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 Abstract 

The present study reports the characterization of transient flow and transient thermal 

behavior of phase change material (PCM) during solid-liquid phase change (melting) 

through experimental investigation. Two specific aspects of the current work, both 

important in the field of latent heat thermal energy storage, are to investigate the influence 

of the flow behavior within liquid PCM on the melting and heat transfer processes, and the 

impact of heat source orientation on the underlying melting and heat transfer processes. A 

relationship between heat source orientation and the Nusselt number was discussed. The 

results show that the fluid velocity is critical for both the heat transport within the liquid 

domain and the overall melting pattern and rate. These results further extend the 

understanding of phase change and the associated heat transfer processes in the PCM and 

provide comprehensive benchmark data for the improvement of numerical models 

simulating the solid-liquid phase change process. 
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Latent Heat Thermal Energy Storage, Phase Change Materials, Particle Image 
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Chapter 1  

1 Introduction 

Energy is an indispensable part of everyday human life. Powering appliances in homes and 

offices, heating and cooling living spaces, traveling to and from work, and manufacturing 

goods all require some form of energy. By now, for most, it is expected that this energy 

supply will be reliable and available on demand. However, with growing concerns 

surrounding the scarcity of conventional energy resources and the environmental impact 

from the utilization of these fossil-based energy resources, there is a desperate and urgent 

need to explore alternative options to fulfill energy demand while mitigating the 

environmental damage. Furthermore, careful planning and consideration is also necessary 

to ensure a reliable supply of energy and livable environment for future generations [1]. 

Global demand for energy consumption continues to rise. Over the past two decades, from 

1984 to 2004, primary energy consumption has grown by 49% [2]. This growth is 

forecasted to continue, with estimates predicting that by 2040, there will be a further 

increase of 28% in the global  energy use [3]. The ongoing rise of global energy 

consumption can be attributed to, in part, a combination of increased growth in residential, 

commercial and transportation sectors partly due to increasing global population [4] and a 

growing middle class with a desire for an improved lifestyle [5]. This expanding middle 

class is most prevalent in emerging economies, where it is predicted that by 2020, the 

energy demand will exceed that of developed countries [2]. 

A significant consequence of this increased energy consumption (primarily from fossil 

fuels) is the rise in global greenhouse gases (GHG), where over half of the current 

emissions (in 2017) can be attributed to energy use (see Figure 1) [6]. There is a growing 

concern over these rising GHG and their negative impacts on the planet. These emissions 

are primarily in the form of CO2 which has steadily increased, doubling in the past 40 years 

(see Figure 2) [6].  
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Figure 1: Estimated shares of global anthropogenic GHG, 2014 [6] 

Rising GHG, including CO2 emissions have a determinantal impact on the environment, 

trapping heat and raising global surface temperatures. Desertification, sea level rise, ocean 

acidification, decreased production of plant nutrition, and rising pollution levels are only a 

few of the many, well documented consequences of the rising GHG [7], [8]. Hence, with 

the overwhelming evidence that humans have contributed to the acceleration of global 

warming through energy consumption from conventional resources, there is an increasing 

pressure to rethink current practices. Many of the conventional energy sources such as 

natural gas and coal produce high levels of pollution. As well, due to their unrenewable 

nature and finite availability, their ongoing use is unsustainable [9]. Hence, there is an 

urgency to explore clean, renewable energy resources, i.e. ones that do not contribute to 

GHG. 



3 

 

 

 

Figure 2: World CO2 emissions by sector [6] 

With the transition of energy generation towards more renewable sources, such as wind 

and solar, a significant restructuring of power generation, consumption, and use will be 

necessary. While the potential for clean energy is great, many renewable energy sources 

still suffer from new challenges not necessarily considered before. These include mismatch 

between supply and demand, fluctuation of the energy intensity with seasonal variation, 

dependency on current weather conditions and unpredictable availability of energy sources 

[10]. Ultimately, due to the intermittency of their supply (i.e. lack of wind, sun, etc.), 

renewable energy sources in their current form are not considered as reliable resources to 

provide consistent energy supply. 

This poses a problem for many of the current energy grids which rely on a steady energy 

source. More conventional forms of energy resources, such as coal, nuclear, natural gas 

and hydro, all operate at predictable production levels, able to match supply and demand. 

However, when the energy source is inconsistent and unpredictable, as it is with many 



4 

 

 

renewable energy sources, growing pressure is placed on developing methods to increase 

consistency. One such method to improve the consistency of energy supply from renewable 

resources is through energy storage [11]. Furthermore, with fossil fuels remaining a 

dominant energy source to meet rising energy demand, increasing pressure is placed on 

energy conservation as fossil fuel resources are finite. Energy storage is again a potential 

solution to conserve energy.  

1.1 Energy Storage 

Energy storage is an important component in both the conservation and utilization of 

generated energy. Through the storage of energy during off-peak times, or storage of excess 

and waste energy, the reliance on conventional energy resources can be reduced.  

Within Canada, solar and wind energy are two of the fastest growing sources of electricity 

production [12]. Unlike conventional sources, such as fossil fuel or hydro, these types of 

sources are highly dependent on uncontrollable factors such as the availability of sunlight 

or wind. However, by utilizing stored energy, acquired during times when excess energy 

is available, supply can be provided at all times, even when the current generation sources 

may be reduced. This combination of generation and storage can mimic a more traditional 

type of energy production system [11]. 

Energy storage could also be utilized to improve the overall efficiency through the 

recapture of waste heat. In industrial processes involving metallurgy or chemical reactions, 

as well as mechanical-based thermodynamic systems, over 50% of the total input energy 

is discarded as waste heat [13]. In the U.S manufacturing sector, approximately one-third 

of the total energy is rejected as waste heat. Specifically, most of this wasted heat is 

considered low-grade energy, often discharged into the atmosphere through exhaust gasses 

[14]. This low-grade thermal energy is difficult to reuse and is often wasted. However, by 

developing a process through energy storage to recover and reutilize even a fraction of this 

heat, the percentage of wasted thermal energy could be drastically reduced, providing 

positive economic benefits while reducing environmental impacts [1]. 
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Energy storage can be classified and divided into three primary categories: mechanical, 

electrical and thermal.  

1.1.1 Mechanical Energy Storage 

Mechanical energy storage is the most common large-scale type of storage. Mechanical 

storage is primarily in the form of pumped hydropower storage, where excess energy is 

used to store potential energy in the form of water that is pumped to higher elevation. 

Another form of mechanical energy storage which works on a similar principal, is 

compressed air energy storage (CAES) which uses excess energy to drive compressors, 

storing compression energy. Both storage methods are primarily utilized for large-scale 

and/or long-term energy storage [15]. Flywheels, another type of mechanical storage, 

converts excess energy into the form of rotational (kinetic) energy. However, unlike 

pumped hydropower storage and CAES, they are predominantly used for intermediate 

energy storage [16]. All types of mechanical storage require a relatively large footprint. 

Hydropower storage, which accounts for 99% of the total global storage capacity [17], use 

expansive reservoirs which are difficult to zone, and can negatively influence the 

surrounding environment [15].  

1.1.2 Electrochemical Energy Storage 

Electrical energy storage consists primarily of rechargeable batteries. These batteries are 

charged through a chemical reaction, induced by applying direct electric current. When 

discharged, the stored chemical energy is converted back to electrical energy. Today, 

electrochemical energy storage can provide very energy dense storage and it has the distinct 

advantage of allowing direct storage of electrical energy. However, it is often very costly 

to provide this storage on large scales. Therefore, while advancements have been made, it 

is still predominantly used with end-user storage, often utilized by consumers for 

temporary storage in personal devices [17]. 

Other electrochemical energy storage may include supercapacitors. These storage devices 

generally have lower energy density, often around 10% of that of a comparable battery 

[18]. However, these supercapacitors have a high power density, allowing them to rapidly 
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charge and discharge. This makes them ideal for applications that often experience either 

a rapid surge of excess energy or are required to provide a burst of energy [15]. 

1.1.3 Thermal Energy Storage 

Thermal energy storage (TES) is the storage or removal of internal energy in the form of 

heat. It can be subdivided into sensible heat, latent heat and thermochemical heat. Sensible 

and latent heat storage involve the transfer of thermal energy through a temperature 

gradient. Thus, to store either form there needs to exist a temperature difference between 

the transfer and storage medium. Thermochemical heat storage involves endothermic 

chemical reactions and are less dependent on existing temperature gradients. When 

choosing an appropriate storage medium, crucial criteria include high stability from 

thermal cycling and resistance to long term degradation of thermal properties [16]. 

1.1.3.1 Sensible Heat Storage 

The most common form of thermal energy storage is sensible heat storage. Sensible heat 

storage involves increasing or decreasing the temperature, and therefore internal energy, 

of the storage medium. This storage medium could either be in a fluid state (liquid or 

gaseous) or a solid state. However, due to lower specific heat and pressurization problems, 

gaseous phases are not a feasible nor practical option for the thermal energy storage. Thus, 

a sensible heat storage medium is either in the liquid phase (e.g. oil, water, molten salts) or 

the solid phase (e.g. stone, concrete, metal). Since sensible heat storage only involves 

temperature change in a single phase, a high specific heat capacity is desirable [19]. 

Water is the most common and economical type of sensible storage medium because it is 

readily available, has high specific heat and low cost. It is typically used in residential 

applications where the amount of stored thermal energy required is minimal. Water heaters 

and space heating are two common applications. For applications requiring high thermal 

energy storage, inorganic salts or metals are generally used. While water thermal storage 

is used in applications between 0-100 Celsius, salts and metals can be used in the range of 

120-1400 Celsius [19]. 
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The amount of thermal energy stored in a medium is dependent on the mass and 

temperature change. It can be expressed as a function of the mass, 𝑚 [kg], the specific heat 

capacity, 𝑐𝑝 [kJ/kg K] and the change in temperature, ∆𝑇 [K]:  

 𝑄𝑠 = 𝑚𝑐𝑝∆𝑇 (1.1) 

1.1.3.2 Thermochemical Storage 

In thermochemical energy storage, reversible chemical reactions are used to charge and 

discharge the thermal storage. Primarily, these reactions occur in either the solid or liquid 

state. Furthermore, this type of storage often uses a mixture of both sensible and/or latent 

heat storage in combination with the chemical reactions. The primary advantage of this 

type of storage is the ability to store thermal energy over long periods of time. While 

sensible and latent heat storage are often used for relatively short-term storage, 

thermochemical energy storage can be used for long term applications, such as seasonal 

storage. This is because, due to the chemical reactions in this type of storage, little energy 

is lost over time and the storage medium can be left at ambient temperatures [20]. 

Thermochemical TES involves an endothermic reversible reaction, where the 

thermochemical component 𝐶𝐴𝐵, with the addition of heat, is separated into reactants, 𝐴 

and 𝐵, which can then be independently stored. When combining the reactants, heat is 

released. 

 𝐶𝐴𝐵 + heat ⇄ 𝐴 + 𝐵 (1.2) 

Thermochemical storage is still in its infancy of development, with minimal commercial 

presence. Currently, high costs and degradation of chemical reactants during thermal 

cycling are primary barriers preventing this type of storage from commercial use. 

Additionally, these types of endothermic reactions occur above 0 Celsius, limiting their use 

in cold temperature and cooling applications [21]. 

1.1.3.3 Latent Heat Storage 

Latent heat storage utilizes the enthalpy of phase change of a material to store energy. This 

involves the energy that is stored or released during the phase change of a material, 
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primarily between solid and liquid states due to practical reasons. Since heat is transferred 

during phase transition, unlike sensible thermal energy storage, this type of storage is 

theoretically near isothermal. This is beneficial for applications which require a constant 

temperature or when the charging and discharging of heat is within a narrow temperature 

band. Furthermore, the latent heat storage is attractive due to the high energy storage 

density, gained from the exploitation of the enthalpy of phase change. Using equal masses 

of water as an example, to match the total latent heat energy released during ice freezing, 

it would require sensibly cooling liquid by 80 Celsius [19]. The differences between 

sensible and latent heat storage is shown in Figure 3. Latent heat can store thermal energy 

at a nearly constant temperature, whereas sensible heat storage requires a large temperature 

difference, i.e. the greater the temperature of the medium, the more heat stored. 

 

Figure 3: Sensible and latent heat storage principles 

The total energy stored in latent heat storage can be expressed as a function of the materials 

mass, 𝑚 [kg], and latent heat of the phase change of the material, ℎ𝐿 [kJ/kg]. 

 𝑄𝐿 = 𝑚 ∙ ℎ𝐿 (1.3) 
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Materials used in latent heat storage are referred to as phase change materials (PCMs). 

Water is one of the most common type of PCM, however, it is primarily limited for cooling 

applications. By using PCMs with different melting temperatures, latent heat storage can 

be implemented over a wide temperature range. Currently, there are commercially 

available PCMs with melting temperature ranging from below -33 Celsius, to above 850 

Celsius [22].  

Often latent heat storage systems use a combination of both sensible and latent heat storage. 

That is, as the storage medium is warmed or cooled in a single phase, sensible heat storage 

occurs, while the latent heat storage occurs during phase transition. Therefore, for a system 

utilizing solid-liquid phase transition, the total heat storage capacity is often expressed as 

[23]: 

 
𝑄𝑇 =  ∫ 𝑚𝑐𝑝𝑠

𝑑𝑇
𝑇𝑙

𝑇1

+ 𝑚ℎ𝐿 + ∫ 𝑚𝑐𝑝𝑙
𝑑𝑇

𝑇2

𝑇𝑙 

 
(1.4) 

Where 𝑚 [kg] is the total mass of heat storage medium, 𝑐𝑝𝑠
 and 𝑐𝑝𝑙

 [kJ/kg.K] are the 

specific heat capacities for the solid and liquid phases, respectively, and ℎ𝐿 [kJ/kg] is the 

latent heat of fusion. The variables, 𝑇1, 𝑇𝑙 and 𝑇2 [K] refer to the initial/final (depending 

on melting/freezing) solid temperature, the melting temperature and the final/initial 

(depending on melting/freezing) liquid temperature, respectively. The first term 

corresponds to the sensible energy of the solid PCM, the second term is the 

absorbed/released latent energy and the third term is the sensible energy of the liquid PCM 

[23]. 

1.2 Comparison Between Types of Energy Storage 

Each energy storage system offers distinct advantages and disadvantages, and the 

dominance of one type over another is highly dependent on the potential application of the 

storage. Thus, determining the superiority of one type of energy storage over another is a 

trivial process. It is likely that with the increase in renewable energy sources, and with 

energy efficiency becoming a crucial criterion, a combination of several types of energy 

storage systems will become necessary, as it is disadvantageous to rely solely on one 
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technology. Previous reviews of each energy storage technology have been considered 

[16], [24], [25]. These reviews base their comparisons on criteria such as cost, energy 

density, durability, efficiency and environmental impact.  

Focusing on the most impactful benefits and drawbacks, a brief comparison can be 

conducted. Mechanical energy storage is frequently utilized in large scale applications, 

allowing for direct storage of excess potential energy such as pumped hydropower. 

