

43

• in the other direction, we reduce the degree in X 3 by 2 , but increase the degrees
in Xi and X 2 by 1 .

Again, we can display the reduction process using a tree structure. We give in Fig
ure 5.3 an example o f reduction, of the monomial XfX^X^ by £ 3 ; instead of writing
the monomials, we just write the exponents that appear.

9 ,9 ,9/ \
9 ,9 ,8 10,10,7/ \ / \

9 ,9 ,7 10,10,6 11,11,5/ \ / \ / \
9 ,9 ,6 10,10,5 11,11,4 12,12,3

/ \ / \ / \ / \
9 ,9 ,5 10,10,4 11,11,3 12,12,2 13,13,1

/ \ / \ / \ / \
9 ,9 ,4 10,10,3 11,11,2 12,12,1 13,13,0/ \ / \ / \

9 ,9 ,3 10,10,2 11,11,1 12,12,0/ \ / \
9 ,9 ,2 10,10,1 11,11,0/ \

9,9 ,1 10,10,0

Figure 5.3: Tree structure of the reduction by S3 .

When we reach the leaves of the tree, we should proceed with the reduction with
respect to £ 1 and £ 2.

As in the previous example, we introduce two variables f\ and f 2 that give the
number of steps to the left, resp. to the right, that we do. After (/ i , / 2) steps, the
degree in Xi becomes 9 + / 2, that in X 2 is 9 + f 2 and that in X 3 is 9 — f\ — 2/ 2.

The area we can reach is thus entirely contained in the set D defined by the
constraints / 1 > 0, / 2 > 0 and 0 < 9 — / 1 — 2/ 2; the end-points of our walk are
contained in the set D' defined by / 1 > 0, / 2 > 0 and 0 < 9 — f\ — 2/ 2 < 1. Here, fi
and / 2 are supposed to be integers.

Suppose inductively that we know the function H0 (ei, e2), that gives us the degree
in 77 of X ^ X p mod (£ i ,£ 2). Then, the degree in r] of XfX%X% mod (£ 1 , £ 2 , £ 3) is
the maximum for (/ 1 , / 2) in D' of f i + f 2 + # 0(9 + / i , 9 + / 2).

49

As a consequence, H0 (e) admits the upper bound

max Li-i((p(e + Z M) + Z
{fv)V£E'i non-negative integers veE[veE\

such that 0 < e* + J2 ueE' 'fvvi < dj — 1

This quantity itself is upper-bounded by a similar expression, where we allow the / „
to be non-negative reals numbers; this gives

H0 (e) < max Lj_i(<^(e + Z M) + Z f"-
(U) ueE'i non-negative real numbers ueE[i/<=£'

such that 0 < ej + fvVi < d* — 1

Since all hi and all ¿/I,. . . , are non-negative, the function of {ju)ueE[we want to
maximize is affine with non-negative coefficients. The domain where we maximize it
is defined by the conditions

f v > 0 for all v e E'i, 0 < ^ f vUi < d i~ 1 ,
ueE[

and it is contained in the domain D defined by the conditions

fv > 0 for all v € E[, 0 < e* + ^ f vVi.
ueE[

Since all unknowns / „ are non-negative, while the coefficients Vi are negative, the
domain D is convex and bounded. Hence, the maximal value we look for is upper-
bounded by the maximal value at the end-vertices o f D, distinct from the origin;
these vertices are

Eu = { U = 0 for v’ j=-v, / „ = - — }, for v E E[.
V%

At the point Eu, the objective function takes the value

U-i(<p(e - —v)) - — .
Vi Vi

By the linearity o f Lj_i and ip, this can be rewritten as

- L t - M - v)) - - = L,-i(<p(e)) - i S z l M A ± i . ej.
Vi Vi Vi

50

As a consequence, we obtain the upper bound

H0(e) < Lj_i(yj(e)) + max ^ + \ei.
ueE1, - V i

To simplify this further, note that the term Lj_i(y?(e)) rewrites as hieH------ bhj_iei_i
Similarly, Li-i(<p(v)) + 1 equals hivi H----- + We deduce the inequality

tt / \ ^ u , i L H--------H hi-iVi-i + 1Hole) < hiei H----- + hi-iCi-i + m ax---------------------------------------e,
ueEi Vi

which we can finally rewrite as

H q(g) < h\e\ + • * • + h i-\ e i-i + /¿¿ei,

as requested. □

51

Chapter 6

Families of application

In this chapter, we apply the general bounds obtained in the previous chapter to
large families of examples; for several of them, we reach our goal of quasi-linear
cost, whereas the previous results in the literature did not obtain so good estimates.
The first section presents our families of examples; the latter sections give concrete
illustrations.

6.1 Main family of examples

We consider triangular sets T = (Ti , . . . , Tn) such that T* has the form

% = X ? + Y , W t„e R, (6 .1)
veDi

where all are monomials in X \,. . . , Xi of total degree at most for some Aj G N.
We let d = maxj<n dj, and we suppose that R contains at least d pairwise distinct
values x i , . . . , Xd, with Xi — x3 a unit for i ^ j.

