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Abstract

Supervised classification of genomic sequences is a challenging, well-studied

problem with a variety of important applications. We propose an open-source,

supervised, alignment-free, highly general method for sequence classification

that operates on k-mer proportions of DNA sequences. This method was

implemented in a fully standalone general-purpose software package called

Kameris, publicly available under a permissive open-source license. Com-

pared to competing software, ours provides key advantages in terms of data

security and privacy, transparency, and reproducibility. We perform a de-

tailed study of its accuracy and performance on a wide variety of classification

tasks, including virus subtyping, taxonomic classification, and human hap-

logroup assignment. We demonstrate the success of our method on whole

mitochondrial, nuclear, plastid, plasmid, and viral genomes, as well as ran-

domly sampled eukaryote genomes and transcriptomes. Further, we perform

head-to-head evaluations on the tasks of HIV-1 virus subtyping and bacterial

taxonomic classification with a number of competing state-of-the-art software

solutions, and show that we match or exceed all other tested software in terms

of accuracy and speed.

Keywords: sequence classification; machine learning; alignment-free; k-mers;

virus subtyping; comparative genomics; open-source
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Chapter 1

Introduction

The sequence classification problem may be stated as follows: given a

set of genomic sequences (in this work, DNA or RNA sequences) partitioned

into some known groups, and a sequence not in the known set, predict which

group the new sequence belongs to. This is an important problem in the field

of bioinformatics because several well-studied, more specific problems are in-

stances of this one: for example, the virus subtyping problem, where we wish

to assign a viral sequence to its subtype, or the taxonomic classification prob-

lem, where we wish to determine the phylogenetic group of an organism given

some of its genomic sequence data, or the haplogroup identification problem,

where we assign a human mitochondrial sequence to its haplogroup, allowing

the identification of its maternal lineage.

A tremendous variety of methods have been applied to this problem,

including both alignment-based and alignment-free methods. Our goal is to

develop an even better, more efficient, more accurate method than the state-

of-the-art, which we achieve by proposing, in this work, a remarkably simple

but extremely general method. It works by first taking a DNA sequence and

computing a vector of the proportions of every possible k-mer (that is, every

1



2 Chapter 1. Introduction

length-k substring). These vectors are used as feature vectors, and well-known

supervised classification algorithms are trained on the vectors.

We develop an open-source, easy-to-use, standalone software imple-

mentation of our method, which we call Kameris, available at https://

github.com/stephensolis/kameris, including easy-to-follow setup and use

instructions. As a standalone application, we avoid the need for researchers

to transmit sequence data to a remote server, eliminating privacy and security

concerns. Further, as an open-source application, researchers have full visibil-

ity into the implementation of the algorithm, and can reproduce results at any

time with a copy of a previous version of the software, which is not possible

with an opaque server-based solution.

One goal of this work was straightforward reproducibility of results, and

to that end, every experiment presented here can be easily reproduced by fol-

lowing the step-by-step instructions at https://github.com/stephensolis/

kameris-experiments. On the same page, every sequence and its metadata

from every dataset referenced here is available as well, to aid in future work

building on our results.

We curate and use a large variety of datasets to validate the perfor-

mance of our method, and we compute its accuracy on a variety of tasks. In

Chapter (which is a version of our paper “An open-source k-mer based machine

learning tool for fast and accurate subtyping of HIV-1 genomes”, accepted for

publication in PLoS One), we focus on the virus subtyping problem, demon-

strating our performance on the classification of HIV-1, dengue, influenza A,

hepatitis B, and hepatitis C virus genomes; in addition to working with whole

genomes, we demonstrate we maintain high accuracy even when working with

just the HIV-1 pol gene and also with randomly sampled HIV-1 genomes. Fur-

ther, we perform a head-to-head comparison with four competing state-of-the-

https://github.com/stephensolis/kameris
https://github.com/stephensolis/kameris
https://github.com/stephensolis/kameris-experiments
https://github.com/stephensolis/kameris-experiments


3

art HIV-1 subtyping tools, namely CASTOR, COMET, SCUEAL, and REGA,

and show that we match or exceed all in terms of accuracy and speed. In Chap-

ter 4, we go on to consider the taxonomic classification of whole mitochondrial,

nuclear, plastid, plasmid, and viral genomes, and randomly sampled marine

eukaryote and plant transcriptomes, into taxonomic groupings at every level

from kingdom down to genus; and the determination of human haplogroups

from whole mitochondrial genomes. We again perform a head-to-head compar-

ison with a competing tool called LAF on the taxonomic classification of whole

bacterial genomes, and demonstrate a higher classification accuracy. In total,

across all datasets and experiments, we use about 470,000 unique sequences

comprising a total length of over 276 Gbp of sequence data.

We conclude by discussing possible extensions to the current work, in-

cluding a method for identifying particularly important k-mers from the per-

spective of classification, an application to the detection of ‘mixed’ or chimeric

sequences, and even more challenging tasks such as the classification of unfil-

tered next-generation sequencing (NGS) read data and the diagnosis of genetic

disease.



Chapter 2

Literature review

2.1 Biological background

Earth has a great diversity of living organisms. For thousands of years,

people have sought to categorize these organisms and explore the relationships

between them. In modern use, from most broad to most specific, organisms

are principally organized into the ranks of kingdom, phylum or division, class,

order, family, genus, and species. Species can be further subdivided – for

instance, humans are divided by common ancestry into haplogroups.

In the days before genomics and molecular biology, scientists took a

morphological approach, performing categorization by comparing the form

and structural features of organisms. Nowadays, however, scientists use in-

formation from the DNA of organisms to do this, and many methods have

been proposed for doing so, ranging from DNA barcoding [64], to sequence

alignment, to a wide variety of alignment-free methods.

DNA (deoxyribonucleic acid) is a long stranded molecule which can

be viewed as a string on a four letter alphabet: A,C,G, T , where each letter

4



2.1. Biological background 5

represents one of the four basic constituent molecules collectively known as

nucleotides: cytosine (C), guanine (G), adenine (A), and thymine (T). DNA

may exist in either a single-stranded or double-stranded form – when double-

stranded, each type of nucleotide binds with its complementary pair on the

opposite strand: A pairs with T and C with G. As well, the two strands of

DNA run in opposite directions to each other, so the sequences of each strand

are reverse complements of each other. DNA may be present in several parts of

a cell. For cells with a nucleus or nucleoid, the majority of its genome is located

there. Most eukaryotes have further genetic material in their mitochondria,

as do plants, algae, and some other eukaryotes in their plastids, and bacteria

in plasmid molecules. In Section 4.1, we explore sequence classification using

genetic information from each of these regions.

Within an organism, DNA encodes information on how to assemble

proteins. Proteins, large molecules consisting of long chains of amino acids,

are an essential part of every organism and are responsible for a wide range of

functions within a cell. The central dogma of molecular biology, first described

by Crick [29], describes how this encoding works: first, DNA is processed and

spliced into mRNA (messenger RNA) molecules in a process called transcrip-

tion; then, mRNA is translated into proteins by the ribosome. Sequences of

DNA or RNA which code for a specific protein are known as genes, and the

specific portion of the gene directly processed by the ribosome is called the

coding region or CDS (coding sequence) of the gene. The set of all DNA in

an organism is called its genome, the set of all RNA produced during tran-

scription is called the transcriptome, and the set of all coding regions from all

genes is called the exome. In Section 4.1, we explore sequence classification

using transcriptome and exome data, and how its performance compares with

genome data.
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In order to use DNA for sequence classification, it is first necessary

to read or sequence it, that is, to determine the order of nucleotides on the

DNA strand. Generally, it is not known how to read more than a few tens

of thousands of nucleotides at a time, so in order to sequence a long DNA

molecule (such as a chromosome), it is necessary to first break the DNA up

into small pieces, read each piece independently, and then use software to

stitch the pieces together based on overlapping fragments in a process known

as sequence assembly. Depending on the sequencing technology being used, it

may be possible to read longer or shorter fragments; so-called next-generation

or high-throughput sequencing methods are able to lower sequencing costs

and increase sequencing speed by reading shorter fragments, usually of a few

hundred nucleotides, and parallelizing the sequencing process, producing thou-

sands or millions of sequences concurrently. However, shorter, more numerous

sequence fragments make sequence assembly more computationally expensive

due to the larger amount of data to be processed. For this reason, it is useful

to have sequence classification methods which do not depend on alignment,

and we explore this use-case in Sections 3.4 and 4.3.

2.2 Alignment-based methods

Alignment-based methods, broadly, are any methods based on search-

ing for base-to-base correspondences in two or more sequences [182]. These

methods measure sequence similarity by computing a score based on the num-

ber of matches and mismatches between sequences – in this way, they may

compute the class of a given query sequence by locating the most similar se-

quence in the known set. There have been many alignment-based tools devel-

oped, including single-sequence aligners such as BLAST [6] and FASTA [102],
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and multiple-sequence aligners such as ClustalW [159] and MUSCLE [42].

Since alignment-based tools can report the exact regions of high simi-

larity between a pair of sequences, their output is highly relevant to researchers

and can be used to study functional, structural, or evolutionary relationships

between sequences [110]. On the other hand, alignment-free methods, broadly

defined as any which do not compute base-to-base correspondences, are of-

ten capable of only producing a single similarity score between sequences as

output. But their tradeoffs are very attractive for many applications: they

are much more efficient than alignment in terms of running time and memory

requirements – this is especially relevant when dealing with large datasets,

like those generated by next-generation sequencing (NGS) applications; and

alignment assumes the sequences being compared contain stretches of well-

conserved and common regions, which is an assumption often violated in re-

ality, for example when studying viral genomes with a high rate of mutation

or comparing sequences from entirely different parts of the tree of life.

2.3 Alignment-free methods

In recent years, a great breadth of alignment-free sequence comparison

methods have been proposed. Among these are the conditional Lempel-Ziv

complexity as studied in [4, 9, 10, 73, 100, 103, 119, 166], the closely re-

lated and more general conditional Kolmogorov complexity [45, 93], the ‘mea-

sure representation’ as proposed in [178, 179], comparisons between Markov

models [25, 127], average lengths of maximum common substrings [97, 162],

estimates of substitutions or mismatches per site as pioneered by Haubold

et al. [39, 61, 62, 63], the ‘base-base correlation’ [104, 105], and distances

based on Hasse matrices [161], spectral distortion [126], primitive discrimina-
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tion substrings [44], the Burrows-Wheeler similarity [174], normalized central

moments [36], nearest-neighbor interactions [181], subword composition [28],

prefix codes [38], information correlation [51], the context-object model [176],

spaced word frequencies [70, 98], and many more.

Some of these and others have been applied to sequence classification

specifically, including methods based on nucleotide correlations [106] or se-

quence composition (e.g. COMET [151] and [177]); on restriction enzyme site

distributions, applied to the subtyping of human papillomavirus (HPV), hep-

atitis B virus (HBV) and HIV-1 (CASTOR [137]); based on the ‘natural vec-

tor which contains information on the number and distribution of nucleotides

in the sequence, applied to the classification of single-segmented [177] and

multi-segmented [72] whole viral genomes, as well as viral proteomes [101];

based on neural networks using digital signal processing techniques to yield

‘genomic cepstral coefficient’ features, applied to distinguishing four different

pathogenic viruses [3]; based on different genomic materials (namely DNA se-

quences, protein sequences, and functional domains) with information based

on protein clustering and functional domains, applied to the classification of

some viral species at the order, family, and genus levels [165].

2.4 k-mer-based methods

One particular class of methods for alignment-free sequence compar-

ison well-represented in the literature are those based on the frequencies of

substrings of length k (known as k-mers or k-words).

