Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

2008

Assessment of Tumour Growth in Murine Cancer Models with
Three-Dimensional High-Frequency Ultrasound

Lauren Ashleigh Wirtzfeld
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Wirtzfeld, Lauren Ashleigh, "Assessment of Tumour Growth in Murine Cancer Models with Three-
Dimensional High-Frequency Ultrasound" (2008). Digitized Theses. 4215.
https://ir.lib.uwo.ca/digitizedtheses/4215

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.


https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4215?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4215&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

y \

Assessment of Tumour Growth in Murine Cancer Models witil
Three-Dimensional High-Frequency Ultrasound

\ (Spine titie: High-Frequency Ultrasound Assessméﬁt of Mkui'ine Tumour Growth)
(Thesis format: Integrated-Article)

by

Lauren Ashleigh Wirtzfeld

K24
-~ .

Biomedical Engineering Graduate Program

Submitted in partial fulfillment
of the requirements for the degree of
~ Doctor of Philosophy

School of Graduate and Postdoctoral Studies
The University of Western Ontario

December 15, 2008

© Lauren Ashleigh Wirtzfeld, 2008




THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Chief Advisor ' Examining Board
Dr. Aaron Fenster | Dr. David Goertz
Dr. James C. Lacefield Dr. Eugene Wong

Advisory Committee

Dr. Peter Canham -

Dr. Paula Foster
‘ Dr. Terry Peters
Dr. Ann Chambers
~ The thesis by
Lauren Ashleigh Wirizfeld

entitled

Assessment of Tumour Growth in Murine Cancer Models with
Three-Dimensional High-Frequency Ultrasound

is accepted in partial fulfillment of the
requirements for the degree of
"~ Doctor of Philosophy

e

Chair of Examination Board

Dated this 15 day of December, 2008.  Dr. Giles Santyr

ii



\

Abstract

Preclinical cancer resea.rch could benefit from quantltatwe, non-lnva.swe measure-
ments of tumour growth prov1ded by three-dimensional lugh—frequency ultrasound
maglng High-frequency ultrasound has been shown to be appropriate for tracking

\eucpenmenta.l liver metastases from a va.nety of cell lines without exogenous contrast

agents 'I\1mour growth over tlme can be monitored on an mdmdual tumour basm,

allowing a growth curve to be constructed and the tumour to act as lts own control

" in a treatment study.

In order to quantify tumour volume and growth, the measurement variability

must be known. Inter- and intra-observer variability was determined for tumours in

. four size ranges with average volume from 0.43 mm? to 60.42 mm®. Intra-observer

variability was as low as 4% for mid-sized tumours averaging 2.39 mm3, while the
inter-observer variability for the smallest and largest tumours measured had the high-
est variability at 25% and 15%, respectively. Breathing motion did not significantly
effect the volume measurements, however, having the region of interest beyond the
geometric focus resulted in significantly different measured volumes.

Measurement variability is one factor that influences how well growth data can be

' characterized mathematically through curve fitting. Simulations of tumour growth

were performed to relate experimental imaging parameters, such as intervals between

acquiring images, minimum and maximum volume recorded and length of time over

- which data is acquired, to the quality of curve fitting results. Simulations show that

* * improving the ability of the ultrasound system to image small (<1 mm diameter)

tumours would improve the ability to draw conclusions from growth parameters.

‘The spatially variant point-spread function influences lesion-size measurement

voﬁability and consequently growth curve fitting. The transducer employed is tightly

focused, so spatial image resolution is high at the focus but rapidly degrades away
from the focus. Synthetic aperture focusing was employed with a variety of weight-
ing techniques to retrospectively focus the images through a range of depths. The
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improvement in focusing was measured using point-like targets and the effect on mea-
surement variability was evaluated using lesion phantom images. Synthetic aperture
focusing did not produce a significant reduction in lesion-size measurement variability

but did diminish the sensitivity of the measured size to lesion depth.
Keywords: high-frequency ultrasound, three-dimensional ultrasound, mouse mod-

els, preclinical cancer, measurement va:iability, tumour growth, synthetic aperturé

focusing
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Chapter 1

~Introduction

!

1.1 Overview

* Clinical trials for therapeutic oncology drugs suffer from one of the highest rates
of drug failure of dny disease [1, 2). Additionally, conventional endpoint analyses in
preclinical canuer research provide limited information about tumour growth, due to
limitations in meadurement precisiou or ‘an inability to measure tumours within some
organs. These limitations suggest additional information may be required to assess

“the efficacy of novel therapeutios in the preclinical models. Three-dimentidnal (3D)
high-frequency ultrasound imaging offers a non-invasive method to monitor tumour
growth through ti;he and provide quantitative information on tumour growth '

~ This thesis mmbm@ the use of three-dimensional (3D) hxgh—frequency ultrasound

o 1magmg to measuré tumour volumes in prechmcal cancer models over time. To ensure

that the data can be appropriately mterpreted and changes in volume quantified, it is

, 1mperat1ve to quantlfy measurement vanablhty Within this thesm, a liver metastasis

model is 1maged tc{ validate that tumours could be lmagetl with ultrasound and show

sufficient contrast to makemeasuremenm. The measurement variability of the tumour

 volumes was evaluabed for multiple obeervers and varied experimental factors. The

measurement vanabllity is a function of tumour size and therefore will have an effect
1
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on curve fitting ofl growth data. Therefore, this information was suhsequently used
in a study-on theoretical growth curves and curve fitting 't aid in the planning of
imaging experiments. Lastly, since the measurement variability was shown to be a
function 4f lesion depth within the image, a technique to improve the ithage focusing
was implemented to determine the effects on the measurement veriability and the
spatial variance of the variability within the image.

- In order:to pravide some context for the subsequent chapters, this chapter first
discusses the shorécomings. of elinical cancer drug trials and some of the limitations
of the current animal models. Current tectiniques for measuring outcomes, including

caliper and endpoint analysis, are discussed including how precise, Jongitudinal mea-
- surements could improve upon the current.endpoints. Options for in vive imaging are
" briefly pmsented followed by more detailed information on the use of high-frequency
ultrasound for longitudinal imaging. 'Information on focuslng of ultrasound beams
and the use:of transducer arrays:is lndudcd a8 background:on the limitations of the
ultrasound system used Prevxous work on hrgh frequency imaging of cancer models
is presented followed by & more deta.rls outline of the thesis cha.pters o

B

1.2 Prechmcal Cancer Studles and Ammal Models

14

Prechmcal can¢er research employs a range of in vwo and }n vztro techmques to

study the fundsmental blology of cancer and the response to current or new therapres

s Techmques range from in vitro oell culture to in vivo: ammal models wrth 1mplanted

cells to genetrcally modrﬁed a.mmals |

All new therapeutic agents go through extensive testing in the labomatory before
_ they ever reach a.glinical trial. Although an enormous amount of time and: resources
are spent. on reseafching, developing and testing new. therapeutics, cancer drugs see



a high rate of failure at clinical trials (9 out of every 10 drugs fail) [1, 2]. This
results in a much lower percentage of drugs that start trials making it through to
the clinical compared to other disease models. In fact as few as half as many drugs
~ compared to therapeutics for other diseases such as cardiovascular and arthritis [2].

Limitations in the;preclinical models and evaluation of treatment response endpoints

reduce their predictive potential in clinical trials. It.is the predictive potential of

these models to select effective drugs that is considered to be the most important
~concept when dealing with animal models [3]. The mechanism of action as well as
 the toxicity profilés often differ between the preclinical and clinical trials [2]. Such
vest differences in: results make it difficult to use preclinical results to determine an
appropriate route of administration, initial dosing and type of cancer to target when
~ these drugs reach the clinic.

: | ‘ .

1.2.2 Limitations of current animal models
To begin to understand the r.easons:for the discrepancies between preclinical trial
outcomes and clinical trial results, it is necessary to look at the types of animal models
_employed in the prechmca.l studies and how they differ from the dxsea.se in humans.
A large number of different preclmlca.l models are employed in cancer research, as
each has advantagés and none have shown a superior predxctlve value over the others.
Xenograft models, where cells are grown in culture then mJected into the mouse,

or small tumour masses are transplanted from one animal to another, are the most

R commonly used mouse model, due to the ease of use. For all xenografts, the resulting

| disruption in the cellular micro-environment due to creating the xenograft means that

- many molecular pathways are no longer intact [3], which has the potentioil to change
the behaviour of tHe tumour cells and their interaction with the surrounding tissue [4].
Subcutaneous ts. ¢.) ‘tumours ‘are one of the' most commonly used xenografts,

. whé'ré cancer cells are injected Beneath the skin to form a tumour. Although tu-

mours form and develop a blood ‘supply that can be studied, they lack an organ
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microenvironment hnd many of the constraints that arise for tumours in their natural
state growing within an organ such ‘as limited space.

- Orthograft models, a xenograft where cancer cells are implanted into their native
host organ (ie. melanoma cells into the skin, prostate canocer cells into the: prostate),
exhibit some of the tumour-host interactions more appropriately including invading
the normal tissue and recruiting & blood supply from within the organ. However,
it is typical to' inject a large number of cancer cells in one locatien compared to
a naturally -arising' tumour starting from mutations on'the level of individual cells.
‘Genetically modified mouse models offer a more realistic. model ‘of some aspects of
tumour development as tumours initiate spontaneously due to genetic modifications
making the mioe susceptible to particular cancers. The benefit of these models is that
~ thenatural historylof the tumours more closely relate to naturaily ocourring tumours.
However, if tlie genetic modifications a.re not representative of those found in human
cancers, it is difficalt to interpret how the results may relate to the human form of
the' disease from their results [5). In many cases, these animals exhibit a mutation
in every cell in their body rather than having a:mutated cell arise among 'noﬁnal
cells and thus these models more closely resemble familial cancers, which: are rare
‘compared to the sporadically arising tumours found in humans [4, 5. Monitoring
and eomparihg animals in different treatment groups also poses challenges since each
tumour will develop’at & differemt:time'point and often develop multifocally, making
them both more cymbersome as well as more expenqwe than xenograft models [5).

o , The process, of cancer cells sl;eddmg from the pnmary tumour, travelhng througp

the blood ;vessels or lymphatic system to dls_\ta.otorge,n,s wher_e they can form tumours
i called metastasis 6]. Metastases, o the primary tumours, are responsible for most
cancer, deaths making them an important area of study. In order to study metas-
_ tases, both spontaneous models and expenmenta.l models are employed Spontaneous
| models use xenogra,ft or genetlcally modlﬁed tumour models and allow the metastatlc
process to proceed petgral}y. In eg:penmeom modele cancer cells’ are 1n3eoted, d;;eotly
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into veins or lymphatics to target a particular organ. The tumour cells travel to that
\orgau and anumber of them will extravasate from the vessels into the tissue and have
the potential to form metastases. : = IR S

Outcomes of clinical trials may be poor due to the fact that preclinical models
are not representing the diversity of the true disease of cancer. Often positive results
achieved in a very small number of models, for only a small number of cell lines, are
used as a positive indication to pursue the drug into clinical trials {7]. When the
_ models showing pesitive results have no positive correlation with how human cancers
~ will respond, this limits their usefulness. Rather than simply knowing that a drug
has an effect on some cells, it would be more valuable to know what characteristic of
the cells are impartant in achieving a response to the drug {1]. This would in turn
~ allow the clinical trials to be conducted using the most appropriate type of cancer for
the drug to show an effect. | l

Although there are limitations to the different preclinical models, they provide
valuable tools for cancer research and show clinical predictive value for some cases.
Voskoglou-Nomikos et al. [7] have shown, by meta-data analysis, that some orthotopic
models show correlation with phase II clinical trial outcomes particularly when panels
_ of xenografts were used preclinically.

1.2.3 Current Endpoints for Analysis >

_ In order to assess experimeutixl'outoomes for growth and éspecially treatment stud-

B ies, spemﬁed endpomts and metrics to compare groups are requlred Currently, the

most common ana.lyses in cancer models are ca.hper measurements of subcutaneous
or other superﬁclal tumours or sacrifice at the acpenmental endpomt to allow gross
pathologlcal and hlstologlcal compa.nsons [8] Cahper Imeasurements are subject to a
hlgh level of error and vanablhty as there is no way to cons:stently measure a smgle
~ dimension of a three-dlmenslonal object In vivo caliper measurements will always

1nclude the skin on top of the tumour and potentla.lly additional layers of tissue or



6

fat.. While this additional thickness is often assumed to be consistent across all mea-
surements, there is no way- to kmow if there are changes in the amount of normal
tissue present in addition to the solid tumour mass. There is also the possibility that
the widest part of the tumour is not at:the surface but buried deeper and not being
measured at all, thereby introducing more errors.
" To compare tumour sizes over time and across groups, the volume is typically
assumed to be an ellipsoid' and estimated by measunng the longest dimension of the
‘tumour, the perpendicular diameter to this initial measurement and setting the third
 deptls/dimension equal to-the perpendicular diameter; and cakulating the volume of
an elhpsold based on these. three one-dlmenslonal measurements [8]. Diameter mea-

surements rarely prov1de a rehable estxmate of the tumour volume ag the true shape

o is often more complex than an elhps01d These assumptlons and hmrtatrons severely

limit the ablhty to compare tumour volumes over tune and to construct meanmgful
growth curves. Average tumour measurements obtamed from cahper Ineasurements
can be used to evaluate changes in growth between control and treated groups at
each time pomt and to construct average growth curves, though the compoundmg
effect of the measurement errors is dlfﬁcult to assess. The high vanablhty in these
- measurements makes compa.rmg 1nd1v1dua.l growth curves and even changes in volume
of the same tumour over tlme unrehable ,

For models whlch do not a.llow for external ca.hper measurements, ana.lysls is often
.hmlted to ez-vivo endpomt s.ualysxs Asa result to a.na.lyse multxple t1me pomts

s multlple cohorts of animals are requlred to a.llow 8 cohort to be sacnﬁced at each

‘ tlme pomt of mterest Thls caq be costly in terms of number of e.mmals and work
reqmred to create that number of amma.l models a.nd process the data In addltlon,

| vanatlons between the growth of mdmdual tumours in mdmdual ammals increases
~ the expenmenta.l vanablhty and hmlts the ablhty to interpret the tesults a.nd detect
slgmﬁcant dxﬂ’erences between trea.tment groups. A vanety of endpomts can be used

including tumour gnze, tumour werght or total tumour burden Amma]s that fail to
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develop tumours can skew the results and limit the data interpretation, especially if
a control animal does not develop a tumour.

that are not readrly vrslble or pa.lpated, 1t can be difficult to determine an appro-
priate endpoint to allow comparison across ’multiple'a.n'im&s and to time treatment
experiments. ‘As a'result, there ¢an be a large range of tumour sizes or burden at the
endpoint or at the point of treatment initiation. ’

'1.2.4 Opportunity to Improve Preclinical Studies

In order to obtaxn addrtlonal 1nformat10n regardxng tumour growth the ability to
‘ evaluate all tumours m vivo is necessa.ry This would open the possnbrhty of obtain-
| ing time-series data to assess growth over time of dlfferent tumours, tumour models
and treatments. Longitudinal momtonng could prov1de information on how a treat-
ment alters tumour growth ‘whether tumours regress, stabilize or merely grow more
slowly Thls mformatlon cannot be obtamed from endpomt analysrs alone. Although
caliper measurements can be obtain in vivo, the hmxtatlons discussed above mean an
~ improved method is strll reqmred for subcutaneous tumours.

Addltlonally, growth data from each tumour would allow each tumour to act
as its own control to compare pre- and post-treatment grbwth or change in size.
Many cancer theraples are eﬂ"ectlve on prohferatmg tumours ‘but show little effect

‘on non-prohferatmg tumours. Obtammg pre-treatment growth estrmates has been

B recommended [8] to ald in obtaxmng the desxred data and a.llow an evaluatlon of

the post-treatment results B there is a wide range in the response to a particular
treatment lt can strll be observed if tumour growth is observed on a tumour by

tumour b8818

Non-mvaslve wrz vivo 1mag1ng would a.llow for tlus type of momtormg and data ac-

. qrusrtlon ‘and can be performed on a mlcro-rmagmg scale to a.llow for the vrsualizatlon

of tumours in sma.ll-ammal models The additional ability to visualize tumours in vivo



is becoming necessary as models and treatments become more sophisticated [4].

\

1 3 In vwo Micro-Imaging

' Non-invasive imaging of preclinical cancer models enables tumours to be repeat-
edly imaged at different time points, allowing longitudinal measurements of the same
tumoﬁr. For each model of interest, an appropriate imaging modality is required to
perform these measurements The criteria required of the imaging modality include
" hlgh resolutxon to ‘obtam accurate and precise tumour measurements. Additionally,
appropriate contrast to visualize the desired twmours is vequired, Endogenous ron-
trast srmphﬁes the xmagmg procedure ma.kxng it the first choice. If there is insufficient
- contrast due to the natura.l tissue propertles, it may be possible to use an exogenous
contrast agents which could provide the necessary contrast to differentiate tumours
from health tissue. - Being ‘able to' minimize the use of contrast ‘agents leads to more
rapid throughput for imaging and less potential for bioeffects dué to cofitrast agents.

If repeated measurements ave desired over-a short period of time, it is preferable
to avoid techniques with cumnulative exposure effects and potential biological effects
- from high exposure as this may limit the scans that can be performed. Modalities that

can Iimit the'scan’time per animal are also desirable as this will' minimize anestheti¢
exposure for each animal and allow for larger cohorts of anima.ls to be evaluated on
ah ongoing basis. ' = * L
The ability to'measure tumour volumes over tirﬂe is necessary for all tumours.
- Measurements. of tumouts conducive to caliper measurements 'will benefit from im-
proved meastrement scctiracy and variability, while ‘other tumours will benefit from
longxtudma.l measuirement - of the same tumours over time. AR ‘

" There ‘are irmaging modalities' sealed-for preclinical imaging, frequently referred
to a8 ticro-imaging, analogous to ‘clinical imaging modalities, with the addition of
~ fluorescence and luminescence optical imaging techriigties, which' sre not currently
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used in the clinic. As these modalities have been scale to reduce the resolution making
them appropriate for preclinical studies, small animal anatomy can be visualized with
comparable detail to clinical images in patients, with typical resolution on the order
of 100 ym. While there are often imaging modalities that can be used for a given
experiment, ‘there'are a number of advantages and disadvantages to every modality
that need to be evaluated for the particular experiments.

1.4 Ultrasound

1. 4 1 Comparison of High—Frequency Ultrasound to Other
chro-Imaging Modalltles ' =

Ultrasound ha.s inherent soft-tlssue contrast w1thout requiring exogenous con-
trast agents, making it a practical option for soft-tissue tumour imaging. However,
ultrasound cannot be used for lung and :bong;_imaging therefore prove‘ntvingvits use for
primary and metastatic ,t‘umours? in thos‘e‘organs. Ultrasound offers many benefits
for in-vivo imaging of mouse vmodels, including real-time 2D imaging capabilities (up
. to 100 frames pes second), 3D imaging capabilities, portability snd comparatively
low equipment and operational costs [9]. However, ultrasound has some distinct
limitations comparéd to other modaﬁtieé; including a relatiVer small field of view,

limitations on imaging where there is an appropnate acoustlc w1ndow, a.nd ma.blhty

- . to image bone and Iung tissue.

