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The trilinear geometric spreading function developed in this study agrees with that 

developed for an improved local magnitude equation from a private ground motion 

database in the Western Canadian Sedimentary Basin (Yenier, 2017).  The differences in 

geometric spreading functions from the bilinear equations previously used in magnitude 

relationships in the region suggests an updated study should be undertaken to adjust the 

moment magnitude estimation equations to incorporate these attenuation effects.  

Alternatively, moment magnitudes could be estimated from stations within 50 km to 

minimize the effects of attenuation. 

Figure 4.10: The Alberta calibration factor (light line) and its inverse (black 

line), in comparison to the site amplification functions of Seyhan and Stewart 

(2014; SS14) for California, for a range of VS30 values (lines with symbols).   
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The final GMPE for Alberta includes the assumed magnitude scaling and geometric 

spreading functions, the derived model for the anelastic attenuation terms, stress 

parameter, site amplification terms, and the empirical calibration factor, and is described 

as: 

                                      ln(Yij) = FM + FΔσ,AB + FZ + Fγ + FS + 𝐹𝜅0+ CAB                    (4.20) 

where the coefficients for all terms are summarized in Appendix Table A4.3 and fully 

listed in Table S4.1 of the electronic supplement.  The electronic supplement also 

provides a spreadsheet for evaluating the function. In Figures 4.17 and 4.18 we plot the 

within-event residuals (ε = ln(observed) – ln(predicted)) for the horizontal-component 

(geometric mean) PSA at 1.01 Hz and 10.17 Hz.  There are no significant trends in the 

residuals in magnitude or distance, for hypocentral distances greater than 50 km; at closer 

distances, there is a tendency towards slightly positive residuals at some frequencies, and 

slightly negative at others.  In figure 4.19 the between event residuals (η) are plotted as a  

Figure 4.11. Within event residuals with respect to the final GMPE for PSA at 1.01 Hz.  

Black squares and error bars depict the mean residual and its standard deviation in 

logarithmically spaced distance bins.   
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Figure 4.12. Within event residuals with respect to the final GMPE for PSA at 10.17 Hz.  

Black squares and error bars depict the mean residual and its standard deviation in 

logarithmically spaced distance bins.   

Figure 4.19: Between-event residuals as a function of moment magnitude at 0.5 Hz, 1.0 

Hz, 5.1 Hz and 10.2 Hz.  
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function of magnitude and do not display any meaningful trend with magnitude, though, 

there is a tendency towards greater variability at high frequencies.  Figure 4.20 shows the 

between-event residual as a function of stress parameter.  At high frequency ground 

motion is controlled by the stress parameter.  The adopted stress parameter model under 

predicted stress for some study events in the ranges of M 3-3.2 and over predicted for 

some events of M 3.2-3.4.  As a result, we observe a strong trend in the between-event 

variability as a function of stress parameter, which is expected due to the limitations of 

predictive power in the adopted stress parameter model. 

Figure 4.21 demonstrates the final GMPE (for PSA at 1.0 Hz), overlaying site-corrected 

observations.  As expected from the residual plots, observations follow the GMPE well.  

In Figure 4.22, we compare the GMPE for induced events in Alberta, at selected 

frequencies, to: the Oklahoma GMPE of NAA18 evaluated at the mean focal depth of 

induced events in Oklahoma of 5 km; the CENA GMPE of Yenier and Atkinson (2015b) 

for earthquakes at depths of 2 and 5 km, for events of M3 and M5, respectively; and the 

GMPE of Atkinson (2015), which was derived from moderate events with an average 

depth of 9 km in California (NGA-West2 database), but postulated to apply for induced 

events, is also shown.  

