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Abstract

In this research we study the use of local search in the design of approximation algorithms
for NP-hard optimization problems. For our study we have selected several important
and well known clustering problems: k-uncapacitated facility location problem, minimum
mutliway cut problem, and constrained maximum k-cut problem.

We show that by careful use of the local optimality property of the solutions produced
by local search algorithms it is possible to bound the ratio between solutions produced
by local search approximation algorithms and optimum solutions. This ratio is what is
known as the locality gap of the algorithms.

The locality gap of our algorithm for the k-uncapacitated facility location problem
is 2 +

√
3 + ε for any constant ε > 0. This matches the approximation ratio of the

best known algorithm for the problem, proposed by Zhang but our algorithm is simpler.
For the minimum multiway cut problem our algorithm has locality gap 2-2/k, which
matches the approximation ratio of the isolation heuristic of Dahlhaus et al; however, our
experimental results show that in practice our local search algorithm greatly outperforms
the isolation heuristic, and furthermore it has comparable performance as that of the
three currently best algorithms for the minimum multiway cut problem (by Calinescu et
al, Sharma and Vondrak, and Buchbinder et al). For the constrained maximum k-cut
problem on hypergraphs we proposed a local search based approximation algorithm with
locality gap 1-1/k for a variety of constraints imposed on the k-cuts. The locality gap of
our algorithm matches the approximation ratio of the best known algorithm for the max
k-cut problem on graphs designed by Vazirani, but our algorithm is more general.

Keywords: Combinatorial optimization, Approximation algorithms, Local search,
Facility location problem, Multiway cut problem, Max k-cut problem
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Chapter 1

An Introduction to Combinatorial
Optimization Problems and Local
Search

1.1 Introduction

In a combinatorial optimization problem we look for a that either maximizes or mini-
mizes a given objective function. A feasible solution usually requires grouping, ordering
or selecting a discrete or finite set of objects that satisfies some given conditions; there-
fore the solution space (the set of all feasible solutions) for a combinatorial optimization
problem is discrete or finite. Usually the solution spaces of combinatorial optimization
problems are very large and thus using exhaustive search to find optimal solutions, solu-
tions that either maximize or minimize an objective function, is not efficient. Therefore,
it is of great interest to design more sophisticated algorithms that can find optimal or
near optimal solutions in polynomial time.

A classical example of a combinatorial optimization problem is the traveling salesman
problem in which we are given a weighted graph G = (V,E) and the goal is to find a
minimum weight Hamiltonian cycle. A Hamiltonian cycle is a cycle that includes all the
nodes of G.

1

3

4

2 35

20

3025

Figure 1.1: An instance of the traveling salesman problem.

Figure 1.1 shows an instance of the traveling salesman problem; the solution space
includes all possible Hamiltonian cycles: (2, 1, 4, 3, 2), (2, 1, 3, 4, 2), (2, 4, 1, 3, 2), (2,

1



2Chapter 1. An Introduction to Combinatorial Optimization Problems

4, 3, 1, 2), (2, 3, 1, 4, 2) and (2, 3, 4, 1, 2). The weights of these cycles (the objective
function) are: 95, 80, 95, 80, 95 and 95, respectively. A feasible solution is any cycle
from the solution space. An optimal solution is any cycle with the smallest weight. In
this example cycles (2, 1, 3, 4, 2) and (2, 4, 3, 1, 2) are optimal. Observe that in this
example since the size of the solution space is small we can quickly find an optimal
solution, however for larger instances the solution space would be huge and it would be
very difficult to find optimum solutions.

Combinatorial optimization problems are of great importance because many real life
problems can be modeled as combinatorial optimization problems. These problems arise
in a wide variety of fields, such as data mining, information retrieval, network routing,
image processing, machine learning, artificial intelligence, operation research, and so on.

In addition, combinatorial optimization is of great theoretical importance because it
led to advances in other areas such as discrete mathematics, computer science, probability
theory, and continuous optimization.

Many important combinatorial optimization problems are NP-hard [2]; this means
that there is very strong theoretical evidence suggesting that there are no polynomial time
algorithms for solving them. An effective approach for dealing with NP-hard problems
is to find solutions that are provably close to the optimal solutions. Algorithms that find
these near optimal solutions are called approximation algorithms. To measure the quality
of an approximation algorithm we compute its approximation ratio. If an algorithm has
approximation ratio α then the solutions returned by the algorithm are guaranteed to
have values that are within an α factor of the optimal solutions.

We are interested in studying and designing approximation algorithms because, as
mentioned earlier, in real life we need to solve NP-hard problems. The analysis of ap-
proximation algorithms helps us understand why some approaches work better on some
problems and hence it gives us clues on which approaches would be more promising for
a new problem. Moreover, approximation algorithms give us a metric on how ”hard”
different NP-hard problems are.

Due to their importance, there is extensive research in the literature on the design
of approximation algorithms. These algorithms have been designed for problems from a
large variety of fields and several methodologies have shown to be effective for the design
and analysis of approximation algorithms.

We can classify approaches for designing approximation algorithms into two main
categories; non-linear programming based approaches and linear programming based
approaches. We describe below several non-linear programming-based approaches.

• Greedy algorithms: Greedy algorithms usually start with an empty solution and
they repeatedly make ”greedy” choices that select a ”locally” optimal way to enlarge
the current solution in the hope that at the end they will find an optimal solution.
In these algorithms once a decision is made the decision cannot be modified. Greedy
algorithms are usually very fast and they are easy to implement. However, they do
not always produce near optimal solutions.

• Local search algorithms: A local search algorithm starts with an arbitrary fea-
sible solution, and then it iteratively improves the current solution by selecting a
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neighbor solution with a better objective function value. The algorithm stops when
no further improvement is possible. The neighbors of a given feasible solution are
determined by a set of local operations. A local operation transforms a given solu-
tion s into a new feasible solution s′ by usually performing simple changes such as
adding, removing or swapping elements of s with some other elements not in s (later
we give more examples of local operations). The main reason we are interested in
local search is that local search algorithms are conceptually simple and they are
usually easy to implement. We believe that local search is a powerful technique
that can be used to design efficient approximation algorithms, but so far there are
relatively few research works published on the design of local search approximation
algorithms. In this thesis we explore the use of local search in the design of algo-
rithms for NP-hard optimization problems with a provable performance guarantee.
We will discuss this class of algorithms in more detail in the next section.

• Dynamic programming: A dynamic program decomposes a problem into smaller
sub-problems that have smaller solution spaces than the original one. The solutions
to the smaller sub-problems are combined to construct solutions for bigger sub-
problems until we obtain a solution for the entire problem. The main advantages
of dynamic programming are: (1) we limit the size of the solution space by breaking
down the problem into smaller sub-problems, and (2) in the process of recursively
breaking down the problem into simpler sub-problems and considering different
ways of combining the solutions of these sub-problems to form a global solution,
we might encounter the same sub-problems many times, but they need to be solved
only once.

Now, we give a brief introduction to integer and linear programming and linear pro-
gramming based approaches for the design of approximation algorithms. In an integer
program we are given a set of variables that can only take integer values and that need to
satisfy some constrains specified in the form of linear inequalities or linear equations. A
feasible solution is an assignment of values to the variables that satisfies the constraints.
The goal is to find a feasible solution that optimizes a given objective function; the objec-
tive function is a linear combination of the variables. An integer minimization program
is usually expressed in matrix form as follows,

min cTx
s.t. Ax ≤ b

x integer
(1.1)

where x is a vector containing the variables and c is a vector of cost coefficients; vector
b and coefficient matrix A define the constraints of the integer program. Observe that
a maximization integer program can be converted to a minimization integer program by
simply multiplying each cost coefficient by -1.

Many combinatorial optimization problems can be formulated as integer programs;
unfortunately, we do not know polynomial time algorithms that can solve arbitrary in-
teger programs. However, if we relax the integrality constraints such that the variables
can take real values, we obtain what is known as a linear program. Linear programs can
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be solved in polynomial time, but the solution of a linear program is not guaranteed to
assign integer values to the variables; hence solving a linear program does not in general
give a feasible solution to a combinatorial optimization problem formulated as an integer
program. Each solution of the linear program relaxation of an integer program is called
a fractional solution.

There are several linear programming based techniques for designing approximation
algorithms; these techniques differ in how fractional solutions are manipulated to produce
integer solutions. Some of these techniques are briefly described below.

• Deterministic rounding: As mentioned above solving the linear programming
relaxation of a combinatorial optimization problem gives a solution that assigns
fractional values to the variables, however we are interested in a solution with
integer values on the variables. Rounding methods convert a fractional solution
to a feasible solution for a combinatorial optimization problem, by rounding up or
down the values of the variables to integer values. The rounding must be done
in such a way that the value of the rounded solution is close to the value of the
fractional one as this ensures that the obtained solution has value close to the
optimal.

• Rounding a dual solution: In this method a feasible solution to an optimization
problem is obtained by rounding the dual of the linear program relaxation of an
optimization problem. Each linear program P has associated another linear pro-
gram P ′, called its dual. Linear program P is called primal. Optimal solutions
for primal and dual linear programs have the same value. Furthermore, if P is a
maximization linear program P ′ is a minimization linear program and vice versa.
The number of constraints in the primal is equal to the number of variables in the
dual and the number of variables in the primal is equal to the number of constraints
in the dual. Sometimes, solving the primal linear program is difficult but it is easy
to find a solution for the dual, for instance when there are too many variables in
the primal. When this happens we solve the dual of the linear program and then
we round it to find an approximate solution for the optimization problem.

• The primal-dual method: In this method instead of solving the dual of the
linear program, we simultaneously build solutions for the linear program and its
dual. We start with a feasible but expensive solution for the dual problem and an
infeasible solution for the primal. Then we gradually improve the cost of the dual
solution while at the same time reducing the number of constraints not satisfied
by the primal solution. At the end we get a feasible solution for the primal and a
near optimal solution for the dual. By the properties of the primal and dual linear
programs, the primal solution also has value close to the optimal.

• Randomized rounding: In this method we solve the linear program relaxation
of a combinatorial optimization problem and then round it to an integer solution
using a randomized algorithm. In the randomized algorithm we assign variables a
probability function that determines how likely it is that they get specific integer
values. Randomized rounding is a very powerful technique that yields efficient
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approximation algorithms for difficult problems that cannot be solved using other
techniques.

Even though linear programming based approximation algorithms have beed successfully
designed for a large number of NP-hard optimization problems, one of the main drawbacks
of these algorithms is their big running times due to the fact that they have to solve
linear programs. The focus of this thesis is on the use of local search in the design of
approximation algorithms. As we show this technique can be used to design efficient
algorithms with good approximation ratios.

1.2 Local Search Algorithms

As we mentioned earlier, in combinatorial optimization we look for a solution S from
the solution space A, that optimizes an objective function c : A −→ Q, where Q is the
set of rational numbers. A local search algorithm is defined by its local operations. A
local operation op(S) transforms a solution S ∈ A into a new solution S ′ by for example,
adding, removing or exchanging elements of S with elements not in S. Local operations
are usually simple and they should be able to be performed quickly with algorithms with
low running times. A neighborhood function N is defined by the local operations. For
each solution S ∈ A, N (S) includes all the solutions S ′ ∈ A that can be obtained by
performing a local operation on S.

The facility location problem is a central problem in combinatorial optimization. In
this problem we are given a set F of facilities, a set C of clients, service costs c, and
opening facility costs f . Let cij be the cost of serving client i by facility j and let fj be
the opening cost for facility j. The goal is to select a set S of facilities and to assign
clients to facilities in such a way that minimizes the service cost plus the cost of opening
the facilities needed to service the clients. Therefore, we want to minimize the following
cost function,

cost(S) = Σi∈Sfi + Σj∈Ccjσ(j), (1.2)

where S is a set of facilities and σ(j) is the facility in S with the smallest service cost to
client j. One possible local operation applicable to the facility location problem is the
single swap operation. A single swap <f,f’> operation for a given solution S replaces
some facility f ∈ S with another facility f ′ ∈ F \ S.
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swap<f2, f3>
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N(S)

Clients
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Figure 1.2: Example of the single swap operation and the corresponding neighborhood
function, where F = {f1, f2, f3} and C = {c1, c2, c3, c4, c5}. Clients are connected with
solid lines to the facilities that service them, and a client is connected to a facility with
a dashed line if that facility was servicing the client before performing the swap but it
does not service the client after the swap.

Consider the example shown in Figure 1.2; assume all the facility opening costs are 0,
then the cost of the solution S = {f1, f2} is equal to the sum of the clients service costs,
which is 30. Figure 1.2 shows two neighbouring solutions of S obtained by performing
swap < f2, f3 > and swap < f1, f3 >. By performing swap < f2, f3 > the cost improves
to 24 and by doing swap < f1, f3 > the cost increases to 32.

There are several variants of local search algorithms. In this thesis we focus on iter-
ative improvement local search algorithms, formally described below. Note that a local
optimum solution might not be a global optimal solution as we show in the examples
presented later. The locality gap of a local search algorithm is the largest ratio of the
value of a local optimal solution produced by the algorithm to the value of a correspond-
ing global optimal solution. Let sI be a local optimal solution produced by a local search
algorithm for some instance I of a maximization problem P and let s∗(I) be a global

optimal solution for I, then the locality gap of the algorithm is defined as minI∈P
c(s(I))
c(s∗(I))

,

where c(s(I)) is the cost of s(I) and c(s∗(I)) is the cost of s∗(I). Similarly, for mini-

mization problems P the locality gap is defined as maxI∈P
c(s(I))
c(s∗(I))

.
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Algorithm IterativeImprovement(S,N , c)
In: Set S of feasible solutions, neighborhood function N and objective function c.
Out: A local optimum solution s ∈ S with respect to N and c.

1. Compute an initial solution s ∈ S.

2. while N (s) contains a solution with better objective value than s do {

3. Choose a solution s′ ∈ N (s) with better value c(s′) than c(s).

4. s← s′

}

5. Output s.

1 2 3 4 5 6 7

Clients

Global  Optimal 

Solution (O)

Local Optimal 

Solution (S)

2 2 2 2

0 0 0 0 1

1 1 1

1
1

b

a

Figure 1.3: Example of a local optimal solution and a global optimal solution for an
instance of the facility location problem.

Figure 1.3 shows an instance of the facility location problem with 10 facilities and
7 clients. A local optimal solution S consists of the facilities represented by the black
circles and the global optimal solution O contains the facilities represented with white
circles; cost(S) is 11 and cost(O) is 3. Observe that S is a local optimal solution with
respect to the single swap operation because no single swap operation can improve its
cost: For example if we perform swap<a,b> then clients 3 and 4 are serviced by facility b
at costs 0 and 4 respectively, so the total cost remains unchanged. Observe that S is the
worst local optimal solution because no other selection of 5 facilities has a worse cost.
Therefore, the local search algorithm with single swap as the local operation has locality
gap 11

3
for this instance of the facility location problem.

We present two more examples to illustrate how a local search algorithm gradually
improves an initial solution to obtain a final solution with the property that no further
improvement is possible.

We start by considering a scheduling problem in which we are given a set J of n jobs
J = {j1, j2, ..., jn}, a set of m processors M = {M1,M2, ...,Mm}, and processing time pi
for each job ji, i = 1, 2, ..n. The goal is to schedule jobs on processors so as to minimize
the time needed to complete all the jobs, or the makespan. A feasible schedule must
satisfy the following conditions: Each processor can process only one job at a time and
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the processing of a job cannot be interrupted, i.e. preemptions are not allowed.
Consider an instance of the scheduling problem where J = {j1, j2, j3, j4, j5, j6}, M =

{M1,M2,M3} and the processing times are p1 = 3, p2 = 2, p3 = 4, p4 = 1, p5 = 2, and
p6 = 3. The solution space includes all possible assignments of jobs to processors. As an
example, one possible solution S for this instance is shown in Figure 1.4, in which jobs
j1, j2, j3, j4 are processed by M1, j5 is processed by M2, and j6 is processed by M3. The
time needed by processor M1 to process jobs j1, j2, j3 and j4 (or the load of processor
M1) is 3 + 2 + 4 + 1 = 10. Similarly, the loads of processors M2 and M3 are 2 and 3,
respectively. The makespan of the schedule is equal to the maximum load, that in this
instance is 10, which is also the time needed to process all the jobs.

j1 j2 j3 j4

j5

j6

time

M1

M2

M3

Figure 1.4: Example of a scheduling problem.

In a local search algorithm we try to improve the current solution by performing a
set of local operations. For this example we consider a local operation that moves a job
from a processor with maximum load to a processor with minimum load; this operation
is called the jump operation. Therefore, N (S) includes all the feasible solutions that are
obtained from a solution S by performing a jump operation. In the above example one
of the neighboring solutions of the solution S shown in the figure can be obtained by
moving j1 to processor M2, which results in a reduced makespan. The processing time
of j1 is 3, therefore after performing this local operation the loads of the processors M1,
M2 and M3 change to 2 + 4 + 1 = 7, 2 + 3 = 5, and 3, respectively which decreases the
makespan to 7. We can further improve the makespan by moving j2 to M3 and this time
the load of all the processors is 5.

After the second jump operation we see that no further improvement is possible,
since all the processors have equal load. Therefore, we obtained a local optimal solution,
where no additional local operations can improve the cost. In this case the local optimal
solution is also a global optimal solution because the total load created by all the jobs is
3 + 2 + 4 + 1 + 2 + 3 = 15 and we have 3 processors, therefore each processor must have
load at least 5.

In the multiway cut problem [7] we are given a weighted graph G = (V,E) and a set
T ⊆ V of terminals, where V is a set of vertices and E is a set of edges with non-negative
weights; the goal is to find a minimum weight set E ′ ∈ E whose removal from G separates
all the terminals from one another, therefore partitioning V into |T | components each
containing one terminal.

Consider the instance of the multiway cut problem shown in Figure 1.5, consisting
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of a weighted graph with 6 vertices V = {a, b, c, d, e, f} and 3 terminals T = {a, b, e}.
The goal is to partition the graph into 3 components each containing one terminal. The
solution space includes all partitions of V that divide V into 3 parts and each part has
exactly one terminal. In the figure we indicate vertices that belong to the same partition
by assigning them the same label; for the example in Figure 1.5 the labels for the nodes in
the three partitions are: α1, α2, α3 and the label of each node is indicated inside the node.
Hence, the partitions shown in Figure 1.5 are {a, d}, {b, c}, {e, f}. The cost of the solution
is 7 because the sum of the weights of the edges in E ′ = {(a, c), (c, d), (b, d), (c, e), (d, f)},
whose removal creates this partition, is 7.

α2 α3 

α3 α2 

α1 

a

c

e

2 2

1

1

α1 

d

b

f

1

1

Figure 1.5: Initial solution for the minimum multiway cut.

Consider a local operation that changes the label of a single vertex. The neighborhood
defined by this operation for a partition P includes all the partitions that can be obtained
from P by changing the label of a single vertex. For the example shown in Figure 1.5 we
can change the label of vertex c to α1, and as a result of this operation the cost of the
solution decreases by 1. If now we also change the label of vertex d to α1 the cost further
deceases by 2. After this second local operation is performed no further operations can
improve the cost of the partitioning. Therefore, we obtain a local optimal solution with
cost 4. Observe that in this example the local optimal solution is not a global optimal
solution since as we can see in Figure 1.6 the cost of a global optimal solution is 3.
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Figure 1.6: Local optimal solution and global optimal solution for the example of the
multiway cut problem in Figure 1.5.

1.3 The Complexity of Computing Local Optimum

Solutions

Local search algorithms in some cases require a long time to compute local optimal so-
lutions due to the fact that local operations could improve the cost of a solution by a
very small amount. Let us, for example, consider the IterativeImprovement algorithm
presented above. The time complexity of the algorithm depends on the number of itera-
tions of the while loop and on the time it takes to find solution s′. Because there is no
bound on the amount by which the value of a solution will improve in each iteration, we
cannot guarantee a number of iterations that is bounded by a polynomial function of the
size of the input.

Research has been conducted to determine the class of optimization problems for
which local search algorithms have polynomial running times. Johnson, Papadimitriou,
and Yannakakis [16] introduced a class of problems called PLS (polynomial-time local
search problems) that admit local search algorithms with polynomial running times.

Orlin, Punnen and Shulz introduced the concept of ε-local optimum solution [19] that
can be used to ensure polynomial running times for some local search algorithms, if a
small loss in the quality of the solutions that it produces is tolerated. For a given constant
value ε > 0, a solution s is ε-local optimum (for a minimization optimization problem)
with respect to neighborhood function N if

c(s′) ≥ (1− ε)c(s) for each s′ ∈ N (s).

The notion of ε-local optimum solution can be easily extended to maximization prob-
lems: s is a ε-local optimal solution if c(s′) ≤ (1 + ε)c(s) for each s′ ∈ N (s). We can use
a technique by Orlin et al. [19] to ensure that the while loop of the IterativeImprove-
ment algorithm performs a polynomial number of iterations: Change the line 3 of the
algorithm as follows,
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Choose a solution s′ ∈ N (s), where c(s′) < (1− ε)c(s).

Let sini be the initial solution selected by the IterativeImprovement algorithm and
sl be the ε-local optimal solution that it computes. For minimization problems, since
each iteration of the algorithm decreases the current solution s by at least ε × c(s),

then the number of iterations of the while loop is O
(

log c(sini)−log c(sl)
ε

)
. Since we are

only interested in local search algorithms in which the neighborhood function can be
computed in polynomial time, each iteration of the IterativeImprovement algorithm can
be performed in polynomial time and so the algorithm runs in polynomial time. We can
apply similar arguments to maximization problems as well.

Observe that the quality of an ε-local optimum solution is lower than that of a local
optimum solution because for a minimization problem instead of each solution s′ ∈
N (s) satisfying the condition c(s′) ≥ c(s), where s is the local optimum solution, the
ε-local optimum solution s satisfies the weaker condition 1

1−εc(s
′) ≥ c(s); therefore an

α-approximation local search algorithm yields an ε-local search algorithm that produces
solutions of value within a factor 1

1−εα of the global optimal solutions. Similarly, for
maximization problems an α-approximation algorithm can be converted into an ε-local
search algorithm that gives solution of value within a factor (1+ε)α of the global optimal
solutions. In Chapter 2 we show how to use this notion of ε-local optimum to design a
polynomial time local search algorithm for the k-facility location problem1.

1.4 Local Search in the Design of Approximation Al-

gorithms

In spite of the conceptual simplicity of local search algorithms, they have not been used
extensively for designing approximation algorithms. The two most significant reasons
that make it difficult to design local search approximation algorithms for optimization
problems are: First, computing the locality gap of a local search algorithm is complicated
as we will see in Chapters 2, 3 and 4, and second, in some cases the locality gap of an
algorithm is large and finding alternative local operations that would lead to efficient
local search algorithms is difficult.

To clarify the second reason let us consider of the scheduling problem presented in
Section 1.2. Consider an instance of this problem when the number of jobs n is an even
multiple of the number m of processors, or in other words, n = km for some even integer
k > 0. Assume all jobs have unit processing time. If all the jobs are assigned evenly to
only two processors, M1 and M2, as shown in Figure 1.7 then by using the jump operation,
as discussed in Section 1.2, the makespan cannot be improved; therefore, the solution
given in Figure 1.7 is locally optimal with makespan km

2
. A global optimal solution for

this example is obtained by distributing jobs evenly among all the processors and this
achieves a makespan of k. Therefore, the IterativeImprovement algorithm with the jump
operation has a locality gap of at least km/2

k
= m

2
, which is very large when m is big.

1Variant of the facility location problem in which we can open at most k facilities.
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Figure 1.7: Instance illustrating a big locality gap for a scheduling problem using the
jump operation.

The problem with some local search algorithms is that they might get ”trapped” in
a locally optimal solution that is far away from a global optimal solution. The above
example clearly illustrates how this is possible. To address this problem, different classes
of local search algorithms have been proposed such as: variable-depth search, tabu search,
simulated annealing and genetic algorithms [4]. However, in this work we only consider
iterative improvement algorithms. The other local search techniques are complicated and
it is very difficult to compute their locality gaps. For the rest of this thesis ”local search”
refers to iterative improvement.

Sometimes by using a different local operation we can improve the locality gap of a
local search algorithm. For example, if we change the jump operation in the previous
example in such a way that instead of moving only one job at a time we move up to
n jobs simultaneously then we can guarantee a locality gap of 1, or in other words this
local search algorithm would be an optimal algorithm. We call a local search algorithms
with locality gap 1 exact.

However, by changing the local operation the size of the neighborhood |N (s)| for a
given solution s can grow exponentially; hence, as a result of changing the local operation
the time complexity of a local search algorithm can become exponential as it would be
the case with the above jump operation that can move n job simultaneously. In the
design of efficient local search algorithms besides achieving a small locality gap we need
to achieve a reasonable time complexity.

In this thesis we present local search approximation algorithms for three important
and well known combinatorial optimization problems: k-uncapacitated facility location,
minimum multiway cut and maximum k-cut. As we show in Chapters 2, 3 and 4, to
compute the locality gaps of our algorithms we use the local optimal property : The cost
of a local optimal solution is no worse than the cost of all its neighboring solutions. We
show how to use this property to obtain a set of inequalities that relate the cost of parts
of a local optimum solution with the cost of parts of a global optimum solution. We need
to select these inequalities carefully so that when combining them we get an estimate of
the cost of the local optimal solution in terms of the cost of a global optimal solution.
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1.5 Local Search Approximation Algorithms for Com-

binatorial Optimization Problems

In this section we give an overview of research that has been conducted on the design of
local search approximation algorithms.

1.5.1 The Multiprocessor Scheduling Problem

As mentioned in Section 1.4 a problem with local search algorithms is that they might
get trapped in a locally optimal solution that is far away from the global optimal one.
Recall the example in Section 1.4 where two processors have the same maximum load
and all other processor have load zero, and all other processor have lead zero and by
performing a jump operation the makespan does not decrease.

To deal with this issue we can force the iterative improvement algorithm to continue
performing jump operations on the jobs scheduled on processors with the maximum load.
To achieve this, we define a new objective function c′ that assigns to every solution s a
pair (c(s), `(s)), where c(s) is the makespan of s and `(s) is the number of processors
with load c(s). Given two solutions s and s′, c′(s) < c′(s′) if c(s) < c(s′) or c(s) = c(s′)
and `(s) < `(s′).

The neighborhood N (s) of s has size O(mn) because for all the n jobs there are
m−1 processors where a job can be moved (all processors except the processor on which
the job is currently scheduled). Brucker et al. [3] show that the time complexity of the
IterativeImprovement algorithm with the jump operation and cost function c′ is O(mn3)
and that its approximation ratio is 2− 1

m
.

THEOREM 1 The IterativeImprovement algorithm with the jump neighborhood func-
tion and cost function c′ has locality gap 2− 1

m
.

