). I identified a total of 90 DEGs between male dispersers and non-dispersers, the 

majority of which overlapped with the 94 DEGs previously identified using all dispersers 

(overlap of 56 genes). Of these 90 DEGs, 30 (33% of DEGs) were upregulated in 

dispersers and 60 (66% of DEGs) were upregulated in non-dispersers. Thus, the gene 

expression profiles of dispersers and non-dispersers were distinct, regardless of sex. 

Gene set I (56 DEGs) was significantly enriched for 122 GO terms related to 

“biological processes’, which was over half (70%) of all GO terms associated with this 

gene set. Metabolic genes accounted for many of the upregulated transcripts in dispersers. 

Over 36% of transcripts upregulated in these individuals were involved in metabolism of 

carbohydrate, protein and lipid (e.g., glycerophospholipid metabolism, protein 

phosphorylation and oxidative phosphorylation), while 15% were involved in cellular 

regulation of stress response (e.g., immune response, oxidative stress, heat and hyperoxia 

responses), and 13% were involved in developmental processes (e.g., development of 

muscle tissue and nervous system). In the latter category of developmental processes, the 

largest number of genes upregulated in dispersers were associated with the specific GO 

term ‘skeletal muscle development’, which in the context of insects can be interpreted as 

striated muscle development. Under stress responses, both ‘defense response of immune 

system’ and ‘response to heat’ were represented by a large number of upregulated genes.  

Gene set II (38 DEGs) was enriched for 65 biological process (BP) GO terms, 

which was over 60% of all GO terms associated with non-dispersers.  Of the upregulated 

biological processes in non-dispersers, approximately 30% of transcripts were transport-
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related (e.g., lipid transport and ion transport), 22% were involved in metabolism (mostly 

enriched kinase activity and mitochondrial electron transport), and 18% were involved in 

cell organization and biogenesis (Figure 4.3 a, b).
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Figure 4.3 Gene ontology (GO) terms associated with upregulated differentially expressed genes (DEGs; FDR < 0.05) 

assigned to the biological process (BP) category in a) disperser and b) non-disperser individuals. The vertical axis shows the 

BP-GO terms classified by color; the horizontal axis represents the number of the DEGs annotated in the GO terms.
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I identified 27 unique KEGG pathways associated with the set of DEGs 

upregulated in dispersers and conspicuously downregulated in non-dispersers (i.e., gene 

set I; Figure 4.4). The most frequently occurring pathways were related to ‘lipid 

metabolism’, ‘carbohydrate metabolism’,’ nucleotides metabolism’, and ‘energy 

metabolism’. Of the genes upregulated in dispersers, 45% were involved in pathways 

related to ‘citrate cycle’, ‘glycolysis / gluconeogenesis’, ‘oxidative phosphorylation’, 

‘glycerophospholipid metabolism‘ and ‘fatty acid biosynthesis’. Most of the DEGs 

involved in these pathways are associated with processes in which stored energy is 

released and ATP is formed. The second largest category of genes upregulated in 

dispersers, encompassing 32% of the DEGs, was related to environmental information 

processing (signal transduction and membrane transport). In this category, I identified 

five signaling pathways (VEGF, cAMP, AMPK, MAPK and PI3K-Akt). Furthermore, 

two important pathways were identified, namely ‘thermogenesis’ and ‘insulin signaling’ 

in addition to pathways related to ‘immune system’, ‘Toll-like receptor signaling’ and ‘T 

cell receptor signaling’.   
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Figure 4.4 Heat map of KEGG pathways associated with significant DEGs (FDR < 0.05) 

enriched between dispersers and non-dispersers, The intensity of color indicates the level 

of regulation of pathways: Darker color represents higher upregulation of pathways and 

lighter color represents higher downregulation of pathways. For detailed information for 

each pathway, see the KEGG online resource (http://www.genome.jp/kegg/)
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In gene set II (upregulated in non-dispersers and conspicuously down-regulated 

in dispersers), many of the 14 identified KEGG pathways (Figure 4.4) were related to 

metabolism (70%), namely, ‘oxidative phosphorylation’, ‘Inositol phosphate 

metabolism’, ‘galactose metabolism’ and ‘starch and sucrose metabolism’ and ’glycolipid 

metabolism’. I identified three signaling pathways including FoxO, TNF and MAPK as 

well as the ‘thermogenesis’ pathway.  While some of the upregulated pathways in non-

disperser individuals were similar to those in dispersers, the DEGs involved in each 

pathway differed between the two groups. 

 

  Differential gene expression as a function of thoracic 
temperature 

I identified a total of 26 genes that were differentially expressed in individuals with 

thoracic temperature higher than ambient, compared to individuals with thoracic 

temperature lower than ambient (grouped regardless of dispersal history). All the 

individuals clustered by their thoracic temperature relative to ambient (Figure 4.5). 

Moreover, hierarchical clustering of these temperature-biased genes revealed two main 

clusters of co-regulated genes (Figure 4.6). The first gene set (hereafter ‘gene set TI’), 

with five genes (19% of DEGs), is uniquely upregulated in individuals with thoracic 

temperature higher than ambient, and conspicuously downregulated in individuals with 

thoracic temperature lower than ambient. A second, larger gene set with 21 genes 

(hereafter ‘gene set TII’; 81% of DEGs) was upregulated in individuals with thoracic 

temperature lower than ambient.   



117 
 

 
 

 

 

Figure 4.5 Cluster analysis based on Pearson correlation coefficients showing similarity 

of gene expression profiles in Parnassius smintheus samples. Samples are classified 

based on whether thoracic temperature was higher or lower than ambient temperature. 

Red is indicative of similarity, while grey is indicative of dissimilarity in the level of gene 

expression. Each cell represents the average correlation coefficient of a set of n = 26 

genes. The diagram is symmetric across the red-cell diagonal.
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Figure 4.6 Heat map matrix of 26 genes differentially expressed between individuals 

with thoracic temperature higher and lower than ambient temperature (FDR < 0.05 and 

minimum four-fold change). The colour code represents the relative expression, where 

yellow represents upregulation, purple represents down-regulation, and black represents 

no change in expression. Genes were clustered by means of a hierarchical clustering 

algorithm presenting two gene sets, TI and TII (vertical axis). 
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The genes showing highly statistically significant upregulation in gene set TI 

were ’ornithine decarboxylase 1’, involved in polyamine biosynthesis processes and 

‘growth hormone-inducible transmembrane’, involved in signaling and cellular processes, 

while in gene set TII ‘heat shock protein family A Member 9 (HSPA9), involved in 

Protein folding/chaperone, ‘xanthine dehydrogenase’ (XDH), involved in  the oxidative 

metabolism of purines and ‘p38 mitogen-activated protein kinases‘ (p38 MAPK), 

involved in a signaling cascade controlling cellular responses to stress were the three top 

significant upregulated genes (FDR<0.00001). None of the DEGs were shared between 

these two groups of individuals (Venn: Figure C1b), although, I found five upregulated 

genes shared between dispersers and individuals that had lower thoracic than ambient 

temperature - lldD; MAPK; HSPA9; GSK3B; and XDH (Venn: Figure C1c).  

After removing females from the analysis, I still observed a similar pattern of 

differential gene expression between males that had higher thoracic temperature than 

ambient, compared to males that had lower thoracic temperature than ambient (Figure C4 

and C5). I found nine upregulated genes (out of 24; 37% of DEGs) in males with higher 

thoracic temperature than ambient and 15 upregulated (out of 24; 63% of DEGs) in those 

with lower thoracic temperature than ambient. All these DEGs identified in males were a 

subset of the 26 DEGs previously reported for all individuals in the full dataset.  

I observed only ten biological process (BP) GO annotations assigned to 

upregulated DEGs in gene set TI (Figure 4.7a). The most abundant annotations were 

related to ‘cell organization and biogenesis’ and ‘metabolism’, which accounted for 

approximately 40% and 30 % of all BP-GO terms associated with this gene set, 

respectively. Gene set TII was significantly enriched for 66 BP-GO terms (Figure 4.7b). 
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Similar to the pattern in dispersers, genes pertaining to metabolism (of carbohydrate, lipid 

and protein) accounted for most of the upregulated transcripts (30%) in gene set TII, 

followed by genes related to cell organization and biogenesis (e.g., regulation of cell 

size and myofibril assembly), developmental processes (particularly striated muscle 

development) and stress responses (e.g., response to heat and hypoxia, and immune 

response), with approximately 17% of upregulated transcripts associated with each of 

these latter categories.  

Using enrichment analysis of differentially expressed KEGG pathways, only five 

pathways (‘biosynthesis of antibiotics’, ‘biosynthesis of secondary metabolites’, ‘arginine 

and proline metabolism’, ‘glutathione metabolism’, and ‘ribosome’) showed a high 

degree of enrichment in gene set TI (Figure 4.8). Upregulated DEGs in gene set TII were 

distributed across 16 different pathways (Figure 4.8). Among these 16 pathways, the 

signaling transduction pathways were prominent, with 40% of upregulated genes 

involved in VEGF, MAPK, and calcium signaling pathways. I also found enrichment of 

‘insulin signaling’, ‘neurotrophin signaling’ and ‘Toll-like receptor signaling’ pathways 

in gene set TII, along with multiple pathways related to metabolism of carbohydrates, 

energy, and nucleotides (‘glycolysis/gluconeogenesis’, ‘glycogen and sucrose 

metabolism’, and ‘nucleotides metabolism’).  
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Figure 4.7 Gene ontology (GO) terms associated with upregulated differentially 

expressed genes (DEGs; FDR < 0.05) assigned to the biological process (BP) category in 

a) individuals with higher thoracic temperature than ambient and b) with lower thoracic 

temperature than ambient. The vertical axis shows the BP-GO terms classified by color; 

the horizontal axis represents the number of the DEGs annotated in the GO terms.
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Figure 4.8 Heat map of KEGG pathways associated with significant DEGs (FDR < 0.05) 

enriched between individuals with higher and lower body temperature than ambient. The 

intensity of color indicates the level of regulation of pathways: Darker color represents 

higher upregulation of pathways and lighter color represents higher downregulation of 

pathways. For detailed information for each pathway, see the KEGG online resource 

(http://www.genome.jp/kegg/).
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4.4 Discussion 

Dispersal is an important behaviour that can be characterized at ecological, physiological 

and genetic levels (Clobert et al. 2012).  Here, I attempt to integrate across all three 

levels. In a system in which the ecological consequences of dispersal are relatively well 

understood (Roland et al. 2000; Matter et al. 2004), I assessed differences in gene 

expression between dispersers and non-dispersers and in the context of ambient and body 

temperature.  

The thoracic temperatures I observed in P. smintheus are generally consistent 

with a previous study by Guppy (1986), which documented thoracic temperatures of 17 

°C - 20 °C during flight in the early morning in this species. While I also observed some 

higher thoracic temperatures, up to 32.6 °C, this likely reflects the fact that I did not 

restrict my measurements to the early morning flight period as Guppy (1986) had. The 

range of flight thoracic temperatures I observed is also similar to that seen in monarch 

butterflies in their wintering grounds (~ 17 °C – 28 °C; Masters et al. 1988).   

I found that thoracic temperature, relative to ambient, was significantly lower in 

dispersers compared to non-dispersers. Indeed, all non-dispersers had thoracic 

temperatures higher than ambient, while the majority of dispersers had thoracic 

temperatures lower than ambient. This result is consistent with the hypothesis that 

dispersers may have a better ability to dissipate the heat that accumulates during flight as 

a result of increased flight muscle activity and metabolic rate. In the long-distance flights 

associated with dispersal, maintenance of a lower thoracic temperature may be important 

to avoid overheating and dehydration (Kingsolver and Watt 1983; Masters et al. 1988; 
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Neve and Hall 2016). In the speckled wood butterfly, Pararge aegeria, Van Dyck and 

Matthysen (1988) found that patrolling males, which tend to fly longer distances, had 

lower thoracic temperatures than perching males, who tended to have short flights, even 

when engaged in the same activity such as basking. Thoracic temperature between the 

two types of males did not differ at the initiation of flight however, suggesting that the 

patrollers were more effectively dissipating heat from their thoraxes. Masters et al. (1988) 

also found that the monarch butterfly, Danaus plexippus (L.), adopts thermoregulatory 

behaviors to reduce thoracic temperature during flight, specifically alternating periods of 

powered flight with gliding.  

A second, related hypothesis that can explain the lower relative thoracic 

temperatures of dispersers is that dispersers maintain low body temperatures as a general 

strategy to conserve energetic resources. In insects, higher body temperature results in 

greater energy utilization (Chaplin and Wells 1982). At the same time, long-distance 

flight is a very energetically demanding activity requiring stored energy reserves. Lipids 

in particular are an important fuel source for insect flight, and individuals with greater 

lipid reserves may be more likely to be successful in dispersal (Chaplin and Wells 1982). 

Migrating monarch butterflies maintain low body temperatures during flight to avoid 

rapid depletion of lipid reserves (Calvert and Brower 1986; Masters et al. 1988). Thus, in 

P. smintheus dispersers may be those individuals that are better able to build up or 

maintain energy reserves by reducing their body temperature while in flight and possibly 

during other activities. If maintenance of lower body temperature is important for 

dispersers to either avoid overheating or reduce energy consumption, then I would predict 
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that dispersers may have additional adaptations to reduce body temperature including 

lighter wing color, or less hairy bodies and wing bases, as compared to non-dispersers.  

