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Abstract

Dispersal plays a key role in the persistence of metapopulations, as the balance between

local extinction and colonization is affected by dispersal. Dispersal is also the primary means

by which a species’ range changes, as well as an important mechanism for reducing compe-

tition and breeding among relatives. In this thesis, I present three pieces of work related to

dispersal. The first two are devoted to the ecological aspect of delayed dispersal in metapop-

ulations. The first one focuses on how dispersal may disrupt the social structure on patches

from which dispersers depart. Examinations of bifurcation diagrams of the dynamical system

show that a metapopulation will, in general, be either in the state of global extinction or per-

sistence. The key finding is that dispersal, and the state changes associated with dispersal,

have significant qualitative and quantitative effects on long-term dynamics only in a narrow

range of parameter space, so life-history features other than dispersal (e.g., mortality rate) have

a greater influence over metapopulation persistence. The second one asks whether the effort

intending to enrich the metapopulation could always promote the persistence of metapopula-

tions, incorporating time delays into the ODE models by Levins and Hanski. Investigations of

critical delays and the absolute stability of equilibrium in DDE models show that: 1) delays

associated with dispersal only cannot destabilize the population; 2) reducing local extinction in

metapopulations with delays associated with available territories or establishment may lead to

oscillations; 3) metapopulations with a structure based on the quality of occupied patches suffer

less from the problem described in 2) caused by establishment delays. The third work stud-

ies the evolution of conditional/unconditional dispersal in environments with temporal global-

scale fluctuations. Methods from theoretical evolutionary biology are applied, and perturbation

methods, numerical procedures and individual-based simulations show that difference between

conditional dispersal probabilities for poor and good environment states increases as fluctua-

tion frequency and disparity of dispersal cost increase. At last, conclusions and discussion of

the implication of the above studies to cooperative breeding are presented, as well as a future

direction to construct a kin selection model and investigate the evolution of helping.
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Chapter 1

Introduction

1.0 Summary

In this chapter, I first provide background information and significance for the study of metapop-

ulations, and its relation with the study of conservation biology in section 1.1. Then, I explain

the core idea to model metapopulation dynamics, and visit basic previous models in section

1.2. Next, in section 1.3, I switch from the ecology, where dispersal probability is treated

as a constant parameter, to the evolution of dispersal, where dispersal probability evolves, in

metapopulations, and briefly describe the mechanisms and methodology for the evolution of

dispersal. At last, I list my motivation, methodology and main results for Chapters 2-5 in sec-

tion 1.4. To start with, let us have a look at the concept of metapopulation in the following

section.

1.1 Metapopulation

The term metapopulation describes a population of populations that together form a patchwork

of habitats between which species disperse (see Figure1.1) [30, 34, 88]. The emergence of

the idea for metapopulation is related to the study of island biogeography by MacArthur and

Wilson [49]. A lot of species live as a part of a metapopulation, that is, they live in patchy

1
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Matrix

Habitat

Figure 1.1: A cartoon of metapopulation: a mathematically simplified version

local populations separated in space by a matrix through which dispersal is possible, but in

which breeding is impossible. Examples of natural metapopulations include the birds living in

islands, fishes living in coral reefs [70], migratory species [78] and butterflies in fragmented

landscapes [37].

Notably, local-population-level interactions are more frequent than metapopulation-level

interactions. Given an area of habitat, if individuals live on breeding territories held by family

units, but leave these units after some period of time, then they could also be said to exist as a

metapopulation. For example, the Florida scrub jay lives in territories of island-like distributed

short scrubs, and their basic breeding units are monogamy pairs, some of which are assisted by

up to six helpers, but mostly zero to two [89].

1.1.1 Metapopulations, Human Activities and Conservation Biology

Human beings, ourselves, can be seen as forming a metapopulation. Moreover, human beings

have a long history of fighting against some other metapopulations, such as, insect pests that

move from one location to another. Indeed, in agriculture, the control of pests is one of the

major concerns. By considering the insect populations as metapopulations, biologists are able

to determine the most effective ways to control the population size of pests, and protect the yield
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of crops [48, 76]. Furthermore, human migration, travel and trade have resulted in a massive

scale of human-mediated movement of various species, including animals, plants, bacteria and

viruses [5, 8], as human beings’ ability of long-distance dispersal is without rival in nature.

Recently, human activities, including expanding of cities and roads, and exploring nat-

ural resources like forest, lead to fragmented forests and disconnected water systems. Such

fragmented habitats, then, lead to more and more species living in communities of metapopu-

lations, and eventually affect the ecology of those species greatly [3, 4, 14, 71, 83, 84]. Even

worse, humans have begun to threaten the survival of other species as they develop more and

more of the preferred living habitats of those species. On one hand, as the whole ecosystem is

connected, the loss of some key species might gradually impact the whole trophic dynamics,

and can finally influence the whole agriculture system that humans depend on. On the other

hand, habitat fragmentation may lead to extinction of some species, and an irreversible loss

of part of the gene pool in nature. Therefore, studying the persistence of such metapopulation

species contributes to conservation of species [2].

The metapopulation structure of many communities has economic implications for con-

servation efforts. For example, to re-mediate or maintain metapopulations it may be necessary

to establish and/or preserve dispersal corridors. Because those conservation efforts usually cost

a large amount of money [50, 72], making sure it is put into where necessary and effective is

of great significance. Understanding the dynamics, especially the effect of dispersal, is impor-

tant. In addition, using metapopulation models to provide insight into conservation efforts and

validate the effect of corridors is cost-efficient.

Human activities have altered many global scale conditions, including the global climate

[22, 43, 53, 63, 85, 86]. For example, human activities have added a considerable amount to

greenhouse gases that wrap the earth with a thermal blanket, reducing heat radiated to space,

so lead to changes on global temperature and precipitation [43]. Those climate changes could

result in changes of migration and regional distribution of plants [57], and also lead to changes

of regional distribution of other species.
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1.2 Metapopulation Dynamics

In the history of metapopulation study, the term itself was first used by Levins [48] to study

pest control strategy, and the next year he used his metapopulation framework to study group

selection as a potential route to the emergence of altruism. Traditional models of population

dynamics reflect changes due to birth, death, and migration (dispersal). Similar demographic

processes are captured by models of metapopulations, but their consequences for local popu-

lations is usually emphasized. In a metapopulation model, when a suitable unoccupied habitat

is colonized by propagules produced elsewhere, the colonization is analogous to the birth of a

new local population. Local populations can also suffer extinction, which parallels the death of

an individual. Finally, the colonization of suitable habitats by propagules is mediated by mi-

gration (dispersal). The balance between local extinction events and colonization events, and

how this balance contributes to the long-term dynamics of the system are the main concerns

for the study of metapopulation dynamics.

Metapopulation models could be applied to study interactions between two species or

more. For example, there is an elegant two-species metapopulation model showing how an

inferior competitor can co-exist with a superior competitor owing to the inferior competitor’s

higher colonization rate or low extinction rate [see 47, 55]. But, my focus of metapopulation

models is on the single-species, which I talk about in the following.

1.2.1 Mathematical Models of Metapopulation Dynamics

MacArthur and Wilson [49] studied extinction and colonization processes in their later tremen-

dously well-cited book on island biogeography. They investigated the mainland-islands model,

with dispersers from a mainland colonizing empty islands. Denoting the fraction of occupied

islands by p(t), a single-species version of their mainland-islands model is

dp(t)/dt = c (1 − p(t)) − e p(t), (1.1)



1.2. Metapopulation Dynamics 5

where c and e are the colonization rate and extinction rate of islands. Note that the colonization

per empty island is determined only by the mainland, not affected by the density of occupied

islands.

MacArthur and Wilson’s work [49] probably set the stage for Levins’ metapopulation

model [48]. Among all the work on metapopulations, Levins’ model is recognized as seminal.

What distinguishes Levins’ model from other ones is that Levins simplified what happens

inside each local population and the spatial relation among local populations, and emphasized

the balance of local extinction and colonization processes. Despite the simplification, Levins’

model did bring some valuable original ideas into the area of study. His model uses p(t) to

denote the fraction of local habitats occupied by local populations, so 1− p(t) is the fraction of

empty local habitats. By using c to represent the colonization rate of empty local habitats by

dispersers from currently occupied local habitats, and e to represent the local extinction rate of

currently occupied local habitats, Levins constructed a model taking the following simple form

dp(t)/dt = c p(t) (1 − p(t)) − e p(t). (1.2)

The novelty of Levins’ model (1.2) lies in the fact that MacArthur and Wilson [49] treat the

mainland as the input to other islands, assuming the mainland is not susceptible to extinction,

but Levins’ model does not include such a hierarchy-like structure among the local habitats,

allowing turnovers to occur on each local habitat. Consequently, model (1.1) and model (1.2)

have distinct sources of colonization and therefore distinct positive equilibria: communities in

model (1.1) represent a balance between extinction and colonization from extrinsic forces only,

with the positive equilibrium, 1 − e/(c + e); meanwhile, model (1.2) emphasizes the balance

between extinction and colonization from within the metapopulation, i.e., intrinsic, rather than

extrinsic, with the positive equilibrium, 1 − e/c, which is smaller than that in model (1.1).

To capture various features of single-species metapopulations, researchers have modified

assumptions of Levins’ model (1.2) by including infinite local population size and ignoring de-

tails associated with space. One modification is to consider a finite local population size, where
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researchers can assess the effect of varying local population sizes and locations, or dispersers’

interactions [24, 29]. Based on Levins’ model, two types of approaches to achieve the goals

are developed, including state transition models and incidence function models [28, 29, 74].

In this case, local extinction rate and colonization rate can be heterogeneous, depending on

local population sizes [26, 27, 39]. Based on Levins’ two compartment model (1.2), Hanski

[27] developed a three compartment model by separating local populations into small ones

and large ones, by which he shows that metapopulation can have two alternative stable states,

corresponding to persistence and global extinction, respectively. Hanski presents his model

to explore how dispersal can change the dynamics of metapopulation, and the model includes

the observation that local population size is correlated with occupancy rate due to dispersal.

Hastings [39] further discusses Hanski’s model as an example after he constructs a model to

argue that stochasticity and demographic features in local population level can be consistent

with stability of metapopulation level.

Another modification of Levins’ model is to consider spatially explicit local populations.

Such models are developed to stress the importance of localized interactions [7, 13, 38, 42].

Those explicit-spatial-structure models arrange local habitats in a network of lattices and al-

low interactions only among nearby local habitats, so they can examine the effect of limited

connection due to limited dispersal in metapopulation. Those spatially realistic models have

been applied to study the metapopulation of the spotted owl in California [23, 46, 58] and the

Glanville fritillary butterfly (Melitaea cinxia) in Finland [33, 35, 36]. Besides modified models

to study single-species, Levin’s model has also inspired some multi-species models to study the

metacommunity dynamics of species with different relations, such as, competition, predation,

and mutualism [26, 51, 54–56].

What I explore in Chapter 2 is a single-species metapopulation model with spatially

implicit finite local populations, following the route of the hierarchical structured metapopula-

tion model studied by Hanski [27]. We are extending this branch of study on metapopulation

dynamics by asking the question: how could dispersal contribute to the link between local
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extinction and colonization? There is a consensus that the effect of dispersal plays a key role

in the metapopulation dynamics [20, 30, 32, 64, 77, 87], and the effect of dispersal on local

extinction rate has been referred to as a “rescue effect” in island biogeography [12]. While

there has been work that explores how relatively healthy local populations can rescue ones of

poorer quality, no consideration has been given to the negative impact such rescue events have

on the healthy source populations. I remedy this in Chapter 2.

What I investigate in Chapter 3 is based on Levins’ model (1.2) and Hanski’s model

[27], and I explore how metapopulation dynamics change as local extinction is reduced when

delays in establishment and dispersal are involved. Delays are expected to be an intrinsic part

of metapopulation dynamics, as it takes time for individuals to move from one local popula-

tion to another. Moreover, newly colonized habitats may not be able to send out propagules

until founders manage to encounter one another and reproduce. Delays are often disregarded

in models because they are difficult to measure [31]. However, delays may have otherwise

unexpected dynamical consequences, and I explore this here.

1.3 Evolution of Dispersal in Metapopulations

I have so far left the term dispersal undefined, and have treated it as a colloquialism. Moving

forward, however, will require a clearer definition of this term. Here, I will define dispersal as

the act of attempting to reproduce away from one’s place of birth. This definition is inspired

by the one provided by Duputié and Massol [16], but it is not identical to theirs.

Dispersal of individuals from their natal habitat is an essential demographic process for

many species, including animals and plants. Individuals’ dispersal usually occurs in three

stages: emigration from natal habitats, vagrancy before settling down, and immigration into a

new habitat where they can reproduce [67]. Therefore, dispersal probability is relevant to the

colonization rate that appears in models of metapopulation dynamics, such as those presented

in the previous section. There, the colonization rate is treated as a constant demographic pa-
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rameter. However, as dispersal is usually known to be heritable [66], therefore the dispersal

probability itself can be influenced by natural selection, in principle, and evolve over time [see

60–62]. I turn my attention to this fact here.

Studying the evolution of dispersal is important. Dispersal of individuals facilitates the

spread of genes, provided that individuals who dispersed survive during dispersal and manage

to have offspring in new habitats [41]. In other words, dispersal can lead to the re-distribution

of genes over space, in addition to the re-distribution of individuals. Therefore, not only is

the evolution of dispersal driven by natural selection, but dispersal can also affect the force of

natural selection on other traits.

Dispersal itself is a life-history trait that is of broad interest. Dispersal is the principal

means by which species expand their ranges, for example as the climate warms [11, 15]. In

addition, dispersal ensures genetic variation spreads throughout a population [1, 73]. Con-

sequently, dispersal can work against forces that foster the emergence of new species [82].

Dispersal (or rather lack thereof) can also ensure relatives remain in close proximity to one

another, and so set the stage for the evolution of more complex social behaviour [17, 75].

1.3.1 Mechanisms for the Evolution of Dispersal

Dispersal might be costly for individuals [9, 10, 40, 44, 59, 65]. During dispersal and after-

wards, dispersing individuals might be exposed to an increased mortality risk [40], or face

fierce competition at a new location and get a reduced number of offspring as a result [65].

These ideas raise intriguing questions: why disperse at all? What advantage does costly disper-

sal confer upon individuals? Several answers to these question have been explored. Answers,

themselves, invoke mechanisms that may be broadly classified as either “interior” or “exterior”

in nature. I refer to mechanisms coming from interactions with patchmates as “interior”, and

refer to all other mechanisms as “exterior”, such as those due to environment and predation.

Interior mechanisms for the evolution of dispersal involve the need of individuals to re-

duce kin competition, and to avoid inbreeding [6, 10]. Staying at an individual’s own natal
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habitat results in the individual’s competition with its relatives for survival or breeding re-

sources, while dispersing can reduce the intensity of natal kin competition. Inbreeding depres-

sion is caused by the recombination of deleterious recessive genes carried by relatives [21].

Lower dispersal probability can also lead to a larger probability of suffering from inbreeding

depression, but more dispersal allows the species to escape from the risk of inbreeding.

Besides the above interior causes, the evolution of dispersal can also be driven by the

exterior environment, so dispersal can be thought of as an adaptive response to environmental

change and uncertainty [61, 67]. Experiments imply that dispersal might be a strategy for

species to deal with ephemeral habitats [19]. In addition, changing environments might select

for conditional dispersal [69], one explanation of which is bet hedging, which is a strategy using

dispersal to reduce the variance of reproductive value caused by environmental uncertainty.

Among those mechanisms driving the evolution of dispersal, my focus in Chapter 4 is on the

effect of global-scale environmental fluctuations, with a consideration of kin competition.

1.3.2 Kin Selection: a Methodology for Modelling the Evolution of Dis-

persal

A kin selection argument can be used as a powerful tool to track the force of natural selection

on a genotype of dispersal [see 18, 21, 68, 79]. The kin selection argument is intimately linked

to inclusive-fitness theory [25], which argues that whether or not an individual’s behavior is

favored by natural selection depends not only on the individual’s direct fitness, which is gained

from personal survival and production of descendant kin, but also on the individual’s indirect

fitness gained from survival and production of non-descendant kin. Kin selection arguments

formulate a weighted sum of the fitness effects the individual confers upon its relatives and

itself, where weights are, in general, products of measures of genetic relatedness and projected

long-term contributions to the gene pool (i.e. reproductive value).

Let us revisit a model proposed by Taylor [79] to clarify the method and the steps. Con-

sider an infinite, sexually-reproducing diploid population, with non-overlapping generations.
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Suppose that individuals in the population are monoecious, meaning that they have both male

and female reproductive parts. Suppose at the beginning of a given year/generation, individuals

occur in local groups (i.e., patches) that consist of N individuals. Suppose further that the rest

of the year/generation proceeds as follows:

• Each of the N individuals (parents) gives birth to a large number of offspring, then each

parent dies.

• The offspring disperse to a new (uniform random) patch, independently, with probability

d. Each disperser dies during its journey, independently, with probability c, where c is

the cost of dispersal. Those individuals who do not disperse remain on their natal patch.

• Mating takes place uniformly at random among individuals on the same patch.

• Individuals compete uniformly at random (with replacement) for each of the N positions

on a patch. Unsuccessful competitors die, and the entire process repeats.

Based on this sequence of events, I model the selective pressure acting on dispersal by asking

how a small change to the probability with which an individual disperses, in turn, changes its

inclusive fitness.

To answer the question posed, consider a mutant individual with a dispersal probability

d + δ (δ > 0). Obviously, this mutant individual is more likely than its non-mutant counterpart

to pay the dispersal cost. To first-order in δ, then, the mutant’s direct fitness is changed by −δc.

The mutant’s increased tendency to disperse has the “knock on” effect of reducing competition

on its natal patch. This generates a benefit equal to δ (again, I am estimating to first-order in δ)

that is given to the average competitor. It can be shown, to zeroth order in δ, that the average

competitor is related to the mutant by a factor of hR. Here, h = (1−d)/(1−cd) is the probability

that the beneficiary was born on the same patch as the mutant, and R is the relatedness between

two individuals, given that they were born on the same patch. Overall, then

∆W = (−c + hR)δ
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expresses the net change in the mutant’s inclusive fitness. When the sign of ∆W is positive

(resp. negative), selection favours (resp. disfavours) an increase in d, population wide. When

∆W = 0, the evolution of d is at equilibrium with respect to selection.

To do anything meaningful with ∆W, the relatedness coefficient needs to be calculated.

Taylor formulates relatedness as follows [see 52]:

R =
cov(Gy,Hx)
cov(Gx,Hx)

, (1.3)

where Hx is the phenotype of individual x, and Gi is the phenotype of individual i (i = x, y).

This formula captures the meaning of the relatedness coefficient, i.e., the strength of the corre-

lation between the genotype of an individual y and the genotype of x (indicated by the covari-

ance), compared with the strength of the correlation between the genotype of the individual x

itself and its genotype. The closer the relatedness coefficient is to 1, the more genetically close

those individuals x and y are. To zeroth order in δ, Hamilton and Michod [52] show that

R =
cov(Gy,Gx)
cov(Gx,Gx)

=
fyx

fxx
, (1.4)

where fi j is the coefficient of consanguinity between i and j, i.e., the probability that uniform

random alleles from i and j have descended from a common ancestor without mutation. The

previous expression simplifies to

R =
fyx

(1 + f )/2
, (1.5)

where f is the inbreeding coefficient of x, defined as the probability that homologous alleles in

x have descended from a common ancestor without mutation.

Clearly, to calculate R need the help of two coefficients: f and fxy (= g for the author’s
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convenience). Using a recursive conditioning argument, I get

f ′ = h2g, (1.6)

g′ =
1
N

[
1 + f + 2h2g

4

]
+

N − 1
N

[h2g], (1.7)

where f ′ and g′ are the coefficients in the next generation. Solving for equilibrium values of f

and g, respectively, and using the formula above, I find

R =
2g

1 + f
=

1
2N − (2N − 1)h2 . (1.8)

By substituting R in my expression for ∆W, setting ∆W = 0, and solving for d = d∗ I find that

selection on dispersal is at equilibrium when

d∗ =
H + 1 − 4 N c
H + 1 − 4 N c2 , (1.9)

where

H =
√

1 + 8 N (2 N − 1) c2. (1.10)

Taylor and Frank [80] have a “neighbour modulated fitness” method that derives the in-

clusive fitness effect by considering the ways in which an individual’s direct fitness is affected

by its relatives, rather than the other way around, as I did above. The results generated by the

Taylor-and-Frank approach [80] are equivalent to those generated in the more standard way

[81].

1.4 Thesis Motivation and Outline

In Chapter 2, I ask: to what extent is the persistence of a metapopulation impacted when the

dispersal associated with colonization events results in a diminished quality of source popula-
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tion? Such diminished quality can disrupt the social structure of a source population, e.g., when

a disperser functions as a helper in a cooperatively breeding group, the cooperative breeding

structure may collapse after the helper disperses. To answer the question, I propose a simple

model of a metapopulation in which local populations are made up of small numbers of in-

dividuals, with distinct social roles. I use my model to identify the conditions under which

global extinction of the metapopulation can occur or be avoided. My analysis is focused on

(but not solely dedicated to) the effect of dispersal rate, as dispersal events fuel colonization

in a metapopulation, and have the potential to reduce the quality of those source populations

which colonists leave behind. Surprisingly, I find that the impact of dispersal, as I have mod-

elled it, is limited. This, in turn, suggests that the standard approach is likely useful when

modelling metapopulations consisting of small concentrations of social species. I discuss the

implication of my findings for natural populations, and their broader significance in light of

model limitations.

In Chapter 3, I ask if delays can alter the effect of reducing local extinction rate on

the stability and persistence of metapopulations, and if a “Paradox of Enrichment” can occur,

i.e., if reducing local extinction can disrupt the stability of metapopulation and lead to global

extinction. We first introduce a gallery of delay differential equation (DDE) models based on

Levins’ model and Hanski’s model, by considering delays associated with availability of empty

islands, delays associated with dispersal, and delays associated with establishment, and then

I investigate the possibility for oscillations by checking the absolute stability of the positive

stable equilibrium, and by determining critical transition delays. Next, we continue with the

occurrence of the Paradox of Enrichment in models, in which the enrichment can lead to os-

cillations, I compare the timing of the occurrence of the Paradox of Enrichment in different

models, and I argue that introducing a structure to metapopulations with establishment delay

might be a way to resolve the Paradox of Enrichment, and that recording the increased recovery

time can be used as a warning sign when the metapopulation approaches its bifurcation points.

At last, I end with discussion of the impact of including delays in metapopulation modelling,



14 Chapter 1. Introduction

the occurrence of the Paradox of Enrichment and future directions.

In Chapter 4, I shift my focus to dispersal evolution. I ask if temporal global-scale

environmental fluctuations can influence the evolution of dispersal, and if so, how the disper-

sal probability responds to the disparity between dispersal cost over the fluctuation and the

frequency of fluctuation. I use mathematical models of a population that is divided into habi-

tat patches of fixed finite size. The state of the environment in which the population exists

fluctuates randomly between “good” and “poor” over time, and affects the cost of dispersal

only. When dispersal cannot be adjusted based on the environment (unconditional dispersal),

I find that environmental fluctuation exerts only a weak influence. Indeed, the approximations

inherent to my mathematical analysis show that unconditional dispersal is affected by the en-

vironment through time-averaged costs alone. Results change when dispersal can be adjusted

based on environmental conditions (conditional dispersal): dispersal occurs at a higher rate in

good years when its cost is low. Furthermore, the disparity between dispersal in good versus

poor years becomes more pronounced as either variance in dispersal cost increases, or environ-

mental fluctuations become more frequent. I discuss findings in terms of the inclusive-fitness

effects of dispersal. I also outline testable predictions arising from my findings. My interest

in cooperatively breeding species resurfaces in this chapter, and the implications of my model

predictions for cooperative-breeding species is discussed.

In Chapter 5, I summarize key points from previous chapters, and propose a future di-

rection toward completing a theoretical picture of the evolution of cooperation by turning my

attention to one of its important drivers, group augmentation. Inspired by work of Kokko et al.

[45], I raise a question, that is, how can ecological constraints and group augmentation together

impact the route of evolution of cooperative breeding. I provide some background information

there and set up a model to guide further study.
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Chapter 2

Dispersal Altering Local States Has a

Limited Effect on Persistence of a

Metapopulation

2.1 Introduction

Many species occupy patchy habitats, existing as a collection of local populations separated

from one another in space, but linked via dispersal [6]. Understanding the dynamics of these

collections of local populations, or ‘metapopulations’, is especially important to conservation

efforts, because landscapes have become increasingly fragmented due to human activities [28].

Indeed, a number of mathematical models have been used to predict the conditions under which

global (cf. local) extinction of metapopulations can occur.

Levins [15] provided the seminal model of metapopulation dynamics. His is a two-

compartment model that classifies local populations as either empty (extinct) or occupied. It

predicts that a metapopulation will persist only when the rate of local extinction is outstripped

by the rate of recolonizations by dispersers from occupied areas. If, instead, the local extinc-

tion rate happens to exceed the rate of recolonization, then Levins’ model predicts extinction

24
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on a global scale.

Since Levins’ work [15], many more details have been incorporated into metapopulation

models. Hanski [8], for example, recognized that small local populations are quite vulnerable

to extinction, and that emigrants from larger local populations can be a particularly important

source of colonists. To capture these ideas, Hanski [8] developed a three-compartment model

that subdivides occupied local populations according to their sizes (small versus large). This

more elaborate model, and others like it [e.g. 9], predict that the persistence of a metapopulation

and its global extinction can be alternative steady states under a limited range of conditions. In

other words, a stable metapopulation could be pushed to global extinction due to a sufficiently

large reduction in the population size; this represents a significant departure from the original

predictions made by Levins [15].

One assumption common to metapopulation models, like those proposed by Levins and

Hanski, is that dispersal from a given source population, during the course of a colonization

event, does not diminish the quality of the source itself [see 1, 18, 29]. In particular, dispersal

of colonists from a source population does not render the source, itself, any more vulnerable

to extinction. While this assumption is convenient, it may not be reasonable, especially if

local population sizes are small, or if local population dynamics highly depends on the mainte-

nance of certain social bonds (e.g. socializing between potential mates, or socializing between

breeders and helpers in the nest) [14, 26].

In this paper we ask, to what extent is the persistence of a metapopulation impacted when

the dispersal associated with colonization events results in a source population of diminished

quality? To answer the question, we propose a simple model of a metapopulation in which

local populations are made up of small numbers of individuals, with distinct social roles. We

use our model to identify the conditions under which global extinction of the metapopulation

can occur or be avoided. Our analysis is focused on (but not solely dedicated to) the effect of

dispersal rate, as dispersal events fuel colonization in a metapopulation, and have the potential

to reduce the quality of those source populations which colonists leave behind. Surprisingly,
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we find that the impact of dispersal, as we have modelled it, is limited. This, in turn, sug-

gests that the standard approach is likely useful when modelling metapopulations consisting of

small concentrations of social species. We discuss the implication of our findings for natural

populations, and their broader significance in light of model limitations.

2.2 Model

2.2.1 Preamble

In sections 2.2-2.4, we build a four-compartment model of metapopulation dynamics aimed at

understanding the demographic and social mechanisms that drive local extinction and recolo-

nizations in a metapopulation. Like previous authors [8, 9], we recognize that rates of extinc-

tion and recolonization depend on the different kinds of occupied areas found in a metapopula-

tion. Unlike previous authors, though, the way in which we classify local populations will vary

according to the social status of individuals. In particular, this means that certain social roles

must be filled in order for key demographic events to occur, and we expect metapopulation

dynamics to change to some degree as a result.

2.2.2 Main Assumptions

We consider a metapopulation made up of a very large number of territories. Each territory

in the metapopulation can support at most two dominant individuals (as a breeding pair), with

at most one non-breeding subordinate individual. In keeping with the conclusions of removal

experiments with cooperatively breeding delayed dispersers [20], we assume if a subordinate

happens to be found on a territory alongside only one dominant, the subordinate would imme-

diately be recruited to the dominant class. It follows that any territory will be found in one of

the four states: state 0, an empty territory; state 1, a territory with exactly one dominant and

no subordinate; state 2, a territory with exactly two dominants and no subordinate; state 3, a



2.2. Model 27

saturated territory with exactly two dominants and one subordinate.

At time t, the state of the entire metapopulation is n(t) = (n0(t), n1(t), n2(t), n3(t)), where

ni(t) is the density (or number) of state-i territories. The metapopulation changes its state

as a result of events associated with demographic processes, including mortality, birth, and

dispersal. We discuss each demographic process, in turn, below.

2.2.3 Demographic Processes

2 310
3µn32µn2µn1

(a) states transition due to mortality

2 310
λn2

(b) states transition due to birth

2 310
n0
N (λ + δ)n3

n1
N (λ + δ)n3 δn3

(c) states transition due to dispersal

Figure 2.1: Transitions among territory states. The demographic processes
lead to state transitions: (a) due to mortality, (b) due to birth, (c) due to
dispersal. Note that arrows associated with mortality are all pointing to the
left, arrows associated with birth are all pointing to the right, but arrows as-
sociated with dispersal are not of the same direction. Here, the total number
of territories is N = n0 + n1 + n2 + n3.

Mortality

Each individual suffers mortality at rate of µ > 0 per unit time. Mortality of individuals on a

state-i > 0 territory implies a transition to state i − 1 (Figure 2.1a). As is clear from the figure

2.1a, the directions of arrows related to mortality rate are all pointing to left, which implies

increasing mortality will promote global extinction.
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Birth

A pair of dominant individuals gives birth at rate λ > 0 per unit time. If the dominant pair

inhabits a state-2 territory, any newborn they produce immediately becomes a subordinate on

the same territory. In this case, the state-2 territory transitions to state 3 (Figure 2.1b). While

it is true that birth events occur on state-3 territories, newborns produced on those saturated

territories are assumed to migrate; the associated state transitions are discussed below. In

figure 2.1b and 2.1c, the directions of arrows due to birth are all pointing right, meaning that

birth promotes persistence of metapopulation.

Dispersal

A subordinate individual emigrates from a state-3 territory at rate δ > 0 per unit time. In

addition, individuals born on a state-3 territory are assumed to emigrate at the moment of

their birth (equivalently, the incumbent subordinate migrates the moment the birth event takes

place and the newborn remains). Upon leaving a state-3 territory, an emigrant travels to a new

territory, chosen uniformly at random, in an attempt to fill a dominant vacancy. If an emigrant

chooses to travel to a territory with no dominant vacancy, that emigrant is assumed to die. In

this way, dispersal is risky. In Figure 2.1c arrows associated with dispersal are not of the same

direction, so the effect of dispersal on persistence of metapopulation is not obvious. This is

indeed the basic motivation of this paper.

Our model of dispersal is consistent with the social behaviours of certain cooperatively

breeding species who reject non-kin when these outsiders attempt to join their groups. Broadly

speaking, the rejection of non-kin is predicted to occur whenever the group in question is in

its most productive state (for example, groups that are in state 2) [22]. Our model of dispersal

also leads to kin-based social groups which is consistent with a number of studies of avian

cooperative breeding [see 10]. Of course, allowing only kin to join certain social groups does

lead to inbreeding, but certain social species are known to tolerate inbreeding to some degree

[19].
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Overall, dispersal contributes to the transitions of territories from state 3 to state 2, from

state 1 to state 2, and from state 0 to state 1 (Figure 2.1c). Importantly, transitions from state

3 to 2 at one locale can be linked to changes from state 1 to 2, or 0 to 1, at another locale. In

this way, our model differs from earlier ones [8, 9] that treat the degradation in quality of local

environments as independent events.

2.2.4 Dynamics

ODE System

Combining the processes given in Figures 2.1a-2.1c, we obtain the following ODEs for n0 to

n3, respectively:

dn0

dt
= µn1 −

n0

N
(λ + δ)n3,

dn1

dt
= −µn1 +

n0

N
(λ + δ)n3 + 2µn2 −

n1

N
(λ + δ)n3, (2.1)

dn2

dt
= (3µ + δ)n3 − λn2 − 2µn2 +

n1

N
(λ + δ)n3,

dn3

dt
= −(3µ + δ)n3 + λn2,

where the total number of territories is N = n0 + n1 + n2 + n3. Note that dN
dt = 0, so the total

density is a constant. We then nondimensionalize the system (2.1) using w = n0
N , x = n1

N , y =

n2
N , z = n3

N , τ = tλ, so it becomes

ẇ = mx − (1 + d)wz,

ẋ = −mx + (1 + d)wz + 2my − (1 + d)xz,

ẏ = −y + (3m + d)z − 2my + (1 + d)xz,

ż = y − (3m + d)z,
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where m =
µ

λ
is the nondimensionalized mortality rate of an individual, d = δ

λ
is the nondimen-

sionalized dispersal rate of a subordinate individual, and dots denote derivatives with respect

to τ. Note that w, x, y, z are fractions of territories in a given state ( state 0, state 1, state 2,

state 3, respectively), and that τ marks time in terms of birth events (τ = 1 when t = 1
λ
). Using

w + x + y + z = 1 the previous system can be reduced to our final, three-dimensional system

ẋ = −mx + (1 + d)(1 − x − y − z)z + 2my − (1 + d)xz,

ẏ = −y + (3m + d)z − 2my + (1 + d)xz, (2.2)

ż = y − (3m + d)z.

We present our analysis of the system (2.2) here, but numerical calculations are also outlined

in the computer code included as supplemental files (see Appendix C.1).

Forward invariance of the system

Before exploring further properties of the system, we present a proposition that serves, for

now, as a check on correctness of system (2.2). Of course, solutions that track fractions of

some population ought to stay bounded within the simplex. Proposition 1 shows that this is

true of solutions to the ODEs proposed above.

Proposition 1 Solutions to (2.2), paired with an initial condition, remain in the region

C = {(x, y, z)|x + y + z ≤ 1, 0 ≤ x, y, z ≤ 1},

as long as the initial condition is in the region C.

Proof We need only check that the dot product between the inward-pointing normal to C and

the vector field (ẋ, ẏ, ż) is non-negative on boundaries of C.

Note that there are four sets that make up boundaries of C (its ‘faces’). Those includes

x+y+z = 1, x = 0, y = 0 and z = 0. On the face x+y+z = 1, the normal vector is (−1,−1,−1),
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which is pointing inward the region C. Then, we can get (−1,−1,−1) ·(ẋ, ẏ, ż) = mx ≥ 0,which

means the flow on the edge cannot cross the boundary. On the face x = 0, the normal vector

is (1, 0, 0) pointing inward, and (1, 0, 0) · (ẋ, ẏ, ż)|x=0 = z(1 − y − z)(d + 1) + 2my ≥ 0. Similar

proof can be obtained on the other two faces y = 0 and z = 0.

2.3 Results

Focusing on system (2.2), it is obvious that there is an extinction equilibrium (when (x, y, z) =

(0, 0, 0)), that always exists. As the reader will see, two additional (positive) equilibria may

also exist, depending on the demographic parameters. We will investigate the stability of the

extinction equilibrium in Section 2.3.1, and the existence and the stability of positive equilib-

ria will be discussed in Section 2.3.2. We also study the effect of changing d and m on the

persistence of metapopulation in Section 2.3.2.

2.3.1 Extinction Equilibrium

The vector E0 = (x, y, z) = (0, 0, 0) is an equilibrium solution to system (2.2). At this equilib-

rium, all of the territories are at state 0, so the species is absent from the metapopulation, and

we call E0 the ‘extinction equilibrium’. To verify that the equilibrium is locally asymptotically

stable (LAS), we consider the 3× 3 Jacobian matrix, constructed by linearizing (2.2) about E0:

JE0 =


−m 2m d + 1

0 −2m − 1 d + 3m

0 1 −(d + 3m)

 .