Figure 4.20: Between-event residuals as a function of stress parameter (bar) at 0.5 Hz, 

1.00 Hz, 5.0 Hz and 10.0 Hz.  
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For low-to-intermediate frequencies the tri-linear geometric spreading function generally 

traces the level of YA15 and Atkinson (2015) where the GMPE predicts slightly lower 

amplitudes near the first transition and slightly higher near the second transition zone.  At 

higher frequencies the GMPE derived for Alberta is generally low for near to 

intermediate distances (<150 km) and matches the level at far distances when compared 

to YA15 and Atkinson (2015). Alberta ground motion amplitudes are generally lower 

than those observed in Oklahoma, especially at high frequencies (> 10 Hz). Differences 

of amplitude in the Alberta and Oklahoma GMPEs reflect the differences in stress 

parameter models.  Alberta events appear to follow the CENA model of YA15 evaluated 

at 6 km depth, whereas in Oklahoma the derived model (involving both depth and 

magnitude) features higher stress parameters.  This could reflect generally greater depths 

for induced events in Oklahoma, or some other differences attributable to source 

processes.  Differences in average regional crustal amplification may also contribute to 

the difference in observations as these will map into the source terms. 

Figure 4.21 Final GMPE overlaying site corrected observations at 1.0 Hz.  Lines depict 

the GMPE evaluated every 0.2 magnitude units from M = 2.9 to M = 4.5.  Circles vary in 

diameter where larger circles represent higher magnitude observations and smaller circles 

denote lower magnitude event observations. 
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Figure 4.22. The GMPE for Alberta as determined in this study (solid lines) in 

comparison to the NAA18 GMPE for Oklahoma (circles) is evaluated at the typical focal 

depth for events in Oklahoma of 5 km. YA15 GMPE for CENA (dashed lines) is 

evaluated for focal depths of 6 and 8 km for M4 and M6 respectively. The GMPE of 

Atkinson (2015), as determined from moderate California earthquakes with mean depth 

of 9 km, is also indicated (dotted lines), for distances < 50 km. All models are for 

NEHRP B/C reference site conditions. 

 

4.6 Conclusion 

A regionally-adjusted GMPE for induced events in Alberta is developed that describes 

the geometric mean of horizontal component PSA, PGV, and PGA ground motions for a 
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reference condition of B/C.  The generic GMPE framework of Yenier and Atkinson 

(2015b) is used to ensure stable scaling of motions over all magnitudes and distances.  

We calibrate the generic GMPE by determining site amplification models, anelastic 

attenuation function, regional stress parameter model, regional near surface high 

frequency attenuation term (adapted from Hassani and Atkinson 2018), and calibration 

factor from > 880 ground-motion observations from Alberta events of M ≥ 3 at 

hypocentral distances from 20 to 575 km.  The derived GMPE is useful for ShakeMap 

applications, hazard assessments and may also be useful for ground-motion-based 

alerting systems and traffic light protocols.   

4.7 Data and Resources 

Events were detected and located for TransAlta by Nanometrics. Ground motion data 

were downloaded from the Incorporated Research Institutes for Seismology 

(www.iris.edu, last accessed Oct. 2017), processed, and compiled using an updated 

version of the ICORRECT algorithm, as described in Assatourians and Atkinson (2017).  

A ground motion database paper composed of processed ground motion observations, 

event/station metadata and M estimates for each event will become available online in 

the near future.   
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Chapter 5  

5 Conclusions and Future Studies 

5.1 Summary, Discussion and Conclusions 

In this thesis we characterized ground motions from induced earthquakes in Oklahoma, 

USA and Alberta, Canada.   

In Chapter 2 we estimate the moment magnitude of events in Alberta using the PSA-

based algorithm of Atkinson et al. (2014).  We found that the attenuation and amplitude 

calibration parameters for WNA provide a consistent agreement with local magnitude 

calculations for events M > 2.6.  The deviation of moment magnitude and local 

magnitude for M < 2.6 was initially postulated as a noise effect, and a noise correction 

was suggested.  Since that study was conducted, the relationship between local magnitude 

and moment magnitude has become better understood, and it is now believed that this 

correction factor should be discarded (Ross et al., 2016; Yenier, 2017).  The Wood-