However, mechanical energy storage often requires a large footprint. This limits its 

application in dense urban areas where energy demand is greatest [26]. Additionally, since 

this storage type often requires the conversion between multiple forms of energy, namely 

between electrical and mechanical (kinetic/potential) energy, significant losses can occur 

during this conversion. Electrochemical energy storage has a high energy storage density 

and allows for direct electrical energy storage. There exists great potential for both small 

and large-scale applications, with the most likely scenario involving end user storage in 

residential applications. However, the cost, short lifespan and environmental impact from 

insufficient established recycling programs remain as challenging concerns which cannot 

be overlooked [27]. Thermal energy storage can be used in small, medium and large-scale 

applications. It has the advantage of allowing direct energy transfer from heat sources, such 

as solar energy or waste heat. Additionally, the potential exists to incorporate TES with 

existing systems, to improve the efficiency of energy consumption. Latent heat thermal 

energy storage (LHTES) is attractive because it [16], [24]: 

• Provides high energy storage density  

• Is available over an extensive range of temperatures and, 

• Provides nearly isothermal thermal energy storage; ideal for temperature sensitive 

applications.  

LHTES does have drawbacks however, and there exists a significant research opportunity 

to advance the technology and improve the potential applications. Due to the complicated 

nature of phase change, with simultaneously varying solid and liquid fractions, the heat 

transfer processes are complex and transient. Further studies into the processes involved 

can help to reduce adherent weaknesses in PCMs. 
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1.3 Phase Change Materials 

Phase change materials are materials with relatively high latent heat storage capacity. A 

wide range of PCMs have been developed with various melting and vaporization 

temperatures, increasing their suitability for a wide range of applications.  

Depending on the type of material used for LHTES, PCMs can undergo solid-solid, solid-

liquid and liquid-gas phase transitions. Solid-liquid transition is the most commonly used 

phase transition, because as mentioned earlier, during liquid-gas transformation, there are 

high volume and pressure changes creating practical problems. Similarly, there are very 

few PCMs exist which have suitable transition temperatures for solid-solid transformation, 

limiting their use [19]. 

PCMs can be classified into three primary groups: organic, inorganic and inorganic/organic 

eutectics. A breakdown of each primary and secondary classifications is shown in Figure 

4 [23]. 

 

Figure 4: Breakdown of primary and secondary PCM classifications [23] 
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Numerous reviews have been conducted of PCM classifications, comparing properties, 

characteristics, and highlighting benefits/drawbacks of each group [28],[29],[30],[31],[32]. 

In summary, the primary focus is on desirable thermal, physical and chemical properties 

when selecting a suitable PCM for LHTES. The advantageous thermal properties include: 

• Appropriate phase transition temperature 

• High latent heat capacity 

• High thermal conductivity.  

Thermal conductivity is a concern for many PCMs, as most suffer from low conductivity 

in all phases; an undesirable trait for thermal energy storage.  

Desirable physical properties of PCMs include: small volume change between phases, high 

density and congruent melting. In terms of chemical properties, high chemical stability 

with thermal cycling, low reactivity with storage enclosure, low toxicity and low 

flammability are all desirable traits. Additionally, PCMs that do not suffer from 

supercooling are advantageous.  

Selection of the appropriate PCM depends on the type of application. Often, the critical 

selection criteria is dependent on the operating temperature range of the proposed 

application, and as such, the ideal PCM can be selected with a phase transition temperature 

in that range. The PCM selection can then be further narrowed through selection methods 

considering required thermal, physical and chemical properties [23]. 

1.4 Literature Review 

Promoted by the greater usage of PCMs and LHTES, an increasing number of studies have 

been conducted to investigate the solid-liquid phase change through characterization of the 

thermal behaviors. Overwhelmingly, these studies are motivated by the rise in alternative 

energy sources to combat the growing concerns surrounding fossil fuel consumption and 

related consequences. Conducted studies include analytical, numerical and experimental 

work. However, often, due to the challenging nature of the two-phase investigations, 

numerical and experimental work are most prevalent in this field.  
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Some of the earliest studies on two-phase heat transfer considered only one-dimensional 

conduction and ignored effects of natural convection in the liquid phases. These early 

works, most notably by Stefan in 1891 [33] on sea ice formation, continue to impact the 

scientific community. Although it requires significant assumptions, the mathematical 

model, commonly referred to as the Stefan problem, provides a reasonable approximation 

of the temperature distribution within a homogeneous medium undergoing phase change 

[34].  

Presently, it is well established that natural convection plays an important role in liquid 

phase during melting. Studies conducted by Sparrow et al. [35] and Bathelt et al. [36] are 

two of the earliest published studies that experimentally investigated two phase melting 

while considering convective heat transfer. Sparrow et al. [34] concluded through 

experimental work that natural convection has a dominant role in the melting of a solid, 

and Bathelt et al. [35] found that a combination of the transient melt shape (i.e. solid-liquid 

interface), surface temperature and heat transfer coefficients contribute to the significance 

of natural convection. In both studies it was concluded that natural convection should be 

considered in both the analysis and design of phase change systems and should not be 

neglected.  

Recent progress varies across many different aspects in the field pertaining to heat transfer 

for thermal energy storage. Due to the presence of natural convective heat transfer, the 

geometry of the PCM container and heat source/sink orientations are important factors in 

the overall behavior of the heat transfer process and as such, investigations have been 

conducted to study the heat transfer characteristics in different enclosure geometries. 

Similarly, due to the low thermal conductivity of PCMs, research work has also been 

focused on the ways to improve heat transfer. Finally, prompted by the push towards the 

integration of thermal storage systems in renewable energy and sustainability applications, 

there are a growing number of studies pertaining to applications of PCMs and TES. As 

such, within this review, topics are divided into studies which primarily focus on 

investigating PCM phase change heat transfer characteristics, PCM based heat transfer 

enhancement methods and applications of PCM based TES. Comprehensive review 

summaries have also been reported in the literature [37], [38], [39]. 
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1.4.1 Investigation of Heat Transfer Characteristics 

Studies investigating the fundamental heat transfer characteristics present in phase change 

often utilize simplistic enclosure geometries. These enclosures are often either rectangular 

[39], [40], [41], cylindrical [42], [43], [44], [45], or spherical [46], [47]. Studies either 

include insulated walls, with one vertical/horizontal wall as the heat source (heated) and 

another as the heat sink (cooled) or only insulated walls and a single heated wall. 

Commonly, it is determined that the melting process is dominated by conduction in the 

initial stages of heating when the heat transfer medium remains solid and after this initial 

stage, when melting is initiated, natural convection becomes the dominant heat transfer 

mode within the liquid region [48], [49], [50], [51], [52].  

C.-J. Ho and R. Viskanta [53] experimentally, and numerically studied the melting of n-

octadecane, isothermally heated from a vertical wall within a rectangular cavity. 

Comparison between experimental and mathematically predicted melt front profiles and 

volume fractions were conducted, finding increasing discrepancy between the two. This 

error was attributed to the neglection of volumetric expansion in the mathematical models 

and the coarseness of the utilized grid. It was concluded that melt rate, melt interface 

profiles and heat transfer are all significantly influenced by the buoyancy induced fluid 

motion in the liquid region.  

The work by Wang et al. [51] looked at the melting behaviour of the PCM, polyethylene 

glycol 900 during constant heat flux melting in an insulated rectangular enclosure. In their 

model, one vertical wall was heated, and the adjacent wall was cooled through a heat 

exchanger. Thermocouples along the top wall, bottom wall and mid-plane were utilized to 

calculate convective heat transfer rates and direct visual measurements were used to 

continuously determine the temporal position of liquid-solid interface. Temporal Nusselt 

number results identified three heat transfer regimes, corresponding to conduction 

dominant, a combination of conduction and convection and convection dominant heat 

transfer. A critical Rayleigh number was determined, signifying the transition from 

conduction to the convection regime.   
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Shokouhmand and Kamkari [49] investigated the heat transfer characteristics of lauric acid 

(an organic PCM) in an insulated vertical rectangular enclosure subjected to heating from 

a single vertical wall. Photographs, combined with temperature data, were used to infer 

flow structures and characterize the heat transfer processes. Four melt stages were 

observed: dominant conduction, transition, dominant strong convection and weak 

convection. Additionally, it was found that the intensity of the convection current decreases 

as the melt front moves away from the hot wall source, contributing to the reduction in the 

melting rate.  

Kamkari et al. [50] further expanded upon their previous work [49], by investigating the 

effect of inclination angle on the heat transfer characteristics of lauric acid in a rectangular 

enclosure. Experiments were conducted with a heat source at 0 degrees (vertical), 45 

degrees and 90 degrees (horizontal). It was found that the inclination angle of the heat 

source had a significant effect on both the heat transfer rate and the melting time of the 

PCM. It was suggested that these heat transfer enhancements were due to an increase in 

the natural convection currents present in the liquid PCM.  

Benard et al. [54] also studied, both numerically and experimentally, the melting process 

in a rectangular enclosure with one vertically heated wall using pure n-octadecane as the 

PCM. All other walls were insulated and the wall adjacent to the hot wall was cooled and 

held at a constant temperature, 0.4 Celsius below the melting temperature. The solid-liquid 

interface, observed through imaging, combined with thermocouple temperature 

measurements were used to study the melting process. It was concluded that the behaviour 

of melting could be approximated as a two-stage process, before and after the melt front 

contacted the cold wall.  

Bashar and Siddiqui [55] investigated the melting behavior of a PCM and the associated 

heat transfer, induced by a U-shaped heat source in a rectangular enclosure. Paraffin wax 

was used as the PCM and the experiments were conducted at four input heat flux 

conditions. They measured the transient local heat transfer coefficient and found that the 

heat transfer coefficient of the PCM in the inner region, enclosed by the U-tube, was 35% 
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higher than that in the outer region. They also proposed a new Nusselt-Rayleigh numbers 

correlation to characterize the heat transfer during melting by a U-shaped heat source. 

1.4.2 Heat Transfer Enhancement 

As previously mentioned, a major drawback of many potential PCMs is the low thermal 

conductivity. This is especially the issue in organic PCMs which often have a liquid 

thermal conductivity of approximately 0.15 to 1 W∙m-1∙K-1 [56]. The poor thermal 

conductivity limits the ability to rapidly transfer heat in and out of the thermal storage. As 

such, a significant number of studies have been conducted to improve heat transfer in PCM 

based thermal energy storage. A detailed review of experimental and computational studies 

pertaining to the thermal conductivity enhancement of PCM was conducted by Fan and 

Khodadadi [57].  

A common technique to enhance heat transfer is by using fins. Several studies have been 

conducted to introduce fins into the PCM medium [58], [59], [60], [61].  

Bugaje [62] looked to overcome the slow thermal response of organic PCMs contained 

within plastic enclosures. Within a vertical glass column, paraffin wax with embedded 

aluminum fins was studied during heating and cooling. The fins were utilized to increase 

the overall heat transfer to/from the PCM. Overall melting and solidification times were 

recorded, and it was found that the phase transition time could be reduced by over two 

times during heating, and four times during cooling. 

Choi and Kim [63] also investigated heat transfer enhancement with the addition of 

horizontal stainless-steel fins, attached to the outer surface of a vertical heat transfer tube. 

This tube was immersed within the high heat PCM, magnesium chloride hexahydrate. 

Three cases were considered with an un-finned, 5-fin-tube and 10-fin-tube. It was found 

that while the addition of 5-fins did increase melting by 25% when compared to the un-

finned case, the addition of 10-fins had an almost negligible effect on melted volume. The 

heat-transfer coefficient was calculated for all cases and found to increase with increasing 

number of fins.  
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Other techniques to improve thermal conductivity involve adding highly conductive 

particles into the PCM medium to increase thermal conductivity. Often these particles are 

classified as nanoparticles which are embedded into the phase change material [64], [65]. 

Motahar et al. [66] experimentally investigated n-octadecane bounded in a rectangular 

enclosure heated from one vertical wall. All other walls were insulated. Nanoparticles were 

added to enhance the effective thermal conductivity of PCM. They observed a reduction in 

the melting rate as time progressed due to the reduction in the natural convection current, 

which was attributed to the increase in viscosity due to the nanoparticles addition. 

Bashar and Siddiqui [67] investigated the transient melting and heat transfer characteristics 

of a nanoparticle-PCM mixture. Four different types of nanoparticles were tested: silver, 

copper oxide, aluminum and multi-walled carbon nanotubes and were added to the PCM, 

paraffin wax. A surfactant was added to the PCM to improve nanoparticle dispersion. 

Results show improvements to thermal performance for all studies with nanoparticles. It 

was shown that the addition of nanoparticles increases the PCM viscosity. However, the 

added surfactant was found to counteract the viscosity rise from the nanoparticles, limiting 

any negative reduction in the natural convection. Silver and the copper oxide nanoparticles 

were found to be the most effective, increasing heat transfer coefficients by approximately 

18% and 14%, respectively. It was concluded that nanoparticle-enriched PCM is beneficial 

for latent heat TES.  

Other methods of heat transfer enhancement include methods such as the addition of carbon 

fibers [65], [68] and with technological advances, carbon nanotubes [69]. 

A study by Oh and Yang [70] looked at improving heat transfer in the PCM, n-octadecane, 

through ultrasonic vibrations. The vibrations were used to accelerate the melting process. 

A thermal camera coupled with particle image velocimetry was used to examine the heat 

transfer. They concluded that ultrasonic vibration led to an increase in upward flow, 

enhancing heat transfer. Analysis of particle image velocimetry data was limited to a 

qualitative analysis between the cases with and without ultrasonic vibration. 
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1.4.3 PCM-based TES Applications 

There are many studies investigating practical applications of the PCM-based TES 

systems. Dincer and Rosen [71] provided an extensive overview of various TES systems.  

Other studies also provided reviews on current and potential implementations of PCM-

based TES systems [22], [72], [73].  

Common PCM-based TES applications include, but are not limited to: storage of solar 

thermal energy [74], [75], [76], [77], passive cooling in buildings [78], [79], [80], 

integration with electricity generation, utilizing off-peak demand TES [81], [82] [83] and 

cooling from engines (combustion or electric) [84], [85]. 

Sun et al. [86]  developed a novel TES system to recover heat from industrial residual water 

(IRW), a byproduct of a production process which was used during operation to heat the 

production plant. However, to meet heating requirements, production was required to run 

at less than 100% capacity to distribute the workload and allow continuous operation 24 

hours of the day. By storing excess waste heat during production, the plant could run more 

efficiently at full capacity, and utilize stored thermal energy during plant shutdown. A 

mathematical model, validated with experimental data, was generated to test the potential 

application and benefits of a shell and tube TES system. It was concluded that such a 

system could meet heating requirements and provide over 10% energy savings for the 

overall production unit.  

An experimental study was conducted by Murray and Groulx [87] to investigate the 

charging and discharging behaviour of the PCM, lauric acid, in a cylindrical latent heat 

energy storage system. Two copper tubes (one for charging the PCM with heated water 

and one for discharging with cold water) with horizontal circular fins were placed within 

the PCM which was encapsulated with a surrounding vertically oriented acrylic tube. It 

was found that natural convection was significant during charging (melting), and had 

negligible effect during discharging (freezing). This was concluded from the observed 

independence of PCM temperature on height within the enclosure for the discharging case.  
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1.5 Motivation and Knowledge Gaps 

As previously discussed, in efforts to reduce GHG, thermal energy storage can play a 

crucial role in two major aspects, 1) to conserve energy from conventional fossil fuel 

sources and 2) to store energy from intermittent renewable energy sources to improve the 

reliability and consistency of clean energy supply. Specifically, solid/liquid latent heat 

thermal energy storage has shown to have distinct advantages over other storage methods. 