The initiation and completion of dispersal and long-distance flight, as well as the 

subsequent recovery, require integration of a number of physiological mechanisms, 

including control of movement, body temperature, and energy utilization, which can be 

mediated by the neuroendocrine and hormonal systems (Ramenofsky and Wingfield 

2007). These physiological mechanisms, in turn, may be modulated through the 

regulation of gene expression (Margotta et al. 2013; Somervuo et al. 2014, Kvist et al. 

2015). Using an RNA-seq approach, I observed marked differences in gene expression 

between individuals of P. smintheus classified as dispersers and non-dispersers. I 

obtained 94 DEGs between dispersers and non-dispersers, even though I was not 

capturing individuals during or immediately after dispersal. I also observed differential 

gene expression between individuals with thoracic temperature higher versus lower than 

ambient temperature, but these effects were not as strong as the patterns observed 

between dispersers and non-dispersers and involved fewer DEGs. I identified 26 DEGs 

between individuals with thoracic temperature higher versus lower than ambient. Since 

dispersers had lower thoracic than ambient temperature during flight, DEGs associated 

with lower body temperature were a subset of DEGs identified in dispersers and notably 

included a number of genes associated with the GO term ‘response to heat’. 

 Those individuals I classified as non-dispersers (i.e., recaptured in the same 

meadow where they were first marked) could potentially have been dispersers that were 

simply not identified as such based on their recapture history (i.e., they had already 

immigrated to a new patch before their first capture, or they went to a different patch and 
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returned between capture events). However, the large majority of individuals captured 

and marked in this system are not dispersers (Roland et al. 2000), so the likelihood of 

these individuals being unidentified dispersers is very low. Indeed, the striking 

differences in gene expression between the two groups, and consistency in gene 

expression among individuals within each group, suggest that the individuals that I 

classified as ‘non-dispersers’ were a homogeneous group. 

The DEGs I identified in dispersers, who also had lower thoracic than ambient 

temperature, relate to a variety of physiological functions. My results suggest 

upregulation of a suite of genes involved in metabolism, stress responses (including 

response to heat) and striated muscle development in individuals that have moved 

between habitat patches. These findings are in accordance with my hypothesis that 

differences in expression of genes linked to processes including energy mobilization and 

thermoregulation may be either a cause or consequence of dispersal. More specifically, 

the nature of the genes and associated pathways upregulated in dispersers suggest that 

these individuals might be attempting to recover from the rigours of dispersal by 

replenishing energy stores, growing or repairing muscle, and regulating heat and hypoxia 

stress. 

Most of the energy required during long term and sustained insect flight is 

obtained from stores of glycogen and triglycerides (Mordue et al. 1980; Arrese and 

Soulages 2010). I found that dispersers had elevated expression of genes involved in 

glycerophospholipid and glycerolipid metabolism, glycogen metabolism, and oxidative 

phosphorylation. Some of these genes related to fat and carbohydrate accumulation. For 

example, the gene Gdp1 encoding glycerol-3-phosphate dehydrogenase, involved in 
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glycerophospholipid metabolism, showed significantly higher upregulation in dispersers. 

The encoded enzyme has a critical role in carbohydrate and lipid metabolism by 

catalyzing the reversible conversion of dihydroxyacetone phosphate (DHAP) to glycerol-

3-phosphate (G3P), or triglyceride, which is stored in fat body cells (Nye et al. 2008; 

Mráček et al. 2013). I also observed increased expression of the gene encoding glycogen 

synthase, which is a key enzyme in glycogenesis and mediates the conversion 

of glucose into glycogen, in dispersers. These results suggest a shift to increased fat and 

carbohydrate accumulation in dispersers. In the Glanville fritillary butterfly, genes related 

to utilization of energy stores, specifically oxidative phosphorylation, glycolysis, TCA 

cycle and ATP metabolism were down-regulated at 20 hours after an intense and long 

bout of flight, reflecting potential depletion of energy stores and a resulting decrease in 

the rate of energy metabolism (Kvist et al. 2015). Such a depletion of energy stores likely 

also occurs in P. smintheus during dispersal and long flights, and here I may have 

observed gene expression profiles reflecting the longer-term post-flight replenishment of 

energy reserves. However, I cannot say at this point whether dispersers were indeed 

replenishing lost carbohydrate and lipid reserves from a previous long-term flight or are 

simply always better able to accumulate such reserves relative to non-dispersers.   

I also observed that dispersers had higher expression of some genes involved in 

catabolism and releasing stored energy to cells. For example, dispersers displayed 

elevated expression of the gene encoding the enzyme triacylglycerol lipase, which 

catalyzes the hydrolysis of triacylglycerol to glycerol and fatty acids. Dispersers also 

upregulated genes involved in TCA cycle and oxidative phosphorylation. The release of 

stored energy may be coupled to the other key processes that were upregulated in 

https://en.wikipedia.org/wiki/Glucose
https://en.wikipedia.org/wiki/Glycogen
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dispersers, notably muscle development and stress responses. Upregulation of genes 

related to development, cell organization, and biogenesis, particularly development of 

striated muscle, is consistent with a recovery response to intense and sustained exercise. 

These processes, and the regeneration of muscular tissue in particular, may demand 

considerable energetic resources. 

The ability to cope with thermal stress is also critical for sustaining a long flight. 

Dispersers exhibited upregulation of a number of stress-related genes, including many 

involved in response to heat. For example, dispersers displayed upregulation of the gene 

that encodes heat shock protein family A (HSP70A), representing a potential response to 

thermal stress.  Heat shock proteins function as molecular chaperones to maintain correct 

protein folding, and assist in refolding of damaged proteins following heat shocks or other 

stressful conditions (Wang and Lindquist 1998; Štětina et al. 2015). The heat shock 

protein HSP70s is known to be important in protecting insects from many aspects of 

thermal stress (Parsell and Lindquist 1993; Wang and Kang 2005; Luo et al. 2015). 

Indeed, Hsp70 expression is considered an indicator of the intensity of stress (Iwama et 

al. 1998; Loeschcke and Hoffmann 2007). A second large set of stress-related genes that 

were upregulated in dispersers were genes involved in immune function. These included, 

for example, the gene encoding p38 MAPK, which is involved in VEGF and Toll-like 

receptor signaling pathways implicated in stress signals and regulation of immune 

response. MAPK is an important protein kinase that plays an essential role in regulating 

cellular processes, including apoptosis, cell fate determination, and immune function in 

response to various environmental stresses (Pearson et al. 2001; Zarubin and Han 2005). 

In Drosophila, it has been demonstrated that immune stimulation, heat shock, oxidative 
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stress and starvation all activate MAPK kinase signaling pathways (Han et al. 1998), and 

flies lacking D-p38 are susceptible to environmental stresses (Craig et al. 2004). Margotta 

et al. (2013) demonstrated different gene expression patterns in flight muscles of forager 

honeybees that engaged in intense flight and those of nurse honeybees that engaged in 

little or no flight. One key finding was that the expression of genes involved in immune 

signaling pathways (toll-like receptor and hopscotch) were upregulated in foragers. 

Previous studies on the Glanville fritillary also showed that intensive flight activity 

enhanced the immune response (Saastamoinen and Rantala 2013) and led to increased 

expression of immune genes (Kvist et al. 2015). My data suggest that the thermal and 

metabolic pressures, and potentially reactive oxygen species (ROS) production, induced 

by prolonged flight bouts also stimulate immune-related pathways in dispersing P. 

smintheus.  

Overall, I was able to generate a high-quality and clean reference transcriptome 

for adult P. smintheus thoracic tissue, which can be used for future comparative analyses. 

My results show that P. smintheus individuals that have dispersed between habitat 

patches have lower relative thoracic temperatures and distinct gene expression profiles 

compared to non-dispersers.  The fact that many of the DEGs relate to replenishment of 

energy reserves, muscle development and stress responses, suggests that the gene 

expression patterns I observed in dispersers represent a long-term ‘recovery’ response to 

long-distance flight and dispersal. My results suggest that dispersal may indeed be quite 

costly, since individuals are upregulating the expression of genes for replenishing lipid 

and carbohydrate reserves, tissue re-organization, as well as genes involved in stress 

responses, potentially days after having dispersed.  
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I cannot entirely rule out, that some of the gene-expression differences I 

observed may be inherent to dispersing and non-dispersing individuals, independent from 

the effect of flight activity (Kvist et al. 2015). That is, given that the other studies have 

demonstrated a heritable genetic basis of dispersal traits (Kent et al. 2009; Saastamoinen 

et al. 2012; Edelsparre et al. 2014), it is possible that some differences I observed between 

dispersers and non-dispersers reflect a certain degree of functional specialization, and 

may in fact be a cause rather than consequence of dispersal. Baseline differences in gene 

expression between individuals from populations showing different mean dispersal 

behaviours (Somervuo et al. 2014; Kvist et al. 2015) support this possibility. 

Manipulation in expression of the foraging gene (for) in larval fruit flies influences their 

foraging activity and dispersal tendencies as adults (Kent et al. 2009), providing further 

evidence that differential gene expression can lead to different dispersal behaviours. 

Controlled flight trial studies in P. smintheus are needed to determine short- and long-

term effects of sustained flight on gene expression, and to shed light on those gene 

expression differences that may be a cause versus a consequence of dispersal. These and 

additional studies investigating differences between dispersers and non-dispersers, 

including morphological and colour differences, the thoracic temperature required to 

initiate flight, and flight metabolic rates will yield further insights into the costs and 

constraints associated with dispersal in this system. 
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Chapter 5 

5 Genetic variation at the Pgi locus is associated with 
dispersal in the alpine butterfly, Parnassius smintheus 

5.1 Introduction 

The phosphoglucose isomerase gene (Pgi) has been proposed as a candidate gene for a 

number of ecologically important traits, including movement and dispersal, in arthropods 

(Haag et al. 2005; Wheat et al. 2006; Kallioniemi and Hanski 2011). This gene encodes 

the enzyme phosphoglucose isomerase (PGI), which catalyzes the second step in 

glycolysis, converting glucose-6-phosphate (G6P) into fructose-6-phosphate (F6P). 

Polymorphism at Pgi has been described in a wide range of taxa, ranging from plants to 

insects to barnacles (Hoffman 1981; Filatov and Charlesworth 1999; Wheat 2010). 

Diverse lines of evidence, including DNA sequence variation, allelic clines, and allele 

frequency changes over time indicate selection on this locus in many different species 

(Hoffman 1981; Rank and Dahlhoff 2002; Wheat et al. 2006; Orsini et al. 2009). 

Furthermore, specific Pgi genotypes have been associated with higher components of 

fitness (survival, mating success and fecundity) and with performance in traits such as 

peak metabolic rate, running speed, and flight (Filatov and Charlesworth 1999; Dahlhoff 

and Rank 2000; Wheat et al. 2006; Orsini et al. 2009). 

PGI is a dimeric enzyme involved in the early steps of glycolysis and therefore 

in a pathway that ultimately releases ATP and NADH to provide energy for cellular 

activity. PGI activity is considered to occur at a metabolic ‘branch point’ since the 

reaction it catalyzes is reversible (G6P   F6P) and G6P can enter alternative pathways 
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for the pentose phosphate shunt or glycogen biosynthesis (Wheat and Hill 2014). In 

mammals, additional potential activities for PGI (i.e., moonlighting activities) involving 

nerve cell growth and differentiation have also been identified (Chaput et al. 1988). Only 

a single copy of the Pgi gene is present in the large majority of organisms in which it has 

been studied, with some exceptions including certain plant species, fish, and stick insects 

(Thomas et al. 1993; Sato and Nishida 2007; Dunning et al. 2013). 

In arthropods, researchers have demonstrated that PGI variants can differ in their 

biochemical performance (Watt et al. 1983; Zera 1987; Li and Andersson 2016), leading 

to differential physiological performance and fitness at the organismal level (Watt et al. 

1983; Watt 1992). The association between Pgi variation and fitness and performance 

traits have been studied most extensively in the clouded yellow butterflies, Colias spp. 

and the Glanville fritillary, Melitaea cinxia. The first studies showing selection and 

fitness effects in this locus were the now classic allozyme surveys of Colias eurytheme by 

Watt (1977). In this and other Colias species, Pgi genotype affects survival, male mating 

success, female fecundity and flight activity (reviewed in Watt 2003). Similarly, in the 

Glanville fritillary, Pgi genotype predicts lifespan, female fecundity, larval growth and 

survival, and peak metabolic rate (Haag et al. 2005; Niitepõld et al. 2009; Orsini et al. 

2009; Kallioniemi and Hanski 2011; Saastamoinen et al. 2012). Population-level effects 

of Pgi have also been documented in the Glanville fritillary, such that allele frequencies 

are associated with population growth rate, and a higher frequency of some genotypes is 

found in newly colonized and isolated populations (Haag et al. 2005; Hanski and Saccheri 

2006). In both of these butterfly systems, there is evidence for balancing selection and 

heterozygote advantage at Pgi (Watt 1977; Wheat et al. 2006; Niitepõld et al. 2009). 
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However, in many other organisms selection on Pgi is primarily directional (Rank and 

Dahlhoff 2002; Karl et al. 2008). Even within Colias, molecular and field data indicate 

historical directional selection among species, but contemporary balancing selection 

within populations and species (Watt 2003; Wheat et al. 2006).  