Anderson filter that is applied to seismograms in determining local magnitude can 

explain the observed deviation (Bakun, 1984; Hanks and Boore, 1984).  Amplitudes of 

larger events are artificially lowered more than those of smaller events as the Wood-

Anderson filter has a corner frequency of roughly 1.00 Hz.  There exists a discontinuity 

between M estimated from PSA at 1.00 Hz and M estimated at 3.33 Hz, that can be 

bridged by taking the mean of these two values if each parameter lies on opposite sides of 

M=3.  Ground motions are compared to a reference model of Atkinson (2015) and are 

found to be generally consistent with those for similar-size events in California in terms 

of overall amplitude level and attenuation.  We observed features in this comparison that 

were unresolvable with the sparse available data, which will require further investigation 

with additional ground-motion records.  Ground motion scaling characteristics of Alberta 

events are generally consistent with expectations based on both empirical (Atkinson, 

2015) and point-source simulation models (Yenier and Atkinson, 2015a).  We observe a 

significant site response on the horizontal component in the 2 to 5 Hz frequency range, 
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which is relatively consistent among all stations.  This suggests a relatively common site 

response model could be appropriate for all stations in Western Alberta.   

In Chapter 3, we derived a regionally-adjusted GMPE for induced events in Oklahoma 

(geometric mean of horizontal components), for a reference condition of B/C.  We used 

the generic GMPE framework of Yenier and Atkinson (2015b) to ensure stable scaling of 

motions over all magnitudes and distances.  Observations of ground motion amplification 

at regional distances due to the summation of direct rays and the first post critically 

refracted waves off of the Mohorivicic discontinuity dictated the need for the 

development of a tri-linear geometric spread model.  Yenier and Atkinson (2015b) base 

the stress parameter value on the corner frequency by matching the attenuation-corrected 

spectral shape to that of an ideal Brune spectra.  On average the Oklahoma source spectra 

do not nicely follow the ideal Brune-model spectral shape, so an alternative approach was 

considered in this study that bases the determination of the stress parameter on the 

event’s mean high-frequency spectral level (10 Hz level) relative to that expected based 

on the low-frequency level (1 Hz level).  This approach was found to result in more 

stable determination of the stress parameter. The generic GMPE was calibrated by 

determining an anelastic attenuation function, site amplification models, regional stress 

parameter model, and calibration factor.  The derived GMPE presents higher ground 

motions at high frequencies than those observed in CENA (for the same magnitude and 

distance), which reflect differences in magnitude and depth dependence of the stress 

parameter.  At low frequencies the amplitudes in Oklahoma tend to be higher than those 

for corresponding events in CENA, suggesting differences in the crustal amplification 

effects due to regional geology.  The derived GMPE is useful for hazard assessments and 

ShakeMap applications and may also be useful for ground-motion-based alerting systems 

and traffic light protocols.   

In Chapter 4, we empirically calibrated the regionally adjustable GMPE (Yenier and 

Atkinson, 2015b) for induced events in Alberta.  Similar to Oklahoma, we observed 

strong influences of Mohorivicic bounce effects and model ground motion attenuation at 

regional distances with a trilinear geometric spreading function.  We discovered that the 

spectral shape of attenuation corrected event spectra has significantly lower amplitudes at 
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high frequency than those expected for an ideal Brune source.  We attribute this to a 

combination of differing crustal amplification in the region as well as differing near-

surface attenuation effects (commonly expressed as the kappa effect, κo) relative to those 

assumed in the simulations of the reference model.  Yenier and Atkinson (2015b) 

assumed a kappa value of 0.025 s in the simulations upon which their model was based.  