X-ray computed tomography (CT) allows for entire body scans to be acqulred
which is particularly useful when exa.mlmng mouse phenotypes CT provxdes excéllent
contrast for bone and lung 1magmg, however,; it does not prov1de soft-tlssue contrast
without the use of exogenous contrast agents. ‘

Magnetlc resonant imaging (MRI) provides hlgh spatial resolution and contrast in

* soft-tissue, as well as full-body scans. Howevér, the equipment and operational costs

P
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are very-high for MRI [9]. ‘Both CT and MRI scan times can vary depending on the
protocol and imaging system' from being fairly rapid to very long'(on the order of
hours for MRI). Evenlwith fast scans, the reconstruction times can be very long so
that the images of the animal are often not available until long after they have been
scanned. Although the scanning and reconstruction times:are long, the segmentation
step often requires very little: time as automated segmentation algorithms can be
used. In ultrasound iﬁaging, manual segmentation is typically required which takes
~ & considerable amonnt of time, especially in 3D imdges [10]
' Nuclear medicine scans, including positron emission tomography (PET) and eingie
photon emiesion oomputed-tonlngraphy (SHPECT)‘previ“de'fnnctional infonna.tien ;}xvte-
garding tumour activity; however, they suﬂ'er from low spatial resolutlon and require
~ the use of radioisotopes to prov1de contrast increasing cost and dose to the ammal [9]
Recently hlgh frequency ultrasound has been used a w1de va.nety of apphcatlon,
including cardiac (11, 12], embryonic {13], vascular (14] and image guided interventions
[15] The tngh frame rates are partxcularly useful in ‘many of these apphca.tlons as it
a.llows for real txme monitoring of the changes in vivo.

-1.4.2 High-Frequency Qempa;ed to Clinienl Ultrasound N
There are a number of notable differences between high-frequency ‘and '¢linical ul-
trasound imaging. Clinical imiaging is typieally performed in tho range of 5 to 12 Mz
- with the high end being at 15 MHz, compared to 20 MHz to 60 MHz for high-frequency
~ ultrasound [16): The increased frequency improves the resolution (apptoximately 40
" x 80 pm at 40 MHz), allowing smaller objects to be imaged, while'sacrificing the
depth of perietration (approximately 10 mm at 40 MHz).  High-frequency ultrasound
has reduced penetration'compared to climcal ultrasound due to the increased: atten-
uation at higher frequencies which reduces the energy in the ultrasound pulse as it
: prnpagate's. These trade-offs meke it appropriate as a micro-imaging modality for
small animal imaging where the increased resolution is required and limited field of
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view is still sufficient for the subject size. Clinically, high-frequency ultrasound is
_restricted to several specialized areas, including intravascular, ocular and dermato-
logical imaging. .- '
High-frequency ultrasound produces signals from different scatterers [17] than is
the case when employing lower (dinical)'ﬁ'equencies, meaning the ultrasound images

‘provide information about different structural components in tissue.

- 1.4.3 Ultrasound Arrays and Focusing

* While the axial resolution in ultrasound is determined by the transmitted pulse
length, the lateral resolution (LR) depends on the focuslng from the transducer. The
lateral resolutlon at the focus for a transducer w1th a rectangular aperture is defined
as LR = A-g— where F is the focal distance, D is the transducer aperture diameter and
A iS'the ultrasound wavelength. In the case of single-element transducers, they can
be erther unfocused or focused at a ﬁxed pomt in space. The lateral resolutlon at the
focus can be 1mproved by movmg the ﬁxed focus towards the transducer or mcreasmg
the transducer diameter. The focal depth is typxcally chosen based on the apphcatlon
~ and penetration depth at the imaging frequency, which constrains how much it can
" be vaned The width of the transdiicer can be vaned but there are obv1ous practical
limitations on the side of a transducer to make it practrcal for i 1mag1ng Even if the
lateral resolution at the focal depth | is acceptable, with tlghtfy focused transducers
- the lateral resolutlon rapxdly degrades away from the- ﬁxed focus. To overcome these
lxmrtatrons, transducer arrays can be employed and are used clmlcally for 1mag1ng

" Arrays use multlple small elernents to send and receive sound. There is a range
of designs of array transducers; however, they all allow the ultrasound beam to be
’fo'Cused and in some cases also steéred Since there are many'eiements in an array
(typxcally 128 to 256 mdmdual elements), it is possrble t0 use a varylng number of
. elements to send and receive thereby changmg the transducer aperture width. The

subset of elements used to send and receive are referred to as the subaperture. Having
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multiple elements additionally -allows each elemerit:to send pulses at different: times;
which can. be used to focus the ultrasound beam at a desired point in space. This is
achieved by calculating how long it will take sound to travel from each element to the
deslred focal point. These delays are then used to tlme when each element sends its
pulse 80 that all pulses arrive at the desrred focal pomt at the same tlme The same
techmque can be applied when the returned sxgnals reach the transducer, approprrate
delays can  be apphed to the recewed sxgna.ls to ahgn all the sngnals from the desired
' focal point. Since the focal depth can be chosen and changed it is posslble to focus
at multlple depths to keep the 1mage in focus mstead of havmg the 1mage in focus
at only one depth Bemg able to change both the focal depth and the subaperture
size allows for the f-number to be varied more readily than in the case of ﬁxed focus
o transducers thereby allowmg for the lateral resolutxon to be mamtamed over a larger
reglonofthelmage - o S
Although arrays provrde great 1mprovement to image quahty over srngle element
transducers, due to a number of physrcal hmrtatxons, arrays are not yet commonly
available for hrgh-frequency ultrasound 1magmg Linear and phased arrays require
an element spacing of less than A, the ultrasound wavelength, and A/2 respectively,
" to prevent energy from the grating lobes being imaged [18]. If the beamsteering is
restricted to sxall'atigles, the elénlerit sparing can bé relaxed slightly. As an example,
for 840 MHz array an element spacmg of less than 38 5 pm, for a lmear array and
193 pm for a phased array would be requlred Cuttmg the pxesoelectnc matenal

C alone can be techmcally dlﬁicult as elements this small are prone to fallmg off the

backmg Bondmg an electromc channel to the back of each array element can also be
very technically challengmg '

.. There are several groups currently workmg on developing arrays for high-frequency
ultrasound including work on linear arrdys:[19, 20} as well as annular arrays [21-23]
which ‘allow for depth focusing;:but still require the transducer to be swept to produce

an image.
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1.4.4 Early Applications of ‘High-Frequency Ultrasound to
Cancer

One of the earliest applications of high-frequency ultrasound ‘imaging was can-
cer. In 1987, Sherar et al. [24) demonstrated the ability to differentiate the internal
structure of tumotr sphercids (less than 1.5 mm diameter) using a 100 MHz trans-
ducer. Subseqliently, Turnbull et al. [10] were able to monitor the growth of murine
melanoma oirer, time using 50 MHz a.nd 62 MHz ultrag;ouﬂd. Tumours ranging in size
~ from 1 to 4 mm diameter were imaged in this study. Two-din;ensiqnal measuremems
were used to measure tumour growth and ;sev‘era.l 3D images were reconstructed to
provide proof of principle [10].

Recently hlgh-frequency ultrasound has been employed in many preclinical on-
cology studies mcludmg growth treatment and blood flow studies. In mouse mod-
els a variety of soft-tissue tumours have been imaged including melanoma (25] and
prostate carcinoms [26]. Other animal models have also been successfully imaged us-
ing high-frequency ultrasound, including a chemically induced liver metastases model
in Zebrafish [27].

1.5 Hypothesis and Objectives

It is hypothesized that the refinement of experimental desfgn and focusing meth-
* ods for high-frequency ultrasound will enable precise longitudinal analysis of tumour
" growth ranging from 0.1 to 10 mm diameter in a mouse model of liver metastasis. To

test thls hypothesm, several obJectNes were set:

1 To determine if longxtudmal imaging of soft-tissue tumours w1f.h hlgh-frequency
‘ultrasound can be performed without the use of exogenous contrast agents,
based solely on the inherent tissue contrast.

2. To quantify the volume measurement variability and use this information to help
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‘plan longitudinal imaging experiment timing to ensure:statistically significant
changes in volume will be observed. ?

3. To employ sxmulatlons of tumour growth asa method to determrne appropnate
1mag1ng parameters that will enable a functlon more complex than an exponen-
tial to be fitted and allow changes in growth rates to be observed.

; 4. To apply ,synthetic aperture focusing techniques retrospectively to acquired
data in order to decrease the lesron-slze measurement vanablhty and determme
whether adaptrve or conventronal apodlzatlon is more effectlve at reduclng

variability.

e

" 1.6 Thesis outline

This thesis examines how 3D hlgh-frequency ultrasound can be employed to pro-
vide quantrtatlve mformatron on tumour growth in mouse models. In partlcular, the

above obJectlves are addressed one in each of the followmg chapters '

- 1. 6 1 Chapter 2

Chapter 2 demonstrates the feaslblhty of usrng hlgh-frequency ultrasound to mon-
itor the growth of tumours in soft tissue by 1magmg usrng endegenous contrast in an

_ expenmental fiver metastasrs model A hver metastagls model was chosen as metas-

" tases cannot be tracked w1thout non-mvaswe 1mag1ng due to thelr locatron leer

‘ metastases also tend to be multlfocal thereby prov1d1ng multlple tumours to track
growth on an lndmdual tumour basxs A syngenexc melanoma model 88 well as a

human colon carcmoma, human breast carcmoma and mouse ﬁbroblast model were

*Literally meaning to 'remove the foot The amphtude welghtlng of the aperture to reduoe the
side-lobes in the ultrasound béam. Typically a smooth function with the edges weighted less than
~ the centre. * '
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used to establish that a range of tumours can be imaged with ultrasound. Even:in this
_multifocal model, individual tumours could be identified on different days to allow
each tumour to be tracked independently. Where it was possible to obtain volume
measurements, growth eurves over time were plotted and an example treatment study

was conducted using the melanoma model.

1.6.2 Chapter 3

- Chapter 3 evaluates the measurement variability of the 3D tumour volume to en-
able more rigourous interpretation of the growth curves as obtained in Chapter 2. An
intra- and inter-observer variability study was conducted to evaluate the measure-

~ ment variability as a function of tumour size. The effects of breathing motion and

the limited depth of field in the image were evaluated. The results are used to deter-:
mine the minimum detectable change in volume and consequently the limitations on
observing treatment effects. As a first approximation, the length of time required to
wait between imaging sessions to obtain a change in volume that can be measured

was plotted as a function of tumour volume and doubling time.

' 1.6.3 Chapter 4

To extend the planning of imaging sessions from the end of Chapter 3, Chapter 4
presents simulations of tumour growth based on a.na.lyms of experimentally obtained
growth data, commonly used 1magmg parameters and the measurement variability.
The ability of an exponential or Gompertz functions to fit the data was analyzed
as a function of a variety of parameters. The parameters examined fit into differ-
ent categories including biological characteristics of the animal model (ie. tumour
growth rate), user selectable imaging parameters (ie. imaging schedule) and imag-
ing s&stem parameters that could be improved upon (ie. measurement variability,

minimum size of detection, maximum size from field of view.) The results provide
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information on how to structure experiments to obtain the most data and indicate
which improvements would provide the most benefit.

1.6.4 Chapter 5

_ To improve curve fitting of turnour growth, one épprb&h is to reduce measurement
vaxiaﬁilitj. In chapter 5, “sy"nthetié apértiﬁe focuéing Lféchniques were applied to 2D
ultrasound images to assess the effect on measurement variability, Both conventional
| ‘and adaptive weighting techniques were assessed, with adaptive techniques requiring
more computational power. Improved focusing has the potential to decrease the

measurement variability and increase tumour conspicuity for small tumours.
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Chapter 2

" Three-Dimensional

High-Frequency Ultrasound
Imaging For Longitudinal
Evaluation Of Liver Metastases In