Two main hypotheses have been proposed to explain the association of Pgi 

variation with performance traits. The primary working hypothesis is the ‘flux 

hypotheses’ that suggests that PGI, as a key branch-point enzyme, regulates rates of 

glycolytic flux (Watt 1986, 2003). According to this hypothesis, genetic variation at Pgi 

is correlated with performance because it affects the supply of ATP via glycolysis to 

support peak physiological demands (Watt 1977, 1983; Watt and Dean 2000). The other 

hypothesis is the ‘moonlighting hypothesis’ that suggests that additional functions of PGI, 

aside from energy metabolism, result in epistatic effects of the Pgi gene. PGI is known 

for diverse moonlighting functions in other taxa, that are separate from its role in energy 

metabolism, such as acting as an autocrine motility factor or as a neuroleukin (Marden 

2013). The moonlighting hypothesis proposes that genetic variation at Pgi affects these 

additional, moonlighting functions. Regardless of the underlying mechanism, differences 

in enzyme function determined by variation at the Pgi gene can translate into differences 

in metabolic performance and ultimately, dispersal ability or tendency (Storz and Wheat 

2010). 

Thermal environment appears to play a key role in driving selection associated 

with Pgi. Pgi allele frequencies vary along thermal clines in diverse taxa including 

mussels (Mytilus edulis, Hall 1985), sea anemones (Metridium senile, Hoffman 1981), 

butterflies (Lycaena tityrus, Karl et al. 2008; Colia meadii, Watt et al. 2003), water 
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striders (Limnoporus canaliculatus, Zera 1987) and willow leaf beetles (Chrysomela 

aeneicollis, Dahlhoff and Rank 2000). Several studies in insects have established that 

temperature is an important selective agent favoring different Pgi genotypes (Dahlhoff 

and Rank 2000; Orsini et al. 2009; Kallioniemi and Hanski 2011). For example, in the 

Glanville fritillary, individuals heterozygous at a PGI amino acid are able to fly longer 

distances than homozygotes in low to moderate ambient temperatures, while at high 

ambient temperature, homozygotes move longer distances (Niitepõld et al. 2009). 

Similarly, in C. eurytheme, heterozygotes can maintain flight at lower ambient 

temperatures than homozygotes. This allows heterozygotes to remain active across a 

wider daily time window, and leads to an advantage in mating for males and oviposition 

for females (Watt 1977; Wheat et al. 2006). In willow leaf beetles, Pgi genotypes differ in 

heat shock protein expression (Dahlhoff and Rank 2000; Rank et al. 2007). These 

temperature-related effects of Pgi may derive, at least partially, from a trade-off between 

kinetic performance and thermal stability among isoforms of the PGI enzyme (Watt 1983; 

Watt and Dean 2000). 

In butterflies, morphological traits such as the color and surface structure of 

wings affect heat gain and loss from the environment (Guppy 1986b; Brakefield and 

Reitsma 1991; Van Dyck and Matthysen 1998). For example, individuals with darker 

bodies and wings can absorb more solar radiation and therefore heat their bodies, 

particularly the flight muscles in the thorax, more rapidly than paler individuals (Guppy 

1986a). Given the importance of thermal environment in driving selection on the Pgi 

locus, body and wing coloration could potentially interact with Pgi genotype to determine 
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fitness and performance traits of individuals. Such interactions have not, to our 

knowledge, been assessed in insect species. 

Pgi is among a relatively small number of genes that have been clearly identified 

as influencing animal movement with large effect (Niitepõld et al. 2009; Orsini et al. 

2009). In insects, there is considerable evidence that Pgi affects movement ability. In 

several butterflies, such as the Glanville fritillary, Colias sp., and European map butterfly 

(Araschnia levana), Pgi variation is associated with flight activity and flight metabolic 

rate (Watt 2003; Haag et al. 2005; Niitepõld et al. 2009; Mitikka and Hanski 2010). In 

willow leaf beetles the effect of thermal stress on running speed depends on Pgi genotype 

(Rank et al. 2007).  The most comprehensive studies of Pgi effects on movement have 

arguably been in the Glanville fritillary, where PGI amino acid variation has been linked 

to flight performance using a variety of approaches (Niitepõld et al. 2009).  

Since dispersal requires successful movement of individuals between habitat 

patches (Clobert et al. 2009; Bonte et al. 2012) and Pgi can influence insect movement, 

this gene is a potential candidate for determining variation in dispersal ability (Haag et al. 

2005). In the Glanville fritillary Pgi variation has been linked directly to dispersal rate in 

the field (Niitepõld et al. 2009). In both Glanville fritillary and the European map 

butterfly, differences in Pgi allele and genotype frequencies between old established 

populations versus those in newly colonized habitat patches provide further, indirect 

evidence for an effect of Pgi on dispersal (Haag et al. 2005; Hanski and Saccheri 2006; 

Mitikka and Hanski 2010). Despite considerable evidence for heritability of movement 

and dispersal traits in animals, Pgi is still only one of a few genes that have been clearly 

shown to influence animal dispersal (Clobert et al. 2012; Wheat 2012; Zera and Brisson 
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2012). Movement and dispersal are not limited by distance alone, but are strongly 

influenced by land cover and geographic features (Roland et al. 2000; Ricketts 2001). To 

date, a genetic basis for reduced ability to traverse a specific dispersal barrier (a landscape 

feature that limits dispersal) has not yet been documented. 

Here, I assess nucleotide and amino acid polymorphism in the coding sequence 

the Pgi locus, for the first time, in the Rocky Mountain Apollo butterfly, Parnassius 

smintheus. This species occupies naturally patchy, high-altitude alpine meadows in 

western North America. Given the thermal constraints placed on high altitude species, 

and the links between thermal environment and Pgi variation found in other taxa, I 

hypothesized that Pgi may affect fitness and performance traits in this species. 

Specifically, I examine potential associations between movement and dispersal of this 

species and Pgi variation.  

Movement and dispersal in P.smintehus have been studied in a network of 

populations in Alberta, Canada since 1995 using mark-recapture methods (Matter et al. 

2014). In this system, dispersal among habitat patches has been shown to have important 

population dynamic and genetic consequences (Roland et al. 2000; Keyghobadi et al. 

2005; Jangjoo et al. 2016). The majority of movements, as inferred by mark-recapture 

data, occur within habitat patches and mean movement distances are on the order of ~ 150 

m (Roland et al. 2000). Maximum recapture distances are ~ 2 km (Roland et al. 2000). 

Movement and dispersal of P. smintheus are strongly affected by land cover; dispersal 

declines exponentially with distance, but typically at a much higher rate over forest than 

over open meadows (Roland et al. 2000). Forest therefore is an important barrier to 

dispersal in this species. Movement and dispersal behaviours differ between males and 
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females. Females are generally less active and more cryptic than males. Although the 

sexes display similar mean dispersal distances (Roland et al. 2000), females appear less 

sensitive to intervening forest (Goff et al. 2018).  

A previous study using comparative transcriptomics (Chapter 4) revealed that 

there was no difference in levels of Pgi expression between individuals of P. smintheus 

that had dispersed between habitat patches and individuals that had not dispersed. Here, I 

explore whether differences among sequence variants at this candidate locus may be a 

source of inter-individual variation in movement or dispersal behaviour. Hence, I assess 

whether specific alleles or genotypes at Pgi are associated with various aspects of 

dispersal and movement, including dispersal over forest barriers.  

 

 

5.2 Material and Methods 

My study took place in a network of populations occupying patches of alpine meadow 

habitat above treeline (~2100 m) along Jumpingpound Ridge in Alberta, Canada (50° 

57'N, 114° 54'W). The meadows are separated primarily by intervening forest (Figure 1.1; 

Roland and Matter 2007).  

There were two parts to my study. First, I sampled a smaller number (n = 49) of 

adult butterflies to obtain RNA from which I determined the coding sequence of Pgi. I 

began with RNA at this stage, rather than sequencing genomic DNA, because the Pgi 

locus contains large intron sequences and, in its entirety, spans over 10,000 bp of the 

genome (Wheat at al. 2006). I then identified single nucleotide polymorphisms (SNPs) 



144 
 

 
 

within the Pgi coding sequence and designed assays to genotype individuals at those 

SNPs using samples of genomic DNA. For the 49 individuals, I also measured thoracic 

and ambient temperature at the time of capture, and quantified darkness of the wings. 

In the second part of my study, I genotyped a larger number of individuals (n = 

~500) at the previously identified Pgi SNPs. Small samples of wing tissue (i.e., wing-

clips) had been collected from these individuals through the course of yearly mark-

recapture studies in my study system (Matter et al. 2014), and genomic DNA was 

extracted from these wing-clips. The mark-recapture history for each of these genotyped 

individuals was available, including locations and times of all capture events, allowing us 

to classify them as non-dispersers or dispersers (defined below) and estimate their 

movement distances.  
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 Part I: Pgi coding sequence, thoracic temperature and wing 
darkness 

5.2.1.1  Sampling and field measurements. 

 I sampled 49 individuals (36 male and 13 female) from ten different patches across the 

study area, and at different times of day (in the morning and around mid-day), in 2015 

(Figure 1.1; Table 5.1).  

Individuals were captured with a hand-net while in flight. I measured thoracic 

temperature for each individual within five seconds of capture with a digital thermometer 

(OMEGA HH91) attached to a copper thermocouple (OMEGA type T) housed within a 

disposable hypodermic needle (precisionGlide 19G1).  I inserted the needle into the 

thorax through the net to avoid any direct contact between the butterfly’s body and our 

hands. The same thermometer was used to measure ambient air temperature at the time 

and location of capture. In my subsequent analyses, I used the difference between 

thoracic and ambient temperature for each individual as a variable of interest.  

Immediately after recording thoracic temperature, I carefully separated the 

thorax from the head, abdomen and wings using a clean scalpel and submerged the entire 

thorax into RNA later solution (Qiagen, Germantown MD). Samples were taken to the 

laboratory the same day and placed at 4 °C overnight, before being transferred to -20 °C 

where they were stored until RNA extraction was conducted. I also placed the wings 

individually in glassine envelopes and stored at -20 °C for wing color analysis.  
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Table 5.1 Information about individuals of Parnassius smintheus sampled in 2015 and 

used for determining Pgi coding sequence, and relationships with thoracic temperature 

and wing darkness (part I). Every individual was either classified as a disperser or non-

disperser based on their mark-recapture history. For dispersers, the first patch in which 

the individual was captured is indicated. 

Patch/ Population Sex Disperser Non-disperser 

F male 0 2 
female 0 1 

G1 male 0 2 
female 0 2 

H male 0 1 
female 0 0 

I male 0 2 
female 0 1 

J male 1 3 
female 0 0 

K male 1 1 
female 0 0 

L male 0 5 
female 0 1 

M male 1 7 
female 0 4 

Q male 2 2 
female 0 2 

P male 2 1 
female 0 1 

Z male 0 3 
female 0 1 

Total  7 42 
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Sampling for this part of my study was concurrent with the annual mark-

recapture study in the population network. For the mark-recapture study, butterflies are 

marked on the lower hind-wing with a unique three-letter code, and the capture locations 

for each individual are recorded using an x-y coordinate grid overlaid on aerial photos of 

the study area (Roland et al. 2000; Matter et al. 2014). All 49 individuals sampled for 

RNA in this study had been previously marked, and could therefore be sorted, based on 

their recapture history, into two groups: dispersers were those individuals that I captured 

in a patch different than the one in which they were originally marked, and non-dispersers 

were individuals that I sampled in the same patch in which they were originally marked. 

 

5.2.1.2  Wing colour analysis 

 In the laboratory, the dorsal surfaces of the wings were photographed against a standard 

black background under consistent lighting using a Nikon D1 camera at a fixed focal 

length of 58 cm. I analyzed the wing images in ImageJ software 

(NIH; http://rsb.info.nih.gov/ij/) to determine the darkness of the wing dorsal surfaces by 

measuring grey values (from 0 = black to 255 = white), and extracted a single value for 

both fore- and hindwings of each individual. 

 

5.2.1.3  Pgi coding region sequencing  

Total RNA was extracted from each of the 49 thorax samples using the RNeasy Mini Kit 

(Qiagen) according to the manufacturer’s protocol. To determine the coding sequence of 

Pgi, which had not previously been described for this species, I first conducted 

http://rsb.info.nih.gov/ij/
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RNA−sequencing (RNA-seq) for a subset of 12 individuals who were also used as part of 

a gene expression study, as described in Chapter 4. I assembled a reference transcriptome 

using the RNA-seq data for those individuals and generated a comprehensive annotation 

report from which the coding sequence of Pgi was extracted (see Chapter 4 for details). 

Nucleotide sequences of the entire Pgi gene from C. eurytheme and M. cinxia were used 

in a BLAST (Basic Local Alignment Search Tool) search against the Pgi coding sequence 

of P. smintheus to determine the exon-intron boundaries. 