Hassani and Atkinson (2018) showed how this model could be adjusted for alternative 

values of kappa.  We adapt the functional form of the kappa effect from Hassani and 

Atkinson (2018) and develop a referenced kappa adjustment factor.  We perform grid 

search analysis to determine that the best choice in kappa for Alberta is 0.06 s, as a 

regional average for the seismographic recording sites.  If the source scaling of the events 

can be constrained, this would reduce the trade-offs between stress and kappa, and allow 

a less-ambiguous definition of the ground-motion model parameters.  Overall, the ground 

motions for B/C site conditions for induced events in Alberta are of similar amplitude at 

low frequencies to those predicted by the GMPEs of Yenier and Atkinson (2015b) and 

Atkinson et al (2015), for events of M 3 to 4.5.  Alberta motions present lower 

amplitudes at high frequencies than those observed in Oklahoma but are fairly consistent 

with the model of Yenier and Atkinson (2015b) for very shallow events in CENA.   

Through the process of these studies we concluded that it is not entirely straight forward 

to calibrate the generic GMPE to a regional database in a unique and unambiguous way. 

5.2 Recommendations for Future Studies 

Based on the requirement of a trilinear geometric spreading function in Chapter 4, the 

moment magnitude estimation equation should be revisited to incorporate the updated 

function shape.  Re-evaluation of the frequency-dependent magnitude calibration factor 

should be adjusted in agreement with available moment tensor solutions in the region.  

This would facilitate routine, rapid and accurate estimation of moment magnitude for all 

events in CENA of M>2.5, and would be helpful for real-time hazard assessment, 

alerting and traffic-light applications.   

In our generic ground-motion model, disparities between assumed seismological models 

and the true physical characteristics are cast into a frequency-dependent calibration 
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factor.  The fact that this calibration factor is not close to zero at all frequencies suggests 

the need for additional in-depth studies to refine the underlying geological and 

geophysical model parameters.  One such parameter is the crustal amplification model, 

which to date has been based on a gradient model.  The crustal structure in areas 

containing sedimentary basins might be better expressed as a ‘layer cake’ model.  The 

effects of alternative crustal amplifications based on more realistic earth models should 

be explored in further studies.  The interplay between amplification effects through the 

crustal structure and near-surface velocity profile, and near-surface damping (as 

expressed by kappa) also requires further study.  It appears that such effects may be quite 

different in the Western Canadian Sedimentary Basin in comparison to those in 

Oklahoma or in CENA.  Finally, the scaling of source attributes for induced events 

relative to those of natural earthquakes is a fruitful area for further detailed investigations.   
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Appendices 

Table A3.1: Tabulation of magnitude estimation model parameters where MCF is the 

calibration factor for each frequency that aims to match the level that has been modified 

from Novakovic and Atkinson (2015) for Oklahoma. γF, low (Eastern), γF, mod (moderate), 

and γF, high (Western) are the anelastic attenuation coefficients designed to remove 

distance dependent trends. 

 
3.33 Hz 1.00 Hz 0.30 Hz 

MCF -3.3 -4.5 -5.45 

γF, low 0.0015 0.0007 0.0011 

γF, mod 0.0033 0.0021 0.0017 

γF, high 0.0050 0.0035 0.0027 

Table A3.2: Summary table of stress parameter values from inversion for events of M ≥ 

4.2 in Oklahoma. 

Event 

Number 

Date 

(mm/dd/yyyy) 

Time 

(hh:mm:ss) 

UTC 

Longitude Latitude 
Depth 

(km) 

Magnitude, 

M 

Stress 

Parameter, 

Δσ (bar) 