Under these assumptions, we can estimate the cost of multiplication modulo the
triangular set T by giving explicit estimates for the coefficients hi o f the previous
chapter.

The following proposition illustrates three different situations. The first two cases
display a cost quasi-linear in d8 d, which is satisfying, especially for small d\ the last
one shows that small changes in the assumptions can induce large overheads. We will
see in the next section cases where di is constant equal to d, or di = n + 1 — *; in such
cases, d is logarithmic in Sd and the cost 0~(d5d) is thus 0~(<5d), which is what we
were aiming at.

52

P rop os ition 9. With assumptions as above, multiplication modulo (T) can be per
formed with the following complexities:

0 (n S d ^ M(nd)) C 0~(ddd) ¿/ Aj = dj - 1 for all i,

0 (n 8 d ^ M(n2 d)) C 0~(dSd) if Aj = dj for all i,

0 (n S d ^ M (2 nd)) C 0~(2nd5d) if Aj = dj + 1 for all i.

Proof. First, we construct V: we simply choose the grid

V = [x\,.. . ,x dl] x • • • x [x\,. . . ,x dn]. (6 .2)

Thus, we have Ui — (X j - Xi) • • ■ (X* - xdi); as before we let S = r fl + (1 - rj)U.
Thus, the monomial support Ei associated with Si is contained in

D\ = A U { (0 , . . . , 0, Ui) | 0 < U i< di}.

Since each monomial in Di has an exponent of the form (vx, . . . , vf), with vx-i------\-Vi <
Aj and i/j < di, we deduce from Equation (5.2) that

hi < max
veD'

hxvx + • • • + hi-\Vi-\ + 1

di — Vi
< max (max\ ueDi

hxvx + ■ • • + hi-iVi-i + 1

di - Vi - 1) -

Let h' = max(hx, . . . ,hi), so that

hi < max m ax---------------;--------------------- , 1 < max I
V i/e a di — Vi / V

max i maxi'SD,
frj-l(Aj ~ */j) + 1

Æ - Vi 4
(6.3)

Knowing the distribution of the di and Ai, the former relation makes it possible to
analyze the growth of the coefficients hi, and thus of 2 (d\hi + • ■ ■ + dnhn). In what
follows, remember that d is the maximum of dx, . . . , dn.

C ase 1 . Suppose first that Aj = di — 1. Then, the former inequality implies 4 < l
for all i, so that 2 (dxhx + ----- 1- dnhn) < 2 nd

C ase 2. If Aj = dj, then (6.3) becomes 4 < h_x + 1, so that 4 < i for all i, and
thus 2 {d\h\ + ■ • • + dnhn) < 2 (di + 2 d2 + 3 d3 + • ■ • + ndn) < n(n + l)d.

C ase 3. If finally Aj = dj + 1, then (6.3) becomes 4 < 2h'i_x + 1. We claim that in
this case, 4 < 2l — 1. This is proved by induction

• Basis: For i = 1, we have hx = 21 — 1 = 1 which is true.

53

• Induction: Assume that hi < 2 l — 1 is true for i\ we have to prove that this
is also true for i+ 1 . Then, from h{+i < 2/i' + l we get hi+i < 2(2* —1) + 1 =
2 l + 1 — 1 , which is what we wanted.

Thus, in this case, we get 2{d\hi + • • • + dnhn) < 2(2n+1)d = 2n+2d.

To conclude the proof, we simply plug the previous estimates in the cost estimate
0 (5 dL(d)M (r)) o f Corollary 1, with r < 2 (^ 1 + ------b dnhn), and we use the upper
bound L(d) < nC(d)/d o f Equation (2.2). □

The bounds given in the proof of Proposition 9 are sharp and the complexities
are better then the complexity of [23] which is 0~(4n5d). Examples for first two cases
of Proposition 9 are given in next sections where we will see that the bounds are
actually sharp. For third case, we are not sure whether our bound is sharp or not.

6.2 Computing with Cauchy modules

In this section, we give an application coming from the study of polynomial systems
with symmetries. The content of this section consists mainly of a review of known
results; we will show how to improve one of those using the previous proposition.
Here, the base ring R is actually Q.

D efin ition . We consider polynomials in d variables X \,. . . , X& The elementary
symmetric polynomials in the d variables X l, . . . , X d are written Ek(Xi, . . . , X d), for
k = 0 , 1 , . . . , d. They are defined as

1 <j<d

l< jl< j2 < d

and so forth, down to

54

Thus, there is one elementary symmetric polynomial of degree k in d variables for
any k < d, and it is formed by adding together all distinct products of k distinct
variables.

The following lists the elementary symmetric polynomials for the first three posi
tive values of d. In every case, E0 = 1 is also one o f the polynomials.
For d = 1 :

For d = 2 :

E i(X x) = X x.