We can see one of the eigenvalues of JE0 is −m < 0. The sign of real part of the other two

eigenvalues depends on the trace and determinant of a 2 × 2 matrix located in the lower right

corner of JE0 . The trace of that 2 × 2 submatrix is −2m − 1 − (d + 3m) < 0, and its determinant

is 2(d + 3m)m > 0, so the remaining two eigenvalues both have negative real part. It follows,
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from the Routh-Hurwitz criteria [see, e.g. 4], that all of the eigenvalues of JE0 have negative real

parts, so the extinction equilibrium E0 is LAS. Whether E0 is globally asymptotically stable

depends on the parameters, because there could be other equilibria. Hence, we have only the

following proposition, in general.

Proposition 2 For system (2.2), there always exists a trivial extinction equilibrium, which is

locally asymptotically stable.

Proposition 2 distinguishes our model from earlier ones [8, 9] in that the extinction equilib-

rium in our model is stable for all parameters, not a subset of all parameters. We discuss this

proposition in the final section.

2.3.2 Positive Equilibria

If z = 0, then the extinction equilibrium is the only steady-state solution to (2.2). Biologically

speaking, z = 0 means there is no territory with a breeding pair and a subordinate, so there

are not enough offspring being produced and subordinates to fill vacancies, which leads to the

extinction of the population. When investigating the possibility of positive equilibria, then, we

ought to consider z , 0 only.

If z , 0, then a positive equilibrium, if it exists, satisfies

−mx + (1 + d)(1 − x − y − z)z + 2my − (1 + d)xz = 0,

−y + (d + 3m)z − 2my + (1 + d)xz = 0,

y − (d + 3m)z = 0,

which is equivalent to

−mx + (1 + d)(1 − x − y − z)z = 0,

−2my + (1 + d)xz = 0, (2.3)

y − (d + 3m)z = 0.
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Using the last two equations in (2.3) we can express x and y in terms of z:

x =
2(d + 3m)m

1 + d
, y = (d + 3m)z. (2.4)

Substituting (2.4) into the first equation in (2.3), we obtain a quadratic equation for the equi-

librium density of state-3 territories z. This can be solved to get,

z± =
d + 1 − 2(d + 3m)m ±

√
D

2(d + 3m + 1)(d + 1)
, (2.5)

where

D = (d + 1 − 2(d + 3m)m)2 − 8m2(d + 3m)(d + 3m + 1) (2.6)

is the discriminant. Of course, when D > 0, we have 0 < z± < 1 and the corresponding two

positive equilibria using equations (2.4) and (2.5). We denote the two positive equilibria as

E− = (x, y(z−), z−) and E+ = (x, y(z+), z+), respectively. When D < 0, there is no solution with

real values. When D = 0, the two equilibria coincide, i.e. z+ = z− = (d+1−2(d+3m)m)/(2(d+

3m + 1)(d + 1)), and we will not concern ourselves with stability. Indeed, it is the case D > 0

that concerns us in the proposition that follows.

Proposition 3 System (2.2) has two positive equilibria if and only if D > 0 is satisfied. The

equilibrium corresponding to a larger population size is locally asymptotically stable; the other

is unstable.

Proof The existence of two positive equilibria, when D > 0, has been shown above, so we

only need to examine their stability. The claims about local stability can be proven by investi-

gating the linearization of the system (2.2) about the corresponding positive equilibrium. The
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characteristic polynomial associated with the operator from the aforementioned linearization is

f (ν) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ν + 2(d + 1)z + m (d + 1)z − 2m (d + 1)(2x + y + 2z − 1)

−(d + 1)z ν + 2m + 1 −(d + 1)x − (d + 3m)

0 −1 ν + (d + 3m)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Using equations (2.4), we simplify the polynomial and get

f (ν) = ν3 +

[
2(d + 1)z + (d + 3m) + 3m + 1

]
︸                                    ︷︷                                    ︸

=k1

ν2

+

[
(d + 1)2z2 + 2 (d + 1)(d + 4m + 1)z + m(d + 5m + 1)

]
︸                                                                  ︷︷                                                                  ︸

=k2

ν

+

[
2(d + 1)z((d + 1)(d + 3m + 1)z + (2(d + 3m)m − (d + 1)))

]
︸                                                                         ︷︷                                                                         ︸

=k3

. (2.7)

If the real parts of each of the roots of the polynomial are negative, then the equilibrium is

locally asymptotically stable. The Routh-Hurwitz criteria for polynomials like (2.7) declares

that all the roots of the equation have negative real parts if and only if each of k1 > 0, k3 > 0

and k1k2 − k3 > 0 hold. For our polynomial, the three conditions are,

2(d + 1)z + (d + 3m) + 3m + 1 > 0, (2.8a)

[
2(d + 1)z + (d + 3m) + 3m + 1

][
(d + 1)2z2 + 2 (d + 1)(d + 4m + 1)z + m(d + 5m + 1)

]

−

[
2(d + 1)z((d + 1)(d + 3m + 1)z + (2(d + 3m)m − (d + 1)))

]
> 0, (2.8b)
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2(d + 1)z
[
(d + 1)(d + 3m + 1)z + (2(d + 3m)m − (d + 1))

]
> 0. (2.8c)

It is obvious that the condition (2.8a) holds for all z > 0, because all parameters d,m are

positive.To prove condition (2.8b) holds, we can partially expand the left-hand side of the

expression to get,

2 (d + 1)3 z3 + (3 (d + 3m) + 7 m + 3) (d + 1)2 z2

+
(
d + 10 m2 + 2 (4 (d + 3m) + 5) m + 2 (d + 3m)2 + 4 (d + 3m) + 3

)
(d + 1) z

+m ((d + 3m) + 3 m + 1) ((d + 3m) + 2 m + 1) .

This is also positive for positive parameters d,m and nonnegative variable z. Since z± > 0, it is

true that both equilibria satisfy the condition (2.8a) and condition (2.8b).

As for the condition (2.8c), it is equivalent to (d+1)(d+3m+1)z+(2(d+3m)m−(d+1)) > 0,

or

z >
d + 1 − 2(d + 3m)m
(d + 1)(d + 3m + 1)

. (2.9)

We then have

z+ =
d + 1 − 2(d + 3m)m +

√
D

2(d + 3m + 1)(d + 1)
>

d + 1 − 2(d + 3m)m
2(d + 3m + 1)(d + 1)

>
d + 1 − 2(d + 3m)m −

√
D

2(d + 3m + 1)(d + 1)
= z−,

for D > 0. So, for z = z+, the condition (2.8c) holds, and the equilibrium associated with

z = z+ is LAS. For z = z−, the condition (2.8c) fails as the reverse inequality, so the equilibrium

associated with z− is unstable.

The consequences of propositions 2 and 3 for the bifurcation of solutions to system (2.2)

are illustrated in Figure 2.2. In Figure 2.2, we use the discriminant D as a bifurcation parame-

ter. If D < 0, we see that there is only one equilibrium, the extinction equilibrium, E0, and it
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Figure 2.2: The bifurcation diagram of system (2.2). The equilibrium pro-
portions of state-3 territories, generically denoted as z, change with increas-
ing discriminant D, as does their respective stability properties. In the figure,
z = 0 and z+, correspond to locally stable equilibria E0 and E+, respectively,
and are shown in solid lines. The value z− corresponds to the locally unsta-
ble equilibrium, E−, is shown as the dotted line. We obtain the correspond-
ing values of the discriminant D and z±, by fixing the dispersal rate d as a
constant, and changing the mortality rate m.

is stable. At D = 0 a bifurcation occurs, and for D > 0 we see the appearance of a stable equi-

librium (denoted E+ in Figure 2.2) corresponding to z+ and an unstable equilibrium (denoted

E− in Figure 2.2) corresponding to z−. In biological terms, D = 0 can be viewed as a ‘tipping

point’ [sensu 21] since any demographic or life-history changes that take D below zero also

result in guaranteed extinction of the metapopulation.

At the tipping point D = 0, itself, the characteristic polynomial (2.7) has a zero root. By

continuity, this means that near-equilibrium dynamics close to the tipping point will be domi-

nated by small eigenvalues. Therefore we expect to see a critical slowing down for population

density to get back to the stable positive equilibrium after perturbation [21]. In turn, that critical

slowing down implies that, in a natural setting, perturbations of the stable equilibrium would
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take longer to be corrected in those systems nearer to D = 0 (Figure 2.3), which might be an

early sign that efforts to conserve the metapopulation need to be increased.
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Figure 2.3: The relationship between the time required to recover from a
10% perturbation from E+ and the discriminant D. We fix the mortality rate
m as a constant, and change the dispersal rate d, to obtain corresponding val-
ues of correction time and the discriminant D. Other computational details
included in supplementary files.

Close to this tipping point D = 0, we observe how the metapopulation can be affected by

changing mortality rate and dispersal rate. For any given value of d, increasing mortality rate

m will eventually lead the metapopulation to lose its stable positive equilibrium and go extinct,

because ∂D
∂m < 0 for all m and d (Figure 2.4 when d is a constant).

For given values of m, increasing dispersal rate d can have mixed effects on the metapopu-

lation. Three cases are summarised as following (Figure 2.4). Firstly, if m < m1 = (
√

2− 1)/2,

then changing D does not change the sign of D, because ∂D
∂d > 0 for all d > 0 with D(m, 0) > 0.

So the metapopulation always has a stable positive equilibrium, and it always has a chance

to persist. Secondly, if m is between m1 and m0, then increasing d will eventually push the

metapopulation to extinction because ∂D
∂d

∣∣∣
D(d,m)=0

< 0. Thirdly, if m > m0, increasing d will not
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change the sign of D, which stays negative. Overall, m0 −m1 gives the range of mortality rates

over which we observe the negative effect of increasing d. Importantly, this range is small rela-

tive to the width of the region to the left of m1, where increasing d does not affect the existence

of E+ (Figure 2.4). In sum, for the vast majority of parameter combinations, changing d does

not bring populations closer to D = 0, and so does not bring them closer to extinction.

Figure 2.2 also suggests that there is a second kind of tipping point predicted by our model,

when the metapopulation is to the right of the bifurcation (D > 0 in Figure 2.2). Specifically,

the tipping point is a set (possibly a surface) that separates the basins of attraction for E0

and E+, respectively, on which we find E− (Figure 2.5). This set is called the separatrix and

usually consists of the stable manifold of the unstable equilibrium. This second kind of tipping

Figure 2.5: The boundary between the basin of attraction for E0 and that for
E+. The boundary itself is shown as a dotted blue surface. Equilibria E0 and
E+ are shown as the black dot and the red dot, respectively. The unstable
equilibrium E− is shown as the large blue dot on the boundary surface.

point has been identified in other metapopulation models, and is linked to an Allee effect, i.e.

negative population growth below some density threshold [1, 18]. In our model, the tipping
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point can be avoided in stable populations provided perturbations remain inside the basin of

attraction for E+ ( region above the boundary surface in Figure 2.5).

Unfortunately, neither Figure 2.2 nor Figure 2.5 can clarify the effect of changing d on

the volume of the basin of attraction for E+. To take a more detailed look at the second kind of

tipping point, we investigate the volume of the basin of attraction of E+ and how it is affected

by the change of demographic parameters d given m. Since obtaining an explicit expression

of the boundary surface is not possible, we introduce a numerical way to measure the fraction

of the volume of the basin of attraction of E+ in the phase space C. First, we generate 105

random triples (x0, y0, z0) in [0, 1]3 and use those satisfying x0 +y0 +z0 ≤ 1 as initial conditions.

From the initial conditions, we solve (2.2) using the Runge-Kutta-Fehlberg (RKF) method (see

Appendix C.1.7). If the solution ends up in a small neighbourhood surrounding E+ (resp.

E0), then the corresponding initial condition is assigned to the basin of attraction for E+ (resp.

E0). We utilise Proposition 1 in numerical simulations: if solutions leave the region C, we

attribute their departure to numerical errors and discard them. We divide the number of initial

points ending up in the neighbourhood of E+ (E0, respectively) by the total number of valid

initial points, and get the fraction of C that corresponds to the basin of attraction for each of

E+ and E0. We are interested in the persistence of metapopulation, so we report the fraction

of C that corresponds to the basin of attraction for E+ in Figure 2.6. Numerical solution of

(2.2) reveals a negative relationship between the value of d > 0 and the volume of the basin

of attraction of E+ (Figure 2.6b). Increasing dispersal rate only changes the volume of basin

of attraction of E+ dramatically in a narrow range where bifurcation occurs. It is obvious

that for most of parameter space, change in dispersal rate does not significantly affect the

metapopulation dynamics (the regions with constant mortality rate remain the same color when

changing dispersal rate in most of Figure 2.6a).



2.3. Results 41

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

m = 0.117

m = 0.207

m = 0.212

m = 0.217

m = 0.250F
ra

c
ti
o
n
 o

f 
V

o
lu

m
e
 o

f 
B

o
fA

 f
o
r 

E
+

dispersal rate (d)

(b)

Figure 2.6: (a) Relationship between the volume of basin of attraction for
the positive stable equilibrium E+ and dispersal rate d and morality rate m
(simulated results). (b) Five examples of the relationships in part (a) with
specified values of m show the decreasing trend of the volume of basin of
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2.4 Discussion

Metapopulation models describe how a balance between occupied and unoccupied habitat

patches is, or is not, maintained by colonization and extinction events. Most of these mod-

els assume that would-be colonists do not alter the state of the patch they leave upon departure

[see 1, 8, 9, 15, 18, 29]. When habitat patches are occupied by small numbers of individuals,

however, dispersal by would-be colonists could leave a patch more susceptible to extinction

associated with random events. If dispersal by individuals also disrupts social roles, then de-

parture by colonists could have an even greater negative effect on the patches they leave behind.

In this paper we use a mathematical model to investigate how dispersal-associated state

changes in a metapopulation might impact its dynamics. In particular, we are interested in

extinction. In contrast to previous work [8, 9], our analysis shows that the extinction equilib-

rium is stable for all possible demographic conditions. The difference between our model and

previous ones is due to the fact that successful colonization is a ‘second-order’ process. In our

model, one colonist must be followed soon after by a second before reproduction can occur,

and at low population densities this is very unlikely. Earlier models ignore the social complex-

ities of the mating process, thereby allowing the extinction equilibrium to lose stability, under

certain conditions.

Our model assumes local populations (patches) are occupied by small numbers of indi-

viduals, with distinct social roles. Admittedly, we make rigid assumptions about the way in

which local populations are structured. However, our assumptions should emphasise, if not

maximise, the influence of dispersal-related state changes on global dynamics. That said, our

model predicts that dispersal from occupied patches, by socially subordinate individuals has

limited impact on the global persistence of a metapopulation. While it is true that changing

dispersal could, in some cases, tip the population toward (or away from) global extinction or

make the population less robust in the face of perturbation, those cases represented only a very

narrow range of parameter space. Our principal conclusion, then, is that dispersal-related state

changes do not impact significantly on the long-term persistence of the metapopulation as a
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whole. This does not mean that small local populations or social ties among neighbours play

no role in metapopulation dynamics; rather, it means that the influence of dispersal is not as

strong as the influence of other demographic processes like mortality.

The role played by dispersal in metapopulation dynamics is relevant to an on-going de-

bate among conservation biologists about the use of dispersal corridors to prevent extinction

[3, 5, 25]. On one hand, corridors are considered to be effective management tools because the

movement they promote stems inbreeding depression, and is thought to reduce size variation

among small local populations [23]. On the other hand, dispersal corridors may promote the

spread of disease, introduce additional sources of mortality, and may otherwise be ineffective

depending on the natural history of the species at risk [12, 24]. The resolution of the debate

over the efficacy of dispersal corridors also has economic implications, as the construction of

these corridors can cost several millions of dollars to establish and maintain [16, 25]. Insofar

as conservation biologists are concerned with dispersal corridors impacting on the social lives

of small local populations, our model’s predictions can contribute to the resolution of the de-

bate. In particular, we predict that any negative effects of dispersal would be observed in only

a narrow range of background biological conditions. Provided corridors are used, our model

indicates that concerns over the rate at which they are travelled are secondary to concerns about

birth and mortality rates. Of course, movement corridors may benefit the metapopulation in

some cases, and the demographic parameters should be monitored to assess the effectiveness

of corridors. In that way, it is possible to reduce the cost-benefit ratio of investment for conser-

vation.

Our conclusions should be tempered by the fact that our model, like all models, makes

certain key assumptions. Perhaps the most important assumption we make is that demographic

rates are fixed. Although this assumption is common in models of population dynamics, gener-

ally speaking, longevity and birth rates are understood as being shaped by selection [2]. More-

over, dispersal rate is expected to evolve [17], especially in response to social-evolutionary

pressure imposed by small local-population [7, 13]. We have already identified a role for dis-
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persal in a narrow range of parameter space. It is important to note that, if demographic rates

were allowed to evolve, what seems to be a narrow range of parameter space could turn out

to be exactly where selection on demographic traits pushes the metapopulation. Future work

investigating the so-called ‘eco-evolutionary dynamics’ in metapopulations will resolve this

issue.

One criticism that could be levied against our model has to do with the rather simplistic

nature of the social interactions it incorporates. We have suggested, above, that our model

captures certain elements of the biology of cooperative (i.e. communal) breeders. Certain

other elements, though, are missing.

Before we launch into the missing elements, let us remind the reader that we have fo-

cused on relationships between mates, as well as on dominant-subordinate interactions among

immediate neighbours. Most notably, subordinates can inherit dominant positions from their

reproductively-active parents. This fits well with the goals of the paper: given the uncertainty

associated with dispersal, departures by would-be colonists could definitely disrupt the produc-

tivity of patches they leave behind. The feature also fits with certain hypothesised incentives

for cooperative breeding [27].

Despite the various positives, what makes our model a poor one for understanding co-

operative breeding is that cooperation itself is missing, which could be investigated in future

work. Subordinates in our model do nothing to change the birth or mortality rates of domi-

nants, whereas these rates are observed to change in natural cooperatively-breeding populations

[11]. Had our model incorporated richer social structure our conclusions may have changed—

especially since cooperative interactions would be yet another thing for dispersal to disrupt.

Importantly, incorporation of richer social structure would have (will) complicate the model,

and so future work that seeks to resolve this issue must also find a way to cope with the perenial

trade-off between realism and tractability.
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Chapter 3

“Paradox of Enrichment” in

Metapopulations with Delays

3.1 Introduction

Many species experience their environment as a patchwork collection of suitable habitats in-

terspersed throughout an unsuitable matrix, and connected to one another by dispersal. Such

species are said to exist as metapopulations. As human-mediated fragmentation of the envi-

ronment has increased, understanding the dynamics of metapopulations has become of critical

importance to both conservation and ecological restoration [16, 18, 28, 36].

The seminal mathematical model of metapopulation dynamics was proposed by Levins

(1969). That model considered a constant number of ‘islands’ of suitable habitats that were

subject to local colonization events and local extinction events. Levins tracked the fraction of

occupied islands, denoted p(t), using

p′(t) = c (1 − p(t)) p(t) − e p(t) (3.1)

where c gives the rate at which colonists leave occupied islands, and e gives the rate at which

islands suffer extinction.

48
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It can be shown that, when the colonization rate c exceeds the extinction rate e, solutions

to Eq. (3.1) tend to a steady-state value p̄ = 1 − e/c over time. Otherwise, solutions to Eq.

(3.1) tend to zero over time, and the metapopulation suffers global extinction. In mathematical

terms, solutions to Eq. (3.1) exhibit a transcritical bifurcation as the bifurcation parameter

1 − e/c passes through zero.

Levins’ model can be (and has been) modified in many ways. One extension, originally

proposed by Hanski (1985) and later modified by Hastings (1991), divides occupied islands

into two categories based on quality. Low-quality islands occur with frequency p`(t), and high-

quality islands occur with frequency ph(t). Assuming (i) only low-quality islands are subject to

extinction, (ii) only high-quality islands send out colonists, (iii) low-quality islands can become

high-quality only through colonization, and (iv) high-quality islands can become low-quality

due to degradation of the local population, we arrive at the following:

p′`(t) = c (1 − p`(t) − ph(t)) ph(t) − e p`(t) + d ph(t) − c p`(t) ph(t),

p′h(t) = c p`(t) ph(t) − d ph(t),
(3.2)

where d is the rate at which high-quality islands become low-quality because of degradation.

It can be shown that global extinction of the metapopulation is always a possibility for

the model suggested by equation (3.2). In fact, when the colonization rate c < d + 2
√

d e,

the long-term fate of the metapopulation can only be global extinction. When c > d + 2
√

d e

the metapopulation might persist over time, with the frequency of low-quality and high-quality

islands tending to p̄` = d/c and p̄h = [(c−d) +
√

(c − d)2 − 4d e]/(2c) over time (see Appendix

A.1 for analysis). Persistence, however, requires that the the frequency of high-quality islands

remain above some tipping point [sensu 34]. When high-quality islands are too infrequent,

rescue of low-quality islands cannot counterbalance local extinctions and global extinction is

the result. In mathematical terms, solutions to (3.2) exhibit a fold bifurcation, or saddle-node

bifurcation, as the bifurcation parameter c − (d + 2
√

d e), or e − (c − d)2/(4d), passes through

zero. For both models (3.1) and (3.2), reducing extinction rate e when other parameters (c
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and d) are set to constant can save the metapopulation from global extinction, and increase the

density of occupied islands.

Though the metapopulation models proposed by Levins and Hanski make slightly dif-

ferent predictions, they agree on the basic notion that increasing colonization and reducing

extinction promotes metapopulation persistence. In this way, these models appeal to the same

expectations about metapopulation dynamics that are likely to motivate conservation efforts.

For example, it is often expected that facilitation of movement among patches will work to

maintain the health of metapopulations at risk [2]. It is also expected that reduced local extinc-

tions in a metapopulation will work to keep the metapopulation viable by minimizing threats

to local populations [2].

While efforts to conserve metapopulations are reasonable, it may not be reasonable to ex-

pect that the positive effects those efforts have always resulted in stable, equilibrium dynamics.

Indeed, a hint to this effect comes from consumer-resource theory. That theory predicts that

increases to the carrying capacity of a population can, in fact, destabilize communities at equi-

librium, and lead population densities to oscillate in a sustained manner over time [11, 27, 31].

This result is known as the “Paradox of Enrichment” and it has garnered empirical support

[10, 32, 40].

The extent to which a “Paradox of Enrichment” might be found for metapopulations is

unclear. Certainly, the predictions made by the ordinary differential equation (ODE) models

of Levins and Hanski suggest that such a paradox is unlikely to crop up. The full range of

possible metapopulation models, however, has yet to be explored. A Paradox of Enrichment

might arise, for example, in a model based on delay differential equations (DDEs), as these are

known to produce oscillatory dynamics in certain circumstances. In this paper, then, we turn

our attention to DDE models of metapopulations, with the aim of investigating how the balance

between colonization and extinction rates influences the stability of equilibrium solutions to

DDE versions of Levins’ and Hanski’s works, respectively.

In this paper, we first introduce a gallery of DDE models based on Levins’ model and
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Hanski’s model in section 3.2, by considering delays associated with availability of empty

islands, delays associated with dispersal, and delays associated with establishment, and then

we investigate the possibility for oscillations by checking the absolute stability of the positive

stable equilibrium, and by determining critical transition delays. In section 3.3, we continue

with the occurrence of the Paradox of Enrichment in models, in which the enrichment can

lead to oscillations. We compare the timing of the occurrence of the Paradox of Enrichment

in different models, and we argue that introducing a structure to metapopulations with estab-

lishment delay might be a way to resolve the Paradox of Enrichment, and that recording the

increased recovery time can be used as a warning sign when the metapopulation approaches its

bifurcation points. In section 3.4, we end with discussion of the impact of including delays in

metapopulation modelling, the occurrence of the Paradox of Enrichment and future directions.

3.2 A Gallery of Models

In metapopulation dynamics, time delay can be associated with various factors, e.g. the den-

sity of available islands, dispersal of colonists, and establishment of (high-quality) habitable

islands. We incorporate such delays in Levins’ model (3.1) in section 3.2.1, and Hanski’s model

(3.2) in section 3.2.2. We investigate the possibility for oscillations by looking for regions of

absolute stability (formally defined below) in the parameter space, and determine critical tran-

sition delays. We also examine the impact of reducing the extinction rate on the dynamics of

metapopulations.

3.2.1 Three DDE versions of Levins’ Model

Delay Associated with Available Islands: an equivalent to the logistic model with delay

We first consider a simple case where, for example, colonists need to collect resources from

unoccupied islands before becoming established on unoccupied islands. If it takes τ time units

for colonists to finish their work, or colonists need to get prepared τ time units before successful
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colonization takes effect, then

p′(t) = c (1 − p(t − τ)) p(t) − e p(t). (3.3)

For later use, define F(p(t), p(t − τ)) as the right-hand side of the DDE. Note that when c > e,

p̄ = 1 − e/c solves the DDE. To address the stability of p̄, we first perturb the solution for τ

time units. Specifically, we add ε(t) ≤ ε̄, for some small ε̄, to p̄ beginning at time t0 − τ until

time t0 (Figure 3.1). We then determine whether the perturbation grows or not.

time, t

p(t)

p̄ + ε̄

p̄
p̄ − ε̄

t0 − τ t0

Figure 3.1: Perturbed equilibrium solution p̄.

Given that ε(t) is small, ε′(t) ≈ F( p̄, p̄)+F1( p̄, p̄) ε(t)+F2( p̄, p̄) ε(t−τ) which simplifies to

ε′(t) = −(c− e) ε(t−τ). By substituting solutions of the form ε(t) = exp{s t} into the expression

for ε′, we arrive at the characteristic equation s = −(c − e) exp{−s τ}. For a general method to

get the characteristic equation for single DDEs and DDE systems, see Appendix A.2. At this

point it is clear that the analysis is identical to that for the well-known Hutchinson equation

(the DDE version of logistic growth [3, 22, 33]). We can conclude, therefore, that p̄ becomes

unstable whenever

τ >
1

(c − e)
π

2
= τ0. (3.4)
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Numerical examples illustrate the result (Figure 3.2), where we choose parameters so that the

critical delay is τ0 = π, and oscillation occurs when τ > τ0. Inequality (3.4) predicts that when
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time, t
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p(
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Figure 3.2: Numerical solutions to DDE version (3.3) of Levins’ model for
various delays, τ. Parameter values were c = 3/2 and e = 1, and so the
critical delay is τ0 = π. Solutions in this paper are generated by Matlab’s
dde23 routine [35] with simple modifications of function odefinalize to
keep the densities in [0, 1].

colonization rate is much greater than extinction rate, the critical delay is small, and we expect
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instabilities to occur only when delays associated with available islands are long. By contrast,

when colonization rates exceed extinction rates by only a small amount, instabilities require

very long delays. We summarize the above analysis in the following proposition:

Proposition 4 For Eq. (3.3), whenever the colonization rate c is larger than the extinction rate

e, i.e., c > e, there exists a critical delay τ0, where τ0 = 1
(c−e)

π
2 , so that once the delay exceeds

the critical value, the positive equilibrium is de-stabilized.

Delay Associated with Dispersal

Now suppose the delay is associated with dispersal time, e.g. it takes τ units of time for a

colonist to reach a new island. In this case, we have

p′(t) = c (1 − p(t)) p(t − τ) − e p(t). (3.5)

Using a similar method for Eq. (3.3), we can get the linearized differential equation of Eq.

(3.5) about p̄ = 1 − e/c if c > e, ε′(t) = −c ε + e ε(t − τ). By substituting solutions of the form

ε(t) = exp{s t}, we again arrive at the characteristic equation s = −c + e exp{−s τ}.

Now we check if there is a region in the parameter space where the positive equilibrium

exists but cannot be destabilized. If such a region exists, the positive equilibrium, which is

stable in the corresponding ODE without any delay, is defined as having absolute stability in

this region, meaning that the positive equilibrium is stable for any delay [sensu 37, page 56],

i.e., the positive equilibrium is absolutely stable. In the following sections, we use the ‘absolute

stability’ in the DDE analysis to refer to the absolute stability of the positive equilibrium that is

stable in the corresponding ODE model. Using the techniques in Appendix A.5, we can prove

that the positive equilibrium has absolute stability as long as it exists, i.e., c > e. Note that even

though there is a delay associated with dispersal in Eq. (3.5), there will not be any oscillation

around the positive equilibrium. So, we have the following proposition:
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Proposition 5 For Eq. (3.5), there does not exist any critical delay for any pair of c and e

whenever colonization rate c is larger than the extinction rate e, i.e., the positive equilibrium

is stable for all (c, e) satisfying c > e.

This model (3.5) and the previous model (3.3) both consider delays affecting the colonization

term, but they make different predictions about the possibility of oscillatory metapopulation dy-

namics. In model (3.3), the delay associated with available islands, hence available resources,

can lead to oscillations. However, in model (3.5), the delay is associated with the dispersing

time of colonists, and there cannot be any oscillation for however long delay of dispersal.

Delay Associated with Establishment

If establishment takes time, then we might track occupied islands using the following DDE:

p′(t) = c (1 − p(t − τ))p(t − τ) − e p(t). (3.6)

Note that because an establishment event needs both a colonist and an unoccupied island,

those two items should both be τ time units before the successful colonization takes effect if

the establishment itself needs τ time units. Now, the perturbation satisfies ε′(t) = −e ε(t) +

(2 e − c) ε(t − τ). If we again use the ansatz ε(t) = exp{s t}, then the characteristic equation is

s + e = −(c − 2e) exp{−s τ}. (3.7)

We can analyze the roots of the characteristic equation (3.7), obtain the critical delay, and prove

the absolute stability of Eq. (3.6) (see Appendix A.3), and we obtain the following proposition:

Proposition 6 For Eq. (3.6),

(i) if colonization rate c is larger than the extinction rate e but not too large (e < c < 3 e), then

the positive equilibrium is stable for any delay, i.e., it cannot be de-stabilized;

(ii) if colonization rate c is much larger than the extinction rate e (c > 3 e), then there exists a
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critical delay τ0 , where τ0 = 1
v arctan

(
− v

e

)
+ π

v , with v =
√

(c − e) (c − 3 e), so that once the

delay exceeds the critical value, the positive equilibrium is de-stabilized.

3.2.2 Two DDE versions of Hanski’s Model

Delay Associated with Dispersal

In our next model, we assume only high-quality islands are able to send out colonists, e.g.

high-quality islands can support taller plants so that the wind can carry the seeds further and

we might expect that high-quality islands are more likely to produce more seeds and more

high-quality fruits to attract animals to consume and then carry the seeds in their guts. Suppose

that time associated with the dispersal of a colonist from a high-quality island to an empty

island or a low-quality island requires τ time units. Then our model is:

p′`(t) = c (1 − p`(t) − ph(t)) ph(t − τ) − e p`(t) + d ph(t) − c p`(t) ph(t − τ),

p′h(t) = c p`(t) ph(t − τ) − d ph(t).
(3.8)

The DDE system (3.8) has the same equilibria as the ODE system (3.2). We can get the

following proposition by investigating the absolute stability (see Appendix A.4):

Proposition 7 For model (3.8), the positive equilibrium exists if and only if c > d + 2
√

d e,

and the same condition ensures the absolute stability of the positive equilibrium.

Therefore, the region of absolute stability coincides with the region of existence of the positive

equilibrium in both of the model (3.5) and the model (3.8).

Delay Associated with Establishment of High-Quality Islands from Low-Quality Islands

In metapopulations, it might take a long time to establishment a high-quality island from a

low-quality island. For example, seeds of most plants have a delay before germination [5].

Suppose that time associated with the transition of an island from low-quality to high-quality
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requires τ time units. Then,

p′`(t) = c (1 − p`(t) − ph(t)) ph(t) − e p`(t) + d ph(t) − c p`(t − τ) ph(t − τ),

p′h(t) = c p`(t − τ) ph(t − τ) − d ph(t).
(3.9)

Figure 3.3: Three numerical solutions of system (3.9) with a constant col-
onization rate c = 7 and a constant degradation rate d = 1. For each case,
p`(t) and ph(t) are shown on the left panel, and the corresponding trajectory
is shown on the right panel. The value of extinction rate e is the same in the
cases on top in the middle. The value of delay τ is the same in the cases in
the middle and on bottom. The middle case shows an oscillation, and the
other two show the system goes to a positive equilibrium.

The DDE system (3.9) has the same equilibria as the ODE system (3.2), including a

stable extinction equilibrium, (0, 0), and two possible positive equilibria
(

d
c ,

(c−d)±
√

(c−1)2−4 d e
2 c

)
,

of which E =

(
d
c ,

(c−d)+
√

(c−d)2−4 d e
2 c

)
is stable in system (3.2), and the other is unstable. The

existence of the positive equilibria requires e < (c−d)2

4 d = eu and c > d.

Solving the system (3.9) numerically gives some interesting cases, in which positive equi-
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libria become de-stabilized when changing either the delay τ or the extinction rate e. Numerical

simulations with different delays but the same value of the extinction rate show that oscillation

might occur when the delay increases, which is not a surprising outcome for a DDE system.

However, numerical simulations with the same delay but different values of the extinction rate

also show that reducing the extinction rate can de-stabilize the stable equilibrium. The latter

case inspires us to re-consider our intuitive expectation that reducing extinction rate e can al-

ways lead populations to a stable steady state. Figure 3.3 shows numerical solutions of system

(3.9) with different pairs of values of the extinction rate e and delays τ when fixing values for

the colonization rate c and the degradation rate d.

Analyzing the absolute stability and calculating the critical delay, we can obtain the fol-

lowing proposition (see Appendix A.5 and Appendix A.6 for calculations):

Proposition 8 For system (3.9),

(i) on condition that the colonization rate is intermediate (d < c < 3 d), the positive equilibrium

cannot be de-stabilized as long as it exists (e < eu, where eu =
(c−d)2

4 d );

(ii) when the colonization rate is large c > 3 d , the positive equilibrium cannot be de-stabilized

if the extinction rate satisfies el < e < eu, where el =
(3 c−d) (c−3 d)

16 d ;

(iii) when the colonization rate is large c > 3 d, there exists a critical delay 0 < τ0 ∈ R, so that

oscillation occurs for any delay larger than τ0, on condition that the extinction rate e is small

enough, e < el.

See Appendix A.6 for the expression of τ0.

The statement (i) in Proposition 8 points out the oscillation-free region in the parameter

space for system (3.9). Figure 3.4 shows the region where the positive equilibrium E is abso-

lutely stable and oscillation does not occur regardless of the magnitude of delay τ, given d = 1.

From Figure 3.4, we can observe that when colonization rate c > d = 1, where the existence

of E is possible, if the colonization rate is relatively small, i.e., c < 3, smaller extinction rate

(e < eu) always ensures existence and stability of E at the same time; however, if the coloniza-

tion rate is relatively large, i.e., c > 3, medium extinction rate (el < e < eu) always ensures
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existence and stability of E, but smaller extinction rate (e < el) may lead to oscillations.

Figure 3.4: Absolute stability region for system (3.9) is shown in the first
quadrant between the curves e = el and e = eu (d = 1).