Blaisdell was the first to use such methods, reporting success in con-

structing accurate phylogenetic trees for mammal alpha and beta-globin genes [15]

and several other coding and non-coding DNA sequences [14]. Many au-
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thors [11, 12, 22, 37, 52, 84, 85, 88, 89] have studied k-mer bias patterns

and found that the excess and scarcity of specific k-mers, across a variety of

different DNA sequence types (including viral DNA in [22]), can be explained

by factors such as physical DNA/RNA structure, mutational events, and some

prokaryotic and eukaryotic repair and correction systems. In addition, Karlin

et al. found that k-mer proportions can play the role of a genomic signature

– that is, a specific quantitative characteristic of a sequence that is pervasive

along the genome of the same organism, while being dissimilar for sequences

originating from different organisms. These two findings give intuition and jus-

tification as to why the information in k-mer occurrence patterns is suitable

as a classifiable feature.

Typically, k-mer frequency or proportion vectors are paired together

with a distance function in order to give a method capable of measuring the

quantitative similarity of any pair of sequences. Common choices of distance

include the Manhattan distance originally proposed by Burge et al. [22], as

seen e.g. in [16, 17, 23, 53, 77, 83, 87, 88, 121, 132, 153]; the weighted or

standardized Euclidean distance, as seen e.g. in [26, 33, 65, 92, 123, 145, 171,

172, 175]; and the Jensen-Shannon distance proposed by Sims et al. [148],

as seen e.g. in [147, 148, 164, 170]. These distances and others have been

compared and benchmarked in [31, 32, 57, 60, 68, 69, 75, 81, 173], and detailed

reviews of the literature can be found in [18, 86, 116, 144, 149, 163, 182].

k-mer frequency or proportion vectors have been used to perform super-

vised classification, albeit often with relatively small datasets. For instance,

these vectors have been used to subtype influenza and classify polyoma and

rhinovirus fragments [46], to predict HPV genotypes [154, 155], to classify

whole bacterial genomes to their corresponding taxonomic groups at different

levels [167], to classify whole eukaryotic mitochondrial genomes [112, 113, 114,
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115], to classify 27 microbial nuclear DNA sequences [132], to automatically

learn a distance function for classifying a set of 1076 microbial genomes [123],

to classify hundreds of thousands of short (less than 10,000 base pairs long)

prokaryote sequences into different phylogenetic groups [1, 2, 108], to distin-

guish very short samples of the E.coli and yeast genomes [124], to classify short

bacterial genome fragments from 28 species [142], to classify longer bacterial

genome fragments from 118 species [158], to classify some archaeal and bacte-

rial classes [41], and to classify short splicing-related sequence fragments [117,

128].

2.5 Our approach

Kameris is a supervised classification method based on k-mer propor-

tion vectors. In this study and as opposed to other studies described, we do

not use just one or a small number of datasets but dozens of datasets covering

a large breadth and depth of genomic sequence data. This allows us to give

more evidence and be more confident of our performance and accuracy on

a wide range of highly biologically-relevant classification tasks, which is not

often done with other algorithms and methods.

Kameris is fully open-source with all code available on GitHub at the

following URL: https://github.com/stephensolis/kameris, is standalone

and easy to run on any local computer, and is available to all users under

a permissive open-source license. This is as opposed to other tools, some

of which are closed-source and available only as a web interface or are sold

under a commercial license for non-academic users. The fact that Kameris

is standalone makes it possible for researchers to save and reproduce results

with a precise version of the software, and to avoid sending potentially sensitive

https://github.com/stephensolis/kameris


2.5. Our approach 11

data to a remote web server. Further, our open-source implementation makes

it easy for researchers to see all technical details of our method, making our tool

highly transparent. Those benefits do not come at the expense of classification

accuracy, however, since we perform head-to-head evaluations on the tasks of

HIV-1 virus subtyping and bacterial taxonomic classification with a number

of competing state-of-the-art software solutions, and show that we match or

exceed all other tested software in terms of accuracy and speed.

Kameris is very flexible and every experiment presented in this work

can be reproduced by following the step-by-step instructions at https://

github.com/stephensolis/kameris-experiments. Kameris permits the

user to specify their choice of classification algorithm, value of k, cross-validation

and dimentionality reduction parameters as described in Chapter 3 when train-

ing a model.

Finally, as will be seen in the following chapter, our method is remark-

ably simple, relying only on the counting of k-mers and well-known supervised

classification algorithms. This is as opposed to other much more complex

methods, some of which use complex distance functions or correlation metrics

and often deep domain-specific biological knowledge – our method is simpler

and more computationally efficient than some others without loss of accuracy.

https://github.com/stephensolis/kameris-experiments
https://github.com/stephensolis/kameris-experiments


Chapter 3

An open-source k-mer based

machine learning tool for fast

and accurate subtyping of

HIV-1 genomes1

3.1 Introduction

Subtype classification is an important and challenging problem in the

field of virology. Subtypes (also termed clades or genotypes) are a fundamental

unit of virus nomenclature (taxonomy) within a defined species, where each

subtype corresponds to a cluster of genetic similarity among isolates from the

global population. Defined subtype references for hepatitis C virus, for exam-

ple, can diverge by as much as 30% of the nucleotide genome sequence [146],

but there is no consistent threshold among virus species. Many virus subtypes

1A version of this chapter was accepted for publication in PLoS One (S. Solis-Reyes, M.
Avino, A. Poon, and L. Kari)

12



3.1. Introduction 13

are clinically significant because of their associations with variation in patho-

genesis, rates of disease progression, and susceptibility to drug treatments and

vaccines [156]. For example, the HIV-1 subtypes originated early in the history

of the global pandemic [169] and have diverged by about 15% of the nucleotide

genome sequence [78]. Rates of disease progression vary significantly among

HIV-1 subtypes and classifying newly diagnosed infections by their genetic

similarity to curated reference subtypes [139] is a recommended component

for the clinical management of HIV-1 infection [27, 67]. Consequently, a num-

ber of algorithms have been developed for the automated determination of

HIV-1 subtypes from genetic sequence data [129, 130, 151].

Today, there are important practical considerations that HIV-1 subtyp-

ing algorithms should meet. These include:

1. High Accuracy and Performance: The cost of sequencing is rapidly

decreasing and the amount of sequence data increasing due to next-

generation sequencing (NGS) technologies. Thus, in addition to being

accurate, software must be computationally fast and scalable in order to

handle rapidly growing datasets.

2. Data Security and Privacy: Policy, legal, and regulatory issues can

prohibit patient sequence data from being transmitted to an external

server on the Internet. In addition, concerns around privacy policies

and the possibility of data breaches can cause issues for researchers and

clinicians. For these reasons, software should be made available in an

offline, standalone version.

3. Transparency: With closed-source or proprietary software, it can be

impossible to determine precisely how classification determinations are

made. An open-source implementation gives full visibility into all aspects
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of the classification process.

4. Reproducibility: Relying on an externally-hosted service can make it

impossible to determine which version of the software has been used to

generate subtype classifications. This makes it difficult to guarantee that

classification results can be reproduced, and reproducibility is generally

recognized as a necessary component of clinical practice.

In our effort to develop a general sequence classification method satisfying the

above considerations, we propose a simple, intuitive, general-purpose, highly-

efficient technique based on k-mer proportion vectors for supervised nucleotide

sequence classification, and we release an open-source software implementation

of this method (designated Kameris) under a permissive open-source license.

3.1.1 Alignment-free subtyping

Most subtype classification methods for HIV-1 require the alignment of

the input sequence against a set of predefined subtype reference sequences [95],

which enables the algorithm to compare homologous sequence features [40, 50,

143]. For example, the NCBI genotyping tool [140] computes BLAST simi-

larity scores against the reference set for sliding windows along the query

sequence. Other methods such as REGA [129] and SCUEAL [130] reconstruct

maximum likelihood phylogenies from the aligned sequences: REGA (ver-

sion 3.0) reconstructs trees from sliding windows of 400 bp from the sequence

alignment and quantifies the confidence in placement of the query sequence

within subtypes by bootstrap sampling (bootscanning) [141]. Alignment-

based methods are relatively computationally expensive, especially for long

sequences; the heuristic methods require a number of ad hoc settings, such

as the penalty for opening a gap; and alignment method may not perform
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well on highly-divergent regions of the genome. To address these limitations,

various alignment-free classification methods have been proposed. Some of

them make use of nucleotide correlations [106], or sequence composition (e.g.

COMET [151] and [177]). Other methods include those based on restric-

tion enzyme site distributions, applied to the subtyping of human papillo-

mavirus (HPV), hepatitis B virus (HBV) and HIV-1 (CASTOR [137]); based

on the “natural vector” which contains information on the number and dis-

tribution of nucleotides in the sequence, applied to the classification of single-

segmented [177] and multi-segmented [72] whole viral genomes, as well as viral

proteomes [101]; based on neural networks using digital signal processing tech-

niques to yield “genomic cepstral coefficient” features, applied to distinguish-

ing four different pathogenic viruses [3]; and based on different genomic ma-

terials (namely DNA sequences, protein sequences, and functional domains),

applied to the classification of some viral species at the order, family, and

genus levels [165].

3.1.2 k-mer-based classifiers

The use of k-mer (substrings of length k) frequencies for phylogenetic

applications started with Blaisdell, who reported success in constructing accu-

rate phylogenetic trees from several coding and non-coding nuclear genomes

sequences [14] and some mammalian alpha and beta-globin genes [15]. Other

authors [22, 52, 84, 88, 89] have observed that the excess and scarcity of specific

k-mers, across a variety of different DNA sequence types (including viral DNA

in [22]), can be explained by factors such as physical DNA/RNA structure,

mutational events, and some prokaryotic and eukaryotic repair and correction

systems. Typically, k-mer frequency or proportion vectors are paired together

with a distance function in order to measure the quantitative similarity be-
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tween any pair of sequences. Studies measuring quantitative similarity between

DNA sequences from different sources have been performed, for instance using

the Manhattan distance [23, 87], the weighted or standardized Euclidean dis-

tance [145, 172], and the Jensen-Shannon distance [147, 148]. Applications of

these distances and others have been compared and benchmarked in [32, 60,

81, 173], and detailed reviews of the literature can be found in [18, 116, 163,

182].

In the context of viral phylogenetics, k-mer frequency or proportion

vectors paired with a distance metric have been used to construct pairwise dis-

tance matrices and derive phylogenetic trees, e.g., dsDNA eukaryotic viruses [170],

or fragments from Flaviviridae genomes [92]. Other studies have investigated

the multifractal properties of k-mer patterns in HIV-1 genomes [120], and

the changes in dinucleotide frequencies in the HIV genome across different

years [121]. We used k-mer proportion vectors to train supervised classifi-

cation algorithms. Similar approaches have previously been explored (with

different classifiers than those used here), for example to subtype Influenza

and classify Polyoma and Rhinovirus fragments [46], to predict HPV geno-

types [154, 155], to classify whole bacterial genomes to their corresponding

taxonomic groups at different levels [167], and to classify whole eukaryotic

mitochondrial genomes [112, 113, 114, 115].

To evaluate our method, we curated manually-validated testing sets of

‘real-world’ HIV-1 data sets. We assessed fifteen classification algorithms and

conclude that for these data the SVM-based classifiers, multilayer perceptron,

and logistic regression achieved the highest accuracy, with the SVM-based

classifiers also achieving the lowest running time out of those. We measured

classification accuracy and running time for k-mers of length k = 1 . . . 10
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and found that k = 6 provides the optimal balance of accuracy and speed.

Overall, our open-source method obtains a classification accuracy average of

97%, with individual accuracies equal to or exceeding other subtyping methods

for most datasets, and processes over 1,500 sequences per second. Our method

is also applicable to other virus datasets without modification: we demonstrate

classification accuracies of over 90% in all cases for full-length genome data

sets of dengue, hepatitis B, hepatitis C, and influenza A viruses.