El(X 1 ,X 2) = X x + X 2

E2(X i, X 2) = X i X 2

For d = 3 :

E 1 (X u X 2 ,X 3) = X x + X 2 + X 3

E 2 (X i ,X 2 ,X s) = X iX 2 + X xX 3 + X 2 X 3

E3 (X u X 2 ,X 3) = x , x 2 x 3

The elementary symmetric polynomials are the basic building block for symmetric
polynomials: any symmetric polynomial P in Q [X i , . . . ,Xd] can be expressed as a
polynomial in the elementary symmetric polynomials, that is, there exists another
polynomial Q such that P (X i , . . . , X j) = Q(Ei, . . . , Ed).

E xam ple. Consider the following polynomials, quoted from [10]:

Pi = 1 - X x{a + X% + X$) = 0
P2 = 1 - X 2(a + XI + X l) - 0 (6.4)
P3 = l - X 3(a + X f + X%) = 0

where a is an independent parameter. In [10], it is shown how to use the symmetries
of this system to solve it. The first step is to replace it by the following:

Qi = Pi + P2 + P3 = 0
Q2 = P1 P2 + P2 P3 + P3 P 1 = 0

Q3 = P1P2P3 — 0

(6.5)

55

Each equation of this new system is symmetric: it remains unchanged through all
permutations of X\, X 2, X 3. Thus, every Qi can be expressed in terms of

E3 = X1X2X3, E2 — X1X2 + -X2-X3 + XiX3, Ei — X\ + X2 + X$.

For instance, we get
Qi = 3E3 — (E2 + ot)E\ + 3 = 0.

This remark is the key used by [10] to solve the system: express all Qi in terms of
Ei, E2, E3 and solve in these new variables.

C om p u tin g Q. Given a symmetric polynomial P , our question here is how to
compute the polynomial Q such that P (X 1, . . . , X d) = Q (E i,. . . , Ed). We will do
this using a basic construction in Galois theory and invariant theory [38, 31, 1, 30],
Cauchy modules [31]. Let 7\ be the monic polynomial

Ti = X { - E i X t 1 + E2 X f ~ 2 + • • • + (- 1)dEd.

The next polynomials T2 , . . . ,T d are obtained by taking divided differences:

-m+H-Ai , • ■ • = ---------------------- v ---- V------------------------- 1 s t < a-u\i — -Aj+i

For instance? starting from F = X s — E\X2 + E^X — E ,̂ we have

T3(Xi,X2,X3) = T2{Xi’X£ z%f uX3) = X 3 + X2 + Xi - E i .

T2(Xi, Xi) = Tl{Xx}~ l f 2) = Xi + X2Xi - E1X2 + Xl - EiX i + E2
Ti(Xi) = Xf - EiXl + E2Xi - E3.

The polynomials T i,. . . ,Td form a triangular set with coefficients in Q (E i,. . . , Ed),
which has multi-degree d = (d, d — 1 , . . . , 1), so that Sd = d\.

It is proved in [38] that Ti has total degree at most d + l — i. Hence, we are under
the assumptions of Subsection 6.1, with A* = di = d+ 1 — i for alH and (xi, . . . , xd) —
(0 , . . . , d — 1). As a consequence, Proposition 9 shows that multiplication modulo
(Ti , . . . , Td) can be done using 0(d\ C(d) M(d3)) operations, that is, in quasi-linear
time 0~(d\). The previous known results of multiplication modulo (Ti , . . . , Td) were
0 (4 d(d!)2) in [15] and 0~(4dd\) in [23].

Let us now describe the applications o f these polynomials. It is known (see e.g. [38,

56

15]) that if P is symmetric, its normal form with respect to Ti, . . . , Td is the polynomial
Q(Ei, . . . , Ed) we want to compute.

To measure the cost of computing Q, instead of considering that P is given to
us in its expanded form, we should think that it is given by a straight-line program,
that is, by a sequence of operations (+ , —, x). Then, it is possible to obtain a similar
sequence of operations that computes Q, by performing all operations for P modulo
(Ti , . . . ,Td)■ The following proposition gives the complexity of this process; it is a
restatement of Theorem 1 in [15], but using the improved bounds 0~(d\) obtained
above.

P rop os ition 10. Let P be in Q [X i , . . . , X j be a symmetric polynomial that can
be computed using L operations of the form (+, —, x) , and let Q be such that P =
Q(Ei, . . . , Ed). Then, Q can be computed using 0~(d\L) operations (+, —, x) .

6.3 Polynomial multiplication

Our next application is to give quasi-linear time algorithms for univariate multi
plication in R[X] from our previous multivariate construction. Unfortunately, our
algorithm does not improve on the complexity o f Cantor-Kaltofen’s algorithm [9];
however, we believe it is worth mentioning as the complexity is quasi linear.

Precisely, given n > 1, we give here an algorithm to perform truncated mul
tiplication in R [X] /(X 2"). We introduce variables X i , . . . , X „ ; computing in A =
R [X]/(X 2?l) is equivalent to computing in B = R [X i , . . . , X n] / (V i , . . . ,Vn), with
V = (Vi , .. •, Vn) given by

X V 2 n ~ 1
1 “ A n

x n_! - x l
V 2n)

since the dummy variables X\,. . . , X n_i play no role in this representation. However,
changing the order of the variables, we see that the ideal (Vi , . . . , Vn) is also equal to
the ideal (T i , , Tn) given by

X2n - Xn—i

x\ - X x
x\.