Preclinical Models

The content of this chapter has been adapted fmm “Three-dzmenstonal hzgh—
frequency ultmsound zmagzng for longztudmal evaluatzon of lwer metastases in pre-
* clinical models”, published in Cancer Research vol 65 (12) June 15 2005 by Kemn

~~~~~

| C. Graham, Lauren A. Wzrtzfeld Ltsa T MacKenzze, Carl 0. Postenka Alan C

Groom, Ian C. MacDonald Aaron Fenster, James C Laceﬁeld and Ann F. Cham-
bers This chapter has been mcluded as it contains the background mformatzon around
whtch the subsequent chapters are budt, The liver metastaszs tmages in thzs chapter
are subsequently used in chapter 3 where the measunement vanabzhty is analysed.
Chapter 4 bases the gmwth_ of the modeled tumours on the growth rates obtained from
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the tumours within this paper and uses the measurement from chapter 8 to make the
values more realistic. »Chaptér 5 has some data from: the liver metastasis. model- as
well as phantoms made to have contrast similar to the in-vivo liver metastasis model
with the aim of improving the images within the liver. Although, this is a second au-
_thor paper and also appears in Kevin Graham’s thws *, the Biomedical Engineering
" Graduate program approved the inclusion of this material in. this thesis.

2.1 Introduction
Metastasis, the dissemination and growth of cancer cells. in a secondary organ,
is the leading cause of cancer mortality. The liver is a frequent. metastatic site for
melanoma, colon and breast cancer, and therefore, an. important ares of metastasis
reseafcb. Preclinical animal n_;od,els,' such as the mouse, are essential to the study .of
liver metastasis, yet their utility has been limited by difficulty in tracking the progres-
sion of metastases through time. Noninvasive longitudinal imaging would decrease
experimental variability, provide a more accurate assessment of metastatic progres-
sion and the efficacy of therapeutic interventions, and allow the study, of dynamic or
" time varying processes such as tumour vascularization and dormancy. -
Many preclinical imaging modalities are under development, including magnetic
~ resonance imaging (MRI), x-ray computed tomography. (CT), positron emission to-
~ mography (PET), and fluorescent and bioluminescent imaging, yet no siogle modality
- should be considered a comprehensive solution for cancer micro-imaging applications.
Each modality possesses a unique combination of strengths and weaknesses that im-
pact their selection for use in a particular study. In general, desirable characteristics
ina l(mninvasive imaging modality would be high-resolution to allow detection of min-

'*Graham, Kevin C.. Noninvasive imaging for the study of preclinical liver metastasis models
[Ph.D. dissertation]. Canada: The University of Western Ontario (Canada); 2007.
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imal disease, cost effectiveness and rapid image acquisition to facilitate throughput,
inherent contrast between the liver parenchyma and tumour to avoid genetically en-
coded or endogenously administered contrast agents, and applicability to a range of
liver metastasis models. MRI offers high-resolution ’imaging yet may be time consum-
ing and relatively expensive to purchase and Operate,{ll. - X-ray CT also offers high
resolution, but poor soft tissue contrast necessitates the use of radio-opaque contrast
agents and radiation dosage may limit longitudinal imaging [1]. The resolution of
. PET does not match that of. MRI.or CT, and the requirement: for production and
eontainment of radionuclides can make costa prohibitive {1} Fluerescent and bio-
luminescent imaging offer a relatively cost effective way to study liver metastases,
but suffer from poor resolution and the requirement to transfect endogenous reporter
~ genes into the cell line of interest 1, 2]. The expression of foreign reporter. proteins
may lead to increased immunogenicity, and thus must be carefully examined for their
impact on the metastatic model being studied (3-5].

) St v 3 p

Ultra.sound is an attractlve optron for prechmcal imaging due to the cost and

time efficiencies of this modality. Previous studies using high-frequency ujtrasound
‘i 1mag1ng of murine cancer models demonstrated the feaslbxhty of this techmque to
track subcutaneous tumour progresslon [6] That study concluded that fuxther apph-
cation of ultrasound magxng would require a fast method for generatmg 3D 1mages
_A new hxgh-frequency scanner that employs 3D 1mage aoqmsrtxon methods and re-

. constructlon software developed 1n our laboratory has addressed thxs hmltatron [7]

‘ These developments ralsed the possxblhty of uslng hlgh-frequency ultrasound in the
evaluatron of chmcally relevant metastatlc models whlch are dlmcult to study in a

noninvasive faslnon

<

We report here the apphcatlon of a hlgh-frequency (40 MHz) ultrasound system
with three—dlmenslonal 1magmg capabrlltles to the study of murine llver metastasls
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We demonstrated that the resolution of high-frequency ultrasound allowed detection
of liver metastases at a' minimum size that compared favourably to that of MRI,
CT or optical methods [8-11]. The applicability of this technique was demonstrated
by identifying and tracking liver metastases from four tumour cell lines of different
tumour origins. The importance of 3D»volumetric/‘ imagingto reduce uncertainty in
volume determination was established by comparison of 3D segmented volumes with
the commonly assumed ellipsoidal volume calculated from diameter measuréments.
. The utility of 3D high-frequency ultrasound in the evaluation of chemotherapeutics
wis shown in a preclinical trial with doxorubicin. Fhese results demonstrate that the
cost and time efficiencies of traditional ultrasound coupled with the 3D capabilities
and high resolution of this high-frequency ultrasound system make this modality
o particularly well-suited to the study of liver metastasis in'a wide range of preclinical
models.

2.2 Materials and Methods
2.2.1 Cell Culture and Experimental Metastasis Models

~ BI16F1 [12] and HT-29 cells (Cat# CRL-6323 and HTB-38, respectively; Ameri-
can Type Culture Collection, Manassss, VA, USA) were maintained in‘aMEM with
L-glutamine, ribonucleosides ‘and- decxyribonucléosides (Tavitrogen, Carlsbad, CA,
~ 'USA) supplemented with 10% FIBS (Sigma, Mississauga, ON, Cdndda). 'PAP2

 cells 13, 14] Were maintained i DMEM (Invitrogen) supplemented with 10% FCS (In-
vitrogen). MDA-MB-435/HAL ‘¢ells were matttained in EMEM (Invitrogen) supple-
* mented with 2 mM L-glutainine, 100 44M non-essential amino acids, 25 mM HEPES
buffer, 1 mM sodium pyruvte (Invitfogen) and 1X MEM ‘vitamin sohition (Sigma).
The MDA-MB-435/HAL line was derivéd from' the MDA-MB-435 cell litie by an
in vivo selection procedure for increased metastatic potential [15]. All animals were
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cared for in ~mmce to the Canadian Council on Animal Care guidelines, under
a protocol approved by the University of Western Ontario Council on Animal Care.
For experimental rxiletaatmia;mya, mice wese anegthetized with an: intraperitoneal
injection ofxylazmb/ketamme (2.6 mg ketamine and .13 mg xylazine per20 g bedy
mass). As. dewnbod previously, anesthetized mice: recmved 1mesénteric injections of
0:1 mL of cells suspended in their respectivé growth media to target. the liver [16]. For
B16F1 cells, & sMibn of 3 x 10° cells was injected into CS7BL{6 mice {Harlan,
Indianapolis, IN, IEA) For HT-29 cells, a-suspension of 2 x 10° cells was injected. mto
'NIH HI mice (Charles River, Wilmington, MA, USA). For PAP2 cells, a suspensxon
of 2 x 10° cells was injected into SCID mice (Charles River). For MDA-MB-435/HAL
cells, & sudpension fof 3x 10° calls wes injected into SCID mice (Charles River). All
~ 'mice were female a;nd 7-11 weeks old ?t the time of cell injecjtion. o

2.2 2 Ultras?und Imagmg

For: ultrasoundumaging the Vevo 660: high-frequency ultrasound system (Visual-
-~ Sonics Inc. Torontp, ON, Canada) was used. The Vevo 660 is the second generation
_of a gystem descnbed previously [17]. The Vevo 660 ultrasound probe has a 40 MHz
'centrg frequency véith a 6 mm focal depth.  The spatial resolution at/ the focus is 40
x 80 x 80 um?3. qur to the first imaging sessioni the mouse’s abdemen was depilated
with commercial hmr removal 'cream. During imaging the mouse was kept under
anesthesia with 1.*% isoflurane in- axygen and sestrained on & heated stage. During

" imaging with the immunodeficient NEH III and SCID mice the animals were handled

‘and imaged in a HEPA filtered workstation (Microzone Corp. Ottawa., ON, Canada).
- Ultrasound is strobgly reﬂegted by the nbcage, wluch hmders 1mag1ng of any tissue
located beneath the ribs, such as the lungs a.nd a portlon of the liver. Thus, the
volume of liver tlsque accessible for ultrasound imaging may vary among animals and
W&n imaging djeasions for the same animals. In general, we found that a signifi-
cant volume of thej left lateral, left medial and right medial liver lobes were routinely
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accessible for imaging - During imaging two-dimensional images were acquired in the
sagittal plane aftef ultrasound contact gel was applied to the abdomen For three-
dimensional xmagxng, parallel two-dlmenslonal images were aoqulred by stepprng the
transducer in 30 pm mtervals in the out of plane drmenslon Usmg software devel-
oped in- our laboratory, two-dlmensronal images were mterpolated and reconstructed
on-line to create & 3D volumetnc image [7). The system can acqulre and produce
a typical three-dlmenmonal 1mage in less than 20 seconds The 3D reconstruction
_software is avarlaqle through VrsuslSonlcs Inc., or through the authors for research
 purposes. |
2.2.3 Volum:e Measurenrents ,

To determine tumour volume, the boundaries of & metastasis were outlined within
parallel planes separated by 50 um in the volumetric image. The total metastasis
volume was calculated by summing the outlined areas and multiplying by the interslice
distance [18). Segrhented volumes were compared to ellipsoid volumes estimated using
the formula V = (wabc) /6 ‘The measurements for diameters ‘a’, ‘b’, and ‘c’, ~were

_ obtamed from thq 3D volumetnc 1mages The sa.grttal plane showmg the greatest
' tumour dlameter Was selected and the greatest dlameter a measured The dlameter
‘b, perpendicular to ‘a’ was then measured The VOIMe was then rotated and the
transverse plane showmg the largest tumour diameter was seleéted The dmmeter c’,
-perpendlcular to hoth 8’ and ‘b’ was then measured.- To determme the % drfference
o between the elhpsoxd and 3D segmented volumes the followmg formula was used

~ (ellipsoid volume) (segmented volume)
(ellipsoid volume + segmented volume) /2’

100‘7 2

o
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2.2.4 Longitndinal Growth Measurements

+ For longitudinal imaging, the imitial imaging timepoint was based on previous
indications of when micrometastases could first be detected: by ultrasound. Individual
liver metastases wdre identified and a 3D image recorded. Individual liver metastases
were identified on successive imaging dates by their partwularhver lobe location,
tumour shape, and proximity to landmark structures such as major blood vessels or
the liver edges. Landmarks were all internal to the liver, since the liver lobes move in
o Ye{ﬂﬁion toanyeﬁemal landmarks, such as the ribs. Animals were sacrificed due to
escalating tumour burden, as assessed by ultrasound imaging, or when at least four
imaging time points had been acquired to construct & growth curve. . Approximately
5 minutes, were reqmred to locate3 xdentlfy and image the liver metastases of each
mouse.. If the txme spent- on set-up,, animal handling, anesthesia, and recovery is

included, the averdge duration of an imaging séssion was 15 minutes per mouse.

2 2.5 Treatment Protocols

!

The BlGFl hver metastasls model was used to assess thg ablhty of hlgh-frequency
- ultrasound to detect response to cytotoxlc chemotherapeutlc agents At day 7 post
cell lmectlon the ﬁrst treatment w1th doucorublcm was admlmstered Doxorpbwm
(Pharmacla, Mmswsauga, ON Cana.da) was ngen a.t a pre\nously descnbed treatment
schedule (1 mg/kg 0.1 mL, i. p) every seoond day untll day 17 post cell mjectlon,
. for a total of 6 tneatments [19] Control ammals recelved ﬁahqe eontrpl mjectlons

(0.1 mL, i.p.). Ultra.sounq mmging was performed from day 8 post cell mjectlon, the
earhest txme B16F1 liver metagtases could be detected in the images, until the end
of the expenment
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2.2.6 Histology

At sacrifice the mouse liver was excised and fixed in 10% neutral buffered forma-
lin. Visual inspection validated the tumour size and location depicted by ultrasound
imaging. For histological confirmation of tumour size, formalin fixed paraffin embed-
ded livers were sectioned (4 //m slice thickness) and stained with hematoxylin and

eosin.

2.3 Results

2.3.1 Ildentification of murine liver métastasés using high-

frequency ultrasound

To validate ultrasound imaging for the detection of murine liver métastasés, mice
were noninvasively imaged and, once suspected métastasés were detected with ultra-
sound, the animal was sacrificed. Gross pathology and histological sections verified
the presence of a tumour, its size and location. Ultrasound reliably detected murine
liver métastasés from the four tumour cell lines tested, B16F1, HT-29, MDA-MB-
435/HAL and PAP2, with excellent agreement between ultrasound images, gross
pathology and histological sections (Fig. 2.1). Ultrasound imaging proved highly
sensitive to small métastasés with a minimum detection size (maximum diameter —»
segmented volume) of 0.22 mm —» 0.01 mm3, 0.47 mm —»0.03 mm3, 0.66 mm —»
0.08 mm3, and 0.78 mm —»0.17 mm3 for B16F1, HT 29, MDA-MB-435/HAL and
PAP2 tumours respectively. As a point of reference, a volume of 0.01 mm3 would be
produced by approximately 6000 cells, based on the assumption of a spherical cell

volume and a cell diameter of 15 /xm.
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Fig. 2.1: Identification of B16F1 (A, E), HT-29 (B), MDA-MB-435/HAL (C), and
PAP2 (D) liver métastasés by noninvasive ultrasound imaging. Two dimensional
ultrasound images are shown with corresponding histological sections. The location
of each metastasis in the ultrasound image is denoted with yellow arrows, in the
histological section with black arrows. The maximum diameter of the metastasis
shown in the ultrasound image is 1.56 mm (A), 0.47 mm (B), 0.66 mm (C), 2.33
mm (D), and 5.01 mm (E). The scale bars on the ultrasound images are 1.00 mm.
The scale bars on the histological sections are 1.00 mm (A, D, E) or 0.10 mm (B,
C). In panel E, necrotic areas (N) depicted by ultrasound imaging and confirmed by
histology are labelled.
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2.3.2 High-frequency ultrasound can identify areas of lique-
x factive necrosis within metastases
Dunng 1magmg of B16F1 liver metastases it was noted that although the metas-
tases were always clearly delmeated from the surroundmg parenchyma the metastases
showed a large amount of heterogenelty in their ultrasound backscatter Ina num—
ber of metastases dlstmct anechow reglons (no texture, appears dark) were evident.
Histological examination of these anechoic regions revealed that they are regions of
: hquefactwe necrosis (Frg 21 E) quuefactwe necrosls is expected to be anechmc

since the breakdown of necrotlc cells ehmmates the ma.Jonty of ultrasound scattermg

structures from that region of the tumour.

2.3.3° Tracking the growth of individual liver metastﬁes by
noninvasive ultrasound imaging

To demonstrate the utility of ultrasound maging in the longltudmal study of lxver
metastases, mice were nomnvaslvely imaged at 2-3 day 1ntervals ‘At sa.cnﬁce, gross
pathology and histological sections verified tumour sizes and locations deplcted dur-

" ing ultrasound imaging. The B16F1 metastases developed rapidly, forming detectable
metastases as early as 10 days post cell mjectlon in this experiment (Fig. 2.2 A) The
B16F1 metastases showed exponential growth with an average volume doubling time
of 1.2 +/- 0.2 (mean +/- SD) days. The mean correlation coefficient for fitting an

B exponentlal curve was 0.966 +/- 0.047. The HT-29 and MDA-MB-435/HAL liver

metastases were much slower to develop, forming detectable metastases at & mini-
mum of 33 days post cell injection (Fig 2.2 B). The HT-29 and MDA-MB—435/HAL
metastases also showed exponential growth with doubling times ranging from 3.7 -
4.8 days for the HT-29 metastases and 5.7 -104 days for MDA-MB-435/HAL metas-
tases. The correlation coefficients ranged between 0.972 - 0.993 for HT-29, and 0.635
- 0.889 for MDA-MB-435/HAL. The metastasis HT-29 - 4 was not included in the
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range of doubling times because its volume did not increase over the 10-day interval
that it was imaged. Representative two-dimensional images from the longitudinal
imaging of an individual B16F1 metastasis, B16F1 - E, are shown (Fig 2.2 C). Indi-
vidual PAP2 liver métastasés could not be evaluated for longitudinal growth because
in this highly aggressive model numerous métastasés form and quickly fuse. In such
cases, ultrasound could be used to monitor increasing tumour burden, instead of the

growth of individual métastasés, as an indicator of tumour progression.

2.3.4 2D measurement provides frequent overestimation or
underestimation of tumour volume as compared to 3D

measurement

Tumours are often assumed to have an ellipsoid shape, which allows a volume to
be calculated from the maximum widths and length in 2D images. Tumour volumes
calculated from this 2D method and from 3D segmentation were compared to deter-
mine if the assumption of an ellipsoid shape was valid for liver métastasés. In the
liver metastasis models examined here, there were large differences in the measured
tumour volumes between the 3D and 2D methods. The mean percent difference for
B16F1 liver métastasés was -8.8 +/- 23.5% (range 90.1% to 53.2%) (Fig 2.3 A). The
negative mean indicates that the ellipsoid volume was on average smaller than the
3D segmented volume. For the MDA MB-435/HAL métastasés the mean percent dif-
ference was -15.0 +/- 25.3% (range -45.2% to 23.1%) and for the HT-29 métastasés
-7.9 +/- 43.8% (range 106.5% to 80.5%). Three-dimensional surface rendering of the
liver métastasés allowed visualization of the irregular shapes of some tumours (Fig

2.3 B-C).
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Day 10 Day 14 Day 18

Fig. 2.2: Tracking the growth of individual liver inetastases by noninvasive ultrasound
imaging. (A) Growth curves of B16F1 liver metastases, plotted on a semi-logarithmic
scale. (B) Growth curves of HT-29 and MDA-MB-435/HAL liver metastases, plotted
on a semi-logarithmic scale. (C) Representative two dimensional ultrasound images
of B16F1 - E. Size of B16F1 - E (maximum diameter —segmented volume) is 0.50
mm —>0.06 mm3 (Day 10), 1.07 mm —»0.61 mm3 (Day 14), and 2.09 mm —»3.79
mm3 (Day 18). The scale bars on the ultrasound images are 1.00 mm.
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Fig. 2.3: Discrepancy between tumour volumes obtained from 3D segmentation or
diameter measurement with the assumption of an ellipsoid shape. (A) The % differ-
ence between the ellipsoid volume and the 3D segmented volume (equation 2.1) for
individual B16F1 metastases is plotted versus the mean volume of those two mea-
surements. The solid bars indicate the mean +/- 2 SD. (B) 3D surface rendering of
a B16F1 metastasis in which the ellipsoid and 3D segmented volumes are in close
agreement (ellipsoid = 558 mm3, 3D = 5.79 mm3, % difference = -3.70%). (C) 3D
surface rendering of a B16F1 metastasis in which the ellipsoid and 3D segmented vol-
umes are not in close agreement (ellipsoid = 3.51 mm3, 3D = 5.03 mm3, % difference
= -35.6%).
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2.3.5 3D ultrasound can be used to monitor therapeutic re-

sponse of individual metastases

To assess the ability of high-frequency ultrasound to evaluate the efficacy of cy-
totoxic chemotherapeutic agents, the B16F1 liver metastasis model was used. By
noninvasively tracking the development of individual liver metastases it was shown
that doxorubicin significantly increased the doubling time of B16F1 metastases from
(mean £ SD) 14 + 0.4 days to 1.7 + 0.4 days (t-test, p = 0.038) (Fig 2.4 A-B). The
increased doubling time is apparent in the significant difference between the average
tumour volumes of doxorubicin treated metastases and the control metastases (Fig

2.4 C).

2.4 Discussion

The importance of preclinical animal models in oncological research has supported
the development of small animal imaging modalities including MRI, x-ray CT, PET,
and fluorescent and bioluminescent based systems. Each of these modalities occupies
a niche in noninvasive imaging, based on the unique requirements and constraints
of a particular research study. Important factors in choosing the appropriate imag-
ing modality for a particular study may include the anatomical site being imaged,
the desired resolution and animal throughput, availability of targeted contrast agents
and cost. In this report we describe the use of high-frequency ultrasound imaging for
the detection and longitudinal tracking of murine liver metastases. High-frequency
ultrasound offers distinct advantages as a cost effective, rapid, high-resolution and
noninvasive imaging system. The ultrasound imaging described here was performed
without exogenous contrast agents or genetic manipulation of the cell lines being
studied. This offers significant advantages both in terms of animal throughput and

in the number of animal models able to be studied.
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Fig. 2.4: A longitudinal ultrasound study shows that doxorubicin (DXR) decreases
tumour growth rate and tumour volume in the B16F1 liver metastasis model. (A) The
growth of 9 B16F1 liver métastasés, from 5 mice, was tracked longitudinally in the
control group. (B) The growth of 24 B16F1 liver métastasés, from 8 mice, was tracked
longitudinally in the doxorubicin treatment group. (C) The mean metastasis volume
(mean +/- SE) for each imaging timepoint is shown for the control and doxorubicin
treatment groups. The asterisk (*) denotes a significant difference in tumour volume
(rank sum test, p < 0.05) at the indicated timepoint.
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. As demonstrated in this report, all four cell lines tested in experimental liver
metastasis models, B16F1, HT-29, MDA-MB-435/HAL and PAP2, showed inherent
ultrasound contrast relative to the surrounding liver parenchyma. These cell lines are
derived from different primary tumour types, mumi"e melanoma, human colon ¢arci-
nbma, human breast carcinoma and oncogene-transformed murine fibroblasts, which
demonstrates the wide applicability of this technique.: In all cases the liver metas-
' tases were hypoechoic, appearing darker than the surrounding tissue on ultrasound
rimagea Ultrasound imaging was shown to be highly sensitive, with metastases frorﬁ
all four tumour models detected with maximum diameters less than 0.78 mm. The
consistent background image texture of normal liver parenchyma likely contributed
* to the detection of small tumours, so ultrasound appears particularly well-suited for
imaging liver metastasis models. To determine the absolute detection limit for any
particular cell line, more frequent imaging on a greater number of mice would need
to be performed.

- The ability to track the growth of individual liver metastases over time was demon-
‘strated for B16F1, HT-29 and MDA-MB-435/HAL tumour cell lines. The 1ise of the
‘human cell lines HT-29 and MDA-MB-435/HAL is particularly noteworthy since im-

munodeficient animals, which must be protected from infection, are used for these
metastasis models. The ultrasound system was easily adapted to this requirement

" by restricting the mice and ultrasound probe to a HEPA filtered envi:onment. This

process would not be possible with larger, less portable imaging modalities. -

- The longitudinal imaging trials demonstrated the importance of noninvasive imag-
ing in allowing analysis on a per metastasis instead of a per mouse basis. For ex-