3.3 The Paradox of Enrichment

3.3.1 The Paradox of Enrichment in DDE versions of Levins’ model

Solutions to model (3.5) do not develop oscillatory behaviour when we reduce the extinction

rate, so no analogue to the Paradox of Enrichment occurs. In models (3.3) and (3.6), oscil-

lations might occur when either reducing extinction rate or increasing delays. Therefore, the

Paradox of Enrichment can occur for both models (see Figure 3.5). If we fix both the delay and

the colonization rate to constants in models (3.3) and (3.6), reducing the extinction rate below

the colonization rate can protect the metapopulation against global extinction to a possible pos-

itive equilibrium that is stable, and reducing the extinction further can de-stabilize the positive

equilibrium. The difference is that model (3.6) with delays associated with establishment pro-

vides a longer ‘safe’ range of the extinction rate for the positive equilibrium to remain stable,

compared with model (3.3) with delays associated with available islands. In addition, when

reducing the extinction rate e from e = c, the positive equilibrium 1 − e/c of density of occu-
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(a) (b)

Figure 3.5: The Paradox of Enrichment: (a) for Eq. (3.3) and (b) for Eq.
(3.6). Four types of regions are: (O): oscillation occurs around the positive
equilibrium if τ > τ0; (S): the positive equilibrium is stable for τ < τ0; (EX):
extinction only, the positive equilibrium does not exist; (AS): the positive
equilibrium is stable for all τ.

pied islands grows from 0, and the density of occupied islands keeps increasing to more than

1 − (c/3)/c = 2/3 for model (3.6) before oscillations occur, but for model (3.3), the density of

occupied islands cannot grow to such a relatively high level, 2/3, before oscillation occurs. So,

compared with model (3.3), which considers delays associated with available islands, model

(3.6) with delays associated with establishment has the following two properties as the the ex-

tinction rate reduces: first, oscillations are observed later if the extinction rate is reduced at the

same speed, and second, the maximum oscillation-free positive equilibrium is larger.

Figure 3.6 shows how enrichment can lead to extinction of a metapopulation in model

(3.6). If we start from large extinction rate, where the metapopulation is doomed to a global

extinction, then reducing extinction rate (i.e., enriching the metapopulation) can result in very

interesting dynamics. As we reduce the extinction rate from an initially large value, a sta-

ble positive equilibrium appears. Further reductions in extinction lead to oscillations that de-

stabilize the equilibrium; further reductions still, cause the amplitude of oscillations to grow.

Finally, the metapopulation tends to extinction when the extinction rate is even smaller.
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(a)

(b)

Figure 3.6: The Paradox of Enrichment: for Eq. (3.6). As extinction rate
reduces, the oscillation leads to extinction. (a): examples when fixing c = 4
and τ = 1 and changing e. (b): the amplitude of solutions around the pos-
itive equilibrium where it exists, and connected with the global extinction
equilibrium where the positive equilibrium does not exist (also with c = 4
and τ = 1).
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3.3.2 The Paradox of Enrichment in DDE versions of Hanski’s model

Solutions to model (3.8) do not develop an oscillatory behaviour when we reduce the extinction

rate, so the Paradox of Enrichment does not occur. For model (3.9), from Proposition 8 and

Figure 3.4, we can see that reducing the extinction rate when the colonization rate is relatively

small, i.e., d < c < 3 d, helps to possibly save the metapopulation from global extinction,

by facilitating a stable positive equilibrium. However, reducing the extinction rate when the

colonization rate is relatively large in model (3.9), i.e., c > 3 d, might lead to oscillations, i.e.,

the Paradox of Enrichment in DDE version of Hanski’s model (3.9) might occur when c > 3 d.

Figure 3.7 presents where the Paradox of Enrichment might occur in the parameter space

in system (3.9) when c > 3 d, and shows four numerical solutions to system (3.9). It provides

an answer to the question arising from Figure 3.3: what can lead to the de-stabilization of the

positive stable equilibrium in system (3.9)? The answer is that two factors can result in the

de-stabilization of E in system (3.9), i.e., increasing the delay τ and the reducing extinction

rate e.

Introducing structure to islands might resolve the Paradox of Enrichment

Although model (3.6) and model (3.9) both consider the delay associated with establishment,

model (3.9) includes a structure for occupied islands, classifying the occupied islands into

those with a low quality and those with a high quality, and thus might limit the possibility for

the Paradox of Enrichment to occur. On one hand, such structure in model (3.9) can provide an

extra ‘safe zone’ for metapopulations: when the colonization rate c is not too large and not too

small relative to the degradation rate d, i.e., d < c < 3 d, the positive equilibrium is stable for

any delay. On the other hand, when reducing extinction rate to a small value e < el, the global

extinction due to oscillations, which occurs in model (3.6), does not show up in our simulations

of solutions to model (3.9) .

Similar with Figure 3.6b, we can check the amplitude of the density of the total occupied
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Figure 3.7: The Paradox of Enrichment for system (3.9). With constant
colonization rate at c = 7 and constant degradation rate at d = 1, there are
three cases in the parameter space (e, τ) for the existence and stability of
the positive equilibrium E, separated by the solid curve τ = τ0(e) on the
left and the solid line e = eu on the right. i) On the upper left of the solid
curve, i.e., τ > τ0, oscillations could occur. ii) In the oscillation-free middle
region, where E is stable, one part is when τ < τ0 and e < el, and the other
part is the region between e = el and e = eu, i.e., the absolute stability
region for E. iii) In the region on the right of the solid line e = eu, the
positive equilibria do not exist. Four numerical results are also illustrated
here corresponding to the closest dots in the figure, with the (e, τ) chosen
at P1, P2 and P3 leading to stable equilibria, and (e, τ) chosen at P0 leading
to oscillation. The two arrows are the two possible ways to de-stabilize the
stable positive equilibrium E.
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islands in model (3.9) by numerical simulations and record the maximum and minimum densi-

ties for oscillatory metapopulations (see Figure 3.8). We find that the minimum itself achieves

Figure 3.8: The amplitude of the total density of occupied islands p` + ph

by numerical simulations when changing the extinction rate e. Enrichment
increases the amplitude of oscillations first, and then reduces the amplitude.

a minimum as e is changed. The non-monotonic relationship between the amplitude of oscil-

lations and extinction rate implies that the Paradox of Enrichment still occurs in model (3.9),

but with a smaller possibility compared with model (3.6). We explain those implications in the

following.

First, oscillations occur when we reduce the extinction rate (i.e., enriching the metapop-

ulation) in model (3.9), and the minimum value of the amplitude of oscillations continues to

decline as the extinction rate gets smaller until the minimum reaches its own minimum. We

expect that the same intensity of natural disasters or human interventions might not affect an os-

cillatory metapopulation with a relatively large minimum value of the amplitude of oscillation,

as much as an oscillatory metapopulation with a relatively small minimum value of the am-

plitude of oscillation. Therefore, smaller minimum value of the amplitude of oscillation could

lead to a larger global extinction risk. In this sense, the Paradox of Enrichment still occurs.

Second, however, as the extinction rate reduces further, the amplitude starts to decline once
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the minimum of the amplitude moves away from its own minimum (around e = 2 in Figure

3.8), which is a quite different behaviour compared with model (3.6) (see Figure 3.6b), where

oscillation continues to grow until global extinction occurs eventually. Hence, continuing to

enrich the metapopulation when the extinction rate is already small can reduce the possibility

of global extinction.

Overall, metapopulations in model (3.9) do not go extinct as easily as in model (3.6)

when extinction rate reduces, although de-stabilized positive equilibria are usually associated

with increased global extinction risk [3] and reducing the extinction rate might increase global

extinction risk in a range of intermediate extinction rate in model (3.9). So, quality-structured

islands might be an alleviation to the Paradox of Enrichment when we consider the delay as-

sociated with establishment. The influence of reducing the extinction rate, which could lead

to the Paradox of Enrichment, can be predicted by checking the recovery time from perturba-

tions about the positive equilibrium, and we examine the critical slowing down in the following

section.

Detecting bifurcations by checking for critical slowing down

When a system is approaching its bifurcation point, critical slowing down of recovery from a

perturbation about the positive equilibrium is extensively observed and useful in many research

areas [13, 34]. Numerical simulations of model (3.9) show that critical slowing down could

occur both when a fold bifurcation occurs, where two positive equilibria emerge, and when a

Hopf bifurcation occurs, where oscillations around a positive equilibrium occurs (see Figure

3.9). Figure 3.9 shows examples of such critical slowing down. The results are consistent with

our analysis of the critical values of delays and extinction rate (see the dashed lines in Figure

3.9). Such critical slowing down is useful as an early warning sign when the metapopulation is

about to go extinct or develop oscillatory behaviours.
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(a) (b)

Figure 3.9: Critical slowing down of recovery time from a perturbation
about the positive equilibrium occurs when a bifurcation is about to occur.
(a) E is stable when τ < τ0. A Hopf bifurcation occurs when delay τ passes
τ = τ0. (b) E is stable when e0 < e < eu, where e0 is the solution of system
(A.28) given c and τ. A critical transition occurs at both ends of this region
(e0, eu) of e: a Hopf bifurcation occurs on the left when the extinction rate
passes e = e0, and a fold bifurcation occurs on the right when the extinction
rate e passes e = eu.
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3.4 Discussion

The balance between extinction events and re-colonization events is essential in metapopu-

lation models. Reducing the extinction rate or increasing the colonization rate can increase

the stable density of occupied islands in both of the seminal metapopulation model by Levins

[25] and the quality-structured model by Hanksi [17], based on Levins’ model. However,

whether the effort intending to enrich the metapopulation could always promote the persistence

of metapopulations is questionable, in light of the existence of the ‘Paradox of Enrichment’ in

consumer-resource dynamics.

In this paper, we incorporate delays into well-known ODE models [17, 25], and use DDE

models to investigate if the Paradox of Enrichment occurs in metapopulations, as DDEs are

known to lead to oscillations. We incorporate delays into the ODE models by Levins and

Hanski, investigate the possibility for oscillations in the DDE model by checking the absolute

stability of the positive equilibrium that is stable in the corresponding ODE model, and examine

the critical transition delay if it exists.

We show that the Paradox of Enrichment does not occur in the DDE models we studied

with delays associated with dispersal only, but may occur in models with delays associated with

available islands or with establishment of (high-quality) islands. By comparing the two DDE

models which incorporate establishment delays, we find that including a structure based on

the quality of occupied islands may alleviate the Paradox of Enrichment in the metapopulation

model by saving the metapopulation from global extinction when the extinction rate is small,

although the oscillation amplitude is still increasing when the extinction rate reduces from the

critical point where cycling occurs. In models where the Paradox of Enrichment is possible,

metapopulations can develop oscillatory behaviours due to reduced local extinction rate, and

metapopulations either go extinct globally (see Figure 3.6), or have a smaller lower bound

for the oscillatory density of occupied islands (see Figure 3.8). Recording the recovery time

from perturbations about the positive stable equilibrium can be used as a warning sign when

the metapopulation is about to oscillate, as well as when the metapopulation approaches its
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saddle-node bifurcation point.

We obtain the parameter region of absolute stability for each model, i.e., the conditions

under which the positive equilibrium remains stable regardless of the magnitude of delay. In the

region where the positive equilibrium exists, the region of absolute stability excludes the possi-

bility of oscillations. With the delays included, we expect DDEs to have oscillatory behaviours,

but we find that delays associated with dispersal only cannot de-stabilize the stable metapopu-

lation in our models, as the region of absolute stability coincides with the region of existence

for the positive equilibrium (see Propositions 5 and 7). We incorporate the delay associated

with dispersal, because dispersal is known to play an important role for the metapopulation

stability [8], which is controversial [1, 39, 42]: on one hand, dispersal makes re-colonization

possible, reduces local extinction, and hence can rescue the metapopulation from global ex-

tinction [4, 41]; on the other hand, frequent dispersal might result in spatial synchrony, destroy

the heterogeneity of metapopulations, and hence might make the metapopulation vulnerable to

threats, such as disease [12, 15, 26]. However, although dispersal has already shown its im-

portance in the persistence of metapopulation, we discover that delays associate with dispersal

cannot affect the dynamics of the metapopulation, which is, I would say, a peculiar feature of

metapopulations, but also a advantageous feature, indeed.

Delays associated with establishment can de-stabilize the metapopulation about the posi-

tive equilibrium, i.e., the Paradox of Enrichment may occur, based on the result that there are

regions where the positive equilibrium is not absolutely stable in models (3.6) and (3.9) (see

Propositions 6 and 8). Comparing Propositions 6 and 8, we can find the following similarity

and differences of models (3.6) and (3.9). For the DDE version (3.6) of Levins’ model with

delayed establishment, an interesting result is that when the extinction rate e is intermediate,

i.e., (c/3 < e < c), the positive equilibrium cannot be de-stabilized, but when the extinction

rate continues to decline (e < c/3) oscillations can occur, leading to global extinction. For

the DDE version (3.9) of Hanski’s model with delayed establishment, we find some interesting

properties when positive equilibria exist: i) at a intermediate degradation rate (c/3 < d < c),
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metapopulations cannot be de-stabilized; ii) for smaller degradation rates (d < c/3), metapop-

ulations with intermediate extinction rate will not be de-stabilized about their positive equi-

librium; iii) for smaller degradation rates (d < c/3), metapopulations with small extinction

rate can be de-stabilized when establishment delay exceeds a critical transition threshold. The

degradation rate d in model (3.9) and the extinction rate e in model (3.6) both reflect the loss

of islands that are capable of sending out colonists, so it is reasonable that the regions of abso-

lute stability in models (3.6) and (3.9) both highlight the critical values c and c/3. Moreover,

the quality-structured model (3.9) require both of the degradation rate and the extinction rate

to be small to generate oscillatory behaviours, which is in effect limiting the possibility of

de-stabilization, and alleviates the Paradox of Enrichment.

The Paradox of Enrichment emerging in our DDE models (3.3), (3.6) and (3.9) results

from the two-sided effect of increasing the extinction rate: metapopulations can be rescued

from global extinction if the extinction rate falls below the colonization rate, but metapop-

ulations could go extinct or have an increased amplitude of oscillations when the extinction

rate is too small. Such a Paradox of Enrichment is not only a theoretical phenomenon. We

can get a hint from the work by Molofsky et. al. [29]. In Molofsky et. al.’s simulations

which is based on their experimental data, the most connected metapopulations do not have

the minimum extinction risk [see Fig. 6. in 29]. Since the connectivity indicates how easy the

colonization events can occur, it is reasonable to deem the most connected metapopulations to

have the largest colonization rate. Although we have been talking about the effect of changing

the extinction rate in our models, we can actually interpret the results in terms of changing the

colonization rate alternatively because the effect of reducing the extinction rate is equivalent

to the effect of increasing the colonization rate (see Figure 3.4). Therefore, intermediate col-

onization rate can ensure stability of the positive equilibrium, but large colonization rate can

lead to de-stabilization and even global extinction. Hence, Molofsky et. al.’s simulations [29]

can be seen as a support for our Paradox of Enrichment. If we accept that the migration rate is

related to the colonization rate, there is another experiment [7] confirming the negative effect
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of high migration rate on the stability of metapopulations, compared with low migration rate.

To the best of the authors’ knowledge, there is no empirical evidence in nature reported

for the Paradox of Enrichment in a metapopulation study. Also, it is, undoubtedly, difficult to

empirically test the paradox, because it involves a careful examination of time lags [19]. The

scarcity and the difficulty might be due to the following three reasons. First, many researchers

have focused on the impact of factors associated with dispersal, as dispersal is an essential

composition of metapopulations. Although delays associated with dispersal are expected in

nature, our models have predicted that the Paradox of Enrichment cannot occur to metapopula-

tions with dispersal delays alone. If this is the case in nature, research interests on delay might

be discouraged. Second, some researchers argue that a strict metapopulation structure in nature

is rare [9]. Moreover, the delay associated with establishment is usually not easy to observe

and measure [3], since establishment events might not affect each breeding season, e.g. a lot

of birds breed yearly, which might not be affected be establishment delays shorter than a year.

Tropical birds can breed several times a year because of favourable environment [38], so it

might be easier to use those birds to test the paradox. Although, tracking the oscillations might

require a very long time in nature. Third, there might be natural mechanisms to resolve this

paradox, just like what we find when including a structure based on islands’ quality: the Para-

dox of Enrichment is alleviated. Despite the scarcity and the difficulties, experiments might be

done using laboratory materials, as in [7, 14, 23].

Hanski and Ovaskainen show that, after metapopulations fall below a threshold for sur-

vival, the time lag to extinction could be great [20]. Our models include delays in the metapop-

ulation dynamics, so that the metapopulation might have an ‘inertia’ to survive. For example,

a one-time short term catastrophe will be carried on periodically depending on the delay, but

will not destroy the metapopulation all at once. In this sense, our models with establishment

delays provide another way of thinking about the Allee affect [6], which describes the situation

when the growth of density is negative if the density of a metapopulation is below a threshold.

Without delays, a metapopulation goes extinct whenever it is below a threshold (usually, an
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unstable positive saddle node). But with delays involved, the metapopulation may be below

the threshold for a while, but recover afterwards, because it has some ‘savings’ from earlier

due to delays, i.e., some islands undergoing establishment that are able to send out colonists

later. As long as the metapopulation does not stay below the threshold for too long, it might be

able to recover.

Research on metapopulations is associated closely with conservation biology [21, 24].

Human-mediated habitat fragmentation and degradation have caught much attention in biodi-

versity [18, 30]. Strategies of metapopulation conservation usually include increasing connec-

tivity, or reducing extinction rate. However, going too far is as bad as not going far enough

when it comes to the conservation efforts. From our predictions, reducing extinction rate

too much might lead to global extinction. Properly planned conservation effort can prevent

a metapopulation from extinction, but too much might be harmful.

In this paper, we use the modified routine dde23 in MATLAB (and bounded DDE function

for model (3.9)) to simulate metapopulation densities numerically (see the caption of Figure

3.2). We need to modify it because our densities are bounded, but the routine in MATLAB

does not offer constraints to solutions. An adaptive numerical scheme might be developed in

the future to better handle bounded solutions as a complement to our work. The routine ddesd

might be useful to solve our problem.

Our work considers the impact of spatially homogeneous enrichment, while spatially het-

erogeneous enrichment should be more common and worthy of investigation. Also, experi-

mental studies of the Paradox of Enrichment in metapopulation might provide further insights.

One possibly useful research area to apply our models is on the control of pest metapopula-

tions. For example, if the life cycle of a pest species includes a delay that is not neglectable so

that oscillations might be possible, experiments include the following steps to test our theory:

allow the local extinction rate of the pest metapopulations to reduce first, observe whether the

metapopulation oscillates; as the reducing of extinction rate, whether the oscillation amplitude

gets larger; as the extinction rate declines further, whether global extinction might occur.
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Chapter 4

Evolution of Dispersal with Temporal,

Global-Scale Fluctuations in its Cost

4.1 Introduction

Dispersal of individuals from their birthplace can be an adaptive means of reducing compe-

tition among kin [16, 47], and avoiding inbreeding depression [18, 43]. Dispersal can also

be an advantageous strategy for coping with, or otherwise exploiting, variable environmental

conditions [10, 17], and on this point much has been written. Early theoretical work demon-

strated that dispersal changes in response to environmental variability, possibly because such

changes provide individuals with a way to average-out the fitness peaks and valleys encoun-

tered over space and time (van Valen, 1971; Gillespie, 1981; Levin et al., 1984; see also Cohen

and Levin, 1991). More recently, models have shown that environmental variability can lead to

disruptive selection, coexistence of distinct dispersal phenotypes, and possibly the emergence

of new species [3, 35–37].

Despite the many studies devoted to the evolution of dispersal in variable environments,

gaps in our understanding still exist. Previous work, for example, has focused exclusively on

haploid asexual species [6, 35, 42], often with large local populations [4, 24, 36, 37]. More

76
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importantly, previous work has neglected the effects of temporal environmental fluctuations

when these show a strong positive correlation across local populations. Neglect in this regard

likely stems from the expectation that, when local populations are large, costly dispersal from

one location to another in a similar state will be selected against [e.g. 36]. Of course, one will

not have the same expectations when local population sizes are small [16, 47]; but there are

three, even better reasons for investigating these kinds of environmental fluctuations.

The first reason to focus on the effect of global-scale environmental variability is that

the relevant factors, like seasonal temperature variation, act as dispersal cues for some species

[1, 11, 54]. The use of environmental cues in this way raises questions about its adaptive sig-

nificance. Second, it is predicted that species ranges will respond to large-scale environmental

shifts associated with climate change [2]. Since dispersal is the primary mechanism by which

range expansions occur, these predictions have led to calls for further investigations into the

evolution of dispersal in the face of geographically widespread environmental change [49].

Third, dispersal in any kind of environment – including those that fluctuate over time – will

determine genetic relatedness among neighbours, and so will indirectly exert influence on the

evolution of a variety of social behaviours [5, 39, 53]. This is particularly relevant to the study

of certain cooperative-breeding systems, where individuals delay dispersal and independent

reproduction to help rear offspring produced by relatives [13]. Indeed, temporal environmental

variability has been identified as a key driver of cooperative breeding [45], but remains poorly

understood [46].

Here, we devise and analyse several models for the evolution of dispersal in an environ-

ment that changes over time in a random fashion. With an eye toward better understanding the

origin of cooperative-breeding systems, we assume that during some years the global state of

the environment is poor, and in other years is good [e.g. as described by 46]. We also focus on

the impact this environmental variation has on dispersal cost, recognizing that dispersal cost is

only one of the ecological constraints faced by cooperative breeders [13].

Although we are interested in commenting on cooperative-breeding systems, ours is a
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model of dispersal evolution only. We present approximate expressions for the stable rate

of dispersal, and the stable rates of dispersal expressed conditional upon environmental state.

Our analysis shows that models without environmental variation provide a reasonably accurate

picture of the evolution of unconditional dispersal, when variance in dispersal cost is not large.

Our analysis also leads us to predict that more frequent environment fluctuation will favour the

evolution of more divergent conditional dispersal phenotypes. We explain predictions in terms

of the temporal autocorrelation in environmental state, and (as suggested above) we discuss

their implications for the origin of cooperative breeding, in particular.

4.2 Models

4.2.1 Life Cycle

The overall structure of the model is standard. We consider an ideally infinite population

of diploid sexual hermaphrodites. At the beginning of a given year, the infinite population

is subdivided into groups of N adult individuals. Groups, themselves, persist on patches of

habitat that are identical in quality.

We assume that the global state of the environment in which the population exists changes

from one year to the next in a random fashion (Appendix B.1). Specifically, the environment

varies according to a Markov process, and is either found in a “poor” state, or a “good” state

in any particular year. For simplicity, we assume that the environment changes state from one

year to the next with probability s. The symmetry, here, implies that environmental states

appear equally often over time, on average (this assumption, in particular, is addressed in the

Discussion). The variable s will be a single convenient measure of environmental fluctuation.

If s is small then it is very likely that the environment will not change state from one year to

the next; if s is large, then a year-to-year change in environmental state is likely. In addition,

as s increases the correlation between successive environmental states decreases (Figure 4.1).

Importantly, the kind of random variation between two states we propose here is in line with
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the natural history of cooperative-breeding species [13, 46].
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Figure 4.1: Relationship between the autocorrelation of environmental state
and the degree of environmental fluctuation, s. Correlations between envi-
ronmental states separated by ∆t = 1 to 4 are shown. Points show calculated
autocorrelations from a simulation of environmental change over 1 000 time
periods. Solid lines provide theoretical correlations that follow (1−2s)∆t (see
Appendix B.1).

At the beginning of a given year, each of the adults in a group is prepared to give birth.

Indeed, each adult produces a very large number of offspring early in the year. Following the

birth of their offspring, each adult dies. We also assume that each offspring matures following

the death of adults. We continue to call these mature individuals “offspring,” however, to avoid

confusion.

Next, one of two things occurs. In one version of our model, offspring disperse in search

of a new patch, then mating takes place at random among offspring that find themselves on

the same patch. In an alternative version of our model, random within-patch mating occurs
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prior to offspring dispersal. Following Taylor [47], the former version of the model is termed

“Dispersal Before Mating” (DM) and the latter is termed “Dispersal After Mating” (MD). In

the most general formulation of both versions of the model, we allow dispersal to be conditional

upon the current state of the environment. We use de to denote the probability with which a

given offspring disperses in search of a new patch, given that the environment during the year

of its birth is in state e, where e = p if poor and e = g if good. This type of conditional tendency

to disperse could be tied, for example, to thermal sensitivity [2].

In keeping with available evidence [40], we will treat offspring dispersal de as a phenotype

that is determined, in an additive manner, by the alleles found at a single autosomal locus.

That said, it is not always the genotype of the offspring itself that will determine de. In the

“Parental Control” version of the model, in fact, it is the genotype of the parent that we assume

determines de—specifically, the parent who gave birth to the offspring in question. Such a case

might arise in plants when parental genotype affects offspring dispersal by determining seed

size. In the “Offspring Control” version of the model, we make the more usual assumption that

it is the offspring’s own genotype that determines, de.

During dispersal, some of the dispersing offspring are assumed to die before finding a

new patch. The probability that a dispersing offspring dies is denoted ce, and depends on the

environmental state. The probability ce captures the cost of dispersal. Given the assumptions

made above, c = (cp+cg)/2 represents the time-averaged cost of dispersal, and ifσ = (cp−cg)/2

then σ2 gives the variance in cost. Importantly, the time-averaged cost of dispersal and its

variance are both independent of environmental fluctuation measured by s.

Once the dispersal phase is complete, competition to become one of the N adults found

on a given patch in the next year occurs. We assume this competition occurs among all of the

offspring found on the same patch. We model competition in the usual way: as a fair lottery,

with winners for each of the N available spots chosen with replacement. It follows that the

likelihood with which any of the N spots is won by an offspring native to the patch is given

by he = (1 − de)/(1 − cede). It also follows that the expected contribution made to the gene
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pool in the very distant future by any given offspring competing on the patch is proportional to

ve = 1/(1 − cede). In other words, ve expresses a competitor’s “reproductive value” [15].

When the competition phase is complete, those without a spot on a patch die. The envi-

ronment for the coming year is then randomly determined, we relabel offspring as adults, the

current year ends, and the entire process above repeats.

Different organisms time dispersal differently [12, 41]. We investigate DM and MD to

reflect this diversity, and for completeness. Offspring control makes sense, because the indi-

viduals genotype often controls its phenotype (e.g., eye colour). Parental control of offspring

dispersal may seem strange, but it could occur in many taxa. For example, a parent plant could

allocate more/ less resources to each seed it produces to make it heavier/ lighter, or might invest

in structures that promote dispersal via, say, wind. Animal parents, for their part, may simply

evict offspring from territories [8, 31].

4.2.2 The Inclusive-Fitness Effect of Dispersal

The mathematical model we derive centres on “the inclusive-fitness effect of dispersal.” The

inclusive-fitness effect of dispersal describes how a small increase in an offspring’s tendency to

disperse (de), in turn, changes the inclusive fitness [25] of the individual who controls offspring

dispersal. We derive mathematical expressions for the inclusive-fitness effect of dispersal using

standard tools [48] in Appendix B.2. For the present discussion, though, a more biologically

motivated development, modified from Taylor [47], will suffice.

Consider an offspring, in environment e, who was forced to disperse (for some unspecified

reason that is of no consequence to us) when the typical action would have been to remain on

its natal site. Now ask, how has this event changed the inclusive fitness of the individual whose

genotype controls offspring dispersal?

The first change is that the offspring in question incurs the risk of dying during dispersal.

In the DM model, the increased tendency to disperse means that the offspring is more likely

to miss out on being fertilized (success through female function) and on fertilizing another
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individual (success through male function) once the dispersal phase is complete. Hence

DM: ce

(ve

2
+

ve

2

)
Re = ceveRe (4.1)

is the appropriate inclusive-fitness cost, where Re is the relatedness between the dispersed

offspring and the individual who controls its dispersal (the definition of genetic relatedness

as well as calculation of all relatedness measures can be found in Appendix B.3). In the MD

model, risk associated with increased probability of dispersing means that the offspring and the

patchmate who fertilized the offspring both miss out on the opportunity to produce offspring.

Therefore

MD: ce

(ve

2
Re +

ve

2
R̄e

)
= ceve

Re + R̄e

2
(4.2)

is the appropriate cost, where R̄e is the relatedness between the offspring’s average contempo-

rary patchmate and the individual controlling offspring dispersal.

The second change is related to reduction in competition among relatives owing to (for

want of a better term) the unscheduled departure of the offspring in question. For both the DM

and MD models, the unscheduled departure removes competition, valued at 2(ve/2) = ve, from

the offspring’s natal patch. This provides a benefit of equal value to the average competitor on

the offspring’s natal patch [22], and because this average competitor is native to the patch with

probability he, we record

DM and MD: veheR̄e (4.3)

as the inclusive-fitness benefit.

By subtracting the inclusive-fitness costs (equations 4.1 and 4.2, respectively) from the

benefit (equation 4.3), we arrive at the inclusive-fitness effect of dispersal in environment e,

denoted ∆We:

DM: ∆We = (−Re ce + R̄e he) ve, e = p, g, (4.4a)
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MD: ∆We =

(
−

Re + R̄e

2
ce + R̄e he

)
ve, e = p, g. (4.4b)

When ∆We is positive (resp. negative) selection favours an increase (resp. decrease) in de,

so an equilibria pair (dp, dg) needs to satisfy ∆Wp = 0 and ∆Wg = 0. This motivates the

computational model of evolution described in the next section.

When dispersal cannot be expressed conditional upon the environment, the model is re-

stricted by dp = dg = d. In this case the inclusive-fitness effect is

∆W =
1
2

∆Wp +
1
2

∆Wg

]
dp=dg=d

(4.5)

where the one-half factors reflect the fraction of time the environment spends in one state

or the other (formally, the factors reflect total reproductive values of individuals given their

environment; see Taylor and Frank, 1996). As before, the sign of ∆W determines whether

selection favours an increase or a decrease in d.

We will consider the evolution of a dispersal phenotype to be at equilibrium when the

corresponding inclusive-fitness effect is zero. For the conditional-expression model in (4.4),

an “equilibrium phenotype pair” can be found by solving the equations ∆Wp = 0 and ∆Wg =

0, simultaneously, for the pair of variables, dp and dg. This problem is more difficult than

our notation suggests, since the inclusive-fitness effects are coupled through their constituent

relatedness coefficients. For the case in which dispersal cannot be expressed conditional upon

e (equation 4.5) a single “equilibrium phenotype” can be found by solving ∆W = 0 for d. Of

course, other kinds of evolutionary outcomes are possible—for example, dispersal phenotypes

may take extreme values like zero or one. However, we will focus on cases where evolution

due to selection is at equilibrium.
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4.2.3 Mathematical Analysis

The analytical techniques we use involve treating our model like a perturbed version of one that

has no environmental variation, namely that desribed by Taylor [47]. We treat σ as a pertur-

bation parameter, and we expand key variables in the model as power-series in this parameter.

Approximate results are then obtained by neglecting terms of order O(σ2). Mathematical de-

tails can be found in Appendix B.4.

4.2.4 Numerical Procedures, Simulations, and Model Validation

In Appendix B.5 we describe an iterative numerical procedure that estimates the equilibrium

phenotype or phenotype pair. The procedure begins with several guesses at the equilibrium or

equilibrium pair. Each guess is then updated, independently, by changing it a small amount in

a direction that is consistent with the sign of the corresponding inclusive-fitness effect. This is

continued until updated guesses differ from one another only by some small amount. By virtue

of its construction, the procedure confirms that equilibria are evolutionary attractors. Code for

the numerical procedure, provided in Appendix B.5, can be run on a desktop computer.

In Appendix B.5 we also describe an individual-based simulation of the model. In contrast

to the discussion that led to the inclusive-fitness effect, our simulation assumes a finite number

of patches, and explicitly allows for mutations. The simulation also treats selection as a multi-

level version of a Wright-Fisher process [see e.g. 14], and does not rely on inclusive-fitness

based arguments.

Because the simulation is more computationally intensive than the numerical procedure,

we used it only as a means of validating the numerical predictions in a small number of test

cases. Simulation results from the test cases we investigated agreed very closely with the

predictions we generated numerically (see Appendix B.5). Close agreement was found for

each version of the model we constructed (DM/MD, Parental/Offspring Control). Still, small

discrepancies were observed when numerical predictions were close to either zero or one. We

attributed these discrepancies to the inherent mutation bias in the simulated process near zero



4.3. Results 85

or one: in the simulation, dispersal phenotypes that took values less than zero (resp. greater

than one) following mutation were assigned values slightly greater than zero (resp. less than

one).

4.3 Results

4.3.1 Unconditional Dispersal

Our results are more readily understood if we give first consideration to the models in which

dispersal is not expressed conditional on the environment (i.e. models based on equation 4.5,

where dp = dg = d). In these cases, we find that, to first order in σ, equilibrium dispersal phe-

notypes, denoted as d0, correspond to predictions made by models that treat the environment as

constant [16, 47]. To be clear, the correspondence is established by replacing a constant cost of

dispersal in previous models with the time-averaged one we use here, c (table 4.1). Our predic-

tions about unconditional dispersal rates certainly make intuitive sense given the interpretation

of σ2, and given that we neglect terms of order O(σ2). Still, agreement between approximate

and numerical results are close, even for larger values of σ (e.g. Figure 4.2a,b).

Table 4.1: Predicted unconditional probability of dispersal d0 from mathematical analysis.
Model d0 H

DM Parental Control
H + 1 − 2Nc
H + 1 − 2Nc2

√
1 + 4N(N − 1)c2

Offspring Control
H + 1 − 4Nc
H + 1 − 4Nc2

√
1 + 8N(2N − 1)c2

MD Parental Controla (N − 1)c + 1 − H
(N − H)c

√
1 + (N + 1)(N − 1)c2

Offspring
H + 1 − 2Nc
H + 1 − 2Nc2

√
1 + 4N(N − 1)c2

Cases with N = 1 can be resolved by treating N as a continuous variable and taking an appropriate limit.
a This model was not considered by Taylor [47].
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Figure 4.2: A comparison of predictions made by iterative numerical deter-
mination of equilibrium or equilibrium pairs (dotted lines), and those made
by approximations based on small degree of environmental variation (solid
lines). Results are presented for the DM and MD models, respectively, with
either Parental or Offspring control of dispersal. We assume (a, b) uncon-
ditional expression of dispersal, or (c,d) conditional expression of dispersal
(red = poor environmental state, blue = good environmental state). As ex-
pected, agreement begins to break down as environmental variation, mea-
sured by σ, increases. However, numerical predictions and approximations
are still close. Approximations are not valid whenever at least one of dp or
dg takes a boundary value of zero or one.
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4.3.2 Dispersal Conditional on Environmental State

The effect of environmental variation is predicted to be seen when dispersal is conditional upon

environmental state e. In this case, equilibrium phenotype pairs can be written as

dp = d0 +

(
d0h0

1 − ch0
−

1 − c
(1 − ch0)2 δh

)
σ + O(σ2) (4.6a)

dg = d0 −

(
d0h0

1 − ch0
−

1 − c
(1 − ch0)2 δh

)
σ + O(σ2) (4.6b)

where d0 comes from table 4.1 and depends on the model considered, where h0 = (1− d0)/(1−

cd0), and where δh captures how he changes with σ. Expressions for δh are presented in table

4.2, and these also depend on which version of the model is being considered. We find that

approximate expressions for equilibrium pairs of dispersal phenotypes in (4.6) agree closely

with corresponding numerical predictions, even as variance in cost is increased substantially

(Figure 4.2c,d). In addition, by averaging equations in (4.6) over time, we see that overall

dispersal rates approximately agree with predictions from models of constant environments,

represented by d0.

Table 4.2: Expressions for δh found in formulas for conditional probabilities of dispersal de.
Model δh

DM Parental Control − H−1
2(N−1)c2

2H+8N2c2 s−4Nc2 s2−3Nc2+2
2(4N(N−1)c2 s−H2)+H(4Nc2 s(s−2)+3Nc2−2)

Offspring Control − H−1
2(2N−1)c2

H+16N2c2 s−8Nc2 s2−2Nc2+1
4Nc2 s(4N−1−2s)+H(2Nc2−1−4Nc2 s)−H2

MD Parental Control − H−1
(N−1)c2

(8Ns+4s2−8N−1)−(8Ns−4s2+16s−7)H
2s(4N−4s2+8s−3)−(1−2s)(4s2−8s+7)H2−H(8Ns+4s2−8N−1)

Offspring − H−1
2(N−1)c2

[8s(N+1)−(4s2+3)](N−1)c2+2(1−2s)(H−1)
2[s−H2(1−s)]−H(1−2s)[2((N−1)c2 s−1)−3(N−1)c2]

The appropriate expression for H can be found in the corresponding entry of table 4.1.
Cases with N = 1 can be resolved by treating N as a continuous variable and taking an appropriate limit.