This type of storage does have challenges however, particularly due to the complexity of 

the underlying physical processes involved during phase change. The heat transfer during 

phase change is complex and transient, with varying magnitudes of conduction and 

convection from the simultaneous changes in liquid and solid fractions. The complexity is 

further increased with the non-linear behaviour of the solid-liquid interface. As well, during 

natural convection, the orientation of the heat source/sink plays an important role in the 

overall processes involved.  

It has been found that while previous experimental studies have advanced the scientific 

understanding of the heat transfer processes during PCM phase change, a significant gap 

remains in our understanding of the underlying liquid flow behaviour. Previous studies are 

limiting as they primarily focused on temperature distributions within the PCM. From these 

studies the flow behaviour was only inferred from the temperature measurements and 

imaging. Detailed characterization of the fluid velocity behavior throughout the liquid 

PCM is vital from two fundamental aspects:  

1) The knowledge of the fluid flow dynamics is vital in the understanding of underlying 

natural convection processes. Convection heat transfer is dominant over the conduction 

heat transfer and hence its characteristics significantly influence the overall heat transfer.  

2) The flow patterns within the liquid domain governs the spatio-temporal dynamics of the 

solid-liquid interface, which in turn influence the melting/solidification process. Hence, the 

knowledge of the flow behavior provides a deeper insight into the melting/solidification 

behavior of the PCM. 



20 

 

 

Furthermore, numerical studies of PCM have acknowledged the limitations of the current 

numerical models to accurately capture the phase change processes [46], [88], [89], [90]. 

The numerical studies often accurately simulate melting behaviors at initial times. 

However, there is often an observed divergence between numerical and experimental 

results which typically increase both during times of strong natural convection and at later 

stages of melting. Detailed experimental characterization of the flow dynamics along with 

the temperature behavior can provide benchmark data that is invaluable for numerical 

studies through numerical model improvement. The knowledge advancement of the 

fundamental thermo-fluids processes during phase transition in a PCM-based thermal 

storage is essential to improve these energy storage systems for practical applications. 

The present research is an effort towards this knowledge advancement by addressing some 

of the current knowledge gaps in the scientific literature related to the phase change 

process. While these knowledge gaps include both the charging and discharging aspects of 

a TES i.e. both melting and freezing processes of a PCM, due to experimental challenges, 

specifically during PCM freezing, the present research is focused on characterizing the 

melting behaviour of the PCM. 

1.6 Thesis Objectives 

The objectives of this experimental study are to: 

1) Conduct a detailed investigation of the transient flow behavior in the liquid domain 

of phase change material during solid-liquid phase change (melting) 

2) Conduct a detailed investigation of the transient thermal behavior of phase change 

material during solid-liquid phase change (melting) 

3) Investigate the effects of heat source orientation on the transient heat transfer 

processes of natural convection-driven melting of the phase change material.  

The liquid flow behaviour will be investigated through particle image velocimetry, a non-

intrusive measurement technique used to quantify flow velocity. The thermal behavior will 

be studied through high-resolution thermocouple temperature measurements. 
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1.7 Thesis Layout 

Chapter 1 provides background information on current energy supply, the need for energy 

conservation and renewable energy sources. The concept of energy storage is introduced 

and the role that this storage will play in the transition from convectional to renewable 

energy is highlighted. A summary of each type of energy storage is provided, and a 

comparison between each, with benefits and drawbacks, are discussed. A brief background 

of PCMs is provided and a literature review of solid-liquid phase change studies is 

included. Motivations, knowledge gaps and thesis objectives are also discussed.  

Chapter 2 contains the methodology and experimental setup. Previous designs are 

discussed, highlighting the drawbacks which led to further iterations. The full details of the 

final experimental setup are presented, including the PCM enclosure, PCM properties, 

heating circuit, particle image velocimetry measurements, temperature measurements, 

experimental uncertainty, and data analysis processes.  

Chapter 3 includes the results and discussion of recorded experimental data. Combined 

analysis of both velocity and temperature measurements enable a detailed discussion into 

the underlying heat transfer characteristics present during the melting of the PCM paraffin 

wax.  

Chapter 4 summarizes and provides conclusions of the conducted study. Future 

recommendations are presented.  
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Chapter 2  

2 Methodology and Experimental Setup 

Experiments were conducted in a laboratory setting at the University of Western Ontario. 

Two primary experimental setups were constructed to measure and characterize 1) the fluid 

velocity fields within the liquid PCM region and 2) the temperature field within the entire 

(solid and liquid) PCM domain. The construction of the PCM enclosure, including 

materials, insulation, and the heat source, remained unchanged between both setups. Two 

enclosures were constructed to mitigate interferences between the Particle Image 

Velocimetry (PIV) imaging technique for velocity measurements and the temperature 

measurements. 

2.1 Preliminary Experimental Setup Designs 

Due to the novel approach of velocity fields measurement within liquid PCM, several 

iterations of the experimental setup, mainly the PCM enclosure, were considered before 

selecting the final version.  

2.1.1 First Iteration 

The initial design (see Figure 5) was a rectangular enclosure constructed primarily from 

acrylic and glass sheets and was used to contain the PCM, paraffin wax. A copper pipe 

(right side of enclosure, surrounded by black foam insulation in Figure 5) was utilized as 

both a vertical wall of the enclosure and a heat source with heated water pumped through 

it. This design was primarily utilized to investigate the behaviour of liquid PCM during 

melting and determine if PIV measurements were possible. The design did have drawbacks 

however, most notably the uneven shape of the heat source. The cylindrical copper tube, 

due to its convex shape, altered the overall fluid flow and did not provide a consistent, 

approximately 2D vertical heat source.  
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Figure 5: Initial PCM enclosure 

2.1.2 Second Iteration 

The second iteration of the PCM enclosure was constructed from a glass (front face) and 

acrylic (back face) sheet, both measuring 120mm high (H), 60mm wide (W) and 10mm 

deep (D). The left and bottom face of the enclosure was constructed from PVC plastic. The 

glass was chosen for its optical properties, with low distortion of the camera image. Again, 

paraffin wax was chosen as the PCM. In this iteration, the heat source was modified to 

address the previous issues of an uneven heating surface. A brass bar functioned as the heat 

source and a vertical wall, replacing the copper pipe. Instead, a copper pipe was brazed to 

the external face of the brass bar, and heated water was pumped through the pipe to provide 

the heat source.  

Figure 6 highlights the copper pipe and brass plate. The camera positioning and field of 

view are also shown in Figure 6. As shown, the field of view did not extend the full height 
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of the PCM enclosure. A four-megapixel CCD camera was used, with a resolution of 2052 

x 2048 pixels. To maximize the potential vector resolution within the liquid PCM, the 

studied field of view was reduced, capturing only the upper two thirds of the enclosure. As 

well, it was assumed that since the majority of the melted fraction would occur within the 

top of the enclosure, the chosen field of view would still allow sufficient velocity data 

collection. However, after data analysis, utilizing this experimental setup, it was discovered 

that the velocity behavior would require a full field of view for proper analysis and hence 

further testing was required.  

 

Figure 6: Schematic of the second iteration of the PCM enclosure 
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2.1.3 Third & Fourth Iteration 

The third iteration the PCM enclosure expanded the captured field of view by changing the 

camera from a four to 12-megapixel sensor. As well, this iteration attempted to address the 

slow melting times experienced with the previous PCM, paraffin wax. Due to the relatively 

small temperature difference between the heated water (heated to a maximum of 80 

Celsius) and the melting point of the paraffin wax (approximately 55 Celsius), the total 

melting times were in excess of 12 hours. This made prolonged capture of the velocity 

fields a challenge and resetting the setup between trials required several days to fully melt 

and solidify the wax. Hence, lauric acid was selected as a new PCM which has a lower 

melting point of approximately 43-44 Celsius [91]. Initially, the enclosure from the second 

iteration was utilized, however it was discovered that due to the acidity of lauric acid, the 

brass bar heat source rapidly corroded and dyed the PCM, rendering it useless for further 

experimental study (see Figure 7). As such, a new heating wall was designed and machined 

out of aluminum which is relatively resistant to the acidic PCM. This aluminum heater is 

discussed in further detail in the following sections. As well, the new enclosure was 

designed with only clear cast acrylic sheets, replacing the glass, allowing for a removable 

acrylic face which enabled full access to the PCM during reset between trials. The 

removable face was sealed through a malleable plastic gasket and bolts (see Figure 7). The 

gasket during prolonged heating, however, expanded, rendering the seal ineffective, and 

allowed lauric acid to leak from the enclosure. Hence, a fourth iteration was designed, 

maintaining the previous materials and heat source, while eliminating the gasket. Instead, 

the entire enclosure was permanently sealed with a high temperature resistant epoxy. 
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Figure 7: Schematic of third enclosure iteration 

This trial proved successful in terms of data collection, allowing velocity data to be 

acquired during the lauric acid melting. Upon analysis of the data however, a major 

problem was discovered. It was found that the solubility of gases in the solid phase of lauric 

acid was significantly higher than in the liquid phase. As such, when the lauric acid was 

melted, dissolved gasses coming out of solution appeared in the liquid phase. These gases, 

appearing as bubbles in the camera images (highlighted in Figure 8), were similar in size 

to the tracer particles used in the PIV technique to show the fluid motion. Consequently, 

when processing the raw images, many of the bubbles would interfere with the analysis, 

generating false vectors as they rose to the top of the enclosure. Further post processing of 

the images to remove these false vectors was unsuccessful due to the large number of rising 

bubbles. 
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Figure 8: Highlighted bubbles from dissolved gasses during lauric acid melting 

2.1.4 Fifth Iteration 

Ultimately it was concluded that further analysis of the lauric acid would be unsuccessful 

and a fifth iteration was generated. This iteration utilized the same enclosure from the 

previous study, but replaced the lauric acid with the previous PCM, paraffin wax PCM. 

This design was the final iteration and was used for all analysis presented. 

2.2 PCM Enclosure (Final Iteration) 

A schematic of the final iteration of experimental enclosure, used in the study, is provided 

in Figure 9a. A thin, rectangular enclosure was constructed to contain the PCM and 

investigate its two-dimensional melting behavior. The internal dimensions of the chamber 

holding the PCM are 125mm tall (H), 75mm wide (W) and 12mm deep (D). The front, 

back, bottom and right walls were constructed from clear cast acrylic sheets (k ≈ 0.2 

W/m.K). The thickness of the front and back panels was 6 mm while the bottom and right 

face were 25.4mm and 50.8mm, respectively. The top face of the chamber was left open to 

atmosphere, allowing for the expansion of liquid PCM during melting. The acrylic sheets 

were chosen for their low thermal conductivity, high resistance to heat degradation and 

zero impermeability to both solid and liquid PCM. Another important reason for choosing 

the clear cast acrylic was for its excellent optical properties, providing minimal distortion 
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of the captured camera images during both the PIV and temperature measurement. The left 

wall of the enclosure was constructed from a machined aluminum bar (k ≈ 205 W/m.K). 

This bar served as the heat source for the PCM. A square, 38mm section of the aluminum 

extended from the acrylic enclosure and within this region a hole was bored lengthwise to 

allow hot water to flow through the entire height of the bar, which served as the heat source.  

The acrylic sheets were bonded together with an acrylic solvent glue, and the aluminum 

wall was epoxied directly to the acrylic sheets. This provided a leak proof design, which 

remained sealed when subjected to thermal expansion during heating. 

The entire PCM enclosure, including aluminum heater, was further insulated with 

polystyrene boards (k ≈ 0.028 W/m.K), shown in Figure 9b. The polystyrene sheets were 

25.4mm thick on each face. A section of the front and top faces was cut out of the 

insulation. This is highlighted as the semi-transparent cross hatched region in Figure 9b. 

This section was removed for short durations during imaging to provide optical access to 

the enclosed PCM (details will be provided later). Additionally, a 4mm thick sheet of 

fiberglass (k ≈ 0.038 W/m.K) was added to the sectioned cutout to reduce convective heat 

loss. 

  

Figure 9a: PCM experimental 

enclosure (insulation removed) 

Figure 9b: PCM experimental 

enclosure with insulation shown 
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The PCM enclosure, camera, and PIV optics were mounted on a hinged steel frame, shown 

in Figure 10, Figure 11, and Figure 12. Figure 10 shows the full setup, including the heating 

circuit, steel frame, PCM enclosure and PIV laser light sheet. It is shown in the X-Y plane, 

providing a front view. Figure 11 displays the steel frame with optics, camera and PCM 

enclosure rotated at three angles. Figure 12 shows the same setup as the previous two 

figures, but in the Z-Y plane, highlighting the PIV optics and the camera supports. The 

hinged steel frame shown in both Figure 10, Figure 11 and Figure 12 allowed for the 

consistent alignment of all optics and camera positioning through adjustment of varying 

angles.  

The frame is capable of pivoting between 0 degrees (horizontal) and 30 degrees (from the 

horizontal), counter-clock wise (CCW). To investigate the influence of the heat source 

inclination on the melting and associated heat transfer within the PCM domain, 

experiments were conducted at three different orientations of the PCM enclosure. These 

include, the heat source set at 0 degrees (vertical, no inclination), 8 degrees inclination and 

18 degrees inclination. For an accurate comparison between each case, equal amounts of 

paraffin wax were required in the enclosure. An open top design limited the amount of 

PCM at increasing angles if overflow was to be prevented. Thus, the tilt angles 0, 8 and 18 

degrees were selected to provide a discernable range of angles while still permitting a 

sufficient amount of PCM in the enclosure. The front view of the full frame supporting the 

PCM chamber, at all three tilt angles is shown in Figure 11. This frame facilitated an easy 

transition from 0 to 18 degrees without any need for realignments. 
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2.3 Thermal Energy Storage Medium 

A commercially available mixture of paraffin wax and copolymer alloys in the form of 

white pellets, known as Polyfin, was utilized as the phase change material. The Polyfin, 

herein referred to as paraffin wax, was chosen as the PCM for its suitable visualization 

properties for PIV measurements. That is, in the solid state it has a white appearance and 

becomes transparent (optically accessible) in the liquid (molten) state. The average melting 

point of the paraffin wax is 55 Celsius. A summary of the Polyfin thermo-physical 

properties, as per published literature, is included in Table 1. 

Table 1: Polyfin thermo-physical properties [55], [92] 

Property Value 

Melting Temperature [℃] 55.0 

Density [
𝐤𝐠

𝐦𝟑] Solid: 934.5 

Liquid: 775.0 

Specific Heat [
𝐤𝐉

𝐤𝐠 ∙ 𝐊
] Solid: 2.78 

Liquid: 2.08 

Thermal Conductivity [
𝐖

𝐦 ∙𝐊
] Solid: 0.24 

Liquid: 0.18 

Kinematic Viscosity [
𝐦𝟐

𝐬
] 5.234 x 10-6 

Latent Heat of Fusion [
𝐤𝐉

𝐤𝐠
] 180  

Thermal Diffusivity [
𝐦𝟐

𝐬
] 8.4615 x 10-8 

Thermal Expansion [
𝟏

𝐊
] 0.778 x 10-3 
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2.4 Heating Circuit 

Shown in Figure 10 are the components for the heating circuit which was utilized to melt 

the PCM. A recirculating hot water bath was used to heat the aluminum block. Water was 

heated in an insulated glass tank with two submersed 1000W electric heaters (110V, 9A 

and 220V, 4.54A). The two heaters provided redundancy in the chance of one heater 

failure. The 110V heater (Model: C10 from Haake), contained a mixing impeller to provide 

an isothermal water bath. To maintain a constant water temperature, both heaters were 

controlled with a proportional–integral–derivative (PID) controller and feedback was 

supplied through a K-type thermocouple. The water bath was held at a temperature of 80 

Celsius and it was observed that the water temperature remained within ± 1 Celsius of the 

set value during all experiments. 