Proof The proof that we give here for this theorem is very similar to the proof by
Graham for the approximation ratio of his List scheduling algorithm [12]. Let s be the
local optimal solution computed by the IterativeImprovement algorithm and let s∗ be
a global optimal solution. Let Mi be a processor with maximum load, let jr be the
last job processed by Mi and let t be the time when Mi starts to process jr; therefore,
c(s) = t + pr. Observe that since s is a locally optimal solution then no processor can
have load less than t. To see this let us consider that there is a processor Mk with load
lk < t; then by moving jr to Mk we either obtain a solution with smaller makespan or we
reduce the number of processors with maximum load, contradicting the locality optimal
condition. Therefore,

t ≤ 1

m

(∑
ji∈J

pi − pr

)
≤ c(s∗)− 1

m
pr, (1.3)
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as no solution can have makespan smaller than 1
m

∑
ji∈J pi. Therefore,

c(s) = t+ pr ≤ c(s∗)− 1

m
pr + pr

= c(s∗) + (1− 1

m
)pr

≤ c(s∗) + (1− 1

m
)c(s∗) as pr ≤ c(s∗)

= c(s∗)(2− 1

m
).

1.5.2 Computing a Spanning Tree with Many Leaves

Given a graph G = (V,E), a spanning tree of G is a subgraph of G that includes all
vertices in V and it is a tree, i.e. it does not have any cycles. In a tree T we call all
vertices with degree one leaves. We describe a local search approximation algorithm by
Ravi and Lu [18] for the problem of finding a spanning tree with maximum number of
leaves for a given graph G. The solution space of this problem includes all the spanning
trees of the input graph G. The objective function c(t) is the number of leaves in spanning
tree t.

For a spanning tree t the exchange neighborhood of t includes all the spanning trees
that differ from t by a single edge. Observe that the number of edges in a spanning tree
t is n − 1, where n is the number of vertices of G. The exchange neighborhood of t is
then defined as follows:

N (t) = {t′ | t′ is a spanning tree of G and |t ∩ t′|= n− 2}.

For a given spanning tree t the local exchange operation replaces an edge of t with an
edge in G− t that results in a new spanning tree t′. Ravi and Lu showed that |N (t)| has
size at most O(mn) and that the time complexity of their algorithm is O(mn2).

We do not show how to compute the locality gap for this algorithm as this analysis is
much more complicated than for the above scheduling problem; the reason is that for the
scheduling problem we could find a bound for the value of the global optimal solution
that we could easily relate to the value of the local optimum solution. However, for the
problem of finding a spanning tree with maximum number of leaves there does not seem
to be a bound for the global optimal solution that can be easily related to the local
optimal solution.

Ravi and Lu [18] showed that their algorithm has a locality gap of 10. In addition, they
showed that by using a different local operation that allows the simultaneous exchange
of two tree edges with two non-tree edges the locality gap can be improved to 3.

1.5.3 The k-Set Packing Problem

In the k-set packing problem we are given a finite set E of n elements and a collection
F of m subsets of E, where each subset in F has at most k elements. The goal is to
find a maximum cardinality sub-collection of F formed by pairwise disjoint sets. In the
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weighted version of this problem, called W-k-set packing, each set is assigned a cost and
the goal is to find a maximum cost collection of pairwise disjoint sets. Both problems
are NP-hard [11].

Perhaps the simplest approach to solve the W -k-set packing problem is a greedy ap-
proach that starts with an initially empty collection S, and then it adds to S a maximum
cost set B in F and removes from F all the sets intersecting B. This process is repeated
until the collection F becomes empty.

We show that the above greedy algorithm has approximation ratio k. Let S =
{S1, S2, ..., Sr} be the collection selected by the greedy algorithm and let S∗ = {S∗1 , S∗2 , ..., S∗p}
be an optimum solution. Sets in S are indexed in the order in which they were selected
by the greedy algorithm. Then, for set S1 there are at most k sets in S∗ that have a
non-empty intersection with S1 because all the sets in S∗ are disjoint and have at most
k elements. Also, the cost of each one of these sets is no greater than that of S1. We
remove these sets from S∗. For set S2 there are at most k sets in the remaining sets of
S∗ that intersect it and their costs are no greater than the cost of S2 because otherwise
they would have been selected as set S2 by the greedy algorithm. Continuing in the same
manner we conclude that for each set t in S there are at most k sets in S∗ that intersect
it and have costs no greater than the costs of t. Therefore, the optimum solution has
cost at most k times greater than the cost of S.

Chandra and Halldörsson [5] combined this greedy algorithm and a local search ap-
proach to design an approximation algorithm for the W -k-set packing problem with
locality gap ( n

n−1
)(4k+2

5
). Their algorithm is a modification of the IterativeImprovement

algorithm where they used the above greedy algorithm to find the initial solution.

1.5.4 The Max k-SAT Problem

Let B = {x1, x2, ..., xn} be a set of n Boolean variables. A literal is defined to be either a
variable xi or its negation x̄i, i = 1, .., n. In the MAX k-SAT problem we are given a set
of m boolean clauses C = {C1, C2, ..., Cm} where, each clause is a disjunction of exactly
k literals. The goal is to assign values to the variables so as to maximize the number of
clauses that are satisfied. A clause is satisfied if its value is true.

Let s = (s1, ..., sn) be a vector that represent a solution to the MAX k-SAT problem,
i.e si is the value for variable xi. The flip neighborhood of s, N (s), consist of all the
solutions that can be obtained by changing only one value in vector s, i.e, by changing
one value from true to false or vice versa.

Hansen and Jaumard [14] designed a local search algorithm for the MAX k-SAT
problem with the flip neighborhood function and show that it has locality gap k+1

k
.

1.5.5 The Traveling Salesman Problem

In the famous traveling salesman problem we are given a weighted graph G = (V,E) and
the goal is to find a Hamiltonian cycle, a path in G with the same start and end vertex
that visits all the vertices in V once, of minimum weight. For this problem we define the
cost function as the sum of the weights of the edges in a cycle; therefore, in this problem
we are looking for a minimum cost Hamiltonian cycle.
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The optimum solution to the traveling salesman problem cannot be approximated
within a constant factor in polynomial time unless P = NP [20]. However, if we assume
that the weights of the edges satisfy the triangle inequality, i.e. for any three edges e1, e2

and e3 forming a cycle of length 3 the sum of the weights of any two edges is greater than
or equal to the weight of the remaining edge, then it is possible to design approximation
algorithms with constant approximation ratio. This problem is called the metric traveling
salesman problem.

Given a cycle T , a cycle T ′ is a 2-opt neighbor of T if it can be obtained from T by
removing two edges from it and adding two new edges (see Figure 1.8).

Figure 1.8: An example of the 2-opt neighborhood.

Chandra, Karloff and Tovey [6] designed a local search algorithm with the 2-opt
neighborhood for the metric traveling salesman problem and proved that it has locality
gap 4

√
n, where n is the number of the vertices in G.

The related maximum weight Hamiltonian circuit is similar to the traveling sales-
man problem, however instead of finding a minimum weight cycle the goal now is to
find a maximum weight cycle. Fisher, Nemhauser and Wolsey [9] showed that a local
search algorithm with the 2-opt neighborhood has locality gap 2 for the maximum weight
Hamiltonian circuit problem.

1.5.6 The Quadratic Assignment Problem

In the quadratic assignment problem, denoted by QAP, we are given a set of facilities
Fs = {f1, f2, ..., fn}, a set of locations L = {l1, 12, ..., ln}, a flow matrix F = (fij), where
fij is the flow of material from facility i to facility j, and a distance matrix D = (dij),
where dkl is the distance from location k to location l. The cost of assigning facilities
i and j to locations k and l is defined to be fijdkl. The goal is to find an assignment
of facilities to locations, or in other words a permutation π that assigns a facility i to
a location π(i), that minimizes the total cost of the assignment, given by the following
sum ∑

1≤i≤n

∑
i+1≤k≤n

fikdπ(i)π(k). (1.4)

Angel and Zissimopoulos [1] used a local search algorithm with the following 2-
exchange neighborhood and proved that Cloc ≤ n

2
CAV , where Cloc is the cost of the
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solution obtained by their local search algorithm and CAV is the average cost over all
possible solutions for any instance of QAP .

For a permutation π = (π(1), π(2), ..., π(i), ..., π(j), ..., π(n)) the 2-exchange neighbor-

hood of π includes all the n(n−1)
2

permutations of the form (π(1), π(2), ..., π(j), ..., π(i), ..., π(n))
for 1 ≤ i < j ≤ n obtained by performing a swap of π(i) and π(j) in π.

1.5.7 The k-Set Cover Problem

In the k-set cover problem we are given a set U and a collection C of subsets of U each
of size at most k. The goal is to find a minimum size sub-collection of C whose union is
U . A set of size k is called a k-set. Without loss of generality we can assume that C is
closed under subsets.

The (s, t)-neighborhood for a given solution S for this problem is determined by two
values s, t > 0 and includes all the solution S ′ obtained from S in two steps: First insert
up to s 3-sets into S and delete up to t 3-sets from S. Since not all elements of U might be
covered after performing this first step, a second step is performed that optimally selects
2-sets and 1-sets to cover all the missing elements from U . The process of optimally
selecting 2-sets and 1-sets for the second step can be done by modeling this problem as
a maximum matching problem as follows. Construct a graph G = (V,E), where V is the
set of uncovered elements in U and E is determined by the 2-sets in C, i.e. if there is a
2-set A = {a, b} in C then add an edge to E between the vertices corresponding to a and
b. The optimal 2-sets are selected by finding a maximum matching in G and the 1-sets
are the remaining vertices that are not covered by the maximum matching (remember
that C is closed under subsets).

The quality of a solution S is determined by the number of sets in S (a solution
with fewer sets is better). An (s, t)-improvement is a move from a solution S to a (s, t)-
neighboring solution S ′ with better quality. Duh and Fürer [8] designed a local-search
algorithm that uses (2,1)-improvements. They showed that their algorithm for the 3-set
cover problem has a locality gap of 4

3
and that this bound is tight.

1.5.8 The Maximum Constraint Satisfaction Problem

To introduce the maximum constraint satisfaction problem, denoted MAX-CSP, first we
define the notion of constraint satisfaction. For a given graph G = (V,E) an assignment
π is a function that assigns to each vertex a value from the set D = {1, ..., k}. A constraint
R(u, v) between vertices u and v defines a set of pairs of values that can be assigned to
u and v. A constraint R(u, v) is satisfied by assignment π if and only if (π(u), π(v)) is in
R(u, v).

In MAX-CSP we are given a graph G = (V,E) with a constraint R(u, v) associated
with each edge (u, v) ∈ E, and a positive integer k; the goal is to find an assignment
π : V → {1, 2, ..., k} such that the number of satisfied constraints is maximized.

A constraint R(u, v) is r-consistent for 1 ≤ r ≤ k if and only if, for every value
x, 1 ≤ x ≤ k, there are at least r values for y and z such that (x, y) ∈ R(u, v) and
(z, x) ∈ R(u, v). An instance of MAX-CSP is called r-consistent, and it is denoted as
MAX-CSP(k, r), if and only if all its constraints are r-consistent.
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Halldórsson [13] defined a neighborhood of an assignment π formed by all the as-
signments obtained from π by changing the value of only one vertex. He showed that a
local search iterative improvement algorithm with the above neighborhood function has
approximation ratio r

k
for MAX-CSP(k, r).

1.5.9 The Stable Marriage Problem

In the stable marriage problem (SM) we are given two sets, usually called men and
women, each of size n. Elements of each set rank the elements of the other set. The
goal is to find a matching between the two sets, i.e match each man with a woman, such
that there are no two elements of opposite sex that prefer to be matched together than
with their current matchings. A matching with this property is called stable. There is a
variant of the SM problem called SMTI that allows ties and incompleteness. Ties allow
indifference in the ranked list of each element and incompleteness allows each element to
accept only certain subset of elements as partners.

A SMTI marriage M is a one-to-one matching between the two sets such that all
the matched elements accept each other. A woman w is matched with a man m in M if
M(m) = w and M(w) = m. If there is no match for a person p then we call p single. The
marriage size, denoted |M |, is defined as the number of men (women) who have a match
in M . A blocking pair (m,w) in marriage M is a pair such that m and w accept each
other and m is either single in M or strictly prefers w than its current marriage M(m)
and vice versa, i.e. w is either single in M or strictly prefers m than its current marriage
M(w). A marriage M is called a stable marriage if and only if it has no blocking pairs.

The problem of finding the largest stable marriage is denoted as MAX SMTI and we
now describe a local search algorithm for it. The neighborhood N(M) of marriage M
includes all the marriages that are obtained from M by finding a good partner for one
of the single men in M . A good partner is a match such that the new couple does not
create a blocking pair.

Iwama and et al. [15] designed a local search algorithm for the MAX SMTI problem
with the above neighborhood and obtained a locality gap of 1.875. Their local search
algorithm first selects an arbitrary matching M using the Gale-Shapley algorithm and
then it repeatedly selects an appropriate neighbor from N(M) for the current matching
M .

The Gale-Shapley algorithm works as follows: At the beginning of the algorithm all
men and women are single. At each iteration of the algorithm a single man selects a
highest ranked available woman in his preference list and makes a proposal to her. If a
woman receiving a proposal is single she accepts it and becomes engaged, otherwise if
she was engaged to another man then she compares him with the new man proposing
her and accepts the more preferable one. A man who is refused by a woman becomes (or
remains) single. This process is finished when there is no single man remaining with a
possible proposal option. Gale and Shapley [10] showed that the matching obtained by
the above algorithm is stable.
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1.5.10 Placement of Meters in Networks

To measure commodity flow on a flow network one could measure the flow on all the
edges of the network; however, by using the flow conservation property we can achieve
the same goal by only measuring the flow on the edges of any feedback edge set and
then infering the flow on the remaining edges. A feedback edge set (FES) of a graph
G = (V,E) is a set E ′ ⊆ E whose removal converts a graph into an acyclic graph. The
number of flow meters needed to obtain the flow on all the edges of a network is then
equal to the number of edges in a FES. There is another option for measuring the flow
on edges through the use of pressure meters. Pressure meters are placed on some nodes
of the network and the flow on an edge is computed by measuring the flow pressure on
the nodes incident to the edge. We could place the pressure meters on all the nodes of
the network, however a more efficient solution is to put the pressure meters only on the
nodes incident on an FES. Therefore, to minimize the number of meters needed, we wish
to find a FES with the minimum number of nodes incident on it.

The problem of finding the minimum number of pressure meters on graphs is equiv-
alent to the minimum vertex feedback edge set (VFES) problem, where given a graph
G = (V,E) the goal is to find a FES with minimum number of vertices incident on it.

Khuller and et al. [17] showed that any minimal FES obtained by repeatedly deleting
an edge from each cycle in the given graph has approximation ratio 3 and they also
designed a local search algorithm with locality gap 2+ 1

k
using the following neighborhood

function: for a given constant k the neighbors of a given FES f are all the feedback edge
sets that differ from f by at most k − 1 edges.

1.6 Our Local Search Algorithms

We introduce in this section three combinatorial optimization problems that we have
studied: k-facility location, multiway cut, and max k-cut. We also describe the local
operations and neighborhood functions that we used in the local search algorithms that
we designed for these problems.

1.6.1 The k-Facility Location Problem

In the k-facility location problem (k-UFL) we are given a set F of facilities, a set C of
clients, service costs c, facility costs f , and an integer k bounding the maximum number
of facilities that can be selected for servicing the clients. The goal is to select a set S of
at most k facilities to service the clients that minimizes the facility cost plus the service
cost. Therefore, we want to minimize the following cost function,

cost(S) = Σi∈Sfi + Σj∈Ccjσ(j), (1.5)

where S is set of at most k facilities, σ(j) is the facility in S with the smallest service
cost to client j, fi is the cost of facility i and cjσ(j) is the cost of servicing client j. In
Chapter 2 we present a local search algorithm for the metric version of the k-facility
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location problem. In the metric version of the problem the service costs satisfy the
triangle inequality.

For example, consider the instance of the k-UFL problem shown in Figure 1.9. The
facility costs are inside the nodes and the service costs are beside the edges. Let k = 3
and S = {s1, s2, s3}. The cost of solution S is 22 because the facility cost is 4+4+4 = 12
and the service cost is 2 + 2 + 2 + 2 + 2 = 10.

We designed a local search algorithm for the k-UFL problem that uses a multi-swap
operation as local operation: Given a solution S for the problem, in a multi-swap op-
eration we replace all the facilities in some set A ⊆ S with the facilities in another set
B ⊆ F \ S. Formally,

swap <A,B> := (S \ A) ∪B, where A ⊆ S and B ⊆ F \ S.

Consider the same instance of the k-UFL problem in Figure 1.9 and the above solution
S. Let A = {s1, s2, s3} and B = {f1, f2, f3}. By performing swap <A,B> the cost of the
solution decreases from 22 to 8.

Using this local multi-swap operation the neighbors of a given solution S are all the
solutions of the form (S \ A) ∪B, where A ⊆ S and B ⊆ F \ S.

f1 f2 f3

s2

1 1 1 1 1

2 22 2 2

Facilities

Clients

4

111

4 4

s1 s3

Figure 1.9: Example of a multi-swap operation, where S = {s1, s2, s3}, A = {s1, s2, s3}
and B = {f1, f2, f3}.

1.6.2 The Multiway Cut Problem

The multiway cut problem is another well-known combinatorial optimization problem,
in which we are given a weighted graph G = (V,E), an integer k, and a set of terminals
T = {t1, t2, . . . , tk} ⊆ V . The goal is to divide the set V of vertices into k disjoint
partitions in such a way that each partition has exactly one terminal and the sum of the
weights of the edges with endpoints in two different partitions is minimized.

An instance of the multiway cut problem is shown in Figure 1.10, where k = 4 and
T = {t1, t2, t3, t4}. One possible solution for this instance of the problem is to divide the
vertices into the partitions V1, V2, V3, V4 shown in the figure. Let us call this solution
P . Let R be the set of edges crossing the partitions or, in other words, the edges that
have their endpoints in two different partitions. These edges are drawn as dashed lines
in Figure 1.10. The total weight of the edges in R is 14, therefore the cost of the solution
P is 14.
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Figure 1.10: Instance of the multiway cut problem, where k = 4 and T = {t1, t2, t3, t4};
one possible solution for this instance of the problem is to divide the vertices into parti-
tions V1, V2, V3, V4 and the cost of this solution is 14.

We designed a local search algorithm for the multiway cut problem that uses the
relabel operation as local operation. The relabel operation is easier to explain in the
context of labeling problems; therefore first we formulate the multiway cut problem as
a labelling problem. In the labelling version of the multiway cut problem we are given
a weighted graph G = (V,E), a set of terminals T = {t1, t2, . . . , tk} ⊆ V , and a set of
labels L = {l1, l2, . . . , lk}; the goal is to assign to each node a label from L in such a
way that the terminals have different labels and the sum of the weights of the edges that
have their endpoints labelled with two different labels is minimized. An example of the
labelling version of the multiway cut problem is shown in Figure 1.11, where k = 4 and
L = {l1, l2, l3, l4}. Figure 1.11 illustrates one possible labelling f that defines partitioning
P = {V1, V2, V3, V4} where all nodes in Vi are labelled li, for all i = {1, 2, 3, 4}. Since
partitioning P is the same as that shown in Figure 1.10 the cost of P is 14.
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Figure 1.11: Instance of the labelling version of the multiway cut problem.

It is not hard to see that there is a one-to-one correspondence between instances
of the multiway cut problem and instances of the above labelling problem. Therefore,
a solution P = {V1, V2, . . . , Vk} for the multiway cut problem determines a labeling f
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where all the nodes in partition Vi are assigned label li, and viceversa, a solution f to
the labeling problem determines a partitioning P in which all the nodes labeled li form
a partition Vi (see Figures 1.10 and 1.11).

Given a labelling f for the vertices of a graph G = (V,E), a relabel operation changes
the labels of the nodes in some set A ⊆ V \ T to a given label α leaving the labels of all
other nodes unchanged. Formally, given a labelling f for the vertices, a set A of vertices,
and a label α, relabel operation R〈A,α, f〉 is defined as follows,

R〈A,α, f〉 := f(u) = α, ∀u ∈ A.

As an example, the cost of the labelling f in the graph on the left side of Figure 1.12
can be improved from 16 to 11 by performing R〈{p, q}, l3, f〉.
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Figure 1.12: Example of a relabel operation R〈A,α, f〉, where A = {p, q} and α = l3.

1.6.3 The Constrained Max k-cut Problem on Hypergraphs

Another well-known combinatorial optimization problem is the max k-cut problem. In
the max k-cut problem we are given a weighted graph G = (V,E) and an integer k, and
the goal is to divide the set V into k non-empty partitions in such a way that the sum
of the weights of the edges having their endpoints in different partitions is maximized.
An instance of the max k-cut problem is shown in Figure 1.13 where k = 4. Partition
P = {V1, V2, V3, V4} is one possible solution to the problem; the dashed edges are the
edges that contribute to the weight of the partition as shown in the figure.
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w

V1

V2

V3V4

Figure 1.13: Instance of the max k-cut problem.

A hypergraph H = (V,E) consist of a set V of nodes and a set E of hyperdges.
A hyperedge e consists of a set of nodes or endpoints. The size of a hyperedge e is
the number of its endpoints. Graphs are special cases of hypergraphs in which all the
hyperedges have size 2.

In the max k-cut problem on hypergraphs the goal is to split the vertices into k
partitions in such a way that the sum of the weights of the hyperedges having at least two
endpoints in different partitions is maximized. An instance of the max k-cut problem on
hypergraphs where k = 3 is shown in Figure 1.14. Let (u1, u2, . . . , ur) denote hyperedge
e where u1, u2, . . . , ur are its endpoints. The hypergraph H in Figure 1.14 consist of the
following hyperedges: e1 = (v1, v2), e2 = (v2, v3, v4), e3 = (v1, v5), e4 = (v4, v6, v7, v8)
and e5 = (v4, v5, v8). Let the weights of the hyperedges e1, e2, e3, e4, e5 are 2, 3, 1,
4, 1 respectively. The cost of the partition P = {V1, V2, V3} shown in Figure 1.14 is 9,
since each one of the hyperedges e2, e3, e4 and e5 have at least two endpoints located in
different partitions.

e1

e2 e4
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v1

v2

v3

v5

v4

v6

v7
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e2

e3

e4

e5
e4

V1 V2 V3

Figure 1.14: Instance of the max k-cut problem on hypergraphs.

The constrained max k-cut problem on hypergraph is a generalization of the max
k-cut problem on hypergraphs in which there is an additional set c of constraints that
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each feasible solution must satisfy. We designed a local search approximation algorithm
for this problem that uses two types of local operations: Move one node u from one
partition to another, and swap a node u from some partition with a node v in a different
partition.

An example of these local operations is shown in Figure 1.15. In Figures 1.15 a1, a2

node u in partition Vi is moved to a different partition Vl, and in Figures 1.15 b1, b2 node
u in partition Vi is swapped with node v in partition Vl. Observe that by performing
the move operation the costs of all the edges incident on u with their other endpoints
in Vi are added to the cost of the solution (see Figure 1.15 (a2)), while the costs of all
the edges incident on u with their other endpoints in Vl no longer contribute to the cost
of solution (see Figure 1.15 (a1)). By performing the swap operation, the costs of all
the edges incident on u with their other endpoints in Vi (see Figure 1.15 (b2)) plus those
of all the edges incident on v with their other endpoints in Vl (see Figure 1.15 (b2)) are
added to the cost of the solution, while the costs of all the edges incident on u with their
other endpoints in Vl (see Figure 1.15 (b1)) and the costs of all the edges incident on v
with their other endpoints in Vi (see Figure 1.15 (b1)) no longer contribute to the cost of
solution.

Let P = V1, V2, . . . , Vk be any partition of the set of vertices. The neighborhood of
P includes all the partitions that can be obtained from P by performing the two above
local operations.

u

Vi

Vl

(a1)

vv

u

Vi

Vl

(a2)

u

Vi
Vl

u

Vi
Vl

(b1) (b2)

Figure 1.15: Example of local operations. The dashed edges in Figures (a1) and (b1) are
the edges that are added to the cost of the solution after performing the corresponding
local operation. The dashed edges in Figures (a2) and (b2) are the edges that no longer
contribute to the cost of the solution after performing the local operation.
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1.7 Organization of the Thesis

In Chapter 2 we include an article titled ”Analysis of a local search algorithm for the k-
facility location problem” published in the journal RAIRO-Theoretical Informatics and
Appplications [21]. In this paper we present a local search algorithm for the metric
k-facility location problem and give two different bounds for the locality gap of the
algorithm, one matching the best known locality gap for the problem and a second one
that is better for many cases.

In Chapter 3 we include an article titled ”A local search algorithm for the multiway
cut problem” that is currently under review in Journal of Computer and System Sciences.
In this paper we present a local search algorithm for the mulitway cut problem and for two
variations of the problem that arise from image processing applications. Moreover, we
present a experimental comparison of the performance of our local search algorithm with
that of algorithms with the currently best known approximation ratios for the multiway
cut problem. Our experiments show that our algorithm has comparable performance to
those algorithms, but is conceptually much simpler.

In Chapter 4 we include an article titled ”A local search algorithm for the constrained
max k-cut problem on hypergraphs” that is currently under review in Journal of Applied
Mathematics and Computing. In this paper we present local search algorithms for the
constrained max k-cut problem on hypergraphs. The constrained max k-cut problem
is a generalization of the following problems: Max multiway cut, max Steiner k-cut,
capacitated max k-cut, max k-cut with given sizes of parts, and directed max k-cut.

In Chapter 5 we summarize the main contributions of our research and discuss the
approach we used to deal with the challenges of using local search in the design of
approximation algorithms; we also discuss the strengths of local search algorithms.
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Chapter 2

Analysis of a Local Search
Algorithm for the k-Facility
Location Problem

2.1 Introduction

In the k-facility location problem we are given set F of facilities, a set C of clients and
an integer value k > 0. Each facility j ∈ F has an opening cost fj and if facility j is
opened it can serve client i ∈ C at cost cij. The goal is to select a subset S of at most
k facilities that minimizes the cost of serving all the clients plus the cost of opening the
facilities in S. Let σ(j) represent the facility in S that serves client j ; then the goal is to
minimize

cost(S) = Σi∈Sfi + Σj∈Ccjσ(j).

Let costs(S) = Σj∈Ccjσ(j) and costf (S) = Σi∈Sfi denote the service cost and facility
cost of solution S respectively; then cost(S) = costs(S) + costf (S).

If the service costs satisfy the triangle inequality, the problem is known as the metric
k-facility location problem. If we eliminate the constraint on the number of facilities,
the problem is called the facility location problem. Another special case of the k-facility
location problem is when all the facility costs are zero, then the problem is known as the
k-median problem. The k-facility location problem and its variants have applications in
a large number of areas, such as banking [6], distributed systems [10], web services [12]
and network design [2].

The facility location, k-median and k-facility location problems are known to be NP-
hard. Therefore, extensive research has been done on designing approximation algorithms
for these problems. For the metric k-facility location problem Jain and Vazirani [8] ob-
tained a 6-approximation algorithm using a primal-dual technique; this approximation
ratio was improved to 4 by Jain et al. [9] using a dual fitting technique, and later Zhang
[14] used a local search approach to improve the approximation ratio to 2+

√
3+ε for any

constant ε > 0. For the metric facility location problem Shmoys, Tardos and Aardal [13]
obtained the first constant approximation algorithm by using a linear programming-based
technique. Jain and Vazirani [8] obtained a better result using a primal-dual technique

28
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yielding an algorithm with approximation ratio 3. The currently best known algorithm
for the problem is by Li [11] with approximation ratio 1.488. For the metric k-median
problem Charikar et al. [5] used a linear programming-based technique to design the first
constant ratio approximation algorithm. Charikar and Guha [3] combined a primal-dual
technique with a greedy approach and designed an improved algorithm with approxima-
tion ratio 4. Arya et al. [1] utilized a local search heuristic to design an algorithm with
approximation ratio 3 + ε for any constant ε > 0.