3.2 Methods

3.2.1 Supervised classification

First, we needed to determine which supervised classification method

would be the most effective for classifying virus sequences, using their re-

spective k-mer proportions as feature vectors (numerical representations). We

trained each of 15 classifiers (Table 3.2) on a set S = {s1, s2, . . . sn} of nu-

cleotide sequences partitioned into groups g1, g2, . . . , gp. Given as input any

new, previously unseen, sequence (i.e., not in the dataset S), the method

outputs a prediction of the group gi that the sequence belongs to, having

‘learned’ from the training set S the correspondence between the k-mer pro-

portions of training sequences and their groups. The feature vector Fk(s) for

an input sequence s was constructed from the number of occurrences of all 4k

possible k-mers (given the nucleotide alphabet {A,C,G, T}), divided by the

total length of s. Any ambiguous nucleotide codes (e.g., ‘N’ for completely

ambiguous nucleotides) were removed from s before computing Fk(s). As a

concrete example, suppose s = ACTCAGGCA and k = 2. Then, if we use

the arbitrary order [AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT, TA,
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TC, TG, TT ] for 2-mers, the k-mer frequency vector for s is [0, 1, 1, 0, 2, 0, 0, 1, 0,

1, 1, 0, 0, 1, 0, 0] and thus Fk(s) = [0, 0.125, 0.125, 0, 0.25, 0, 0, 0.125, 0, 0.125,

0.125, 0, 0, 0.125, 0, 0].

Next, we processed the feature vectors Fk(s) for more efficient use by

classifiers. We rescaled the vectors to have a variance of 1, which satisfies

some statistical assumptions invoked by several classification methods. In ad-

dition, we performed dimensionality reduction using truncated singular value

decomposition [54] to reduce the vectors to 10% of the average number of non-

zero entries of the feature vectors. This greatly reduces running time for most

classifiers while having a negligible effect on classification accuracy.

Finally, we trained a supervised classifier on the vectors Fk(s). Su-

pervised classifiers, in general, can be intuitively thought of as construct-

ing a mapping from the input feature space to another space which in some

sense effectively separates each training class. As a concrete example, the

support vector machine (SVM) classifier maps the input space to another

space of equal or higher dimensionality using a kernel function, and then se-

lects hyperplanes that represent the largest separation between every pair of

classes. Those hyperplanes induce a partition on the transformed space which

is then used for the classification of new items. We tested fifteen different

specific classifier algorithms: 10-nearest-neighbors [5] with Euclidean metric

(10-nearest-neighbors); nearest centroid, to class mean (nearest-centroid-mean)

and to class median (nearest-centroid-median) [160]; logistic regression

with L2 regularization and one-vs-rest as the multiclass generalization

(logistic-regression) [13]; SVM with the linear (linear-svm), quadratic

(quadratic-svm), and cubic (cubic-svm) kernel functions [30]; SVM with

stochastic gradient descent learning and linear kernel function (sgd) [180]; deci-

sion tree with Gini impurity metric (decision-tree) [21]; random forest using
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decision trees with Gini impurity metric as sub-estimators (random-forest) [20];

AdaBoost with decision trees as the weak learners and the SAMME.R real

boosting algorithm (adaboost) [48, 59]; Gaussian näıve Bayes

(gaussian-naive-bayes) [24]; linear (lda) and quadratic (qda) discriminant

analysis [49]; and multi-layer perceptron with a 100-neuron hidden layer, recti-

fied linear unit (ReLU) activation function, and the Adam stochastic gradient-

based weight optimizer (multilayer-perceptron) [66, 91]. We used the im-

plementations of these classifiers in the Python library scikit-learn [125]

with the default settings.

For some of the results that follow, we required a method for measur-

ing classification accuracy without the need for a separate testing dataset. To

do so, we used 10-fold cross-validation, a technique widely used for assess-

ing the performance of supervised classifiers [136]. N -fold cross-validation is

performed by taking the given dataset and randomly partitioning it into N

groups of equal size. Taking each group in turn, we trained a classifier on the

sequences outside of the selected group, and then computed its accuracy from

predicting the classes of the sequences in the selected group. The outcome

of the cross-validation are N accuracy values for the N distinct, independent

training and testing runs. We report the arithmetic mean of those accuracies

as the final accuracy measure.
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3.2.2 Unsupervised visualization

Supervised classification requires, by definition, a training set consist-

ing of examples of classes determined a priori. However, one may wish to

explore a dataset where the groups are not necessarily all known. For the

problem of virus subtyping for example, one may suspect the existence of a

novel subtype or recombinant. To this end, unsupervised data exploration

techniques are useful, and herein we also explore the use of Molecular Dis-

tance Maps (MoDMaps), previously described in [80, 81, 82], for this purpose.

After computing the vectors Fk(s), this method proceeds by first constructing

a pairwise distance matrix. In this paper, we use the well-known Manhattan

distance [94], defined between two vectors A = (a1, . . . an) and B = (b1, . . . bn)

as being:

dM(A,B) =
n∑

i=1

|ai − bi| .

Next, the distance matrix is visualized by classical MultiDimensional Scaling

(MDS) [19]. MDS takes as input a pairwise distance matrix and produces as

output a 2D or 3D plot, called a MoDMap [79], wherein each point represents a

different sequence, and the distances between points approximate the distances

from the input distance matrix. As MoDMaps are constrained to two or three

dimensions, it is in general not possible for the distances in the 2D or 3D plot

to match exactly the distances in the distance matrix, but MDS attempts to

make the difference as small as possible.

3.2.3 Implementation

We have developed a software package called Kameris which imple-

ments our method. It can be obtained from https://github.com/stephensolis/

https://github.com/stephensolis/kameris
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kameris, and may be used on Windows, macOS, and Linux. Kameris is im-

plemented in Python, with the feature vector computation parts implemented

in C++ for performance. It is packaged so as to have no external dependencies,

and thus is easy to run. The package has three different modes: first, it can

train one or more classifiers on a dataset and evaluate cross-validation perfor-

mance; second, it can summarize training jobs, computing summary statistics

and generating MDS plots; and third, it can classify new sequences on already-

trained models. More information, including usage and setup instructions,

can be found at https://github.com/stephensolis/kameris. All running

time benchmarks of our software were performed on an Amazon Web Services

(AWS) r4.8xlarge instance with 16 physical cores (32 threads) of a 2.3GHz Intel

Xeon E5-2686 v4 processor. We also note that many of the implementations of

the classifier algorithms we use are single-threaded and that performance can

almost certainly be substantially improved by using parallelized implementa-

tions.

3.2.4 Datasets

In this paper, a variety of different datasets were used to validate the

performance of the method. Straightforward reproducibility of results was a

priority in the design of this study, and to that end, every sequence and its

metadata from every dataset referenced here can be retrieved from our GitHub

repository at https://github.com/stephensolis/kameris-experiments.

Further, instructions for using Kameris to replicate the experiment results

are available in Appendix A.

In some cases, these datasets had few examples for some classes. Train-

ing on classes with very few examples would unfairly lower accuracy since the

https://github.com/stephensolis/kameris
https://github.com/stephensolis/kameris
https://github.com/stephensolis/kameris
https://github.com/stephensolis/kameris-experiments
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classifier does not have enough information to learn, so we wish to omit such

classes from our analysis. However, the minimum number of examples per

class to achieve proper training of a classifier is difficult to estimate; this num-

ber is known to be dependent on both the complexity of the feature vectors

and characteristics of the classifier algorithm being used [74, 135]. Since we

vary both k and the classifier algorithms in this study, this makes it especially

challenging to empirically determine an adequate minimum class size. Here,

we arbitrarily selected 18 as our minimum, so we omitted from analysis any

subtype with fewer than 18 sequences. It may be that specific values of k and

some classifier algorithms work well in scenarios with very small datasets, and

we leave this as an open question.

Primary dataset

The primary dataset used was the full set of HIV-1 genomes avail-

able from the Los Alamos (LANL) sequence database, accessible at https:

//www.hiv.lanl.gov/components/sequence/HIV/search/search.html. In

this database, the option exists of using full or partial sequences – in our anal-

ysis, we consider both full genomes and just the coding sequences of the pol

gene. For the set of whole genomes, the query parameters “virus: HIV-1, ge-

nomic region: complete genome, excluding problematic” were used; this gave

a total of 6625 sequences with an average length of 8970 bp. For the set of

pol genes, the query parameters “virus: HIV-1, genomic region: Pol CDS,

excluding problematic” were used; this gave a total of 9270 sequences with an

average length of 3006 bp. In both cases, the query was performed on May

18, 2017, and at the time, the LANL database reported a last update on May

6, 2017. After removing small classes (see preceding section), this dataset

contained 25 subtypes and circulating recombinant forms (CRFs) for the set

https://www.hiv.lanl.gov/components/sequence/HIV/search/search.html
https://www.hiv.lanl.gov/components/sequence/HIV/search/search.html
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of whole genomes, and 26 for the set of pol genes. The list of subtypes for

this dataset and all other datasets described here are available in Appendix

B. This dataset was used to determine the best value of k, the best classifier

algorithm, to compare the performance of whole genomes with pol gene se-

quences only, and to produce the MoDMaps of HIV-1. In those experiments,

cross-validation was used to randomly draw training and testing sets from the

dataset.

Evaluation datasets

To evaluate classifiers trained on HIV-1 sequences and subtype anno-

tations curated by the LANL database, we needed testing sets but wanted

to avoid selecting them from the same database. We manually searched the

GenBank database for large datasets comprising HIV-1 pol sequences collected

from a region with known history of a predominant subtype, and evaluated

the associated publications to verify the characteristics of the study popula-

tion (Table 3.1). After selection of the datasets, we wished to obtain labels

without relying on another subtyping method. To do so, first we made use of

the known geographic distribution of HIV-1 subtypes, where specific regions

are predominantly affected by one or two particular subtypes or circulating

recombinant forms due to historical ‘founding’ events [157]. Next, we screened

each dataset using a manual phylogenetic subtyping process to verify sub-

type assignments against the standard reference sequences. This was done,

essentially, by reconstructing phylogenetic trees to identify possible subtype

clusters. A cluster was identified as a certain subtype if it included a specific

subtype reference sequence we had initially provided in our datasets. Thus,

the first step was to download the most recent set of subtypes reference se-

quences for the HIV-1 pol gene at the LANL database, accessible at https:

https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
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//www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html [99].

We loaded the resulting FASTA file in the eleven datasets from Table

3.1. We then aligned the datasets with MUSCLE v3.8.425 [42], implemented

in AliView 1.19-beta-3 [96], where we also visually inspected the alignments.

To avoid overfitting, we searched for the nucleotide model of substitution

that was best supported by each dataset using the Akaike Information Cri-

terion (AIC) in jModeltest v2.1.10 [34]. For the dataset US.Wolf2017, the

large number of sequences precluded this model selection process, so we chose

a General Time Reversible model incorporating an invariant sites category

and a gamma distribution to model rate variation among the remaining sites

(GTR+I+G); this parameter-rich model is often supported by large HIV-1

data sets, and was similar to the model selected by the authors in the original

study [168]. Phylogenetic trees were reconstructed by maximum likelihood

using PHYML v20160207 [56] with a related bootstrap support analysis. The

resulting trees were visualized and their relative sequences were manually an-

notated in FigTree v1.4.3 [134].

https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
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Table 3.1: Statistics for the manually curated testing datasets. The
first author, year, and reference number for the publication associated with
each data set is listed under the ‘Source’ column heading. The historically most
prevalent HIV-1 subtype(s) is indicated under the ‘Subtype’ column heading.

Source Country Subtype Count Sequence length (nt)
Average Min. Max.

