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Abstract 

Ice-wedge polygon networks are a common feature in periglacial environments formed 

through thermal contraction cracking and snowmelt infiltration. Polygons of similar 

morphology are ubiquitous throughout the mid-latitudes of Mars and are believed to have 

formed through thermal contraction processes. This study aims to characterize the polygons 

on Devon Island in the Canadian Arctic and the significant variations in geomorphology they 

display. The study uses LiDAR data to map, analyse, and compare three sites of polygonal 

terrain. Variations in polygon morphology such as size and orthogonality are observed in the 

relatively small study area. The results show that polygon morphologic variations in the High 

Arctic are linked mostly to substrate, stage of evolution and topographic factors. Insights into 

the factors that influence specific polygon morphology has implications for previous methods 

of predicting polygon morphology using factors such as homogeneity, and for variations of 

polygonal terrain in the mid-latitudes of Mars. 

 

 

 

Keywords 

Ice-wedge polygon, Periglacial, LiDAR, Polygon Distribution, Patterned Ground, High Arctic, 

Devon Island, Geomorphology, Permafrost, Mars  



 

ii 

 

Co-Authorship Statement 

Contributions to this thesis were made by Dr. Gordon Osinski, Dr. Etienne Godin, Dr. Michael 

Zanetti and Dr. Antero Kukko. Dr. Osinski and Dr. Godin provided comments and feedback 

on all chapters and figures. LiDAR data collection in the field and processing of raw LiDAR 

data was provided by Dr. Zanetti and Dr. Kukko. 



 

iii 

 

Acknowledgments 

Thank you to Gordon “Oz” Osinski and Etienne Godin for their mentorship and encouragement 

as supervisors throughout this project. This has been an extremely enriching experience and I 

am so grateful for the opportunity to have worked with you. Thank you to Mike Zanetti and 

Antero Kukko for strapping a LiDAR to their backs to scan the Arctic geomorphology, of 

which the resulting data is the foundation of this project. An extra thank you to Mike for taking 

time to teach me about LiDAR and how to process data in ArcGIS. Thank you to Colin Rowell 

for helping with Arctic grunt work. Thank you to Christy Caudill, Caitlin Watt, Sarah Simpson, 

Annika Van Kessel, Alyssa Werynski, Arya Bina, Matt Svensson, and the rest of the CPSX 

crew for support, skill sharing, climbing sessions, listening and for being great friends and 

colleagues. A special thank you to Patrick Ryan (and Mewtwo) for providing love and support 

through these two challenging years.  

A huge thank you to Antero Kukko and the Centre of Excellence in Laser Scanning Research, 

Finnish Geodetic Institute for use of the KLS instrument vital to this project. Thank you to the 

Polar Continental Shelf Program for the support of our field work. Worldview high resolution 

imagery products were provided by Dr. John “Jack” Mustard.  



 

iv 

 

Table of Contents 

Abstract ................................................................................................................................ i 

Co-Authorship Statement.................................................................................................... ii 

Acknowledgments.............................................................................................................. iii 

Table of Contents ............................................................................................................... iv 

List of Tables ..................................................................................................................... vi 

List of Figures ................................................................................................................... vii 

List of Abbreviations ......................................................................................................... xi 

Chapter 1 ............................................................................................................................. 1 

1 Background and Literature Review ............................................................................... 1 

1.1 Permafrost and the Periglacial Landscape .............................................................. 4 

1.1.1 Permafrost ................................................................................................... 5 

1.1.2 Periglacial Geomorphology ........................................................................ 6 

1.1.3 Periglacial Features ..................................................................................... 7 

1.2 A Periglacial Mars ................................................................................................ 16 

1.3 The Haughton Impact Structure and Devon Island ............................................... 17 

1.4 Previous Work ...................................................................................................... 20 

1.5 References ............................................................................................................. 21 

Chapter 2 ........................................................................................................................... 29 

2 Characterizing Ice-wedge Polygon Geomorphology in the Haughton Impact Structure, 

Devon Island ................................................................................................................ 29 

2.1 Thermal Contraction Polygons ............................................................................. 30 

2.2 Periglacial Mars .................................................................................................... 32 

2.3 Geology of the Study Sites ................................................................................... 33 

2.3.1 Devon Island and the Haughton Impact Structure .................................... 33 

2.3.2 Study Sites ................................................................................................ 34 



 

v 

 

2.4 Data Collection and Methods................................................................................ 38 

2.5 Results ................................................................................................................... 43 

2.5.1 The Haughton Formation .......................................................................... 46 

2.5.2 Lake Comet ............................................................................................... 48 

2.5.3 Lake Orbiter .............................................................................................. 50 

2.6 Discussion ............................................................................................................. 54 

2.6.1 Relationship of Substrate and Polygon Evolution to Morphology ........... 54 

2.6.2 Orthogonality and Intersection Types ....................................................... 56 

2.6.3 Polygon Troughs and Degradation ........................................................... 59 

2.6.4 Polygon Shape Distribution ...................................................................... 60 

2.6.5 Patterned Ground within Polygons ........................................................... 61 

2.7 References ............................................................................................................. 62 

Chapter 3 ........................................................................................................................... 69 

3 Conclusions and Future Work ...................................................................................... 69 

3.1 Major Findings and Future Work ......................................................................... 69 

3.2 References ............................................................................................................. 73 

Curriculum Vitae .............................................................................................................. 74 



 

vi 

 

List of Tables 

Table 1: Description of polygon geomorphology metrics that were calculated for each 

polygon within the study areas. See Figure 2.5. ..................................................................... 40 

Table 2: An overview of the main physical characteristics of each polygon network. .......... 43 

Table 3: Overview of statistics for attributes of each site from ArcMap polygon tool analysis. 

Metrics are described in Table 1. Standard deviation abbreviated to SD. .............................. 44 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

vii 

 

List of Figures 

Figure 1.1: a) Devon Island, Nunavut with a circle indicating the location of the Haughton 

impact structure. b) A 2018 DigitalGlobe / Landsat / Copernicus image of the Haughton impact 

structure, the gray material being clast-rich impact melt rocks in the centre, surrounded by the 

crater rim (Google Earth 2018). ................................................................................................ 2 

Figure 1.2: a) A WorldView 2013 image of polygonal terrain in the Haughton impact structure. 

b) A HiRISE image of polygon terrain in the northern hemisphere of Mars in Utopia Planitia 

(image from NASA/JPL/University of Arizona). ..................................................................... 3 

Figure 1.3: Circumpolar map of the distribution of permafrost in North America. From the 

International Permafrost Association (1998). ........................................................................... 5 

Figure 1.4: a) Thermokarst processes forming lakes and ponds in Alaska (USGS). b) A large 

pingo in Tuktoyaktuk (Adam Jones, Ph.D./Global Photo Archive/Flickr). c) Sorted circle 

patterned ground in Svalbard, Norway (Bernard Hallet 2013). d) High-centred thermal 

contraction polygons outside of the Haughton impact structure, Devon Island. ...................... 8 

Figure 1.5: Diagram showing the initiation of an ice-wedge by cracking in the winter (a) and 

growth of ice-wedge by infill of water and subsequent freezing in the fall (b). Ice-wedge growth 

continuing by contraction cracking over time is shown in (c) and (d), with a slight upward 

movement of sediment shown that contributes to raised rims around the trough. Modified from 

Lachenbruch (1962). ............................................................................................................... 10 

Figure 1.6: An example of orthogonal and non-orthogonal (hexagonal) networks. Modified 

from French (2007)………………………………………………………………………….11 

Figure 1.7: a) Profile of a flat ice-wedge polygon morphology with ice wedges shown beneath 

the surface. b) Profile of low-centred polygon morphology with raised rims above the ice-

wedges. c) Profile of high-centred polygon morphology showing ice-wedge degradation and 

raised centre. Modified from Mackay (2000). ........................................................................ 13 

Figure 1.8: a) Epigenetic ice-wedge growth on a flat surface with overall outward growth. b) 

Syngenetic ice-wedge growth on a flat surface with accumulation of material and overall 



 

viii 

 

upward growth. c) Anti-syngenetic ice-wedge growth on a slope with removal of surface 

material and overall downward growth. Modified from Mackay 1990. ................................. 15 

Figure 1.9: A simplified geologic map of the Haughton impact structure showing major units. 

From Osinski et al. 2005a. ...................................................................................................... 19 

Figure 2.1: a) Devon Island, Nunavut with a circle indicating the location of the Haughton 

impact structure. b) A 2018 DigitalGlobe / Landsat / Copernicus image of the Haughton impact 

structure showing the three field site locations (Google Earth 2018). c) A 2018 DigitalGlobe 

image of the Lake Comet (left) and Lake Orbiter (right) field sites. d) A 2018 DigitalGlobe 

image of the Haughton Formation field site ........................................................................... 33 

Figure 2.2: a) Ground image of high-centred polygons within the Haughton Formation. b) 

Ground image showing the degraded edges of hcp and the site of a trench dug through the 

active layer. c & d) Aerial drone views of the Haughton Formation. (July 2017) ................. 35 

Figure 2.3: a) Trough of a large hcp at Lake Comet. b) A snow filled three-ray trough 

intersection next to raised polygon centres c) Drone image (20 m) view of Lake Comet hcp. d) 

Helicopter image of Lake Comet site, polygons are ~50 m across......................................... 36 

Figure 2.4: a) Aerial view of Lake Orbiter lcp showing more orthogonal polygons on the left 

of the image and non-orthogonal on the right. b) A three-ray trough intersection next to a 

depressed polygon centre with pooling water c) Trough of a large lcp at Lake Orbiter. d) 

Airborne oblique photo of Lake Orbiter site, arrow highlighting flatter northern area and 

southern area with mounds and depressions. .......................................................................... 38 

Figure 2.5: An example of the parameters extracted using the ArcMap polygon tool in a lcp at 

Lake Orbiter. The polygon centre is outlined by the traced trough lines. The polygon centre is 

the area contained within the trough lines and the length of the trough lines is the perimeter. 

The vertices where trough lines meet is represented by the white dots. The intersection type, 

polygon length and width, and trough intersection angles are noted. Other parameters such as 

circularity are calculated using the values extracted by the ArcMap tool. Image modified from 

Ulrich et al. 2011 and Brooker at al. 2018 .............................................................................. 42 



 

ix 

 

Figure 2.6: Box plot for trough widths from randomly selected samples at each study site. The 

bottom of the box represents the first quartile and the top of the box represents the third quartile, 

the “x” represents the mean, the transverse line within the box represents the median, the 

whiskers represent the maximum and minimum values, and the dots represent outliers. ...... 45 

Figure 2.7: Box plot for trough depths from randomly selected samples at each study site. The 

bottom of the box represents the first quartile and the top of the box represents the third quartile, 

the “x” represents the mean, the transverse line within the box represents the median, the 

whiskers represent the maximum and minimum values, and the dots represent outliers. ...... 46 

Figure 2.8: a) An elevation colourized shaded relief image based on a DTM derived from a  

KLS scan of the Haughton Formation polygon network and study site. b) A simplified 

representation of the Haughton Formation polygon trough lines and vertices displaying the 

polygon network and orthogonality. ....................................................................................... 47 

Figure 2.9: a) Soil pit dug in the centre of a hcp in the Haughton Formation. The first 40 m of 

the pit show a fine brown sand–silt layer. Below that is the dark, airy, organic rich layer 

continuing to frozen ground at 56 cm. b) A 5.5 m trench dug from one hcp edge to another 

through a trough. The dark organic rich layer is seen on the edge and another brown layer 

beneath it in the trough. c) Small patterned ground found within the centre of a hcp in the 

Haughton Formation. The patterns are similar to mud cracks and have minor sorting of pebbles 

in the cracks. ........................................................................................................................... 48 

Figure 2.10:a) An elevation colourized shaded relief image based on a DTM derived from a  

KLS scan of the Lake Comet polygon network and study site. b) A simplified representation 

of Lake Comet polygon trough lines and vertices displaying the polygon network and 

orthogonality. c) Zoom image of the lobate patterned ground present on the gentle slopes of 

the Lake Comet polygon network. .......................................................................................... 49 

Figure 2.11: a) An elevation colourized shaded relief image based on a DTM derived from a  

KLS scan of the Lake Orbiter polygon network and study site. b) A simplified representation 

of Lake Orbiter polygon trough lines and vertices displaying the polygon network and 

orthogonality. c) The Lake Orbiter site mapped using ArcGIS. The base map made from the 

KLS is coloured to represent topography. The main trough lines as well as the lcp shoulders 



 

x 

 

and rims are mapped as this is the only site that displays them. d) A zoomed image of the Lake 