An equilibrium phenotype pair, dp and dg, responds to changes in the variance of disper-

sal cost in an unsurprising way—one that can be understood by considering personal fitness
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interests only. As the variance in dispersal cost increases, the cost of dispersal, itself, in any

given year will deviate from its time-average to a greater extent. As a result, dispersal in a

poor (resp. good) environment becomes more (resp. less) costly, and dp decreases (resp. dg

increases) (Figure 4.2c,d). While it is true that increased (resp. decreased) dispersal cost will

also increase (resp. decrease) the likelihood that benefits of dispersal are more (resp. less)

strongly felt by relatives, these indirect changes in inclusive fitness are not expected to match

the direct implications of dying during dispersal.

Changes in the the degree of environmental fluctuation elicit consistent changes to equi-

librium pairs dp and dg, independent of the time-averaged cost of dispersal and its variance.

Remarkably, as the environment fluctuates more frequently our models predict a decrease in

dispersal in poor environments, and a concomitant increase in dispersal in good environments

(Figure 4.3). In contrast to the previous result, the effect here can be explained by making ref-

erence to the indirect benefit of dispersal provided to relatives. To see this clearly, consider a

situation in which environmental fluctuations are frequent, so that the state of the environment

in one year is strongly negatively correlated with that in the next (Figure 4.1, black line). In this

case, a good year is very likely to have been preceded by a poor year. That is to say, a good year

is very likely to have been preceded by a year in which dispersers were few (Figure 4.2c,d),

successful dispersers were even fewer, and philopatry rates (measured as hp) were high. We

expect, therefore, relatedness among patchmates in a good year to be high; combine this with

the low direct cost of dispersal in a good year, an resulting increased willingness to reduce

local competition makes intuitive sense. The same argument can be used (mutatis mutandis) to

explain why dispersal in poor environments is reduced as environmental fluctuation increases.

In addition to providing us with brand new lessons, our results confirm previous ways

of thinking about the evolution of dispersal. Previous models, for example, have predicted

evolutionarily stable dispersal rates are reduced when either patch size, or cost of dispersal

increases [e.g. 47, 52]. Figure 4.3 shows clearly that adaptive dispersal rates decrease as N

becomes larger, and as time-averaged cost of dispersal goes up.
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Figure 4.3: The relationship between environmental fluctuation, time-averaged cost of of
dispersal, and the conditional probability of dispersing for the DM Model with Parental Control
of dispersal. Numerical predictions for dispersal when environmental state is good are shown
in blue (top three rows), while those for dispersal when environmental state is poor are shown
in red (bottom three rows). Results for group size N = 2, 4, 8 and for standard deviation in
cost σ = 0.1, 0.2, 0.3 are shown. All else being equal, increased environmental fluctuation
is predicted to promote dispersal under good conditions, and philopatry when conditions are
poor. Increased time-averaged cost is predicted to reduce conditional dispersal, as is increasing
group size. The wavy nature of the contour of height 0.001 is an artefact of the numerical
procedure.
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Our results also add to our understanding of parent-offspring conflict [sensu 50]. It is well-

established that offspring dispersal rates are greater when they are determined by a parent’s

genotype, relative to when they are determined by the genotype of the offspring itself [38, 47,

see also Figure 4.2a,b]. Unsurprisingly, we find the parent-offspring conflict over dispersal

persists when dispersal is expressed conditional upon environmental state (e.g. Figure 4.2c,d).

However, the extent of the conflict, measured as the difference between the predictions of the

Parental Control model minus those of the Offspring Control model, does not show a consistent

response to environmental fluctuation (Figure 4.4).
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Figure 4.4: The relationship between environmental fluctuation, time-averaged cost of dis-
persal, and the extent of parent-offspring conflict over conditional tendency to disperse for the
DM Model. Here, the extent of conflict is measured as de with Parental Control minus de with
Offspring Control. Numerical predictions for dispersal when environmental state is good are
shown in blue (top three rows), while those for dispersal when environmental state is poor are
shown in red (bottom three rows). Results for group size N = 2, 4, 8 and for standard devia-
tion in cost σ = 0.1, 0.2, 0.3 are shown. The wavy nature of the contour of height 0.000 is an
artefact of the numerical procedure.
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4.4 Discussion

4.4.1 General Issues

Dispersal is a trait whose evolution can be influenced by a wide variety of interacting factors,

including the possibility for competition among kin [47], the degree of risk associated with

inbreeding [18], the possibility of achieving adaptations to local conditions [3], amount of

overlap among generations [28, 42], demographic stochasticity [6], and the extent and nature

of environmental variation [37]. Here, we have devised models to examine the evolution of

dispersal primarily in response to temporal environmental fluctuation. As mentioned in the

Introduction, previous theoretical work along similar lines has relied on models with large

local populations and/or haploid asexual genetics [4, 6, 24, 35–37, 42]. Our focus on small

local populations allows us to emphasize the inclusive-fitness effects associated with dispersal

in a fluctuating environment. Furthermore, the consideration we give to diploid sexual systems

opens the door to questions about conflict over dispersal when the state of the environment is

uncertain.

Given that we have taken a new look at dispersal, what new things have we found? In

terms of unconditional dispersal rates, the simple answer is: very little. The symmetry inherent

in our treatment of environmental variation, as well as the small-σ approximations we use

mean that the rates of unconditional dispersal we predict are almost identical to those predicted

by models that assume constant environments [16, 26, 47]. We do note, however, that when

applying models of constant environments in scenarios where the environment fluctuates, the

relevant costs to consider are the time-averaged ones.

Though our predictions about unconditional dispersal based on analytical approximations

show no dependence on temporal environmental variation, numerical results suggest a slight

dependence exists. Specifically, we find that evolutionarily stable levels of unconditional dis-

persal are altered slightly as the difference between cost of dispersal in poor and good envi-

ronments goes up. Following Gillespie (1981), we could reasonably speculate that dispersal
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is a reflection of genotypes “hedging their bets” by maximizing geometric-mean fitness. Al-

ternatively, there may be a way to look at reduced dispersal rates predicted by our models as

an individual-level adaptation meant to maximize inclusive fitness. Future work could confirm

this alternative view by exploring a small-σ approximation to a higher degree of accuracy.

Granted, the quantitative discrepancy that could potentially be explained is small, as evidenced

in Figure 4.2a,b. Still, finding a qualitative interpretation for terms associated with more ac-

curate approximations would not only provide further justification for the use of intentional

language to describe evolution in stochastic environments [see 21], but also help recent efforts

to outline a general design principle for understanding adaptation [19].

Turning our attention to conditional dispersal, we do find some new lessons emerging

from our analyses. As might be expected, we predict that dispersal occurs more readily in

good times when its cost is low. We also predict that the difference between individuals’

tendency to disperse in good versus poor environmental states increases as the fluctuations be-

tween these states becomes more frequent. These predictions are certainly testable, and may,

in fact, represent a valuable opportunity to connect theoretical models to empirical patterns.

Historically, tests of theoretical predictions concerning the evolution of dispersal have been

hampered by practical difficulties associated with differentiating between dispersers and non-

dispersers, estimating dispersal costs, and generally meeting the idealized assumptions of most

models [29]. However, there are a few reasons why previous obstacles might not hinder field

biologists looking to test the predictions we make here. First, our predictions are not focused

on precise dispersal rates, rather they are focused on changes in dispersal rates, and changes

to differences in dispersal rates. This means that details concerning how one differentiates be-

tween a disperser and a non-disperser may be less important than ensuring that the definition

of “disperser,” whatever that may be, is applied in a consistent manner. Second, one of our

predictions links the tendency to disperse with the degree of environmental fluctuation. There-

fore, provided a reasonable connection can be made between environmental state and dispersal

cost, precise estimation of the latter would not be required. What would be required, instead,
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is an estimate of how frequently the relevant environmental state changes between dispersal

events, and presumably such an estimate could be easily obtained. Third, none of the quali-

tative predictions we would suggest be tested is sensitive to model details. Indeed, we have

investigated four different model variations (DM versus MD, Parent versus Offspring Control),

and our simulation results (Appendix B.5) indicate that our predictions should be robust to

deviations from the ideal assumptions made by our inclusive-fitness model.

In addition to the new lessons above, we find that the extent of parent-offspring conflict

becomes more difficult to predict when the environment changes. Difficulties in this regard,

are likely driven by the fact that the divergent perspectives of parents and offspring, respec-

tively can only diverge so far: the probability of dispersal must remain between zero and one.

So, while a small environmental change may exacerbate conflict, as the size or frequency of

changes continues to grow perspectives will tend to align. We argue that challenges associated

with predicting the extent of parent-offspring conflict are made up for, at least in part, by the

fact that we are able to provide clear mathematical expressions for predicted dispersal rates

when σ is small.

4.4.2 Implications for Cooperative Breeding

It is well understood that, in order for dispersal to be an effective means of escaping poor envi-

ronmental conditions, the spatial scale on which it occurs must exceed that on which positive

correlations in environmental conditions are observed [7, 27]. Some species, however, inhabit

regions where the same environmental conditions are experienced over large geographic dis-

tances, and fluctuate from one year to the next [45]. Dispersal by individuals in these species,

therefore, cannot be viewed as a means of improving personal circumstances. Instead, disper-

sal in these species can be viewed through the lens of the theory we present here, because the

global-scale environmental fluctuations we introduce serve to model the regional-scale varia-

tion they experience.

Good examples of the kind of species to which our work may apply come from the
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cooperative-breeding birds of Australia and Africa. The temporal variability in the environment

faced by these birds has been found to be positively associated with their cooperative-breeding

tendencies [13, 45]. To explain the positive association, authors typically emphasize the fe-

cundity benefits of social aggregations [13, 44, 46], but evidence suggests that dispersal costs

also incentivize the formation and maintenance of cooperative-breeding groups [32]. Indeed,

Rubenstein [44] has argued that environmental variation might also lead to limited dispersal,

increased relatedness among groups, and ultimately cooperative breeding. To support his per-

spective, Rubenstein [44] cited theoretical work that demonstrates, among other things, that

increased variation in fecundity reduces the pool of ancestors available to present-day neigh-

bours, and builds present-day relatedness as a result [33]. The models we propose make a more

direct connection between environmental fluctuation and the scope for the emergence cooper-

ative breeding. Specifically, our models show clearly that dispersal under adverse conditions is

low and becomes lower as fluctuations become more frequent. Based on this, we can conclude

that environmental fluctuations encourage closer associations among relatives which sets the

stage for the emergence of cooperative breeding. We also stress that we allowed dispersal to

be contingent on the state of the environment, and we have assumed that all groups experience

the environment in the same way. Both of these features reflect issues relevant to the biology

of cooperative breeders and are not dealt with elsewhere [see 33].

4.4.3 Limitations and Technical Considerations

Like all models, the ones we present here are limited by their assumptions. One possible

limiting assumption might be that group size is not altered by a change in environmental state.

By keeping group size constant we were able to approximate using earlier models that ignored

environmental fluctuation [47], which in turn provided us with a way to achieve new analytical

results. Future work could relax this assumption and consider groups whose size increases in

good years and decreases in poor years. We can speculate that larger (resp. smaller) groups in

good (resp. poor) years may reduce (resp. increase) the inclusive-fitness benefits of dispersal
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in those years, but the overall effect on the evolution of dispersal will likely depend on how

group size differs in good versus poor years. We expect the predictions we make here to hold

for relatively small differences in group size, like those we might expect to observe, year-over-

year, in cooperative-breeding groups.

We have also neglected reduction in fitness associated with inbreeding depression, in our

models. Certainly, evidence of inbreeding depression can be found in natural populations

[e.g. 23], including populations of cooperative breeders to which we think our models may

be most relevant [30]. Incorporating the possibility of inbreeding depression into our models

may be a fruitful next step. It is difficult to see how this model feature would interact with the

aforementioned complication, namely fluctuating group size. We could once again speculate

that in good (resp. poor) years the possibility for inbreeding depression would be reduced

(resp. increased), as groups are large (resp. small) in size, and so there would be less (resp.

more) incentive to disperse. Again, though, the extent to which our conclusions change will

depend on how strong the depression is assumed to be.

Finally, temporal environmental change was not modelled in the most general way possi-

ble. We considered only two environmental states, but this is in keeping with views expressed

by those studying cooperatively breeding species [e.g. 46], and with previous theoretical work

on social evolution in temporally varying environments [39]. We have, in fact, taken a step be-

yond the modelling approach developed by Rodrigues and Gardner [39]. Those authors assume

the probability of the population moving into a new state is independent of its current state (see

their Appendix H), which implies that the autocorrelations that drive some of the results we

present here could not be established using their framework. Of course, unlike Rodrigues and

Gardner [39], we have a population that spends half of its time in one state, and half of its time

in the other state. This feature of our model, however, was critical in permitting us to change

the extent to which fluctuations occur without also changing the time-averaged cost of disper-

sal or its variance (see Appendix B.1). Any future work that relaxes our assumptions about

temporal environmental change should be aware of the potential for fluctuation to confound
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other economic aspects of dispersal.
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Chapter 5

Conclusions, Discussion and a Future

Direction

In this dissertation, I examined two aspects of dispersal in metapopulations – the aspect of

ecology and the aspect of evolution. Dispersal can serve as a fixed ecological parameter over

a short period of time, and it can evolve under the force of natural selection in the long run.

To unveil the effect of dispersal on metapopulations from the ecological perspective, I devoted

two pieces of work herein. In the first piece of work, I focused my attention on a rarely

studied consequence of dispersal, i.e., a disrupted social structure at the dispersed individual’s

natal habitat and a reduced quality of that habitat thereafter. Most work does not consider this

negative effect of dispersal on the habitats from which individuals depart [14, 15, 25, 32], but it

is not clear that this effect of connecting degradation and colonization can be ignored in species

with small local populations on patches, and/or rigid social structures. My key finding is that

a metapopulation will, in general, be found either in the state of global extinction or in the

state of persistence, but dispersal, and those state changes at the point of origin associated with

dispersal, have significant qualitative and quantitative effects on long-term dynamics only in a

narrow range of parameter space. I conclude that life-history features other than dispersal (e.g.,

mortality rate) have a greater influence over metapopulation persistence. That is what I did in

102
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Chapter 2.

The second piece of work on the impact of dispersal on metapopulations is presented in

Chapter 3. As dispersal plays a key role in the balance between extinction events and re-

colonization events in metapopulation dynamics, I studied how delay relevant to dispersal can

alter the stability and persistence of metapopulations. Without including delays, the seminal

metapopulation model by Levins [25] and the quality-structured model by Hanksi [14] both

predict an increase in the stable density of occupied islands when either the extinction rate is

decreased or the colonization rate is increased. However, whether changes like these, possibly

aimed at enriching a metapopulation, could always promote its persistence is questionable, es-

pecially in light of what I know from classical consumer-resource dynamics. Those classical

dynamics show that enriched equilibrium populations may become destabilized, with popula-

tion densities oscillating substantially. This “Paradox of Enrichment” motivates my work in

Chapter 3. I explored that paradox by looking at a variety of DDE models based on ODEs

presented by Levins [25] and Hanksi [14], as DDEs are known to lead to oscillations. I investi-

gated the possibility for oscillations in the DDE model by checking the absolute stability of the

positive equilibrium that is stable in the corresponding ODE model, and examined the critical

transition delay if it exists. My major findings are: i) the Paradox of Enrichment does not occur

at all in DDE models with delays associated with dispersal, ii) the Paradox of Enrichment is

possible in models with delays associated with available islands or with establishment of (high-

quality) islands, iii) including a structure based on the quality of occupied islands in the DDE

model with establishment delays may alleviate the Paradox of Enrichment. I speculate there

might be at least three reasons for the scarcity of the empirical evidence for the existence of a

Paradox of Enrichment for metapopulations in nature. First, many researchers have focused on

the impact of factors associated with dispersal, and therefore delays associated with dispersal

might have been studied. Research interests on delay might have been discouraged, as models

I examined here, which other researchers might also have studied, predicted that the Paradox

of Enrichment cannot occur to metapopulations with dispersal delays alone. Second, the de-
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lay associated with establishment is usually not easy to observe and measure [1], especially

when strict metapopulation structures in nature are rare [11]. Third, there might be natural

mechanisms to resolve this paradox, just like what we find when including a structure based

on the quality of islands: the Paradox of Enrichment is alleviated. The discussion also includes

suggestions on conservation biology based on the predictions.

Finally, I turned my attention to the evolution of dispersal in Chapter 4, where I studied

how temporal global-scale fluctuations of environment impact the evolution of dispersal in

an infinite diploid metapopulation with small local population on patches. I restricted the

environment to fluctuate between a “good” global state and a “poor” global state, and I assumed

that the fluctuation follows a Markov process, meaning that how likely the environment will

remain in the same state depends on its current state. In addition to group size and average

dispersal cost, I focused on two key factors of such fluctuation: the frequency of fluctuation,

and the degree of distinction between “good” and “poor” states, i.e., the difference of dispersal

cost in different states. I constructed models to study multiple cases: conditional dispersal

v.s. unconditional dispersal, dispersal before mating (DM) v.s. mating before dispersal (MD),

and parental control v.s. offspring control. Most interesting results come from the case for

conditional dispersal: 1) dispersal probability is higher in years of good state; 2) the disparity

between the probability of dispersal in good versus poor years becomes more pronounced as

either of the two key factors I mentioned above increases. My work differs from that of others,

as other researchers usually assume haploid asexual species, large local population sizes, and

independence of local population states [2, 5, 12, 28, 29, 31, 37].

The lessons about dispersal arising from previous chapters have some implications for the

study of cooperative breeding, as delayed dispersal is a defining life-history decision for many

cooperative breeding species [20, 21]. In cooperatively breeding species, certain individuals

may delay their dispersal and reproduction to serve as non-reproducing “helpers” who defend

nests and territories, act as sentinels, and/or provide alloparental care to offspring produced by

others. Cooperative breeding species provide researchers with a rich set of natural scenarios
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in which to test ideas about the emergence and maintenance of helping, and social complexity.

Examples of cooperative breeders include the Florida scrub jay, Aphelocoma coerulescens [10,

19, 44], the red-cockaded woodpecker, Leuconotopicus borealis [26, 42], the meerkat, Suricata

suricatta [7, 8], and the Arctic fox, Vulpes lagopus [23, 39].

Here I present a few ideas about the emergence and maintenance of helping based on the

conclusions drawn from previous chapters. First, I predict that delayed dispersal by auxiliary

individuals can be tolerated under a broad range of conditions. Furthermore, I learn that the

evolution of conditional dispersal in response to environmental fluctuations encourages indi-

viduals to stay at their natal patches in poor-state environment, and therefore the evolution of

conditional dispersal may provide a bedrock for cooperative breeding to evolve. Interestingly,

in my first piece of work, I have learned that dispersal only has a very limited effect in the

persistence of metapopulations, even though the dispersal of individuals can disrupt the social

structure of a source population, e.g., dispersal of helpers can lead to the collapse of the coop-

erative breeding groups, and therefore dispersal, or delayed dispersal, is driving the fluctuation

of the social environment. One possible future direction is to investigate how the result from

Chapter 2 will change when traits like dispersal or helping evolve. The environment I men-

tion above is not a global factor, say, weather, but a social environment, e.g., a social structure

within a local population. The social environment changes as auxiliaries disperse to breed in-

dependently, both for themselves and their natal patchmates, because they change the state of

the territory they leave behind. One of the social structures in evolutionary biology involving

a significant theoretical challenge is cooperation, one striking example of which in nature is

cooperative breeding species. Decades of study have revealed that cooperation can, in fact, be

advantageous for many reasons [13, 33, 34, 41].

Studies of cooperatively breeding species have traditionally focused on the fitness of in-

teracting individuals. In particular, researchers have asked whether the fitness costs borne by

helpers who delay reproduction are outweighed by the fitness benefits that they, or their rela-

tives, receive [3, 6, 13]. Many explanations in this vein have divorced costs and benefits from
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a clear ecological context [3, 4, 16, 18, 36, 38]. Although theory has repeatedly demonstrated

the importance of understanding the evolution of cooperative breeding in a clear ecological

framework [9, 24, 30, 35, 43], the full impact of ecological circumstances on the evolution of

cooperative breeding is not yet known. Here, I rephrase the proposal of the future work as

completing a theoretical picture of the evolution of cooperation by turning my attention to one

of its important drivers, group augmentation.

The term group augmentation refers to those situations in which individuals survive or

reproduce better in larger groups, and thus, members of a group may have a tendency to

stay longer in the group, or even sacrifice a portion of their benefit to increase the group size

[17, 22, 45]. In this case, group augmentation means that breeders on the territory from which

a disperser originated are possibly more apt to die. How this affects the long-term evolution

of cooperation among cooperative breeders is not clear. It might, however, be resolved with

a class-structured kin-selection model . Briefly, I would propose that progress could be made

by considering a wild-type population with overlapping generations, in which each individual

must be found in one of the following four stages whenever we observe the population: stage

0): a floater, who has no territory, thus, not enough resource, to reproduce; stage 1): a potential

helper, an offspring that stays with its parent; stage 2): a solitary breeder living alone in a terri-

tory and having enough resource to reproduce; stage 3): a potential cooperative breeder living

with a potential helper in stage 1, and having enough resource to reproduce (“potential”, in the

sense that there is no actual helping behaviour). Individuals in this population would experi-

ence demographic events in some fixed order; e.g. breeders would give birth to one offspring

with a stage-specific probability; previous-year potential helpers survive with a probability, and

disperse as floaters; newborns disperse with a probability depending on their parents’ stage, and

those who stay become helpers this year; the breeders survive with a stage-specific probability,

and the stage of breeders is determined by the presence of a helper, who can inherit the territory

and become a breeder if the accompanying breeder dies; surviving floaters have a chance to

become a breeder whenever there is a vacant territory. Based on such demographic processes,
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it is easy to obtain the transition matrix among those individual stages, and determine an equi-

librium density. After introducing a mutant population with real helpers, who are willing to

boost breeders’ survival and/or fecundity probability in a cost of their own survival rate, kin

selection argument [40] can be used to generate a model. Although multiple parameters are

involved, multivariate analysis methods [27] can help with the extraction of primary conditions

for the evolution of helping. For example, simulations of evolution of probability of delaying

dispersal and helping can be performed by fixing the parameters, such as, survival probability

of individuals in each class, fecundity probability of breeders, efficiency coefficients of help-

ing effort on fecundity and survival of cooperative breeders, and group augmentation factor.

Such simulations have multiple input variables, and one output variable to indicate if helping

evolves in each simulation, so multivariate analysis methods, like principle component analy-

sis, can provide a clue for ranges of the main factors that predict the occurrence of helping in

terms of statistics. The model will get more interesting when we take the group augmentation

factor into consideration.

Bibliography

[1] J. Arino, L. Wang, and G. S. Wolkowicz. An alternative formulation for a delayed logistic

equation. Journal of Theoretical Biology, 241(1):109–119, 2006.

[2] F. Blanquart and S. Gandon. Evolution of migration in a periodically changing environ-

ment. American Naturalist, 177:188–201, 2011. doi: 10.1086/657953.

[3] A. F. Bourke. Principles of social evolution. Oxford University Press, 2011.

[4] J. L. Brown. Helping and communal breeding in birds: ecology and evolution. Princeton

University Press, 1987.

[5] C. Cadet, R. Ferrire, J. A. J. Metz, and M. van Baalen. The evolution of disper-



108 Chapter 5. Conclusions, Discussion and a Future Direction

sal under demographic stochasticity. American Naturalist, 162:427–441, 2003. doi:

10.1086/378213.

[6] T. Clutton-Brock. Breeding together: kin selection and mutualism in cooperative verte-

brates. Science, 296(5565):69–72, 2002.

[7] T. Clutton-Brock and M. Manser. Meerkats: cooperative breeding in the Kalahari. In

W. D. Koenig and J. L. Dickinson, editors, Cooperative breeding in vertebrates: studies

of ecology, evolution, and behavior., chapter 17, pages 294–317. Cambridge University

Press, Cambridge, 2016.

[8] T. H. Clutton-Brock, P. N. Brotherton, A. Russell, M. O’riain, D. Gaynor, R. Kansky,

A. Griffin, M. Manser, L. Sharpe, G. M. McIlrath, et al. Cooperation, control, and con-

cession in meerkat groups. Science, 291(5503):478–481, 2001.

[9] S. T. Emlen. The evolution of helping. i. an ecological constraints model. The American

Naturalist, 119(1):29–39, 1982.

[10] J. W. Fitzpatrick and R. Bowman. Florida scrub-jay: Oversized territories and group

defense in a fire-maintained habitat. In W. D. Koenig and J. L. Dickinson, editors, Co-

operative breeding in vertebrates: studies of ecology, evolution, and behavior., chapter 5,

pages 77–96. Cambridge University Press, Cambridge, 2016.

[11] E. A. Fronhofer, A. Kubisch, F. M. Hilker, T. Hovestadt, and H. J. Poethke. Why are

metapopulations so rare? Ecology, 93(8):1967–1978, 2012.

[12] J. M. Greenwood-Lee and P. D. Taylor. The evolution of dispersal in spatially varying

environments. Evolutionary Ecology Research, 3:649–665, 2001.

[13] W. Hamilton. The genetical evolution of social behaviour. i. Journal of Theoretical

Biology, 7(1):1–16, 1964.



BIBLIOGRAPHY 109

[14] I. Hanski. Single-species spatial dynamics may contribute to long-term rarity and com-

monness. Ecology, 66(2):335–343, 1985.

[15] A. Hastings. Structured models of metapopulation dynamics. Biological Journal of the

Linnean Society, 42(1-2):57–71, 1991.

[16] B. J. Hatchwell. The evolution of cooperative breeding in birds: kinship, dispersal and

life history. Philosophical Transactions of the Royal Society of London B: Biological

Sciences, 364(1533):3217–3227, 2009.

[17] S. A. Kingma, P. Santema, M. Taborsky, and J. Komdeur. Group augmentation and the

evolution of cooperation. Trends in Ecology & Evolution, 29(8):476–484, 2014.

[18] S. A. Kingma, K. Bebbington, M. Hammers, D. S. Richardson, and J. Komdeur. De-

layed dispersal and the costs and benefits of different routes to independent breeding in a

cooperatively breeding bird. Evolution, 70(11):2595–2610, 2016.

[19] W. D. Koenig and J. L. Dickinson. Ecology and evolution of cooperative breeding in

birds. Cambridge University Press, 2004.

[20] H. Kokko and J. Ekman. Delayed dispersal as a route to breeding: territorial inheritance,

safe havens, and ecological constraints. The American Naturalist, 160(4):468–484, 2002.

[21] H. Kokko and P. Lundberg. Dispersal, migration, and offspring retention in saturated

habitats. The American Naturalist, 157(2):188–202, 2001.

[22] H. Kokko, R. A. Johnstone, and T. H. Clutton-Brock. The evolution of cooperative breed-

ing through group augmentation. Proceedings of the Royal Society of London B: Biolog-

ical Sciences, 268(1463):187–196, 2001.

[23] C. Kullberg and A. Angerbjörn. Social behaviour and cooperative breeding in arctic foxes,

Alopex lagopus (L.), in a semi-natural environment. Ethology, 90(4):321–335, 1992.



110 Chapter 5. Conclusions, Discussion and a Future Direction

[24] H. C. Leggett, C. El Mouden, G. Wild, and S. West. Promiscuity and the evolution of

cooperative breeding. Proceedings of the Royal Society of London B: Biological Sciences,

279(1732):1405–1411, 2012.

[25] R. Levins. Some demographic and genetic consequences of environmental heterogeneity

for biological control. Bulletin of the Entomological Society of America, 15(3):237–240,

1969.

[26] J. D. Ligon. Behavior and breeding biology of the red-cockaded woodpecker. The Auk,

87(2):255–278, 1970.

[27] B. F. Manly and J. A. N. Alberto. Multivariate statistical methods: a primer. Chapman

and Hall/CRC, 2016.
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Appendix A

Appendix for Chapter 3

A.1 Analysis of Eq. (3.2)

Eq. 3.2 admits a trivial equilibrium solution (the extinction equilibrium) that is easily deter-

mined to be locally asymptotically stable for all parameter combinations. If c > d+2
√

d e, then

there exists a pair of non-trivial (and biologically meaningful) equilibrium solutions, denoted

E = ( p̄`, p̄h,+) and T = ( p̄`, p̄h,−), respectively, where

p̄` =
d
c

and

p̄h,± =
(c − d) ±

√
(c − d)2 − 4 d e
2 c

.

It is also easy to show by using Routh-Hurwitz stability criterion that, when it exists, E is

locally asymptotically stable, while T , when it exists, is unstable.

A.2 Characteristic Equation

Analysis in this appendix and the following ones follows theory found in [2] [also see 1, 3].

To analyze the stability of a DDE system near its equilibrium, one first needs to obtain the

characteristic equation. In this appendix, we present a standard method used to obtain it.

113
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For the simplest case, we have the following non-linear DDE,

x(t)′ = f (x(t), x(t − τ)), (A.1)

where f (x, y) is a non-linear function of x and y. We need to linearize the equation near an

equilibrium x0. Letting ε(t) = x(t) − x0, then, Eq. (A.1) is equivalent to

(x0 + ε(t))′ = f (x0 + ε(t), x0 + ε(t − τ)).

For simplicity, let xτ = x(t − τ). Using a Taylor expansion, we have

f (x, xτ) = f (x0, x0) + f ′1 |(x0,x0)(x − x0) + f ′2 |(x0,x0)(xτ − x0)

+O((x − x0)2) + O((xτ − x0)2) + O((xτ − x0)(x − x0)) (as (x, xτ) −→ (x0, x0))

≈ f ′1 |(x0,x0)(x, xτ) · (x − x0) + f ′2 |(x0,x0)(x, xτ) · (xτ − x0),

where f (x0, x0) = 0. So, Eq. (A.1) can be approximated after linearization in the following

way:

ε′(t) = a ε(t) + b ε(t − τ), (A.2)

where constants a = f ′1 |(x0,x0)(x, xτ) and b = f ′2 |(x0,x0)(x, xτ).

Now we can obtain the characteristic equation by assuming solutions to Eq. (A.2) have

the form ε(t) = k eλt, where k , 0, and λ ∈ C. Substituting the form of solution into Eq. (A.2),

we have

ε′(t) = a ε(t) + b ε(t − τ),

⇐⇒ λ k exp (λ t) = a k exp (λ t) + b k exp (λ (t − τ))

⇐⇒ λ = a + b exp (−λ τ)

Therefore, the characteristic equation is

λ − a − b exp (−λ τ) = 0. (A.3)
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The characteristic equation (A.3) can be generalized into

det(λI − A − B exp (−λ τ)) = 0, (A.4)

for DDE systems in the following form,

x′(t) = A x(t) + B x(t − τ), (A.5)

where x(t) = (x1(t), x2(t), · · · , xn(t)), and A and B are n × n matrices. Using the characteristic

equation, we can obtain critical delays and regions of absolute stability, as is shown in the

following sections.

A.3 For Proposition 6: Analysis of Critical Delay in Eq. (3.6)

We check the sign of real solutions to Eq. (3.7) first. Recall that c > e. If c > 2e then no

positive values of s satisfy the characteristic equation. If c ≤ 2e, then there are real roots, but

they are negative and no instabilities arise. If c = 2e, then s = −e < 0 is the only solution to

the characteristic equation. If c < 2e, then there is a unique real root, but that root is negative,

because c > e. (Note that when s = 0 the left-hand side of the characteristic equation simplifies

to e, while the right-hand side simplifies to 2e − c. Thus c > e implies e > 2e − c, and so the

root must be to the left of s = 0).

Next, we look for complex solutions to Eq. (3.7) of the form s = u + i v (without losing

generality, assume v > 0). The characteristic Eq. (3.7) becomes

u + i v + e = −(c − 2 e) exp{−u τ} (cos v τ − i sin v τ),

which gives us

u + e = −(c − 2 e) exp{−u τ} cos v τ,

v = (c − 2 e) exp{−u τ} sin v τ.

If c = 2e, then the equations cannot be satisfied, and so we consider only cases where c , 2e.
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Instability of p̄ is imminent when u = 0 and so

−
e

c − 2 e
= cos v τ, (A.6)

1
c − 2 e

v = sin v τ. (A.7)

Since c > e, we can be sure that e > 2 e−c. It follows that whenever c < 2 e, e/(2 e−c) > 1

and so no solution to the previous system exists. If c > 2 e, then −e/(c − 2 e) < 0; a solution to

the previous system of equations, therefore, requires

e
c − 2 e

≤ 1 ↔ c ≥ 3 e,

because we need cos v τ ≥ −1. If c = 3e, then Eq. (A.6) and Eq. (A.7) become −1 = cos v τ

and v/e = sin v τ, from which we obtain contradicting results v τ = 2πn + π (n = 0,±1,±2, . . .)

and v = 0. Therefore, there is no solution when c ≤ 3e.

When c > 3e, there are an infinite number of products vτ that satisfy Eq. (A.6) and Eq.

(A.7). We obtain them in the following way. First, divide Eq. (A.7) by Eq. (A.6), and we have

v/(−e) = tan v τ, from which we solve for v τ:

v τ = nπ + arctan
(
−

v
e

)
, n = 0,±1,±2, . . .

In addition to v > 0, τ > 0, and cos v τ < 0, we know that sin v τ must be positive because

v/(c − 2e) > 0. This allows us to refine the previous statement to

v τ = 2nπ +

[
π − arctan

(v
e

)]
, n = 0, 1, 2, . . .

so

τ =
1
v

[
2nπ +

[
π − arctan

(v
e

)]]
, n = 0, 1, 2, . . .

Now,

τ0 =
1
v

[
π − arctan

(v
e

)]
, n = 0, 1, 2, . . . (A.8)

and v can be obtained by taking squares of Eq. (A.6) and Eq. (A.7) and adding them up.
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Then we can get e2+v2

(c−2e)2 = cos2 v τ + sin2 v τ = 1, so

v =
√

(c − 2e)2 − e2 =
√

(c − e)(c − 3e). (A.9)

In summary, now we know that there are two cases when there exists a positive equilib-

rium (c > e). One case is there is no critical delay when c ≤ 3e; the other case is there exist

critical delays when c > 3e, with the smallest one shown in Eq. (A.8), where v is in Eq. (A.9).

A.4 For Proposition 7: Absolute Stability

To start with, we need to get the condition for the existence of two distinct positive equilibria.

By denoting an equilibrium as ( p̄`, p̄h) = (X,Y), X and Y satisfy

c(1 − X − Y)Y − eX + dY − cXY = 0,

cXY − dY = 0.

Then, there is an extinction equilibrium (0, 0), and two possible distinct positive equilibria:

X =
d
c
,

Y± =
(c − d) ±

√
(c − d)2 − 4 d e
2 c

,

if c > d and (c − d)2 − 4 d e > 0 (we are not interested in the case when two positive equilibria

merge into one equilibrium). And those two conditions can be combined to obtain c > d +

2
√

d e, which is the first part of the Proposition 7.