Nadai
(2009) [111]

Haiti B 66 1024.0 1024 1025

Niculescu
(2015) [118]

Romania F 97 1301.2 1257 1302

Paraschiv
(2017) [122]

Romania F 86 1295.9 1164 1299

Rhee
(2017) [138]

Thailand CRF01 AE 282 703.8 633 756

Sukasem
(2007) [152]

Thailand CRF01 AE 221 286.4 270 288

Eshleman
(2001) [43]

Uganda A/D 102 1261.2 1260 1302

Ssemwanga
(2012) [150]

Uganda A/D 72 1025.0 1025 1025

Wolf
(2017) [168]

USA B 1653 1020.8 868 1080

TenoRes
(2016) [55]

South Africa C 102 1001.4 921 1209

van Zyl
(2017) [183]

South Africa C 59 1056.7 1002 1070

Huang
(2003) [71]

N/A N/A 44 1189.9 1187 1190

Overall 2784 960.4 270 1302

In order to benchmark performance on this manually curated testing

dataset, we required a separate training dataset. Since the subtype annota-

tions from the full set of HIV-1 genomes in the LANL database are typically

given by individual authors using unknown methods, they may be incorrect at

times, potentially negatively impacting classification performance. Thus, we

trained our classifier on the subset of HIV-1 pol sequences from the 2010 Web

alignment from the LANL database, accessible at https://www.hiv.lanl.

gov/content/sequence/NEWALIGN/align.html. This Web alignment dataset

https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
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is a more curated set of pol sequences, and is more likely to be correctly anno-

tated. Specifically, we selected ‘Web’ as the alignment type, ‘HIV1/SIVcpz’ as

organism, ‘POL’ as ‘Pre-defined region of the genome’ under ‘Region’, ‘All’ as

subtype, ‘DNA’, and ‘2010’ as the year. Any Simian Immunodeficiency Virus

(SIV) sequences were manually removed from the query results. This gave a

total of 1979 sequences, containing 15 subtypes or CRFs after removal of small

classes.

Other datasets

For another experiment, we generated a set of synthetic HIV-1 se-

quences by simulating the molecular evolution of sequences derived from the

curated HIV-1 subtype references. To do so, we used a modified version of

the program INDELible [47], assigning one of the subtype reference sequences

to the root of a ‘star’ phylogeny with unit branch lengths and 100 tips. The

codon substitution model parameters, including the transition-transversion

bias parameter and the two-parameter gamma distribution for rate variation

among sites, were calibrated by fitting the same type of model to actual HIV-

1 sequence data [131]. We adjusted the ‘treelength’ simulation parameter to

control the average divergence between sequences at the tips.

Finally, we performed experiments with dengue, influenza A, hepati-

tis B, and hepatitis C virus sequences. The dengue and influenza sequences

were retrieved from the National Center for Biotechnology Information (NCBI)

Virus Variation sequence database on August 10, 2017. The dengue virus se-

quences were accessed from https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/

Database/nph-select.cgi?taxid=12637 with the query options “Nucleotide”,

“Full-length sequences only”, and “Collapse identical sequences” for a to-

tal of 4893 sequences with an average length of 10585 bp. Influenza se-

https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-select.cgi?taxid=12637
https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-select.cgi?taxid=12637
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quences were accessed from https://www.ncbi.nlm.nih.gov/genomes/FLU/

Database/nph-select.cgi?go=genomeset with the query options “Genome

sets: Complete only”, and “Type: A” for a total of 38215 sequences with an

average length of 13455 bp. Hepatitis B sequences were retrieved from the Hep-

atitis B Virus Database operated by the Institut de Biologie et Chimie des Pro-

teines (IBCP), accessible at https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?

seqtype=0, on August 10, 2017 for a total of 5841 sequences with an average

length of 3201 bp. Finally, hepatitis C sequences were retrieved from the Los

Alamos (LANL) sequence database, accessible at https://hcv.lanl.gov/

components/sequence/HCV/search/searchi.html, on August 10, 2017, us-

ing the query options “Excluding recombinants”, “Excluding ‘no genotype”’,

“Genomic region: complete genome”, and “Excluding problematic” for a to-

tal of 1923 sequences with an average length of 9140 bp. After removal of

small classes, our data comprised 4 subtypes of dengue virus, 12 subtypes of

hepatitis B, 6 subtypes of hepatitis C, and 56 subtypes of influenza type A.

3.3 Results

Our subtype classification method has two main parameters that may

be varied: namely, the specific classifier to be used, and the value k of the

length of the k-mers to count when producing feature vectors. We begin with

the full set of full-length HIV-1 genomes from the LANL database, and we

perform a separate 10-fold cross-validation experiment for each of the fifteen

classifiers listed in the Methods section, and all values of k from 1 to 10,

that is, 160 independent experiments in total. For each value of k, we plot

the highest accuracy obtained by any classifier as well as the average running

time over the classifiers, see Figure 3.1. We observe that k = 6 achieves a

https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=genomeset
https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=genomeset
https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?seqtype=0
https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?seqtype=0
https://hcv.lanl.gov/components/sequence/HCV/search/searchi.html
https://hcv.lanl.gov/components/sequence/HCV/search/searchi.html
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good balance between classifier performance and accuracy, so at k = 6, we

list the accuracy obtained by each classifier and its corresponding running

time, see Table 3.2. As can be seen, the SVM-based classifiers, multilayer

perceptron, and logistic regression achieve the highest accuracy, with the SVM-

based classifiers achieving also the lowest running time out of those.

Figure 3.1: Highest accuracy score and average running time across
all fifteen classifiers, at different values of k, for the full set of 6625
whole HIV-1 genomes from the LANL database.
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Since it is typical to have only partial genome sequences available, we

repeat the same 10-fold cross-validation at k = 6, with the linear SVM classi-

fier, this time with the set of all pol genes from the LANL database. We find

that the accuracy changes from 96.49% (full-length genomes) to 95.68% (pol

gene sequences), indicating that the use of partial genomes does not substan-

tially reduce classification performance. Further, we expect that the inclusion

of recombinant forms should lower accuracy, since it requires the classifier to

accurately distinguish them from their constituent ‘pure’ subtypes. To test

this, we repeat the same 10-fold cross-validation at k = 6 and with the linear
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Table 3.2: Accuracy scores and running times for each of the fifteen
classifiers at k = 6, for the full set of 6625 whole HIV-1 genomes
from the LANL database.

Classifier Accuracy Running time

cubic-svm 96.66% 44.44s
quadratic-svm 96.59% 44.52s
linear-svm 96.49% 44.23s
multilayer-perceptron 95.49% 53.92s
logistic-regression 95.32% 88.18s
10-nearest-neighbors 93.97% 31.92s
nearest-centroid-median 93.95% 22.21s
nearest-centroid-mean 93.84% 21.90s
decision-tree 93.53% 49.99s
random-forest 93.07% 31.35s
sgd 91.10% 24.24s
gaussian-naive-bayes 87.75% 22.39s
lda 77.76% 24.46s
qda 75.13% 26.57s
adaboost 64.85% 147.24s

SVM classifier, with the set of all full-length genomes from the LANL database,

this time omitting the 17 classes of recombinant forms and leaving only the

9 classes of pure subtypes. We find that the accuracy increases from 96.49%

(including recombinants) to 99.64% (omitting recombiants), and in fact only

3 sequences are misclassified in the latter case.

The sequences present in the LANL database are curated to be repre-

sentative of global HIV-1 diversity, and therefore high classification accuracies

on that dataset are, to some extent, to be expected. In order to perform

a more challenging benchmark on our algorithm, we compute its accuracy

on the eleven selected testing datasets of pol gene fragments from Table 3.1,

after training with the set of whole pol genes from the LANL 2010 web align-

ment. Based on the previous performance measurements, we use the linear

SVM classifier and k = 6. We also perform the same accuracy measurement

with four other state-of-the-art HIV subtyping tools: CASTOR, COMET,
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SCUEAL, and REGA, and show the results in Table 3.3. In sum, our method

(Kameris) comes within a few percent of the best tools in all cases, and has

the highest average accuracy (both unweighted, and weighted by the number

of sequences in each set).

Running time is another important performance indicator, so we also

compare the performance of these five tools for the dataset of van Zyl et

al. [183], and the four fastest tools for all datasets together (see Table 3.4). We

observe that our tool matches or outperforms the competing state-of-the-art.

Note that, for these comparison experiments, CASTOR, COMET, SCUEAL,

and REGA were run from their web-based interfaces, and therefore the exact

specifications of the machines running each program could not be determined.

For this reason, the running times presented here should be taken as rough

order-of-magnitude estimates only.

Overall, these experiments demonstrate our method is nearly identical

in both accuracy and running time to the top third-party tool, COMET. Our

tool differs from COMET in that it is open-source and freely available for

commercial use, and is available in a standalone application which can be run

on any computer, while COMET is closed-source and freely available for non-

commercial research use only, and is publicly available only in a web-based

system.
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Table 3.3: Classification accuracies for all tested HIV-1 subtyping tools,
for each testing dataset from Table 3.1; average accuracy both with and
without weighting datasets by the number of sequences they contain.

Source Kameris COMET CASTOR SCUEAL REGA

Nadai (2009) [111] 100.0% 100.0% 81.8% 92.4% 86.4%
Niculescu (2015) [118] 95.9% 96.9% 75.3% 94.8% 100.0%
Paraschiv (2017) [122] 91.9% 73.3%1 46.5% 68.6% 87.2%
Rhee (2017) [138] 94.0% 95.4% 0.4% 75.9% 12.8%1

Sukasem (2007) [152] 90.0% 91.0% 0.9% 64.3% 8.1%2

Eshleman (2001) [43] 88.5% 90.6% 4.2% 84.4% 90.6%
Ssemwanga (2012) [150] 88.3% 90.0% 0.0% 73.3% 95.0%
Wolf (2017) [168] 99.8% 99.8% 61.1% 99.3% 98.2%
TenoRes (2016) [55] 99.0% 99.0% 28.4% 99.0% 100.0%
van Zyl (2017) [183] 94.9% 93.2% 57.6% 93.2% 94.9%
Huang (2003) [71] 95.2% 97.6% 19.0% 81.0% 95.2%

Average (unweighted) 94.3% 93.3% 34.1% 84.2% 78.9%2

Average (weighted) 97.1% 96.9% 45.1% 91.2% 81.4%2

1 In this case, a substantial number of sequences that were classified as subtype A by REGA
and our method were labeled unclassified subtypes (U) by COMET. In an HIV-1 phylogeny,
subtype U sequences tend to be assigned a basal position (near the root) within the subtype A
clade, suggesting that these sequences may be unrecognized variants or complex recombinants
of subtype A.

2 These low accuracies are primarily caused by REGA misclassifying many CRF01 sequences as
subtype A, and subtype A is mostly equivalent to CRF01 in the pol region. If CRF01 and
A were treated as equivalent, these accuracies would be 97.9% and 86.4% for the Rhee and
Sukasem datasets, respectively, and unweighted and weighted averages of 93.8% and 96.2%,
respectively.

Table 3.4: Approximate running times for all tested subtyping
tools, for the dataset of van Zyl et al. [183] and all datasets listed
in Table 3.3. The van Zyl dataset was chosen at random for this purpose.