Orbiter base map made from the KLS, coloured to represent topography. The circular patterned 

ground, shown by the arrows, is clustered in this part of the site and mostly form close to 

cracks. ..................................................................................................................................... 52 

Figure 2.12 a) Soil pit dug in the centre of a lcp at Lake Orbiter. The ground displays a coarse 

surface that transitions to a finer substrate rich in gravel and sand sized sediments at depth. b) 

Soil pit dug in a wide trough of a lcp at Lake Orbiter. The coarse surface gives way to a matrix 

rich in sand sized sediments at a shallower depth than in the polygon centre. ....................... 53 

Figure 2.13: a) The Lake Comet site showing the mapped trough lines. b) A zoom image of a) 

showing the three-ray intersections that occur frequently throughout the orthogonal Lake 

Comet polygon network. ......................................................................................................... 58 

Figure 3.1: a) KLS data showing the lobate inter-polygon pattern ground at the Lake Comet 

site. b) KLS data showing the circular patterned ground at the Lake Orbiter site…………....69 

Figure 3.2: A HiRISE image of polygonal terrain in Utopia Planitia, Mars (HiRISE image 

ESP_026094_2250 from NASA/JPL/University of Arizona). ............................................... 72 

 

 

 

 

 

 

 

 

 



 

xi 

 

List of Abbreviations 

Lcp………………………………………………………………..……………...Low centre polygon 

Hcp…………………………………………..…………………………………. High centre polygon 

MGS………………………………………………...…………………………Mars Global Surveyor 

MOC………………………………………..…………..………………………Mars Orbital Camera 

SPPA………………………………………..…...……………………Spatial Point Pattern Analysis 

a.s.l………………………………………..……………………………………………above sea level 

LiDAR………………………………………..….……………………Light Detection and Ranging  

DTM ………………………………………..…………………………………Digital Terrain Model  

KLS………………………………………..……………………Kinematic Mobile LiDAR Scanner  

GPS………………………………………..…………………...…………Global Positioning Device 

GIS………………………………………..………………………Geographic Information Systems 

HiRISE……………………………………..………..…High Resolution Imaging Science Experiment 



1 

 

Chapter 1  

1 Background and Literature Review 

The Canadian High Arctic contains a variety of geomorphological landforms formed as a 

result of the cold climate, seasonal temperature variations and permafrost ground. The 

freeze-thaw processes that occur in the permafrost throughout the region are often 

indicative of a periglacial environment and are important drivers shaping the periglacial 

landscape (Washburn 1980a). Devon Island (Fig. 1.1a), like much of the Canadian High 

Arctic, is located in the continuous permafrost zone (Zhang et al. 1999) and as such, 

contains an abundance of periglacial features. The specific region in west Devon Island 

where this study takes place is considered a polar desert climate (Lee and Osinski 2005). 

In addition to being cold with a mean annual air temperature of -16 °C, the region is very 

dry receiving little annual precipitation (~35 mm) (Lee and Osinski 2005). Devon Island is 

also the home of the Haughton impact structure (Fig. 1.1b), a well preserved 23.5 Ma 

impact crater (Young et al. 2013). The combination of a large impact crater, a cold, dry 

environment and a rich distribution of periglacial landforms in and near the crater makes 

for a quality Martian analogue for scientific study such as technology testing and geological 

analogue studies (e.g., Lee 1997; Pletser et al. 2009; Singleton et al. 2010; Haltigin et al. 

2012). 
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Figure 1.1: a) Devon Island, Nunavut with a circle indicating the location of the Haughton 

impact structure. b) A 2018 DigitalGlobe / Landsat / Copernicus image of the Haughton 

impact structure, the gray material being clast-rich impact melt rocks in the centre, 

surrounded by the crater rim (Google Earth 2018). 

Polygonal terrain is a common periglacial feature throughout the Arctic region and is found 

within several units of unconsolidated sediments on Devon Island. Polygonal terrain is one 

of many forms of periglacial patterned ground that may occur in a periglacial environment, 

depending on terrain and climatic conditions (Washburn 1980a). Polygons are also 

ubiquitous throughout the mid-latitude regions on Mars (Mangold 2005; Levy et al. 2009), 

and their origins and formation have become a feature of great interest to planetary 

scientists due to their similarity to polygon terrain found on Earth (Fig. 1.2). Polygons on 

Mars suggests the presence of an ice-rich subsurface and thus, may aid in the study of ice 

distribution as well as past climatic conditions on Mars (Mellon 1997; Mustard et al. 2001; 

Head et al. 2003; Mangold 2005).  
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Figure 1.2: a) A WorldView 2013 image of polygonal terrain in the Haughton impact 

structure. b) A HiRISE image of polygon terrain in the northern hemisphere of Mars in 

Utopia Planitia (image from NASA/JPL/University of Arizona). 

N 
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While the polar desert areas of Devon Island, such as the Haughton impact structure, are 

often used as a component for analogue studies, the controls and the characteristics of the 

polygonal terrain in the impact structure area remain somewhat under-studied. The purpose 

of this work is to determine the factors that contribute to polygon morphology in different 

sites within the polar desert environment of Devon Island, where climatic conditions are 

currently relatively constant. We aim to characterize the polygon terrain found in and 

around the Haughton impact structure and explore the drivers of the variations in the 

geomorphology of thermal contraction polygons within the study sites using both field 

surveying and remote sensing data interpretations. The findings of this study show that 

some polygon morphology is inconsistent with the literature, including the relationship of 

polygon morphology and substrate. However, some inconsistencies are supported by 

previous works with similar observations (e.g., Dutilleul et al. 2009; Ulrich et al. 2011; 

Haltigin et al. 2012). This work will contribute to the geomorphological studies of the High 

Arctic as well as the studies of polygons and the conditions of their formation in the context 

of Earth and Mars. 

1.1 Permafrost and the Periglacial Landscape 

The periglacial environment is described as one that is dominated by cold temperatures, 

permafrost and freeze-thaw action (Washburn 1980a; French 2007). When the periglacial 

concept was first introduced in the early 1900’s, the definition of periglacial was linked to 

areas that closely bordered the Pleistocene ice sheets or glaciers (Lozinski 1909). 

Throughout a century of research, the definition of periglacial environments and the 

features unique to them has evolved and been refined. Currently, one of the most 

recognized definitions of periglacial has come to describe a range of cold-climate, non-

glacial processes (Washburn 1980a; French 2007). Thus, the periglacial concept is no 

longer focused exclusively on areas adjacent to glacial landscapes by definition; however, 

they can be found in post-glacial environments (French 2000). Present day periglacial 

environments are typically found throughout the Arctic, in Antarctica, and in alpine 

environments at lower latitudes (Brown 1970; Washburn 1980a) although past periglacial 

environments and relict periglacial features have a wider range (e.g., Bertran et al. 2017). 
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1.1.1 Permafrost  

Permafrost is a significant component of a periglacial environment and crucial to the 

formation of several periglacial landforms. Permafrost is defined as ground material that 

has a mean annual surface temperature that remains at or below 0°C for two or more 

consecutive years and is determined exclusively by temperature. (MacKay 1972; French 

2007; Dobiński 2011).  

 

Figure 1.3: Circumpolar map of the distribution of permafrost in North America. After the 

International Permafrost Association (1998).  
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Permafrost extends throughout much of the Arctic region in what is known as the 

continuous permafrost zone (Fig. 1.3), an area where permafrost is ubiquitous under all 

land surface except where new sediment has been recently deposited (Brown 1970). The 

continuous permafrost zone can range in thickness from over 450 m in the high-latitudes 

of North America, with reports of over 1000 m in Siberia, to ~30–60 m in the southern 

reaches of continuous permafrost (Brown 1970; Washburn 1980b; van Everdingen 1998; 

French 2007). Permafrost distribution is fragmented in the discontinuous permafrost zone 

(Fig. 1.3) where permafrost is present under some land surfaces and not present in other 

areas. Permafrost depth can range from ~60 m to a few centimetres in southern areas of the 

discontinuous permafrost zone (Brown 1970; French 2007). Permafrost distribution is 

dependent primarily on latitude and altitude, with higher latitudes and altitudes more likely 

to be within the continuous permafrost zone. Other factors, such as the n-factors which is 

the ratio of degree-day sums at the ground surface to the degree-day sums of the air at a 

standard height (Klene et al. 2001), also affect permafrost conditions (Brown 1970; 

Dobiński 2011). Much of the High Arctic typically lies within the continuous permafrost 

zone (Fig. 1.3). Above the permafrost is a layer known as the active layer which thaws in 

the warmer months of summer and freezes again in the winter (Brown 1970). The active 

layer is a dynamic zone that will range in thickness year to year depending on local factors 

such as air temperature, snow cover, vegetation and ground material (French 2007).  

Permafrost is a key component of a periglacial environment and creates a base on which 

many periglacial features form from freeze-thaw processes (Washburn 1980a). Periglacial 

features shape the frozen landscape and provide insight into the processes that formed 

them.   

1.1.2 Periglacial Geomorphology 

Periglacial geomorphology is a subset within geomorphology that aims to study periglacial 

features and landscapes and how they may change over time. Geomorphology is the study 

of landforms and their origins as well as their relation to the geologic and geographic 

setting. Periglacial geomorphology is specific to present or past cold environments and 
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their landforms that are strongly influenced by frost action and the presence of permafrost 

over time (Washburn 1980a; Thorn 1992). In this case, the periglacial focus includes 

processes and the resulting landforms in cold environments not covered by glaciers in the 

Arctic, Antarctic and high-altitude environments at lower latitudes (Bursch 1993). The 

influence of ground ice and permafrost on the development of periglacial landforms is 

crucial to consider in periglacial geomorphology (Thorn 1992); however, ground ice does 

not always indicate periglacial processes and geomorphology (Washburn 1980a; Bursch 

1993). Factors such as climate, geology and hydrology can have a strong influence on the 

formation of periglacial landforms and are also important to consider in periglacial 

geomorphology (French 2007).   

1.1.3 Periglacial Features 

A significant part of the periglacial environment are the surface features associated with 

the freeze-thaw processes that are widespread, as well as permafrost and subsurface ice. 

Periglacial surface features are varied and include a range of landforms including 

thermokarst (Washburn 1980a; Kokelj and Jorgenson 2013), pingos (Müller 1959; 

MacKay 1962), sorted patterned ground (Uxa et al. 2017) and thermal contraction polygons 

(Lachenbruch 1962; Black 1976) (Fig. 1.4).  
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Figure 1.4: a) Thermokarst processes forming lakes and ponds in Alaska (polygons 

~30 m across) (USGS). b) A large (~120 m long) pingo in Tuktoyaktuk (Adam Jones, 

Ph.D./Global Photo Archive/Flickr). c) Sorted circle patterned ground (~1 m across) 

in Svalbard, Norway (Bernard Hallet 2013). d) High-centred thermal contraction 

polygons (~ 50 m across) outside of the Haughton impact structure, Devon Island. 

 

Thermokarst refers to the processes of, and landforms that result from, thawing permafrost 

and the melting of ground ice (Kokelj and Jorgenson 2013). Thawing can be brought on by 

physical disruption to the permafrost thermal equilibrium such as a sudden change in 

surface conditions, vegetation growth, or from changes in climate such as increases in air 

temperatures (Washburn 1980a). Thermokarst includes numerous features such as lakes 

(Fig. 1.4a) and pits that form in degrading permafrost, which processes are discussed in 

detail by Jorgenson and Osterkamp (2005).  

Pingos are hill-like features (Fig. 1.4b) covered with soil and vegetation that contain an ice 

core that forms and grows slowly in permafrost environments (Brown 1970; Mackay 
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1987). Pingos can develop for hundreds of years and grow to be over 30 m in height and 

400 m in length (Brown 1970). A pingo ice core is formed in either an open system or a 

closed system, both impacting their respective groundwater availability (Mackay 1962, 

1979). Over time, pingos may crack along the top and eventually collapse due to 

mechanical failure or thermal disturbance of the permafrost (Brown 1970; Mackay 1987). 

