Western University Scholarship@Western

Electronic Thesis and Dissertation Repository

11-26-2018 6:00 PM

Aggregate morbidity and mortality of defunctioning loop ileostomy fro formation to closure: a large population retrospective cohort analysis

Mei Yang, The University of Western Ontario

Supervisor: Christopher Vinden, *The University of Western Ontario* Joint Supervisor: Michael Ott, *The University of Western Ontario* Co-Supervisor: Kelly Vogt, *The University of Western Ontario* A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in Surgery © Mei Yang 2018

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Surgery Commons

Recommended Citation

Yang, Mei, "Aggregate morbidity and mortality of defunctioning loop ileostomy fro formation to closure: a large population retrospective cohort analysis" (2018). *Electronic Thesis and Dissertation Repository*. 5962.

https://ir.lib.uwo.ca/etd/5962

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

Abstract and Keywords

There is evidence that defunctioning loop ileostomies (DLIs) are associated with decreased risk of clinically significant anastomotic leaks, but at what cost? This population-based retrospective cohort study used administrative data to investigate differences in outcomes between patients undergoing low anterior resection with and without DLIs. We included all adult patients undergoing low anterior resection from 2002 to 2014 and identified outcomes within 30-days to 2-year of the index surgery. Outcomes included hospital readmission, reoperation, major complications, mortality, bleeding, and ileostomy reversal. DLIs were associated with significantly worse outcomes after low anterior resection, including increased risk of major complication, acute kidney injury, readmission, ventral hernia, bowel obstruction. There is certainly a role for DLIs to decrease risk of significant anastomotic leak requiring intervention and/or operation; however, DLIs are not benign entities. Based on the results of this study, it can be argued that selective utilization of DLIs should be recommended and further research into risk stratification and identification of patients who would benefit the most from DLIs are warranted.

Keywords: anterior resection, diverting loop ileostomy, anastomotic leak, general surgery

Abstract and Keywor	rdsiii
Table of Contents	iv
List of Tables	vii
List of Figures	ix
List of Appendices	x
List of Abbreviations	s xi
Chapter I: Introduction	on1
1.1 A review	of current literature1
1.2 Indication	s for defunctioning loop ileostomy1
1.3 Anastomo	otic leak2
1.4 Complica	tions of defunctioning loop ileostomies5
1.4.1	Dehydration and acute renal failure
1.4.2	Stoma related complications6
1.4.3	Morbidity associated with ileostomy reversal7
1.4.4	Unwanted permanent ostomy7
1.4.5	Quality of life
1.5 Summary	
1.6 Study obj	ective12
Chapter II: Project de	esign, methodology, and statistics
2.1 Study des	ign13
2.2 Cohort ide	entification13
2.3 Data colle	ection & timeline14

Table of Contents

2.4 Baseline variables15
2.5 Defining outcomes of interest16
2.6 Statistics and analysis17
Chapter III: Results
3.1 Baseline characteristics
3.2 Trend of defunctioning loop ileostomies
3.3 Descriptive aggregative morbidity and mortality24
3.4 Peri-operative outcomes compared to non-ileostomy patients
3.4.1 Rectal cancer subgroup26
3.4.2 Non-rectal cancer subgroup
3.5 Long-term outcomes compared to non-ileostomy patients
3.5.1 Rectal cancer subgroup35
3.5.2 Non-rectal cancer subgroup
3.6 Timing of ileostomy reversal and permanent ostomies40
Chapter IV: Discussion42
4.1 Clinical dilemma42
4.2 Overall morbidity and mortality43
4.3 Rectal cancer patients44
4.4 Non-rectal cancer patients
4.5 Permanent ostomies
4.6 Timing of ileostomy reversal
4.7 Highly selective utilization of defunctioning ileostomy53
4.8 Alternatives to defunctioning ileostomies

4.9 Limitations	
4.10 Current recommendations & future directions	60
Chapter V: Conclusion	62
References	63
Appendix A	73
Appendix B	75
Appendix C	76
Appendix D	
Appendix E	

List of Tables

Table 1. Summary of literature on morbidity of ileostomies
Table 2. Baseline characteristics for rectal cancer subgroup
Table 3. Stages of rectal cancer
Table 4. Baseline characteristics for non-rectal cancer subgroup
Table 5. Ileostomy timeline and trend
Table 6. Adjusted and non-adjusted perioperative outcomes in the
rectal cancer subgroup 27
Table 7. Overall hospital length of stay and days spent in hospital
in rectal cancer patients
Table 8. Covariates adjusted for perioperative outcomes reoperation and major
Complication in rectal cancer patients
Table 9. Covariates adjusted for perioperative outcomes readmission and
Deep space infection in rectal cancer patients
Table 10. Covariates adjusted for perioperative outcome blood transfusion in
rectal cancer patients
Table 11. Adjusted and non-adjusted perioperative outcomes in the
non-rectal cancer subgroup
Table 12. Covariates adjusted for perioperative outcomes reoperation
and major complication in non-rectal cancer patients
Table 13. Covariates adjusted for outcomes readmission and blood
transfusion in non-rectal cancer patients

Table 14. Covariates adjusted for perioperative outcome deep space	
Infection in non-rectal cancer patients	34
Table 15. Overall hospital length of stay and days spent in hospital in	
non-rectal cancer patients 3	5
Table 16. Unadjusted and adjusted long-term outcomes for rectal cancer patients	36
Table 17. Unadjusted long-term outcomes for rectal cancer patients	36
Table 18. Co-variates adjusted for long-term outcomes in rectal cancer patients 3	37
Table 19. Unadjusted and adjusted long-term outcomes in non-rectal cancer patient 3	8
Table 20. Covariates adjusted for long-term outcomes in non-rectal cancer patients 3	39
Table 21. Unadjusted long-term outcomes for non-rectal cancer patients	0
Table 22. Timing of ileostomy reversals	1
Table 23. Large population retrospective cohort studies and cumulative morbidity 4	4

List of Figures

Figure 1. Accrual, lookback, observation, and follow-up window diagram	15
Figure 2. Trend of ileostomies from 2002-2013	23
Figure 3. Cumulative morbidity after index surgery	25
Figure 4. Cumulative morbidity after ileostomy reversal	25
Figure 5. Ghost ileostomy	57

List of Appendices

Appendix A. Codes for low anterior resection, ileostomy, and ileostomy reversal	73
Appendix B. Definitions of patient demographics and source of information	75
Appendix C. Other Codes	76
Appendix D. Definition of outcomes and sources of information	86
Appendix E. Outcome codes	87

List of Abbreviations

- 1) AL: Anastomotic leak
- 2) DLI: Defunctioning loop ileostomy
- 3) LAR: Low anterior resection
- 4) TME: Total mesorectal excision
- 5) QoL: Quality of life
- 6) ICES: Institute of Clinical and Evaluative Sciences
- 7) CIHI: Canadian Institute for Health Information database
- 8) RPDB: Registered Persons Database
- 9) DAD: Discharge Abstract Database
- 10) SDS: Same Day Surgery database
- 11) NACRS: National Ambulatory Care Reporting System
- 12) OHIP: Ontario Health Insurance Plan database
- 13) OCR: Ontario Cancer Registry
- 14) ICD-10-CA: International Classification of Diseases, Tenth Revision, Canada
- 15) CCI: Canadian Classification of health Interventions
- 16) LHIN: Local Health Integration Network
- 17) ACG: Adjusted Clinical Groups
- 18) RUB: Resource Utilization Bands
- 19) ASA: American Society of Anesthesiologist
- 20) SD: Standardized differences
- 21) OR: Odds ratio
- 22) CI: Confidence interval

- 23) STD: Standard deviation
- 24) IQR: Interquartile ratio
- 25) RCT: Randomized controlled trials
- 26) AKI: Acute kidney injury
- 27) SCFA: Short-chain fatty acids
- 28) RR: Relative risk
- 29) NSQIP: National Surgery Quality Improvement Project
- 30) GI: Ghost ileostomy

Chapter I: Introduction

1.1 A review of current literature

The most serious risk of a colorectal anastomosis is an anastomotic leak (AL). Clinical correlates of ALs include local or systemic sepsis, percutaneous intervention, reoperation, increased hospital length of stay, and increased risk of mortality. Defunctioning loop ileostomy (DLI) was introduced as a method to mitigate the clinical sequelae of AL [1]. A number of studies have shown that although DLI does not decrease the incidence of AL, it does decrease the severity of complications associated with ALs [2-5]. However, DLIs are not without risk and controversy still exists on when they should be utilized. The purpose of this review is to objectively examine the benefits and risks of defunctioning loop ileostomies based on a comprehensive review of current literature.

1.2 Indications for defunctioning loop ileostomy

Defunctioning loop ileostomies are most commonly fashioned after colorectal anastomosis for rectal cancer. Studies evaluating risk factors for ALs have shown that a low or ultra-low colorectal anastomosis is associated with significantly higher risk for leaks [5-7]. Other risk factors include male sex, age > 70 years, malnutrition, smoking, corticosteroid use, diabetes, and pre-operative radiation therapy [3,7,8,9]. As surgical techniques progressed throughout the years, the introduction of stapling devices allowed surgeons to fashion much lower colorectal anastomoses in hopes of preserving bowel continuity. Thus, there was an initial increase in ALs after low anterior resection (LAR) [10]. DLIs were introduced as a mechanism to divert the fecal stream from the newly formed anastomosis. The function is two-fold: first, if an AL occurs, the

DLI will decrease septic complications from the leak by significantly decreasing fecal leakage and contamination; second, by diverting the fecal stream, there is less mechanical irritation on the new anastomosis [10].

Rectal cancer is not the only indication for a DLI. Acute complicated diverticulitis may require emergency sigmoidectomy, primary anastomosis and DLI. Traditionally, the more common procedure would have been the Hartmann's procedure with sigmoidectomy, end colostomy, and closure of rectal stump but more and more surgeons are moving onto performing primary colorectal anastomosis, with or without a DLI. Other indications for partial colectomy and colorectal anastomosis that may require a protective DLI include: sigmoid volvulus, Crohn's colitis, large polyps unable to be removed endoscopically, and traumatic colonic injury [8]. Finally, a DLI is often constructed to protect the ileal pouch anal anastomosis after a restorative proctocolectomy for ulcerative colitis [7,11,12].

1.3 Anastomotic leak

Anastomotic leak is one of the most feared complications after primary colorectal anastomosis. Currently, there is no consensus on the definition of AL. A systematic review conducted by Bruce et al. discovered 56 different definitions of AL [13]. The International Study Group of Rectal Cancer classifies AL into AL requiring no active intervention (class A), AL requiring intervention but without re-laparotomy (class B), and AL requiring re-laparotomy (class C) [14]. Most surgeons would consider Class B and C AL to be clinically significant. The rate of AL after colorectal anastomosis ranges from 2-39% and may depend on the height of the anastomosis [10,15]. Estimated mortality from symptomatic AL ranges from 6 - 22% [2,10]. AL also leads to

reoperation in 1.5 - 2.7 % of patients and is associated with increased hospital length of stay, increased hospital costs, and worse oncologic outcomes [16-18]. Mirnezami et al. conducted a systematic review and meta-analysis of studies that assessed oncologic outcomes of colorectal cancer patients with AL. The authors reported that patients with ALs had significantly higher odds of local recurrence (OR 2.05, p = 0.0001) and significantly reduced odds of cancer specific survival (OR 1.64, p = 0.0001) [19]. A non-significant increase in distant recurrence was also reported in all seven studies that investigated this outcome [19]. Lu et al. conducted a similar but more recent meta-analysis that also demonstrated greater local cancer recurrence after AL (OR 1.61, p < 0.001) but no statistically significant difference in distant recurrence [18].

Fashioning a DLI has become the standard of care for colorectal anastomoses, largely because a few studies have demonstrated significant benefit in overall morbidity [3,8,11,20]. Matthiessen et al. conducted a randomized, multicenter trial analyzing the effect of DLIs in rectal cancer patients undergoing LAR. One specific inclusion criteria was that the anastomosis had to be ≤ 7 cm from the anal verge. The definition of AL used in this study was clinical: peritonitis caused by leakage from any staple line, rectovaginal fistula, or pelvic abscess [20]. The authors found that patients with DLIs had significantly fewer ALs, with a rate of 10.3% versus 28.0% (p < 0.001) [20]. Furthermore, the DLI group had a significantly lower reoperation rate (8.6% vs. 25.4%, p < 0.001) [20]. Mrak et al. conducted a similar study of rectal cancer patients undergoing low anterior resection with total mesorectal excision (TME) [3]. Patients were randomized to receive a DLI or no DLI. Patients in the DLI group had a lower AL rate of 5.8% versus 16.3% (p = 0.0441) and were also less likely to need surgical intervention for their leaks (20% versus 92.3%; p = 0.006) [3]. A number of retrospective observational studies have also

demonstrated that DLIs are associated with decreased risk of AL, although not all leaks were defined as symptomatic [8,11,21].

Contrarily, numerous studies have also failed to show the benefits of DLIs [2,9,22-24, 27]. Gastinger et al. conducted a multi-center prospective observational study looking at early outcome after LAR in patients with and without a protective stoma. The overall AL rate was similar in both groups: 14.5% for those with a stoma versus 14.2% for those without (p = 0.806) [2]. Patients without a protective stoma did have significantly higher reoperation rates (10.1% vs. 3.6%, p < 0.001) [2]. However, the group with a protective stoma had significantly higher overall morbidity (39.7% vs. 34.4%, p = 0.007) [2]. Similarly, Maroney et al. compared the overall 6-month complication rate between patients who underwent LAR with or without DLI and found that the stoma group had significantly higher complication rates (61% vs. 38%, p = 0.02) [23]. Inhát et al. found a 53.8% stoma related complication rate in their retrospective observational study [25], whereas Marusch et al. discovered significantly higher wound infection rates in patients with diversion stomas (7.4% vs. 2.7%, p = 0.016) [22]. There is no mortality benefit from DLIs [22,25-26].

Platell et al. conducted a prospective observational study on patients undergoing LAR or ultralow anterior resection with DLI. In their cohort of 233 patients, 16 patients were diagnosed with AL (7%); seven of those patients were asymptomatic and only nine required interventions [27]. Ultimately, only 2 (0.9%) required reoperation. The authors concluded that > 90% of their patient population did not benefit from DLIs and that closure of the ileostomy added 7 days to

overall inpatient length of stay [27]. Similarly, Kanellos et al. recommended against routine DLI with LAR based on their retrospective study that demonstrated a low rate of AL [28].

1.4 Complications of defunctioning loop ileostomies

There is evidence that DLIs may decrease AL, pelvic sepsis, and rate of reoperation, but DLIs themselves are associated with longer hospital length of stay and overall morbidity. In this section, we will review specific complications associated with DLIs. See Table 1 for a summary of current literature.

1.4.1 Dehydration and acute renal failure

A DLI by definition bypasses the colon entirely. The effluent released from the ileostomy has significantly higher water content than normal stool. Normal ileostomy output volume ranges from 500-1000 mL/day; however, patients can and often have increased ostomy output of up to 2500 mL/day [29]. Such high losses are difficult for patients to replenish and manage and patients often present back to the hospital with acute dehydration and even acute renal failure. Åkesson et al. conducted a retrospective review looking at the morbidity of DLIs and found that 32% of patients required hospital readmission secondary to stoma related complications. Further, 29% of patients had at least one episode of dehydration of greater than 2000mL ostomy output, of which half required hospital readmission for intravenous fluid resuscitation and two patients needed admission to the intensive care unit [29]. Some research has also suggested that elderly patients are more prone to dehydration. For example, Paquette et al. conducted a retrospective cohort study that demonstrated age > 50 was associated with hospital readmission secondary to dehydration [30]. In 2013, Jafari et al. conducted a large population-based retrospective cohort

study assessing the morbidity of DLIs. Compared to the patients undergoing LAR without DLI, patients who had DLIs had significantly higher rates of progressive renal insufficiency (2.1% vs 0.8% p < 0.05) [31] and a 2.37-fold increase in risk of acute renal failure (95% CI 1.21 – 4.6, p = 0.01) [31]. Diverted patients also had significantly higher readmission rates (20.3% vs 11%, p < 0.05) [31]. Messaris et al. demonstrated a 16.9% all-cause readmission rate after ileostomy creation, of which almost half were due to dehydration (7.3%) [32].

1.4.2 Stoma related complications

Having a DLI itself is associated with a number of complications. Some of these include stoma retraction, prolapsing ostomy requiring reoperation, stenosis causing obstruction, bleeding, stoma necrosis, parastomal hernia, and fistula formation [23,30-31,33-37]. In a retrospective cohort analysis of patients with DLIs, Åkesson et al. reported a 32% hospital readmission rate due to stoma related complications. The majority of these readmissions (59%) were related to minor problems such as skin irritation, leakage from dressing, and wound infections. However, patients were also readmitted due to more serious complications, such as dehydration (29%), obstruction (14%), parastomal hernia (14%), and gastrointestinal bleed (6%) [30]. Other retrospective cohort studies have revealed similar rates of complications [31,33-37]. Patient associated morbidities that may significantly decrease quality of life have also been reported, including leakage from the ostomy appliance, skin excoriation, soiling and odor, and frequent night time emptying requirements [33].

1.4.3 Morbidity associated with ileostomy reversal

The reversal of a defunctioning loop ileostomy is a separate operation associated with its own risks. An ileostomy reversal requires resection of the ostomy and another bowel anastomosis. In 2009, Chow et al. conducted a systematic review of 48 studies that analyzed morbidity associated with ostomy reversal [7]. Complications occurred in 823 out of 4765 patients giving a morbidity rate of 17.3%. The most common bowel related complication was small bowel obstruction (7.2%), with a third of these patients requiring surgical intervention [7]. Sixty patients suffered from anastomotic leaks (1.4%). Wound infection was the most common non-bowel related complication at 5%. Sixty-eight patients (1.3%) developed incisional hernias through the stoma site. The Mortality rate was 0.4%. This large series systematic review demonstrated that ileostomy reversal is not benign and is associated with a low, albeit real mortality rate. Other retrospective cohort analyses, the most recent one being from 2016, have also shown similar complications following ileostomy reversal and have also reported findings of post-operative ileus, urinary retention, abscess formation, enterocutaneous fistula, and deep venous thrombosis [34,37,38,39].

1.4.4 Unwanted permanent ostomy

To meet criteria for an ileostomy reversal, patients must be physiologically fit to undergo a second elective surgery and their colo-rectal anastomosis must be completely healed. A portion of patients will end up with an unwanted permanent ostomy if they do not meet these criteria. A number of retrospective cohort studies have analyzed the rate of permanent ileostomies after planned temporary ostomy. The rate ranged between 3%-25% [36,40-44]. In 2016, Kim et al. published a retrospective review assessing the rate of permanent stoma after rectal cancer

surgery [40]. Of the 673 patients that were identified as having a temporary ileostomy, 9.5% of these patients ended up with a permanent stoma. Within the group of patients with a permanent stoma, 36% never had their temporary ileostomy reversed and 64% ended up with a new permanent ostomy after initial ileostomy reversal [40]. Of the patients who never had their ileostomy reversed, the main reason was due to systemic metastatic disease, but other reasons included intractable anastomosis stricture, poor general condition, and patient refusal. Interestingly, a significant portion of patients with permanent ostomies are secondary ostomies due to complications after ileostomy reversal. These patients had loop ileostomies or colostomies. Reasons listed for a secondary permanent stoma included local recurrence, uncontrolled pelvic abscess, unsatisfactory anorectal function, and intractable anastomosis stricture [40]. Not only is a permanent ostomy associated with the risks of an ostomy as reported above, it can also significantly affect patients' quality of life.

Author		Overall			Parastomal	Permanent
(year)	Ν	morbidity	SBO	AKI	hernia	stoma
Åkesson						
(2012)	92	-	13%	27%	13%	11%
Chun (2012)	123	64.2%	2.4%	13%	4.8%	-
Gessler						
(2012)	262	-	3%	18%	7%	23%
Hallböök						
(2002)	222	-	18.5%	-	18.5%	-
Hayden						
(2013)	154	-	-	20%	-	-
Holmgren						
(2017)	316	9%	-	-	-	24%
Ihnát (2016)	151	53.8%	3.8%	-	-	-
Jayarajah						
(2016)	192	34.2%	-	-	-	-
Kim (2016)	673	-	-	-	-	9.5%
Lindgren						
(2011)	116	-	-	-	-	19%
Man (2016)	213	16.4%	-	-	-	-
Pan (2013)	296	-	-	-	-	17.2%
Paquette						
(2013)	201	-	-	17%	-	-
Perez (2006)	93	17.2%	11.8%		-	-
Phatak						
(2008)	294	-	-	11%	-	-
Sier (2015)	485	-	-	-	-	26%
Waterland						
(2015)	170	-	-	-	-	25%

Table 1. Summary of retrospective and prospective studies analyzing morbidity of DLIs

1.4.5 Quality of life

Although not extensively studied, the presence of an ostomy, even a temporary one, can significantly affect quality of life (QoL). A lot of the evidence stems from direct patient encounters. Often, follow up patient encounters after index surgery involves discussions about when the ileostomy can be reversed. To date, there have only been a few longitudinal observational studies that have investigated QoL in patients with a temporary ileostomy, both

while they have the ileostomy and after reversal. In 2008, Tsunoda et al. conducted one of the earliest prospective longitudinal studies looking at patient QoL after low anterior resection with DLI [41]. The authors followed 22 patients and assessed different aspects of their QoL with the European Organization for Research and Treatment of Cancer (EORTC) QLQ - C30 and QLQ -CR38 questionnaires. Patients filled out the questionnaire at four distinct time points: before surgery, 2 months after resection (before ileostomy reversal), 5 months after resection, and 8 months after resection. One benefit that the authors found was that patients' global QoL scores were significantly higher after the index surgery as compared to the preoperative score, indicating that surgical resection of the tumor improved their overall QoL. Similarly, both future perspective and social function scores improved after surgery. However, patients that had an ileostomy had significantly lower physical function scores and role function scores at 2 months as compared to before surgery (p < 0.05) [41]. A similar study conducted in 2016 with a much larger patient population (n=120) identified similar results, demonstrating significantly lower role functioning, social functioning, and physical functioning after surgery and before ileostomy reversal [42].

O'Leary et al. conducted a prospective longitudinal study that identified patients' main concerns before and after low anterior resection with DLI [43]. Before surgery, patients were worried about the surgery itself and cancer. Twelve weeks after resection, patients' most frequent concerns were stoma closure, cancer recurrence, and continued health. Six weeks after ileostomy closure, their principle concern was bowel function [43]. In 2011, Neuman et al. identified more specific patient concerns regarding the ostomy [44]. In this study, they identified a significant decrease in body image that continued even after stoma reversal (p = 0.03). Of the patients with

identified stoma related difficulties, 53% reported issues with sexual activity, 39% with leakage, 34% with discomfort in clothing, 32% with concerns regarding privacy to empty the pouch, and 31% reported feeling unattractive [44]. One important aspect that multiple studies discovered was that there was a persistent decrease in QoL even after ileostomy reversal, often associated with changes in bowel function and diminished body image [43-45]. In 2010, Taylor & Morgan published a review on QoL following reversal of temporary stoma and identified nine studies that assessed QoL outcomes after stoma reversal [45]. In this review, bowel function was identified as the principle concern of patients six weeks after ostomy closure, with frequency and urgency of defecation and fecal incontinence being the main symptoms. The functional bowel symptoms also had an impact on patients' psychosocial health, chiefly related to altered body image and attractiveness. Unfortunately, Camilleri-Brennan & Steel noted that there was no improvement in body image even after stoma reversal [46].

1.5 Summary

The utilization of defunctioning loop ileostomies after low anterior resection for rectal cancers has increased significantly in the past few years. There is evidence that DLIs are associated with decreased risk of clinically significant anastomotic leaks, but at what cost? DLIs are also associated with significant morbidity, from the time of formation to after closure. Furthermore, DLIs are associated with deteriorated quality of life. Surgeons need to consider a more selective utilization of DLIs in patients at high risk for anastomotic leak and explore alternative approaches to reduce the rate and impact of ALs.

1.6 Study objective

The clinical controversy and equipoise are the basis of this research project. The purpose of this project is to identify aggregate morbidity associated with defunctioning loop ileostomy. The main objective of this study is to identify and analyze all morbidity associated with a defunctioning loop ileostomy from the onset of its creation to after its reversal, compared to patients without a defunctioning loop ileostomy. Perioperative outcomes of interest include: 30-day hospital readmission, 30-day reoperation, 30-day major complications, 30-day mortality, 90-day mortality, 1-year mortality, bleeding, and hospital length of stay during the index admission. Other outcomes of interest include deep space infection, bowel obstruction, hernia, acute kidney injury, and permanent ostomy.

