
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2009

Homotopy techniques for multiplication modulo triangular sets Homotopy techniques for multiplication modulo triangular sets

Muhammad Foizul Islam Chowdhury

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Chowdhury, Muhammad Foizul Islam, "Homotopy techniques for multiplication modulo triangular sets"
(2009). Digitized Theses. 4148.
https://ir.lib.uwo.ca/digitizedtheses/4148

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4148?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Homotopy techniques for multiplication modulo triangular sets
(Spine Title: Homotopy techniques for triangular multiplication)

(Thesis format: Monograph)

by

Muhammad Foizul Islam Chowdhury

Graduate Program
in

Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada
April 30, 2009

© M.F.I. Chowdhury 2009

Abstract

Triangular representations are a versatile tool to manipulate systems of polynomial
equations; however, many basic complexity questions are still open with respect to
such objects. This matter of fact appears clearly with multiplication modulo triangu
lar sets: it plays an essential part in algorithms for solving polynomial systems, but
the cost of this operation remains difficult to estimate precisely.

This thesis studies the complexity of this operation. Following previous work by
Li, Moreno Maza and Schost, we propose an algorithm that relies on homotopy and
fast evaluation-interpolation techniques. We obtain a quasi-linear time complexity
for substantial families of examples, for which no such result was known before. Ap
plications are given notably to addition of algebraic numbers in small characteristic.

K eyw ords. Multivariate polynomial, Polynomial multiplication, Triangular Set,
Homotopy.

m

Acknowledgments

/
I would first like to thank my thesis supervisor Assistant Professor Eric Schost in
the Department of Computer Science at University of western Ontario. The door to
Prof. Éric Schost office was always open whenever I ran into a trouble spot or had a
question about my research or writing. He consistently helped me on the way of this
thesis and steered me in the right direction whenever he thought I needed it. I am
grateful to him for his excellent support to me in all arenas.

Sincere thanks and appreciation are extended to all the members from our Ontario
Research Centre for Computer Algebra
Department for their invaluable teaching

(ORCCA) lab and the Computer Science
and assistance.

IV

Contents

Certificate of Examination ii

Abstract iii

Acknowledgments iv

1 Introduction 1
1.1 Problem statement, overview of our resu lts .. 3
1.2 Our a p p ro a ch ... 5
1.3 Previous w o r k ... 5
1.4 Outlook of this th esis .. 6

2 Background and Preliminaries 7
2.1 Triangular sets: definitions and n o t a t io n ... 7
2.2 Preliminaries: complexity of basic operations.. 9

3 Evaluation and Interpolation 15
3.1 Equiprojectable sets .. 16
3.2 E valuation.. 18
3.3 Interpolation ... 22
3.4 Associated triangular s e t ... 25
3.5 M ultip lication ... 27

4 Homotopy Techniques for Multiplication 29
4.1 Introduction ... 29
4.2 A worked example ... 30
4.3 Computing the roots of S .. 33
4.4 The multiplication algorithm ... 36

v

5 Precision Analysis 38
5.1 First worked exam ple.. 38
5.2 Second worked exam ple... 42
5.3 Precision analysis for the general c a s e .. 44

6 Families of application 51
6.1 Main family of ex a m p les ... 51
6.2 Computing with Cauchy m o d u le s ... 53
6.3 Polynomial m u ltip lica tion .. 56
6.4 Exponential generating series m u ltip lica tion ... 58

7 Experimental Results 63
7.1 Presentation of the p r o b le m ... 63
7.2 Our a lgorithm ... 64
7.3 Experimental r e s u lt s .. 66

8 Conclusions and future work 69

Curriculum Vitae 74

vi

List of Algorithms

1 LiftRoots(T, a i , . . . , a,d, £) ... 14
2 Eva I (A, V) .. 20
3 lnterp(/, V) ... 24
4 A ssociatedT riangularSet(/, V) .. 26
5 Mul (A ,B ,V) .. 28
6 LiftRootsMultivariate(1 /,S ,^)... 35
7 Mul(A, B, T, V) .. 37
8 ComposedSum (f ,g) ... 66

Vll

2.1 Example of sub product t r e e ... 12

3.1 Equiprojectable s e t ... 17
3.2 Non equiprojectable s e t ... 17
3.3 Equiprojectable set in dimension 3 .. 18
3.4 A single b u tte r fly ... 21
3.5 A single butterfly, second le v e l.. 21
3.6 The butterfly structure in 2 variab les .. 21
3.7 Tree structure of the roots in 3 v a r ia b le s .. 22
3.8 Butterfly of multivariate eva luation .. 23
3.9 The butterflies of multivariate interpolation ... 25

4.1 Tree structure of four roo ts .. 32

5.1 Tree structure of the reduction by S2... 40
5.2 A view of the reduction tree in the coordinates (/ i , / 2) 41
5.3 Tree structure of the reduction by 53... 43

7.1 Detailed timings for our algorithm ... 67
7.2 Timings in m a g m a ... 68

List of Figures

viu

List of Tables

2.1 Complexities of polynomial multiplication algorithms 10

IX

1

Chapter 1

Introduction

Solving systems of linear or non-linear, algebraic or differential equations, is a fun
damental problem in mathematical sciences and engineering. In this thesis, we focus
on one of these questions, the study of systems of polynomials (i.e., non-linear) equa
tions.

Many approaches, and many data representations, are available to deal with such
systems. Here, our interest will be on so-called triangular representations, or tri
angular sets. The precise definition of triangular set is given in Chapter 2; for the
moment, one should just think of these as a set of equations with a triangular shape,
that generalize triangular matrices to non-linear situations.

It is known that the common roots of any set o f multivariate polynomials can be
represented by finitely many triangular sets. This decomposition is also known as
triangular decomposition because of the triangular shape of the objects it involves.

The theory of triangular representations is especially complex for systems with
infinitely many solutions, that is, in positive dimension. In this case, several related
definitions have been introduced. Wu Wen Tsun [41] introduced the first method for
solving systems of algebraic equations by means of characteristic sets in 1987. In this
method many redundant components are produced without any function to remove
them. In 1993, Kalkbrener introduced the related notion of regular chains [17]. At
the same time Lazard [19] another, different, notion of triangular representation that
actually strengthened the notion of regular chain. It was not until [27] that the
relations between all such definitions were clarified. Improved and unified algorithms
are in [26] and are the basis of the RegularChains library [21].

On the contrary, the emphasis of this thesis is for systems with finitely many
solutions, that is, with dimension zero. In this case, the definitions are much more

2

straightforward, since the underlying geometric problems are much simpler than in
positive dimension.

Then, a high-level question is to provide sharp estimates on the cost of solving a
polynomial system by means of triangular representations. This problem itself relies
on several difficult “lower-level” questions, such as the cost of basic operations with
triangular sets.

This thesis discusses one of these questions, arguably the most important one: the
complexity of multiplication modulo a triangular set. We illustrate it by an example
first. Let

T2(X u X 2) = X i + X\X2

T1(X 1) = X f + 3Xx

be two polynomials in variables X\, X 2; since 7\ depends only on X\ and T2 on X 1; X 2,
they fit our definition of a triangular set. Consider now two polynomials

A = X\X2 + X 2 + Xi + 1

B = X 1X 2 + X 2 + X 1 + 1.

These polynomials are reduced with respect to the triangular set T = (Ti ,T2): their
degrees in X i (resp. X 2) are less than the degree o f Ti in X\ (resp. of T2 in X 2). The
product of these two polynomials is

AB = X\X\ + 2X\Xx + 2X2X\ + 4 X ^ 2 + X\ + 2W2 + X\ + 2 ^ + 1

before any reduction. Since the degrees have grown, it is possible to reduce this
product with respect to the triangular set T :

• by computing the remainder C of AB in the Euclidean (long) division by T2, us
ing X 2 as the main variable (concretely, this amounts to replace X\ by —X iX 2)]

• then, by computing the remainder D of C in the Euclidean (long) division by
T\, using now X\ as the main variable (concretely, this amounts to replace X\
by - 3 X 0 -

In the end, we obtain
D = —6X iX 2 -(- 2X 2 — X i -f-1.

This operation is actually critical to many algorithms for polynomial system

3

solving. Indeed, many higher-level routines are built on top of it, such as trian
gular decomposition of algebraic varieties [26, 24], inversion modulo a triangular
set [11, 18, 23, 25], lifting techniques for modular algorithms [34, 33, 11], all of
those eventually contributing to solving systems o f equations [22]. For instance, the
RegularChain Maple library [21] now partly relies on a high-performance C imple
mentation of basic arithmetic operations modulo triangular sets, and in particular on
multiplication algorithms.

1.1 Problem statement, overview of our results

This thesis gives an algorithm for doing multiplication modulo a triangular set effi
ciently; our focus is on the complexity aspects of this problem. The main results of
this thesis can be found in the preprint [4].

Our problem is the generalization of the example seen above: we work in
R [X i , . . . , X n\, where R is a ring, and we are given a set of polynomials

Tn(X u . . . , X n)

T2(X 1,X 2)

r i f t)

that form the triangular set T = (T i,. .. ,Tn). As input, we also consider two poly
nomials A, B reduced modulo T : as in the example, this means that the degrees of
A and B in X{ is less than the degree of TJ in X if for all i.

Our question is to determine how many operations in R it takes to compute the
product AB modulo (T), that is, reduced by T i , . . . ,Tn. The goal is to obtain an
algorithm of complexity linear (up to logarithmic factors) in the “size of the problem” ,
that is, the number of monomials that appear in the input and output.

Hereafter, for simplicity, we call quasi-linear algorithm an algorithm with a
running-time linear in the input and output size, up to logarithmic factors. Cor
respondingly, we use the notation / = 0~(g) to indicate that / = 0(g log(g)Q), for
some constant a.

As in the example, the direct approach is to perform a polynomial multiplication,
followed by the reduction modulo (T) , by a generalization of Euclidean division.

As far as complexity is concerned, when the number o f variables grows, this kind
of approach cannot give quasi-linear algorithms. Consider for instance the case where

4

all Tj have degree 2 in their main variables X{. Then, A and B both have degree at
most 1 in each variable, so they can have no more than 2n monomials. However, their
product before reduction has degree at most 2 in each variable, so it can have up to
3n monomials: this was the case in the previous example. Finally, after reduction,
the number of monomials is reduced to 2n again. If we let 8 = 2n be a measure of
the input and output size (that is, number of monomials in A, B and in the result),
the cost o f such an algorithm is at least 3n = <5log2 3 ~ <$1,59. This is not a quasi-linear
algorithm.

In this thesis, generalizing an idea by Li, Moreno Maza and Schost [23], we show
that a different approach can lead to a quasi-linear time algorithm, in cases where
the monomial support of T is sparse, or when the polynomials in T have a low total
degree. This will for example be the case for systems of the form

X* - VC, 1 X I x,n— 1

X\ - 2Xx
x\

x l - x x
X I

(1.1)

whose applications are described in Chapter 6. Our result also applies to the following
construction: start from F e R[X], say F = X 3 — X 2 + X — 3, and define the
so-called “Cauchy modules” [31], which are triangular sets used in effective Galois
theory [31, 1, 30], or in the study of polynomial systems with symmetries [10, 15]:

T3(X 1,X 2,X 3)

T2(x l , x 2)
TiiXJ

T2(X 1,X2) - F (X 1,X3)
x 2- x 3

Ti(Xi)-ri(x2)
X ! - X 2

F (X i)

X 3 + X 2 + X x - 1

X 2 + - X 2 + X 2 - X 1 + l

X f - X f + X i - 3 .
(1.2)

For examples (1.1) and (1.2), our algorithms give the following results:

• for T as in (1.1), multiplication modulo (T) can be performed in quasi-linear
time 0~(S), where 6 = 2n is the input and output size, and where as indicated
above, 0~(S) stands for 0(8 log(<5)a), for some constant a.

• for T as in (1.2), with n = deg(F), the polynomials T i , . . . ,Tn have degrees
in X i , . . . , X n of the form n, n — 1 , . . . , 1 (in the example, this is 3,2,1). Here
multiplication modulo (T) can be performed in quasi-linear time 0~(5), where
the input and output size is<$ = n- -- l = n!.

5

For both cases, to our knowledge, no previous algorithm was known featuring such
complexity estimates.

1.2 Our approach

To obtain a quasi-linear cost, we have to avoid multiplying A and B as polynomials,
since the number of monomials may prevent us from reaching our target. Our solution
is to use evaluation and interpolation techniques, just as Fast Fourier Transform
(FFT) multiplication of univariate polynomials is multiplication modulo X n — 1.

Unfortunately, fast evaluation and interpolation may not be possible directly, if T
does not have roots in R (this is for instance the case in the examples (1.1) and (1.2)).
However, they become possible using deformation techniques described below.

We construct a new triangular set U with all roots in R, and multiply A and
B modulo S = 77T + (1 — 77)U, where 77 is a new variable. The triangular set S
has roots which are power series in 77 (that is, they belong to R[[77]]), so one can
use evaluation-interpolation techniques over R[[?7]]. This approach will be called the
homotopy method, since it introduces a whole family of triangular sets S that connects
the “nice” triangular set U to the target triangular set T .

This idea was introduced by Li, Moreno Maza and Schost in [23], but was limited
to the case where all polynomials in T are univariate: Tt was restricted to depend on
Xi only, so this did not apply to the examples above. Here, we extend this idea to
cover such examples; our main technical contribution is a study of precision-related
issues involved in the power series computations, and how they relate to the monomial
support of T .

1.3 Previous work

It is only recently that fast algorithms for triangular representations have been thor
oughly investigated from the complexity viewpoint; thus, previous results on efficient
multiplication algorithms are scarce. All natural approaches introduce in their cost
estimate an overhead of the form kn, for some constant k.

The main challenge (still open) is to get rid of this exponential factor uncondi
tionally: we want algorithms of cost 0~(5), where 5 is the number of monomials in A,
B and their product modulo (T). For instance, with T] = Xf\ the first complexity
result of the form 0(Sl+e), for any e > 0, was in [35]; note that this is not quite as
good as 0~(5).

6

The previous work [23] gives a general algorithm of cost 0~(4n<5), that holds for
any triangular set. That algorithm uses fast Euclidean division. Previous mention of
such complexity estimates (with a constant higher than 4) are in [18].

As said above, in [23], one also finds the precursor of the algorithm presented
here; the algorithm of [23] applies to families of polynomials having Tj € R[W], and
achieves the cost 0 (5 l+£) for any e > 0. In that case, the analysis of the precision in
power series computation was immediate. Our main contribution here is to perform
this study in the general case, and to show that we can still achieve similar costs for
much larger families of examples.

1.4 Outlook of this thesis

The thesis is organized as follows.

• Chapter 2 gives some background and some useful notation used in this thesis.

• Chapter 3 presents basic evaluation-interpolation algorithms for equiprojectable
sets, which are extensions of algorithms known for univariate polynomials. We
deduce a multiplication algorithm which works for triangular sets T whose roots
are known, and are in R.

• Chapter 4 describes our multiplication algorithm using the homotopy method
when the triangular set T does not have all its roots in R.