Based on the Pgi coding sequences determined by RNA-seq for the 12 

individuals, I designed conserved primers, using Primer3 v. 0.4.0 (Koressaar and Remm 

2007), to amplify the entire coding sequence of Pgi in five overlapping fragments. For the 

remaining 37 individuals from which RNA had been extracted (i.e., not used in the RNA-

seq study), I synthesized first-strand cDNA from 3 µg of total RNA per individual, using 

oligo(dT)20 primer and Superscript III reverse transcriptase (Invitrogen, Waltham MA) 

according to the manufacturer’s protocol. This cDNA was then used as template to 

amplify and sequence the five overlapping fragments that comprise the Pgi coding region. 

I added common sequence 1 (CS1) and common sequence 2 (CS2) universal sequence 

tags to the 5’end of all forward and reverse primers, respectively, to enable fragments to 

be prepared for next generation sequencing using the Fluidigm Access Array (Fluidigm 

Corporation, San Francisco CA). The primer and tag sequences, and PCR chemistry, are 

provided in the supplementary material (Table D1 and D2). I used the following cycling 

conditions for all five PCR reactions: denaturation for 120 s at 94 °C; followed by 39 

cycles of 18 s at 94 °C, 24 s at 56 °C, 60 s at 72 °C; and final elongation at 72 °C for 420 

s. PCR amplifications were performed in a PTC 0200 DNA Engine Cycler (Bio-Rad, 



149 
 

 
 

Hercules CA). Quality and size of PCR products were checked by 1.5% agarose gel 

electrophoresis using SYBR Green (Bio-Rad) on a UV transilluminator.  

The five amplified fragments for each individual were pooled and sent to the 

McGill University and Génome Québec Innovation Centre (McGill University, Montréal, 

Québec; MGU-GQ), where the samples from each individual were given unique 

barcodes, and libraries were prepared and sequenced on the Illumina MiSeq PE300 bp 

platform, using a total of ~100 000 reads. I sorted reads by individual, and identified and 

called SNPs (including both synonymous and non-synonymous SNPs) using the 

SAMtools software package (Li et al. 2009). I used VCFtools software (Danecek et al. 

2011) to extract SNPs that were called only for positions with a minimal mapping quality 

(-Q) and coverage (-d) of 25. The maximum read depth (-D) was set at 200.  A genotyped 

SNP was excluded if the minor allele was observed less than three times across all 

individuals. I computed genotype likelihoods using the SAMtools utilities and determined 

variable positions in the aligned reads compared to the reference with the BCFtools 

utilities (Li 2011).  

The Pgi reference coding sequence was translated to amino acid sequence using 

MEGA 6.06. I predicted the effect of amino acid changes (i.e. changes in charge, polarity 

and size of amino acids) resulting from non-synonymous substitutions in the online SIFT 

platform (http://sift.jcvi.org/) using the SIFT Sequence option (Sim et al. 2012).  
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5.2.1.4  Linkage Disequilibrium (LD) 

 Across all 49 individuals for which the full Pgi coding sequence was determined, I tested 

for linkage disequilibrium between all pairs of SNPs using Fisher’s exact test with 

Bonferroni correction (Weir 1996) implemented in DnaSP5 software (Librado and Rozas 

2009). 

5.2.1.5  Association of wing darkness, thoracic temperature, and Pgi 
variation with dispersal history 

With the dataset of 49 individuals, I explored the association of dispersal history with 

wing color, thoracic temperature, and Pgi variation using generalized linear models 

(GLM). Specifically, I modeled dispersal history (response variable) as a function of wing 

darkness, thoracic temperature relative to ambient, and Pgi SNP genotype. I considered 

genotypes at both non-synonymous SNPs (nsSNPs) and synonymous SNPs (ssSNPs) and 

ran separate sets of models for each SNP. I coded genotypes in two alternative ways. 

First, I coded genotype at a given SNP as the number of copies of the major allele 

possessed by the individual (0 = homozygous for minor allele, 1 = heterozygous and 2 = 

homozygous for major allele). This coding assumes that heterozygotes are intermediate in 

phenotype to the two homozygotes and essentially measures an additive effect of the 

number of major alleles. Second, I treated genotype as a categorical variable (AA = 

homozygous for major allele, AB = heterozygous and BB = homozygous for minor 

allele). This coding does not assume that the heterozygote is intermediate in phenotype, 

and allows for the possibility of heterozygote advantage (i.e., overdominance) or 

disadvantage (i.e., underdominance). Since all females in this dataset were non-
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dispersers, and females of the species are also considerably darker than males, I removed 

females from these analyses and ran the models only on male individuals (n = 36). I used 

the glm function of the Stats package in R v.3.4.4 (R Core Team 2017) to run GLMs, 

with the binomial family, and confirmed that the predictors used in each model were not 

collinear based on pairwise Pearson’s correlation coefficient values (r2 < 0.5).  

 

 Part II: Pgi SNP variation and dispersal in a larger dataset 

5.2.2.1  Genotyping DNA samples at Pgi SNPs 

 I used genomic DNA previously extracted from wing-clips of 491 adult individuals from 

14 different patches collected in the years 1995, 2005, 2008 and 2013 (Table 5.2; 

Keyghobadi et al. 1999; Caplins et al. 2014; Jangjoo et al. 2016).   

After determining the position of all synonymous (ss) and non-synonymous (ns) 

SNPs in the coding sequence of Pgi in my initial sample of 49 sequenced individuals 

(Part I), I designed primers to assay all nsSNPs (n = 16) and an approximately equal 

number of ssSNPs (n = 14) from the samples of genomic DNA using iPLEX Gold (Agena 

Bioscience, San Diego CA). For two SNPs (nsSNP550 and nsSNP891) that were located 

near an inferred intron/exon boundary (Figure D4), I used intron sequences from C. 

eurytheme to design the primer on the intron side. An assay panel for the Pgi SNPs was 

designed, and samples were genotyped, by the MGU-GQ facility using iPLEX Gold 

(Agena Bioscience).  
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Table 5.2 Information about the samples used for genotyping Pgi SNPs from 

genomic DNA in Parnassius smintheus (Part II). Every individual was either 

classified as a disperser or non-disperser based on their mark-recapture history. ‘No. 

genotyped individuals’ is the number of individuals that were genotyped for the Pgi 

SNPs. 

  
No. genotyped individuals 

Patch/ Population Sex Disperser Non-disperser 

F 
male 3 0 

female 0 0 

G1 
male 10 32 

female 0 9 

H 
male 2 8 

female 0 7 

g2 
male 3 37 

female 0 11 

I 
male 3 0 

female 0 0 

J 
male 7 44 

female 0 10 

K 
male 5 49 

female 0 11 

L 
male 19 31 

female 3 11 

M 
male 10 50 

female 0 10 

O 
male 4 26 

female 0 7 

P 
male 0 4 

female 0 0 

R 
male 2 0 

female 1 0 

S 
male 2 0 

female 0 0 

Z 
male 0 44 

female 1 15 

Total  75 416 
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I combined the genotypic data derived from the 491 wing clip samples with the 

genotypes of the 49 fully sequenced individuals (from Part I), and used GLMs to examine 

the effect of Pgi variation on dispersal and movement in this larger dataset. I ran a 

separate model for each Pgi SNP, using SNP genotype as a predictor of dispersal or 

movement. As with the smaller dataset, I coded SNP genotype in two alternative ways, 

either numerically or categorically. Movement and dispersal behaviours differ between 

male and female P. smintheus (Goff et al. 2018). In the larger dataset, I had very few 

female dispersers (n = 5), which did not allow for tests of interaction between SNP 

genotypes and sex. Therefore, I ran all models for the larger dataset with only males.  

With the larger dataset, I was able to quantify and examine four different aspects 

of dispersal or movement as response variables, which were tested independently. First, 

as for the smaller dataset of 49 individuals, I used binomial response of disperser 

(individual that at some point was re-captured in a patch different from the one in which it 

was originally marked) or non-disperser (individual that was only ever re-captured in the 

same patch in which it was originally marked). This variable indicates whether an 

individual emigrated from one patch and successfully moved to a different patch, 

irrespective of the distance or landscape between the patches.  

Second, for all dispersers (n = 77; males only), I used the distance between the 

patch in which it was first marked and the patch in which it was last re-captured as a 

response. Distances were measured along ridge-tops, between the centroids of butterfly 

capture in each patch (Roland et al. 2000). The total distance between any two patches, 

along the ridge-top, can be divided into a portion that occurs over forest and a portion that 

occurs over meadow (Roland et al. 2000). As a third response variable, for each disperser, 
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I used the distance over forest between the patch in which the individual was first marked 

and the patch in which it was last re-captured. This variable measures the distance moved 

over forest in dispersing between the patches. These models also included the distance 

over meadow between the patches as a controlling variable, to account for the fact that 

patches that are further apart are also more likely to be separated by more intervening 

forest. Finally, for all individuals from one patch (M), I calculated a measure of within-

patch movement. Specifically, I measured the largest linear distance between any two 

capture events within the patch based on their location on the x-y coordinate system. 

Because within-patch movement distance will be limited by patch size, for this analysis I 

only looked at individuals from the largest patch, M (n = 34; males only).  

I used the glm function of the Stats package in R v.3.4.4 to run and evaluate all 

GLMs. Across all models that were analyzed for a given response variable, P-values were 

adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate 

(FDR) procedure (Benjamini and Hochberg 1995). 

 

 

5.3 Results 

 Part I: Pgi coding sequence, thoracic temperature and wing 
darkness 

5.3.1.1  Pgi coding sequence of Parnassius smintheus 

 The full-length coding sequence of Pgi in Parnassius smintheus is 1671 bp long, 

corresponding to 557 amino acids, similar to Colias eurytheme (1,668 bp, 556 aa; Wheat 
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et al. 2006) and Melitaea cinxia (1671 bp, 557 aa; Orsini et al. 2009). Percent identity to 

the coding sequences from M. cinxia, C. eurytheme, and Bombyx mori were 77%, 77%, 

and 76%, respectively, in nucleotide sequence, and 86%, 87% and 86%, respectively, in 

amino acid sequence (Figure D4 and D5). The Pgi intron-exon boundaries appear to be 

highly conserved among butterfly species, as my coding sequence aligned perfectly to 

identified exon sequences of M. cinxia and C. eurytheme (Figure D4). Therefore, like 

these other butterfly species, the P. smintheus coding sequence appears to be divided 

among 12 exons (Table 5.3).  

Overall, I identified 50 variable sites (16 non-synonymous and 34 synonymous) 

in the coding sequence of Pgi across 49 individuals (Table 5.4 and 5.5). All polymorphic 

sites were segregating for only two alleles. The overall nucleotide diversity was 0.0068 

and the estimated nucleotide diversity for ssSNPs (πss = 0.0165) was higher than nsSNPs 

(πns = 0.0039). Among the 49 individuals, five pairs of sites were in significant linkage 

disequilibrium (Table D3). 

5.3.1.2  Amino acid variation in P. smintheus Pgi 

Of the 16 nsSNPs I observed, three represent a charge change at the target amino acids: at 

codon 10, there is polymorphism for a negatively charged aspartic acid (Asp; 133 Da) and 

polar but uncharged tyrosine (Tyr; 181 Da), while at codons 26 and 330, there is 

polymorphism between a positively-charged lysine (Lys; 146 Da) and a polar asparagine 

(Asn; 132Da).  

I detected four additional nsSNPs that represent a change in polarity of the target 

amino acids: at codons 24 and 340, a non-polar alanine (Ala: 89Da) switches with polar 
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serine (Ser;105Da) or threonine (Thr; 119 Da), respectively,  while codon 209 is 

polymorphic for a non-polar phenylalanine (Phe ;165Da) and polar Ser, and codon 414 is 

polymorphic for a polar glutamine (Gln; 146 Da) and a non-polar leucine (Leu;131Da).
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Table 5.3 The inferred positions of exons in the coding sequence of the Pgi gene in Parnassius smintheus, based on alignment 

to coding sequences of the butterflies, Colia eurytheme and Melitaea cinxia. 

 

 

 

 

 

 

 Exon

1 

Exon

2 

Exon

3 

Exon

4 

Exon 

5 

Exon 

6 

Exon 

7 

Exon 

8 

Exon 

9 

Exon 

10 

Exon 

11 

Exon 

12 

Start 

(bp) 
1 132 272 441 550 715 828 955 1050 1209 1342 1484 

Stop 

(bp)  
131 271 440 549 714 827 954 1049 1208 1341 1483 1674 
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Table 5.4 Non-synonymous SNPs detected in the coding region of Pgi in Parnassius smintheus. For each non-synonymous SNP, 

the exon in which it occurs, position within the coding sequence (‘nsSNP Site’), position within the PGI amino acid sequence 

(‘Codon/AA Site’), codon triplet (‘Triplet’), identity of common and alternate alleles, and identity of the common and alternate 

amino acids (AA), along with the polarity (P = polar, NP = non-polar), charge (Pos = positively charged, Neg = negatively 

charged, U = uncharged, H = hydrophobic), and molecular weight (Daltons) of each amino acid, are provided. 

