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Abstract

Supervised classification of genomic sequences is a challenging, well-studied
problem with a variety of important applications. We propose an open-source,
supervised, alignment-free, highly general method for sequence classification
that operates on k-mer proportions of DNA sequences. This method was
implemented in a fully standalone general-purpose software package called
KAMERIS, publicly available under a permissive open-source license. Com-
pared to competing software, ours provides key advantages in terms of data
security and privacy, transparency, and reproducibility. We perform a de-
tailed study of its accuracy and performance on a wide variety of classification
tasks, including virus subtyping, taxonomic classification, and human hap-
logroup assignment. We demonstrate the success of our method on whole
mitochondrial, nuclear, plastid, plasmid, and viral genomes, as well as ran-
domly sampled eukaryote genomes and transcriptomes. Further, we perform
head-to-head evaluations on the tasks of HIV-1 virus subtyping and bacterial
taxonomic classification with a number of competing state-of-the-art software
solutions, and show that we match or exceed all other tested software in terms

of accuracy and speed.

Keywords: sequence classification; machine learning; alignment-free; k-mers;

virus subtyping; comparative genomics; open-source
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Chapter 1

Introduction

The sequence classification problem may be stated as follows: given a
set of genomic sequences (in this work, DNA or RNA sequences) partitioned
into some known groups, and a sequence not in the known set, predict which
group the new sequence belongs to. This is an important problem in the field
of bioinformatics because several well-studied, more specific problems are in-
stances of this one: for example, the virus subtyping problem, where we wish
to assign a viral sequence to its subtype, or the tazonomic classification prob-
lem, where we wish to determine the phylogenetic group of an organism given
some of its genomic sequence data, or the haplogroup identification problem,
where we assign a human mitochondrial sequence to its haplogroup, allowing

the identification of its maternal lineage.

A tremendous variety of methods have been applied to this problem,
including both alignment-based and alignment-free methods. Our goal is to
develop an even better, more efficient, more accurate method than the state-
of-the-art, which we achieve by proposing, in this work, a remarkably simple
but extremely general method. It works by first taking a DNA sequence and

computing a vector of the proportions of every possible k-mer (that is, every
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length-k substring). These vectors are used as feature vectors, and well-known

supervised classification algorithms are trained on the vectors.

We develop an open-source, easy-to-use, standalone software imple-
mentation of our method, which we call KAMERIS, available at https://
github.com/stephensolis/kameris, including easy-to-follow setup and use
instructions. As a standalone application, we avoid the need for researchers
to transmit sequence data to a remote server, eliminating privacy and security
concerns. Further, as an open-source application, researchers have full visibil-
ity into the implementation of the algorithm, and can reproduce results at any
time with a copy of a previous version of the software, which is not possible

with an opaque server-based solution.

One goal of this work was straightforward reproducibility of results, and
to that end, every experiment presented here can be easily reproduced by fol-
lowing the step-by-step instructions at https://github.com/stephensolis/
kameris-experiments. On the same page, every sequence and its metadata
from every dataset referenced here is available as well, to aid in future work

building on our results.

We curate and use a large variety of datasets to validate the perfor-
mance of our method, and we compute its accuracy on a variety of tasks. In
Chapter (which is a version of our paper “An open-source k-mer based machine
learning tool for fast and accurate subtyping of HIV-1 genomes”, accepted for
publication in PLoS One), we focus on the virus subtyping problem, demon-
strating our performance on the classification of HIV-1, dengue, influenza A,
hepatitis B, and hepatitis C virus genomes; in addition to working with whole
genomes, we demonstrate we maintain high accuracy even when working with
just the HIV-1 pol gene and also with randomly sampled HIV-1 genomes. Fur-

ther, we perform a head-to-head comparison with four competing state-of-the-
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art HIV-1 subtyping tools, namely CASTOR, COMET, SCUEAL, and REGA,
and show that we match or exceed all in terms of accuracy and speed. In Chap-
ter 4, we go on to consider the taxonomic classification of whole mitochondrial,
nuclear, plastid, plasmid, and viral genomes, and randomly sampled marine
eukaryote and plant transcriptomes, into taxonomic groupings at every level
from kingdom down to genus; and the determination of human haplogroups
from whole mitochondrial genomes. We again perform a head-to-head compar-
ison with a competing tool called LAF on the taxonomic classification of whole
bacterial genomes, and demonstrate a higher classification accuracy. In total,
across all datasets and experiments, we use about 470,000 unique sequences

comprising a total length of over 276 Gbp of sequence data.

We conclude by discussing possible extensions to the current work, in-
cluding a method for identifying particularly important k-mers from the per-
spective of classification, an application to the detection of ‘mixed’ or chimeric
sequences, and even more challenging tasks such as the classification of unfil-
tered next-generation sequencing (NGS) read data and the diagnosis of genetic

disease.



Chapter 2

Literature review

2.1 Biological background

Earth has a great diversity of living organisms. For thousands of years,
people have sought to categorize these organisms and explore the relationships
between them. In modern use, from most broad to most specific, organisms
are principally organized into the ranks of kingdom, phylum or division, class,
order, family, genus, and species. Species can be further subdivided — for

instance, humans are divided by common ancestry into haplogroups.

In the days before genomics and molecular biology, scientists took a
morphological approach, performing categorization by comparing the form
and structural features of organisms. Nowadays, however, scientists use in-
formation from the DNA of organisms to do this, and many methods have
been proposed for doing so, ranging from DNA barcoding [64], to sequence

alignment, to a wide variety of alignment-free methods.