• Chapter 5 provides the key technical result, an estimate on the precision of
some power series computations that take place in the algorithm of Chapter 4. •

• Chapter 6 presents some families of examples where our algorithm gives quasi-
linear running time.

• Chapter 7 is dedicated to experimental results, and an application to addition
of algebraic numbers.

• Chapter 8 presents our conclusions and future work.

7

Chapter 2

Background and Preliminaries

The aim of this chapter is to provide the background and some notation used in this
thesis: we start by recalling basic definitions, then introduce some classical algorithms
for fast polynomial arithmetic in one variable.

2.1 Triangular sets: definitions and notation

In this section, we give the formal definition of a triangular set and introduce all
necessary notation.

Let R be a ring. A family of non-constant polynomials T = (T i , . . . ,T „) in
R [X i , . . . , X n] is a triangular set if:

• for i = 1 , . . . , n, % is in R [A i , . . . , A*];

• for i = 1 , . . . , n, the leading coefficient of Tj in X j is equal to 1 (we say that Tj
is monic in Xi),

• for i = 2 , . . . , n, Tj is reduced modulo T i , . . . ,T j _ i , in the sense that
deg(Tj, Xj) < deg (Tj, Xj) holds for 1 < j < i.

In all that follows, we will let di be the degree deg(Tj, Xi).
Such families of polynomials have been the object o f many previous works. As far

as we are concerned, a landmark paper is Lazard’s [20], which formally introduced
such objects and gave basic algorithms to compute them.

Observe that (if R is a field), such a family of polynomials can have at most a
finite number of solutions: •

• T i(A i) can have at most d\ roots;

8

• for each possible root x\ of Ti, T2(xi, X 2) can have at most d2 roots;

• etc.

Thus, the triangular set T has at most d\ ■ ■ • dn distinct roots. In other words, the
solution set of T has dimension zero.

E xam ple. The following polynomials Ti and T2 form a triangular set T = (Ti, T2):

T2(X u X 2) = x i + X 2X ,

T i(X i) = X l + 3Xx

Here Ti and T2 both are monic (their leading coefficients in X i (resp. X 2) is one. In
addition, T2 is reduced with respect to Ti, i.e., deg(T2, X\) < 2 = deg(T i,X i).

Next, we introduce useful notation used in the rest of this thesis. Let d =
(d i , , dn) be a vector of positive integers: in what follows, these will represent
the main degrees of the polynomials in our triangular sets. We will always suppose
d i> 2 for all i, for reasons explained at the end of this section.

Recall that R is our base ring and that X \,. . . , X n are indeterminates over R. We
let M d be the set o f monomials

M d = {X I1 ■ ■ -X enn | 0 < a < di for all * }

and we denote by Span(Md) the subset

Span(Ma) = { A = ^ amm \ am G R for all m G M d }
mtzMd

of R [X i , . . . , X n]. This is thus the set of polynomials A in R[X1;. . . , X n\ such that
deg(v4j, Xi) < di holds for all i. Finally, we let <5d be the product <Jd = <¿1 ■ • ■ dn] this
is the cardinality o f M d. Remark that since all di are at least 2, we have the bounds

2n < <5d and di ■ ■ ■ di < 2<5d.
i<n

The former plainly follows from the inequality 2 < di\ the latter comes from observing
that d\ ■ • • di2n~l < d\ ■ ■ ■ dn = <5d; this gives d\ - ■ ■ di < dd/2 n_\ The claim follows by
summation.

9

Let us now consider a triangular set T = (T i , . . . , Tn). The ideal (T) is the set of
all polynomials F that can be written as

n

F = J 2 Ft%,
1=1

with all Fi in R [X i , . . . , X„\.
The multi-degree of the triangular set T = (T i , . . . , T n) is the n-uple d =

(d i,...,d n), with di = deg(Ti,Xi) for 1 < i < n. We say that a polynomial
A £ R [X l, . . . , X n] is reduced with respect to T if deg(A, Xi) < di holds for all i.

When a polynomial is not reduced with respect to T , one can reduce it. For
any A £ R [X i , . . . ,X n], we let A' be the polynomial constructed by the generalized
Euclidean division process (already presented in the introduction):

• let A n + 1 = A;

• for i = n ,. . ., 1, let A* be the remainder of the Euclidean division of A i+1 by 7),
using Xi as the leading variable;

• then, let A' — A\.

We claim that the difference A7—A is in the ideal (T) : this is established by induction,
by proving that A i+1 — Ai is in (T) for all i using the definition of Euclidean division.
Besides, A ' is reduced with respect to T : this is proved by induction, by showing that
for all i, Ai has degree less than dj in Tj for j = i , . . . , n. The polynomial A' is called
the normal form o f A.

Finally, let us explain why we only consider the case where di > 2 holds for all i.
Suppose indeed that T has multi-degree d = (d\,. . . , dn), and that di = 1 for some i.
Then, Ti has the form

T = Xi — ri(X i,. . . , X ^ i).

This means that we can eliminate Xi by replacing it by r i(X i,. . . , Xj_i) , so that Xi
and Ti are actually unnecessary.

2.2 Preliminaries: complexity of basic operations

We continue with a review of some well-known complexity results. In all that follows,
the cost of our algorithms will be expressed by counting number of operations in the
base ring. Precisely, we count additions, multiplications, and inversions, when they
are possible.

10

Whenever we use a big-0 inequality such as / G 0(g), it is implied that there
exists a universal constant A such that f (v \,. . . , vs) < Xg(vi,. .. ,vs) holds for all
possible values of the arguments. Finally, we recall that the notation / G 0~(g)
means that there exists a constant a such that / G 0(g log(g)“), where the big-0 is
to be understood as above.

The following paragraphs review results for several operations on univariate poly
nomials; all of them can be found in [14].

Polynomial multiplication. The key to fast algorithms for univariate polynomials
is polynomial multiplication. We denote by M : N —* N a function such that over any
ring, polynomials of degree less than d can be multiplied in M (d) operations. Besides,
as [14], we will suppose that the inequality M (d + d’) > M(d) + M(d') holds for all d;
it will help us simplify some formulas.

Table 2.1 gives the value of M(d) for various polynomial multiplication algorithms.
The algorithm of Cantor and Kaltofen [9] applies over any ring and gives M (d) =
0(d\og(d) loglog(d)) = 0~(d), that is, a quasi-linear running time. We describe here
a simpler form of it, using Fast Fourier Transform (FFT), since the basic idea of this
thesis will comes from FFT-based polynomial multiplication (but in several variables).

The FFT-based polynomial multiplication uses evaluation and interpolation tech
niques. This algorithm first evaluates both polynomials at roots o f unity and does
term-wise multiplication of the values thus obtained; after that, the algorithm in
terpolates the result. Using this technique, one can do the multiplication of two
polynomials of degree less than d in 0(dlog(d)) operations; however, it is not always
applicable, since we need roots of unity in R.

Algorithm M (d)
Classical 2d2
Karatsuba 0(d159)
FFT multiplication 0(dlog(d))
Schonhage and Strassen 0(dlog(d) log log(d))
Cantor and Kaltofen 0(dlog(d) loglog(d))

Table 2.1: Complexities of polynomial multiplication algorithms

P ow er series. A power series is an infinite “formal” sum of the type

i> 0

11

with coefficients /* in the ring R; the set of all such power series is written R[[X]] (the
variable of our power series will sometimes also be written 77). Since / is an infinite
object, we can only handle truncations of it, as the finite sums

/ mod X d = Y , fix i ■
0 <i<d

Power series can be added, multiplied, etc. Since the truncations / mod X d are
actually polynomials, we can use the fast algorithms seen before to multiply them.

A major difference between power series and polynomials is that power series can
be inverted. If the constant coefficient / 0 is invertible, there exists a power series g
such that fg = 1: for instance, with / = 1 — X , g is given by

g = 1 + X + X 2 + X 3 + X 4 + • • •

In general, given an integer d, the polynomial g = g mod X d is called the inverse of
/ modulo X d, since it satisfies

fg = 1 mod X d.

Newton iteration is one of the keys to fast algorithms involving power series: it enables
us to compute solutions to our problems (here, the inverse of /) modulo the successive
powers X, X 2,X 4, . . . ,X 2k, —

In the case at hand, Newton’s iteration enables us to compute g mod X d using
0(M(d)) operations, that is, in a cost proportional to the cost of multiplication. The
details of the algorithm are given in [14]. We will give more details for another use
of Newton iteration, lifting roots of polynomials, in the next paragraphs.

Sub-product tree for multi-point evaluation and interpolation. Our next
question is the evaluation of a polynomial A € R[X] of degree less than d at some
given points « 1 , 7/ 2 , - , «d in R: this problem is known as multi-point evaluation.
The inverse problem consists in recovering the coefficients o f A from its values at the
points « i , u2, ■ ■ ■ ,Ud\ this is known as interpolation.

For both questions, we use the sub-product tree. The leaves of that tree contain
the polynomials X — uiy X — « 2, • • • , X — Ud\ each node (except the leaves) holds
the product of its children. This is depicted Figure 2.1 for four values 7/ 1 , u2) ^3 , « 4 -
Remark that the root of the tree holds the polynomial (X — Ui) ■ • ■ (X — u4).

12

Figure 2.1: Example of sub product tree

We are going to introduce a short-hand notation to describe the cost of all these
operations. We let Q : N —> N be a function such that we have, over any ring R:

1. for any tti, in R and any polynomial A € R[X] of degree less than d, one
can compute all values A(ui) using Co (d) additions and multiplications in R;

2. for any u\,...,Ud in R, one can compute the coefficients of the polynomial
(X — Ui) ■ • • (X — Ud) using Co(d) additions and multiplications in R;

3. for any u\,. . . , Ud in R, with Ui — Uj a unit for i ^ j, and any values v i , . . . ,v d
in R, one can compute the unique polynomial A € R(W] of degree less than d
such that A(ui) = Vi holds for all % using Co(d) operations in R.

By the results o f [14, Chapter 10], one can take Co(d) € 0(W[(d) log(d)) — 0~(d);
thus, all these operations take time proportional to that of multiplication, up to a
logarithmic factor.

Lifting roots of polynomials. We continue with the well-known fact that the
function Co also enables us to estimate the cost of lifting power series roots of a
bivariate polynomial.

Consider a polynomial T in R[rj, X], where 77 and X are two variables. We suppose
that T is in X. If a G R is a root of T(0, X) with multiplicity 1 (that is, dT/<9X(0, o)
is non-zero), we want to compute a power series A in R[[77]] such that:

13

• A mod r) = a, that is, the constant coefficient of A is a (we say that A is a lift
of a);

• T(rj, A) = 0 (that is, A is a root of T(rj, X)).

Since R is not a field, we must actually impose that dT/dX(0,a) is invertible in R.
Actually, o f course, we do not compute the infinite series A but only truncations of

it of the form A mod r f . Newton iteration provides a way to compute such truncations
starting from a: it is known [14, Lemma 9.21] that the sequence defined by

a<°>=a, a<i+1) = a «
E(n,a.V)

(2 .1)

is well-defined (that is, dT/dX(rj,aW) is invertible modulo rj2l+1) and satisfies

T(rj, a®) = 0 mod r f .

Using this formula, the following lemma studies the complexity of computing roots
of T(r}, X) modulo rf. Actually, we are interesting not only in computing one root,
but in computing all of them. This lemma shows that we can do it quasi-linear time.

L em m a 1. Let T be as above, of degree d in X , and suppose that we are given
a i , . . . , ad in R such that for all i, T(0, a*) = 0 and dT/dX(0,ai) is invertible in R.
Then, for any integer t > 0, one can compute A\,. . . , A* in Rfo] such that for all i,

• Ai mod t] = a* and

• T(r), Ai) = 0 mod X 1;

using 0(Co(d)M (£)) = 0~{di) operations in R.

Proof. The algorithm is given in Algorithm 1. It consists in lifting all roots of T in
parallel using the Newton iteration of Equation (2.1). We use the fast multi-point
evaluation algorithm described in the previous paragraphs to compute the needed
values of T and dT/dX; in the pseudo-code, this is done using a subroutine called
EvalUnivariate.

Each pass through the loop at line 2 takes two evaluations in degree d and d
inversions, with coefficients that are power series of precision The cost o f one
inversion modulo r f is 0(M(^')) [14, Th. 9.4]. Thus, cost of one iteration of line 2 is
2Co(d)M(£,) + AdM(£/), for some constant A. The first term corresponds to evaluations

14

of polynomials at d numbers of series modulo r f whereas the second term is for the
inversions. The total number of iterations is r = [lo g /] .

Using the inequality M(2£) > M(^) + M(f) mentioned before and the technique of
[14, Th. 9.4], one can deduces the result. □

A lg or ith m 1 Lift Roots (T, ai, . . . , i)_ _ _ _ _

2: w hile / < t d o
3: Vi,... ,Vd *— EvalUnivariate(T,ai,. . . , aj) mod r f
4: w i,... ,Wd *— Evall)nivanate(5T/9X, a i , . . . , a<*) mod r f
5: for i = l , . . . ,d d o
6: a,i <— a,i — Vi/wi mod r f
7: e *- 2 f
8: end for
9: end w hile

10: return [a* mod X e \ 1 < i < d]

Som e sim plify in g n ota tion . To obtain simpler big-O-free estimates, we let C(d) =
ACo(d), where A > 1 is the constant implied in the b ig-0 estimate in the former
lemma. Hence, the evaluation and interpolation problems (1), (2) and (3) above can
be dealt with in C(d) operations, and the lifting problem o f the previous lemma can
be solved in C(d)M(Z) operations. Remark also that C(d) is 0(M(d) log(d)).

Finally, we introduce another short-hand notation: for a multi-degree d =
(di,. .. ,dn), we write

L(d) = E
i<n

C (dj)
di

< n
d

(2.2)

with d = maxj<n </. Recall that we wrote ¿a = d\ • • • dn. In view of the estimates on
C and M, we deduce have the upper bound

L(d) € C»(log(/d)3).

15

Chapter 3

Evaluation and Interpolation

Recall the following facts about Fast Fourier Transform: over the complex field C,
the roots of the polynomial T — X d — 1 are the roots of unity V = (exp(2ik7r/d) | k =
0 , . . . , d — 1}. To multiply two polynomials A and B modulo X d — 1 , FFT multipli
cation does the following:

• evaluate A and B at V;

• multiply the values pairwise;

• interpolate the result, in degree less than d.

This scheme can be generalized: if T is any univariate polynomial that factors as a
product T = (X — ai) ■ • • (X — ad), multiplication modulo T can be done using the
same evaluation-interpolation process at the set V = { a i , . . . , ad}.

In this chapter, we give an extension of this idea to multivariate situations. We
start by recalling from [2] the definition of equiprojectable sets: these will be the sets
of points at which we do evaluation and interpolation. As in the one-variable case, we
deduce an algorithm for multiplication modulo their associated triangular set (defined
below), which generalizes the case of a single polynomial T we saw above.