Exon 
nsSNP Site  

(bp) 

Codon/ 

AA Site 

Triplet Common 

Allele 

Alternate 

Allele 

Common AA 

 

Alternate AA 

 

1 28* 10 GAT G T Asp; P, Neg (133) Tyr; P, U (181) 

1 70* 24 GCT G T Ala; NP, H (89) Ser; P, U (105) 

1 78* 26 AAA A C Lys; P, Pos (146) Asn; P; U (132) 

1 99 33 TTT T A Phe; NP, H (165) Leu; NP, H (131) 

3 346 116 ATG A T Met; NP, H (149) Leu; NP, H (131) 

4 469* 157 ATC A G Ile; NP, H (131) Val; NP, H (117) 

5 550 184 GTG G A Val; NP, H (117) Met; NP, H (149) 

5 626* 209 TTC T C Phe: NP, H (165) Ser; P, U (105) 

5 664* 222 CTT C A Leu; NP, H (131) Ile; NP, H (131) 

5 690* 230 AAC C A Asn; P, U (132) Lys; P, Pos (146) 

7 891 297 GAG G C Glu; P; Neg (147) Asp; P, Neg (133) 

8 1018* 340 GCC G A Ala; NP, H (89) Thr; P, U (119) 

9 1129* 377 TCC T A Ser; P, U (105) Thr; P, U (119) 

10 1241* 414 CAG A T Gln; P, U (146) Leu; NP, H (131) 

12 1610* 537 CCA C T Pro; NP, H (115) Leu; NP, H (131) 

12 1612* 538 GTA G A Val; NP, H (117) Ile; NP, H (131) 

                     *SNPs successfully genotyped from wing clips using iPlexGold
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Table 5.5 All synonymous SNPs detected in the coding region of Pgi in Parnassius 

smintheus. For each synonymous SNP detected, the exon in which it occurs, position 

within the coding sequence (‘ssSNP Site’), and the identity of the common and rare allele 

are provided. 

Exon 
ssSNP Site 

(bp) 

Common 

allele 

Alternate 

allele 
Exon 

sSNP Site 

(bp) 

Common 

allele 

Alternate 

allele 

1 108* C T 9 1029 A G 

2 169 C T 9 1050 G A 

3 294* G A 9 1092* C A 

3 321* G A 9 1107* G A 

3 360 G T 10 1245* G A 

3 369* A T 10 1317* A G 

3 402* G A 10 1323 G A 

5 606* G C 11 1368 A G 

5 622 C T 11 1419 C A 

5 627 C T 11 1446 G A 

5 654* G A 11 1458 G A 

6 756 C T 12 1497 C T 

6 768 G A 12 1503 C T 

6 795 C T 12 1512* A G 

7 849 T C 12 1570* C T 

7 945 G A 12 1623 C T 

8 1008* G A 12 1635 T C 

                  * SNPs successfully genotyped from wing clips using iPlexGold 
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I compared the positions of amino acid polymorphisms in P. smintheus to those 

described for M. cinxia and C. eurytheme (Wheat et al. 2006; Figure D5). Both P. 

smintheus and C. eurytheme have a polymorphism at codon 538 for the amino acids 

valine (Val) and isoleucine (Ile) (Wheat et al. 2006). This amino acid change does not 

result in a change in charge or polarity. Interestingly, Val is the more common variant in 

P. smintheus while Ile is more common in C. eurytheme (Wheat et al. 2006).  

One nsSNP, at codon 377, was close to the location of a SNP potentially experiencing 

selection in M. cinxia and C. eurytheme, at codon 375 (Wheat et al. 2006, 2010). While 

variation at codon 375 in these other species leads to a change in amino acid charge, the 

variation I observed in P. smintheus causes no change in polarity or charge of the target 

amino acid (Ser → Thr). The amino acid polymorphisms at codons 24 and 26 in P. 

smintheus, representing a change in polarity and charge, respectively, are very close to the 

site of a codon in C. eurytheme (codon 21) containing a charge-changing amino acid 

polymorphism (i.e. between polar Asn and negatively charged Asp; Wheat et al. 2006, 

2010).  

5.3.1.3  Wing color, thoracic temperature and dispersal history 

As expected for this species, females were significantly darker than males (t16.7 = 7.15, P 

< 0.001), however, I found no significant difference in thoracic temperature between 

males and females (t22.03 = 0.8, P = 0.42). In the sample of 49 individuals used to 

determine the full Pgi coding sequence, there were seven dispersers, all of which were 

male. Given that all females sampled in this part of the study (n = 13) were non-

dispersers, that they were darker than males, and that wing darkness was correlated with 
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thoracic temperature (below), I removed females from the subsequent analyses with this 

smaller dataset examining the joint effects of wing darkness, thoracic temperature and Pgi 

variation on dispersal history.  

Among males (n = 36), thoracic temperature was positively correlated with 

ambient temperature (r = 0.61, P <0.001; Figure 5.1). Male dispersers were caught flying 

at a narrower range of ambient temperatures (20 °C -28 °C) than non-dispersers (11 °C -

32 °C). Also, across the range of ambient temperatures at which male dispersers were 

captured flying (20 °C - 28 °C), the dispersers displayed thoracic temperatures within a 

lower and narrower range (19 °C -25°C) than non-dispersers (20 °C -32°C) (Figure 5.1). 

Indeed, male dispersers tended to have thoracic temperatures lower than ambient (mean ± 

SD = -2.01 ± 2.5) while male non-dispersers tended to have thoracic temperatures higher 

than ambient (mean ± SD 2.9 ± 4.8). 

Among males, thoracic temperature relative to ambient was correlated with wing 

darkness, such that darker individuals had higher relative thorax temperatures (r= -0.60, P 

< 0.001; Figure 5.2). Male dispersers tended to have lighter wing color (mean grey value 

± SD: 157.1 ± 4.05; Figure 5.2), while non-dispersers tended to have darker wing color 

(mean grey value ± SD: 148 ±8.08; Figure 5.2).  

Despite the trends described above, in a model including wing darkness and 

relative thoracic temperature (and their interaction) as predictors of dispersal, none of the 

terms were significant (P < 0.05). Models with just one of these two predictors were 

significant for relative thorax temperature (P = 0.02, β ±SE= 0.27± 0.12) and marginally 

non-significant for wing darkness (P = 0.08, β ±SE= -0.10± 0.06). Because of the small 

size of the dataset, the correlation between wing darkness and relative thoracic 
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temperature, and the fact that thoracic temperature was a slightly better predictor of 

dispersal history, in models evaluating the influence of individual Pgi SNPs on dispersal, 

I chose to include only relative thoracic temperature as an additional variable. Thus, for 

each SNP I evaluated a model with genotype at a given SNP, relative thoracic 

temperature, and their interaction as predictors. Among these models, I did not detect 

significant effects of any of the SNPs on dispersal history.   
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Figure 5.1 Relationship between thoracic temperature and ambient temperature in male 

dispersers and non-dispersers of Parnassius smintheus. 

 

Figure 5.2 Relationship between relative thoracic temperature (thoracic temperature 

minus ambient temperature) and wing color in male dispersers and non-dispersers of 

Parnassius smintheus.  
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 Part II: Pgi SNP variation and dispersal in a larger dataset 

The iPlex Gold assays for four of the 16 nsSNPs failed because of either proximity to an 

intron-exon boundary (n = 2) or high variability in the surrounding sequences (n = 2). 

Both assays designed using Colias intron sequences failed. Assays for all 14 ssSNPs were 

successful. Thus, I obtained genotypes at 12 nsSNPs and 14 ssSNPs within Pgi for 491 

individuals, which I combined with the genotype data for the same SNPs from the 

individuals whose full coding sequence I determined in Part I. 

For the binary response of dispersal history (disperser vs. non-disperser), I did 

not detect significant effects of any of the SNPs when genotypes were treated as ordered 

numerical variables. Treating genotypes as categorical predictors however, I found 

significant effects of nsSNP1018 and nsSNP1241 on dispersal history. For both SNPs, 

heterozygotes were significantly different from homozygotes for the major (i.e., common) 

allele (nsSNP1018: adjusted P = 0.011; nsSNP1241: adjusted P = 0.018). The odds ratios 

for the effects of heterozygotes versus major allele homozygotes for nsNSPs 1081 and 

1241 were, respectively 4.71 (95% CI: 2.06–10.77) and 3.03 (95% CI: 1.89–4.88). At 

nsSNP1018, heterozygotes were not significantly different from homozygotes for the 

minor (i.e, rare) allele (adjusted P = 0.20), while at nsSNP1241 no homozygotes for the 

minor allele were observed. At these two SNP sites, the frequency of the rare allele was 

higher in dispersers (nsSNP1018 = 0.087 and nsSNP1241 =0.1) than in non-dispersers 

(nsSNP1018 = 0.033 and nsSNP1241 = 0.041; Figure 5.3). Furthermore, at both nsSNP 

sites, the frequency of heterozygotes was higher in dispersers (nsSNP1018 = 0.128 and 

nsSNP1241 = 0.20) compared to non-dispersers (nsSNP1018 = 0.030 and nsSNP1241 = 
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0.079; Figure 5.3), with the effect being stronger for SNP1018. I did not find significant 

effects of any ssSNPs on dispersal history. 

Among dispersers, nsSNP1018 was a significant predictor of total dispersal 

distance (i.e., between the centroids of the patch of origin and the final patch of capture), 

but only when genotype was coded as a categorical variable. The mean total distance 

dispersed by heterozygotes at nsSNP1018 was higher, but not significantly different than, 

the total distance dispersed by individuals homozygous for the minor allele (adjusted P = 

0.29). The total dispersal distance for heterozygotes at nsSNP1018 was significantly 

higher than that for individuals homozygous for the major allele (adjusted P = 0.003; β 

±SE = -1.48±0.35 for effect of homozygote relative to heterozygote; Figure 5.4). I did not 

detect significant effects of any other SNPs, treated either as ordered numerical or 

categorial predictors, on dispersal distance (all adjusted P > 0.05).  

Finally, no SNPs were significant predictors of either distance dispersed over 

forest (controlling for distance over meadow; all adjusted P > 0.05) or the maximum 

estimated displacement distance within the largest patch, M (all adjusted P > 0.05).  

Because of the small number of female dispersers (n = 5), I could not test for an 

interaction of sex with SNP genotype on any of the dispersal or movement responses. 

However, I observed that all those females that dispersed were homozygotes for the major 

allele at nsSNP1018, three were homozygotes for the major allele at nsSNP1241, and two 

were heterozygotes at nsSNP1241.   
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Figure 5.3 The frequency of genotypes (a, b) and alleles (c, d) for dispersal-related SNPs 

nsSNP1018 and nsSNP1241, from the coding region of Pgi in Parnassius smintheus. 

Both SNPs are non-synonymous. 
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Figure 5.4 The total distance moved between patches for dispersing males with differing 

genotypes at the non-synonynous Pgi SNP, nsSNP1018, in Parnassius smintheus (GG= 

homozygous for major allele, AG= heterozygous and AA= homozygous for minor allele). 

I have also shown means with standard error bars.
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5.4 Discussion 

The Pgi coding sequence of P. smintheus aligned to that of other butterflies, including the 

well-studied C. eurytheme and M. cinxia (Wheat et al. 2006; Orsini et al. 2009) with 77% 

nucleotide sequence and 86-87% amino acid sequence identity. The levels of nucleotide 

and amino acid sequence variability I detected are also comparable to those in C. 

eurytheme and M. cinxia (Wheat et al. 2006; Orsini et al. 2009). I observed 34 

synonymous and 16 non-synonymous substitutions in P. smintheus, and estimated 

nucleotide diversity of 0.017 for synonymous sites and 0.0039 for synonymous sites. 

Seven of the 16 non-synonymous substitutions I observed result in a difference in amino 

acid charge or polarity. In comparison, in C. eurytheme Wheat et al. (2006) detected a 

much larger total number of variable sites (130), but a similar number of sites with non-

synonymous substitutions (17), of which five resulted in altered amino acid charge. They 

observed nucleotide diversity of 0.073 for synonymous sites and 0.0024 for non-

synonymous sites. In M. cinxia Wheat et al. (2009) observed 45 synonymous and 10 non-

synonymous substitutions, and nucleotide diversity of 0.013 for synonymous sites and 

0.0076 for non-synonymous sites. Detection of amino acid variation at PGI in P. 

smintheus is significant because although many species display high variability in Pgi, 

some species including bumble bees and the butterfly Bicyclus anynana display little to 

no amino acid variation at this locus (Ellis et al. 2013; Wheat and Hill 2014). 

Although the Pgi intron-exon boundaries in P. smintheus appear to align perfectly 

with those of C. eurytheme and M. cinxia, the intron sequences are likely quite different 

based on the failure of all assays for SNPs located near exon/intron boundaries where I 



169 
 

 
 

used intron sequences from C. eurytheme to design primers. These intron/exon 

boundaries seem generally conserved among Lepidoptera as they also align with those of 

the silk moth Bombyx mori (Orsini et al. 2009). 