Patterned ground can refer to an array of landforms observed on the periglacial surface that 

displays geometric morphology. These landforms are referred to be either sorted or non-

sorted (Washburn 1980a). Sorted patterned ground is defined by soil materials organized  

by their grain-size due to frost action and freeze-thaw processes. This type of patterned 

ground takes on geometric forms such as circles (Fig. 1.4c), polygons or stripes (Washburn 

1956; Treml et al. 2010, Feuillet et al. 2012). It is generally accepted that clasts are moved 

through the permafrost active layer by frost action and thermal gradients to the outer edges 

of the form; however, the exact mechanisms for all cases of sorting are not well constrained 

(Washburn 1956; Kessler and Werner 2003; Feuillet et al. 2012; Ballantyne 2013). Intense 

frost action causes similarly sized materials being sorted together creating a centre of one 

sized material that is bound by clasts of a different size (Washburn 1956, 1980; Kessler 

and Werner 2003). The sorted patterned ground often occurs in nets of many individual 

polygons, circles or stripes across an area. Sorted circles and polygons typically occur on 

flat surfaces while stripes will occur on slopes (Washburn 1956). Non-sorted patterned 

ground also often takes on geometric forms such as circles, stripes and polygons however 

they lack borders of stones and instead may be bordered by vegetation (Washburn 1956, 

1980; Brown 1970). Non-sorted polygons are commonly bordered by a crack with 

furrowed rims and may be of thermal contraction origins (Washburn 1980a). One 

prominent and one of the most widespread forms of non-sorted patterned ground is the ice-

wedge polygon due to thermal contraction (Fig. 1.4d) (French 2007). 
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Figure 1.5: Diagram showing the initiation of an ice-wedge by cracking in the winter (a) and 

growth of ice-wedge by an infill of water and subsequent freezing in the fall (b). Ice-wedge 

growth continuing by contraction cracking over time is shown in (c) and (d), with a slight 

upward movement of sediment shown that contributes to raised rims around the trough. 

Modified from Lachenbruch (1962). 
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Thermal contraction polygons are formed by networks of contraction cracks extending 

through frozen ground. Cracks are initiated by stresses in permafrost or frozen ground (Fig. 

1.5a) from a rapid decrease in air temperature (Lachenbruch 1962). Initial contraction crack 

widths are typically on the order of >1 cm and depth are on the order of 1‒5 meters into 

the permafrost (Mackay 1974, 1999; Mackay and Burn 2002; French 2007). Contraction 

cracks may occur in a singular crack or as a point that has contraction cracks radiating from 

it, usually three cracks at 120º intervals. Over time, multiple contraction cracks may 

intersect to create large networks of polygons. Singular cracks may intersect to form X-

shaped intersection creating an orthogonal network (Fig. 1.6) where most intersections are 

at ~90º (Washburn 1980; French 2007). A network primarily containing intersections with 

cracks radiating at 120º with form a non-orthogonal network (Fig. 1.6) (French 2007). 

Depending on the material infilling the contraction cracks, such as fine sediments or water, 

thermal contraction polygons can be labelled as either ice-wedge or sand-wedge polygons 

(Washburn 1980a).  

 

Figure 1.6: An example of orthogonal and non-orthogonal (hexagonal) networks. 

Modified from French (2007). 

Following the opening of a crack due to contraction, an ice-wedge will form when 

temperatures rise in the spring and contraction cracks infill with meltwater, which will 

refreeze when it hits the permafrost below the active layer (exaggerated in Fig. 1.5b). The 

cracks are forced open with the expansion of water at it freezes. The process of cracking, 

water infill and freezing can occur several times a year and over hundreds of years to form 

thick wedges of ice after repeated cracking in the same location (Fig. 1.5c, d) (Lachenbruch 
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1962; Mackay 1993; Fortier and Allard 2005). With the right conditions ice wedges can 

continue to grow and become very thick, however, once the tensile strength of an ice-

wedge becomes more than the stresses of the frozen ground growth will stop and the ice-

wedge will remain mostly stable in size until conditions change (Lachenbruch 1962). 

Networks of ice-wedges form ice-wedge polygons that may range in size across terrestrial 

landscapes from 15–40 m in diameter (French 2007). The same cracking and infilling 

process can also occur with sand or other debris to form sand-wedge polygons in environ-

ments that are more arid (Black 1976; Mellon et al. 2014).  

Ice-wedge polygons consist of a centre and the ice-wedge filled contraction cracks that 

surround the centre. The growth of an ice-wedge pushes material from the edges towards 

the center of the polygon as the growing wedge displaces sediment (Mackay 2000; French 

2007). There is also a lateral movement of sediments due to thermal expansion of sediments 

from the centre of the polygon to the sides (Mackay 1980, 2000). The combination of these 

two factors creates a raised rim along the ice-wedge crack (Fig. 1.7b) making the polygon 

center appear lower relative to the raised rim. This morphology is known as a low-centred 

polygon (lcp) (Fig. 1.7b). When ice-wedges around a lcp begin to degrade, they leave 

behind sunken troughs and the polygon centers may consequently appear raised above the 

contouring trough. Polygons with this morphology are known as a high-centred polygon 

(hcp) (Fig. 1.7c) (Washburn 1980a; Mackay 2000). If ice-wedge development and 

sediment transport have not yet raised the rims of the contraction crack the polygon is 

considered flat (Fig. 1.7a) (Mackay 2000).  
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Figure 1.7: a) Profile of a flat ice-wedge polygon morphology with ice wedges shown 

beneath the surface. b) Profile of low-centred polygon morphology with raised rims 

above the ice-wedges. c) Profile of high-centred polygon morphology showing ice-

wedge degradation and raised centre. Modified from Mackay (2000). 

 

Ice-wedges may be further categorized as epigenetic, syngenetic or antisyngenetic (Fig. 

1.8) relative to the surface around them (Mackay 1990, 2000). Epigenetic ice wedges (Fig. 

1.8a) normally occur in flat areas that are relatively stable, having no significant erosion or 

accumulation of materials. These ice-wedges are younger than the material around them 

and continue to widen over time but not deepen, pushing material to the trough rims. 

(Mackay 1990; French 2007). The troughs develop rims on either side creating a distinctive 

epigenetic profile (Mackay 1990; French 2007). Syngenetic ice-wedges (Fig. 1.8b) occur 

where ground material is accumulating, often at the base of slopes, in floodplains or where 

peat is accumulating (Mackay 2000; French 2007). New layers of sediment deposited on 

top of existing ice wedges causing the ice-wedge to grow upwards with new cracking and 

infilling. This action makes the ice-wedge relatively deeper over time. The ice-wedge may 

be thin if there is a high amount of sediment accumulating above it and growth is mostly 
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upward but may grow thicker if sediment accumulation is lower and growth can go both 

upward and outward (Mackay 1990; French 2007).  

Antisyngenetic ice-wedges (Fig. 1.8c) form where there is ground erosion and the tops of 

ice-wedges may degrade away, typically on slopes (Mackay 2000). As material erodes and 

the top of the ice-wedge becomes degraded the ice-wedge also becomes relatively 

shallower. New cracks form deeper into the ground creating downward and outward 

growth of the ice-wedge (MacKay 1990; French 2007). The focus of this work is on 

epigenetic ice-wedges that occur in pre-existing permafrost in relatively flat areas with no 

major erosion or accumulation of sediments. This type of polygon is the most common 

and, based on surface observation, the most similar to the polygons observed in the mid-

latitudes of Mars where there is less significant erosion or accumulation of ground material. 
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Figure 1.8: a) Epigenetic ice-wedge growth on a flat surface with overall outward 

growth. b) Syngenetic ice-wedge growth on a flat surface with accumulation of 

material and overall upward growth. c) Anti-syngenetic ice-wedge growth on a slope 

with the removal of surface material and overall downward growth. Modified from 

Mackay (1990). 
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The study of periglacial geomorphology is used to learn about current, past, and future 

environments, both on Earth and Mars. The features observed in a periglacial environment 

can point to which conditions, such as water availability and air and ground temperatures, 

were existing at the time of the feature’s formation hundreds to thousands of years ago. 

The comparison of past conditions to the conditions of the present day can help to better 

understand paleoclimates and the evolution of periglacial landscapes (Lachenbruch 1962; 

Washburn 1980a). Periglacial geomorphology can also aid in understanding how 

periglacial environments will evolve in a changing global climate (Bursch 1993; Jorgenson 

et al. 2008; Kokelj and Jorgenson 2013; Bernard-Grand’Maison and Pollard 2018). 

Studies of periglacial geomorphology have been conducted throughout many periglacial 

environments on Earth such as those focusing on ice-wedge development in the Lower 

Canadian Arctic (Mackay 1987; Mackay and Burn 2002; Morse and Burn 2013), High 

Canadian Arctic (Dutilleul et al. 2009; Haltigin et al. 2012; Bernard-Grand’Maison and 

Pollard 2018) and Antarctica (Levy et al. 2008, Mellon et al. 2014).  Other periglacial 

features such as sorted patterned ground have been studied in Scandinavia (Uxa et al. 2017) 

and Antarctica (Mellon et al. 2014) to distinguish effects of climate on periglacial 

processes. The study of thermokarst landscapes in periglacial environments includes 

studies from the Low Arctic that focus on landscape evolution (Mackay 1999; Jorgenson 

et al. 2008) to using environments in Siberia as Mars analogues (Ulrich et al. 2011). Such 

studies explore periglacial features and processes that contribute to the understanding of 

past and current conditions of terrestrial periglacial environments, which may contribute 

to the study of similar environments on both Earth and Mars.  

 

1.2 A Periglacial Mars  

In recent years periglacial environments have become of particular interest to those 

studying the mid-latitudes of Mars (Mangold 2005, Costard et al. 2008, Lefort et al. 2009, 

Levy et al. 2009a, Soare et al. 2009; Séjourné et al. 2010; Haltigin et al. 2014) due to their 
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resemblance to terrestrial periglacial environments. Images returned from NASA’s Mars 

Global Surveyor (MGS) mission using the Mars Orbital Camera (MOC) (Malin et al. 1992) 

and later by the Mars Reconnaissance Orbiter HiRISE camera (McEwen et al. 2007) 

revealed that the surface of Mars in the mid-latitudes displays surface patterns resembling 

those commonly found throughout terrestrial periglacial terrain. Specifically, smaller sized 

polygons (Fig. 1.2b) that appeared more similar to those found on Earth (Mangold 2005) 

than the kilometre-sized polygons that had been seen in images from the Mariner mission 

(Lucchitta 1981). The smaller polygons are considered to be thermal contraction in origin 

and frequently occur throughout the mid-latitudes of Mars (~30—65°) where the 

subsurface is proposed to be rich in ice (Mangold et al. 2004; Mangold 2005; Seibert and 

Kargel 2001). Polygon morphology is varied on Mars and given there is only access to 

remote sensing data, it is difficult to make assumptions as to what may cause morphological 

changes. Using Earth as an analogue for Mars may contribute to the understanding of what 

the diverse morphologies represent at a geologic level. The idea that Earth may represent 

conditions on Mars closely enough to draw conclusions about geology, hydrology and 

cryology has led to many investigations of terrestrial periglacial environments and their 

applications to Mars (e.g., Mellon 1997, Burr et al. 2009, Levy et al. 2009a, Haltigin et al. 

2010; Hauber et al. 2011; Soare et al. 2011). 

 

1.3 The Haughton Impact Structure and Devon Island 

Devon Island, Nunavut (75° N, 81° W) (Fig. 1.1a) is a component of the Canadian Arctic 

Archipelago sitting just north of Baffin Island and covering 55, 247 km2. The western side 

of the island’s geology is distinguished by the Arctic Platform (Thorsteinsson and Mayr 

1987) while the eastern side is largely covered in an ice cap remnant from the last glacial 

maximum (Dyke 1999). During the last glacial maximum, it is thought that Devon Island 

was mostly covered by the Innuitian Ice Sheet and was deglaciated around 8 ka (Dyke 

1998, 1999). Devon Island is also home to the Haughton impact structure (75°22’ N, 

81°40’ W) (Fig. 1.1b). The Haughton impact structure is a 23 km diameter complex impact 

crater that is dated at 23.5 ± 2 Ma (Young et al. 2013) and lies on the west side of Devon 

Island. Due to the cold, dry environment of Devon Island the Haughton impact structure is 
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very well preserved despite having experienced glaciation (Osinski and Lee 2005) 

Haughton crater itself has been studied in depth since it was first explored in the 1950’s 

(Greiner 1963) and more so after it was confirmed as an impact structure by Robertson and 

Mason (1975). The target rocks at the Haughton impact structure are a thick, relatively flat 

lying, sedimentary sequence of predominantly carbonates of the Arctic Platform of Lower 

Paleozoic age (Thorsteinsson and Mayr 1987, Osinski et al. 2005a). The sedimentary 

succession is underlain by Precambrian metamorphic basement of the Canadian Shield 

(Osinski et al. 2005a). The geology within the crater is varied and includes carbonates, 

impactites, evaporites, a few siliciclastic rocks, post-impact lake sediments, and glacial and 

fluvioglacial sediments (Thorsteinsson and Mayr 1987, Osinski and Lee 2005). There are 

a variety of impactites throughout the crater (Fig. 1.9) that account for most of the volume 

of rocks as discussed in Osinski et al. (2005b) and Parnell et al. (2007). Post-impact 

lacustrine sediments are found in the Haughton Formation in the west of the crater and 

have been found to be rich in fossils of flora and fauna (Hickey et al. 1988). Glacial and 

fluvioglacial sediments are found throughout the crater often overlying other units (Osinski 

and Lee 2005). The surface outside the crater is primarily dolomite and limestone-rich 

Allen Bay Formation that has been eroded over time by fluvial processes and having 

undergone glaciation (Osinski et al. 2005a).  