Chapter II: Project design, methodology, and statistics

2.1 Study design

Because of the clinical equipoise identified in both the scientific literature and in clinical practice, the purpose of this project was to investigate the morbidity associated with defunctioning loop ileostomies (DLIs) within a large, population-based retrospective cohort.

The Institute of Clinical and Evaluative Sciences (ICES) is a large, not-for-profit, research institute that has access to a number of Ontario's health-related administrative databases. Ontario is one of the most populous provinces of Canada with 14.3 million residents. The healthcare for these patients is provided by the provincial government in a publicly funded single payer system. The data was obtained from the following databases: Canadian Institute for Health Information database (CIHI); Registered Persons Database (RPDB); Discharge Abstract Database (DAD); Same Day Surgery Database (SDS); National Ambulatory Care Reporting System (NACRS); Ontario Health Insurance Plan (OHIP) database; Ontario Cancer Registry (OCR); and the ICES Physician Database. All diagnoses were documented and coded using the International Classification of Diseases and Related Health Problems, Tenth Revision, Canada (ICD-10-CA). Procedural codes were also obtained from physician billings to OHIP and from Canadian Classification of health Interventions (CCI) codes within CIHI.

2.2 Cohort identification

The most common indication for a DLI is a low anterior resection (LAR). In an effort to decrease heterogeneity of the patient cohort, the cohort included adult patients > 18 years of age undergoing elective anterior resection with or without a DLI from April 1, 2002 – March 31,

2014. The year 2002 was chosen as the start date because ICD codes were changed from version 9 to version 10 in 2002 in Canada. The end date was chosen to allow enough time for observation after index surgery.

Anterior resections were identified using both OHIP billing codes (S213 or S171) and CCI procedure codes (Appendix A). Patients were defined as have a DLI if a billing code for ileostomy (S149) was also billed on the same date as the anterior resection. Patients were excluded if their surgery was only recorded in OHIP but not CIHI, their age or sex was unknown, they were a non-Ontario resident, they were < 18 years of age, they had pre-existing renal disease, or if they had a previous anterior resection or DLI. Rectal cancer patients were identified using the Ontario Cancer Registry. Patients with missing data were excluded from the cohort.

Formal sample size calculation was not done for this study for a number of reasons. First, the patient cohort was expected to be quite large given that it is a population based retrospective analysis. The inclusion criteria for the patient cohort was set quite broadly to capture a wide range of patients. Second, there were numerous outcomes of interest, some were composite outcomes including 12 variables and no one variable was considered the main outcome of interest.

2.3 Data collection & timeline

The index event was defined as date of LAR with or without DLI. A two-year look back window was used to assess for patient comorbidities and a five-year look back window was used to

determine history of renal disease. The observation window for outcomes and ileostomy reversal closed one and two years after the index date, respectively (see Figure 1 for a graphical depiction of the data collection timeline).

For patients with a DLI, a second index event was defined as the date of ileostomy reversal (Appendix A). A 180-day observation window was used to look for complications associated with the ileostomy reversal.

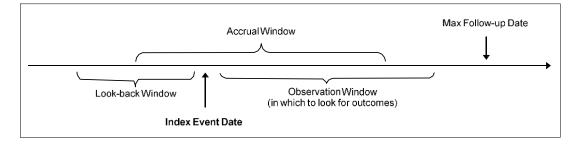


Figure 1. Accrual, lookback, observation, and follow-up window diagram

2.4 Baseline variables

Important patient baseline variables were collected. These include patient age, sex, income quintile, patient Local Health Integration Network (LHIN), rurality (urban vs. rural), co-morbidity using John's Hopkins Adjusted Clinical Groups Resource Utilization Bands (ACG-RUB) system, history of rectal cancer, history of colon cancer, stage of rectal cancer, and history of radiation or chemotherapy (Appendix B & C) [47]. The ACG-RUB system captures all morbidities for which a patient receives care during a defined period. The ACGs can be collapsed into six RUBs on the basis of expected use of health care resources. In this present study, we used the CIHI-DAD, CIHI-SDS, CIHI-NACRS, and OHIP databases to calculate RUBS, which were summarized as a 3-point ordinal variable: 1 = low (RUB 0-3), 2 = moderate

(RUB = 4), and 3 = high (RUB =5). Procedural, institutional and surgeon related variables were also collected, including open versus laparoscopic surgical approach, American Society of Anesthesiologist (ASA) classification for medical status, institution teaching status (academic versus community), surgeon age, surgeon annual anterior resection volume, and fiscal year (Appendix B & C).

2.5 Defining outcomes of interests

Each outcome of interest was associated with an observation window (Appendix D) and one or more codes (Appendix E). All outcomes of interest were defined a priori. In this study, major complication was a composite outcome that captured the following conditions: sepsis, myocardial infarction, stroke, pulmonary embolism and deep vein thrombosis, pneumonia, acute renal failure and renal failure requiring dialysis, atrial fibrillation/flutter, blood transfusion, cardiac/respiratory arrest, coma, shock, and ventilator use > 48 hrs (Appendix D). Major complications were assessed within 30-days of the index surgery date as well as within 30-days of the ileostomy reversal date. Acute kidney injury was defined as acute renal failure requiring hospitalization within 180 days of index surgery. The codes utilized for acute kidney injury were a combination of codes, some of which were validated ICD-10 codes for acute kidney injury and other were from the KDT variable library [48]. A bleeding complication was defined as bleeding severe enough to require at least one blood transfusion within 30 days of index surgery. A deep space infection was defined using a combination of wound infection codes plus drainage intervention codes; thus, only infections severe enough to require a drain were considered. Patients without an ileostomy reversal within two years after index surgery were considered to have a permanent ostomy.

Hospital length of stay after index surgery as well as number of days spent in hospital within 30 days of index surgery and 1 year of index surgery were recorded (Appendix D).

Anastomotic leak was an important outcome of interest of ours. However, there is no single code for anastomotic leak in ICD-10. Attempts were made at using surrogate codes for anastomotic leak such as combining codes for deep space infection with percutaneous drainage, however, the numbers identified were discordant with clinical reality and expectation. It was thought that the numbers were over-estimating rates of anastomotic leak and deemed inaccurate.

2.6 Statistics and analysis

Once the cohort was identified, patients were separated into two major subgroups: patients with rectal cancer and patients without. All analyses were conducted separately for the subgroups.

Baseline differences between patients with and without DLI were evaluated using standardized differences (SD), Calculated as the difference in proportions divided by the standard error. A SD > 0.10 can be interpreted as a potentially meaningful between group difference [49]. SDs often provide a better indication of between group differences in large observational studies, where even the slightest difference can yield a significant result due to the impact of sample size on significance testing. Trends across the study period were assessed using the Cochran-Armitage test for trend.

Unadjusted logistic regression was used to estimate the effect of DLI on all projected outcomes. Adjusted logistic regression was also used to control for the following variables: patient age and sex, expected resource utilization, history of chemotherapy or radiotherapy, ASA classification (ASA > 2), institution teaching status, surgeon annual volume, and fiscal year of the procedure. The variables chosen for adjustment were chosen *a priori* and were based on clinical experience knowing that these factors would contribute and confound a number of the outcomes of interest. Adjusted models used a generalized estimating equation approach with an exchangeable correlation structure to account for the clustering of patients within physicians and institutions. Outcomes are reported as odds ratios and 95% confidence intervals. Outcomes such as 30- and 90-day mortality could not be investigated in adjusted models due to the small number of events. The linearity of continuous predictors was assessed using restricted cubic splines [50]. Annual surgeon volume demonstrated non-linearity and was dichotomized at the 50th percentile prior to modeling.

For all analyses, reported *p*-values are from 2-tailed tests where a value of p < 0.05 was considered statistically significant. All analyses were performed using SAS EG version 7.1 (SAS Institute, Cary, NC, USA).

Part III: Results

3.1 Baseline characteristics

The initial search identified 32,200 patients from 2002-2014 that met the inclusion criteria. Sixty-five patients were excluded for being less than 18 years old. Four thousand and 424 patients were excluded because they did not have a matching operation of low anterior resection in CIHI records. Patients with previous LAR and/or ileostomies and patients with a history of renal failure were also excluded, leaving a total of 25,491 patients in the overall cohort. Of the overall cohort, 18% (4,658) of patients had a concomitant DLI with their LAR.

Patients were divided into two sub-groups on the basis of whether or not they had rectal cancer. The rectal cancer subgroup consisted of a total of 6,146 patients and 2,690 (43.8%) of these had a DLI. Patient characteristics for the rectal cancer subgroup are reported in Table 2. Stage III cancer was most prominent within this group (39.4%), followed by Stage I (25.8%) and Stage II (23.2%). Within each cancer stage, approximately half of the patients had a DLI (Table 3). Patients in the DLI group were more likely to have a history of radiation therapy (50% vs. 14.9%, SD = 0.81) and chemotherapy (33.8% vs 14.9%, SD = 0.59) and were also more likely to have their procedure performed in a teaching institution (41.3% vs. 26.8%, SD = 0.31).

Variable	Overall (n = 6,146)	No ileostomyIleostomy $(n = 3,446)$ $(n = 2,700)$		SD	<i>p</i> - value	
	65.0	67.0	64.0			
Patient age [†]	(57.0-73.0)	(58.0-75.0)	(56.0-72.0)	0.21	<.001	
Patient sex (Female)	2,243 (36.5%)	1,351 (39.2%)	892 (33.0%)	0.13	<.001	
Rural residence	935 (15.2%)	513 (14.9%)	422 (15.6%)	0.02	0.421	
Income*						
Quintile 1	1,068 (17.4%)	599 (17.4%)	469 (17.4%)	0.00	0.074	
Quintile 2	1,251 (20.4%)	715 (20.7%)	536 (19.9%)	0.02	0.074	
Quintile 3	1,200 (19.5%)	713 (20.7%)	487 (18.0%)	0.07	0.074	
Quintile 4	1,307 (21.3%)	712 (20.7%)	595 (22.0%)	0.03	0.074	
Quintile 5	1,301 (21.2%)	697 (20.2%)	604 (22.4%)	0.05	0.074	
Resource Utilization						
Low	2,004 (32.6%)	1,136 (33.0%)	868 (32.1%)	0.02	0.921	
Moderate	2,377 (38.7%)	1,305 (37.9%)	1,072 (39.7%)	0.04	0.921	
High	1,765 (28.7%)	1,005 (29.2%)	760 (28.1%)	0.02	0.921	
ASA 3+	3,528 (57.4%)	1,869 (54.2%)	1,659 (61.4%)	0.15	<.001	
Approach	634 (10.3%)	345 (10.0%)	289 (10.7%)	0.02	0.376	
Converted	273 (4.4%)	155 (4.5%)	118 (4.4%)	0.01	0.81	
Colon cancer	122 (2.0%)	77 (2.2%)	45 (1.7%)	0.04	0.113	
Rectosigmoid cancer	<=5	<=5	<=5	0.03	0.211	
Radiotherapy	1,860 (30.3%)	509 (14.8%)	1,351 (50.0%)	0.81	<.001	
Chemotherapy	1,261 (20.5%)	349 (10.1%)	912 (33.8%)	0.60	<.001	
After hours procedure	168 (2.7%)	129 (3.7%)	39 (1.4%)	0.15	<.001	
Teaching status	2,037 (33.1%)	923 (26.8%)	1,114 (41.3%)	0.31	<.001	
Surgeon age [†]	45.0 (39.0-52.0)	46.0 (39.0-53.0)	44.0 (39.0-51.0)	0.15	<.001	
Annual volume [†]	11.0 (6.0-18.0)	10.0 (6.0-16.0)	13.0 (7.0-21.0)	0.29	<.001	
Cancer Stage [†]						
Stage unknown	174 (4.6%)	87 (4.9%)	87 (4.3%)	0.03	<.001	
Stage 0	16 (0.4%)	9 (0.5%)	7 (0.3%)	0.02	<.001	
Stage 1	986 (25.8%)	517 (29.0%)	469 (23.0%)	0.14	<.001	
Stage 2			0.05	<.001		
Stage 3	1,504 (39.4%)	638 (35.8%)	866 (42.5%)	0.14	<.001	
Stage 4	251 (6.6%)	138 (7.7%)	113 (5.5%)	0.09	<.001	

Table 2. Baseline characteristics for rectal cancer subgroup

*Missing data for 19 patients; [†]Median (IQR); [†]Restricted to patients with a cancer diagnosis after April 1, 2007 (total n=3818, exposed n=2030); SD = Standardized Difference.

Cancer Stage	Overall	Ileostomy	%
Stage 0	16 (0.4%)	7	43.8
Stage 1	986 (25.8%)	469	47.6
Stage 2	887 (23.2%)	495	55.8
Stage 3	1504 (39.4%)	866	57.6
Stage 4	251 (6.6%)	113	45.0
Stage NA	174 (4.6%)	87	50.0

Table 3. Stages of rectal cancer

The subgroup of patients without rectal cancer included patients with colon cancer, rectosigmoid cancer, and patients who underwent a LAR for other indications (Table 4). There was a total of 19,345 patients in this subgroup, of which only 1,943 (10%) received a DLI. Of the patients with colon cancer, only 4.5% had a DLI, whereas 17.3% of patients that had rectosigmoid cancers had a DLI. Similar to the rectal cancer subgroup, patients in this subgroup who received a DLI were also more likely to be treated in a teaching hospital and to have a history of radiation and chemotherapy (Table 4).

3.2 Trend of defunctioning loop ileostomies

When assessing the proportion of patients who underwent anterior resection with DLI, there is a clear upward trend over time. In 2002, only 8.5% of patients had a DLI compared to 25.5% in 2013 (Figure 2). This increase is more pronounced in the rectal cancer group, with an increase from 19.1% in 2002 to 55.8% in 2013 (p < 0.0001) (Table 5).

Variable	Overall (n = 19,345)	No ileostomy (n = 17,387)	Ileostomy (n = 1,958)	SD	<i>p</i> - value
Patient age [†]	65.0 (55.0-74.0)	65.0 (55.0-74.0)	64.0 (54.0-73.0)	0.11	<.001
Patient sex (Female)	9,431 (48.8%)	8,551 (49.2%)	880 (44.9%)	0.08	<.001
Rural residence*	2,640 (13.6%)	2,317 (13.3%)	323 (16.5%)	0.09	<.001
Income*					
Quintle 1	3,489 (18.0%)	3,084 (17.7%)	405 (20.7%)	0.07	<.001
Quintle 2	3,876 (20.0%)	3,484 (20.0%)	392 (20.0%)	0.00	<.001
Quintle 3	3,861 (20.0%)	3,464 (19.9%)	397 (20.3%)	0.01	<.001
Quintle 4	4,051 (20.9%)	3,648 (21.0%)	403 (20.6%)	0.01	<.001
Quintle 5	4,014 (20.7%)	3,657 (21.0%)	357 (18.2%)	0.07	<.001
Resource Utilization					
Low	6,654 (34.4%)	6,063 (34.9%)	591 (30.2%)	0.10	<.001
Moderate	7,141 (36.9%)	6,412 (36.9%)	729 (37.2%)	0.01	<.001
High	5,550 (28.7%)	4,912 (28.3%)	638 (32.6%)	0.09	<.001
ASA 3+	10,484 (54.2%)	9,261 (53.3%)	1,223 (62.5%)	0.19	<.001
Approach	1,551 (8.0%)	1,393 (8.0%)	158 (8.1%)	0.00	0.929
Converted	1,222 (6.3%)	1,100 (6.3%)	122 (6.2%)	0.00	0.869
Colon cancer	6,562 (33.9%)	6,261 (36.0%)	301 (15.4%)	0.49	<.001
Rectosigmoid cancer	4,050 (20.9%)	3,349 (19.3%)	701 (35.8%)	0.38	<.001
Radiotherapy	483 (2.5%)	199 (1.1%)	284 (14.5%)	0.51	<.001
Chemotherapy	479 (2.5%)	261 (1.5%)	218 (11.1%)	0.40	<.001
After hours procedure	1,490 (7.7%)	1,318 (7.6%)	172 (8.8%)	0.04	0.058
Teaching status	4,650 (24.0%)	3,939 (22.7%)	711 (36.3%)	0.30	<.001
Surgeon age [†]	45.0 (39.0-53.0)	45.0 (39.0-53.0)	45.0 (39.0-52.0)	0.05	0.027
Annual volume [†]	10.0 (6.0-16.0)	10.0 (6.0-16.0)	10.0 (5.0-16.0)	0.05	0.02

Table 4. Baseline characteristics for non-rectal cancer subgroup

*Rural and Neighbourhood income missing data for 2 and 54 patients, respectively; SD = Standardized Difference.

	No Rectal Cancer				Rectal Ca	ncer
Year	Total n	Ileostomy n	Ileostomy %	Total n	Ileostomy n	Ileostomy %
2002	1562	94	6.02%	392	75	19.13%
2003	1753	106	6.05%	453	117	25.83%
2004	1793	118	6.58%	454	129	28.41%
2005	1775	125	7.04%	548	168	30.66%
2006	1503	126	8.38%	481	174	36.17%
2007	1450	135	9.31%	452	217	48.01%
2008	1498	149	9.95%	504	246	48.81%
2009	1594	185	11.61%	601	306	50.92%
2010	1598	205	12.83%	553	307	55.52%
2011	1646	254	15.43%	564	325	57.62%
2012	1641	241	14.69%	576	319	55.38%
2013	1532	220	14.36%	568	317	55.81%
Overall	19345	1958	10.12%	6146	2700	43.93%

Table 5. Ileostomy timeline and trend

Cochrane-Amitage trend test: p<0.0001 for both groups.

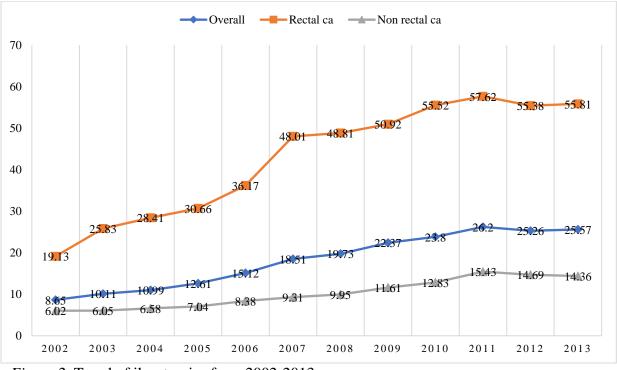


Figure 2. Trend of ileostomies from 2002-2013

3.3 Descriptive aggregate morbidity and mortality

In the overall patient cohort of 25,491 patients, 4,658 (18%) patients had DLIs. The 30-day, 90-day, and 1-year mortality of these patients was 1.2%, 2.2%, and 5.1%, respectively. The 30-day and 90-day mortality associated with ileostomy reversal was 0.6% and 0.9%, respectively.

After index surgery and initial DLI, the rate of reoperation was 5.5%, hospital readmission was 13.4%, major complication was 28.5%, deep organ/space infection requiring percutaneous intervention was 5.2%, acute renal failure requiring hospitalization was 10.4%, development of ventral hernia was 4.0%, diagnosis of bowel obstruction requiring hospitalization was 10.6%, bleeding requiring transfusion was 17.9%, and diagnosis of enterocutaneous fistula was 2.1% (Figure 3).

A total of 4,041 patients (86.8%) with an initial DLI had their ileostomy reversed. After ileostomy reversal, the rate of major complication was 10.3%, deep organ/space infection was 1.7%, bowel obstruction was 7.0%, diagnosis of ventral hernia was 10.3%, and diagnosis of colitis was 2.7% (Figure 4).

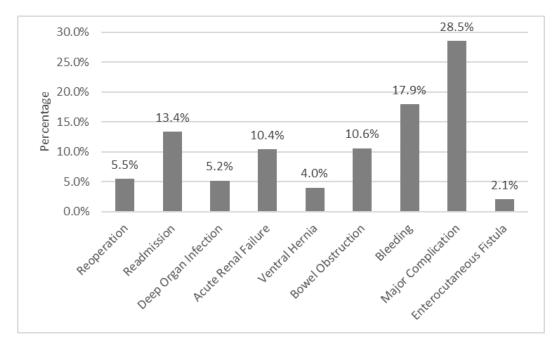


Figure 3. Cumulative morbidity after index surgery

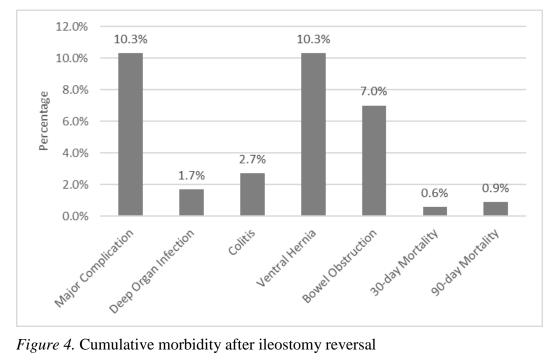


Figure 4. Cumulative morbidity after ileostomy reversal

3.4 Peri-operative outcomes compared to non-ileostomy patients

The perioperative outcomes of interest all occurred within 30-days of index surgery date. The outcomes of interests included hospital length of stay, reoperation, readmission, major complication, bleeding requiring transfusion, deep space infection requiring percutaneous intervention, and 30-day mortality. Multi-variate analysis was performed on the following outcomes: reoperation, major-complication, readmission, deep organ/space infection, and bleeding requiring blood transfusion.

3.4.1 Rectal cancer subgroup

Among patients with rectal cancer, DLI was associated with higher odds of major complication (OR 1.24, 95% CI 1.07-1.42; p = 0.004), and hospital readmission (OR 1.57, 95% CI 1.34-1.83; p < 0.0001). However, DLI was also associated with lower odds of reoperation (OR 0.53, 95% CI 0.39-0.72; p < 0.0001). There was no difference in the rate of deep organ/space infection (OR 0.99, 95% CI 0.73-1.35; p = 0.96) or the need for blood transfusions (OR 1.04, 95% CI 0.88-1.23; p = 0.616) (Table 6,8-10).

Although an adjusted model could not be investigated for 30-day mortality due to the small number of events, ileostomy was associated with a non-significant reduction in risk of 30-mortality in an unadjusted analysis (1.2% versus 1.8%; OR 0.66, 95% CI 0.43-1.01; p = 0.05). Median hospital length of stay was 9 days (IQR 7-13 days) in the ileostomy group and 8 days (IQR 6-10 days) in the non-ileostomy group (p < 0.001) (Table 7).

-	-					
	No ileostomy	lleostomy	Unadjuste	Adjusted		
Outcome	n = 3,446	n = 2,700	Odds Ratio (95% CI)	<i>p</i> - value	Odds Ratio (95% CI)	<i>p</i> - value
Reoperation	244 (7.1%)	121 (4.5%)	0.62 (0.49-0.77)	<.0001	0.53 (0.39-0.72)	<.0001
Major complication	865 (25.1%)	695 (25.7%)	1.03 (0.92-1.16)	0.568	1.24 (1.07-1.42)	0.004
Readmission	396 (11.6%)	508 (18.9%)	1.78 (1.55-2.05)	<.0001	1.57 (1.34-1.83)	<.0001
Deep space infection	144 (4.2%)	141 (5.2%)	1.26 (1.00-1.60)	0.054	0.99 (0.73-1.35)	0.956
Blood transfusion	573 (16.6%)	395 (14.6%)	0.86 (0.75-0.99)	0.033	1.04 (0.88-1.23)	0.616

Table 6. Adjusted and non-adjusted perioperative outcomes in the rectal cancer subgroup

Table 7. Overall hospital length of stay in rectal cancer patients

	0	verall	No ile	eostomy	Ile	ostomy	_
Outcome	Mean	Median	Mean	Median	Mean	Median	<i>p</i> - value
	(STD)	(IQR)	(STD)	(IQR)	(STD)	(IQR)	
Post-operative	10.29	8 (7-12)	9.77	8 (7-11)	10.96	9 (7-13)	<.001
length of stay	(5.76)	8 (7-12)	(5.69)	8 (7-11)	(5.80)	9 (7-13)	<.001
Total bed days	11.32	0 (7.12)	10.72	0 (7 10)	12.08	10 (0.17)	. 001
within 30 days	(6.45)	9 (7-13)	(6.45)	8 (7-12)	(6.38)	10 (8-15)	<.001
Total bed days	19.2	14 (8-22)	16.3	9 (7-17)	22.9	18 (13-26)	<.001
within 1 year	(19.3)	14 (0-22)	(19.9)	9(/-1/)	(18.0)	10 (13-20)	<.001

STD = Standard deviation, IQR = Interquartile ratio.