7 2/28/2011 05:00:50 -92.344 35.265 3.8 4.2 64.0 

12 11/5/2011 07:12:45 -96.781 35.538 3.4 4.6 99.0 

13 11/8/2011 02:46:57 -96.786 35.518 4.81 4.6 103.6 

16 12/7/2013 18:08:06 -97.383 35.609 6.5 4.2 90.8 

17 12/7/2013 18:10:25 -97.386 35.607 8.44 4.3 110.2 

36 6/16/2014 10:47:36 -97.397 35.593 5 4.2 71.5 

46 7/29/2014 02:46:36 -98.045 36.756 5.29 4.2 93.2 

48 8/19/2014 12:41:36 -97.468 35.773 4.51 4.2 57.0 

57 10/2/2014 18:01:24 -97.955 37.245 5 4.5 78.7 

58 10/2/2014 18:02:55 -97.967 37.233 5 4.2 44.4 

64 11/12/2014 21:37:11 -97.602 36.648 5.37 4.6 52.0 

65 11/12/2014 21:40:01 -97.621 37.271 4.03 4.8 56.6 

100 4/4/2015 13:21:17 -97.572 36.118 5.05 4.2 67.6 

117 6/5/2015 23:12:41 -97.968 37.219 5.11 4.2 40.3 

118 6/5/2015 23:12:47 -97.921 37.265 2.35 4.3 49.1 

133 7/20/2015 20:19:04 -98.257 36.843 4.08 4.6 92.9 
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138 7/27/2015 18:08:39 -98.791 36.472 5 4.4 235.2 

139 7/27/2015 18:12:15 -97.572 35.989 5 4.5 128.5 

146 9/16/2015 02:30:02 -96.795 35.978 4.02 4.2 52.6 

151 10/10/2015 09:20:43 -97.931 36.719 5.63 4.6 139.9 

161 11/20/2015 22:40:40 -97.828 36.948 5 4.3 102.1 

164 11/23/2015 21:17:47 -98.276 36.838 5.03 4.6 39.9 

166 11/30/2015 09:49:13 -98.056 36.751 5.63 4.8 173.4 

171 1/1/2016 11:39:40 -97.406 35.669 5.83 4.3 42.9 

172 1/7/2016 04:27:28 -98.741 36.486 7.09 4.6 70.5 

173 1/7/2016 04:27:58 -98.725 36.496 4.06 4.6 69.6 

182 2/13/2016 17:06:04 -98.72 36.46 4.54 4.6 81.8 

183 2/13/2016 17:07:06 -98.726 36.485 8.27 5.1 220.5 

185 9/3/2016 12:02:44 -96.931 36.431 4.5 5.8 448.9 

186 11/7/2016 01:44:24 -96.803 35.991 4.4 5.0 87.5 
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Table A3.3: Summary of Oklahoma model coefficients and the anelastic attenuation 

function γOK and γCENA, calibration factor COK and Ce,CENA, within event variability η, and 

in-between event variability ε as determined by the inversion.   

 

  

f (Hz) 0.19 0.3 0.51 1.01 2 3.3 5.12 10.17 15.26 20.21 50 PGV PGA 

Mh 6.8927 6.7271 6.6563 6.4642 6.2509 5.8482 5.4307 5.4332 5.625 5.3764 5.9006 5.9 5.85 

e0 -0.0689 0.4494 1.2828 2.0102 2.5469 2.6187 2.5414 2.7636 2.889 2.5728 2.3793 5.9604 2.2156 

e1 1.9793 1.9171 1.7362 1.3242 0.8848 0.8513 0.818 0.7155 0.7003 0.7181 0.6997 1.03 0.6859 

e2 -0.061 -0.084 -0.134 -0.2472 -0.3483 -0.3634 -0.3859 -0.2604 -0.1696 -0.1604 -0.1067 -0.1651 -0.1393 

e3 1.5919 1.4521 1.1836 0.9798 0.9178 0.8798 0.8423 0.7935 0.7602 0.7536 0.7489 1.0789 0.7656 

b3 -0.5823 -0.5278 -0.4321 -0.2957 -0.2078 -0.2146 -0.2908 -0.3807 -0.4634 -0.5115 -0.6376 -0.5785 -0.6187 

b4 0.0793 0.0702 0.053 0.0273 0.0085 0.0059 0.0143 0.0252 0.0361 0.043 0.0625 0.0574 0.0603 

s0 -6.1625 -7.6498 -6.5491 1.116 3.9137 -0.2401 -2.8318 -4.0209 -2.3368 -0.9678 -1.1697 -2.2458 -2.1315 

s1 4.8839 6.3092 5.697 -0.5002 -3.2548 -0.1858 1.8381 3.0878 2.0173 0.9945 1.2816 1.9508 1.937 