In general, it is difficult to obtain the global stability of a DDE system, especially if it

is non-linear. However, we can investigate its behavior near its positive equilibrium E, as

we are most interested in the stability about the equilibrium E. First, we need to obtain the

characteristic equation for model (3.8) to look into the absolute stability of positive equilibrium
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E:

X =
d
c
, (A.10)

Y = Y+ =
(c − d) +

√
(c − d)2 − 4 d e
2 c

. (A.11)

We linearize Eq. (3.8) about the equilibrium E by perturbing near E. Letting p`(t) = x(t) + d
c

and ph(t) = y(t) + Y , we obtain a linear DDE systemx′(t)

y′(t)

 = A

x(t)

y(t)

 + B

x(t − τ)

y(t − τ)

 ,
where

A =


−2 Yc − e −Yc + d

Yc −d

 , B =


0 (−Y + 1) c − 2 d

0 d

 . (A.12)

Recall that for linearized DDE systems, the characteristic equation can be calculated using

det(λI − A − B exp (−λ τ)) = 0. (A.13)

Substituting Eq. (A.11) in the above equation, our characteristic equation can be written as

p(λ) + q(λ) exp (−λ τ) = 0, (A.14)

where p(λ) = λ2 + (2 Yc + d + e) λ + Y2c2 + Ycd + de, (A.15)

q(λ) = Y2c2 − Yc2 − de − dλ. (A.16)

The key idea of deciding the absolute stability [sensu 2, page 56] relies on the fact that

stability is lost whenever a complex-valued root of the characteristic equation (see Appendix

A.2) to cross the complex plane from left to right (the equilibrium loses its stability if and only

if the sign of the real part of the root switches from negative to positive). Since we just need to

deal with p(λ) and q(λ) in the form of polynomials, continuity holds here.

If we put Eq. (A.14) as p(λ) = −q(λ) exp (−λ τ), we can check what occurs when λ
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is on the imaginary axis, i.e., λ = iv (0 < v ∈ Rwithout losing generality), that is, p(iv) =

−q(iv) exp (−iv τ). Applying Euler’s formula, we have

p(iv) = −(Re(q(iv)) + i Im(q(iv)) (cos(v τ) − i sin(v τ))

= (−Re(q(iv)) cos(vτ) − Im(q(iv)) sin(vτ)) − i(Im(q(iv)) cos(vτ) − Re(q(iv)) sin(vτ)).

Taking the modulus of both sides, we have |p(iv)| = |q(iv)|. So |p(iv)| should not be equal to

|q(iv)|, when we do not want the root of characteristic equation to change the sign of its real

part. In fact, if we need the equilibrium to be stable [sensu 2, Proposition 4.9], then we need to

make sure |p(iv)| > |q(iv)| holds for all positive values of v, or

|q(iv)|2 − |p(iv)|2 < 0. (A.17)

Substituting Equations (A.15)-(A.16), and λ = iv into the inequality (A.17), we collect the

terms in the resulting polynomial on the left side according to the degree of v, and Eq. (A.17)

becomes

−v4 −
(
2 Y2c2 + 2 c (d + 2 e) Y + e2

)
v2 − Yc (2 Yc − c + d)

(
Yc2 + Ycd + 2 de

)
< 0. (A.18)

Recall that c, d,e, Y are all positive, so we can see the coefficients for v4 and v2 are negative.

For v0, we need to look at the sign of 2 Yc − c + d by substituting Eq. (A.11) into it:

2 Yc − c + d =

√
(c − d)2

− 4 de > 0,

whenever (c−d)2−4 de > 0. So, Eq. (A.17) is satisfied whenever there are two distinct positive

equilibria, and the equilibrium is absolutely stable in the region (c − d)2 − 4 de > 0. That is the

second part of the Proposition 7.

A.5 For Proposition 8, Part I: Absolute Stability

Here we use the similar method as in the previous section to show the proof for a simple case

d = 1 of model (3.9), which we use to get Figure 3.4, but a general proof is easy to obtain. We
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linearize Eq. (3.9) about the equilibrium E by perturbing near E. Letting p`(t) = x(t) + 1
c and

ph(t) = y(t) + Y , where

Y =
(c − 1) +

√
(c − 1)2 − 4 e

2 c
, (A.19)

we have a linear DDE systemx′(t)

y′(t)

 = A

x(t)

y(t)

 + B

x(t − τ)

y(t − τ)

 ,
where

A =

−(c Y + e) c (1 − 2Y)

0 −1

 , B =

−c Y −1

c Y 1

 . (A.20)

For linearized DDE systems, the characteristic equation can be calculated using

det(λI − A − B exp (−λ τ)) = 0. (A.21)

Substituting Eq. (A.20) in the above Eq. (A.21), our characteristic equation can be written as

p(λ) + q(λ) exp (−λ τ) = 0, (A.22)

where p(λ) = λ2 + (c Y + e + 1) λ + c Y + e, (A.23)

q(λ) = (c Y − 1) λ + Yc2 − 2 c Y − 3 e. (A.24)

Then we substitute Eqs. (A.23)-(A.24), and λ = iv into the inequality (A.17), and we

collect the terms in the resulting polynomial on the left side according to the degree of v. Then

we obtain

−v4 −
(
2 (e + 1) cY + e2

)
v2 +

(
Yc2 − 3 cY − 4 e

) (
Yc2 − cY − 2 e

)
< 0. (A.25)

In order to make sure the inequality (A.25) holds for all positive v, we need all the coefficients

of the polynomial in v on the left to be negative. All the coefficients except the constant term are

negative because e, c,Y are positive, so we just need
(
Yc2 − 3 cY − 4 e

) (
Yc2 − cY − 2 e

)
< 0,

that is, Yc2 − 3 cY − 4 e < 0 < Yc2 − cY − 2 e. We can prove 0 < Yc2 − cY − 2 e holds as long as
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e < (c−1)2

4 and c > 1 (i.e., when positive equilibria exist). Solving Yc2 − 3 cY − 4 e < 0, we have

e >
(3 c − 1) (c − 3)

16
= el. (A.26)

In conclusion, equilibrium E is stable for any delay, if

e ∈
(
(3 c − 1) (c − 3)

16
,

(c − 1)2

4

)
, c > 1, (A.27)

assuming d = 1.

A.6 For Proposition 8, Part II: Calculating Critical Delay τ0

For e < el, a critical delay τ0 can be calculated by solving the following implicit system when

c and e are given:

cos (τ v) = f (c, e, v),

sin (τ v) = g(c, e, v),
(A.28)

where v is the imaginary part of the characteristic value λ = i v. We just need to consider the

characteristic value on the imaginary axis, because the critical transition occurs when real part

of the characteristic value change its sign, i.e., when λ is on the imaginary axis of the complex

plane. In fact, we rewrite Equations (A.22)-(A.24) as

exp (−λ τ) = −
p(λ)
q(λ)

, (A.29)

p(λ) = λ2 + (c Y + e + 1) λ + c Y + e, (A.30)

q(λ) = (c Y − 1) λ + Yc2 − 2 c Y − 3 e. (A.31)

Now substitute Equations (A.30) and (A.31) into (A.29), and then substitute λ = u + iv in the

resulting equation. Without losing generality, we assume v > 0. Then we match real parts and

imaginary parts of left side and right side of resulting equation, using Euler’s formula. Letting
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u = 0, we get

cos (τ v) = f (c, e, v), (A.32)

sin (τ v) = g(c, e, v), (A.33)

where f (c, e, v) = Re
(
−

p(iv)
q(iv)

)
and g(c, e, v) = − Im

(
−

p(iv)
q(iv)

)
. Their expressions are given in the

following:

f (c, e, v) = −
(cY + d + e) v2 (cY − d) +

(
Ycd + de − v2

) (
2 Y2c2 − Yc2 − de

)
(cY − d)2 v2 +

(
2 Y2c2 − Yc2 − de

)2 ,

g(c, e, v) = −
(cY + d + e) v

(
2 Y2c2 − Yc2 − de

)
−

(
Ycd + de − v2

)
(cY − d) v

(cY − d)2 v2 +
(
2 Y2c2 − Yc2 − de

)2 ,

where Y =
c−d+
√

(c−d)2−4 de
2c . We can solve for a positive real value of v from ( f (c, e, v))2 +

(g(c, e, v))2 = 1, and substitute it back into Eqs. (A.32) and (A.33) to solve for τ0, making sure

τ0 is the smallest positive solution. We use Maple to calculate the expressions for v:

v =
1
2

√√√
2

√
16 Y2

(
Y −

1
2

)2

c4 − 8 Ye
(
−

Ye
2

+ d (Y − 1)
)

c2 − 8 Ye (d − e)
(
d +

e
2

)
c + e4 − 4 (d + e) cY − 2 e2,(A.34)

and critical delay τ0:

τ0 =



1
v arctan

(
g(c,e,v)
f (c,e,v)

)
, if f (c, e, v) > 0 and g(c, e, v) > 0,

1
v arctan

(
g(c,e,v)
f (c,e,v)

)
+ π

v , if f (c, e, v) < 0,

1
v arctan

(
g(c,e,v)
f (c,e,v)

)
+ 2π

v , if f (c, e, v) > 0 and g(c, e, v) < 0.

(A.35)
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Appendix B

Appendix for Chapter 4

B.1 Environmental Stochasticity

Suppose the global state of the environment is random, and let Tp|e (resp. Tg|e) denote the

probability that the population is next in a poor state (resp. good state) given that it is currently

in state e = p, g. The stochastic transitions between states are, therefore, governed by a Markov

Chain with transition matrix ,

T =

 Tp|p Tp|g

Tg|p Tg|g

 .
Using the fact that Tg|p = 1 − Tp|p, and Tp|g = 1 − Tg|g, one can show that the environment

spends a πp × 100% of the time in the poor state, and πg × 100% of the time in the good state,

where πp = Tp|g/(Tg|p + Tp|g), and πg = Tg|p/(Tg|p + Tp|g). It is instructive to notice that the

denominator of πe is proportional to the total amount of probability mass transferred between

states, while the numerator gives the probability mass transferred to e from the other state.

For later use, we also introduce the backward environmental transition matrix

S =

 S p|p S g|p

S p|g S g|g

 =


Tp|p

Tp|p+Tp|g

Tp|g

Tp|p+Tp|g

Tg|p

Tg|p+Tg|g

Tg|g

Tg|p+Tg|g

 .
The matrix entries S p|e (resp. S g|e) gives the probability that the environment was most recently

in the poor (resp. good) state, given that it is currently in state e. If we assume Tp|g = Tg|p = s,

124
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as we do in the main text, then

Tp|p + Tp|g = 1 − Tg|p + Tp|g = 1

Tg|p + Tg|g = Tg|p + 1 − Tp|g = 1

and so

S =

 S p|p S g|p

S p|g S g|g

 =

 Tp|p Tp|g

Tg|p Tg|g

 =

 1 − s s

s 1 − s


with πp = πg = 1/2. By contrast, if we assume that Tp|p = Tp|g = t, as some authors have done

[see 1, their Appendix H], then

T =

 t t

1 − t 1 − t


and

S =

 1/2 1/2

1/2 1/2


with πp = t and πg = 1− t. When S e|p = S e|g = 1/2, environmental states at two different points

in time are not correlated with one another.

In the model described in the main text, we consider the cost of dispersal in environment

e, denoted ce. In general, the time-averaged cost of dispersal is c = πp cp + πg cg and the

associated variance is σ2 = πp πg (cp − cg)2. When πp = πg = 1/2 the aforementioned average

and variance simplify to (cp + cg)/2 and [(cp − cg)/2]2, respectively. By assuming Tp|g = Tg|p =

S g|p = S p|g = s, as we do in the main text, we get πe = 1/2 and are therefore able to adjust s

without changing either c or σ2. Any effect on dispersal evolution observed, in that case, can

be attributed to changes in s alone.

It is also important to understand the temporal autocorrelation between environmental

states, and the theoretical correlation formula associated with Figure 4.1. Let Xt denote the

state of the environment at some time t. If the environment is poor at time t then Xt = 0,

and if the environment is good at time t then Xt = 1. Based on the discussion above, and the
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assumption that Tp|g = Tg|p = s, we get

E[Xt] = Pr(Xt = 1) =
1
2

and Var(Xt) = E[X2
t ] − E[Xt]2 =

1
2
−

1
4

=
1
4

for all t. Now, let P∆t denote the conditional probability Pr(Xt+∆t = 1 | Xt = 1) for some positive

integer ∆t. It is straightforward to show that P∆t satisfies

P∆t+1 = P∆t(1 − s) + (1 − P∆t)s, subject to P1 = 1 − s. (B.1)

Solving the initial value problem in (B.1) gives P∆t = [(1 − 2s)∆t + 1]/2. It follows that

E[Xt Xt+∆t] = Pr(Xt+∆t = 1 | Xt = 1) Pr(Xt = 1) =
(1 − 2s)∆t + 1

4

and

Cov(Xt, Xt+∆t) = E[Xt Xt+∆t] − E[Xt] E[Xt+∆t] =
(1 − 2s)∆t

4
.

Using the definition of correlation, we find

Corr(Xt, Xt+∆t) =
Cov(Xt, Xt+∆t)

√
Var(Xt)

√
Var(Xt+∆t)

=
(1 − 2s)∆t/4
√

1/4
√

1/4
= (1 − 2s)∆t

which is the formula that appears in the caption to Figure 4.1.

B.2 Deriving the Inclusive-Fitness Effect

Fitness is, of course, a key component of inclusive fitness. Our fitness measure will focus on

offspring prior to dispersal. We fix attention on such an offspring born into an environment in

state e. The fitness of this focal offspring will be the expected number of offspring it produces

in the next year, weighted by genetic contribution. The fitness function, w, is a mathematical

description of fitness and takes two arguments: (i) d•,e, the probability with which the focal

offspring disperses, and (ii) d̄e, the probability with which the average offspring born on the

same patch, and in the same year as the focal individual disperses. The function w will also

depend on the population-average probability of dispersal, de, but this will not be included as

an argument.
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To develop w for the DM model we note that with probability 1− de,•, the focal individual

competes on its natal patch, and with probability (1 − ce)de,• the focal individual competes on

a foreign patch. Provided it survives the dispersal phase of the life-cycle, the focal individual

expects to be fertilized by one individual (success through female function), and it expects to

fertilize one individual (success through male function). When it competes on its natal site the

focal individual and the individual it fertilized both secure a spot on the patch, independently,

with probability in proportion to 1/(1 − d̄e + (1 − ce)de). When it competes on a foreign patch

spots are secured with probability in proportion to 1/(1 − cede).

DM: w(d•,e, d̄e) =

(
1 − d•,e

1 − d̄e + (1 − ce)de
+

(1 − ce)d•,e
1 − cede

) (
1
2

+
1
2

)
where 1/2+1/2 is included to emphasize the fact that the focal individual expects to contribute

half of its genes to each of two offspring—one through female function, the other through male

function.

The fitness function for the MD model is developed in a similar manner. However, in

the MD model the fitness function must reflect the possibility that success through female and

male function might be realized on different patches. We find that

MD: w(d•,e, d̄e) =
1
2

(
1 − d•,e

1 − d̄e + (1 − ce)de
+

(1 − ce)d•,e
1 − cede

)
+

1
2

(
1 − d̄e

1 − d̄e + (1 − ce)de
+

(1 − ce)d̄e

1 − cede

)
.

The first term on the right of the previous line describes fitness through female function, while

the second describes fitness through male function.

Let Ap|e = Tp|ew(d•,e, d̄e) denote the expected number of offspring in a poor environment,

produced in the next year by the focal offspring. Similarly, let Ag|e = Tg|ew(d•,e, d̄e) denote the

expected number of offspring in a good environment, produced in the next year by the focal
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offspring. Given those definitions, the matrix

A =

 Tp|p w(d•,p, d̄p) Tp|g w(d•,g, d̄g)

Tg|p w(d•,p, d̄p) Tg|g w(d•,g, d̄g)


can be used to describe the (linear) dynamics of the focal offspring’s genetic lineage. When

the dominant eigenvalue of A, call it λ, is greater than 1, the focal individual’s genetic lineage

is increasing in frequency in the population.

When d•,e = d̄e = de, for e = p, g, it is easy to see that A = T . Consequently, λ = 1 and is

associated with left and right eigenvectors,

v =

 1

1

 , u =

 πp

πg


respectively. In addition, following Taylor and Frank [4], the marginal changes in fitness for

the DM model are

DM:



Rp
∂A
∂d•,p

+ R̄p
∂A
∂d̄p

]
d•,p=d̄p=dp

=

 Tp|p(−Rp cp + R̄p hp)vp 0

Tg|p(−Rp cp + R̄p hp)vp 0


Rg

∂A
∂d•,g

+ R̄g
∂A
∂d̄g

]
d•,g=d̄g=dg

=

 0 Tp|g(−Rg cg + R̄g hg)vg

0 Tg|g(−Rg cg + R̄g hg)vg


where Rp is the relatedness between the focal offspring and the individual controlling the focal

offspring’s dispersal, and R̄p is the relatedness between the focal offspring and the individual

controlling the dispersal of the average offspring born on the same patch (see Appendix B.3 ).

As described in the main text he = (1 − de)/(1 − ce de) gives the probability that an individual

native to a given patch is competitively displaced, when the environment is currently in state e.

Also, ve = 1/(1− ce de) gives the reproductive value of an individual competing on a patch in a
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year when the environment is in state e. For the MD model, the marginal changes in fitness are

MD:



Rp
∂A
∂d•,p

+ R̄p
∂A
∂d̄p

]
d•,p=d̄p=dp

=

 Tp|p(−Rp+R̄p

2 cp + R̄p hp)vp 0

Tg|p(−Rp+R̄p

2 cp + R̄p hp)vp 0


Rg

∂A
∂d•,g

+ R̄g
∂A
∂d̄g

]
d•,g=d̄g=dg

=

 0 Tp|g(−Rg+R̄g

2 cg + R̄g hg)vg

0 Tp|g(−Rg+R̄g

2 cg + R̄g hg)vg


Continuing with the method of analysis laid out in Taylor and Frank [4] method, the

inclusive-fitness effect of increased natal dispersal is

v ·
(
Re

∂A
∂d•,e

+ R̄e
∂A
∂d̄e

]
d•,e=d̄e=de

)
u

which simplifies to

∆we(de) =


(−Re ce + R̄e he)αe for DM(
−

Re+R̄e
2 ce + R̄e he

)
αe for MD

where αe = πe ve gives the total reproductive value of offspring born in a year where the en-

vironment is in state e. Notice that we study ∆We = ∆we(de)/πe in the main text (equation

4.4). This is justified because we restrict attention to πp = πg = 1/2, and because we are inter-

ested only in the sign of the inclusive-fitness effect. When dispersal occurs with probability d,

irrespective of environmental state, the inclusive-fitness effect is simply

∆w(d) = ∆wp(d) + ∆wg(d)

which equivalent by ∆W in the main text (equation (4.5)), since πp = πg = 1/2.

The sign of the inclusive-fitness effect tells us how selection shapes dispersal. When the

inclusive-fitness effect is positive, selection favours an increase in the corresponding probabil-

ity of offspring dispersal, and when it is negative, selection favours a decrease. It follows that

dispersal is at intermediate evolutionary equilibrium when the inclusive fitness effect is zero.

Dispersal will be at a boundary equilibrium, when either ∆we(1) > 0 or ∆we(0) < 0 (alterna-

tively, ∆w(1) > 0 or ∆w(0) < 0). The former case corresponds to complete dispersal, while the
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latter corresponds to complete natal-patch philopatry.

B.3 Genetic Relatedness

Relatedness in our models is defined in terms of identity by descent. Two alleles are said to be

identical by descent if we can trace their respective lines of descent back to a single, common

ancestral allele. The ancestral history of alleles, therefore, will be of critical importance. We

explore that history in the next subsection. We round out this section of the appendix with the

actual calculation of relatedness between pairs of individuals in the model.

B.3.1 The Relationship Between Pairs of Alleles

To facilitate biological interpretation of relatedness, we investigate the history of pairs of alleles

at the dispersal locus, backward in time, until they reach a common ancestor. Consider two

alleles sampled with replacement from the population following the death of adults, but before

either dispersal or mating of offspring occurs. These two alleles may be observed:

1. as physically distinct copies, carried on different chromosomes by the same individual,

when e = p;

2. as physically distinct copies, carried on different chromosomes by the same individual,

when e = g;

3. as physically distinct copies, carried by different individuals on the same patch, when

e = p;

4. as physically distinct copies, carried by different individuals on the same patch, when

e = g;

5. as the same physical copies, carried by one individual,

6. on different patches, carried by different individuals.
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We will refer to state 5 as the coalescent state and state 6 as the acoalescent state. Importantly,

because the model population is infinitely large, a pair of alleles in the acoalescent state will not

have lines of descent that trace back to a common ancestor (rather, the probability that lines of

descent trace back to a common ancestor is negligible). Overall, we treat the transition among

the various states as a Markov process, and the coalescent and acoalescent states, respectively,

as absorbing states. We present the Markov-process model below for both DM and MD models.

Dispersal Before Mating (DM)

Consider two alleles currently in state 1 or state 2. Because the alleles are found on different

chromosomes (and because selfing almost surely does not occur), their ancestors must have

been found in different individuals the year before. With probability h2
pS p|e the immediate an-

cestors were found in state 3, and with probability h2
gS g|e they were in state 4. With probability

1 − h2
pS p|e − h2

gS g|e the immediate ancestors were in the acoalescent state (state 6). If Pi j de-

notes the probability that a pair of alleles currently in state i originated from one that was most

recently in state j, then P11 . . . P16

P21 . . . P26

 =

 0 0 h2
pS p|p h2

gS g|p 0 1 − (h2
pS p|p + h2

gS g|p)

0 0 h2
pS p|g h2

gS g|g 0 1 − (h2
pS p|g + h2

gS g|g)

 .
Now consider two alleles currently in state 3 or 4. Regardless of the state of the environ-

ment, the alleles originated from the same individual in the previous generation with probabil-

ity 1/(2N); they originated from different individuals with probability 1 − 1/(2N). Given that

the alleles originated from same individual in the previous generation, they existed as phys-

ically distinct copies with probability 1/2, and were not physically distinct with probability

1/2. It follows that the probability with which the alleles were most recently in: (i) state 1 is

S p|e/(4N), (ii) state 2 is S g|e/(4N), and (iii) state 5 is 1/(4N). Given that the alleles originated

from different individuals in the previous year, they were most recently in: (i) state 3 with

probability (1 − 1/(2N))h2
pS p|e, (ii) state 4 with probability (1 − 1/(2N))h2

gS g|e, and (iii) state 6
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with probability (1 − 1/(2N)) − (1 − 1/(2N))h2
pS p|e − (1 − 1/(2N))h2

gS g|e. It follows that

 P31 . . . P36

P41 . . . P46


=


1

4N S p|p
1

4N S g|p
2N−1

2N h2
pS p|p

2N−1
2N h2

gS g|p
1

4N
2N−1

2N −
2N−1

2N (h2
pS p|p + h2

gS g|p)

1
4N S p|g

1
4N S g|g

2N−1
2N h2

pS p|g
2N−1

2N h2
gS g|g

1
4N

2N−1
2N −

2N−1
2N (h2

pS p|g + h2
gS g|g)

 .
For completeness,  P51 . . . P56

P61 . . . P66

 =

 0 0 0 0 1 0

0 0 0 0 0 1

 .

Overall, the matrix P describes the stochastic process associated with tracing the origins

of alleles backward in time. Note that

P =



0 1 − (h2
pS p|p + h2

gS g|p)

Q 0 1 − (h2
pS p|g + h2

gS g|g)

1
4N

2N−1
2N −

2N−1
2N (h2

pS p|p + h2
gS g|p)

1
4N

2N−1
2N −

2N−1
2N (h2

pS p|g + h2
gS g|g)

0 1 0

0 1


where

Q =



0 0 h2
pS p|p h2

gS g|p

0 0 h2
pS p|g h2

gS g|g

1
4N S p|p

1
4N S g|p

2N−1
2N h2

pS p|p
2N−1

2N h2
gS g|p

1
4N S p|g

1
4N S g|g

2N−1
2N h2

pS p|g
2N−1

2N h2
gS g|g


. (B.2)

The matrix Q describes transitions among transient states i = 1, . . . , 4. If θi j denotes the ex-

pected number of years the process spent in transient state j, given that it is currently in tran-

sient state i, then the matrix of these expectations can be expressed as

Θ = I + Q + Q2 + . . . . (B.3)
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As is shown in elementary treatments of stochastic processes [see 2], we can treat (B.3) as a

matrix version of a geometric series. Therefore,

Θ = (I − Q)−1. (B.4)

Dispersal After Mating (MD)

For the MD model, the matrix P from the previous subsection changes. The changes that are

most relevant to this work are those that appear in the matrix Q. This matrix is now written as

Q =



0 0 S p|p S g|p

0 0 S p|g S g|g

1
4N S p|p

1
4N S g|p

2(N−1)h2
p+1

2N S p|p
2(N−1)h2

g+1
2N S g|p

1
4N S p|g

1
4N S g|g

2(N−1)h2
p+1

2N S p|g
2(N−1)h2

g+1
2N S g|g


. (B.5)

B.3.2 Relatedness Calculations

To compute relatedness, we will need the following probabilities related to identity by descent:

• fe(n), the probability that two homologous alleles carried by the same offspring are IBD,

given the environment is in state e = p, g during generation n;

• Fe(n), the probability that one allele, chosen uniformly from each of two individuals born

on the same patch are IBD, given the environment is in state e = p, g during generation

n.

Exactly how we use fe(n) and Fe(n) to calculate Re and R̄e depends on which model scenario

we consider. For the sake of clarity, we treat the DM and MD models separately.
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Dispersal before mating (DM)

For the DM model, we find

fp(n + 1) = h2
pFp(n)S p|p + h2

gFg(n)S g|p

fg(n + 1) = h2
pFp(n)S p|g + h2

gFg(n)S g|g

Fp(n + 1) =

[
1
N

(
1
4 +

h2
pFp(n)

2 +
fp(n)

4

)
+ N−1

N h2
p Fp(n)

]
S p|p

+

[
1
N

(
1
4 +

h2
gFg(n)

2 +
fg(n)

4

)
+ N−1

N h2
g Fg(n)

]
S g|p

Fg(n + 1) =

[
1
N

(
1
4 +

h2
pFp(n)

2 +
fp(n)

4

)
+ N−1

N h2
p Fp(n)

]
S p|g

+

[
1
N

(
1
4 +

h2
gFg(n)

2 +
fg(n)

4

)
+ N−1

N h2
g Fg(n)

]
S g|g



(B.6)

or, in matrix form

fp(n + 1)

fg(n + 1)

Fp(n + 1)

Fg(n + 1)


=



0 0 h2
pS p|p h2

gS g|p

0 0 h2
pS p|g h2

gS g|g

1
4N S p|p

1
4N S g|p

2N−1
2N h2

pS p|p
2N−1

2N h2
gS g|p

1
4N S p|g

1
4N S g|g

2N−1
2N h2

pS p|g
2N−1

2N h2
gS g|g

︸                                                     ︷︷                                                     ︸
=Q



fp(n)

fg(n)

Fp(n)

Fg(n)


+



0

0

1
4N

1
4N


. (B.7)

Note that Q in equation (B.7) was identified above (equation B.2). As indicated in that subsec-

tion, the matrix (I − Q) is invertible, and so the equilibrium solution to (B.6) is

fp

fg

Fp

Fg


=



1 0 −h2
pS p|p −h2

gS g|p

0 1 −h2
pS p|g −h2

gS g|g

− 1
4N S p|p −

1
4N S g|p 1 − 2N−1

2N h2
pS p|p −2N−1

2N h2
gS g|p

− 1
4N S p|g − 1

4N S g|g −2N−1
2N h2

pS p|g 1 − 2N−1
2N h2

gS g|g



−1

︸                                                                       ︷︷                                                                       ︸
=Θ=(I−Q)−1



0

0

1
4N

1
4N


, (B.8)

where Θ was also identified above (equation B.4).

Equation (B.8) can be understood as an expression of the likelihood that different pairs

of alleles on the same patch are identical by descent. Tracing the ancestry of these alleles
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backward in time, it is clear that their respective lines of descent must pass through distinct

offspring on the patch, in the year that follows their coalescence. Thus, coalescence could

occur in any year that precedes one in which alleles are found in distinct offspring on the same

patch; in a neutral population this occurs with probability 1/(4N).

With the preceding comments in mind, consider a physically distinct pair of alleles, car-

ried by the same offspring born into a poor environment. These alleles descended along lines

that, themselves, spent Θ13 + Θ14 years on the current patch, but in distinct individuals. Dur-

ing each of these years, we can assert that the lineages coalesced in the year previous with

probability 1/(4N). Consequently,

fp =
Θ13 + Θ14

4N

which agrees with equation (B.8). Similar interpretations are possible for fg, Fp, and Fg, and

these will be important for the perturbation analysis in a later section.

Turning our attention, now, to the calculation of relatedness, we consider the scenario in

which offspring control their own dispersal phenotype. In this case, Re is understood as the

coefficient of consanguinity between and offspring and itself, given that the environment is in

state e. Conditioning on the alleles being compared, we find

Offspring Control: Re =
1
2
× 1 +

1
2

fe =
1 + fe

2
.

When offspring control dispersal, R̄e is the coefficient of consanguinity between two offspring

born on the same patch in environmental state e. It follows that

Offspring Control: R̄e = Fe

by definition.

Second, consider the scenario in which parents control the dispersal phenotype exhibited

by their offspring. In this case, Re is understood as the coefficient of consanguinity between

a parent and its offspring born in an environment in state e. This coefficient is calculated by
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conditioning on whether or not the allele chosen from the offspring originated from the parent,

and subsequently on the previous state of the environment. Conditioning in this way gives

Parental Control: Re =
1
2

(
1 + fpS p|e + fgS g|e

2

)
+

1
2

(
Fph2

pS p|e + Fgh2
gS g|e

)
=

1 + fpS p|e + fgS g|e

4
+

fe

2

where the second equality follows from the fact that the system described by (B.6) is at equi-

librium.

With parental control, R̄e is the coefficient of consanguinity between an adult and the

average offspring born on its patch. A conditioning argument similar to that used previously

gives

Parental Control: R̄e =

 1
N

1
4

+
h2

pFp

2
+

fp

4

 +
N − 1

N
h2

p Fp(n)
 S p|e

+

 1
N

1
4

+
h2

gFg

2
+

fg

4

 +
N − 1

N
h2

g Fg(n)
 S g|e = Fe

where the final equality again follows from the fact that the system described in (B.6) is at

equilibrium.

Dispersal after mating (MD)

Expressions for relatedness in the MD model are the same as those presented for the DM model,

though the identity coefficients fe and Fe change. Calculation of the identity coefficients for

the MD model follow the procedure outlined above using the matrix Q given in equation (B.5).

B.4 Perturbation Methods

B.4.1 Dispersal Before Mating (DM)

As described in the main text, let c = (cp + cg)/2 and σ = (cp − cg)/2 > 0. Then, cp = c + σ,

and cg = c − σ. Now assume that solutions to the model with environmental variation can be
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expressed as

he ≈ h0 + ηe σ + O(σ2)

fe ≈ f0 + φe σ + O(σ2)

Fe ≈ F0 + Φe σ + O(σ2)

where leading terms come from the model without environmental variation [3]. In addition, let

Q = Q0 + Q′0 σ + O(σ2)

where

Q0 =



0 0 h2
0S p|p h2

0S g|p

0 0 h2
0S p|g h2

0S g|g

1
4N S p|p

1
4N S g|p

2N−1
2N h2

0S p|p
2N−1

2N h2
0S g|p

1
4N S p|g

1
4N S g|g

2N−1
2N h2

0S p|g
2N−1

2N h2
0S g|g


and

Q′0 = 2h0



0 0 S p|p S g|p

0 0 S p|g S g|g

0 0 2N−1
2N S p|p

2N−1
2N S g|p

0 0 2N−1
2N S p|g

2N−1
2N S g|g





0

0

ηp

ηg


.

Using (B.7), we note that

f0

f0

F0

F0


+



φp

φg

Φp

Φg


σ = Q0



f0

f0

F0

F0


+



0

0

1
4N

1
4N


+ Q0



φp

φg

Φp

Φg


σ + Q′0



f0

f0

F0

F0


σ + O(σ2).
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By applying the definition of coefficients f0 and F0, respectively, and by ignoring higher-order

terms in σ, the previous line rearranges to

φp

φg

Φp

Φg


= (I − Q0)−1Q′0



f0

f0

F0

F0


. (B.9)

Using the fact that

Q′0



f0

f0

F0

F0


= 2h0F0



S p|p S g|p

S p|g S g|g

2N−1
2N S p|p

2N−1
2N S g|p

2N−1
2N S p|g

2N−1
2N S g|g



 ηp

ηg



we can re-write equation (B.9) so to express the left-hand side, as

φp

φg

Φp

Φg


= 2h0F0Θ0



S p|p S g|p

S p|g S g|g

2N−1
2N S p|p

2N−1
2N S g|p

2N−1
2N S p|g

2N−1
2N S g|g



 ηp

ηg

 (B.10)

where Θ0 = (I − Q0)−1 is the matrix of expectations described in Appendix B.3 with σ = 0.

Equation (B.10) suggests an interpretation based on coalescence ideas introduced in Ap-

pendix B.3. Consider a year in which the environment is in state e, and consider two physically

distinct alleles carried by the same offspring born in that year. By virtue of their position, the al-

leles in question must have descended from ones carried by distinct individuals in the previous

year. The environmental change means that the likelihood that these ancestors were native is al-

tered at rate 2h0(ηpS p|e + ηgS g|e). Given that the ancestors were indeed native, uniform-random

alleles selected from each ultimately descended from a common ancestor with approximate

probability F0. It follows that for every year that two distinct lines of descent pass through the



B.4. PerturbationMethods 139

same individual, and the likelihood of their eventual coalescence is changed by

2h0(ηpS p|e + ηgS g|e)F0 (B.11)

approximately.

Now consider a year in which the environment is in state e, and consider two alleles car-

ried by different offspring born on the same patch in that year. It is worth noting that, with

probability 1/(4N) + f0×1/(4N) the lineages followed by these alleles coalesce in the previous

generation, but this coalescence is not altered by increased environmental variability. Proba-

bilities of coalescence are only changed in years during which lineages pass through distinct

individuals. The probability that lines of descent followed by the chosen alleles do in fact pass

through distinct individuals in the previous year is 1 − 1/(4N) − 1/(4N) = (2N − 1)/(2N).

Following the previous discussion, the likelihood of the eventual coalescence is altered by

2N − 1
2N

2h0(ηpS p|e + ηgS g|e)F0 (B.12)

approximately.

If τi j denotes the i jth entry of Θ0, then we use τi js to weight changes in lines (B.11) and

(B.12), respectively, and we obtain

φp = (τ11 + 2N−1
2N τ13)2h0(ηpS p|p + ηgS g|p)F0 + (τ12 + 2N−1

2N τ14)2h0(ηpS p|g + ηgS g|g)F0

φg = (τ21 + 2N−1
2N τ23)2h0(ηpS p|p + ηgS g|p)F0 + (τ22 + 2N−1

2N τ24)2h0(ηpS p|g + ηgS g|g)F0

Φp = (τ31 + 2N−1
2N τ33)2h0(ηpS p|p + ηgS g|p)F0 + (τ32 + 2N−1

2N τ34)2h0(ηpS p|g + ηgS g|g)F0

Φg = (τ41 + 2N−1
2N τ43)2h0(ηpS p|p + ηgS g|p)F0 + (τ42 + 2N−1

2N τ44)2h0(ηpS p|g + ηgS g|g)F0

(B.13)

which agrees with equation (B.10). For later use, suppose S g|p = S p|g = 1/2. In such a case,

ηp = −ηg would ensure that the expressions in (B.13) vanish; i.e. relatedness would remain at

its time-averaged value. Despite those observations, the equations in (B.13) are easier to work
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with if they are re-written as,

φp = ηp

[
S p|p(τ11 + 2N−1

2N τ13) + S p|g(τ12 + 2N−1
2N τ14)

]
2h0F0

+ηg

[
S g|p(τ11 + 2N−1

2N τ13) + S g|g(τ12 + 2N−1
2N τ14)

]
2h0F0,

φg = ηp

[
S p|p(τ21 + 2N−1

2N τ23) + ηpS p|g(τ22 + 2N−1
2N τ24)

]
2h0F0

+ηg

[
S g|p(τ21 + 2N−1

2N τ23) + S g|g(τ22 + 2N−1
2N τ24)

]
2h0F0,

Φp = ηp

[
S p|p(τ31 + 2N−1

2N τ33) + S p|g(τ32 + 2N−1
2N τ34)

]
2h0F0

+ηg

[
S g|p(τ31 + 2N−1

2N τ33)2h0F0 + S g|g(τ32 + 2N−1
2N τ34)

]
2h0F0,

Φg = ηp

[
S p|p(τ41 + 2N−1

2N τ43) + S p|g(τ42 + 2N−1
2N τ44)

]
2h0F0

+ηg

[
S g|p(τ41 + 2N−1

2N τ43) + S g|g(τ42 + 2N−1
2N τ44)

]
2h0F0.