ample, in contrast with the exponential growth seen with other liver metastases in

the same animal, the metastasis HT-29 - 4 did not show a significant increase in
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tumour volume during the 10 days it was imaged. The volume of this metastasis
was constant at 0.03 mm?® (0.3 mm diameter). The identification of metastases with
variable growth patterns would allow further investigation, such as microdissection
and microarray analysis, to elucidate the molecular basis of such variations. The
monitoring of dormant metastases would also pemﬁt the study of host-tumour inter-
actions, such as the role .of angiogenesis in the switch from a dormant to progressive
tumour phenotype [20]. The detection sensitivity of high-frequency ultrasound allows
“the investigation of processes, such as tumour dormancy and angiogenesis, which may

oceur very early in the metastatic process.

' The longitudinal imaging of B16F1 liver metastases revealed striking changes in
ultrasound image texture during tumour development. The most obvious of these
changes was the development of d19t1nct anechoic regions that were shown to be
areas of liquefactive necrosis. The ability to detect the formation of necrosis may
be useful in the assessment of vascular targeting agents and anti-angiogenic com-
pounds [21, 22]. Incorporating Doppler blood flow imaging into studies utilizing the
high-frequency ultrasound system may further enhance the assessment. of tumour vas-
- culature and hemodynamics [23]. The cellular-or structural characteristics that cause
the ﬁiore subtle changes in ultrasound backscatter are currently under investigation
in several laboratories [24-26]. 5

| These studies have focused on imaging the development of individual metastases
because of the unique research opportunities that this approach preéents. In time,
the models used here will form large coalescing metastases, which can no longer be
monitored for individual growth characteristics. At this stage, ultrasound imaging
could be used to measure relative tumour burden between animals. This application
will require further study to determine how tumour burden in acoustically accessible

liver areas represent the state of the entire liver.



. Since subcutaneous tumour growth is frequently monitored by caliper measure-
ment and calculation of an ellipsoid volume, we sought to determine if the approxi-
mation of an ellipsoid volume was sufficient for monitoring the growth of liver metas-
tases. It was demonstrated that tumour volumes calculated from 3D and 2D methods
&ielde_d vastly different results for many metastases. For B16F'1 metastases the mean
percent volume difference between the two methods was -8.8 +/- 23.5%. The large

_standard deviation indicates that the 2D method often gives large over- or underesti-
mations of tumour volume when compared to the 3D method. Since the true volume
of the metastases could not be determined it cannot be definitely stated that one
method is more accurate than the other. However, it is reasonable to suggest that
the 3D method is more accurate since there is no assumption of & defined shape,
and a 3D image allows the operator grea.ter time and control when defining tumour
borders. Definition of tumour borders can be done off-line with a 3D image, while
the operator of a 2D system must identify maximum tumour diameters during imag-
ing. Furthermore, previous work with a clinical ultrasound system has shown that
the 3D method is more accurate than the 2 D method when measuring the volume

- of regular and irregular shaped phantoms [18, 27]. The inaccuracy and variability
brought about by assuming a defined shape could hinder the ability to track volume
changes in slowly growing metastatic models, the ability to track subtle responses to

‘therapeutic treatment, and the ability to determine if a metastasis is going through

. a Vperi‘od of dormancy. The elimination of this uncertainty presents a compelling case

for using an imaging modality with 3D imaging capabilities.

~The utility of longitudinal ultrasound imaging in preclinical trials was demon-
strated with the anthracycline chemotherapeutic, doxorubicin. Longitudinal assess-
ment of individual liver metastases showed that doxorubicin significantly decreased

tumour growth rate and tumour volume in the B16F1 liver metastasis model. Signifi-
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cant differences in tumour volume were evident at day 12 post cell injection, after only
three doxorubicin treatments, when the average tumour volume in the control group
was less than 1.00 mm?®, and in the treated grbup less than 0.25 mm3. The ability of
high-frequency ultrasound to track the progression of micrometastases noninvasively
allows the evaluation of therapeutic efficacy on seq;lential* stages of tumour develop-

ment, from early formation to the development of large vascularized metastases, in a
single experiment.

In summary, this report is the first to describe the use of 3D high-ﬁequency (4b
MHz) ultrasound ’ima.ging in the noninvé,sive detection and longitudim;l eva.lﬁatidn
of murine liver metastases. This development is significant in that ultrasound offers
rapid, cost effective, high-resolution imaging that can be applied to a wide range of
liver metastasis models without the l;equirement for contraét agents. Compared to
traditional histological methods, ultrasound imaging may provide a more accurate
assessment of tumour progression and chemotherapeutic response, while opening new
avenues of investigation into dynamic processes such as tumour vascularization and

tumour dormancy.
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Chapter 3

- 'Volume Measurement Variability
In T‘hree-Dimensional
‘High-Frequency Ultrasound Images

Of Murine Liver Metastases

The content of this chapter has been"adapted from: “Volume measurement vari-
| ability in three-dimensional high- fn:quency ultrasound images of murine liver metas-
tases”, published in Physics in Medicine and Bzology vol 51 (10) May 21 2006‘ by
Lauren A. Wirtzfeld, Kevin C. Graham, Alan C. Groom Ian C, Macdonald Ann F.
'Chambers Aaron Fenster and James C. Laceﬁeld |

3.1 'Inﬁtoduction

*'Pre-clinical mouse models of cancer ‘have proven valuable for research and devel-
opment of new cancer therapies. They serve as an intermediate step between in vitro
- cell culture experiments and clinical trials in humans (1), for example, allowing for

the evaluation of different stages of cancer including primary or metastatic tumours.

44
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The mouse models provide a 3D geometry and a realistic micro-environment in which
to study tumour growth and treatment response before translation to humans.
Historically, most small animal cancer research has relied on subcutaneous tu-
mour models. These modelg allow for external measurements of tumour diameter
using calipers to determine tumour growth and treitment response.. However, caliper
measurements of tumour diameter may not be an accurate indicator.of tumour growth
because the skin and inflammation are included in the measurements [2]. Further-
“more, there is a growing realisation that orthotopic, metastatic, and spontaneously
" developing tumours in transgenic models may more closely approximate human dis-
ease [3]. For these models, the development of tumours in internal organs precludes
the use of caliper measurement and often necessitates the use of endpoint analysis
- of tumour burden and structure to evaluate tumour development. This approach is
costly Snd is susceptible to the inherent variability in the rate of tumour development
in animal models. For endpoint analysis, the researcher is unaware of the current
stage of tumour development when initiating a therapeutic regimen or when consid-
ering sacrificing the animal for further analysis. The development of in vivo imaging
for pre-clinical models has allowed for non-invasive longitudinal study of tumour pro-
" gression and assessment of tumour response to therapy.
High-freduency ultrasound is an attractive option for non-invasive longitudinal
imaging of pre-clinical models [4, 5]. In particular, high-frequency ultrasound can
'be used to detect and longitudinally evaluate tumour progression in pre-clinical soft-

o tissue tumour ‘models, including liver metastases [6], transgenic prostate tumours [7]

and intra-dermal tumours (8, 9]. Ultrasound is also useful for other tumour models, as
demonstrated by results obtained at lower frequencies in orthotopic bladder tumours
[10], spontaneous mammary tumours [11] aﬂd orthotopic hepatocellular carcinomas
(12]. ST ;

‘While ultrasound does not pose a risk to the animal with repeated imaging, every

time point imaged requires an investment of machine and technician time and a
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risk to the animal from anaesthesia, which should be minimized. These factors add
to the cost of the study. Repeated imaging before a significant change in volume
occurs provides no additional information about tumour growth; therefore, imaging
time points should be carefully chosen to maximize the utility of the data. Tumour
volume measurement variability, which determines/ the minimum observable change
in size, must be known to plan these longitudinal experiments. Thus, it is critical
to both quantify the magnitude and identify sources of measurement variability, in
~order to reduce their impact during image acquisition and analysis. |
 This study focuses on murine melanoma liver metastases as an example model be-
cause tumours growing in internal organs; such as the liver, cannot be evaluated lon-
gitudinally without the use of non-invasive imaging. Experimental metastasis models,
in which cells are injected directly into the circulation, enable the investigator to con-
trol the numbers of potential tumour§ in an organ and the tjme frame in which they
will develop [3]. In this paper, sources of variability in the volume measurements for
this model are evaluated and quantified. First, intra-observer variability, i.e., the vari-
ability of repeated volume measurements of a single tumouyr performed by the same
observer, and inter-observer variability, i.e., the variability of repeated measurements
by d_ifferent observers, are analyzed as functions of tumour volume. Second, since
the ségmenté,tion is performed in parallel planes through the 3D image, the distance
between the segmented planes will affect the measurement variability and estimated

volume. Therefore, we determined the most appropriate spacing between segmen-

- tation planes to minimize the time required to segment a tumour without changing

the volume estimate by more than the intra-observer variability. Finally, the impact
on the'v‘arib.bility of experimental factors including breathing motion, the depth of
field of the image, and the répegtability of imaging a specific tumour is also assessed.
These observations enable minimization of the measuremént variability from sburcgs
that can be éontrolled. ’The procedures deséribed here fo"r‘ meaéuriné variability will

be applicable to other pre-clinical cancer models.
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3.2 Methods

3.2.1 Animal Model

An experimental liver metastasis model, previously described in [13] and [6], was
used. B16F1 murine melanoma cells [14] (Cat# CRL-6323; American Type Culture
Collection,, Manassas, VA, USA) were maintained in a+MEM (Invitrogen, Carlsbad,
CA, USA) supplemented with 10% FIBS (Sigma, Mississauga, ON, Canada). All
~ .animals were cared for in accordance to the Canadian Council on Animal Care under
a protocol approved by the University of ‘Western Ontario Councﬂ on Animal Care.
To produce experimental liver metastases, mice were anaesthetized with an intraperi-
toneal injection of xylazine/ketamine (2.6 mg ketamine and (.13 mg xylazine per
120 g body mass). As described previously [13], anaesthetized female C57BL/6 mice
(Harlan, Ipdiamipolis, IN, USA) received mesenteric vein injections of 3 x 108 cells
suspended in 0.1 mL of growth media to target the liver. All mice were 7 to 11 weeks
old at the timé of cell injection. ,

 Prior tQ the first imaging session, the mouse’s abdomen was depilated with com-
mercial hair removal cream. During imaging, the mouse was kept under anaesthesia
" with 1.5% isoflurane in oxygeﬁ and restrained on a heated stage. For longitudinal
e:cperiments; ‘animals were imaged every two to three days.

3.2.2 Image Acquisition

Al images were acquired with a Vevo 660 (VisualSonics, Toronto, Canada) high-
frequency ultiasdund system. A 40 MHz centre frequency transducer with a mechan-
ically scanned, single-element aperture was employed. At the 6-mm focal distance,
the resolution was 40 x 80 x 80 pum® with a 1.5 mm depth of ﬁeld'(ma.nufacturer’s
specifications). Two-dimensional (2D) images were acquired with a 8 x 8 mm? field

of view at 30 frames per second. Three-dimensional (3D) images were produced by
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translating the transducer in the elevation dimension and acquiring 2D images every
30 /mi using the algorithm described in [15]. Three-dimensional images of 8 x 8 x 6

mm3 regions of interest were acquired in approximately 20 seconds.

3.2.3 Tumour Volume Measurement

Tumour volumes were measured by manual segmentation of parallel planes through
the 3D images using software developed in our laboratory [16-18]. The observer was
able to rotate the 3D image and cut through the volume in any plane to familiarize
themselves with the 3D image. Once familiar with the image, the observer began
manual segmentation on an initial plane, typically near the middle of the tumour,
that was pre-selected by one of the investigators (L.A.W.). After the observer out-
lined the tumour in the visible plane by placing points around the tumour edge, the
segmentation plane was moved by a 50 /mi step and the tumour was outlined on the
new plane. Once the edge of the tumour was reached in one direction, the observer
returned to the centre of the image and segmented the other half of the tumour. Any
observed errors could be corrected by moving, adding or deleting selected points on
the outline. Figure 3.1 shows an example of the stages in segmentation of a 4.7-mm3
tumour. Once the tumour was completely segmented, the volume of the tumour was
automatically calculated using a method analagous to the familiar trapezoidal rule
for ID integration, where the volume between two slices is calculated as the average
of the two outlined areas multiplied by the inter-slice distance, and the inter-slice vol-
umes summed to obtain the total tumour volume [16]. All observers’ tumour outlines

were saved for later analysis.
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Fig. 3.1: Stages in segmentation of a 4.7-mm3 tumour, a) The red outline of the
tumour shows the manual segmentation of a 2D plane from a 3D image, b) A 3D image
showing the locations of segmented planes in red. The arrows indicate breathing
artifacts, c) A surface rendered view of the segmented tumour with perpendicular
planes through the image volume. Scale bar in (a) is 1 mm.
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3.2.4 Analysis of Volume Measurement Variability
3.2.4.1 Inter- and Intra-Observer Variability |

A multi-observer stixliy Qas pérformed to assess the inter- and mtr&-observervan-
ability of tumour volume measurement. The désired number of repeat measurements
per image (n) was determined by a conventional sample size calculation [19] with
significance level 0.05 and power 0.80. The calculation used an estimate of the stan-
dard deviation of repeated volume measurements (o = 0.04 mm?) that was obtained
from a previous study [20] with a single observer and tumours with a volume less
than 2 mm®. The caléulé,tion indicated that 16 repeé,ted measurements per image
were necessary to obtain an observable difference in volume of 0.04 mm3, which was
~ glightly smaller than the smallest tumour in the mtﬂtiibbserver study. A minimum
of three repeated measurements per person enabled calculation of statistics for each
observer, so three repeated measurements by seven dbsér?ers (n=3x 7=21) were

chosen to ensure sufficient significance and power if the observer standard deviations

¥ were higher than estimated.

Seven trained observers segmented thirteen 3D ultrasound images of B16F1 liver
‘metastases from a longitudinal study [6].‘ As outlined in table 3.1, 13 images were
included in the study, combrised of 10 unique tumours, and 3 éa'.ses”v‘vhere images
of the same tuxﬁour,':but at different time points over the Iong'itudinal study, were

included. Each observer segménted each image three times, at one-week intervals, to

- minimize the effects of the observers remembering 1mages Ima.ges were randomized

for each repeated segmentatlon and numbered, then the observers performed the
segmentatxon on the i 1mages in sequential order. Two v1ewmg locations were used for
' unage segmentatxon All other env1ronmental conditions remained the same between
all observers and i 1ma.ges ‘The computer, monitor (mcludlng the settlngs) and hghtmg
conditions were kept constant for all i 1mages and observers. The i 1mage magmﬁcatlon

image contrast and brightness settlngs, and sta.rtmg plane for segmenta.tlon were kept
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constant for each image. Predetermined start planes were used for all observers.

Table 3.1: Tumour images analyzed. The tumour volume listed is the average volume
over all 21 measurements from the multi-observer study. The mean volume column is
the average volume of the tumours included in the tumour volume range bin. The day
column lists the numbers of days after injections of the B16F1 cells that the image
was acquired. The same tumours are noted with *,** and ***

Bin Mean Volume (mm°®) Day Volume (mm®)

A 043 10 007
12 045
18  0.76
B 239 15 1.15**
15 158
18  2.85"**
18 3.98
C 0626 17 4.71°
' C 17 04.90* -
18  T7.46*
18  7.98°
- D = 6042 24 4768
.22 73.16

~ The standard deviations of the repeated volume measurements, were calculated
for each tumour and for each observer. The pooled measurements.of all the observers
were used to determine the relationship between the standard deviation and volume
by linear regression of log-scaled data (GraphPad Prism version 4.00 for Windows,
“GraphPad Software, San Diego California USA, www.graphpad.com). »

Intia- and inter-observer reliability coefficients were calculated using the method
described in [21]. The reliability coefficients range from 0 to 1 and indicate the
agreement within or between groups. Based on a preliminary segmentation, the tu-
mours were grouped by size as shown in jgble 3.1 and a two-way analysis of variance
(ANOVA) was performed on each subset of the data. The inter- and intra-observer
- standard error of measurements (SEMner and SEMnsra respectively) were calcu-
lated using a two-way A;NOVA,following the procedure described by [21] and [22].


http://www.graphpad.com
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The inter- and intra-observer minimum detectable change in volume (Avyy,) was cal-
culated from the SEM using equation 3.1 [21],

Abpin > 26 - V2 SEM, - (3.1)

where a significance level of a = 0.05 was used, giving z, = 1.96. |

3.2.4.2 Variability Due to Segmentation Inter-Slice Distance

The tumour outlines from the three segmentations of each tumour from one ob-
server were used to determine the effect on volume estimation of inter-slice distance
(ISD), i.e., the spacing between parallel segmentation planes. Since manual segmen-
_ tation was performed with a 50 um ISD, a volume could be calculated for an ISD
equal to any integer multiple of 50 um by applying the trapezoid rule to outlined
contours from a subset of the segmehted planes. As the start plane was constrained
and kept the same for each repeated tumour measurement, the start plane was also
kept constant when analyzing the effect of ISD on volume estimation.

The coefficient of variation (COV, (SEM/mean volume)) for the repeated segmen-
_tations at each ISD for each tumour was calculated and used in a one-way ANOVA.
ISD over thé range from 50 to 450 pm were used as this was the range where volumes
for all tumours could be calculated. If there was a éigniﬁcént result from the ANOVA

(p < 0.05), Dunnett post-hoc tests were performed. The Dunnett tests compared

‘all data sets to the 50 pm data as a control to determine if there were any group

~ differences in the COV obtained at different ISD.

For each éégmenté,tion of each tumour, the volumes obtained at all ISD were
normalized by dividing by the volumes obtained at 50 pm. The average and standard
deviation of the normalized volumes for all ;tumouré in each bin were then calculated.
For each bin, the normalized volume and standard deviation were plotted j‘é,gainst the
~ ISD. In order to keep the effects of ISD lower than the intra-observér measurement

variability, the largest ISD where the mean plus or minus the standard deviation did
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not extend beyond the mean plus or minus the intra-observer SEM for that volume
bin was chosen as the preferred ISD.

3.2.4.3 Variability Due to Experimental Factors

A separate cohort of mice was used to evaluai:e imaging repeatability and the
éffects. of breathing motion and depth of field on volume estimation. Three mice
with a total of 13 isolated metastases were imaged on day 15 after injection of B16F1
- cells. To determine the scan-rescan repeatability, each tumour was imaged three times

without moving the mouse and a fourth time after removing and replacing the mouse
on the imaging stage. | . |
'Due to the hmJted (1.5 mm) ultrasound depth of field, the tumour can extend
outside of the focal zone. The variability in the volume estimate due to the depth of
field was evaluated by imaging each tumour a.fter it had been raised or lowered 1 mm
within the image, resulting in images with the centre of the tumour above and below
the ultrasound focal zone. ‘ '
Breathing artifacts result from motion between the aéQuisition of parallel planes
in the 3D image. Four images of each tumour were acquired asynchronously with
the respiratory cycle. To obtain an image with no breathing artifacts, each mouse
underwent & tracheotomy. Mice were ventilated (Harvard Model 687 Small Animal
Ventilator, Harvard Apparatus, MA) at 119 breaths per minute with 0.65 mL tidal

volume. An image was acquired with ventilated breathing and a second image with

- the breathing halted for the duration of the image acquisition.

All the iméges were randomized and segmented by a siﬁgle blinded observer as
described above. This analysxs yxelded eight sets of volume data obtained under
different experimental condxtzons Pearson’s correlation coefficients were calculated
to determine if the volume measurements from the different i imaging conditions were
, correlated. An ANOVA was performéd to determine if théré were any differences in

volume means between the different imaging conditions. If the ANOVA identified
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a difference in means at the a = 0.05 significance level, post-hoc paired t-test tests
with a Bonferroni correction were performed. As the Bonferroni correction was used
to avoid Type | errors and there were a total of 28 pairs, p < 0.05/28 = 0.002 was

considered statistically significant.

3.3 Results

3.3.1 Inter- and Intra-Observer Variability

The standard deviation (SD) of each observer’s measurement of each tumour ver-
sus volume (V) is shown in figure 3.2. Linear regression was performed on log scaled

data, which gave the following relationship:

logloSD = 0.925logl0V - 1.40. (3.2)

The range of tumour volumes were not normally distributed; however, no trans-
formation was applied as volumes were analyzed in small number for each volume
bin which did not allow for evaluation of the distribution. The reliability coefficients
for each bin of tumour sizes are shown in table 3.2. High reliability coefficients are
seen for all bins, expect bin D (table 3.1) for the inter-observer variability, which was
slightly less than 0.80. The high value for the coefficients indicates good agreement,
between repeated measurements by one observer and slightly lower reliability between
different observers.

The intra-observer standard errors of measurement (SEMinira) for the four bins