The R-basis o f B corresponding to V is (X^)i<2n; the basis corresponding to T is Md

57

(notation defined in the introduction), with d = (2 , . . . , 2). Besides, the change of
basis does not use any arithmetic operation, since it amounts to rewrite the exponents
i in base 2, and conversely.

Hence, we can apply our multivariate multiplication algorithm modulo (T). Re
mark that the triangular set T satisfies the assumptions of Subsection 6.1 (for any R),
with d\ = • • • = dn = 2, <5d = 2n, Ai = • • • = An = 1 and (aq, x?) = (0,1). By Proposi
tion 9, we deduce that the cost o f a multiplication in B, and thus in A, is 0{2nnM(nj).
One can multiply univariate polynomials of degree 2n using two multiplications in A.
The first multiplication gives the lower part of the product whereas the second one
gives the upper part (which can be achieved by reversing both polynomials and then
performing the multiplication).This gives the recurrence

M(2n) < k2nnM(n) and thus M (d) < k'dlog(d)M (log(d))

for some constants k, k' (for d not a power of 2, we let 2n be first power of 2 greater
than or equal to d).

Unrolling the recursion once, and taking M(n) £ 0 (n 2) to end the recursion, we
obtain the quasi-linear estimate of the form

M(d) < k'dlogd(\ogd) 2 £ 0(d\og(d)3)

Unrolling 2 times, we will have

M(d) < k!dlogM(logo?)

< k/2dlog(d) log(d) log log(d) M (log log(d))

< k'2dlog(d) log(d) log log(d)(log log(d))2

£ 0 (d log(d)2 log log(d)3)

and so on.
The main noteworthy feature of this multiplication algorithm is that no root of

unity is present, though our multivariate evaluation-interpolation routine is somewhat
similar to a multivariate Fourier Transform. In particular, the case when 2 is not
invertible in R requires no special treatment, contrary to [9].

58

6.4 Exponential generating series multiplication

We continue with a question somehow similar to the one in the previous subsection.
Given two sequences a0, a d and &q, in R> we want to compute the sequence
Co,. . . , Cd such that

(6.6)

where the binomial coefficients are the coefficients of the expansion of (1 + X)k in
R[X]. We discuss an application of this question in the next chapter; note that the
naive algorithm has cost 0 (d2).

Recall that if 1 , . . . , d are invertible in R, the exponential generating series associ
ated with a sequence (a0, . . . , oq) is

note that exponential generating series are usually defined as infinite sums, but the
finite sum we have here will be enough for us. If 1, ,d are invertible, Equations (6.6)
is equivalent to the following:

V ^ Y " ^ X i mod X d+1.
i<d i<d i<d

(6.7)

In this case, we can achieve a cost 0(M(d)) to compute c0, . . . , q . However, if the
invertibility assumption does not hold, for instance over R = Z /2 Z or more generally
Z /2 “ Z, this approach fails, and it was unknown up to now how to compute the
coefficients q efficiently.

Under some mild assumptions on R, we are going to see how to achieve a similar
cost through multivariate computations. We will suppose that there exists a prime p
such that for a € N, if gcd(a,p) = 1, then a is invertible in R: this is the case e.g. for
R = Z /p fcZ. Let n be such that d + 1 < pn, and let us introduce the triangular set
T = (T i , . . . , Tn) defined by

— pXn_i

X l - p X x
X[.

59

In what follows, for i > 0, (i0, i\, ■ ■ ■) denotes the sequence of its coefficients in base
p, i.e. i = i0 + iip + %2p2 + . . . ; thus, for % < d, only io, ■ ■ ■, in- i can be non-zero.

Next, let v be the p-adic valuation: v(a) is the largest integer e such that pe divides
a. We can then define the function / : N —► N by

pv(i\) -

This definition means that f(i) is the factorial of i, where we removed all powers of
p; thus, f{i) is invertible in R.

Our main proposition shows that instead of using univariate exponential generat
ing series, one can compute the coefficients c0, . . . , c<* using multivariate multiplication.

P ro p o s itio n 11. Witha,b,c as above, let

/(*)%<d i<d i<d

Then C = AB mod (T).

Before proving this proposition, let us explain its consequences. As in the previous
subsection, we can apply our multivariate multiplication algorithm modulo (T). Note
that the triangular set T satisfies the assumptions of Subsection 6.1, with d\ = ••• =
dn = p, ¿a = pn, Ai = ■ • ■ = An = 1 and (x i , . . . , xp) = (0 , . . . ,p — 1). Note as well
that we can take n E 0 (logp(d)), and that we have ¿a < pd.

By Proposition 9, the cost o f computing C is 0 (n ¿a M(np)); after a few
simplifications, we obtain the bound

0 (dlog(d) M(p) M(plogp(d))).

If p is fixed (e.g., p = 2) this can be simplified into 0(d log(d)M (log(d))). This is not
as good as the estimate 0 (M(d)) = 0(dlog(d) loglog(d)) we obtained when 1 , . . . ,d
are units in R, but quite close.