s2 -1.3179 -1.8048 -1.7236 0.0514 0.9791 0.1799 -0.3622 -0.761 -0.5053 -0.2209 -0.3364 -0.5181 -0.504 

s3 0.149 0.2188 0.2222 0.0085 -0.1185 -0.0293 0.0321 0.0833 0.0563 0.0217 0.0394 0.0614 0.0582 

s4 -0.0059 -0.0095 -0.0102 -0.001 0.0051 0.0014 -0.0011 -0.0034 -0.0023 -0.0008 -0.0017 -0.0027 -0.0025 

s5 -1.2368 -3.5814 -6.0007 -4.3861 0.8735 2.1854 0.7143 -2.5045 -3.8552 -4.1732 -1.2719 -1.7584 -1.4442 

s6 0.7939 2.7948 4.984 3.9802 -0.4705 -1.9496 -1.0055 1.6147 2.8013 3.2534 1.2532 1.3793 1.2353 

s7 -0.1084 -0.7224 -1.4353 -1.2537 0.0707 0.6164 0.4204 -0.3024 -0.6513 -0.8208 -0.3167 -0.3256 -0.2851 

s8 -0.0028 0.0771 0.1753 0.1685 0.0044 -0.075 -0.0591 0.0246 0.0673 0.0917 0.0362 0.035 0.0302 

s9 0.0009 -0.0028 -0.0076 -0.008 -0.0008 0.0032 0.0028 -0.0007 -0.0026 -0.0038 -0.0015 -0.0014 -0.0012 

γCENA  -0.0009 -0.0011 -0.001 -0.0013 -0.002 -0.0032 -0.0043 -0.0057 -0.0057 -0.0055 -0.0047 -0.0047 -0.0028 

Ce,CENA  0.0783 -0.0325 -0.3011 -0.3734 -0.3654 -0.233 -0.1027 -0.1737 -0.2819 -0.4892 -0.1823 -0.0196 -0.21 

γOK -0.0017 -0.0022 -0.0021 -0.0020 -0.0017 -0.0018 -0.0018 -0.0031 -0.0044 -0.0026 -0.0010 -0.0026 -0.0017 

Cok  

(ln units) 
0.4537 0.6724 0.2519 0.2959 -0.2234 -0.2809 -0.4081 0.0813 0.1704 -0.0273 0.1191 0.0733 0.4537 

η  

(ln units) 
0.4948 0.4972 0.4908 0.4931 0.5309 0.5089 0.4936 0.4412 0.4096 0.4394 0.5278 0.5090 0.4948 

ε  

(ln units)  
0.4676 0.4787 0.4271 0.3786 0.4118 0.4430 0.4457 0.4547 0.4114 0.4131 0.4300 0.4226 0.4676 
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Table A4.1: Tabulation of Magnitude Estimation Model Parameters.  MCF is the 

magnitude calibration factor for each frequency. γF, low (Eastern), γF, mod (moderate), and 

γF, high (Western) are the anelastic attenuation coefficients. 

 3.33 Hz 1.00 Hz 

MCF -3.3 -4.5 

γF, low 0.0015 0.0007 

γF, mod 0.0033 0.0021 

γF, high 0.0050 0.0035 

 

Table A4.2: Summary of Alberta model coefficients, the anelastic attenuation function 

γAB, calibration factor CAB, within event variability η, and in-between event variability ε 

as determined by the inversion.   