DNA (deoxyribonucleic acid) is a long stranded molecule which can

be viewed as a string on a four letter alphabet: A, C, G, T, where each letter

4
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represents one of the four basic constituent molecules collectively known as
nucleotides: cytosine (C), guanine (G), adenine (A), and thymine (T). DNA
may exist in either a single-stranded or double-stranded form — when double-
stranded, each type of nucleotide binds with its complementary pair on the
opposite strand: A pairs with T and C with G. As well, the two strands of
DNA run in opposite directions to each other, so the sequences of each strand
are reverse complements of each other. DNA may be present in several parts of
a cell. For cells with a nucleus or nucleoid, the majority of its genome is located
there. Most eukaryotes have further genetic material in their mitochondria,
as do plants, algae, and some other eukaryotes in their plastids, and bacteria
in plasmid molecules. In Section 4.1, we explore sequence classification using

genetic information from each of these regions.

Within an organism, DNA encodes information on how to assemble
proteins. Proteins, large molecules consisting of long chains of amino acids,
are an essential part of every organism and are responsible for a wide range of
functions within a cell. The central dogma of molecular biology, first described
by Crick [29], describes how this encoding works: first, DNA is processed and
spliced into mRNA (messenger RNA) molecules in a process called transcrip-
tion; then, mRNA is translated into proteins by the ribosome. Sequences of
DNA or RNA which code for a specific protein are known as genes, and the
specific portion of the gene directly processed by the ribosome is called the
coding region or CDS (coding sequence) of the gene. The set of all DNA in
an organism is called its genome, the set of all RNA produced during tran-
scription is called the transcriptome, and the set of all coding regions from all
genes is called the exome. In Section 4.1, we explore sequence classification
using transcriptome and exome data, and how its performance compares with

genome data.
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In order to use DNA for sequence classification, it is first necessary
to read or sequence it, that is, to determine the order of nucleotides on the
DNA strand. Generally, it is not known how to read more than a few tens
of thousands of nucleotides at a time, so in order to sequence a long DNA
molecule (such as a chromosome), it is necessary to first break the DNA up
into small pieces, read each piece independently, and then use software to
stitch the pieces together based on overlapping fragments in a process known
as sequence assembly. Depending on the sequencing technology being used, it
may be possible to read longer or shorter fragments; so-called next-generation
or high-throughput sequencing methods are able to lower sequencing costs
and increase sequencing speed by reading shorter fragments, usually of a few
hundred nucleotides, and parallelizing the sequencing process, producing thou-
sands or millions of sequences concurrently. However, shorter, more numerous
sequence fragments make sequence assembly more computationally expensive
due to the larger amount of data to be processed. For this reason, it is useful
to have sequence classification methods which do not depend on alignment,

and we explore this use-case in Sections 3.4 and 4.3.

2.2 Alignment-based methods

Alignment-based methods, broadly, are any methods based on search-
ing for base-to-base correspondences in two or more sequences [182]. These
methods measure sequence similarity by computing a score based on the num-
ber of matches and mismatches between sequences — in this way, they may
compute the class of a given query sequence by locating the most similar se-
quence in the known set. There have been many alignment-based tools devel-

oped, including single-sequence aligners such as BLAST [6] and FASTA [102],
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and multiple-sequence aligners such as ClustalW [159] and MUSCLE [42].

Since alignment-based tools can report the exact regions of high simi-
larity between a pair of sequences, their output is highly relevant to researchers
and can be used to study functional, structural, or evolutionary relationships
between sequences [110]. On the other hand, alignment-free methods, broadly
defined as any which do not compute base-to-base correspondences, are of-
ten capable of only producing a single similarity score between sequences as
output. But their tradeoffs are very attractive for many applications: they
are much more efficient than alignment in terms of running time and memory
requirements — this is especially relevant when dealing with large datasets,
like those generated by next-generation sequencing (NGS) applications; and
alignment assumes the sequences being compared contain stretches of well-
conserved and common regions, which is an assumption often violated in re-
ality, for example when studying viral genomes with a high rate of mutation

or comparing sequences from entirely different parts of the tree of life.

2.3 Alignment-free methods

In recent years, a great breadth of alignment-free sequence comparison
methods have been proposed. Among these are the conditional Lempel-Ziv
complexity as studied in [4, 9, 10, 73, 100, 103, 119, 166], the closely re-
lated and more general conditional Kolmogorov complexity [45, 93], the ‘mea-
sure representation’ as proposed in [178, 179], comparisons between Markov
models [25, 127], average lengths of maximum common substrings [97, 162],
estimates of substitutions or mismatches per site as pioneered by Haubold
et al. [39, 61, 62, 63], the ‘base-base correlation’ [104, 105], and distances

based on Hasse matrices [161], spectral distortion [126], primitive discrimina-
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tion substrings [44], the Burrows-Wheeler similarity [174], normalized central
moments [36], nearest-neighbor interactions [181], subword composition [28],
prefix codes [38], information correlation [51], the context-object model [176],

spaced word frequencies [70, 98], and many more.

Some of these and others have been applied to sequence classification
specifically, including methods based on nucleotide correlations [106] or se-
quence composition (e.g. COMET [151] and [177]); on restriction enzyme site
distributions, applied to the subtyping of human papillomavirus (HPV), hep-
atitis B virus (HBV) and HIV-1 (CASTOR [137]); based on the ‘natural vec-
tor which contains information on the number and distribution of nucleotides
in the sequence, applied to the classification of single-segmented [177] and
multi-segmented [72] whole viral genomes, as well as viral proteomes [101];
based on neural networks using digital signal processing techniques to yield
‘genomic cepstral coefficient’ features, applied to distinguishing four different
pathogenic viruses [3]; based on different genomic materials (namely DNA se-
quences, protein sequences, and functional domains) with information based
on protein clustering and functional domains, applied to the classification of

some viral species at the order, family, and genus levels [165].

2.4 k-mer-based methods

One particular class of methods for alignment-free sequence compar-
ison well-represented in the literature are those based on the frequencies of

substrings of length k& (known as k-mers or k-words).