These results extend those given in [28, 23], which dealt with the case of points
on a regular grid. The extension to our more general context is not very complicated,
but did not appear before, as far as we can tell.

In all this chapter, our coefficients are in a ring R, which is not necessarily a field:
we will need this extra flexibility in our applications. Unfortunately, this will require
us to add some invertibility assumptions to make possible all the divisions we want
to do.

16

We study subsets of Rn and their successive projections on the subspaces R\ for
i < n. For definiteness, we let R° be a one-point set. Then, for 1 < j < n, we let
be the projection

7ij : Rn -► Rj
(xi,...,xn) i - > (xi ,...,Xj);

if j — 0, we adapt this definition by letting 7r0 be the constant map Rl —> R°. Finally,
since this is the projection we use most, we simply write n — 7rn_i for the projection
Rn R n - 1

If V is a subset o f Rn, for (3 in 7r(V), we let Vp be the set V n vr- 1 (/?). Hence, if
¡3 has coordinates (f3i,. . . , (3n-i), the points in Vp have the form /3n-i, a), for
some values a in R. In all that follows, a finite set is by convention non-empty.

3.1 Equiprojectable sets

Let V be a finite set in Rn. Equiprojectability is a property of V that describes
combinatorial properties in the successive projections o f V ; this notion was introduced
in [2]. For n = 0, we say that the unique non-empty subset of R° is a single point
which is equiprojectable. Then, for n > 0, V C Rn is equiprojectable if the following
holds:

• the projection 7r(V) is equiprojectable in Rn_1, and

• there exists an integer dn such that for all (3 in 7r(V), Vp has cardinality dn.

The vector d = (d i , . . . , dn) is called the multi-degree of V .
Remark that for n = 1, any finite set V C R is equiprojectable. One easily

sees that if V is equiprojectable, its cardinality equals 8p = d\-- ■ dn\ more generally,
7ri(V) C R* is equiprojectable of cardinality d\ • • • d*.

E xam ples. Assume that n = 2. Figure 3.1 gives an example of an equiprojectable
set of multi-degree d = (3,3); here, the projection 7r takes a point in the plane and
projects it on the Ai-axis. The cardinality of V is 3 x 3 = 9; for all (3 in r(V) there are
exactly 3 distinct points above ¡3 in V. The set V o f Figure 3.2 is not equiprojectable
because of unequal cardinality in X 2-

For n = 3, a simple example of an equiprojectable is the configuration of Fig
ure 3.3, which forms the 8 vertices of a cube.

17

Figure 3.1: Equiprojectable set

x 2 *

è-
X i

Figure 3.2: Non equiprojectable set

18

Figure 3.3: Equiprojectable set in dimension 3

We will use a slightly more precise notation for the sets Vp: if V is equiprojectable,
then for all ¡3 — {¡3\,. . . ,/3n_i) G 7r(V), there exist exactly dn pairwise distinct values

vp = [fl/3,1 , ■. ■, aptdn] in R such that

Vp = • 5 P n —li Q>p,i) | ^

and thus

V = [(A, • • •, A . - 1 . 0 /J,*) I P = (A . • • ■»Ai - i) e 7r(V), apti evp , 1 < i < dn].

For instance, n-dimensional grids are special cases of equiprojectable sets, where vp
is independent o f (3.

3.2 Evaluation

In this section, we give an algorithm for the evaluation of a polynomial at an equipro
jectable set V . We put constraints on this polynomial: we limit ourselves to polyno
mials whose degrees match the multi-degree of V.

Let V be an equiprojectable set of multi-degree d = (A , . . . , dn), and let Md, id

19

be as in Chapter 2. We denote by Evaly the evaluation map

Evaly : Span(Md) —> R5d
F i—► [F(a:) I a € V];

this is thus the map that takes as input a polynomial F with deg(F, Xf) < di for all
i, and computes all its values at V.

We let Cgvai be a function such that for any V equiprojectable of multi-degree d,
the map Evaly can be evaluated in CEVai(d) operations. In one variable, with n = 1
and d = (d\), CEVai(d) simply describes the cost of evaluating a polynomial of degree
less than d\ at d\ points of R, so we take CEvai(d) = C(di), using the notation of the
previous chapter. More generally, we have the following time estimate; since L(d) is
0(log(<5d)3), this result shows that evaluation can be done in quasi-linear time 0~(<5d).

P rop os ition 1. One can take CEvai(d) < ¿d L(d).

Proof. We will use a straightforward recursion over the variables X n, ... ,X\. Let
W = let e = (d i,. . . , dn- 1) be the multi-degree of W and let A (X i , . . . , X n) G
Span(Md) be the polynomial to evaluate. We write

A = Y , M x u-- - ,Xn- 1)X l

with Ai in Span(Me), and, for ¡3 = (/?i, . . . , /9n- i) in Rn_1, we define

Af = Y , MP)xi 6 R W
i<dn

Hence, for /? = (P i,. . . ,Pn-i) in Rn_1 and x in R, A(Pi, . . . ,/5n_\,x) = Ap(x). As a
consequence, to evaluate A at V, we start by evaluating all A at all points /? G W.
This gives all polynomials Ap, which we evaluate at the sets vp.

The algorithm is given in Algorithm 2. From this, we deduce that we can take
Cevbi satisfying the recurrence

CevbI(d\, • - -, dn) ^ CEvai(di, • •., dn_i) dn T d\ dn—iQ(dn).

Unrolling the recurrence, this implies

C Evai (d i , • • • j djf) < I I s*
i<n

c (di)
di ’

20

A lgorith m 2 Eval(A, V)
1: if n = 0 then
2: return [A]
3: end if
4: W a- n(V)
5: for i = 0 , . . . , dn — 1 do
6: Ai <— coeff(A, X n, i)
7: val[i] <— Eval(Ai, W) /* val[i] has the form [AflP) \ P E W] */
8: end for
9: for P in W do

10:
11: end for
12: return [EvalUnivariate(A/3, Vp) | P E W]

which, proves the proposition. □

We conclude this section by showing the trace of the evaluation algorithm on a

simple example. Let A be a polynomial in R[Xi, X 2] having degree 1 in both variables.

We write this polynomial as

A = £i + £2X1 + £3X2 + £4X1X2 = (£1 + £2X1) + (£3 + £4X^X2

for some £* E R. Let V be a finite subset in R2 (as the number of variable is 2) and

let d = (2, 2) be the multi-degree vector. To fix notation, we assume that

V = {(«i, Pi), (01, P2), («2, P3), («2, Pa)}-

The algorithm will evaluate A\ — £1 + £2X i and A 2 = £3 + £4X1 at (a1; a 2) where Ai

and A2 are the coefficients of A of X 2 and X\ respectively. In this simple case, the

evaluation of A i at (a i ,a 2) can be described by a butterfly diagram, similar to the

butterfly of univariate FFT evaluation: on input £1 and £2, we compute £1 + q:i£2 and

£ l + 0-2^2-

21

6 6

Figure 3.4: A single butterfly

The next task o f the algorithm is to gather the evaluated values of A\ and A2 at
X\ = Ox to form the univariate polynomial Ai(a\)+A 2 (cii)X 2 which will be evaluated
at (Pi,P2) for the variable X 2. The same thing will be repeated for the evaluated
values of A 1}A2 at = a2 and will be evaluated at (/?3 , At) for the variable X 2.
Again, each of these evaluations can be represented by a small butterfly diagram.

fi + a iò & + «1^4

Figure 3.5: A single butterfly, second level

Putting the two levels of butterflies gives the computational flow for the 2-variable
evaluation.

Figure 3.6: The butterfly structure in 2 variables

22

Let us add one variable, and consider an equiprojectable set V of multi-degree
d = (2,2,2). Now, V can be described as

(«2, /^3,75), (a2)/^3,76)j (Q!2,/?4,77)> (<̂ 2, /̂ 4, 7s)}

It is convenient to represent this set of points as a tree, giving first the two possible
values ai, a2 for X 1} and so on; this is given in Figure 3.7.

Figure 3.7: Tree structure of the roots in 3 variables

Let the equation to be evaluated be

(1 + -Xi) + (1 + X i)X 2 + ((1 + X i) + (1 + X i)X 2)X 3.

The monomials of this polynomial are l ,X i ,X 2, XyX2, X 3, X 3X i,X 3X 2, X 3X 2X\. As
we did in the 2-variable case, we can represent the evaluation process through a series
of butterflies operations, in Figure 3.8.

3.3 Interpolation

Our next question is the inverse of the previous one: recovering the polynomial from
its values. Using the same notation as above, the inverse of the evaluation map is
interpolation at V :

Interpy : R5d
[F(a) \ a e V]

Span(Md)
F.

23

*3 X3 *3 *3
7 8

Eval
roots

at X3’s

Figure 3.8: Butterfly of multivariate evaluation

For this map to be well-defined, we impose a condition on the points of V. Let
W = 7r(V) € Rn_1. We say that V supports interpolation if the following holds:

• if n > 1, W supports interpolation, and

• for all ¡3 in W and all x, x' in vp, x — x' is invertible.

If the base ring is a field, any equiprojectable set of points V supports interpola
tion, since any difference x —x' is invertible. However, in situations such as R = Z /4Z ,
more care must be taken: the set V = { 0 ,2 } C Z /4 Z does not support interpolation,
since 2 is not invertible in Z /4 Z .

We will see in the following proposition that if V supports interpolation, then
the map lnterpy is well-defined. Moreover, we let C |nterp be such that, for V equipro
jectable of multi-degree d, if V supports interpolation, then the map lnterpy can be
evaluated in a cost C |nter p (d) (including inversions) that is quasi-linear.

P ro p o s itio n 2. I fV supports interpolation, the map lnterpy is well-defined. Besides,
one can take C|nterp(d) < ¿dL(d).

Proof. If n = 0, we do nothing; otherwise, we let W = r(V). The set of values to
interpolate at V has the shape [fa \ a e V] £ R5d, i.e. ¿d numbers of values. We can
thus rewrite it as [fp \ (3 £ W\, where each fp is in Rdn; i.e. above each (3 GW, fp is
a set of dn values that need to be interpolated.

24

Since V supports interpolation, for ¡3 in W, there exists a unique polynomial Ap 6
R[A„] of degree less than dn, such that Eva\{Ap,vp) — fp. Applying the algorithm
recursively on the coefficients of the polynomials Ap, we can find a polynomial A such
that A(f3,Xn) = Ap(Xn) holds for all f3 e W . Then, the polynomial A satisfies our
constraints.

A lg or ith m 3 lnterp(/, V)
1: if n = 0 then
2: return [/]
3: end if
4: W <— ir(Y)
5: for ¡3 in W do
6: Ap <— InterpUn¡variate^, V/j)
7: end for
8: for % — 0 ,. . . , dn — 1 do
9: Ci <- [coeff (Ap,Xn,i) | (3 e W]

10: Ai +— lnterp(cj, W)
11: end for
12: return £ i<dn AZX^

The algorithm is given in Algorithm 3; we use a subroutine called InterpUnivariate
for univariate interpolation. As for evaluation, we deduce that we can take C|nterP
satisfying

C|nterp(^lj • • ■ j d n) ^ C|nterp(^lj • • ■ j d n —i) d n d \ d n_ ^ C (d Ti) ,

which gives our claim, as in the case of evaluation. □

Returning to our examples, in multi-degree (2,2, 2), interpolation can be described
by means of butterflies as well, as showed in Figure 3.9. The roots are assumed to be
the same as in the last section.

25

Xi x2 XxX2 X3 X3X1 X3X2 XzX2Xx

a2a\X a2<*iX * <*2ai ~ai *
1

“ Q1 “al AxJ aiaj\ a2ax /ol\ axaf\

Inter at Xi’s
roots

7i 7 i “ 72

73 = —"—16 7 3 -7 4

= 1
/5 75-76

ft* — 1
pi “ A-A

^ 3 =

a; =

77* 7 7 - 7 8

Figure 3.9: The butterflies of multivariate interpolation

3.4 Associated triangular set

Next, we associate to an equiprojectable set V C Rn of multi-degree d = {d\,. . . , dn)
a triangular set T = (T i,. . . , Tn) of the same multi-degree, which vanishes on V.

If the base ring R was a field, it would suffice to take for T the lexicographic
Grobner basis of the vanishing ideal of V, for the order X n > ■ ■ ■ > X\. However,
since we do not assume that R is field, we cannot rely on the theory of Grobner bases,
so we have to redevelop the corresponding results.

As soon as V supports interpolation, the existence of T is guaranteed (and is estab
lished in the proof o f the next proposition). Uniqueness holds as well: if (T i,. . . , Tn)
and (T (,. . . , T)̂ both vanish on V and have multi-degree d, then for all i, T — T[
vanishes at V as well and is in Span(Ma); hence, it is zero. We call T the associated
triangular set o f V.

26

Proposition 3. Given an equiprojectable set V of multi-degree d that supports in
terpolation, one can construct the associated triangular set T in time 0(5dL(d)).

Proof. We proceed inductively, and suppose that we already have computed
as the associated triangular set o f W = We will write d =

(<¿1 , . . . , dn) and e = (di, • ■ •, dn—\).
For (3 in W, let Tg be the polynomial \\a&Vf3 {X n — a) € R[An]. For j < dn,

let further Tj>n be the polynomial in Span(Me) that interpolates the jth coefficient
of the polynomials Tg at W\ for j = dn, we take Tdn,n = 1. We then write Tn =
^2j<dn Tj)nX]n\ this polynomial is in R[X l, . . . , X n], monic of degree dn in X n, has
degree less than di in Xi, for i < n, and vanishes on V. Thus, the polynomials
T = (T i,. . . , Tn) form the triangular set we are looking for.

The algorithm is in Algorithm 4. We use a function PolyFromRoots to compute
the polynomials Tg. This is done using the sub-product tree algorithm described in
Section 2.2.

Algorithm 4 A ssociatedT riangularSet(/, V)
1: if n = 0 then
2 : return []
3: end if
4: W ^ 7r(V,n)
5: (T i,. . . , Tn- 1) <— AssociatedTriangularSet(W/, n — 1)
6 : for (3 in W do
7: Tg <— PolyFrom R o o ts ^)
8: end for
9: for i = 0 , . . . , dn — 1 do

1 0 : Ti>n <- lnterp([coeff(7>,Xn,z) | (3 e W\,W)
11: end for
1 2 : return J2 j<dn Ti,nX3n + X£n

For a given ¡3 in W, the function PolyFromRoots computes Tg in C(dn) operations,
by definition o f C; this implies that given T i , . . . ,Tn_i, one can construct Tn using
di ■ ■ • dn_iC(dn) + C|nterp(di, • ■ • , dn_i)dn operations. The total cost for constructing
all Ti is thus at most

^ ̂d\ ■ ■ di—\Q.{di) + ^] C|nterp(di, • ■ ■ , dj_i)dj.
i<n i<n

Using the trivial bound d\ • • • di < da for the left-hand term, and the bound given in

27

Proposition 2 for the right-hand one, we get the upper bounds

c «) v - , , v - m)^ E ^ + E ^ - ^ E
i<n i<n

dj
j< t - 1 3

<
i<n

¿ » E ^ r + E ^ - ' ^ E
z<n ;?<n

c (d j)

di

Using the upper bound J2i<n A • • • A < 25a, we finally obtain the estimate 3<5dL(d).
□

As an example, let us consider again the subset V in R2 o f multi-degree d = (2,2)
given by

V — { (« l) A) ; (« 1) A) ; (<^2> A) > (a2i A) } -

We construct the associated triangular set (T i,T 2) in the two variables X\ and X 2.
The constraints that need to be satisfied by the triangular set are

• deg(7i,ATi) = 2

• deg(T2)X 2) = 2 and deg(T2, A x) < 2.