 

 

 

 

 

 

f (Hz) 0.19 0.3 0.51 1.01 2 3.3 5.12 10.17 15.26 20.21 50 PGV PGA 

Mh 6.8927 6.7271 6.6563 6.4642 6.2509 5.8482 5.4307 5.4332 5.625 5.3764 5.9006 5.9 5.85 

e0 -0.0689 0.4494 1.2828 2.0102 2.5469 2.6187 2.5414 2.7636 2.889 2.5728 2.3793 5.9604 2.2156 

e1 1.9793 1.9171 1.7362 1.3242 0.8848 0.8513 0.818 0.7155 0.7003 0.7181 0.6997 1.03 0.6859 

e2 -0.061 -0.084 -0.134 -0.2472 -0.3483 -0.3634 -0.3859 -0.2604 -0.1696 -0.1604 -0.1067 -0.1651 -0.1393 

e3 1.5919 1.4521 1.1836 0.9798 0.9178 0.8798 0.8423 0.7935 0.7602 0.7536 0.7489 1.0789 0.7656 

b3 -0.5823 -0.5278 -0.4321 -0.2957 -0.2078 -0.2146 -0.2908 -0.3807 -0.4634 -0.5115 -0.6376 -0.5785 -0.6187 

b4 0.0793 0.0702 0.053 0.0273 0.0085 0.0059 0.0143 0.0252 0.0361 0.043 0.0625 0.0574 0.0603 

s0 -6.1625 -7.6498 -6.5491 1.116 3.9137 -0.2401 -2.8318 -4.0209 -2.3368 -0.9678 -1.1697 -2.2458 -2.1315 

s1 4.8839 6.3092 5.697 -0.5002 -3.2548 -0.1858 1.8381 3.0878 2.0173 0.9945 1.2816 1.9508 1.937 

s2 -1.3179 -1.8048 -1.7236 0.0514 0.9791 0.1799 -0.3622 -0.761 -0.5053 -0.2209 -0.3364 -0.5181 -0.504 

s3 0.149 0.2188 0.2222 0.0085 -0.1185 -0.0293 0.0321 0.0833 0.0563 0.0217 0.0394 0.0614 0.0582 

s4 -0.0059 -0.0095 -0.0102 -0.001 0.0051 0.0014 -0.0011 -0.0034 -0.0023 -0.0008 -0.0017 -0.0027 -0.0025 

s5 -1.2368 -3.5814 -6.0007 -4.3861 0.8735 2.1854 0.7143 -2.5045 -3.8552 -4.1732 -1.2719 -1.7584 -1.4442 

s6 0.7939 2.7948 4.984 3.9802 -0.4705 -1.9496 -1.0055 1.6147 2.8013 3.2534 1.2532 1.3793 1.2353 

s7 -0.1084 -0.7224 -1.4353 -1.2537 0.0707 0.6164 0.4204 -0.3024 -0.6513 -0.8208 -0.3167 -0.3256 -0.2851 

s8 -0.0028 0.0771 0.1753 0.1685 0.0044 -0.075 -0.0591 0.0246 0.0673 0.0917 0.0362 0.035 0.0302 

s9 0.0009 -0.0028 -0.0076 -0.008 -0.0008 0.0032 0.0028 -0.0007 -0.0026 -0.0038 -0.0015 -0.0014 -0.0012 

γCENA  -0.0009 -0.0011 -0.001 -0.0013 -0.002 -0.0032 -0.0043 -0.0057 -0.0057 -0.0055 -0.0047 -0.0047 -0.0028 

Ce, 

CENA  
0.0783 -0.0325 -0.3011 -0.3734 -0.3654 -0.233 -0.1027 -0.1737 -0.2819 -0.4892 -0.1823 -0.0196 -0.21 

γAB 
-5.03E-

04 

-2.29E-

03 

-2.86E-

03 

-2.46E-

03 

-2.58E-

03 

-3.43E-

03 

-4.16E-

03 

-5.07E-

03 

-5.59E-

03 

-5.24E-

03 

-4.10E-

03 

-3.04E-

03 

-4.21E-

03 

CAB (ln 
units) 0.54 0.24 -0.20 -0.37 -0.62 -0.65 -0.45 -0.48 -0.52 -0.51 -0.29 -0.39 -0.36 

CAB 

model(l

n units) 0.00 0.00 -0.16 -0.36 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.39 -0.36 

η (ln 
units) 0.495 0.497 0.491 0.493 0.531 0.509 0.494 0.441 0.411 0.410 0.439 0.528 0.509 

ε (ln 

units)  0.468 0.479 0.427 0.379 0.412 0.443 0.446 0.455 0.425 0.411 0.413 0.430 0.423 
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Table A4.3: Table of stress parameter values from inversion for all events in Alberta. 