Blaisdell was the first to use such methods, reporting success in con-
structing accurate phylogenetic trees for mammal alpha and beta-globin genes [15]

and several other coding and non-coding DNA sequences [14]. Many au-
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thors [11, 12, 22, 37, 52, 84, 85, 88, 89] have studied k-mer bias patterns
and found that the excess and scarcity of specific k-mers, across a variety of
different DNA sequence types (including viral DNA in [22]), can be explained
by factors such as physical DNA/RNA structure, mutational events, and some
prokaryotic and eukaryotic repair and correction systems. In addition, Karlin
et al. found that k-mer proportions can play the role of a genomic signature
— that is, a specific quantitative characteristic of a sequence that is pervasive
along the genome of the same organism, while being dissimilar for sequences
originating from different organisms. These two findings give intuition and jus-
tification as to why the information in k-mer occurrence patterns is suitable

as a classifiable feature.

Typically, k-mer frequency or proportion vectors are paired together
with a distance function in order to give a method capable of measuring the
quantitative similarity of any pair of sequences. Common choices of distance
include the Manhattan distance originally proposed by Burge et al. [22], as
seen e.g. in [16, 17, 23, 53, 77, 83, 87, 88, 121, 132, 153]; the weighted or
standardized Euclidean distance, as seen e.g. in [26, 33, 65, 92, 123, 145, 171,
172, 175]; and the Jensen-Shannon distance proposed by Sims et al. [148],
as seen e.g. in [147, 148, 164, 170]. These distances and others have been
compared and benchmarked in [31, 32, 57, 60, 68, 69, 75, 81, 173], and detailed

reviews of the literature can be found in [18, 86, 116, 144, 149, 163, 182].

k-mer frequency or proportion vectors have been used to perform super-
vised classification, albeit often with relatively small datasets. For instance,
these vectors have been used to subtype influenza and classify polyoma and
rhinovirus fragments [46], to predict HPV genotypes [154, 155], to classify
whole bacterial genomes to their corresponding taxonomic groups at different

levels [167], to classify whole eukaryotic mitochondrial genomes [112, 113, 114,



10 CHAPTER 2. LITERATURE REVIEW

115], to classify 27 microbial nuclear DNA sequences [132], to automatically
learn a distance function for classifying a set of 1076 microbial genomes [123],
to classify hundreds of thousands of short (less than 10,000 base pairs long)
prokaryote sequences into different phylogenetic groups [1, 2, 108], to distin-
guish very short samples of the F.coli and yeast genomes [124], to classify short
bacterial genome fragments from 28 species [142], to classify longer bacterial
genome fragments from 118 species [158], to classify some archaeal and bacte-
rial classes [41], and to classify short splicing-related sequence fragments [117,

128].

2.5 Our approach

KAMERIS is a supervised classification method based on k-mer propor-
tion vectors. In this study and as opposed to other studies described, we do
not use just one or a small number of datasets but dozens of datasets covering
a large breadth and depth of genomic sequence data. This allows us to give
more evidence and be more confident of our performance and accuracy on
a wide range of highly biologically-relevant classification tasks, which is not

often done with other algorithms and methods.

KAMERIS is fully open-source with all code available on GitHub at the
following URL: https://github.com/stephensolis/kameris, is standalone
and easy to run on any local computer, and is available to all users under
a permissive open-source license. This is as opposed to other tools, some
of which are closed-source and available only as a web interface or are sold
under a commercial license for non-academic users. The fact that KAMERIS
is standalone makes it possible for researchers to save and reproduce results

with a precise version of the software, and to avoid sending potentially sensitive
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data to a remote web server. Further, our open-source implementation makes
it easy for researchers to see all technical details of our method, making our tool
highly transparent. Those benefits do not come at the expense of classification
accuracy, however, since we perform head-to-head evaluations on the tasks of
HIV-1 virus subtyping and bacterial taxonomic classification with a number
of competing state-of-the-art software solutions, and show that we match or

exceed all other tested software in terms of accuracy and speed.

KAMERIS is very flexible and every experiment presented in this work
can be reproduced by following the step-by-step instructions at https://
github.com/stephensolis/kameris-experiments. KAMERIS permits the
user to specify their choice of classification algorithm, value of k, cross-validation
and dimentionality reduction parameters as described in Chapter 3 when train-

ing a model.

Finally, as will be seen in the following chapter, our method is remark-
ably simple, relying only on the counting of k-mers and well-known supervised
classification algorithms. This is as opposed to other much more complex
methods, some of which use complex distance functions or correlation metrics
and often deep domain-specific biological knowledge — our method is simpler

and more computationally efficient than some others without loss of accuracy.
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Chapter 3

An open-source k-mer based
machine learning tool for fast

and accurate subtyping of

HIV-1 genomes!

3.1 Introduction

Subtype classification is an important and challenging problem in the
field of virology. Subtypes (also termed clades or genotypes) are a fundamental
unit of virus nomenclature (taxonomy) within a defined species, where each
subtype corresponds to a cluster of genetic similarity among isolates from the
global population. Defined subtype references for hepatitis C virus, for exam-
ple, can diverge by as much as 30% of the nucleotide genome sequence [146],

but there is no consistent threshold among virus species. Many virus subtypes

LA version of this chapter was accepted for publication in PLoS One (S. Solis-Reyes, M.
Avino, A. Poon, and L. Kari)

12
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are clinically significant because of their associations with variation in patho-
genesis, rates of disease progression, and susceptibility to drug treatments and
vaccines [156]. For example, the HIV-1 subtypes originated early in the history
of the global pandemic [169] and have diverged by about 15% of the nucleotide
genome sequence [78]. Rates of disease progression vary significantly among
HIV-1 subtypes and classifying newly diagnosed infections by their genetic
similarity to curated reference subtypes [139] is a recommended component
for the clinical management of HIV-1 infection [27, 67]. Consequently, a num-
ber of algorithms have been developed for the automated determination of

HIV-1 subtypes from genetic sequence data [129, 130, 151].