Devon Island is considered a polar desert as it experiences cold temperatures and very little 

annual precipitation. While climate data is limited, previous work has found annual 

precipitation to be an average of <180 mm (de Smet and Beyens 1995) in the lowlands to 

the east of the Haughton impact structure.  The average air temperature for 2008 in the 

Haughton impact structure area is about -16.7 °C based on data from the Lake Orbiter 

weather station located ~8 km from the structure rim (Godin et al. 2018). The closest long-

term climate data available is from the Resolute Bay weather station on Cornwallis Island, 

~170 km west of Haughton structure, where the average air temperature is -16.4 °C and 

annual precipitation is ~ 150 mm (Environment Canada 2018) and is consistent with the 

above estimates.   
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Figure 1.9: A simplified geologic map of the Haughton impact structure showing 

major units. From Osinski et al. 2005a. 

The well-preserved impact structure along with the cold, dry environment and the presence 

of periglacial features makes the Haughton impact structure ideal for Mars analogue studies 

(Lee 1997). As such, several Mars analogue studies have taken place on Devon Island 

exploring geologic features (Lee 2000; Lee and Osinski 2005; Haltigin et al. 2010), 

technology uses (Osinski et al. 2010), astrobiology (Parnell et al. 2005; Léveillé 2009) and 

human response to remote scientific work (Bishop et al. 2010). 
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1.4 Previous Work 

While studies of thermal contraction polygons have taken place readily in the low Arctic 

(MacKay 2000; Mackay and Burn 2002; Morse and Burn 2013; Steedman et al. 2017), 

Antarctica (Marchant et al. 2002; Levy et al. 2008; Mellon et al. 2014) and Scandinavia 

(Friedman et al. 1971; Christiansen 2005; Ulrich et al. 2011), polygon morphology in the 

High Arctic is not well constrained. Due to the remote and harsh nature of the High Arctic, 

studies of ice-wedge polygons in Arctic polar deserts, and on Devon Island specifically, 

are limited. Previous work on Devon Island polygons have been localized primarily in 

Thomas Lee Inlet located 25 km west of the Haughton impact structure (Singleton et al. 

2010; Haltigin et al. 2012). Studies regarding the electromagnetic characterization of the 

ice-wedge polygons in Thomas Lee Inlet by Singleton et al. (2010) found that subsurface 

ice-wedges and massive ice could be detected using an electromagnetic induction sensor. 

The ice-wedge polygons in Thomas Lee Inlet have also been investigated for their 

development of regularity over time using spatial point pattern analysis (SPPA) by Haltigin 

et al. (2012). The SPPA study found that present day and historical configurations of ice-

wedge polygons showed significant regularisation throughout the evolution of the polygon 

terrain (Haltigin et al. 2012). SPPA was also applied to ice-wedge polygons on Axel 

Heiberg Island (79° N, 91° W), another site of significant High Arctic polygon terrain, by 

Dutilleul et al. (2009) examining nearest neighbour distances and regularity, and Haltigin 

et al. (2010) where it was found that the most accurate characterization of ice-wedge 

polygon geometry came from a combination of high-resolution image analysis and ground-

truthing. Other locations of High Arctic ice-wedge polygon studies include Ellesmere 

Island (80° N, 72° W) where work by Bernard-Grand’Maison and Pollard (2018) was 

conducted to estimate large-scale ice-wedge volumes, including the whole of the Fosheim 

Peninsula, as well as ice-wedge polygon development and historical geomorphology work 

on Bylot Island (73° N, 79° W) by Fortier and Allard (2004). 

This thesis will report on the properties and characteristics of ice-wedge polygon terrain  

throughout the study area of the Haughton impact structure on Devon Island. This work 

aims to characterise High Arctic polygonal terrain through GIS analysis and provide insight 

into the factors influencing variations in ice-wedge polygon morphology. Chapter 2 
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reviews background information and describes the methodology used in collecting and 

analysing data for the study, including field measurements of polygons, troughs and the 

local thaw depth as well as LiDAR scanning of each site to create high-resolution DTMs. 

The DTMs, analyzed through GIS software, allow characterisation of High Arctic polygon 

geomorphology, including polygon size, shape and intersection type, at each study site. 

Chapter 2 will show results, including observations of unexpected variations in polygon 

orthogonality and inter-polygon patterned ground.  Chapter 2 discusses the observations 

from analyses including how this study is or is not supported by previous studies of ice-

wedge polygons and the implications of significant variations in polygon morphology. 

Chapter 3 provides conclusions and suggestions for future work on ice-wedge polygons 

and the areas that host them.    
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Chapter 2  

2 Characterizing Ice-wedge Polygon Geomorphology in the 

Haughton Impact Structure, Devon Island 

Periglacial environments are dominated by non-glacial, cold processes and display a wide 

range of landforms formed due to cyclical freezing and thawing processes. Polygon terrain 

is a distinctive and widespread periglacial landform found in most unconsolidated 

sediments throughout areas of permafrost in high latitudes and altitudes (e.g., French 

2007). Polygon formation and networks within some permafrost environments such as 

Svalbard, Norway (Ulrich et al. 2011) Antarctica (Mellon et al. 2014) and the Canadian 

Arctic (Mackay 1972, 1999, 2000) have been described in detail in the literature 

(Lachenbruch 1962; Washburn 1980; French 2007). Thermal contraction polygons are 

characterized by thermal contraction cracks that occur in the frozen ground upon intense 

cooling over a short time interval (Fortier and Allard 2005). Extensive networks of 

contraction cracks occur across areas of permafrost to form networks of polygon terrain. 

Polygons with ice-filled cracks are known as ice-wedge polygons and are indicative of 

thermal fluctuations, permafrost and liquid water presence at the surface (Washburn 1980). 

In more arid environments other materials may enter the cracks and form sand- or debris-

wedge polygons (Black 1976; Mellon et al. 2014). The distinction of conditions that allow 

for the formation of ice-wedge polygons is well documented (Lachenbruch 1962; 

Washburn 1980; Mackay 1993; Mackay and Burn 2002); however, the driving forces for 

variation in polygon surface morphology in Arctic environments is not as well constrained. 

The environmental conditions present on Devon Island in the Canadian High Arctic (Fig. 

2.1a) are that of a polar desert (e.g., Osinski et al. 2005) and the polygons in and around 

the Haughton impact structure (Fig. 2.1b) are varied in their morphology despite being 

subject to the same ubiquitous cold, arid conditions. The Haughton impact structure may 

offer insight into the factors influencing the differences in polygon morphology in a 

relatively small area experiencing the same polar desert climate.  
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2.1 Thermal Contraction Polygons 

Ice-wedge polygons form in permafrost through thermal contraction cracking in winter. In 

spring when thaw occurs the open cracks are filled with water which freezes at depth within 

the permafrost forming a vein of ice (Lachenbruch 1962; Mackay 1990). The vein and 

ground freeze entirely in winter at which point the ground may re-crack again upon intense 

cooling (Lachenbruch 1962). The cycle of water in-filling in spring and contraction 

cracking in winter repeats for tens to hundreds of years causing the ice-filled cracks to 

become wedge-shaped ice bodies (Lachenbruch 1962; Mackay 1993; Fortier and Allard 

2005). With the right conditions ice wedges can continue to grow and become very thick; 

however, once the tensile strength of an ice-wedge becomes more than the stresses of the 

frozen ground, growth will stop, and the ice-wedge will remain mostly stable in size until 

conditions change (Lachenbruch 1962). The growth of an ice-wedge pushes material from 

the edges towards the centre of the polygon as the growing wedge displaces sediment 

(Mackay 2000; French 2007). There also exists a lateral temperature driven movement of 

sediments from the centre of the polygon to the sides within the thawed active layer during 

the summer months (Mackay 1980; 2000; French 2007). The combination of these two 

factors creates a raised rim along the ice-wedge crack making the polygon centre appear 

lower relative to the raised rim. This morphology is known as a low-centred polygon 

(“lcp”). When ice-wedges around a lcp begin to degrade due to thermal instability, they 

leave behind sunken troughs and the polygon centres may consequently appear raised 

above the contouring trough. Polygons with this morphology are known as high-centred 

polygons (“hcp”) (Washburn 1980; Mackay 2000). The distinct differences in the 

morphology of hcp and lcp are thought to reflect a change in environmental or climatic 

conditions (Lachenbruch 1962; Mackay 2000; Jorgenson et al. 2006; Mellon et al. 2014; 

Abolt et al. 2017). Changes in air and/or ground temperature, surface energy budget, water 

availability, water pooling, vegetation cover and erosion rates will all ultimately change 

the morphology of polygons (Washburn 1980, Mackay 1990; Mackay and Burn 2002; 

French 2007). For example, an increase in air and/or ground temperature may result in 

degradation of permafrost and thickening of the active layer eventually causing unstable 

ice-wedges around lcps to degrade form hcps (Mackay 2000; Jorgenson and Osterkamp 

2005; Jorgenson et al. 2006). This research aims to describe the internal and external 
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drivers behind the morphological variations observed in High Arctic ice-wedge polygons 

within a relatively small study area where conditions would be expected to be similar.  

Given that both hcp and lcp are observed within the study area, does this indicate a 

significant difference in conditions within the area in and around the Haughton impact 

structure? This work seeks to provide further insight into this question by using both field 

and remote sensing methods to describe the geology and geomorphology present in the 

polygon terrain and report on differences in conditions observed within each study site. 

High-resolution DTMs were created from LiDAR scans preformed at each site to analyse 

the ice-wedge polygon geomorphology including size, shape and intersection type. 

Measurements of polygon centres and troughs as well as excavation of soil pits were 

completed in the field to compliment the remote sensing data and include substrate and 

homogeneity as factors influencing geomorphology. The main objective of this study is to 

determine the factors that contribute to polygon morphology in different sites within the 

polar desert environment of Devon Island and ultimately, to use this information to 

compare ice-wedge polygon morphology with similar features on Mars. 

Previous studies of ice-wedge polygons have taken place in the Low Arctic (Mackay 2000; 

Morse and Burn 2013; Abolt et al. 2017), Scandinavia (Friedman et al. 1971; Christiansen 

2005; Ulrich et al. 2011) and Antarctica (Marchant et al. 2002; Levy et al. 2009b; Mellon 

et al. 2014) among others. Ice-wedge polygon morphology is not well constrained in High 

Arctic polar desert environments. Previous work on polygons on Devon Island has 

occurred almost exclusively in Thomas Lee Inlet located 25 km west of the Haughton 

impact structure (Singleton et al. 2010; Haltigin et al. 2012). A study by Singleton et al. 

(2010) found that electromagnetic induction was useful in detecting subsurface ice-wedges 

and massive ice in Thomas Lee Inlet. Haltigin et al. (2012) used spatial point pattern 

analysis (SPPA) to investigate polygon regularity in Thomas Lee Inlet and found that ice-

wedge polygons experienced significant regularity increases over time. Other High Arctic 

sites that have been the subject of study include Axel Heiberg Island (79° N, 91° W) where 

SPPA was used to determine accurate characterization of ice-wedge polygon geometry by 

Dutilleul et al. (2009) and Halitigin et al. (2010). Work on Ellesmere Island (80° N, 72° 

W) conducted by Bernard-Grand’Maison and Pollard (2018) was done to estimate large-
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scale ice-wedge volumes across a large area including the whole of the Fosheim Peninsula. 

On Bylot Island (73° N, 79° W), studies on ice-wedge polygon development and historical 

geomorphology conducted by Fortier and Allard (2004) found that changes in the 

composition of the surface, such as accumulation of silt and organic sediments and increase 

in pore-ice, over time is more likely responsible for secondary cracking in polygon 

networks than climatic changes.  