(B.14)

These equations are the ones upon which we will rely.

Parental control

For the DM model with Parental Control, the equilibrium level of conditional dispersal satisfies

−
(

1+3 f0
4 +

φpS p|p+φgS g|p

4 σ +
φp

2 σ
)

(c + σ) + (h0 + ηpσ) (F0 + Φpσ) + O(σ2) = 0

−
(

1+3 f0
4 +

φpS p|g+φgS g|g

4 σ +
φg

2 σ
)

(c − σ) + (h0 + ηgσ) (F0 + Φgσ) + O(σ2) = 0

which rearranges to

−
1+3 f0

4 c + h0F0 +
(
F0ηp + h0Φp −

φpS p|p+φgS g|p

4 c − φp

2 c − 1+3 f0
4

)
σ + O(σ2) = 0

−
1+3 f0

4 c + h0F0 +
(
F0ηg + h0Φg −

φpS p|g+φgS g|g

4 c − φg

2 c +
1+3 f0

4

)
σ + O(σ2) = 0.

Given F0 = f0/h2
0 = 1/(4N − (4N − 1)h2

0) comes from (I − Q0)−1 · [0, 0, 1/(4N), 1/(4N)] [see

also 3], we can solve −1+3 f0
4 c + h0F0 = 0 to find

h0 =
2Nc

1 + H
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where H =
√

1 + 4N(N − 1)c2 [3]. Substituting this expression for h0 along with the expres-

sions in (B.14) into

F0ηp + h0Φp −
φpS p|p+φgS g|p

4 c − φp

2 c − 1+3 f0
4 = 0

F0ηg + h0Φg −
φpS p|g+φgS g|g

4 c − φg

2 c +
1+3 f0

4 = 0

results in a system of equations that can be solved for ηp and ηg, respectively. Using S g|p =

S p|g = s, we find

ηp = −
H − 1

2(N − 1)c2

2H + 8N2c2s − 4Nc2s2 − 3Nc2 + 2
2(4N(N − 1)c2s − H2) + H(4Nc2s(s − 2) + 3Nc2 − 2)

(B.15)

and

ηg =
H − 1

2(N − 1)c2

2H + 8N2c2s − 4Nc2s2 − 3Nc2 + 2
2(4N(N − 1)c2s − H2) + H(4Nc2s(s − 2) + 3Nc2 − 2)

, (B.16)

and it is ηp that is presented as δh in the main text. Note that for N = 1, he = ce = c ± σ.

It follows that for N = 1, the coefficient ηp = +1 and ηg = −1. Treating N as a continuous

variable and taking the limit of (B.15) and (B.16), respectively, as N → 1 yields the same

result.

As a further check on the correctness of (B.15) and (B.16), we observe that if s = 0 we find

that the expressions ηp and ηg give the correct first-order term from a Taylor expansion about

σ = 0 of the temporally homogeneous result [3], when the cost of dispersal is c ±σ. A second

check is obtained when s = 1/2; then ηp = (1 + 3 f0)/(4F0) = h0/c and ηg = −(1 + 3 f0)/(4F0) =

−h0/c as expected from the comments following equations (B.13).

For the DM model with Parental Control, the equilibrium level of unconditional dispersal

can be found by considering ∆we/(1 − de). After substituting in known values of zeroth-order

equilibrium solutions, we get

1
2

1
1−d0

h0

(
F0ηp + h0Φp −

φpS p|p+φgS g|p

4 c − φp

2 c − 1+3 f0
4

)
σ + O(σ2) = 0

1
2

1
1−d0

h0

(
F0ηg + h0Φg −

φpS p|g+φgS g|g

4 c − φg

2 c +
1+3 f0

4

)
σ + O(σ2) = 0

where we have assumed S p|g = S g|p = s. By definition, ηp = −ηg in the unconditional-dispersal



142 Appendix B: for chapter 4

model, but the equations (B.15) and (B.16) show that S p|g = S g|p = s guarantees that this

restriction holds. Those equations, then, offer us the solution to the unconstrained dispersal

problem as well. It follows that h = h0 + O(σ2) in the model. In other words, the solution is

simply the one presented by Taylor [3], using the time-averaged cost of dispersal.

Offspring control

For the DM model with Offspring Control, the equilibrium level of conditional dispersal rear-

ranges to

−
1+ f0

2 c + F0h0 +
(
Φph0 + F0ηp −

φp

2 c − 1+ f0
2

)
σ + O(σ2) = 0

−
1+ f0

2 c + F0h0 +
(
Φgh0 + F0ηg −

φg

2 c +
1+ f0

2

)
σ + O(σ2) = 0

Given F0 = f0/h2
0 = 1/(4N − (4N − 1)h2

0), we can solve −1+ f0
2 c + F0h0 = 0 to find

h0 =
4Nc

1 + H

where H =
√

1 + 8N(2N − 1)c2 now [3]. Using this information, and the expressions in (B.14),

we again solve for ηp and ηg. In this case,

ηp = −
H − 1

2(2N − 1)c2

H + 16N2c2s − 8Nc2s2 − 2Nc2 + 1
4Nc2s(4N − 1 − 2s) + H(2Nc2 − 1 − 4Nc2s) − H2

ηg =
H − 1

2(2N − 1)c2

H + 16N2c2s − 8Nc2s2 − 2Nc2 + 1
4Nc2s(4N − 1 − 2s) + H(2Nc2 − 1 − 4Nc2s) − H2

where S p|g = S g|p = s. These expressions pass the same checks as those described for their

counterparts under Parental Control. They also agree with expressions, found in the main text,

keeping in mind that ηp = δh.
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B.4.2 Dispersal After Mating (MD)

The perturbation analysis for the MD model proceeds in a manner analogous to that described

for the DM model. For the MD model, however, we have

Q0 =



0 0 S p|p S g|p

0 0 S p|g S g|g

1
4N S p|p

1
4N S g|p

2(N−1)h2
0+1

2N S p|p
2(N−1)h2

0+1
2N S g|p

1
4N S p|g

1
4N S g|g

2(N−1)h2
0+1

2N S p|g
2(N−1)h2

0+1
2N S g|g


(B.17)

and

Q′0 = 2h0
N − 1

N



0 0 0 0

0 0 0 0

0 0 S p|p S g|p

0 0 S p|g S g|g





0

0

ηp

ηg


. (B.18)

Parental control

Taylor [3] does not supply the solution to the zeroth order MD model with Parental Control. It

is easy to show that

h0 =


c N = 1

H−1
(N−1)c N ≥ 2

(B.19)

where H =
√

1 + (N − 1)(N + 1)c2. For the conditional dispersal model he ≈ h0 + ηeσ, where

ηp = − H−1
(N−1)c2

(8Ns+4s2−8N−1)−(8Ns−4s2+16s−7)H
2s(4N−4s2+8s−3)−(1−2s)(4s2−8s+7)H2−H(8Ns+4s2−8N−1) ,

ηg = H−1
(N−1)c2

(8Ns+4s2−8N−1)−(8Ns−4s2+16s−7)H
2s(4N−4s2+8s−3)−(1−2s)(4s2−8s+7)H2−H(8Ns+4s2−8N−1) ,

(B.20)

and taking a limit as N → 1 gives ηp = 1 and ηg = −1, as expected. In addition, expressions ηp

and ηg pass the same checks described above.

As previously mentioned, ηp is presented as δh in the main text. Also, in keeping with the

analysis of the DM model, the unconditional likelihood of remaining on one’s natal site is h0.
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Offspring control

For the MD model with Offspring Control, the zeroth-order model coincides with the DM

model with Parental Control [3]. When perturbed, however, the models differ in general. For

MD with Offspring control, we find

ηp = −
H − 1

2(N − 1)c2

[8s(N + 1) − (4s2 + 3)](N − 1)c2 + 2(1 − 2s)(H − 1)
2[s − H2(1 − s)] − H(1 − 2s)[2((N − 1)c2s − 1) − 3(N − 1)c2]

ηg =
H − 1

2(N − 1)c2

[8s(N + 1) − (4s2 + 3)](N − 1)c2 + 2(1 − 2s)(H − 1)
2[s − H2(1 − s)] − H(1 − 2s)[2((N − 1)c2s − 1) − 3(N − 1)c2]

(B.21)

where H =
√

1 + 4N(N − 1)c2. Taking a limit as N → 1 we find that ηp = 1 and ηg = −1, and

in this case the match with DM and Parental Control is restored. Expressions in (B.21) again

pass the same checks as analogous expressions in other model scenarios.

B.5 Computational Methods

The numerical procedure we used to find equilibrium phenotype pairs takes as its input four

different pairs of estimates, the identity of the individual who controls dispersal (parent or

offspring), as well as numerical values for parameters N, cp = c + σ, cg = c − σ, and s. Each

pair of estimates is updated independently by (i) calculating corresponding inclusive-fitness

effects (equation 4.4), and then (ii) incrementing or decrementing each member of the pair

by a small amount depending on the sign taken by the corresponding inclusive-fitness effect.

This updating is repeated either until all four guesses are sufficiently close to one another, or

until some maximum number of iterations is exceeded (in practice, we never found a case

where the maximum number of iterations was exceeded). Note that the procedure can also find

endpoints of natural selection that lie on the boundary of phenotype space, when they exist.

The numerical procedure we used to find equilibrium phenotypes was similar to the one just

described. However, in this case only two estimates are used, and are updated using equation

(4.5). Python code for both numerical procedures are attached in Appendix C.3, and file names

are described in Table B.1.
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The individual-based simulations we used are all based on multinomial sampling proce-

dures, carried out in a population made up of M patches each of size N. Simulation procedures

are most easily explained by using a raffle analogy. We treat each of the MN available breed-

ing opportunities as raffle prizes that can be won through female function. There are MN raffle

prizes to be won through male function as well. In our simulation, every adult in the population

is issued the same number of raffle tickets. A fraction of an individual’s tickets can be entered

into raffles for non-local breeding opportunities next year. This fraction is often, but not al-

ways, related to that individual’s dispersal phenotype, and the number of tickets it represents

is always decreased by a fraction that reflects the cost of dispersing. The remaining fraction

of tickets is entered into raffles for local breeding opportunities and is not affected by costs

associated with dispersal. Raffles themselves are conducted in a hierarchical manner by first

conducting a raffle among patches (tickets pooled) to identify the patch on which the winner

lives, then conducting a raffle among members of the winning patch in order to identify the

recipient of the prize. To simulate Offspring Control, one additional level in the hierarchy is

considered, namely a raffle between parents. Each of the 2MN raffles is conducted with re-

placement of tickets, and so success in one raffle is independent of that in another. Each raffle

is also conducted after the current state of the environment has been determined (see Appendix

B.1). The winner of a prize copies its genotype or phenotype (depending on the scenario) into

the next generation, but some small mutational error was included.

The algorithm itself begins by randomly assigning dispersal phenotypes (or genotypes

depending on the model scenario) using a uniform random number generator. Raffling of MN

prizes is repeated over a large number of generations. As we have suggested above, exact

details depend on the model scenario considered, but all details are provided in the form of

Python computer code (Table B.1b).

We found close agreement between predictions made by our numerical procedures, and

the average predictions made by independent simulation replicates (Figures B.1 and B.2). Dis-

crepancies between numerical results and average simulation results did appear as numerical
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predictions approached extreme values of zero or one. We attributed this discrepancy to mu-

tational bias included in our simulation: genotypes or phenotypes that fell outside the unit

interval following mutation were forced to return to the closer endpoint. We also note that the

time it took for individual-based simulation to find numerical predictions varied with mutation

rate and varied between model scenarios (compare Figures B.1 and B.2).

B.6 Supplementary Figures

Here we provide some figures (Figures B.3 - B.8) as a supplement to figures in the main part.
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Figure B.1: A comparison of predictions made by iterative numerical determination of equi-
librium or equilibrium pairs, and the outcome of individual-based simulation of the DM model
life history. Panels (a) and (b) show dispersal rates that are not expressed conditional on the
state of the environment (i.e. unconditional), while (c) and (d) show conditional dispersal rates.
Panels (a) and (c) show results for the Parental Control model, while (b) and (d) show results
for Offspring Control. Numerical predictions for correpsonding equilibrium or equilibrium
pairs are presented as horizontal dashed lines. Results for ten replicate simulations are pre-
sented as grey lines, and mean-average d, dp, and dg values across all replicates are presented
as solid black lines, solid red lines, and solid blue lines, respectively. All results assume N = 2,
cp = 0.4, cg = 0.2, s = 0.3, and simulation results assumed the population was comprised of
250 patches. The figure shows that numerical predictions agree with the average prediction
made by simulation.
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Figure B.2: A comparison of predictions made by iterative numerical determination of equi-
librium or equilibrium pairs, and the outcome of individual-based simulation of the MD model
life history. Panels (a) and (b) show dispersal rates that are not expressed conditional on the
state of the environment (i.e. unconditional), while (c) and (d) show conditional dispersal rates.
Panels (a) and (c) show results for the Parental Control model, while (b) and (d) show results
for Offspring Control. Numerical predictions for correpsonding equilibrium or equilibrium
pairs are presented as horizontal dashed lines. Results for ten replicate simulations are pre-
sented as grey lines, and mean-average d, dp, and dg values across all replicates are presented
as solid black lines, solid red lines, and solid blue lines, respectively. All results assume N = 2,
cp = 0.4, cg = 0.2, s = 0.3, and simulation results assumed the population was comprised of
250 patches. The figure shows that numerical predictions agree with the average prediction
made by simulation.
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Figure B.3: A comparison of predictions made by iterative numerical deter-
mination of equilibrium or equilibrium pairs (dotted lines), and those made
by approximations based on small degree of environmental variation (solid
lines) (compare to Figure 4.2). Results are presented for the DM and MD
models, respectively, with either Parental or Offspring control of dispersal.
We assume (a, b) unconditional expression of dispersal, or (c,d) conditional
expression of dispersal (red = poor environmental state, blue = good envi-
ronmental state). As expected, agreement begins to break down as environ-
mental variation, measured byσ, increases. However, numerical predictions
and approximations are still close. Approximations are not valid whenever
at least one of dp or dg takes a boundary value of zero or one.
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Figure B.4: A comparison of predictions made by iterative numerical deter-
mination of equilibrium or equilibrium pairs (dotted lines), and those made
by approximations based on small degree of environmental variation (solid
lines) (compare to Figure 4.2). Results are presented for the DM and MD
models, respectively, with either Parental or Offspring control of dispersal.
We assume (a, b) unconditional expression of dispersal, or (c,d) conditional
expression of dispersal (red = poor environmental state, blue = good envi-
ronmental state). As expected, agreement begins to break down as environ-
mental variation, measured byσ, increases. However, numerical predictions
and approximations are still close. Approximations are not valid whenever
at least one of dp or dg takes a boundary value of zero or one.
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Figure B.5: The relationship between environmental fluctuation, time-averaged cost of dis-
persal, and the conditional probability of dispersing for the DM Model with Offspring Control
of dispersal (compare to Figure 4.3). Contours showing numerical predictions for dispersal
when environmental state is good are shown in blue (top three rows), while those for dispersal
when environmental state is poor are shown in red (bottom three rows). Results for group size
N = 2, 4, 8 and for standard deviation in cost σ = 0.1, 0.2, 0.3 are shown. All else being equal,
increased environmental fluctuation is predicted to promote dispersal under good conditions,
and philopatry when conditions are poor. Increased time-averaged cost is predicted to reduce
conditional dispersal, as is increasing group size. The wavy nature of the contour of height
0.001 is an artefact of the numerical procedure.
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Figure B.6: The relationship between environmental fluctuation, time-averaged cost of dis-
persal, and the conditional probability of dispersing for the MD Model with Parental Control
of dispersal (compare to Figure 4.3). Contours showing numerical predictions for dispersal
when environmental state is good are shown in blue (top three rows), while those for dispersal
when environmental state is poor are shown in red (bottom three rows). Results for group size
N = 2, 4, 8 and for standard deviation in cost σ = 0.1, 0.2, 0.3 are shown. All else being equal,
increased environmental fluctuation is predicted to promote dispersal under good conditions,
and philopatry when conditions are poor. Increased time-averaged cost is predicted to reduce
conditional dispersal, as is increasing group size. The wavy nature of the contour of height
0.001 is an artefact of the numerical procedure.
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Figure B.7: The relationship between environmental fluctuation, time-averaged cost of dis-
persal, and the conditional probability of dispersing for the MD Model with Offspring Control
of dispersal (compare to Figure 4.3). Contours showing numerical predictions for dispersal
when environmental state is good are shown in blue (top three rows), while those for dispersal
when environmental state is poor are shown in red (bottom three rows). Results for group size
N = 2, 4, 8 and for standard deviation in cost σ = 0.1, 0.2, 0.3 are shown. All else being equal,
increased environmental fluctuation is predicted to promote dispersal under good conditions,
and philopatry when conditions are poor. Increased time-averaged cost is predicted to reduce
conditional dispersal, as is increasing group size. The wavy nature of the contour of height
0.001 is an artefact of the numerical procedure.
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Figure B.8: The relationship between environmental fluctuation, time-averaged cost of dis-
persal, and the extent of parent-offspring conflict over conditional tendency to disperse for
the MD Model (compare to Figure 4.4). Here, the extent of conflict is measured as de with
Parental Control minus de with Offspring Control. Contours showing numerical predictions
for dispersal when environmental state is good are shown in blue (top three rows), while those
for dispersal when environmental state is poor are shown in red (bottom three rows). Results
for group size N = 2, 4, 8 and for standard deviation in cost σ = 0.1, 0.2, 0.3 are shown. The
wavy nature of the contour of height 0.000 is an artefact of the numerical procedure.
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Code

C.1 Code for Chapter 2
Matlab and c++ are used to generate figures, and figure numbering is within Chapter 2.

C.1.1 myode dm.m
myode dm.m

1 % 2017-09-10 the system from "dispersal effect on metapopulation persistence

with social structure"↪→

2 function dydt = myode_dm(t,y,d,m)

3 dydt = zeros(3,1);

4 dydt(1) = -m*y(1)+(1+d)*(1-y(1)-y(2)-y(3))*y(3)+2*m*y(2)-(1+d)*y(1)*y(3);

5 dydt(2) = -y(2)+(3*m+d)*y(3)-2*m*y(2)+(1+d)*y(1)*y(3);

6 dydt(3) = y(2)-(3*m+d)*y(3);

C.1.2 fig2.m
fig2.m

1 clear, clc

2 d = .55;

3 mlength = 5000;

4 m = linspace(0.,0.3,mlength);

5 Disc = (d+1-2.*(d+3.*m).*m).ˆ2-8.*m.ˆ2.*(d+3.*m).*(d+3.*m+1);

6 Discp = Disc;

7

8

9 for i = 1:mlength

10 if (Disc(i)<0)

11 Discp(i) = NaN;

12 end

13 end

14

15

16 zzp = NaN(1,mlength);

17 zzm = zzp;

156



C.1. Code for Chapter 2 157

18 zzp = (d+1-2.*(d+3.*m).*m+sqrt(Discp))./(2.*(d+3.*m+1).*(d+1));

19 zzm = (d+1-2.*(d+3.*m).*m-sqrt(Disc.*(Disc>0)))./(2.*(d+3.*m+1).*(d+1));

20 % Here is a benign bug. It's better to use "Discp", instead of
"Disc.*(Disc>0)".↪→

21 % However, this does not change the figure we need.

22 % ----- by Jingjing Xu

23

24 %whos

25 rg = [-1 2.5 -0.1 1];

26 plot(d,zzm,':k',Discp,zzp,'-k','LineWidth',3)

27

28 % plot(Discp,zzm,':k',Discp,zzp,'-k','LineWidth',3)
29 hold on

30 plot(rg(1:2),[0 0],'-k','LineWidth',3)

31 hold off

32 axis(rg)

33

34 xlabel D

35 ylabel 'density of state-3 habitats (z)'

36

37 x1 = 1.5;

38 y1 = 0.5;

39 txt1 = '\downarrow';

40 text(x1,y1,txt1)

41 txt1b = 'E_+';

42 text(x1,y1+0.06,txt1b)

43

44

45

46 x2 = 0.5;

47 y2 = 0.13;

48 txt2 = '\downarrow';

49 text(x2,y2,txt2)

50 txt2b = 'E_-';

51 text(x2,y2+0.06,txt2b)

52

53 x2 = -0.5;

54 y2 = 0.05;

55 txt2 = '\downarrow';

56 text(x2,y2,txt2)

57 txt2b = 'E_0';

58 text(x2,y2+0.06,txt2b)

59

60 xticks(-1:1:2)

61 yticks(0:0.2:1)



158 Appendix C Code

C.1.3 fig3.m
fig3.m

1 %% time is a decreasing function of D, which is INDEED what I am expecting.

BUT, see file "fig3official.mlx" for an exception.↪→

2 clear, clc, close all

3 dvec = 0:0.04:5;

4 m = .212;

5 for i = 1:length(dvec)

6 d = dvec(i);

7 Disc(i) = (d+1-2.*(d+3.*m).*m).ˆ2-8.*m.ˆ2.*(d+3.*m).*(d+3.*m+1);

8 end

9 whos

10 d_tmp=find(Disc<0);

11 d_max=dvec(d_tmp(1))

12 %

13 %Disc

14 plot(dvec,Disc)

15 xlabel 'dispersal rate (d)';

16 ylabel 'discriminant D';

17 %

18 tspan = [0 200];

19 y0 = [0.2 0.0 0.4];

20 global xx yy zz neighbour flag_0;

21 neighbour= 1e-6;

22 correct = NaN(length(dvec),1);

23 for i=1:length(dvec)

24 d = dvec(i);

25 if (Disc(i)>0)

26 xx = 2*(d+3*m)*m/(1+d);

27 zz = (d+1-2*(d+3*m)*m+sqrt(Disc(i)))/(2*(d+3*m+1)*(d+1));

28 yy = (d+3*m)*zz;

29 end

30 %[xx,yy,zz]

31 options =

odeset('Events',@dmsysEventscorrect,'RelTol',1e-5,'AbsTol',1e-5,...↪→

32 'NonNegative',1);%,'OutputFcn',@odeplot,'Stats','on'
33 y0 = [xx,yy,zz]*0.99;

34 [t,y,te,ye,ie] = ode45(@(t,y) myode_dm(t,y,d,m), tspan, y0,options);

35 %y(end,:)

36 if (Disc(i)<0)

37 correct(i)=NaN;

38 else if (te>0)

39 correct(i) = te;

40 end

41 end

42 end

43 whos correct

44
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45 figure

46 plot(Disc, correct,'LineWidth',3)

47

48 ylabel 'time to recover from 10% perturbation of E_+';

49 xlabel 'discriminant D';

50

51

52

53 figure

54 plot(dvec, correct,'LineWidth',3)

55

56 ylabel 'time to recover from 10% perturbation of E_+';

57 xlabel 'd';

58

59

60 %%

61 % a single solution using ode45

62 clear

63 clc

64 close all

65 d=0.4;

66 m=0.218;

67 tspan=[0,25];

68 y0=[0.1,0.2,0.3];

69 [t,y] = ode45(@(t,y) myode_dm(t,y,d,m), tspan, y0);

70

71 % plot (x,y,z)

72 plot(t,y(:,1))

73 hold on

74 plot(t,y(:,2))

75 plot(t,y(:,3))

76 hold off

77 xlabel 't'

78 title(['plot (x,y,z)'])

79 % plot x+y+z

80 figure

81 plot(t,sum(y,2))

82 title(['plot x+y+z'])

83 xlabel 't'

84

85 %%

86 % a single solution using ode15s

87 clear

88 clc

89 close all

90 d=0.4;

91 m=0.218;
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92 tspan=[0,25];

93 y0=[0.1,0.2,0.3];

94 [t,y] = ode15s(@(t,y) myode_dm(t,y,d,m), tspan, y0);

95

96 % plot (x,y,z)

97 plot(t,y(:,1))

98 hold on

99 plot(t,y(:,2))

100 plot(t,y(:,3))

101 hold off

102 xlabel 't'

103 title(['plot (x,y,z)'])

104 % plot x+y+z

105 figure

106 plot(t,sum(y,2))

107 title(['plot x+y+z'])

108 xlabel 't'

109

110 % not seeing an obvious difference using ode45 and ode15s

C.1.4 fig4a.m
fig4a.m

1 clear, clc

2 myfun = @(d,m) (d+1-2.*(d+3.*m).*m).ˆ2-8.*m.ˆ2.*(d+3.*m).*(d+3.*m+1); %

parameterized function↪→

3

4 dend = 16;% end of d range

5 dmax = 200;% maximum of d index

6 d = NaN(dmax,1);

7 m = NaN(dmax,1);

8 for i = 1:dmax

9 d(i) = (i-1)*dend/dmax+1e-8; % parameter

10 fun = @(m) myfun(d(i),m); % function of m alone

11 m(i) = fzero(fun,0.2);

12 end

13

14 plot(m,d,'k','LineWidth',2)

15 hold on

16 plot([m(end) m(end)],[0,dend],':k','LineWidth',2)

17 hold off

18 axis([0 0.3 0 dend-1])

19 yticks(0:5:15)

20 xticks([0,0.1,m(end),m(1), 0.3])

21 xticklabels({0,0.1,'m_1','m_0', 0.3})

22

23 xlabel 'mortality rate (m)'

24 ylabel 'dispersal rate (d)'
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25

26 text(0.10,dend*0.5,'D>0','FontSize',15)

27 text(0.24,dend*0.5,'D<0','FontSize',15)

28

29 ax = gca; % current axes

30 ax.FontSize = 12;

31 %ax.TickDir = 'out';
32 %ax.TickLength = [0.02 0.02];

33 %ax.YLim = [-2 2];

34

35 m(1)

36 m(end)

C.1.5 fig4b.m
fig4b.m

1 clear, clc

2

3 for i = -2:2

4 d = 10ˆ(i);

5 mlength = 5000;

6 m = linspace(0.,0.3,mlength);

7 Disc = (d+1-2.*(d+3.*m).*m).ˆ2-8.*m.ˆ2.*(d+3.*m).*(d+3.*m+1);

8 mp = m;

9 for i = 1:mlength

10 if (Disc(i)<0)

11 mp(i) = NaN;

12 end

13 end

14 zzp = NaN(1,mlength);

15 zzm = zzp;

16 zzp = (d+1-2.*(d+3.*m).*m+sqrt(Disc.*(Disc>0)))./(2.*(d+3.*m+1).*(d+1));

17 zzm = (d+1-2.*(d+3.*m).*m-sqrt(Disc.*(Disc>0)))./(2.*(d+3.*m+1).*(d+1));

18 % Here, "Disc.*(Disc>0)" is used to plot the figure. This works for our

19 % model because we also plot a vertical line "0" for the extinction

20 % equilibrium. It can be seen as a begign bug, but the figure is still

21 % correct.

22 % ------ Jingjing Xu

23

24 %whos

25

26 rg = [0.01 0.3 1e-8 1];

27 semilogy(mp,zzm,':k',mp,zzp,'-k','LineWidth',2)

28 hold on

29 plot(rg(1:2),[0 0],'-k','LineWidth',2)

30 axis(rg)

31 xlabel D

32 ylabel 'density of state-3 habitats (z)'
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33 yticks(10.ˆ[-8:0])

34 %xticks(0:0.05:0.3)

35 end

36 hold off

37

38 txt1 = 'd = 0.01';

39 text(0.23,4*1e-1,txt1)

40 text(0.23,1.6*1e-1,'d = 0.1')

41

42 text(0.2083,0.6*1e-1,'d = 1')

43

44 text(0.2083,1.5e-2,'d = 10')

45

46 text(0.2082,1.5e-3,'d = 100')

47

48 ax = gca; % current axes

49 ax.FontSize = 12;

50 xticks([0,0.1,0.2082,0.2275, 0.3])

51 xticklabels({0,0.1,'m_1','m_0', 0.3})

52 hold on

53 plot([0.2082,0.2082],rg(3:4),':k')

54 hold off

C.1.6 fig5.m
fig5.m

1 % This file shows how to generate figure 5.

2 %--------------------------------------------------------------------

3

4

5 clear, clc

6 % choose a pair of (d,m) with m<m_0

7 m = 0.212;

8 d = 2;

9 % Discriminant should be positive

10 Disc = (d+1-2.*(d+3.*m).*m).ˆ2-8.*m.ˆ2.*(d+3.*m).*(d+3.*m+1)

11 % positive stable equilibrium E_+ = (px,py,pz)

12 px = 2*(d+3*m)*m/(1+d);

13 pz = (d+1-2*(d+3*m)*m+sqrt(Disc))/(2*(d+3*m+1)*(d+1));

14 py = (d+3*m)*pz;

15 E_p=[px, py, pz]

16 % positive unstable equilibrium E_- = (ux,uy,uz)

17 ux = 2*(d+3*m)*m/(1+d);

18 uz = (d+1-2*(d+3*m)*m-sqrt(Disc))/(2*(d+3*m+1)*(d+1));

19 uy = (d+3*m)*uz;

20 E_m=[ux, uy, uz]

21 % %% plot the two positive equilibria and the extinction equilibrium (0,0,0)

22 % figure
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23 % axis([0 1 0 1 0 1])

24 % xlabel x

25 % ylabel y

26 % zlabel z

27 % box on

28 % hold on

29 % plot3(ux,uy,uz,'.k','markers',19)
30 % plot3(px,py,pz,'.r','markers',19)
31 % plot3(0,0,0,'.r','markers',19)
32 % view([-130,25])

33 % axis square

34 % hold off

35

36 % grid of points in the cube [0,1]ˆ3

37 pts = 81;

38 x = linspace(0,1,pts);

39 y = x;

40 z = x;

41 [X,Y,Z] = meshgrid(x,y,z);

42

43 % matrices to show if a point converges to one of the two possible

equilibria.↪→

44 flag_e0 = NaN(pts,pts,pts);

45 flag_ep = flag_e0;

46

47 options = odeset('Events',@dmsysEventscorrect,'RelTol',1e-4,...

48 'AbsTol',1e-4,'NonNegative',1);

49 tspan = [0,100];

50

51 tic

52 % inside the region {(x,y,z)| x>0,y>0,z>0,x+y+z<1}, scan through all possible

points.↪→

53 for iz = 1:pts

54 for iy = 1:max(pts-iz-1,1)

55 for ix = 1:max(pts-iz-iy,1)

56 % y0 is the initial point in each simulation

57 y0 = [X(ix,iy,iz),Y(ix,iy,iz),Z(ix,iy,iz)];

58 if (sum(y0)<1.01) % make sure x+y+z<1.