Conomiata	Reoperati	on	Major Complication		
Covariate	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value	
Ileostomy*	0.53 (0.39-0.72)	<.0001	1.24 (1.07-1.42)	0.004	
Age (per 10-year increase)	0.97 (0.88-1.06)	0.495	1.47 (1.38-1.55)	<.0001	
Sex (male vs female)	1.97 (1.55-2.51)	<.0001	1.07 (0.94-1.22)	0.290	
RUB (moderate vs low)	1.18 (0.87-1.61)	0.289	1.25 (1.07-1.47)	0.005	
RUB (high vs low)	1.03 (0.65-1.62)	0.900	1.30 (1.04-1.63)	0.024	
Radio or chemotherapy*	1.09 (0.83-1.44)	0.522	0.93 (0.80-1.09)	0.363	
ASA (0-2 vs 3-4)	1.06 (0.84-1.35)	0.633	1.62 (1.41-1.86)	<.0001	
Teaching institution*	1.10 (0.85-1.41)	0.466	0.98 (0.84-1.15)	0.819	
High surgeon volume*	0.82 (0.66-1.02)	0.067	0.84 (0.74-0.96)	0.012	
Fiscal year (2003 vs 2002)	1.54 (0.78-3.02)	0.213	0.97 (0.72-1.31)	0.855	
Fiscal year (2004 vs 2002)	0.96 (0.48-1.90)	0.898	0.86 (0.63-1.18)	0.345	
Fiscal year (2005 vs 2002)	1.61 (0.87-3.01)	0.133	0.88 (0.65-1.21)	0.442	
Fiscal year (2006 vs 2002)	1.62 (0.85-3.07)	0.145	0.82 (0.59-1.14)	0.238	
Fiscal year (2007 vs 2002)	2.16 (1.15-4.06)	0.016	0.70 (0.50-0.99)	0.043	
Fiscal year (2008 vs 2002)	2.77 (1.53-5.02)	0.001	0.82 (0.60-1.11)	0.201	
Fiscal year (2009 vs 2002)	1.49 (0.78-2.83)	0.227	0.66 (0.47-0.92)	0.014	
Fiscal year (2010 vs 2002)	1.72 (0.91-3.26)	0.098	0.66 (0.47-0.92)	0.014	
Fiscal year (2011 vs 2002)	1.94 (1.02-3.68)	0.042	0.71 (0.52-0.98)	0.034	
Fiscal year (2012 vs 2002)	1.40 (0.72-2.70)	0.320	0.62 (0.45-0.86)	0.004	
Fiscal year (2013 vs 2002)	1.92 (1.05-3.50)	0.033	0.81 (0.60-1.10)	0.173	

Table 8. Covariates adjusted for perioperative outcomes reoperation and major complication in rectal cancer patients

Correction to	Readmissi	on	Deep Organ Infection		
Covariate	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value	
Ileostomy*	1.57 (1.34-1.83)	<.0001	0.99 (0.73-1.35)	0.956	
Age (per 10-year increase)	0.98 (0.92-1.05)	0.554	0.95 (0.86-1.05)	0.275	
Sex (male vs female)	1.01 (0.88-1.16)	0.912	1.47 (1.12-1.93)	0.006	
RUB (moderate vs low)	1.37 (1.13-1.67)	0.002	0.95 (0.66-1.37)	0.799	
RUB (high vs low)	1.47 (1.09-1.98)	0.011	1.22 (0.79-1.86)	0.371	
Radio or chemotherapy*	1.29 (1.10-1.51)	0.002	0.95 (0.70-1.28)	0.720	
ASA (0-2 vs 3-4)	1.24 (1.05-1.46)	0.010	1.12 (0.86-1.46)	0.415	
Teaching institution*	0.97 (0.83-1.14)	0.717	1.39 (1.01-1.92)	0.044	
High surgeon volume*	0.98 (0.85-1.14)	0.802	1.09 (0.83-1.44)	0.543	
Fiscal year (2003 vs 2002)	0.71 (0.44-1.14)	0.155	3.00 (0.83-10.80)	0.094	
Fiscal year (2004 vs 2002)	1.09 (0.72-1.64)	0.680	2.34 (0.60-9.07)	0.219	
Fiscal year (2005 vs 2002)	0.86 (0.55-1.34)	0.493	5.53 (1.67-18.29)	0.005	
Fiscal year (2006 vs 2002)	1.04 (0.68-1.60)	0.854	7.53 (2.3-24.68)	0.001	
Fiscal year (2007 vs 2002)	1.06 (0.68-1.66)	0.798	5.63 (1.65-19.14)	0.006	
Fiscal year (2008 vs 2002)	0.90 (0.60-1.36)	0.626	7.21 (2.18-23.84)	0.001	
Fiscal year (2009 vs 2002)	0.88 (0.58-1.34)	0.545	6.34 (1.91-21.04)	0.003	
Fiscal year (2010 vs 2002)	0.99 (0.65-1.49)	0.949	4.54 (1.32-15.62)	0.017	
Fiscal year (2011 vs 2002)	1.14 (0.76-1.71)	0.522	8.77 (2.62-29.37)	0.000	
Fiscal year (2012 vs 2002)	1.11 (0.74-1.67)	0.622	8.75 (2.67-28.62)	0.000	
Fiscal year (2013 vs 2002)	1.08 (0.70-1.65)	0.733	8.87 (2.70-29.19)	0.000	

Table 9. Covariates adjusted for perioperative outcomes readmission and deep organ infection in rectal cancer patients

Comprists	Blood Transfusion				
Covariate	OR (95% CI)	<i>p</i> -value			
Ileostomy*	1.04 (0.88-1.23)	0.616			
Age (per 10-year increase)	1.44 (1.34-1.53)	<.0001			
Sex (male vs female)	0.77 (0.67-0.89)	0.001			
RUB (moderate vs low)	1.19 (0.99-1.43)	0.072			
RUB (high vs low)	1.11 (0.85-1.45)	0.432			
Radio or chemotherapy*	0.97 (0.80-1.17)	0.746			
ASA (0-2 vs 3-4)	1.75 (1.49-2.07)	<.0001			
Teaching institution*	1.06 (0.87-1.28)	0.577			
High surgeon volume*	0.86 (0.73-1.01)	0.066			
Fiscal year (2003 vs 2002)	0.99 (0.72-1.36)	0.939			
Fiscal year (2004 vs 2002)	0.80 (0.55-1.17)	0.250			
Fiscal year (2005 vs 2002)	0.85 (0.60-1.23)	0.390			
Fiscal year (2006 vs 2002)	0.86 (0.59-1.24)	0.419			
Fiscal year (2007 vs 2002)	0.79 (0.53-1.17)	0.233			
Fiscal year (2008 vs 2002)	0.79 (0.56-1.13)	0.201			
Fiscal year (2009 vs 2002)	0.65 (0.45-0.94)	0.023			
Fiscal year (2010 vs 2002)	0.61 (0.42-0.89)	0.010			
Fiscal year (2011 vs 2002)	0.58 (0.39-0.84)	0.004			
Fiscal year (2012 vs 2002)	0.44 (0.30-0.65)	<.0001			
Fiscal year (2013 vs 2002)	0.63 (0.44-0.91)	0.013			

Table 10. Covariates adjusted for perioperative outcome blood transfusion in rectal cancer patients

3.4.2 Non-rectal cancer subgroup

Among patients without rectal cancer, DLI was associated with higher odds of reoperation (OR 1.49, 95% CI 1.23-1.83; p < 0.0001), major complication (OR 1.59, 95% CI 1.44-1.76; p < 0.0001), hospital admission (OR 2.38, 95% CI 2.08-2.72; p < 0.0001), deep organ/space infection (OR 1.67, 95% CI 1.29-2.17; p < 0.0001), and blood transfusion (OR 1.57, 95% CI 1.39-1.76; p < 0.0001) (Table 11-14).

Although a smaller percentage of patients in the ileostomy group died within 30-days of surgery, this difference was non-significant in an unadjusted analysis (1.2% versus 1.6%; OR 0.75, 95% CI 0.49-1.16; p = 0.19). Median hospital length of stay was eight (IQR 6-10) days for patients in the no ileostomy group and nine (IQR 8-14) days for patients in the ileostomy group (p < 0.001) (Table 15).

	No ileostomy	Ileostomy	Unadjuste	d	Adjusted	
Outcome	n = 17,387	n = 1,958	Odds Ratio (95% CI)	<i>p</i> - value	Odds Ratio (95% CI)	<i>p</i> - value
Reoperation	727 (4.2%)	133 (6.8%)	1.67 (1.38-2.02)	<.0001	1.50 (1.23-1.83)	<.0001
Major complication	3,999 (23.0%)	632 (32.3%)	1.60 (1.44-1.77)	<.0001	1.59 (1.44-1.76)	<.0001
Readmission	1,459 (8.4%)	363 (18.7%)	2.50 (2.20-2.83)	<.0001	2.38 (2.08-2.72)	<.0001
Deep space infection	417 (2.4%)	99 (5.1%)	2.17 (1.73-2.71)	<.0001	1.67 (1.29-2.17)	0.0001
Blood transfusion	2,724 (15.7%)	438 (22.4%)	1.55 (1.38-1.74)	<.0001	1.57 (1.40-1.76)	<.0001

Table 11. Adjusted and non-adjusted perioperative outcomes in the non-rectal cancer subgroup

Covariate	Reoperati	on	Major Compl	Major Complication		
	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value		
Ileostomy*	1.50 (1.23-1.83)	<.0001	1.59 (1.44-1.76)	<.0001		
Age (per 10-year increase)	1.04 (0.98-1.09)	0.229	1.33 (1.28-1.37)	<.0001		
Sex (male vs female)	1.61 (1.40-1.86)	<.0001	0.77 (0.72-0.83)	<.0001		
RUB (moderate vs low)	1.01 (0.84-1.21)	0.959	1.15 (1.05-1.26)	0.002		
RUB (high vs low)	1.15 (0.92-1.44)	0.222	1.44 (1.29-1.60)	<.0001		
Colon/rectosigmoid cancer*	0.83 (0.71-0.96)	0.016	0.93 (0.86-1.00)	0.050		
ASA (0-2 vs 3-4)	1.35 (1.16-1.58)	<.0001	1.99 (1.83-2.16)	<.0001		
Teaching institution*	1.27 (1.05-1.54)	0.015	1.45 (1.25-1.68)	<.0001		
High surgeon volume*	0.73 (0.63-0.84)	<.0001	0.84 (0.77-0.91)	<.0001		
Fiscal year (2003 vs 2002)	0.84 (0.6-1.18)	0.315	0.91 (0.78-1.06)	0.233		
Fiscal year (2004 vs 2002)	1.00 (0.71-1.41)	0.992	0.85 (0.72-1.00)	0.057		
Fiscal year (2005 vs 2002)	0.88 (0.62-1.25)	0.484	0.87 (0.75-1.01)	0.061		
Fiscal year (2006 vs 2002)	1.09 (0.78-1.54)	0.612	0.81 (0.68-0.95)	0.010		
Fiscal year (2007 vs 2002)	1.27 (0.93-1.73)	0.139	0.78 (0.64-0.93)	0.007		
Fiscal year (2008 vs 2002)	1.30 (0.92-1.84)	0.136	0.78 (0.66-0.92)	0.003		
Fiscal year (2009 vs 2002)	1.21 (0.87-1.7)	0.265	0.67 (0.57-0.80)	<.0001		
Fiscal year (2010 vs 2002)	1.19 (0.85-1.66)	0.304	0.71 (0.60-0.84)	<.0001		
Fiscal year (2011 vs 2002)	1.03 (0.73-1.46)	0.848	0.74 (0.63-0.88)	0.001		
Fiscal year (2012 vs 2002)	1.19 (0.84-1.67)	0.337	0.74 (0.62-0.87)	0.001		
Fiscal year (2013 vs 2002)	0.98 (0.70-1.39)	0.918	0.79 (0.66-0.94)	0.008		

Table 12. Covariates adjusted for perioperative outcomes reoperation and major complication in non-rectal cancer patients

Cavariata	Readmissi	on	Blood Transfusion		
Covariate	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value	
Ileostomy*	2.38 (2.08-2.72)	<.0001	1.57 (1.4-1.76)	<.0001	
Age (per 10-year increase)	1.03 (0.99-1.07)	0.142	1.29 (1.24-1.34)	<.0001	
Sex (male vs female)	0.94 (0.85-1.04)	0.194	0.62 (0.57-0.67)	<.0001	
RUB (moderate vs low)	1.22 (1.08-1.39)	0.002	1.10 (0.99-1.21)	0.074	
RUB (high vs low)	1.45 (1.24-1.69)	<.0001	1.36 (1.20-1.54)	<.0001	
Colon/rectosigmoid cancer*	0.93 (0.84-1.03)	0.136	0.97 (0.89-1.05)	0.437	
ASA (0-2 vs 3-4)	1.21 (1.09-1.35)	0.00	1.99 (1.81-2.19)	<.0001	
Teaching institution*	1.26 (1.11-1.43)	0.00	1.52 (1.28-1.80)	<.0001	
High surgeon volume*	0.92 (0.83-1.03)	0.14	0.80 (0.72-0.87)	<.0001	
Fiscal year (2003 vs 2002)	1.19 (0.93-1.52)	0.164	0.88 (0.74-1.04)	0.141	
Fiscal year (2004 vs 2002)	1.17 (0.92-1.49)	0.19	0.86 (0.72-1.03)	0.101	
Fiscal year (2005 vs 2002)	1.09 (0.84-1.41)	0.514	0.83 (0.70-0.98)	0.026	
Fiscal year (2006 vs 2002)	0.86 (0.65-1.13)	0.271	0.77 (0.63-0.94)	0.008	
Fiscal year (2007 vs 2002)	1.21 (0.93-1.56)	0.155	0.68 (0.54-0.84)	0.000	
Fiscal year (2008 vs 2002)	1.41 (1.09-1.82)	0.008	0.71 (0.58-0.86)	0.001	
Fiscal year (2009 vs 2002)	1.03 (0.79-1.34)	0.855	0.65 (0.54-0.79)	<.0001	
Fiscal year (2010 vs 2002)	1.23 (0.94-1.60)	0.128	0.63 (0.52-0.77)	<.0001	
Fiscal year (2011 vs 2002)	1.04 (0.8-1.34)	0.768	0.68 (0.56-0.83)	0.000	
Fiscal year (2012 vs 2002)	1.05 (0.81-1.36)	0.711	0.58 (0.47-0.70)	<.0001	
Fiscal year (2013 vs 2002)	1.15 (0.89-1.49)	0.300	0.62 (0.50-0.76)	<.0001	

Table 13. Covariates adjusted for perioperative outcomes readmission and blood transfusion in non-rectal cancer patients

	Deep Organ Infection				
Covariate -	OR (95% CI)	<i>p</i> -value			
Ileostomy*	1.67 (1.29-2.17)	0.000			
Age (per 10-year increase)	0.93 (0.86-0.99)	0.031			
Sex (male vs female)	1.47 (1.21-1.77)	<.0001			
RUB (moderate vs low)	1.18 (0.92-1.51)	0.190			
RUB (high vs low)	1.41 (1.06-1.88)	0.019			
Colon/rectosigmoid cancer*	0.86 (0.72-1.04)	0.116			
ASA (0-2 vs 3-4)	1.31 (1.08-1.60)	0.007			
Teaching institution*	1.80 (1.42-2.29)	<.0001			
High surgeon volume*	0.86 (0.70-1.05)	0.126			
Fiscal year (2003 vs 2002)	0.88 (0.46-1.68)	0.694			
Fiscal year (2004 vs 2002)	1.06 (0.62-1.80)	0.834			
Fiscal year (2005 vs 2002)	1.38 (0.79-2.42)	0.256			
Fiscal year (2006 vs 2002)	1.60 (0.93-2.75)	0.093			
Fiscal year (2007 vs 2002)	2.20 (1.29-3.77)	0.004			
Fiscal year (2008 vs 2002)	2.34 (1.38-3.97)	0.002			
Fiscal year (2009 vs 2002)	2.11 (1.27-3.50)	0.004			
Fiscal year (2010 vs 2002)	1.76 (0.99-3.11)	0.054			
Fiscal year (2011 vs 2002)	2.37 (1.43-3.91)	0.001			
Fiscal year (2012 vs 2002)	2.32 (1.39-3.87)	0.001			
Fiscal year (2013 vs 2002)	2.24 (1.32-3.77)	0.003			

Table 14. Covariates adjusted for perioperative outcome deep organ infection in non-rectal cancer patients

	0	verall	No ile	eostomy	Ile	ostomy	_
Outcome	Mean	Median	Mean	Median	Mean	Median	<i>p</i> - value
	(STD)	(IQR)	(STD)	(IQR)	(STD)	(IQR)	
Post-operative	9.17	8 (6-10)	8.89	8 (6-10)	11.63	9 (8-14)	<.001
length of stay	(5.31)	8 (0-10)	(5.11)	8 (0-10)	(6.30)	9 (0-14)	<.001
Total bed days	9.82	0 (6 11)	9.48	0 (6 10)	12.80	11 (0.16)	
within 30 days	(5.89)	8 (6-11)	(5.68)	8 (6-10)	(6.84)	11 (8-16)	<.001
Total bed days	14.4		13.2		25.1		
within 1 year	(16.9)	9 (7-15)	(15.8)	8 (6-14)	(21.4)	19 (14-29)	<.001

Table 15. Overall hospital length of stay in non-rectal cancer patients

STD = Standard deviation, IQR = Interquartile ratio.

3.5 Long-term outcomes compared to non-ileostomy patients

Long-term outcomes were captured within 180 days of the index surgery and included acute renal failure requiring hospitalization, bowel obstruction requiring hospital admission, abdominal hernia, enterocutaneous fistula, and 90-day and 1-year mortality.

3.5.1 Rectal cancer subgroup

DLIs were associated with significantly higher rates of acute renal failure requiring hospitalization (OR 4.15, 95% CI 3.14-5.47; p < 0.0001). One-year mortality was lower in rectal cancer patients with DLIs, although the difference was not statistically significant (OR 0.77, 95% CI 0.56-1.00; p = 0.05) (Table 16, 18).

For unadjusted outcomes of rectal cancer patients, 90-day mortality was significantly lower in the ileostomy group (OR 0.66, 95% CI 0.47-0.92; p = 0.01). However, ileostomy patients did have much higher odds of ventral hernia (OR 2.4, 95% CI 1.66-3.46; p < 0.0001) and bowel

obstruction (OR 14.5, 95% CI 9.72-21.57; p < 0.0001). There was no between group difference in the number of enterocutaneous fistulas (OR 0.64, 95% CI 0.34-1.19; p = 0.15) (Table 17).

	No	No Hoostomy		d	Adjusted		
Outcome	ileostomy	neostomy	Ileostomy Odds Ratio		Odds Ratio	<i>p</i> -value	
	n = 3,446	n = 2,700	(95% CI)	value	(95% CI)	<i>p</i> -value	
Renal failure	90 (2.6%)	272 (10.1%)	4.18 (3.27-5.33)	<.0001	4.15 (3.14-5.47)	<.0001	
Mortality (1 year)	233 (6.8%)	121 (4.5%)	0.64 (0.52-0.81)	0.000	0.77 (0.59-1.00)	0.004	

Table 16. Unadjusted and adjusted long-term outcomes in rectal cancer patients

Table 17. Unadjusted long-term outcomes for rectal cancer patients; after ileostomy reversal

Outcome	Overall	No Ileostomy	Ileostomy	OR (95% CI)	<i>p</i> -value
	n=6,146				
Mortality (90- day)	155 (2.5%)	102 (3.0%)	53 (2.0%)	0.66 (0.47-0.92)	0.014
Ostomy-related complication	454 (7.4%)	96 (2.8%)	358 (13.3%)	5.33 (4.23-6.72)	<.0001
Ventral hernia	128 (2.1%)	45 (1.3%)	83 (3.1%)	2.4 (1.66-3.46)	<.0001
Bowel obstruction or ileus	304 (4.9%)	27 (0.8%)	277 (10.3%)	14.48 (9.72-21.57)	<.0001
Enterocutaneous fistula	45 (0.7%)	30 (0.9%)	15 (0.6%)	0.64 (0.34-1.19)	0.154

OR = Odds ratio, CI = Confidence interval.

Conomiata	Mortality (1-	year)	Renal Failure		
Covariate	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value	
Ileostomy*	0.77 (0.59-1.00)	0.053	4.15 (3.14-5.47)	<.0001	
Age (per 10-year increase)	1.63 (1.45-1.84)	<.0001	1.49 (1.35-1.65)	<.0001	
Sex (male vs female)	1.64 (1.28-2.10)	0.000	1.32 (1.03-1.69)	0.03	
RUB (moderate vs low)	1.16 (0.89-1.51)	0.287	1.18 (0.87-1.60)	0.283	
RUB (high vs low)	1.27 (0.87-1.85)	0.212	1.06 (0.68-1.65)	0.798	
Radio or chemotherapy*	0.99 (0.75-1.30)	0.933	1.14 (0.91-1.43)	0.272	
ASA (0-2 vs 3-4)	1.89 (1.42-2.51)	<.0001	1.65 (1.27-2.13)	0.000	
Teaching institution*	0.75 (0.56-1.00)	0.047	0.83 (0.63-1.08)	0.168	
High surgeon volume*	0.91 (0.70-1.16)	0.436	1.04 (0.83-1.29)	0.759	
Fiscal year (2003 vs 2002)	0.74 (0.41-1.33)	0.313	0.72 (0.30-1.78)	0.481	
Fiscal year (2004 vs 2002)	0.90 (0.55-1.50)	0.694	1.53 (0.74-3.15)	0.254	
Fiscal year (2005 vs 2002)	0.76 (0.45-1.28)	0.307	1.18 (0.54-2.54)	0.683	
Fiscal year (2006 vs 2002)	0.64 (0.36-1.12)	0.116	1.37 (0.67-2.83)	0.388	
Fiscal year (2007 vs 2002)	0.89 (0.51-1.54)	0.676	1.21 (0.56-2.59)	0.626	
Fiscal year (2008 vs 2002)	0.79 (0.44-1.39)	0.407	1.52 (0.72-3.21)	0.269	
Fiscal year (2009 vs 2002)	0.57 (0.32-1.02)	0.059	1.37 (0.68-2.76)	0.373	
Fiscal year (2010 vs 2002)	0.61 (0.34-1.09)	0.093	1.30 (0.63-2.65)	0.479	
Fiscal year (2011 vs 2002)	0.66 (0.38-1.14)	0.135	1.36 (0.67-2.77)	0.401	
Fiscal year (2012 vs 2002)	0.65 (0.39-1.09)	0.102	2.09 (1.05-4.16)	0.037	
Fiscal year (2013 vs 2002)	0.56 (0.31-1.00)	0.050	2.05 (1.05-4.00)	0.036	

Table 18. Co-variates adjusted for long-term outcomes in rectal cancer patients

*Yes vs no; OR = Odds ratio, CI = Confidence interval.

3.5.2 Non-rectal cancer subgroup

Among patient without rectal cancer, DLIs were also associated with significantly higher odds of acute renal failure (OR 5.76, 95% CI 4.66-7.12; p < 0.0001). There was no significant difference in one-year mortality (OR 1.15, 95% CI 0.93-1.41; p = 0.20) (Table 19, 20).

In terms of unadjusted outcomes, while 90-day mortality did not differ between the groups (OR 1.00, 95% CI 0.74-1.35; p = 0.99), patients with an ileostomy did have significantly higher odds of ventral hernia (OR 2.37, 95% CI 1.90-2.97; p < 0.0001), bowel obstruction (OR 44.5, 95% CI 32.46-61.15; p < 0.0001, and enterocutaneous fistula (OR 2.53, 95% CI 1.98-3.23; p < 0.0001) (Table 21).