The rest o f this section is devoted to prove this proposition. First, we need a few
technical lemmas on the function / .

L em m a 5. For i,j, k such that i + j = k, we have (*?) = /(¿j/O'jp”^ 1̂ '

Proof. The starting point is simply the definition of / , by f { i) = i\/pv^ . Then, we

60

can write

k\
i\jl

k\pv{k\) Pv(kl)

i!___nHii)nv(j\)v(i!) Dv(j!) ** V

v(k\)~-u(i!)—v(j!)

p v \ n j p

m
m m

p

Now, the definition of the valuation v implies that v(a/b) = v(a) — v(b) and v(ab) —
v(a) + v(b) for all a, b. This shows that the last quantity is equal to

/ W pt>(k\
i]j] m

mm p '

which is the conclusion we wanted. □

L em m a 6. Let i,j, k be integers with i + j = k and k < pn, and write the expansions
in base p

i = i0 + iiP-\-----+ in-iPn \ j = jo + jiP H------+ jn-\Pn 1

and
k = k0 + kip H------- 1- fcn_ipn_1.

Then we have

x io... x f - i x X jo... x in- 1 = pv((1))X *>.. . X i11“1 mod (T).

Proof. Before reduction, the product is m = X*0+-?0 ■ •. X jn_1+-7n_1. Reduction with
respect to the triangular set T will raise the power of p; we need to follow the reduction
process step-by-step to estimate by how much.

Observe that the equality i + j = k implies the relation io + jo = qop + k0, where
q0 is the carry. Then, the first reduction of m with respect to the first polynomial of
the triangular set, X% — pXn_i, will increase the exponents of p and X n_x by q0, and
the exponent of X n will be reduced to k0.

As before, i + j = k now implies that ii + ji + q0 = q\p + ki, where qi is the new
carry. At this stage, the exponent of X n-i is i\ + ji + qo, and the reduction by the
second polynomial o f the triangular set, — p X n_2, increases the exponents of p
and A n _ 2 by qi, and leaves A n_i with exponent k\.

61

Continuing, we obtain the series of equalities that relate the coefficients kf.

¿0 + io

h + ji + ?o

Ì2 + j 2 + i l

= Mo + k0

= M i + h

= M 2 + k2

in-1 + in -1 + Qn- 2 — Mn-1 + kn- 1,

with actually qn-\ — 0 since i + j < pn. In parallel, as we have seen above, the
exponent of p after reduction of m modulo (T) is q0 H-------h çn_2; the exponent of X n
is k0i that of X n- i is fci, . . . , and that of Xi is fcn_i-

We are thus almost done. To finish, we need to rewrite q0 + ■ • • + çn_2 as in the
statement of the lemma. FVom the above relations, we can deduce

¿0 + • ■ ■ + in-1 + jo + • ■ • + in— 1 — (Qo + qi + ■ ■ • + qn~2)(p — 1) + Afa + ■ • • + kn- 1

=$■ io + • • ■ + in- 1 + io + • ■ ■ + i n - i — (ko + ■ ■ ■ + A;n_ i) = (qo + qi + • ■ ■ + qn- 2)(p ~ 1)
/ , , . X (¿0 + -----1" * n -l) + (io + • • ■ + in —l) - (̂ 0 -------1- kn- 1)

=> [Qo + qi + ----- 1- qn-2) = --------------------------------- 7------T-,---------------------------------

=>■ (qo + qi + • • • + qn- 2) J

where the last equation is [37, Eq. (1.6)]. The total increment of the power of p, in
this reduction process, is thus (qo + qi + ----- b qn- 1) = v ((*)) , as requested. □

Finally, we can prove our proposition. Let i , j < of, with k = i + j < d. From the
previous lemma, the normal form of the product -^yX^0 • • • X]n_1 by jfaX ^ ■ ■ ■ X f 1-1
modulo (T) is

Of{bj y

f (i) f (j) P
((*)) x £ ° - - - x i n-

Thus, by Lemma 5, the former product equals

k\ üibj ^kn_1
V /(AO

Summing over all i , j such that i + j = k gives

i+j=k '

b.3 \rjo vJn- 1 _ ^ X^°
f (j)

X » - ~ X i * - ' = X f " - 1 mod (T),
m

and summing over all k finishes the proof.

63

Chapter 7

Experimental Results

We finally present an application of the previous constructions to computation with
algebraic numbers, and give timings of our implementation.

7.1 Presentation of the problem

Let A; be a field and let / and g be monic polynomials in k[T], o f degrees m and n
respectively. We are interested in computing their composed sum h = f ® g. This is
the polynomial o f degree d = mn defined by

h = f © g = J J (T - a - P) ,
a,13

the product running over all the roots a of / and P o f g, counted with multiplicities,
in an algebraic closure k of k. For example, if / = T 2 — 2 and g = T 2 — 3, with
coefficients in Q, we have

h = (T - y / 2 - V3)(T - V 2 + s/3)(T + V2 - v/3)(77 + V 2 + V3),

which becomes after expansion

h = T4 - 10T2 + 1.