2.1.1 Contributions

In this paper we focus on the metric k-facility location problem and show that a local
search approach in which the only allowed operation is multi-swaps, where we can simul-
taneously swap p ≥ 1 facilities in the solution with p facilities not in the solution, has
approximation ratio max{3, 5− 2p−1

q−1
}, where q is a parameter whose value depends on

the instance and it will be defined in Section 2.3.2. For those instances when q is close
to p the approximation ratio is close to 3. We present an example showing the tightness
of our bound. Using scaling [4] we get a second bound for the approximation ratio of our

local search algorithm. This bound, 2 + 1
p

+
√

3 + 2
p

+ 1
p2

, matches the bound of the local

search algorithm of Zhang [14], which uses insertions and deletions in addition to swaps.

Our local search model is simpler than the one used by Zhang, as it uses only swaps;
therefore, our algorithm always considers solutions of the same size, and as a result the
search space that our algorithm explores is smaller than the one defined by Zhang’s model.
It is interesting that our algorithm with its more restricted set of operations achieves
the same performance as that of Zhang’s algorithm which makes use of a richer set of
operations. As a result of using a simpler model our analysis is also simpler than that
in [14]. Furthermore, with some minor changes our algorithm could find approximate
solutions with the same above approximation ratio for all instances of the k′-facility
location problem with k′ < k. Our first bound is better than the second one when
q ≤ (1 +

√
3

3
)p−

√
3

3
. In addition, for the special case when the ratio of the largest facility

cost to the smallest facility cost is less than p + 1 our first bound reduces to 3 + 2
p

the

same approximation ratio as that of the algorithm of Arya et al. [1] for the k-median
problem.

2.1.2 Organization of the Paper

The rest of the paper is organized in the following way. In Section 2.2 we propose a local
search algorithm for the k-facility location problem that uses multi-swap operations. In
Section 2.3 we analyse the local optimal solutions produced by our algorithm and compute
the first upper bound for its approximation ratio. In Section 2.4 we present an example
showing the tightness of the bound. In Section 2.5 we present a different analysis of the
algorithm and show that its approximation ratio matches that of Zhang’s algorithm.
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2.2 A Local Search Algorithm with Multiple Swaps

Let S be a set of at most k facilities. We present below a local search algorithm for the
metric k-facility location problem based on the following multi-swap operation:

swap <A,B> := (S \ A) ∪B

where A ⊆ S, B ⊆ F \ S, and |A|= |B|≤ p, for a constant p ≥ 1.

Algorithm 1 Local-Search (F , C, k)

1: Input: Set F of facilities, set C of clients and integer value k
2: Output: Local optimum solution
3: S ← any set of k facilities from F
4:

5: for i← 1 to k do
6: S ′ ← any subset of i facilities from F
7:

8: while ∃ a multi-swap operation 〈A,B〉 for S ′ such that cost((S ′ \ A) ∪ B) <
cost(S ′) do

9: S ′ ← (S ′ \ A) ∪B
10: end while
11: if cost(S) > cost(S ′) then
12: S ← S ′

13: end if
14: end for
15: return S

In steps 8-10 algorithm Local-Search repeatedly tries to improve on the current solution
S ′ by performing multi-swap operations. This process continues until no multi-swap
operation can further improve the cost of the solution; therefore the algorithm finds a
local optimal solution of size i for each 1 ≤ i ≤ k. At the end the algorithm returns the
local optimal solution S of minimum cost.

Let S∗ be an optimal solution, where |S∗|= l ≤ k. Let Sf be the final set of facilities
selected by Local Search and let Si be the set selected by the algorithm for each i =
1, ..., k. Since cost(Sf ) ≤ cost(Sl), if we could prove that cost(Sl) ≤ α cost(S∗) for
some value α then we would have proven that cost(Sf ) ≤ α cost(S∗) thus showing that
the approximation ratio of algorithm Local-Search is α. We, of course, do not know
the value of l and that is why the ”for” loop in the algorithm tries all possible values
for l. We show that for all integers i = 1, ..., k there exists a value α > 0 for which
cost(Si) ≤ α cost(S∗i ), where S∗i is an optimal solution that uses i facilities. This will
prove that cost(Sl) ≤ α cost(S∗l ) = α cost(S∗), and so cost(Sf ) ≤ α cost(S∗). Therefore,
without loss of generality, in the sequel we analyse only the case when the local optimal
solution and global optimal solution have the same size.

The locality gap of a local search algorithm for a minimization problem is defined as
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the maximum ratio of the value of any local optimum solution produced by the algorithm
to the corresponding global optimum value. The locality gap of Local-Search is then equal
to its approximation ratio.

To compute the locality gap of algorithm Local-Search we consider a set Q of swap
operations involving the facilities in the local optimum solution S and facilities from a
global optimum solution S∗. Since S is a local optimum solution, then for each multi-swap
operation 〈Ai, Bi〉 ∈ Q, where Ai ⊆ S and Bi ⊆ S∗,

cost((S \ Ai) ∪Bi) ≥ cost(S). (2.1)

Hence, for each s ∈ S and o ∈ S∗,

cost((S \ s) ∪ o) ≥ cost(S), and so (2.2)

cost((S \ s) ∪ o)− cost(S) ≥ 0 (2.3)

Note that algorithm Local-Search might not run in time that is polynomial in the size of
the input as every iteration of the ”while” loop might only provide a marginal improve-
ment in the cost of the solution so it might require a very large number of iterations to
find a local optimum solution. We can proceed as in [1] to ensure a polynomial running
time: Replace the condition of the ”while” loop as follows:

while ∃ a multi-swap operation 〈A,B〉 for S ′ such that cost((S ′ \ A) ∪ B) ≤ (1 −
ε
|Q|)cost(S

′) do

where ε > 0 is a constant. Every iteration of this loop decreases the value of the solution
by at least a factor of ε

|Q| , hence the total number of iterations is at most

log(cost(S))− log(cost(S∗))

log( |Q||Q|−ε)
≤ log(k) + log(fmax) + log(n) + log(cmax)

log( |Q||Q|−ε)

where fmax = max {fi | i ∈ F}, n = |C| and cmax = max {cji | i ∈ F, j ∈ C}. The above
inequality holds because cost(S) ≤ k fmax + n cmax and without loss of generality we can
assume cost(S∗) ≥ 1.

The set Q that we consider contains no more than k2 + k multi-swap operations as
explained in Sections 2.3.2 and 2.5.2, so the total number of iterations performed by
Local-Search is at most
[log(k) + log(fmax) + log(n) + log(cmax)] /log

(
1 + ε

k2+k−ε

)
<

[log(k) + log(fmax) + log(n) + log(cmax)] (2k2 + k)/ε.
Each iteration of the ”while” loop needs to consider at most (k|F |)p different sets

A and B, which is polynomial for p constant. Therefore, the time complexity of the
algorithm is polynomial in the size of the input. In the following sections we will show
that

0 ≤
∑

〈Ai,Bi〉∈Q

[cost((S \ Ai) ∪Bi)− cost(S)] ≤ α cost(S∗)− cost(S) (2.4)

for some constant α. Therefore, the locality gap of algorithm Local-Search is α. Hence,
note that with the new termination condition of the ”while” loop we could not use
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inequality (2.4) to bound the locality gap, as the modified algorithm would not produce
a local optimum solution, but only a solution S for which for any A ⊆ S and B ⊆ F ,

cost((S \ A) ∪B) >
(

1− ε
|Q|

)
cost(S).

Observe that if we can prove (2.4) for any local optimum solution S ′ then cost(S ′) ≤
α cost(S∗). However, for the solution S obtained by the modified algorithm we know

that cost((S \ Ai) ∪ Bi) >
(

1− ε
|Q|

)
cost(S) for each 〈Ai, Bi〉 ∈ Q; therefore, we have to

modify (2.4) as follows:

α cost(S∗)− cost(S) ≥
∑

〈Ai,Bi〉∈Q

[cost((S \ Ai) ∪Bi)− cost(S)] >

− ε

|Q|
∑

〈Ai,Bi〉∈Q

cost(S) = −ε cost(S).

Hence cost(S) ≤ α
1−εcost(S

∗).

In the rest of the paper we will prove inequality (2.4) for any local optimum solution
and some value α. Then, by the above argument we will have proven that our algorithm
with the modified ”while” condition has approximation ratio α

1−ε .

2.3 First Bound for the Locality Gap

Since in a local optimum solution S no multi-swap operation can improve its cost, then
for any multi-swap operation 〈A,B〉 the following inequality is satisfied:

cost((S \ A) ∪B) ≥ cost(S). (2.5)

S

S*

Figure 2.1: Mapping π maps each o ∈ S∗ to its closest facility π(o) ∈ S.

We define a mapping π similar as the mapping η in [7] as follows: π : S∗ → S
maps each facility o in the optimum solution to its closest facility π(o) ∈ S breaking ties
arbitrarily; hence, coπ(o) ≤ cos for all s ∈ S. The map π can be represented as a bipartite
graph as shown in Figure 2.1. For each facility s ∈ S, let the (in-)degree of s in this
bipartite graph be deg(s) = |π−1(s)|. If deg(s) ≥ 2 then we call s a bad facility otherwise
we call it a good facility.
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2.3.1 Pairing

To bound the cost of the local optimum solution S produced by our algorithm we will
use several sets of multi-swap operations involving facilities from S and facilities from S∗.
These sets of multi-swap operations are chosen so that combining the local optimality
condition (2.5) for all of them allows us to bound the cost of S in terms of the cost of
S∗. To this end we first use algorithm Partition below to divide S and S∗ into subsets of
facilities that will participate in the swaps. More specifically, S and S∗ are partitioned
into sets A1, A2, ..., Ar and B1, B2, ..., Br respectively, where |Ai|= |Bi| for all 1 ≤ i ≤ r
and r − 1 is equal to the number of bad facilities.

Algorithm 2 Partition (S, S∗)

1: Input: Local optimum solution S and global optimum solution S∗

2: Output: Partition (A1, A2, ..., Ar) of S and (B1, B2, ..., Br) of S∗

3: for i← 1 to r − 1 do
4: Ai ← {b} ∪ {any deg(b)− 1 facilities of S with degree 0}, where b ∈ S is any bad

facility
5: Bi ← π−1(b)
6: S ← S \ Ai
7: S∗ ← S∗ \Bi

8: end for
9: Ar ← S

10: Br ← S∗

11: return (A1, A2, ..., Ar), (B1, B2, ..., Br)

Note the following facts:

I. In Step 4 there are enough facilities s with degree 0 since |S|= |S∗|.

II. For any sets Ai and Bi, where 1 ≤ i < r if o ∈ S∗ \Bi, then π(o) 6∈ Ai.

III. For each facility s ∈ Ar, π−1(s) = o ∈ Br. To see this note that for each facility
o ∈ Br it must be that π(o) ∈ Ar because if π(o) ∈ Ai for i 6= r, then o would
belong to Bi. Since |Ar|= |Br| and Ar only includes good facilities, then for all
s ∈ Ar, deg(s) = 1 and so π−1(s) ∈ Br.

We pair the facilities in S with those in S∗ as follows:

• For 1 ≤ i ≤ r − 1 each set Ai is paired with set Bi.

• Each facility s ∈ Ar is paired with o ∈ Br, where o = π−1(s).

Note that if we consider multi-swaps 〈Ai, Bi〉 for 1 ≤ i ≤ r − 1 and single swaps
〈s, π−1(s)〉 for all s ∈ Ar, then each facility in S and S∗ would participate in one swap
operation and adding all inequalities (2.5) for these swaps would allow us to bound the
cost of S in terms of the cost of S∗. However, since we are only allowed to swap at most
p facilities simultaneously, then the above multi-swap operations would not be allowed
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for those sets Ai and Bi whose size exceeds p. Therefore, we need to consider a different
approach for these pairs. Algorithm Partition-2 further splits those sets Ai and Bi, where
|Ai|= |Bi|> p, and constructs core subsets Âi ⊂ Ai and B̂i ⊂ Bi, where |Âi|= |B̂i|= p;
Âi includes the bad facility in Ai and B̂i is built by finding a closest facility to each one
of the facilities in Âi.

Algorithm 3 Partition-2 (A1, A2, ..., Ar, B1, B2, ..., Br)

1: Input: Partition (A1, A2, ..., Ar) of S and (B1, B2, ..., Br) of S∗

2: Output: Core subsets Âi and B̂i for all those sets Ai and Bi for which |Ai|= |Bi|> p
3: for i← 1 to r − 1 do
4:

5: if |Ai|> p then
6: Âi ← {b} ∪ {any p− 1 facilities of Ai − b}, where b ∈ Ai is the bad facility in
Ai

7: B̂i ← {}
8: A′i ← Âi
9:

10: for i← 1 to p do
11: ai ← any facility from A′i
12: bi ← nearest facility to ai, where bi ∈ Bi

13: B̂i ← {bi} ∪ B̂i

14: A′i ← A′i \ {ai}
15: end for
16: end if
17: end for
18: return (Â1, Â2, ..., Âr−1), (B̂1, B̂2, ..., B̂r−1)

For sets Ai and Bi, where 1 ≤ i < r and |Ai|= |Bi|> p, we pair their facilities as
follows:

• Âi is paired with B̂i.

• Each facility in Ai \ Âi is paired with a facility in Bi \ B̂i so that each facility is
paired once.

In the following sections, we will bound the cost of the local optimum solution S produced
by our algorithm in terms of the cost of a global optimum solution S∗ by considering
swap operations involving the above pairs of facilities.

The idea behind the pairings. As mentioned above π maps each facility in S∗ to its
closest facility in S. To get some intuition as to why this is done, consider that facility
s ∈ S is close to exactly one facility o ∈ S∗ and far away from rest of facilities in S∗. Then
if we swap s and o, we close facility s and open facility o reassigning the clients of s to o;
this does not change the cost the solution too much, which means that the contribution
of facility s to the cost of the solution is similar to the contribution of facility o to the cost
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of the optimum solution. However, if s is close to several facilities in S∗ then performing
a swap between s and the closest facility o ∈ S∗ might suggest a large difference between
the cost of S and the cost of (S \{s})∪{o} because re-assigning a client j of s to o might
have a much larger cost than assigning j to its closest facility in S∗. That is the reason
why we call the facilities in S with degree larger than one bad and others ”good” and
why a ”bad” facility b is not swapped in our analysis with a single facility from S∗, but
instead a set of facilities containing b is swapped with a set of nearby facilities from S∗.

2.3.2 Analysing the Swaps

Let sj = cjσ(j) and oj = cjσ∗(j) be the service costs of client j in solutions S and S∗

respectively, where σ(j) is the facility closest to j in S and σ∗(j) is the facility closest
to j in S∗. Let NS(s) = {j | σ(j) = s} be the set of clients that are served by facility s
in the local optimal solution and N∗S(o) = {j | σ∗(j) = o} is the set of clients that are
served by o in the global optimal solution. We extend these definitions to sets Ai ⊆ S
and Bi ⊆ S∗, so NS(Ai) is the set of clients that are served by facilities in Ai in S and
N∗S(Bi) are those clients that are served by Bi in S∗.

All the lemmas of this section are about bounding the cost increase caused by a swap
operation 〈A,B〉, where A ⊆ S and B ⊆ F \ S, and they are all based on the fact that
cost((S \ A) ∪ B) − cost(S) ≥ 0. In these lemmas we introduce a new assignment of
client to facilities after the swap 〈A,B〉 is performed and bound the service cost of this
assignment. More specifically, some of the clients j are re-assigned to π(σ∗(j)). The
following lemma bounds the cost of serving client j by π(σ∗(j)).

Lemma 1 (Cost Bounding) cjπ(σ∗(j)) ≤ 2oj + sj.

Proof

cjπ(σ∗(j)) ≤ cjσ∗(j) + cσ∗(j)π(σ∗(j)) (2.6)

≤ cjσ∗(j) + cσ∗(j)σ(j) (2.7)

≤ cjσ∗(j) + cjσ∗(j) + cjσ(j) = 2oj + sj. (2.8)

Inequalities (2.6) and (2.8) follow from the triangle inequality and (2.7) is true since
π(σ∗(j)) is the nearest facility in S to σ∗(j) (see Figure 2.2).

Multi-Swaps for Sets Ai and Bi where |Ai|= |Bi|≤ p

Lemma 2 For each swap 〈Ai, Bi〉 where |Ai|= |Bi|≤ p and 1 ≤ i < r,

(2.9)
∑
o ∈Bi

fo −
∑
s ∈Ai

fs +
∑

j ∈NS∗ (Bi)

(oj − sj) +
∑

j ∈NS(Ai)

2oj ≥ 0.

Proof By performing swap 〈Ai, Bi〉, facilities in Ai are closed and those in Bi are opened.
Therefore, the clients j ∈ NS(Ai) need to be re-assigned to the facilities in (S \Ai)∪Bi.
To bound the cost of the new solution let us consider the following assignment of clients
to facilities:
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1. Assign all the clients in N∗S(Bi) to facilities in Bi in the same way in which they
are assigned in S∗.

2. Assign each client j in NS(Ai) \N∗S(Bi) to ŝ = π(o), where o = σ∗(j) is the facility
closest to j in S∗. Note that π(o) is the closest facility to o in S and π(o) 6∈ Ai by
Fact II in Section 2.3.1 (see Figure 2.2).

S

S*

j

 

Ai

Bi

σ(j) 

σ*(j) 

ŝ=π(σ*(j))   

Figure 2.2: Client j ∈ NS(Ai)\N∗S(Bi) is assigned to ŝ = π(σ∗(j)). Note that σ∗(j) 6∈ Bi

and π(σ∗(j)) 6∈ Ai.

3. The assignment of all other clients to facilities remains unchanged.

The difference in cost between solution S and (S \Ai)∪Bi caused by re-assigning client
j ∈ N∗S(Bi) to σ∗(j) is oj − sj. Adding these cost changes over all clients in N∗S(Bi) we
obtain the third term in (2.9). For clients j ∈ NS(Ai) \N∗S(Bi) using Lemma 1 the cost
change is bounded by 2oj. Adding these changes over all clients in NS(Ai)\N∗S(Bi) gives∑

j∈NS(Ai)\N∗S(Bi)
2oj. The fourth term in (2.9) is obtained by considering the fact that∑

j∈NS(Ai)\N∗S(Bi)
2oj ≤

∑
j∈NS(Ai)

2oj. Finally, the first two terms in (2.9) are the result

of adding the costs of the opened facilities in Bi and subtracting the costs of the closed
facilities in Ai.

Swaps for Sets Ai and Bi where |Ai|= |Bi|> p

If |Ai|= |Bi|= qi > p, we perform three different sets of swaps involving these facilities.
First, we perform the swap 〈Âi, B̂i〉.

Lemma 3 For each swap 〈Âi, B̂i〉,

(2.10)
∑
o ∈B̂i

fo −
∑
s ∈Âi

fs +
∑

j ∈NS∗ (B̂i)

(oj − sj) +
∑

j∈NS(Âi)\NS∗(B̂i)

π(σ∗(j))∈Âi

(oj + sj) +
∑

j∈NS(Âi)\NS∗(B̂i)

π(σ∗(j)) 6∈Âi

2oj ≥ 0.
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Proof Since Âi and B̂i are subsets of Ai and Bi respectively, then Fact II in Section
2.3.1 might not hold for them. In other words for some clients j ∈ NS(Âi) \ N∗S(B̂i) it
might be that π(σ∗(j)) ∈ Âi. Therefore, if we want to proceed similarly as in the proof of
Lemma 2 we need to define a new re-assignment for clients j ∈ NS(Âi)\N∗S(B̂i) for which
π(σ∗(j)) ∈ Âi. Consider the following assignment of clients to facilities in (S \ Âi) ∪ B̂i:

1. Assign client j ∈ N∗S(B̂i) to σ∗(j) ∈ B̂i; this changes the cost of S by oj − sj.

Adding these cost changes over all clients in N∗S(B̂i) gives the third term in (2.10).

2. Assign each client j in NS(Âi) \N∗S(B̂i) such that π(σ∗(j)) 6∈ Âi to π(σ∗(j)). Using
Lemma 1 the cost increase per client j for this reassignment is 2oj. Adding these
cost increases over all these clients gives us the fifth term in (2.10).

3. Consider a client j ∈ NS(Âi) \N∗S(B̂i) for which π(σ∗(j)) ∈ Âi. Let s ∈ Âi be the
facility serving j in S and o ∈ B̂i be the closest facility to s; client j is assigned to
o. Let o′ be the facility serving j in S∗. The change in cost caused by reassigning
client j to o is cjo − sj. Note that

cjo − sj ≤ cjs + cso − sj (2.11)

≤ cjs + cso′ − sj (2.12)

≤ cjs + cjs + cjo′ − sj = oj + sj. (2.13)

Inequalities (2.11) and (2.13) hold because of the triangle inequality and (2.12) is
true because o is closer to s than o′. Adding these cost increases over all client in
NS(Âi) \N∗S(B̂i) for which π(σ∗(j)) ∈ (Âi) gives us the fourth term in (2.10).

4. The assignment of the rest of the clients to facilities remains unchanged.

Finally, the first two terms in (2.10) are the result of adding the costs of all the opened
facilities in B̂i and subtracting the cost of the closed ones in Âi.

Note that the fourth term in inequality (2.10) includes the service cost sj for some clients
as a positive term. Since our goal is to find an upper bound for the cost of the local
optimum solution S, the appearance of these positive service costs sj on the left side of
(2.10) is problematic. To get rid of these terms we perform a second set of swaps for
pairs 〈s, o〉, where s ∈ Ai \ Âi and o ∈ Bi \ B̂i.

Corollary 2.3.1 For each swap 〈s, o〉 where s ∈ Ai \ Âi and o ∈ Bi \ B̂i,

(2.14)fo − fs +
∑

j∈NS∗ (o)∩NS(Âi),

π(σ∗(j))∈Âi

(oj − sj) +
∑

j ∈NS(s)

2oj ≥ 0.

(2.15)fo − fs +
∑

j∈NS∗ (o)

(oj − sj) +
∑

j ∈NS(s)

(oj + oj + sj − sj) ≥ 0.
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Proof In Lemma 2 replace Ai with s and Bi with o and change the first and second
re-assignment of clients to facilities as follows:

1. Assign all clients j ∈ NS∗(o) ∩NS(Âi) such that π(σ∗(j)) ∈ Âi to o.

2. Assign all clients j ∈ NS(s) to π(σ∗(j)). Note that this is a valid assignment
because s is a good facility with degree 0; therefore, π(o) 6= s for every facility
o ∈ S∗.

Lemma 4 For each i = 1, ..., r − 1 such that |Ai|= |Bi|> p,

(2.16)
∑

o ∈Bi\B̂i

fo −
∑

s ∈Ai\Âi

fs +
∑

j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))∈Âi

(oj − sj) +
∑

j ∈NS(Ai)\NS(Âi)

2oj ≥ 0.

Proof By Fact II in Section 2.3.1 , for any sets Ai and Bi, where 1 ≤ i < r, if o ∈ S∗ \Bi

then π(o) 6∈ Ai; thus, if π(o) ∈ Ai then o ∈ Bi. Consequently, for a client j ∈ NS(Âi)
if π(σ∗(j)) ∈ Âi then j belongs to N∗S(Bi); therefore, {j | j ∈ NS(Âi), π(σ∗(j)) ∈ Âi} ⊆
N∗S(Bi) and so {j | j ∈ N∗S(Bi) ∩ NS(Âi), π(σ∗(j)) ∈ Âi} = {j | j ∈ NS(Âi), π(σ∗(j)) ∈
Âi}. Hence,

{j | j ∈ [N∗S(Bi) \N∗S(B̂i)] ∩NS(Âi), π(σ∗(j)) ∈ Âi} =

{j | j ∈ [N∗S(Bi) ∩NS(Âi)] \N∗S(B̂i), π(σ∗(j)) ∈ Âi} =

{j | j ∈ NS(Âi) \N∗S(B̂i), π(σ∗(j)) ∈ Âi}. (2.17)

Adding inequality (2.15) over all facilities o ∈ Bi \ B̂i and s ∈ Ai \ Âi and using (2.17)
we get (2.16).

As mentioned before since we do not want the positive service cost sj in the left side of
(2.10), we add (2.10) and (2.16) to discard the undesired terms

(2.18)
∑
o ∈Bi

fo −
∑
s ∈Ai

fs +
∑

j ∈NS∗ (B̂i)

(oj − sj) +
∑

j ∈NS(Ai)

2oj ≥ 0.

To get the fourth term in (2.18) note that adding the third term in (2.16) and the fourth
term in (2.10) we get ∑

j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))∈Âi

(oj − sj) +
∑

j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))∈Âi

(oj + sj) =
∑

j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))∈Âi

2oj.

Adding the right hand side of the above equality and the fifth term in (2.10) yields∑
j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))∈Âi

2oj +
∑

j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))6∈Âi

2oj =
∑

j∈NS(Âi)\N∗S(B̂i)

2oj.
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Finally, adding the right hand side of the above equality and the fourth term in (2.16)
we get ∑

j∈NS(Âi)\N∗S(B̂i)

2oj +
∑

j∈NS(Ai)\NS(Âi)

2oj ≤
∑

j∈NS(Ai)

2oj.

As our goal is to find an upper bound for cost(S), we note that the left hand side of
inequality (2.18) is missing the service cost of the clients that are served by facilities in
Bi \ B̂i. To include this missing cost we perform a third set of swaps, where each good
facility in Ai is swapped with every facility in Bi \ B̂i.

Corollary 2.3.2 For each swap 〈s, o〉 where s is a good facility in Ai and o ∈ Bi,

(2.19)fo − fs +
∑

j ∈NS∗ (o)

(oj − sj) +
∑

j ∈NS(s)

2oj ≥ 0.

Proof In Lemma 2 replace Ai with s and Bi with o and note that assigning all clients
j ∈ NS(s) \ NS∗(o) to π(σ∗(j)) is a valid assignment because s is a good facility and so
s 6= π(o) for all o ∈ S∗.

Let bi be the bad facility in Ai and let qi = |Ai|= |Bi|. Adding the inequality (2.19)
for all pairs 〈s, o〉 ∈ (Ai − bi)× (Bi \ B̂i), we get

(2.20)(qi − 1)
∑

o ∈Bi\B̂i

fo − (qi − p)
∑

s ∈Ai−bi

fs + (qi − 1)
∑

j ∈N∗S(Bi)\N∗S(B̂i)

(oj − sj) + (qi − p)
∑

j ∈NS(Ai−bi)

2oj ≥ 0.

Observe that each facility o ∈ Bi is swapped qi − 1 times, therefore facility cost fo and
service cost change oj − sj for clients j ∈ NS∗(Bi) \ NS∗(B̂i) are added qi − 1 times. In
addition, each good facility s ∈ Ai is swapped qi−p times, therefore facility cost −fs and
service cost 2oj (the fourth term in (2.19)) for clients j ∈ NS(s) are added qi − p times.