	No	Ileostomy	Unadjusted		Adjusted	
Outcome				<i>p</i> - value	Odds Ratio (95% CI)	<i>p</i> -value
Renal failure	348 (2.0%)	212 (10.8%)	5.95 (4.97-7.10)	<.0001	5.76 (4.66-7.12)	<.0001
Mortality (1 year)	988 (5.7%)	117 (6.0%)	1.60 (1.44-1.77)	0.590	1.15 (0.93-1.42)	<.200

Table 19. Unadjusted and adjusted long-term outcomes in non-rectal cancer patients

Complete	Mortality (1-	year)	Renal Failure		
Covariate	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value	
Ileostomy*	1.15 (0.93-1.42)	0.200	5.76 (4.66-7.12)	<.0001	
Age (per 10-year increase)	1.72 (1.60-1.85)	<.0001	1.53 (1.40-1.66)	<.0001	
Sex (male vs female)	1.21 (1.05-1.39)	0.008	1.23 (1.05-1.45)	0.013	
RUB (moderate vs low)	0.97 (0.82-1.14)	0.698	1.17 (0.94-1.45)	0.166	
RUB (high vs low)	1.24 (1.04-1.49)	0.019	1.58 (1.23-2.04)	0.000	
Colon/rectosigmoid*	1.33 (1.14-1.55)	0.000	0.98 (0.82-1.18)	0.818	
ASA (0-2 vs 3-4)	2.17 (1.87-2.51)	<.0001	1.93 (1.56-2.38)	<.0001	
Teaching institution*	1.07 (0.88-1.30)	0.498	1.08 (0.87-1.35)	0.465	
High surgeon volume*	0.85 (0.74-0.97)	0.017	1.13 (0.94-1.36)	0.200	
Fiscal year (2003 vs 2002)	0.96 (0.72-1.27)	0.766	0.96 (0.57-1.60)	0.865	
Fiscal year (2004 vs 2002)	0.79 (0.60-1.06)	0.112	1.18 (0.70-1.97)	0.541	
Fiscal year (2005 vs 2002)	0.88 (0.68-1.14)	0.342	1.01 (0.61-1.66)	0.984	
Fiscal year (2006 vs 2002)	0.69 (0.52-0.93)	0.013	1.14 (0.71-1.83)	0.586	
Fiscal year (2007 vs 2002)	0.72 (0.54-0.97)	0.028	1.16 (0.72-1.89)	0.542	
Fiscal year (2008 vs 2002)	0.54 (0.40-0.75)	0.000	1.33 (0.81-2.18)	0.265	
Fiscal year (2009 vs 2002)	0.63 (0.46-0.85)	0.003	1.36 (0.82-2.25)	0.239	
Fiscal year (2010 vs 2002)	0.61 (0.45-0.82)	0.001	1.50 (0.95-2.35)	0.080	
Fiscal year (2011 vs 2002)	0.70 (0.53-0.93)	0.013	2.01 (1.3-3.11)	0.002	
Fiscal year (2012 vs 2002)	0.46 (0.33-0.63)	<.0001	1.65 (1.02-2.65)	0.040	
Fiscal year (2013 vs 2002)	0.49 (0.36-0.68)	<.0001	1.88 (1.22-2.90)	0.004	

Table 20. Covariates adjusted for long-term outcomes in non-rectal cancer patients

Outcome	Overall	No Ileostomy	Ileostomy	OR (95% CI)	p -value	
Outcome	n = 19, 345	n - 17,387	n = 1958	UK (93 /0 CI)	p-value	
Mortality (90-day)	484	435	49	1.00 (0.74-1.35)	0.999	
	(2.5%)	(2.5%)	(2.5%)	1.00 (0.74-1.55)	0.999	
Ventral hernia	491	390	101	2.37 (1.90-2.97)	<.0001	
	(2.5%)	(2.2%)	(5.2%)	2.37 (1.90-2.97)	<.0001	
Bowel obstruction	263	48	215	44.55 (32.46-	<.0001	
	(1.4%)	(0.3%)	(11.0%)	61.15)	<.0001	
Ostomy related						
complications	1082	714	368	5.41 (4.72-6.19)	<.0001	
	(5.6%)	(4.1%)	(18.8%)			
Enterocutaneous						
fistula	387	303	84	2.53(1.98-3.23)	<.0001	
	(2.0%)	(1.7%)	(4.3%)			

Table 21. Unadjusted long-term outcomes for non-rectal cancer patients

OR = Odds ratio, CI = Confidence interval.

3.6 Timing of ileostomy reversal and permanent ostomies

Out of 4658 patients that had DLIs, 4041 patients had ileostomy reversals, leaving 617 (13.2%) patients with a permanent ileostomy. The mean time to reversal was 231 days (STD 125 days) and the median time to reversal was 214 days (IQR 133-301 days). The majority of patients had their ileostomy reversed between 3 and 12 months (76.9%). Ten percent of patients had their ileostomy reversed very early (before 3 months) and the rest (13.1%) had their reversal between 12-24 months (Table 22).

Time to reversal	n	Number of patients at each interval	Cumulative % of all patients with an ileostomy	Individual % at each interval with a reversal	Cumulative % of patients with a reversal
Within 1 month	16	16	0.34%	0.39%	0.40%
Within 3 months	391	375	8.39%	9.28%	9.68%
Within 6 months	1559	1168	33.47%	28.90%	38.58%
Within 9 months	2706	1147	58.09%	28.38%	66.96%
Within 12 months	3499	793	75.12%	19.62%	86.59%
Within 15 months	3808	309	81.75%	7.65%	94.23%
Within 18 months	3940	132	84.59%	3.27%	97.50%
Within 24 months	4041	101	86.75%	2.50%	100.00%

Table 22. Timing of ileostomy reversals

Chapter IV: Discussion

4.1 Clinical dilemma

Defunctioning loop ileostomies (DLIs) are one of the most common procedures performed by general surgeons and colorectal surgeons, and their utilization is on the rise. According to data from study, there was a 300% increase in the number of DLIs performed in Ontario from 2002 to 2013 (Figure 2). DLIs became popular after a number of randomized controlled trials (RCTs) demonstrated its benefit in decreasing symptomatic anastomotic leaks (AL) after low anterior resection (LAR), and especially as surgeons began to perform lower resections to preserve sphincter function [3,20,51]. However, their use has been extended beyond the indications of those RCTs and some surgeons are forming them whenever they're not confident about the anastomosis. As more DLIs are being used, surgeons are beginning to see more complications associated with these ileostomies, both in clinical practice and in clinical research [9,25,26,29,31,35-37,52].

Although there have been studies analyzing the morbidity associated with DLIs, none of these studies followed the same patients from inception of the ostomy to ileostomy reversal. This is one of the main strengths of the current study. Most studies were also conducted in a retrospective nature; however, the databases utilized for the current study used population-level data [26,31,52]. Another strength of this study is that we used administrative databases that collect all available patient data, making it a real-life representation of the patient cohort in the time period selected. To our knowledge, this is one of the largest patient cohorts to date to investigate outcomes following DLI.

One of the biggest limitations of this retrospective analysis, which is important to address before interpretation of the outcomes, is the heterogeneous nature of the patient cohort. In an effort to produce a powerful study to allow for multivariate analysis, the definition of the patient cohort was set widely. Any patient undergoing LAR was included. The indications for surgery varied, ranging from cancer resections, to diverticular disease, to trauma, to inflammatory bowel disease. To accommodate some of the heterogeneity, two major adjustments were made: first, patients were separated into subgroups of rectal cancer patients versus non-rectal cancer patients and second, multivariate analysis was used to adjust for confounding factors. Overall, these adjustments made the rectal cancer subgroup quite a homogenous cohort of patients. It is possible that rectal cancer patients undergo LAR for other reasons, but, for the vast majority of patients, it can be inferred that these patients underwent surgery for cancer resection. The other subgroup, however, remains heterogeneous and includes colon cancer patients along with patients without cancer. These patients were not excluded from the study because their data still provides valuable information on the frequency of complications associated with DLIs. Nevertheless, results from this subgroup should be interpreted with caution.

4.2 Overall morbidity and mortality

The overall morbidity identified in this study is quite significant and was comparable to outcomes from previous studies, including three other large database cohort studies assessing morbidity and mortality of patients with a LAR and diverting ostomy [26,31,52,53] (Table 23). The overall morbidity observed in the current study was 28.5%. In Nurkin et al.'s retrospective cohort study, patients that underwent low pelvic anastomosis had an overall morbidity of 15.8%, and patients that underwent coloanal anastomosis had an overall morbidity of 11.4% [26] (Table

23). A substantial proportion of patients also experience major complications after ileostomy reversal, including10.3% in this study and 9.3% as reported by Sharma et al. [53] (Table 23). Rates of reoperation, deep space infection, and 30-day mortality were similar in the current study (Table 23). The rate of acute kidney injury (AKI) observed in this study is much higher than the rate reported in previous studies, although Jafari et al. and Nurkin et al. both reported that DLI was associated with increased risk of AKI (OR 2.37, 95% CI 1.22-4.58; p = 0.011; OR 3.67) [26,31]. A number of smaller retrospective studies reported similar or higher rates of AKI: 14.5% by Åkesson et al., 18% by Gessler et al., 20.1% by Hayden et al., and 17% Paquette et al. [29,30,36,54].

Author (year)	Ν	Major complication	Re- operation	AKI	Deep space infection	30-day mortality
Yang (current)	4,658	28.5%	5.5%	10.4%	5.2%	1.2%
Jafari (2013)	991	-	4.5%	1.3%	7.5%	1.3%
Nurkin						
(2013a)	606	15.8%	5.1%	2.3%	5.6%	1.0%
Nurkin						
(2013b)	352	11.4%	1.7%	2.3%	5.1%	0%
Chow (2009)	6107	17.3%	-	-	5.0%	0.4%
After ileostomy	reversal					
Yang (current)	4,041	10.3%	-	-	1.7%	0.6%
Sharma (2013	5,401	9.3%	4.0%	-	-	0.6%

Table 23. Large population retrospective cohort studies and cumulative morbidity

Note: Nurkin 2013a included low pelvic anastomosis, Nurkin 2013b included coloanal anastomosis

4.3 Rectal cancer patients

In the current study, rectal cancer patients who underwent a LAR with DLI demonstrated significantly lower rates of reoperation (OR 0.53, 95% CI 0.39-0.72; p < 0.0001) and 90-day mortality (OR 0.66, 95% CI 0.47-0.92; p = 0.01). Although reoperation may be required for

several reasons, AL is one of the main indications for a reoperation within 30 days of DLI. Most other immediate post-operative complications do not require an operation. For example, wound infections and abscesses can be treated with antibiotics and percutaneous drains. If the rate of reoperation is interpreted as a surrogate indicator for significant AL requiring operative intervention, then our results suggest that DLIs are protective against ALs. This finding is consistent with a number of previous studies. Mattheson et al. conducted one of the first RCTs comparing the rate of symptomatic AL in patients undergoing LAR with or without a defunctioning ostomy [20]. In this study, defunctioning stomas included both ileostomies and colostomies. The defunctioned group had a significantly lower rate of symptomatic anastomotic leakage as compared to the non-defunctioned group (10.3% vs 28.0%, OR 3.4, 95% CI 1.6-6.9, p < 0.001) [20]. Pisarska et al. conducted a recent systematic review and meta-analysis analyzing the role of DLI in rectal cancer surgery [55]. This study included a total of 2,366 patients from 13 studies, 4 of which were RCTs while 9 were comparative studies. The meta-analysis of RCTs demonstrated a relative risk (RR) reduction of 0.43 in the DLI group (95% CI 0.28-0.67, I2 =35%) [55]. Meta-analysis of the comparative studies also showed a RR reduction of 0.49 (95% CI 0.27-0.87, I2 = 42%) [55]. In 2013, Jafari et al. conducted a similar large population retrospective cohort study that included 6,337 patients from the National Surgery Quality Improvement Project (NSQIP) database [31]. The authors reported that the 991 (16%) patients who received a DLI were significantly less likely to require reoperation than those without an ileostomy (4.5% vs 6.9%, p < 0.05) [31].

The decrease in 90-day mortality identified in this study may be attributed to its protective effect against AL. Matthiessen et al. conducted a retrospective cohort study assessing mortality after

elective anterior resection [56]. Out of 6,833 patients, 140 died within 30 days of their initial hospital stay [56]. These 140 patients were analyzed and compared against a randomly chosen control group selected from the remaining 6,693 patients. Within that cohort, 59 patients had documented AL and the leak was considered to be the cause of death or an indirect contributor to the patient's demise [56]. Multivariate analysis in this study demonstrated that male sex, age, Dukes' stage D, intraoperative adverse events, and anastomotic leak were all independent risk factors for post-operative death [56]. Therefore, Matthiessen et al. concluded that AL is highly associated with mortality [56].

The 90-day mortality benefit has not been widely reported in previous studies. The only study that has demonstrated a mortality benefit from a protective ostomy was by Gastinger et al. [2]. They analyzed the data from a prospective multicenter study conducted between January 2000 and December 2001. This study included 2,729 patients and 881 of them underwent a protective stoma after LAR. The protective stoma included both colostomies and ileostomies. In this study, the group with a protective ostomy had a significantly lower in-hospital mortality rate (0.9% vs 2.0%, p = 0.037) [2]. Most other studies have not demonstrated a significant difference in risk of mortality [25,31,55,57]. The most recent systematic review and meta-analysis was done by Pisarska et al. [55]. The meta-analysis of both RCTs and comparative non-randomized studies did not demonstrate a significant benefit in terms of mortality (OR 1.12, 95% CI 0.71, 1.77, p = 0.39 for RCTs and OR 1.16, 95% CI 0.70, 1.94; p = 0.56 for comparative studies) [55]. Even a larger systematic review on diverting ostomies that included both colostomies and ileostomies by Montedori et al. did not demonstrate a mortality benefit [15]. Only RCTs were included in this systematic review and only three studies reported on mortality. Meta-analysis demonstrate an

odds ratio of 0.58 with a 95% CI 0.14, 2.33, p = 0.44 for mortality [15]. Therefore, the majority of evidence in the literature suggests that defunctioning ostomies do not provide a mortality benefit; however, the number of studies reporting mortality was limited and none of them analyzed mortality beyond 30 days. The current study followed patients for up to two years after the index surgery and captured mortality for up to one-year after surgery. The rate of reoperation was lower in the DLI group. Anecdotally, patients rarely die within 30-days of their index surgery, especially if they are taken back to the operating room and have a prolonged hospital stay. It is feasible that the mortality benefit of defunctioning ostomies was not identified in previous studies due to the short follow up intervals.

The protective effects of DLIs is contrasted with high rates of morbidity, as we found that DLIs were significantly associated with increased risk of major complication, hospital readmission, longer hospital length of stay, hospital admission for AKI, ventral hernia, and bowel obstruction. Similar complications have been noted in previous studies [2,7,9,25,29,36,37,54,58-59]. This prompts the debate about whether the benefits of DLI out-weighs the morbidity. For cancer patients, AL not only worsens post-operative outcome, morbidity, and mortality, it also worsens oncologic prognosis [16-18]. Therefore, ALs should be minimized as much as possible. The absolute risk of AL for the average rectal cancer patients has been revisited many times throughout the years and the risk is not as high as previously thought. Currently, an anastomotic leak rate of < 8% is considered acceptable [10]. Chun et al. conducted a retrospective cohort study looking at patient characteristics associated with higher risk for AL and concluded that risk factors include male sex (OR 8.56), obesity with BMI > 30 (OR 8.56), age > 65 years (OR 53.34), and hypertension (OR 8.36) [58].

In Nurkin et al.'s large population retrospective cohort analysis, they analyzed patients with low pelvic anastomosis and coloanal anastomoses separately [26]. Patients with a low pelvic anastomosis with or without a DLI did not have significantly different rates of morbidity (pneumonia, unplanned intubation, pulmonary embolus, myocardial infarction, bleeding, deep vein thrombosis, sepsis, septic shock, reoperation, or wound complications) or mortality [26]. The DLI group did, however, have a higher rate of AKI (OR 3.67) [26]. The coloanal group had more complications in patients without a diverting ostomy, including higher rates of unplanned intubation (OR 8.48), ventilation > 48 h (OR 3.67), bleeding (OR 8.31), septic shock (OR 2.48), reoperation (OR 7.11), and serious morbidity (OR 2.35) [26]. This suggests that patients with a low pelvic anastomosis may benefit from a DLI, whereas this may not be true for patients with a low pelvic anastomosis [26].

One of the most notable complications seen with DLIs is acute kidney injury (AKI). To our knowledge, every study that has analyzed complications related to ostomies has demonstrated significantly higher risk of AKI [25,26,31,33,34,36,51,53,58,60]. The rate of AKI after ileostomy ranges from 11% - 43%, with the current study reporting a rate of 10.4%. AKI is common with an ileostomy because of high ostomy output. The ostomy bypasses the water-absorbing functionality of the colon, thus leading to high volume loss. Often, patients have a difficult time keeping up with the necessary fluid intake, resulting in dehydration and pre-renal AKI. The clinical significance of an AKI is quite significant. Not only does it contribute to increased health-care utilization and cost, it also puts these patients at risk for chronic kidney injury [61-62]. Although no study has followed patients long enough to assess for long-term sequelae of AKI secondary to high ileostomy output, O'Connor et al. conducted a systematic

review looking at long-term outcomes in patients who developed AKI after abdominal surgery. Specifically, they identified a 12.6 relative risk of death in patients who developed AKI [61]. Paquette et al. assessed the impact of readmission due to dehydration after DLI [33]. For patients admitted for dehydration, they stayed a median of 1 day with a range of 1-3 days. For patients admitted for renal failure, patients stayed a median of 4 days with a range of 3-7 days [33]. The cost on the healthcare system per patient was \$2,750 USD for dehydration and \$9,107 USD for renal failure [33].

4.4 Non-rectal cancer patients

In the current study, the subgroup of patients without rectal cancer was a heterogeneous group of patients. Their specific indications for index surgery could have been discordant, including cancer resection, diverticular disease, resection for inflammatory bowel disease, volvulus, or trauma. Conclusions made with respect to this subgroup may be biased due to confounding factors; however, it was still interesting to analyze the results. From this patient cohort, no associated benefit was seen in the ileostomy group and the ileostomy cohort had significantly more complications including higher risk of major complication, reoperation, readmissions, blood transfusion, deep space infection requiring percutaneous intervention, acute renal failure requiring hospitalization, bowel obstruction, and ventral hernia (Table 6). There is very limited utilization for DLIs other than for cancer resections. The only consideration existing in current literature for performing a LAR with primary anastomosis and DLI is for complicated diverticulitis [63-67]. For complicated diverticulitis, the historic gold standard procedure is a Hartmann's procedure, which is a LAR and end colostomy, leaving a rectal stump [63-67]. An end colostomy can be difficult to reverse and requires a second laparotomy, whereas a DLI is an

easier reversal surgery that can be done locally at the site of the ostomy. Constantinides et al. showed 27% of patients with a Hartmann's end colostomy never got reversed as opposed to 8% of patients with a DLI [65]. Therefore, in current practice, the preferred procedure for diverticulitis is often a LAR with primary anastomosis with or without a defunctioning loop ileostomy. Gawlick & Nirula used the NSQIP database and conducted a retrospective cohort analysis on patients who underwent Hartmann's procedure versus primary anastomosis and DLI [63]. In this study, primary anastomosis with diverting ileostomy was associated with significantly higher mortality in patients with dirty/infected wounds (OR 2.02, 95% CI 1.06-3.85) [63]. There was no significant difference in wound infection, wound dehiscence, or postoperative sepsis. When looking solely at septic patients without dirty/feculent wounds, there was no difference in mortality between the groups [63]. Therefore, this study recommended safe utilization of primary anastomosis with diverting ileostomy for complicated diverticulitis without feculent contamination [63]. To our knowledge, no studies have been conducted investigating the morbidity associated with DLIs in diverticulitis patients.

4.5 Permanent ostomies

In this patient cohort, 13.2% patients were left with a permanent ostomy, which was defined as no evidence of ileostomy reversal at two-years after index surgery. This is comparable to other studies in the literature where the estimated rate of permanent ileostomies ranges from 11-25% [36,40,43,59,68-69]. This is quite significant: more than 1 out of 10 patients who planned to have a temporary ostomy never have it reversed. This has a significant impact on overall patient quality of life (QoL) [41,43-44]. Survey studies have shown that ostomies are associated with decreased physical function and role function, significant concern regarding the ostomy,

significantly decreased confidence in body image, and issues with discomfort, feeling unattractive and decreased sexual activity [41,43-44]. These studies also demonstrate a persistent decrease in QoL even after ileostomy reversal, often associated with changes in bowel function and diminished body image [41,43-45].

There are complications that can occur with a defunctioned colon, such as diversion colitis. The term diversion colitis was coined in 1981 in Glotzer et al.'s case series of ten patients with inflammation of a de-functioned segment of bowel [70]. The specific pathophysiology is unknown but there are two theories. The main theory is that the lack of short-chain fatty acids (SCFA) in the diverted colon causes the inflammation [71-75]. Colonocytes rely on SCFAs as the main source of nutrient [71-75]. Symptoms can include watery diarrhea, lower abdominal discomfort/pain, pelvic pain, anorectal pain, rectal bleeding, tenesmus, mucous discharge, and low-grade fever [71-73]. The majority of patients experience mild to moderate symptoms but 4% will present with severe symptoms [71,73]. The only definitive treatment is re-establishing continuity [71-72].

In the current study, the majority of reversals occurred between 3-12 months after index surgery (76.9%). Thirteen percent had their ileostomy reversed between 1-2 years after surgery and 9.6% got an early ileostomy reversal before 3 months (Table 9). Timing of ileostomy reversal is an important consideration in the operative planning process. An ileostomy that has been there for longer is harder and takes longer to reverse [76]. Furthermore, it has been shown that a colon that has been defunctioned for a longer period of time will take longer to regain function, leading to slower recovery from ileostomy reversal and longer hospital length of stay [76].

4.6 Timing of ileostomy reversal

Timing of ileostomy reversal often depends on whether patients will be undergoing postoperative chemotherapy. Chemotherapy usually lasts between 3 to 6 months and, anecdotally, surgeons wait 4-6 weeks after chemotherapy to let patients recover before reversing the ileostomy. Because of the issues associated with late reversal, it has been proposed that an ultraearly closure be done close to index surgery (within 14 days after index surgery) [77-78]. Two recent systematic reviews and meta-analyses have investigated this specific question. Farag et al. performed a systematic review and meta-analysis of four randomized controlled trials with a total of 446 patients (176 in the early closure group and 270 in delayed closure group) [77]. They identified similar risk of anastomotic leak (RR 0.37, 95% CI 0.10-1.42, p = 0.15), anastomotic stenosis (RR 4.79, 95% CI 0.23-09.47, p = 0.31), and post-operative complications (RR 0.75, 95% CI 0.48-1.16, p = 0.19) between patients with early reversal and late reversal [77]. There was also no significant difference in the duration of operation (mean difference 0.49, 95% CI -1.09-0.12, p = 0.12) or hospital length of stay (mean difference -0.44, 95% CI -0.25-0.18, p =0.75) [80]. They concluded that early ileostomy reversal within 14 days was not associated with higher risk than delayed reversal; however, they also did not demonstrate any significant benefit associated with early reversal [77]. Menahem et al. also conducted a systematic review that included comparative studies assessing early closure (≤ 14 days) versus late closure (>8 weeks) [78]. The meta-analysis included six studies, including two retrospective case series, one prospective case series, and three RCTs [78]. In the analysis, there was no significant difference in overall morbidity (OR 0.98, 95% CI 0.63-1.53; p = 0.95), anastomotic leak (OR 0.63, 95% CI 0.22-1.78; p = 0.38), or reoperation (OR 1.06, 95% CI 0.50-2.26; p = 0.88) [78]. There was significantly less small bowel obstruction (OR 0.46, 95% CI 0.24-0.86; p = 0.02) and stomarelated complications (OR 0.11, 95% CI 0.06-0.20; p < 0.00001) in the early closure group [78]. Patients in the early closure group did have a significantly higher overall wound infection rate (OR 3.83, 95% CI 2.14-6.86; p < 0.00001). The level of evidence in Menahem's meta-analysis was arguably lower than Farag et al. due to higher heterogeneity; however, neither study demonstrated worse outcomes in terms of anastomotic leak or post-operative complications. In fact, Menahem et al. demonstrated benefit with less bowel obstruction and stoma-related complications [78]. This is an avenue that should be explored further in clinical practice.

4.7 Highly selective utilization of defunctioning ileostomies

There is no question that there is benefit with the DLI as demonstrated by this study and a number of studies in the past [3,15,20,22,26,]. However, the rate of DLI formation has increased perhaps too dramatically. There are significant risks associated as well [7,9,23-27,29-31,33-40]. The most important message from this study is that the benefits of a DLI does not always outweigh the risks and perhaps too many people are getting DLIs when they don't need it. Platell et al. conducted a prospective observational study in 2005 and followed 233 patients at their center that underwent low or ultra-low anterior resections with DLI [27]. In this cohort, 16 (7%) of patients had an anastomotic leak, 7 (3%) were asymptomatic, and 9 (4%) required intervention; but only 2 (0.9%) patients required re-operation for their anastomotic leak [27]. The authors concluded that > 90% of their patient cohort had a DLI but did not benefit from it [27].

When analyzing the absolute risk reduction seen in this study, there is a 1% absolute risk reduction (ARR) of 90-day mortality in rectal cancer patients, a 2.3% ARR of 1-year mortality, and a 2.6% ARR of re-operation associated with DLIs. When this is converted to numbers

needed to treat, 100 rectal cancer patients would need to have a DLI to reduce one mortality at 90 days; 43 patients to decrease one mortality at 1 year; and 38 patients to decrease one reoperation at 30 days. For the patients that would not benefit from the DLI and are now exposed to the risks of DLIs, this can be a significant risk. Therefore, the next step is to determine who is at highest risk for anastomotic leak and only selectively utilize DLIs in that patient population.