59 [t,y] = ode45(@(t,y) myode_dm(t,y,d,m), tspan, y0, options);

60 % simulated equilibrium (psudo);

61 sx = y(end,1);

62 sy = y(end,2);

63 sz = y(end,3);

64 if (sxˆ2+syˆ2+szˆ2<1e-4) % y0 converges to (0,0,0)

65 flag_e0(ix,iy,iz) = 1;

66 elseif ((sx-px)ˆ2+(sy-py)ˆ2+(sz-pz)ˆ2<1e-4) % y0 converges to

E_+↪→
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67 flag_ep(ix,iy,iz) = 1;

68 break; % stop iterations once having one point converging

to E_+↪→

69 end

70 end

71 end

72 end

73 end

74 toc

75

76 %%

77

78 bd_ep = NaN(pts,pts,pts);

79 for iz = 1:pts

80 for iy = 1:max(pts-iz-1,1)

81 for ix = 2:max(pts-iz-iy,1)

82 if (flag_ep(ix-1,iy,iz)˜=1)&&(flag_ep(ix,iy,iz)>0)

83 %ix,iy,iz

84 bd_ep(ix,iy,iz)=1;

85 break;

86 end

87 end

88 end

89 end

90

91 % move the boundary back to (0,0,0) by a fraction of the stepsize 1/(pts-1)

92 dev = 1;

93 Xpb = X.*bd_ep-1/(pts-1)*dev;

94 Ypb = Y.*bd_ep-1/(pts-1)*dev;

95 Zpb = Z.*bd_ep-1/(pts-1)*dev;

96

97

98

99 %% plotting

100 figure

101 axis([0 1 0 1 0 1])

102 xlabel x

103 ylabel y

104 zlabel z

105

106 hold on

107 axis square

108 box on

109 view([-130,25])

110

111 % plot the boundary of basins of attraction for E_0 and E_+

112 plot3(Xpb(:),Ypb(:),Zpb(:),'.b','markers',5)
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113 % plot three equilibria

114 plot3(ux,uy,uz,'.b','markers',25)

115 plot3(px,py,pz,'.r','markers',25)

116 plot3(0,0,0,'.k','markers',25)

117

118 % shaded region is {(x,y,z)| x>0,y>0,z>0,x+y+z<1}

119 p=patch([1 0 0 ], [0 1 0 ], [0 0 0 ]);

120 p.FaceAlpha=0.2;

121 plot3([0 0],[1 0],[0 1],'-k')

122 plot3([1 0],[0 0],[0 1],'-k')

123 color=0.2;

124 p=fill3([0 0 1 ], [0 0 0 ], [1 0 0 ],[color,color,color]) ;

125 p.FaceAlpha=0.2;

126 hold off

127

128 % Note: the point E_- is not on the surface visually, which is because of the

meshgrid is not fine enough.↪→

129 % We choose the mesh size to be 80, so that we can give the reader a sense of

the relative position of↪→

130 % the boundary and the equilibria. A more accurate demonstration will take

longer CPU time.↪→

C.1.7 figure 6
Use c++ to obtain the figures.

ode0913.h
ode0913.h

1 struct myode_params

2 {

3 double d,m;

4 };

5

6 int

7 func (double t, const double yvec[], double f[],

8 void *params)

9 {

10 (void)(t); /* avoid unused parameter warning */

11 struct myode_params *p

12 = (struct myode_params *) params;

13 double m = p->m;

14 double d = p->d;

15

16

17

18 double x, y, z;

19 x=yvec[0];
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20 y=yvec[1];

21 z=yvec[2];

22

23

24 f[0] = - x*m + (1.0+d) * (1.0-x-y-z)*z+2.0*m*y-(1.0+d)*x*z;

25 f[1] = - y + (3.0*m+d) * z-2.0*m*y+(1.0+d)*x*z;

26 f[2] = + y - (3.0*m+d) * z;

27 return GSL_SUCCESS;

28 }

29

30 int

31 jac (double t, const double yvec[], double *dfdy,

32 double dfdt[], void *params)

33 {

34 (void)(t); /* avoid unused parameter warning */

35 struct myode_params *p

36 = (struct myode_params *) params;

37 double m = p->m;

38 double d = p->d;

39

40

41

42 double x, y, z;

43 x=yvec[0];

44 y=yvec[1];

45 z=yvec[2];

46

47

48 gsl_matrix_view dfdy_mat

49 = gsl_matrix_view_array (dfdy, 3, 3);

50 gsl_matrix * ma = &dfdy_mat.matrix;

51 gsl_matrix_set (ma, 0, 0, (-2.0*d-2.0)*z-m);

52 gsl_matrix_set (ma, 0, 1, (-d-1.0)*z+2.0*m);

53 gsl_matrix_set (ma, 0, 2, -(2.0*x+y+2.0*z-1.0)*(1.0+d));

54 gsl_matrix_set (ma, 1, 0, (1.0+d)*z);

55 gsl_matrix_set (ma, 1, 1, -1.0-2.0*m);

56 gsl_matrix_set (ma, 1, 2, 3.0*m+d+(1.0+d)*x);

57 gsl_matrix_set (ma, 2, 0, 0.0);

58 gsl_matrix_set (ma, 2, 1, 1.0);

59 gsl_matrix_set (ma, 2, 2, -3.0*m-d);

60 dfdt[0] = 0.0;

61 dfdt[1] = 0.0;

62 dfdt[2] = 0.0;

63 return GSL_SUCCESS;

64 }
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fig6a.cpp
fig6a.cpp

1 // This file obtains the volume size for the basin of the non_trivial

equilibrium // based on file "BV0912.cpp"↪→

2 // ||-----------------------||

3 // g++ fig6a.cpp -lgsl

4 // ||-----------------------||

5

6 // 2017-09-14

7

8 #include <stdio.h>

9 #include <gsl/gsl_matrix.h>

10 #include <gsl/gsl_math.h>

11 #include <gsl/gsl_eigen.h>

12 #include <gsl/gsl_rng.h>

13 #include <math.h>

14 #include <time.h>

15

16 #include <gsl/gsl_errno.h>

17 #include <gsl/gsl_odeiv2.h>

18

19 #include <iostream> // std::cout, std::fixed

20 #include <iomanip> // std::setprecision

21 using namespace std;

22

23

24 #include "ode0913.h"

25

26

27 //#include <cmath> //abs// Global variable declaration:

28

29 /* int if_nontriv(double xin, double yin, double zin, void *params)

30 {

31

32 return yes;

33 }

34

35 */

36

37 int main (void)

38 {

39 srand(time(NULL));

40 clock_t tStart = clock();

41

42 // pre-initializing a, b, c

43

44 double m, d;

45
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46

47 // define gsl_rng_alloc

48 const gsl_rng_type * T;

49 gsl_rng * r;

50 gsl_rng_env_setup();

51 T = gsl_rng_default;

52 r = gsl_rng_alloc (T);

53

54 printf("# d m Delta BofA_E_+ BofA_E_0 total\n");

55

56 double eps, tol;

57 int sample;

58

59 double epsabs, epsrel;

60 for (int ieps = 1; ieps < 2; ieps++) {

61 for (int isam = 5; isam < 6; isam++) {

62

63

64 //double mvec[4]={0.117, 0.207, 0.212, 0.217};

65

66 double mend = 0.25;

67 int mgrid = 40;

68

69 for (int im = 0; im < mgrid+1; im++) {

70

71 m = im * mend/mgrid +1e-8; //im from 0 to 40;

72

73 printf("%.3f\n",m);

74

75 double dend = 20;

76 int dgrid = 40;

77 for (int id = 0; id < dgrid+1; id++) {

78

79 //d = id * 1 + 1e-8;

80 d = id * dend/dgrid +1e-8; //id from 0 to 40;

81

82

83

84 eps = pow(10,-(ieps+5))/1.0;//1e-6

85 tol = 1e-4;//1e-3

86

87 sample = 1.0*pow(10,isam-3);

88 //define eqn (xx, yy, zz);

89 double xx, yy, zz;

90 double Disc; //discriminant

91 Disc =

pow((d+1.0-2.0*(d+3.0*m)*m),2)-8.0*m*m*(d+3.0*m)*(d+3.0*m+1.0);↪→
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92

93 if (Disc<0)

94 { printf(" %6.2f %.3f %+.4e %.6f ",

95 d, m, Disc, 0.0);

96 printf("\n");}

97 else

98 {

99

100

101 //printf("D = %.5f\n",Disc);

102 // construct parameter

103 struct myode_params params = {d, m};

104 // calculate Equilibrium (xx, yy, zz)

105 xx = 2.0*(d+m*3.0)*m/(1.0+d);

106 zz =

(d+1.0-2.0*(d+3.0*m)*m+pow(Disc,0.5))/(2.0*(d+3.0*m+1.0)*(d+1.0));↪→

107 yy = (d+m*3.0)*zz;

108

109 //printf("%.5f %.5f %.5f \n",xx,yy,zz);

110 //end calculate Equ

111 int vol_total = 0;// total number in domain

112 int vol_E_p = 0;// number of initial conditions converging to (x, y,

z);↪→

113 int vol_E_0 = 0;// number of initial conditions converging to (0, 0,

0);↪→

114

115 // to obtain simulated number of vol_** hits:

116 for (int i = 0; i < 60000;i++) // sampling initial conditions

117

118

119 { // initializing x_initial, y_initial, z_initial

120 double xin = gsl_rng_uniform (r);

121 double yin = gsl_rng_uniform (r);

122 double zin = gsl_rng_uniform (r);

123 /* xin = 0.45;

124 yin = 0.03;

125 zin = 0.5;

126

127 */

128 //printf(" i_sample = %d, sum_xinyinzin = %.5f\n", i,xin+yin+zin);

129

130 if ( xin+yin+zin < 1.0 ) // count number in domain

131 {

132 ++vol_total;// l

133

134 gsl_odeiv2_system sys = {func, jac, 3, &params};

135 double hstart = 1e-5;// !!!! CAN NOT BE ZERO!!!!
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136 epsabs = 1e-8;//1e-8;

137 epsrel = 1e-5;//1e-5;

138

139 //printf("epsabs = %.2e\n",epsabs);

140

141 gsl_odeiv2_driver * driver =

gsl_odeiv2_driver_alloc_y_new (&sys,

gsl_odeiv2_step_rkf45, hstart, epsabs, epsrel);

↪→

↪→

142 // gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_y_new

(const gsl_odeiv2_system * sys, const

gsl_odeiv2_step_type * T, const double hstart,

const double epsabs, const double epsrel)

↪→

↪→

↪→

143 /* These functions return a pointer to a newly

allocated instance of a driver object.↪→

144 The functions automatically allocate and initialise

the evolve, control and stepper objects for ODE system sys using stepper

type T. The initial step size is given in hstart.

↪→

↪→

145 hstart, epsabs, epsrel=relative error*/

146 int ii = 1;

147 double t = 0.0, t1 = 100.0;

148 // INITIALIZE ODE !!!!!! get rid of reused "y"s

149 double y[3] = { xin, yin, zin};

150

151 // initializing difference between two points before

and after one iteration↪→

152 double diff = 1.0;

153 // defining previous point

154 double ypre[3];

155

156 while(diff > eps) // while loop to find the

convergence point of (xin, yin, zin)↪→

157 { // save the previous point

158 ypre[0] = y[0];

159 ypre[1] = y[1];

160 ypre[2] = y[2];

161 //printf (" %.5f %.5f %.5f\n", ypre[0],

ypre[1], ypre[2]);↪→

162

163 // d

164 double ti = ii * t1 / 100.0;

//?????????????????????????↪→

165 int status = gsl_odeiv2_driver_apply (driver,

&t, ti, y);↪→

166 if (status != GSL_SUCCESS)

167 {

168 printf ("error, return value=%d\n",

status);↪→
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169 break;

170 }

171 diff = pow(pow(ypre[0] -

y[0],2.0)+pow(ypre[1] - y[1],

2.0)+pow(ypre[2] - y[2], 2.0), 1.0/2.0);

↪→

↪→

172 // print the results

173 /* if (ii%1==0)

174 {

175 ////printf (" %.1f %.5f %.5f %.5f

%.5e\n", t, y[0], y[1], y[2], diff);↪→

176 } */

177 ii++;

178 }

179

180 gsl_odeiv2_driver_free (driver);

181

182 int yes = -1;

183

184 if (pow((pow(y[0] , 2) + pow(y[1] , 2) + pow(y[2] ,

2) ), 0.5) < tol)↪→

185 {yes = 0;}// trivial flag

186 else if(Disc>0)

187 {

188 //// printf ("--\nEQM %.5f %.5f %.5f\n", xx,

yy, zz);↪→

189

190 if (pow((pow(y[0] -xx, 2) + pow(y[1] -yy, 2)

+ pow(y[2] -zz, 2) ), 0.5) < tol)↪→

191 yes = 1; // non_trivial count

192 }

193 //cout<<"yes = "<<yes<<endl;

194 /* cout<<"tol =

"<<tol<<endl;↪→

195 cout<<"eps = "<<eps<<endl; */

196

197 ////cout<<"############### yes =

"<<yes<<endl;↪→

198

199

200 int yeah = yes;//if_nontriv(xin, yin, zin, &params);

201 if (yeah == 1)

202 {vol_E_p++;}

203 else if (yeah == 0)

204 {vol_E_0++;}

205 }//end if

206 }// end for i

207 // finished counting number of vol_** hits
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208

209 //---//printf("# vols: vol_total = %.2d, vol_E_p = %.2d, vol_E_0 =

%.2d \n",vol_total,vol_E_p,vol_E_0);↪→

210

211

212 double prob_E_p = (double)vol_E_p/(double)vol_total;

213 double prob_E_0 = (double)vol_E_0/(double)vol_total;

214

215 printf(" %6.2f %.3f %+.4e %.6f %.6f %.5f ",

216 d, m, Disc, prob_E_p, prob_E_0, prob_E_p+prob_E_0);

217 printf("\n");

218

219 //printf("-----------------------------\n");

220 }

221 }

222

223 printf("# d m Delta BofA_E_+ BofA_E_0 total\n");

224

225 //printf("# eps = %.2e\n",eps);

226 printf("\n\n");

227 }

228 printf("# neighbour = %.2e\n",tol);

229 printf("# epsrel = %.2e\n",epsrel);

230 printf("# epsabs = %.2e\n",epsabs);

231 printf("# sample = %d\n",sample);

232 }

233 }

234

235

236 gsl_rng_free (r);

237 printf("Time taken: %.2fs\n", (double)(clock() - tStart)/CLOCKS_PER_SEC);

238

239 //(void) x;

240 //(void) z;

241 return 0;

242 }

fig6a plot.p
fig6a plot.p

1 #// 2017-09-14

2

3 # size 500,500

4 #set termial png enhanced color font 'Arial,25' dashed

5

6 set term postscript png enhanced color font 'Arial,25' dashed

7

8 set output "fig6a.png"
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9 set ylabel "dispersal rate (d)"

10 set xlabel "mortality rate (m)"

11 set xrange [0:0.25]

12 set xtics 0.05

13

14 set yrange [0.0: 20]

15 set ytics 5

16

17 #set key out vert

18 set key off #out vert

19 #set key center right

20

21 #set label 1 at 10,0.08

22 #set label 1 "D>0"

23 #set label 2 at 0.2, 10

24 #set label 2 "D<0"

25

26

27

28 #set palette defined (1 0 0 1, 4 1 0 0)# red and blue

29 set palette rgbformula 33,13,10#30,31,32#3,11,6

30 # see http://gnuplot.sourceforge.net/docs_4.2/node216.html

31 # 33,13,10 ... rainbow (blue-green-yellow-red)

32 set cbrange [0.8:1]

33 set cblabel "Fraction of Volume of BofA for E_+"

34 set cbtics 0.2

35 #unset cbtics

36

37 plot 'fig6a_md40by40.dat' using 2:1:4 with image

38

39

40 #

41

42 unset xrange

43 unset yrange

44 unset tmargin

45 unset bmargin

46 unset rmargin

47 unset title

48 unset size

49 unset xtics

50 unset label

51 reset
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fig6b.cpp
fig6b.cpp

1 // This file obtains the volume size for the basin of the non_trivial

equilibrium // based on file "BV0912.cpp"↪→

2 // ||-----------------------||

3 // g++ fig6b.cpp -lgsl

4 // ||-----------------------||

5

6 // 2017-09-14

7

8 #include <stdio.h>

9 #include <gsl/gsl_matrix.h>

10 #include <gsl/gsl_math.h>

11 #include <gsl/gsl_eigen.h>

12 #include <gsl/gsl_rng.h>

13 #include <math.h>

14 #include <time.h>

15

16 #include <gsl/gsl_errno.h>

17 #include <gsl/gsl_odeiv2.h>

18

19 #include <iostream> // std::cout, std::fixed

20 #include <iomanip> // std::setprecision

21 using namespace std;

22

23

24 #include "ode0913.h"

25

26

27 //#include <cmath> //abs// Global variable declaration:

28

29 /* int if_nontriv(double xin, double yin, double zin, void *params)

30 {

31

32 return yes;

33 }

34

35 */

36

37 int main (void)

38 {

39 srand(time(NULL));

40 clock_t tStart = clock();

41

42 // pre-initializing a, b, c

43

44 double m, d;

45
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46

47 // define gsl_rng_alloc

48 const gsl_rng_type * T;

49 gsl_rng * r;

50 gsl_rng_env_setup();

51 T = gsl_rng_default;

52 r = gsl_rng_alloc (T);

53

54 printf("# d m Delta BofA_E_+ BofA_E_0 total\n");

55

56 double eps, tol;

57 int sample;

58

59 double epsabs, epsrel;

60 for (int ieps = 1; ieps < 2; ieps++) {

61 for (int isam = 5; isam < 6; isam++) {

62

63

64 double mvec[4]={0.177, 0.207, 0.212, 0.217};

65

66 for (int im = 0; im < 4; im++) {

67

68 m = mvec[im];

69

70 printf("%.3f\n",m);

71

72 for (int id = 0; id < 26; id++) {

73

74 /*

75 m = 0.177;

76 d = 1.0;

77 */

78

79 d = id * 1 + 1e-8;

80

81

82

83

84 eps = pow(10,-(ieps+5))/1.0;//1e-6

85 tol = eps*10.0;//1e-3

86

87 sample = 1.0*pow(10,isam);

88 //define eqn (xx, yy, zz);

89 double xx, yy, zz;

90 double Disc; //discriminant

91 Disc =

pow((d+1.0-2.0*(d+3.0*m)*m),2)-8.0*m*m*(d+3.0*m)*(d+3.0*m+1.0);↪→
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92 //printf("D = %.5f\n",Disc);

93 // construct parameter

94 struct myode_params params = {d, m};

95 // calculate Equilibrium (xx, yy, zz)

96 xx = 2.0*(d+m*3.0)*m/(1.0+d);

97 zz =

(d+1.0-2.0*(d+3.0*m)*m+pow(Disc,0.5))/(2.0*(d+3.0*m+1.0)*(d+1.0));↪→

98 yy = (d+m*3.0)*zz;

99

100 //printf("%.5f %.5f %.5f \n",xx,yy,zz);

101 //end calculate Equ

102 int vol_total = 0;// total number in domain

103 int vol_E_p = 0;// number of initial conditions converging to (x, y,

z);↪→

104 int vol_E_0 = 0;// number of initial conditions converging to (0, 0,

0);↪→

105

106 // to obtain simulated number of vol_** hits:

107 for (int i = 0; i < sample;i++) // sampling initial conditions

108

109

110 { // initializing x_initial, y_initial, z_initial

111 double xin = gsl_rng_uniform (r);

112 double yin = gsl_rng_uniform (r);

113 double zin = gsl_rng_uniform (r);

114

115 /* xin = 0.33;

116 yin = 0.23;

117 zin = 0.13; */

118

119

120 //printf(" i_sample = %d, sum_xinyinzin = %.5f\n", i,xin+yin+zin);

121

122 if ( xin+yin+zin < 1.0 ) // count number in domain

123 {

124 ++vol_total;// l

125

126 gsl_odeiv2_system sys = {func, jac, 3, &params};

127 double hstart = 1e-5;// !!!! CAN NOT BE ZERO!!!!

128 epsabs = 1e-8;//1e-8;

129 epsrel = 1e-5;//1e-5;

130

131 //printf("epsabs = %.2e\n",epsabs);

132

133 gsl_odeiv2_driver * driver =

gsl_odeiv2_driver_alloc_y_new (&sys,

gsl_odeiv2_step_rkf45, hstart, epsabs, epsrel);

↪→

↪→
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134 // gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_y_new

(const gsl_odeiv2_system * sys, const

gsl_odeiv2_step_type * T, const double hstart,

const double epsabs, const double epsrel)

↪→

↪→

↪→

135 /* These functions return a pointer to a newly

allocated instance of a driver object.↪→

136 The functions automatically allocate and initialise

the evolve, control and stepper objects for ODE system sys using stepper

type T. The initial step size is given in hstart.

↪→

↪→

137 hstart, epsabs, epsrel=relative error*/

138 int ii = 1;

139 double t = 0.0, t1 = 500.0;

140 // INITIALIZE ODE !!!!!! get rid of reused "y"s

141 double y[3] = { xin, yin, zin};

142

143 //printf("xin = %.2f, yin = %.2f zin = %.2f \n", xin,

yin, zin);//*/↪→

144

145 // initializing difference between two points before

and after one iteration↪→

146 double diff = 1.0;

147 // defining previous point

148 double ypre[3];

149

150 while(diff > eps) // while loop to find the

convergence point of (xin, yin, zin)↪→

151 { // save the previous point

152 ypre[0] = y[0];

153 ypre[1] = y[1];

154 ypre[2] = y[2];

155 //printf (" %.5f %.5f %.5f\n", ypre[0],

ypre[1], ypre[2]);↪→

156

157 // d

158 double ti = ii * t1 / 100.0;

//?????????????????????????↪→

159 int status = gsl_odeiv2_driver_apply (driver,

&t, ti, y);↪→

160 if (status != GSL_SUCCESS)

161 {

162 printf ("error, return value=%d\n",

status);↪→

163 break;

164 }

165 diff = pow(pow(ypre[0] -

y[0],2.0)+pow(ypre[1] - y[1],

2.0)+pow(ypre[2] - y[2], 2.0), 1.0/2.0);

↪→

↪→
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166 // print the results

167 /* if (ii%1==0)

168 {

169 ////printf (" %.1f %.5f %.5f %.5f

%.5e\n", t, y[0], y[1], y[2], diff);↪→

170 } */

171 ii++;

172 }

173

174 gsl_odeiv2_driver_free (driver);

175

176 int yes = -1;

177

178 if (pow((pow(y[0] , 2) + pow(y[1] , 2) + pow(y[2] ,

2) ), 0.5) < tol)↪→

179 {yes = 0;}// trivial flag

180 else if(Disc>0)

181 {

182 //// printf ("--\nEQM %.5f %.5f %.5f\n", xx,

yy, zz);↪→

183

184 if (pow((pow(y[0] -xx, 2) + pow(y[1] -yy, 2)

+ pow(y[2] -zz, 2) ), 0.5) < tol)↪→

185 yes = 1; // non_trivial count

186 }

187 //cout<<"yes = "<<yes<<endl;

188 /* cout<<"tol =

"<<tol<<endl;↪→

189 cout<<"eps = "<<eps<<endl; */

190

191 ////cout<<"############### yes =

"<<yes<<endl;↪→

192

193

194 int yeah = yes;//if_nontriv(xin, yin, zin, &params);

195 if (yeah == 1)

196 {vol_E_p++;}

197 else if (yeah == 0)

198 {vol_E_0++;}

199 }//end if

200 }// end for i

201 // finished counting number of vol_** hits

202

203 //---//printf("# vols: vol_total = %.2d, vol_E_p = %.2d, vol_E_0 =

%.2d \n",vol_total,vol_E_p,vol_E_0);↪→

204

205
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206 double prob_E_p = (double)vol_E_p/(double)vol_total;

207 double prob_E_0 = (double)vol_E_0/(double)vol_total;

208

209 printf(" %6.2f %.3f %+.4e %.6f %.6f %.5f ",

210 d, m, Disc, prob_E_p, prob_E_0, prob_E_p+prob_E_0);

211 printf("\n");

212

213 //printf("-----------------------------\n");

214 }

215

216 printf("# d m Delta BofA_E_+ BofA_E_0 total\n");

217

218 //printf("# eps = %.2e\n",eps);

219 printf("\n\n");

220 }

221 printf("# neighbour = %.2e\n",tol);

222 printf("# epsrel = %.2e\n",epsrel);

223 printf("# epsabs = %.2e\n",epsabs);

224 printf("# sample = %d\n",sample);

225 }

226 }

227

228

229 gsl_rng_free (r);

230 printf("Time taken: %.2fs\n", (double)(clock() - tStart)/CLOCKS_PER_SEC);

231

232 //(void) x;

233 //(void) z;

234 return 0;

235 }

fig6b plot.p
fig6b plot.p

1 #// 2017-09-14

2

3 set term postscript eps enhanced color font 'Arial,25' dashed

4

5 #set termoption dash

6

7 set output "fig6b.eps"

8

9 unset xrange

10 unset yrange

11 set xlabel "dispersal rate (d)"

12 set ylabel "Fraction of Volume of BofA for E_+"

13 set xrange [0:25]

14 #set title ''
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15 set xtics 5

16

17 set yrange [-0.1: 1.1]

18 set ytics 0.2

19

20 #set key out vert

21 set key off #out vert

22 #set key center right

23 set label 1 at 8, 1.05

24 set label 1 "m = 0.117"

25 set label 2 at 6, 0.93

26 set label 2 "m = 0.207"

27 set label 3 at 2, 0.8

28 set label 3 "m = 0.212"

29 set label 4 at 0.5, 0.7

30 set label 4 "m = 0.217"

31 set label 5 at 0.0, -0.05

32 set label 5 "m = 0.250" #tc lt 3

33

34

35 # show label

36

37 set style line 1 lc rgb '#0060ad' lt 1 lw 3 #pt 7 ps 1.5 # --- blue

38 set style line 2 lc rgb '#dd181f' lt 1 lw 3 #pt 5 ps 1.5 # --- red

39 set style line 3 lt 2 lc rgb "yellow" lw 3

40 set style line 4 lt 2 lc rgb "red" lw 3

41 #set style line 3 lc rgb '#3b0b7a' lt 1 lw 2 pt 3 ps 1.5 # --- purple

42 plot 'fig6b.dat' index 0 using 1:4 with line ls 1 t 'm = '.columnhead(1), \

43 '' index 1 using 1:4 with line ls 1 t 'm = '.columnhead(1), \

44 '' index 2 using 1:($4>0?$4:1/0) with line ls 2 t 'm =

'.columnhead(1), \↪→

45 '' index 2 using 1:($4>0?1/0:$4) with line ls 2 t 'm =

'.columnhead(1), \↪→

46 '' index 3 using 1:($4>0?$4:1/0) with line ls 2 t 'm =

'.columnhead(1), \↪→

47 '' index 3 using 1:($4>0?1/0:$4) with line ls 2 t 'm =

'.columnhead(1), \↪→

48 '' index 2 using 1:4 with line dt 2 lc rgb '#dd181f' lw 3, \

49 '' index 3 using 1:4 with line dt 2 lc rgb '#dd181f' lw 3, \

50 '' index 0 using 1:($4>2?1:0) with line dt 4 lc rgb

"black" lw 3, \↪→

51

52

53

54

55 ##positive part #zero part #connecting with dashed line

56
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57 ############### fix color, dashed lines, adjust text positions.

58 # add zero line,

59

60

61

62 unset xrange

63 unset yrange

64

65 unset tmargin

66 unset bmargin

67 unset rmargin

68 unset title

69 unset size

70 unset xtics

71 unset label

72 reset

C.2 Code for Chapter 3
Matlab is used to generate figures, and figure numbering is within Chapter 3.

C.2.1 fig2
main function for figure 2

fig2.m
1 figure;

2 subplot(3,1,1)

3 hold on

4 tau =3.1;

5 sol = dde23(@ddex1de,[tau],@ddex1hist,[0, tfinal]);

6 plot(sol.x,sol.y)

7 plot([0,tfinal],[1 - 2.0/3.0, 1-2.0/3.0])

8 title('\tau = 3.1');

9 ylabel('solution p');

10 hold off

11

12 subplot(3,1,2)

13 hold on

14 tau =3.14;

15 sol = dde23(@ddex1de,[tau],@ddex1hist,[0, tfinal]);

16 plot(sol.x,sol.y)

17 plot([0,tfinal],[1 - 2.0/3.0, 1-2.0/3.0])

18 title('\tau = 3.14');

19 ylabel('solution p');

20 hold off

21
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22 subplot(3,1,3)

23 hold on

24 tau =3.16;

25 sol = dde23(@ddex1de,[tau],@ddex1hist,[0, tfinal]);

26 plot(sol.x,sol.y)

27 plot([0,tfinal],[1 - 2.0/3.0, 1-2.0/3.0])

28 title('\tau = 3.15');

29 xlabel('time t');

30 ylabel('solution p');

31 hold off

DDE history function and DDE function should be saved in separate files with valid names and in the
same folder of the main function.

ddex1de.m
ddex1de.m

1 function dydt = ddex1de(t,y,Z)

2 % Differential equations function

3 ylag = Z;

4 dydt = 1.5 * (1-ylag) * y - 1.0 * y;

5 end

ddex1hist.m
ddex1hist.m

1 function s = ddex1hist(t)

2 % Constant history function

3 numbDEs = 1;

4 s = 0.2*ones(numbDEs,1);

5 end

C.2.2 Changes made in dde23

The author made a few changes to the routine odefinalize called by dde23 to constrain the dependent
variables in [0, 1]. The following lines are inserted between line 58 and line 59 in the original routine
odefinalize:

add to odefinalize.m
1 sol.y(sol.y<0) = 0;

2 sol.y(sol.y>1) = 1;

C.3 Code for Chapter 4
Here are the code listed in table B.1. Use python to generate figures.
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C.3.1 Numerical Procedures

DM TwoTraits num.py
DM TwoTraits num.py

1 import numpy as np

2

3 p=0

4 g=1

5

6 # relatedness

7 def MatrixForRecursions(n,h,s):

8 p=0

9 g=1

10 return np.array([\

11 [0,0,s[p,p]*h[p]**2, s[g,p]*h[g]**2],\

12 [0,0,s[p,g]*h[p]**2, s[g,g]*h[g]**2],\

13 [s[p,p]/(4*n),s[g,p]/(4*n),\

14 (2*n-1)*s[p,p]*h[p]**2/(2*n), (2*n-1)*s[g,p]*h[g]**2/(2*n)],\

15 [s[p,g]/(4*n),s[g,g]/(4*n),\

16 (2*n-1)*s[p,g]*h[p]**2/(2*n), (2*n-1)*s[g,g]*h[g]**2/(2*n)]\

17 ])

18

19 def CC(Q,n):

20 b = np.array([0,0,0.25/n,0.25/n])

21 A = np.identity(4) - Q

22 Ainv = np.linalg.inv(A)

23 F = np.dot(Ainv,b)

24 return F

25

26 # total RV

27 def TotalRV(T,d,c):

28 p=0

29 g=1

30 pi=np.array([ T[p,g]/(T[g,p]+T[p,g]), T[g,p]/(T[g,p]+T[p,g]) ])

31 v=np.array([ 1/(1-c[p]*d[p]), 1/(1-c[g]*d[g]) ])

32 alpha = v*pi

33 return alpha

34

35 # input details about the environment

36

37 ss=3

38 sprob = ss*0.1

39

40 T=np.array([ [1-sprob,sprob], [sprob,1-sprob] ])

41 S=np.empty((2,2),dtype=float)

42 S[p,p]=T[p,p]/(T[p,p]+T[p,g])

43 S[g,p]=T[p,g]/(T[p,p]+T[p,g])

44 S[p,g]=T[g,p]/(T[g,p]+T[g,g])
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45 S[g,g]=T[g,g]/(T[g,p]+T[g,g])

46

47 def myloop(d,N,c,offCtrl):

48 for iter in range(250):

49 # calculate h

50 h = (1-d)/(1-c*d)

51 # solve CC recursions

52 F=CC(MatrixForRecursions(N,h,S),N)

53 # determine relatedness

54 if offCtrl == True:

55 R=np.array([0.5*(1+F[0]),0.5*(1+F[1])])

56 else:

57 R=np.array([ 0.5*F[0] + 0.25*(1+F[0]*S[0,0]+F[1]*S[1,0]),\

58 0.5*F[1] + 0.25*(1+F[0]*S[0,1]+F[1]*S[1,1]) ])

59 Rbar=np.array([F[2],F[3]])

60 # determine IF changes

61 dw = -R*c + Rbar*h

62 # update d

63 d += 0.1*dw

64 d = np.clip(d,0.001, 0.999)

65 return d

66

67 N=2

68 cc=3

69 cavg=cc*0.1

70 myOffCtrl = False#False

71 if myOffCtrl == True:

72 outfile = open("DM_OffCtrl_N=%s_c=0pt%s_s=0pt%s.dat"%(N,cc,ss), "w")

73 else:

74 outfile = open("DM_ParCtrl_N=%s_c=0pt%s_s=0pt%s.dat"%(N,cc,ss), "w")

75

76 upperBnd=np.min([1-cavg,cavg])

77 sigmas=np.linspace(0,upperBnd,100)

78

79 tol=1e-08

80 maxiter = 10

81 for sigma in sigmas:

82 c = np.array([cavg + sigma, cavg - sigma])

83

84 done = np.array([0.01,0.02])

85 dtwo = np.array([0.99,0.98])

86 dtre = np.array([0.01,0.99])

87 dfor = np.array([0.98,0.02])

88

89 mydist = [ np.linalg.norm(done-dtwo),\

90 np.linalg.norm(done-dtre),\

91 np.linalg.norm(done-dfor),\
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92 np.linalg.norm(dtwo-dtre),\

93 np.linalg.norm(dtwo-dfor),\

94 np.linalg.norm(dtre-dfor)]

95

96 iter = 0

97 while np.max(mydist) > tol and iter < maxiter:

98 done = myloop(done,N,c,myOffCtrl)

99 dtwo = myloop(dtwo,N,c,myOffCtrl)

100 dtre = myloop(dtre,N,c,myOffCtrl)

101 dfor = myloop(dfor,N,c,myOffCtrl)

102 mydist = [ np.linalg.norm(done-dtwo),\

103 np.linalg.norm(done-dtre),\

104 np.linalg.norm(done-dfor),\

105 np.linalg.norm(dtwo-dtre),\

106 np.linalg.norm(dtwo-dfor),\

107 np.linalg.norm(dtre-dfor)]

108 iter += 1

109

110 dp = np.mean([ done[0], dtwo[0], dtre[0], dfor[0] ])

111 dg = np.mean([ done[1], dtwo[1], dtre[1], dfor[1] ])

112 outstr = str(sigma) + "," + str(dp) + "," + str(dg) + "\n"

113 outfile.write(outstr)

114

115 outfile.close()

MD TwoTraits num.py
MD TwoTraits num.py

1 import numpy as np

2

3 p=0

4 g=1

5

6 # relatedness

7 def MatrixForRecursions(n,h,s):

8 p=0

9 g=1

10 return np.array([\

11 [0,0,s[p,p], s[g,p]],\

12 [0,0,s[p,g], s[g,g]],\

13 [s[p,p]/(4*n),s[g,p]/(4*n),\

14 (2*(n-1)*h[p]**2 + 1)*s[p,p]/(2*n), (2*(n-1)*h[g]**2 +

1)*s[g,p]/(2*n)],\↪→

15 [s[p,g]/(4*n),s[g,g]/(4*n),\

16 (2*(n-1)*h[p]**2 + 1)*s[p,g]/(2*n), (2*(n-1)*h[g]**2 +

1)*s[g,g]/(2*n)]\↪→

17 ])

18
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19 def CC(Q,n):

20 b = np.array([0,0,0.25/n,0.25/n])

21 A = np.identity(4) - Q

22 Ainv = np.linalg.inv(A)

23 F = np.dot(Ainv,b)

24 return F

25

26 # total RV

27 def TotalRV(T,d,c):

28 p=0

29 g=1

30 pi=np.array([ T[p,g]/(T[g,p]+T[p,g]), T[g,p]/(T[g,p]+T[p,g]) ])

31 v=np.array([ 1/(1-c[p]*d[p]), 1/(1-c[g]*d[g]) ])

32 alpha = v*pi

33 return alpha

34

35 # input details about the environment

36

37 ss=3

38 sprob = ss*0.1

39 T=np.array([ [1-sprob,sprob], [sprob,1-sprob] ])

40 S=np.empty((2,2),dtype=float)

41 S[p,p]=T[p,p]/(T[p,p]+T[p,g])

42 S[g,p]=T[p,g]/(T[p,p]+T[p,g])

43 S[p,g]=T[g,p]/(T[g,p]+T[g,g])

44 S[g,g]=T[g,g]/(T[g,p]+T[g,g])

45

46 def myloop(d,N,c,offCtrl):

47 for iter in range(250):

48 # calculate h

49 h = (1-d)/(1-c*d)

50 # solve CC recursions

51 F=CC(MatrixForRecursions(N,h,S),N)

52 # determine relatedness

53 if offCtrl == True:

54 R=np.array([0.5*(1+F[0]),0.5*(1+F[1])])

55 else:

56 R=np.array([ 0.5*F[0] + 0.25*(1+F[0]*S[0,0]+F[1]*S[1,0]),\

57 0.5*F[1] + 0.25*(1+F[0]*S[0,1]+F[1]*S[1,1]) ])

58 Rbar=np.array([F[2],F[3]])

59 # determine IF changes

60 dw = -0.5*(R+Rbar)*c + Rbar*h

61 # update d

62 d += 0.1*dw

63 d = np.clip(d,0.001, 0.999)

64 return d

65
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66 N=2

67 cc=3

68 cavg=cc*0.1

69 myOffCtrl = False#False

70 if myOffCtrl==True:

71 outfile = open("MD_OffCtrl_N=%s_c=0pt%s_s=0pt%s.dat"%(N,cc,ss), "w")

72 else:

73 outfile = open("MD_ParCtrl_N=%s_c=0pt%s_s=0pt%s.dat"%(N,cc,ss), "w")

74

75

76

77 upperBnd=np.min([1-cavg,cavg])

78 sigmas=np.linspace(0,upperBnd,100)

79

80 tol=1e-08

81 maxiter=10

82

83 for sigma in sigmas:

84 c = np.array([cavg+sigma,cavg-sigma])

85

86 done = np.array([0.01,0.02])

87 dtwo = np.array([0.99,0.98])

88 dtre = np.array([0.01,0.99])

89 dfor = np.array([0.98,0.02])

90

91 mydist = [ np.linalg.norm(done-dtwo),\

92 np.linalg.norm(done-dtre),\

93 np.linalg.norm(done-dfor),\

94 np.linalg.norm(dtwo-dtre),\

95 np.linalg.norm(dtwo-dfor),\

96 np.linalg.norm(dtre-dfor)]

97

98 iter = 0

99

100 while np.max(mydist) > tol and iter < maxiter:

101 done = myloop(done,N,c,myOffCtrl)

102 dtwo = myloop(dtwo,N,c,myOffCtrl)

103 dtre = myloop(dtre,N,c,myOffCtrl)

104 dfor = myloop(dfor,N,c,myOffCtrl)

105 mydist = [ np.linalg.norm(done-dtwo),\

106 np.linalg.norm(done-dtre),\

107 np.linalg.norm(done-dfor),\

108 np.linalg.norm(dtwo-dtre),\

109 np.linalg.norm(dtwo-dfor),\

110 np.linalg.norm(dtre-dfor)]

111 iter += 1

112
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113 dp = np.mean([ done[0], dtwo[0], dtre[0], dfor[0] ])

114 dg = np.mean([ done[1], dtwo[1], dtre[1], dfor[1] ])

115

116 outstr = str(sigma) + "," + str(dp) + "," + str(dg) + "\n"

117 outfile.write(outstr)

118

119 outfile.close()