were lower than the inter-observer (SEMinier) and are summarized in table 3.2. The
coefficients of variation (COV, ie., SEM divided by the average tumour volume) for
each volume bin are plotted in figure 3.3." The lowest COV values are seen for the
medium volume range of tumours (bins B and C) and is as low as 4% for the intra-

observer variability in the 1to 4 mm3 bin. The largest (bin D) and smallest (bin
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Fig. 3.2 Standard deviation of three measurements made by an observer for each
tumour plotted against the mean volume of the three measurements. Data from all
seven observers are presented. The solid line indicates the linear regression of the
logged data. Data are plotted on a log-log scale.

Table 3.2: Inter- and intra-observer reliability coefficients, standard errors of mea-
surement (SEM) and minimum detectable change in volume (Avmin) for each volume
bin.

Volume Bin Reliability Coefficient SEM (mm3) (mm3)
(mean volume (mm3)) Intra- Inter- Intra- Inter- Intra- Inter-
A (0.43) 097 092 006 010 017 0.29
B (2.39) 099 0098 0.09 018 026 049
C (6.26) 096  0.85 037 0.72 1.03  2.00
D (60.42) 093 0.79 546  9.13 1516 25.32

All 099 097
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A) tumours have the highest COV at 9% and 14% respectively. The highest COV,
approximately 24%, was obtained for the inter-observer results in the under 1 mm3

tumour bin.

25

Bin A (0.43) Bin B (2.39) Bin C (6.26) Bin D (60.42)
Bin (mean volume in mm3)

Fig. 3.3: The coefficient of variation (COV: standard error of measurement divided by
the average volume in each bin) is plotted for the intra- and inter-observer variability
over four different size ranges of tumours.

Minimum detectable changes in volume were calculated from the SEM using equa-
tion 3.1 and are shown in table 3.2. The inter-observer Avmin is larger than the
intra-observer value due to the higher SEM for all size bins. In all cases, the Avmin
is smaller than the average tumour volume being assessed. For the smallest tumours
(bin A), Avmin is approximately 40% of the average tumour volume, whereas for
larger tumours, Avmin is a smaller percentage of the tumour volume. This arises

because small variations in measurement for small tumours can correspond to a large
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percentage change in volume.

3.3.2 Variability due to Segmentation Inter-Slice Distance

The one-way ANOVA of the COV at different ISD was significant (p = 0.001).
Dunnett’s post-hoc tests showed significant differences between COV at ISD of 50
/mi and the COV at all ISD greater than or equal to 300 pm (p < 0.05).

Figure 3.4 shows the volumes obtained with different slice thicknesses normalized
by the volume determined with a 50-/xm inter-slice distance for each tumour volume
bin. As the ISD is increased, the volume calculated begins to deviate from the
estimate obtained with the smallest ISD. The largest ISD that yielded a mean %
standard deviation volume within the SEMinira bounds were 100, 150, 200 and 600
pm for bin A, B, C and D respectively. The maximum desired ISD monotonically
increases with increasing tumour size. As the tumours in bin D are substantially
larger than the rest, there is also a considerable jump in maximum ISD up to 600

pm.

3.3.3 Variability due to Experimental Factors

The imaging repeatability and the effects of respiratory motion and ultrasound
depth of field on volume measurement were evaluated using a second set of tumours
that ranged in size from 0.38 inm3 to 7.0 mm3. Since the distributions of tumour
volumes analyzed were not normally distributed, the volumes were log transformed
to give normal distributions as judged by the Shapiro-Wilk test for normality (p >
0.29 for all data sets). The transformed data were used for all statistical analyses. A
significant result (p < 0.01) was obtained from the one-way ANOVA and therefore
the post-hoc tests were performed. The results of the correlation and significance of
the t-tests are summarized in table 3.3 and show a comparison of the volumes of the

12 tumours measured in focus with halted breathing compared to each of the other
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ISD (nm) ISD (nm)

Fig. 3.4: Average normalized volume versus inter-slice distance (ISD) for tumour sizes
of (a) less than 1 mm3, (b) 1to 4 mm3, (c) 4 to 8 mm3and (d) greater than 8 mm3,
up to 70 mm3. The solid lines indicate the relative intra-observer standard error of
measurement (SEMinira) for each of the volume ranges and the dotted line indicates
a relative volume of 1. Data points are the mean volume for three measurements *

the standard deviation.
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Table 3.3: Comparison of image volumes obtained from 12 images acquired repeatedly
while animal was breathing freely, while ventilated and with halted breathing and also
for images with the tumour above and below the focus and after moving the animal.
The correlation coefficients and t-tests are performed against the ideal case with the
tumour at the focus and the breathing halted.

Correlation Coefficient (p) Paired t-test p-value

Free breathing 1 0.986 0.191
Free breathing 2 0.988 0.055
Free breathing 3 0.990 0.149
Re-scan 0.975 0.247
Tumour above focus 0.976 0.103
Tumour below focus 0.980 0.001
Ventilated breathing 0.996 0.325

conditions. Mean volumes were not statistically different from the in-focus halted-
breathing data with the exception of the data from free-breathing mice imaged with
the tumour below the focus. The halted breathing case gave the highest average
volume and the tumour below the focus gave the lowest average volume. All the
correlation coefficients were 0.975 or higher. All correlations were significant with p
less than 0.0001.

3.4 Discussion

3.4.1 Inter- and Intra-Observer Variability

The trends shown in the intra- and inter- observer variability follow those seen
in clinical studies as demonstrated by Xiong et al. [23] in liver tumours, in that the
inter-observer variability is higher than the intra-observer variability. One difference
between clinical ultrasound data and the high-frequency system is the relationship
between the variability and the volume, ft has been shown using data at clinical
ultrasound frequencies [24] that, as the volume increases, the coefficient of variation
(COV) decreases monotonically. For volumes measured in high-frequency images, the

COY decreases with increasing volume for small tumours, but increases as a function
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of volume for larger tumours. One potential reason for this increase at larger volumes
is that these tumours now extend outside of the depth of field of the fixed-focus
imaging system. Therefore, much of the boundary of the tumour is no longer in
focus, leading to difficulty in identifying the location of the boundary. This effect can

be seen in figure 3.5.

Fig. 3.5: 47.7 mm3 tumour. Image shows depth of focus artefact (narrow arrow), out
of focus boundary (wide arrows) and rapid attenuation beyond the focus. Scale bar
indicates 1 mm.

The intra-observer values for the SEM, COV, and Avmin are all lower than the
inter-observer values. This is the same trend that has been reported in clinical imaging
studies, as repeated measurements by the same person are more likely to agree than
measurements by different individuals. The highest COV is just under 24% for the
inter-observer variability and just under 14% for the intra-observer variability for the
smallest tumours. Since the typical volume doubling time for B16F1 liver metastasis
is 1.2 days, [6] the intra-observer and inter-observer COV are both sufficiently low to
permit daily tumour volume measurements in this model.

The measurement variability is most important for longitudinal imaging studies as
it will dictate the detectable change in volume as the tumours grow. The high inter-
observer reliability coefficients indicate that different observers could be used during

a longitudinal study. To be conservative, if the same observer always segmented the
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same tumour at each imaging time point, any bias intreduced by the observer would
apply to the entire growth curve. This would allow the segmentation to be shared
between several observers. | , . ) ,

In addition, the use of semi-automated segmentétion techniques would signifi-
cantly reduce the time required to measure tu‘moﬁr;volux_nes. The data pregented
on the variability in manual segmentation could bel used fdr the comparison of any
semi-automated segmeﬁtation results to ensure the volume variability is the same or

~ improved with the semi-automated technique.

3.4.2 Variability due to Segmentatidn Inter-Slice Distance

~ Significant differences in the COV: are seen as the ISD increases, indicating that
the variability in the volume estimate changes with ISD. The suggested maximum
ISD increases monotonically with increasing volume. At the recommended ISD, the
number of slices through the average tumour in each size range varied from 7.5 to 12.
Using the maximum acceptable ISD will reduce the total number of planes segmented

" for each tumour and therefore reduce the amount of time required to analyze the data.

For larger experiments where ' many tumours are followed, the time spent segmenting
‘the tumours can be prohibitive if every acquired image plane is analyzed.

In this study, the evaluation of ISD was constrained solely to varying the distances
between planes but not ‘the initial plane. In our segmentation’ method, the volume
outside the last segmented plane at each end of the tumour is omitted from the
i volume .comyputation. With_tpqﬁ start plane fixed, differenées m the volume omitted
at the qﬁds of the tumour. are the primary sourcé of f)liscrepan‘cies between volumes
: gspim,ated at different ISD. If ‘t~he start plane is al}qwedlt(d vary, the vgt}unﬁber of planes
ségmented can also vary, wﬁig:h,gould introduce an additional source of variability in

the volume estimate.
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3.4.3 Variability due to Experimental Factors

* Our results demonstrate that breathing motion does not substantially change the
measured tumour volume. The breathing rate of an anaesthetized mouse is approxi-
mately one to three breaths per second. The ultrasound syhtem a.cqxiir"es’ a single 2D
image plane in 1 /30 second, ” respiratory motion is not apparent in the 2D images.
During 3D image acquisition, ten 2D planes are acquired in one second, which permits
acquisition of several 2D planes per respiratory cycle. While the breathing cycle is
- periodic, there is a plateau at end expiration with minimal organ motion. As a result,
few 2D planes show the active part of the respiratory cycle. This effect can be seen
in figure 3.1D.

Since the estimated tumour volumes were smaller when the images were acquired
when the tumour was located in the far field, below the focus, it is advisable to avoid
having any data of interest in this region. Significant differences in tumour volume’
were not obse?ved when the tumour was located in the near field, above the focus,
‘suggesting that larger lesions that do not fit within the depth of field should preferably
extend a;b&e'the focal zone rather than below it. The tight focus of the single-element
_ probe and high attenuation at 40 MHz results in rapid signal loss beyond the focal
" depth and consequent difficulties in segmenting these tumours.

3.4.4 Design of Longitudinal Imaging Studies

" If the equation to describe tumour growth, the growth rate, and the variability of
 volume measurement are all known, then it is possible to compute the time needéd
to observe a significant change in volume. An example is presented hére for the
spéciﬁc' case of expdr'ientié.l growth in volume, which we have shown to be a good
approximation to the growth curves over-the range of volumes studled [6]. Exponential
growth is & common model used in the literature. -

The Avp, calculated from the intra-observer SEMinsra (table 3.2) were plotted
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versus the mean volume of each tumour size bin (table 3.1) on a log-log graph. The
use of & log-log graph is justified by figure 3.2, which shows a log-log relationship be-
tween the standard deviations of the observers’ measurements and the mean tumour
volumes measured. Linear regression was performed to interpolate the value of Avpn

over the range of volumes studied, yielding the result

10910AVmin(V) = 0.95l0g39(V) — 0.65. (3.3)

Equation 3.3 can be used to determine the change in volume at which the tumour
should next be imaged, Avy,,(V), as a function of the current volume, V' (figure
3.63)‘.

| Figure 3.6a can be used to compute the time needed to observe a detectable change
in volume. Exponential growth is described by the equation V(t) = V(0)exp|(log.2/t2)t],
where the volume doubling time, ¢3, can be determined from two measurements that
differ by moré than Avpyi,. The exponential function can be rearranged to obtain
an equatidn for ¢t as a function of volume and doubling time, which can be used to
compute the times at which the tumour reaches sizes V and V + Avp,n (V). Taking

 the difference of these times yields

Atmin =

1) Av,,,m(V)] , K (3.4)

log.2 V
* where Aty is the time needed to observe a detectable change in volume and Avpia (V)

log. [1 +

can be read from figure 3.6a. The specific equation will change with different math-
ematical growth models, but cé.n always be derived from an equation like equation
- Figure 3.6b shows Atys versus the current tumour volume from equation 3.4 A

- series of curves are constructed: 'f(‘)r doubling times ranging from 1t013 days, which

correspond to our empirical data for a variety of liver metastases and a transgenic
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Fig. 3.6: (a) Minimum detectable change in volume (Avp;,) versus current volume
(V). (b) Time needed to observe a detectable change in volume for different doubling
times (¢;), assuming exponential growth. Doubling times range from 1 to 13 days.
Both graphs are based on the intra-observer minimum detectable change. in volume
Avm.-,.(V).
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prostate cancer model [6, 7]. Aty increases as doubling time increases and decreases
as the tumour grows.

The estimated Aty;, could aid in the design of imaging schedules in both growth
and treatment studies. Delaying imaging until a significant change in tumour volume
is expected enables resources to be used more eﬁc;iently and decreases the risks as-
sociated with anaesthetic exposure. The wide range of time intervals to wait prior to
re-imaging shows that imaging as frequently as possible may not always be advisable.

_From the initial set of curves shown in ﬁgure 3.6b, adaptations can be made for dif-
‘ ferent treatment schedules with knowledge of the growth rates of untreated tumours
and how the treatment affects the tumours. To evaluate a novel therapeutic agent,
s small trial could be conducted to estimate the tumour growth rate, or imaging
 intervals based on tumour growth in the control animals could be used for the entire
study. :

3.5 Conclusions

The identification of the sources of measurement variability and the quantification
- of the magnitude of this variability is imperative for the proper design of a longitudi-
nal iihaging étudy. The measurement variability will dictate the minimum detectable
volume change, which in turn influences the scheduling of imaging sessions and the

interpretation of results, such as an observed change in tumour volume or a difference

. in tumour volume between treatment groups. In this study, we have quantified the

measurement variability that arises from single or multiple-observer measurement,
altering vthe segmentation inter-slice dista.nce2 varying the position of the tumour of
interest in relation to the ultrasound depth of field, and from allowing the anaes-
thetized animals to maintain a natural breathing cycle. There are numerous means

by which measurement variability can be minimized. For each individual tumour

being tracked longitudinally, one observer should be designated to measure tumour
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volume throughout the experiment, although different observers can follow different
tumours without impacting measurement variability. The tumour of interest should
always be kept within, or a.bove, the focal zone when acquiring three-dimensional
images. When segmenting the tumour in parallel planes, the maximum inter-slice
distance that yields a measurement variability wifhin the intra-observer measure-
ment variability should be -used and will be a function of tumour size. Respiratory
gating is not required to control volume measurement variability. Since the inher-
_ent contrast of liver metastases in ultrasound images is specific to the btumour type
‘ being studied, the absolute value of the measurement variabilities will change witil
different tumour models, yet the general guidelines outlined in this paper - desig-
nated observers, control of tumour position relative to focal depth, préper calculation
of inter-slice distance for segmentmg, and absence of a reqmrement for respiratory
breathing - are likely to hold true for a variety of models. These results are neces-
sary for the proper design of a longltudma.l imaging study The prooedure outlined
here will be apphcable to studies of measurement va.nablhty w1th other pre-clinical

imaging modalities.
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Chapter 4

‘Monte Carlo Growth Curve
Simulations for Planning
- Longitudinal Imaging Experiments

with '_Mouse Cancer Models

, The contents of this chapter are in preparation to be submitted as a paper with the
author list: L. A. Wirtzfeld, A. Fenster and J. C. Lacefield

4.1 Introduction

Preéﬁmcal animal studies of cancer growth and treatment frequently rely on sin-
gle time-point endpoint analysis, or imprecise caliper measurements for subcutaneous
tumours, to compare treatment groups and determine any effects. This method pro-
vides limited information on tumour growth or changes in tumour‘kfowth‘ as 8 result
of the treatments. For 'exam'f)le, tumours that respond to therapy initially but quickly
regrow and those that see a reduction in growth rate for the duration of the treat-
ment can'easily be indistinguishable at end point, yet suggest substantially different

71
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mechanisms and consequently differences in how the treatment should be adminis-
tered {1). High-frequency ultrasound has been employed to track growth in vive in
mouse models of soft-tissue tumours [2, 3] and can aid in providing information on
tumour growth, which could be used to evaluate treatment effectiveness and deter-
mine appropriate treatment scheduling. To obtaixi as much information as possible
from these experiments, they must be designed appropriately to ensure that sufficient
data are collected for the appropriate analysis to be applied.

Preclinical imaging will make it easier and consequently increasingly common to
' monitor tumour growth through time, requiring appropriate analyses of the tumour
growth. There is a great deal. of literature examining tumour growth, appropriate
mathematical functions that can be used to describe this growth and how treatments,

~ along with their responses, can be modelled {4, 5].

A wide range of functions are used to model tumour growth ranging from sim-
ple exponential functions to complex growth curves including stochastic parameter
changes over time to account for transitions between growing and dormant states
[6, 7). For this paper, the discussion will be constrained to the exponential and Gom-
pertz functions as they are two of the most frequently used functions. The exponential
- function has been used extensively, including in the seminal paper by Skipper et al. [8]
ina ‘l'eukem,iva model. The exponential function is defined as:

V(t) = Voe™, (4.1)

" where V(t) is the volume at time ¢, V is the initial volume at ¢ = 0 and a is the growth
rate which is related to the doubling time, ¢4 = {82, Due to the constant growth rate,
the exponential function increases without bound and is unable to'take into account
any growth limiting factors such as limited nutrients and space. While the work by
Skipper et al. [8] was applied to leukemia and this model has been effective for many
~ blood cancers, it has also been applied extensively to solid tumours [9].

The Gompertz function, which is also extensively used (5, 9-11], has an additional
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parameter relative to the exponential function that gives the Gompertz an exponen-
tially decaying rate constant which results in a decelerating growth rate over time.
The Gompertz is a sigmoidal shaped function defined as:

V =V,eb(-e™), | (4.2)

where b represents the rate at which growth slows down, $ = in(V/V,) and V. is
the maximum volume that the function approaches asymptotically. There is a great
- deal of the literature on this model, especially by Larry Norton et al. {12, 183].
Figure 4.1 shows example exponential and Gompertz functions with the same
instantaneous growth rate at time zero. There is & limited period of time around
t = 0 where there is very little difference between the exponential and Gompertz
. functions; however, they diverge quite substantially over time. For many of the
analyses performed on fitted growth data, the differences between these two functions
would give different results and interpretations, including different estimated tumour
initiation times and different time to-reach a lethal tumour burden.

In the literature, many analyses are based on the functional form of growth being
the same before and after treatment [8, 14]. Limited data availability can make it
.' difficult to d_etermine if two curves are the same or if they can be considered parallel
with the séme growth parameters but different. initjal volume at t = 0. Paraliei curves
would allow for an offset in the initial volume parameter, which produces an offset

.in time such as what might arise from a treatment experiment. In a stady of rat

- brain qﬁmour growth [15], exponential growth curyes were fit to pre-treathe_nt and

post-treatment growth data without the requirement for the same growth rate post-
treatment. Ross et al. [15] found the growth rate to be retarded after the treatment
and backprojécted this growth rate to estimate a cell-kill, while being sure to attribute
the appropriate portion of the growth deia.;l to the change in growth rate. This study
} clearly demonstrated that assuming the growth is unchanged after a treatment can

change the outcome measures. If the growth curve post-treatment is not the same as
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Fig. 4.1: An example of exponential (dotted line) and Gompertz (solid curve) func-
tions with the same growth rate at time zero (the theoretical time of tumour de-
tection). The Gompertz function has a higher growth rate prior to time zero and a
decreased growth rate after time zero, compared to the exponential function which

has a constant growth rate.
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pre-treatment, then how it changes should influence how results are interpreted.
. Simulations of growth data based on experimentally determined growth param-
eters enable curve fitting analyses to be performed on a large number of data sets
and offer insight into how to design preclinical imaging experiments to maximize the
chance of seeing the effect of a treatment. Without this information, it is difficult to
know how imaging experiments should be designed as it is a challenge to determine
how individual imaging and tumour-growth parameters influence the end results. If
‘the tumour is imaged too frequently, there are risks to the animals from anesthetic,
time and costs for the imaging but no additional information gained. If the imaging
is too infrequent, the analysis that can be done on the growth curves will be limited
and potentially result in failed experiments and wasted time, money and animals.
This paper presents Monte Carlo simulations of tumour growth based on the range
of parameters obtained from curves fit to measurements of actual B16F'1 liver metas-