In Nurkin et al.'s retrospective database analysis, patients with low pelvic anastomosis did not demonstrate benefit from their DLI but patients with coloanal anastomosis did worse without a DLI [26]. Therefore, the authors recommended DLIs for coloanal anastomosis. Shiomi et al. conducted a prospective observational study analyzing rates of AL with or without a diverting ostomy stratified by the level of anastomosis [79]. In this study, they identified that patients had significantly more leaks if their anastomosis was < 5 cm from the anal verge. They also found that tumour size and the lack of a diverting ostomy were independently associated with risk of AL (ref). Therefore, they recommend DLI with any anastomosis < 5cm from the anal verge [79]. Zhang et al. conducted a multicenter analysis of risk factors for AL after middle or low rectal cancer resection [80]. All of their patients underwent rectal cancer resection without a diverting ostomy. Of those, 11.9% developed symptomatic class B or C AL. Of the patients that leaked, 55% required an operation [80]. They then analyzed a number of patient variables to determine which variables were associated with a higher risk of AL. The variables included: gender, age, history of diabetes, ASA classification, K-ras status of cancer, distance of tumor from anal verge $(>7 \le 10 \text{ or } \le 7 \text{ cm})$, histopathologic grade, TNM staging, tumor size (< 5cm or ≥ 5 cm), preoperative chemoradiation therapy, BMI (< 25 or \geq 25), hemoglobin level (\geq 110 or < 110), albumin level (\geq 35 or < 35), laparoscopic approach, operation time (\leq 180 mins or > 180 mins),

and blood loss (< 400mL or \geq 400mL). Of those, male gender, distance of tumor from the anal verge \leq 7 cm, preoperative chemoradiation therapy, K-ras mutation of the tumor, and diabetes mellitus were all significantly associated with a higher risk of leak. They also identified that male gender and blood loss \geq 400mL was independently associated with AL requiring re-operation [80]. These factors identified should be utilized to develop an algorithm or scoring system to determine which patients should get a DLI.

Blok et al. conducted an interesting prospective cohort comparative trial to a historical control looking at morbidity after rectal cancer surgery [81]. One group is the historic group who routinely underwent laparoscopic low anterior resection with total mesorectal excision, stapled anastomosis and a DLI. The other group of patients all underwent a transanal total mesorectal excision, stapled anastomosis with suture re-enforcement, and highly selective use of DLIs. Overall, the historic group with routine use of DLIs stayed in hospital significantly longer [6 days (IQR 5-11 days) vs. 5 days (IQR 4-6 days); p < 0.001 [81]. There was no significant difference in overall complication, surgical complication, readmission rate, or re-intervention rate [81]. When they assessed ostomy specific outcomes, 80% of the highly selective group of patients never had a DLI vs. 8% in the other group (p < 0.001). The highly selective group also had significantly less total complications related to ostomies (13% vs 49%, p < 0.001), ostomy related readmissions (15% vs 84%, p < 0.001), and ostomy related reoperations (15% vs. 86%, p < 0.001) [81]. This study is not perfect – the patient cohorts had different types of surgeries, despite being similar demographically. However, it did demonstrate that patients' post-operative morbidity was not higher without a DLI and thus, highly selective use of DLIs is feasible.

4.8 Alternatives to defunctioning ileostomies

Other alternatives to a diverting ileostomy have been described in the literature. Two techniques described include the ghost ileostomy (GI) and endoluminal trans-anastomotic tube [82-86]. Ghost ileostomies have been previously described but are not currently a widely accepted practice. A GI is when a silastic band is placed around a loop of terminal ileum and the band is brought up through the abdominal wall and secured at the level of the skin (Figure 5) [82]. This allows surgeons the opportunity to mature a loop ileostomy locally, without having to perform a laparotomy if needed; but if no ileostomy is required, the silastic band can easily be removed, akin to removing a surgical drain [82]. In a study conducted by Miccini et al., when they described this technique, 11% of their cohort had their GI converted to a loop ileostomy due to diagnosis of anastomotic leak [82]. They reported no complications related to the GI and that maturing the ostomy was easy and safe [82]. Mori et al. conducted a retrospective cohort study evaluating the outcomes of using the technique of GIs and identified 168 patients that underwent total mesorectal excision (TME) with GI [83]. Twenty patients developed anastomotic leaks. In 13 of those patients, an ileostomy was fashioned under local anesthesia without the need for relaparotomy [83]. The ileostomy led to resolution of the clinical signs of infection and closure of the anastomotic dehiscence. The only complication identified was that one patient had twisting of the ileal loop around the mesentery, resulting in bowel occlusion requiring reoperation [83]. Of the 168 patients that had a GI, 53 (91.2%) did not end up having an ileostomy. The authors of this study concluded that GIs, along with a highly selective stoma policy, would be a safe option for patients with low pelvic anastomoses [83].

Figure 5. Ghost ileostomy

The second, less invasive, technique that has been described in the literature is leaving an endoluminal transanal tube in situ above the anastomosis after surgery [84-86]. Xiao et al. conducted a single institution RCT of patients undergoing low anterior resection for biopsy proven rectal cancer [84]. Patients were randomized to endoluminal tube (sutured in place and left for 5-7 days post-operatively) or no tube [84]. The primary outcome of interest was symptomatic AL. They found that patients in the endoluminal tube group had significantly fewer ALs as compared to patients in the control group (4.0% vs 9.6%, p = 0.026) [84]. Two other retrospective cohort studies have analyzed the efficacy of endoluminal transanal tubes [85,86]. In Hidaka et al.'s retrospective cohort study, 4.2% versus 13.8% of patients with and without a transanal tube had an AL, respectively (p < 0.05) [85]. Furthermore, the reoperation rate for symptomatic AL was 0% in the intervention group and 73.3% in the control group (p < 0.05) [85]. Yang's study did not demonstrate a significant difference between the rates of AL (9.8% vs

11.8%, p = 0.652), however, patients in the transanal tube group were significantly less likely to require reoperation for AL (2.9% vs 11.8%, p = 0.016) [86]. These studies suggest that a transanal rectal tube left in situ after low anterior resection is associated with decreased risk of reoperation for AL and may potentially decrease the overall risk of AL [84-86].

A third consideration, although not widely described and may be controversial, is to take a page from history and consider putting high risk patients on bowel rest and parenteral nutrition postoperatively. This was widely practiced historically with bowel resections before the advent of enhanced recovery after surgery (ERAS). Patients will be in hospital longer on index admission but would avoid the morbidities of a DLI as well as a second surgery of ileostomy reversal. Currently, there is no evidence for this proposed method but it would be an interesting option to explore.

Although the ghost ileostomy and transanal rectal tube approaches have not gained wide-spread popularity amongst surgeons, existing studies demonstrate promising results. Further investigations with Level I evidence should be pursued.

4.7 Limitations

As previously discussed, there was heterogeneity in the patient cohort, especially in the nonrectal cancer subgroup, which limits the definitive conclusions that can be made from the comparative analysis. One of other biggest limitations of this study was the inability to detect ALs. Until recently, there was no specific code for AL. Therefore, documentation of AL in these administrative databases was not accurate. Attempts were made at combining different codes, such as the code of wound infection with percutaneous drainage or the code for wound infection combined with reoperation, but the results did not make clinical sense. This is the disadvantage of the administrative databases used for this study. A similar study conducted by Jafari et al. using the NSQIP database also could not report on anastomotic leak outcomes [31]. There was only one other retrospective database cohort study that was able to assess anastomotic leak and it was based on a prospectively maintained database in Japan [87]. Anastomotic leak is one of the most relevant clinical outcome measures when it comes to DLIs and not being able to accurately analyze its relationship to DLIs was a big limitation of this study.

Confounding by indication was a limitation of this retrospective study. Although we tried to control for multiple factors that may influence our outcomes, we still could not account for every single variable. For example, one important piece of information that we could not gather was the location of tumor in rectal cancer patients. There is strong evidence suggesting that low tumors and low anastomosis benefit from DLIs [10,26]. Therefore, surgeons would perform DLIs in patients with lower tumors. This inherently could have contributed to more morbidity outcomes that we could not adjust for.

At the onset of cohort identification, we set exclusion criteria that did exclude a number of patients from the overall cohort in an effort to decrease heterogeneity. A total of 6,675 patients met exclusion criteria and was eliminated from the patient cohort. Their missing data could have

confounded and added heterogeneity to the cohort but we also lost some information from these patients by excluding them.

Finally, majority of the codes used in the study were not validated. The codes chosen by the research group may not have been the most accurate codes to use, but majority of the outcomes assessed did not have associated validated codes. In situations where there were validated codes, such as with acute kidney injury, the validated codes were used.

4.8 Current recommendations & future directions

Currently, there are no defined guidelines on when it is appropriate to give patients a DLI. Textbooks provide little guidance and quote basic indications of DLIs as to divert the colon, to evacuate stool if the colon has been removed, or to relieve bowel obstruction [88]. However, little guidance is provided as to when it is appropriate to divert the colon, especially knowing that DLIs are not benign entities. In 2015, the American Society of Colorectal Surgeons (ASCRS) has a clinical guideline for ostomy surgery [89]. The guidelines recognize that there is significant morbidity associated with ostomies and provides evidence-based recommendations on how to fashion an ostomy to decrease morbidity. However, again, they do not provide any guidance on when it is appropriate to give a patient a DLI.

This current study has identified a benefit of DLIs in the rectal cancer patients with lower rates of reoperation and decreased mortality. As discussed, this likely correlates with previous studies demonstrating that DLIs are associated with decreased risk of clinically significant anastomotic leaks. This benefit, however, was not seen in the non-rectal cancer group. Other considerations should be taken into account such as history of radiation therapy, level of tumor, and other patient baseline characteristics. It would be beneficial if surgical societies collated all available information on DLIs to produce a set of guidelines and criteria to assist surgeons in the decision making as to whether or not to give their patients a DLI.

There have been alternatives to long-term ileostomies that can be explored further. Some of these include early ileostomy reversal, ghost ileostomies (GI), and endoluminal trans-anastomotic tubes. There is evidence in the current literature demonstrating potential in these alternative techniques. These should be explored further in both clinical practice and clinical research.

Chapter V: Conclusion

A large population, real-life, retrospective patient cohort study was conducted to analyze the aggregate morbidity associated with defunctioning loop ileostomies. The only benefit seen associated with DLIs was a decrease in the risk of perioperative reoperation, 90-day mortality, and 1-year mortality in rectal cancer patients. There were significant complications associated with DLIs, including longer hospital length of stay and increased risk of major complication, acute kidney injury requiring hospitalization, hospital readmission, ventral hernia, and bowel obstruction, as well as a 13% permanent ostomy rate. There is certainly a role for DLIs to decrease risk of significant anastomotic leak requiring intervention and/or operation; however, DLIs are not benign entities. Based on the results of this study, it can be argued that highly selective utilization of DLIs should be recommended. We also observed an increasing trend of DLI utilization in the general surgery community. This trend should be questioned and scrutinized. Other factors should also be taken into consideration, such as patient comorbidities, age, and technical challenges during surgery.

What should be defined as "low" enough to quality for DLI warrants further investigation. It would also be beneficial if surgical societies collated information from all available evidence to come up with a guideline and possibly even a scoring system to guide surgeons in their clinical decision making.

62

References

- 1. Turnbull RB, Hawk WA, Weakley FL. Surgical treatment of toxic megacolon. Ileostomy and colostomy to prepare patients for colectomy. Am J Surg 1971; 122(3):325-31.
- Gastinger I, Marusch F, Steinert R et al. Protective defunctioning stoma in low anterior resection for rectal carcinoma. Br J Surg 2005; 92:1137-42.
- Mrak K, Uranitsch S, Pedross F, et al. Colon/Rectum: Diverting ileostomy versus no diversion after low anterior resection for rectal cancer: A prospective, randomized, multicenter trial. Surgery. 2016; 159:1129-39.
- 4. Leester B, Asztalos I, Polnyib C. Septic complications after low anterior rectal resection– is diverting stoma still justified? Acta Chir Iugosol 2002; 49(2):67-71.
- 5. Karanjia ND, Corder AP, Bern P et al. Leakage from stapled low anastomosis after total mesorectal excision for carcinoma of the rectum. Br J Surg 1994; 81:1224-6.
- 6. Rullier E, Laruent C, Garrelon JL et al. Risk factors for anastomotic leakage after resection of rectal cancer. Br J Surg 1998; 85:355-8.
- Chow A. The morbidity surrounding reversal of defunctioning ileostomies: a systematic review of 48 studies including 6,107 cases. Int J Colorectal Dis 2009; 24:711-23.
- 8. Coros MF, Sorlea S, Hintea A et al. Indications of a defunctioning stoma in colorectal anastomosis Our experience and review of the literature. Chir 2016; 111(2):122-8.
- Anderin K, Gustafsson UO, Thorell A et al. The effect of diverting stoma on long-term morbidity and risk for permanent stoma after low anterior resection for rectal cancer. Eur J Surg Oncol 2016; 42(6):788-93.
- Hanna M, Hanna MH, Vinci A, Pigazzi A. Diverting ileostomy in colorectal surgery: when is it necessary? Langenbecks Arch Surg 2015; 400:125-52.

- Weston-petrides GK, Lovegrove RE, Tilney HS et al. Comparison of outcomes after restorative proctocolectomy with or without defunctioning ileostomy. Arch Surg 2008; 143(4):406-12.
- 12. Gunnarsson U, Karlbom U, Docker M, et al. Proctocolectomy and pelvic pouch: is a diverting stoma dangerous for the patient? Colorectal Dis 2004; 6(1):23-27.
- Bruce J, Krukowski ZH, Al-Khairy G et al. Systematic review of the definition and measurement of anastomotic leak after gastrointestinal surgery. Br J Surg 2001; 88(9):1157-68.
- Rahbari NN, Weitz J, Hohenberger W, et al. Definition and grading of anastomotic leakage following anterior resection of the rectum: a proposal by the International Study Group of Rectal Cancer. Surgery 2010; 147(3):339-51.
- Montedori A, Cirocchi R, Farinella E et al. Covering ileo- or colostomy in anterior resection for rectal carcinoma. Cochrane Database of Syst Rev 2010; doi:10.1002/14651858.CD006878.pub2.
- 16. Bell SW, Walker KG, Rickard MJFX et al. Anastomotic leakage after curative anterior resection results in a higher prevalence of local recurrence. Br J Surg 2003; 90:1261-66.
- Boccola MA, Buettner PG, Rozen WM, Siu SK, Stevenson ARL. Risk factors and outcomes for anastomotic leakage in colorectal surgery: a single-institution analysis of 1576 patients. World J Surg 2011; 35:186-95.
- Lu ZR, Rajendran N, Lynch AC et al. Anastomotic leaks after restorative resections for rectal cancer compromise cancer outcomes and survival. Dis Colon Rectum 2016; 59(3):236-44.

- Mirnezami A, Mirnezami R, Chandrakumaran K et al. Increased local recurrence and reduced survival from colorectal cancer following anastomotic leak. Ann Surg 201; 253(5):890-9.
- Matthiessen P, Hallböök O, Rutegård J, et al. Defunctioning stoma reduces symptomatic anastomotic leakage after low anterior resection of the rectum for cancer. Ann Surg 2007; 246(2):207-14.
- Law W, Chu K, Ho JWC. Risk Factors for Anastomotic Leakage after Low Anterior Resection with Total Mesorectal Excision. Am J Surg 2000; 179:92-6.
- 22. Marusch F, Koch A, Schmidt U et al. Value of a protective stoma in low anterior resections for rectal cancer. Dis Colon Rectum 2002; 45(9):1164-71.
- Maroney S, Chavez de Paz C, Duldulao M et al. Complications of diverting ileostomy after low anterior resection for rectal carcinoma. Am Surg 2014; 82:1033-8.
- Wong NY and Eu KW. A defunctioning ileostomy does not prevent clinical anastomotic leak after a low anterior resection: a prospective, comparative study. Dis Colon Rectum 2004; 48: 2076-9.
- 25. Ihnát P, GunKová P, Peteja M et al. Diverting ileostomy in laparoscopic rectal cancer surgery: high price of protection. Surg Endosc 2016; 30(11):4809-16.
- 26. Nurkin S, Kakarla VR, Ruiz DE et al. The role of faecal diversion in low rectal cancer: a review of 1791 patients having rectal resection with anastomosis for cancer, with and without a proximal stoma. Colorec Dis 2013; 15(6):309-16.
- Platell C, Barwood N, Makin G. Clinical utility of a de-functioing loop ileostomy. ANZ J Surg 2005; 75: 147-51.

- 28. Kanellos I, Zacharakis E, Christoforidis E et al. Low anterior resection without defunctioning stoma. Tech Coloproctol 2002; 6:153-7.
- 29. Åkesson O, Syk I, Lindmark G, Buchwald P. Morbidity related to defunctioning loop ileostomy in low anterior resection. Int J Colorectal Dis 2012; 27(12):1619-23.
- 30. Paquette IM, Solan P, Rafferty JF et al. Readmission for dehydration or renal failure after ileostomy creation. Dis Colon Rectum. 2013; 56(8):974-9.
- Jafari MD, Halabi WJ, Jafari F et al. Morbidity of diverting ileostomy for rectal cancer: analysis of the American College of Surgeons National Surgical Quality Improvement Program. Am Surg. 2013; 79(10):1034-9.
- 32. Messaris E, Connelly TM, Kulaylat AN et al. Is a diverting ostomy needed in mid-high rectal cancer patients undergoing a low anterior resection after neoadjuvant chemoradiation? An NSQIP analysis. Surgery 2012; 158(3):686-91.
- Robertson I, Leung E, Hughes D et al. Prospective analysis of stoma-related complications.
 Colorectal Dis 2005; 7(3):279-85.
- 34. Phatak, UR, Kao LS, You YN et al. The impact of ileostomy-related complications on the multidisciplinary treatment of rectal cancer. Ann Surg Onc 2014; 21(2):507-12.
- Nastro P, Knowles CH, McGrath A et al. Complications of intestinal stomas. Br J Surg 2010; 97(12):1885-9.
- 36. Gessler B, Haglind E, Angenete E. Loop ileostomies in colorectal cancer patientsmorbidity and risk factors for nonreversal. J Surg Res 2012; 178(2):708-14.
- Hallböök O, Matthiessen P, Leinsköld T et al. Safety of the temporary loop ileostomy.
 Colorectal Dis 2002; 4(5):361-4.

- Man VCM, Choi HK, Law WL et al. Morbidities after closure of ileostomy: analysis of risk factors. Int J Colorectal Dis 2016; 31:51-7.
- Poskus E, Kildusis E, Smolskas et al. Complications after loop ileostomy closure: a retrospective analysis of 132 patients. Visz Gastrointest Med Surg 2014; 30(4):276-80.
- 40. Kim MJ, Kim YS, Park SC et al. Risk factors for permanent stoma after rectal cancer surgery with temporary ileostomy. Surg 2016; 159(3):721-7.
- 41. Tsunoda A, Tsunoda Y, Narita K et al. Quality of life after low anterior resection and temporary loop ileostomy. Dis Colon Rectum. 2008; 51(2):218-22.
- 42. Herrle F, Sandra-Petrescu F, Weiss C et al. Quality of life and timing of stoma closure in patients with rectal cancer undergoing low anterior resection with diverting stoma: a multicenter longitudinal observational study. Dis Colon Rectum 2016; 59:281-9.
- O'Leary DP, Fide CJ, Foy C, Lucarotti ME. Quality of life after low anterior resection with total mesorectal excision and temporary loop ileostomy for rectal carcinoma. Br J Surg 2001; 88:1216-20.
- 44. Neuman HB, Patil S, Fuzesi S et al. Impact of a temporary stoma on the quality of life of rectal cancer patients undergoing treatment. Ann Surg Oncol 2011; 18::1397-1403.
- 45. Taylor C, Morgan L. Quality of life following reversal of temporary stoma after rectal cancer treatment. Eur J Oncol Nurs 2011; 15(1):59-66.
- 46. Camilleri-Brennan J, Steele RJC. Prospective analysis of quality of life after reversal of a defunctioning loop ileostomy. Colorectal Dis 2002; 4(3):167-71.
- 47. The Johns Hopkins University Bloomberg School of Public Health, Health services
 Research & Development Center. The John Hopkins ACG Case-Mix System Version 6.0
 Release Notes. (Editor in Chief: Jonathan P. Weiner). The John Hopkins University 2003.

- 48. Hwang YJ, Shariff SZ, Gandhi S, et al. Validity of the International Classification of Diseases, Tenth Revision code for acute kidney injury in elderly patients at presentation to the emergency department and at hospital admission. BMJ Open 2012; 2(6):1-11
- Austin PC. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat Simul Comput 2009; 38:1228-34.
- 50. Fang J, Austin PC, Tu JV. Test for linearity between continuous explanatory and binary outcome first, run a multivariate regression analysis second. SAS Global Forum 2009. Available from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.176.485&rep=rep1&type=pdf. Accessed September 12, 2017.

- 51. Ulrich AB, Seiler C, Rahbari N, Weitz J, Büchler MW. Diverting stoma after low anterior resection: More arguments in favor. Dis Colon Rectum. 2009;52(3):412-18
- Jayarajah U, Samarasekara AMP, Samarasekera DN. A study of long-term complications associated with enteral ostomy and their contributory factors. BMC Res Notes. 2016;9(1):500.
- Sharma A, Deeb AP, Rickles AS, Iannuzzi JC, Monson JRT, Fleming FJ. Closure of defunctioning loop ileostomy is associated with considerable morbidity. Color Dis. 2013;15(4):458-62.
- 54. Hayden DM, Pinzon MCM, Francescatti AB, et al. Hospital Readmission for Fluid and Electrolyte Abnormalities Following Ileostomy Construction: Preventable or Unpredictable? J Gastrointest Surg. 2013;17(2):298-303.

- Pisarska M, Gajewska N, Małczak P, et al. Defunctioning ileostomy reduces leakage rate in rectal cancer surgery - systematic review and meta-analysis. Oncotarget. 2018;9(29):20816-25.
- Matthiessen P, Hallböök O, Rutegård J, Sjödahl R. Population-based study of risk factors for postoperative death after anterior resection of the rectum. Br J Surg. 2006;93(4):498-503.
- Huser, Martin G, Dupré A, et al. Systematic Review and Meta-Analysis of the Role of Defunctioning Stoma in Low Rectal Cancer Surgery. J Chir Viscerale. 2015;152(1):4-10.
- Chun LJ, Haigh PI, Tam MS, Abbas MA. Defunctioning loop ileostomy for pelvic anastomoses: Predictors of morbidity and nonclosure. Dis Colon Rectum. 2012;55(2):167-74.
- Holmgren K, Kverneng Hultberg D, Haapamäki MM, Matthiessen P, Rutegård J, Rutegård M. High stoma prevalence and stoma reversal complications following anterior resection for rectal cancer: a population-based multicentre study. Color Dis. 2017;19(12):1067-75.
- Abudeeb H, Hammad A, Ugwu A, et al. Defunctioning stoma- a prognosticator for leaks in low rectal restorative cancer resection: A retrospective analysis of stoma database. Ann Med Surg. 2017;21:114-17.
- 61. O'Connor ME, Kirwan CJ, Pearse RM, et al. Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med 2015; 42(4):521-30.
- Harel Z, Bell Cm, Dixon SN, et al. Predictors of progression to chronic dialysis in survivors of severe acute kidney injury: a completing risk study. BMC Nephrol 2014; 15(114): doi: 10.1186/1471/-2369-15-114.

- 63. Gawlick U & Nirula R. Resection and primary anastomosis with proximal diversion instead of Hartmann's: evolving the management of diverticulitis using NSQIP data. J Trauma 2011; 72(4):807-14.
- 64. Vermeulen J, Lange JF. Treatment of perforated diverticulitis with generalized peritonitis: past, present, and future. World J Surg 2010; 34:587-93.
- 65. Constantinides VA, Heriot A, Remzi F, et al. Operative strategies for diverticular peritonitis: a decision analysis between primary resection and anastomosis versus Hartmann's procedures. Ann Surg 2007; 245:94-103.
- Salem L, Anaya DA, Flum DR. Temporal changes in the management of diverticulitis. J Surg Res 2005; 124: 318-23.
- 67. Salem L, Flum DR. Primary anastomosis or Hartmann's procedure for patients with diverticular peritonitis? A systematic review. Dis Colon Rectum 2004; 47:1953-64.
- Sier MF, van Gelder L, Ubbink DT, Bemelman WA, Oostenbroek RJ. Factors affecting timing of closure and non-reversal of temporary ileostomies. Int J Colorectal Dis 2015;30(9):1185-92.
- 69. Lindgren R, Hallböök O, Rutegård J, Sjödahl R, Matthiessen P. What is the risk for a permanent stoma after low anterior resection of the rectum for cancer? A six-year followup of a multicenter trial. Dis Colon Rectum 2011;54(1):41-7.
- Glotzer DJ, Glick ME, Goldman H. Proctitis and colitis following diversion of the fecal stream. Gastroenterology 1981;80(3): 438-41.
- Kabir SI, Kabir SA, Richards R, Ahmed J, MacFie J. Pathophysiology, clinical presentation and management of diversion colitis: a review of current literature. Int J Surg 2014;12: 1088-92.