As suggested by this example, computing composed sums is a basic operation when
one wants to do operations with algebraic numbers such as \ / 2 or \/3.

There is already a long series of previous work on this question; as we will see, our

64

contribution is to complete these works by a study over fields k o f the form k — Z /p Z ,
with p small (typically, p = 2).

A natural approach consists of computing h(T) as the resultant of f (T — U) and
g(U) in U. However, the fastest algorithm for resultants [29] has a complexity of
order 0~(d15) for m = n. To do better, Dvornicich and Traverso [12] suggested to
compute the power sums

/(“)=o 9(/3)=0

of respectively / and g , and deduce the power sums c* o f h, which are given by the
relation (already seen in the last chapter)

Finally, assuming that 1 ,d are invertible in k, we can recover h.
In [5], this approach is shown to take time 0(M(d)) , assuming that 1 , . . . ,d are

invertible in k. Indeed, computing (ai)i<d and (bi)i<d can be done in 0(M(o?)) oper
ations, over any field, using Newton iteration [32]. Then, by our assumption on the
characteristic, one can compute (cj)i<d in quasi-linear time using the equation (that
was already given in the last chapter)

for another M(d) + O(d) operations. Finally, knowing (Ci)i<d, one can then recover h
in time 0(M(d)) as well, using fast exponential computation [8, 32, 40, 7]; this step
relies as well on the assumption that 1 , . . . , d are invertible in k.

In this section, we deal with the situation where our assumption on k fails, that is,
1 , . . . ,d are not all invertible in k. Then, two issues arise: Equation (7.2) makes no
sense anymore and (Q)i<d are actually not enough to recover h. To our knowledge,

(7.1)

^ X * mod X d+1. (7.2)

7.2 Our algorithm

no general solution better than the resultant method was known up to now (partial
answers are in [5, 35] under restrictive conditions). We propose here a solution that
works over finite fields, following an idea introduced in [16].

65

For simplicity, we consider k = Z /p Z . Since our algorithm actually does com
putations over rings of the form Z /p aZ, measuring its complexity in operations in
k as we did up to now is not appropriate: instead, we count bit operations. Thus,
we let Mz be such that integers of bit-length £ can be multiplied using Mz (^) bit
operations; quasi-linear estimates are known as well for Mz , the best to date being
Furer,s£ log (£)2°(1°s*W) [13].

Proposition 12. Given f and g, one can compute h using

0((M(d) + d log(d) M(p) M (plogd(p))) N(p,d))

bit operations, with N(p,d) = 0 (M z (log(p)) log(log(p)) -f- Mz (log(d))).

This cost estimate is hard to read. After simplification, this cost is seen to be 0~(dp2)
bit operations. Also, if we consider p fixed, such as p — 2, the cost becomes

0 ((M(d) + dlog(d)M (log(d))) Mz (log(d))),

which is indeed quasi-linear.

Proof. Let F and G be monic polynomials in Z[T] such that f = F mod p and
g — G mod p.

Let further (Aj)i>o, (-B*)i>o and (Ci)i>o be the power sums of respectively F, G
and H. For any a > 0, the reductions Aj mod pa, Bi mod pa, and C* mod pa satisfy
Equation (7.1). In particular, given any a, we can apply the results of Subsection 6.4
to deduce (Q mod p a)i<d from (A* mod p a)i<d and (B i mod p a)i<d, by following the
algorithm given in that section with coefficients in Z /p "Z .

It remains to choose a correct a. Taking a = |_logp(d)J + 1, it is proved in [6] that
given (Ci mod pa)i<d, one can compute h in quasi-linear time 0(M (d)M z (logp(d))) bit
operations. Remark that this step is non trivial: recovering a polynomial of degree
d from its Newton sums requires divisions by 1 , . . . , d, and not all these numbers are
invertible modulo p if p is too small.

These ingredients are sufficient to design our algorithm. We use the following
subroutines:

• the function Lift simply lifts its argument from Z /pZ[T] to Z /p aZ[T];

• the function PowerSums computes the first d power sums of its argument: it is
detailed in [5] and originates from [32];

66

• the function ExponentialGeneratingSeriesMultiplication applies the algorithm of
Subsection 6.4;

• the function PowerSumsToPolynomial recovers h in Z /p Z starting from the power
sums (Ci)i<d, that are in Z /p QZ: it is taken from [6].

Our choice of a implies that log(p“) = 0 (log(d)). Thus, operations (+ , x) modulo pa
take 0 (M z (log(d))) bit operations [14, Chapter 9]. The cost o f inversions modulo pa
is slightly higher. We denote it by N(p, d)\ an upper bound on this quantity is given
in Lemma 7 below.

The cost of computing (Ai)i<d and (Bf)i<d is 0 (M (d)) operations modulo p“ . The
next cost is that of computing (Cj)j<d, which is reported in Subsection 6.4 in terms
of numbers of operations modulo p“ . The final part is the cost of recovering h\ it is
given in [6] and is negligible compared to the previous costs. Summing these costs,
and using the estimate on N(p, d) in Lemma 7, we conclude the proof. □

L em m a 7. Inversion modulo pa takes N(p,d) = 0 (M z (log(p)) log(log(p)) +
M z(log(d))) bit operations.