Multiplying (2.20) by 1
qi−1

and adding to (2.18) we get

(2.21)

∑
o ∈Bi

fo +
∑

o ∈Bi\B̂i

fo −
∑
s ∈Ai

fs −
qi − p
qi − 1

∑
s ∈Ai−bi

fs

+
∑

j ∈NS∗ (Bi)

(oj − sj) +
∑

j ∈NS(Ai)

2oj +
qi − p
qi − 1

∑
j ∈NS(Ai−bi)

2oj ≥ 0.

Using
∑

o∈Bi\B∗i
fo ≤

∑
o∈Bi

fo,
qi−p
qi−1

∑
s∈Ai−bi fs > 0 and

∑
j∈NS(bi)

2oj > 0 in (2.21) we
get

(2.22)2
∑
o ∈Bi

fo −
∑
s ∈Ai

fs +
∑

j ∈NS∗ (Bi)

(oj − sj) +

(
2− p− 1

qi − 1

) ∑
j ∈NS(Ai)

2oj ≥ 0.
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Single Swaps for Facilities in Sets Ar and Br

Corollary 2.3.3 For each swap 〈s, o〉, where s ∈ Ar has been paired with o ∈ Br,

(2.23)fo − fs +
∑

j ∈NS∗ (o)

(oj − sj) +
∑

j ∈NS(s)

2oj ≥ 0.

Proof In Lemma 2 replace Ai with s and Bi with o and note that assigning all clients
j ∈ NS(s) \NS∗(o) to π(σ∗(j)) is a valid assignment since if j 6∈ NS(o) then π(σ∗(j)) 6= s
as s = π(o) for each pair (s, o) in sets Ar and Br.

Adding the inequalities (2.23) for all pairs (s, o) in sets Ar and Br we get

(2.24)
∑
o ∈Br

fo −
∑
s ∈Ar

fs +
∑

j ∈NS∗ (Br)

(oj − sj) +
∑

j∈NS(Ar)

2oj ≥ 0.

Putting It All Together

Let G ⊆ S be the set of facilities in all sets Ai, 1 ≤ i < r for which |Ai|> p. These
facilities are swapped with some facilities in S∗ as explained in Section 2.3.2; let G∗ ⊆ S∗

be this set of facilities. Let I = {i | 1 ≤ i < r, |Ai|> p} and Ic = {i | 1 ≤ i < r, |Ai|≤ p}.
Adding inequalities (2.9) for all sets Ai, i ∈ Ic, inequalities (2.22) for all sets Ai, i ∈ I,
and inequality (2.24) we get

∑
o ∈S∗

fo +
∑
o ∈G∗

fo −
∑
s ∈S

fs +
∑
j ∈C

(oj − sj) +
∑

j ∈C\NS(G)

2oj +
∑
i ∈I

(2− p− 1

qi − 1

) ∑
j∈NS(Ai)

2oj

 ≥ 0.

(2.25)

Lemma 5 ∑
i∈I

(2− p− 1

qi − 1

)∑
j∈NS(Ai)

2oj

 ≤ (2− p− 1

q − 1

)∑
j∈NS(G)

2oj

where q = max {qi| i ∈ I}.

Proof The lemma follows since 2oj is positive.

Using Lemma 5 inequality (2.25) can be rewritten as follows:

(2.26)
∑
o ∈S∗

fo +
∑
o ∈G∗

fo −
∑
s ∈S

fs +
∑
j ∈C

(oj − sj) +
∑
j ∈C

2oj +

(
1− p− 1

q − 1

) ∑
j ∈NS(G)

2oj ≥ 0.

The fifth term in (2.26) is obtained by adding
∑

j∈NS(G) 2oj to the fifth term of (2.25)

and the sixth term in (2.26) is obtained by subtracting
∑

j∈NS(G) 2oj from the last term

of (2.25).
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Since
∑

j∈NS(G) 2oj ≤
∑

j∈C 2oj, G ⊆ S, and all the facility and service costs are
positive then

0 ≤ 2
∑
o∈S∗

fo −
∑
s∈S

fs +
∑
j∈C

(oj − sj) +

(
2− p− 1

q − 1

)∑
j∈C

2oj

= 2costf (S
∗) +

[
5− 2

(
p− 1

q − 1

)]
costs(S

∗)− costf (S)− costs(S).

Therefore, since p < q and so
[
5− 2

(
p−1
q−1

)]
> 2, then[

5− 2

(
p− 1

q − 1

)]
(costf (S

∗) + costs(S
∗)) ≥ costf (S) + costs(S).

Notice that if no set Ai has size larger than p then the swaps considered in Section 2.3.2
are not needed and in that case it can be shown that

3(costf (S
∗) + costs(S

∗)) ≥ costf (S) + costs(S).

THEOREM 2 The locality gap of the local search algorithm where the only operation

allowed is multiple swaps is max{3, 5 − 2
(
p−1
q−1

)
}, where q is the size of the largest set

Ai.

The total number of multi-swap operations considered in Lemmas 2 and 3 and Corollaries
1 and 3 is at most k. The number of multi-swap operations considered in Corollary 2 is
at most k2. Therefore, the number of multi-swap operations considered by our analysis
is at most k2 + k.

2.3.3 Special Case When the Ratio of the Biggest Facility Cost
to the Smallest Facility Cost Is Less Than p+ 1

Add inequality (2.19) for all pairs 〈s, o〉 ∈ (Ai− bi)×Bi and then multiply by 1
qi−1

to get

(2.27)
∑
o ∈Bi

fo −
qi

qi − 1

∑
s ∈Ai−bi

fs +
∑

j ∈N∗S(Bi)

(oj − sj) +
qi

qi − 1

∑
j ∈NS(Ai−bi)

2oj ≥ 0.

Since the ratio of the biggest facility cost to the smallest facility cost is less than p + 1
then

∑
o∈Bi

fo− fbi ≥ 0. Also, since qi ≥ p+ 1 then p+1
p
≥ qi

qi−1
. Therefore, if we add the

following non-negative terms
∑

o∈Bi
fo− fbi , 1

qi−1

∑
s∈Ai−bi fs,

qi
qi−1

∑
j∈NS(bi)

2oj to (2.27)

and replace qi
qi−1

with p+1
p

we get

(2.28)2
∑
o ∈Bi

fo −
∑
s ∈Ai

fs +
∑

j ∈NS∗ (Bi)

(oj − sj) +
p+ 1

p

∑
j ∈NS(Ai)

2oj ≥ 0.
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If we proceed similarly as in Section 2.3.2 and add inequalities (2.9) for all sets Ai, i ∈ Ic,
inequalities (2.28) for all sets Ai, i ∈ I, and inequality (2.24), we get[

3 +
2

p

]
(costf (S

∗) + costs(S
∗)) ≥ costf (S) + costs(S).

THEOREM 3 The locality gap of the local search algorithm where the only operation
allowed is multiple swaps for the special case when the ratio of the biggest facility cost to
the smallest facility cost is less than p+ 1 is 3 + 2

p
.

2.4 Tight Example

Figure 2.3 illustrates an instance of the k-facility location problem showing a locality gap
of 4.5 for p = 2 and q = 5, matching the locality gap stated in Theorem 1. In Figure 2.3
the pentagonal nodes form the global optimal solution S∗ = {o1, o2, ..., ok}, the square
nodes are the local optimal solution S = {s1, s2, ..., sk}, and the circular nodes are the
clients. The facility costs are the integers inside the nodes and the service costs are equal
to the lengths of the shortest paths between the corresponding nodes. The length of each
edge is shown beside the edge and if there is no path between two nodes the distance
between them is infinity.
In the instance shown in Figure 2.3, cost(S) = 18k−52

5
and cost(S∗) = 4k+4

5
, therefore

the locality gap is 18k−52
4k+4

which approaches 4.5 as k grows. We now prove that S is
locally optimal by considering all possible swaps. Let set {si, sj} ⊂ S be swapped with
{ol, om} ⊂ S∗.

1. If i, j ≤ u = k−4
5

, then ol and om should lie in the same connected components
containing si and sj, so this swap increases the cost by 4.

2. If i ≤ u < j, then one of ol, om should lie in the same connected component as si.
Without loss of generality, consider that ol lies in the same component as si. If om
lies in the same component also, the cost remains unchanged. If m ≤ k− 4 and om
lies in a different component than si the cost increases by 2. If m > k − 4 the cost
increases by 3.5.

3. If i, j > u, there are three cases that need to be considered. First, if l,m ≤ k − 4
the cost remains unchanged. Second, if l ≤ k − 4 < m then the cost increases by
1. Third, if k − 4 < l,m the cost increases by 2.

The example can be generalized to arbitrary values of p ≥ 2 and q ≥ p+3 as shown
in Figure 2.4. The local optimal solution is S = {s1, s2, ..., sk} and the global op-

timal solution is S∗ = {o1, o2, ..., ok}. The cost of S is [5(q−1)−2(p−1)]k−[(q−1)(4q−2p−3)]
q

and the cost of S∗ is (q−1)k+(q−1)
q

, so the locality gap is 5(q−1)−2(p−1)
q−1

= 5− 2
(
p−1
q−1

)
.

Note that in our tight example k must be much larger than q.

The proof that S is locally optimal is similar as that for the case p = 2 and q = 5,
but it involves many more cases.
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Figure 2.3: Tight example for p = 2 and q = 5.
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Figure 2.4: Tight example for arbitrary p and q.

2.5 Scaling the Costs

We now perform a different analysis of our algorithm which yields the same bound for
the locality ratio as that of the algorithm by Zhang [14] which uses facility insertions
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and removals in addition to swaps. The idea is to multiply each facility cost by some
value β > 0 and then compute a local optimal solution for the new problem. By carefully
choosing the value of β and some set of swap operations involving facilities from the
local optimum solution and a global optimum solution we can prove a locality ratio that
matches that of [14].

2.5.1 Bounding the Facility Cost

This time we consider the following swap operations:

1. Swap 〈Ai, Bi〉, where |Ai|≤ p.

2. Swap 〈Âi, B̂i〉, where |Ai|> p, and swaps 〈〈Ai\Âi, Bi\B̂i〉〉, where 〈〈Ai\Âi, Bi\B̂i〉〉
denotes the set of single swaps for each pair of facilities in Ai \ Âi and Bi \ B̂i.

3. Swaps 〈〈Ar, Br〉〉, where 〈〈Ar, Br〉〉 denotes a set of single swaps for each pair of
facilities in Ar and Br.

Corollary 2.5.1 For swap 〈Ai, Bi〉, where |Ai|≤ p and 1 ≤ i < r,

(2.29)
∑
o ∈Bi

fo −
∑
s ∈Ai

fs +
∑

j∈NS(Ai)

2oj ≥ 0.

Proof The corollary follows from Lemma 2. Note that as pointed out at the end
of the proof of Lemma 2 we can replace in (2.9) the last term

∑
j∈NS(Ai)

2oj with∑
j∈NS(Ai)\NS(Bi)

2oj. In addition, since oj − sj ≤ 2oj the third term in (2.9) can be re-

placed by
∑

NS(Bi)
2oj. The third term in (2.29) is then obtained by adding

∑
j∈NS(Ai)\NS(Bi)

2oj
to
∑

NS(Bi)
2oj.

Corollary 2.5.2 For swap 〈Âi, B̂i〉, where |Ai|> p and 1 ≤ i < r,

(2.30)
∑
o ∈B̂i

fo −
∑
s ∈Âi

fs +
∑

j ∈N∗S(B̂i)

2oj +
∑

j∈NS(Âi)\NS∗(B̂i)

π(σ∗(j))∈Âi

(oj + sj) +
∑

j∈NS(Âi)\NS∗(B̂i)

π(σ∗(j))6∈Âi

2oj ≥ 0.

Proof The corollary follows from Lemma 3 by noting that oj − sj ≤ 2oj for all clients
j, and using this inequality in the third term of (2.10).

Lemma 4 bounds the cost increase caused by swaps 〈s, o〉, where s ∈ Ai \ Âi, and
o ∈ Bi \ B̂i. Adding (2.30) and (2.16) we get

(2.31)
∑
o ∈Bi

fo −
∑
s ∈Ai

fs +
∑

j ∈NS(Ai)

2oj ≥ 0.



2.5. Scaling the Costs 45

The third term in (2.31) is obtained from the following equalities: Adding the third term
of (2.16) and the fourth term in (2.30) we get∑

j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))∈Âi

(oj − sj) +
∑

j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))∈Âi

(oj + sj) =
∑

j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))∈Âi

2oj.

Adding the right hand side of this equation and the last term in (2.30) we have∑
j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))∈Âi

2oj +
∑

j∈NS(Âi)\N∗S(B̂i),

π(σ∗(j))6∈Âi

2oj =
∑

j∈NS(Âi)\N∗S(B̂i)

2oj.

Finally, adding the right hand side of this equation to the third term in (2.30) and the
last term in (2.16) we get∑

j∈NS(Âi)\N∗S(B̂i)

2oj +
∑

j∈N∗S(B̂i)

2oj +
∑

j∈NS(Ai)\NS(Âi)

2oj =
∑

j∈NS(Ai)

2oj.

In Corollary 2.5.1 if we replace Ai with s and Bi with o, then for each swap 〈s, o〉, where
s ∈ Ar and o ∈ Br, we have

(2.32)fo − fs +
∑

j ∈NS(s)

2oj ≥ 0.

Adding all the cost increase inequalities for swaps 〈s, o〉, where s ∈ Ar and o ∈ Br, we
get

(2.33)
∑
o ∈Br

fo −
∑
s ∈Ar

fs +
∑

j∈NS(Ar)

2oj ≥ 0.

Adding inequalities (2.29) for all subsets Ai, where |Ai|≤ p, inequalities (2.31) for all
subsets Ai, where |Ai|> p, and inequality (2.33) we get

(2.34)
∑
o ∈S∗

fo −
∑
s ∈S

fs + 2
∑
j ∈C

oj ≥ 0.

Therefore,
(2.35)costf (S) ≤ costf (S

∗) + 2costs(S
∗).

2.5.2 Bounding the Service Cost

For bounding the service cost of the local optimum solution S we consider the following
swaps:

1. Swap 〈Ai, Bi〉, where |Ai|≤ p.

2. For each set Ai with qi = |Ai|> p, 1 ≤ i < r, we pair each of the qi − 1 good
facilities in Ai with all qi facilities in Bi; this produces (qi−1)qi different pairs. For
set Ar we select any qr − 1 = |Ar|−1 good facilities in Ar and we pair each one
of them with all facilities in Br. For each i = 1, 2, ..., r, we swap each one of the
(qi − 1)qi pairs of facilities.
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By Lemma 2, for each swap 〈Ai, Bi〉, where |Ai|≤ p,

(2.36)
∑
o ∈Bi

fo −
∑
s ∈Ai

fs +
∑

j ∈NS∗ (Bi)

(oj − sj) +
∑

j∈NS(Ai)

2oj ≥ 0.

By Lemma 2.3.2, for each swap 〈s, o〉, where s ∈ Ai is a good facility, o ∈ Bi, 1 ≤ i < r
and |Ai|> p,

(2.37)fo − fs +
∑

j ∈N∗S(o)

(oj − sj) +
∑

j ∈NS(s)

2oj ≥ 0.

Adding all the cost increase inequalities related to swapping all qi(qi − 1) pairs 〈s, o〉,
where s ∈ Ai is a good facility and o ∈ Bi, and then multiplying by 1

qi−1
we get

(2.38)
∑
o ∈Bi

fo −
qi

qi − 1

∑
s ∈Ai\bi

fs +
∑

j ∈NS∗ (Bi)

(oj − sj) +
qi

qi − 1

∑
j∈NS(Ai)

2oj ≥ 0.

where bi ∈ Ai is a bad facility.
Since qi

qi−1
≤ p+1

p
and 2oj ≥ 0, inequality (2.38) can be rewritten as

(2.39)
∑
o ∈Bi

fo −
qi

qi − 1

∑
s ∈Ai\bi

fs +
∑

j ∈NS∗ (Bi)

(oj − sj) +
p+ 1

p

∑
j∈NS(Ai)

2oj ≥ 0.

Let I = {i | 1 ≤ i ≤ r, |Ai|> p} and Ic = {i | 1 ≤ i ≤ r, |Ai|≤ p}. Adding inequalities
(2.36) for all sets Ai, where i ∈ Ic, and inequalities (2.39) for all Ai, where i ∈ I, we get

∑
o ∈S∗

fo −
∑
i ∈Ic

∑
s ∈Ai

fs −
∑
i ∈I

( qi
qi − 1

)∑
s∈Ai\bi

fs

+
∑
j ∈C

oj −
∑
j ∈C

sj +

(
p+ 1

p

)∑
j ∈C

2oj ≥ 0.

(2.40)

The sixth term is obtained by noting that
∑

i∈Ic

(
p+1
p

)∑
j∈NS(Ai)

2oj ≥
∑

i∈Ic
∑

j∈NS(Ai)
2oj.

Therefore,

costf (S
∗)−
∑
i∈Ic

∑
s∈Ai

fs−
∑
i∈I

( qi
qi − 1

)∑
s∈Ai\bi

fs

+costs(S
∗)−costs(S)+

(
p+ 1

p

)
2costs(S

∗) ≥ 0

⇒
∑
i∈Ic

∑
s∈Ai

fs +
∑
i∈I

( qi
qi − 1

)∑
s∈Ai\bi

fs

+ costs(S) ≤ costf (S
∗) +

(
3 +

2

p

)
costs(S

∗).

(2.41)

Since the term
∑

i∈Ic
∑

s∈Ai
fs +

∑
i∈I

[(
qi
qi−1

)∑
s∈Ai\bi fs

]
is positive, we can omit it

from inequality (2.41) and we get

(2.42)costs(S) ≤ costf (S
∗) +

[
3 +

2

p

]
costs(S

∗) .
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THEOREM 4 Algorithm Local Search has locality gap 2 + 1
p

+
√

3 + 2
p

+ 1
p2

.

Proof Consider an instance (F,C) of the k-facility location problem. Multiply the cost
of each facility in F by some value β > 0 and compute a local optimum solution S for
the new instance. Let cost′f (X) and cost′s(X) denote respectively the facility and service
cost of solution X in the new scaled problem, and let costf (X) and costs(X) be the
facility and service cost of solution X with the original costs. Using inequalities (2.35)
and (2.42) we get

cost′f (S) ≤ cost′f (S
∗) + 2cost′s(S

∗)

and

cost′s(S) ≤ cost′f (S
∗) +

(
3 +

2

p

)
cost′s(S

∗).

Since

costf (S) + costs(S) =
cost′f (S)

β
+ cost′s(S)

then

costf (S) + costs(S) ≤
cost′f (S

∗) + 2cost′s(S
∗)

β
+ cost′f (S

∗) +

(
3 +

2

p

)
cost′s(S

∗)

=

(
1 +

1

β

)
cost′f (S

∗) +

(
3 +

2

p
+

2

β

)
cost′s(S

∗)

= (β + 1)costf (S
∗) +

(
3 +

2

p
+

2

β

)
costs(S

∗).

By setting β = 1 + 1
p

+
√

3 + 2
p

+ 1
p2

we get

cost(S) ≤
[
2 +

1

p
+

√
3 +

2

p
+

1

p2

]
cost(S∗).

The total number of multi-swap operations considered in Sections 2.5.1 and 2.5.2 is at
most k2 + k.
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Chapter 3

A Local Search Algorithm for the
Multiway Cut Problem

3.1 Introduction

Given an undirected graph G = (V,E) with non-negative weights or costs on the edges
and a set T = {t1, t2, ..., tk} ⊆ V of k terminals, a multiway cut is a set E ′ ⊆ E of edges
whose removal from G separates all the terminals from each other and thus partitions the
vertices into k disjoint sets none of which contains two terminals. In the multiway cut
problem the goal is to find a multiway cut with minimum weight. If the set of terminals is
not given and the goal is to find a minimum weight set of edges whose removal partitions
the graph into k non-empty components the problem is known as the minimum k-cut
problem. For the case when k = 2 the multiway cut problem reduces to the well known
minimum s-t cut problem and the minimum k-cut problem reduces to the minimum cut
problem. For k ≥ 3 Dahlhaus et al [8] proved that the multiway cut problem is MAX
SNP-hard. Goldschmidt and Hochbaum [9] showed that the minimum k-cut problem is
NP-hard for arbitrary k.

The multiway cut problem has a variety of applications including task scheduling in
multi-processors systems [17], task allocation in parallel computing systems [12], labelling
the pixels of an image [3], and integrated circuit layout design [1, 13].

Dahlhaus et al. [8] presented the first approximation algorithm for the multiway
cut problem. They used a simple combinatorial technique, called the isolation heuristic,
to yield an approximation algorithm with approximation ratio 2 − 2

k
. In the isolation

heuristic a minimum weight cut is found that separates terminal ti from T−{ti}, for each
1 ≤ i ≤ k; then the solution is formed by the union of the k−1 smallest cuts. Calinescu et
al [6] utilized an elegant geometric relaxation algorithm and improved the approximation
ratio to 1.5− 1

k
. Karger et al. [10] used a similar geometric relaxation technique to design

a 12
11

-approximation algorithm for the problem for the case when k = 3 and for general k
they improved the approximation ratio to 1.3438. Independently, Cunningham and Tang
[7] designed an approximation algorithm with the same approximation ratio 12

11
for the

case k = 3. Sharma and Vondrak [16] designed a better algorithm with approximation
ratio 1.2965 based on the linear programming relaxation used in [6]. Buchbinder et al.

50
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[4, 5] matched Sharma and Vondrak’s approximation ratio, but using a much simpler
algorithm. These last two algorithms have the currently best known approximation ratio
for the multiway cut problem.

Naor and Zosin [14] gave a 2-approximation algorithm for the version of the multiway
cut problem on directed graphs. Zhao [18] et al, used a greedy splitting technique to
design an approximation algorithm with ratio 2 − 2

k
for both the multiway cut and the

minimum k-cut problem. Saran and Vazirani [15] used Gromory-Hu cuts to design an
approximation algorithm with the same 2 − 2

k
approximation ratio for the minimum k-

cut problem. Goldschmidt and Hochbaum [9] gave a polynomial time algorithm for the
minimum k-cut problem when the value of k is fixed.

In this paper we present a local search algorithm for the multiway cut problem with
approximation ratio 2− 2

k
. Our algorithm utilizes the expansion move introduced in [3].

We also give an example showing the tightness of our analysis. In addition, we show
that a slight modification of our local search algorithm can be used on two variations of
the multiway cut problem: 1) when some set of nodes needs to be in the same partition,
and 2) when certain nodes can only be in some partitions. This paper also includes an
experimental comparison of our local search algorithm with four other approximation
algorithms for the multiway cut problem: Dahlhaus et al. [8] isolation heuristic, the
algorithm of Calinescu et al. [6], the algorithm of Sharma and Vondrak [16], and the
algorithm of Buchbinder et al. [4, 5].

Even though our algorithm does not achieve the same approximation ratio as the best
known approximation algorithm for the multiway cut problem, we consider our work
of interest as there are not many local search approximation algorithms with proven
performance guarantee. Our algorithm is simple and intuitive and its analysis, even
though it seems very complicated, it is based on a natural idea of comparing the weight
of a global optimum solution and a local optimum one based on the fact that no local
change on a local optimum solution can improve its value.

In addition, according to our experimental results our local search algorithm performs
much better than the isolation heuristics algorithm even though they have the same
theoretical worst-case approximation ratio. Furthermore, has comparable performance
to the three currently best known algorithms for the multiway cut problem: the algorithm
of Calinescu et al. [6], the algorithm of Sharma and Vondrak [16], and the algorithm of
Buchbinder et al. [4, 5].

3.2 The Local Search Algorithm

As mentioned in the previous section our local search algorithm uses the expansion moves
of [3] to find a local optimal solution. Here for convenience we rename the expansion
move and call it the relabel operation. Given a graph G = (V,E) and a set L of labels, a
labelling function f assigns a label to each node of G. A relabel operation is determined
by a set of nodes A ⊆ V \ T , a label α and a labelling function f . A relabel operation
modifies the labelling function f by changing the labels of all the nodes in A ⊆ V \ T to
α while keeping the other labels unchanged, and is defined as follows:

R〈A,α, f〉 := ∀u ∈ A, f(u) = α.
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We can formulate the multiway cut problem as a labelling problem as follows: Given
a graph G = (V,E), a set of k terminals T = {t1, t2, ..., tk} ⊆ V and a set of k labels
L = {α1, α2, ..., αk}, where each terminal ti has a fixed label αi, the goal is to label the
nodes in V − T in such a way as to minimize the total cost of the set of edges E ′ whose
endpoints have different labels. Note that E ′ is a multiway cut for G and therefore
finding a solution for the above labelling problem is equivalent to finding a minimum
weight multiway cut. The cost of a labelling function f is defined as the total cost of the
edges whose endpoints have different labels.

The neighborhood function for a given labelling function f and label αi, i = 1, 2, ..., k
is defined as follows:

Ni(f) =

{all the labellings f ′ that can be obtained by R〈A,αi, f〉, for all possible sets A ⊆ V \ T}.

Our local search algorithm for the multiway cut problem is described below.

Algorithm 4 MULTIWAY CUT (G = (V,E), L, T )

1: Input: Graph G = (V,E), set L of k labels, and set T ⊆ V of k terminals
2: Output: Labelling f of a local optimum solution for the multiway cut problem
3: f ← any arbitrary labelling function that assigns to each terminal a different label
4: success← 1
5: while success = 1 do
6: success← 0
7: for i← 1 to k do
8: Compute a minimum cost labelling f ′ ∈ Ni(f)
9: if cost of the solution defined by labelling f ′ is less than the cost of the solution

defined by labelling f then
10: f ← f ′

11: success← 1
12: end if
13: end for
14: end while
15: return f

Note that algorithm MULTIWAY CUT might not run in time that is polynomial in
the size of the input as every iteration of the while loop might only provide a marginal
improvement in the cost of the solution, so it might require a very large number of iter-
ations to find a local optimum solution. We can proceed as in [2] to ensure a polynomial
running time: Replace the condition of the if statement as follows ”If cost of the solu-
tion defined by labelling f ′ is less than (1 − ε) times the cost of the solution defined by
labelling f”, where ε is a positive value.

With this change the maximum number of iterations of the outer loop isO( (log n+log(cmax))
ε

),
where n is the number of vertices and cmax is the largest edge cost. Each iteration of the
loop needs polynomial time, so the running time of the algorithm is polynomial. This
change causes the cost of the solution produced by the algorithm to be at most a factor

1
1−ε(2−

2
k
) away from the optimum.
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3.3 Finding a minimum cost relabel operation

In Line 9 of algorithm Local Search we need to compute a minimum cost labelling f ′

obtainable from the given labelling f through one relabel operation. In this section we
present an algorithm based on an algorithm in [3] to find this optimal labelling f ′. Given
a weighted graph G′ = (V ′, E ′) and two distinguished nodes called source and sink, a cut
is a set of edges C ⊆ E that separates source from sink. A cut C is minimal if no subset
of C is a cut. The cost of a cut C is the sum of the costs of the edges in C. We call C a
minimum cut if it is a minimal cut with minimum cost.

We now define a graph Gα = (Vα, Eα), where α is a label, which has the property
that a minimum cut of Gα determines a relabel operation R〈A,α, f〉 that produces a
minimum cost labelling f ′ as required by the algorithm.