I detected several nsSNPs in the coding sequence of Pgi that cause a broad range 

of changes in polarity and size of amino acids (Table 5.4). These changes might affect 

conformation, kinetics or stability of the PGI enzyme depending on whether they occur 

on the surface or interior of the enzyme (Watt and Dean 2000). Amino acid changes at the 

catalytic center of an enzyme can directly affect substrate affinity or reaction mechanism 

(Dean and Golding 1997; Newcomb et al. 1997), while changes at the surface can affect 

an enzyme’s kinetics by altering its geometry (Gerstein and Chothia 1991; Watt and Dean 

2000). As with many other enzymes, naturally occurring variation in PGI in other species 

is concentrated at the surface, where the amino acids would be exposed to the 

surrounding solvent (Wheat et al. 2006). I do not yet know the exact three-dimensional 

structure of PGI in P. smintheus, but based on extrapolation from the inferred structure in 

C. eurytheme and M. cinxia (Wheat et al. 2006; Wheat et al. 2009), the charge or polarity 

changing substitutions I observed are also most likely at the enzyme surface. I observed 

only one non-synonymous substitution that, based on comparison to the amino acid 

sequence and structure of PGI in C. eurytheme, is likely to occur near the enzyme’s 

center. This was nsSNP1612, which corresponds to an Ile/Val polymorphism at amino 

acid 538 (Table 5.4). Interestingly, C. eurytheme has the same polymorphism in exactly 

the same amino acid position, although the identity of the minor and major allele is 

reversed relative to P. smintheus: Val is the common allele in P. smintheus while Ile is the 

common allele in C. eurytheme. This particular polymorphism is likely to be of limited 
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significance for enzyme function however, as the Ile/Val change is a conservative one 

that does not result in any change in charge or polarity. 

 Consistent with a previous, smaller study in P. smintheus (Chapter 3), I 

observed that thoracic temperature during flight, relative to ambient temperature, differed 

between dispersers and non-dispersers. Dispersers had lower relative thoracic 

temperatures than non-dispersers and also displayed a narrower range of thoracic 

temperature (Figure 5.1). I also found that dispersers tended to have lighter wing color 

than non-dispersers, and were captured flying at a narrower range of ambient temperature 

(Figure 5.2). Long-distance flight is a very energetically demanding activity, requiring 

use of stored energy reserves (Arrese and Soulages 2010). Lipid reserves are a 

particularly important fuel source for long-distance insect flight, and individuals with 

greater lipid reserves may be more likely to be successful in dispersal (Chaplin and Wells 

1982). High body temperature speeds up metabolic rate, which will accelerate 

consumption of lipid and energy reserves. For this reason, migrating monarch butterflies 

maintain lower body temperatures during flight to avoid rapid depletion of reserves 

(Calvert and Brower 1986; Masters et al. 1988). My data suggest that maintenance of 

lower body temperature is also an important feature of dispersal in P. smintheus. Lower 

body temperatures, particularly in the energetically demanding flight muscles of the 

thorax, could allow dispersers to reduce either the risk of overheating (Masters et al. 

1988; Neve and Hall 2016) or reduce the rate of energy (particularly lipid) consumption 

(Calvert and Brower 1986; Masters et al. 1988), or both. Furthermore, lighter wing color 

appears to be at least one factor that contributes to reduced thoracic temperatures in 

dispersing P. smintheus. 
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Although thoracic temperature relative to ambient is associated with dispersal 

history in P. smintheus (Figure 5.1), I found no interaction effect of thoracic temperature 

and Pgi variation on dispersal. A number of studies have demonstrated potential 

adaptation at Pgi to the local thermal environment (Hoffman 1981; Zera 1987; Dahlhoff 

and Rank 2000; Watt et al. 2003; Karl et al. 2008). These studies also indicate differential 

performance of Pgi variants at different temperatures, suggesting that thermal context can 

be an important selective factor on Pgi variation. For example, Niitepõld (2010) found 

that M. cinxia Pgi homozygotes displayed better flight performance at higher 

temperatures, while heterozygotes are able to fly at lower ambient temperatures. Watt 

(1983) also demonstrated that C. eurytheme heterozygotes are able to fly at a broader 

range of temperatures.  Another example comes from male willow leaf beetles in which 

individuals with different Pgi genotypes show differential physiological stress and 

running speed in response to elevated air temperatures (Dick et al. 2013). My inability to 

detect any interaction of Pgi variation with thoracic temperature, or indeed any direct 

effect of Pgi variation, on dispersal history in this part of my study could reflect the small 

sample size (n=49), particularly the small number of dispersers sampled (n=7). Similar 

sampling over additional years may be required to obtain sufficient statistical power to 

test for potential interactions between Pgi variation and aspects of thermal biology.  

In a much larger dataset of ~500 individuals genotyped at Pgi using DNA from 

non-lethal wing tissue samples, I found a significant association between dispersal history 

and two non-synonymous Pgi SNPs (nsSNP1018 and 1241) corresponding to amino acids 

340 and 414, respectively (Figure 5.3). Genotype at nsSNP1018 was also a significant 

predictor of the total distance moved by dispersing individuals (Figure 5.4). I found no 
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evidence that the two nsSNPs at sites 1018 and 1241 are linked based on an analysis of 

linkage disequilibrium (Table D3). Indeed, these nsSNPs are located in different exons 

(exons 8 and 10, respectively; Wheat et al. 2006), suggesting that these SNPs are likely to 

be independently affecting PGI function.  

I detected significant effects of nsSNP1018 and 1241 only when genotypes were 

coded categorically. In all cases, the heterozygote either was more likely to disperse, or 

dispersed a greater distance, compared to homozygotes of the major (i.e, common) allele. 

No homozygotes of the minor allele were observed at nsSNP1241. At nsSNP1018, 

dispersal traits of the heterozygotes did not differ from those of homozygotes for the 

minor (i.e, rare) allele. These results indicate strongly that the heterozygote at nsSNP1018 

is not intermediate in phenotype between the two homozygotes. However, there is also no 

clear evidence for any heterozygote advantage; although trends in dispersal distance for 

genotypes at nsSNP1018 are consistent with a pattern of heterozygote advantage (Figure 

5.4), the difference between heterozygotes and minor allele homozygotes is not 

statistically significant. Therefore, based on the data currently available, it appears that 

simply possessing a single copy of the rare allele at either nsSNP1018 or 1241 contributes 

to a higher likelihood of dispersal or greater dispersal distance. 

The polymorphism at nsSNP1241 represents a change in polarity and size of the 

amino acid at codon 414, by switching a polar glutamine to a non-polar leucine (Table 

5.4). At nsSNP1018, the polymorphism also represents a change in amino acid polarity 

and size, switching a non-polar alanine with polar threonine at codon 340. Based on 

comparison to the three-dimensional structure of PGI in Colias (Wheat et al. 2006), the 

amino acids encoded by nsSNP1018 and 1241 are likely near the surface of the enzyme 
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rather than at its center. It is possible that the observed variation at each of these nsSNPs 

results in changes in the geometry or flexibility of the enzyme, which alters either 

catalytic efficiency, thermal stability, or both.  

Interestingly, variation at an amino acid site near the location of codon 340 

(represented in P. smintheus by nsSNP1018) is also implicated in M. cinxia (at codon 

361, specifically) as being important in explaining flight metabolic rate, population 

growth rate, and dispersal (Orsini et al. 2009; Niitepold et al. 2011). Furthermore, Wheat 

et al. (2006) demonstrated that several amino acid sites in Colias butterflies that are also 

nearby (although slightly further away), at codons 317, 369 and 375, are under balancing 

selection. Thus, it is possible that nsSNP1018 lies in a potential ‘hot zone’ where 

variation has strong effects on PGI performance. 

In summary, I have detected potential associations between dispersal and each of 

genetic variation at Pgi, wing color, and thoracic temperature. In combination with 

previous work (Chapter 4) showing gene expression differences between dispersing and 

non-dispersing individuals, this points to a potential suite of traits characterizing 

dispersing individuals, and hence a possible ‘dispersal syndrome’ in P. smintheus. Further 

study is required to determine whether the Pgi genotypes associated with dispersal in P. 

smintheus have different enzyme-kinetic properties. We also require estimates of flight 

capacity and flight metabolic rate, under controlled conditions, in individuals of P. 

smintheus with different Pgi genotypes. Given the importance of dispersal to the ecology 

and evolution of spatially structured populations and communities, unraveling the genetic 

variation underlying dispersal is critical for a full understanding of the dynamics of 

spatially structured systems.    
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Chapter 6 

6 General Discussion 

6.1 Overview of dissertation 

In my thesis, I built upon the rich body of work that describes patterns of genetic 

variation in natural populations, and attempts to determine the ecological and 

evolutionary processes that determine those patterns. I integrated data on neutral and 

adaptive genetic variation with data on dispersal, population dynamics and landscape 

effects. I did this in a naturally occurring spatial population network of the Rocky 

Mountain Apollo butterfly, P. smintheus, which is arguably emerging as a model system 

for the integrated study of population dynamics and population genetics. The first goal of 

my dissertation was to dissect the neutral processes (i.e., genetic drift and gene flow) that 

affect genetic variation in populations inhabiting heterogeneous landscapes during 

repeated demographic bottlenecks, and determine how those processes are mediated by 

landscape structure and patch connectivity (Chapters 2 and 3). My second goal was to 

evaluate genetic variation that might underlie the ecologically important process of 

dispersal, using gene expression and candidate locus approaches (Chapters 4 and 5).  

Taken together, the chapters of my dissertation provide valuable evidence of 

how dispersal and population size fluctuations affect drift, gene flow and potentially 

selection, to ultimately shape genetic diversity and patterns of genetic differentiation in 

dynamic populations occupying heterogeneous landscapes. 
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6.2 Main contributions of dissertation 

  Integration of genetic variation with population dynamics 

All natural populations will vary in size over time due to a wide potential range of density 

dependent and density independent factors (Hansen et al. 1999; Bjørnstad and Grenfell 

2001). If the fluctuations in population size are pronounced enough, they can drive loss of 

genetic diversity, and divergence of allele frequencies among populations, even in the 

absence of any selection (Nei et al. 1975; Garza and Williamson 2001). There has been 

considerable scientific interest in the genetic effects of population size fluctuations. Much 

of the research has focused on effects of demographic bottleneck events, with or without 

subsequent demographic recovery. Both theoretical and empirical studies have explored 

the genetic consequences of such events (Hoelzel et al. 2002; Spielman et al. 2004; 

Caplins et al. 2014). A large portion of this work has been conducted in the area of 

conservation genetics, due to concern about loss of genetic diversity in populations that 

have experienced significant bottlenecks, and the resulting possibility of inbreeding 

depression and erosion of evolutionary potential (Frankham et al. 2010). Despite 

considerable interest in the genetic effects of demographic bottlenecks, most studies to 

date have assessed single bottlenecks in single populations (Whitehouse and Harley 2001; 

Groombridge et al. 2000; Hoelzel et al. 2002; Spielman et al. 2004). 

I took advantage of a long-term dataset derived from multi-year sampling of 

genetic and demographic data, obtained by mark-recapture, to investigate the effects of 

repeated bottlenecks in a population network. I examined, in detail, how the distribution 

of neutral genetic variation within and among several populations changed over repeated 
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demographic bottlenecks. In Chapter 2, through comparison of the effects of two 

bottlenecks of differing intensity and duration, I found that the severity of a bottleneck 

event, which is reflected by the extent to which population size is reduced, the duration at 

low size, and the extent of population recovery (Williamson-Natesan 2005), can 

determine the amount of genetic diversity lost from within populations.  I also showed 

how the recovery of genetic variation following a bottleneck depends on immigration, 

which is mediated by habitat patch connectivity. Finally, in both Chapters 2 and 3, I 

showed how the dynamics of genetic variation across the population network are driven 

by a continual shifting of the relative dominance of genetic drift and gene flow as 

populations fluctuate in size. Bottlenecks appear to consistently erase spatial patterns of 

genetic structure from this system through drift effects, but with rebounding population 

sizes and through the action of gene flow, spatial patterns of genetic variation are quickly 

re-established among the populations. 

 

 Integration of genetic variation with dispersal data 

Dispersal is a critical process affecting the ecology and evolution of populations, 

communities and ecosystems (Clobert et al. 2012). Dispersal is necessary for 

metapopulation persistence, metacommunity structure, nutrient flows, and gene flow 

(Clobert et al. 2012; Travis et al. 2013). Traditionally, the estimation of dispersal rates 

and patterns has been divided into ‘direct’ and ‘indirect’ approaches (Balkenhol et al. 

2015). Direct approaches rely on techniques such as mark-recapture or radio-telemetry to 

track movement of individuals across the landscape (Růžičková and Veselý 2016). 

Indirect methods typically use spatial patterns of genetic variation to infer historical or 
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contemporary dispersal rates and patterns (Slatkin 1987). A large proportion of studies of 

genetic variation in natural populations have attempted to indirectly estimate or make 

inferences about dispersal (Shipham et al. 2013; Lowe et al. 2006). 

Despite the clear link between dispersal, which underlies gene flow, and patterns 

of genetic variation, as well as widespread interest in making indirect inferences about 

dispersal based on genetic data, a relatively small proportion of all population genetic 

studies have combined genetic data with direct estimates of dispersal (Bohonak 1999; 

Keyghobadi et al. 2005, b; Fedy et al. 2008; Sigaard et al. 2008). Among studies that have 

done so, some have shown directly how rates of movement between sites can be related to 

the degree of genetic differentiation between those sites (Keyghobadi et al. 1999; Sigaard 

et al. 2008). In the Glanville fritillary butterfly, direct movement and dispersal data have 

been combined with genotyping at the Pgi locus to show the influence of this gene on 

dispersal behavior (Niitepõld et al. 2009). 