The projection of 7r(V) from R2 to R is (a 1; a2); this gives us the two roots of Tx. So,
we write

T\ = (Ai — ai)(Wi — a2) = A 2 — (cki + a2)Xi + o;iQ:2.

Above « 1 € 7r(U), we have two distinct values in R, which are (A i A) ; above for
a2 E 7r(U), we have another two distinct values in R which are (A , A) - So, we have

T2(au x 2) = (x2 - A) (a t2 - A) = * 22 - (A + A) a *2 + A A

T2 (a 2, a 2) = (a 2 - &) (x 2 - A) = * 22 - (A + A) * 2 + A A

We are now able to construct T2(X\,X2) by extracting the coefficients of A 2 and A]
and performing interpolation at (o;i,Q!2) in both of them.

Remark that we could also choose V as {(0 ,0), (0 ,1), (1 ,0), (1 ,1)}. In this case,
one can directly obtain = A 2 — A i and T2 = A f — A 2.

3.5 Multiplication

Using our evaluation and interpolation algorithms, it becomes immediate to perform
multiplication modulo a triangular set T associated to an equiprojectable set. In
terms of complexity, the following result is close to optimal: it shows that in this
case, the multiplication can be done in quasi-linear time.

28

P rop os ition 4. Let V C Rn be an equiprojectable set of multi-degree d = (di,. . . , dn)
that supports interpolation, and let T be the associated triangular set. Then one can
perform multiplication modulo (T) in time 0(<5dL(d)).

Proof. The algorithm is the same as in [23, Section 2 .2], except that we now use
the more general evaluation and interpolation algorithms presented here. Let A
and B be reduced modulo (T), and let C = AB mod (T). Then for all a in V,
C (a) = A(a)B(a). Since C is reduced modulo (T), it suffices to interpolate the
values A(a)B(a) to obtain C. The cost is thus that of two evaluations, one inter
polation, and of all pairwise pairwise products; the bounds of Propositions 1 and 2
conclude the proof. □

A lg or ith m 5 M u l (A ,P ,P)
l: ValA <- Eval(A ,V)
2 : ValB Eva I (5 , V)
3: Vale [VaU(a)Vala(o!) | a e V]
4: return lnterp(Valc, V)

We conclude by an example of multiplication by evaluation and interpolation. Let
V be the equiprojectable set V = {(0 ,0), (0 ,1), (1 ,0), (1 ,1)}, and let the polynomials
to multiply be A = (1 A i) + (1 -I- X f)X 2 and B = A = (1 -1- A i) -I- (1 + A i)A 2 .

The target is to multiply these two polynomials by using Algorithm 5. As both
polynomials are same, their values at V will be the same, in this case { 1 , 2 ,2 ,4 }. The
term-wise multiplication gives us {1 ,4 ,4 ,1 6 }. After interpolation at V, we obtain the
polynomial (1 -I- 3A i) + (3 -I- 9 A i)A 2 -

We saw in the previous section that the associated triangular set of V is given by
Tj = A i — A i and T2 = A f — A 2.. The product o f A and B before any reduction is

1 + 2 Ax + 2A 2 + 4A 2A ! + X l + 2X 2 X j + A f + 2A f A i + A f A f .

Reduction with respect to (T i, T2) gives us 1 + 3A i + 3A 2 + 9A 2 A i , which is the same
as above.

29

Chapter 4

Homotopy Techniques for
Multiplication

4.1 Introduction

In this chapter, we present our main multiplication algorithm. This extends the
approach of Li, Moreno Maza and Schost in [23, Section 2.2].

Let T be a triangular set in R [X i,. . . , X n}. We saw in the previous chapter that
if T has all its roots in R, and if the set of roots V of T supports interpolation,
then multiplication modulo (T) can be done in quasi-linear time. In this chapter, we
extend this approach to an arbitrary T by setting up an homotopy between T and a
new, more convenient, triangular set U. This idea was introduced in [23, Section 2.2],
which dealt with the case where 7* is in R[Xj] for all i.

In general, the idea of homotopy consists in connecting the situation one wants
to deal with, here multiplying modulo (T), to a situation that is easier by design.

Here is how we put this idea to practice for the multiplication problem. Let
d be the multi-degree of T and assume that there exists an equiprojectable set V
in Rn which supports interpolation and has multi-degree d. Let U be the triangu
lar set associated to V and let r/ be a new variable. We then define the set S in
R[[f/]][* ! , . . . , X n] by

Si = rjTi + (1 - 7])Ui, 1 < i < n .

Since U and T have the same multi-degree d, this set S is triangular, with multi
degree d.

We will prove (in Section 4.3) that S has all its roots in R[[rj\]. Thus, we can use

30

evaluation-interpolation techniques to do multiplication modulo (S); this will in turn
be used to perform multiplication modulo (T) .

The algorithm involves computing with power series; the quantity that will deter
mine the cost o f the algorithm will be the required precision in 77. For e = (e i , . . . , en)
in Nn, we define

H0 (e i , . . . , e„) = d e g (X f • • • X®" mod <S), 77)

,i.e. the function H0 (ei, . . . , en) gives the degree in 77 after reducing the monomial
X \ 1 • • • X w.r.t. (S), and

H (ex ,. .. ,e n) = max H0(e
e\<ei, e'n<en

Let us then define r = H {2 d\ — 2 , , 2 dn — 2). Section 4.4 shows that multiplication
modulo (T) can be performed in time 0~(Sdr), so the lower r the better. We postpone
to Chapter 5 the study of r, which is the technical core of this thesis.

First of all, though, we describe the homotopy techniques for multiplication by a
simple example.

4.2 A worked example

Suppose that the base ring is R = Q, and let the triangular set T = (7\, T2) be
composed of

Ti - X\ + 3X i + 3

T2 = X% + X 1 X 2 + 1 0 .

We consider the polynomials

A = 1 + Xi + X 2 + X 1 X 2

B = 2 + - W2 - XxXa;

these two polynomials reduced with respect to T . The roots of T are not in Q, so
we cannot apply the algorithm of the previous chapter to multiply A and B modulo
(T). To solve this problem, let

V = { (0 , 0), (0 , 1), (1 , 0), (1 , 1) }

31

be the equiprojectable set described in Section 3.1. We saw in the previous chapter
that the associated triangular set U of V is

ux = x l - x 1

u2 = x \ - x 2.

Then we can define the polynomials S in Q[b7]][A iX 2] by

51 = rfl'1 + (l -r i)U 1 = X ! + (4r1 - l) X 1 + 3ri

5 2 = r)T2 + (l -r))U 2 = X l + r)X1 X 2 + (r) - l) X 2 + l0r).

This set S is triangular of multi-degree d = (2,2). Because S(r} = 0 ,X i,X 2) equals
U , and because the roots of U are known (they form the set V), the roots of S are
power series in 77. For simplicity, we will consider truncations of the roots of S\ and
S2 modulo rf\ we will see in the next chapter how to figure out that this would be
sufficient. The two roots of Si up to that precision are

^ 1 ,1 = 3?7 + 2 1 ry2 + 2 1 0 ?73 mod rf\

X\ t2 = 1 — 777 — 2 I972 — 2 1 0 r73 mod rf.

We can obtain these roots by applying Algorithm 1 of Chapter 2. Evaluation of S2

at the roots X\}i and produces

S2,i = S2 (xiti ,X 2) = X\ + (- 1 + 77 + 3 t72 + 2 l 773)W2 + IO77 mod 7?

and

S2)2 = S2 (x 1)2, X 2) = X\ + (- 1 + 277 - 7rj2 - 2 l 773)X 2 + IO77 mod rf.

Applying Algorithm 1 to both S2>i gives the roots

£ 2 ,1 ,1 = IO77 + HO772 + 2340773 mod ?74

2̂,1,2 = 1 — II77 — II3772 — 236I773 mod 774,

32

and doing the same with 5 2,2 gives the roots

372,2,1 = IO77 + I2O772 + 2570773 mod rf

x 2,2,2 = 1 — 1277 — II3772 — 2549773 mod rf

The tree structure of these roots is given in Figure 4 .1.

*2,1,1 *2,1,2 *2,2,1 *2,2,2

X fs
roots

X 2’s
roots

Figure 4 .1: Tree structure of four roots

Now, we can evaluate both polynomials A and B at the above roots,

rf. For A, we obtain

« 1 ,1 =

«1,2 =

«2,1 =

0 2 ,2 =

and for B, we have

6 1.1 =

61 .2 =

&2 ,1 =

i>2 ,2 =

1 + 1377 + I6I772 + 309077s

2 - 577 - 104772 - 251177s

2 + 1377 + 149772 + 388077s

4 — 38?7 — 184772 - 4475t7S

2 - 777 - II9772 - 267077s

1 + II77 + I46772 + 293177s

3 - 27?7 - 191t72 - 430077s

1 + 2477 + 142772 + 405577s

still modulo

mod 774;

mod rf\

mod rf\

mod 774

mod rf ;

mod rf\

mod rf\

mod rf.

33

The term-wise multiplication gives us the values of C = A B at the roots:

CM = 2 + 19?7 + 112?72 + 836t73 mod 774;

cl,2 = 2 + 17?7 + 133?72 + 1477?73 mod 774;

C2,l = 6 - 1577 - 286t72 - 346677s mod 774;

C2,2 = 4 + 58?7 - 52877s + 193377s mod rf.

Interpolation of these values at the roots produces

C = 2 + 777 - 30t72 + (4 + 26 ̂ - 40?72)X i

+ (4 77 — 1 2 rj2 + 12r)3)X 2 + (—2 + I I 77 — 23rf + 16r]3)X iX 2 mod rf.

The substitution of rj = 1 in C gives us the final result

—2 1 — lO-Xx -f- 4X 2 + 2 X\X2.

To verify this result in the naive way, the product of A and B is

2 + 3X i + X 2 + X 2 + X 2X x - X\ - 2X \X x - X\X\.

After reducing this with respect to (T), we obtain —21 — lOXi + 4X 2 + 2X iX 2, which

is same as before. The remainder of this chapter is devoted to study the algorithmic

aspects of this approach, except for the estimate on the precision in 77, which is left

to the next chapter.

4.3 Computing the roots of S

Prom now on, we continue with the notation given in the introduction of this chapter.

We show here that S has all its roots in R[[iy]].

First, we need some notation. Given positive integers k, Z and a subset A C R[[r?]]fc,

A mod rf denotes the set [o mod rje \ a €. A]. Besides, we usually denote objects over

R[[77]] with a * superscript, to distinguish them from their counterparts over R. Finally,

we extend the notation it to denote the following projection

7T : R[M]" -* RIM] ” - 1

W . ••■.<) K .

34

Recall in what follows that V C Rn is equiprojectable of multi-degree d, that its

associated triangular set is U, and that S = 77T + (1 — 77) U.

P roposition 5 . There exists a set V * in R[[??]]n such that the following holds:

• V = V* mod 77/

• V* is equiprojectable of multi-degree d;

• V* supports interpolation;

• S is the triangular set associated to V*.

Proof. We prove by induction that for i = 1, . . . ,n, there exists a unique equipro

jectable set V* such that 7Ti(V) = V* mod 77, V* is equiprojectable of multi-degree

(di, . . . , di), supports interpolation, and has (S i , . . . , Si) for associated triangular set.

For i = l, the constraints imply that the points of Vi* are the roots of Si. Let

ai, . . . , Odx be the points in Ki(V). Since V supports interpolation by assumption on

V, all differences ai — aj are units in R, for i 7̂ j . Remark now that

dSi
dXi (0,Xi)

dUi
dXi (Xi)

is given by

e n (* - %) .
i<dl

so its value at a* is

(ai ~ aj)!
j<di,j&

by what we said before, this is a product of invertible elements, so it is invertible.

We can thus apply by the Newton iteration presented in Chapter 2, which shows the

existence of A i , . . . , A^1 that are lifts of 01, . . . , a^ and roots of Si. Besides, for i ^ j,

Ai — Aj mod 77 = aj — aj is a unit, so using Newton iteration for inverses, we deduce

that Ai — Aj is a unit: this shows that supports interpolation.

Supposing that the result was established at index i, we prove it at index 7 + 1
in exactly the same manner as for i = 1. For any ¡3* = (/?£,... ,/3*_i) in V*_i, we

compute the set VJ* by lifting the roots of S i(77, (31, . . . , ¡3*^, Xi). All the arguments

given above for i = 1 apply in the same manner.

This establishes our claim by induction. Taking i = n gives the result of the

proposition. □

35

We continue with complexity estimates: we prove that the roots of S can be com

puted in quasi-linear time. This is done by using the fast algorithms seen before to

implement the construction of the previous proposition.

P roposition 6. Given T , V and i > 0, one can compute V* mod rf in time

0 (Sd L(d)M(£)).

Proof. As before, we proceed inductively: we suppose that the projection W* = rc(V*)

is known modulo rje, and show how to deduce V* mod rf. To do so, we evaluate all

coefficients of Sn at all points of W* modulo rf. Then, for each (3* in W*, it suffices to

use Algorithm 1 (LiftRoots) to lift the roots of Sn(f3*, X n) at precision t. The pseudo

code is in Algorithm 6; for simplicity, we write there W* instead of W* mod rf.

A lgorith m 6 L if t R o o t sM ultivar.ia te(V, S, i)_ _ _ _ _

2: if n = 0 then
3: return []
4: end if
5: W* <— LlFTROOTSMULTIVARIATE(7r(^), (Si , . . . , Sn-i),£)
6: for i = 0, . . . , dn — 1 do
7: valj <— Eval(coeff (Sn,X n, i), W*) /* all computations are done modulo rf */
8: end for
9: for (3* in W* do

10: S/3* «- 2̂i<dn vali^* X ln +
ii: v*p+ *- L if t R o o t s(S/5*, vp, i)
12: end for
13: return [ug* | ¡3* G W*}

Lemma 1 shows that we can lift the power series roots of a bivariate polynomial

of degree d at precision £ in time C(d)M(£). As a consequence, the overall cost C f̂t

of the lifting process satisfies

C|_ift(di,. . . , dn, f) ^ CLift(di, • • •, dn_ i , f) -(- CEvai(î) • • •; dn—i)dnM(£)
+d\ • • • dn-iC(dn)M(£);

the middle term gives the cost of evaluating the coefficients of Sn at W* mod rf (so

we apply our evaluation algorithm with power series coefficients); the right-hand term

gives the cost of lifting the roots of Sn. This gives

Ci_ift(di, ■ • ■ ,dn,£) < ^^CEvai(^i) • • • , di-i)d{M(£) + • ■ • di_iC(dj)M(f).
i<n i<n

36

As in the proof of Proposition 3, one deduces that the overall sum is bounded by

3£d = 35dL(d)M (£),

which concludes the proof. □

4.4 The multiplication algorithm

We continue with the same notation as before. To multiply two polynomials A , B e

Span(Md) modulo (T), we may multiply them modulo (S) over Rfrç] and let r) = 1 in

the result. Now, the results of the multiplication modulo (S) over R[rj\ and oyer R[[rj\]

are the same. When working over R[[77]], we may use the evaluation-interpolation

techniques from Chapter 3. Indeed, by Proposition 5, S is associated to a subset V*

of R[[?j]]n that supports interpolation.