The set of nodes of Gα includes a source node α, a sink node α, all nodes V of the
input graph G and a set of auxiliary nodes

⋃
{p,q}∈V,
(p,q)∈E

a{p,q}. Formally,

Vα = {{α, α}, V, {
⋃

{p,q}⊆V,
(p,q)∈E

a{p,q}}} (3.1)

As for the set of edges of Gα, all nodes in V are adjacent to source α and sink α. Also
nodes p, q that are adjacent in G and have the same label, i.e. f(p) = f(q), are adjacent
in Gα. Finally, for each pair (p, q) of adjacent nodes in G with f(p) 6= f(q) there is a
triplet of edges, ε{p,q} = {(p, a), (a, q), (a, α)}, where a = a{p,q} is an auxiliary node, so
both nodes p and q are connected to auxiliary node a and a is connected to the sink α.
Therefore, the set of edges in Gα is,

Eα =
⋃
p∈V

{(p, α), (p, α)}
⋃

{p,q}⊆V
(p,q)∈E
f(p)6=f(q)

ε{p,q}
⋃

{p,q}⊆V
(p,q)∈E
f(p)=f(q)

(p, q) (3.2)

The edges have assigned weights as shown in Table 3.1, where Pα is the set of nodes
labelled α in G. Figure 3.1 shows an example of graphs G and Gα.

α 

ᾱ   

t1 t2 p t3a a

Gα 


0

0

0

0



0

cost(t1,t2)

t1

p

G

 

cost(t1,t2)

cost(t2 ,p) cost(p,t3)

cost(p,t3)t3

  

cost(t1,t2)



0

 

α2 α2 

α1 α 

t2

Figure 3.1: In graph Gα nodes represented by squares are the nodes in G and nodes
labelled with ti where i = {1, 2, 3} are terminals in G. Auxiliary nodes are represented
by circles. In G labels assigned to the nodes are inside the squares.
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Edge Weight Condition
(α, ti) ∞ if ti 6∈ Pα

0 if ti ∈ Pα
ti ∈ T

(α, ti) 0 if ti 6∈ Pα
∞ if ti ∈ Pα

ti ∈ T

(α, p) 0 p ∈ V − T
(α, p) 0 p 6∈ Pα
(α, p) ∞ p ∈ Pα
(p, q) cost(p, q) f(p) = f(q)
(p, a) 0 if p ∈ Pα

cost(p, q) if p 6∈ Pα
f(p) 6= f(q)

(a, q) 0 if q ∈ Pα
cost(p, q) if q 6∈ Pα

f(p) 6= f(q)

(α, a) cost(p, q) f(p) 6= f(q)

Table 3.1: Weights for the edges in Gα.

Lemma 6 Let C be a minimal cut of Gα separating α from ᾱ. For each vertex p ∈ V
exactly one the edges (p, α), (p, α) belongs to C.

Proof Let GC = (Vα, Eα \ C) be the graph obtained by removing from Gα the edges in
C. At least one of (p, α), (p, α) must belong to C as otherwise α, p, α would be a path
in Gc.

Assume that (p, α) ∈ C and (p, α) ∈ C. Since C is a minimal cut then if we remove
(p, α) from C there must be at least one path P = α, p1, p2, ..., pi, p, α in GC\{(p,α)}. Sim-
ilarly, if we remove (p, α) from C there must be at least one path P ′ = αp, p′1, p

′
2, ..., p

′
j, α

in GC\{(p,α)} (see Figure 3.2). However, then α, p1, p2, ..., pi, p, p
′
1, p
′
2, ..., p

′
j, α is a path in

GC contradicting the fact that C is a cut of Gα separating α from ᾱ.

α 

ᾱ

p1 p3 p p’2p2 p’1

Gα 
P

P’

pi p’j

Figure 3.2: Paths P and P ′ are shown above in thick and thin solid lines, respectively.
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Lemma 7 Each minimal cut C of Gα of bounded cost separating α from ᾱ defines a
labelling f ′ for G that can be obtained from f through a relabel operation and its cost,∑

(p,q)∈E
f ′(p)6=f ′(q)

cost(p, q), is at most the cost of C. This labelling f ′ is defined as follows:

f ′(p) =

{
α if (p, α) ∈ C
f(p) if (p, α) ∈ C

∀p ∈ V. (3.3)

Proof By Lemma 6, f ′ assigns a unique label to each node of G, so f ′ is a valid labelling
for G.

Note that if edge (p, q) ∈ E is such that f(p) = f(q) but f ′(p) 6= f ′(q) then either,

• (p, α) ∈ C and (q, ᾱ) ∈ C this means that (p, q) ∈ C as otherwise (α, q), (q, p),
(p, ᾱ) would be a path in Gc = (Vα, Eα \ C), or

• (p, ᾱ) ∈ C and (q, α) ∈ C: this means that (p, q) ∈ C as otherwise (α, q), (q, p),
(p, ᾱ) would be a path in Gc.

On the other hand, if edge (p, q) ∈ E is such that f(p) 6= f(q) and f ′(p) 6= f ′(q) then
there are two cases that we need to consider. Let a = a{p,q}.

1. (p, α), (q, α) ∈ C. By Lemma 6 none of the edges (p, α), (q, α) belong to C. Hence,
either (p, a) and (q, a) must belong to C or (a, α) must belong to C as otherwise
there would be a path from α to α going through a. In both cases the cost of these
edges is at least cost(p, q).

2. (p, α), (q, α) ∈ C (the case (q, α), (p, α) ∈ C is similar). By Lemma 6, (α, q) 6∈ C
and (p, α) 6∈ C. Hence, either

- (a, q) ∈ C. Note that the cost of this edge is cost(p, q): q cannot have label α
in f as otherwise cost(q, α) =∞.

- (a, α) ∈ C and (p, a) ∈ C . Note that cost(a, α) = cost(p, q).

In both cases cost(C ∩ ε{p,q}) ≥ cost(p, q).

Therefore,

cost(C) ≥
∑

(p,q)∈E,f(p)=f(q)
f ′(p) 6=f ′(q)

cost(p, q) +
∑

(p,q)∈E,f(p)6=f(q)
f ′(p)6=f ′(q)

cost(p, q) = cost(f ′) (3.4)

Lemma 8 A labelling f ′ obtained from f by a relabel operation R(A,α, f) defines a
minimal cut C ′ of Gα separating α from ᾱ of cost equal to the cost of f ′.

Proof The cut C ′ is defined as follows:

I) For each node p ∈ V , if f ′(p) = α then (p, α) ∈ C ′ otherwise (p, α) ∈ C ′.

II) For each edge (p, q) ∈ E such that f(p) = f(q) and f ′(p) 6= f ′(q), edge (p, q) ∈ C ′.
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III) For each edge (p, q) ∈ E such that f(p) 6= f(q) and f ′(p) 6= f ′(q), let a = a{p,q}.

a) if (p, α) ∈ C ′ and (q, α) ∈ C ′ then (a, α) ∈ C ′. Note that cost(a, α) =
cost(p, q).

b) if (p, α) ∈ C ′ and (q, α) ∈ C ′ then (a, q) ∈ C ′. Note that f(q) 6= α as otherwise
edge (q, α) would belong to C ′. Hence, cost(a, q) = cost(p, q).

c) if (p, α) ∈ C ′ and (q, α) ∈ C ′ then (a, p) ∈ C ′. Similarly as above, cost(a, p) =
cost(p, q).

To prove that C ′ is a cut we show that there is no path in GC′ from α to α. The
proof is by contradiction. Assume that P = αp0p1p2....piα is a shortest path in GC′ from
α to α. Node p0 cannot be an auxiliary node because it is connected to α. Consider the
following two cases for node p1: (1) If p1 is not an auxiliary node then by (I), we know
f ′(p0) 6= α since (p0, α) 6∈ C ′ and by (II) we know f ′(p0) = f ′(p1) 6= α since (p0, p1) 6∈ C ′.
Using (I) again then (p1, α) ∈ C ′ and so (p1, α) 6∈ C ′. However then αp1p2....piα is a path
in GC′ contradicting the assumption that P was a shortest path in G′C between α and α.
(2) If p1 is an auxiliary node, since (p0, α) ∈ C ′ and (p1, p2), (p1, p0) 6∈ C ′ then only case
(IIIa) is applicable to the set of nodes {p0, p1, p2} and therefore (p2, α) ∈ C ′. However
then αp2....piα is a path in GC′ contradicting the assumption that P was a shortest path
in GC′ between α and ᾱ.

Because of the way in which C ′ has been defined, it is easy to verify that cost(f ′) =
cost(C ′) and that C ′ is a minimal cut because if any edge is removed from C ′ the re-
maining set of edges would not form a cut of Gα separating α from ᾱ.

THEOREM 5 There is a polynomial time algorithm that given a labelling function f
for a graph G = (V,E) and a label α it computes a minimum cost labelling f ′ that can
be obtained from f through a single relabel operation.

Proof The algorithm builds the graph Gα as described above, computes a minimum cut
C ′ of Gα separating α from ᾱ and outputs the labelling f ′ defined by C ′ as described in
Lemma 7. To see that f ′ is a minimum cost labelling obtained from f through a relabel
operation, assume that there is a labelling f ′′ obtained from f through a relabel operation
and that cost(f ′′) < cost(f ′). By Lemma 8, f ′′ defines a cut C ′′ of Gα separating α from
ᾱ and cost(C ′′) = cost(f ′′). But then by Lemma 7, cost(C ′′) = cost(f ′′) < cost(f ′) ≤
cost(C ′) contradicting the assumption that C ′ is a minimum cut.

3.4 Analysis of algorithm MULTIWAY CUT for the

3-way Cut Problem

Since the analysis of our algorithm is a bit complex, we first analyze it for the case when
k = 3 and in the next section we consider the case when k > 3.

Let f̂ be the labelling function computed by our local search algorithm and let f ∗ be
the labelling function corresponding to a global optimal solution. Note that f̂ and f ∗

are functions that assign to each node a label determining to which partition the node
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belongs. Let α1, α2 and α3 be the three labels. We define partitions Â1, Â2, Â3 in the
local optimal solution and A∗1, A∗2, A∗3 in the global optima solution as follows (see Figure
3.3):

Âi = {v ∈ V |f̂(v) = αi}

A∗i = {v ∈ V |f ∗(v) = αi}

for all 1 ≤ i ≤ 3.

 

 

 

 

u

v

u w

Â1 

Â2 

Â3 

A1*

A2*

A3*

 

Figure 3.3: The left figure shows partitions Â1, Â2 and Â3 of the local optimal solution
and the right figure shows partitions A∗1, A∗2 and A∗3 of the global optimal solution. In
both figures the set of edges that contribute to the 3-way cut connect nodes in different
partitions. For example, edge (u, v) in the left figure connects u ∈ Â1 to v ∈ Â2 so it
contributes to the cost of the local optimal solution, and edge (u,w) in the right figure
connects u ∈ A∗1 to w ∈ A∗2 so it contributes to the cost of the global optimal solution.

Our goal is to find an upper bound for the cost of the local optimal solution in terms
of the cost of the global optimal solution. In order to find this upper bound we perform
several relabel operations. Let A be a set of nodes, α a label and f be a labelling
function. By performing a relabel operation we modify a given multi-way cut. If we
perform a relabel operation on the local optimum solution, we produce a new solution
of cost larger than or equal to the cost of the local optimal solution. We show how to
bound the cost of the local optimal solution using this local optimality property.

Let Ŝ and S∗ be the sets of edges crossing the partitions of the local optimal solution
and of the global optimal solution, respectively. Let Ŝp = Ŝ − S∗ and S∗p = S∗ − Ŝ.

We classify the edges in Ŝ into three groups as follows:

B̂αiαj
= {(v, u) ∈ E|f̂(v) = αi, f̂(u) = αj}

for all 1 ≤ i < j ≤ 3. Similarly, the edges in S∗ are partitioned into groups as follows:

B∗αiαj
= {(v, u) ∈ E|f ∗(v) = αi, f

∗(u) = αj}
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for all 1 ≤ i < j ≤ 3.

Let P and Q be sets of nodes and B be a set of edges. The sets of edges (B|P ) and
(B|P : Q) are defined as follows:

(B|P ) = {(u, v) ∈ B|u, v ∈ P}

(B|P : Q) = {(u, v) ∈ B| u ∈ P, v ∈ Q}

Finally the cost C(B) of set B is defined as:

C(B) =
∑

(u,v)∈B

cost(u, v)

In the next sections we compute two different bounds for the value of the local opti-
mum solution; then we combine the bounds to compute the approximation ratio of our
algorithm.

3.4.1 First bound

To determine the cost of the local optimal solution we need to carefully choose a set
of relabel operations. We define the following sets of nodes that will participate in the
relabel operations: Ais = A∗i ∩ Âi and Ais

c = Âi − Ais for i = 1, 2, 3.

We first perform the relabel operation R〈A1s
c, α2, f̂〉 and determine how this changes

the cost of the local optimal solution. Observe that this operation changes the label that
f̂ assign to each node in A1s

c to α2: thus, (1) it decreases the contribution to the cost of
the solution made by the set ∆1 of edges with one endpoint in A1s

c and the other one in
Â2, and (2) it increases the contribution to the cost of the solution made by the set ∆2

of edges with one endpoint in A1s
c and the other in A1s.

Note that A1s
c = Â1 − A1s = Â1 − (A∗1 ∩ Â1) = Â1 − A∗1 = Â1 ∩ (A∗2 ∪ A∗3) and so

∆1 = (B̂α1α2|Â1∩(A∗2∪A∗3) : Â2) = (B̂α1α2|Â1∩(A∗2∪A∗3) : Â2∩V ) = (B̂α1α2|A∗2∪A∗3 : V )
as for every edge in B̂α1α2 , one endpoint is in Â1 and the other is in Â2. Observe that set
∆ = (B̂α1α2|A∗2) ∪ (B̂α1α2|A∗3) ⊆ ∆1 and sets (B̂α1α2|A∗2) and (B̂α1α2|A∗3) are disjoint (see
Figure 3.4). Set ∆2 can be written as follows ∆2 = (B∗α1α3

∪B∗α1α2
|Â1) (see Figure 3.4).

After performing the relabel operation R〈A1s
c, α2, f̂〉, by the local optimality condi-

tion we get a solution of cost no less than the cost of the local optimal solution, or in
other words,

0 ≤ C(∆2)−C(∆1) ≤ C(∆2)−C(∆) ≤ C(B∗α1α3
∪B∗α1α2

|Â1)−C(B̂α1α2 |A∗2)−C(B̂α1α2|A∗3).

This inequality can be rewritten as follows.

C(B̂α1α2|A∗2) + C(B̂α1α2|A∗3) ≤ C(B∗α1α3
∪B∗α1α2

|Â1). (3.5)



3.4. Algorithm MULTIWAY CUT for the 3-way Cut Problem 59

 

 

Â1

Â2

Â3

A1* A2*

A3*

A1* A2*

A3*

 

 

A3*

A1* A2*

(a)

(c)

(b)

Figure 3.4: In all the figures, partitions (Â1, Â2, Â3) and (A∗1, A
∗
2, A

∗
3) are as in Figure 3.3.

Figure (a) represents the set ∆1, Figure (b) represents set ∆2, and Figure (c) represents
set ∆.

We next perform the relabel operation R〈A1s
c, α3, f̂〉. Using similar arguments as

above we get the following inequality:

C(B̂α1α3|A∗2) + C(B̂α1α3|A∗3) ≤ C(B∗α1α2
∪B∗α1α3

|Â1). (3.6)

To find a bound for the cost of the local optimal solution we need to consider all those
edges whose endpoints have different labels in the local optimal solution; therefore, we
need to perform more relabel operations: R〈A2s

c, α1, f̂〉, R〈A2s
c, α3, f̂〉, R〈A3s

c, α1, f̂〉
and R〈A3s

c, α2, f̂〉. Using similar arguments as those used to derive (3.5) we get the
following inequalities:

C(B̂α1α2|A∗1) + C(B̂α1α2|A∗3) ≤ C(B∗α1α2
∪B∗α2α3

|Â2) (3.7)

C(B̂α2α3|A∗1) + C(B̂α2α3|A∗3) ≤ C(B∗α1α2
∪B∗α2α3

|Â2) (3.8)
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C(B̂α1α3|A∗1) + C(B̂α1α3|A∗2) ≤ C(B∗α1α3
∪B∗α2α3

|Â3) (3.9)

C(B̂α2α3|A∗1) + C(B̂α2α3|A∗2) ≤ C(B∗α1α3
∪B∗α2α3

|Â3). (3.10)

The sets in the left hand sides of inequalities (3.5)-(3.10) include all the edges in
Ŝp = Ŝ − S∗. Therefore, by adding these inequalities we will get a bound for the cost of

Ŝp. Adding the first term in the left hand sides of inequalities (3.7)-(3.10) we get,

C(B̂α1α2|A∗1) + C(B̂α2α3|A∗1) + C(B̂α1α3|A∗1) + C(B̂α2α3 |A∗1) =

C(B̂α1α2 ∪ B̂α1α3 ∪ B̂α2α3|A∗1)+C(B̂α2α3|A∗1) ≥ C(B̂α1α2 ∪ B̂α1α3 ∪ B̂α2α3|A∗1) = C(Ŝ|A∗1).
(3.11)

Similarly, adding the second term in the left hand sides of inequalities (3.9) and (3.10),
and the first term in the left hand sides of (3.5) and (3.6) we get

C(B̂α1α3|A∗2) + C(B̂α2α3|A∗2) + C(B̂α1α2|A∗2) + C(B̂α1α3|A∗2) ≥ C(Ŝ|A∗2). (3.12)

Adding the second term in the left hand sides of (3.5)-(3.8) we get

C(B̂α1α2|A∗3) + C(B̂α1α3|A∗3) + C(B̂α1α2|A∗3) + C(B̂α2α3|A∗3) ≥ C(Ŝ|A∗3). (3.13)

In addition, the right hand sides of (3.5) and (3.6) can be replaced with C(S∗|Â1) −
C(B∗α2α3

|Â1), since

C(B∗α1α3
∪B∗α1α2

|Â1) = C(B∗α1α2
∪B∗α1α3

∪B∗α2α3
|Â1)− C(B∗α2α3

|Â1) =

C(S∗|Â1)− C(B∗α2α3
|Â1). (3.14)

Similarly we can replace the right hand sides of (3.7)-(3.10) with the following equivalent
terms,

C(B∗α1α2
∪B∗α2α3

|Â2) = C(S∗|Â2)− C(B∗α1α3
|Â2) (3.15)

C(B∗α1α3
∪B∗α2α3

|Â3) = C(S∗|Â3)− C(B∗α1α2
|Â3). (3.16)

Adding (3.5)-(3.10) and using (3.11)-(3.16) to simplify we get

C(Ŝ|A∗1) + C(Ŝ|A∗2) + C(Ŝ|A∗3) ≤

2
[
C(S∗|Â1) + C(S∗|Â2) + C(S∗|Â3)−

(
C(B∗α2α3

|Â1) + C(B∗α1α3
|Â2) + C(B∗α1α2

|Â3)
)]
.

(3.17)

This last inequality can be re-written as:

(3.18)C(Ŝp) ≤ 2
[
C(S∗p)−

(
C(B∗α2α3

|Â1) + C(B∗α1α3
|Â2) + C(B∗α1α2

|Â3)
)]
.

Adding C(Ŝ ∩S∗) to the left hand side and 2C(Ŝ ∩S∗) to the right hand side of this last
inequality we get our first bound for the cost of the local optimal solution,

(3.19)C(Ŝ) ≤ 2
[
C(S∗)−

(
C(B∗α2α3

|Â1) + C(B∗α1α3
|Â2) + C(B∗α1α2

|Â3)
)]
.
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3.4.2 Second Bound

In order to obtain a second bound for the cost of the local optimal solution we proceed
similarly as before but select different sets of nodes on which to perform relabel oper-
ations. This time we choose to change the labels of the nodes in the partitions A∗1, A∗2
and A∗3. Note that we still change labels assigned by the local optimum solution to the
selected nodes.

We now show that if we perform the relabel operations R〈A∗i , αi, f̂〉 for 1 ≤ i ≤ 3
we can find an upper bound for the cost of all the edges in (Ŝ|A∗1), (Ŝ|A∗2) and (Ŝ|A∗3).
Adding these three costs we get a bound for C(Ŝp).

First, we perform the relabel operation R〈A∗1, α1, f̂〉. This operation decreases the
contribution to the cost of the solution made by Θ1 = (B̂α1α2∪B̂α1α3∪B̂α2α3|A∗1) = (Ŝ|A∗1).
It also decreases the contribution to the cost of the solution made by the edges in set Θ2 =
(Ŝ ∩S∗|A∗1 : Â1 ∩ (A∗2 ∪A∗3)). Let Θ3 = (B∗α1α2

∪B∗α1α3
|Â2) and Θ4 = (B∗α1α2

∪B∗α1α3
|Â3).

After applying the relabel operation the cost of the solution is increased by the cost of
edges in Θ3 and Θ4. Note that sets Θ1, Θ2, Θ3 and Θ4 are disjoint. After performing the
relabel operation R〈A∗1, α1, f̂〉, by the local optimality property we get

C(Θ3) + C(Θ4)− C(Θ1)− C(Θ2) =

C(B∗α1α2
∪B∗α1α3

|Â2)+C(B∗α1α2
∪B∗α1α3

|Â3)−C(Ŝ|A∗1)−C(Ŝ∩S∗|A∗1 : Â1∩(A∗2∪A∗3)) ≥ 0.

This inequality can be rewritten as follows since C(Ŝ ∩ S∗|A∗1 : Â1 ∩ (A∗2 ∪ A∗3)) ≥ 0:

C(Ŝ|A∗1) ≤ C(B∗α1α2
∪B∗α1α3

|Â2) + C(B∗α1α2
∪B∗α1α3

|Â3). (3.20)

We perform two more relabel operations: R〈A∗2, α2, f̂〉 and R〈A∗3, α3, f̂〉. Using a similar
argument as in (3.20) we get,

C(Ŝ|A∗2) ≤ C(B∗α1α2
∪B∗α2α3

|Â1) + C(B∗α1α2
∪B∗α2α3

|Â3) (3.21)

C(Ŝ|A∗3) ≤ C(B∗α1α3
∪B∗α2α3

|Â1) + C(B∗α1α3
∪B∗α2α3

|Â2). (3.22)

Adding the left sides of (3.20)-(3.22) we get,

C(Ŝ|A∗1) + C(Ŝ|A∗2) + C(Ŝ|A∗3) = C(Ŝp). (3.23)

Adding the first term in the right hand side of (3.21) and (3.22) we get,

C(B∗α1α2
∪B∗α2α3

|Â1)+C(B∗α1α3
∪B∗α2α3

|Â1) = C(B∗α1α2
∪B∗α1α3

∪B∗α2α3
|Â1)+C(B∗α2α3

|Â1) =

C(S∗|Â1) + C(B∗α2α3
|Â1) (3.24)

Similarly,

C(B∗α1α2
∪B∗α1α3

|Â2) + C(B∗α1α3
∪B∗α2α3

|Â2) = C(S∗|Â2) + C(B∗α1α3
|Â2) (3.25)

and,

C(B∗α1α2
∪B∗α1α3

|Â3) + C(B∗α1α2
∪B∗α2α3

|Â3) = C(S∗|Â3) + C(B∗α1α2
|Â3). (3.26)
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Adding the first term in the right sides of (3.24)-(3.26) we get,

C(S∗|Â1) + C(S∗|Â2) + C(S∗|Â3) = C(S∗p). (3.27)

Adding (3.20)-(3.22) and then using (3.23)-(3.27) to simplify we get,

(3.28)C(Ŝp) ≤ C(S∗p) +
[
C(B∗α2α3

|Â1) + C(B∗α1α3
|Â2) + C(B∗α1α2

|Â3)
]
.

Finally, adding C(Ŝ ∩ S∗) to both sides of (3.28) we get our second bound,

(3.29)C(Ŝ) ≤ C(S∗) +
[
C(B∗α2α3

|Â1) + C(B∗α1α3
|Â2) + C(B∗α1α2

|Â3)
]
.

3.4.3 Computing the Approximation Ratio

We use inequalities (3.19) and (3.29) to determine the approximation ratio of our algo-
rithm for the 3-way cut problem. We consider two cases:

i. If C(B∗α2α3
|Â1) + C(B∗α1α3

|Â2) + C(B∗α1α2
|Â3) > 1

3
C(S∗), then

C(S∗)−
[
C(B∗α2α3

|Â1) + C(B∗α1α3
|Â2) + C(B∗α1α2

|Â3)
]
≤ 2

3
C(S∗).

Therefore (3.19) simplifies to:

(3.30)C(Ŝ) ≤ 4

3
C(S∗).

ii. If C(B∗α2α3
|Â1) + C(B∗α1α3

|Â2) + C(B∗α1α2
|Â3) ≤ 1

3
C(S∗), then Inequality (3.29)

simplifies to:

(3.31)C(Ŝ) ≤ 4

3
C(S∗).

Therefore, by (3.30) and (3.31)

(3.32)C(Ŝ) ≤ 4

3
C(S∗).

THEOREM 6 The approximation ratio of algorithm MULTIWAY CUT for the 3-way
cut problem is 4

3
.

3.5 The Multiway Cut Problem

We extend the definitions of Âi, A
∗
i , B̂αiαj

and B∗αiαj
for k labels in the natural way.

Similarly as in Section 3.4 we perform several relabel operations and then use the local
optimality property to obtain a bound for C(Ŝ).
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3.5.1 First Bound

To bound the cost of the solution produced by our algorithm we perform several relabel
operations on similar sets of nodes as those used in Section 3.4.1. Let Ais = A∗i ∩ Âi and
Ais

c = Âi − Ais for i ∈ I = {1, 2, 3, ..., k}.
First we perform the relabel operation R〈A1s

c, α2, f̂〉. This operation decreases the
cost of the solution by the cost of edges in set Γ1 = (B̂α1α2|Â1 ∩ (

⋃
i∈I−{1}A

∗
i ) : Â2).

In addition, the cost of the solution increases by the cost of the edges in set Γ2 =⋃
i∈I−{1}(B

∗
α1αi
|Â1). Note that Γ =

⋃
i∈I−{1}(B̂α1α2 |A∗i ) =

⋃
i∈I−{1}(B̂α1α2|Â1 ∩ A∗i : Â2 ∩

A∗i ) ⊆ Γ1.
After performing R〈A1s

c, α2, f̂〉, by the local optimality property the cost of the new
solution is greater than or equal to the cost of the local optimal solution; therefore,

0 ≤ C(Γ2) − C(Γ1) ≤ C(Γ2) − C(Γ) =
∑

i∈I−{1}

C(B∗α1αi
|Â1) −

∑
i∈I−{1}

C(B̂α1α2|A∗i ).