Water was pumped from the tank through a centrifugal pump, running at a constant flow 

rate of approximately 0.12 L/s. The water was carried through flexible, nylon braided hose, 

with an inner and outer diameter of ¼ and ½ inches, respectively. The hose was selected 

to withstand the high temperatures while minimizing heat loss. Water entered through the 

bored hole in the base of the aluminum block and exited through the top. For a given 

experimental run, the water was pumped from the tank into the heating circuit once the hot 

water tank reached a steady state temperature. Thermocouples were placed within the 

heating tank, and at the inlet and outlet of the aluminum block, to measure and monitor the 

temperature of the supplied water.  



32 

 

 

 

Figure 10: Complete experimental setup 
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Figure 11: Schematic highlighting tilt angle of entire enclosure 

2.5 Particle Image Velocimetry 

Particle image velocimetry was utilized during the investigation of the transient flow 

behavior in the liquid domain of phase change material during solid-liquid phase change. 

2.5.1 Working Principal of PIV Technique 

Particle image velocimetry is a non-intrusive measurement technique, enabling the 

measurement and recording of instantaneous velocity fields in a cross-section of the flow 

with high spatial resolution. A typical PIV setup consists of a CCD camera, synchronizer, 

high power laser (light source), optics (to convert a laser beam into a light sheet), and tracer 

particles. 

Small non-obstructive particles, referred to as seed or tracer particles, are introduced to the 

fluid medium where the flow velocity is under investigation. A laser light sheet is used to 

light a thin (~1-2mm) plane of measurement, illuminating the tracer particles and leaving 

the surrounding fluid and background dark. Due to their small size, the tracer particles are 

assumed to follow the fluid motion. A synchronizer connected to both a CCD camera and 

the laser, synchronizes both the camera frame recording and laser pulses. Hence, in a single 

exposure PIV recording technique, each camera image corresponds to a laser pulse. This 
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method essentially ‘freezes’ the particles in place, eliminating motion blur from fluid 

motion. Additionally, the frequency of the synchronizer controls the time delay between 

subsequent images and laser pulses. An instantaneous velocity field is then obtained by 

processing consecutive camera images (for example, image one and image two) and 

determining the particles displacement. 

Analysis of PIV data involves search and interrogation windows. Image one is divided into 

regions called interrogation windows. Image two is divided into larger regions, generally 

twice the size of the interrogation window, called search windows. By cross-correlating 

between the interrogation region and search window in both images, a peak signal is 

produced, identifying the common particle displacement between images. Cross-

correlation is computed for all interrogation and search windows to provide the 

displacement of particles in the full image. The velocity vector in each interrogation 

window can then be calculated since the time delay between images is known. Combining 

all velocity vectors from each interrogation window provides the overall instantaneous 

velocity field. 

2.5.2 Implementation of PIV Technique 

In the present study, silver-coated hollow glass spheres were used as the tracer particles. 

To prepare the PCM for velocity measurements, the paraffin wax was melted outside of 

the enclosure and silver-coated hollow glass spheres were introduced into the liquid phase. 

The glass spheres, with an average diameter of 13 µm, were fully mixed into solution in a 

separate container, providing an even dispersion throughout the PCM before being added 

to the enclosure. The silver coated spheres were used as tracer particles for the PIV 

measurements. 

The PIV measurement system was comprised of a 120 mJ Nd:YAG laser (SoloPIV 120 

XT) as the light source, a 12-Megapixel CCD camera (Flare, I O Industries) with a 

resolution of 4096 × 3072 pixels to capture images and a delay generator (Model 555 

Pulse/Delay Generator) to control the timing of laser pulses. A horizontal stand, separate 

from the PCM enclosure, housed the laser and the delay generator. Figure 12 shows a side 

view of the steel frame with PIV components highlighted. The laser beam was directed at 
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the set of optical lenses affixed to the adjustable steel frame. The first optical lens (250 mm 

focal length, spherical lens, Thorlabs) reduced the diameter of the laser beam from 3-4mm 

to 2mm. The second lens (-12mm focal length, cylindrical lens, Thorlabs) split the beam 

into a horizontal light sheet. The light sheet (in the Z-direction), was directed towards a 

mirror, reflecting it vertically (Y-direction) towards the opening of the PCM enclosure. 

The light sheet spanned the entire mid-vertical plane of the enclosure.  

The CCD camera was affixed on a rail, mounted to the steel frame (see Figure 12). The rail 

allowed the camera to traverse in the Z-direction, enabling the alignment of the camera 

field of view (see Figure 10 and Figure 12) to capture the entire PCM enclosure. Eight-bit 

images at a 12-Hz sampling rate were captured using an image acquisition system (DVR 

Express CORE, IO Industries) connected to a PC and controlled by an image acquisition 

software (CoreView, I O Industries). The raw images contained a colour channel, which 

was removed during export to greyscale images only.  

 

Figure 12: Experimental setup, highlighting PIV optics and camera mount 
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Due to the slow nature of the melting progression, its behavior and associated flow field 

were captured at discrete time intervals. The melting rate slowed over time, and the interval 

of image collection increased as the experiment progressed. From the beginning of the 

heating process to first 60 minutes, images were captured every 5 minutes, beginning at 15 

minutes. This delay in initial imagining was due to the lack of melted PCM from 0 to 15 

minutes. From 60-120 minutes, images were captured every 10 minutes. The remaining 

time intervals are as follows: 120, 140, 160, 180, 210, 240, 300, 420, 600 minutes. At each 

of these time steps, the top and front insulation cover was removed during imaging. The 

cover removal is necessary for the velocity measurements by allowing both the laser light 

sheet to enter the PCM chamber through the top of the enclosure and the camera to capture 

images of the PCM via the front wall.  The images were acquired for 30 seconds and 

immediately after both insulation covers were reinstalled.  

The periodic removal of the front and top insulation (even for the short duration) allowed 

heat to escape from the chamber. To investigate whether this heat loss influenced the 

overall melting behavior and the temperature field, a separate set of experiments were 

conducted where all insulation covers remained in place throughout the entire melting 

process. The time history of the temperature data at each thermocouple location was 

compared between the two cases, i.e. periodically removed and permanent insulation on 

the front and top cover. Figure 13 shows the time history of the temperature variation at 

three TC positions, along the mid-horizontal plane of the enclosure for the two cases. The 

results show that the trends of temperature variation with time are nearly identical, a strong 

indication that the melting behavior in both cases is similar. The comparison of the 

instantaneous temperature magnitudes between the two cases show slightly higher PCM 

temperature for the permanent insulation case, which is expected. However, the statistical 

analysis using the data from all thermocouples show that the average difference in the 

temperature magnitude is approximately 2.0% of the mean PCM temperature, which varied 

between 1.0% and 4.3%. These results confirmed that the periodic removal of the front 

cover (for short times) has minimal impact on the melting behavior inside the PCM 

enclosure.  
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Figure 13: Temperature profiles at three TC positions along the mid-horizontal 

plane of the enclosure for periodically removed and permanent insulation cover. 

Right side of figure highlights the three TC positions within the enclosure. 

2.6 Thermocouple Temperature Measurements 

The second set of experiments were focused on quantifying the temperature field within 

the PCM domain, utilizing the enclosure, support frame and heating circuit from the 

velocity measurement study. Temperature measurements were conducted using 64 

independent Neoflon-PFA insulated T-type thermocouples (Omega Engineering), referred 

herein as TC. A wire gauge of 36 AGW was selected to minimize interference between the 

TC probes and the liquid flow of PCM. Each TC was rated for special limits of error (SLE) 

which corresponds to a temperature accuracy of ±0.5 Celsius. The thermocouples were 

constructed separately from the PCM enclosure and were initially calibrated using an 

isothermal water bath from InnoCal (Model #14576-00). The bath was varied from 25 to 

80 Celsius in 5-degree increments. All 64 thermocouples were placed within the hot water 

bath. At each 5-degree increment, temperature measurements from all TCs were 

simultaneously recorded and time averaged over 30 seconds. These 12 temperature 

increments were used to determine a calibration equation for each thermocouple. The 

Position  

Position 2

Position 3
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results show an almost linear trend for all calibration equations. However, it was later 

determined that the temperature reading from the InnoCal was biased, and as such provided 

temperature measurements significantly lower than that of the 64 TCs. The maximum 

standard deviation of the recorded TC temperatures was 0.35 Celsius; less than the 

manufacturer stated accuracy of ±0.5 Celsius. Therefore, the TC temperature readings were 

compared with the known PCM melting temperature to determine accuracy. Comparison 

between the recorded TC temperatures and the melt fraction from camera images was 

conducted, finding good agreement between both. As such, it was determined that the 

temperatures recorded by the TCs were accurate, with little bias, and therefore did not 

require a third-party calibration.  

Within the PCM enclosure, 47 thermocouples were arranged in a staggered grid pattern 

using 5 columns alternating between 9 and 10 rows. The spacing and TC locations are 

highlighted in Figure 14. The thermocouples were inserted into the PCM domain through 

holes drilled in the acrylic at the back of the enclosure. They were placed at a depth of 

3mm, corresponding to the midplane of the paraffin wax. The column grid spacing was 

varied depending on the distance from the hot wall. It was assumed that the largest 

temperature gradients would exist in the region closest to the hot wall. Therefore, TC 

spatial resolution increased with increasing proximity to the heat source. A column of 10 

TCs, denoted by red markers in Figure 14, were placed directly to the hot wall and epoxied 

to the surface of the aluminum bar. OmegaBond 101 epoxy (Omega Engineering) was used 

to secure the TCs to the hot wall. These TCs were used to measure the surface temperature 

of the hot wall.  

Four TCs were utilized to estimate the heat transfer from the PCM enclosure to the 

surroundings. Two TCs placed on the inside and two on the outside of the insulation 

measured the temperature gradient through the insulation during PCM melting. One TC 

measured the ambient air temperature, and two TCs placed within the hot water supply line 

were used to record the inlet and outlet temperature of the heated water pumped through 

the aluminum block Heat losses to the surroundings were calculated to be approximately 

1.34 kJ for the 0-degree tilt angle case which experienced the longest melting. This is 

approximately 7.4% of the total heat absorbed by the paraffin wax during melting. Further 
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discussion of the total absorbed energy for each tilt angle is provided in Chapter 3, however 

the results show that heat losses to the surroundings was minimal and did not significantly 

influence the overall melting behaviour. 

 

 

Figure 14: Thermocouple horizontal and vertical spacing within PCM enclosure. All 

values are in mm. 

Data acquisition for all temperature measurements, including temperature measurements 

from the PIV study, were conducted using four separate, 4-Channel National Instruments 

NI9211 and three, 16-Channel National Instruments NI9214. The sampling rate for all 

modules was synchronized to record temperature measurements every 1 second for the full 

duration of the study via LabVIEW. Temperature measurement recording was conducted 

at three angles of hot wall inclination, 0 degrees, 8 degrees and 18 degrees, matching the 

angles from the PIV study.  
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2.7 Experimental Uncertainty 

The uncertainty in the velocity values was calculated for all cases (0, 8 and 18 degrees). 

Using the results of Cowen and Monismith [93] and Prasad et al. [94], the uncertainty was 

estimated to be 0.31 pixels, corresponding to approximately 1.73% of the average mean 

resultant velocity presented. As the light sheet was passing through two different mediums, 

air and liquid PCM, with a moving air-PCM interface (free surface), there was potential 

for light sheet distortion in the liquid domain. It was observed that for all cases, despite the 

movement, the free surface remained flat (also confirmed from PIV images). Hence, the 

free surface did not cause any distortion of the laser light sheet inside the liquid PCM 

domain.  

The uncertainty in the temperature values is from a combination of both the TC uncertainty, 

and the data acquisition hardware. As provided by National Instruments, the data 

acquisition uncertainty is typically ±0.35 Celsius and ±1.1 Celsius for the NI9214 [95] and 

NI9211 [96], respectively. This uncertainty, as stated by National Instruments, accounts 

for gain errors, offset errors, differential and integral nonlinearity, quantization errors, 

noise errors and isothermal errors [96]. Therefore, accounting for the uncertainty in the TC 

themselves, the total uncertainty is ±1.6 Celsius and ±0.85 Celsius for the NI9214 and 

NI9211, respectively. 

2.8 Data Analysis 

2.8.1 PIV Velocity Fields 

Instantaneous velocity fields were computed by cross correlating two images of a given 

image pair using an in-house computer code operated in the digital image processing 

software, Heurisko (Aeon, Germany). An interrogation window of 32 × 32 pixels, a search 

window of 64 × 64 pixels and a grid space of 16 pixels (with 50% overlap) were used. This 

corresponds to a resolution of 0.73mm × 0.73mm of the velocity vectors field.  

The velocity fields at each discrete time interval were obtained from 22 seconds of 

imagining at 12 Hz sampling rate, corresponding to 264 captured images. This produced 

132 velocity fields, at each discrete time interval. The mean velocity field over a given time 
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interval was calculated by time averaging the velocity vectors at each grid point over 132 

instantaneous velocity fields. As the time-scale of the melting process was very large (i.e. 

several hours), the velocity changes within the 22 seconds of data were found to be very 

small (almost negligible). The prime purpose of time-averaging over this short interval was 

to remove noise from the velocity field at a given discrete time. Hence, the mean velocity 

field is still a representative of the instantaneous velocity field at a given discrete 

measurement time. 

A sample PIV image is shown in Figure 15(i). As figure shows, the regions of solid and 

liquid PCM are distinguishable due to the distinct gray values associated with each phase.  

An in-house image processing algorithm, developed in the MATLAB environment, 

facilitated the automatic detection of the solid-liquid interface by exploiting the distinct 

gray values of each phase. The solid-liquid interface detected by the algorithm is depicted 

in Figure 15(ii). A script was created to generate a binary image (Figure 15(iii)) through 

segmentation between the two phases of solid and liquid. The solid PCM was marked as 

the white region and the liquid PCM was marked as the dark region. These binary images 

were used as masks to exclude velocity vectors that were outside the liquid domain, since 

those were false vectors.  

 

Figure 15: Original capture image (i), interface detected image through algorithm 

(ii) and generated binary image (iii) 
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2.8.2 Plotting of the Velocity Data 

The plots of velocity vectors and contour plots of resultant velocity were generated from 

the mean velocity fields. In all plots, the light grey region denotes an area within the 

enclosure, but above the free surface of the liquid wax. To provide a proper comparison 

between all angles, the 0-degree cases were not fully filled to match the volume of the 

angled trials. Therefore, this grey region is visible in all cases. A black region corresponds 

to the solid, nonmelted wax and highlights the generated mask region where false vectors 

were removed. To improve the visual clarity by decreasing overlapping vectors, the 

resolution of the velocity vector plots was reduced by removing every other column and 

row of vectors.  

2.8.3 Temperature Field Data 

The temperature field at each angle and each discrete time was calculated through the 

recorded thermocouple data. As mentioned earlier in the experimental setup, 47 

thermocouples were placed at discrete locations within the PCM domain. For a better 

perception of the temperature field, the temperature data was expanded to a grid of 

635×350 via interpolation, covering the entire 127mm by 70mm enclosure domain. Each 

grid position corresponds to 0.2mm of the enclosure field. A natural neighbor scheme was 

utilized for the interpolation.  