- Koutroubakis IE. Spectrum of non-inflammatory bowel disease and non-infectious colitis.World J Gastroenterol 2008;14(18): 7277-9.
- 73. Edwards CM, George B, Warren B. Diversion colitis new light through old windows.
 Histopathology 1999; 34:1-5.
- 74. Roediger WEW. The starved colon diminished mucosal nutrition, diminished absorption, and colitis. Dis Colon Rectum 1990; 33:858-62.
- 75. Mortensen PB, Clausen MR. Short chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol 1996; 31:132-48.
- 76. Lasithiotakis K, Aghahoseini A, Alexander D. Is Early Reversal of Defunctioning Ileostomy a Shorter, Easier and Less Expensive Operation? World J Surg 2016;40(7):1737-40.
- 77. Farag S, Rehman S, Sains P, Baig MK, Sajid MS. Early vs delayed closure of loop defunctioning ileostomy in patients undergoing distal colorectal resections: an integrated systematic review and meta-analysis of published randomized controlled trials. Color Dis 2017;19(12):1050-7.
- Menahem B, Lubrano J, Vallois A, Alves A. Early Closure of Defunctioning Loop Ileostomy: Is It Beneficial for the Patient? A Meta-analysis. World J Surg 2018:1-8.
- 79. Shiomi A, Ito M, Saito N, et al. The indications for a diverting stoma in low anterior resection for rectal cancer: a prospective multicenter study of 222 patients from Japanese cancer centers. Colorectal Disease 2011; 13(12):1384-9.
- 80. Zhang W, Lou Z, Liu Q, et al. Multicenter analysis of risk factors for anastomotic leakage after middle and low rectal cancer resection without diverting stoma: a retrospective study of 319 consecutive patients. Int J Colorectal Dis 2017; 32:1431-7.

- Blok RD, Stam R, Westerduin E, et al. Impact of an institutional change from routine to highly selective diversion of a low anastomosis after TME for rectal cancer. Eur J Surg Onc 2018; 44:1220-5.
- Miccini M, Bonapasta S, Gregori M, et al. Ghost ileostomy: real and potential advantages. Am J Surg 2010; 200:e55-7.
- Mori L, Vita M, Razzetta F, et al. Ghost ileostomy in anterior resection for rectal carcinoma: is it worthwhile? Dis Colon Rectum 2013; 56:29-34.
- 84. Xiao L, Zhang WB, Jiang PC, et al. Can transanal tube placement after anterior resection for rectal carcinoma reduce anastomotic leakage rate? A single-institution prospective randomized study. World J Surg 2011; 35(6):1367-77.
- 85. Hidaka E, Ishida F, Mukai S, et al. Efficacy of transanal tube for prevention of anastomotic leakage following laparoscopic low anterior resection for rectal cancers: a retrospective cohort study in a single institution. Surg Endosc 2015; 29(4):863-7.
- 86. Yang CS, Choi GS, Park JS, et al. Rectal tube drainage reduces major anastomotic leakage after minimally invasive rectal cancer surgery. Colorectal Dis 2016; 18(12):O445-42.
- Eto, M. U, M. K, et al. Standardization of surgical procedures to reduce risk of anastomotic leakage, reoperation, and surgical site infection in colorectal cancer surgery. J Am Coll Surg. 2017;225(4 Supplement 2):e70-1.
- 88. Kabir, S. Indications & complications of intestinal stomas. Core Surg J 2014; 1:12-9.
- Hendren S, Hammond K, Glasgow SC, et al. Clinical practice guidelines for ostomy surgery. Dis Colon Rectum 2015; 58:375-87.

Appendix A

Appendix A Codes for low anterior resection, ileostomy, and ileostomy reversal

Codes for anterior resection

type	code	Fee Code Description	
FEECODE	S171	INTESTINE-EXC-LT.HEMICOLECTOMY WITH ANT.RESECT/ANAST. ETC.	
		RECTUM-EXCPROCTECTOMY-ANTERIOR	
	S213	RESECT./PROCTOSIGMOIDECTOMY	

NCODE	11127751	Bypass with exteriorization, small intestine endoscopic [laparoscopic] approach end
INCODE	1NK77EN	enterostomy (e.g. terminal, end or loop ileostomy)
	1NK77RR	Bypass with exteriorization, small intestine open approach end enterostomy (e.g. terminal end or loop ileostomy)
	1NK77RRXXG	Bypass with exteriorization, small intestine open approach continent ileostomy using pedicled flap
	1NM87DE	Excision partial, large intestine endoscopic [laparoscopic, laparoscopic-assisted, hand-assisted] approach colorectal anastomosis technique
	1NM87DF	Excision partial, large intestine endoscopic [laparoscopic, laparoscopic-assisted, hand- assisted] approach colocolostomy anastomosis technique
	1NM87RD	Excision partial, large intestine open approach Colorectal anastomosis technique
	1NM87RN	Excision partial, large intestine open approach Colocolostomy anastomosis technique
	1NQ87DA	Excision partial, rectum endoscopic [laparoscopic, laparoscopic-assisted, hand-assisted] approach closure by apposition technique [e.g. suturing, stapling] or no closure required (for tissue regenerat
	1NQ87DE	Excision partial, rectum endoscopic [laparoscopic, laparoscopic-assisted, hand-assisted] approach colorectal anastomosis technique
	1NQ87DF	Excision partial, rectum endoscopic [laparoscopic] approach colorectal anastomosis technique
	1NQ87DX	Excision partial, rectum endoscopic [laparoscopic, laparoscopic-assisted, hand-assisted] approach stoma formation with distal closure
	1NQ87LA	Excision partial, rectum open abdominal [e.g. anterior] approach closure by apposition technique [e.g. suturing, stapling] or no closure required (for tissue regeneration)
	1NQ87RD	Excision partial, rectum open abdominal [e.g. anterior] approach colorectal anastomosis technique
	1NQ87TF	Excision partial, rectum open abdominal approach [e.g. anterior] stoma formation with distal closure
	1NQ89KZ	Excision total, rectum abdominoperineal approach coloanal anastomosis technique
	1NQ89KZXXG	Excision total, rectum abdominoperineal approach pouch formation
	1NQ89SF	Excision total, rectum abdominal [anterior] approach coloanal anastomosis technique
	1NQ89SFXXG	Excision total, rectum abdominal [anterior] approach pouch formation

PRCODE	6051	ANTERIOR RESECTION WITH CONCOMITANT COLOSTOMY	
	6052	OTHER ANTERIOR RESECTION	
	6053	POSTERIOR RESECTION	
	6054	DUHAMEL RESECTION	
	6055	HARTMANN RESECTION	
	6059	OTHER RESECTION OF RECTUM NEC	

Code for ileostomy

type	code	Fee Code Description
FEECODE	S149	INTESTINE-INCENTEROTOMY-ILEOSTOMY

Codes for ileostomy reversal

type	code	Fee Code Description	
		INTESTINE-SUT/CLOSURE-COLOSTOMY/ENTEROSTOMY-W/OUT	
FEECODE	S185	RESEC/ANAS	

INCODE	1NK82DP	Reattachment, small intestine endoscopic [laparoscopic] approach of enteroenterostomy [diversionary]
	1NK82EN	Reattachment, small intestine endoscopic [laparoscopic] approach of ileostomy
	1NK82RF	Reattachment, small intestine open approach of enteroenterostomy [diversionary]
	1NK82RR	Reattachment, small intestine open approach of ileostomy

PRCODE	5851	CLOSURE OF INTESTINAL STOMA, UNQUALIFIED
	5852	CLOSURE OF STOMA OF SMALL INTESTINE

Appendix B

Variable	Data Sources	Window	Reporting Detail	
Patient Variable	S			
Patient Age	RPDB	Indexdt	Mean (SD), Median (IQR)	
Patient Sex	RPDB	Indexdt	N (%) each category	
Income quintile	RPDB	Indexdt	N (%) each quintile	
Patient LHIN	RPDB	Indexdt	N (%) each category	
Rurality (rural vs. urban)	RPDB	Indexdt	N (%) rural, urban, missing	
ACG RUG	DAD/SDS/NACRS/OHIP	Indexdt – 2 years to index admdate – 1 day (18-mo lookback for NACRS)	N (%) low (RUB = 0-3), moderate (RUB = 4), high (RUB = 5)	
Rectal Cancer	OCR	From inception of data to indexdt + 90 days	N (%)	
Cancer Stage	OCR	n/a	N (%) 0, 1, 2, 3, 4	
Hx of radiotherapy	OHIP	Indexdt – 120 days to indexdt	N (%)	
Hx of chemotherapy	OHIP	Indexdt – 120 days to indexdt	N (%)	
	tution, and Surgeon Variables			
Surgical approach	DAD	Index date	N (%) open, laparoscopic	
ASA 3-to-5	OHIP	Index date	N (%) yes	
Institution teaching status (Academic vs. non-academic)	DAD/SDS		N (%) academic	
Surgeon age	IPDB	Index date	Mean (SD), Median (IQR)	
Surgeon annual anterior resection volume	OHIP	Fiscal year of the indexdt	Mean (SD), Median (IQR)	
Fiscal year	DAD/SDS	Index date	N (%) each year	

Appendix B. Definitions of patient demographics and source of information

Appendix C

Appendix C. Other Codes

type	code	description
DX10CODE	N17	Acute renal failure
	N170	Acute renal failure with tubular necrosis
	N171	Acute renal failure with acute cortical necrosis
	N172	Acute renal failure with medullary necrosis
	N178	Other acute renal failure
	N179	Acute renal failure, unspecified

5845	LOWER NEPHRON NEPHROSIS
5846	AC RENAL FAIL, CORT NECR
5847	AC REN FAIL, MEDULL NECR
5848	AC RENAL FAILURE NEC
5849	ACUTE RENAL FAILURE NOS
	5846 5847 5848

Acute renal failure codes

type	code	Fee Code Description	
FEECODE	G093	Haemodiafiltration - Contin. Init & Acute (repeatx3)	
	G095	Slow Continuous Ultra Filtration - Initial & Acute (repeat)	
	G294	ARTERIOVENOUS SLOW CONT. ULTRAFILTRATN-INIT& ACUTE	
	G295	CONT. ARTERIOVENOUS HAEMOFILTRAT'N - INIT. & AC. (MAX 3)	
	G323	D./T. PROCDIALYSIS-HAEMODIALYSIS-ACUTE, REPEAT	
	G330	D./T. PROCDIALYSIS-PERITONEAL-ACUTE (UP TO 48 HRS)	
	G331	D./T. PROCDIALYSIS-PERITONEAL-REPEAT ACUTE (UP TO 48 HRS)	
	G866	INTERMITTENT HEMODIAL AUX TREAT CTRE(PER TREAT)	
	R849	D./T. PROCDIALYSIS-HEMO-INITIAL AND ACUTE	

Dialysis codes

type	code	Fee Code Description	
		PATIENTS ASA 5 - MORIBUND PT NOT EXPECTED TO	
FEECODE	E016	LIVE	
	E017	PATIENTS ASA 4 - PATIENT WITH INCAPACITATING	
	E022	PATIENTS ASA 3	

ASA codes

		Description of this dxcode		
type	code	suffix type combination		
DX10CODE	E1020	Type 1 diabetes mellitus with incipient diabetic nephropathy		
	E10200	Type 1 diabetes mellitus with incipient diabetic nephropathy, adequately controlled with diet or oral agent		
	E10201	Type 1 diabetes mellitus with incipient diabetic nephropathy, adequately controlled with insulin		
	E10202	Type 1 diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with diet or oral agents (and insulin not used to stabilize)		
	E10203	Type 1 diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with diet or oral agents but adequately controlled with insulin		
	E10204	Type 1 diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with insulin		
	E10209	Type 1 diabetes mellitus with incipient diabetic nephropathy, level of control unspecified		
	E1021	Type 1 diabetes mellitus with established diabetic nephropathy		
	E10210	Type 1 diabetes mellitus with established diabetic nephropathy, adequately controlled with diet or oral agent		
	E10211	Type 1 diabetes mellitus with established diabetic nephropathy, adequately controlled with insulin		
	E10212	Type 1 diabetes mellitus with established diabetic nephropathy, inadequately controlled with diet or oral agents (and insulin not used to stablize)		
	E10213	Type 1 diabetes mellitus with established diabetic nephropathy, inadequately controlled with diet or oral agents but adequately controlled with insulin		
	E10214	Type 1 diabetes mellitus with established diabetic nephropathy, inadequately controlled with insulin		
	E10219	Type 1 diabetes mellitus with established diabetic nephropathy, level of control unspecified		
	E1022	Type 1 diabetes mellitus with end-stage renal disease [ESRD]		
	E10220	Type 1 diabetes mellitus with end-stage renal disease [ESRD], adequately controlled with diet or oral agents		
	E10220 Type 1 diabetes mellitus with end stage renal disease [ESRD], adequately controlled with all of o			
	E10222	Type 1 diabetes mellitus with end stage renal disease [ESRD], inadequately controlled with diet or oral agents (and insulin not used to stabilize)		
	E10223	Type 1 diabetes mellitus with end stage renal disease [ESRD], inadequately controlled with diet or oral agents but adequately controlled with insulin		
	E10224	Type 1 diabetes mellitus with end stage renal disease [ESRD], inadequately controlled with insulin		
	E10229	Type 1 diabetes mellitus with end stage renal disease [ESRD], level of control unspecified		
	E1023	Type 1 diabetes mellitus with established or advanced kidney disease		
	E1028	Type 1 diabetes mellitus with other specified kidney complication not elsewhere classified		
	E10280	Type 1 diabetes mellitus with other specified renal complication, adequately controlled with diet or oral agents		
	E10281	Type 1 diabetes mellitus with other specified renal complication, adequately controlled with insulin		
	E10282	Type 1 diabetes mellitus with other specified renal complication, inadequately controlled with diet or oral agents (and insulin not used to stabilize)		
	E10283	Type 1 diabetes mellitus with other specified renal complication, inadequately controlled with diet or oral agents but adequately controlled with insulin		
	E10284	Type 1 diabetes mellitus with other specified renal complication, inadequately controlled with insulin		
	E10289	Type 1 diabetes mellitus with other specified renal complication, level of control unspecified		
	E10290	Type 1 diabetes mellitus with renal complication unspecified, adequately controlled with diet or oral agents		
	E10291	Type 1 diabetes mellitus with renal complication unspecified, adequately controlled with insulin		
	E10292	Type 1 diabetes mellitus with renal complication unspecified, inadequately controlled with diet or oral agents (and insulin not used to stabilize)		
	E10293	Type 1 diabetes mellitus with renal complication unspecified, inadequately controlled with diet or oral agents but adequately controlled with insulin		
	E10294	Type 1 diabetes mellitus with renal complication unspecified, inadequately controlled with insulin		
	E10299	Type 1 diabetes mellitus with renal complication unspecified, level of control unspecified		
	E1120	Type 2 diabetes mellitus with incipient diabetic nephropathy		
	E11200	Type 2 diabetes mellitus with incipient diabetic nephropathy, adequately controlled with diet or oral agents		
	E11201	Type 2 diabetes mellitus with incipient diabetic nephropathy, adequately controlled with insulin		
	E11202	Type 2 diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with diet or oral agents (and insulin not used to stabilize) Type 2 diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with diet or oral agents but		
	E11203	adequately controlled with insulin		
	E11204	Type 2 diabetes mellitus with incipient diabetics nephropathy, inadequately controlled with insulin		
	E11209	Type 2 diabetes mellitus with incipient diabetics nephropathy, level of control unspecified		

E1121	Type 2 diabetes mellitus with established diabetic nephropathy
E11210	Type 2 diabetes mellitus with established diabetic nephropathy, adequately controlled with diet or oral agents
E11211	Type 2 diabetes mellitus with established diabetic nephropathy, adequately controlled with insulin
E11212	Type 2 diabetes mellitus with established diabetic nephropathy, inadequately controlled with diet or oral agents (and insulin not used to stabilize)
E11213	Type 2 diabetes mellitus with established diabetic nephropathy, inadequately controlled with diet or oral agents but adequately controlled with insulin
E11214	Type 2 diabetes mellitus with established diabetic nephropathy, inadequately controlled with insulin
E11219	Type 2 diabetes mellitus with established diabetic nephropathy, level of control unspecified
E1122	Type 2 diabetes mellitus with end-stage renal disease [ESRD]
E11220	Type 2 diabetes mellitus with end-stage renal disease [ESRD], adequately controlled with diet or oral agents
E11221	Type 2 diabetes mellitus with end-stage renal disease [ESRD], adequately controlled with insulin
E11222	Type 2 diabetes mellitus with end-stage renal disease [ESRD], inadequately controlled with diet or oral agents (and insulin not used to stabilize)
E11223	Type 2 diabetes mellitus with end-stage renal disease [ESRD], inadequately controlled with diet or oral agents bu adequately controlled with insulin
E11224	Type 2 diabetes mellitus with end-stage renal disease [ESRD], inadequately controlled with insulin
E11229	Type 2 diabetes mellitus with end-stage renal disease [ESRD] ,level of control unspecified
E1123	Type 2 diabetes mellitus with established or advanced kidney disease
E1128	Type 2 diabetes mellitus with other specified kidney complication not elsewhere classified
E11280	Type 2 diabetes mellitus with other specified renal complication, adequately controlled with diet or oral agents
E11281	Type 2 diabetes mellitus with other specified renal complication, adequately controlled with insulin
E11282	Type 2 diabetes mellitus with other specified renal complication, inadequately controlled with diet or oral agents (and insulin not used to stabilize)
E11283	Type 2 diabetes mellitus with other specified renal complication, inadequately controlled with diet or oral agents but adequately controlled with insulin
E11284	Type 2 diabetes mellitus with other specified renal complication, inadequately controlled with insulin
E11289	Type 2 diabetes mellitus with other specified renal complication, level of control unspecified
E11290	Type 2 diabetes mellitus with renal complication unspecified, adequately controlled with diet or oral agents
E11291 E11292	Type 2 diabetes mellitus with renal complication unspecified, adequately controlled with insulin Type 2 diabetes mellitus with renal complication unspecified, inadequately controlled with diet or oral agents (and insulin not used to stabilize)
E11293	Type 2 diabetes mellitus with renal complication unspecified, inadequately controlled with diet or oral agents but adequately controlled with insulin
E11294	Type 2 diabetes mellitus with renal complication unspecified, inadequately controlled with insulin
E11299	Type 2 diabetes mellitus with renal complication unspecified, level of control unspecified
E1320	Other specified diabetes mellitus with incipient diabetic nephropathy
	Other specified diabetes mellitus with incipient diabetic nephropathy, adequately controlled with diet or oral
E13200	agents
E13201	Other specified diabetes mellitus with incipient diabetic nephropathy, adequately controlled with insulin
E13202	Other specified diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with diet or oral agents (and insulin not used to stabilize) Other specified diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with diet or oral
E13203	agents but adequately controlled with insulin
E13204	Other specified diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with insulin
E13209	Other specified diabetes mellitus with incipient diabetic nephropathy, level of control unspecified
E1321	Other specified diabetes mellitus with established diabetic nephropathy
	Other specified diabetes mellitus with established diabetic nephropathy, adequately controlled with diet or oral
E13210	agents
E13211	Other specified diabetes mellitus with established diabetic nephropathy, adequately controlled with insulin Other specified diabetes mellitus with established diabetic nephropathy, inadequately controlled with diet or oral
E13212 E13213	agents (and insulin not used to stabilize) Other specified diabetes mellitus with established diabetic nephropathy, inadequately controlled with diet or oral agents but adequately controlled with insulin
	Other specified diabetes mellitus with established diabetic nephropathy, inadequately controlled with insulin
E13214	
E13219 E1322	Other specified diabetes mellitus with established diabetic nephropathy, level of control unspecified Other specified diabetes mellitus with end-stage renal disease [ESRD]
E13220	Other specified diabetes mellitus with end-stage renal disease [ESRD], adequately controlled with diet or oral agents

E13221	Other specified diabetes mellitus with end-stage renal disease [ESRD], adequately controlled with insulin
	Other specified diabetes mellitus with end-stage renal disease [ESRD], inadequately controlled with diet or oral
E13222	agents (and insulin not used to stabilize)
E13223	Other specified diabetes mellitus with end-stage renal disease [ESRD], inadequately controlled with diet or oral agents but adequately controlled with insulin
 E13224	Other specified diabetes mellitus with end-stage renal disease [ESRD], inadequately controlled with insulin
E13229	Other specified diabetes mellitus with end-stage renal disease [ESRD] ,level of control unspecified
E1323	Other specified diabetes mellitus with established or advanced kidney disease
E1328	Other specified diabetes mellitus with other specified kidney complication not elsewhere classified
F12200	Other specified diabetes mellitus with other specified renal complication, adequately controlled with diet or oral
E13280	agents
E13281	Other specified diabetes mellitus with other specified renal complication, adequately controlled with insulin Other specified diabetes mellitus with other specified renal complication, inadequately controlled with diet or oral
E13282	agents (and insulin not used to stabilize) Other specified diabetes mellitus with other specified renal complication, inadequately controlled with diet or oral
E13283	agents but adequately controlled with insulin
E13284	Other specified diabetes mellitus with other specified renal complication, inadequately controlled with insulin
E13289	Other specified diabetes mellitus with other specified renal complication, level of control unspecified
113207	Other specified diabetes mellitus with renal complication unspecified, adequately controlled with diet or oral
E13290	agents
E13291	Other specified diabetes mellitus with renal complication unspecified, adequately controlled with insulin
E13292	Other specified diabetes mellitus with renal complication unspecified, inadequately controlled with diet or oral agents (and insulin not used to stabilize)
E13293	Other specified diabetes mellitus with renal complication unspecified, inadequately controlled with diet or oral agents but adequately controlled with insulin
E13294	Other specified diabetes mellitus with renal complication unspecified, inadequately controlled with insulin
 E13299	Other specified diabetes mellitus with renal complication unspecified, level of control unspecified
E1420	Unspecified diabetes mellitus with incipient diabetic nephropathy
E14200	Unspecified diabetes mellitus with incipient diabetic nephropathy, adequately controlled with diet or oral agents
E14201	Unspecified diabetes mellitus with incipient diabetic nephropathy, adequately controlled with insulin
E14202	Unspecified diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with diet or oral agents (and insulin not used to stabilize)
E14203	Unspecified diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with diet or oral agents but adequately controlled with insulin
 E14204	Unspecified diabetes mellitus with incipient diabetic nephropathy, inadequately controlled with insulin
E14209	Unspecified diabetes mellitus with incipient diabetic nephropathy, level of control unspecified
E1421	Unspecified diabetes mellitus with established diabetic nephropathy
E14210	Unspecified diabetes mellitus with established diabetic nephropathy, adequately controlled with diet or oral agents
E14211	Unspecified diabetes mellitus with established diabetic nephropathy, adequately controlled with insulin
	Unspecified diabetes mellitus with established diabetic nephropathy, inadequately controlled with diet or oral
 E14212	agents (and insulin not used to stabilize) Unspecified diabetes mellitus with established diabetic nephropathy, inadequately controlled with diet or oral
E14213	agents but adequately controlled with insulin
E14214	Unspecified diabetes mellitus with established diabetic nephropathy, inadequately controlled with insulin
E14219	Unspecified diabetes mellitus with established diabetic nephropathy, level of control unspecified
 E1422	Unspecified diabetes mellitus with end-stage renal disease [ESRD]
 E14220	Unspecified diabetes mellitus with end-stage renal disease [ESRD], adequately controlled with diet or oral agents
 E14221	Unspecified diabetes mellitus with end-stage renal disease [ESRD], adequately controlled with insulin
 E14222	Unspecified diabetes mellitus with end-stage renal disease [ESRD], inadequately controlled with diet or oral agents (and insulin not used to stabilize)
 E14223	Unspecified diabetes mellitus with end-stage renal disease [ESRD], inadequately controlled with diet or oral agents but adequately controlled with insulin
 E14224	Unspecified diabetes mellitus with end-stage renal disease [ESRD], inadequately controlled with insulin
 E14229	Unspecified diabetes mellitus with end-stage renal disease [ESRD], level of control unspecified
E1423	Unspecified diabetes mellitus with established or advanced kidney disease
E1428	Unspecified diabetes mellitus with other specified kidney complication not elsewhere classified
E14280	Unspecified diabetes mellitus with other specified renal complication ,adequately controlled with diet or oral agents
E14281	Unspecified diabetes mellitus with other specified renal complication ,adequately controlled with insulin