The last equality holds because the sets (B∗α1αi
|Â1), i ∈ I − 1 are disjoint and so are the

sets (B̂α1α2|A∗i ), i ∈ I − 1. This inequality can be rewritten as follows,∑
i∈I−{1}

C(B̂α1α2|A∗i ) ≤
∑

i∈I−{1}

C(B∗α1αi
|Â1). (3.33)

We perform further relabel operations R〈A1s
c, αl, f̂〉 for all l ∈ I − {1, 2}. Using similar

arguments as above we get the following inequalities,∑
i∈I−{1}

C(B̂α1αl
|A∗i ) ≤

∑
i∈I−{1}

C(B∗α1αi
|Â1) (3.34)

for all 3 ≤ l ≤ k.
To find a bound for the cost of the remaining edges in the local optimal solution we

perform the following additional relabel operations: R〈Ahsc, j, f̂〉 for all h ∈ I − {1},
j ∈ I − {h}. Using similar arguments as in (3.33) we get the following inequalities,∑

i∈I−{h}

C(B̂αhαj
|A∗i ) ≤

∑
i∈I−{h}

C(B∗αhαi
|Âh) (3.35)

for all h ∈ I−{1} and j ∈ I−{h}. Adding inequalities (3.33) and (3.34) for all 3 ≤ l ≤ k,
and (3.35) for all h ∈ I − {1} and j ∈ I − {h} we get,∑

h∈I

∑
j∈I−{h}

∑
i∈I−{h}

C(B̂αhαj
|A∗i ) ≤ (k − 1)

∑
h∈I

∑
i∈I−{h}

C(B∗αhαi
|Âh).

The above inequality can be rewritten as follows,∑
i∈I

∑
h∈I−{i}

∑
j∈I−{h}

C(B̂αhαj
|A∗i ) ≤ (k − 1)

∑
h∈I

∑
i∈I−{h}

C(B∗αhαi
|Âh). (3.36)
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To simplify (3.36), we first consider the left side and note that for each value i ∈ I,∑
h∈I−{i}

∑
j∈I−{h}

C(B̂αhαj
|A∗i ) ≥

∑
1≤r<s≤k

C(B̂αrαs|A∗i ). (3.37)

because B̂αrαs = B̂αsαr for all 1 ≤ r < s ≤ k, and even though the left hand side is
missing the terms C(B̂αiαj

|A∗i ), j > i which are included in the sum in the right hand

side, it includes the terms C(B̂αjαi
|A∗i ), j > i.

Also observe that ∑
1≤r<s≤k

C(B̂αrαs|A∗i ) = C(
⋃

1≤r<s≤k

B̂αrαs|A∗i ) = C(Ŝ|A∗i ) (3.38)

because the sets (B̂αrαs |A∗i ), 1 ≤ r < s ≤ k, i ∈ I are disjoint.

To simplify the right side of (3.36) we consider the following equality,

∑
i∈I−{h}

C(B∗αhαi
|Âh) = C(

⋃
i∈I−{h}

B∗αhαi
|Âh) = C(

⋃
1≤r<s≤k

B∗αrαs
|Âh)−C(

⋃
1≤r<s≤k
r,s6=h

B∗αrαs
|Âh) =

C(S∗|Âh)−
∑

1≤r<s≤k
r,s 6=h

C(B∗αrαs
|Âh). (3.39)

Simplifying (3.36) using (3.37)-(3.39) we get,

∑
i∈I

C(Ŝ|A∗i ) ≤ (k − 1)
∑
h∈I

C(S∗|Âh)−
∑

1≤r<s≤k
r,s6=h

C(B∗αrαs
|Âh)

 (3.40)

that can be re-written as:

C(Ŝp) ≤ (k − 1)

C(S∗p)−
∑
h∈I

∑
1≤r<s≤k
r,s 6=h

C(B∗αrαs
|Âh)

 . (3.41)

Adding C(Ŝ ∩ S∗) to the left side and (k − 1)C(Ŝ ∩ S∗) to the right side of the above
inequality we get our first bound for C(Ŝ),

C(Ŝ) ≤ (k − 1)

C(S∗)−
∑
h∈I

∑
1≤r<s≤k
r,s6=h

C(B∗αrαs
|Âh)

 . (3.42)
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3.5.2 Second bound

Proceeding as in Section 3.4 to find a second bound for the cost of the local optimal
solution we perform relabel operations R〈A∗i , αi, f̂〉 for all i ∈ I = {1, 2, ..., k} and then
proceed similarly as in Section 3.4 by adding all the cost-change inequalities related to
these operations to get another bound for C(Ŝp).

First let us perform the relabel operation R〈A∗1, α1, f̂〉. This operation decreases the
cost of the solution by the cost of the edges in set Λ1 = (Ŝ|A∗1). It also decreases the
cost of the solution by the cost of the edges in set Λ2 = (Ŝ ∩S∗|A∗1 : Â1 ∩ (

⋃
j∈I−{1}A

∗
j)).

In addition the cost of the solution increases by the cost of the edges in set Λ3 =⋃
h∈I−{1}(

⋃
j∈I−{1}B

∗
α1αj
|Âh) as before performing the above relabel operation both end-

points of the edges in (
⋃
j∈I−{1}B

∗
α1αj
|Âh) were labelled αh and after the operation one

endpoint of each of these edges is labelled α1 for all h ∈ I − {1}. Hence, by the local
optimality property we get,

C(Λ3)− C(Λ1)− C(Λ2) =

C(
⋃

h∈I−{1}

(
⋃

j∈I−{1}

B∗α1αj
|Âh))− C(Ŝ|A∗1)− C(Ŝ ∩ S∗|A∗1 : Â1 ∩ (

⋃
j∈I−{1}

A∗j)) ≥ 0.

This inequality can be rewritten as follows, since C(S ′ ∩ S∗|A∗1 : Â1 ∩ (
⋃
i∈I−{1}A

∗
i )) ≥ 0

and sets (
⋃
j∈I−{1}B

∗
α1αj
|Âh) are disjoint for all h ∈ I − {1}:

C(Ŝ|A∗1) ≤
∑

h∈I−{1}

C(
⋃

j∈I−{1}

B∗α1αj
|Âh).

We now perform the relabel operations R〈A∗i , αi, f̂〉 for all i ∈ I. Using similar arguments
as above, we get the following inequality for the cost changes related to the relabel
operation R〈A∗i , αi, f̂〉,

C(Ŝ|A∗i ) ≤
∑

h∈I−{i}

C(
⋃

j∈I−{i}

B∗αiαj
|Âh). (3.43)

Adding inequality (3.43) for all i ∈ I we get,∑
i∈I

C(Ŝ|A∗i ) ≤
∑
i∈I

∑
h∈I−{i}

C(
⋃

j∈I−{i}

B∗αiαj
|Âh).

that can be rewritten as follows,∑
i∈I

C(Ŝ|A∗i ) ≤
∑
h∈I

∑
i∈I−{h}

C(
⋃

j∈I−{i}

B∗αiαj
|Âh). (3.44)

Recall that, ∑
i∈I

C(Ŝ|A∗i ) = C(Ŝp). (3.45)
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Since sets (B∗αiαj
|Âh) are disjoint for all j ∈ I − {i}, h ∈ I and B̂αrαs = B̂αsαr for all

1 ≤ r < s ≤ k then,∑
i∈I−{h}

C(
⋃

j∈I−{i}

B∗αiαj
|Âh) =

∑
i∈I−{h}

∑
j∈I−{i}

C(B∗αiαj
|Âh) =

∑
i∈I

∑
j∈I−{i}

C(B∗αiαj
|Âh)−

∑
j∈I−{h}

C(B∗αhαj
|Âh) = 2

∑
1≤r<s≤k

C(B∗αrαs
|Âh)−

∑
j∈I−{h}

C(B∗αhαj
|Âh) =

∑
1≤r<s≤k

C(B∗αrαs
|Âh) +

∑
1≤r<s≤k
r,s6=h

C(B∗αrαs
|Âh) (3.46)

and furthermore, ∑
1≤r<s≤k

C(B∗αrαs
|Âh) = C(

⋃
1≤r<s≤k

B∗αrαs
|Âh) = C(S∗|Âh). (3.47)

Simplifying (3.44) using (3.45)-(3.47) we get,

C(Ŝp) ≤
∑
h∈I

C(S∗|Âh) +
∑

1≤r<s≤k
r,s 6=h

C(B∗αrαs
|Âh)

 = C(S∗p) +
∑
h∈I

∑
1≤r<s≤k
r,s6=h

C(B∗αrαs
|Âh).

Adding C(Ŝ ∩ S∗) to both sides of the above inequality we get our second bound,

C(Ŝ) ≤ C(S∗) +
∑
h∈I

∑
1≤r<s≤k
r,s6=h

C(B∗αrαs
|Âh). (3.48)

3.5.3 Computing the Approximation Ratio

Similarly as in Section 3.4.3 we consider two cases,

i. If
∑

h∈I
∑

1≤r<s≤k
r,s 6=h

C(B∗αrαs
|Âh) > k−2

k
C(S∗), then

C(S∗)−
∑
h∈I

∑
1≤r<s≤k
r,s6=h

C(B∗αrαs
|Âh) <

2

k
C(S∗). (3.49)

Therefore by (3.42),

C(Ŝ) <
2k − 2

k
C(S∗). (3.50)

ii. If
∑

h∈I
∑

1≤r<s≤k
r,s 6=h

C(B∗αrαs
|Âh) ≤ k−2

k
C(S∗), then (3.48) simplifies to:

C(Ŝ) ≤ 2k − 2

k
C(S∗). (3.51)
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Thus, by (3.50) and (3.51)

C(Ŝ) ≤
[
2− 2

k

]
C(S∗). (3.52)

THEOREM 7 The approximation ratio of algorithm MULTIWAY CUT is 2− 2
k
.

3.6 Tight Example

Figure 3.5 shows an example proving the tightness of the analysis. The local optimal
solution assigns label αi to terminal xi for i = 1, 2, ..., k − 1 and it assigns label αk to all
the other nodes. The global optimal solution assigns label αi to each pair of nodes xi,
yi, for i = 1, 2, ..., k.

The cost of the local optimal solution is 2w(k− 1) and the cost of the global optimal
solution is wk, therefore the approximation ratio is 2− 2

k
. To show that the first solution in

Figure 3.5 is a local optimal solution we consider all possible relabel operations R〈Y, αi, f̂〉
for each Y ⊆ {y1, y2, ..., yk} and i = 1, 2, ..., k. If yi 6∈ Y then the cost of the solution will
increase as some of the edges of the form (yi, yi+1), (xk, y1) or (xk, yk) will now contribute
to the cost of the solution. If yi ∈ Y then the cost of the edge (xi, yi) will not be part of
the cost of the solution, but at least two edges of cost w will now contribute to the cost
of the solution and, thus, the cost of the solution cannot decrease.
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Figure 3.5: Node labels are inside the nodes and node names are written beside the
nodes. Edge costs are written beside the edges. The terminals are x1, x2, . . . , xk.

3.7 Variations of the Multiway Cut Problem

By making minor changes to the algorithm used for finding a minimum cost labeling we
can use our local search algorithm on two variations of the multiway cut problem: (i)
when certain sets of nodes need to be in the same partition, and (ii) when some nodes
must belong to only certain partitions.

These versions of the the problem arise in computer vision when we want to segment
an image and we either know that certain pixels have to be in the same segment or we
know that some pixels can only belong to certain segments.

3.7.1 Nodes that Need to be in the Same Partition

In this variation of the multiway cut problem we are given a graph G = (V,E), a set of
terminals T = {t1, t2, ..., tk} ⊆ V and a collection F = {q1, q2, ...qh} of subsets of nodes.
Sets qi ⊆ V , i = 1, 2, ..., h, are disjoint and qi does not include any terminals. The goal
is to find a minimum weight set E ′ ⊆ E such that removing E ′ from G divides it into k
partitions so that each partition includes exactly one terminal and all nodes in set qi are
in the same partition, for all i = 1, 2, ..., h.
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First we transform graph G = (V,E) into a new graph G′ = (V ′, E ′) as described
below. To find a minimum cost labeling for this version of the problem we compute a
minimum cut in a graph G′α = (Vα, Eα) built from G′ as described in Section 3.3. The
transformation of G to G′ is as follows,

Algorithm 5 Transform G = (V,E)

1: Input: Graph G = (V,E), collection F = {q1, q2, ...qh} of subset of vertices
2: Output: Graph G′ = (V ′, E ′)
3: G′ ← G
4: for i← 1 to h do
5: Nqi ←

⋃
v∈qi Nv, where Nv is the set of neighbors of node v in G′

6: Merge all nodes in qi into one super-node Qi, so the set of neighbors of Qi includes
all the

7: nodes in Nqi \ qi.
8: For all u ∈ Nqi \ qi add edge (u,Qi) and set
9: cost(u,Qi) =

∑
v ∈Nu ∩ qi cost(u, v).

10: end for
11: return G′
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Figure 3.6: An example of the transformation of G into G′. Nodes that need to be in the
same partition are s, q, u, p so in the transformed graph G′ a super node Q is created for
these nodes. Also, cost(t1, Q) = cost(u, t1) + cost(t1, p) and cost(Q, r) = cost(p, r).

Note that there is a 1-1 correspondence between the feasible multiway cuts m in G
that separate the terminals and keep the vertices of each set qi in the same partitions,
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and the feasible multiway cuts m′ in G′ that separate the k terminals. Furthermore, a
feasible multiway cut m of G and its corresponding feasible multiway cut m′ in G′ have
the same cost because,

• If {(u, v) | u 6∈
⋃

1≤j≤h qj , v ∈ qi, i ∈ {1, 2, ..., h}} ⊆ m, then (u,Qi) ∈ m′ and
cost(u,Qi) =

∑
v ∈Nu ∩ qi cost(u, v).

• If {(u, v) | u ∈ qi, v ∈ qj, i 6= j ∈ {1, 2, ..., h}} ⊆ m, then (Qi, Qj) ∈ m′. In addition,
observe that algorithm Transform sets cost(Qi, Qj) =

∑
u∈qi

∑
v ∈Nu ∩ qj cost(u, v).

Since there is a 1-1 mapping between the feasible multiway cuts in G and the feasible
multiway cuts in G′ with corresponding cuts having the same cost and the construction
of G′α from G′ is exactly as described in Section 3.3, then the same analysis in Section
3.5 still hold for this version of the multiway cut problem and so we can also guarantee
a 2− 2

k
approximation ratio for this problem.

3.7.2 Nodes that Can Only be in Some Partitions

In this variation of the multiway cut problem we are given a graph G = (V,E), a set
of terminals T = {t1, t2, ..., tk} ⊆ V , a set of labels L = {l1, l2, ..., lk}, and also for each
node v ∈ V \ T , we are given a set lv ⊆ L of allowed labels for it. Each terminal needs
to be assigned a unique label. The goal is to assign labels to the nodes in such a way
that the sum of the weights of the edges for which their endpoints have different labels
is minimum and each node is assigned a valid label.

We can modify our local search algorithm so it works on this version of the multiway
cut problem as well. The construction of the graph Gα described in Section 3.3 needs to
be changed as follows,

• For each node v in G, if α is one of the possible labels that node v can have then
the weight of edge (α, v) in Gα is 0, otherwise if v cannot be labelled α then we set
the weight of edge (α, v) to ∞.

Analysis

The analysis in Section 3.5 does not work for this version of the problem because to
compute the bound in Section 3.5.1 we need to assign to some nodes in the local optimal
solution all possible labels, but this is might not be allowed in this version of the problem.

However, we can still obtain the bound computed in Section 3.5.2 to get Inequality
(3.48). This is because for computing this bound we only change the labels of the nodes
in A∗i to αi and because these nodes are labeled αi in the global optimal solution the
above is a valid relabeling. Therefore, proceeding as in Section 3.5.2 we get,

C(Ŝ) ≤ C(S∗) +
∑
h∈I

∑
1≤r<s≤k
r,s6=h

C(B∗αrαs
|Âh). (3.53)
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Since
∑

h∈I
∑

1≤r<s≤k
r,s 6=h

C(B∗αrαs
|Âh) ≤ C(S∗) we can rewrite (3.53) as follows,

C(Ŝ) ≤ 2C(S∗) (3.54)

Therefore, we can guarantee an approximation ratio 2 for the version of the multiway
cut problem when certain nodes can only be in some partitions.

3.8 Experimental Results

We compared our local search algorithm with four other approximation algorithms for the
multiway cut problem: Dahlhaus et al.’s isolation heuristic [8], the algorithm of Calinescu
et al. [6], the algorithm of Sharma and Vondrak [16], and the algorithm of Buchbinder
et al. [4, 5].

We implemented MULTIWAY CUT and the other approximation algorithms using
Java 1.8. The commercial integer and linear program solver Cplex 12.7, configured using
default settings, was used to compute optimal solutions for each test instance. The
experiments were performed on a computer using an Intel Core i5-5200U 220GHz (4
CPUs) with 16GB of RAM and SHARCNET’s high performance computing clusters:
Orca, using an AMD Opteron 2.2GHz (4 CPUs) with 32GB of RAM, Saw, using an
Intel Xeon 2.83Ghz (4 CPUs) with 16GB of RAM, and Kraken, using an AMD Opteron
2.2GHz (4 CPUs) with 8GB of RAM.

We used the maximum flow algorithm of Goldberg and Tarjan to compute minimum
cost relabel operations in our local search algorithm. To ensure a polynomial running
time for our algorithm as discussed at the end of Section 3.2, for most of our experiments
we chose the value of ε such that (1− ε

k2
) was equal to 99/100.

The isolation heuristic of Dahlhaus et al.’s [8] shares the same worst case approxima-
tion ratio as MULTIWAY CUT of 2− 2

k
, but as we show, its experimental performance

is much worse than that of our local search algorithm. Cplex is used to solve the linear
programs needed for the algorithms of Calinescu et al. [6], Sharma and Vondrak [16],
and Buchbinder et al. [4, 5].

3.8.1 Input Data

We used a variety of inputs obtained from network benchmarks used in DIMACS com-
petitions (https://dimacs.rutgers.edu/Challenges/) and randomly generated networks.
Even though past DIMACS competitions have not included the multiway cut problem in
their implementation challenges, we were able to use network benchmarks for maximum
clique, maximum independent set, Hamming instances, Keller’s conjecture instances,
p-hat generated instances, and Steiner tree instances by considering only the largest con-
nected component in each graph and choosing, when needed, random edge capacities and
terminals for each instance.

The structure of a graph impacts how well a multiway cut algorithm performs. When
edges incident on the terminals have much smaller capacities than edges not incident
on them, an optimal solution will simply select the edges incident on the terminals.
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Furthermore, when the number of edges is large, there may be multiple independent
isolating cuts of similar cost for each terminal; an optimal solution will select cuts that
share edges, while approximation algorithms may choose cuts with a larger number of
edges. We used these observations to generate random instances that are difficult for
the multiway cut algorithms. Specifically, we generated three types of random graph
instances.
Simple random graphs: Edges are added between pairs of randomly selected
vertices. After a specific number of edges is added, the largest connected compo-
nent is output.
Linear decay random graphs: These are random graphs where an initial edge
density and capacity range is used for edges incident on terminal vertices, and
then the edge densities and capacities are linearly decreased as the distance from
the terminals increases.
Exponential decay random graphs: These graphs are also created by as-
signing an initial edge density and capacity range to edges incident on terminal
vertices, and then exponentially decreasing the densities and capacities as the
distance from the terminals increases.
Note that in the linear and exponential decay random graphs edges incident on the

terminals have large capacities, ensuring that cuts isolating terminals are not the trivial
ones. Edges located far from the terminals are given small capacities, creating a ”hot
spot” of edges that likely belong to minimum cuts. Furthermore, terminal vertices have
the highest number of incident edges, while vertices distant from terminals have the lowest
number of incident edges. This edge density gradient encourages optimal solutions that
select overlapping cuts through the ”hot spot”.

Linear and exponential decay random graphs could be used to model practical sit-
uations such as strength and availability of wireless signals, traffic congestion around
popular destinations, or link capacity and topology in client-server networks.

3.8.2 Test Cases

We studied the performance of the approximation algorithms on input networks as de-
scribed in the previous section, and we studied how graph characteristics such as terminal
density (k/n), edge capacities, edge density (m/n), and number of vertices impact the
solution quality, where n is the number of vertices and m is the number of edges. Fur-
thermore, we studied the impact of changing the initial labeling scheme and the value of
ε in the local search algorithm.

When k = 2 the problem is reduced to the minimum st-cut problem, which can
be solved exactly in polynomial time. Additionally, when k = n, the problem becomes
trivial since every edge must be removed. In order to explore how the number of terminals
affects the algorithms, multiple values for k were chosen. For all graph instances where
terminals were randomly chosen, k was set to be a fraction of the number of vertices.
The fractions used were 3/80, 1/16, 1/8, 1/4, 3/8, and 1/2. For all graph instances this
ensured that k was at least 3, but not so large that the problem was trivial.

Assigning larger capacities to edges incident on the terminals led to graph instances
whose optimal solutions include edges some distance away from the terminals. We gener-
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ated graph instances according to two edge capacity schemes. In the first scheme, edges
incident on terminals were assigned rational capacities with values between 30 and 50,
while other edges were assigned rational capacities with values between 1 and 25 (in
exponential decay random graphs) or between 1 and 45 (in linear decay random graphs).
In the second scheme, edges incident on terminals were assigned rational capacities be-
tween 1 and 100, while other edges were assigned rational capacites between 1 and 50 (in
exponential decay random graphs) or between 1 and 90 (in linear decay random graphs).
This second scheme allows edges incident on terminals to have small capacities relative
to other edges.

We explored the impact of edge density on the solution quality. Both, the graph
instances obtained from the DIMACS competitions and the randomly generated graphs
with very large edge densities tended to produce simple instances for which all algorithms
produced solutions close to the optimal. Therefore, we concentrated on generating ran-
dom graphs with a small number of edges. The number of edges chosen for each randomly
generated graph were n, 2n, 3n, 4n, 5n, and 6n, where n is the number of vertices.

We used the following four different initial labeling strategies for the local search
algorithm:
One Each: Each terminal vertex from 1 to k was assigned a different label, and
all of the remaining vertices were assigned the label corresponding to terminal k.
Clumps: Each terminal vertex from 1 to k was assigned a different label, and the
terminals were added to a queue. While the queue had remaining vertices, the
first vertex in the queue was removed and the label of that vertex was assigned to
all of its unlabeled neighbors, then adding each of these neighbors to the end of
the queue.
Random: Each terminal vertex from 1 to k was assigned a different label, and
the terminals were added to a queue. While the queue had remaining vertices, the
queue was randomly shuffled, the first vertex was removed, and the label of that
vertex was assigned to all of its unlabeled neighbors, adding each one of them to
the queue.
Isolation Heuristic: The vertices were assigned labels corresponding to the
partitions selected by the isolation heuristic.
These initial labelings provided a variety of starting points that affected the number

of iterations needed by the algorithm. We also studied the tradeoff between solution
quality and running time produced by the choice for the value of ε

3.8.3 Results

For randomly generated graphs, 1,000 experiments were performed for each combination
of edge density and terminal density for 80 vertex and 160 vertex graphs. Due to their
large running times, only 100 experiments were performed on 320 vertex graphs. Graph
instances obtained from the DIMACS competitions have a large number of edges, hence
only 25 to 100 experiments were performed for each terminal density. We compared
the performance of the approximation algorithms according to input network, graph
characteristics, and running time. Finally, we anaylsed the performance of the local
search algorithm using different initial labelings and values of ε.
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Input Networks

Table 3.2 shows a summary of the results1 for each of the input networks. The value in
each entry of the table is calculated by dividing the value of the solution produced by an
approximation algorithm by the value of the optimum solution produced by Cplex. The
column labeled “Avg” lists the mean of all of the ratios in a test case, and the column
labeled “Max” lists the largest ratio produced in a test case. The rows are labeled with
the name of the input graph and the number of vertices. For each row, solutions from
test cases using different values for k, m, and edge capacities have been combined.

All of the approximation algorithms computed solutions to the instances from the
DIMACS competitions that are very close to the optimal. The exponential decay random
graphs caused the highest average ratios. These results show that the isolation heuristic
performs the worst, as it computes independent isolating cuts and fails to re-use edges
to achieve lower costs. This algorithm does particularily bad on linear and exponential
decay random graphs. The algorithms of Calinescu et al., Buchbinder et al., and Sharma
and Vondrak, which in the sequel we refer to collectively as the geometric relaxation
algorithms, typically compute solutions close to the optimal but occasionally produce
solutions near their theoretical worst case performances.

1The complete results are split into individual test cases for different values of n, m, k, and edge
capacities.
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Isolation Heuristic Local Search Calinescu Buchbinder Sharma and Vondrak
Test Case Avg Max Avg Max Avg Max Avg Max Avg Max

C125 n = 125 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Brock n = 200 1.000 1.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Gen n = 200 1.000 1.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hamming n = 256 1.000 1.003 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Keller n = 171 1.000 1.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

P-Hat n = 320 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ST
n = 80 1.021 1.176 1.001 1.013 1.000 1.000 1.000 1.000 1.000 1.000
n = 160 1.021 1.137 1.000 1.015 1.000 1.000 1.000 1.000 1.000 1.000
n = 320 1.023 1.145 1.000 1.005 1.000 1.000 1.000 1.000 1.000 1.000

SR
n = 80 1.031 1.507 1.001 1.133 1.000 1.038 1.000 1.034 1.000 1.024
n = 160 1.039 1.440 1.002 1.118 1.000 1.060 1.000 1.048 1.000 1.039
n = 320 1.032 1.326 1.002 1.128 1.000 1.000 1.000 1.000 1.000 1.000

GL
n = 80 1.090 1.500 1.004 1.091 1.000 1.171 1.000 1.154 1.000 1.154
n = 160 1.106 1.600 1.010 1.133 1.000 1.068 1.000 1.089 1.000 1.093
n = 320 1.110 1.643 1.017 1.160 1.000 1.023 1.000 1.044 1.000 1.011

GE
n = 80 1.120 1.500 1.006 1.087 1.000 1.292 1.000 1.292 1.000 1.196
n = 160 1.124 1.667 1.015 1.146 1.001 1.125 1.001 1.148 1.001 1.124
n = 320 1.176 1.476 1.031 1.216 1.000 1.074 1.000 1.068 1.000 1.056

Table 3.2: Ratios of the solutions computed by approximation algorithms to the optimum,
for benchmarks from the DIMACS competitions: Maximum independent set (Brock),
maximum clique (Gen, C125), Hamming instances, Keller instances, p-hat instances,
and Steiner tree instances (ST). Ratios for the randomly generated instances with simple
(SR), linear (GL), and exponential (GE) distributions.

Graph Characteristics

Table 3.3 shows a sample of results2 from the exponential decay random distributions,
which produced the highest ratios across all of our input networks. Each row is labeled
with the number of edges in the test case and rows are grouped according to the number
of terminal vertices chosen.

While for the exponential decay random graphs the algorithms had the highest ratios,
each multiway cut algorithm only produced these high ratios in a small subset of the test
cases. The isolation heuristic had its highest ratios when the value of k was in the range
of 0.125n to 0.25n, and when the number of edges was equal to 2n.

Our local search algorithm and the geometric relaxation algorithms have similar per-
formance. These algorithms produced their highest ratios when the value of k was in the
range of 0.0375n to 0.125n, and when the number of edges was between 2n and 5n.

Figure 3.7 shows a sample of plots from the exponential decay random distributions.
The local search algorithm has similar performance as the geometric relaxation algo-
rithms. When the number of terminals is small and the number of edges is large, the
worst solutions computed by the local search algorithm were close to the average solu-

2Many other test cases provided similar results and are not included.
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tions. In contrast, the worst solutions computed by the geometric relaxation algorithm
were farther from their average solutions.