 Working in a system where mark–recapture studies have been conducted in a 

population network since 1995, I was able to combine analyses of genetic variation with 

data on dispersal rates and dispersal history of individuals. In Chapter 3, I examined the 

correlation between genetic differentiation and movement patterns inferred from mark-

recapture data. Importantly, I showed that the degree of correlation can be highly 

dynamic over short time periods in response to population size fluctuations.  Using 

estimates of dispersal, as well as measures of connectivity calibrated with mark-recapture 

data, I showed that dispersal accompanied by gene flow is a key process that not only 

maintains genetic variation within population (Chapter 2) but also rapidly redistributes 

genetic variation among populations after a demographic bottleneck (Chapter 3).  
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In Chapter 4, I used data on dispersal history of individuals in combination with 

RNA-seq data to determine gene expression differences that are likely to be a 

consequence of long-distance flight associated with dispersal. My results suggest a high 

potential cost of dispersal, as individuals that had dispersed between habitat patches 

showed elevated expression of genes related to re-establishment of energy reserves and 

stress responses, compared to non-dispersers. I also used data on dispersal history of 

individuals to explore potential adaptive variation underlying dispersal at the well-

endorsed candidate locus Pgi.  In Chapter 5, I found non-synonymous Pgi polymorphisms 

associated with dispersal and movement distance. My study provides another example of 

the functional consequences of variation at Pgi in insects (Wheat and Hill 2014), and 

represents one of few systems in which a specific gene of large effect underlying 

dispersal has been identified. 

 

  Evaluation of landscape effects 

A large and growing body of work in ‘landscape genetics’ has, over the past two decades, 

explored the influence of landscape composition and configuration on patterns of genetic 

variation in natural populations (Manel et al. 2003; Storfer et al. 2007; Manel and 

Holderegger 2013). Although landscape genetic studies can be very diverse in scope and 

approach, the large majority of studies focus on evaluating the influence of intervening 

landcover on patterns of genetic differentiation among populations (Storfer et al. 2010; 

DiLeo and Wagner 2016), and on how reduced connectivity among populations affects 

genetic differentiation (Keyghobadi et al. 2005; Vandergast et al. 2009). 
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My work provides at least three important contributions to this field. First, 

Chapter 2 represents one of the first studies to document the direct effect of patch 

connectivity on recovery of genetic diversity after a demographic bottleneck, highlighting 

the importance of connectivity for maintaining genetic diversity in natural populations.  

Second, in Chapter 3, I showed that the relationship between landscape variables (in this 

case, intervening forest) and genetic differentiation can change very rapidly as 

populations experience repeated fluctuations in size over time. This is an important result 

because it indicates how temporary the associations between landscape variables and 

genetic differentiation, which form the basis of most landscape genetic studies, can 

potentially be. My work therefore suggests more caution in the interpretation of landscape 

genetic studies conducted at a single point in time (which represent the large majority of 

landscape genetic studies) and suggests more multi-time point studies are needed. Finally, 

in Chapter 5 I found evidence that variation at a gene, Pgi, is potentially influencing 

dispersal in P. smintheus. This works opens the door to future studies in this system that 

can explore how genetic variation at Pgi is distributed across space and in relation to 

landscape features and patch connectivity. 

 

 

6.3  General summary  

I conducted an analysis of neutral and adaptive genetic variation in a spatial population 

network. My analyses included samples collected over multiple years and were informed 

by a unique long-term mark-recapture dataset. I demonstrated how landscape structure 
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and population size fluctuations can interact to shape neutral patterns of genetic variation 

within and among populations (Chapters 2 and 3). I also demonstrated how patterns of 

spatial genetic structure can change rapidly over time (Chapter 3).  I showed that the 

dispersal history of individuals is reflected in differences in overall gene expression 

profiles (Chapter 4), as well as in the DNA sequence of the candidate gene Pgi (Chapter 

5).  

 

 

6.4  Future directions 

My work suggests several worthwhile lines of inquiry in this study system. Further study 

is required to determine how adaptive genetic variation changes across the population 

network of P. smintheus in response to the demographic bottlenecks. Population size 

fluctuations can affect adaptive genetic variation by providing an opportunity for drift and 

selection to increase the frequency of some potentially adaptive genetic variants during 

and immediately after bottlenecks, while gene flow in the periods between bottlenecks 

spreads those variants across the network. Patterns of change over time at the candidate 

locus Pgi should be examined using data that I have collected on Pgi variation from four 

different time periods (Chapter 5). 

Analysis of genome-wide SNPs could also yield important insights into the 

dynamics of adaptive genetic variation, over both space and time, in this system. The 

RNA-seq dataset and reference transcriptome that I developed for P. smintheus in 

Chapter 4 represent a significant resource for such studies. These resources could be used 
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to develop assays for SNPs that are located in transcribed regions, and therefore more 

likely to be of adaptive significance. The transcriptome can also serve as a reference to 

potentially identify the function of any SNPs that are assayed using methods such as 

RADSeq and GBS and are found to display signatures of selection. 

Measuring flight performance and its relation to variation at the Pgi locus is also 

an important area of further inquiry. Controlled flight trial studies could dissect the short- 

and long-term effects of sustained flight on gene expression. Flight trials under controlled 

conditions as well as in the field would provide more insight into performance differences 

among individuals with different Pgi genotypes. If coupled with studies of gene 

expression and flight metabolic rates, such studies could yield important insights into the 

functional significance of Pgi variation and the factors potentially contributing to a 

‘dispersal phenotype’ in P. smintheus 

 

 

6.5  Implications for conservation of alpine species 

My findings have implications for the conservation of P. smintheus and other alpine 

species. Because they occupy colder, high-altitude areas, alpine species may be especially 

vulnerable to the effects of climate change (Peters and Darling 1985; Parmesan 1996; 

Roland et al. 2000; Roland and Matter 2016). One prediction for high-altitude species 

under a generally warming climate is that the areas providing suitable habitat and climatic 

conditions for these species are likely to be reduced considerably as they are ‘pushed’ 

upwards along elevational gradients (Taylor 1995; Woodward et al. 1995). In this way, 
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climate change can contribute indirectly to habitat loss and fragmentation for such 

species. The meadow habitats occupied by P. smintheus for example are likely to be 

reduced in area and fragmented as tree-line encroaches upward along ridges and mountain 

slopes (Gehrig-Fasel et al. 2007). Climatic instability introduced by climate change may 

also affect populations of alpine species. In the case of P. smintheus, more extreme winter 

weather, both warm and cold, is predicted to lead to more frequent years of very low 

abundance and thereby, more frequent and severe demographic bottlenecks (Roland and 

Matter 2016). 

My results suggest there will be an important interaction between the two factors 

of habitat fragmentation, which reduces connectivity among populations, and increasing 

climate variability, which may increase demographic stochasticity, on genetic diversity of 

P. smintheus populations. Specifically, my work shows that connectivity among 

populations is necessary to counteract the loss of genetic diversity that occurs as a result 

of demographic bottlenecks (Chapter 2). Increased population isolation and lower levels 

of gene flow resulting from habitat fragmentation will hinder recovery of genetic 

diversity and spatial genetic patterns after demographic bottlenecks. My works also 

suggests that as a result of the combined effects of habitat fragmentation and increased 

climatic and demographic variability, the relative influence of drift in populations of P. 

smintheus will increase (Chapter 3). Overall therefore, genetic diversity of populations is 

likely to decrease. 

To the extent that other alpine species are also exposed to habitat loss and 

demographic stochasticity as a result of a changing climate, my results suggest these 

species are vulnerable to a loss of genetic diversity. Erosion of genetic diversity, in turn, 
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can result in inbreeding depression and reduce the potential to adapt to future 

environmental change, thereby increasing extinction risk (Saccheri et al. 1998; Spielman 

et al. 2004). My work highlights the need to maintain connectivity across landscapes and 

among populations in the face of climate change. 
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Appendices 

Appendix A: Chapter 2 

Table A1 Metrics of genetic diversity for populations of Parnassius smintheus before and after the 2010 demographic 

bottleneck.  

 

 

 

 

 

 

 

 

 

 

No. genotyped individuals is the number of individuals that amplified at seven microsatellite loci. Allelic 

richness (AR; rarefaction to 10 gene copies), unbiased expected heterozygosity (HE) and frequency of null 

allele (Null Freq.) are averaged across loci. N2010 is an index of 2010 adult abundance estimated using 

Craig’s method for mark–recapture data.  

Patch/population Year G1 g2 H J K L M O Z 

No. genotyped 

individuals 

2008 

2013 

39 

10 

17 

9 

12 

6 

46 

17 

20 

16 

72 

12 

41 

37 

30 

6 

31 

5 

AR 
2008 

2013 

4.71 

4.15 

4.89 

4.44 

4.84 

3.39 

4.57 

4.70 

4.88 

4.38 

4.75 

4.13 

4.69 

4.64 

4.79 

3.30 

4.70 

3.57 

HE 
2008 

2013 

0.69 

0.64 

0.74 

0.71 

0.66 

0.55 

0.69 

0.71 

0.73 

0.68 

0.70 

0.67 

0.69 

0.69 

0.70 

0.64 

0.70 

0.66 

Null freq. 
2008 

2013 

0.12 

0.06 

0.07 

0.10 

0.14 

0.02 

0.13 

0.09 

0.08 

0.08 

0.10 

0.11 

0.10 

0.12 

0.11 

0.10 

0.12 

0.03 

N N2010 4.4 6.8 4.9 30.1 22.3 42.3 84.6 6.6 5.6 
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Table A2 Ratio of sample size to the index of population size for populations of Parnassius smintheus in the years 2008, 2010, 

2011 and 2013. 

 
2008 2010 2011 2013 

Patch/Population n Index Ratio n Index Ratio n Index Ratio n Index Ratio 

F - - - 2 6.8 0.29 5 5.7 0.88 - - - 

G1 39 201.8 0.19 2 4.4 0.45 - - - 10 27.8 0.36 

g2 17 139.4 0.12 3 6.8 0.44 2 6.6 0.30 9 14.7 0.61 

H 12 104 0.11 2 4.9 0.41 - - - 6 8.4 0.71 

J 46 297.2 0.15 - - - - - - 17 56.6 0.30 

K 20 227.8 0.09 5 22.3 0.22 11 22.5 0.49 16 42.6 0.38 

L 72 429.8 0.17 3 42.3 0.07 - - - 12 29 0.41 

M 41 803.7 0.05 13 84.6 0.15 11 41.2 0.27 37 112 0.33 

O 30 79.1 0.38 3 6.6 0.45 - - - 6 4.4 1.36 

S - - - 2 4.4 0.45 - - - - - - 

Z 31 39.1 0.79 - - - 3 4.4 0.68 5 11.1 0.45 

Mean 34.2 258.0 0.23 3.9 20.3 0.40 6.4 16.1 0.52 13.1 34.1 0.55 

‘n’ is the number of individuals genotyped (sample size) for each population in each year, ‘Index’ is an index of population size 

calculated as the maximum daily estimate of population size from Craig’s method applied to mark-recapture data.  ‘Ratio’ is ‘n’ 

divided by ‘Index’.  
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Table A3. Allelic richness rarefied to four gene copies in the years 2008, 2010, 2011 and 2013.  

 

 

 

 

 

 

 

 

No. genotyped individuals is the number of individuals that amplified at seven microsatellite loci. Allelic 

richness (AR; rarefaction to four gene copies) is averaged across loci. Sample sizes for all sites in 2008 and 

2013 are provided in Table A2. Dashes indicate that tissue samples were not available.

Patch/population Year F G1 g2 H J K L M O S Z 

No. genotyped 

individuals 

2010 

2011 

2 

5 

2 

- 

3 

2 

2 

- 

- 

- 

5 

11 

3 

- 

13 

11 

3 

- 

2 

- 

- 

3 

AR 2008 

2010 

2011 

2013 

2.75 

2.71 

2.66 

- 

2.68 

2.43 

- 

2.56 

2.82 

2.44 

1.86 

2.66 

2.69 

2.29 

- 

2.31 

2.65 

- 

- 

2.73 

2.77 

2.61 

2.24 

2.61 

2.71 

2.65 

- 

2.55 

2.70 

2.75 

1.87 

2.67 

2.68 

2.41 

- 

2.35 

2.66 

2.29 

- 

- 

2.72 

- 

2.58 

2.52 
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Table A4 Summary of linear regression models with ∆AICc ˂ 12 explaining the proportional 

loss of allelic richness (AR; rarefaction to 10 gene copies) between 2008 and 2013.  Models are 

sorted in increasing order of AICc values. 