	E14282	Unspecified diabetes mellitus with other specified renal complication, inadequately controlled with diet or oral agents (and insulin not used to stabilize)		
	E14283	Unspecified diabetes mellitus with other specified renal complication, inadequately controlled with diet or oral agents but adequately controlled with insulin		
	E14284	Unspecified diabetes mellitus with other specified renal complication, inadequately controlled with insulin		
	E14289	Unspecified diabetes mellitus with other specified renal complication, level of control unspecified		
	E14290	Unspecified diabetes mellitus with renal complication unspecified, adequately controlled with diet or oral agents		
	E14291	Unspecified diabetes mellitus with renal complication unspecified, adequately controlled with insulin		
	E14292	Unspecified diabetes mellitus with renal complication unspecified, inadequately controlled with diet or oral agents (and insulin not used to stabilize)		
	E14293	Unspecified diabetes mellitus with renal complication unspecified, inadequately controlled with diet or oral agents but adequately controlled with insulin		
	E14294	Unspecified diabetes mellitus with renal complication unspecified, inadequately controlled with insulin		
	E14299	Unspecified diabetes mellitus with renal complication unspecified, level of control unspecified		
	I12	Hypertensive renal disease		
	I13	Hypertensive heart and renal disease		
	N00	Acute nephritic syndrome		
	N000	Acute nephritic syndrome, minor glomerular abnormality		
	N001	Acute nephritic syndrome, focal and segmental glomerular lesions		
	N002	Acute nephritic syndrome, diffuse membranous glomerulonephritis		
	N003	Acute nephritic syndrome, diffuse mesangial proliferative glomerulonephritis		
	N004	Acute nephritic syndrome, diffuse endocapillary proliferative glomerulonephritis		
	N005	Acute nephritic syndrome, diffuse mesangiocapillary glomerulonephritis		
	N006	Acute nephritic syndrome, dense deposit disease		
	N007	Acute nephritic syndrome, diffuse crescentic glomerulonephritis		
	N008	Acute nephritic syndrome, other		
	N009	Acute nephritic syndrome, unspecified		
N01		Rapidly progressive nephritic syndrome		
	N010	Rapidly progressive nephritic syndrome, minor glomerular abnormality		
	N011	Rapidly progressive nephritic syndrome, focal and segmental glomerular lesions		
	N012	Rapidly progressive nephritic syndrome, diffuse membranous glomerulan progressive nephritic syndrome, diffuse membranous glomerulanephritis		
	N012 N013	Rapidly progressive nephritic syndrome, diffuse mesangial proliferative glomerulonephritis		
	N013	Rapidly progressive nephritic syndrome, diffuse endocapillary proliferative glomerulonephritis		
	N014	Rapidly progressive nephritic syndrome, diffuse mesangiocapillary glomerulonephritis		
		Rapidly progressive nephritic syndrome, dense deposit disease		
	N016			
	N017	Rapidly progressive nephritic syndrome, diffuse crescentic glomerulonephritis		
	N018	Rapidly progressive nephritic syndrome, other		
	N019	Rapidly progressive nephritic syndrome, unspecified		
	N02	Recurrent and persistent haematuria		
	N020	Recurrent and persistent haematuria, minor glomerular abnormality		
	N021	Recurrent and persistent haematuria, focal and segmental glomerular lesions		
	N022	Recurrent and persistent haematuria, diffuse membranous glomerulonephritis		
	N023	Recurrent and persistent haematuria, diffuse mesangial proliferative glomerulonephritis		
	N024	Recurrent and persistent haematuria, diffuse endocapillary proliferative glomerulonephritis		
	N025	Recurrent and persistent haematuria, diffuse mesangiocapillary glomerulonephritis		
	N026	Recurrent and persistent haematuria, dense deposit disease		
	N027	Recurrent and persistent haematuria, diffuse crescentic glomerulonephritis		
	N028	Recurrent and persistent haematuria, other		
	N029	Recurrent and persistent haematuria, unspecified		
	N03	Chronic nephritic syndrome		
	N030	Chronic nephritic syndrome, minor glomerular abnormality		
	N031	Chronic nephritic syndrome, focal and segmental glomerular lesions		
	N032	Chronic nephritic syndrome, diffuse membranous glomerulonephritis		

N033	Chronic nephritic syndrome, diffuse mesangial proliferative glomerulonephritis
N034	Chronic nephritic syndrome, diffuse endocapillary proliferative glomerulonephritis
N035	Chronic nephritic syndrome, diffuse mesangiocapillary glomerulonephritis
N036	Chronic nephritic syndrome, dense deposit disease
N037	Chronic nephritic syndrome, diffuse crescentic glomerulonephritis
N038	Chronic nephritic syndrome, other
N039	Chronic nephritic syndrome, unspecified
N04	Nephrotic syndrome
N040	Nephrotic syndrome, minor glomerular abnormality
N041	Nephrotic syndrome, focal and segmental glomerular lesions
N042	Nephrotic syndrome, diffuse membranous glomerulonephritis
N043	Nephrotic syndrome, diffuse mesangial proliferative glomerulonephritis
N044	Nephrotic syndrome, diffuse endocapillary proliferative glomerulonephritis
N045	Nephrotic syndrome, diffuse mesangiocapillary glomerulonephritis
N046	Nephrotic syndrome, dense deposit disease
N047	Nephrotic syndrome, diffuse crescentic glomerulonephritis
N048	Nephrotic syndrome, other
N049	Nephrotic syndrome, unspecified
N05	Unspecified nephritic syndrome
N050	Unspecified nephritic syndrome, minor glomerular abnormality
N051	Unspecified nephritic syndrome, focal and segmental glomerular lesions
N052	Unspecified nephritic syndrome, diffuse membranous glomerulonephritis
N053	Unspecified nephritic syndrome, diffuse mesangial proliferative glomerulonephritis
N054	Unspecified nephritic syndrome, diffuse endocapillary proliferative glomerulonephritis
N055	Unspecified nephritic syndrome, diffuse mesangiocapillary glomerulonephritis
N056	Unspecified nephritic syndrome, dense deposit disease
N057	Unspecified nephritic syndrome, diffuse crescentic glomerulonephritis
N058	Unspecified nephritic syndrome, other
N059	Unspecified nephritic syndrome, unspecified
N06	Isolated proteinuria with specified morphological lesion
N060	Isolated proteinuria with minor glomerular abnormality
N061	Isolated proteinuria with focal and segmental glomerular lesions
N062	Isolated proteinuria with iffuse membranous glomerulonephritis
 1	
N063 N064	Isolated proteinuria with diffuse mesangial proliferative glomerulonephritis Isolated proteinuria with diffuse endocapillary proliferative glomerulonephritis
N064 N065	Isolated proteinuria with diffuse mesangiocapillary glomerulonephritis
N066	Isolated proteinuria with dense deposit disease
N067	Isolated proteinuria with diffuse crescentic glomerulonephritis
N068	Isolated proteinuria with specified morphological lesion, other
N069	Isolated proteinuria with specified morphological lesion, unspecified
N07	Hereditary nephropathy, not elsewhere classified
N070	Hereditary nephropathy, not elsewhere classified, minor glomerular abnormality
 N071	Hereditary nephropathy, not elsewhere classified, focal and segmental glomerular lesions
N072	Hereditary nephropathy, not elsewhere classified, diffuse membranous glomerulonephritis
N073	Hereditary nephropathy, not elsewhere classified, diffuse mesangial proliferative glomerulonephritis
N074	Hereditary nephropathy, not elsewhere classified, diffuse endocapillary proliferative glomerulonephritis
N075	Hereditary nephropathy, not elsewhere classified, diffuse mesangiocapillary glomerulonephritis
N076	Hereditary nephropathy, not elsewhere classified, dense deposit disease
NIOTT	Hereditary nephropathy, not elsewhere classified, diffuse crescentic glomerulonephritis
N077	referrary nephropatry, not elsewhere elassified, unruse elescente giomeruonephrus

1	N08	Glomerular disorders in diseases classified elsewhere
	N080 Glomerular disorders in infectious and parasitic diseases classified elsewhere	
	N081	Glomerular disorders in moeplastic diseases
	N082	Glomerular disorders in blood diseases and disorders involving the immune mechanism
	N082	Glomerular disorders in blood diseases and disorders involving the initiality mechanism
	N0831	Glomerular disorders in diabetes mellitus, chronic kidney disease, stage 1
	N0832	Glomerular disorders in diabetes mellitus, chronic kidney disease, stage 1
	N0832	Glomerular disorders in diabetes mellitus, chronic kidney disease, stage 2
	N0834	Glomerular disorders in diabetes mellitus, chronic kidney disease, stage 3
	N0835	Glomerular disorders in diabetes mellitus, chronic kidney disease, stage 5
	N0833	Other glomerular disorders in diabetes mellitus
	N0839	Unspecified glomerular disorders in diabetes mellitus
	N084	Glomerular disorders in other endocrine, nutritional and metabolic diseases
	N085	Glomerular disorders in systemic connective tissue disorders
	N085 N088	Glomerular disorders in other diseases classified elsewhere
	N10 N11	Acute tubulo-interstitial nephritis Chronic tubulo-interstitial nephritis
	N110	
		Nonobstructive reflux-associated chronic pyelonephritis
	N111	Chronic obstructive pyelonephritis Other abronic tubule interstitiel penhritie
	N118	Other chronic tubulo-interstitial nephritis Chronic tubulo-interstitial nephritis, unspecified
	N119	
	N12	Tubulo-interstitial nephritis, not specified as acute or chronic
	N13	Obstructive and reflux uropathy
	N130	Hydronephrosis with ureteropelvic junction obstruction
	N131	Hydronephrosis with ureteral stricture, not elsewhere classified
	N132	Hydronephrosis with renal and ureteral calculous obstruction
	N133	Other and unspecified hydronephrosis
	N134	Hydroureter
	N135	Kinking and stricture of ureter without hydronephrosis
	N136	Pyonephrosis
	N137	Vesicoureteral-reflux-associated uropathy
	N138	Other obstructive and reflux uropathy
	N139	Obstructive and reflux uropathy, unspecified
	N14	Drug- and heavy-metal-induced tubulo-interstitial and tubular conditions
	N140	Analgesic nephropathy
	N141	Nephropathy induced by other drugs, medicaments and biological substances
	N142	Nephropathy induced by unspecified drug, medicament or biological substance
	N143	Nephropathy induced by heavy metals
	N144	Toxic nephropathy, not elsewhere classified
	N15	Other renal tubulo-interstitial diseases
	N150	Balkan nephropathy
	N151	Renal and perinephric abscess
	N158	Other specified renal tubulo-interstitial diseases
	N159	Renal tubulo-interstitial disease, unspecified
	N16	Renal tubulo-interstitial disorders in diseases classified elsewhere
	N160	Renal tubulo-interstitial disorders in infectious and parasitic diseases classified elsewhere
	N161	Renal tubulo-interstitial disorders in neoplastic diseases
	N162	Renal tubulo-interstitial disorders in blood diseases and disorders involving the immune mechanism
	N163	Renal tubulo-interstitial disorders in metabolic diseases
	N164	Renal tubulo-interstitial disorders in systemic connective tissue disorders
	N165	Renal tubulo-interstitial disorders in transplant rejection

N168	Renal tubulo-interstitial disorders in other diseases classified elsewhere	
N17	Acute renal failure	
N170	Acute renal failure with tubular necrosis	
N171	Acute renal failure with acute cortical necrosis	
N172	Acute renal failure with medullary necrosis	
N178	Other acute renal failure	
N179	Acute renal failure, unspecified	
N18	Chronic renal failure	
N180	End-stage renal disease	
N181	Chronic kidney disease, stage 1	
N182	Chronic kidney disease, stage 2	
N183	Chronic kidney disease, stage 3	
N184	Chronic kidney disease, stage 4	
N185	5 Chronic kidney disease, stage 5	
N188	Other chronic renal failure	
N189	Chronic kidney disease, unspecified	
N19	Unspecified kidney failure	
 N20	Calculus of kidney and ureter	
N200	Calculus of kidney	
N201	Calculus of ureter	
 N202	Calculus of kidney with calculus of ureter	
N209	Urinary calculus, unspecified	
N21	Calculus of lower urinary tract	
 N210	Calculus in bladder	
 N211	Calculus in urethra	
N218	Other lower urinary tract calculus	
N219	Calculus of lower urinary tract, unspecified	
N22	Calculus of urinary tract in diseases classified elsewhere	
N220	Urinary calculus in schistosomiasis [bilharziasis]	
N228	Calculus of urinary tract in other diseases classified elsewhere	
N23	Unspecified renal colic	

DXCODE	2504	DIAB RENAL MANIF ADULT		
	25040	DIAB RENAL MANIF ADULT		
	25041	DIAB RENAL MANIF JUVEN		
	4030	MAL HYPERTENS RENAL DIS NO RF		
	40300	MAL HYPERTENS RENAL DIS NO RF		
	40301	MAL HYPERTENS RENAL DISEASE W RF		
	4031	BEN HYPERTENS RENAL DISEASE NO RF		
	40310	BEN HYPERTENS RENAL DISEASE NO RF		
	40311	BEN HYPERTENS RENAL DISEASE W RF		
	4039	HYPERTENS RENAL DIS NOS NO RF		
	40390	HYPERTENS RENAL DIS NOS NO RF		
	40391	HYPERTENS RENAL DIS NOS W RF		
	4040	AAL HYPER HRT/REN DIS NO CHF/RF		
	40400	MAL HYPER HRT/REN DIS NO CHF/RF		
	40401	MAL HYPERTENS HRT/REN W CHF		
	40402	MAL HYPERTENS HRT/REN W RF		
	40403	MAL HYPER HRT/REN DIS W CHF/RF		
	4041	BEN HYPER HRT/REN DIS NO CHF/RF		
	40410	BEN HYPER HRT/REN DIS NO CHF/RF		

40411	BEN HYPERTENS HRT/REN DIS W CHF
40412	BEN HYPERTENS HRT/REN DIS W RF
40413	BEN HYPER HRT/REN DIS W CHF/RF
4049	HYPER HRT/REN DIS NOS NO CHF/RF
40490	HYPER HRT/REN DIS NOS NO CHF/RF
40491	HYPERTENS HRT/REN DIS NOS W CHF
40492	HYPERTENS HRT/REN DIS NOS W RF
40493	HYPER HRT/REN DIS NOS W CHF/RF
5830	PROLIFERAT NEPHRITIS NOS
5831	MEMBRANOUS NEPHRITIS NOS
5832	MEMBRANOPROLIF NEPHR NOS
5834	RAPIDLY PROG NEPHRIT NOS
5836	RENAL CORT NECROSIS NOS
5837	NEPHR NOS/MEDULL NECROS
5838	NEPHRITIS NOS IN OTH DIS
58381	NEPHRITIS NOS IN OTH DIS
58389	NEPHRITIS NEC
5839	NEPHRITIS NOS
5845	LOWER NEPHRON NEPHROSIS
 5846	AC RENAL FAIL, CORT NECR
 5847	AC REN FAIL, MEDULL NECR
 5848	AC RENAL FAILURE NEC
 5849	ACUTE RENAL FAILURE NOS
 585	CHRONIC RENAL FAILURE
 5850	CHRONIC RENAL FAILURE
 586	RENAL FAILURE NOS
5860	RENAL FAILURE NOS
5888	IMPAIRED RENAL FUNCT NEC
5889	IMPAIRED RENAL FUNCT NOS
5920	CALCULUS OF KIDNEY
 5921	CALCULUS OF URETER
 5929	URINARY CALCULUS NOS
5939	RENAL URETERAL DIS NOS

OHIPDX	403	Hypertensive renal disease
	585	Chronic renal failure, uremia
Chronia kidnov disaasa aadas		

Chronic kidney disease codes

type	code	description
		Excision partial, rectum endoscopic
		[laparoscopic, laparoscopic-assisted, hand-
		assisted] approach closure by apposition
		technique [e.g. suturing, stapling] or no closure
INCODE	1NQ87DA	required (for tissue regeneration)
		Excision partial, rectum endoscopic
		[laparoscopic, laparoscopic-assisted, hand-
		assisted] approach colorectal anastomosis
	1NQ87DE	technique
		Excision partial, rectum endoscopic
		[laparoscopic, laparoscopic-assisted, hand-
		assisted] approach stoma formation with distal
	1NQ87DX	closure

Laparoscopy codes

type	code	Fee Code Description
FEECODE	X310	TREATMENT PLANNING LEVEL 1
	X311	TREATMENT PLANNING LEVEL 2
	X312	TREATMENT PLANNING LEVEL 3
	X313	TREATMENT PLANNING LEVEL 4
		THERA. RADIOLRADIUM-SEALED
	X322	SOURCE-TREAT. PLANNING

Radiation therapy codes

type	code	Fee Code Description
		D./T. PROC.INJ/INF-INTRAVEN-CHEMOTHERAPY-
FEECODE	G281	EA.ADD.INJ.TO G381
		Chemotherapy - Single agent intravenous chemotherapy i.e.
		doxorubicin, daunorubicin, epirubicin, mitoxintrone, cisplatin or
	G339	bleomycin (greater than 10 units per metre square)
		D&T MULT.AGENTS CHEMOTHER.GREATER THAN 10 UNITS
	G345	PER MET.SQ.
		D&T SING.AGENT CHEMOTHER.(GREATER THAN 2G/M2 OR
	G359	1G/M2.)
		D./T. PROC. INJECT/INFUS. INTRAVENOUS
	G381	CHEMOTHERAPY-1ST INJ

Chemotherapy codes

type	code	description
DX10CODE	C20	Malignant neoplasm of rectum

Rectal cancer code

Appendix D

	Data	Window	Reporting Detail
Variable	Sources		
30-day mortality	RPDB	Indexdt to Indexdt + 30 days	N (%) yes
90-day mortality	RPDB	Indexdt to indexdt + 90 days	N (%) yes
1-year mortality	RPDB	Indexdt to indexdt + 365 days	N (%) yes
Re-operation	DAD/SDS	Index $dt + 1$ day to index $dt + 30$	N (%) yes
_	OHIP	days	
Major	DAD/OHIP	Indexdt to indexdt + 30 days	N (%) yes
complication			
Re-admission	DAD	ddate to ddate +30 days	N (%) yes
Hospital length of	DAD		Mean (SD)
stay			Median (IQR)
Acute renal	DAD	Indexdt to Indexdt + 180 days	N (%) yes
failure requiring			
hospitalization			
Ventral hernia	DAD/SDS	Indexdt to Indexdt + 180 days	N (%) yes
Bowel obstruction	DAD/SDS	Indexdt to Indexdt + 180 days	N (%) yes
Bleeding	DAD/SDS	Indexdt to Indexdt + 30 days	N (%) yes
Deep space	DAD/SDS	Indexdt + 30 days	N (%) yes
infection		Dt reversal + 30 days	N (%) yes
Parastomal hernia	DAD/SDS		
Enterocutaneous	DAD/SDS		N (%) yes
fistula			
Hospital length of			
stay			
Number of days			
spent in hospital			

Appendix D. Definition of outcomes and sources of information

Appendix E

Appendix E. Outcome codes

type	code	description
DX10CODE	N17	Acute renal failure
	N170	Acute renal failure with tubular necrosis
	N171	Acute renal failure with acute cortical necrosis
	N172	Acute renal failure with medullary necrosis
	N178	Other acute renal failure
	N179	Acute renal failure, unspecified

DXCODE	5845	LOWER NEPHRON NEPHROSIS
	5846	AC RENAL FAIL, CORT NECR
	5847	AC REN FAIL, MEDULL NECR
	5848	AC RENAL FAILURE NEC
	5849	ACUTE RENAL FAILURE NOS

Codes for acute kidney injury

type	code	Fee Code Description
FEECODE	G093	Haemodiafiltration - Contin. Init & Acute (repeatx3)
	G095	Slow Continuous Ultra Filtration - Initial & Acute (repeat)
	G294	ARTERIOVENOUS SLOW CONT. ULTRAFILTRATN-INIT& ACUTE
	G295	CONT. ARTERIOVENOUS HAEMOFILTRAT'N - INIT. & AC. (MAX 3)
	G323	D./T. PROCDIALYSIS-HAEMODIALYSIS-ACUTE, REPEAT
	G330	D./T. PROCDIALYSIS-PERITONEAL-ACUTE (UP TO 48 HRS)
	G331	D./T. PROCDIALYSIS-PERITONEAL-REPEAT ACUTE (UP TO 48 HRS)
	G866	INTERMITTENT HEMODIAL AUX TREAT CTRE(PER TREAT)
	R849	D./T. PROCDIALYSIS-HEMO-INITIAL AND ACUTE

Codes for dialysis

type	code	Fee Code Description
FEECODE	Z569	ABDOMEN PERIT/OMEN-I&D.PELVIS ABSC. RECTAL VAGINAL APPROACH
	Z594	PERCUT.ABD.ABSCESS DRAINAGE INC.DAILY SUPERV'N
	Z595	ABDOMEN/PERIT/OMEN.REPLACE DRAIN CATHETER IN ABDO.ABSCESS

INCODE	10T52DA	Drainage, abdominal cavity using endoscopic (laparoscopic) approach
	10T52DATS	Drainage, abdominal cavity using endoscopic (laparoscopic) approach and leaving drainage tube in situ
	10T52HA	Drainage, abdominal cavity using percutaneous (needle) approach
	10T52HATS	Drainage, abdominal cavity using percutaneous (needle) approach and leaving drainage tube in situ
	1OT52HHD1	Drainage, abdominal cavity using percutaneous transcatheter approach and anti infective irrigating solution
	1OT52HHD2	Drainage, abdominal cavity using percutaneous transcatheter approach and salt irrigating solution
	1OT52HHD3	Drainage, abdominal cavity using percutaneous transcatheter approach and other irrigating solution
	10T52LA	Drainage, abdominal cavity using open approach
	10T52LATS	Drainage, abdominal cavity using open (incisional) approach and leaving drainage tube in situ
	10T52MFQJ	Drainage, abdominal cavity using open approach with shunt terminating in circulatory system and pump NEC
	10T52MFSJ	Drainage, abdominal cavity using open approach with shunt terminating in circulatory system [e.g. LeVeen Shunt, Denver Shunt]

Codes for percutaneous drainage

type	code	description
DX10CODE	T813	Disruption of operation wound, not elsewhere classified
	T814	Infection following a procedure, not elsewhere classified
	T8183	

INCODE	10T52CQ	Drainage, abdominal cavity using per orifice [transvaginal] needle aspiration technique
	10T52DA	Drainage, abdominal cavity using endoscopic (laparoscopic) approach
	10T52DATS	Drainage, abdominal cavity using endoscopic (laparoscopic) approach and leaving drainage tube in situ
	10T52HA	Drainage, abdominal cavity using percutaneous (needle) approach
	10T52HATS	Drainage, abdominal cavity using percutaneous (needle) approach and leaving drainage tube in situ
	1OT52HHD1	Drainage, abdominal cavity using percutaneous transcatheter approach and anti infective irrigating solution
	1OT52HHD2	Drainage, abdominal cavity using percutaneous transcatheter approach and salt irrigating solution
	1OT52HHD3	Drainage, abdominal cavity using percutaneous transcatheter approach and other irrigating solution
	10T52LA	Drainage, abdominal cavity using open approach
	10T52LATS	Drainage, abdominal cavity using open (incisional) approach and leaving drainage tube in situ
	1OT52MFQJ	Drainage, abdominal cavity using open approach with shunt terminating in circulatory system and pump NEC
	1OT52MFSJ	Drainage, abdominal cavity using open approach with shunt terminating in circulatory system [e.g. LeVeen Shunt, Denver Shunt]

Codes for deep space infection

type	code	description
DX10CODE	K433	Parastomal hernia with obstruction, without gangrene
	K434	Parastomal hernia with gangrene
	K435	Parastomal hernia without obstruction or gangrene
Codes for parastomal hernia		