The local search algorithm performs best when the number of terminals is small. A
relabel operation can only expand a single label at a time, but sometimes an improvement
exists that is only attainable by changing multiple labels at the same time. Figure 3.5 in
Section 3.6 shows an example where the local optimal solution cannot reach the global
optimal solution with only single relabel operations. It is possible that networks with a
large number of terminals encounter this problem more frequently since there are more
possible label configurations for the vertices.

Isolation Heuristic Local Search Calinescu Buchbinder Sharma and Vondrak
Test Case Avg Max Avg Max Avg Max Avg Max Avg Max

k = 3

m = n 1.046 1.333 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m = 2n 1.100 1.261 1.001 1.034 1.000 1.147 1.000 1.151 1.000 1.075
m = 3n 1.082 1.189 1.001 1.046 1.001 1.102 1.001 1.083 1.001 1.124
m = 4n 1.059 1.170 1.001 1.013 1.002 1.115 1.001 1.083 1.001 1.103
m = 5n 1.027 1.130 1.001 1.011 1.001 1.292 1.001 1.292 1.000 1.063
m = 6n 1.006 1.067 1.000 1.013 1.000 1.170 1.000 1.011 1.000 1.014

k = 5

m = n 1.128 1.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m = 2n 1.230 1.365 1.001 1.038 1.000 1.082 1.000 1.052 1.000 1.153
m = 3n 1.183 1.298 1.001 1.032 1.001 1.124 1.001 1.085 1.000 1.139
m = 4n 1.106 1.216 1.002 1.022 1.004 1.125 1.004 1.106 1.003 1.101
m = 5n 1.065 1.187 1.003 1.024 1.004 1.226 1.003 1.127 1.003 1.091
m = 6n 1.034 1.113 1.002 1.014 1.001 1.061 1.001 1.117 1.001 1.196

k = 10

m = n 1.076 1.462 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m = 2n 1.320 1.460 1.000 1.039 1.000 1.000 1.000 1.000 1.000 1.000
m = 3n 1.245 1.331 1.001 1.046 1.000 1.002 1.000 1.003 1.000 1.019
m = 4n 1.168 1.237 1.001 1.033 1.000 1.049 1.000 1.024 1.000 1.065
m = 5n 1.129 1.194 1.002 1.027 1.001 1.075 1.001 1.071 1.001 1.082
m = 6n 1.085 1.149 1.003 1.024 1.002 1.060 1.002 1.053 1.002 1.060

Table 3.3: Average and maximum approximation ratios for several test cases on 80 vertex
random graphs with exponential decay distributions.
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Running Time

A sample of running times for each approximation algorithm is shown in Table 3.4.
The isolation heuristic is the fastest algorithm. The running times for the geometric
relaxation algorithms include the time needed for Cplex to compute solutions for the
linear programs.

The running times of the algorithms of Calinescu et al., Sharma and Vondrak, and
Buchbinder et al. are very similar. The running times of these algorithms scale very
well with the size of the input graph. The running time of the local search algorithm
depends heavily on how the minimum cut is computed and how many relabel operations
are performed. When the number of terminals is small, the local search algorithm is
faster than the geometric relaxation algorithms.

We improved the running time of the local search algorithm by applying the first
relabel operation that improved the cost of the solution instead of computing the relabel
operation that had the largest improvement on the cost. We also in each iteration con-
sidered first the partition that followed the partition relabeled in the previous iteration.
Furthermore, after each partition had been considered at least once, we allowed the local
search algorithm to terminate early if

⌈
k
2

⌉
operations in a row failed to find an improve-

ment. These modifications reduced the number of relabel operations required, but did
not have a large negative impact on the solution.

Isolation Heuristic Local Search Calinescu Buchbinder Sharma and Vondrak
Test Case Time (ms)

n = 80, k = 3

m = 2n 1 6 51 51 50
m = 3n 1 14 77 78 77
m = 4n 1 18 91 92 91

n = 80, k = 5

m = 2n 1 15 67 67 67
m = 3n 1 29 81 82 81
m = 4n 1 52 139 141 139

n = 80, k = 10

m = 2n 1 32 93 94 93
m = 3n 1 88 113 114 113
m = 4n 2 126 127 130 127

n = 160, k = 6

m = 2n 2 64 202 203 202
m = 3n 2 160 339 341 339
m = 4n 2 226 534 534 534

n = 160, k = 10

m = 2n 2 137 274 276 274
m = 3n 2 281 336 340 336
m = 4n 3 486 464 470 464

n = 160, k = 20

m = 2n 3 245 352 361 352
m = 3n 4 700 476 483 476
m = 4n 5 970 523 540 523

Table 3.4: Running times using 100 experiments for several test cases from the 80 vertex
and 160 vertex exponential decay distributions.
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Initial Labeling and Value of ε

Figure 3.8 shows how the value of epsilon affects the running times and solution quality
for the local search algorithm on the exponential decay graph distribution where m = 4n
and k = 10. When (1 − ε/k2) = 0.9975, the local search algorithm computes solutions
very close to the optimum but requires more time, especially in large graphs. As shown
in Table 3.4, we can use (1−ε/k2) = 0.99 to compute high quality solutions quicker than
the other algorithms in small graphs. The local search algorithm can run considerably
faster by sacrificing solution quality.

The variety of initial labelings for the local search algorithm produced similar solutions
when the value of (1− ε/k2) was between 0.99 and 1.0. When the value of (1− ε/k2) was
less than 0.99, the initial labelings showed differences in performance. The One Each
labeling produced the worst solutions; since our random graph structures have many
edges and higher capacities on edges incident on terminals, this initial labeling selected
many edges with large capacites for the cuts. In contrast, the Clumps initial labeling
was closer to the optimal solution and was not significantly affected when the value of
(1− ε/k2) decreased below 0.99.

When (1− ε/k2) = 0.99 the local search algorithm terminates if it cannot improve its
previous best solution by at least 1%. If the initial labeling is very close to the optimal
solution, the value of ε has less of an impact; no large improvements remain and the
algorithm will quickly terminate. When the initial labeling is further away from the
optimum, the value of ε has a large impact.
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Figure 3.8: Results from the 160 vertex exponential decay graph distribution with m = 4n and k = 10. Approximation
ratios are compared against the epsilon value using the first edge capacity scheme (top-left) and the second edge
capacity scheme (bottom-left). Running times are compared against the epsilon value using the first edge capacity
scheme (top-right) and the second edge capacity scheme (bottom-right). The x-axis shows the value of ε/k2; the
percentage of improvement to the previous best solution required to continue the iterations of the algorithm.
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3.8.4 Final Observations

We compared our local search algorithm with four other approximation algorithms for
the multiway cut problem. Even though the local search algorithm has the same worst
case approximation ratio as the isolation heuristic, its experimental performance is much
better. We observed competitive solution quality of the local search algorithm compared
to the algorithms of Calinescu et al., Buchbinder et al., and Sharma and Vondrak. On
graph with exponential decay random distributions with k <= 0.125 and m >= 2n the
worst solutions produced by our algorithm were much better than the worst solutions
produced by the geometric relaxation algorithms.

On networks with 80 vertices, the local search algorithm computed solutions faster
than the geometric relaxation algorithms when k was less than 0.125n, with the smallest
test cases being solved significantly faster by the local search algorithm. On networks
with 160 vertices, the local search algorithm computed solutions faster than the geometric
relaxation algorithms when k was less than 0.0625n, but did not scale as well as Cplex,
which accounts for the majority of the running time for the other algorithms. Due to the
ability to select the value for ε, the local search algorithm is more flexible than the other
algorithms.
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Chapter 4

A Local Search Algorithm for the
Constrained Max k-Cut Problem on
Hypergraphs

4.1 Introduction

A weighted hypergraph H = (V,E) consist of a set V of nodes, a set E of hyperedges and
a function w that assigns a non-negative weight to every edge. A hyperedge e consist of
a non-empty set of nodes (called its endpoints). Graphs are special cases of hypergraphs
where each hyperedge has exactly two nodes. The size of a hyperedge e is the number of
nodes in e and the rank of a hypergraph H = (V,E) is the size of the hyperedge e ∈ E
with the biggest cardinality.

In the max k-cut problem on hypergraphs we are given a weighted hypergraph H =
(V,E) and an integer k, and the goal is to partition V into k non-empty sets in such
a way that the sum of the weights of the hyperedges having at least two endpoints in
different partitions is maximized.

In the related max multiway cut problem on hypergraphs, besides having a weighted
hypergraph H = (V,E) and integer k, we are also given a set T = {t1, t2, . . . , tk} ⊆ V
of terminals and the goal is to divide V into k partitions so as to maximize the sum of
the weights of the hyperedges having at least two endpoints in different partitions and
such that each partition has exactly one terminal. Some other related problems are max
Steiner k-cut, max cut with given sizes of parts [2] and capacitated max k-cut [11].

All above problems involve grouping the vertices of a weighted hypergraph H =
(V,E) into k non-empty partitions that satisfy some additional set c of constraints and
the goal is to maximize the sum of the weights of the hyperedges having at least two
endpoints in different partitions. We call this problem the constrained max k-cut problem
on hypergraphs. For the aforementioned problems the sets c of constraints that their
solutions need to satisfy are as follows.

• Max k-cut: No additional constraints, just divide V into k disjoint non-empty
partitions.

84
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• Max multiway cut: Each partition must include one vertex from a given set T =
{t1, t2, . . . , tk} ⊆ V of terminals.

• Max Steiner k-cut: Each partition must include at least one vertex from a given set
T = {t1, t2, . . . , tl} ⊆ V of terminals, where l ≥ k. Note that this is a generalization
of the max multiway cut problem.

• Capacitated max k-cut problem: Given a set {s1, s2, . . . , sk} of sizes, a valid parti-
tion V1, . . . , Vk of V must satisfy |Vi|≤ si, for all 1 ≤ i ≤ k.

• Max k-cut with given sizes of parts: Given a set {s1, s2, . . . , sk} of sizes, a valid
partition V1, V2, . . . , Vk of V must satisfy |Vi|= si, for all 1 ≤ i ≤ k. This is a special
case of the capacitated max k-cut problem.

In this paper we present a general local search algorithm for the constrained max
k-cut problem on hypergraphs that finds approximate solutions for all aforementioned
problems. Our local search algorithm starts with an arbitrary feasible solution for the
problem that partitions V into k disjoint sets. The algorithm then tries to improve the
current solution by either moving one node from its current partition to another partition
or by swapping two nodes from different partitions.

Our algorithm can be modified so it can be used also on the directed max k-cut
problem on hypergraphs. A directed hypergraph H = (V,E) consist of a set V of nodes
and a set E of directed hyperedges. A directed hyperedge is an ordered pair (t, h) formed
by two disjoint sets of nodes: t (the tail set) and h (the head set).

Given a directed hypergraph H = (V,E) and a partition V1, V2, . . . , Vk of V , the
weight of the partition is the total weight of the hyperedges having at least one head
in some partition i and at least one of their tails in some partition j, where i > j. In
the directed max k-cut problem on hypergraphs, the goal is to find a maximum weight
partition V1, V2, . . . , Vk of V .

The approximation ratio of our algorithm for max k-cut, max multiway cut and max
Steiner k-cut is 1 − 1

k
. For the max k-cut problem with given sizes of parts and the

capacitated max cut problem our algorithm has approximation ratio 1 − |Vmax|
|V | , where

|Vmax| is the size of the largest partition. The approximation ratio of our algorithm for
the directed max k-cut problem on hypergraphs is k−1

3k−2
.

Related Work: There has been a significant amount of research on max k-cut and
related problems on graphs. Papadimitriou [20] presented a local search algorithm for
the unweighted max cut problem, a special case of the max k-cut problem when k = 2,
and showed that the approximation ratio of his algorithm is 1

2
. This is a simple algorithm

that starts with two arbitrary partitions and then repeatedly improves the solution by
moving one node to the other partition. Goemans and Williamson [12] introduced a
randomized rounding approximation algorithm based on a semidefinite relaxation of the
max cut problem with expected approximation ratio 0.8785. They later designed an
algorithm for the max 3-cut problem with approximation ratio 0.8360 [13]. An algorithm
with the same approximation ratio was presented by Klerk et al. [17].

Vazirani [23] designed a simple greedy (1− 1
k
)-approximation algorithm for the max k-

cut problem. Frieze and Jerrum [10] generalized the randomized approximation algorithm
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of Goemans and Williamson and designed a randomized algorithm for the max k-cut
problem with expected approximation ratio 1− 1

k
+ 2 ln k

k2
. Kann et al. [16] show that no

approximation algorithm for the max k-cut problem can have approximation ratio better
than 1− 1

34k
unless P = NP .

Frieze and Jerrum [10] also designed a randomized algorithm for the max bisection
problem, where we have to partition V into two sets of equal size, and showed that the
approximation ratio of their algorithm is 0.65. Ye [25] improved on this result by designing
an algorithm with approximation ratio 0.699. Later, Halperin and Zwick [14], Feige and
Langberg [9], Raghavendra and Tan [21] designed algorithms with approximation ratios
0.7016, 0.7028 and 0.85 respectively, for the same problem. Finally, Austrin et al. [6]
improved the approximation ratio to 0.8776.

Currently the best known approximation algorithm for max k-Section (in this problem

|V1|= |V2|= . . . = |Vk|= |V |
k

) is by Andersson [4] with approximation ratio 1 − 1
k

+
Θ( 1

k3
) based on semidefinite programming, generalizing the algorithm in [10] for the max

bisection problem.

Liu et al. [18] designed a greedy local search algorithm for the generalized max k-
multiway cut problem with approximation ratio 1− 1

k
. In the generalized max k-multiway

cut problem besides having a weighted graph G = (V,E) and integer k, we are also given
p disjoint subsets Ui of V of size k. The goal is to divide V into k partitions such that
each partition includes exactly one node from Ui for all 1 ≤ i ≤ p.

For the max cut problem with given sizes of parts Ageev and Sviridenko [2] de-
siged a 1

2
-approximation algorithm using pipage rounding. Feige and Langberg [8] de-

signed a semi-definite programming-based algorithm with approximation ratio 1
2

+ ε
for the same problem for any ε > 0. For the capacitated max k-cut problem Wu
and Zhu [24] modified the local search algorithm by Gaur et al. [11] and show that

the approximation ratio of their algorithm is |Vmin|(k−1)
2(|Vmax|−1)+|Vmin|(k−1)

, where |Vmin| and

|Vmax| are sizes of the minimum and the maximum partitions returned by the algo-
rithm. Our algorithm for the capacitated max k-cut problem has approximation ratio
1 − |Vmax|

|V | ≥ 1 − |Vmax|
|Vmax|+|Vmin|(k−1)

= |Vmin|(k−1)
|Vmax|+|Vmin|(k−1)

. Therefore, our algorithm is better

than the algorithm of Wu and Zhu when |Vmin|(k−1)
|Vmax|+|Vmin|(k−1)

> |Vmin|(k−1)
2(|Vmax|−1)+|Vmin|(k−1)

or in

other words when |Vmax|≥ 2. Furthermore, our algorithm works on hypergraphs and not
just on graphs.

For the directed max cut problem Goemans and Williamson [12] designed a 0.796-
approximation algorithm that uses a semidefinite programming based technique. Feige
and Goemens [7] used a similar technique and improved the ratio to 0.859. Also, a 1

2
-

approximation algorithm for the max directed cut problem with given sizes of parts was
designed by Ageev et al. [1] based on pipage rounding.

For the max cut problem on hypergraphs Andersson and Engebretsen [5] designed a
0.72-approximation algorithm. For the max k-cut problem on hypergraphs with given
sizes of parts Ageev and Sviridenko [3] designed an approximation algorithm based on pi-
page rounding with approximation ratio 1−(1− 1

r
)r−(1

r
)r, where r is the number of nodes

in the smallest hyperedge. For the case when all the hyperedges have at least 3 nodes they
gave a (1 − 1

e
)-approximation algorithm. If we compare our (1 − |Vmax|

|V | )-approximation
algorithim for the max k-cut problem with given sizes of parts on hypergraphs with that
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of Ageev and Sviridenko [3], since 1 − (1 − 1
r
)r − (1

r
)r ≤ 0.7 our algorithm has better

approximation ratio when |Vmax|< 3
10
|V |, where |Vmax| is the size of the biggest partition.

Zhu and Guo [26] used local search to design a k−1
∆+k−1

-approximation algorithm for

the max k-cut problem on hypergraphs, where ∆ = min{ s(s−1)
2

, k(k−1)
2
} and s is the size

of the largest hyperedge. They also gave a local search (1− 1
k
)-approximation algorithm

for the max k- cut problem on graphs. We note that our (1− 1
k
)-approximation algorithm

for hypergraphs has a much better approximation ratio than that of Zhu and Guo.

4.2 The Local Search Algorithm

Given a hypergraph H = (V,E), let V1, V2, . . . , Vk be an arbitrary partition of V into k
non-empty sets. We denote a hyperedge e as (u1, u2, . . . , ure), where u1, u2, . . . , ure are
the endpoints of e. We define Hi to be the set of hyperedges whose endpoints are all in
partition Vi and Hi(u) to be the set of hyperedges from Hi incident on u:

Hi = {(u1, u2, ..., ure) | u1, u2, ..., ure ∈ Vi, (u1, u2, ..., ure) ∈ E}, and (4.1)

Hi(u) = {(u1, u2, ..., ure) | uj = u for some 1 ≤ j ≤ r, (u1, u2, ..., ure) ∈ Hi}. (4.2)

Let Hij be the set of hyperedges that have one endpoint in Vi and all other endpoints in
Vj, and let Hij(u) be the set of hyperedges from Hij incident on u. Note that in general
Hij 6= Hji. Our algorithm for the constrained max k-cut problem on hypergraphs is
described below.

Algorithm Local Search(H,w, c)
Input: Hypergraph H = (V,E), weight function w : E → Z+, constraints c.
Output: A partition of the set V satisfying c.

1. Start with an arbitrary partition, V1, ..., Vk that satisfies the constraints c.

2. If there is a node u ∈ Vi such that there is a partition Vl, i 6= l for which∑
e∈Hi(u) w(e) >

∑
e∈Hil(u) w(e)

and moving u to Vl creates a partition that satisfies the constraints in c, then move
u from Vi to Vl.

3. If there are nodes u ∈ Vi and v ∈ Vl, i 6= l for which∑
e∈Hi(u) w(e) +

∑
e∈Hl(v) w(e) >

∑
e∈Hil(u) w(e) +

∑
e∈Hli(v) w(e)

and moving u to Vl and v to Vi creates a partition that satisfies the constraints in
c, then move u to Vl and v to Vi.

4. If a node u as specified in Step 2 exists or if nodes u, v as specified in Step 3 exist
then repeat Steps 2 and 3, otherwise output the partition V1, V2, . . . , Vk.
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Schaffer and Yannakakis [22] proved that given a weighted graph, the problem of
finding a partition of its vertices so the weight of the cut cannot be increased by moving a
vertex from one side to the other (same operation as described in Step 2 of our algorithm)
is polynomial time local search (PLS)-complete. The class PLS-complete introduced by
Johnson et al. [15] is formed by those problems for which a polynomial time local search
algorithm for one implies such an algorithm for all of them. Therefore, it is unlikely that
our local search algorithm has polynomial running time.

The running time of our local search algorithm is dominated by the time complexity
of Step 2 and Step 3 and by the number of times that Step 2 and Step 3 are repeated.
Step 2 can be easily implemented to run in O(k|V |(|V ||E|+f(c))) time, where the time
needed to verify if a partition of V satisfies the constraints in c is f(c), and Step 3
can be implemented to run in O(|V |2(|V ||E|+f(c))) time. The number of iterations of
Steps 2 and 3 is at most

∑
e∈E w(e) since at each step of the algorithm the weight of

the solution increases by at least one unit, but this is not polynomial in the size of the
input. Using the result by Orlin et al. [19] we can transform our algorithm into an ε-local
search algorithm for any ε > 0 with approximation ratio (1− ε) times the approximation
ratio of the local search algorithm. The running time of the ε- local search algorithm
is O(|V |4(|V ||E|+f(c))), which is polynomial for any constant value ε > 0 when f(c) is
polynomial. We note that f(c) is polynomial for all problems mentioned above. In the
sequel we will analyze the performance of the local search algorithm knowing that we
can modify it to achieve polynomial running time at the expense of a small loss in the
quality of the approximation ratio.

4.3 Max k-Cut, MaxMultiway Cut, and Max Steiner

k-Cut Problems

In this section we analyze the local search algorithm described in the previous section
and compute its approximation ratio for the max k-cut, the max multiway cut, and the
max Steiner k-cut problems on hypergraphs.

Let P = (V1, V2, ..., Vk) be the partition computed by the local search algorithm. We
define E ′ as the set of hyperedges that have at least two endpoints in different partitions:

E ′ =

{(u1, u2, ..., ure) | partition containing ui 6= partition containing uj, (u1, u2, ..., ure) ∈ E}.
(4.3)

Then the cost S of the local optimum solution computed by our algorithm is,

S =
∑
e∈E′

w(e). (4.4)

Note that the only hyperedges that do not contribute to S are those whose endpoints
are all in the same partition. Since P is a local optimal solution, for any nodes u ∈ Vi
and v ∈ Vl, Vl 6= Vi, according to the conditions stated in Steps 2 and 3 of the local
search algorithm either one or both of the following inequalities hold:
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•
∑

e∈Hi(u)

w(e) ≤
∑

e∈Hil(u)

w(e). (4.5)

The above inequality holds if u can be moved to Vl while satisfying the set c of
constraints.

•
∑

e∈Hi(u)

w(e) +
∑

e∈Hl(v)

w(e) ≤
∑

e∈Hil(u)

w(e) +
∑

e∈Hli(v)

w(e). (4.6)

The above inequality holds if u and v can swap partitions while satisfying the set
c of constraints.

To make the analysis of the algorithm uniform when applied to any one of the 3
problems considered in this section, for each partition Vi, i = 1, 2, . . . , k, we try to choose
a node pi so that inequality (4.6) holds for all pairs of nodes pi, pl, i 6= l: We choose (i)
pi = ti ∈ T for the max multiway cut problem, (ii) pi does not exist for the max k-cut
problem, and (iii) pi = t′i for the max Steiner k-cut problem, where t′i is a terminal from
Vi. Note that inequality (4.5) holds for all nodes Vi \pi, 1 ≤ i ≤ k, for all three problems.

Consider partitions Vl 6= Vi. If we add Inequality (4.5) for all nodes in Vi \ pi we get,∑
u∈Vi\pi

∑
e∈Hi(u)

w(e) ≤
∑

u∈Vi\pi

∑
e∈Hil(u)

w(e). (4.7)

Observe that in the term
∑

u∈Vi\pi

∑
e∈Hi(u) w(e) the weight of each hyperedge e ∈ Hi

is counted re times, except the weight of the hyperedges e incident on the terminals pi
whose weights are counted re − 1 times. In addition,

∑
u∈Vi\pi

∑
e∈Hil(u) w(e) includes

the weight of all the hyperedges in Hil except those incident on terminal pi. Since re ≥ 2
for each hyperedge e, we can rewrite Inequality (4.7) as follows,

2
∑
e∈Hi

w(e)−
∑

e∈Hi(pi)

w(e) ≤
∑
e∈Hi

re w(e)−
∑

e∈Hi(pi)

w(e) ≤
∑
e∈Hil

w(e)−
∑

e∈Hil(pi)

w(e). (4.8)

Where Hi(pi) and Hil(pi) are empty if pi does not exist. Adding the above inequality
over all partitions Vl 6= Vi we get,

2(k − 1)
∑
e∈Hi

w(e)−
∑

1≤l≤k
l 6=i

∑
e∈Hi(pi)

w(e) ≤
∑

1≤l≤k
l 6=i

∑
e∈Hil

w(e)−
∑

1≤l≤k
l 6=i

∑
e∈Hil(pi)

w(e). (4.9)

Adding this last inequality over all partitions Vi we get,

(4.10)

2(k − 1)
∑

1 ≤i≤k

∑
e ∈Hi

w(e)−
∑

1 ≤i≤k

∑
1≤l≤k
l 6=i

∑
e ∈Hi(pi)

w(e)

≤
∑

1≤i≤k

∑
1≤l≤k
l 6=i

∑
e∈Hil

w(e)−
∑

1≤i≤k

∑
1≤l≤k
l 6=i

∑
e∈Hil(pi)

w(e).
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Since (4.6) holds for all the nodes pi then,∑
e∈Hi(pi)

w(e) +
∑

e∈Hl(pl)

w(e) ≤
∑

e∈Hil(pi)

w(e) +
∑

e∈Hli(pl)

w(e), for each 1 ≤ i 6= l ≤ k. (4.11)

We now add up this last inequality over all i, l = 1, .., k, i 6= l, to get

∑
1≤i≤k

∑
1≤l≤k
l 6=i

 ∑
e∈Hi(pi)

w(e) +
∑

e∈Hl(pl)

w(e)

 ≤ ∑
1≤i≤k

∑
1≤l≤k
l 6=i

 ∑
e∈Hil(pi)

w(e) +
∑

e∈Hli(pl)

w(e)

 .

(4.12)
We can rewrite the above inequality as follows,

2
∑

1≤i≤k

∑
1≤l≤k
l 6=i

∑
e∈Hi(pi)

w(e) ≤ 2
∑

1≤i≤k

∑
1≤l≤k
l 6=i

∑
e∈Hil(pi)

w(e). (4.13)

Dividing the above inequality by 2 and adding it to (4.10), we get

2(k − 1)
∑

1≤i≤k

∑
e∈Hi

w(e) ≤
∑

1≤i≤k

∑
1≤l≤k
l 6=i

∑
e∈Hil

w(e). (4.14)

Since
∑

1≤i≤k
∑

1≤l≤k
l 6=i

∑
e∈Hil

w(e) ≤ 2S, then by (4.14)

∑
1≤i≤k

∑
e∈Hi

w(e) ≤ 1

k − 1
S. (4.15)

Since an optimum solution can at most include the weights of all the edges, the cost O
of an optimum solution can be bounded by

O ≤ S +
∑

1≤i≤k

∑
e∈Hi

w(e) ≤
(

1 +
1

k − 1

)
S. (4.16)

Therefore,
S

O
≥ 1− 1

k
. (4.17)

THEOREM 8 There is a (1 − 1
k
)-approximation algorithm for the max k-cut, max

multiway cut, and max Steiner k-cut problems on hypergraphs.

4.4 Max Capacitated k-Cut Problem and Max k-

Cut Problem with Given Sizes of Parts

In this section we analyse our local search algorithm for the max capacitated k-cut prob-
lem and the max k-cut problem with given sizes of parts and show that its approximation
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ratio is 1− |Vmax|
|V | , where |Vmax| is the size of the biggest partition returned by the algo-

rithm.

We proceed similarly as in Section 4.3. Since P = (V1, V2, . . . , Vk) is a local optimal
solution, for any nodes u ∈ Vi and v ∈ Vl, Vl 6= Vi, either one or both of inequalities
(4.5) and (4.6) must hold. Observe that in the max k-cut problem with given sizes of
parts only swaps are allowed, therefore only inequality (4.6) is true for all the nodes.
On the other hand, in the capacitated max k-cut problem the condition in Step 2 of the
algorithm is true for a node u ∈ Vi only if there is a partition Vl 6= Vi of size |Vl|< sl and
such that

∑
e∈Hi(u) w(e) >

∑
e∈Hil(u) w(e). Since swaps are allowed for all pairs of nodes

in the capacitated max k-cut problem Inequality (4.6) is true for all of them; hence in
the analysis we will only use this inequality.