Tool Running time for the
van Zyl dataset

Running time for
datasets from Table
3.3

Kameris less than 2 seconds 16 seconds
COMET less than 2 seconds 14 seconds
CASTOR 3 seconds 46 seconds
SCUEAL1 18 minutes 8 hours
REGA1 31 minutes 19 hours
1 The REGA and SCUEAL web servers have limits of 1000 and 500 sequences per

run, respectively. Thus, 3 batches of sequences were needed for REGA, and 6
batches for SCUEAL to classify all sequences. COMET, CASTOR, and our tool
have no such limits.
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So far, we have only discussed supervised classification, and we have

presented promising results for our approach. However, supervised classifica-

tion requires data with known labels, which can be problematic considering

that the rapid rates of mutation and recombination of viruses (particularly

HIV-1) can lead to novel strains and recombinant forms emerging quickly. Un-

supervised data exploration tools can help address this problem. To demon-

strate, we take the set of all whole genomes from the LANL database and

produce a MoDMap, visualizing their interrelationships, based on the Man-

hattan distance matrix obtained by computing all pairs of k-mer proportion

vectors (see Methods section), for 9 different pure subtypes or groups (Figure

3.2), and just subtypes A, B, and C (Figure 3.3). As can be seen, based on

these distances, the points in the plots are grouped according to known sub-

types, and indeed it can be seen that subtypes A1 and A6 group together, and

as well B and D group together, as could be expected.

Figure 3.2: MoDMap of 4373 full-length HIV-1 genomes of 9 different
pure subtypes or groups, at k = 6.
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Figure 3.3: MoDMap of 4124 full-length HIV-1 genomes of subtypes
A, B, and C, at k = 6.

Synthetic data has been useful in the study of viral species such as HIV-

1, because a ground-truth classification is known for synthetic sequences with-

out ambiguity. However, one may wonder how well such synthetic sequences

model natural ones. We attempt to measure this by training a classifier on

natural and synthetic HIV-1 sequence data – if natural and synthetic sequences

cannot be distinguished, one may conclude that the simulation is realistic. For

the ‘natural’ class we use the set of all pol genes from the LANL database, and

for the ‘synthetic’ class we use 1500 synthetic pol genes produced as detailed

previously, and we perform a 10-fold cross-validation at k = 6 and with the

linear SVM classifier. We obtain an accuracy of 100%, meaning that the clas-

sifier can distinguish natural from synthetic sequences with perfect accuracy.

This suggests that synthetic sequence data should be used with caution, since

this result indicates it may not be perfectly representative of natural sequence

data – specifically, our result suggests there is some characteristic of the syn-
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thetic sequences which differs from the natural sequences, which our method is

able to recognize and use. We explore this further by generating a MoDMap,

as seen in Figure 3.4. Interestingly, even though our supervised classifiers

succeeded to discriminate between real and synthetic sequences with an accu-

racy of 100%, the approach using distances between k-mer proportion vectors

results in the natural and synthetic sequences of specific subtypes grouping to-

gether, indicating that the synthetic sequences have some features that relate

them to the corresponding natural sequences of the same subtype.

Figure 3.4: MoDMap of 9270 natural HIV-1 pol genes vs. 1500 syn-
thetically generated HIV-1 pol genes of various subtypes. The same
plot is colored on the left by type (natural and synthetic) and on the right by
HIV-1 subtype.

3.4 Discussion

The k-mer based supervised classification method we propose in this

paper has several advantages compared to other popular software packages for

the classification of virus subtypes. First, we have shown on several manually-

curated data sets that k-mer classification can be highly successful for rapid

and accurate HIV-1 subtyping relative to the current state-of-the-art. Fur-

thermore, releasing our method as an open-source software project confers
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significant advantages with respect to data privacy, transparency and repro-

ducibility. Other subtyping algorithms such as REGA [35] and COMET [151]

are usually accessed through a web application, where HIV-1 sequence data

is transmitted over the Internet to be processed on a remote server. This

arrangement is convenient for end-users because there is no requirement for

installing software other than a web browser. However, the act of transmitting

HIV-1 sequence data over a network may present a risk to data privacy and

patient confidentiality – concerns include web applications neglecting to use

encryption protocols such as TLS, or servers becoming compromised by mali-

cious actors. As a concrete example, the webserver hosting the first two major

releases of the REGA subtyping algorithm [35] was recently compromised by

an unauthorized user (last access attempt on November 27, 2017). In con-

trast, our implementation is available as a standalone program, without any

need to transmit sequence data to an external server, eliminating those issues.

In addition, our implementation is released under a permissive open-source

license (MIT). In contrast, REGA [129] and COMET [151] are proprietary

‘closed-source’ software, making it impossible to determine exactly how sub-

type predictions are being generated from the input sequences.

Relying on a remote web server to process HIV-1 sequence data makes

it difficult to determine which version of the software has been used to generate

subtype classifications, and by extension difficult to guarantee that classifica-

tion results can be reproduced. There is growing recognition that tracking the

provenance (origin) of bioinformatic analytical outputs is a necessary compo-

nent of clinical practice. For example, the College of American Pathologists

recently amended laboratory guidelines on next-generation sequence (NGS)

data processing to require that: “the specific version(s) of the bioinformatics

pipeline for clinical testing using NGS data files are traceable for each patient
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report” [8]. In contrast to other tools, our standalone package makes it easy

to use exactly the desired version of the software and thus enables precise

reproducibility.

We now discuss some limitations of our approach. Like many machine

learning approaches, our method does not provide an accessible explanation

as to why a DNA sequence is classified a certain way, compared to a more

traditional alignment-based method. In some sense, the classifiers act more

as a black box, without providing a rationale for their results. Another issue

is our requirement for a sizable, clean set of training data. As opposed to

an alignment-based method that could function with even a single curated

reference genome per class, machine learning requires several examples per

training class, as discussed previously, to properly train. Finally, one issue

common to any HIV-1 subtyping tool is the fact that recombination and rapid

sequence divergence can make subtyping difficult, especially in cases where

the recombinant form was not known at the time of training. Other tools are

capable of giving a result of ‘no match’ to handle ambiguous cases, but our

method always reports results from the classes used for training.

To more clearly demonstrate this last issue, we generate a random

sequence of length 10,000 with equal occurrence probabilities for A, C, G,

and T, and we ask the five subtyping tools evaluated in our study to predict

its HIV-1 subtype. As expected, REGA gives a result of ‘unassigned’ and

SCUEAL reports a failure to align with the reference. Our tool reports subtype

‘U’ with 100% confidence, CASTOR predicts HIV-1 group ‘O’ with 100%

confidence, and COMET reports SIVCPZ (simian immunodeficiency virus from

chimpanzee) with 100% confidence. These outcomes are consistent with the

disproportionately large genetic distances that separate HIV-1 group O and

SIVCPZ from HIV-1 group M – a line drawn from a random point in sequence
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space is more likely to intersect the branch relating either of these distant

taxa to group M. Similarly, branches leading to subtype U sequences tend to

be longer and to intersect the HIV-1 group M tree at a basal location2. This

artificial example implies that real HIV-1 sequences that do not readily fit

into any of the defined subtypes or circulating recombinant forms may result

in incorrect predictions with misleadingly high confidence scores.

In spite of these limitations, our method not only matches or improves

upon current HIV-1 subtyping algorithms, but it should also be broadly ap-

plicable to any DNA sequence classification problem, including other virus

subtyping problems. To demonstrate this, we use the same method (with k

set to 6 and a linear SVM classifier) and 10-fold cross-validation to measure the

accuracies for classifying dengue, hepatitis B, hepatitis C, and influenza type

A virus full-length genomes (described in the Datasets section) to their re-

spective reference subtypes. Overall, we obtain accuracies of 100% for dengue

virus, 95.81% for hepatitis B virus, 100% for hepatitis C virus, and 96.68% for

influenza A virus. We also provide a MoDMap visualization of the subtypes of

hepatitis B, as seen in Figure 3.5. This plot displays not only clear separation

between subtypes but also structure within subtypes A and B, which would

be an interesting target for future study.

2HIV-1 subtype U does not comprise a distinct clade. Rather, the LANL database
labels sequences as ‘U’ when they belong to a lineage not meeting the criteria required
for a designation as a subtype [139]. However, practical but anecdotal experience suggests
subtype U sequences are typically basal.
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Figure 3.5: MoDMap of 5164 whole hepatitis B genomes of 6 different
pure subtypes.

In all the experiments presented above, we use whole assembled genomes

or gene sequences. However, next-generation sequencing (NGS) technolo-

gies produce as output short reads, often of length 150 to 300 base pairs,

and computationally-intensive assembly is required to produce contiguous se-

quences. Usefully, our method works equally well on short reads, without any

requirement for assembly. To validate this, we begin with the full set of whole

HIV-1 genomes from the LANL database, and we assume a read length of

150 bp. Recall that the average genome length for this dataset is 8970 bp, so

each sequence contains about 60 reads’ worth of data, on average. For each

sequence, we select 60 random positions, take the subsequence of length 150

bp starting at each position, and concatenate these 60 subsequences to form

a new sequence – in this way, we simulate the process of a DNA sequencer.

Then, we repeat the same 10-fold cross-validation at k = 6 and with the
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linear SVM classifier as before, but with this new set of “stitched-together”

sequences. We obtain an accuracy of 96.46% (compared to an accuracy of

96.49% with the original sequences), demonstrating the applicability of our

method to unassembled read data. We also rerun the same experiment but

using fewer samples per sequence, with the results shown in Figure 3.6. As

can be seen, fewer samples give lower accuracy but good performance is still

achieved even with a low degree of coverage of the original sequence.

Figure 3.6: Classification accuracy scores for the HIV-1 simulated
NGS read experiment, with different numbers of samples per se-
quence (each sample of length 150 bp).
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Because of the exponential growth of sequence databases, modern bioin-

formatics tools increasingly must be capable of handling NGS sequence data

and must be scalable enough to manage huge sets of data. As well, researchers

often demand the privacy, security, and reproducibility characteristics an open-

source, standalone, offline tool such as ours provides. However, there remain

several areas for future work. Although our tool matches or exceeds the clas-

sification speed of the competing state-of-the-art, performance optimization

was not a focus of this study and we believe there is room to substantially
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improve running time even further. Similarly, although we match or exceed

the classification accuracy of the competing state-of-the-art, different modern

machine learning methods such as GeneVec [7] or deep neural networks may

permit us to achieve even higher accuracy on challenging datasets. As well,

given the rapid rate of mutation of many viruses, it would be highly useful

for our tool to be capable of giving a result of ‘no match’ with its training

data. Each of these possibilities could make our method and software even

more useful in the future.
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Taxonomic classification of

genomic sequences:

demonstrating generality

4.1 Taxonomic classification

We have demonstrated that our method is highly successful in viral

subtyping, particularly of HIV-1, but our results in this study will demon-

strate its potential to be applicable to a variety of different genomic sequence

classification tasks. For our next set of experiments, we turn our attention to

the problem of taxonomic classification. For this task, we wish to assign a se-

quence to the phylogenetic group of the organism it belongs to – for example,

we may wish to determine whether a sequence from an unknown vertebrate

belongs to one of the classes of subphylum Vertebrata, such as Amphibia, Aves,

Mammalia, or Reptilia. A solution to this problem may help researchers deter-

mine the taxonomic classification of a newly discovered organism, or to resolve

controversial phylogenetic assignments.

41
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We wish to demonstrate that our method is able to solve the taxonomic

classification problem across as much of the spectrum of genomic diversity as

possible. For this reason, we evaluate our method on a total of 28 datasets

related to taxonomic classification, including whole genomes from a variety of

sources: mitochondrial, nuclear, plastid, plasmid, and viral; and taxonomic

groupings at every level from kingdom down to family.