Today, there are important practical considerations that HIV-1 subtyp-

ing algorithms should meet. These include:

1. High Accuracy and Performance: The cost of sequencing is rapidly
decreasing and the amount of sequence data increasing due to next-
generation sequencing (NGS) technologies. Thus, in addition to being
accurate, software must be computationally fast and scalable in order to

handle rapidly growing datasets.

2. Data Security and Privacy: Policy, legal, and regulatory issues can
prohibit patient sequence data from being transmitted to an external
server on the Internet. In addition, concerns around privacy policies
and the possibility of data breaches can cause issues for researchers and
clinicians. For these reasons, software should be made available in an

offline, standalone version.

3. Transparency: With closed-source or proprietary software, it can be
impossible to determine precisely how classification determinations are

made. An open-source implementation gives full visibility into all aspects
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of the classification process.

4. Reproducibility: Relying on an externally-hosted service can make it
impossible to determine which version of the software has been used to
generate subtype classifications. This makes it difficult to guarantee that
classification results can be reproduced, and reproducibility is generally

recognized as a necessary component of clinical practice.

In our effort to develop a general sequence classification method satisfying the
above considerations, we propose a simple, intuitive, general-purpose, highly-
efficient technique based on k-mer proportion vectors for supervised nucleotide
sequence classification, and we release an open-source software implementation

of this method (designated KAMERIS) under a permissive open-source license.

3.1.1 Alignment-free subtyping

Most subtype classification methods for HIV-1 require the alignment of
the input sequence against a set of predefined subtype reference sequences [95],
which enables the algorithm to compare homologous sequence features [40, 50,
143]. For example, the NCBI genotyping tool [140] computes BLAST simi-
larity scores against the reference set for sliding windows along the query
sequence. Other methods such as REGA [129] and SCUEAL [130] reconstruct
maximum likelihood phylogenies from the aligned sequences: REGA (ver-
sion 3.0) reconstructs trees from sliding windows of 400 bp from the sequence
alignment and quantifies the confidence in placement of the query sequence
within subtypes by bootstrap sampling (bootscanning) [141]. Alignment-
based methods are relatively computationally expensive, especially for long
sequences; the heuristic methods require a number of ad hoc settings, such

as the penalty for opening a gap; and alignment method may not perform
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well on highly-divergent regions of the genome. To address these limitations,
various alignment-free classification methods have been proposed. Some of
them make use of nucleotide correlations [106], or sequence composition (e.g.
COMET [151] and [177]). Other methods include those based on restric-
tion enzyme site distributions, applied to the subtyping of human papillo-
mavirus (HPV), hepatitis B virus (HBV) and HIV-1 (CASTOR [137]); based
on the “natural vector” which contains information on the number and dis-
tribution of nucleotides in the sequence, applied to the classification of single-
segmented [177] and multi-segmented [72] whole viral genomes, as well as viral
proteomes [101]; based on neural networks using digital signal processing tech-
niques to yield “genomic cepstral coefficient” features, applied to distinguish-
ing four different pathogenic viruses [3]; and based on different genomic ma-
terials (namely DNA sequences, protein sequences, and functional domains),
applied to the classification of some viral species at the order, family, and

genus levels [165].

3.1.2 k-mer-based classifiers

The use of k-mer (substrings of length k) frequencies for phylogenetic
applications started with Blaisdell, who reported success in constructing accu-
rate phylogenetic trees from several coding and non-coding nuclear genomes
sequences [14] and some mammalian alpha and beta-globin genes [15]. Other
authors [22, 52, 84, 88, 89] have observed that the excess and scarcity of specific
k-mers, across a variety of different DNA sequence types (including viral DNA
in [22]), can be explained by factors such as physical DNA/RNA structure,
mutational events, and some prokaryotic and eukaryotic repair and correction
systems. Typically, k-mer frequency or proportion vectors are paired together

with a distance function in order to measure the quantitative similarity be-
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tween any pair of sequences. Studies measuring quantitative similarity between
DNA sequences from different sources have been performed, for instance using
the Manhattan distance [23, 87], the weighted or standardized Euclidean dis-
tance [145, 172], and the Jensen-Shannon distance [147, 148]. Applications of
these distances and others have been compared and benchmarked in [32, 60,
81, 173], and detailed reviews of the literature can be found in [18, 116, 163,

182).

In the context of viral phylogenetics, k-mer frequency or proportion
vectors paired with a distance metric have been used to construct pairwise dis-
tance matrices and derive phylogenetic trees, e.g., dsSDNA eukaryotic viruses [170],
or fragments from Flaviviridae genomes [92]. Other studies have investigated
the multifractal properties of k-mer patterns in HIV-1 genomes [120], and
the changes in dinucleotide frequencies in the HIV genome across different
years [121]. We used k-mer proportion vectors to train supervised classifi-
cation algorithms. Similar approaches have previously been explored (with
different classifiers than those used here), for example to subtype Influenza
and classify Polyoma and Rhinovirus fragments [46], to predict HPV geno-
types [154, 155], to classify whole bacterial genomes to their corresponding
taxonomic groups at different levels [167], and to classify whole eukaryotic

mitochondrial genomes [112, 113, 114, 115].

To evaluate our method, we curated manually-validated testing sets of
‘real-world” HIV-1 data sets. We assessed fifteen classification algorithms and
conclude that for these data the SVM-based classifiers, multilayer perceptron,
and logistic regression achieved the highest accuracy, with the SVM-based
classifiers also achieving the lowest running time out of those. We measured

classification accuracy and running time for k-mers of length £ = 1...10
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and found that k£ = 6 provides the optimal balance of accuracy and speed.
Overall, our open-source method obtains a classification accuracy average of
97%, with individual accuracies equal to or exceeding other subtyping methods
for most datasets, and processes over 1,500 sequences per second. Our method
is also applicable to other virus datasets without modification: we demonstrate
classification accuracies of over 90% in all cases for full-length genome data

sets of dengue, hepatitis B, hepatitis C, and influenza A viruses.