Unlike the velocity data, both solid and liquid regions were included in the temperature 

fields. The temperature data at locations above the liquid surface in the enclosure were 

excluded and the corresponding area were denoted by the same light grey as the velocity 

data. 
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2.9 Conclusions 

Different experimental setups were constructed to measure and characterize the velocity 

field within the liquid PCM and the temperature field within the entire PCM (solid and 

liquid) domain. Construction of the enclosure progressed through five iterations before the 

final design was selected. It was found that specific attention regarding enclosure material 

and its resistance to corrosion should be considered when using PCMs which are acidic in 

nature. Additionally, the selection of the PCM in regards to PIV measurements is important 

to note, as not all PCMs are suitable for velocity measurements due to undesirable 

properties. This may include a low solubility of dissolved gasses which can cause the 

formation of air bubbles that interfere with the instantaneous velocity calculations.  

The final design of the PCM enclosure utilized clear cast acrylic sheets for their resistance 

to corrosion and optical accessibility for PIV measurements. An aluminum bar was used 

as the heat source for its high thermal conductivity and corrosion resistance. A hot water 

bath with a PID controlled heater was implemented to provide a consistent heat source. 

The entire enclosure, including PIV optics and thermocouple measurement devices, was 

mounted on a hinged steel frame which could be rotated. This aided in the investigation of 

heat source orientation on the PCM melting process by allowing a consistent experimental 

setup through multiple tilt angles.  

Velocity measurements were recorded through the PIV technique, utilizing a synchronized 

laser and camera to capture images of the liquid PCM domain. Both the velocity fields and 

resultant velocity plots were generated from the processed PIV data. Temperature data was 

recorded through thermocouples which were imbedded into the PCM domain. Interpolated 

temperature fields were generated from the recorded thermocouple measurements.  

A full experimental uncertainty analysis was conducted for both the recorded velocity 

measurements and the recorded temperature measurements. Results show that the 

uncertainty was minimal and that the measured data was suitable for further analysis which 

is presented in Chapter 3.  
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Chapter 3  

3 Results and Discussion 

The high-resolution simultaneous imaging and temperature fields allowed for an in-depth 

qualitative and quantitative analysis of the transient melting process inside the PCM 

enclosure. 

3.1 Spatial-Temporal Behavior of the Transient Melting Process 

Heat was first transferred to the PCM via conduction, following the onset of heating from 

the hot aluminum wall. Figure 16 shows the temperature contours 5 minutes after the onset 

of heating, for all three tilt-angles of the enclosure. As expected, the plots show a strong 

temperature gradient in the horizontal direction due to the conduction heat transfer. 

Additionally, the results show that the temperature contours remained almost parallel to 

the hot wall, an indication of one-dimensional conduction. However, near the top of the 

PCM domain, adjacent to the PCM surface, the contours show a greater heat diffusion, 

visible in the deviation from a dominant horizontal temperature gradient. This increased 

heat diffusion is likely a consequence of heat transfer to the air which resided above the 

PCM in the enclosure (denoted by the grey region). It is probable that convection currents 

developed, enhancing the heat transfer from the top layer of the PCM and caused a higher 

heat diffusion. 
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Figure 16: Temperature contours at 5 minutes of melting for tilt angles of (i) 0-

degrees, (ii) 8-degrees and (iii) 18-degrees. Units in [°C]. 

As the heating continued, the temperature of the PCM rose with the spatial extension of 

the temperature gradients in the horizontal direction. Once the temperature of the PCM 

adjacent to the hot wall reached the melting temperature, the phase change started and a 

thin layer of liquid PCM formed next to the hot wall. Due to the small thickness of this 

layer, which was confined between two stationary boundaries, the viscous effects were 

dominant over the buoyancy force causing the liquid region to remain stationary. As a 

result, conduction was the primary mode of heat transfer to the PCM and the thin melted 

region remained parallel to the hot wall. This melted region was most prevalent at earlier 

times. As time progressed, the buoyancy effects increased in magnitude and became 

significant. Figure 17 shows the temperature contours 20 minutes from the onset of heating 

where the temperature of the PCM adjacent to the wall had surpassed the melting point, 

and a liquid region develops along the hot wall. The plots show that the temperature 

contours remain almost parallel to the hot wall over most of the height except near the top, 

where the heat diffusion region extended further. The expansion of this region is likely due 

to the combined effect of buoyancy-driven transport of heat to the top as well as the heat 

transfer due to the air at the top of the enclosure. However, at these early times of melting, 
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conduction remained the primary mode of heat transfer in the bulk of the domain. Note that 

the heat loss from the top to the confined air was considerable only in the very early stages 

of heating.  

 

Figure 17: Temperature contours at 20 minutes of melting for tilt angles of (i) 0-

degrees, (ii) 8-degrees and (iii) 18-degrees. Units in [°C]. 

Figure 18 to Figure 22 present the two-dimensional velocity field and contours of resultant 

velocity and temperature field at given instances of time during the melting process. At a 

given time, each row corresponds to a tilt angle of the PCM enclosure and the time 

instances presented range from 40 to 600 minutes. By 40 minutes (Figure 18), this 

vertically melted region, parallel to the hot wall, is only visible in the lower two-thirds of 

the chamber for all angles. The temperature gradients at this point of melting are still 

minimal in the vertical direction, and the primary temperature gradient exists only in the 

horizontal direction (see temperature contours in Figure 18). The initial conduction 

dominant heating is observed in all three enclosure angles and the orientation of the heat 

source for the 8 and 18-degree case do not appear to enhance this conductive melting. 
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As conduction heating progressed and the melted region grew, a growing amount of liquid 

PCM was propelled by the increasing buoyancy forces, which exceeded that of the viscous 

forces. This led to the induction of buoyancy-driven natural convection which is shown 

beginning within the top of the enclosure in Figure 17 and growing in magnitude in Figure 

18. 

As the buoyancy-driven vertical flow reached the upper surface of the liquid PCM, due to 

its impermeable nature, the flow was diverted in the horizontal direction towards the solid 

PCM, satisfying mass conservation. The temperature of the diverted flow decreased upon 

contacting the cooler, solid, upper boundary. This temperature decrease resulted in a 

density increase, and the descent of the heavier liquid created a recirculation zone within 

the top of the enclosure (see Figure 18). 

The buoyancy-driven flow gained prominence with an increase in time. At 80 minutes 

(Figure 19), both the velocity vector and resultant velocity plots show a significant increase 

in the PCM velocity magnitude along the hot wall. This increased velocity translates to an 

increase of liquid PCM within the top of the enclosure causing the top recirculation region 

to grow. The temperature plots in Figure 18 and Figure 19 show an increasing region of 

hot PCM within the top of the enclosure. This recirculating region of PCM is responsible 

for the growing concave-shaped melt interface observed in Figure 19. 
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Figure 18: Velocity field, resultant velocity, and temperature field for (i) 0-degrees, 

(ii) 8-degrees and (iii) 18-degrees at time 40 minutes. Velocity plot units in [cm/s], 

temperature plot units in [°C]. 
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As melting progressed, and the hot liquid contacted the cooler, solid PCM, further melting 

is induced. Heat is transferred from the warm liquid PCM causing it to cool and increase 

in density. This is visible in the temperature plots, which show a region immediately 

adjacent to the solid interface that contains cooler, liquid PCM. Figure 19 shows that there 

is an average temperature reduction of approximately 9 degrees Celsius between the center 

of the concave melt region, and the solid/liquid interface. The liquid parcels, now denser 

then the surrounding fluid, descend from the top of the enclosure. As they descend along 

the solid interface, additional heat is lost at the boundary, further increasing their density, 

and accelerating the flow. This is visible in the resultant velocity plots; the velocity of 

liquid PCM along the interface shows an increase as it descends from the top of the 

enclosure. Results in Figure 19 show that the velocity magnitude increased by 

approximately 300% as the PCM descends from the top to the mid height of the enclosure 

at all three enclosure angle configurations.  

These descending PCM parcels, due to mass conservation, replace the rising plume of PCM 

adjacent to the hot wall. As the parcels descend they force the flow along the solid interface 

towards the hot wall where the cooler fluid parcels are reheated and begin to rise. This 

entire process creates a primary recirculation region along the boundaries of the enclosure 

and is responsible for the distinct melt patterns observed. The recirculating flow accelerates 

the transport of heat from the heat source towards the solid PCM, resulting in the 

enhancement of melting and heat transfer across the domain. As the time further 

progressed, the established recirculation region, driven by natural convection, grows 

further and becomes the primary heat transfer mode. 
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Figure 19: Velocity field, resultant velocity, and temperature field for (i) 0-degrees, 

(ii) 8-degrees and (iii) 18-degrees at time 80 minutes. Velocity plot units in [cm/s], 

temperature plot units in [°C]. 
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With time increase, the melt front reaches the far wall of the enclosure, shown in Figure 

21. Comparing the temperature fields between Figure 20 and Figure 21, there is a growing 

region of warm liquid which remains at the top of the enclosure. This growing region of 

warm PCM is consistent across all enclosure tilt angles. Heated PCM parcels are 

transported to the top of the enclosure where they remain above the cooler PCM. With the 

solid PCM no longer present in this region, there is no major heat sink, and the warmed 

PCM forms stratified liquid layers. However, with increasing enclosure tilt angle, these 

stratified layers of hot PCM become less prominent. This is likely a cause of the increased 

strength of recirculation and natural convection observed for the 8 and 18-degree cases and 

it is probable that this increased natural convection can be attributed to two primary factors: 

First, with an angle above 0 degrees (vertical), the buoyancy driven PCM is accelerated 

vertically, therefore having velocity components both parallel and perpendicular to the hot 

wall. Thus, instead of moving parallel along the full length of the heater, as shown for the 

vertical wall, a fraction of the heated PCM separates from the hot wall, rising vertically 

under the influence of buoyancy. As a result, the high velocity fluid stream tends to become 

wider, losing its magnitude along the hot wall. In turn, more of the warm fluid parcels rise 

above the inclined heat source and penetrate into a larger body of the melted PCM above. 

This increased advection from the hot surface is visible in both the resultant velocity and 

temperature contour plots. With increasing tilt angle, a higher flow, distributed over a 

larger region, is observed in Figure 19 through Figure 22, for the 8 and 18-degree cases, 

when compared to 0-degrees. Furthermore, the temperature fields along the hot wall show 

that the heated PCM is distributed over a larger region.  

Secondly, the enclosure recirculation is increased through the descending PCM along the 

solid-liquid interface. In the vertical orientation, the PCM is forced to follow the solid-

liquid interface. However, with increased enclosure angles, a fraction of the cooler PCM 

can sink directly towards the hot wall, without following the full recirculating flow stream 

around the liquid domain.  
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Figure 20: Velocity field, resultant velocity, and temperature field for (i) 0-degrees, 

(ii) 8-degrees and (iii) 18-degrees at time 120 minutes. Velocity plot units in [cm/s], 

temperature plot units in [°C]. 



53 

 

 

 

Figure 21: Velocity field, resultant velocity, and temperature field for (i) 0-degrees, 

(ii) 8-degrees and (iii) 18-degrees at time 240 minutes. Velocity plot units in [cm/s], 

temperature plot units in [°C]. 
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Because of the boundary recirculation region, an angled solid-liquid interface is created in 

the top region of the enclosure. This feature of the interface was responsible for the 

formation of a distinct vortex between the angled interface and the hot wall. The sinking 

PCM parcels, below the concave melt region, are redirected towards the hot wall where 

they are reheated and begin to rise. This generates a prominent, clockwise vortex, which 

causes a flow diversion and prevents the majority of PCM from descending to the bottom 

of the enclosure. As a result, the convective motion in the lower section of the enclosure 

remains weak, restricting the expansion of the melting region. Hence, the melted region 

below the vortex in the lower section of the enclosure remains narrower compared to the 

recirculation zone created by the vortex.  

The vortex-like behaviour, visible in the velocity fields, is most distinct for the 0-degree 

case. For the 8 and 18-degree inclination cases, the prominence of the vortex is reduced 

(see Figure 19 & Figure 20). As previously discussed, with increased tilt angle, the cooler 

parcels of PCM can descend over a wider region. This leads to the production of a weaker 

vortex with less concentrated flow directed towards the hot wall. Consequently, more of 

the PCM can descend into the lower region of the enclosure. This is likely responsible for 

the increase in the melting rate and larger transport of heat into the lower region of the 

PCM with an increase in the enclosure tilt angle as observed in Figure 18 through Figure 

22.  

As apparent in Figure 21 through Figure 22, at all enclosure tilt angles, there is a growing 

bulk region within the center of the enclosure which has negligible velocity. This is an 

indication that the heat from the hot wall is primarily transported through the liquid stream 

induced along the liquid domain boundary. The resultant velocity plots show that an 

increase in the tilt angle results in a wider region of the liquid stream along the liquid 

surface. This increased region of fluid flow reduces both the size of the stagnant liquid 

PCM region, and the overall area of hot stratified PCM liquid layers, thus contributing to 

the enhancement of the heat transport within the enclosure through the increase in natural 

convection.  
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Figure 22: Velocity field, resultant velocity, and temperature field for (i) 0-degrees, 

(ii) 8-degrees and (iii) 18-degrees at time 600 minutes. Velocity plot units in [cm/s], 

temperature plot units in [°C]. 
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As observed in the earlier figures, in all cases, the majority of the fluid flow occurs around 

the boundaries of the enclosure, which includes the heated wall, the liquid surface and the 

solid/liquid interface. Hence, it is important to investigate and quantify the velocities in 

these boundary regions for different enclosure tilt-angle cases and quantify the trends of 

the velocity magnitudes. Summarized in Table 2 are the average velocities in the boundary 

regions for each tilt angle, at 80, 240 and 600 minutes. 

Table 2: Average velocity in boundary regions for all tilt angles, at 80, 240 and 600 

minutes 

Tilt Angle Time [min] Hot Wall 

Velocity 

(approx.) 

[mm/s] 

Velocity Near 

Liquid 

Surface 

(approx.) 

[mm/s] 

Velocity Along 

Solid/Liquid 

Interface 

(approx.) [mm/s] 

0-Degrees 80 4.6 1.6 2.5 

240 4.7 1.4 3.1 

600 3.8 1.1 1.2 

8-Degrees 80 3.0 1.7 2.3 

240 3.8 1.5 2.7 

600 2.8 1.5 1.1 

18-Degrees 80 2.6 1.9 2.1 

240 1.9 1.7 2.8 

600 1.8 1.6 1.0 

The results in Table 2 show that the velocity magnitudes for all tilt-angle cases, in general, 

are higher in the boundary region at the hot wall and lowest in the liquid surface region. 

The velocity magnitude in the solid-liquid interfacial region is between the two. This is 
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also qualitatively depicted in the previously discussed resultant velocity contour plots. The 

results show that in the regions of both the hot wall and the solid/liquid interface, fluid 

velocities for the 0-degree tilt angle have the largest magnitude at all times. This is a direct 

consequence of the alignment of both the buoyancy force and the orientation of the hot 

wall (vertical). Near the liquid surface however, the velocities are higher for the 8 and 18-

degree tilt angle cases. It is likely that due to the impermeable liquid surface, buoyancy 

propelled fluid separating from the hot wall becomes concentrated in this region. Since the 

higher tilt angles experience greater fluid separation, more of this propelled fluid is 

concentrated along the surface than for the 0-degree tilt angle case. 