 

2.2 Periglacial Mars 

In recent years periglacial environments on Earth have become of interest to those studying 

the mid-latitudes of Mars where a host of similar landforms have been observed (e.g., 

Costard et al. 2008; Haltigin et al. 2014; Lefort 2009; Levy et al. 2009; Mangold 2005; 

Sejourne et al. 2010; Soare et al. 2009). Specifically, smaller sized polygons that appear 

morphologically similar to those found on Earth are widespread (Mellon 1997, 2005). The 

smaller polygons are considered to be thermal contraction in origin and frequently occur 

throughout the mid-latitudes of Mars (~30–65°) where the subsurface is thought to be rich 

in ice (Mangold et al. 2004; Mangold 2005; Seibert and Kargel 2001). Polygon 

morphology, such as size and low/high centredness, is varied on Mars and given limited 

remote sensing data it is difficult to make assumptions as to what may cause morphological 

changes. Using Earth as an analogue for Mars may contribute to the understanding of what 

the varying morphologies represent at a geologic level. The notion that some places on 

Earth may represent conditions on Mars closely enough to draw conclusions about geology, 

hydrology and cryology has led to many investigations of terrestrial periglacial 

environments and their applications to Mars (e.g., Levy et al. 2009a; Haltigin et al. 2010; 

Hauber et al. 2011; Ulrich et al. 2011). This study aims to contribute to analogue studies 

of Earth and Mars to provide further evidence of how polygon networks reflect certain 

conditions. 
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2.3 Geology of the Study Sites 

2.3.1 Devon Island and the Haughton Impact Structure  

Devon Island is the largest uninhabited island in the Arctic Archipelago in the Canadian 

High Arctic and is host to the Haughton impact structure (75°22’ N, 81°40’ W) (Fig. 2.1a). 

The Haughton impact structure (Fig. 2.1b) is a well-preserved complex meteorite impact 

crater formed 23.5 ± 2 million years ago (Young et al. 2013). The 23 km wide structure 

formed in sedimentary rocks of the Arctic Platform overlying the Precambrian Shield.  

 

Figure 2.1: a) Devon Island, Nunavut with a circle indicating the location of the Haughton 

impact structure. b) A 2018 DigitalGlobe / Landsat / Copernicus image of the Haughton 

impact structure showing the three field site locations (Google Earth 2018). c) A 2018 

DigitalGlobe image of the Lake Comet (left) and Lake Orbiter (right) field sites. d) A 2018 

DigitalGlobe image of the Haughton Formation field site.  

The rocks around the crater are a relatively flat, dolomite limestone unit known as the Allen 

Bay Formation that is dated as Upper Ordovician (Thorsteinsson and Mayr 1987; Osinski 
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et al. 2005). The geology within the crater itself is varied and includes carbonates, 

impactites, post-impact lake sediments, and glacial and fluvioglacial sediments (Osinski et 

al. 2005a). There are a variety of impactites throughout the crater that are discussed in 

Osinski et al. (2005b) and Parnell et al. (2007). Post-impact Miocene-aged lacustrine 

sediments of the Haughton Formation are present in the west of the crater and have been 

found to be rich in fossils of flora and fauna (Hickey et al. 1988; Osinski and Lee 2005). 

Glacial and fluvioglacial sediments are found throughout the crater often overlying other 

units (Osinski and Lee 2005). The three sites discussed in this study cover a range of 

geologic and topographic locations that are present in and around the Haughton impact 

structure (Fig. 2.1b) which is considered an excellent analogue to Mars (Lee and Osinski 

2005) 

The east side of Devon Island is host to an ice cap remnant from the last glacial maximum 

when it is thought that Devon Island was covered by the Innuitian Ice Sheet (Dyke 1998). 

The island deglaciated around eight thousand years ago, making way for periglacial 

processes to dominate the landscape (Dyke 1999). Devon Island is considered a polar 

desert as it experiences very little annual precipitation with an average of <180 mm in the 

True Love Lowlands 160 km to the east of the Haughton impact structure (de Smet and 

Beyens 1995).  The average annual air temperature around the Haughton impact structure 

is about -16.7 °C based on data from a weather station at Lake Orbiter (Godin et al. 2018). 

The closest permanent weather station is found in Resolute, approximately 170 km east of 

the Haughton impact structure, where annual precipitation is ~150 mm and the average 

annual air temperature -16.4 °C (Environment Canada 2018). 

2.3.2 Study Sites 

The Haughton Formation 

The Haughton Formation (75° 23’N 89° 48’W) covers ~8 km2 located in the western part 

of the Haughton impact structure (Fig. 2.1b). The large formation is 130–140 m above sea 

level (a.s.l.) and consists of fine-grained dolomite-rich lacustrine sediments deposited 

within the structure post-impact (Hickey et al. 1988). The paleolacustrine unit has been 

measured to be ~48 m thick overlying both lower Paleozoic target rocks and impact melt 
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rocks (Hickey et al. 1988; Osinski and Lee 2005). The formation is relatively low lying 

with hills and terraces throughout. It is one of the few places in the surrounding landscape 

that has partial vegetation cover of grasses and moss (Figs. 2.2a, b, c). The unit features 

areas of pooling water and seasonal streams that run through the boundaries of the lowest 

lying areas (Fig. 2.2d).  

 

Figure 2.2: a) Ground image of high-centred polygons within the Haughton Formation. b) 

Ground image showing the degraded edges of hcp and the site of a trench dug through the 

active layer. c & d) Aerial drone views of the Haughton Formation. (July 2017) 

 

Lake Comet 

Lake Comet is an elongated east–west, 0.25 km2 lake (75° 29'N 89° 58'W) located at 195 

m a.s.l, ~7 km beyond the rim of the northern side of the Haughton impact structure (Fig. 
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2.1b). The surface of the site is covered by a felsenmeer of Allen Bay Formation dolomites. 

The block size varies from centimetre to decimetre in size (Fig. 2.3a, b, c). The lake is 

surrounded on almost all sides by rounded hills (Fig. 2.3b), with the exception of the south-

east corner of the lake where there is a flat riverbed. The environment at Lake Comet at the 

time of observation was wet from both meltwater and rain. In late July ice remained on the 

lake in addition to snow along the shore, on nearby hillsides and within some polygon 

troughs (Fig. 2.3b, d).  

 

 

Figure 2.3: a) Trough of a large hcp at Lake Comet. b) A snow-filled three-ray trough 

intersection next to raised polygon centres c) Drone image (20 m) view of Lake Comet hcp. 

d) Helicopter image of Lake Comet site, polygons are ~50 m across. (a–c July 2017, d: 2007) 
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Lake Orbiter 

The Lake Orbiter study site (75° 29'N 89° 52'W) is a flat plain host to low relief periglacial 

landforms such as patterned ground (Fig. 2.4a), with a 0.12 km2 lake along the eastern side 

of the plain. The site is located to the northeast of the Haughton impact structure at 180 m 

a.s.l., ~7 km outside the rim and 2.5 km east of Lake Comet (Fig. 2.1b). The Lake Orbiter 

site consists of small to medium, centimetre-sized sub-rounded to sub-angular cobbles of 

fluvioglacial sediments that are derived from the Allen Bay Formation (Fig. 2. 4b, c). Small 

streams are surrounding the plain to the north, west and south as well as areas of slight hills 

and higher topography to the north, west and east beyond the streams (Fig. 2.4d). Neither 

gullies nor large snow patches were observed on the surrounding hills; however, much of 

the lake was still frozen and there were small snow patches and ice remaining on hill slopes 

and along the shore of the lake. Water appeared to be draining toward the lake from several 

sources, including through some polygon troughs and from the largest stream feeding the 

lake from the south (Fig. 2.4d). 
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Figure 2.4: a) Aerial view of Lake Orbiter lcp showing more orthogonal polygons on the left 

of the image and non-orthogonal on the right. b) A three-ray trough intersection next to a 

depressed polygon centre with pooling water c) Trough of a large lcp at Lake Orbiter. d) 

Airborne oblique photo of Lake Orbiter site, arrow highlighting flatter northern area and 

southern area with mounds and depressions. (a and d: 2007, b and c: 2017) 

 

2.4 Data Collection and Methods 

Detailed investigation of three sites on Devon Island that display thermal contraction 

polygon networks took place in July 2017. Each site, described above, contains 25 or more 

continuous polygons within two geologic units. WorldView satellite imagery from 2013, 

ground imagery from 2007 to 2016, and LiDAR data were also used to locate and map 

potential field targets. At each site, a polygon with well-formed troughs and that was fully 

enclosed by other polygons was chosen at random for a soil pit and sampling. A soil pit 

was dug in the sample polygon centre and trough, to the maximum extent  of the thaw 

depth. The soil pits allowed for the observation and interpretation of the shallow subsurface 
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stratigraphy as well as the thaw depth. In the Haughton Formation site, a trench was dug 

across a trough from one edge of the sample polygon, through the trough, to the edge of a 

neighbouring polygon. The trench was 5.5 m across along the bottom (Fig. 2.2b). A trench 

was dug only at the Haughton Formation site because the fine grain substrate allowed for 

such extensive digging down to the extent of the thaw depth. The trench was used to 

observe potential ice-wedge thickness and changes in stratigraphy from the polygon centre 

to the trough. To build on the subsurface data from the soil pits, a steel probe was used to 

measure the thaw depth above the permafrost at each site. In fine-grained substrates, two 

20 m long transects intersecting in a polygon centre at 90º were laid out and probed at 1 m 

intervals to establish thaw depth. In coarse-grained substrates, a single 10 m transect going 

through both polygon centres and trough was used and probed at 1 m intervals. 

A local Digital Terrain Model (DTM) was built for each site using a backpack-mounted 

Kinematic Mobile LiDAR Scanner (KLS) developed by the Finnish Geospatial Institute 

(Kukko 2013). Each site was scanned by the GPS equipped KLS unit to collect extensive, 

high-resolution morphology data that has high vertical accuracy (within 2cm) and  an 

absolute global position within 10 cm of the operator (Zanetti et al. 2018). The KLS 

instrument is outfitted with a Ring Laser Gyroscope to account for the movement of the 

operator (Kukko 2013) and scans up to 1 million points and 120 lines per second and as far 

as 150 m to the left and right of the instrument. This allows for rapid scanning of areas 

thousands of square metres of polygon terrain that results in dense point cloud data and 

DTMs of a higher resolution than previously found in the study area. The DTMs were used 

for detailed analysis of the geomorphology (e.g., shape, area) of the polygon networks 

around the Haughton impact structure. 

A DJI Phantom 3 drone was used at each site to take a series of aerial images at a normal 

angle (90°) to the ground from an altitude of 30 m. Markers were used as ground control 

points to mark pre-recorded GPS points for georeferencing of the stitched mosaic in post-

field image processing. The drone images are high resolution (12 megapixels) and allowed 

for video and images to be used for context and aerial imagery in the absence of a 

helicopter.  
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Point cloud and raster data were extracted from the KLS and imported into ESRI ArcMap 

software (ArcGIS 10.5.1). The “LAS to Raster” tool  in ArcMap was used to convert the 

LiDAR data into high-resolution DTMs of each site. The resulting DTMs are fully 

georeferenced with a resolution of 2–5 cm/pixel, one of the highest resolutions produced 

of this field site. The DTMs were used as the basis of a morphology and morphometry 

analysis in ArcGIS software. ArcGIS was used as the primary lab tool for 

geomorphological mapping and analysis of each field site. Methods for the digitization of 

the polygons was adapted from Ulrich et al. (2011) where a similar technique was used to 

collect aspects of polygon morphology including polygon area, size, perimeter, and 

circularity. Each polygon network was manually digitized by tracing along the centrelines 

of clear contraction cracks and troughs. Polygons were represented where an area was fully 

enclosed by contraction cracks. Metrics were calculated in ArcGIS to characterize each site 

in detail and are summarized in Table 1. 

Table 1: Description of polygon geomorphology metrics that were calculated for each polygon 

within the study areas. See Figure 2.5. 

Metric Description  

Area (m2) The total area with a polygon 

Perimeter (m) The total length of all polygon sides 

Length (m) The longest diameter of a polygon 

Width (m) The shortest diameter of a polygon 

Circularity  4πA/P2 Where A is polygon area and P is polygon perimeter. 0 

represents an elongated ellipse and 1 represents a circle 

Aspect Ratio W/L. Where W is width and L is length    

An ArcMap tool developed by Brooker et al. (2018) was used to streamline this process 

and produce accurate metrics for each site. The polyline shapefile representing the polygon 

cracks and troughs was input into the tool. The tool produces a shapefile representing the 

enclosed polygons and their vertices (Fig. 2.5). The attribute table for the resulting 

shapefile contains the metrics for each polygon. Due to morphological differences between 

lcp and hcp, other features such as the high centres of the hcp and the raised rims of the lcp 

were mapped as needed. For example, the hcp at the Haughton Formation were traced 

along the centrelines of the troughs as well as the outer edges of the degraded high centres 

to accurately represent both main components of the morphology. The lcp at Lake Orbiter 
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were also traced along the centreline of the contraction crack troughs. Here, the depressed 

low centre was also mapped to show the polygon interior as well as the centreline of the 

raised shoulders around the interior to showcase the full morphology of the lcp. Lake 

Comet, having hcp without degraded centres, was mapped only along the centreline of 

troughs. Other periglacial features, including any smaller patterned ground, were also 

mapped. At each site, the intersections of contraction cracks, also called polygon junctions, 

were marked to show the vertices of the polygon networks clearly. The vertices were 

marked as being an intersection with three rays or four rays extending from them (Fig. 2.5).  
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Figure 2.5: An example of the parameters extracted using the ArcMap polygon tool in a lcp 

at Lake Orbiter. The polygon centre is outlined by the traced trough lines. The polygon centre 

is the area contained within the trough lines and the length of the trough lines is the perimeter. 