Adding Inequality (4.6) for all u ∈ Vi we get,∑
e∈Hi

rew(e) + |Vi|
∑

e∈Hl(v)

w(e) ≤
∑
e∈Hil

w(e) + |Vi|
∑

e∈Hli(v)

w(e). (4.18)

Notice that the first term in the left side of this inequality is
∑

e∈Hi
rew(e) because

each hyperedge e in Hi is counted exactly re times in
∑

u∈Vi

∑
e∈Hi(u) w(e) and the first

term in the right side of the inequality is
∑

e∈Hil
w(e) since each hyperedge in Hil is

counted exactly one time in
∑

u∈Vi

∑
e∈Hil(u) w(e). Next, we sum Inequality (4.18) for all

v ∈ Vl to get

|Vl|
∑
e∈Hi

rew(e) + |Vi|
∑
e∈Hl

rew(e) ≤ |Vl|
∑
e∈Hil

w(e) + |Vi|
∑
e∈Hli

w(e). (4.19)

Since re ≥ 2 for each hyperedge then,

2|Vl|
∑
e∈Hi

w(e)+2|Vi|
∑
e∈Hl

w(e) ≤ |Vl|
∑
e∈Hi

rew(e)+|Vi|
∑
e∈Hl

rew(e) ≤ |Vl|
∑
e∈Hil

w(e)+|Vi|
∑
e∈Hli

w(e).

(4.20)
We sum this inequality for all i, l = 1, 2, . . . , k, i 6= l:∑

1≤i≤k

∑
1≤l≤k
i 6=l

2(|Vl|
∑
e∈Hi

w(e) + |Vi|
∑
e∈Hl

w(e)) ≤
∑

1≤i≤k

∑
1≤l≤k
i 6=l

(|Vl|
∑
e∈Hil

w(e) + |Vi|
∑
e∈Hli

w(e)).

(4.21)
The left side of the above inequality can be simplified as follows,∑

1≤i≤k

∑
1≤l≤k
i 6=l

2(|Vl|
∑
e∈Hi

w(e) + |Vi|
∑
e∈Hl

w(e)) = 2
∑

1≤i≤k

∑
e∈Hi

w(e)
∑

1≤l≤k
i 6=l

|Vl|+

2
∑

1≤l≤k

∑
e∈Hl

w(e)
∑

1≤i≤k
i 6=l

|Vi|= 2
∑

1≤i≤k

(|V |−|Vi|)
∑
e∈Hi

w(e)+

2
∑

1≤l≤k

(|V |−|Vl|)
∑
e∈Hl

w(e) = 4
∑

1≤i≤k

(|V |−|Vi|)
∑
e∈Hi

w(e).
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Similarly, the right side of Inequality (4.21) can be simplified as follows,∑
1≤i≤k

∑
1≤l≤k
i 6=l

(|Vl|
∑
e∈Hil

w(e) + |Vi|
∑
e∈Hli

w(e)) =
∑

1≤i≤k

∑
1≤l≤k
i 6=l

|Vl|
∑
e∈Hil

w(e)+

∑
1≤l≤k

∑
1≤i≤k
i 6=l

|Vi|
∑
e∈Hli

w(e) = 2
∑

1≤i≤k

∑
1≤l≤k
i 6=l

|Vi|
∑
e∈Hil

w(e).

Therefore, we can re-write Inequality (4.21) as follows,

2
∑

1≤i≤k

(|V |−|Vi|)
∑
e∈Hi

w(e) ≤
∑

1≤i≤k

∑
1≤l≤k
i 6=l

|Vi|
∑
e∈Hil

w(e). (4.22)

Let |Vmax|= max{|Vi|, i = 1, 2, . . . , k}, then

2(|V |−|Vmax|)
∑

1≤i≤k

∑
e∈Hi

w(e) ≤ |Vmax|
∑

1≤i≤k

∑
1≤l≤k
i 6=l

∑
e∈Hil

w(e) ≤ 2|Vmax| S (4.23)

Therefore, ∑
1≤i≤k

∑
e∈Hi

w(e) ≤ |Vmax|
|V |−|Vmax|

S. (4.24)

Since,

O ≤ S +
∑

1≤i≤k

∑
e∈Hi

w(e) ≤ (1 +
|Vmax|

|V |−|Vmax|
)S, (4.25)

then,

S

O
≥ 1

1 + |Vmax|
|V |−|Vmax|

= 1− |Vmax|
|V |

(4.26)

THEOREM 9 There is a (1− |Vmax|
|V | )-approximation algorithm for the max capacitated

k-cut problem and max k-cut problem with given sizes of parts on hypergraphs.

Corollary 4.4.1 There is a 1−|Vmax|
2|V |−|Vmax|-approximation algorithm for the max capacitated

k-cut problem and the max k-cut problem with given sizes of parts restricted to hypergraphs
where every hyperedge has at least 3 endpoints.

Proof Note that if every hyperedge has at least three endpoints then inequality (4.23)

becomes 2(|V |−|Vmax|)
∑

1≤i≤k
∑

e∈Hi
≤ |Vmax|S and thus in this case S

O
≥ 1− |Vmax|

2|V |−|Vmax| .
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4.5 Directed Max k-Cut Problem

A directed hypergraph H = (V,E) consist of set V of nodes and set E of hyperedges.
Each hyperedge e = (u1, u2, . . . , ure) ∈ E has a set te of tails and, a set he of heads and
a weight w(e). We call a hyperedges e, a B-arc if e has only one head he and a F-arc
if e has only one tail te. A BF-hypergraph is a directed hypergraph in which all the
hyperedges are B-arcs or F-arcs. In this section we deal with BF-hypergraphs, so in the
sequel hypergraph means BF-hypergraph.

Given a directed hypergraph H = (V,E) and a partition V1, V2, . . . , Vk of V , the
weight of the partition is the total weight of the hyperedges having at least one head
in some partition i and at least one of their tails in some partition j, where i > j. In
the directed max k-cut problem on hypergraphs, the goal is to find a maximum weight
partition P = V1, V2, . . . , Vk of V .

In Figure 4.1 a hypergraph H = (V,E) with 8 vertices and 5 hyperedges is shown.
The sets of tails and heads for each hyperedge are as follows, te1 = {v1}, he1 = {v2},
te2 = {v4}, he2 = {v2, v3}, te3 = {v1}, he3 = {v5}, te4 = {v4}, he4 = {v6, v7, v8}, te5 = {v5}
and he5 = {v4, v8}. Let 3, 4, 1, 5, 1 be the weights of hyperedges e1, e2, e3, e4 and e5

respectively. Consider partition P = V1, V2, V3. The weight of this partition is 1+5+1=7.

e1

e2

e4

e5

v1

v2

v3

v5

v4

v6

v7

v8

e2

e3

e4

e5 e4

V1 V2 V3

Figure 4.1: Example of a directed Hypergraph.

Given a hypergraph H = (V,E), and a partition P = V1, V2, . . . , Vk of V we define
sets Hi, Hi(u), Ti(u), as follows,

Hi = {(u1, u2, . . . , ure) | u1, u2, . . . , ure ∈ Vi, (u1, u2, . . . , ure) ∈ E},

Hi(u) = {e = (u1, u2, . . . , ure) | (u1, u2, . . . , ure) ∈ Hi, u ∈ he},
Ti(u) = {e = (u1, u2, . . . , ure) | (u1, u2, . . . , ure) ∈ Hi, u ∈ te}.

We define additional sets of hyperedges Tij and Hij as follows.

• Tij, i < j, is a set of B-arcs and F-arcs that contribute to the weight of the partition
P such that if we move one of the tails of any of these hyperedges from Vi to Vj
then that hyperedge will no longer contribute to the weight of the partition. The
hyperedges of Tij have the following properties:
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(i) each B-arc e in Tij has exactly one tail in Vi and every other tail in
⋃
j≤q≤k Vq,

and its head is in Vj,

(ii) each F-arc e in Tij has its tail in Vi, at least one head in Vj and no head in(⋃
j<q≤k Vq

)
.

Let Tij(u), u ∈ Vi, be the set of hyperedges e from Tij for which u ∈ te.

• Hij, i > j, is a set of B-arcs and F-arcs that contribute to the weight of partition
P such that if we move one of the heads of any of these hyperedges from partition
Vi to partition Vj then that hyperedge will no longer contribute to the weight of P .
The hyperedges of Hij have the following properties:

(i) each B-arc e in Hij has its head in Vi, no tail in
⋃

1≤q<j Vq, and at least one
tail in Vj,

(ii) each F-arc e in Hij has exactly one head in Vi and all other heads in
⋃

1≤q≤j Vq,
and its tail in Vj.

Let Hij(u), u ∈ Vi, be the set of hyperedges e from Hij, where u ∈ he.

Our algorithm for the directed max k-cut problem is described below.

Algorithm Max DICUT (H,w)
Input: Directed hypergraph H = (V,E), hyperedge weight function w : E → Z+.
Output: A partition of the set V.

1. Start with an arbitrary partition, V1, ..., Vk, where Vi 6= ∅ for i = 1, 2, . . . , k.

2. If there is a node u ∈ Vi and a partition Vl, i < l, such that

∑
e∈Hi(u)

w(e) >
∑
i<j≤l

∑
e∈Tij(u)

w(e),

then move u from Vi to Vl.

3. If there is a node u ∈ Vi and a partition Vl, i > l, such that

∑
e∈Ti(u)

w(e) >
∑
l≤j<i

∑
e∈Hij(u)

w(e),

then move u from Vi to Vl.

4. If a node u as specified in Step 2 or Step 3 exists then repeat Step 2 and Step
3. Otherwise, compare the cost of the solution induced by the ordered partition
P = V1, V2, . . . , Vk and the cost of the solution induced by the reverse partition
Pr = Vk, Vk−1, . . . , V1 and return the partition with the bigger cost.
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Using the local search property specified in Step 2 of the algorithm, for each node
u ∈ Vi, i, l ∈ {1, 2, . . . , k} and i < l we have,∑

e∈Hi(u)

w(e) ≤
∑

e∈Tij(u)

w(e). (4.27)

Adding up Inequality (4.27) for all nodes in Vi we get,∑
u∈Vi

∑
e∈Hi(u)

w(e) ≤
∑
u∈Vi

∑
i<j≤l

∑
e∈Tij(u)

w(e). (4.28)

Observe that each hyperedge e in the term
∑

u∈Vi

∑
e∈Hi(u) w(e) is counted |he|, times

therefore
∑

e∈Hi
w(e) ≤

∑
e∈Hi
|he|w(e) =

∑
u∈Vi

∑
e∈Hi(u) w(e). In the term∑

u∈Vi

∑
i<j≤l

∑
e∈Tij(u) w(e) each hyperedge e is counted once because in this expression

e is counted only when u ∈ te ∩Vi and from the definition of Tij(u) we know that u must
be a tail of e, at least one head of e must be in Vj and no head of e can be in Vq for
j < q ≤ k. Therefore, Inequality (4.28) can be simplified as follows,∑

e∈Hi

w(e) ≤
∑
i<j≤l

∑
e∈Tij

w(e). (4.29)

Adding (4.29) over all 1 ≤ i < l ≤ k, we get∑
1≤i≤k

∑
i<l≤k

∑
e∈Hi

w(e) ≤
∑

1≤i≤k

∑
i<l≤k

∑
i<j≤l

∑
e∈Tij

w(e). (4.30)

Similarly, using the local search property specified in Step 3 of the algorithm, for each
node u ∈ Vi, i, l ∈ {1, 2, . . . , k} and l < i, we have,∑

e∈Ti(u)

w(e) ≤
∑
l≤j<i

∑
e∈Hij(u)

w(e). (4.31)

Adding up Inequality (4.31) for all nodes in Vi we get,∑
u∈Vi

∑
e∈Ti(u)

w(e) ≤
∑
u∈Vi

∑
l≤j<i

∑
e∈Hij(u)

w(e). (4.32)

Observe that by a similar argument as above
∑

e∈Ti w(e) ≤
∑

u∈Vi

∑
e∈Ti(u) w(e). Also,

in the term
∑

u∈Vi

∑
l≤j<i

∑
e∈Hij(u) w(e) in the right side of (4.32) each hyperedge e is

counted once. To see this consider the following two cases: If e is a B-arc then e has
its head in Vi, at least one tail in Vj and no tail in

⋃
1≤q<j Vq; hence, in the right side

of (4.32) e is counted only once when j is the smallest index of a partition containing a
tail of e. If e is an F-arc then it has exactly one head in Vi, its tail in Vj and all other
heads in ∪1≤q≤jVq; therefore, in the right side of (4.32) e is only counted once when j is
the index of the partition containing the tail of e.

Therefore, Inequality (4.32) can be simplified as follows,∑
e∈Hi

w(e) ≤
∑
l≤j<i

∑
e∈Hij

w(e). (4.33)



96 Chapter 4. Local Search for the Constrained Max k-Cut Problem

Adding Inequality (4.33) over all 1 ≤ l < i ≤ k, we get∑
1≤i≤k

∑
1≤l<i

∑
e∈Hi

w(e) ≤
∑

1≤i≤k

∑
1≤l<i

∑
l≤j<i

∑
e∈Hij

w(e). (4.34)

Now we add inequalities (4.30) and (4.34):∑
1≤i≤k

∑
1≤l≤k
i 6=l

∑
e∈Hi

w(e) ≤
∑

1≤i≤k

∑
i<l≤k

∑
i<j≤l

∑
e∈Tij

w(e) +
∑

1≤i≤k

∑
1≤l<i

∑
l≤j<i

∑
e∈Hij

w(e).
(4.35)

Each term
∑

e∈Tij w(e) is counted k− j + 1 times in
∑

1≤i≤k
∑

i<l≤k
∑

i<j≤l
∑

e∈Tij w(e)
because for each pair i, j, i < j, the value of l must be such that j ≤ l and l ≤ k; since
there are k−j+1 such values, the term

∑
e∈Tij appears k−j+1 times. Similarly, the term∑

e∈Hij
w(e), 1 ≤ j < i ≤ k, is counted j times in

∑
1≤i≤k

∑
1≤l<i

∑
l≤j<i

∑
e∈Hij

w(e),
because for each pair i, j, i < j, the value of l must be such that l ≥ 1 and l ≤ j; since
there are j such values, the term

∑
e∈Hij

w(e) appears j times. Therefore, we can rewrite

the right hand side of (4.35) as follows,∑
1≤i≤k

∑
i<l≤k

∑
i<j≤l

∑
e∈Tij

w(e) +
∑

1≤i≤k

∑
1≤l<i

∑
l≤j<i

∑
e∈Hij

w(e) =

∑
1≤i≤k

∑
i<j≤k

(k − j + 1)
∑
e∈Tij

w(e) +
∑

1≤i≤k

∑
1≤j<i

j
∑
e∈Hij

w(e).
(4.36)

Observe that in the term
∑

1≤i≤k
∑

1≤j<i j
∑

e∈Hij
w(e) if we replace i with j and j with

i then we get, ∑
1≤i≤k

∑
1≤j<i

j
∑
e∈Hij

w(e) =
∑

1≤j≤k

∑
1≤i<j

i
∑
e∈Hji

w(e). (4.37)

Note that in the term
∑

1≤j≤k
∑

1≤i<j i
∑

e∈Hji
w(e), i can get values from 1 to k − 1

and j can get values from i+ 1 to k, therefore,∑
1≤j≤k

∑
1≤i<j

i
∑
e∈Hji

w(e) =
∑

1≤i<k

∑
i<j≤k

i
∑
e∈Hji

w(e) =
∑

1≤i≤k

∑
i<j≤k

i
∑
e∈Hji

w(e). (4.38)

The second equality in (4.38) is true since, if i = k there is no value j such that i < j ≤ k.
Let Eij = Tij ∪ Hji, for each i < j. Using (4.37) and (4.38) in the right hand side of
(4.36) we get, ∑

1≤i≤k

∑
i<j≤k

(k − j + 1)
∑
e∈Tij

w(e) +
∑

1≤i≤k

∑
1≤j<i

j
∑
e∈Hij

w(e) =

∑
1≤i≤k

∑
i<j≤k

(k − j + 1)
∑
e∈Tij

w(e) +
∑

1≤i≤k

∑
i<j≤k

i
∑
e∈Hji

w(e) ≤

∑
1≤i≤k

∑
i<j≤k

(k − j + 1)
∑
e∈Eij

w(e) +
∑

1≤i≤k

∑
i<j≤k

i
∑
e∈Eij

w(e) =

∑
1≤i≤k

∑
i<j≤k

(k + i− j + 1)
∑
e∈Eij

w(e) ≤ k
∑

1≤i≤k

∑
i<j≤k

∑
e∈Eij

w(e).

(4.39)
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The last inequality holds because i < j. Now we show that all sets Eij, for all 1 ≤ i <
j ≤ k, are disjoint. Suppose that there are sets Eij and Elq, Eij 6= Elq, 1 ≤ i < j ≤ k
and 1 ≤ l < q ≤ k, such that Eij ∩ Elq 6= ∅.

• Let Eij and Elq share a B-arc e. Recall that by the definition of B-arcs, e has
one head. Without loss of generality assume l < i. Since Eij = Tij ∪ Hji, by the
definition of Tij and Hji if e ∈ Eij then e has its head in Vj, at least one tail in
Vi, and no tails in

⋃
1≤t<i Vt (observe that if e ∈ Tij then e has exactly one tail

in Vi and all other tails are in
⋃
j≤t≤k Vt, and since i < j then there is no tail in⋃

1≤t<i Vt). Similarly if e ∈ Elq, then e should have its head in Vq, and since e has
only one head then it must be that Vj = Vq; furthermore e has at least one tail in
Vl, however since l < i this contradicts the fact that e has no tails in

⋃
1≤t<i Vt.

• Now suppose that Eij and Elq share a F-arc e. Recall that F-arcs have only one
tail. Without loss of generality assume that j < q. Since Eij = Tij ∪ Hji, by the
definition of Tij and Hji if e ∈ Eij then it has its tail in Vi, at least one head in Vj
and no head in

⋃
j<t≤k Vt. Similarly if e ∈ Elq, e has its tail in Vl and since e has

only one tail then Vi = Vl; moreover e has at least one head in Vq, however since
j < q and e cannot have any heads in

⋃
j<t≤k Vt this is a contradiction.

Let Aij, i < j be the set of hyperedges that have at least one tail in Vi and at least
one head in Vj; note that Eij ⊆ Aij for each i < j. The weight of the local optimal
partition P is the weight of all the hyperedges in

⋃
1≤i<j≤k Aij, and since Eij ⊆ Aij then⋃

1≤i<j≤k Eij ⊆
⋃

1≤i<j≤k Aij. Given a set C of hyperedges, let w(C) denote the weight
of the hyperedges of C. Then w(

⋃
1≤i<j≤k Eij) ≤ w(

⋃
1≤i<j≤k Aij) = S, where S is the

weight of the local optimal solution. Since all the sets Eij, 1 ≤ i, j ≤ k, are disjoint
then w(

⋃
1≤i<j≤k Eij) =

∑
1≤i≤k

∑
i<j≤k

∑
e∈Eij

w(e), and so the right side of the last

inequality in (4.39) can be bounded as follows,

k
∑

1≤i≤k

∑
i<j≤k

∑
e∈Eij

w(e) ≤ kS. (4.40)

We can simplify the left side of Inequality (4.35):∑
1≤i≤k

∑
1≤l≤k
i 6=l

∑
e∈Hi

w(e) = (k − 1)
∑

1≤i≤k

∑
e∈Hi

w(e)
(4.41)

Therefore, by inequalities (4.35), (4.36), (4.39), (4.40) and (4.41) we have,

(k − 1)
∑

1≤i≤k

∑
e∈Hi

w(e) ≤ kS, or
∑

1≤i≤k

∑
e∈Hi

w(e) ≤ k

k − 1
S. (4.42)

Let B be the set of hyperedges in E − SL −
⋃

1≤i≤k
⋃
e∈Hi

e, where SL is the set of
hyperedges that contribute to the weight of the local optimal solution. Let Sr be the set
of hyperedges that contribute to the weight of the reverse partition Pr = Vk, Vk−1, . . . , V1

as described in Step 4 of the algorithm. Note that because of the last step of the algorithm,
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S ≥ w(Sr), and since w(B) ≤ w(Sr) then w(B) ≤ S. Let O be the weight of an optimal
solution. Adding w(B) + S to left side of inequality (4.42) and 2S to the right side we
get,

O ≤ w(B) + S +
∑

1≤i≤k

∑
e∈Hi

w(e) ≤ 2S +
k

k − 1
S. (4.43)

Therefore,
k − 1

3k − 2
≤ S

O
. (4.44)

THEOREM 10 There is a k−1
3k−2

-approximation algorithm for the directed max k-cut
problem on hypergraphs.
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Chapter 5

Conclusions

Despite the conceptual simplicity of local search algorithms and the fact that they are
rather natural approaches for the solution of optimization problem, local search has
not been extensively used in the design of approximation algorithms. The goal of this
research is to study the effectiveness of local search in the design of efficient approximation
algorithms for NP-hard combinatorial optimization problems. In this chapter first we
summarize the main contributions of this research, then we discuss the challenges of
using local search in the design of approximation algorithms, and finally we talk about
the strengths of local search in the computation of approximate solutions for NP-hard
problems.

5.1 Main Contributions

We have designed local search approximation algorithms for three well-known NP-hard
clustering optimization problems: k-facility location, multiway cut, and max k-cut.

We have shown how to compute the locality gap for all these algorithms through the
use of the local optimality property, namely that the cost of a local optimal solution
is better than the cost of all its neighboring solutions, even those containing parts of a
global optimum solution. We show how to use the local optimality property to determine
a set of inequalities that when carefully combined can be used to bound the cost of a
global optimal solution in terms of the cost of a local optimal solution.

We believe that a similar procedure as that used to compute the locality gap of
our algorithms could be used in the design and analysis of local search approximation
algorithms for other problems.

The locality gap of our algorithm for the k-facility location problem matches that of
the best known algorithm for the problem, proposed by Zhang [9]. We also obtained a
second bound on the locality gap of the algorithm that is better than that of Zhang’s
algorithm in many cases.

Our local search algorithm for the multiway cut problem has locality gap 2 − 2
k
,

the same as the approximation ratio of the isolation heuristic by Dahlhaus et al. [4].
However, we have shown that in practice our local search algorithm outperforms the
isolation heuristic and has comparable performance to the three currently best known
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approximation algorithms for the multiway cut problem: the algorithm of Calinescu et
al. [3], the algorithm of Sharma and Vondrak [6], and the algorithm of Buchbinder et al.
[1, 2].

Our local search algorithm for the constrained max k-cut problem on hypergraphs
has locality gap 1 − 1

k
, which matches the best known approximation ratio by Vazirani

[7] for the max k-cut problem on graphs. The constrained max k-cut problem gener-
alized problems such as the max Steiner k-cut problem, the max k-cut problem, and
the max multiway cut problem. Also, we have shown that with a slight change in our
local search algorithm we can obtain a locality gap of 1 − |Vmax|

|V | , for the max k-cut
problem with given sizes of parts and for the capacitated max k-cut problem, where
|Vmax| is the cardinality of the biggest partition produced by our algorithm. The best
known algorithm for the capacitated max k-cut problem on graphs is by Wu and Zhu
[8] and it has approximation ratio |Vmin|(k−1)

2(|Vmax|−1)+|Vmin|(k−1)
, where |Vmin| and |Vmax| are the

sizes of the smallest and largest partitions returned by the algorithm, respectively. Our
algorithm for the capacitated max k-cut problem has approximation ratio 1 − |Vmax|

|V | ≥
1 − |Vmax|

|Vmax|+|Vmin|(k−1)
= |Vmin|(k−1)
|Vmax|+|Vmin|(k−1)

. Therefore, our algorithm is better than the al-

gorithm of Wu and Zhu when |Vmax|+|Vmin|(k − 1) < 2(|Vmax|−1) + |Vmin|(k − 1), or in
other words, when |Vmax|≥ 2. In addition, our algorithm works on hypergraphs so it is
more general than the algorithm of Wu and Zhu.

5.2 Challenges of Using Local Search in the Design

of Approximation Algorithms

As mentioned in the introduction there are two main challenges that arise from the
use of local search in designing approximation algorithms: Analysing the quality of the
solutions produced by a local search algorithm might be very complicated, and local
search algorithm might return solutions of costs that are very far from those of global
optimal solutions.

To overcome the first challenge, we designed ways of taking advantage of the local
optimality property of local optimum solutions. This is the key property that allowed
us to compare the cost of local and global optimum solutions. We use the local optimal
property to obtain a carefully selected set of inequalities that relate parts of the cost of
a local optimal solution to parts of the cost of a global optimal one so that when we
combine the inequalities we can bound the cost of a local optimal solution in terms of
the cost of a global optimal one.

To prevent a local search algorithm from getting trapped in a local optimal solution
that is far away from a global optimal one we need to select the local operations carefully.
As an example, for the k-uncapacitated facility location problem we selected the more
complex multi-swaps as local operations instead of the simpler single swaps to increase the
size of the of neighborhood of each solution and to improve the chances of escaping from
bad local optimal solutions. Similarly, for the minimum multiway cut problem we defined
a rather complicated relabel operation as the local operation that can simultaneously
change the labels of all the nodes in some set A instead of a simpler operation that
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would change the label of a single node. Finally, for the max k-cut problem to increase
the chances of escaping from bad local optimal solutions we defined two different local
operations, not just one: Moving one node to other partitions and swapping two nodes
in two different partitions.

Another challenge in designing efficient local search approximation algorithms is en-
suring that they have low time complexity. As mentioned in Chapter 1 not all local
search algorithms have polynomial running time. The running time of a local search
algorithm depends on the number of times that it needs to apply the local operations.
The technique by Orlin et al. [5] is of great help to bound the number of times that
local operations need to be performed by requiring that local each operation performs a
minimum amount of improvement on the value of a solution. Careful application of this
technique guarantees a polynomial running time with only a minimum penalty in the
quality of the solutions provided by a local search algorithm.

5.3 Strengths of Local Search Algorithms

Conceptual Simplicity: In order to design a local search iterative improvement al-
gorithm for a combinatorial optimization problem we only need to specify the local
operations and terminating condition.
Easy implementation: A local search algorithm is a simple iterative algorithm that
keeps updating the current solution by looking for a better solution in its neighborhood
until no further improvement is possible. Therefore, the only challenging part in imple-
menting a local search algorithm is searching the neighborhood of the current solution
to find a solution with a better cost. Sometimes we can take advantage of existing al-
gorithms for other problems; as an example in Chapter 3 for finding a minimum cost
relabel operation we model the problem as a maximum flow problem.
Work well in practice: We have shown in Chapter 3 that an implementation of our
local search algorithm for the multiway cut problem has better performance in practice
than other more complex algorithms. Since, the local optimal solutions computed by a
local search algorithm partially depend on the initial solution, by considering different
initial solutions and selecting the best local optimal solution found we increase the chance
of obtaining near-optimum solutions. Furthermore, in practice local search algorithms
are fast because usually after a few iterations they find local optimal solutions.
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