It is also observed that the velocity along the solid/liquid interface increased from 80 to 

240 minutes, and then significantly decreased from 240 to 600 minutes, likely a 

consequence of the increasing buoyancy force at earlier times, and the growing stagnant 

liquid region at later times. This is the primary region where heat transfer from the warmed 

liquid to the solid PCM occurs. With natural convection requiring both a heat source and 

heat sink, any reduction of velocity along the heat sink will reduce the overall heat transfer. 

As well, the velocities along all interfaces also decreased from 240 to 600 minutes for all 

tilt angles. Again, with fluid along these boundaries being the primary driver of heat 

transfer, any velocity reduction contributes to a reduction in natural convection within the 

enclosure. 

While the 0-degree tilt angle experienced the highest velocities along the hot wall and 

solid/liquid interface, this accelerated fluid flow, referred to as a liquid stream, is restricted 

to a thin layer. For the 8 and 18-degree tilt angles, the accelerated velocity is distributed 

over a larger area, expanding the thickness of the liquid stream. Presented in Table 3 is the 

estimated thickness of the liquid stream at each of the three boundary locations. 
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Table 3: Estimated liquid stream thickness in boundary regions for all tilt angles, at 

80, 240 and 600 minutes 

Tilt Angle Time 

[min] 

Hot Wall 

Region 

Thickness 

(approx.) 

[mm] 

Liquid Surface 

Region 

Thickness 

(approx.) [mm] 

Solid/Liquid 

Interface Region 

Thickness 

(approx.) [mm] 

0-Degrees 80 5.2 7.9 4 

240 4 10.6 6.7 

600 5.1 13.3 6.9 

8-Degrees 

 

80 6.2 10.7 5.1 

240 6.7 11.2 5.3 

600 5.3 17.3 9.3 

18-Degrees 

 

80 9.3 15.9 5.3 

240 17.3 16.4 6.7 

600 12 19.9 10.6 

The thicknesses for all regions at 0-degree tilt angle are consistently less than the 8 and 18-

degree tilt angles, as expected. Along the liquid surface and solid/liquid interface, the 

overall thickness of fluid flow increases with time for all cases. With the higher tilt angles, 

while the fluid velocity around the boundaries is lower, there is better distribution of the 

heated fluid, lessening the prominence of the stagnant liquid PCM region. It is interesting 

to note that for the hot wall region, the thickness for the 8 and 18-degree tilt angle cases 

experiences an increase from 80 to 240 minutes, and a decrease from 240 to 600 minutes. 

It is likely that with increasing time and the stratified liquid layers, there is a reduction in 

the temperature gradient potential that promotes flow to separate from the hot wall. 
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3.2 Solid-liquid Interface Tracking 

The spatial and temporal movement of the solid-liquid interface is an indicator of the 

underlying physical processes that govern the transport of heat and hence the melting 

behaviour. Its detection is important for the characterization of the heat transfer during 

phase transition and is also an important validation parameter for numerical models. 

Conventionally, optical techniques are used to detect and track the solid-liquid interface 

[50], [55]. There are several issues and challenges with this approach however, as described 

below. Considering the necessary experiemental setup, visual tracking of the PCM domain 

requires optical access which could be a challege or limitation in various setups. 

Additionally, the requirement of proper illumination tools and image capture and recording 

systems can be resource intense. In terms of material selection limitations, the PCM must 

have distinct color apprearences in the solid and liquid phases to allow the implementation 

of an image processing algorithm. As well, the imaging approach only allows interface 

detection adjacent to the transparent wall or in a near-2D configuration. Detecting the 

interface in a 3D domain is a practial limitation with the imaging approach. Hence, a more 

robust and easy to implement method would greatly help in the detection and 

characterization of the solid-liquid interface in a wide range of PCM domain 

configurations.  

In the present study, a imaging PIV technique was used which facilitated the detection of 

the solid-liquid interface. In addition, high-resolution temperature measurements were also 

conducted for the characterization of the temperature field within the PCM domain. This 

provided an opportunity to investigate whether temperature data alone is sufficient enough 

to accurately detect the interface. For this purpose, the solid-liquid interface was detected 

and tracked in both space and time using the temperature data acquired during the phase 

change process for all three enclosure tilt angles. 

The expected solid-liquid interface positions were tracked through the temperature field. 

While the true interface could be tracked through captured images, this was only possible 

at limited discrete times. The temperature data, on the other hand, was recorded at every 

second throughout the melting process and hence enables the tracking of the solid-liquid 

interface with higher temporal resolution for interface tracking. An in-house code in the 
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MATLAB environment was developed for this purpose. In each instantaneous temperature 

field, the MATLAB code located the grid points along the x-axis at which there was the 

smallest temperature difference between the actual PCM temperature and the melting 

temperature of 55 Celsius. These points were taken as the estimated location of the solid-

liquid interface.  

Figure 23 shows the interface that was detected from the temperature data, at different 

times and for all three tilt angles. For comparison, the corresponding interfaces detected 

from the PIV imaging data, are also plotted. The results show that overall, the solid-liquid 

interface, estimated from the high-resolution temperature data, agreed well both spatially 

and temporally with the interface positions obtained from the direct imaging. On average, 

the difference between the interface detected from the temperature field was within 15% 

of that obtained from the imaging data at all tilt angle cases. The results however also show 

some local disagreements between the detected interfaces, specifically near the top of the 

enclosure at higher tilt angles. This disagreement is likely due to the reason that with 

increased inclination, less temperature data was available within the top of the enclosure 

as fewer thermocouple resided within the PCM domain. Hence, the temperature data was 

slightly biased by the reduced resolution of the measured temperature (i.e. reduced 

thermocouple positions). However, as the interface started to shift both downwards and 

towards the adjacent wall, the number of recording thermocouples increased. This 

minimized any biasses from thermocouple positions in the temperaure field. The results in 

Figure 23 demonstrate that the temperature data could be used to accurately detect the 

solid-liquid interface both spatially and temporally. However, the accuracy of the detected 

interface is heavily dependent on the resolution of the actual measured temperature field. 

Hence, it is concluded that, with sufficiently high resolution of the measured temperature 

field, the solid-liquid interface can be accurately detected and tracked within the PCM 

domain. 
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Figure 23: Predicted interface location for (a) 0-degrees, (b) 8-degrees, (c) 18-

degrees at times 60, 160, 240 and 600 minutes in rows 1,2,3 and 4, respectively. All 

plots use the same legend shown in (a). The black line denotes the actual interface 

and the red line is the predicted interface 

(a) (b) (c)
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3.3 Time History of Melted Fraction 

From the interface tracking, the solid and liquid fractions can be computed. As previously 

mentioned, the images of the melting progression were acquired at discrete times whereas 

the temperature data was acquired continuously throughout the melting process. Since 

results in the previous figure showed that the temperature data could accurately detect the 

solid-liquid interface, the interpolated temperature data was used to compute the 

instantaneous areas of solid and liquid regions within the PCM domain. Using a developed 

MATLAB script, the melted zone is identified as regions within the PCM domain that were 

above the PCM melting temperature of 55 Celsius. The melt fraction was then computed 

as the ratio between the area of the liquid region and the total PCM domain area, shown in 

equation (3.1): 

 
𝛾𝑚 =

𝑁𝑇𝑙

𝑁𝑡𝑜𝑡𝑎𝑙
 

(3.1) 

Where 𝛾𝑚 is the melt fraction, 𝑁𝑇𝑙 is the number of interpolated grid coordinates above 55 

Celsius, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of grid points within the PCM domain. Although 

the melt fraction could also be determined through camera imaging, the temperature data 

allows for melt fractions to be updated as frequently as every 1 second. 

Figure 24 shows the time history of melt fraction at each enclosure tilt angle. Both the melt 

fraction calculated from temperature data (solid lines) and raw camera imaging (dashed 

lines) is shown. There is good agreement between both methods. The discrepancy at later 

times is likely due to the discontinuous nature of the camera imagining, where there was a 

large amount of time between subsequent imagining. Analyzing the time history of melt 

fraction from the temperature data, the results show that initially the melting rate was linear 

at all tilt angles. This corresponds to the period where a shift from strong conduction to 

strong natural convection was present. As the time progressed, a reduction in the melting 

rate is observed at all tilt angles. It is likely that the heat from the hot wall was carried to 

the top of the chamber where it began to accumulate within the stagnant fluid region, and 

only a fraction of that heat was transported towards the solid PCM by the liquid stream 

flowing along the boundaries. As such, significant heat resided within the stagnant region 
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in the middle of the recirculation boundary. This stagnant region grew with time, and the 

amount of heat transfer from the liquid to solid PCM was reduced, thus slowing the melting 

rate.  

Comparison between the three studied cases show that the melt rate increased with 

increasing enclosure tilt, supporting the idea that tilt angle has an influence on melt rate. 

The melting rates for the 0 and 8-degrees cases were relatively comparable in the early 

stages of melting. At later times however, the 8-degree tilt case began to melt at a higher 

linear rate than the 0-degree case. As the tilt angle was increased to 18 degrees, there was 

a further increase in melting rate. The increase occurred earlier on and remained almost 

constant during the duration of the melting process. On average, the melting rate for the 8 

and 18-degree cases was 5.7% and 12.6% higher than that at the 0-degree case, 

respectively. It is also valuable to note that the results show the total melting time for 8 and 

18-degree cases is 8.7% and 18.2% shorter, respectively, than that for the 0-degree case. 

The increase in the melting rate with an increase in the enclosure tilt angle supports the 

hypothesis mentioned earlier, that the increase in the inclination angle of the heat source 

cause the buoyancy driven flow parcels to advect upwards from the hot wall, enhancing 

mixing and hence increasing the melting rate.  

 

Figure 24: Time history of melted fraction 
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3.4 Temperature Contour Plots 

Contour plots of the temperature data shown in Figure 25, highlight the growing, stratified 

region of warm PCM within the top of the enclosure. It should be noted that for 8 and 18-

degrees, the plots are shown in the titled enclosure’s frame of reference. The figure shows 

that at initial times, there was a sharp temperature gradient within the enclosure between 

the heated liquid PCM and the solid PCM. At this point, a significant portion of the solid 

PCM still remained near the initialized temperature of 20 Celsius. As melting progressed, 

and both the solid and liquid PCM warmed, the temperature gradient decreased, and an 

observed region of heated PCM began to expand, extending from the top left of the 

enclosure. Within this region, without the presence of a heat sink, the PCM temperature 

was nearly uniform. With time, this region expands from the hot wall towards the far, 

insulated wall. The minimal heat transfer from the insulated wall maintained the high and 

uniform temperature in the upper region, as well as, supported the stratified layers of heated 

liquid PCM. With time, the region of near-uniform temperature expanded downward. This 

in turn, contributed to the reduction of heat transfer from the hot wall to the solid PCM, 

slowing the melting rate. Additionally, in Figure 25, plots (b) and (c) show an inverse 

relationship between the enclosure tile angle and the area of hottest PCM. That is, at higher 

tilt angles, the region of the hot PCM is smaller. As mentioned earlier, this is likely due to 

the increase in flow circulation, and mixing, which increased the heat transfer from the top 

of the enclosure, towards the solid interface. 
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Figure 25: Contour temperature plots for (a) 120 minutes, (b) 240 minutes and (c) 

600 minutes. The 0, 8 and 18-degree cases are shown in column 1, 2 and 3, 

respectively. Units in [°C]. 
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3.5 Time History of Mean Temperature of Liquid PCM 

The mean temperature of the liquid PCM (𝑇𝑙𝑚𝑒𝑎𝑛
) at a given time, was calculated by 

averaging the temperature of the liquid region, defined as any temperature within the 

enclosure above the melting point of 55 Celsius. The time history of 𝑇𝑙𝑚𝑒𝑎𝑛
, calculated 

every 180 seconds, is plotted in Figure 26 for all three enclosure tilt angle cases. The results 

show that in all three cases, the liquid PCM experienced a sharp temperature rise at the 

very early stages of melting. At this point there exists only a very thin layer of liquid PCM, 

which formed directly adjacent to the hot wall when melting began. The heat transfer 

through this thin liquid layer was primarily due to conduction since the viscous effects 

were significantly stronger than buoyancy forces. 

The sharp initial temperature increase occurs until a melt fraction of approximately 5%, for 

all tilt angle cases. Soon after, a reduction in the mean liquid temperature is observed, 

which coincided with the onset of natural convection. The buoyancy-driven convective 

currents enhanced the transportation of accumulated heat from the liquid region, thus 

lowering the mean liquid temperature. This reduction of the liquid PCM temperature 

occurred for a relatively short duration, from a melt fraction of approximately 5-10%.  

As the recirculating liquid PCM stream became fully established (see, for example, the 

velocity fields in Figure 19 and Figure 20), it created an almost equilibrium between the 

heat transferred to the liquid stream from the hot wall and the heat transported by the stream 

to the solid region. This resulted in a nearly constant mean liquid temperature during the 

melt fraction interval of 10% to 30%.  

After a 30% melt fraction, there is an observed increase in the mean liquid temperature that 

continued until the end of the melting process. The simultaneous analysis of the velocity 

and temperature data revealed that this temperature increase began when the solid-liquid 

interface reached the far insulated wall, denoted in Figure 26 by the vertical dashed line. 

Up until this point, the liquid stream was in full contact with the solid PCM region, 

continuously transferring heat along the full length of the enclosure (see Figure 20). 

However, once the interface reached the insulated side wall, minimal heat was transferred 

from the liquid stream to the insulated wall. As the interface further descended, the contact 
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area of solid PCM, and hence effective heat sink area, decreased, and the mean liquid PCM 

temperature rose. A rise in the liquid temperature reduced the temperature gradient between 

the liquid and the hot wall, resulting in the reduction of the overall heat transfer rate, 

slowing the melting process in the later stages as observed in Figure 24.  

 

Figure 26: Time history of mean liquid temperature 

3.6 Time History of Specific TC Temperature Readings 

The time history of the PCM temperature obtained from thermocouples (TC) imbedded 

within the enclosure provides further understanding into the effects of enclosure inclination 

and the overall melting process. Figure 27 shows the temperature history for each angle, at 

four specific locations within the enclosure as highlighted in each plot. Each plot shows 

the recorded TC temperature every 100 seconds.  
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The time history of the temperatures at TC location R3-C2 show a sharp linear increase at 

initial times for all enclosure tilt angles. The TC in this location is at 14 mm away from the 

hot wall and 34 mm from the top of the enclosure. At this position, the temperature rose 

almost linearly and rapidly in the early stages of melting, which is likely due to the strong 

buoyancy-driven convective flow. As this location was in the top region where the hot 

PCM accumulated, the temperature marginally increased during the remaining melting 

process. The location R3-C2 also shows that the hot PCM accumulation in the top region 

close to the hot wall remains similar for all tilt angle cases.  

The TC at location R4-C3 also shows the sharp temperature increase at initial times, for all 

enclosure angles. As this TC is further away from both the hot wall (29 mm) and the surface 

(52.5 mm), the temperature rise with time showed a quadratic trend rather than a linear 

trend, which was observed closer to the hot wall (see location R3-C2). Due to the distance 

of this location from the hot wall, the sharp temperature rise occurred over a longer period 

compared to the earlier location (105 minutes versus 75 minutes). As this region also 

became part of the warm stagnant liquid zone, the temperature rise became marginal during 

the rest of the melting process. Comparison among tilt angle cases show almost identical 

temperature values at 0 and 8-degree tilt angles and a relatively higher temperature at the 

18-degree tilt case.  