3.2 Methods

3.2.1 Swupervised classification

First, we needed to determine which supervised classification method
would be the most effective for classifying virus sequences, using their re-
spective k-mer proportions as feature vectors (numerical representations). We
trained each of 15 classifiers (Table 3.2) on a set S = {s1,s9,...5,} of nu-
cleotide sequences partitioned into groups gi, g2, ..., gp. Given as input any
new, previously unseen, sequence (i.e., not in the dataset S), the method
outputs a prediction of the group g; that the sequence belongs to, having
‘learned’ from the training set S the correspondence between the k-mer pro-
portions of training sequences and their groups. The feature vector Fy(s) for
an input sequence s was constructed from the number of occurrences of all 4%
possible k-mers (given the nucleotide alphabet {A, C,G,T}), divided by the
total length of s. Any ambiguous nucleotide codes (e.g., ‘N’ for completely
ambiguous nucleotides) were removed from s before computing Fj(s). As a
concrete example, suppose s = ACTCAGGCA and k = 2. Then, if we use
the arbitrary order [AA, AC, AG, AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,
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TC, TG, TT] for 2-mers, the k-mer frequency vector for sis [0,1,1,0,2,0,0, 1,0,
1,1,0,0,1,0,0] and thus Fg(s) = [0,0.125,0.125,0,0.25,0,0,0.125, 0, 0.125,
0.125,0,0,0.125, 0, 0].

Next, we processed the feature vectors Fy(s) for more efficient use by
classifiers. We rescaled the vectors to have a variance of 1, which satisfies
some statistical assumptions invoked by several classification methods. In ad-
dition, we performed dimensionality reduction using truncated singular value
decomposition [54] to reduce the vectors to 10% of the average number of non-
zero entries of the feature vectors. This greatly reduces running time for most

classifiers while having a negligible effect on classification accuracy.

Finally, we trained a supervised classifier on the vectors Fj(s). Su-
pervised classifiers, in general, can be intuitively thought of as construct-
ing a mapping from the input feature space to another space which in some
sense effectively separates each training class. As a concrete example, the
support vector machine (SVM) classifier maps the input space to another
space of equal or higher dimensionality using a kernel function, and then se-
lects hyperplanes that represent the largest separation between every pair of
classes. Those hyperplanes induce a partition on the transformed space which
is then used for the classification of new items. We tested fifteen different
specific classifier algorithms: 10-nearest-neighbors [5] with Euclidean metric
(10-nearest-neighbors); nearest centroid, to class mean (nearest-centroid-mean)
and to class median (nearest-centroid-median) [160]; logistic regression
with L2 regularization and one-vs-rest as the multiclass generalization
(logistic-regression) [13]; SVM with the linear (linear-svm), quadratic
(quadratic-svm), and cubic (cubic-svm) kernel functions [30]; SVM with
stochastic gradient descent learning and linear kernel function (sgd) [180]; deci-

sion tree with Gini impurity metric (decision-tree) [21]; random forest using
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decision trees with Gini impurity metric as sub-estimators (random-forest) [20];
AdaBoost with decision trees as the weak learners and the SAMME.R real
boosting algorithm (adaboost) [48, 59]; Gaussian naive Bayes
(gaussian-naive-bayes) [24]; linear (1da) and quadratic (qda) discriminant
analysis [49]; and multi-layer perceptron with a 100-neuron hidden layer, recti-
fied linear unit (ReLU) activation function, and the Adam stochastic gradient-
based weight optimizer (multilayer-perceptron) [66, 91]. We used the im-
plementations of these classifiers in the Python library scikit-learn [125]

with the default settings.

For some of the results that follow, we required a method for measur-
ing classification accuracy without the need for a separate testing dataset. To
do so, we used 10-fold cross-validation, a technique widely used for assess-
ing the performance of supervised classifiers [136]. N-fold cross-validation is
performed by taking the given dataset and randomly partitioning it into N
groups of equal size. Taking each group in turn, we trained a classifier on the
sequences outside of the selected group, and then computed its accuracy from
predicting the classes of the sequences in the selected group. The outcome
of the cross-validation are N accuracy values for the N distinct, independent
training and testing runs. We report the arithmetic mean of those accuracies

as the final accuracy measure.
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3.2.2 Unsupervised visualization

Supervised classification requires, by definition, a training set consist-
ing of examples of classes determined a priori. However, one may wish to
explore a dataset where the groups are not necessarily all known. For the
problem of virus subtyping for example, one may suspect the existence of a
novel subtype or recombinant. To this end, unsupervised data exploration
techniques are useful, and herein we also explore the use of Molecular Dis-
tance Maps (MoDMaps), previously described in [80, 81, 82|, for this purpose.
After computing the vectors Fj(s), this method proceeds by first constructing
a pairwise distance matrix. In this paper, we use the well-known Manhattan
distance [94], defined between two vectors A = (aq,...a,) and B = (by,...b,)
as being:

dy(A,B) = |a; — by
=1

Next, the distance matrix is visualized by classical MultiDimensional Scaling
(MDS) [19]. MDS takes as input a pairwise distance matrix and produces as
output a 2D or 3D plot, called a MoDMap [79], wherein each point represents a
different sequence, and the distances between points approximate the distances
from the input distance matrix. As MoDMaps are constrained to two or three
dimensions, it is in general not possible for the distances in the 2D or 3D plot
to match exactly the distances in the distance matrix, but MDS attempts to

make the difference as small as possible.