DM OneTrait num.py
DM OneTrait num.py

1 import numpy as np

2

3 p=0

4 g=1

5

6 # relatedness

7 def MatrixForRecursions(n,h,s):

8 p=0

9 g=1

10 return np.array([\

11 [0,0,s[p,p]*h[p]**2, s[g,p]*h[g]**2],\

12 [0,0,s[p,g]*h[p]**2, s[g,g]*h[g]**2],\

13 [s[p,p]/(4*n),s[g,p]/(4*n),\

14 (2*n-1)*s[p,p]*h[p]**2/(2*n), (2*n-1)*s[g,p]*h[g]**2/(2*n)],\

15 [s[p,g]/(4*n),s[g,g]/(4*n),\

16 (2*n-1)*s[p,g]*h[p]**2/(2*n), (2*n-1)*s[g,g]*h[g]**2/(2*n)]\

17 ])

18

19 def CC(Q,n):

20 b = np.array([0,0,0.25/n,0.25/n])

21 A = np.identity(4) - Q

22 Ainv = np.linalg.inv(A)

23 F = np.dot(Ainv,b)

24 return F

25

26 # total RV

27 def TotalRV(T,d,c):

28 p=0

29 g=1

30 pi=np.array([ T[p,g]/(T[g,p]+T[p,g]), T[g,p]/(T[g,p]+T[p,g]) ])

31 v=np.array([ 1/(1-c[p]*d[p]), 1/(1-c[g]*d[g]) ])

32 alpha = v*pi

33 return alpha

34

35 # input details about the environment

36

37 ss=3
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38 sprob = ss*0.1

39

40 T=np.array([ [1-sprob,sprob], [sprob,1-sprob] ])

41 S=np.empty((2,2),dtype=float)

42 S[p,p]=T[p,p]/(T[p,p]+T[p,g])

43 S[g,p]=T[p,g]/(T[p,p]+T[p,g])

44 S[p,g]=T[g,p]/(T[g,p]+T[g,g])

45 S[g,g]=T[g,g]/(T[g,p]+T[g,g])

46

47 def myloop(d,N,c,offCtrl):

48 for iter in range(250):

49 # calculate h

50 h = (1-d)/(1-c*d)

51 # solve CC recursions

52 F=CC(MatrixForRecursions(N,h,S),N)

53 # determine relatedness

54 if offCtrl == True:

55 R=np.array([0.5*(1+F[0]),0.5*(1+F[1])])

56 else:

57 R=np.array([ 0.5*F[0] + 0.25*(1+F[0]*S[0,0]+F[1]*S[1,0]),\

58 0.5*F[1] + 0.25*(1+F[0]*S[0,1]+F[1]*S[1,1]) ])

59 Rbar=np.array([F[2],F[3]])

60 # determine IF changes

61 wts = TotalRV(T,d,c)*np.ones((2,2), dtype=float)

62 dw = -R*c + Rbar*h

63 # update d

64 d += 0.1 * np.dot(wts,dw)

65 d = np.clip(d,0.001, 0.999)

66 return d

67

68 N=2

69 cc=3

70 cavg=cc*0.1

71 myOffCtrl = False#False

72 if myOffCtrl == True:

73 outfile = open("DM_OffCtrl_uncond_N=%s_c=0pt%s_s=0pt%s.dat"%(N,cc,ss),

"w")↪→

74 else:

75 outfile = open("DM_ParCtrl_uncond_N=%s_c=0pt%s_s=0pt%s.dat"%(N,cc,ss),

"w")↪→

76

77

78 upperBnd=np.min([1-cavg,cavg])

79 sigmas=np.linspace(0,upperBnd,100)

80

81 tol=1e-08

82 maxiter=10
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83

84 for sigma in sigmas:

85

86 c = np.array([cavg+sigma,cavg-sigma])

87

88 done = np.array([0.01,0.01])

89 dtwo = np.array([0.99,0.99])

90

91 mydist = np.linalg.norm(done-dtwo)

92 iter = 0

93

94 while np.max(mydist) > tol and iter < maxiter:

95 done = myloop(done,N,c,myOffCtrl)

96 dtwo = myloop(dtwo,N,c,myOffCtrl)

97 mydist = np.linalg.norm(done-dtwo)

98 iter += 1

99

100 d = np.mean([ done[0], dtwo[0], done[1], dtwo[1] ])

101 outstr = str(sigma) + "," + str(d) + "\n"

102 outfile.write(outstr)

103

104 outfile.close()

MD OneTrait num.py
MD OneTrait num.py

1 import numpy as np

2

3 p=0

4 g=1

5

6 # relatedness

7 def MatrixForRecursions(n,h,s):

8 p=0

9 g=1

10 return np.array([\

11 [0,0,s[p,p], s[g,p]],\

12 [0,0,s[p,g], s[g,g]],\

13 [s[p,p]/(4*n),s[g,p]/(4*n),\

14 (2*(n-1)*h[p]**2 + 1)*s[p,p]/(2*n), (2*(n-1)*h[g]**2 +

1)*s[g,p]/(2*n)],\↪→

15 [s[p,g]/(4*n),s[g,g]/(4*n),\

16 (2*(n-1)*h[p]**2 + 1)*s[p,g]/(2*n), (2*(n-1)*h[g]**2 +

1)*s[g,g]/(2*n)]\↪→

17 ])

18

19 def CC(Q,n):

20 b = np.array([0,0,0.25/n,0.25/n])
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21 A = np.identity(4) - Q

22 Ainv = np.linalg.inv(A)

23 F = np.dot(Ainv,b)

24 return F

25

26 # total RV

27 def TotalRV(T,d,c):

28 p=0

29 g=1

30 pi=np.array([ T[p,g]/(T[g,p]+T[p,g]), T[g,p]/(T[g,p]+T[p,g]) ])

31 v=np.array([ 1/(1-c[p]*d[p]), 1/(1-c[g]*d[g]) ])

32 alpha = v*pi

33 return alpha

34

35 # input details about the environment

36

37 ss=3

38 sprob = ss*0.1

39

40 T=np.array([ [1-sprob,sprob], [sprob,1-sprob] ])

41 S=np.empty((2,2),dtype=float)

42 S[p,p]=T[p,p]/(T[p,p]+T[p,g])

43 S[g,p]=T[p,g]/(T[p,p]+T[p,g])

44 S[p,g]=T[g,p]/(T[g,p]+T[g,g])

45 S[g,g]=T[g,g]/(T[g,p]+T[g,g])

46

47 def myloop(d,N,c,offCtrl):

48 for iter in range(250):

49 # calculate h

50 h = (1-d)/(1-c*d)

51 # solve CC recursions

52 F=CC(MatrixForRecursions(N,h,S),N)

53 # determine relatedness

54 if offCtrl == True:

55 R=np.array([0.5*(1+F[0]),0.5*(1+F[1])])

56 else:

57 R=np.array([ 0.5*F[0] + 0.25*(1+F[0]*S[0,0]+F[1]*S[1,0]),\

58 0.5*F[1] + 0.25*(1+F[0]*S[0,1]+F[1]*S[1,1]) ])

59 Rbar=np.array([F[2],F[3]])

60 # determine IF changes

61 wts = TotalRV(T,d,c)*np.ones((2,2), dtype=float)

62 dw = -0.5*(R+Rbar)*c + Rbar*h

63 # update d

64 d += 0.1 * np.dot(wts,dw)

65 d = np.clip(d,0.001, 0.999)

66 return d

67
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68 N=2

69 cc=3

70 cavg=cc*0.1

71 myOffCtrl = False#False

72

73 if myOffCtrl==True:

74 outfile = open("MD_OffCtrl_uncond_N=%s_c=0pt%s_s=0pt%s.dat"%(N,cc,ss),

"w")↪→

75 else:

76 outfile = open("MD_ParCtrl_uncond_N=%s_c=0pt%s_s=0pt%s.dat"%(N,cc,ss),

"w")↪→

77

78

79

80

81 upperBnd = np.min([1-cavg,cavg])

82 sigmas=np.linspace(0, upperBnd, 100)

83

84 tol=1e-08

85 maxiter=10

86

87 for sigma in sigmas:

88

89 c = np.array([cavg+sigma,cavg-sigma])

90

91 done = np.array([0.01,0.01])

92 dtwo = np.array([0.99,0.99])

93

94 mydist = np.linalg.norm(done-dtwo)

95 iter = 0

96

97 while np.max(mydist) > tol and iter < maxiter:

98 done = myloop(done,N,c,myOffCtrl)

99 dtwo = myloop(dtwo,N,c,myOffCtrl)

100 mydist = np.linalg.norm(done-dtwo)

101 iter += 1

102

103 d = np.mean([ done[0], dtwo[0], done[1], dtwo[1] ])

104 outstr = str(sigma) + "," + str(d) + "\n"

105 outfile.write(outstr)

106

107 outfile.close()
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C.3.2 Individual-Based Simulation

DM ParCtrl TwoTraits.py
DM ParCtrl TwoTraits.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 m=250

5 n=2

6 cp=0.4

7 cg=0.2

8 s = 0.3

9

10 def enviroChange(state, s):

11 x = np.random.binomial(1,s)

12 if x == 0:

13 return state

14 else:

15 return abs(state-1)

16

17 DataFile = open("DM_ParCtrl_Fig_7.dat","w")

18

19 for trial in range(3):

20 dold=np.random.uniform(0,1,(2,m,n))

21 dnew=np.random.uniform(0,1,(2,m,n))

22

23 tfinal=3

24 d=np.empty((2,tfinal),dtype=float)

25

26 state = np.random.binomial(0.5,1)

27 altstate = abs(state-1)

28

29 for t in range(tfinal):

30 # number tickets that emigrate from patch i

31 emigrantTix = np.sum( dold[state], axis=1 )

32

33 # number of tickets that remain on patch i

34 nativeTix = n - emigrantTix

35

36 # number of tickets that are in dispersal pool

37 dpoolTix = np.sum( emigrantTix )

38

39 # number of tickets that arrive on any patch

40 if state == 0:

41 c = cp

42 else:

43 c = cg

44
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45 immigrantTix = (1-c)*dpoolTix/m

46

47 for i in range(m):

48 for j in range(n):

49 dtmp=[0.0,0.0]

50 for parent in range(2):

51 pLocal = nativeTix[i]/(nativeTix[i] + immigrantTix)

52 x = np.random.binomial( 1, pLocal )

53 if x==1:

54 iwin = i

55 p = (1-dold[state,iwin])/nativeTix[iwin]

56 y = np.random.multinomial( 1, p )

57 jwin = np.argmax(y)

58 else:

59 q = emigrantTix/dpoolTix

60 z = np.random.multinomial( 1, q )

61 iwin = np.argmax(z)

62 p = dold[state,iwin]/emigrantTix[iwin]

63 y = np.random.multinomial( 1, p )

64 jwin = np.argmax(y)

65 dtmp[state] += 0.5*(dold[state,iwin,jwin] +

np.random.normal(0,0.05,1))↪→

66 dtmp[altstate] += 0.5*dold[altstate,iwin,jwin]

67 dnew[state,i,j] = dtmp[state]

68 dnew[altstate,i,j] = dtmp[altstate]

69 dnew = np.clip(dnew, 0.001, 0.999)

70 (dold,dnew) = (dnew,dold)

71 state=enviroChange(state, s)

72 altstate=abs(state-1)

73

74 d[0,t] = np.mean( np.mean( dold[0] ) )

75 d[1,t] = np.mean( np.mean( dold[1] ) )

76

77 mystr = ""

78 for kk in range(2):

79 for elem in d[kk]:

80 if kk==0:

81 mystr += str( elem ) + ","

82 else:

83 mystr += str( 0 ) + ","

84 mystr += "\n"

85

86 DataFile.write(mystr)

87

88 DataFile.close()

89

90 #plt.figure( figsize=(6,5) )
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91 #plt.plot(np.arange(tfinal), d[0], '-r')
92 #plt.plot(np.arange(tfinal), d[1], '-b')
93 #plt.plot([0,tfinal],[0.367]*2, '--r')
94 #plt.plot([0,tfinal],[0.707]*2, '--b')
95 #plt.ylim([0,1])

96 #mylabels=[]

97 #for i in range(6):

98 # mylabels.append(str(5*i))

99 #plt.xticks( 5000*np.arange(6), mylabels)

100 #plt.xlabel("time in generations x 1000", fontsize=12)

101 #plt.ylabel("mean conditional dispersal prob", fontsize=12)

102 #plt.show()

DM OffCtrl TwoTraits.py
DM OffCtrl TwoTraits.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 m=250

5 n=2

6 cp=0.4

7 cg=0.2

8 s=0.3

9

10 def enviroChange(state, s):

11 x = np.random.binomial(1,s)

12 if x == 0:

13 return state

14 else:

15 return abs(state-1)

16

17 DataFile = open("DM_OffCtrl_Fig_7.dat", "a")

18

19 tfinal=25000

20 for trial in range(10):

21 gold=np.random.uniform(0,1,(2,2,m,n))

22 gnew=np.random.uniform(0,1,(2,2,m,n))

23 d=np.empty((2,tfinal),dtype=float)

24

25 state=np.random.binomial(1,0.5)

26 altstate=abs(state-1)

27

28 for t in range(tfinal):

29 # modification

30 dold = np.mean(gold[state],axis=0)

31 dalt = np.mean(gold[altstate],axis=0)

32 d[state,t] = np.mean( np.mean( dold ) )
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33 d[altstate,t] = np.mean( np.mean( dalt ) )

34

35 # number tickets that emigrate from patch i

36 emigrantTix = np.sum( dold, axis=1 )

37

38 # number of tickets that remain on patch i

39 nativeTix = n - emigrantTix

40

41 # number of tickets that are in dispersal pool

42 dpoolTix = np.sum( emigrantTix )

43

44 # number of tickets that arrive on any patch

45 if state == 0:

46 c = cp

47 else:

48 c = cg

49

50 immigrantTix = (1-c)*dpoolTix/m

51

52 for i in range(m):

53 for j in range(n):

54 for parent in range(2):

55 pLocal = nativeTix[i]/(nativeTix[i] + immigrantTix)

56 x = np.random.binomial( 1, pLocal )

57 if x==1:

58 iwin = i

59 p = (1-dold[iwin])/nativeTix[iwin]

60 y = np.random.multinomial( 1, p )

61 jwin = np.argmax(y)

62 # modification (within-pair competition)

63 pxtra = (1-gold[state,1,iwin,jwin]) / (1-gold[state,0,iwin,jwin]

+ 1-gold[state,1,iwin,jwin])↪→

64 kwin = np.random.binomial(1,pxtra)

65 else:

66 q = emigrantTix/dpoolTix

67 z = np.random.multinomial( 1, q )

68 iwin = np.argmax(z)

69 p = dold[iwin]/emigrantTix[iwin]

70 y = np.random.multinomial( 1, p )

71 jwin = np.argmax(y)

72 # modification (within-pair competition)

73 pxtra = gold[state,1,iwin,jwin]/(gold[state,0,iwin,jwin] +

gold[state,1,iwin,jwin])↪→

74 kwin = np.random.binomial(1,pxtra)

75 #modification

76 gnew[state,parent,i,j] = gold[state,kwin,iwin,jwin] +

np.random.normal(0,0.0025,1)↪→
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77 gnew[altstate,parent,i,j] = gold[altstate,kwin,iwin,jwin]

78 gnew = np.clip(gnew, 0.0001, 0.9999)

79 (gold,gnew) = (gnew,gold)

80 state = enviroChange(state,s)

81 altstate=abs(state-1)

82

83 mystr =""

84 for kk in range(2):

85 for elem in d[kk]:

86 mystr += str(elem) + ","

87 mystr += "\n"

88

89 DataFile.write(mystr)

90

91 DataFile.close()

92 #plt.figure( figsize=(6,5) )

93 #plt.plot(np.arange(tfinal), d[0], '-b')
94 #plt.plot(np.arange(tfinal), d[1], '-r')
95 #plt.plot([0,tfinal],[0.58]*2, '--b')
96 #plt.plot([0,tfinal],[0.065]*2, '--b')
97 #plt.ylim([0,1])

98 #plt.xlabel("time in generations", fontsize=12)

99 #plt.ylabel("global mean dispersal prob", fontsize=12)

100 #plt.show()

MD ParCtrl TwoTraits.py
MD ParCtrl TwoTraits.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 m=250

5 n=2

6 cp=0.4

7 cg=0.2

8 s = 0.3

9

10 def enviroChange(state, s):

11 x = np.random.binomial(1,s)

12 if x == 0:

13 return state

14 else:

15 return abs(state-1)

16

17 DataFile = open("MD_ParCtrl_FigA.dat","a")

18

19 for trial in range(3):

20 dold=np.random.uniform(0,1,(2,m,n))
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21 dnew=np.random.uniform(0,1,(2,m,n))

22

23 tfinal=50000

24 d=np.empty((2,tfinal),dtype=float)

25

26 state = np.random.binomial(0.5,1)

27 altstate = abs(state-1)

28

29 for t in range(tfinal):

30 # number tickets that emigrate from patch i

31 emigrantTix = np.sum( dold[state], axis=1 )

32

33 # number of tickets that remain on patch i

34 nativeTix = n - emigrantTix

35

36 # number of tickets that are in dispersal pool

37 dpoolTix = np.sum( emigrantTix )

38

39 # number of tickets that arrive on any patch

40 if state == 0:

41 c = cp

42 else:

43 c = cg

44

45 immigrantTix = (1-c)*dpoolTix/m

46

47 for i in range(m):

48 for j in range(n):

49 dtmp=[0.0,0.0]

50 for parent in range(2):

51 if parent == 0:

52 # mom

53 pLocal = nativeTix[i]/(nativeTix[i] + immigrantTix)

54 x = np.random.binomial( 1, pLocal )

55 if x==1:

56 iwin = i

57 p = (1-dold[state,iwin])/nativeTix[iwin]

58 y = np.random.multinomial( 1, p )

59 jwin = np.argmax(y)

60 else:

61 q = emigrantTix/dpoolTix

62 z = np.random.multinomial( 1, q )

63 iwin = np.argmax(z)

64 p = dold[state,iwin]/emigrantTix[iwin]

65 y = np.random.multinomial( 1, p )

66 jwin = np.argmax(y)

67 else:
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68 # dad (NB iwin is established)

69 p = [1./n]*n

70 y = np.random.multinomial( 1, p )

71 jwin = np.argmax(y)

72 dtmp[state] += 0.5*(dold[state,iwin,jwin] +

np.random.normal(0,0.05,1))↪→

73 dtmp[altstate] += 0.5*dold[altstate,iwin,jwin]

74 dnew[state,i,j] = dtmp[state]

75 dnew[altstate,i,j] = dtmp[altstate]

76 dnew = np.clip(dnew, 0.001, 0.999)

77 (dold,dnew) = (dnew,dold)

78 state=enviroChange(state, s)

79 altstate=abs(state-1)

80

81 d[0,t] = np.mean( np.mean( dold[0] ) )

82 d[1,t] = np.mean( np.mean( dold[1] ) )

83

84 mystr = ""

85 for kk in range(2):

86 for elem in d[kk]:

87 mystr += str( elem ) + ","

88 mystr += "\n"

89

90 DataFile.write(mystr)

91

92 DataFile.close()

93

94 #plt.figure( figsize=(6,5) )

95 #plt.plot(np.arange(tfinal), d[0], '-r')
96 #plt.plot(np.arange(tfinal), d[1], '-b')
97 #plt.plot([0,tfinal],[0.367]*2, '--r')
98 #plt.plot([0,tfinal],[0.707]*2, '--b')
99 #plt.ylim([0,1])

100 #mylabels=[]

101 #for i in range(6):

102 # mylabels.append(str(5*i))

103 #plt.xticks( 5000*np.arange(6), mylabels)

104 #plt.xlabel("time in generations x 1000", fontsize=12)

105 #plt.ylabel("mean conditional dispersal prob", fontsize=12)

106 #plt.show()

MD OffCtrl TwoTraits.py
MD OffCtrl TwoTraits.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 m=250
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5 n=2

6 cp=0.4

7 cg=0.2

8 s=0.3

9

10 def enviroChange(state, s):

11 x = np.random.binomial(1,s)

12 if x == 0:

13 return state

14 else:

15 return abs(state-1)

16

17 DataFile = open("MD_OffCtrl_Fig.dat", "a")

18

19 tfinal=50000

20 for trial in range(10):

21 gold=np.random.uniform(0,1,(2,2,m,n))

22 gnew=np.random.uniform(0,1,(2,2,m,n))

23 d=np.empty((2,tfinal),dtype=float)

24

25 state=np.random.binomial(1,0.5)

26 altstate=abs(state-1)

27

28 for t in range(tfinal):

29 # modification

30 dold = np.mean(gold[state],axis=0)

31 dalt = np.mean(gold[altstate],axis=0)

32 d[state,t] = np.mean( np.mean( dold ) )

33 d[altstate,t] = np.mean( np.mean( dalt ) )

34

35 # number tickets that emigrate from patch i

36 emigrantTix = np.sum( dold, axis=1 )

37

38 # number of tickets that remain on patch i

39 nativeTix = n - emigrantTix

40

41 # number of tickets that are in dispersal pool

42 dpoolTix = np.sum( emigrantTix )

43

44 # number of tickets that arrive on any patch

45 if state == 0:

46 c = cp

47 else:

48 c = cg

49

50 immigrantTix = (1-c)*dpoolTix/m

51
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52 for i in range(m):

53 for j in range(n):

54 for parent in range(2):

55 if parent ==0:

56 # mom

57 pLocal = nativeTix[i]/(nativeTix[i] + immigrantTix)

58 x = np.random.binomial( 1, pLocal )

59 if x==1:

60 iwin = i

61 p = (1-dold[iwin])/nativeTix[iwin]

62 y = np.random.multinomial( 1, p )

63 jwin = np.argmax(y)

64 # modification (within-pair competition)

65 pxtra = (1-gold[state,1,iwin,jwin]) /

(1-gold[state,0,iwin,jwin] + 1-gold[state,1,iwin,jwin])↪→

66 kwin = np.random.binomial(1,pxtra)

67 else:

68 q = emigrantTix/dpoolTix

69 z = np.random.multinomial( 1, q )

70 iwin = np.argmax(z)

71 p = dold[iwin]/emigrantTix[iwin]

72 y = np.random.multinomial( 1, p )

73 jwin = np.argmax(y)

74 # modification (within-pair competition)

75 pxtra = gold[state,1,iwin,jwin]/(gold[state,0,iwin,jwin] +

gold[state,1,iwin,jwin])↪→

76 kwin = np.random.binomial(1,pxtra)

77 else:

78 # dad (NB iwin is established)

79 p = [1./n]*n

80 y = np.random.multinomial( 1, p )

81 jwin = np.argmax(y)

82 # within-pair competition

83 kwin = np.random.binomial(1,0.5)

84 #modification

85 gnew[state,parent,i,j] = gold[state,kwin,iwin,jwin] +

np.random.normal(0,0.0025,1)↪→

86 gnew[altstate,parent,i,j] = gold[altstate,kwin,iwin,jwin]

87 gnew = np.clip(gnew, 0.0001, 0.9999)

88 (gold,gnew) = (gnew,gold)

89 state = enviroChange(state,s)

90 altstate=abs(state-1)

91

92 mystr =""

93 for kk in range(2):

94 for elem in d[kk]:

95 mystr += str(elem) + ","
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96 mystr += "\n"

97

98 DataFile.write(mystr)

99

100 DataFile.close()

101 #plt.figure( figsize=(6,5) )

102 #plt.plot(np.arange(tfinal), d[0], '-b')
103 #plt.plot(np.arange(tfinal), d[1], '-r')
104 #plt.plot([0,tfinal],[0.58]*2, '--b')
105 #plt.plot([0,tfinal],[0.065]*2, '--b')
106 #plt.ylim([0,1])

107 #plt.xlabel("time in generations", fontsize=12)

108 #plt.ylabel("global mean dispersal prob", fontsize=12)

109 #plt.show()

DM ParCtrl OneTrait.py
DM ParCtrl OneTrait.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 m=250

5 n=2

6 c=0.4

7

8 def taylor88(n,c):

9 const = np.sqrt( 1 + 4*n*(n-1)*c**2 )

10 return (const + 1 - 2*n*c)/(const + 1 - 2*n*c**2)

11

12 dold=0.5*np.random.uniform(0,1,(m,n))

13 dnew=np.random.uniform(0,1,(m,n))

14

15 tfinal=10000

16 d=np.empty(tfinal,dtype=float)

17

18 for t in range(tfinal):

19 # number tickets that emigrate from patch i

20 emigrantTix = np.sum( dold, axis=1 )

21

22 # number of tickets that remain on patch i

23 nativeTix = n - emigrantTix

24

25 # number of tickets that are in dispersal pool

26 dpoolTix = np.sum( emigrantTix )

27

28 # number of tickets that arrive on any patch

29 immigrantTix = (1-c)*dpoolTix/m

30
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31 for i in range(m):

32 for j in range(n):

33 dtmp=0.0

34 for parent in range(2):

35 pLocal = nativeTix[i]/(nativeTix[i] + immigrantTix)

36 x = np.random.binomial( 1, pLocal )

37 if x==1:

38 iwin = i

39 p = (1-dold[iwin])/nativeTix[iwin]

40 y = np.random.multinomial( 1, p )

41 jwin = np.argmax(y)

42 else:

43 q = emigrantTix/dpoolTix

44 z = np.random.multinomial( 1, q )

45 iwin = np.argmax(z)

46 p = dold[iwin]/emigrantTix[iwin]

47 y = np.random.multinomial( 1, p )

48 jwin = np.argmax(y)

49 dtmp += 0.5*(dold[iwin,jwin] + np.random.normal(0,0.05,1))

50 dnew[i,j] = dtmp

51 dnew = np.clip(dnew, 0.001, 0.999)

52 (dold,dnew) = (dnew,dold)

53

54 d[t] = np.mean( np.mean( dold ) )

55

56 theory = 'Taylor 1988: ' + str(taylor88(n,c))

57 simuln = 'Simulation: ' + str( np.mean(d[-3*tfinal/4:]) )

58

59 plt.figure( figsize=(6,5) )

60 plt.plot(np.arange(tfinal), d, '-r')

61 plt.plot([0,tfinal],[taylor88(n,c)]*2, '--b')

62 plt.text( 100, 0.2, theory )

63 plt.text( 100, 0.1, simuln )

64 plt.ylim([0,1])

65 plt.xlabel("time in generations", fontsize=12)

66 plt.ylabel("global mean dispersal rate", fontsize=12)

67 plt.show()

DM OffCtrl OneTrait.py
DM OffCtrl OneTrait.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 m=250

5 n=2

6 c=0.4

7
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8 def taylor88(n,c):

9 const = np.sqrt( 1 + 8*n*(2*n-1)*c**2 )

10 return (const + 1 - 4*n*c)/(const + 1 - 4*n*c**2)

11

12 gold=np.random.uniform(0,1,(2,m,n))

13 gnew=np.random.uniform(0,1,(2,m,n))

14

15 tfinal=10000

16 d=np.empty(tfinal,dtype=float)

17

18 for t in range(tfinal):

19 # modification

20 dold = np.mean(gold,axis=0)

21 d[t] = np.mean( np.mean( dold ) )

22

23 # number tickets that emigrate from patch i

24 emigrantTix = np.sum( dold, axis=1 )

25

26 # number of tickets that remain on patch i

27 nativeTix = n - emigrantTix

28

29 # number of tickets that are in dispersal pool

30 dpoolTix = np.sum( emigrantTix )

31

32 # number of tickets that arrive on any patch

33 immigrantTix = (1-c)*dpoolTix/m

34

35 for i in range(m):

36 for j in range(n):

37 for parent in range(2):

38 pLocal = nativeTix[i]/(nativeTix[i] + immigrantTix)

39 x = np.random.binomial( 1, pLocal )

40 if x==1:

41 iwin = i

42 p = (1-dold[iwin])/nativeTix[iwin]

43 y = np.random.multinomial( 1, p )

44 jwin = np.argmax(y)

45 # modification (within-pair competition)

46 pxtra = (1-gold[1,iwin,jwin]) / (1-gold[0,iwin,jwin] +

1-gold[1,iwin,jwin])↪→

47 kwin = np.random.binomial(1,pxtra)

48 else:

49 q = emigrantTix/dpoolTix

50 z = np.random.multinomial( 1, q )

51 iwin = np.argmax(z)

52 p = dold[iwin]/emigrantTix[iwin]

53 y = np.random.multinomial( 1, p )
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54 jwin = np.argmax(y)

55 # modification (within-pair competition)

56 pxtra = gold[1,iwin,jwin]/(gold[0,iwin,jwin] + gold[1,iwin,jwin])

57 kwin = np.random.binomial(1,pxtra)

58 #modification

59 gnew[parent,i,j] = gold[kwin,iwin,jwin] + np.random.normal(0,0.025,1)

60 gnew = np.clip(gnew, 0.001, 0.999)

61 (gold,gnew) = (gnew,gold)

62

63 theory = 'Taylor 1988: ' + str(taylor88(n,c))

64 simuln = 'Simulation: ' + str( np.mean(d[-3*tfinal/4:]) )

65

66 plt.figure( figsize=(6,5) )

67 plt.plot(np.arange(tfinal), d, '-r')

68 plt.plot([0,tfinal],[taylor88(n,c)]*2, '--b')

69 plt.text( 100, 0.2, theory )

70 plt.text( 100, 0.1, simuln )

71 plt.ylim([0,1])

72 plt.xlabel("time in generations", fontsize=12)

73 plt.ylabel("global mean dispersal rate", fontsize=12)

74 plt.show()

MD ParCtrl OneTrait.py
MD ParCtrl OneTrait.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 m=250

5 n=2

6 c=0.4

7

8 def taylor88(n,c):

9 const = np.sqrt( 1 + 4*n*(n-1)*c**2 )

10 return (const + 1 - 2*n*c)/(const + 1 - 2*n*c**2)

11

12 dold=0.5*np.random.uniform(0,1,(m,n))

13 dnew=np.random.uniform(0,1,(m,n))

14

15 tfinal=10000

16 d=np.empty(tfinal,dtype=float)

17

18 for t in range(tfinal):

19 # number tickets that emigrate from patch i

20 emigrantTix = np.sum( dold, axis=1 )

21

22 # number of tickets that remain on patch i

23 nativeTix = n - emigrantTix
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24

25 # number of tickets that are in dispersal pool

26 dpoolTix = np.sum( emigrantTix )

27

28 # number of tickets that arrive on any patch

29 immigrantTix = (1-c)*dpoolTix/m

30

31 for i in range(m):

32 for j in range(n):

33 dtmp=0.0

34 for parent in range(2):

35 if parent == 0:

36 # mom

37 pLocal = nativeTix[i]/(nativeTix[i] + immigrantTix)

38 x = np.random.binomial( 1, pLocal )

39 if x==1:

40 iwin = i

41 p = (1-dold[iwin])/nativeTix[iwin]

42 y = np.random.multinomial( 1, p )

43 jwin = np.argmax(y)

44 else:

45 q = emigrantTix/dpoolTix

46 z = np.random.multinomial( 1, q )

47 iwin = np.argmax(z)

48 p = dold[iwin]/emigrantTix[iwin]

49 y = np.random.multinomial( 1, p )

50 jwin = np.argmax(y)

51 else:

52 # dad (NB iwin is established)

53 p = [1./n]*n

54 y = np.random.multinomial( 1, p )

55 jwin = np.argmax(y)

56 dtmp += 0.5*(dold[iwin,jwin] + np.random.normal(0,0.05,1))

57 dnew[i,j] = dtmp

58 dnew = np.clip(dnew, 0.001, 0.999)

59 (dold,dnew) = (dnew,dold)

60

61 d[t] = np.mean( np.mean( dold ) )

62

63 theory = 'Taylor 1988: ' + str(taylor88(n,c))

64 simuln = 'Simulation: ' + str( np.mean(d[-3*tfinal/4:]) )

65

66 plt.figure( figsize=(6,5) )

67 plt.plot(np.arange(tfinal), d, '-r')

68 plt.plot([0,tfinal],[taylor88(n,c)]*2, '--b')

69 plt.text( 100, 0.2, theory )

70 plt.text( 100, 0.1, simuln )
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71 plt.ylim([0,1])

72 plt.xlabel("time in generations", fontsize=12)

73 plt.ylabel("global mean dispersal rate", fontsize=12)

74 plt.show()

MD OffCtrl OneTrait.py
MD OffCtrl OneTrait.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 m=250

5 n=2

6 c=0.4

7

8 def taylor88(n,c):

9 const = np.sqrt( 1 + 4*n*(n-1)*c**2 )

10 return (const + 1 - 2*n*c)/(const + 1 - 2*n*c**2)

11

12 gold=np.random.uniform(0,1,(2,m,n))

13 gnew=np.random.uniform(0,1,(2,m,n))

14

15 tfinal=10000

16 d=np.empty(tfinal,dtype=float)

17

18 for t in range(tfinal):

19 # modification

20 dold = np.mean(gold,axis=0)

21 d[t] = np.mean( np.mean( dold ) )

22

23 # number tickets that emigrate from patch i

24 emigrantTix = np.sum( dold, axis=1 )

25

26 # number of tickets that remain on patch i

27 nativeTix = n - emigrantTix

28

29 # number of tickets that are in dispersal pool

30 dpoolTix = np.sum( emigrantTix )

31

32 # number of tickets that arrive on any patch

33 immigrantTix = (1-c)*dpoolTix/m

34

35 for i in range(m):

36 for j in range(n):

37 for parent in range(2):

38 if parent == 0:

39 # mom

40 pLocal = nativeTix[i]/(nativeTix[i] + immigrantTix)
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41 x = np.random.binomial( 1, pLocal )

42 if x==1:

43 iwin = i

44 p = (1-dold[iwin])/nativeTix[iwin]

45 y = np.random.multinomial( 1, p )

46 jwin = np.argmax(y)

47 # modification (within-pair competition)

48 pxtra = (1-gold[1,iwin,jwin]) / (1-gold[0,iwin,jwin] +

1-gold[1,iwin,jwin])↪→

49 kwin = np.random.binomial(1,pxtra)

50 else:

51 q = emigrantTix/dpoolTix

52 z = np.random.multinomial( 1, q )

53 iwin = np.argmax(z)

54 p = dold[iwin]/emigrantTix[iwin]

55 y = np.random.multinomial( 1, p )

56 jwin = np.argmax(y)

57 # modification (within-pair competition)

58 pxtra = gold[1,iwin,jwin]/(gold[0,iwin,jwin] + gold[1,iwin,jwin])

59 kwin = np.random.binomial(1,pxtra)

60 else:

61 # dad (NB iwin is established and x is established)

62 p = [1./n]*n

63 y = np.random.multinomial( 1, p )

64 jwin = np.argmax(y)

65 # within-pair competition

66 if x==1:

67 kwin = np.random.binomial(1,0.5)

68 else:

69 kwin = np.random.binomial(1,0.5)

70 #modification

71 gnew[parent,i,j] = gold[kwin,iwin,jwin] + np.random.normal(0,0.025,1)

72 gnew = np.clip(gnew, 0.001, 0.999)

73 (gold,gnew) = (gnew,gold)

74

75 theory = 'Taylor 1988: ' + str(taylor88(n,c))

76 simuln = 'Simulation: ' + str( np.mean(d[-3*tfinal/4:]) )

77

78 plt.figure( figsize=(6,5) )

79 plt.plot(np.arange(tfinal), d, '-r')

80 plt.plot([0,tfinal],[taylor88(n,c)]*2, '--b')

81 plt.text( 100, 0.2, theory )

82 plt.text( 100, 0.1, simuln )

83 plt.ylim([0,1])

84 plt.xlabel("time in generations", fontsize=12)

85 plt.ylabel("global mean dispersal rate", fontsize=12)

86 plt.show()
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