Proof. We use Newton iteration to do the inversion: to invert a modulo p", we first
invert it modulo p, then modulo the powers of p, to finally reach the inverse modulo
pa. In the complexity estimate, the first term stands for the cost computing the
inverse modulo p: from [14, Corollary 11.10], the cost of inversion of an integer in Zp
is <9(Mz (log(p))log(log(p)). Lifting it t o p “ costs 0 (M z (log(d)) [14, Chapter 9]. □

A lg or ith m 8 ComposedSum(/, g)
1: d <— d e g (/) deg(p)
2: a <- Llogp(of)J + 1
3: F 4- Lift(/ , a)
4: (Ai)i<d PowerSums(.F, d)
5. G <— Lift(p, a)
6: (Bi)i<d *— PowerSums(G, d)
7: (Ci)i<d ExponentialGeneratingSeriesMultiplication((Aj)j<d, (Bi)i<d)
8: return PowerSumsToPolynomial((C'i)i<d)

7.3 Experimental results

We implemented the composed sum algorithm over Z /2 Z (i.e., p = 2 here). We used
the NTL C + + package as a basis [36]. Since NTL does not implement bivariate

67

resultants, we also used Magma [3] for comparison with the resultant method. All
timings are obtained on an AMD Athlon 64 with 5GB of RAM.

Figure 7.1 gives detailed timings for our algorithm; each colored area gives the
time of one of the main tasks. The less costly step is the first, the conversion from
the original polynomials to their Newton sums. Then, we give the time needed to
compute all the power series roots needed for our multiplication algorithm, followed
by the evaluation-interpolation process itself; finally, we give the time necessary to
recover h from its power sums. Altogether, the practical behavior of our algorithm
matches the quasi-linear complexity estimates. The steps we observe correspond to
the increase in the number of variables in our multivariate polynomials, and are the
analogues of the steps observed in classical FFT.

1.6

1.4

1.2

1
C/3

i 0.8
H 0.6

0.4

0.2

0
0 1000 2000 3000 4000 5000 6000

Output degree

Power sums to polynomial Multiplication Lifting the roots Polynomial to power sums

Figure 7.1: Detailed timings for our algorithm

Figure 7.2 gives timings obtained in Magma, using the built-in resultant function,
on the same set of problems as above. As predicted by the complexity analysis,
the results are significantly slower (about two orders of magnitude for the larger
problems).

68

0 1000 2000 3000 4000 5000 6000
Degree

Figure 7.2: Timings in magma

69

Chapter 8

Conclusions and future work

The homotopy techniques for triangular multiplication give us quasi linear time com
plexity for some cases such as multivariate polynomial multiplication, exponential
generating series multiplication, computation with Cauchy modules. The comparison
of this complexity with other algorithms [15, 23] o f multiplication modulo triangular
sets tells us that this is the best complexity. Besides, the polynomials structure of
the triangular set determines the complexity o f the algorithm.

Several questions remain open after this work. O f course, the most challenging
one remains how to unconditionally get rid of all exponential factors in multiplication
algorithms for triangular sets. More immediate questions may be the following: at the
fine tuning level, adapting the idea of the Truncated Fourier Transform [39] should
enable us to reduce the step effect in the timings of the previous chapter. Besides,
it will be worthwhile to investigate what other applications can be dealt with using
the “homotopy multiplication” model, such as the product of matrices with entries
defined modulo a triangular set, or further tasks such as modular inversion or modular
composition.

70

Bibliography

[1] I. Abdeljaouad, S. Orange, G. Renault, and A. Valibouze. Computation of the
decomposition group of a triangular ideal. Applicable Algebra in Engineering
Communication and Computing, 15(3-4):279-294, 2004.

[2] P. Aubry and A. Valibouze. Using Galois ideals for computing relative resolvents.
J. Symb. Comp., 30(6):635-651, 2000.

[3] W . Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symb. Comp., 24(3-4) :235-265, 1997.

/
[4] A. Bostan, M.F.I. Chowdhury, J. van der Hoeven, and E. Schost. Ho-

motopy methods for multiplication modulo triangular sets. Technical Re
port h t tp :/ /a x x iv .o r g /a b s /0 9 0 1 .3 6 5 7 v l, Arxiv, 2009.

[5] A. Bostan, P. Flajolet, B. Salvy, and E. Schost. Fast computation of special
resultants. J. Symb. Comp., 41(1):1—29, 2006.

✓
[6] A. Bostan, L. González-Vega, H. Perdry, and E. Schost. From Newton sums to

coefficients: complexity issues in characteristic p. In MEGA ’05, 2005.

[7] A. Bostan and É. Schost. A simple and fast algorithm for computing exponentials
of power series. Available at h t t p : / / a l g o . i n r i a . f r / b o s t a n / , 2008.

[8] R. P. Brent. Multiple-precision zero-finding methods and the complexity of ele
mentary function evaluation. In Analytic computational complexity, pages 151—
176. Academic Press, 1976.