3.2.3 Implementation

We have developed a software package called KAMERIS which imple-

ments our method. It can be obtained from https://github.com/stephensolis/
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kameris, and may be used on Windows, macOS, and Linux. KAMERIS is im-
plemented in Python, with the feature vector computation parts implemented
in C++ for performance. It is packaged so as to have no external dependencies,
and thus is easy to run. The package has three different modes: first, it can
train one or more classifiers on a dataset and evaluate cross-validation perfor-
mance; second, it can summarize training jobs, computing summary statistics
and generating MDS plots; and third, it can classify new sequences on already-
trained models. More information, including usage and setup instructions,
can be found at https://github.com/stephensolis/kameris. All running
time benchmarks of our software were performed on an Amazon Web Services
(AWS) r4.8xlarge instance with 16 physical cores (32 threads) of a 2.3GHz Intel
Xeon E5-2686 v4 processor. We also note that many of the implementations of
the classifier algorithms we use are single-threaded and that performance can
almost certainly be substantially improved by using parallelized implementa-

tions.

3.2.4 Datasets

In this paper, a variety of different datasets were used to validate the
performance of the method. Straightforward reproducibility of results was a
priority in the design of this study, and to that end, every sequence and its
metadata from every dataset referenced here can be retrieved from our GitHub
repository at https://github.com/stephensolis/kameris-experiments.
Further, instructions for using KAMERIS to replicate the experiment results

are available in Appendix A.

In some cases, these datasets had few examples for some classes. Train-

ing on classes with very few examples would unfairly lower accuracy since the
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classifier does not have enough information to learn, so we wish to omit such
classes from our analysis. However, the minimum number of examples per
class to achieve proper training of a classifier is difficult to estimate; this num-
ber is known to be dependent on both the complexity of the feature vectors
and characteristics of the classifier algorithm being used [74, 135]. Since we
vary both k and the classifier algorithms in this study, this makes it especially
challenging to empirically determine an adequate minimum class size. Here,
we arbitrarily selected 18 as our minimum, so we omitted from analysis any
subtype with fewer than 18 sequences. It may be that specific values of k and
some classifier algorithms work well in scenarios with very small datasets, and

we leave this as an open question.

Primary dataset

The primary dataset used was the full set of HIV-1 genomes avail-
able from the Los Alamos (LANL) sequence database, accessible at https:
//www.hiv.lanl.gov/components/sequence/HIV/search/search.html. In
this database, the option exists of using full or partial sequences — in our anal-
ysis, we consider both full genomes and just the coding sequences of the pol
gene. For the set of whole genomes, the query parameters “virus: HIV-1, ge-
nomic region: complete genome, excluding problematic” were used; this gave
a total of 6625 sequences with an average length of 8970 bp. For the set of
pol genes, the query parameters “virus: HIV-1, genomic region: Pol CDS,
excluding problematic” were used; this gave a total of 9270 sequences with an
average length of 3006 bp. In both cases, the query was performed on May
18, 2017, and at the time, the LANL database reported a last update on May
6, 2017. After removing small classes (see preceding section), this dataset

contained 25 subtypes and circulating recombinant forms (CRFs) for the set
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of whole genomes, and 26 for the set of pol genes. The list of subtypes for
this dataset and all other datasets described here are available in Appendix
B. This dataset was used to determine the best value of k., the best classifier
algorithm, to compare the performance of whole genomes with pol gene se-
quences only, and to produce the MoDMaps of HIV-1. In those experiments,
cross-validation was used to randomly draw training and testing sets from the

dataset.

Evaluation datasets

To evaluate classifiers trained on HIV-1 sequences and subtype anno-
tations curated by the LANL database, we needed testing sets but wanted
to avoid selecting them from the same database. We manually searched the
GenBank database for large datasets comprising HIV-1 pol sequences collected
from a region with known history of a predominant subtype, and evaluated
the associated publications to verify the characteristics of the study popula-
tion (Table 3.1). After selection of the datasets, we wished to obtain labels
without relying on another subtyping method. To do so, first we made use of
the known geographic distribution of HIV-1 subtypes, where specific regions
are predominantly affected by one or two particular subtypes or circulating
recombinant forms due to historical ‘founding’ events [157]. Next, we screened
each dataset using a manual phylogenetic subtyping process to verify sub-
type assignments against the standard reference sequences. This was done,
essentially, by reconstructing phylogenetic trees to identify possible subtype
clusters. A cluster was identified as a certain subtype if it included a specific
subtype reference sequence we had initially provided in our datasets. Thus,
the first step was to download the most recent set of subtypes reference se-

quences for the HIV-1 pol gene at the LANL database, accessible at https:
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//www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html [99].

We loaded the resulting FASTA file in the eleven datasets from Table
3.1. We then aligned the datasets with MUSCLE v3.8.425 [42], implemented
in AliView 1.19-beta-3 [96], where we also visually inspected the alignments.
To avoid overfitting, we searched for the nucleotide model of substitution
that was best supported by each dataset using the Akaike Information Cri-
terion (AIC) in jModeltest v2.1.10 [34]. For the dataset US.Wolf2017, the
large number of sequences precluded this model selection process, so we chose
a General Time Reversible model incorporating an invariant sites category
and a gamma distribution to model rate variation among the remaining sites
(GTR+I4G); this parameter-rich model is often supported by large HIV-1
data sets, and was similar to the model selected by the authors in the original
study [168]. Phylogenetic trees were reconstructed by maximum likelihood
using PHYML v20160207 [56] with a related bootstrap support analysis. The
resulting trees were visualized and their relative sequences were manually an-

notated in FigTree v1.4.3 [134].
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Table 3.1: Statistics for the manually curated testing datasets. The
first author, year, and reference number for the publication associated with
each data set is listed under the ‘Source’ column heading. The historically most
prevalent HIV-1 subtype(s) is indicated under the ‘Subtype’ column heading.

Source Country Subtype | Count | Sequence length (nt)
Average | Min. | Max.