tases by three-dimensional high-frequency ultrasound [2]. Based on the simulated
growth, a variety of parameters that contribute to an imaging experiment are varied
to determine their influence the relative goodness of fit results for both exponential
and Gompertz functions ﬁtted to the data. The parameters examined include ex-
: perimental design parameters (imaging frequency, initial and final imaging time and
range of volume imaged), ultrasound system parameters (measurement vanablhty,
minimum and maximum size that can be 1maged) and blologlcal parameters (growth

of the tumour model). Our study focuses on the experimental design and ultrasound

T system parameters as they are more readlly controlled or 1mproved upon.

Three sets of 31mula.t10ns were performed In the ﬁrst case, the ﬁtting results of the
- exponential a.nd Gompertz functxons were compa.red to determme for what 1ma.grng
parameters the Gompertz ﬁts better than the exponentlal gwen that it is known that
the underlylng functlon is more oomplex than the Gompertz or exponentlal

In the second case, two dlfferent curves were generated and each ﬁtted with Gom-

pertz functions individually and using a constrained ﬁt to generate parallel Gompertz
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functions to the fitted two data sets. The two fitted curves could be compared to
determine if there was an advantage to fitting the higher degree-of-freedom, uncon-
strained Gompertz functions to the data. If the individually fitted Gompertz offer no
curve fitting advantage, this implies the two data sets are in fact close to parallel and
consequently cannot be distinguished from each otﬁer in terms of growth parameters.
~ In the third case, each data set was divided in half to simulate a before and
after treatment scenario. Both unconstrained Gompertz and constrained Gompertz
_functions, where only the initial volume can be different between two data sets, were
 fit to the early and late halves of the simulated data sets. Given that the two halves
of the data set arise from the same growth curve, it would be expected that the
constrained Gompertz function would fit the data as well as the unconstrained. If the
. parallel Gompertz functions offer an advantage, the implication is that the two data
sets are considered close to parallel a.ﬁd therefore their groﬁh parameters would be

the same.

4.2 Materials and Methods

1 4.2.1 Simulations

All simulations and curve fitting were performed in Matlab (Mathworks, Nat-
ick, Massachusetts) using the built i statistical toolbox for non-linear least-squares
' optimization. o ‘ o 1
" In order to simulate a growth function which can be used to generate actual
tumour volume data, an appropriate growth model with an additional dehree of com-
plexity is necessary. The generalized logistic function [16] can be used to simulate
the actual turour growth. ‘The generalized lo‘giAst'ic" allows for the point of inflection
to octur anywhere along the sigmoidal curve, whereas the logistic function exhibits
a symmetry about this inflection point, thus limiting its flexibility. The generalized
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logistic function is defined as:

\ vy 1
V() T

where 6 is the carrying capacity, which the tumour volume approaches asymptotically,

and o determines how quickly or slowly the function reaches the carrying capacity.
The generalized logistic function can bé simplified to a Gompertz function in the case
of a — 0% [16]. ‘ '

. A simulated true growth function was generated by randomly sélecting coefficients
for the generalized logistic function. The distribution for the coefficlents was based on
data fitted to tumour volume data obtained from imaging B16F1 (murine melanoma)
liver metastases in & syngeneic mouse model [2] to allow for reasonable values 6 be
selocted. In that study, tumours were typically imaged from approximately 0:05 mm?3
t0 300 mm?® and exponential growth curves indicated volume doubling times of 1.2
days £ 0.2 days (mean + SD) and 1.4 + 0.4 days for two experimental groups. a
was selected from & uniform distribution between 0.2 days~! and 0.5 days™!, which
correspond to doubling times of 3.7 days to 1.4 days since the B16F1 tumours are a
rapidly growing tumour line. a varies between 0 and 1 and was selécted on a uniform

" distribution to allow how rapidly the curve saturates to vary. Vj was selected from
a log-normal distribution between 10~57 mm3 and 10%™ mm3, which corresponds to
a range of 1 to 1000 cells with a diameter of 15 um. Metastasis models would be

_expected to start m“l:h a small number of cells, whereas orthotopic models often start

. witha large number. of cells injected in one location. 6 was selected from a log-normal

distribution between 10> mm?® and 10'© mm?® based on values of 8 or V, from the
Gompertz function obtained from fitted actual tumour growth data. This function
was considered the true growth of the sxmulated tumour, which was then sampled at
several different proposed imaging mtervals and for several different miniroum and
maximum imaging time: points. Sampled data were obtained to simulate imaging
every 1, 2, 3, 4 and 6 days with sampling beginning between 0 and 25 days post
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injection (with 5 day step size) and ending between 35 and 60 days post injection (with
5 day step size). Any sampled data sets with less than or equal to five data points were
discarded as there are insufficient degrees of freedom to perform all the curve fitting.
Variability, randomly selected from a normal distribution with standard deviation
- based on the experimentally determined intra;-obéerver variability [17], was added
to each simulated data point. A summary of the p‘drameters selected to generate
the growth: function, run the simulations and sample the data is outlined in table 4.1.
_ Figure 4.2A shows an example function with the sampled points. The same simulated
7 data after including measurement variability are shown in figures 4.2B and 4.2C.
This set of data points was used as the simulated experimental data. Exponéntia.l
and Gompertz functions were both fit to the data sets, see figure 4.2D, using nonlinear
least squares regression. The residuals were also calculated and used to compute the
sum of squares between the data and fitted curve. From each simulation, the chosen
parameters were recorded, as well as initial and final volumes, volume range, number
of data points and duration of data collection. In order to perform statistical analyses,
parameters had to be binned to allow different levels of the variables to be evaluated.
Individual pa.rametera were bmned based either on linear or logarithmic distributions,
: dependmg on the individual para.meter distribution, to try to maintain a consistent

number of cases across all bins.

4.2, 2 Statlstlcal Methods

In order to determine how well ‘the exponentxa.l and Gompertz functions fit the
simulated da.ta, statistical analyms is required. An increase in the complexity of
the function (ﬁ'om exponentlal to Gompertz) typlcally results in a reductlon in the
sum-of-squares (the sum of. the squares of the volume between the data and fitted
curye), however, this is insufficient to determine whether there is an improvement in
fit [18]. There needs to be a sufficient improvement in the sum-of-squares to justify
the additional degrees of freedom in the more complex function.
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Fig. 4.2: Graphs show the steps in a simulation to generate data and perform the
curve fitting. All graphs show the volume in mm3 versus time in days where day 0
would be the beginning of the experiment. A) Shows the generalized logistic function
used as the true growth function (dashed line) with the sampled data points (circles)
to indicate the time points that would correspond to an imaging time point. Data
points are acquired every 2 days from 5 to 55 days. B) Shows the data points (cross)
that will be used in the curve fitting which were obtained by adding variability to the
sample true growth. C) Shows the same curve and data points as in plot B but on
a linear graph to allow the variability of the data points about the truth function to
be seen. D) Shows the truth curve, data points and a fitted exponential (dash dot)
and Gompertz function (dotted).
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Variable (units) | Values

Randomly selected pa.rémeters for

generalized logistic function
a uniform distribution 0 to 1
a (days™) uniform distribution 0.2 to 0.5
Vo (mm?®) logarithmic distribution 10~57 to 10074
| 6 (mm®) : | logarithmic distribution 10? to 10'°
- Factors varied in simulations

Imaging interval (days) |1,2,3,4,6
First imaging day (days) | 0, 5, 10, 15, 20, 25
Last imaging day (days) | 35, 40, 45, 50, 55, 60

Factors employed in statistical analysis
Imaging interval (days) |1, 2,3, 4,6
Volume range (mm?) maximum volume - minimum volume
Length of time (days) = | last - first imaging day
- | Minimum volume (mm?) | Volume of data point on first imaging day

Table 4.1: A variety of parameters are used for different aspects of the data simulation

and curve fitting. The distribution from which the parameters for the generalized

logistic function are chosen is given. Three main factors were varied to give a range

~of values of the imaging interval and first and last day for imaging to determine how

* . these parameters would influence curve fitting. The last four parameters listed are
those which were used in the statistical analysis of the curve fitting.
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'Akaike developed a method for comparing fitted curves based on information
theory and maximum likelihood that does not require functions to be nested (18, 19].
The Akaike method can also calculate the percentage chance each ﬁtted function 1s
correct, whmh a.llows a group of results to be compared since there is no hypothesls
testing. The metric used is called the Akalke Informatlon Cntenon (AIC) and is
calculated from the sum-of-squax'es of the fit (.S’S), the number of coeﬂic1ents (K-1)
and the number of data pomts (N). For small values of N the AIC is inaccurate [18],
- therefore a correction has been apphed to 1mprove the results | |

SS) F2K+ 2K(K+ 1)

where the th1rd term is the correction. There is a requlrement to have at least two
" more data points (V) tha.u the number of fitted coefficients in the function. The AIC,
values are difficult to interpret individually, but the more useful value is the difference
in AIC, values for the two fitted functions of interest. The AAf C is given by:

AAIC = AICE - AICA ~ (4.5)

where B is a more complex model and A is a simpler model. The probability that
~ one function is the better function to choose is also known as the Akaike weight and
is calculated by: P

Lo c~05AAIC " ' _s R
AW = W. g (4-6)

"The Akaike weight, or probability, gives the likelihood the more complex model is

" more appropriate out of the two functions being compared.

Univariate ANOVA tests were performed to determine which factars (see table 4 1
for a list of variables included in analysis) had statistically significant effects on the
Alé.ike weights. For all statistical tests, the analyses were performed in SPSS (SPSS
Inc., Chicago, Illinois) and o < 0.05 as considered significant.
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4.2.3 Gompertz Versus Exponential Functions

5

The goal of the first simulation was to determine when the Gompertz function
would'ﬁtv the data better than the eprnential function. Data sets wit‘h fitting curves
as shown in figure 4.2 were generated. Akaike weights were calculated for each data
set to allow the fit of both functions to be compared. Given that the data sets all
arose from an underlying generalized logistic function, which is more complex than
the functions being fitted, the goal is to determine under what conditions it is possible

“to tell that the tumour grthhscun}e‘is’ mofe complex in shape than é,n’\expaheht‘ial
function.

A univariate ANOVA was performed on the Akaike weights for the imaging in-
_terval, number of time points, minimum volume and range of volumes imaged. An
a < 0.05 was considered significant. Estimated marginal means were plotted for main
effects and interaction to determine the trend in:the Akaike weights as a function of
the variables. Based on the results of this simulation, if it is possible for the Gompertz
function to be the preferred model under a range of conditions, subsequent analyses
will be performed with only Gompertz functions, otherwise they will be performed
_with exponential functions.

4.2.4 Comparison of Two Different Growth Curves

Subsequently, two generalized logistic functions with different coefficients were

= _.génerated. Gomperti functions were fit to both data sets independently, and in

addition, parallel Gompertz growth curve were fit to each pair of data sets. For the
parallel Gompertz functions, the a and b parameters were constrained to be the same
' for the two curves and only V,, could differ. The fit of the constrained parallel curves
versus the unconstrained curves were compared to determine which method provides
the ‘bétter fit. If the conétraiﬁed iiarallel curves fit better, a difference in growth
between the two data sets cannot be determined, although it is known that the two



data sets arose from different growth curves.

. A univariate ANOVA was performed to determine which parameters had signifi-
cant effects on the Akaike weight for the two unconstrained fitted curves compared to
the two parallel curves. The equivalent analysis to the previous section was performed,
with the difference of comparing individual versus p;ra.llel Gompertz functions instead
of two different functions.

'~ 4.2.5 Comparison of Early and Late Time Growth Curves |

To determine the effect of fitting separate curves to two non-overlapping tumour
volume time series, the simulated data sets were ’diilided in half to give an early
and late set o;f data points. The data will be analyzed with the Gompertz function
as determined to be appropriate based on the results of section 4.2.3. Individual
Gompertz functions were fit to each of the data sets without constraint initially.
Additfonally, Gompertz functions were fit to each data set with the constraint that
the fitted functions must be parallel, with a and b the same between the two functions.
This constraint allows only a variation in the y-axis crossing and consequently can
_ approximate a growth delay that could potentially occur in the case of a treatment
| study. The fitted results were then analyzed to determine the conditions required for
the parallel functions to fit better than the individual functions (i.e., Akaike weight

less than 0. 50, as this is selecting the less complex solution) given that it is known
“they arise from the same underlying growth curve. '

Univariate ANOVAs were performed on the Akaike weights for the individual ver-
sus parallel Gompertz functions. Varjables had to be analyzed in multiple ANOVAs
due to the hmltatlons in the number of levels and factors SPSS could handle. 'One
ANOVA was performed on the una.gmg mterval and the number of tune pomts in
each data set. A second ANOVA was performed on the imaging interval, minimum

- volume in the early a.nd late growth curves and the volume ra.nge in the early and

late growth curves.
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4.3 Results

4.3.1 Gompertz Versus Exponential Functions

Figure 4.3 shows an example of a growth curve with both the exponential and
Gompertz functions fitted to the data. In this case, at early time points both func-

tions deviate from the simulated growth and data points. The univariate ANOVA

Fig. 4.3: An example of a simulated tumour growth function (blue) with a Gompertz
(red) and an exponential (green) function fitted to the data points. Although there
are data points distributed evenly over the entire time range, neither the Gompertz
nor the exponential function is able to maintain a good fit with the data over the
entire duration.

showed significant main effects and all interactions between for the imaging interval,
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number of time points, minimum volume and range of volumes imaged. This means
that the Akaike weights depend significantly on each variable, and that each variable
has a relationship with all the other variables. This makes it difficult to draw simple
conclusions regarding what ranges of each variable would be required to see a Gom-
pertz fit as the preferred function, as that range w/ould be depend on the values of
other variables. Main eﬂects indicate the value of the Akaike weight depends on the
value of the different factors analyzed in the ANOVA.

Figure 4.4 shows a plot of the Akaike weights as a function of the length of time
Vdata is collected and the imaging interval in panel (A) and minimum volume 1maged
and volume range in panel (B). Figure 4.4A shows that as the number of data points
increase, the Akaike welghts increase, with the most frequent imaging schedule (1 day
intervals) approaching the maximum Akaike welght for shorter lengths of time. An
Akaike weight greater than 0.5 indicates that the Gompertz function has a higher
chance of being the better function to choose. For the two most frequent imaging
intervals (1 and 2 days) the Akaike weight is greater than 0.50 for any'length of time
longer than 15 days. For imaging every 6 days on the other hand‘,‘the experiment
would need to last at least 40 days to produce sufficient data to choose the Gompertz
- function over the exponential function. Note that the Akaike weight increases rapidly
at tllé low end of the length-of-time axis: in this region, only a small increase in
number of data points leads to a noticeable increase in the Akaike weights.

The Akaike weight marginal means show a steady decrease for increasing mini-

"." mum volumes when averaged over all volume ranges. When the volume ranges are

exa.mmed separately, as shown i in ﬁgure 4. 4B for small minimum volumes all curves
show relatively hxgh Akaike weights However a.s the' minimum volume increases the
smallest volume ra.nges show 8 very rapxd decrease in Aka.xke welght. "The results
for the smallest volume ra.nges are hxgﬁTy dependent: on the mimmum volume that
is unaged If the minimum volume unaged was maxntamed less than 4ppro:umately
0.09 mm® (about 550 ym diameter assuming spherical tumours), then for all other
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Fig. 4.4: Graphs show the marginal means for the Akaike weight comparing a Gom-
pertz function to an exponential function. A) The Akaike weight increases with
increased length of time the data spans and approaches close to 100% asymptotically.
More frequent imaging results in a more rapid approach to the maximum value.
B) For small minimum volumes there are relatively consistently high Akaike values,
however there is a sudden drop as the minimum volume is increased which occurs at
higher minimum volumes as the range of volumes is increased. This suggests that
small volume ranges are particularly sensitive to the minimum size.
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combinations of parameters the Akaike weight could be kept in the region where the
Gompertz fits the curves well. Conversely, if the volume range was greater than 20
mm? (above bin 3) the minimum volume could be increased up to 140,000 mm?® (about
64 mm diameter) before the Akaike weight fell below 0.5.
The strong dependence on the minimum imageél volume for the different volume
fanges_ suggests that improving the ability to image smaller tumours could have a
substantial effect on the ability to fit curves to data that span a small volume range.
'The minimum volume suggested at 0.09 mm? would correspond to a spherical tumour
Vwith approximately 0.55 mm diameter, which has been detected by ultrasound with
the B16F1 liver metastases. This minimum volume would allow Gompertz function
to be used for all volume ranges. The lowest two volume-range bins correspond to
very narrow ranges of growth, 5 1 mm?, but even a 20-mm?3 volume range, which is

included in bin 3, is a reasonable range of volumes to measure.

4.3.2 Comparison of Two Different Growth Curves

Subsequent results are only presented for the Gompert.z_‘functibh as the previous
section demonstrates that it is possible to select variables such that the complex
| shape of the tumour growth can be fitted better with a Gbmpertz finiciiion than an
exponential function. Figure 4.5 shows an example of two curves fitted with individual
and then parallel Gompertz functions. The example shows a case where the parallel
_ 'Gompertz functxons are not a good match to fit both sets of data as their growth
" rates are substantlally dlﬂ’erent
A high value for the Akaike weight indlcates that the more complex model . where
the two data sets are fitted sepa.rately - is a-better ch01ce for fitting the data than
the constrained parallel curves. The ANQYA shows a significant four-way interaction
between the imaging interval, number of time points, minimum volume and volume
range of the data set, indicating that all the experimental design variables combine

to influence the value of the Akaike weight. All main effects are significant as well as
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Fig. 4.5: Two different simulated tumour growth curves are shown with a Gompertz
function fit to each data set (red) and with parallel Gompertz function fit to each data
set (green). These two growth curves are clearly different enough that the parallel
Gompertz functions are not able to follow the shape of the lower valued curve at all.
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almost all the interactions. From plots of the marginal means for each of the variables,
Akaike weights over 0.5 (indicating data sets should be fitted with separate functions)
can be achieved for imaging intervals every four days or less, for lengths of time in
bin 3 (25 days) or higher, for volume ranges above 20 mm?® and for all minimum
volumes. Figure 4.6A shows the values of the Akaike weight gradually decrease for
increased imaging interval. The multiple lines for the individual binned volume ranges
are approximately paré.llel, as is suggested by the non-significant interaction between
_these parameters. Figure 4.6B shows the same trend as in part A of the figure, with
7 very high minimum volumes or long imaging intervals having Akaike weights beloﬁ'
0.5.

- The requirements to be able to decide that two functions are in fact different
based on requiring different Gompertz functions to fit the data correspond well with
the requirements for the previous section to be able to ﬁt,the Gompertz functions
to the data. The minimum volume (0.09 mm®) and volume range (20 mm?®) are the
same as the previous section with the length of time being slightly higher at 25 days
with a maximum imaging interval of 4 days.

- 4.3.3 Comparison of ‘Early and Late Time Growth Curves

Results for this section are only presented with Gompertz functions. Figure 4.7
shows an example simulation with the data divided into an early and late segments.

-In this example, using parallel Gompertz functions yields a poorer fit for the data

" than is achieved with individually fitted Gompertz functions.

For the first ANOVA, the imaging interval and number of time points were both
statistically significant main effects as was their interaction. Marginal means remained
below 0.50 (meaning constrained pamllﬂ ‘Gompertz functions are acceptable) for all
imaging intervals and were appraximately 0.50 or below for imaging at less than or
equal to 19 time poinfs,: Ihv.thé seoond ANOVA, all fhevf’a.ct.ors had a,éiglsliﬁca.nt efféct
‘on the Akaike weights'and many of the combinations of factors varied significantly
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Fig. 4.6: Both graphs show the marginal means of the Akaike weight for comparing
the fit individual Gompertz functions to two separate sets of growth data compared
to fitting parallel functions. Akaike weights decrease for increased imaging interval
and volume range, however, they decrease for increase minimum volume. A large
range of parameters allow for the Akaike weight to be maintained above 0.5.
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Fig. 4.7: The graph shows simulated tumour growth (blue) with individual Goinpertz