We obtain mitochondrial sequences from the National Center for Biotech-

nology Information (NCBI) RefSeq sequence database release version 81, plas-

tid sequences from NCBI RefSeq release version 82, plasmid sequences from

NCBI RefSeq release version 83, nucleoid genomes from the NCBI genomes

browser at https://www.ncbi.nlm.nih.gov/genome/browse/ with a level of

‘complete’ or ‘chromosome’, and viral genomes from the NCBI Nucleotide

database with query "txid10239"[Organism:exp] AND ("complete

genome"[Title] OR "complete sequence"[Title]) NOT "miRNA"[Title]

NOT "long terminal repeat"[Title] NOT "ltr"[Title] NOT

"contig"[Title] NOT "spacer"[Title] NOT "pseudogene"[Title] NOT

"genes"[Title] NOT "gene"[Title] NOT "segment"[Title] NOT

"partial"[Title] NOT "cds"[Title] NOT "except"[Title] NOT

"region"[Title] NOT "incomplete"[Title]. In the case of nucleoid genomes

with multiple chromosomes, we concatenate all chromosomes to produce a sin-

gle genome sequence. We select 28 subsets of these sequences as shown in Ta-

ble 4.1; Table 4.2 additionally shows the number of sequences and number of

classes for each dataset. As discussed in the previous chapter, machine learn-

ing models are unable to ‘learn’ unless given a sufficient quantity of training

data, and to this end every dataset was constructed so that every class had a

minimum of 10 elements.

Since we use cross-validation to measure accuracy on these datasets, it

https://www.ncbi.nlm.nih.gov/genome/browse/
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is necessary to ensure no duplication exists between the training and testing

partitions. This may occur if a dataset has many sequences of the same species

– in this case, we may be testing our model on sequences highly similar to

sequences used for training, which would unfairly inflate accuracy. We use the

RefSeq sequence databases to avoid this case, because RefSeq databases are

curated to contain at most one representative sequence for any species.
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Table 4.1: Descriptions of datasets used for taxonomic classification
experiments on whole genomes.

Name Description

genomes-nuclear/5kingdoms Nucleoid genomes, split into 5 of the 6 kingdoms: an-
imals, archaea, bacteria, fungi, and plants

genomes-nuclear/archaea Archaeal nucleoid genomes, split into 3 phyla

genomes-nuclear/bacteria Bacterial nucleoid genomes, split into 4 phyla

genomes-nuclear/proteobacteria Proteobacterial nucleoid genomes, split into 5 classes

genomes-nuclear/fungi Fungal nucleoid genomes, split into 3 phyla or sub-
phyla

genomes-nuclear/plants Plant nucleoid genomes, split into 2 clades

genomes-nuclear/vertebrates Vertebrate genomes into birds, fish, and mammals

mtdna/amphibians Amphibian mitochondrial genomes, split into 3 orders

mtdna/fungi Fungal mitochondrial genomes, split into 3 phyla or
subphyla

mtdna/

insects-mammals-amphibians

Animal mitochondrial genomes, split into insects,
mammals, and amphibians

mtdna/insects Insect mitochondrial genomes, split into 7 orders or
superorders

mtdna/mammals Mammal mitochondrial genomes, split into 8 orders
or superorders

mtdna/

plants-animals-fungi-protists

Eukaryote mitochondrial genomes, split into plants,
animals, fungi, and protists

mtdna/plants Plant mitochondrial genomes, split into 2 clades

mtdna/primates Primate mitochondrial genomes, split into 2 subor-
ders

mtdna/protists Protist mitochondrial genomes, split into 3 super-
phyla

mtdna/vertebrates Vertebrate mitochondrial genomes, split into amphib-
ians, birds, fish, mammals, and reptiles

plasmids/bacteria Bacterial plasmid genomes, split into into 4 phyla

plasmids/proteobacteria Protobacterial plasmid genomes, split into into 3
classes

plastids/plants Plant plastid genomes, split into into 5 clades

plastids/protists Protist plastid genomes, split into into 3 superphyla

viruses/dsDNA Genomes from double-stranded DNA virus with no
RNA stage, split into 6 families

viruses/groups Viral genomes, split into 6 groups from the Baltimore
virus classification

viruses/retrotranscribing Retrotranscribing virus genomes, split into 6 families

viruses/satellites Satellite virus genomes, split into 6 families

viruses/ssDNA ssDNA virus genomes, split into 4 families

viruses/ssRNAnegative ssRNA negative-strand virus genomes, split into 4
families

viruses/ssRNApositive ssRNA positive-strand virus genomes, split into 7
families
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Table 4.2: Statistics for datasets used for taxonomic classification
experiments on whole genomes.

Name # of classes # of sequences

genomes-nuclear/5kingdoms 5 3362
genomes-nuclear/archaea 3 209
genomes-nuclear/bacteria 4 2500
genomes-nuclear/proteobacteria 5 1350
genomes-nuclear/fungi 3 71
genomes-nuclear/plants 2 66
genomes-nuclear/vertebrates 3 57
mtdna/amphibians 3 290
mtdna/fungi 3 226
mtdna/insects-mammals-amphibians 3 2170
mtdna/insects 7 898
mtdna/mammals 8 830
mtdna/plants-animals-fungi-protists 4 7385
mtdna/plants 2 254
mtdna/primates 2 148
mtdna/protists 3 160
mtdna/vertebrates 5 4327
plasmids/bacteria 4 8664
plasmids/proteobacteria 3 4691
plastids/plants 5 1208
plastids/protists 3 126
viruses/dsDNA 6 6630
viruses/groups 6 50112
viruses/retrotranscribing 2 9946
viruses/satellites 2 1574
viruses/ssDNA 4 7927
viruses/ssRNAnegative 4 3460
viruses/ssRNApositive 7 16650

Each of these datasets and others found in this chapter are available on-

line at https://github.com/stephensolis/kameris-experiments; on the

same page can also be found step-by-step instructions for the reproduction of

every experiment presented here.

Again following the example of the previous chapter, we perform 10-fold

cross-validation on each of these datasets, at k = 6 and with the linear SVM

https://github.com/stephensolis/kameris-experiments
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classifier, in order to measure performance. In all cases, we obtain extremely

high accuracy scores, as shown in Table 4.3.

Table 4.3: Classification accuracy results for taxonomic classification
experiments.

Name Classification accuracy

genomes-nuclear/5kingdoms 97.08%
genomes-nuclear/archaea 97.14%
genomes-nuclear/bacteria 98.72%
genomes-nuclear/proteobacteria 96.96%
genomes-nuclear/fungi 94.46%
genomes-nuclear/plants 92.86%
genomes-nuclear/vertebrates 98.33%
mtdna/amphibians 100%
mtdna/fungi 96.46%
mtdna/insects-mammals-amphibians 100%
mtdna/insects 98.89%
mtdna/mammals 99.76%
mtdna/plants-animals-fungi-protists 99.54%
mtdna/plants 96.45%
mtdna/primates 100%
mtdna/protists 98.75%
mtdna/vertebrates 99.95%
plasmids/bacteria 97.67%
plasmids/proteobacteria 97.17%
plastids/plants 99.42%
plastids/protists 96.92%
viruses/dsDNA 99.50%
viruses/groups 96.37%
viruses/retrotranscribing 100%
viruses/satellites 100%
viruses/ssDNA 98.74%
viruses/ssRNAnegative 99.55%
viruses/ssRNApositive 98.54%

However, these accuracy scores could be even higher. Double-stranded

DNA molecules can have either their sense or antisense strand sequenced, and

by convention, all sequences in the NCBI RefSeq database should be of the

sense strand [133]. k-mer count vectors are clearly different for a sequence
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and its reverse complement, so if a classifier were trained on sequences of

one sense and tested on a sequence of the opposite sense, one would not ex-

pect the classifier to be capable of making an accurate prediction. In fact,

we have evidence this occurs: in the mtdna/vertebrates dataset, we have

an accuracy score of 99.95%, and only 3 sequences were misclassified, namely

Serinus canaria (NCBI ID NC 023375.1), Channa micropeltes (NC 030542.1),

and Sinibotia reevesae (NC 030322.1). For each of these sequences, we find

another sequence in the dataset from the same genus, and we compute the

Manhattan distance from its k-mer proportion vector to both the original se-

quence and its reverse complement, and find a much lower distance to the

reverse complement for all 3 cases. This suggests those genomes were mistak-

enly included in their antisense form rather than the sense form like the rest

of the dataset. When we re-run the experiment with those sequences replaced

with their reverse complement, we obtain a classification accuracy of 100%.

More generally, we observe that our method does not gracefully handle

the case of a reverse-complemented sequence, which can be an issue for some

datasets. Some other k-mer counting-based solutions solve the problem by

concatenating every sequence with its reverse complement before computing

counts, but more research is needed to determine whether accuracy could be

impacted by doing so.

We may also generate MoDMap plots for these datasets, which re-

veals one of the limitations of MoDMaps. In the previous chapter, we propose

MoDMaps as an unsupervised data exploration tool, and we demonstrate cases

where they are successful in showing known relationships between viral sub-

types. Similarly, for some of these datasets, MoDMaps do a good job in de-

picting class relationships, for instance with the primate suborders in Figure

4.1. However, for other datasets, the MoDMap does not show much structure,
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for instance with the virus groups in Figure 4.2, even though classification

accuracy is over 96% for those data. It is important to note that a ‘messy’

MoDMap does not imply poor classification performance.

Figure 4.1: MoDMap of whole primate mitochondrial genomes, split
into suborders, at k = 6.

Figure 4.2: MoDMap of whole viral genomes, split into groups, at
k = 6.
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Ours is not the only k-mer-based software capable of performing tax-

onomic classification, and a different one is Logic Alignment Free (LAF) of

Weitschek et al. [167]. Essentially, LAF works by generating a list of small if-

then rules capable of determining whether a sequence belongs to a class of data

– an example of such a rule would be (f(ACGT ) > 0.15)∧ (f(GGCT ) < 0.6).

As part of their work, the LAF authors benchmark their algorithm on 9 parti-

tionings of a dataset of 1964 whole bacterial genomes, so we perform a head-to-

head comparison using Kameris. The class splitting performed by the LAF

authors was done by taxonomic level, and they additionally produce ‘filtered’

and ‘not filtered’ versions of the same datasets where the ‘filtered’ versions

omit any genomes belonging to species with fewer than 9 other specimens in

the dataset: there are 413 genomes in the filtered sets. We use k = 4 to match

the settings used with LAF and use the linear SVM classifier, and we obtain

accuracy scores listed in Table 4.4. As can be seen, we outperform LAF in 8 of

the 9 datasets, in some cases by as much as 5%. This demonstrates Kameris

is competitive with the state-of-the-art in the task of taxonomic classification.

Table 4.4: Classification accuracy and dataset statistics of Kameris
vs. LAF on datasets of whole bacterial genomes.

Dataset Classification accuracy
Kameris LAF

25 species, filtered 99.76% 97.61%
21 genera, filtered 100% 98.79%
14 orders, filtered 100% 99.27%
9 classes, filtered 100% 98.79%
6 phyla, filtered 99.75% 98.78%
590 genera, not filtered 71.28% 73.04%
120 orders, not filtered 87.02% 85.68%
57 classes, not filtered 90.17% 89.10%
36 phyla, not filtered 91.17% 86.08%
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4.2 Transcriptome data

In the previous chapter, we provide some evidence to suggest Kameris

does not require contiguous, assembled sequence data, and it works almost

equally well when ‘stitching together’ short sequence fragments. This capa-

bility is highly applicable to dealing with reads from next-generation sequenc-

ing (NGS) technologies without having the requirement to first assemble the

sequences. To provide further evidence, we perform some more ‘stitching to-

gether’ experiments, this time with datasets of messenger RNA (mRNA) tran-

scriptome data. As opposed to a full genome, the transcriptome comprises only

that part of an organism’s genetic information transcribed to RNA by RNA

polymerase.

Specifically, we consider two sources of data: first, the data from the

Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) [90].