The white dots represent the vertices where trough lines meet. The intersection type, polygon 

length and width, and trough intersection angles are noted in blue. Other parameters such as 

circularity are calculated using the values extracted by the ArcMap tool. Image modified 

after Ulrich et al. 2011 and Brooker at al. 2018 
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2.5 Results 

The three study sites were characterized and mapped to distinguish their polygon networks 

resulting in a total of 223 polygons. An overview of the main characteristics of each site 

are summarized in Table 2. The polygon attributes analysed from the DTMs and mapping 

tools are presented in Table 3.  

Table 2: An overview of the main physical characteristics of each polygon network. 

Location Haughton Formation Lake Comet Lake Orbiter  

Average Elevation 

(meters above sea 

level) 

140 195 180 

Polygon Type High Center High Center Low Center 

Number of Polygons 138 25 60 

Total Polygonized 

Area (m2) 

25969.7 51257.1 61663.9 

Number of Trough 

Intersections 

194 56 116 

Average Trough 

Width (m) 

3.8 5.9 2.3 

Average Trough 

Depth (m) 

0.53 0.71 0.33 

3-ray intersections 

(%) 

84.5 98.3 92.2 

4-ray intersections 

(%) 

15.5 1.7 7.8 

Substrate  Unconsolidated, 

miocene aged 

plaeolacustrine 

sediments. 

Homogeneous, fine-

grained, dolomite-rich 

sands and silts. 

Blocky, coarse Allen 

Bay Formation 

dolomite frost 

shattered in situ with 

centimetre to 

decimetre sized clasts 

and finer throughout 

Glaciofluvial sediments 

originating from Allen Bay 

dolomite. Gravel, sand and 

some fine grains throughout 

subsurface. 
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Table 3: Overview of statistics for attributes of each site from ArcMap polygon tool analysis. 

Metrics are described in Table 1. Standard deviation abbreviated to SD.  

    

Haughton 

Formation 

Lake 

Comet 

Lake 

Orbiter  

Area (m2) Min 16.3 814.7 86.4 

  Max 817.8 5460 6039 

  Mean 188.2 2050.3 1233.3 

  Median 170.6 1661 798.5 

  SD 124.9 1080.6 1161.4 

          

Perimeter (m) Min 17.8 114.5 38.4 

  Max 131.8 284.7 352.8 

  Mean 53.2 176.8 132.5 

  Median 54.2 168.1 117.4 

  SD 17.8 43.9 60.9 

          

Length (m) Min 4.6 40.3 14.8 

  Max 53.2 101 123.2 

  Mean 19.8 63.7 47.7 

  Median 20.3 60.2 42.1 

  SD 6.8 16.3 21.3 

          

Width (m) Min 3.9 26.8 10 

  Max 26.5 77.7 81.9 

  Mean 12.6 43.3 32.8 

  Median 12.8 39.3 28.4 

  SD 4.6 12.3 15.3 

          

Circularity Min 0.54 0.63 0.57 

  Max 0.89 0.89 0.86 

  Mean 0.75 0.78 0.75 

  Median 0.80 0.79 0.75 

  SD 0.06 0.05 0.07 

          

 

Aspect Ratio 

 

Min 

 

0.28 

 

0.53 

 

0.45 

  Max 0.86 0.88 0.87 

  Mean 0.64 0.68 0.69 

  Median 0.60 0.67 0.69 

  SD 0.10 0.08 0.01 
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Figure 2.6: Box plot for trough widths from randomly selected samples at each study site. 

The bottom of the box represents the first quartile and the top of the box represents the third 

quartile, the “x” represents the mean, the transversal line within the box represents the 

median, the whiskers represent the maximum and minimum values, and the dots represent 

outliers. 
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Figure 2.7: Box plot for trough depths from randomly selected samples at each study site. 

The top of the box represents the first quartile and the bottom of the box represents the third 

quartile, the “x” represents the mean, the transversal line within the box represents the 

median, the whiskers represent the maximum and minimum values, and the dots represent 

outliers. 

 

2.5.1 The Haughton Formation 

The flat areas of the Haughton Formation ubiquitously display high-centred ice wedge 

polygons that are well defined (Figs. 2.2c, d). The polygons are formed in an extended, flat 

area of unconsolidated, fine paleolacustrine sediments on a lower terrace of the Haughton 

Formation. The polygons in the Haughton Formation are an average of 19.8 m across 

(Table 2) and display a geometrically regular and mostly orthogonal pattern. The polygon 

rims are heavily degraded along the edges of the high centres that are bordered by troughs 

that are 3.8 m wide (SD = 1.5 m) and 0.53 m deep (SD = 0.26 m) on average (Figs. 2.6, 

2.7) (Table 2). The polygon network mapped contains a total of 138 hcps covering an area 
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of 25,970 m2 (Table 2). The polygon surface area ranges from 16.3 to 817.8 m2 (Fig. 2.8) 

with an average polygon area of 188 m2 (SD = 125 m2) (Table 3). 

 

Figure 2.8: a) An elevation colourized shaded relief image based on a DTM derived from a 

KLS scan of the Haughton Formation polygon network and study site. b) A simplified 

representation of the Haughton Formation polygon trough lines and vertices displaying the 

polygon network and orthogonality. 

 

The substrate of the Haughton Formation field site is primarily sand with other fines of a 

light to medium brown colour. At 40 cm depth in the centre of a hcp, a dark-brown organic-

rich horizon was found that is seen clearly along the crumbling edges of the polygon centres 

(Fig. 2.9a). The soil pit was dug to 56 cm depth at which point ice-rich frozen ground was 

observed. Within the trench dug across the trough the subsurface displayed a fine brown 

sandy layer that is consistent all the way down to the frozen ground at 42 cm depth. A 

brown sandy layer is present above and below the organic-rich layer (Fig. 2.9b). The 

ground at the bottom of the trench was found to be ice-rich and although the boundaries of 
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the ice-wedge were not clearly observed, the subsurface at this depth was more ice than 

soil. In July 2017 the thaw depth was observed to be 56 cm in the polygon centre soil pit 

and 42 cm in the trough trench. An average of all thaw depth measurements from both the 

probed transects and soil pits was of 45.2 cm depth.  

There is small (5–10 cm) sorted polygon patterned ground within the centres of the large 

hcp. The small sorted patterns were only observed in the hcp centres, not the troughs. The 

small patterned ground appears similar to mud cracks and displays minor sorting of small 

(~1cm) pebbles along the cracks of the small polygons (Fig. 2.9c). 

 

Figure 2.9: a) Soil pit dug in the centre of a hcp in the Haughton Formation. The first 40 m 

of the pit show fine brown sand–silt layer. Below that is the dark, porous, organic-rich layer 

continuing to the frozen ground at 56 cm. b) A 5.5 m trench dug from one hcp edge to another 

through a trough. The dark organic-rich layer is seen on the edge and another brown layer 

beneath it in the trough. Shovel for scale. c) Small patterned ground found within the centre 

of a hcp in the Haughton Formation. The patterns are similar to mud cracks and have minor 

sorting of pebbles in the cracks. 

 

2.5.2 Lake Comet 

Lake Comet displays large hcp polygons formed within frost shattered Allen Bay dolomite 

blocks and cobble to gravel-sized coarse sediments surrounding the lake. The hcps are well 
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defined on the flat top and gentle slopes of a hill that spans most of the south shore of the 

lake (Fig. 2.3). The polygons at Lake Comet are geometrically regular and display a mostly 

orthogonal pattern throughout the network. The orthogonal pattern is slightly offset and 

displays primarily 3-ray trough intersections, with almost no 4-ray (X shaped) 

intersections. The high centres of the polygons are raised and somewhat rounded with no 

raised rim. The hcps are bordered by degraded shoulders (Figs. 2.3a, b) and troughs 5.9 m 

wide (SD = 4.0 m) (Fig. 2.6) and 0.71 m deep (SD = 0.50 m) on average (Fig. 2.7) (Table 

2). The troughs closest to the lake are much more heavily degraded and are as wide as 13 

m and as deep as 1.5 m. In some cases, the deeper polygon junctions hosted pools of water. 

The hcps are 40–60 m across and range from 815 to 5,460 m2 in area with an average size 

of 2,050 m2 (SD = 1081 m2) (Table 3). The polygon network map (Figs. 2.10a, b) contains 

25 hcp covering an area of 51,257 m2 (Table 2).  

 

Figure 2.10: a) An elevation colourized shaded relief image based on a DTM derived from a 

KLS scan of the Lake Comet polygon network and study site. b) A simplified representation 

of Lake Comet polygon trough lines and vertices displaying the polygon network and 

orthogonality. c) Zoom image of the lobate patterned ground present on the gentle slopes of 

the Lake Comet polygon network. 

 

The substrate at Lake Comet is coarse-grained at the surface but transitions to finer, sand-

sized sediments 5–10 cm below the surface. The block field surface is heavily fractured 
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and rich in gravel-sized grains with the finer, sandy subsurface visible in some areas (Fig. 

2.3a). Large, angular clasts continue to a depth of 5–10 cm after which the subsurface 

displays a finer-grained matrix with gravel throughout for ~15 cm. Below 40 cm the 

subsurface becomes gravelly with fine sediments and large cobbles throughout. The soil 

pit became too challenging to continue digging past 48 cm due to large clasts and frozen 

ground. Therefore, the thaw depth is estimated to be at minimum 40 cm on 27 July 2017.   

Lobate, irregular patterned ground was observed within many polygon centres, localized 

mostly on the sloped surfaces on the southern side of the lake (Fig. 2.10c). The patterned 

ground lobes range in size and shape across the slope and do not display obvious sorting. 

The more circular forms are relatively uniform at ~5 m across and the elongated forms are 

3–5 m across and upward of 15 m long. The patterns do not appear as frequently on the top 

of the hill and when present, are found only within the polygon troughs.  

 

2.5.3 Lake Orbiter 

Lake Orbiter displays flat to low-centred ice wedge polygons continuously throughout the 

large, relatively flat plain of gravel to cobble-sized clasts. The Lake Orbiter plain has two 

distinct sections, the southern section which contains subtle mounds and depressions and 

the northern section which is flatter (Fig. 2.4d). Some of the southern section terrain 

variations appear to be in relation to polygon centres (depressions) and rims (mounds). 

However, some large polygons have mounds within the centres as well. The polygons are 

mostly geometrically irregular in the southern section of the plain and are the largest in the 

site (50–80 m) (Fig. 2.11b). The majority of the large southern polygon junctions are non-

orthogonal and have wider troughs (~2 m) (Figs. 2.11a, b). To the north of the plain, the 

polygons become flatter and smaller (15–30 m) with more narrow troughs (~1 m) (Fig. 

2.11b). The polygons here also become more geometrically regular and display more 

orthogonal junctions (Figs. 2.11a, b). The polygons across the Lake Orbiter site are flat to 

low-centred with raised rims (10–20 cm) and have troughs that are narrower (2.30 m, SD= 

1.1 m) (Fig. 2.6) and shallow (0.33 m, SD = 0.20 m) on average (Fig. 2.7) than the other 

sites. The low-centred morphology is the most exaggerated in the southern area of Lake 
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Orbiter where some of the polygon troughs become deeper and wider and the rims become 

larger (Fig. 2.11a). These lcp have large, rounded rims up to 80 cm high and troughs that 

are up to 6 m wide and ~50–70 cm deep, filled with water. In some large lcp both the 

centres and troughs contained shallow pools of water with dark cyanobacterial mats. Other 

troughs closer to the lake had water running through them towards the lake. The polygon 

network contains 60 polygons covering 61,664 m2 (Table 2). The lcp range in size from 86 

to 6039 m2 with an average size of 1233 m2 (SD = 1161.4 m) (Figs. 2.11a, b) (Table 3). 