Investigating a location that is further away from the hot wall and the liquid surface 

(location R6-C4), both the rate of the initial temperature rise, and the maximum 

temperature was lower when compared to the locations closer to the hot wall and liquid 

surface. This slower temperature rise is associate with the gradual expansion of the liquid 

region. The lower maximum constant temperature in the latter part of the melting is due to 

its farther location from the top of the enclosure. Finally, at location R7-C5, the rate of 

temperature rise and the maximum temperature decreased further than previous locations; 

an expected consequence of the increased distance from both the hot wall and liquid surface 

(see location R7-C5).  

Additionally, by the time that the boundary of the solid-liquid interface passes the TCs at 

R6-C4 and R7-C5, there has been prolonged sensible heating of the solid PCM. This results 
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in a smaller temperature gradient between phases and reduces the heat transfer within these 

locations. As well, at these times, the natural convection has begun to slow. Combined, the 

far distance to the hot wall, the reduced temperature gradient, and the diminished natural 

convection all contribute to the slower rate of temperature increase at these locations. The 

results in locations R6-C4 and R7-C5 also show that the influence of the enclosure tilt 

angle on the PCM temperature becomes more significant in the regions further away from 

the hot wall and liquid surface. It is observed that in those regions, the PCM temperature 

increases more rapidly and to a higher magnitude with an increase in the enclosure tilt 

angle. 

The overall maximum temperature reached is directly proportional to the vertical height of 

the TC location. Due to the stratified layers within the liquid region, with the warmed liquid 

remaining at the top of the enclosure, the lower TCs record lower maximum temperatures. 

The TC at location R6-C4 reaches a maximum temperature of 65.8 Celsius, and the TC at 

location R7-C5 reaches a maximum temperature of 59.7, 62.2 and 63.7 Celsius for the 0, 

8 and 18-degree cases, respectively.  

Comparing between all four TC locations, as the distance from the hot wall and the liquid 

surface increased (i.e. moved further into the enclosure), there was an increasing variation 

in the rate of temperature gain between each tilt angle case. That is, with the higher tilt 

angle for the 8 and 18-degree cases, at lower TC positions, there was a greater initial 

temperature rise when compared to the 0-degree tilt angle. This is likely due to the 

following: 1) All three cases experience comparable conductive heating at initial times. If 

the initial rate of temperature increase is primarily due to conduction, then increasing the 

enclosure angle would have a minimal effect for TCs closest to the hot wall. 2) Since much 

of the heat transfer from the liquid to solid phase occurs at a thin layer immediately adjacent 

to the boundary interface, its position has a significant effect on the temperatures recorded 

by the TC’s within close proximity. For the higher tilt angle cases, with the reduction in 

the vortex like behaviour, and increased melt fraction, the position of the interface remains 

consistency closer to the lower TC’s. In turn, this contributes to both the earlier and higher 

rate of temperature increase that was observed for the higher tilt angle cases. 
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Figure 27: Temperature history at four indicated thermocouple locations 
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3.7 Cumulative Sensible and Latent Heat Absorbed Energy 

The paraffin wax absorbed energy through both sensible and latent heating. There were 

two primary modes of sensible heating; sensible heat transfer to the solid PCM from initial 

temperature to the melting point and superheating of the liquid PCM (after melting). The 

absorbed latent heat can be estimated using the fraction of liquid PCM present. The 

instantaneous sensible heat transfer at a given time (𝑡) was calculated by using equation 

(3.2) proposed by Shokouhmand and Kamkari [49]: 

 𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 =  𝜌𝑠𝑐𝑝𝑠
(𝑇𝑚−𝑠 − 𝑇𝑖)𝑉𝑙(𝑡) +  𝜌𝑙𝑐𝑝𝑙

(𝑇𝑚−𝑙𝑖𝑞(𝑡) − 𝑇𝑙)𝑉𝑙(𝑡)

+  𝜌𝑠𝑐𝑝𝑠
(𝑇𝑚−𝑠(𝑡) − 𝑇𝑖)𝑉𝑠(𝑡) 

(3.2) 

Where the liquid, 𝑉𝑙 and Vs are the volumes of liquid and solid fractions, respectively, at 

time, 𝑡. 𝑇𝑖 represents the initial PCM temperature and 𝑇𝑙 is the melting temperature of the 

PCM. 𝑇𝑚−𝑙𝑖𝑞 and 𝑇𝑚−𝑠 represent the mean temperatures in the liquid and solid domains, 

respectively, at time,  𝑡. They were calculated by averaging the temperature field above 

and below the melting temperature, 𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔, of the PCM: 

 

𝑇𝑚−𝑙𝑖𝑞(𝑡) =
1

𝑁𝑇𝑙
 ∑ 𝑇𝑘 > 𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔

𝑁𝑡𝑜𝑡𝑎𝑙

𝑘=1

 

(3.3) 

and 

 

𝑇𝑚−𝑠(𝑡) =
1

𝑁𝑇𝑠
 ∑ 𝑇𝑘 < 𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔

𝑁𝑡𝑜𝑡𝑎𝑙

𝑘=1

 

(3.4) 

Where, 𝑁𝑇𝑙 is the total number of data points above the melting temperature, 𝑁𝑇𝑠 is the 

total number of data points below the melting temperature, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number 

of temperature data point in the PCM domain.  

In equation (3.2), the first term represents the sensible heating of the solid PCM to the start 

of melting. This term is necessary to account for the sensible heating that was required to 

reach the melting temperature for the fraction of solid PCM that melted. The second term 
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accounts for the superheating of the PCM past its melting point and the third term 

represents the sensible heating of the non-melted solid PCM from the initialized 

temperature to the onset of melting [49]. The instantaneous latent heat transfer at a given 

time (𝑡) was calculated by using equation (3.5) : 

 𝑄𝑙𝑎𝑡𝑒𝑛𝑡 = 𝜌𝑙ℎ𝐿𝑉𝑙(𝑡) (3.5) 

The cumulative absorbed energy (addition of both sensible and latent heat totals, 𝑄𝑡𝑜𝑡𝑎𝑙) in 

the PCM is plotted versus time in Figure 28. As expected, the cumulative energy increased 

with time. The results show a more rapid accumulation of energy during the first half of 

melting. It is found that approximately 85% of the total energy is absorbed in the first half 

time of the total melting process. Comparison of the results at different enclosure tilt angles 

show that total cumulative absorbed energy is the same for all cases, which is expected due 

to the energy conservation. The values varied by about 1%, which is due to the volume 

differences between the cases. 

 

Figure 28: Total absorbed energy versus time 
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3.8 Transient Nusselt Number Analysis 

The instantaneous surface-averaged Nusselt number was calculated for each enclosure tilt 

angle case, using the following equation: 

 
𝑁𝑢(𝑡) =  

ℎ(𝑡)𝐿

𝑘𝑙
 

(3.6) 

Where, 𝐿 is the characteristic length used as the length of the hot wall, 𝑘𝑙 is the thermal 

conductivity of the liquid PCM and ℎ̅ is the surface averaged heat transfer coefficient. The 

surface-average heat transfer coefficient is expressed as: 

 
ℎ(𝑡) =

𝑄𝑡𝑜𝑡𝑎𝑙(𝑡)

𝐴𝑤(𝑇𝑠 − 𝑇𝑖𝑛𝑡)
 

(3.7) 

Where, 𝐴𝑤 is the surface area of the hot wall, 𝑇𝑠 is the average hot wall surface temperature 

and 𝑇𝑖𝑛𝑡 is the average temperature of the solid-liquid interface. This temperature 

difference defines the temperature potential for the convective heat transfer. The average 

hot wall temperature was computed as the average temperature recorded by thermocouples 

attached directly to the aluminum surface. Note that once the interface reached the 

insulated wall on the other side of the enclosure, the 𝑇𝑖𝑛𝑡 is computed as the weighted 

average of the insulated wall exposed to the liquid PCM and the remaining solid-liquid 

interface. The values are calculated over one-minute time intervals.  

The transient Nusselt numbers for all enclosure tilt angle cases are presented in Figure 29. 

As the figure shows, the Nusselt number rapidly increased to peak values shortly after the 

beginning of the melting process, for all tilt angle cases. This maximum is likely due to the 

onset of the strong buoyancy-driven convective motion within the thin layer of melted 

PCM immediately adjacent to the wall, where a large temperature gradient existed between 

the hot wall and the cooler, solid PCM. The results show that this rapid increase in the 

Nusselt number is strongly dependent on the enclosure tilt angle, where increasing tilt angle 

results in greater Nusselt number rise. From this maximum, for all tilt angle cases, the 

Nusselt number then started to decrease relatively quickly. This is likely due to a 

combination of both the weakening temperature gradient and increased distance between 
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the hot wall and solid PCM. In all tilt-angle cases, this decrease in Nusselt number 

continues until a melt fraction of approximately 30%, where they reach a local minimum. 

From this local minimum, to a melt fraction of approximately 70%, the Nusselt number 

behavior is strongly influenced by the enclosure tilt angle. As observed, for the 0-degree 

tilt angle case, the Nusselt number shows a relatively linear decreasing trend. However, as 

the enclosure tilt angle increased to 8-degree, the Nusselt number remained almost constant 

and with the highest tilt angle at 18-degrees, a slight increase was observed. Thus, within 

this period, an increase in tilt angle corresponded to a greater average Nusselt number. 

Further in the melting, as the time progressed, a decreasing trend of the Nusselt number is 

observed for all tilt angle cases. Comparison of Nusselt number for all cases show that 

overall, the Nusselt number increased monotonically with an increase in the enclosure tilt 

angle.  

As observed from the velocity vector fields and resultant velocity plots, the higher 

inclination angles promoted an increase in the recirculation region around the perimeter of 

the enclosure, enhancing the natural convection which is directly related to the Nusselt 

number (see Table 2 & Table 3). Although the 0-degree tilt angle had greater velocity along 

the hot wall and solid/liquid interface in the liquid stream, the higher tilt angles had greater 

spatial extent of the liquid stream. This contributes to an increase in natural convection as 

the circulation of the warmed PCM is over a larger area.  In turn, heat transfer away from 

the hot wall is greater, and the region of stagnant PCM is reduced. Additionally, the 8 and 

18-degree tilt angle cases had faster velocity near the liquid surface, an important region 

for heat transfer. The heated liquid PCM along the hot wall is predominantly transferred to 

the solid PCM in the region along the liquid surface. By having a higher liquid velocity, 

distributed over a larger region (as seen in Table 2 & Table 3) more of the warmed fluid 

can be transported to the heat sink of solid PCM. For all cases, it is observed that the 

velocity along the solid/liquid interface decreases with time. The solid-liquid interface 

defines the boundary of the heat sink (i.e. the solid domain). A reduction in velocity along 

this interface results in a reduction in natural convection, causing the Nusselt number to 

decrease.  
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Figure 29: Nusselt number as a function of total melt time 

3.9 Transient Rayleigh Number Analysis 

The Rayleigh number (Ra) is a non-dimensional parameter that is used to characterize the 

contribution of buoyancy force relative to the viscous dissipative force in the fluid domain. 

The Rayleigh number is expressed as [50]: 

 
𝑅𝑎 =

𝑔𝛽(𝑇𝑠 − 𝑇𝑏)𝐿3

𝜈𝛼
 

(3.8) 

Where 𝑔 is gravitational acceleration, 𝛽 is the coefficient of thermal expansion of the fluid, 

𝑇𝑠 is the surface temperature, 𝜈 is the kinematic viscosity and 𝛼 is the thermal diffusivity 

of the fluid. In the present case, 𝑇𝑠 is computed as the mean surface temperature of the 

aluminum heater. The properties of the PCM due to temperature change are considered 

negligible within each respective solid and liquid phase, and as such remained constant 

through all calculations of the Rayleigh number. The variables 𝑇𝑏 and 𝐿 refer to the bulk 

temperature of the fluid (liquid PCM) and characteristic length, respectively. In the 
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classical cases of natural convection in a bounded single-phase fluid heated through a 

vertical wall, the length of the plate or the distance between the hot and cold walls of the 

enclosure is used as the characteristic length, and the temperature difference between the 

hot and cold walls is used as the driving temperature potential i.e., the cold wall temperature 

is used as Tb [97]. However, the present case involves natural convection heat transfer in 

an enclosure, which contains two simultaneous phases of solid and liquid material, where 

the extent of the liquid domain is continuously changing. Hence, the variables 𝑇𝑏 and 𝐿 

may need to be defined differently. To investigate this issue, when calculating the Rayleigh 

number, the bulk liquid temperature was computed three different ways and the 

characteristic length was defined two different ways. The three different methods to define 

the bulk temperature are: 1) the melting temperature of the liquid PCM, 𝑇𝑙 (a constant value 

of 55 Celsius), 2) the mean temperature of the liquid domain, 𝑇𝑚−𝑙𝑖𝑞 (a time dependent 

value, calculated from Eq. (3.3), and 3) the mean temperature of the solid-liquid interface, 

𝑇𝑖𝑛𝑡 (a time dependent value, equivalent to 𝑇𝑖𝑛𝑡 from Eq (3.7). The characteristic length 

was defined two ways, as 1) the distance between the hot wall and the horizontal mid-point 

of the solid/liquid interface, 𝐿𝑖𝑛𝑡, and 2) the distance between the hot wall and far insulated 

wall, 𝐿𝑤𝑎𝑙𝑙, (a constant value of 70 mm). The transient Rayleigh number calculated using 

different variations of the bulk liquid temperature and characteristic length are presented 

in Figure 30. Figure 30 (i), (ii) and (iii) show the Rayleigh number calculated with 𝐿𝑖𝑛𝑡 and 

𝑇𝑙, 𝑇𝑚 and 𝑇𝑖𝑛𝑡, respectively, while Figure 30 (iv), (v) and (vi) show the Rayleigh number 

calculated with 𝐿𝑤𝑎𝑙𝑙 and 𝑇𝑙, 𝑇𝑚 and 𝑇𝑖𝑛𝑡, respectively. The results show large variations 

in each Rayleigh number calculation indicating that both the bulk liquid temperature and 

the characteristic length significantly influence the observed trends and magnitudes. 

The effects of a variable characteristic length, 𝐿𝑖𝑛𝑡 on the Rayleigh number variation is 

investigated first (see Figure 30 (i-iii)). The results show a similar trend for all variations 

of the Rayleigh number calculation. That is, both 𝐿𝑖𝑛𝑡 and the Rayleigh number increase 

in a similar way. Since the Rayleigh number is proportional to the cube of the characteristic 

length, any increase in 𝐿𝑖𝑛𝑡 would significantly contribute to an increase in Rayleigh 

number values. In the three cases using 𝐿𝑖𝑛𝑡, there exists an inflection point at 

approximately 50% of the total melting time. The Rayleigh number increased more rapidly 
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before this point and relatively slower after it. This point was found to be correspondent to 

a change in the melt rate as observed in Figure 24, i.e. before this point, the melting rate 

was the greatest and 𝐿𝑖𝑛𝑡 increased most rapidly and in the second half of melting, when 

the melting rate decreased, the rate of increase of 𝐿𝑖𝑛𝑡 also slowed down (see Figure 24). 