[9] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbi
trary algebras. Acta Informática, 28(7):693-701, 1991.

[10] A. Colin. Solving a system of algebraic equations with symmetries. Journal of
Pure and Applied Algebra, 117-118:195-215, 1997.

http://axxiv.org/abs/0901.3657vl
http://algo.inria.fr/bostan/

71

[11] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques
for triangular decompositions. In ISSAC’05, pages 108-115. ACM, 2005.

[12] R. Dvornicich and C. Traverso. Newton symmetric functions and the arithmetic
of algebraically closed fields. In AAECC-5, volume 356 of LNCS, pages 216-224.
Springer, 1989.

[13] M. Fiirer. Faster integer multiplication. In 39th Annual ACM Symp. Theory
Comp., pages 57-66. ACM, 2007.

[14] J. von zur Gathen and J. Gerhard. Modem Computer Algebra. Cambridge
University Press, 1999.

[15] P. Gaudry, É. Schost, and N. Thiéry. Evaluation properties of symmetric polyno
mials. International Journal of Algebra and Computation, 16(3):505-523, 2006.

[16] L. González-Vega and H. Perdry. Computing with Newton sums in small char
acteristic. In EACA’Of, 2004.

[17] M. Kalkbrener. A generalized euclidean algorithm for computing triangular rep
resentation of algebraic varieties. J. Syrnb. Comp., 15(2):143—167, 1993.

[18] L. Langemyr. Algorithms for a multiple algebraic extension. In Effective methods
in algebraic geometry), volume 94 of Progr. Math., pages 235-248. Birkháuser,
1991.

[19] D. Lazard. A new method for solvong algebraic systems of positive dimension.
Disc. Appl. Math., 33:147-160, 1991.

[20] D. Lazard. Solving zero-dimensional algebraic systems. J. Syrnb. Comp., 15:117
133, 1992.

[21] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias
S. Kotsireas, editor, Maple Conference 2005, pages 355-368, 2005.

[22] X. Li, M. Moreno Maza, R. Rasheed, and É Schost. High-performance symbolic
computation in a hybrid compiled-interpreted programming environment. In
ICCSA ’08, pages 331-341. IEEE, 2008.

[23] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: from
theory to practice. In ISSAC’07, pages 269-276. ACM, 2007.

72

[24] Marc Moreno Maza Li Xin and Wei Pan. Computations modulo regular chains.
In IS SAC’09, pages 151-160. ACM, 2009.

[25] M. van Hoeij and M. Monagan. A modular GCD algorithm over number fields
presented with multiple extensions. In ISSAC’02, pages 109-116. ACM, 2002.

[26] M. Moreno Maza. On triangular decompositions o f algebraic varieties. In MEGA-
2000, number T R 4/99, Oxford, UK, 2000. http : / /www.csd .uwo.ca /~moreno/ .

[27] D. Lazard P. Aubry and M. Moreno Maza. On the theories of triangular sets. J.
of symbolic computation, 28(1,2):45-124, 1999.

[28] V. Y. Pan. Simple multivariate polynomial multiplication. J. Syrnb. Comp.,
18(3): 183-186, 1994.

[29] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC’97,
pages 233-240. ACM, 1997.

[30] G. Renault and K. Yokoyama. A modular algorithm for computing the splitting
field of a polynomial. In Algorithmic Number Theory, ANTS VII, number 4076
in LNCS, pages 124-140. Springer, 2006.

[31] N. Rennert and A. Valibouze. Calcul de résolvantes avec les modules de Cauchy.
Experimental Mathematics, 8(4):351-366, 1999.

[32] A. Schönhage. The fundamental theorem of algebra in terms of computational
complexity. Technical report, Univ. Tübingen, 1982.

[33] É. Schost. Complexity results for triangular sets. Journal of Symbolic Compu
tation, 36(3-4):555-594, 2003.

[34] É. Schost. Computing parametric geometric resolutions. Applicable Algebra in
Engineering, Communication and Computing, 13(5):349-393, 2003.

[35] É. Schost. Multivariate power series multiplication. In ISSAC’05, pages 293-300.
ACM, 2005.

[36] V. Shoup. NTL: A library for doing number theory, http : / /www.shoup.net .

[37] A. Straub, T. Amdeberhan, and V. H. Moll. The p-adic valuation of /¿-central
binomial coefficient, 2008.

http://www.csd.uwo.ca/~moreno/
http://www.shoup.net

73

[38] B. Sturmfels. Algorithms in invariant theory. Texts and Monographs in Symbolic
Computation. Springer-Verlag, 1993.

[39] J. van der Hoeven. The Truncated Fourier Transform and applications. In
ISSAC’04, pages 290-296. ACM, 2004.

[40] J. van der Hoeven. Newton’s method and FFT trading. Technical Report 2006-
17, Univ. Paris-Sud, 2006. Submitted to J. Symb. Comp.

[41] W. T. Wu. A zero structure theorem for polynomial equations solving. MM
Research Preprints, 1:2-12, 1987.

A