One soil pit was dug in the centre of a polygon and another in a wide trough (Figs. 2.12a, 

b). Both pits offered similar results although the pit in the trough contained a greater 

proportion of fine, sand-sized sediments. In the centre pit, the cobble and gravelly surface 

continued to 15–25 cm depth. Beyond 25–30 cm the substrate became a sandy-gravel 

matrix. In the trough pit the cobble and gravel went to 10 cm depth followed by a finer 

matrix still rich in gravel going from 10–30 cm depth. On 26 July 2017 the thaw depth is 

estimated to be 32–40 cm as both pits went to 32–40 cm depth where the gravel became 

too frozen to dig further. 
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Figure 2.11: a) An elevation colourized shaded relief image based on a DTM derived from a  

KLS scan of the Lake Orbiter polygon network and study site. b) A simplified representation 

of Lake Orbiter polygon trough lines and vertices displaying the polygon network and 

orthogonality. c) The Lake Orbiter site mapped using ArcGIS. The base map made from the 

KLS is coloured to represent topography. The main trough lines, as well as the lcp shoulders 

and rims, are mapped as this is the only site that displays them. d) A zoomed image of the 

Lake Orbiter base map made from the KLS coloured to represent topography. The circular 

patterned ground, shown by the arrows, is clustered in this part of the site and mostly form 

close to cracks. 
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The Lake Orbiter polygons are the only lcp in the study area and have specific features that 

are not found in the other sites. The lcp display raised rims throughout much of the site; 

although they are the most well-formed in the southern area (Figs. 2.11a, c). The depressed 

centres and the centre line of the raised rims were mapped to show the distribution of raised 

rims throughout the site (Fig. 2.11c). There is inconsistency due to the non-uniform ground 

surface and many polygons in the north and the west area lack raised rims. The LiDAR 

scans reveal a change in topography that is not obvious in regular aerial or satellite imagery. 

The topography is slightly higher in the southern section which matches the change in the 

morphology (size, orthogonality, rim formation) of the polygons (Fig. 2.11c). 

 

Figure 2.12 a) Soil pit dug in the centre of a lcp at Lake Orbiter. The ground displays a coarse 

surface that transitions to a finer sand and gravel mix. b) Soil pit dug in a wide trough of a 

lcp at Lake Orbiter. The coarse surface gives way to a sandy matrix at a shallower depth than 

in the polygon centre. 

 

A cluster of circular patterned ground was observed along the shore of Lake Orbiter on the 

east side of the plain in the southern section (Fig. 2.11d). The patterns were not obvious in 

the field and were noticed to be circular patterned ground upon analysis of the LiDAR data. 

The patterns display a circular to ellipse morphology with raised rims and a depressed 
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centre, however, with no apparent sorting. The forms range significantly in size and occur 

both isolated (not touching another form) or in a line along a trough crack. The forms 

occurring in a line are consistently 5–6 m across while others that are more isolated are 10–

23 m across. 

 

2.6  Discussion 

Our observations demonstrate that while the three study sites on Devon Island all display 

well-formed polygon networks, each site shows differing surface morphology. Each site 

displays unique combinations of polygon characteristics, such as large, non-orthogonal lcp 

at low lying Lake Orbiter and large, orthogonal hcp on a hill at Lake Comet. Differences 

were observed in sizes, orthogonality, and shape of the polygons (Figs. 2.8, 2.10 and 2.11 

and Tables 2 and 3). We propose that the differences in morphology are driven mainly by 

substrate and stage of evolution, with factors such as vegetation cover, topography, and 

water availability, playing a more minor role(s). These factors are discussed in the 

following sections. 

 

2.6.1 Relationship of Substrate and Polygon Evolution to Morphology  

Previous work on periglacial morphology has shown a link between substrate 

characteristics and surface morphology (e.g., Drew and Tedrow 1962; Lachenbruch 1962; 

Washburn 1980; Romanovskji 1985). In coarse-grained substrates, a lower temperature is 

needed to cause cracking resulting in a trend toward hcp over lcp as ice-wedges degrade.  

With respect to grain size, homogeneous substrates are likely weaker than heterogeneous 

substrates causing cracks to occur more frequently and closer together. Over time, less 

cracking may occur in homogeneous substrates because the initial cracks reduce the 

amount of weakness in the frozen ground (Lachenbruch 1962; Romanovskij 1985). The 

Haughton Formation in the western side of the Haughton impact structure displays 

degraded high-centred polygons within a thick layer of lacustrine sediments (Fig. 2.2). The 

substrate is fine-grained and compositionally homogeneous (Fig. 2.9a) (Hickey et al. 1988) 
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with polygons that are small to medium-sized relative to the other sites, orthogonal and 

high-centred. Based on the level of degradation, the polygons are potentially in a later stage 

of development than the polygons observed at the other sites. The Lake Comet site has a 

coarse-grained surface with a likely compositionally homogeneous substrate of poorly 

sorted blocks to sand-sized sediments (Fig. 2.3a). The angular, blocky surface displays 

large, orthogonal hcp with deep troughs that vary in size, especially those that are adjacent 

to the lake (Figs. 2.3c, d), suggesting ice-wedge degradation that is affected by thermal 

erosion in places. The Lake Orbiter site is a coarse-grained surface with sub-rounded to 

sub-angular cobbles throughout (Fig. 2. 4a). The substrate is compositionally 

heterogeneous with sand-sized sediments strata in the subsurface (Fig. 2.12). This site 

displays a wide range of polygon sizes including some of the largest polygons of the three 

sites. Many of the largest polygons trend towards low-centredness. This suggests that these 

polygons are stable and at an earlier stage of development than the other two sites. The 

raised rims typical of lcp are the product of material being moved up from ice-wedge 

growth as well as moved from the centre toward the sides (Mackay 1980, 2000; French 

2007) but some polygons with raised rims have large gaps in the rims (Fig. 2.11a). This 

may be due to ground disturbance, thermal irregularities or a lack of material. 

The Haughton Formation has the highest number of, and the smallest sized, polygons of 

the three sites (Table 3), all formed in a fine, well-sorted homogeneous substrate. The site 

also displays less obvious secondary cracking (Fig. 2. 9a). These observations align with 

the work of Ulrich et al. (2011) who found the smallest polygons of the study in 

homogeneous silty deposits in the lower Adeventdalen in Svalbard, Norway. The 

observations are also supported by the relationship between homogeneous substrates and 

smaller distances between cracks due to higher ground ice content and thermal stress as 

well as substrates becoming less weak as primary cracks occur (e.g., Lachenbruch 1962, 

1966). Coarse, heterogeneous material has lower thermal stress and is stronger causing 

contraction cracks to occur further apart as there are fewer points of weakness for cracks 

to propagate from (Lachenbruch 1962, 1966). Based on the work of Lachenbruch (1962, 

1966), the large hcp are less likely to occur in the homogeneous material of the Lake Comet 

site; however, the poorly sorted substrate and large blocks at Lake Comet likely affect the 

stresses in the ground causing large hcp.  The largest polygons of the study are found in 
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the southern section of Lake Orbiter; although the polygons do decrease in size going north 

(Figs. 2.11a, b). Previous work suggests that large polygons form in coarse-grained 

substrates (Lachenbruch 1962, 1966); however, since the polygons are smaller to the north, 

there may be a change in grain size or homogeneity in the Lake Orbiter substrate. The 

topography is slightly higher in the southern end which matches the change in the 

morphology of the polygons (Fig. 2.11a). This could potentially be the result of changes in 

sediment influx from the surrounding streams over time. 

Hcps are observed as both the average smallest polygons observed (at the Haughton 

Formation) and the average largest (at Lake Comet) (Table 2). Lake Comet and Lake 

Orbiter are both course-grained substrates but display hcp and lcp respectively. Lake 

Orbiter and the Haughton Formation are both flat, low lying areas but display hcp and lcp 

respectively. Our findings show that not all of the study sites on Devon Island  align well 

with previous work described above on homogeneity and topography as determining 

factors in polygon morphology, showing that other factors such as grain-size must be 

considered.  

 

2.6.2 Orthogonality and Intersection Types  

Contraction cracks occur along areas of weakness in newly frozen ground due to a complex 

yet mostly random distribution of stresses (Black 1952; Lachenbruch 1966;). The stresses 

and weaknesses in the ground will determine how and where cracks will intersect and thus, 

how orthogonal (90° intersections) a polygon network will be (Lachenbruch 1962, 1966;). 

Orthogonal networks likely form through the ongoing division of polygons while non-

orthogonal networks form through continuous, random branching of cracks (Lachenbruch 

1962; Plug and Werner 2001). It is thought that polygon networks mostly trend towards 

being orthogonal over time (Lachenbruch 1966; Plug and Werner 2001); although the 

reasons why networks may be non-orthogonal are not well constrained. That being said, 

previous work suggests that polygons found in homogeneous substrates typically display 

non-orthogonal patterns while polygons found in heterogeneous substrates often display 
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orthogonal patterns (Lachenbruch 1962, Christiansen 2005; French 2007). This is the 

opposite of what we have described. 

 

The Haughton Formation polygons display an orthogonal pattern throughout the site (Fig. 

2.8). The polygons are closest to an orthogonal pattern displaying mostly 90° angles as 

described in French (2007) as opposed to a random orthogonal pattern. As noted above, 

orthogonal patterns within  homogeneous substrates is not typical. Throughout the Lake 

Comet site, the polygons also display an orthogonal pattern in poorly-sorted, coarse-

grained homogeneous sediments (Figs. 2.10a, b), which is similar to the orthogonal pattern 

seen at the Haughton Formation in fine-grained, homogeneous sediment. Our observations 

of the Lake Comet are not in keeping with the accepted interpretation that non-orthogonal 

polygon networks occur in homogeneous substrates (Lachenbruch 1962, French 2007). 

However, the poorly sorted substrate and the presence of extended felsenmeer may 

influence the orthogonality. The presence of orthogonal polygons at the Haughton 

Formation is somewhat unexpected. Models by Plug and Werner (2001) suggest that 

homogeneous substrates are likely to display equiangular intersections, although it is 

unclear if this only applies to 120° angles or 90°, orthogonal angles can also occur in the 

model. If the Haughton Formation network substrate had the stresses needed to form 

through the ongoing division of polygons, then according to Plug and Werner (2001) an 

equiangular (90°), orthogonal system would be expected in the homogeneous substrate. 

The orthogonal polygons at Lake Comet appear to be somewhere between a random 

orthogonal and somewhat oriented orthogonal pattern (French 2007). A few of the 

contraction cracks have formed perpendicular to the lake northeast of the polygon network 

but do not continue far into the polygon network (Fig. 2.10b). The polygons at the Lake 

Orbiter site are mostly geometrically irregular in shape have both non-orthogonal and 

mostly orthogonal arrangement within the site within the heterogeneous substrate. The 

most non-orthogonal polygons are also the largest in the southern section and the most 

orthogonal are the smallest in the northern section (Figs. 2.11a, b). The size and the 

orthogonality follow the same distribution across the study site which suggests there may 
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be a grain size or homogeneity change across the site north to south. 

 

Figure 2.13: a) The Lake Comet site showing the mapped trough lines. b) A zoomed image of 

a) showing the three-ray intersections that frequently occur throughout the orthogonal Lake 

Comet polygon network. 

 

It is generally accepted that a three-ray intersection often have mostly equal angles of 120° 

in between rays pointing to a non-orthogonal (hexagonal) network (Lachenbruch 1962; 

Plug and Werner 2001) and a four-ray intersection would have 90° between each ray 

suggesting an orthogonal network (Ulrich et al. 2011). Our observations show many 3-ray 

intersections in the three sites do not display equiangular 120° spacing and instead have a 

“T-shape” configuration with 180°, 90° and 90° spacing. At all three sites the dominant 

type of trough intersection was a three-ray intersection (Table 2); however; the Haughton 

Formation had the highest percentage of four-ray intersections at 15%.  Both Lake Comet 

and Lake Orbiter have over 90% three-ray intersections of both types (Table 2). While 

Lake Comet is orthogonal, most intersections do not form a four-ray “X” intersection and 

instead are actually two, three-ray intersections forming very close together (Fig. 2.13). To 

the best of the author’s knowledge, this intersection morphology has not been named or 

reported on specifically in the literature, however, it may be caused by the two three-ray 

contraction junctions initiating almost simultaneously instead of one occurring then the 

other, which would be more likely to manifest as a four-ray intersection (French 2007). 
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Lake Orbiter is mostly non-orthogonal (Figs 2.11a, b), and the high percentage of three-

ray intersections suggest more random formation of the polygon network (Plug and Werner 

2001), even in the section of Lake Orbiter that is more orthogonal. 