Codes for parastomal hernia

type	code	Fee Code Description
DX10CODE	A410	Sepsis due to Staphylococcus aureus
	A411	Sepsis due to other specified staphylococcus
	A412	Sepsis due to unspecified staphylococcus
	A413	Sepsis due to Haemophilus influenzae
	A414	Sepsis due to anaerobes
	A4150	Sepsis due to Escherichia coli [E.coli]
	A4151	Sepsis due to Pseudomonas
	A4152	Sepsis due to Serratia
	A4158	Sepsis due to other Gram-negative organisms
	A4159	Gram-negative septicaemia, unspecified
	A4180	Sepsis due to Enterococcus
	A4188	Other specified sepsis
	A419	Sepsis, unspecified
	G450	Vertebro-basilar artery syndrome
	G451	Carotid artery syndrome (hemispheric)
	G452	Multiple and bilateral precerebral artery syndromes
	G453	Amaurosis fugax
	G454	Transient global amnesia
	G458	Other transient cerebral ischaemic attacks and related syndromes
	G459	Transient cerebral ischaemic attack, unspecified
	H341	Central retinal artery occlusion
	I210	Acute transmural myocardial infarction of anterior wall
	I210 I211	Acute transmural myocardial infarction of inferior wall
	I212	Acute transmural myocardial infarction of other sites
	I212	Acute transmural myocardial infarction of unspecified site
	I213 I214	Acute subendocardial myocardial infarction
	I2140	Acute subendocardial myocardial infarction of anterior wall
	I2140 I2141	Acute subendocardial myocardial infarction of inferior wall
	I2141 I2142	Acute subendocardial myocardial infarction of other sites
	I2142 I2149	Acute subendocardial myocardial infarction of other sites
	I2149 I219	Acute subendocardial infarction, unspecified
	I219 I220	Subsequent myocardial infarction of anterior wall
	I220 I221	Subsequent myocardial infarction of inferior wall
	I221 I228	Subsequent myocardial infarction of other sites
	1228 1229	Subsequent myocardial infarction of unspecified site
	1227	Haemopericardium as current complication following acute myocardial
	I230	infarction
	1021	Atrial septal defect as current complication following acute myocardial
	I231	infarction Ventricular septal defect as current complication following acute
	1232	myocardial infarction
	1000	Rupture of cardiac wall without haemopericardium as current
	I233	complication following acute myocardial infarction

1234	Rupture of chordae tendineae as current complication following acute myocardial infarction
1234	Rupture of papillary muscle as current complication following acute
1235	myocardial infarction
1236	Thrombosis of atrium, auricular appendage, and ventricle as current complications following acute myocardial infarction
12380	Papillary muscle dysfunction as current complication following acute myocardial infarction
I2381	Pericarditis as current complication following acute myocardial infarction
12382	Postmyocardial infarction angina as current complication following acute myocardial infarction
12388	Other current complications following acute myocardial infarction
12389	Current complications following acute myocardial infarction, unspecified
126	Pulmonary embolism
1260	Pulmonary embolism with mention of acute cor pulmonale
1269	Pulmonary embolism without mention of acute cor pulmonale
I460	Cardiac arrest with successful resuscitation
I461	Sudden cardiac death, so described
I469	Cardiac arrest, unspecified
I4800	Paroxysmal atrial fibrillation
I4801	Persistent atrial fibrillation
I481	Atrial flutter
I483	Typical atrial flutter
I484	Atypical atrial flutter
I4890	Atrial fibrillation, unspecified
I4891	Atrial flutter, unspecified
1600	Subarachnoid haemorrhage from carotid siphon and bifurcation
I601	Subarachnoid haemorrhage from middle cerebral artery
1602	Subarachnoid haemorrhage from anterior communicating artery
I603	Subarachnoid haemorrhage from posterior communicating artery
I604	Subarachnoid haemorrhage from basilar artery
1605	Subarachnoid haemorrhage from vertebral artery
1606	Subarachnoid haemorrhage from other intracranial arteries
1607	Subarachnoid haemorrhage from intracranial artery, unspecified
1608	Other subarachnoid haemorrhage
1609	Subarachnoid haemorrhage, unspecified
I610	Intracerebral haemorrhage in hemisphere, subcortical
I611	Intracerebral haemorrhage in hemisphere, cortical
I612	Intracerebral haemorrhage in hemisphere, unspecified
I612	Intracerebral haemorrhage in brain stem
I614	Intracerebral haemorrhage in creebellum
I614	Intracerebral haemorrhage, intraventricular
I616	Intracerebral haemorrhage, multiple localized
I618	Other intracerebral haemorrhage
I619	Intracerebral haemorrhage, unspecified
I630	Cerebral infarction due to thrombosis of precerebral arteries
I631	Cerebral infarction due to embolism of precerebral arteries
I631	Cerebral infarction due to unspecified occlusion or stenosis of precerebral arteries
I633	Cerebral infarction due to thrombosis of cerebral arteries
1634	Cerebral infarction due to embolism of cerebral arteries
1037	Cerebral infarction due to enfootism of cerebral arteries Cerebral infarction due to unspecified occlusion or stenosis of cerebral
1635	arteries
I636	Cerebral infarction due to cerebral venous thrombosis, nonpyogenic
I638	Other cerebral infarction

I639	Cerebral infarction, unspecified
I64	Stroke, not specified as haemorrhage or infarction
I801	Phlebitis and thrombophlebitis of femoral vein
1802	Phlebitis and thrombophlebitis of other deep vessels of lower extremities
1803	Phlebitis and thrombophlebitis of lower extremities, unspecified
1822	Embolism and thrombosis of vena cava
1828	Embolism and thrombosis of other specified veins
J120	Adenoviral pneumonia
J121	Respiratory syncytial virus pneumonia
J122	Parainfluenza virus pneumonia
J123	Human metapneumovirus pneumonia
J128	Other viral pneumonia
J129	Viral pneumonia, unspecified
J13	Pneumonia due to Streptococcus pneumoniae
J14	Pneumonia due to Bueptooeeus pheumoniae Pneumonia due to Haemophilus influenzae
J150	Pneumonia due to Klebsiella pneumoniae
J150 J151	Pneumonia due to Recisiena pneumoniae Pneumonia due to Pseudomonas
J151 J152	Pneumonia due to I seudononas Pneumonia due to Staphylococcus
J152 J153	Pneumonia due to Streptococcus, group B
J155	Pneumonia due to streptococcus, group B Pneumonia due to other streptococci
J155	Pneumonia due to Escherichia coli
J156	Pneumonia due to other aerobic Gram-negative bacteria
J157	Pneumonia due to Mycoplasma pneumoniae
J158	Other bacterial pneumonia
J159	Bacterial pneumonia, unspecified
J160	Chlamydial pneumonia
J168	Pneumonia due to other specified infectious organisms
J170	Pneumonia in bacterial diseases classified elsewhere
J171	Pneumonia in viral diseases classified elsewhere
J172	Pneumonia in mycoses
J173	Pneumonia in parasitic diseases
J178	Pneumonia in other diseases classified elsewhere
J180	Bronchopneumonia, unspecified
J181	Lobar pneumonia, unspecified
J182	Hypostatic pneumonia, unspecified
J188	Other pneumonia, organism unspecified
J189	Pneumonia, unspecified
J690	Pneumonitis due to food and vomit
J691	Pneumonitis due to oils and essences
J698	Pneumonitis due to other solids and liquids
N170	Acute renal failure with tubular necrosis
N171	Acute renal failure with acute cortical necrosis
N172	Acute renal failure with medullary necrosis
N178	Other acute renal failure
N179	Acute renal failure, unspecified Deep phlebothrombosis in the puerperium, delivered, with mention of
087102	postpartum complication
087104	Deep phlebothrombosis in the puerperium, postpartum condition or complication
O87109	Deep phlebothrombosis in the puerperium, unspecified as to episode of care, or not applicable
O87802	Other venous complications in the puerperium, delivered, with mention of postpartum complication

087804	Other venous complications in the puerperium, postpartum condition or complication
087809	Other venous complications in the puerperium, unspecified as to episode of care, or not applicable
087902	Venous complication in the puerperium, unspecified, delivered, with mention of postpartum complication
O87904	Venous complication in the puerperium, unspecified, postpartum condition or complication
O87909	Venous complication in the puerperium, unspecified, unspecified as to episode of care, or not applicable
O88201	Obstetric blood-clot embolism, delivered, with or without mention of antepartum condition
088202	Obstetric blood-clot embolism, delivered, with mention of postpartum complication
O88203	Obstetric blood-clot embolism, antepartum condition or complication
088204	Obstetric blood-clot embolism, postpartum condition or complication
O88209	Obstetric blood-clot embolism, unspecified as to episode of care, or not applicable
R092	Respiratory arrest
R4020	Persistent vegetative state
R4029	Coma, unspecified
R570	Cardiogenic shock
R571	Hypovolaemic shock
R572	Septic shock
R578	Other shock
R579	Shock, unspecified
R58	Haemorrhage, not elsewhere classified
T810	Haemorrhage and haematoma complicating a procedure, not elsewhere classified

		CONT. VENOVENOUS HAEMODIAFILTRAT'N - INIT. & AC. (MAX
FEECODE	G082	3)
	G083	CONT. VENOVENOUS HAEMODIALYSIS - INIT. & AC. (MAX 3)
	G085	CONT. VENOVENOUS HAEMOFILTRAT'N - INIT. & AC. (MAX 3)
	G090	VENOVENOUS SLOW CONT. ULTRAFILTRAT'N-INIT.& AC. (MAX 3)
	G093	Haemodiafiltration - Contin. Init & Acute (repeatx3)
	G095	Slow Continuous Ultra Filtration - Initial & Acute (repeat)
	G323	D./T. PROCDIALYSIS-HAEMODIALYSIS-ACUTE, REPEAT
	G391	D./T. PROC-OTHER RESUSCITATION-AFT 1ST 1/4HR.(PER 1/4HR).
	G395	D./T. PROC-OTHER RESUSCITATION-1ST 1/4HR. PER PHYS.
	G405	CRIT.CARE VENTIL.SUPPORT-INTENS.CARE-PHYS.IN CHGE-1ST DAY
	G406	CRIT.CARE VENT.SUPPORT INTENS.CARE PHYS IN CHGE 2ND TO 10DAY
	G521	D./T. PROC-LIFE THREAT.EMERG.SITRESUSCITATION-1ST 1/4HR.
	G522	D/T PROC LIFE THREAT EMERG.SIT.RESUS.1/4HR AFT.1ST1/2 HR.
	G523	D./T.PROC.LIFE THREAT EMERG.SIT/RESUSC'N SECOND 1/4HR
	G557	D/T PROC.COMPREHEN.INTENS.CRIT.VENT.SUP.PHYS.IN CHGE- 1STDAY
	G558	D/T PROC.COMP.INTENS.CRIT.VENT.PHYS.IN CHGE 2NDT010THDAY
	G860	HOSPITAL HEMODIALYSIS
	G861	HOSPITAL PERITONEAL DIALYSIS
	G862	HOSPITAL SELF CARE OR SATELLITE HEMODIALYSIS
	G863	INDEPENDENT HEALTH CARE FACILITY HEMODIALYSIS
	G864	HOME PERITONEAL DIALYSIS
	G865	HOME HEMODIALYSIS

G866	INTERMITTENT HEMODIAL AUX TREAT CTRE(PER TREAT)
R849	D./T. PROCDIALYSIS-HEMO-INITIAL AND ACUTE

r		Transfusion, circulatory system NEC using autologous transfusion of red
INCODE	1LZ19HHU1A	cell concentrates
	1LZ19HHU1J	Transfusion, circulatory system NEC using homologous transfusion of red cell concentrates
		Transfusion, circulatory system NEC using autologous transfusion of
	1LZ19HHU2A	plasma (fresh, frozen, stored) Transfusion, circulatory system NEC using homologous transfusion of
	1LZ19HHU2J	plasma (fresh, frozen, stored) Transfusion, circulatory system NEC using homologous transfusion of
	1LZ19HHU4J	platelets
	1LZ19HHU5J	Transfusion, circulatory system NEC using homologous transfusion of cryoprecipitate
	1LZ19HHU9A	Transfusion, circulatory system NEC using autologous transfusion of whole blood
	1LZ19HHU9J	Transfusion, circulatory system NEC using homologous transfusion of whole blood
	3GT20WC	Computerized tomography [CT], lung NEC with enhancement (contrast)
	3GT20WE	Computerized tomography [CT], lung NEC with and without enhancement (contrast)
	3GT70CA	Diagnostic nuclear (imaging) study, lung NEC using scintigraphy
		Diagnostic nuclear (imaging) study, lung NEC using SPEC tomography
	3GT70CC	(SPECT)
	3GT70CE	Diagnostic nuclear (imaging) study, lung NEC using PE tomography (PET)
	3GT70KC	Diagnostic nuclear (imaging) study, lung NEC using scintigraphy for perfusion study
	3GT70KD	Diagnostic nuclear (imaging) study, lung NEC using scintigraphy for ventilation study
	2CT70VE	Diagnostic nuclear (imaging) study, lung NEC using scintigraphy for
	3GT70KE	perfusion and ventilation study Xray, pulmonary artery following intravenous injection of contrast (with
	3IM10VC	or without fluoroscopy) Xray, pulmonary artery following intraarterial injection of contrast (with
	3IM10VX	or without fluoroscopy)
	3IM10VY	Xray, pulmonary artery following intracardiac injection of contrast (with or without fluoroscopy)
	3IM12VA	Fluoroscopy, pulmonary artery without contrast
	3JY10VA	Xray, thoracic vessels NEC without contrast (with or without fluoroscopy
	3JY10VC	Xray, thoracic vessels NEC following intravenous injection of contrast (with or without fluoroscopy)
	3JY10VN	Xray, thoracic vessels NEC with fluoroscopy
	3JY10VX	Xray, thoracic vessels NEC following intraarterial injection of contrast (with or without fluoroscopy)
	3JY12VA	Fluoroscopy, thoracic vessels NEC without contrast
	3JY20WC	Computerized tomography, thoracic vessels NEC with enhancement (contrast)
	3JY20WE	Computerized tomography, thoracic vessels NEC with and without enhancement (contrast)
	3KR10VA	Xray, veins of leg NEC without contrast (with or without fluoroscopy)
	3KR10VA	Xray, veins of leg NEC following intravenous injection of contrast (with or without fluoroscopy)
	3KR10VC	Xray, veins of leg NEC with fluoroscopy
	3KR12VA	Fluoroscopy, veins of leg NEC with nucloscopy
	3KX10VA	Xray, vein NEC without contrast (with or without fluoroscopy)
		Xray, vein NEC following intravenous injection of contrast (with or
	3KX10VC	without fluoroscopy)
	3KX10VN	Xray, vein NEC with fluoroscopy
	3KX10VX	Xray, vein NEC following intraarterial injection of contrast
	3KX12VA	Fluoroscopy, vein NEC without contrast
	3KX30DA	Ultrasound, vein NEC alone

3KX	X30DB	Ultrasound, vein NEC with color flow
362	X30DC	Ultrasound, vein NEC with Doppler
362	X30DD	Ultrasound, vein NEC with color flow and Doppler
$\overline{\mathbf{O}}$ 1 \mathbf{C}	1'	

Codes for major complications

type	code	description
DX10CODE	K433	Parastomal hernia with obstruction, without gangrene
	K9145	Enterostomy malfunction, not elsewhere classified
		Drainage small intestine per orifice approach aspiration [or suction]

 INCODE
 1NK52CA
 Drainage, small intestine per orifice approach aspiration [or suction] technique

 INK52CATS
 Drainage, small intestine per orifice approach leaving drainage/decompression tube in situ

Codes for obstruction

type	code	Fee Code Description
FEECODE	R764	ARTERIES-EXPLORATION OF MAJOR ARTERY
	R905	LYMPHATIC-SPLEEN-EXC. SPLENECTOMY
	S149	INTESTINE-INCENTEROTOMY-ILEOSTOMY
		INTESTINE-INC-ENTEROTOMY-COLONOSCOPY WITH
	S155	LAPAROTOMY.
	S157	INTESTINE-INC-ENTEROTOMY-COLOSTOMY.
	S158	INTESTINE-INC-ENTEROTOMY-CAECOSTOMY.
	S160	INTESTINE-INC-ENTEROTOMY-ENTERO-ENTEROSTOMY.
	S162	INTESTINE-EXCLOC.LESION OF INTESTINE.
	S165	INTESTINE-EXC-ANASTOMOSIS-SMALL INTESTINE-OTHER.
	S166	INTESTINE-EXCSML+LGE INTESTINE-TERM.ILEUM-CAECUM ASC.COLON
	S167	INTESTINE-EXCANASTOLARGE INTESTINE -ANY PORTION.
	S168	INTESTINE-EXCILEOSTOMY.SUBTOTAL COLECTOMY
	S169	INTESTINE-EXC-TOTAL COLECTOMY W/ILEO-RECTAL ANASTOMOSIS.
	S171	INTESTINE-EXC-LT.HEMICOLECTOMY WITH ANT.RESECT/ANAST. ETC.
	S173	INTESTINE-EXCILEOSTOMY-2-SURGEON TEAM-ABDOMINAL
	S175	INTESTINE-OBSTRUCTION- NO RESECTION ONE STAGE
	S176	INTESTINE-OBSTRUCTION-+-ENTERO/ENTEROSTOMY ONE STAGE
	S177	INTESTINAL-OBSTRUCTION-ONE STAGE-WITH RESECTION
	S180	INTESTINE-OBSTRUCTION-WITH ENTEROTOMY.
	S181	INTESTINE-REPREVISION-ILEOSTOMY/COLOSTOMY-SKIN LEVEL.
	S182	INTESTINE-REPREVISION-ILEOSTOMY/COLOSTOMY-FULL THICKNESS.
	S184	INTESTINE-SUTURE OF INTESTINE
	S188	INTESTINE-EXCBOWEL RESECTION-WITHOUT ANASTOMOSIS.
	S213	RECTUM-EXCPROCTECTOMY-ANTERIOR RESECT./PROCTOSIGMOIDECTOMY
	S214	RECTUM-EXCPROCTECTOMY-ABDOMINO-PERINEAL RESEC/PULL THRU
	S215	RECTUM-EXC.PROCTECTOMY-2 SURG. TEAM ABDOMINAL SURGEON
	S216	RECTUM-EXCPROCTECTOMY-2 SURG. TEAM PERINEAL SURGEON

S217	RECTUM-EXCPROCTECTOMY-HARTMANN PROC.
S223	RECTUM-REPAIR-ANASTOMOSIS OF RECTUM
S229	RECTUM-SUTURE-RECTUM, TRAUMA-EXTERNAL APPROACH.
S231	RECTUM-SUTURE-CLOSURE OF FISTULA-RECTO VAGINAL
S271	LIVER-EXCISION-EXTENDED RIGHT LOBECTOMY
S312	ABDOMEN-INC-LAPAROTOMY WITH/WITHOUT BIOPSY
S313	ABDOMEN-INC-PERITONEAL ABSCESS-SUBPHRENIC.
S314	ABDOMEN-INC-PERITONEAL ABSCESS-ABDOMINAL.
S340	ABDOMEN-REP-HERNIA-VENTRAL POST-OP.
S343	ABDOMEN-SUTURE-SECONDARY CLOSURE FOR EVISCERATION
S344	ABDOMEN-REPAIR-HERNIA-MASSIVE INCISIONAL

INCODE	1NM80LA	Repair, large intestine open approach using apposition technique [e.g. suturing, stapling]
	1NM80LAFH	Repair, large intestine open approach using biodegradable binding ring
	1NM80LAW2	Repair, large intestine open approach using collagen powder
	1NM80LAW3	Repair, large intestine open approach using fibrin glue
	1NM80LAXXE	Repair, large intestine open approach using local transposition flap [e.g. omental patch]
	1NQ87TF	Excision partial, rectum open abdominal approach [e.g. anterior] stoma formation with distal closure
	10T35LAM0	Pharmacotherapy (local), abdominal cavity using open approach and antineoplastic agent
	20T70LA	Inspection, abdominal cavity using open approach

Codes for re-operation

Mei (Lucy) Yang

CURRICULUM VITAE

Academic Background and Training:	
Masters of Science	2017-2018
Western University, Schulich School of Medicine and Dentistry	
Post-medical education in General Surgery	2015-2020
Department of Surgery	
Western University, Schulich School of Medicine and Dentistry	
Medical Degree	2011-2015
Western University, Schulich School of Medicine and Dentistry Class of 2015	
Bachelors of Medical Science	
2006-2010	
Honours Specialization in Physiology	
Western University	

Publications:

- 1. Marolda CL, Li B, Lung M, **Yang M**, Hanuszkiewicz A, Rosale AR, Valvano MA. Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. *J Bacteriol*. 192(23): 6160-71.
- 2. Yang M, Pepe D, Schlachta C, Alkhamesi N. Endoscopic tattoo: the importance and need for standardized guidelines and protocol. *JRSM*. DOI: 10.1177/0141076817712244
- 3. Alhassan N, **Yang M**, Wong-Chong N, Liberman AS, Charlebois P, Stein B, Fried GM, Lee L. Comparison between conventional colectomy & complete mesocolic excision for colon cancer a systematic review and pooled analysis. *Surg endoscopy*. DOI:10.1007/s00464-018-6419-2
- 4. **Yang M.L.,** Ott M. (2018) Negative Pressure Wound Therapy to Decrease Surgical Nosocomial Events in Colorectal Resections. In: Recent Clinical Techniques, Results, and Research in Wounds. Springer, Cham. DOI: 10.1007/15695_2010_120
- 5. **Yang M**, Murphy PB, Allen L, Sela N, Govind S, Leslie K, Vogt K. Venous thromboembolism in emergency general surgery patients: a single center retrospective cohort study. Submitted Aug 2018 to Canadian Journal of Surgery
- 6. Sela N, Allen L, Murphy PB, **Yang M**, Patton P, Leslie K, Parry NG, Vogt KN. Obesity may not matter in emergency general surgery patients: an analysis of the association between body mass index and morbiditiy. Submitted Aug 2018 to The American Surgeon
- 7. **Yang M**, Wanis KN, Gilani O, Vogt K, Ott M, Van Koughnett JAM, Vinden C. The effect of peripherally acting mu opioid receptor antagonists (PAMORAs) on opioid induced bowel dysfunction: a systematic review and meta-analysis. Submitted to Colorectal Disease

Abstracts Presented (Presenter underlined):

<u>Istl A</u>, **Yang M**, Fleshner KA, Parker CE, Guizetti L, Singh S, Jairath V. Pre-operative biologic therapy is not associated with increased post-operative complications in inflammatory bowel disease patients undergoing elective surgery: systematic review and meta-analysis. Poster Presentation accepted Canadian Digestive Diseases Week 2019

Yang M, Wanis K, Gilani O, Ott M, Vogt K, Van Koughnett JA, Vinden C. The effect of peripherally acting mu opioid receptor antagonists on opioid induced bowel dysfunction: systematic review and meta-analysis. Canadian Surgery Forum 2018 ePoster Presentation

<u>Alhassan N</u>, **Yang M**, Wong-Chong N, Liberman AS, Charlebois P, Stein B, Fried GM, Lee L. Comparison between conventional colectomy and complete mesocolic excision for colon cancer – a systematic review and pooled analysis. World Congress of Endoscopic Surgery 2018 ePoster Presentation

<u>Yang M</u>, Murphy PB, Allen L, Sela N, Govind S, Vogt KN. Venous thromboembolism in emergency general surgery patients: a single centre retrospective study. Canadian Surgery Forum 2016 Poster Presentation

<u>Sela N</u>, Murphy PB, Allen L, **Yang M**, Patton P, Leslie K, Parry NG, Gray DK, Mele T, Leeper WR, Vogt KN. Obesity may not matter in emergency general surgery patients: an analysis of the association with body mass index and morbidity and mortality. Canadian Surgery Forum 2016 Podium Presentation

Awards & Grants	
Four year continuing admission scholarship	2006-2009
PMA Dependents' Tuition Scholarship	2009
UWOSA Dependents' Tuition Scholarship	2009
Global Opportunities Award	2011
UWOSA Dependents' Tuition Scholarship	2011
Resident Research Grant \$5000	2017

Academic Activities:

SAGES Advanced Upper GI Surgery course	2018
SAGES Advanced Colorectal Surgery course	2018
SWOSA conference	2015
Ontario Association of General Surgeons Conference 2	015, 2016, 2018
Canadian Surgery Forum	2016, 2018
Professional Association of Residents of Ontario (PARO) General Council memb	per 2016-2018
PARO Leadership Program	2016-2018
Resident Training Committee member	2016-2019
Postgraduate Medical Education Committee resident representative	2016-2017
Resident enhancement fund lead	2017-2018
Principles and practice of clinical research course	2016
Society of American Gastrointestinal and Endoscopic Surgeons member (SAGES	S) 2016-2017
SAGES basic laparoscopy and endoscopy surgery workshop	2016

Professional Memberships & Developments

Professional Memberships: CAGS, OAGS, ACS, OMA, CMA, CMPA, PARO, SAGES

Development: USMLE Step 2 CS, Surgical Foundations, LMCC part II, ATLS, ACLS, USMLE Step 2 CK, LMCC part I, USMLE Step 1, CPR