Event 

ID 

YYYY-MM-

DD 
hh:mm:ss Latitude Longitude 

Depth 

(km) 

Moment 

Magnitude, 

MNA18 

Stress 

Parameter, 

Δσ (bar) 

1 2013-12-01 15:09:29 54.45 -117.40 0.0 3.2 105.8 

2 2013-12-03 06:27:56 54.50 -117.40 1.7 3.0 131.3 

3 2013-12-04 03:13:20 54.47 -117.44 0.9 3.0 44.9 

4 2014-01-25 03:59:45 54.51 -117.21 0.1 3.2 14.5 

5 2014-02-13 14:36:42 51.82 -116.88 0.1 3.2 91.5 

6 2014-05-14 09:46:11 54.51 -117.34 0.2 3.2 52.9 

7 2014-08-09 15:28:51 52.21 -115.22 8.3 4.1 34.9 

8 2015-01-07 04:50:47 54.43 -117.30 12.9 3.2 50.7 

9 2015-01-07 05:28:46 54.43 -117.30 12.1 3.1 82.0 

10 2015-01-14 16:06:25 54.37 -117.35 6.6 3.7 24.2 

11 2015-01-15 19:18:29 54.38 -117.46 1.6 3.4 63.4 

12 2015-01-23 06:49:20 54.43 -117.31 2.1 3.8 79.9 

13 2015-02-10 07:39:42 54.37 -117.22 3.5 3.0 46.3 

14 2015-06-02 14:34:51 52.45 -114.99 0.2 3.5 16.8 

15 2015-06-13 23:57:54 54.15 -116.86 14.2 4.1 56.6 

16 2015-08-19 00:02:45 54.48 -117.26 16.5 3.1 127.0 

17 2015-08-22 04:46:11 54.45 -117.23 10.3 3.0 93.1 

18 2015-09-04 13:23:24 54.46 -117.24 8.5 3.1 129.1 

19 2016-01-12 18:27:23 54.41 -117.29 1.0 4.3 137.1 

20 2016-04-23 11:03:41 54.42 -117.29 9.7 3.0 92.6 

21 2016-08-16 06:30:56 56.34 -117.21 0.0 3.3 52.1 

22 2016-11-25 05:31:25 54.36 -117.24 7.0 3.4 77.1 

23 2016-11-25 21:24:01 54.35 -117.24 3.2 3.3 57.7 

24 2016-11-29 10:15:25 54.34 -117.26 1.8 3.4 39.6 

25 2016-12-05 14:27:24 54.34 -117.24 2.3 3.3 24.6 

26 2016-12-06 01:05:06 54.35 -117.24 3.5 3.2 39.2 

27 2016-12-07 10:11:38 54.33 -117.25 1.4 3.3 30.8 

28 2017-02-24 09:22:44 52.76 -119.02 0.1 3.3 26.5 

29 2017-06-25 22:56:33 54.42 -117.42 3.4 3.3 14.3 

30 2017-06-28 19:00:51 54.42 -117.43 6.4 3.2 29.6 

31 2017-08-03 00:57:30 54.43 -117.42 6.5 3.2 30.0 

32 2017-12-05 00:01:22 54.23 -116.63 3.5 3.1 177.8 

33 2017-12-07 00:28:29 54.24 -116.64 5.0 3.1 200.6 

34 2017-12-16 00:29:07 54.24 -116.64 3.0 3.4 127.8 

35 2018-03-09 00:48:08 52.22 -113.96 3.7 3.0 55.8 

36 2018-06-27 00:23:20 54.36 -117.72 7.0 3.2 52.0 

37 2018-07-11 00:38:18 54.33 -117.62 7.0 3.2 207.1 
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