The study sites, in general, do not align well with many of the expected relationships 

between polygon morphology and substrate. For example, previous work suggests that a 

non-orthogonal polygon pattern is expected to be found within a homogeneous substrate 

and an orthogonal polygon pattern is expected to be found in a heterogeneous substrate 

(Lachenbruch 1962; French 2007). Our sites do not align with such observations as the 

Haughton Formation and Lake Comet are orthogonal in well-sorted homogeneous and 

poorly-sorted homogeneous substrates respectively and Lake Orbiter has both orthogonal 

and non-orthogonal polygons in a heterogeneous substrate. This is not uncommon as work 

by Ulirch et al. (2011) found orthogonal polygon networks in homogenous substrates in 

Svalbard and work by Halitgin et al. (2012) found oriented orthogonal polygon network on 

a fine-grained floodplain deposit east of the Haughton impact structure. Findings by 

Dutilleul et al. (2009) through SPPA suggests that homogeneous substrates may have a 

more regular distribution of weaknesses as opposed to random distribution suggested by 

Lachenbruch (1962), resulting in more regular point patterns and ultimately, more 

orthogonal networks. Our results also support that the orthogonality of a polygon network 

is not tied only to substrate. 

 

2.6.3 Polygon Troughs and Degradation 

The large, wide troughs in the Haughton Formation polygon network suggest erosion and 

ice-wedge melt due to a significant period of inactivity. This is consistent with the more 

heavily degraded polygons at the Haughton Formation with the deepest troughs being 

observed on one of the lower-most terraces of the area. A higher terrace displayed hcp of 

similar size and orthogonality but with more shallow troughs and less degraded edges. The 

excess degradation may be a result of the thermal erosion of the fine-grained substrate and 

the relatively high amount of water that pools and flows through the low-lying terrace 

(Jorgenson et al. 2006). The increased depth of the troughs suggests higher temperatures 
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in the ice wedges and the substrate directly surrounding them, possibly due to increased 

snow accumulation and insulation of the active layer (Abolt et al. 2018). The Lake Comet 

site displays mostly uniform trough depths throughout; however, the deepest, widest 

troughs are seen on the steepest slopes nearest to the lake. The increased drainage of water 

downslope toward the lake and subsequent thermal erosion may cause ice-wedges to 

degrade faster, thus deepening and widening the troughs more (e.g., Jorgenson et al. 2006, 

Fortier et al. 2007). The large troughs on the slope were found to border the smaller 

polygons at the site while the largest polygons were found to occur on the flatter hilltop 

where they had more shallow and narrow troughs. There is a relationship between trough 

width and slope here where we see that wider troughs occur on more pronounced slopes 

where more drainage and degradation are occurring. The lcps throughout Lake Orbiter have 

troughs that are mostly narrow and shallow compared to the other sites; however, there are 

troughs throughout the site that are much deeper and wider than the rest, much like Lake 

Comet. Such troughs contain deep pools of water or have water draining through them 

toward the lake. The troughs that contain water may contain ice-wedges that are no longer 

growing or stable and are beginning to degrade. There are significant inconsistencies in 

trough morphology within each of the study sites. Since all three sites experience similar 

climatic conditions, trough size and degradation are likely influenced the most significantly 

by site-specific topography, hydrology and slope, although the influence of substrate is not 

well constrained. 

 

2.6.4 Polygon Shape Distribution 

The shapes of the polygons are somewhat inconsistent throughout the study sites. The 

measured circularity is between 0.53 and 0.89 with the Haughton Formation having the 

minimum and maximum across the sites (Table 2). We suggest that the wide range in 

circularity may be influenced by the high degree of degradation (see above) occurring at 

the site. Lake Comet has the highest average circularity, likely due to the 3-ray nature of 

the majority of trough intersections. Our results show Lake Orbiter has a slightly lower 

value and, thus, the polygons trend toward more elongated. The lower value may be 

attributed to the general irregularity of the site as many large, irregular polygons are non-
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orthogonal. However, overall the polygons across all sites trend towards being more 

equally sided than elongated as the minimum calculated circularity is 0.52 (0 = elongated 

and 1=circular).  The aspect ratios are similar in all sites trending toward more square 

suggesting the polygons fall within the mid-range and are overall not elongated, not 

perfectly square and not circular. For the Haughton Formation and Lake Comet sites, these 

results are likely due to their overall orthogonal nature. At Lake Orbiter many of the 

polygons may be irregular and non-orthogonal, however they are not elongated, resulting 

in a trend toward square. The Haughton Formation holds the minimum value for aspect 

ratio while Lake Comet holds that maximum. While circularity and aspect ratio are useful 

in gaining insight into each site as a whole, the general shape of polygons does not appear 

to be closely linked to substrate as we observe a similar average value across the three sites. 

 

2.6.5 Patterned Ground within Polygons 

The patterned ground at the Haughton Formation are small, similar to mud cracks and have 

minor sorting of pebbles into boundaries of the small sorted polygons (Fig. 2.9c). The small 

patterns only occur on the raised polygon centres where the ground is the driest and small, 

frequent cracking can occur. These small patterns were only observed at the Haughton 

Formation and not at the other sites. The patterned ground at Lake Comet (Fig. 2.10c) and 

Lake Orbiter (Fig. 2.11d) are of a similar lobate to circular form. Are the patterns at both 

sites formed from similar processes but are at different stages of development? The Lake 

Comet patterns may be more evolved than the ones at Lake Orbiter since the polygons at 

Lake Comet are at a later stage of development than the polygons at Lake Orbiter. The 

patterns at Lake Orbiter have a more distinct circular form and depressed centres though 

they are not sorted circles (Washburn 1980). The depressed centres could be the result of 

ice lenses melting or be similar to a collapsed or failed pingo (Mackay 1987). However, 

the clustering of the forms at Lake Orbiter and the apparent orientation along cracks (Fig. 

2.11d) suggest that the patterns might be more related to thermal variation moving 

sediments from the inner circle outwards in the same way lcp rims are formed (Mackay 

2000; French 2007). The factors influencing the formations of non-sorted, non-thermal 

contraction patterned ground is not well constrained. The differences in the inter-polygon 
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pattern ground at Lake Comet and Lake Orbiter further support that the sites have 

significant differences in factors influencing polygon morphology and may have 

implications surrounding the role of substrate in periglacial processes.  

 

The apparent differences in each site indicate factors are influencing the morphology 

changes. The differences in the sites are mainly geology and substrate as well as 

topography. Yet we do not see the same patterns across sites that have similarities in 

geology or topography (e.g., the Haughton Formation and Lake Orbiter are low laying and 

have hcp and lcp respectively). Previous modelling work by Plug and Werner (2002) 

suggest that average climatic conditions may not be a major factor in polygon morphology 

as much as initial or extreme conditions, which aligns well with what we see in our 

observations on Devon Island where our sites experience similar long-term climatic 

conditions.  
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Chapter 3  

3 Conclusions and Future Work 

The purpose of this work was to determine the factors that contribute to polygon 

morphology in different sites within the polar desert environment of Devon Island, where 

climatic conditions are currently relatively constant. Polygon morphology has implications 

for paleoenvironmental conditions, ground ice content and water availability for Earth and 

Mars. Few have examined the mechanisms behind differences in polygon morphology in 

High Arctic environments, (e.g., Ulrich et al. 2011),  and causes for variations in 

morphology are not well constrained. Therefore, detailed work is needed to explore the 

factors that influence significant morphological differences in polygonal terrain. With 

high-resolution datasets (2–5 cm/pixel) of three polygonal terrain sites using KLS data 

(Chapter 2) in combination with fieldwork, each site was characterized in detail to 

determine the significant differences -between the sites that may influence the polygon 

morphology (Chapter 2).   

3.1 Major Findings and Future Work  

Findings from this work demonstrate the heterogeneity of polygon morphology and calls 

into question some previously assumed predictors, such as grain size and homogeneity. 

The study sites on Devon Island do not consistently conform to broad statements regarding 

how polygon morphology is reflected in specific substrates from previous works (e.g., 

Lachenbruch 1962, 1966; Romanovskij 1985; French 2007). There is considerable intra- 

and inter-site variability in morphology that does not correlate to a specific factor such as 

homogeneity, grain size or topography. High-centre, mostly orthogonal polygons were 

observed in both fine-grained, well sorted homogeneous substrate at the Haughton 

Formation and in coarse-grained, poorly sorted heterogenous substrate at Lake Comet. At 

Lake Orbiter, a network of both orthogonal and non-orthogonal polygons was observed as 

well as significant variation in low-centredness. The hcp at the Haughton Formation and 

the lcp at Lake Orbiter occur in low-lying areas while the hcp at Lake Comet occur on a 

local topographic high. Site-specific observations question the validity of assuming a 

global parameter to estimate polygon morphology. Our findings are supported by previous 
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work in High Arctic environments that found similar inconsistencies (e.g., Dutilleul et al. 

2009; Ulrich et al. 2011; Haltigin et al. 2012). The inconsistencies in the relationship 

between polygon morphology and substrate are unexpected and may be explained by 

further work on substrate properties and on topography with the KLS. 

High-resolution datasets created from the KLS have provided a higher level of detail in 

mapping and analysis of polygon networks than previously possible in the study region. 

The 2–5 cm/pixel resolution DTMs produced allowed for metrics such as trough depth and 

polygon size to be measured with a high degree of accuracy. The maps also allowed for 

minute features such as patterned ground and relatively recent contraction cracks not 

apparent in the field, to be identified. Smaller, inter-polygon patterned ground observed at 

the Lake Comet (Fig. 3.1a) and Lake Orbiter (Fig. 3.1b) study sites were found using the 

high-resolution dataset available from the LiDAR scans. In coarser scale imagery, these 

patterns were not well observed due to smoothing of the landscape which may have 

implications in the future when examining changes to polygonal terrain and other patterned 

ground over time. The distribution of the patterned ground at both sites is inconsistent and 

the mechanisms for formation were not constrained in this study. Further work on small, 

inter-polygon patterned ground such as the patterns observed on Devon Island is suggested 

to determine the importance of these patterns and what they may tell us about the 

periglacial processes occurring.  

Our research has shown that the periglacial environment in and around the Haughton 

impact structure is dynamic and complex. We have focused on characterizing each of the 

study sites, reporting the details of their periglacial features and any inconsistencies with 

previous work. Each of the study sites has the potential for further meaningful study, as 

well as other sites around the Haughton impact structure and within polar desert 

environments. Due to the site-specific nature of polygon patterns in this region, we suggest 

exploring how combining measurements such as temperature variations, hydrology, 

topography and grain size distributions to gain a greater understanding of the 

geomorphology evolution. Such measurements would provide a more detailed profile for 

each site and may contribute additional information as to which factors have the most 

substantial influence on changes in morphology.  
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Figure 3.1: a) KLS data showing the lobate inter-polygon pattern ground at the Lake 

Comet site. b) KLS data showing the circular patterned ground at the Lake Orbiter 

site. 

 

This study had three study sites with different topographic features, and we suggest the use 

of more study sites that display similar characteristics to parse out the differences between 

topographic and substrate controls. In addition, the extremely high-quality data derived 

from the KLS system may have uses beyond those reported in this work and should be used 

on more sites to learn more about the geomorphology of the sites as well as the capabilities 

of the KLS system. Larger scale processes, such as slope, coupled with micro-topographic 

features, such as trough depth, could provide insight into the role of different scale 

influences.  
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Figure 3.2: A HiRISE image of polygonal terrain in Utopia Planitia, Mars (HiRISE 

image ESP_026094_2250 from NASA/JPL/University of Arizona). 

Future work is especially needed for the Lake Orbiter site which displays significant site-

specific variability in polygon morphology. The variations in polygon morphology at Lake 

Orbiter include polygons differing in size, shape, orthogonality and degree of low-

centeredness. There is a noticeable north-south trend in the morphological variations that 

may be related to grain-size distribution or hydrology of the site and should be explored 

further. Such variations at a local scale may have more specific implications for future 

work using this area as a Mars analogue. Similar variations have been observed in HiRISE 

images of Utopia Planitia where single polygons or small clusters of polygons displaying 

low-centres are found in larger fields of high-centred polygons (Fig. 3.2) (Soare et al. 

2018). Therefore, the factors influencing the variations at a local scale at Lake Orbiter may 

provide insight into such variations on Mars. More detailed studies of differing polygon 

morphology that includes the parameters highlighted in this study as well as in studies such 

as Ulrich et al. (2011) and Brooker et al. (2018) are suggested to provide a more 
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standardized analysis of polygonal terrain on both Earth and Mars. Such standardized 

measurements may lead to a deeper understanding of the physical factors affecting polygon 

morphology across many locations, and how it relates to the concentration and distribution 

of water ice in the near-subsurface.  
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