function fitted to the first half (up to day 20) and second half (beyond day 25) shown
in red. Gompertz functions constrained to be parallel were fitted to the two data
sets (green). For the early data set the constrained Gompertz curve fitting did not fit
the data points as well as the unconstrained Gompertz function. For the later time
points, there is very little difference between the two curves.
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with each other. Based on the marginal means of the individual factors, to avoid an
Akaike weight over 0.50 it would be necessary to maintain an imaging interval of at
least 2 days and a minimum volume in the late curve above 0.5 mm3. Figure 4.8
shows the marginal means of the Akaike weights and the influence of the imaging
interval with the minimum volume of each part of the curve. In figure 4.8A it is seen
that for imaging intervals of 1 day, the lower minimum volumes imaged could have
Akaike weights above 0;5. In figure 4.8B the results are more consistently below 0.5;
“however, for frequent imaging intervals and low minimum volume for the late data,
‘the Akaike weight can be above 0.5. |
Although there are ranges of all the plots where Akaike weights below 0.5 can be
maintained, this would put limits on the experimental design factors in the opposite
’ direction compared to the previous analyses (i.e., setting a maximum number of time
points, whereas previous analyses have found a minimum number of time points).
Determining if two segments of a data set arise from the same growth function is
likely to be difficult to achieve consistently. Potential reasons for this outcome are

described in the discussion.

‘4.4 Discussion

In order to fit a more complex function, such as a Gompertz function, sufficient
_data are required. It can be seen from the simulations that the majority of the exper-
. imental designs result in a better fit for the Gomperté function over the exponential
function. The goodness-of-fit of the Gompertz function is more favourable when
ima.ging'begins with smaller tumour volumes rather than larger volumes, even across
the same range of volumes being 1maged Thxs suggests an opportumty to 1mprove
the ability to fit ‘functions to the data.~As described in section. 4.3. 1, the range of
minimum volumes that show an improvement include tumours that would be approx-

imately 0.55 mm in diameter (assuming a sphere), which have been imaged in vivo
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Fig. 4.8: Both graphs show the trends for the minimum volumes for each segment of
the curve over different imaging intervals. A) The effects of minimum volume for the
early part of the data set and imaging interval are plotted and show a range where
the values of the Akaike weights are above 0.5, when it is desired to have values
below 0.5 to indicate the parallel curves fitting better than the individual curves. B)
The Akaike weights are more consistently below 0.5 across the imaging interval for
the minimum volume of the late curve; however, the lowest minimum volumes still

maintain values above 0.5.
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in the B16F1 livér metastases model [2]. However, not every tumour was detected
when it was that small. There are several Teasons why thlS mxght be the case. There
is a chance that some tumours are more easlly v1suahzed at thls size tha.n others due
to biological va.natlons between tumours. It is also posslble that there is & minimum
detectable tumour size a.nd tumours Just below thxs threshold grow from below the
detectxon hmlt to well above it between 1mag1ng sessions.

Being a.ble to correctly determine that two tumours are grovwmg dlfferently is
_reasonable as the constramts on the variables to achieve an Akaike weight over 0.5 i in
section 4.3.2 are not very much more rigourous than those required to have a better ﬁt

for the Gompertz function over the exponential function in the previous section. The
imaging interval needs to be four days or less, whereas to determine a Gompertzian
shape any imaging interval could be employed Also, the length of time needs to be
25 days or longer compared to 15 days or longer for the previous section.

The measurement variability, which had a fixed dependence on tumour volume
in these simulations, will have an impact on how well curve fitting works. Reduced
variability will allow more precise measurements of tumour volume and consequently
a better estimate of the growth parameters when curve fitting.

The feasibility of determining whether two data sets have the same growth rate
para.theters inay be more limited as more data may result in over fitting, suggesting
these data sets are in fact different from each other. Although the paired data sets

in section 4.3.3 were both based on the same generalized logistic curve, the measure-

I mentvariability introduces errors that appear to increase the difficulty of determining

that the early and later data arise from the same growth curve, especially since the
variability is a function of volume. Constraining the experimental design with both
a maximum and minimum volume to image is likely not practical and could lead to

the erroneous interpretation of results. —
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4.5 Conclusion

4

Simulations of tumour growth and curve fitting can be used to determine when
there is sufficient data to draw conclusions about data sets.. Simulations presented
indicate that the Gompertz function can be fitted to volume data resembhng B16F1
liver metastasm growth w1th pa.rameters that are realistic. This 1nformatlon could
be used to plan preclinical cancer studies to better enable imaging measurements to

quantitatively characterize tumour growth and treatment responses.
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Chapter 5

- Synthetic Aperture Focusing of a

Single Element 40 MHz System

The contents of this chapter are in preparation to be submitted as a paper with the
author list: L. A. Wirtzfeld, A. F. Chambers, A. Fenster and J. C. Lacefield

5.1 Introdiictidn:

Three-dimensional high-frequency (30-40 MHz) ultrasound imaging is used to
monitor tumour growth and treatment responses in mouse cancer models [1-3]. To
perform these experiments, it is important to quantify and minimize the measure-

_ment variability to detect small changes in volume and determine the functional form

- of the growth for curving fitting. The tumour measurement variability depends on

the tumour size and location within the field of view [4]. This poses a challenge de-
termining values for the measurement variability as it will vary based on the object
location within the field of view and will also change as the tumour grows due to the
size dependence resulting in changing vaTﬁ;.bility over the longitudinal experiments.
Commercially available high-frequency ultrasound systems use mechanically scan-
ned, single element transducers. Low f-numbers are used, resulting in tightly focused
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transducers with high lateral resolution at the fixed focal depth that rapidly degrades
towards the near and far fields.

To achieve consistent high resolution through the entire image, the two options
are to use an array to aocquire the images or to use synthetic aperture focusing to
retrospectively focus the images. For the first case, array transducers allow for the
ultrasound beam to be focused at multiple depths within the image. There are a
number of research grdups working on developing both annular [5-7] and linear (8, 9]

_high-frequency arrays. Annular arrays allow for focusing along the beam but must
still be mechanically steered to.form a B-mode image, whereas linear arrays can focus
the beam and do not require any mechanical scanning to produce an image. High-
frequency arrays are technically challenging to produce due to the small element size

" required and the need to bond a wire to each element. In the case of linear arrays,

an el_exﬁent spacing of the wavelength; A, is required to avoid grating lobes within the
images and would require the elements to be spaced approximately 40 ym apart for

a 40 MHz probe.

Although high-frequency arrays are in development and experimental use, it will

likely be some time before all high-frequency systems are using arrays as there are
" over 450 VisualSonics commercial systems® and many other custom single-element
systéms in use that will continue to be used for imaging. In these cases, using a
synthetic aperture technique to retrospectively improve the image focusing would
“offer benefits. /

_ Synthetic aperture focusing techniques (SAFT) héve been employed with clinical
array systems [10] and can be adapted for use with tightly focused single clement

transduéers using a virtual source approach [11]. In this technique, the fixed focus is
treated as a virtual source with sound waves bropagating ‘towards both the near and
far fields as approximately spherical waves over a limited range of anglés corresponding
to the shape of the original beam. Each acquired scan line then produces a virtual
*Personal conversation with: VisualSonics, October 2008 -
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source at its focus. All these virtual sources can be combined in a fashion similar to
an array to reconstruct an image focused at multiple depths. As the individual scan
lines are acquired, the beam produced along a given scan line will overlap the beam
produced for adjacent scan lines. Where the beams overlap at a given point, those
scan lines can be used to retrospectively focus at timt point by applying appropriate
time delays as shown in figure 5.1.

The time delays can be calculated by determining the additional time it takes for
“the sound to travel from the virtual source to the point of interest compared to the
 time for sound to travel from the virtual source to the same depth as the point but
along the centre of the beam. This can be seen in figure 5.1 as the difference between
the length of time to travel the distance r compared to 7 and it can be seen that
~ this calculation will depend on the speciﬁc scan geometry. These time delays can be
applied to reconstruct scan lines in a ﬁla.nner equivalent to applying delays to a linear
or curvilinear array. ..

Synthetic aperture focusing can be performed by delay-and-sum beamforming
with or without applying additional weighgng. Apodization is commonly used to
reduce sidelobe levels when beamforming i;rrays by giving higher weighting to the
- central elements and lower wéighting to the outer elements of the subaperture. In
addifion, there are a number of adaptive weighting techniques that use the data
to determine the appropriate weighting. Two adaptive techniques that have been
‘applied to ultrasound are minimum variance (12, 13]/andJ the generalized coherence

- factor [14, 15].

- The generalized COhe;jencé factor (GAFF) is based on'an earlier weigﬁting known
as the obherence factor (CF) which is the ratio of the energy of the coherent sum
to the total incoherent energy for the subaperture [15]. The GAFF’ extends the CF
by taking a Fourier transform of the data in the lateral direction and calculating the
| ratio of energy around zero frequency (DC) to the energy in the entire spectrum.
The CF suffered from large variations due to the fact that it only takes the value
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Fig. 5.1: The width of the ultrasound beam converges to the focus, which can be
treated as a virtual source for each scan line. The set of virtual sources which are
formed as the transducer is mechanitally scanned can be treated in a manner analo-
-gous to array elements. Above and below the virtual source, the beam rapidly widens

.*  which means the beam from several scan lines will pass through each point, such as

point' P. The multiple scan-lines that pass through point P can be used to perform
synthetic aperture focusing. Two beams from two different scan lines are shown that
will overlap on point P. Delays can be calculated by determining the distance in
flight time between r and 7/, where z; is the distance between scan lines.

et
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at DC squared ‘which is susceptible to noise.- The goal of the GAFF is to assign
lower weightings to strong off-axis signals compared to on-axis signals. The mini-
mhum variance beamformer aims to minimize the power for'the beamformed signal
and maintain unity gain at the focal point to reduce the main lobe width and sup-
press the sidelobes. The weights can be computed from the autocovariance matrix of
the subaperture data, Wme = R7'a/a¥ R~'a, where W, are the weights, R is the
autocovariance and a is a steering vector that can be maintained as a vector of ones.
'Although this calculation is fairly straight forward to implement, the coherence of
‘ the nltrasound signals means an additional step is required to smooth the data a.nd

give a good estimate of the autocovariance. Details can be found in [13).

'5.1.1 Outline of chapter

This chapter describes synthetic aperture focusing techniques using several weight-
ing achemes, both conventional and adaptive, to improve the focusing in ultrasound
images acquired with a 40-MHz, single-element transducer and evaluate the effect of
synthetic aperture focusing on the size measurement variability of point-like targets
~ and small lesions.
| To determine the impact on point-like targets, the cross-sectional area of small
air channels was compared for the original and SAFT images. The area measure-
ments were compared to determine which weighting technique provided the greatest
‘improvement in point resolution. Gelatin lesion phantoms were employed to evaluate

h the impact of SAFT on 2D lesion-size measurement variability and determine how

the various weighting techniques change the variability. Lesion images were acquired
and measured with the centre of the lesion within, above and below the depth of field.
To évaluate the technique in vive, an experimental liver metastasis model was imaged
and the SAFT were compared to the original.
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5.2 Materials and Methods:

5.2.1 Synthetic Aperture Focusing Technique

In order to perform the SAFT, it is necessary to know the number of scan lines
that pass through the beam width st each depth, 2. In order to do this, the beamplot
of the transducer was simulated from 2 mm to 10 mm depth with Field II [16] and
the lateral resolution (LR) was measured as the -6 dB beam width at the centre of
- each focusing depth band. ' The LR varied from 0.1 to 2 mm. The number of scan
lines used at a depth z in each sub-aperture was calculated,

.2 LR
line spacing arctan 2(SL + 2) (5-1)
where SL is the shaft length from the pivot point to the transducer surface, z is the

=
z

image depth from the transducer surface and the line spacmg is defined above. Since
circular sector 1mages with azimuth angles ra.ngmg from +3.76° were acquired in our
experiments, the line spacing was 0.02° with 377 scan lines acquired over the sector.
Values of N, range from 6 lines at the 6 mm focal depth to 102 lines at 2 mm deep
~and 94 mm at 10 mm deep. Focusing delays were recalculated for each 0.5-mm depth
" band, _ . |
For the unapodized case, after the focusing delays were applied to the subaperture,
the coherent sum was calculated. In order to shift the signal to baseband, the coherent
-sum was quadrature demodulated and low-pass filtered with a Hamming window

o centred around the DC component of the signal. For the apodized case, the coherent

sum of the Hamming window weighted RF signals was calculated and the signals
shifted to baseband as in the unapodized case.

 For the minimum variance and generalized coherence factor weighting, focusing
delays were applied, and delayed subaperture data were demodulated ias described
above, and then the weightings were computed. For a detailed explana.tion' of GAFF,
refer to (15]. In brief, one-dimensional Fourier transforms were calculated in the lateral
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direction and the maximum projection of the Fourier transforms was calculated in the
axial direction. From the axial projection, the ratio of energy around DC (f < |My|)
of the spectrum to the total energy in the spectrum was calculated and multiplied
by the coherent sum to obtain the weighted image. The Fourier transform is in the
angular spatial frequency domain with- DC being’/ the component straight ahead of
the centre of the subaperture.

The minimum varience technique is based on the methods presented in [12 13].
 The weighting for each scan line in the suba.perture 1s calculated by rmmmlzmg the
power of the beamformed signal, E[|b(t) |?], where b(t) is the output of the of the beam-
former, with the constra.mt of unity gain being ma.mtamed at the focal pomt The
welghtmgs can be calcula.ted a.nalytlca.lly from the sample auto-covariance matrices

~ of the subaperture data [13].

5.2.2 Experimental data - RF acquisition

All images were acquired with a Vevo 770 (VisualSonics Inc., Toronto, Canada)
high-frequency ultrasound scanner using a 40 MHz centre frequency, single-element
~ transducer with an f-number of 2. The resolution was 40 x 80 x 80 um3 with a 1.5
" mm depth of field (manufacturer’s specifications) at the 6 mm geometric focal dis-

tance. The transducer is mechanically swept, acquiring 337 scan lines over a sector to
create an 8 mm by 8 mm image. The radiofrequency (RF) data, required for the ret-
- rogpective focusing, were digitized using an oscilloscope (Waverunner LT345, Lecroy

" Corp., Chestnut Ridge, NY, USA) and saved with software written in LabVIEW 6.1

(National Instruments Corp., Austin, TX, USA). All data were sampled at 250 MHz
and digitized at 8 bit. In all phantom experiments, each scan line was acquired ten
times to allow averaging to reduce the electronic noise. For the mouse imaging exper-
iments each scan line was acquired three times to increase the speed of acquisition.
The image acquisition time for one 2D image was appraximately 5 minutes to acquire

10 repeated lines or 2 minutes to acquire 3 repeated lines. The software was set to
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save a depth range of 2 mm to 10 mm, corresponding to the B-mode field of view.
Two-dimensional images were reconstructed from the individual RF scan lines using
Matlab (Mathworks, Natick, Massachusetts).

5.2.3 Phantom Experiments

In order to evaluate the synthetic aperture focusing techniques, pha.ntdms were
constructed from gelatin containing either thin air channels, to act as pseudo point
“targets, or tissue-mimicking spheres, to mimic the appearance of tumours on ultra-
sound imagés. Gélaﬁn phantoms wéfe ﬁ;adé }accotding to the procedure outlined by
Ryan et al [17], with 30% by weight gelatin powder, and a background of 2% by
; weight of amorphous silica. All phantoms were imaged at an angle of approximately
90°.

5.2.8.1 Air channels

A phantom mould was created that was comprised of a 15 x 15 x 15 mm® box
with eight holes drilled in the sides to allow capillary tubes to be threaded paral-
. lel to each other and arranged on a diagonal with a 1 mm spacing in depth and
| 0.75 mm spacing horizontally. Glass capillary tubes with a 150 um outer diameter
(part number TSP030150, Polymicro Technologles, LLC, Phoemx, Anzona) were po-
sitioned through the guide holes and the txssue-mxmmkmg material was poured into
‘the mould. Once solidified, the tubes were carefully removed, leaving'sma.ll channels
' filled with air. Ultrasound 1ma.ges of the cross-section of the channels were acqmred
with up to 7 channel cross-sections in an image.

The channel cross-sectional area‘ was measured using a semi-automated region-
ybﬁng algorithm that started from a user selected point:to find the boundaries
above the user selected threshold for the values surrounding the channel [18]. Once

the entire region was found, the centroid of the area was calculated and used in
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the analysis as the measured depth of the channel. To assess the measured ares as a
function of depth in the original and SAFT images, four 2D images of different planes
of the phantom were acquired. Each channel in each image was measured three times
and the averages of the measured cross-sectional areas and depths were computed.
As each image was acquired at a separate time, thé air channels are not at the exact
same depth relative to the transducer in each case showing the measured areas over

a range of around 0.3 mm.

'5.2.3.2 Gelatin lesion phantoms and depth of field

Emulated lesions were created by embedding hypoechoic gelatin spheres with 0.5 %
by weight amorphous silica into surrounding tissue-mimicking material with 2 %
" amorphous silica. A spherical mold was used to make the gelatin spheres. For each
lesion phantom, 2D RF data were acquired with the lesion centred at the geometric
focus, 1 mm above the focus and 1 mm below the focus. Each image was acquired
at the varymg depths to enable a comparison of the measurements as a function of
location within the image field of view.

Sixty images were acquired of 21 phantom lesions, including 18 sets with an image
 of the lesion at all three depths; All images were reconstructed as described in section
522 and syhthgtic aperture focusing with each of the four weighting methods was
applied. The in;gmtude of the images were taken followed by:logarithmic compres-

.sion. The img.ges’ window, levgl and gain for each 1 mm depth band were adjusted

. manually. Images were subsequently scan converted to create B-mode images. File

names for each image were randomized and the 2D lesions were manually segmented
three times each by a blinded ohserver using Matlab. .

The coefficient of variation (COV; standard deviation divided by the mean) of
the measured lesion ares was calculated for each jimage. The mean and standard
~ deviation of the COV was used to evaluate the measurement variability for single

images. To compare the size-measurement vé.riability a8 a function of location within
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the field of view, for each set of three images, the maximum measured area minus the
minimum measured area was used to give the range of measured areas. The mean and
standard deviation of the measurement ranges were used to compare the variability.

A repeated measures ANOVA was performed on the data to determine the effects
of repeated measurements, weighting method and location within the field of view.
The data was analyzed considering the location within the image to be a within-
subjects factor. A value of a < 0.05 was considered significant for all tests.

5.2.4 Liver metastasis imaging

The syngeneic experimental liver metastasis model was em.ployed' (described in
[a]). B16F1 murine melanoma cells were injected into the mesenteric vein to produce
liver metastases. Five C57BL/6 mice with B16F1 liver metastases were imaged. Due
to the rapid motion of the liver from respiratory and intestinal motion combined with
the long acquisition times for the RF data; iﬁmges were abqtiired immé&iately after
sacrifice before obvious changes in the ultrasonic appearance of the h‘uhour could be
observed. To minimize the scan time, only three repeated scan lines were acquired at
~each location and averaged.

5.3 Results:

'5.3.1 Phantom validation
| 5.3.1.1 Air channels

The diagonal pattern allowed. for a visual comparison of the size and shape of the
ébannel cross section as a function of depth. Figure 5.2 shows the original image
and the identical image processed with S/AFT and the different weighting techniques.
Improvements in both the shape as well as cross sectional area can be seen. The

cross-section of the air channels demonstrate the tight focusing at 6 mm and the
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rapid decrease in lateral resolution away from this fixed focus, as can be seen in figure
5.2. After the application of the SAFT a clear improvement in focusing consistency
can be seen, most noticeably in the cross-sections 1 mm above and below the fixed
focus in figure 5.2.

Figure 5.3 displays the measured cross-sectional areas of the air channels for origi-
nal and SAFT images as a function of image depth. All data sets show the same trend
of increasing area away from the focal zone, with the original image showing much