Comparison among different tilt angle cases show that before this inflection point, the 

Rayleigh number was relatively similar for all tilt angle cases implying that the tilt angle 

of the heat source has no influence on the Rayleigh number in the first half of melting. The 

influence of the tilt angle is evident after the inflection point where the results show a 

significant decrease in the magnitude and the rate of Rayleigh number with an increase in 

the tilt angle. This implies that in the latter half of melting, the Rayleigh number and hence 

the buoyancy effects decreased with an increase in the tilt angle of the heat source. The 

similar trends observed in all three plots (Figure 30(i-iii)) indicates that the trends are 

primarily influenced by the variation in 𝐿𝑖𝑛𝑡. That is, in the second half, the mid-half 

location of the interfaced moved slowest at the highest tilt angle.   

While the trends in Figure 30(i-iii) are influenced by the characteristic length, the variations 

in the magnitude of Rayleigh number are due to the differences in the bulk temperature 

considered in these plots. The results show that on average, the Rayleigh number using Tl 

is approximately 50% and 26% larger than that using Tm and Tint, respectively. The reasons 

for these variations in Rayleigh number can be explained as follows: The bulk liquid 

temperature used in Figure 30(i) is the melting temperature, Tl, which is a constant. Hence, 

any increase in the Rayleigh number in Figure 30(i) attributed to the increase in the 

characteristic length. In Figure 30(ii), the bulk liquid temperature used is the mean liquid 

temperature, which varied throughout the melting process (see Figure 26). The temperature 

data of the hot wall surface temperature (not shown here) indicates that upon reaching 

steady state there were only minor fluctuations in the surface temperature. As well, the 

warm fluid immediately adjacent to the hot wall contributed to the overall liquid 

temperature, and therefore the mean temperature increased well past the melting 

temperature of the solid PCM. Hence, as the mean liquid temperature increased with time, 

the overall difference between the hot wall surface and the mean liquid temperature 

decreased, resulting in the lowest Rayleigh number magnitudes among the three cases. The 

interface temperature, which was considered in Figure 30(iii), was not influenced by the 
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heated fluid along the hot wall. As such, the overall magnitude of Rayleigh number was 

greater than in Figure 30(ii). 

 

Figure 30: Rayleigh number plotted against fraction of total melt time with varying 

bulk temperature and characteristic length calculations. All y-axes refer to the 

Rayleigh number and each plot uses the legend in (i) 

The plots in Figure 30(iv-vi) considered a constant characteristic length 𝐿𝑤𝑎𝑙𝑙. In Figure 

30(iv), all variables are constant except for the mean surface temperature of the heater. As 

mentioned earlier, there were fluctuations in the hot wall temperature. While these 

fluctuations were minor (less than ± 1 Celsius), they appear magnified when used to 

calculate the Rayleigh number. Since this method of calculation is dependent solely on the 

hot surface temperature, variations in that temperature are over represented and therefore 

improperly capture the heating trends present.  

Figure 30(v) and Figure 30(vi) show the Rayleigh number calculated with a constant 

characteristic length, and varying bulk liquid temperatures with (v) using the mean liquid 

temperature and (vi) using the mean interface temperature. In both cases, the sharp 

temperature gradient driving natural convection contributes to the high Rayleigh number 

magnitudes initially observed. These Rayleigh number values drop rapidly to a local 

minimum as the recirculation region develops, lowering the overall liquid and interface 

(i) (ii) (iii)

(iv) (v) (vi)
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temperature. After the local minimum, the Rayleigh number increase slightly and then 

remains relatively constant. This is likely due to the constant mean liquid temperature, as 

previously shown in Figure 26. Finally, the Rayleigh number for both cases begins to 

decrease as the temperature difference between the heat source and sink decrease. 

When comparing between all six cases, several conclusions can be reached. Case (i), (ii) 

and (iii) are beneficial when investigating the effect of cold interface position within an 

enclosure. However, it is likely that the interface position dominated, and limited the 

investigation of any temperature gradient effects. These three cases show that the Rayleigh 

number continuously increased which is not consistent with what was observed through 

the velocity plots. Case (iv) is highly dependent on the hot surface temperature and does 

not accurately consider all components contributing to the buoyancy driven flow. Case (v) 

and case (vi) are useful to study the effect of temperature gradients within an enclosure, 

while keeping the characteristic length constant. Examining the Rayleigh number, it 

appears case (v) and (vi) most accurately represent the underlying physical properties 

present, comparing well with the conduction dominant, convection dominant and 

weakening convection regions. Additionally, these cases have good agreement with the 

observed velocity data, as interface velocities are a good indication of buoyancy forces 

present. By utilizing the velocity data in parallel with the temperature data, better insight 

into the true underlying physical properties can be gained. As previously discussed, on 

average from 80 to 240 minutes (approximately 12% to 36% of total melt) the interface 

velocities for all cases increased. This agrees well with the observed Rayleigh number 

increase in Figure 30(v) and 11(vi) over a similar time range. Similarly, from melt fractions 

of 36 to 100%, the interface velocities for all tilt angles decreased, a trend also seen in the 

Rayleigh number over this time. 

  



80 

 

 

3.10 Conclusions 

Through the generated velocity vector plots and temperature contour plots, it was shown 

that there are three primary heat transfer phases. The initial phase, where conduction was 

dominant, occurred when the melt front was near parallel to the hot wall. At this point, the 

temperature gradients existed primarily in the horizontal direction. The second phase is 

when natural convection began and created a distinct recirculation zone around the 

boundaries of the liquid region. Comparing between each tilt angle case, it was shown that 

with increasing tilt angle this recirculation region was enhanced. This was evident through 

the increased thickness of the liquid stream for the 8 and 18-degree tilt angles. The third 

phase occurred when the natural convection began to decrease due to a reduction in the 

magnitude of the liquid recirculation. This reduction was caused by growing area of 

stagnant PCM that remained within the top of the enclosure. Also observed through the 

velocity plots was a CCW flowing vortex that occurred in lower section of the recirculation 

zone, between the solid PCM and the adjacent hot wall. This vortex grew in size as the 

melt fraction increased and was responsible for an increase in the local melt rate. 

Additionally, it was observed that with increased tilt angle, the prominence of this vortex 

was reduced.  

By tracking individual TC temperature readings and determining the regions above the 

melting temperature of the PCM, the mean liquid temperature could be calculated with 

time. Additionally, through a similar process, the solid-liquid interface could also be 

predicted with time by utilizing the TC readings. Strong agreement was shown between 

the temperature-based interface tracking and the raw camera images tracking, supporting 

the use of temperature measurements for robust interface tracking.   

The Nusselt and Rayleigh numbers were also calculated. They further highlight the three 

primary heat transfer phases shown qualitatively in the PIV and temperature data. A 

significant relationship between enclosure tilt angle and Nusselt number was observed at 

initial melting times. The Rayleigh number was calculated through six methods to 

underline the effect of bulk temperature and characteristic length variation. All results in 

this chapter highlight the significance of flow and temperature characterization in the liquid 

PCM domain.  
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Chapter 4  

4 Conclusions and Recommendations 

4.1 General Conclusions 

Thermal energy storage is an important component in the rapidly expanding fields of 

energy conservation and sustainability. The ability to store large quantities of thermal 

energy at relatively constant temperature is advantageous in many temperature sensitive 

applications. As well, TES is beneficial to provide consistency through the decoupling of 

energy supply and demand, critical for the widespread adoption of renewable energy 

resources such as solar and wind energy which are inherently inconsistent due to their 

reliance on uncontrollable environmental factors. Furthermore, latent heat TES is 

promising for the recovery and reuse of waste heat by enabling direct energy transfer from 

these heat sources and the wide availability of PCM melting temperatures. This energy 

conservation is especially important to conserve the finite supply of fossil fuels which 

continue to be major components in todays energy supply. However, due to the occurrence 

of phase change in a latent heat TES system, where the two phases simultaneously existing 

in an inherently inverse volumetric variation, the heat transfer processes are complex and 

transient in nature. As such, further investigation and research into the characterization of 

the thermo-fluid behavior can help to advance the technology, and overcome the 

weaknesses found in PCM-based thermal storage systems. 

This research work is focused on the experimental investigation of the transient flow and 

transient thermal behavior of phase change material during solid-liquid phase change 

(melting). Two specific aspects of the current work are to investigate the influence of the 

flow behavior within liquid PCM on the melting and heat transfer processes, as well as, the 

impact of heat source orientation on the underlying melting and heat transfer processes. To 

date, a full investigation into the liquid flow behavior during PCM melting has not been 

unequivocally demonstrated in the scientific literature. Furthermore, to the authors’ 

knowledge, an investigation utilizing the combination of both high-resolution velocity and 

temperature data has not been conducted. This combination was used to provide further 
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insight into the melting behaviour and trends that exist during PCM melting with varying 

heat source orientation.  

To facilitate the research, an insulated rectangular enclosure was constructed, filled with 

paraffin wax (used as the PCM), and was isothermally heated along one vertical wall. The 

entire enclosure was rotated CCW through three varying angles, providing a heated wall at 

tilt angles of 0 degrees (vertical), 8 degrees and 18 degrees. PIV was utilized to measure 

two-dimensional velocity fields of the liquid domain along the mid-vertical plane inside 

the enclosure. Due to the transient nature of melting, with varying liquid and solid fractions, 

the PIV data was acquired at discrete times during the study, from fully solid to fully melted 

PCM.  

In a separate study, utilizing the same experimental setup and conditions, 53 thermocouples 

were inserted through the back face of the enclosure and were aligned along the same mid-

vertical plane used in the PIV measurements. The thermocouples simultaneously sampled 

the data from the onset of heating until the PCM had fully melted. The recorded 

thermocouple data was interpolated to provide temperature data spanning the entire domain 

of the PCM enclosure. The temperature data allowed heat transfer characteristics to be 

calculated, specifically the Rayleigh and Nusselt numbers. Furthermore, it was 

demonstrated that high resolution temperature data could successfully predict the melt 

interface, eliminating the need for optical access to determine solid/liquid interface 

positions. 

The results show three primary heat transfer phases. In the initial phase, conduction was 

the dominant mode of heat transfer when the melt front was near parallel to the hot wall. 

At this point, temperature gradients existed primarily in the horizontal direction. The 

second phase occurred when natural convection began, with the results showing for all tilt 

angle cases, a distinct recirculation zone developing within the liquid region. As the 

temperature in the liquid domain increased, the buoyancy forces surpassed the viscous 

forces, initiating buoyancy driven flow. Comparison between the vertical (0-degrees tilt 

angle) and inclined (8, 18-degrees tilt angle) heat source cases, shows that the recirculation 

region around the boundaries of the liquid domain was enhanced with the increased tilt of 
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the heat source. That is, while the 0-degree tilt angle generally experienced higher 

velocities along the interfaces, the thickness of the liquid stream is greater at 8 and 18-

degree tilt angles. As such, the prominence of a stagnant region of liquid PCM is lessened 

for the higher tilt angle cases. The third phase occurred when the natural convection began 

to decrease due to a reduction in the liquid recirculation, a consequence of a growing region 

of heated PCM which resided in the top of the enclosure. Both the stratified temperature 

layers and negligible flow velocities contributed to the overall decrease in the natural 

convection occurring within the liquid PCM domain, and in turn was a major factor in the 

decreased melt rate observed at later times of melting. 

A dominant, CCW flowing vortex was observed in the lower section of the recirculation 

zone, between the solid PCM and the adjacent hot wall. With increasing melt fraction, this 

vortex grew in size and was responsible for a decrease in the melt fraction of PCM beneath 

it. Fluid descending along the solid/liquid interface in its vicinity was redirected into the 

rising plume adjacent to the hot wall, preventing the majority of the flow to descend the 

full height of the enclosure. With increased enclosure angle, the prominence of this vortex 

was reduced, and hence the effects of melt reduction were diminished  

The calculated Nusselt and Rayleigh numbers further highlight the underlying physical 

behaviors that occurred during the melt. The Nusselt number emphasised the three primary 

heat transfer phases, qualitatively shown in the PIV and temperature field data. A strong 

dependence on enclosure tilt angle and Nusselt number increase in the first region was 

observed. The Rayleigh number was calculated by six different methods, underlining the 

effect of varying the bulk temperature and characteristic lengths on the overall magnitudes 

and trends on the Rayleigh number. For proper comparison between cases, it was 

determined that the characteristic length should remain constant, allowing temperature 

variations to be the primary influence on the overall Rayleigh number value to provide 

proper evaluation between tilt angle cases.  

The results in this study highlight the significance of the flow and temperature 

characterization in the liquid PCM domain. It was found that the fluid velocity is critical 

for both the heat transport within the liquid domain and the overall melting rate and its 
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pattern. Consequently, because the fluid velocity behavior influences natural convection, 

which is the primary mode of heat transfer, understanding its behavior is crucial in the 

advancement of thermal energy storage system design.  

4.2 Contributions 

Until now, an investigation utilizing the combination of both high-resolution velocity and 

temperature data had not been conducted of melting PCM. As such, these results further 

extend the understanding of phase change and the associated heat transfer processes in the 

PCM. The significance of natural convection within the liquid PCM domain was 

evidentially demonstrated through the combination of both velocity and temperature 

measurements. Differences between increasing heat source tilt angle was shown to have a 

significant impact on the fluid velocity around the perimeter of the liquid domain, with 

increasing tilt angle showing enhanced natural convection through the increased spatial 

distribution of the liquid stream.  

Additionally, comprehensive benchmark data for the improvement of numerical 

models simulating the solid-liquid phase change process has been provided. Simulations 

can now be validated through both temperature and velocity measurements which was not 

possible beforehand.  

4.3 Future Recommendations 

Although a detailed study of PCM phase change was conducted, there are several aspects 

that need to be considered for the advancement of the scientific knowledge related to the 

phase change and transient heat transfer in a thermal storage medium. Some 

recommendations for future studies are: 

1) Expand Investigations to the Freezing Cycle 

In real-world applications, latent heat TES systems operate in both melting and freezing 

cycles. The current study focused solely on the melting processes and associated heat 

transfer characteristics. Further investigation into the freezing cycle is a natural extension 
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of this work to encompass the entire process. Challenges surrounding the optical access for 

PIV during the solidification would need to be addressed.  

2) Investigation into varied heat source temperature 

The current investigation limited the heat source to a constant temperature. In practice, the 

applied heat source to the latent heat TES system would vary depending on external 

conditions. A detailed study into the effect of heat source temperature would further extend 

the knowledge of heat transfer characteristics and design optimization. 

3) Expanded investigation from 2D to 3D behavior 

The present study investigated phase transition in an enclosure that was constructed with a 

depth much less than the height and width to limit the 3D effects and provide an 

approximate 2D geometry. This constraint provided a simplified heat transfer process, 

beneficial for initial investigations. However, in practical applications, all TES systems are 

three-dimensional in nature, and as such, further investigation into extended, 3D enclosure 

systems would allow a better characterization of the phase change and heat transfer 

processes, which will facilitate the design optimization for real world applications. 

4) Investigate different heat source geometries  

As previously discussed, work has been conducted by various researchers to improve heat 

transfer with the extension of heat transfer surfaces, such as fins. However, some of these 

studies concluded that the additional extensions may impact the natural convection within 

the liquid phase. The current study looked solely at a simple configuration of the heat 

source i.e. a plane wall. Additional investigations into various heat source geometries, and 

their impact on the fluid flow, and hence natural convection, could provide further insight 

into improving latent heat storage system design. 
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