Of course, when multiplying A and B modulo (S) over R[[77]], we cannot compute

with (infinite) power series, but rather with their truncations at a suitable order. On

the one hand, this order should be larger than the largest degree of a coefficient of

the multiplication of A and B modulo (S) over R^]. On the other hand, this order

will determine the cost of the multiplication algorithm, so it should be kept to a

minimum. For e = (ei , . . . , en) in Nn, recall that we have defined in the introduction

H0(eu . . . , e„) = d e g ^ f • • • mod (S),77)

and

H(e i , . . . , e n) = max # 0(ei , . . . , e'n).
el<ei, e'n<e„

For the moment, we do not give any more details on these functions; we leave this to

the next chapter. Taking this for granted, the following proposition relates the cost

of our algorithm to the function H.

P roposition 7. Given A, B, T and V , one can compute A B mod (T) in time

0 (5dL(d)M(r)) C 0~(8dr), with r = H(2dx - 2, . . . , 2dn - 2).

Proof. The algorithm is simple: we compute U and use it to obtain V* at a high

enough precision. In R[Xi , . . . , X n], the product A B satisfies deg(AB, W) < 2^ — 2

for all i < n; since the multiplication algorithm does not perform any division by rj,

it suffices to apply it with coefficients modulo 77r+1, with r = H{2d\ — 2, . . . , 2dn — 2).

37

The resulting algorithm is given in Algorithm 7; as before, we write V* for simplicity,

whereas we should write V* mod rf+1.

Algorithm 7 Mul(A, B, T, V)
l: U <— A ssociatedTriangularSet(V, n)
2 : S r fl + (1 - rj)U
3: V* <— LlFTROOTSMULTIVARIATE(Vr, S, r + 1)
4: Cv MUL(A, B, V*)
5: return Cn(l, X i , . . . , X n)

The computation of U takes time 0 (<5dL(d)) by Proposition 3; that of S takes time

0 (Sd). Computing V* mod rf+l takes time 0 (5dL(d)M(r)) by Proposition 6. Finally,

the modular multiplication takes time 0 (<5dL(d)M(r)) by Proposition 4; remark that

this algorithm is run with coefficients modulo rf+1, where all arithmetic operations

take time 0 (M(r)). Finally, specializing 77 at 1 takes time 0 (5d»~). Summing all these

costs gives our result. □

38

Chapter 5

Precision Analysis

In this chapter, we study the functions H0 and H introduced in the previous chapter,

and show how they are related to the monomial support of the polynomials in the

triangular set T . Before giving a general bound for these functions, we have a look

at examples of two special cases, to motivate our general result.

5.1 First worked example

For this example, we assume that n = 3 and that the triangular set S = (Si, S2, S3)

is as follows:

51 — Xf + T)Xi + TjXi + Tf

52 = X i + VX i + r]Xf

s 3 = x i + vx i + vx l

Here, the multi-degree of S is d = (3,3, 3). Remark that both S2 and S3 are sparse:

several monomials are missing, such as X iX 2. Since in our main result the actual

coefficients are irrelevant, we take the simplest possible form: all are equal to rj.

The degree of any polynomial reduced modulo (S) is at most (2, 2, 2) in respec

tively X\, X 2 and X 3. Thus, if A and B are two polynomials reduced modulo (S), the

degree of C = AB in Xi, X 2 and X 3 is at most (4, 4 , 4) before any reduction. Thus,

we will consider here the reduction of the largest monomial in C, m = XfX$X*.
Our question of estimating the functions H0 and H essentially boils down to the

following: what will be the degree in rj of the normal form of m = XfX^X* modulo

39

(S)? We are going to follow the steps of this reduction to show the growth of the

degrees.

Step 1: reduction with respect to S3. The first reduction step of m with respect

to S3 amounts to replacing X | by

- VX i - rjX2 X 3

and thus m by

-riX fX ZX i - riXtXlXs.

Since we are only interested in degree bounds in 77, we can forget about the signs. The

remaining monomials are mi = ijXfX^X^ and m2 = 77X1 X fX 3. Thus, we will focus

on the reductions of these two monomials. Reducing mi with respect to S3 amounts

to replacing X f by (up to sign)

vX i + rjX l

this gives us the normal form of mi as (up to sign)

r,‘ x ; x ; x i + t f x i x i .

The monomial m2 is already reduced with respect to S3.

All remaining monomials are now reduced with respect to S3. Among all the

monomials, m' = rf'XfX f is the “largest” one (it has the largest degree in X 2), so we

focus on the reduction of this monomial.

Step 2: reduction with respect to S2 and Si. If we reduce rfXfX^ with respect

to ¿2 once, we will get (up to sign)

r fX tX l + r fX tX f .

The monomials we are interested in are m[= r f X f X 3 and m'2 = r)3X fX f. We can

either choose m[then do the reduction, or take m'2 and then do the reduction. •

• Let us take the monomial mlx = r fX xX l and reduce it with respect to ¿2. If

we follow the same process we will reach rfXfX% + ■ • • + r]6X f. Next we can

reduce the monomial r]GX f, with respect to Si] it will increases the degree in rj

by 4 and the total degree in 77 will be 10. This is the largest degree in 77 that

can be obtained from m [.

40

• If we choose the monomial ra/2 = r)3X f X f and then do the reduction with

respect to S2, we will obtain + Vi X f. Here, the last monomial has the

highest degree in X\. So, the reduction of r/4X f with respect to Si will increase

the degree in rj by 6 and the total degree will be 10 as well.

The reductions with respect to S2 amount to replace X f by (up to sign) rjX^+rjX^.

These reductions can be described by a tree structure: the initial monomial is the

root, and the left and right children of a node correspond to the two monomials

that appear after one reduction step. This enables us to dispense with writing the rj

factors: the degree in rj of any monomial is the length of the path from the root to the

corresponding node. Figure 5.1 gives such an example for the initial monomial XfX$.

XfX$

v4 v 2

Figure 5.1: Tree structure of the reduction by S2.

Thus, starting from the root, we can follow paths obtained by applying the fol

lowing two moves:

• one step to the left, which reduces the degree in X 2 by 1;

• one step to the right, which reduces the degree in X 2 by 3 and increases the

degree in X\ by 2;

We perform reductions as long as the degree in X 2 remains at least 3; after the last

reduction, this degree remains > 0.

Each step in the path increases the degree in rj by 1. Besides, when we reach the

final node of the path, with degree r\ in X X) we can increase our degree by r\ — 2,

41

which corresponds to the reduction by S\. With these rules, our goal is to find an

upper-bound on the degree in 77.

Let us introduce two variables f i and /2, that respectively represent the number

of steps to the left and to the right. After (/1, /2) steps, the degree in X i has become

4 + 2 / 2 , and the degree in X 2 has become 6 — / 1 — 3 /2. Hence, the constraint that

this degree is at least 3 gives the inequality 6 — / 1 — 3/ 2 > 3, so that the end-points

of our walk satisfy 0 < 6 — /1 — 3 /2 < 2.

Figure 5.2 summarizes these considerations, by depicting the plane of coordinates

(/i) fz)- The lower oblique line has equation 6 — /1 — 3/2 = 2 and the higher one has

equation 6 — f i — 3/2 = 0, so all end-points are between these lines. Also, at each

point with integer coordinates (/i,/2), we give the value of the degrees in (X i,X 2),

that is, the values 4 + 2f 2 and 6 — f i — 3/2; the origin (/1, /2) = (0, 0) is in the lower

corner on the left. The points written in bold face are those which can be reached by

our reduction process; the two points with degrees (4, 1) and (4 , 0) are unreachable,

but will still matter for our purposes.

Figure 5.2: A view of the reduction tree in the coordinates (/ i , / 2)

Remember that this walk only describes the reduction process with respect to S2\
after that, we still need to reduce with respect to S\. This is done by remarking, as
we did before, that the reduction of a monomial rj^Xf1 ■ ■ ■ X£n with respect to Si
increases the degree in 77 by f\ — 2 .

Thus, starting from X fX f , the degree in 77 we obtain after reduction is bounded
by the maximal value of the sum (/ 1 + f 2) + (2 + 2 f 2) over all (/ i , / 2) that lie in
between the two oblique lines: the term (/ 1 + f 2) gives the degree increase due to the
reduction with respect to S2, and the term 2 + 2 f 2 = 4 + 2 f 2 — 2 gives the degree

42

increase due to the reduction with respect to S\ (remember that the degree in X\ is

4 + 2 /2).
In other words, to find a bound on the degree in 77, it is enough to maximize 2 + / i +

3/2 in the area contained between the oblique lines. To simplify the maximization,
we do the following simplifications:

• we can forget the lower constraint 6 — /1 — 3/2 < 2, and maximize in the larger

area defined by /1 > 0, j i > 0 , 6 — f\ — 3/2 > 0;

• we can remove the condition that /1 and are integers.

Indeed, both simplifications increase the size of the search space, so any upper-bound
obtained after simplifications will be an upper bound for the initial problem as well.

After these simplifications, we are left to maximize a linear function over D; it

is know that the maximum will be obtained at one of the end-vertices of D. The

vertex (/1, /2) = (0 , 0) is not a maximum (it is the minimum); the other vertices are

(/i> fi) = (0 , 2) and (/1, /2) = (6, 0), and the maximum of 2 -f f\ -f 3 /2 is 8, obtained

at both vertices.

This gives us an upper bound on the degree in 77 of the normal form oi XfX$-,
since we actually started from TfX^X^, the bound becomes 8 + 2 = 10. The final

value we obtain is indeed the exact maximum for our original problem; however, in

most cases, we will only get upper bounds, but that will be sufficient for our purposes.

5.2 Second worked example

Our second example uses the following triangular set:

Sr = X f + ^ + T)

*$2 = X-2 + 77-̂ 2 + tfXi + T)

S3 = X i + 77X3 + 77^X2.

Observe that as in the previous case, not all monomials are present; for instance, S2

does not have the monomial X iX 2. The reduction of a monomial having degree > 2
in X 3 by S3 replaces the monomial AT| by (up to sign) r/X3 + 7}XiX 2, s o we create
two monomials:

• in one direction, we reduce the degree in X 3 by 1;

43

• in the other direction, we reduce the degree in X 3 by 2 , but increase the degrees
in Xi and X 2 by 1 .

Again, we can display the reduction process using a tree structure. We give in Fig
ure 5.3 an example o f reduction, of the monomial XfX^X^ by £ 3 ; instead of writing
the monomials, we just write the exponents that appear.

9 ,9 ,9/ \
9 ,9 ,8 10,10,7/ \ / \

9 ,9 ,7 10,10,6 11,11,5/ \ / \ / \
9 ,9 ,6 10,10,5 11,11,4 12,12,3

/ \ / \ / \ / \
9 ,9 ,5 10,10,4 11,11,3 12,12,2 13,13,1

/ \ / \ / \ / \
9 ,9 ,4 10,10,3 11,11,2 12,12,1 13,13,0/ \ / \ / \

9 ,9 ,3 10,10,2 11,11,1 12,12,0/ \ / \
9 ,9 ,2 10,10,1 11,11,0/ \

9,9 ,1 10,10,0

Figure 5.3: Tree structure of the reduction by S3 .

When we reach the leaves of the tree, we should proceed with the reduction with
respect to £ 1 and £ 2.

As in the previous example, we introduce two variables f\ and f 2 that give the
number of steps to the left, resp. to the right, that we do. After (/ i , / 2) steps, the
degree in Xi becomes 9 + / 2, that in X 2 is 9 + f 2 and that in X 3 is 9 — f\ — 2/ 2.

The area we can reach is thus entirely contained in the set D defined by the
constraints / 1 > 0, / 2 > 0 and 0 < 9 — / 1 — 2/ 2; the end-points of our walk are
contained in the set D' defined by / 1 > 0, / 2 > 0 and 0 < 9 — f\ — 2/ 2 < 1. Here, fi
and / 2 are supposed to be integers.

Suppose inductively that we know the function H0 (ei, e2), that gives us the degree
in 77 of X ^ X p mod (£ i ,£ 2). Then, the degree in r] of XfX%X% mod (£ 1 , £ 2 , £ 3) is
the maximum for (/ 1 , / 2) in D' of f i + f 2 + # 0(9 + / i , 9 + / 2).

44

Generalizing, if now we start from a monomial m = X ^X ^ X ^3, after (/ i , / 2)
steps, the degree in X\ becomes e\ + f 2, that in X 2 is e2 + f 2 and that in X 3 is
e3 —/ 1 —2 /2. The set D is given by the constraints / 1 > 0, f 2 > 0 and 0 < e3 —/ 1 —2 /2,
and D' by the constraints / 1 > 0, f 2 > 0 and 0 < e3 — f\ — 2f 2 < 1.

Besides, H0(e 1 , e2, e3) is the degree in rj of m mod {Si, S2, S3)] it is thus, as before,
the maximum for (/ 1 , f 2) in D' of fi + f 2 + H0(ei + / 2, e2 + f 2).

We are going to show that if we know an upper bound for Ho{e\, e2) in two
variables, we can deduce a bound for H0 (ei,e2, e3) in three variables. Suppose indeed
that we know integers hi > 1 and h2 > 1 such that H0 (ei, e2) < hie 1 + h2e2 holds
for all ei, e2. Then, we deduce that H0 (ei, e2, e3) is bounded by the maximum for all
/ i , / 2 in D' of

T (/i , /b) = / 1 + / 2 + ^i(ei + f 2) + h2 {e2 + f 2).

Since D' is contained in D, we can take the maximum over D instead, and as before,
we can allow / 1; f 2 to take real values: the upper bound obtained this way will still
be valid (it may not be sharp, but obtaining sharp upper bounds is probably out of
our reach).