This is a collection of 678 transcriptomes of abundant and ecologically signif-

icant microbial eukaryotes from the oceans, assembled at the gene level. A

key goal of the MMETSP project was to build a dataset representative of the

organisms in a typical environmental sample. Within this dataset, every gene

is given in two forms: ‘nt’ which is the whole mRNA transcript, and ‘cds’

which is only the portion of the transcript translated by a ribosome. As well,

we work with the data from the 1000 Plants (1KPlants) project [109]. Despite

the name, this is a collection of 1314 transcriptomes from species of kingdom

Plantae. Assembly is again done to the gene level, and sequences are of whole

mRNA transcripts.

We again want to perform taxonomic classification, so we begin by par-

titioning the MMETSP data 6 ways, into groups given by different taxonomic

levels – from high-level to low: 6 superphyla, 10 phyla, 15 classes, 22 orders, 19
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families, and 18 genera. For each transcriptome, we construct a single sample

sequence by randomly selecting genes and concatenating them until the total

sample length is greater than some variable threshold. We again perform 10-

fold cross-validation with k = 6 and the linear SVM classifier, with the results

shown in Table 4.5. We observe that even 50 kbp of sequence data suffice to

accurately classify transcriptomes on taxonomic groups, with more data giving

more accurate results. Further, we see that the whole-transcript (‘nt’) dataset

gives generally lower accuracy than the coding-region (‘cds’) dataset, suggest-

ing that the non-coding region of a mRNA transcript is in fact not useful for

taxonomic classification.

Table 4.5: Classification accuracy results for classification of the
MMETSP transcriptomes, with different lengths of random sam-
ples. ‘nt’ denotes whole-transcript data and ‘cds’ denotes coding-region-only
data.

Dataset Classification accuracy
10 kbp sample 50 kbp sample 500 kbp sample

6 superphyla, ‘nt’ 79.87% 88.57% 92.59%
6 superphyla, ‘cds’ 82.93% 90.98% 93.23%
10 phyla, ‘nt’ 81.17% 93.54% 93.73%
10 phyla, ‘cds’ 84.58% 92.47% 95.88%
15 classes, ‘nt’ 78.20% 90.86% 93.59%
15 classes, ‘cds’ 82.11% 92.03% 94.56%
22 orders, ‘nt’ 67.27% 89.58% 93.65%
22 orders, ‘cds’ 72.57% 90.35% 93.67%
19 families, ‘nt’ 76.53% 93.08% 95.48%
19 families, ‘cds’ 78.30% 95.17% 95.18%
18 genera, ‘nt’ 69.03% 93.33% 97.19%
18 genera, ‘cds’ 75.02% 92.63% 96.82%

We repeat the exact same experiment again but this time after parti-

tioning the 1KPlants data 3 ways, also into groups given by different taxonomic

levels – from high-level to low: 15 clades, 27 orders, and 28 families, with the

results shown in Table 4.6. Interestingly, we note that the difference in classi-
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fication accuracy between amounts of sampling is much more pronounced for

the 1KPlants data versus the MMETSP data – since land plants tend to have

fairly large genomes, this result may suggest that their genomes have a lower

signal-to-noise ratio in terms of taxonomic classification.

Table 4.6: Classification accuracy results for taxonomic classification
of the 1,000 Plants Project transcriptomes, with different lengths of
random samples.

Dataset Classification accuracy
10 kbp samples 50 kbp samples 500 kbp samples

15 clades 61.04% 80.59% 93.56%
27 orders 54.69% 75.00% 89.74%
28 families 58.47% 85.89% 96.98%

As mentioned, supervised classifiers typically perform better if given

more training data. To test this, we repeat the same experiment, with the

whole-transcript datasets and 50 kbp samples, but take multiple samples per

transcriptome. Since this would increase the number of points per class, this

may make it easier for the classifier to learn the classes, increasing accuracy. In

order to avoid concerns of overfitting, we ensure all samples from a particular

organism are placed in the same cross-validation group. Results can be seen

in Table 4.7. We observe that the accuracy obtained by 5 samples of length 50

kbp is about the same as, but slightly lower than, that of 1 sample of length

500 kbp. Further, we do not see an improvement in performance beyond

5 samples per transcriptome. This suggests that, at least for this dataset,

training a model on multiple samples per organism does not improve accuracy

compared to a single longer sample.
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Table 4.7: Classification accuracy results for taxonomic classification
of MMETSP transcriptomes, with samples of length 50 kbp and
different numbers of samples per transcriptome.

Taxonomic level Classification accuracy
1 sample 5 samples 10 samples

6 superphyla 88.57% 90.82% 90.95%
10 phyla 93.54% 94.29% 93.93%
15 classes 90.86% 93.66% 93.23%
22 orders 89.58% 94.06% 92.81%
19 families 93.08% 95.05% 95.36%
18 genera 93.33% 96.62% 96.62%

Overall, these results are particularly surprising since every sequence

given to the classifier is composed of sequence data randomly sampled from dif-

ferent parts of each genome. Using an alignment-based technique here would

be impossible, since there is no common data to be aligned – each sample is of a

different set of genes. The fact that classification performance is high suggests

that k-mer bias patterns persist and are preserved across the entire transcrip-

tome, with a strong enough signal to allow accurate taxonomic classification

of samples as short as 10 kbp.

There are other interesting transcriptome datasets which could be ex-

plored – for instance, NCBI GenBank has a collection of tens of thousands of

vertebrate transcriptomes. Also, in order to add still more support to the idea

of randomly sampling genomes, it may be interesting to reproduce the tax-

onomic classification experiments from the previous section while randomly

sampling and ‘stitching together’ all genomes in the same way as was done

with the HIV-1 sequences. Even more interesting would be to determine clas-

sification accuracy for datasets taken from the NCBI Sequence Read Archive

(SRA), which is a collection of real NGS read data. In this work, we inten-

tionally avoided using real read data because there are some important data

cleanup steps needed before such data would be usable – low-quality, low-
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entropy (for example, ATATAT...), and duplicated (multiple reads of almost

exactly the same region) reads would need to be filtered out to avoid adding

noise to the classifier. By using only data which has been at least partially

assembled, we allow the assembly pipeline to perform these cleanup steps for

us. In the future, we could add functionality to Kameris to support read

filtering directly.

4.3 Intra-species classification

So far, we have demonstrated success on the tasks of viral subtyping and

taxonomic classification, with very high accuracy. We have demonstrated we

can even classify accurately after randomly sampling the genomes or sequences

being classified. Here, we present further results on classifying sets of sequences

of the same species, and demonstrate how Kameris still performs very well.

First, we consider human mitochondrial DNA. In humans, mitochon-

drial DNA does not undergo genetic recombination, and is inherited solely

through the mother’s side. Thus, mitochondrial DNA can be used to iden-

tify maternal lineage, and the human matrilinear line has been organized into

haplogroups, identified by a letter sometimes followed by letters and numbers.

Every haplogroup is defined by a panel of specific single-nucleotide polymor-

phisms (SNPs) at specific positions of the mitochondrial genome – typically,

these panels have about 20 positions. Although SNP panels are used for hap-

logroup determination, they are not necessarily the only mutations between

genomes of different haplogroups. Indeed, since a single point mutation may

only change the proportions of at most 2k−1 surrounding k-mers, it is unlikely

that such a small number of SNPs would, on its own, result in enough infor-

mation for use in classification. Our method only looks at substrings of length
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k, so we capture no information about the position of a mutation beyond its

surrounding window of size k − 1.

We consider the set of whole human mitochondrial genomes, partitioned

by haplogroup from the MitoMap project [107]. Since this dataset has just

under 28,000 sequences, and in order to avoid issues with class size imbalance,

we omit any haplogroup classes with fewer than 100 examples. This gives

66 different haplogroup classes and 23 classes of top-level haplogroups (that

is, considering only the first letter of the haplogroup name). As before, we

perform a 10-fold cross-validation with k = 6 and the linear SVM classifier,

and we obtain a classification accuracy of 98.43% with the haplogroup classes

and 99.55% with the top-level haplogroups. This result demonstrates that, al-

though haplogroups are defined by a few tens of SNPs, they must also exhibit

overall k-mer proportion biases, which our classifier is able to recognize and

use. As mentioned, if overall k-mer biases would not exist, we would have in-

sufficient information to accurately distinguish haplogroups with our method.

More work is needed to further investigate such biases, and to determine a

biological explanation for them.

Some diseases are similar to haplogroups in that they are linked to a

specific set of SNPs. For example, congenital lactose intolerance in humans

is linked to a single point mutation in chromosome 2. In this work, we do

not explore the possibility of using Kameris to diagnose genetic disease, but

given this result, such a study may prove to be fruitful.

In order to further explore the idea of ‘unexpected’ k-mer proportion

biases allowing better classification, we consider again the set of influenza virus

genomes from Chapter , but this time considering genomic regions rather than

whole genomes. Influenza virus genomes are divided into 8 distinct segments:

in order, these are PB2, PB1, PA, HA, NP, NA, MP, and NS. Subtypes of
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influenza are determined by a code ‘H?N?’ where the ‘?’ are numbers, and

this code represents a classification based on the HA and NA genomic regions.

The remaining regions should not be relevant for the purpose of influenza

virus subtyping, since subtype assignment is not done using those regions at

all. However, in the same way as our result with human mitochondrial DNA

haplogroups, we predict training a subtype classifier using regions other than

HA and NA may in fact work.

We test this by taking the set of influenza genomes from Chapter 2,

and for every genome, we extract each of the 8 segments in turn, and split the

set of genomes both into subtypes (H?N?), HA-only subtype (H?), and NA-

only subtype (N?). We perform a 10-fold cross-validation on each set, with

results in Table 4.8 – for comparison, accuracy for the full subtype using the

full genome was 96.68%. As can be seen, we confirm our hypothesis that the

‘irrelevant’ regions in fact do have the ability to predict subtypes. Although

the accuracy scores for those regions are lower than those for the HA and

NA regions, they are fairly significant, and in the same way as the human

haplogroup experiment, this result suggests that there are some influenza-

genome-wide k-mer proportion biases which the classifier is able to recognize

and use.
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Table 4.8: Classification accuracy results for subtyping of segments
of influenza genomes, for full subtypes (H?N?), HA subtype (H?),
and NA subtype (N?).

Segment Classification accuracy
Full subtype HA subtype NA subtype

PB2 79.57% 78.16% 77.20%
PB1 79.90% 78.41% 77.53%
PA 79.32% 78.44% 76.73%
HA 90.51% 97.45% 87.62%
NP 78.82% 77.92% 76.06%
NA 89.83% 87.31% 97.57%
MP 78.19% 78.14% 76.17%
NS 77.52% 77.58% 75.67%

4.4 Conclusions

In this chapter, we demonstrate Kameris is highly successful in classi-

fying genomic sequences by taxonomic group. We show very high classification

accuracy scores for 28 different datasets composed of whole mitochondrial, nu-

clear, plastid, plasmid, and viral genomes for taxonomic groupings at every

level from kingdom down to genus. This is in contrast with previous studies

in this space, which typically test methods with one or a small number of

datasets, typically of one type of genome and one or few taxonomic levels. We

perform a head-to-head comparison with Logic Alignment Free (LAF), a com-

peting tool, and find we exceed its classification accuracy on several datasets

of whole bacterial genomes.

We further classify with high accuracy randomly sampled transcrip-

tomes of marine microbes and plants by taxonomic group, human mitochon-

drial genomes into haplogroups, and partial influenza genomes into subtypes.

These results all suggest the presence of genome-wide k-mer proportion biases,

which certainly deserves further study.
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Conclusions and Future Work

In this work, we present a remarkably simple, supervised, alignment-

free method for sequence classification based on k-mer counting, and we im-

plement the method in a fully standalone, easy to use, open-source software

package called Kameris.