Nadai Haiti B 66 1024.0 1024 | 1025
(2009) [111]
Niculescu Romania F 97 1301.2 1257 | 1302
(2015) [118]
Paraschiv Romania F 86 1295.9 1164 | 1299
(2017) [122]
Rhee Thailand CRF01_AE | 282 703.8 633 | 756
(2017) [138]
Sukasem Thailand CRFO1_AE | 221 286.4 270 | 288
(2007) [152]
Eshleman Uganda A/D 102 1261.2 | 1260 | 1302
(2001) [43]
Ssemwanga | Uganda A/D 72 1025.0 | 1025 | 1025
(2012) [150]
Wolf USA B 1653 1020.8 | 868 | 1080
(2017) [168]
TenoRes South Africa | C 102 1001.4 | 921 | 1209
(2016) [55]
van Zyl South Africa | C 59 1056.7 | 1002 | 1070
(2017) [183]
Huang N/A N/A 44 1189.9 1187 | 1190
(2003) [71]

| Overall 2784  [960.4 | 270 | 1302

In order to benchmark performance on this manually curated testing
dataset, we required a separate training dataset. Since the subtype annota-
tions from the full set of HIV-1 genomes in the LANL database are typically
given by individual authors using unknown methods, they may be incorrect at
times, potentially negatively impacting classification performance. Thus, we
trained our classifier on the subset of HIV-1 pol sequences from the 2010 Web
alignment from the LANL database, accessible at https://www.hiv.lanl.

gov/content/sequence/NEWALIGN/align.html. This Web alignment dataset
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is a more curated set of pol sequences, and is more likely to be correctly anno-
tated. Specifically, we selected ‘Web’ as the alignment type, ‘HIV1/SIVcpz’ as
organism, ‘POL’ as ‘Pre-defined region of the genome’ under ‘Region’, ‘All’ as
subtype, ‘DNA’ and ‘2010” as the year. Any Simian Immunodeficiency Virus
(SIV) sequences were manually removed from the query results. This gave a
total of 1979 sequences, containing 15 subtypes or CRFs after removal of small

classes.

Other datasets

For another experiment, we generated a set of synthetic HIV-1 se-
quences by simulating the molecular evolution of sequences derived from the
curated HIV-1 subtype references. To do so, we used a modified version of
the program INDELible [47], assigning one of the subtype reference sequences
to the root of a ‘star’ phylogeny with unit branch lengths and 100 tips. The
codon substitution model parameters, including the transition-transversion
bias parameter and the two-parameter gamma distribution for rate variation
among sites, were calibrated by fitting the same type of model to actual HIV-
1 sequence data [131]. We adjusted the ‘treelength’ simulation parameter to

control the average divergence between sequences at the tips.

Finally, we performed experiments with dengue, influenza A, hepati-
tis B, and hepatitis C virus sequences. The dengue and influenza sequences
were retrieved from the National Center for Biotechnology Information (NCBI)
Virus Variation sequence database on August 10, 2017. The dengue virus se-
quences were accessed from https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/
Database/nph-select.cgi?taxid=12637 with the query options “Nucleotide”,
“Full-length sequences only”, and “Collapse identical sequences” for a to-

tal of 4893 sequences with an average length of 10585 bp. Influenza se-
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quences were accessed from https://www.ncbi.nlm.nih.gov/genomes/FLU/
Database/nph-select.cgi?go=genomeset with the query options “Genome
sets: Complete only”, and “Type: A” for a total of 38215 sequences with an
average length of 13455 bp. Hepatitis B sequences were retrieved from the Hep-
atitis B Virus Database operated by the Institut de Biologie et Chimie des Pro-
teines (IBCP), accessible at https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?
seqtype=0, on August 10, 2017 for a total of 5841 sequences with an average
length of 3201 bp. Finally, hepatitis C sequences were retrieved from the Los
Alamos (LANL) sequence database, accessible at https://hcv.lanl.gov/
components/sequence/HCV/search/searchi.html, on August 10, 2017, us-
ing the query options “Excluding recombinants”, “Excluding ‘no genotype”’,
“Genomic region: complete genome”, and “Excluding problematic” for a to-
tal of 1923 sequences with an average length of 9140 bp. After removal of
small classes, our data comprised 4 subtypes of dengue virus, 12 subtypes of

hepatitis B, 6 subtypes of hepatitis C, and 56 subtypes of influenza type A.

3.3 Results

Our subtype classification method has two main parameters that may
be varied: namely, the specific classifier to be used, and the value k of the
length of the k-mers to count when producing feature vectors. We begin with
the full set of full-length HIV-1 genomes from the LANL database, and we
perform a separate 10-fold cross-validation experiment for each of the fifteen
classifiers listed in the Methods section, and all values of £ from 1 to 10,
that is, 160 independent experiments in total. For each value of k, we plot
the highest accuracy obtained by any classifier as well as the average running

time over the classifiers, see Figure 3.1. We observe that £ = 6 achieves a
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good balance between classifier performance and accuracy, so at k = 6, we
list the accuracy obtained by each classifier and its corresponding running
time, see Table 3.2. As can be seen, the SVM-based classifiers, multilayer
perceptron, and logistic regression achieve the highest accuracy, with the SVM-
based classifiers achieving also the lowest running time out of those.

Figure 3.1: Highest accuracy score and average running time across
all fifteen classifiers, at different values of k, for the full set of 6625
whole HIV-1 genomes from the LANL database.