Then, the maximum is obtained at one of the possible end-points of D, which
have coordinates (/ 1 , / 2) = (0, e3 / 2) and (/ 1 , f 2) = (e3 , 0). The values of the function
L (/i , f 2) at these points are

L(0,63/2) = hiei + /i2e2 -I--------------^e3, T(e3, 0) = hiei + h2e2 + e3;

the first one is the largest. This shows that for all (ei, e2, e3), we have

H0 (ei, e2, e3) < hiei + h2 e2 + h3 e3, with h3 = 1 + ^ +

This mechanism enables us to establish degree bounds one variable after the other,
by defining coefficients hi,h2, ___

5.3 Precision analysis for the general case

We finally study the general case. As in the examples, we are going to see that the
monomial structure o f the polynomials in S affects the cost of the algorithm. For
i < n and v = (y i, . . . , Pi) in N\ we will use the notation = X " 1 • ■ ■ X p and we

45

write the monomial expansion of Si as

Si = -x(* + 5 3 s „x r , (5 .1)
veEi

where Ei is the set o f exponents that appear in Si, the exponents v are in N*, and s„
is linear in 77. Let us further introduce the coefficients hi defined by h0 = 0, /ix = 1
and for i > 1 ,

h\V\ + • • • + hi-i^i-i + 1
hi = m ax--------------,------------------------veEi di — Vi

One easily checks that all hi are positive. The following proposition shows that
through the coefficients hi, Ei determines the cost o f our algorithm.

P rop os ition 8 . The inequality

H(e 1 , . . . , en) < hiei + • • • + hnen

holds for all (e j , . . . , en) € Nn.

Using Proposition 7, this proposition gives as an easy corollary the following
statement, where we take e* = 2 di — 2 < 2 d,-; we continue using the previous notation
T and V.

C oro lla ry 1. Given A ,B , T and V, one can compute AB mod (T) in time
0(5aL(d)M (r)) C 0~(6dr), with r < 2{h\di -\--------b hndn).

Hence, the lower the hi the better. However, without putting extra assumptions
on Ei, Corollary 1 only yields estimates of little interest. Even in sparse cases, it
remains difficult to simplify the recurrence giving the coefficients hi. Still, several
examples in the next chapter will show that for some useful families, significantly
sharper bounds can be derived.

The rest of this section is devoted to prove Proposition 8 . In all that follows, the
multi-degree d = (d\,. . . , dn) and Ei are fixed. We also let E[be the set of modified
exponents

£ ' = { i/ - (0 , . . . , 0 , d i) e Z i | * ' e £ i},

so that for all v = (i>i, . . . , Vi) in E[, Vj > 0 for j < i and Vi < 0. Hence, Equation (5.2)
takes the (slightly more handy) form

hiV\-\--------1- hi-iVi-i + 1
hi = m ax--------------------------------------

veEi -Vi
(5.3)

46

Recall that the function H0 was defined in the previous subsection with domain
Nn; in what follows, we also consider H0 as a function over N*, for 1 < i < n,
by defining H o(ei,. . . , e*) = H0 (ei, . . . , ei; 0 , . . . , 0), where the right-hand expression
contains n — i zeros; for completeness, we write H0() = 0 for i = 0. The following
recurrence relation enables us to control the growth of Hq.

L em m a 2. For i > 1, let e = (e i , . . . , e*) be in Nl and let e' = (e i , . . . , ej_i) in Nl_1.
Then the following (inequalities hold:

H0 (e) = iio (e ') if ei < di, H0 (e) < 1 + max H0(e + u) otherwise.ueE{

Proof. Let us first suppose e* < df, then,

X ? • • • X ? mod (S) = (Xf‘ . . . X £? mod (S)) ^ ,

since the latter product is reduced modulo (S). Both sides have thus the same degree
in r), and our first claim follows.

We can now focus on the case e* > di, for which we write — di, so that
f i > 0. From Equation (5.1), we deduce

x!‘Si = x>‘+dt +]T »„xAx?,
veEi

and thus we get
x(<Si = X? + J2

by the definition of E '. In our notation, we have X ®1 ■ ■ ■ X tei = X®. Thus, after
multiplication by X ®1 • • • X ® ^ 1 and term reorganization, the former equality implies
that

X? - * r ■ ■ • xz-?x(‘Si = - Y,

As a consequence, we deduce that

deg(X® mod (S), rj) < m axdeg(s1/X®+" mod (S), if).
veEl

Since for u in E[, we have

deg(s„X®+I/ mod (S), rf) = deg{sv, rj) + deg(X®+" mod (S), 77) = 1 + H0(e + u),

47

the conclusion follows. □

Iterating the process of the previous lemma, we obtain the following bound. In
the next lemma, {fv)^eE[are a family of integer valued variables.

L em m a 3. Let e = (e i , . . . , ef) be in N\ Then the following inequality holds:

H0 (e) < max H0(e + M + f*-
(U) non-negative integers ueE[i>eE[

such that 0 < ei + Ŷ veE'- f^ i < di — 1

Proof. We prove the claim by induction on e*. For ei < di — 1, the family (/„ = 0)uEe[
satisfies the constraint 0 < e* + YlueE'- f vPi — di ~ T for this choice, the value of the
function we maximize is precisely H0 (e), so our claim holds. Suppose now that e i> di.
Then, the previous lemma gives

tfo(e) < 1 + max H0(e + v). (5.4)

Let us fix v in then e + v has non-negative integer coordinates, and its ¿th
coordinate is less than e2-. Thus, we can apply the induction assumption, obtaining

H0 (e+v) < max H0 (e+i/+^2 /"'•
(/✓)„ ieE[non-negative integers u'eE{ w'eE'

such that 0 < ei +Vi + fv'vi < <k - 1

To any set o f non-negative integers (f^ seE i with

o < e i + V i + f v fUi - di ~ 1

appearing in the previous maximum, we associate the non-negative integers (/ ' /) ^ g£',
with / ' = f v + 1 and / ' , = /„ / otherwise. These new integers satisfy

0 < ei + ^ f ' ^ < d i - 1
v'&E[

H0(e + v + ^ 2 fv'1'') + ^2 $v'
v'eEi v'GE'i

Ho(e + 2 p + X * & ~
v'eE'i v'tE'i

and

48

Taking maxima, we deduce from the previous inequality

H0(e + v)< max H0 (e + '^ 2 f ^ - 1 .
(&) , 'eE'- non-negative integers i/gE' ¡/g_E'

such that 0 < ej + Ŷ v'eE'- — di~ 1

Substituting in Equation (5.4) and taking the maximum over v in E\ concludes the
proof. □

For i < n, let Li be the linear form (e i , . . . , e*) i—> h\e\ + • • • + hiei} where
the hi are as in Equation (5.2). The following lemma concludes the proof of
Proposition 8 ; as we did for Hq, for i < n, we extend H to FT, by writing
H (e i , . • •, ej) H {ei , . . . , ej, 0 , . . . , 0).

L em m a 4. For i < n and e = (e i , . . . , ej) in Nl, the inequality H (e) < L j(e) holds.

Proof. It is sufficient to prove that H0 (e) < Lj(e) holds; since all coefficients of L{ are
non-negative, Lj is non-decreasing with respect to all o f its variables, which implies
the thesis.

We prove our inequalities by induction on i > 0. For i = 0, we have H0() —
L0Q = 0; hence, our claim vacuously holds at this index. For i > 1, we now prove
that if our inequality holds at index i — 1, it will also hold at index i. Lemma 3 shows
that for any e € Nl , we have the inequality

H0 (e) < max H0(e + /*'•
(/ ,) veE> non-negative integers V&E[vety

such that 0 < ej + YhveE' fvvi — di ~ 1

Let <p be the natural projection N* — Nl_1, let {fS)ueE[be non-negative integers that
satisfy the conditions in the previous inequality. Since e + YhveE'. has degree in
Xi less than dt) the first point of Lemma 2 shows that

Ho(e + ^ 2 f vv) = H0 (<p(e + f vu))\
v€E< veEi

the induction assumption implies that this quantity is bounded from above by

veE[

49

As a consequence, H0 (e) admits the upper bound

max Li-i((p(e + Z M) + Z
{fv)V£E'i non-negative integers veE[veE\

such that 0 < e* + J2 ueE' 'fvvi < dj — 1

This quantity itself is upper-bounded by a similar expression, where we allow the / „
to be non-negative reals numbers; this gives

H0 (e) < max Lj_i(<^(e + Z M) + Z f"-
(U) ueE'i non-negative real numbers ueE[i/<=£'

such that 0 < ej + fvVi < d* — 1

Since all hi and all ¿/I,. . . , are non-negative, the function of {ju)ueE[we want to
maximize is affine with non-negative coefficients. The domain where we maximize it
is defined by the conditions

f v > 0 for all v e E'i, 0 < ^ f vUi < d i~ 1 ,
ueE[

and it is contained in the domain D defined by the conditions

fv > 0 for all v € E[, 0 < e* + ^ f vVi.
ueE[

Since all unknowns / „ are non-negative, while the coefficients Vi are negative, the
domain D is convex and bounded. Hence, the maximal value we look for is upper-
bounded by the maximal value at the end-vertices o f D, distinct from the origin;
these vertices are

Eu = { U = 0 for v’ j=-v, / „ = - — }, for v E E[.
V%

At the point Eu, the objective function takes the value

U-i(<p(e - —v)) - — .
Vi Vi

By the linearity o f Lj_i and ip, this can be rewritten as

- L t - M - v)) - - = L,-i(<p(e)) - i S z l M A ± i . ej.
Vi Vi Vi

50

As a consequence, we obtain the upper bound

H0(e) < Lj_i(yj(e)) + max ^ + \ei.
ueE1, - V i

To simplify this further, note that the term Lj_i(y?(e)) rewrites as hieH------ bhj_iei_i
Similarly, Li-i(<p(v)) + 1 equals hivi H----- + We deduce the inequality

tt / \ ^ u , i L H--------H hi-iVi-i + 1Hole) < hiei H----- + hi-iCi-i + m ax---------------------------------------e,
ueEi Vi

which we can finally rewrite as

H q(g) < h\e\ + • * • + h i-\ e i-i + /¿¿ei,

as requested. □

51

Chapter 6

Families of application

In this chapter, we apply the general bounds obtained in the previous chapter to
large families of examples; for several of them, we reach our goal of quasi-linear
cost, whereas the previous results in the literature did not obtain so good estimates.
The first section presents our families of examples; the latter sections give concrete
illustrations.

6.1 Main family of examples

We consider triangular sets T = (Ti , . . . , Tn) such that T* has the form

% = X ? + Y , W t„e R, (6 .1)
veDi

where all are monomials in X \,. . . , Xi of total degree at most for some Aj G N.
We let d = maxj<n dj, and we suppose that R contains at least d pairwise distinct
values x i , . . . , Xd, with Xi — x3 a unit for i ^ j.

Under these assumptions, we can estimate the cost of multiplication modulo the
triangular set T by giving explicit estimates for the coefficients hi o f the previous
chapter.

The following proposition illustrates three different situations. The first two cases
display a cost quasi-linear in d8 d, which is satisfying, especially for small d\ the last
one shows that small changes in the assumptions can induce large overheads. We will
see in the next section cases where di is constant equal to d, or di = n + 1 — *; in such
cases, d is logarithmic in Sd and the cost 0~(d5d) is thus 0~(<5d), which is what we
were aiming at.

52

P rop os ition 9. With assumptions as above, multiplication modulo (T) can be per
formed with the following complexities:

0 (n S d ^ M(nd)) C 0~(ddd) ¿/ Aj = dj - 1 for all i,

0 (n 8 d ^ M(n2 d)) C 0~(dSd) if Aj = dj for all i,

0 (n S d ^ M (2 nd)) C 0~(2nd5d) if Aj = dj + 1 for all i.

Proof. First, we construct V: we simply choose the grid

V = [x\,.. . ,x dl] x • • • x [x\,. . . ,x dn]. (6 .2)

Thus, we have Ui — (X j - Xi) • • ■ (X* - xdi); as before we let S = r fl + (1 - rj)U.
Thus, the monomial support Ei associated with Si is contained in

D\ = A U { (0 , . . . , 0, Ui) | 0 < U i< di}.

Since each monomial in Di has an exponent of the form (vx, . . . , vf), with vx-i------\-Vi <
Aj and i/j < di, we deduce from Equation (5.2) that

hi < max
veD'

hxvx + • • • + hi-\Vi-\ + 1

di — Vi
< max (max\ ueDi

hxvx + ■ • • + hi-iVi-i + 1

di - Vi - 1) -

Let h' = max(hx, . . . ,hi), so that

hi < max m ax---------------;--------------------- , 1 < max I
V i/e a di — Vi / V

max i maxi'SD,
frj-l(Aj ~ */j) + 1

Æ - Vi 4
(6.3)

Knowing the distribution of the di and Ai, the former relation makes it possible to
analyze the growth of the coefficients hi, and thus of 2 (d\hi + • ■ ■ + dnhn). In what
follows, remember that d is the maximum of dx, . . . , dn.

C ase 1 . Suppose first that Aj = di — 1. Then, the former inequality implies 4 < l
for all i, so that 2 (dxhx + ----- 1- dnhn) < 2 nd

C ase 2. If Aj = dj, then (6.3) becomes 4 < h_x + 1, so that 4 < i for all i, and
thus 2 {d\h\ + ■ • • + dnhn) < 2 (di + 2 d2 + 3 d3 + • ■ • + ndn) < n(n + l)d.

C ase 3. If finally Aj = dj + 1, then (6.3) becomes 4 < 2h'i_x + 1. We claim that in
this case, 4 < 2l — 1. This is proved by induction

• Basis: For i = 1, we have hx = 21 — 1 = 1 which is true.

53

• Induction: Assume that hi < 2 l — 1 is true for i\ we have to prove that this
is also true for i+ 1 . Then, from h{+i < 2/i' + l we get hi+i < 2(2* —1) + 1 =
2 l + 1 — 1 , which is what we wanted.

Thus, in this case, we get 2{d\hi + • • • + dnhn) < 2(2n+1)d = 2n+2d.

To conclude the proof, we simply plug the previous estimates in the cost estimate
0 (5 dL(d)M (r)) o f Corollary 1, with r < 2 (^ 1 + ------b dnhn), and we use the upper
bound L(d) < nC(d)/d o f Equation (2.2). □

The bounds given in the proof of Proposition 9 are sharp and the complexities
are better then the complexity of [23] which is 0~(4n5d). Examples for first two cases
of Proposition 9 are given in next sections where we will see that the bounds are
actually sharp. For third case, we are not sure whether our bound is sharp or not.

6.2 Computing with Cauchy modules

In this section, we give an application coming from the study of polynomial systems
with symmetries. The content of this section consists mainly of a review of known
results; we will show how to improve one of those using the previous proposition.
Here, the base ring R is actually Q.

D efin ition . We consider polynomials in d variables X \,. . . , X& The elementary
symmetric polynomials in the d variables X l, . . . , X d are written Ek(Xi, . . . , X d), for
k = 0 , 1 , . . . , d. They are defined as

1 <j<d

l< jl< j2 < d

and so forth, down to

54

Thus, there is one elementary symmetric polynomial of degree k in d variables for
any k < d, and it is formed by adding together all distinct products of k distinct
variables.

The following lists the elementary symmetric polynomials for the first three posi
tive values of d. In every case, E0 = 1 is also one o f the polynomials.
For d = 1 :

For d = 2 :

E i(X x) = X x.