We comprehensively demonstrate its general applicability and flexibil-

ity by computing its accuracy in the subtyping of HIV-1, dengue, influenza A,

hepatitis B, and hepatitis C virus genomes in Chapter 3; the taxonomic clas-

sification of whole mitochondrial, nuclear, plastid, plasmid, and viral genomes

in Section 4.1, and sampled marine eukaryote and plant transcriptomes in Sec-

tion 4.2, into taxonomic groupings at every level from kingdom down to genus;

and the determination of human haplogroups from mitochondrial genomes in

Section 4.3. We show how accurate classification remains possible even when

using only the pol gene region of the HIV-1 genome, or only a single seg-

ment of the influenza virus genome. We perform head-to-head comparisons

with competing state-of-the-art software in the tasks of HIV-1 subtyping and

taxonomic classification of whole bacterial genomes, and show that we match

or exceed all competitors in accuracy and speed. Further, we demonstrate

58
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the applicability of our method to NGS read data by showing it is accurate

even when using randomly sampled HIV-1 genomes and marine eukaryote and

plant transcriptomes, and study the amount of sequence data needed to obtain

accurate classification.

However, we identify a number of important limitations. As opposed

to, for example, sequence alignment, our classifier algorithms generally act as

a black box and do not provide an accessible explanation as to why a sequence

is classified in a certain way. As well, the classifier algorithms we use require

a sizable, clean set of training data. Further, we have no ability to provide a

‘no match’ result in case the given sequence does not match any training set

classes.

There exist some means by which we may try to gain some insights

into classification rationale, so as to peek inside the ‘black box’. One tech-

nique is recursive feature elimination (RFE) [58] – essentially, it works by

training a classifier capable of assigning weights to features, eliminating the

least-weighted features, and repeating until there are no more features. In

this way, it is able to estimate the relative ‘importance’ of each feature, and

thus identify the specific k-mers which are particularly relevant for a particular

classification task. We apply the RFE algorithm to the mtdna/vertebrates

taxonomic classification dataset from the previous chapter, using the linear

SVM classifier and k = 5, and without performing dimensionality reduction

on the k-mer vectors. k = 5 was chosen for ease of plotting. We show the

results by wrapping the 1024-element vector into a 32x32 square, as shown in

Figure 5.2 – the elements of the square are ordered as in Chaos Game Repre-

sentation plots, described in [76]. More specifically, the order is recursive by

quadrant of the square, as shown in Figure 5.1. For example, the small square

at the top left of the figure represents the 5-mer CCCCC. Each square in the
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figure represents the importance of a particular k-mer, with values being rel-

ative importance, that is, two squares with value 200 and 400 would indicate

the first corresponding k-mer being half as important as the other. We find

some k-mers identified as important but more research is needed to determine

whether the k-mers identified as important have any biological relevance. Fea-

ture importance is not necessarily limited to single k-mers, but correlations

or interdependence between k-mers may be relevant as well and also deserves

study.

Figure 5.1: Diagram of k-mers in a Chaos Game Representation plot.
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Figure 5.2: Plot of RFE-determined k-mer importance values, for
mtdna/vertebrates using the linear SVM classifier at k = 5. Each
square in the figure represents the importance of a particular k-mer, with
values being relative importance (two squares with value 200 and 400 would
indicate the first corresponding k-mer being half as important as the second).
The 1024-element vector is wrapped into a 32x32 square for ease of display.
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As well, although we do not support a ‘no match’ result, it is inter-

esting to consider cases where data is ‘between’ two classes in some sense.

This has particular relevance to synthetic biology, where sequence data may

be mixed from multiple species. For this, we require a classifier capable

of outputting confidence scores, so we use the logistic regression classifier.

We begin with the human mitochondrial genome, and we progressively re-

place the first N base pairs of the genome with the first N base pairs of

the A.thaliana mitochondrial genome. We train a logistic regression classifier

on the mtdna/plants-animals-fungi-protists dataset (with plant, animal,

fungi, and protist classes), and show the confidence scores for the classes in
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Figure 5.3. We see that the classifier is indeed able to infer a mix of classes, and

we see the predictions cross over exactly when replacing half of the sequence.

In a similar way, it is interesting to consider the resilience of our method to

mutational events – specifically, how many point mutations may be introduced

to a sequence before our model loses the ability to accurately classify it; this

has implications for the real-world use of our method and deserves further

research.

Figure 5.3: Plot of confidence score of different classes for sequences
composed of different proportions of the human and A.thaliana mi-
tochondrial genomes, using a classifier trained on plants, animals,
fungi, and protists. Sequences are constructed by replacing the first N base
pairs of the human mitochondrial genome with the first N base pairs of the
A.thaliana mitochondrial genome, with N given on the x-axis. ‘Other’ means
any class other than animal or plant.
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There are a few other potential avenues of research. Given the demon-

strated generality of this method, it may be interesting to try an application

to protein classification – however this would require careful attention to the

construction of k-mer vectors, since using the protein alphabet directly would

result in an exponential growth of vector length, which may make training

intractable. It would also be interesting to look in more detail at the datasets,
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such as plant nuclear DNA, which performed more poorly than others: there

may be some interesting biological reasons for it. Also, there were some as-

sumptions we made without quantitative evidence, which may not have been

justified: we can assess how small training classes may be before classifica-

tion becomes impossible rather than arbitrarily selecting minimum class sizes;

whether our selection of k = 6 remains optimal for datasets other than HIV-1

genomes, and if not, how the optimal value of k changes; whether raw reads

may be classified accurately without performing low-quality, low-entropy, and

redundancy filtering; and whether we can use our method to diagnose genetic

diseases. Regarding genetic diseases specifically, it is known that some dis-

eases, such as some forms of cancer, cause systemic mutations across a whole

genomic region – our method may be able to use this to make accurate predic-

tions. As well, since computational performance was not a focus of this study,

relatively large speed improvements may be easy to obtain. Any of directions

could help make Kameris even more general and useful.
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First, visit https://github.com/stephensolis/kameris and follow
the instructions for installing Kameris. It is highly recommended you also
work through the demo instructions on the same page, to understand how the
software works.

10-fold cross-validation on the full set of full-length HIV-1 genomes

Run kameris run-job https://raw.githubusercontent.com/stephensolis/

kameris-experiments/master/experiments/hiv1/lanl-whole.yml https:

//raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.

yml

10-fold cross-validation on the full set of HIV-1 pol genes

Run kameris run-job https://raw.githubusercontent.com/stephensolis/

kameris-experiments/master/experiments/hiv1/lanl-pol.yml https://

raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.

yml

Classification of the HIV-1 benchmark dataset

1. Run kameris run-job https://raw.githubusercontent.com/stephensolis/

kameris-experiments/master/experiments/hiv1/lanl-reference-model.

yml https://raw.githubusercontent.com/stephensolis/kameris/master/

demo/settings.yml to train the model.

2. Download
https://drive.google.com/uc?export=download&id=0B7OX388vZjTva1NNYXh5WEM2Z28

and extract the mixed-polfragments folder.

3. Run kameris classify output/lanl-reference-model/subtype-k=

6/model_linear-svm.mm-model "path to the mixed-polfragments folder"

4. Compare the output stored in results.json with the ground-truth
subtypes from https://raw.githubusercontent.com/stephensolis/

kameris-experiments/master/metadata/hiv1-mixed-polfragments.

json.

10-fold cross-validation on the synthetic-vs-natural HIV-1 pol genes

Run kameris run-job https://raw.githubusercontent.com/stephensolis/

kameris-experiments/master/experiments/hiv1/real-vs-synthetic.yml

https://github.com/stephensolis/kameris
https://raw.githubusercontent.com/stephensolis/kameris-experiments/master/metadata/hiv1-mixed-polfragments.json
https://raw.githubusercontent.com/stephensolis/kameris-experiments/master/metadata/hiv1-mixed-polfragments.json
https://raw.githubusercontent.com/stephensolis/kameris-experiments/master/metadata/hiv1-mixed-polfragments.json
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https://raw.githubusercontent.com/stephensolis/kameris/master/demo/

settings.yml

Classification of randomly-generated sequence

1. Follow steps 1-2 from Classification of the HIV-1 benchmark dataset.

2. Generate a random sequence, for example using http://www.faculty.

ucr.edu/~mmaduro/random.htm, save it to a file, and put the file in a
new folder by itself.

3. Run kameris classify output/lanl-reference-model/subtype-k=

6/model_linear-svm.mm-model "path to the folder you created"

10-fold cross-validation on the set of whole dengue virus genomes

Run kameris run-job https://raw.githubusercontent.com/stephensolis/

kameris-experiments/master/experiments/dengue/ncbi-whole.yml https:

//raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.

yml

10-fold cross-validation on the set of whole hepatitis B genomes

Run kameris run-job https://raw.githubusercontent.com/stephensolis/

kameris-experiments/master/experiments/hepatitis/hbv-whole.yml https:

//raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.

yml

10-fold cross-validation on the set of whole hepatitis C genomes

Run kameris run-job https://raw.githubusercontent.com/stephensolis/

kameris-experiments/master/experiments/hepatitis/hcv-whole.yml https:

//raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.

yml

10-fold cross-validation on the set of whole influenza A genomes

Run kameris run-job https://raw.githubusercontent.com/stephensolis/

kameris-experiments/master/experiments/flu/ncbi-whole.yml https://

raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.

yml

http://www.faculty.ucr.edu/~mmaduro/random.htm
http://www.faculty.ucr.edu/~mmaduro/random.htm
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Whole HIV-1 genomes

Subtype Recombinant?

01B Yes

01BC Yes

01 AE Yes

02A1 Yes

02 AG Yes

07 BC Yes

08 BC Yes

11 cpx Yes

35 AD Yes

A1 No

A1C Yes

A1CD Yes

A1D Yes

A6 No

B No

BC Yes

BF Yes

BF1 Yes

C No

CD Yes

D No

F1 No

G No

O No

U No
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Full set of HIV-1 pol genes

Subtype Recombinant?

0107 Yes

01B Yes

01BC Yes

01 AE Yes

02A1 Yes

02 AG Yes

07 BC Yes

08 BC Yes

11 cpx Yes

35 AD Yes

A1 No

A1C Yes

A1CD Yes

A1D Yes

A6 No

B No

BC Yes

BF Yes

BF1 Yes

C No

CD Yes

D No

F1 No

G No

O No

U No
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HIV-1 pol genes from the 2010 LANL Web alignment

Subtype Recombinant?

01B Yes

01 AE Yes

02 AG Yes

A1 No

A1C Yes

A1D Yes

B No

BC Yes

BF Yes

BF1 Yes

C No

D No

F1 No

G No

O No

Whole dengue virus genomes

Subtype

1

2

3

4
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Whole hepatitis B genomes

Subtype Recombinant?

A No

B No

C No

D No

E No

F No

G No

H No

RF-BC Yes

RF-CB Yes

RF-DC Yes

RF-DE Yes

Whole hepatitis C genomes

Subtype

1a

1b

2a

2b

3a

6a
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Whole influenza A genomes

Subtype Subtype

H1N1 H6N6

H1N2 H6N8

H1N3 H7N1

H1N6 H7N2

H1N9 H7N3

H2N1 H7N4

H2N2 H7N6

H2N3 H7N7

H2N7 H7N9

H2N9 H8N4

H3N1 H9N2

H3N2 H10N1

H3N3 H10N3

H3N6 H10N4

H3N8 H10N5

H4N2 H10N6

H4N6 H10N7

H4N8 H10N8

H4N9 H11N1

H5N1 H11N2

H5N2 H11N3

H5N3 H11N9

H5N5 H12N5

H5N6 H13N2

H5N8 H13N6

H6N1 H13N8

H6N2 H16N3

H6N5 mixed
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