Models AICc ∆AICc r² Adjusted r² P value 

C2012 -17.77 0 0.81 0.78 0.0009 

C2011 -13.85 3.93 0.71 0.66 0.004 

N2010+C2012 -13.64 4.13 0.86 0.82 0.002 

C2009 -12.53 5.24 0.66 0.61 0.007 

C2010 -11.44 6.34 0.62 0.56 0.011 

N2010+C2009 -11.15 6.62 0.82 0.76 0.005 

N2011+C2012 -10.71 7.06 0.81 0.75 0.006 

N2010+C2010 -10.31 7.46 0.8 0.74 0.007 

N2010+C2011 -9.93 7.84 0.79 0.73 0.008 

N2011+C2009 -7.55 10.22 0.73 0.65 0.017 

N2010 -6.89 10.89 0.37 0.28 0.081 

N2011+C2011 -6.69 11.08 0.71 0.61 0.023 

Abbreviations used for variables: C, connectivity for given year; N, population size for given year.’+’ 

indicates additive term.
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Table A5 Summary of linear regression models explaining the proportional change in allelic richness (AR; rarefaction to four 

gene copies) during distinct phases of demographic decline and recovery. For models predicting loss of AR between 2008 and 

2010, those with ∆AICc ˂ 12 are shown and are sorted in increasing order of AICc values. For the other time periods, small 

samples sizes precluded calculation of AICc for some models due to overfitting. For these periods, models are ranked based on 

adjusted r² and those with adjusted r² ˃ 0.6 are shown. 

Dependent Variable Models AICc ∆AICc r² Adjusted r² P value 

Loss of AR between 2008 and 2010 

 

N2010 -22.83 0 0.57 0.51 0.018 

N2011 -20.06 2.77 0.41 0.33 0.059 

C2012 -18.07 4.76 0.27 0.17 0.14 

N2010+C2009 -17.72 5.10 0.66 0.54 0.038 

C2009 -17.51 5.32 0.22 0.11 0.19 

C2011 -17.23 5.59 0.2 0.09 0.22 

N2010+C2012 -16.63 6.20 0.49 0.49 0.05 

N2010+C2010 -16.37 6.45 0.6 0.47 0.06 

N2010+C2011 -16.28 6.54 0.6 0.47 0.06 

C2010 -16.26 6.56 0.11 -0.01 0.37 

N2011+C2009 -14.18 8.64 0.49 0.33 0.12 

N2011+C2012 -13.80 9.02 0.47 0.3 0.14 

N2011+C2011 -13.47 9.35 0.45 0.27 0.16 

N2011+C2010 -13.36 9.47 0.45 0.26 0.16 

Loss of AR between 2010 and 2011 

 

N2011+C2010 -51.88 0.00 0.9 0.96 0.17 

N2010+C2010 -47.38 4.50 0.71 0.90 0.3 

C2009 - - 0.86 0.79 0.07 

N2011+C2009 -48.18 3.71 0.92 0.76 0.28 

N2010+C2009 -46.75 5.13 0.88 0.66 0.33 

Gain of AR between 2011 and 2013 C2012 - - 0.9 0.86 0.047 

N2011+C2012 -45.52 -45.52 0.94 0.84 0.22 

N2010+C2012 -43.71 -43.71 0.91 0.75 0.28 

Abbreviations used for variables: C, connectivity for given year; N, population size for given year.’+’ indicates 

additive term. 
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Appendix B: Chapter 3 

Table B1 Summary of Mantel tests and partial Mantel tests examining the relationship 

between pairwise genetic distance (FST) and total distance, landscape distances, and 

estimated contemporaneous movement, for subsampled datasets. For years preceding 

bottleneck events (1995 and 2008), 25 datasets were randomly subsampled (without 

replacement) with within-patch sample sizes equivalent to those in the smaller, 2005 

dataset. Mantel and partial Mantel tests were performed for each subsampled dataset: 

Mantel tests were used to examine the relationship between FST and each of total distance 

and contemporaneous movement, while partial Mantel tests were used to examine the 

effect of forest distance on FST controlling for meadow distance (Forest effect) and vice-

versa (Meadow effect). The median correlation coefficient (r) from all subsampled 

datasets is reported along with the result of Wilcoxon signed rank (WSR) tests for a 

significant difference from zero. Data for 1995 are from Keyghobadi et al. (1999, 2005) 

and data for 2005 are from Caplins et al. (2014). 

 

Significant values are in bold typeface.

Models 1995 2008 

r (P) r (P) 

Total distance 0.44 (<0.001) 0.36 (<0.001) 

Forest effect   0.34 (<0.001) 0.22 (<0.001) 

Meadow effect 0.05 (0.06) 0.025 (0.10) 

Movement -0.22 (<0.001) -0.25 (<0.001) 
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Table B2 Summary of maximum likelihood population effects (MLPE) models explaining pairwise genetic differentiation 

(FST) between populations of Parnassius smintheus as a function of year (at four different time points) and either total 

geographical distance, forest distance, or estimated contemporaneous movement. Interaction effects are included in all models. 

Year is treated as a categorical factor and contrasts are against 1995. Data for 1995 are from Keyghobadi et al. (1999, 2005) 

and data for 2005 are from Caplins et al. (2014). 

Models Predictors                

  (P) β ±SE 

Year+ total distance + year* total distance 

 

Intercept (year1995) 

Year 2005 

Year 2008 

Year 2013 

Total distance 

Year 2005* total distance  

Year 2008* total distance 

Year 2013* total distance 

0.12 

0.001 

0.22 

0.00 

0.003 

0.03 

0.16 

0.03 

0.007±0.004 

0.015±0.004 

0.005±0.004 

0.025±0.005 

0.002±0.001 

0.002±0.001 

0.001±0.001 

0.004±0.002 

Year+ forest distance + meadow distance + year* forest 

distance 

 

Intercept (year1995) 

Year 2005 

Year 2008 

Year 2013 

Forest distance  

Meadow distance 

Year 2005* forest distance 

Year 2008* forest distance  

Year 2013* forest distance 

0.10 

0.0001 

0.26 

0.00 

0.02 

0.34 

0.01 

0.12 

0.57 

0.006±0.004 

0.013±0.003 

0.004±0.003 

0.034±0.004 

0.005±0.002 

0.001±0.001 

-0.004±0.002 

-0.003±0.002 

0.003±0.005 

Year+ movement + year* movement 

 

Intercept (year1995) 

Year 2005 

Year 2008 

Year 2013 

Movement 

Year 2005* movement 

Year 2008* movement  

Year 2013* movement 

0.10 

0.01 

0.38 

0.001 

0.30 

0.51 

0.93 

0.55 

0.01±0.005 

0.012±0.005 

0.004±0.004 

0.02±0.006 

-0.0004±0.0003 

0.0003±0.0005 

0.00004±0.0005 

-0.002±0.0004 

    β: MLPE regression coefficient ± SE. Significant values are in bold typeface.
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Appendix C: Chapter 4 

 

Figure C1 Venn diagrams of upregulated differentially expressed genes (DEGs) for:  a) 

disperser and non-disperser individuals b) individuals with thoracic temperature higher 

and lower than ambient, and c) all four categories.  The numbers in each large circle 

indicate the total number of DEGs unique to each comparison group, and numbers in 

overlapping sections indicate the number of DEGs shared among the comparison groups.    
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Figure C2 Cluster analysis based on Pearson correlation coefficients showing similarity 

of gene expression profiles in male Parnassius smintheus samples.  Samples are classified 

based on their dispersal history as inferred by mark-recapture data. Red is indicative of 

similarity, while grey is indicative of dissimilarity in the level of gene expression. Each 

cell represents the average correlation coefficient of a set of n = 90 dispersal-related 

genes. The diagram is symmetric across the red-cell diagonal.  
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Figure C3 Heat map matrix of 90 genes differentially expressed between male 

Parnassius smintheus that are dispersers and non-dispersers (FDR < 0.05 and minimum 

four-fold change). The colour code represents the relative expression, where yellow 

represents upregulation, purple represents down-regulation, and black represents no 

change in expression. Genes were clustered by means of a hierarchical clustering 

algorithm presenting two gene sets, I and II (vertical axis). 
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Figure C4 Cluster analysis based on Pearson correlation coefficients showing similarity 

of gene expression profiles in male Parnassius smintheus samples.  Samples are classified 

based on whether thoracic temperature was higher or lower than ambient temperature. 

Red is indicative of similarity, while grey is indicative of dissimilarity in the level of gene 

expression. Each cell represents the average correlation coefficient of a set of n = 24 

genes. The diagram is symmetric across the red-cell diagonal.  



205 
 

 
 

 

 

Figure C5 Heat map matrix of 24 genes differentially expressed between male 

Parnassius smintheus individuals with thoracic temperature higher and lower than 

ambient (FDR < 0.05 and minimum four-fold change). The colour code represents the 

relative expression, where yellow represents upregulation, purple represents down-

regulation, and black represents no change in expression. Genes were clustered by means 

of a hierarchical clustering algorithm presenting two gene sets, TI and II (vertical axis).
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Appendix D: Chapter 5 

Table D1 Information on the primers used in this study to amplify five overlapping fragments of coding sequence of Pgi in 

Parnassius smintheus. 

 
Length of 

fragment 

(bp) 

Name of 

primer 

Sequence from 5’ to 3’ 

Fragment1 531 Ps_Pgi_frag1_F  [ACACTGACGACATGGTTCTACA]1CGAAGACTTAACCATATAAATTACGAG 

 Ps_Pgi_frag1_R [TACGGTAGCAGAGACTTGGTCT] 2GGCATCAACACGGTTCTTT 

Fragment2 546 Ps_Pgi_frag2_F [ACACTGACGACATGGTTCTACA] 1TTCAAACACCCAATGATGGA 

 Ps_Pgi_frag2_R [TACGGTAGCAGAGACTTGGTCT] 2TTGGCAGAAGTAGCGTTGGT 

Fragment3 515 Ps_Pgi_frag3_F [ACACTGACGACATGGTTCTACA] 1CGCTGTTCATCATAGCCTCA 

 Ps_Pgi_frag3_R [TACGGTAGCAGAGACTTGGTCT] 2CGGTGGAGTAGTCTGCCTGT 

Fragment4 466 Ps_Pgi_frag4_F [ACACTGACGACATGGTTCTACA] 1CAGCAGGGAGACATGGAGAG 

 Ps_Pgi_frag4_R [TACGGTAGCAGAGACTTGGTCT] 2TTGATGTCCCAGATCACACC 

Fragment5 314 Ps_Pgi_frag5_F [ACACTGACGACATGGTTCTACA] 1CCATCGCAAAGATTCTACCTC 

 Ps_Pgi_frag5_R [TACGGTAGCAGAGACTTGGTCT]2TTAACTGCAGACGGCTTACAAA 
1CS1 universal tag (Fluidigm Corporation, South San Francisco, California, United States) 
2CS2 universal tag (Fluidigm Corporation, South San Francisco, California, United States)



207 
 

 
 

 

 Table D2 PCR reaction conditions used to amplify the coding sequence of Pgi from cDNA, in five overlapping fragments 

(primers provided in Table S1), in Parnassius smintheus. Amplitaq enzyme and and Amplitaq buffer (Applied Biosystems) 

were used. 

PCR reagents 
per reaction (μL) 

Fragment 1 

per reaction (μL) 

Fragment 2,3 and 4 

per reaction (μL) 

Fragment 5 

10X Buffer 2.5 2.5 2.5 

25mM MgCl2 2 1.625 1.5 

10 mM dNTP Mix 0.5 0.5 0.5 

Sense primer (10 μM) 0.75 0.5 0. 5 

Antisense primer (10 μM) 0.75 0.5 0. 5 

Taq DNA polymerase (5 U/μl) 0.2 0.2 0.2 

cDNA (from first-strand reaction) 1 1 1 

Milli-Q water  17.3 18.175 18.3 

Total 25 25 25 
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Table D3 All pairs of Pgi SNPs in Parnassius smintheus showing significant linkage 

disequilibrium (LD), based on Fisher’s exact test with Bonferroni correction (based on 49 

sequenced individuals; Part I). The location of each SNP within the coding sequence 

(SNP1 and SNP2; bp) is shown. 

SNP1 

(bp) 

SNP2 

(bp) 
D' R 

P (Fisher 

exact test) 

294 1245 1 1 < 0.001 

849 945 0.745 0.666 < 0.001 

1008 1241 1 0.767 < 0.001 

1317 1512 1 0.886 < 0.001 

1503 1623 1 0.886 < 0.001 

D-prime: proportion of the possible LD that was present 

between the SNPs; R: correlation coefficient. 
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Figure D4 Alignment of the consensus coding sequence of Pgi in Parnassius smintheus to coding sequences of Colias 

eurytheme and Melitaea cinxia. The coding sequences of Pgi for Colias eurytheme and Melitaea cinxia were extracted from 

GenBank (accession no. ACS27508.1 and ADB11194.1, respectively). Locations of Pgi SNPs in P. smintheus are underlined 

and in bold typeface. Asterisks (*) show similarity among all three sequences. Red vertical lines indicate the location of 

intron/exon boundaries. 
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Figure D5 Alignment of the consensus amino acid sequence of PGI in Parnassius smintheus to PGI amino acid sequences of 

Colias eurytheme and Melitaea cinxia. The sequences of PGI amino acids for Colias eurytheme and Melitaea cinxia were 

extracted from GenBank (accession no. ACS27508.1 and ADB11194.1, respectively). Locations of amino acid variation in P. 

smintheus are underlined and in bold typeface. Asterisks (*) shows similarity among all three sequences. 
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