El(X 1 ,X 2) = X x + X 2

E2(X i, X 2) = X i X 2

For d = 3 :

E 1 (X u X 2 ,X 3) = X x + X 2 + X 3

E 2 (X i ,X 2 ,X s) = X iX 2 + X xX 3 + X 2 X 3

E3 (X u X 2 ,X 3) = x , x 2 x 3

The elementary symmetric polynomials are the basic building block for symmetric
polynomials: any symmetric polynomial P in Q [X i , . . . ,Xd] can be expressed as a
polynomial in the elementary symmetric polynomials, that is, there exists another
polynomial Q such that P (X i , . . . , X j) = Q(Ei, . . . , Ed).

E xam ple. Consider the following polynomials, quoted from [10]:

Pi = 1 - X x{a + X% + X$) = 0
P2 = 1 - X 2(a + XI + X l) - 0 (6.4)
P3 = l - X 3(a + X f + X%) = 0

where a is an independent parameter. In [10], it is shown how to use the symmetries
of this system to solve it. The first step is to replace it by the following:

Qi = Pi + P2 + P3 = 0
Q2 = P1 P2 + P2 P3 + P3 P 1 = 0

Q3 = P1P2P3 — 0

(6.5)

55

Each equation of this new system is symmetric: it remains unchanged through all
permutations of X\, X 2, X 3. Thus, every Qi can be expressed in terms of

E3 = X1X2X3, E2 — X1X2 + -X2-X3 + XiX3, Ei — X\ + X2 + X$.

For instance, we get
Qi = 3E3 — (E2 + ot)E\ + 3 = 0.

This remark is the key used by [10] to solve the system: express all Qi in terms of
Ei, E2, E3 and solve in these new variables.

C om p u tin g Q. Given a symmetric polynomial P , our question here is how to
compute the polynomial Q such that P (X 1, . . . , X d) = Q (E i,. . . , Ed). We will do
this using a basic construction in Galois theory and invariant theory [38, 31, 1, 30],
Cauchy modules [31]. Let 7\ be the monic polynomial

Ti = X { - E i X t 1 + E2 X f ~ 2 + • • • + (- 1)dEd.

The next polynomials T2 , . . . ,T d are obtained by taking divided differences:

-m+H-Ai , • ■ • = ---------------------- v ---- V------------------------- 1 s t < a-u\i — -Aj+i

For instance? starting from F = X s — E\X2 + E^X — E ,̂ we have

T3(Xi,X2,X3) = T2{Xi’X£ z%f uX3) = X 3 + X2 + Xi - E i .

T2(Xi, Xi) = Tl{Xx}~ l f 2) = Xi + X2Xi - E1X2 + Xl - EiX i + E2
Ti(Xi) = Xf - EiXl + E2Xi - E3.

The polynomials T i,. . . ,Td form a triangular set with coefficients in Q (E i,. . . , Ed),
which has multi-degree d = (d, d — 1 , . . . , 1), so that Sd = d\.

It is proved in [38] that Ti has total degree at most d + l — i. Hence, we are under
the assumptions of Subsection 6.1, with A* = di = d+ 1 — i for alH and (xi, . . . , xd) —
(0 , . . . , d — 1). As a consequence, Proposition 9 shows that multiplication modulo
(Ti , . . . , Td) can be done using 0(d\ C(d) M(d3)) operations, that is, in quasi-linear
time 0~(d\). The previous known results of multiplication modulo (Ti , . . . , Td) were
0 (4 d(d!)2) in [15] and 0~(4dd\) in [23].

Let us now describe the applications o f these polynomials. It is known (see e.g. [38,

56

15]) that if P is symmetric, its normal form with respect to Ti, . . . , Td is the polynomial
Q(Ei, . . . , Ed) we want to compute.

To measure the cost of computing Q, instead of considering that P is given to
us in its expanded form, we should think that it is given by a straight-line program,
that is, by a sequence of operations (+ , —, x). Then, it is possible to obtain a similar
sequence of operations that computes Q, by performing all operations for P modulo
(Ti , . . . ,Td)■ The following proposition gives the complexity of this process; it is a
restatement of Theorem 1 in [15], but using the improved bounds 0~(d\) obtained
above.

P rop os ition 10. Let P be in Q [X i , . . . , X j be a symmetric polynomial that can
be computed using L operations of the form (+, —, x) , and let Q be such that P =
Q(Ei, . . . , Ed). Then, Q can be computed using 0~(d\L) operations (+, —, x) .

6.3 Polynomial multiplication

Our next application is to give quasi-linear time algorithms for univariate multi
plication in R[X] from our previous multivariate construction. Unfortunately, our
algorithm does not improve on the complexity o f Cantor-Kaltofen’s algorithm [9];
however, we believe it is worth mentioning as the complexity is quasi linear.

Precisely, given n > 1, we give here an algorithm to perform truncated mul
tiplication in R [X] /(X 2"). We introduce variables X i , . . . , X „ ; computing in A =
R [X]/(X 2?l) is equivalent to computing in B = R [X i , . . . , X n] / (V i , . . . ,Vn), with
V = (Vi , .. •, Vn) given by

X V 2 n ~ 1
1 “ A n

x n_! - x l
V 2n)

since the dummy variables X\,. . . , X n_i play no role in this representation. However,
changing the order of the variables, we see that the ideal (Vi , . . . , Vn) is also equal to
the ideal (T i , , Tn) given by

X2n - Xn—i

x\ - X x
x\.

The R-basis o f B corresponding to V is (X^)i<2n; the basis corresponding to T is Md

57

(notation defined in the introduction), with d = (2 , . . . , 2). Besides, the change of
basis does not use any arithmetic operation, since it amounts to rewrite the exponents
i in base 2, and conversely.

Hence, we can apply our multivariate multiplication algorithm modulo (T). Re
mark that the triangular set T satisfies the assumptions of Subsection 6.1 (for any R),
with d\ = • • • = dn = 2, <5d = 2n, Ai = • • • = An = 1 and (aq, x?) = (0,1). By Proposi
tion 9, we deduce that the cost o f a multiplication in B, and thus in A, is 0{2nnM(nj).
One can multiply univariate polynomials of degree 2n using two multiplications in A.
The first multiplication gives the lower part of the product whereas the second one
gives the upper part (which can be achieved by reversing both polynomials and then
performing the multiplication).This gives the recurrence

M(2n) < k2nnM(n) and thus M (d) < k'dlog(d)M (log(d))

for some constants k, k' (for d not a power of 2, we let 2n be first power of 2 greater
than or equal to d).

Unrolling the recursion once, and taking M(n) £ 0 (n 2) to end the recursion, we
obtain the quasi-linear estimate of the form

M(d) < k'dlogd(\ogd) 2 £ 0(d\og(d)3)

Unrolling 2 times, we will have

M(d) < k!dlogM(logo?)

< k/2dlog(d) log(d) log log(d) M (log log(d))

< k'2dlog(d) log(d) log log(d)(log log(d))2

£ 0 (d log(d)2 log log(d)3)

and so on.
The main noteworthy feature of this multiplication algorithm is that no root of

unity is present, though our multivariate evaluation-interpolation routine is somewhat
similar to a multivariate Fourier Transform. In particular, the case when 2 is not
invertible in R requires no special treatment, contrary to [9].

58

6.4 Exponential generating series multiplication

We continue with a question somehow similar to the one in the previous subsection.
Given two sequences a0, a d and &q, in R> we want to compute the sequence
Co,. . . , Cd such that

(6.6)

where the binomial coefficients are the coefficients of the expansion of (1 + X)k in
R[X]. We discuss an application of this question in the next chapter; note that the
naive algorithm has cost 0 (d2).

Recall that if 1 , . . . , d are invertible in R, the exponential generating series associ
ated with a sequence (a0, . . . , oq) is

note that exponential generating series are usually defined as infinite sums, but the
finite sum we have here will be enough for us. If 1, ,d are invertible, Equations (6.6)
is equivalent to the following:

V ^ Y " ^ X i mod X d+1.
i<d i<d i<d

(6.7)

In this case, we can achieve a cost 0(M(d)) to compute c0, . . . , q . However, if the
invertibility assumption does not hold, for instance over R = Z /2 Z or more generally
Z /2 “ Z, this approach fails, and it was unknown up to now how to compute the
coefficients q efficiently.

Under some mild assumptions on R, we are going to see how to achieve a similar
cost through multivariate computations. We will suppose that there exists a prime p
such that for a € N, if gcd(a,p) = 1, then a is invertible in R: this is the case e.g. for
R = Z /p fcZ. Let n be such that d + 1 < pn, and let us introduce the triangular set
T = (T i , . . . , Tn) defined by

— pXn_i

X l - p X x
X[.

59

In what follows, for i > 0, (i0, i\, ■ ■ ■) denotes the sequence of its coefficients in base
p, i.e. i = i0 + iip + %2p2 + . . . ; thus, for % < d, only io, ■ ■ ■, in- i can be non-zero.

Next, let v be the p-adic valuation: v(a) is the largest integer e such that pe divides
a. We can then define the function / : N —► N by

pv(i\) -

This definition means that f(i) is the factorial of i, where we removed all powers of
p; thus, f{i) is invertible in R.

Our main proposition shows that instead of using univariate exponential generat
ing series, one can compute the coefficients c0, . . . , c<* using multivariate multiplication.

P ro p o s itio n 11. Witha,b,c as above, let

/(*)%<d i<d i<d

Then C = AB mod (T).

Before proving this proposition, let us explain its consequences. As in the previous
subsection, we can apply our multivariate multiplication algorithm modulo (T). Note
that the triangular set T satisfies the assumptions of Subsection 6.1, with d\ = ••• =
dn = p, ¿a = pn, Ai = ■ • ■ = An = 1 and (x i , . . . , xp) = (0 , . . . ,p — 1). Note as well
that we can take n E 0 (logp(d)), and that we have ¿a < pd.

By Proposition 9, the cost o f computing C is 0 (n ¿a M(np)); after a few
simplifications, we obtain the bound

0 (dlog(d) M(p) M(plogp(d))).

If p is fixed (e.g., p = 2) this can be simplified into 0(d log(d)M (log(d))). This is not
as good as the estimate 0 (M(d)) = 0(dlog(d) loglog(d)) we obtained when 1 , . . . ,d
are units in R, but quite close.

The rest o f this section is devoted to prove this proposition. First, we need a few
technical lemmas on the function / .

L em m a 5. For i,j, k such that i + j = k, we have (*?) = /(¿j/O'jp”^ 1̂ '

Proof. The starting point is simply the definition of / , by f { i) = i\/pv^ . Then, we

60

can write

k\
i\jl

k\pv{k\) Pv(kl)

i!___nHii)nv(j\)v(i!) Dv(j!) ** V

v(k\)~-u(i!)—v(j!)

p v \ n j p

m
m m

p

Now, the definition of the valuation v implies that v(a/b) = v(a) — v(b) and v(ab) —
v(a) + v(b) for all a, b. This shows that the last quantity is equal to

/ W pt>(k\
i]j] m

mm p '

which is the conclusion we wanted. □

L em m a 6. Let i,j, k be integers with i + j = k and k < pn, and write the expansions
in base p

i = i0 + iiP-\-----+ in-iPn \ j = jo + jiP H------+ jn-\Pn 1

and
k = k0 + kip H------- 1- fcn_ipn_1.

Then we have

x io... x f - i x X jo... x in- 1 = pv((1))X *>.. . X i11“1 mod (T).

Proof. Before reduction, the product is m = X*0+-?0 ■ •. X jn_1+-7n_1. Reduction with
respect to the triangular set T will raise the power of p; we need to follow the reduction
process step-by-step to estimate by how much.

Observe that the equality i + j = k implies the relation io + jo = qop + k0, where
q0 is the carry. Then, the first reduction of m with respect to the first polynomial of
the triangular set, X% — pXn_i, will increase the exponents of p and X n_x by q0, and
the exponent of X n will be reduced to k0.

As before, i + j = k now implies that ii + ji + q0 = q\p + ki, where qi is the new
carry. At this stage, the exponent of X n-i is i\ + ji + qo, and the reduction by the
second polynomial o f the triangular set, — p X n_2, increases the exponents of p
and A n _ 2 by qi, and leaves A n_i with exponent k\.

61

Continuing, we obtain the series of equalities that relate the coefficients kf.

¿0 + io

h + ji + ?o

Ì2 + j 2 + i l

= Mo + k0

= M i + h

= M 2 + k2

in-1 + in -1 + Qn- 2 — Mn-1 + kn- 1,

with actually qn-\ — 0 since i + j < pn. In parallel, as we have seen above, the
exponent of p after reduction of m modulo (T) is q0 H-------h çn_2; the exponent of X n
is k0i that of X n- i is fci, . . . , and that of Xi is fcn_i-

We are thus almost done. To finish, we need to rewrite q0 + ■ • • + çn_2 as in the
statement of the lemma. FVom the above relations, we can deduce

¿0 + • ■ ■ + in-1 + jo + • ■ • + in— 1 — (Qo + qi + ■ ■ • + qn~2)(p — 1) + Afa + ■ • • + kn- 1

=$■ io + • • ■ + in- 1 + io + • ■ ■ + i n - i — (ko + ■ ■ ■ + A;n_ i) = (qo + qi + • ■ ■ + qn- 2)(p ~ 1)
/ , , . X (¿0 + -----1" * n -l) + (io + • • ■ + in —l) - (̂ 0 -------1- kn- 1)

=> [Qo + qi + ----- 1- qn-2) = --------------------------------- 7------T-,---------------------------------

=>■ (qo + qi + • • • + qn- 2) J

where the last equation is [37, Eq. (1.6)]. The total increment of the power of p, in
this reduction process, is thus (qo + qi + ----- b qn- 1) = v ((*)) , as requested. □

Finally, we can prove our proposition. Let i , j < of, with k = i + j < d. From the
previous lemma, the normal form of the product -^yX^0 • • • X]n_1 by jfaX ^ ■ ■ ■ X f 1-1
modulo (T) is

Of{bj y

f (i) f (j) P
((*)) x £ ° - - - x i n-

Thus, by Lemma 5, the former product equals

k\ üibj ^kn_1
V /(AO

Summing over all i , j such that i + j = k gives

i+j=k '

b.3 \rjo vJn- 1 _ ^ X^°
f (j)

X » - ~ X i * - ' = X f " - 1 mod (T),
m

and summing over all k finishes the proof.

63

Chapter 7

Experimental Results

We finally present an application of the previous constructions to computation with
algebraic numbers, and give timings of our implementation.

7.1 Presentation of the problem

Let A; be a field and let / and g be monic polynomials in k[T], o f degrees m and n
respectively. We are interested in computing their composed sum h = f ® g. This is
the polynomial o f degree d = mn defined by

h = f © g = J J (T - a - P) ,
a,13

the product running over all the roots a of / and P o f g, counted with multiplicities,
in an algebraic closure k of k. For example, if / = T 2 — 2 and g = T 2 — 3, with
coefficients in Q, we have

h = (T - y / 2 - V3)(T - V 2 + s/3)(T + V2 - v/3)(77 + V 2 + V3),

which becomes after expansion

h = T4 - 10T2 + 1.