more rapid increases compared to the SAFT images. The smallest cross-sectional
areas and corresponding depth at which they were measured are summarized in table
5.1, compared to an actual cross-sectional area of 0.018 mm2. It would be expected
that the original image had the smallest cross-sectional area closest to 6 mm; however,
the SAFT images with minimum variance and apodized weighting show improved air
channel measurement even at the fixed focus. The SAFT images show improvement

in the air channel cross-sectional area beyond the minimum in the original images.

Weighting method Minimum cross-sectional area Image depth
(mm2) (mm)

Actual cross-sectional area 1.77 x 10~2

Original image 451 x 10"2 6.36
Unapodized 431 x 1(T2 5.39
Hamming 3.90 x 10"2 6.21
Minimum variance 2.67 x 10"2 6.32
Generalized coherence factor 2.69 x 10"2 5.38

Table 5.1: Minimum measured cross-sectional area of 150-fim diameter air channels
for each SAFT weighting method.

All SAFT weighting techniques showed an improvement in the cross-sectional
area measured over the original images. The unapodized image showed the smallest
improvement, followed by the apodized results. The GAFF and MV images showed
greater improvement in most cases; however, the focusing was less consistent as a
function of depth than the non-adaptive weighting techniques, as can be seen in

figure 5.3.
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Original Unapodized Hamming

Minimum Variance Generalized Coherence Factor

Fig. 5.2 An image showing the 150 /xm air channels in cross-section with the original
data and with synthetic aperture focusing with each of the four weighting methods.
The arrow indicates the 6 mm geometric focus and the vertical scale bar is 1 mm.
Near the geometric focus, all weighting methods appear to reduce the width of the air
channel. The minimum variance weighting improves the cross-sectional area in this
region but is lower contrast than the other methods whereas the generalized coherence
factor weighting results in higher contrast but introduces additional artifacts into the
image. A 40 dB dynamic range is displayed.
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Fig. 5.3: Average measured cross-sectional area of the air channels is plotted against
image depth. Data from four images of the phantom are presented and have been
measured after each of the four weighting techniques have been applied. The GAFF
(generalized coherence factor) shows the most consistent cross-sectional area with a
large improvement over the original images over the full range of depth. Minimum
variance shows improvement around the geometric focus, but begins to increase in
cross-sectional area within about 2 mm of the focus. The unapodized and apodized
weighting shows some improvement, particularly near the geometric focus, but does
not maintain a consistently low measurement across all depths.
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5.3.1.2 Gelatin lesion phantoms and depth of field

The average lesion area measured on the original image was 4.88 mm2, with maxi-
mum diameters (measured in 3D ultrasound) ranging from 1.94 mm to 3.45 mm with
an average of 2.52 mm. Visual inspection shows some improvement in margin defi-
nition for the unapodized and Hamming window weighting (figure 5.4). The GAFF
weighting shows substantial improvement in boundary delineation in some areas, with
other areas being degraded due to artifacts introduced from bright objects near the
boundary (figure 5.5). The MV weighting also shows improvement in the boundary
delineation, most noticeable near and beyond the fixed focus, but lesions situated be-
tween the transducer and the fixed focus do not show improved margins. Overall, the
MV weighting suffers from fewer image artifacts, even in the presence of extraneous
bright areas, compared to the GAFF (figure 5.5).

Table 5.2 shows the measurement variability for individual lesion measurements
and the range of measurements for the lesion at multiple depths. The average COV
ranges from 2.G0 % for the apodized weighted up to 3.19 % for the minimum variance
weighting, with the original images having an average COV of 3.00 %. Although there
is a range of values, there are no significant differences between weighting methods
for the COV (a > 0.05). The same pattern is also seen for the range of measured
areas for each lesion, where the Hamming and unapodized weighting provided modest
improvement over the original images but the two adaptive techniques did not.

The repeated-measures ANOVA showed a significant interaction between the re-
peats and the weighting technique and a significant main effect for the weighting
technique, indicating that the measured volume does change based on the different
SAFT weighting techniques. Depending on how well defined the margins are, the ob-
server will vary where they place the segmented boundary. No significant effects were
see due to lesion location within the image, indicating that there is not significant

variation in the measured size as a function of image depth.
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Original Unapodized Hamming

Centred

N6 mm

Shallow

N6 mm

Fig. 5.4: Original images of a lesion phantom are shown compared to SAFT with
unapodized and Hamming window weighting for three depths of the region of in-
terest. Increased contrast can been seen at the lesion border for the SAFT images,
particularly for the Hamming window weighting where there is a good contrast at the
bottom of the deep lesion compared to the original image. A 40 dB dynamic range
is displayed.
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6 mm

mm

Fig. 5.5: Original images of a lesion phantom are shown compared to SAFT with gen-
eralized coherence factor and minimum variance adaptive weighting for three depths
of the region of interest. The generalized coherence factor images show improved con-
trast, especially in the shallow image, however, some artifacts that are introduced can
be seen in the centred image which can make the image interpretation difficult. The
minimum variance method shows good contrast improvements for the deep and cen-
tred lesion; however, for the shallow case no improvement is seen. A 40 dB dynamic
range is displayed.
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Weighting method Mean COV (%) STD COV (%) Mean range STD range

(mm?2) (mm2)
Original 3.00 181 0.54 0.43
Unapodized 3.02 2.19 0.46 0.33
Hamming 2.60 153 0.50 0.27
MV 3.19 2.68 0.57 0.33
GAFF 3.14 2.49 0.56 0.39

Table 5.2: The table shows the results from the repeated measurements of the phan-
tom lesion areas. The mean and standard deviation (STD) of the coefficient of vari-
ation (COV) is recorded as an indication of measurement variability. In addition,
the mean and standard deviation of the range of area measurements for a lesion at
multiple image depths is given. The values for the Hamming weighting show im-
provements over the original, uncorrected images. However, the minimum variance
(MV) and generalized coherence factor (GAFF) images show degraded measurement
variability. The unapodized shows almost equivalent COV and improved mean range.

5.3.2 Liver metastasis imaging

Due to the small sample size and limitations in image quality due to the low
number of repeated line acquisitions for averaging, liver métastasés are shown as a
proof of principle for tumour imaging. A small tumour within the centre of the liver is
presented. Visual inspection showed improved tumour to background contrast for the
conventional weighting. The minimum variance shows a slight increase in contrast,
whereas the generalized coherence factor reduces contrast for most of the tumour.
The changes in appearance for the different weightings follow visually the results

from the lesion phantoms.

5.4 Discussion:

5.4.1 Air channels

Measurements of the cross-sectional area of the small air channels gives an ap-
proximation to a point target and allows the approximate shape of the point spread

function to be seen within the image. The minimum cross-sectional area due to SAFT
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Original Unapodized Hamming

Minimum Variance Generalized Coherence Factor

Fig. 5.6: An example liver metastasis is shown in the original image and for the
different weighting techniques. The unapodized and Hamming weighting show an
improvement in contrast between the tumour boundary and the liver. The minimum
variance shows high contrast for part of the tumour boundary. The generalized co-
herence factor makes the tumour very difficult to see within the image. A 40 dB
dynamic range is displayed.
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was shallower than the 6 mm geometric focus for the GAFF weighted and unapodized
images, the limited number of scan lines used to reconstruct the image at the geomet-
ric focus likely contributes to greater 1mprovement in mainlobe width. leﬁculty in
measuring the cross-sectional areas for the MV wexghted images likely contributed to
the high measured values at shallow and deep pomts The contrast between the air
channel and surroundlng material was poor and the region growing algorithm tended

to encompass a relatlvely large region surroundmg the centre of the air channel.

j5 4.2 Gelatin lesion phantoms

'The improved measurements from the unapodized to Hamming to adaptxve weight-
~ ing techniques is not surprising. However, due to the complex nature of the adaptive
| weighting algorithms and the unique artifacts introduced into the images, they offer
less consistent improvements than expected. Both techniques aim to minimize the
contributionvof off-axis scatterers to the SAFT image; however, within the context
of the lesion iinages this seemed to create regions with very low weighting next to
regions with bright speckle. While the variability, expressed as the COV, is very
_similar between all groups it is very interesting to note that the adaptive techniques
'perfo:med worse based this parameter compared to the non-adaptive techniques.

5.4.3 Liver metastasis imaging ’

" Due to limitations in the number of acquisitions, the original images are not

‘; as high of a quality as the lesion phantoms images. When the SAFT is applied, the
- unapodized and Hamming weights show improved contrast which could help delinéate
- the borders for segmenting. The generalized ‘coherence factor degrades some of the
image quality making it difficult to define borders.
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5.5 Conclusion:

For point targets, there are definite benefits to using any of the weighting tech-
niques. The GAFF weighting consistently maintained a reduced area measurement
compared to the original image. The MV weighting, in contrast, performed very
inconsisfently. S

For the phantom and in vivo lesion images, the results are harder to interpret.
The adaptive techniques did not show the improvemenf, in measurement variability

"that was éxpected to result from iniproved' resolution. Fdr leéion imageé, it 18 :likely
best to use an unapodizeci or Hamming weighting for synthetic a‘perture‘ focﬁsing.
These methods gave thé greatest beneﬁ,t's! in terms of measurément ‘variability and

. are less computationally de'ma.nding‘ than the adaptive techniques.
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Chapter 6

- Summary and "Future ‘work

- 6.1 Summary

Three-dimensional high-frequency ultrasound can be a valuable tool for providing
information on the growth of soft-tissue tumours in mouse models to complement
conventional ehdpoint enalysis. The lack of agreement between conventional caliper
" measurements and 3D ultrasound volume measurements suggests that the calipers

may only prove an approximate measure of size and lack the precision to draw conclu-
-’ sions regardlng the growth of the tumours or allow for comparisons between tumotrs

and treatment groups.

6.1.1 Chapter 2: Three-Dlmensmnal ngh-Frequency Ultra-
sound Imagmg For Longltudmal Evaluatlon Of leer |
Metastases In Prechmcal Models |

Chapter 2 demonstrates tha.t liver metastases can be longitudinally imaged with-
out eJ‘;ogenous contrast agents 'Yo’construct growth curves for individual tumours.
~ In addition to the work presented in chapter 2, a similar study examining prostate

tumour growth in a transgenic mouse model was performed [1]. Prostate tumours

122
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spontaneously developed over time and. were detected through regular ultrasound
screening and subsequently monitored over time to measure tumour growth. To fur-
ther show the usefulness of high-frequency ultrasound for imaging soft-tissue tumours
using endogenous contrast, a study of the growth of mouse melanoma {2] and unpub-
lished studies of mouse mammary fat pad tumours have been conducted. All cell
lines have shown sufficient endogenous contrast to allow tumours to be monitored
over time to construct Qolume growth curves.
~ The ability to track individual tumours growth over time in a precise manner will
allow the tumour to act as its own control as any changes in growth due to treatment
response ¢an be quantified for each tumour. Tracking individual tumour’s opens the
possibility of being able to evaluate different tumours response per animal and even
‘per tumour. The longitudinal experiments with the different cell lines in chapter
2 den‘:ohstratethatdndividu&k tumours can grow at varymg rates from each other.
The single HT-29 tumour that showed no growth over the course of the experjment
opens the p0381b111ty of usmg ultrasound to identify small but dormant tumours.
- Whether thxs tumour would respond toa therapeutic agent or at some point begin to
grow is unknown. The variability in growth makes it difficult to interpret endpoint
“analysis, as a tumour that did not grow for the duration of the experiment cannot
be differentiated from a tumour that grew rapidly to a larger size and then regressed

due to an effective treatment.

- 8.1.2° Chapter 3: Volume Measurement Variability In Three-
| Dlmensmnal I-Ilgh-l?‘requency Ultrasound Images of Munne
leer Metastases |
’ 'Ihmour measurement variability in three-dimensional high-frequency ultrasound

images due to segmentation variability by observers and experimental factors has
" been quantified. Experimental B16F1 liver metastases were analyzed in different size
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ranges including less than 1 mm?®, 1 to 4 mm?®, 4 to 8 mm?® and 8 to 70.mm3. ‘The
intra- and inter-observer repeatability was high over a large range of tumour volumes,
but the coefficient of variation (COV) varied over the volume ranges. The minimum
and maximum intra-observer COV were 4% and 14% for the 1 to 4 mm® and < 1
mm? tumours, respectlvely For tumour volumes measured by segmentlng parallel
pla.nes, the maximum inter-slice distance that maintained acceptable measurement
variability increased from 100 to 600 pm as tumour volume increased. Comparison
" of free breathing versus ventilated animals demonstrated that respiratory motion
did not significantly change the measured volume. These results enable design of
more efficient imaging studies by using’ the measured variability to estimate the time

required to observe a significant change in tumour volume.

6.1. 3 Chapter 4: Monte Carlo Growth Curve Simulations
for Planmng Longitudinal Imagmg Expenments with

Mouse Cancer Models

Growth curve simulations, based on the growth of the B16F1 liver metastases and
their measurement variability, were performed to identify longitudinal experiment
~ designs for which it should be more appropriate to analyse tumour volume data using
a Gompertzian growth curve than an exponential growth curve. Imaging tumours
beginning when they are small (< 0.09 mm?) and imaging over a large volume range

Lo _supporl: the use of Gompertzian growth analysis. Volume data needs to be acquired

over a minimum of 15 days and over as many as 40 days for vinfre(juent imeging
or w,hen it is desired to determine if the two data sets are growing with different

| parameters. In most cases, an:imaging mterval of 6 days does pot provide sufficient

| data to perform the analyses with Gompertz functions and decreasing the interval to
4 days‘shows an improvement in the fitting resuits.
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6.1.4 Chapter 5: Synthetic Aperture Focusing of a Single
\ Element 40 MHz System

Synthetxc aperture focusing techmques (SAFT) w1th a variety of weighting meth-
ods, including both conventional and adapt;ve, were applied to images of both point-
like targets and lesions. Reductions in the measured cross-sectional areas of the
point-like targets, indicating improved‘spatial resolution, whs seen for all weighting
methods, although the generalized ‘coherénce factor offered the most chnéistently im-
‘proved resolution over all depths Synthetxc aperture focusing was less eifectlve than
expected for reducing the area mea.surement variability, whereas the conventlonal
apodization showed a small improvement. Although measurement vanablhty on an
individual lesion basis did not show the expected improvements using SAFT, the
variation in the measured lesion size as a function of depth was reduced with.SAFT,

suggesting a reduction in the spatial variance of the point-spread function.

6.1.5 Current Progress

Current developments include the use of clinical scale micro-bubble (1 to 5 um)
"and newer liquid-core nanoparticle (anywhere from 100 to 1000 nm) contrast ageits to
enhance the B-mode imaging. The growth curve analysis indicates that it is beneficial
to be -able to detect and measure smaller tumour volumes when fitting Gompertz
functions to the growth data and comparing curves. The use of contrast agents may
. allow for small tumours to be detected prior to them developing sufficient contrast
‘to be detected and measured with only endogenous contrast. The lack ‘of perfusion
or }imitéd perfusion in small tumours would provide'negative contrast against the
' contrast-enhanced liver parenchyma, making the identification of ‘everi small tumours
easier than the unenhanced tumours. S ‘
Contrast agents are frequently also used to assess blood flow within organs and

| tumours. Changes in blood flow within the tumours could provide information that
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would complement the volume measurements and perhaps point to mechanisms of
treatment action. Changes in the surrounding blood flow to the tumour may also be
of interest as the feeder vessels may offer a therapeutic target.

Assessing blood flow can also be performed using either colour flow or power
Doppler - ultrasound techniques. that can be used with or without contrast agents.
Several groups have demonstrated the use of power Doppler to quantify tumour blood
flow, including using porver Doppler to monitor the tumour response to antiangiogenic
drugs [3], antivascular drugs [4] and surgical interventions [5]. Work has been done to
‘quantify Doppler techniques and compare them to other gold standards inctading his-
tological microscopic quantification of tumour blood vessels [6] and microfil-enhanced
CT [5).

6.2 Future Work

VisualSonics has recently released their new Vevo 2100 scanner including linear
~ array transducers. The use of arrays could have benefits in performing longitudinal

experiments imaging tumour models, as they would allow a much larger range of
“depths to be imaged in focus and thus reduce measurement variability. To determine
the effect of the array on measurement variability, the study presented in chapter
3 would need to be repeated using images acquired with this new system. Any
cha.nges in measurement vanabxhty could then be used in the growth simulations,

a8 presented in chapter 4, to allow for comparison of how the experiments should

be designed to take into consideration the tumour-voluine measurement variability
differences between single-element and linear array scanners.

: .stng the results from the growth curve simulations in chapter 4, an in vivo
experiment should be set up to-obtain sufficient data for reliable growth curve fitting
at the beginning of the tumour growth and have additional measurements acquired

| beyond the minimum time points required. The first set of time points could be
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used to fit a Gompertz function and then extrapolate the curve to the additional
data to determine how well the fitted curve can predict how the tumour will continue
to grow. The ability to extrapolate late stage growth from early stage volume data
would support treatment-response experiments in which each tumour is used as its
own control, i.e., measured growth after treatment is compared to predicted growth
extrapolated from early stage, pre-treatment volume data.

Synthetic aperture fdcusing techniques, in addition to influencing the tumour-size
- measurement variability, will likely affect the detectability of smaller lesions. The
minimum lesion size that can be observed in an image is a function of the lateral
resolution and side-lobe levels, therefore improvements in focusing through SAFT
could allow smaller tumours to be observed or the smallest tumours to be observed
" regardless of their location within the image. Due to the tightly focused transducer
on the cﬁrrent system, it is possible that small tumours that can be detected when
they are within the focal zone may ﬁot be detectable at other image depths. A
phantom based contrast-detail experiment, similar to the one described by Smith et

" al. [7), could be employed to determine the smallest cross-sectional area that can be

observed as a function of the lesion contrast. Two-dimensional assessment would be
appropriate as initial scanning to find the tumours is performed in 2D and only once

& tumour is found is a 3D image acquired.

6.3 Conclusions

High-frequency ultrasound is able to provide precise longitudinal aﬁalysis of liver
métastasié growth in mouse models over a large range of tumour volumes. Retro-
spective focusing is able to improve these measurements through a reduction in the
dependence of the volume measurement onthe location within the field of view. Ex-
periméﬁts can be designed to ensure sufficient data points are acquired to perform

the desired curve fitting.
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The ability to track these soft-tissue tumours through time and measure them with
Ipw variability allows for the construction of growth curves. These growth curves can
be analyzed using curve fitting to allow multiplc; curves to be compared from within
the same ox"‘ different treatment groups in a study, théreby providing infdrmation that

could be valuable in assessing therapeutic effects.
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*This Is tha 1st Renewal of this protocol*
*A Full Protocol submission will be required In 09.30.09*

Dear Dr. Chambers & Dr. MacDonald:
Your Animal Use Protocol form entitied:
Non-Invasive Imaging of Metastasis: Detection, Monitoring and Intervention

has been approved by the Animal Use Subcommittee
This approval is valid from 10.01.06 to 09.30.09.
The protocol number for this project remains as 2005-052-09.

1. This number must be indicated when ordering animals for this project.
2. Animals for other projects may not be ordered under this number
3. If no number appears please contact this office when grant approval Is received.
If the application for funding is not successful and you wish to proceed with the project, request that an internal
scientific peer review be performed by the Animal Use Subcommittee office.
4. Purchases of animals other than through this system must be cleared through the ACVS office. Health

certificates will bo required

ANIMALS APPROVED FOR 1YR. . Highest Pain Level: D

Housing/Use Animal t
Species Other Detail Locationa Total
for 1Year
Mouse Nudes 5-6 wks on arrival HSACF 140
Mouse NIH 111 5-6 wks on arrival HSACF 80
Mouse BalbC 5-6 wks on arrival HSACF 80
Mouse C57 Blk 5-6 wks on arrival HSACF 80
Mouse SCID 5-6 wks on arrival HSACF 80

REQUIREMENTS/COMMENTS
Please ensure that Individual(s) performing procedures on live animals, as described in this protocol, are familiar

with the contents of this document

c.e. Approved Protocol - A. Chambers. I. MacDonald. L Mackenzie, T. Kirkpatrick.
Approval Letter - L Mackenzie \
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