As suggested by this example, computing composed sums is a basic operation when
one wants to do operations with algebraic numbers such as \ / 2 or \/3.

There is already a long series of previous work on this question; as we will see, our

64

contribution is to complete these works by a study over fields k o f the form k — Z /p Z ,
with p small (typically, p = 2).

A natural approach consists of computing h(T) as the resultant of f (T — U) and
g(U) in U. However, the fastest algorithm for resultants [29] has a complexity of
order 0~(d15) for m = n. To do better, Dvornicich and Traverso [12] suggested to
compute the power sums

/(“)=o 9(/3)=0

of respectively / and g , and deduce the power sums c* o f h, which are given by the
relation (already seen in the last chapter)

Finally, assuming that 1 ,d are invertible in k, we can recover h.
In [5], this approach is shown to take time 0(M(d)) , assuming that 1 , . . . ,d are

invertible in k. Indeed, computing (ai)i<d and (bi)i<d can be done in 0(M(o?)) oper
ations, over any field, using Newton iteration [32]. Then, by our assumption on the
characteristic, one can compute (cj)i<d in quasi-linear time using the equation (that
was already given in the last chapter)

for another M(d) + O(d) operations. Finally, knowing (Ci)i<d, one can then recover h
in time 0(M(d)) as well, using fast exponential computation [8, 32, 40, 7]; this step
relies as well on the assumption that 1 , . . . , d are invertible in k.

In this section, we deal with the situation where our assumption on k fails, that is,
1 , . . . ,d are not all invertible in k. Then, two issues arise: Equation (7.2) makes no
sense anymore and (Q)i<d are actually not enough to recover h. To our knowledge,

(7.1)

^ X * mod X d+1. (7.2)

7.2 Our algorithm

no general solution better than the resultant method was known up to now (partial
answers are in [5, 35] under restrictive conditions). We propose here a solution that
works over finite fields, following an idea introduced in [16].

65

For simplicity, we consider k = Z /p Z . Since our algorithm actually does com
putations over rings of the form Z /p aZ, measuring its complexity in operations in
k as we did up to now is not appropriate: instead, we count bit operations. Thus,
we let Mz be such that integers of bit-length £ can be multiplied using Mz (^) bit
operations; quasi-linear estimates are known as well for Mz , the best to date being
Furer,s£ log (£)2°(1°s*W) [13].

Proposition 12. Given f and g, one can compute h using

0((M(d) + d log(d) M(p) M (plogd(p))) N(p,d))

bit operations, with N(p,d) = 0 (M z (log(p)) log(log(p)) -f- Mz (log(d))).

This cost estimate is hard to read. After simplification, this cost is seen to be 0~(dp2)
bit operations. Also, if we consider p fixed, such as p — 2, the cost becomes

0 ((M(d) + dlog(d)M (log(d))) Mz (log(d))),

which is indeed quasi-linear.

Proof. Let F and G be monic polynomials in Z[T] such that f = F mod p and
g — G mod p.

Let further (Aj)i>o, (-B*)i>o and (Ci)i>o be the power sums of respectively F, G
and H. For any a > 0, the reductions Aj mod pa, Bi mod pa, and C* mod pa satisfy
Equation (7.1). In particular, given any a, we can apply the results of Subsection 6.4
to deduce (Q mod p a)i<d from (A* mod p a)i<d and (B i mod p a)i<d, by following the
algorithm given in that section with coefficients in Z /p "Z .

It remains to choose a correct a. Taking a = |_logp(d)J + 1, it is proved in [6] that
given (Ci mod pa)i<d, one can compute h in quasi-linear time 0(M (d)M z (logp(d))) bit
operations. Remark that this step is non trivial: recovering a polynomial of degree
d from its Newton sums requires divisions by 1 , . . . , d, and not all these numbers are
invertible modulo p if p is too small.

These ingredients are sufficient to design our algorithm. We use the following
subroutines:

• the function Lift simply lifts its argument from Z /pZ[T] to Z /p aZ[T];

• the function PowerSums computes the first d power sums of its argument: it is
detailed in [5] and originates from [32];

66

• the function ExponentialGeneratingSeriesMultiplication applies the algorithm of
Subsection 6.4;

• the function PowerSumsToPolynomial recovers h in Z /p Z starting from the power
sums (Ci)i<d, that are in Z /p QZ: it is taken from [6].

Our choice of a implies that log(p“) = 0 (log(d)). Thus, operations (+ , x) modulo pa
take 0 (M z (log(d))) bit operations [14, Chapter 9]. The cost o f inversions modulo pa
is slightly higher. We denote it by N(p, d)\ an upper bound on this quantity is given
in Lemma 7 below.

The cost of computing (Ai)i<d and (Bf)i<d is 0 (M (d)) operations modulo p“ . The
next cost is that of computing (Cj)j<d, which is reported in Subsection 6.4 in terms
of numbers of operations modulo p“ . The final part is the cost of recovering h\ it is
given in [6] and is negligible compared to the previous costs. Summing these costs,
and using the estimate on N(p, d) in Lemma 7, we conclude the proof. □

L em m a 7. Inversion modulo pa takes N(p,d) = 0 (M z (log(p)) log(log(p)) +
M z(log(d))) bit operations.

Proof. We use Newton iteration to do the inversion: to invert a modulo p", we first
invert it modulo p, then modulo the powers of p, to finally reach the inverse modulo
pa. In the complexity estimate, the first term stands for the cost computing the
inverse modulo p: from [14, Corollary 11.10], the cost of inversion of an integer in Zp
is <9(Mz (log(p))log(log(p)). Lifting it t o p “ costs 0 (M z (log(d)) [14, Chapter 9]. □

A lg or ith m 8 ComposedSum(/, g)
1: d <— d e g (/) deg(p)
2: a <- Llogp(of)J + 1
3: F 4- Lift(/ , a)
4: (Ai)i<d PowerSums(.F, d)
5. G <— Lift(p, a)
6: (Bi)i<d *— PowerSums(G, d)
7: (Ci)i<d ExponentialGeneratingSeriesMultiplication((Aj)j<d, (Bi)i<d)
8: return PowerSumsToPolynomial((C'i)i<d)

7.3 Experimental results

We implemented the composed sum algorithm over Z /2 Z (i.e., p = 2 here). We used
the NTL C + + package as a basis [36]. Since NTL does not implement bivariate

67

resultants, we also used Magma [3] for comparison with the resultant method. All
timings are obtained on an AMD Athlon 64 with 5GB of RAM.

Figure 7.1 gives detailed timings for our algorithm; each colored area gives the
time of one of the main tasks. The less costly step is the first, the conversion from
the original polynomials to their Newton sums. Then, we give the time needed to
compute all the power series roots needed for our multiplication algorithm, followed
by the evaluation-interpolation process itself; finally, we give the time necessary to
recover h from its power sums. Altogether, the practical behavior of our algorithm
matches the quasi-linear complexity estimates. The steps we observe correspond to
the increase in the number of variables in our multivariate polynomials, and are the
analogues of the steps observed in classical FFT.

1.6

1.4

1.2

1
C/3

i 0.8
H 0.6

0.4

0.2

0
0 1000 2000 3000 4000 5000 6000

Output degree

Power sums to polynomial Multiplication Lifting the roots Polynomial to power sums

Figure 7.1: Detailed timings for our algorithm

Figure 7.2 gives timings obtained in Magma, using the built-in resultant function,
on the same set of problems as above. As predicted by the complexity analysis,
the results are significantly slower (about two orders of magnitude for the larger
problems).

68

0 1000 2000 3000 4000 5000 6000
Degree

Figure 7.2: Timings in magma

69

Chapter 8

Conclusions and future work

The homotopy techniques for triangular multiplication give us quasi linear time com
plexity for some cases such as multivariate polynomial multiplication, exponential
generating series multiplication, computation with Cauchy modules. The comparison
of this complexity with other algorithms [15, 23] o f multiplication modulo triangular
sets tells us that this is the best complexity. Besides, the polynomials structure of
the triangular set determines the complexity o f the algorithm.

Several questions remain open after this work. O f course, the most challenging
one remains how to unconditionally get rid of all exponential factors in multiplication
algorithms for triangular sets. More immediate questions may be the following: at the
fine tuning level, adapting the idea of the Truncated Fourier Transform [39] should
enable us to reduce the step effect in the timings of the previous chapter. Besides,
it will be worthwhile to investigate what other applications can be dealt with using
the “homotopy multiplication” model, such as the product of matrices with entries
defined modulo a triangular set, or further tasks such as modular inversion or modular
composition.

70

Bibliography

[1] I. Abdeljaouad, S. Orange, G. Renault, and A. Valibouze. Computation of the
decomposition group of a triangular ideal. Applicable Algebra in Engineering
Communication and Computing, 15(3-4):279-294, 2004.

[2] P. Aubry and A. Valibouze. Using Galois ideals for computing relative resolvents.
J. Symb. Comp., 30(6):635-651, 2000.

[3] W . Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symb. Comp., 24(3-4) :235-265, 1997.

/
[4] A. Bostan, M.F.I. Chowdhury, J. van der Hoeven, and E. Schost. Ho-

motopy methods for multiplication modulo triangular sets. Technical Re
port h t tp :/ /a x x iv .o r g /a b s /0 9 0 1 .3 6 5 7 v l, Arxiv, 2009.

[5] A. Bostan, P. Flajolet, B. Salvy, and E. Schost. Fast computation of special
resultants. J. Symb. Comp., 41(1):1—29, 2006.

✓
[6] A. Bostan, L. González-Vega, H. Perdry, and E. Schost. From Newton sums to

coefficients: complexity issues in characteristic p. In MEGA ’05, 2005.

[7] A. Bostan and É. Schost. A simple and fast algorithm for computing exponentials
of power series. Available at h t t p : / / a l g o . i n r i a . f r / b o s t a n / , 2008.

[8] R. P. Brent. Multiple-precision zero-finding methods and the complexity of ele
mentary function evaluation. In Analytic computational complexity, pages 151—
176. Academic Press, 1976.

[9] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbi
trary algebras. Acta Informática, 28(7):693-701, 1991.

[10] A. Colin. Solving a system of algebraic equations with symmetries. Journal of
Pure and Applied Algebra, 117-118:195-215, 1997.

http://axxiv.org/abs/0901.3657vl
http://algo.inria.fr/bostan/

71

[11] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques
for triangular decompositions. In ISSAC’05, pages 108-115. ACM, 2005.

[12] R. Dvornicich and C. Traverso. Newton symmetric functions and the arithmetic
of algebraically closed fields. In AAECC-5, volume 356 of LNCS, pages 216-224.
Springer, 1989.

[13] M. Fiirer. Faster integer multiplication. In 39th Annual ACM Symp. Theory
Comp., pages 57-66. ACM, 2007.

[14] J. von zur Gathen and J. Gerhard. Modem Computer Algebra. Cambridge
University Press, 1999.

[15] P. Gaudry, É. Schost, and N. Thiéry. Evaluation properties of symmetric polyno
mials. International Journal of Algebra and Computation, 16(3):505-523, 2006.

[16] L. González-Vega and H. Perdry. Computing with Newton sums in small char
acteristic. In EACA’Of, 2004.

[17] M. Kalkbrener. A generalized euclidean algorithm for computing triangular rep
resentation of algebraic varieties. J. Syrnb. Comp., 15(2):143—167, 1993.

[18] L. Langemyr. Algorithms for a multiple algebraic extension. In Effective methods
in algebraic geometry), volume 94 of Progr. Math., pages 235-248. Birkháuser,
1991.

[19] D. Lazard. A new method for solvong algebraic systems of positive dimension.
Disc. Appl. Math., 33:147-160, 1991.

[20] D. Lazard. Solving zero-dimensional algebraic systems. J. Syrnb. Comp., 15:117
133, 1992.

[21] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias
S. Kotsireas, editor, Maple Conference 2005, pages 355-368, 2005.

[22] X. Li, M. Moreno Maza, R. Rasheed, and É Schost. High-performance symbolic
computation in a hybrid compiled-interpreted programming environment. In
ICCSA ’08, pages 331-341. IEEE, 2008.

[23] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: from
theory to practice. In ISSAC’07, pages 269-276. ACM, 2007.

72

[24] Marc Moreno Maza Li Xin and Wei Pan. Computations modulo regular chains.
In IS SAC’09, pages 151-160. ACM, 2009.

[25] M. van Hoeij and M. Monagan. A modular GCD algorithm over number fields
presented with multiple extensions. In ISSAC’02, pages 109-116. ACM, 2002.

[26] M. Moreno Maza. On triangular decompositions o f algebraic varieties. In MEGA-
2000, number T R 4/99, Oxford, UK, 2000. http : / /www.csd .uwo.ca /~moreno/ .

[27] D. Lazard P. Aubry and M. Moreno Maza. On the theories of triangular sets. J.
of symbolic computation, 28(1,2):45-124, 1999.

[28] V. Y. Pan. Simple multivariate polynomial multiplication. J. Syrnb. Comp.,
18(3): 183-186, 1994.

[29] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC’97,
pages 233-240. ACM, 1997.

[30] G. Renault and K. Yokoyama. A modular algorithm for computing the splitting
field of a polynomial. In Algorithmic Number Theory, ANTS VII, number 4076
in LNCS, pages 124-140. Springer, 2006.

[31] N. Rennert and A. Valibouze. Calcul de résolvantes avec les modules de Cauchy.
Experimental Mathematics, 8(4):351-366, 1999.

[32] A. Schönhage. The fundamental theorem of algebra in terms of computational
complexity. Technical report, Univ. Tübingen, 1982.

[33] É. Schost. Complexity results for triangular sets. Journal of Symbolic Compu
tation, 36(3-4):555-594, 2003.

[34] É. Schost. Computing parametric geometric resolutions. Applicable Algebra in
Engineering, Communication and Computing, 13(5):349-393, 2003.

[35] É. Schost. Multivariate power series multiplication. In ISSAC’05, pages 293-300.
ACM, 2005.

[36] V. Shoup. NTL: A library for doing number theory, http : / /www.shoup.net .

[37] A. Straub, T. Amdeberhan, and V. H. Moll. The p-adic valuation of /¿-central
binomial coefficient, 2008.

http://www.csd.uwo.ca/~moreno/
http://www.shoup.net

73

[38] B. Sturmfels. Algorithms in invariant theory. Texts and Monographs in Symbolic
Computation. Springer-Verlag, 1993.

[39] J. van der Hoeven. The Truncated Fourier Transform and applications. In
ISSAC’04, pages 290-296. ACM, 2004.

[40] J. van der Hoeven. Newton’s method and FFT trading. Technical Report 2006-
17, Univ. Paris-Sud, 2006. Submitted to J. Symb. Comp.

[41] W. T. Wu. A zero structure theorem for polynomial equations solving. MM
Research Preprints, 1:2-12, 1987.

A

	Homotopy techniques for multiplication modulo triangular sets
	Recommended Citation

	tmp.1690406175.pdf.ThCIh