I I I I I I I I
100 | 02,13 95.24 96,66 96.74 96.39 95.92 95.34 | 14,000
11,054.56 | 12,000
80 | |
— 110,000
= 60
5 13,62 —— Accuracy 18,000
= 3. —e— Running time
S 40f & 16,000
= {4,000
2 . 12,000
ol 420 460 810 991 2151 45.18167.779% 1o

Since it is typical to have only partial genome sequences available, we
repeat the same 10-fold cross-validation at £ = 6, with the linear SVM classi-
fier, this time with the set of all pol genes from the LANL database. We find
that the accuracy changes from 96.49% (full-length genomes) to 95.68% (pol
gene sequences), indicating that the use of partial genomes does not substan-
tially reduce classification performance. Further, we expect that the inclusion
of recombinant forms should lower accuracy, since it requires the classifier to
accurately distinguish them from their constituent ‘pure’ subtypes. To test

this, we repeat the same 10-fold cross-validation at £ = 6 and with the linear

(s) auury Suruuny
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Table 3.2: Accuracy scores and running times for each of the fifteen
classifiers at £ = 6, for the full set of 6625 whole HIV-1 genomes
from the LANL database.

Classifier Accuracy | Running time ‘
cubic-svm 96.66% 44.44s
quadratic-svm 96.59% 44.52s
linear-svm 96.49% 44.23s
multilayer-perceptron 95.49% 53.92s
logistic-regression 95.32% 88.18s
10-nearest-neighbors 93.97% 31.92s
nearest-centroid-median | 93.95% 22.21s
nearest-centroid-mean 93.84% 21.90s
decision-tree 93.53% 49.99s
random-forest 93.07% 31.35s
sgd 91.10% 24.24s
gaussian-naive-bayes 87.75% 22.39s
lda 77.76% 24.46s
qda 75.13% 26.57s
adaboost 64.85% 147.24s

SVM classifier, with the set of all full-length genomes from the LANL database,
this time omitting the 17 classes of recombinant forms and leaving only the
9 classes of pure subtypes. We find that the accuracy increases from 96.49%
(including recombinants) to 99.64% (omitting recombiants), and in fact only

3 sequences are misclassified in the latter case.

The sequences present in the LANL database are curated to be repre-
sentative of global HIV-1 diversity, and therefore high classification accuracies
on that dataset are, to some extent, to be expected. In order to perform
a more challenging benchmark on our algorithm, we compute its accuracy
on the eleven selected testing datasets of pol gene fragments from Table 3.1,
after training with the set of whole pol genes from the LANL 2010 web align-
ment. Based on the previous performance measurements, we use the linear
SVM classifier and £ = 6. We also perform the same accuracy measurement

with four other state-of-the-art HIV subtyping tools: CASTOR, COMET,
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SCUEAL, and REGA, and show the results in Table 3.3. In sum, our method
(KAMERIS) comes within a few percent of the best tools in all cases, and has
the highest average accuracy (both unweighted, and weighted by the number

of sequences in each set).

Running time is another important performance indicator, so we also
compare the performance of these five tools for the dataset of van Zyl et
al. [183], and the four fastest tools for all datasets together (see Table 3.4). We
observe that our tool matches or outperforms the competing state-of-the-art.
Note that, for these comparison experiments, CASTOR, COMET, SCUEAL,
and REGA were run from their web-based interfaces, and therefore the exact
specifications of the machines running each program could not be determined.
For this reason, the running times presented here should be taken as rough

order-of-magnitude estimates only.

Overall, these experiments demonstrate our method is nearly identical
in both accuracy and running time to the top third-party tool, COMET. Our
tool differs from COMET in that it is open-source and freely available for
commercial use, and is available in a standalone application which can be run
on any computer, while COMET is closed-source and freely available for non-
commercial research use only, and is publicly available only in a web-based

system.



3.3. REsuLTS

31

Table 3.3: Classification accuracies for all tested HIV-1 subtyping tools,
for each testing dataset from Table 3.1; average accuracy both with and
without weighting datasets by the number of sequences they contain.

| Source KAMERIS | COMET | CASTOR | SCUEAL | REGA |
Nadai (2009) [111] 100.0% | 100.0% | 81.8% 92.4% 86.4%
Niculescu (2015) [118] 95.9% 96.9% 75.3% 94.8% 100.0%
Paraschiv (2017) [122] 91.9% 73.3%" | 46.5% 68.6% 87.2%
Rhee (2017) [138] 94.0% 95.4% 0.4% 75.9% 12.8%!
Sukasem (2007) [152] 90.0% 91.0% 0.9% 64.3% 8.1%2
Eshleman (2001) [43] 88.5% 90.6% | 4.2% 84.4% 90.6%
Ssemwanga (2012) [150] | 88.3% 90.0% 0.0% 73.3% 95.0%
Wolf (2017) [168] 99.8% 99.8% 61.1% 99.3% 98.2%
TenoRes (2016) [55] 99.0% 99.0% 28.4% 99.0% 100.0%
van Zyl (2017) [183] 94.9% 93.2% 57.6% 93.2% 94.9%
Huang (2003) [71] 95.2% 97.6% 19.0% 81.0% 95.2%
Average (unweighted) | 94.3% 93.3% 34.1% 84.2% 78.9%?2
Average (weighted) 97.1% 96.9% 45.1% 91.2% 81.4%2

! In this case, a substantial number of sequences that were classified as subtype A by REGA
and our method were labeled unclassified subtypes (U) by COMET. In an HIV-1 phylogeny,
subtype U sequences tend to be assigned a basal position (near the root) within the subtype A
clade, suggesting that these sequences may be unrecognized variants or complex recombinants

of subtype A.

2 These low accuracies are primarily caused by REGA misclassifying many CRFO01 sequences as
subtype A, and subtype A is mostly equivalent to CRF01 in the pol region. If CRF01 and
A were treated as equivalent, these accuracies would be 97.9% and 86.4% for the Rhee and
Sukasem datasets, respectively, and unweighted and weighted averages of 93.8% and 96.2%,

respectively.

Table 3.4: Approximate running times for all tested subtyping
tools, for the dataset of van Zyl et al. [183] and all datasets listed
in Table 3.3. The van Zyl dataset was chosen at random for this purpose.

Tool Running time for the | Running time for

van Zyl dataset datasets from  Table
3.3

KAMERIS | less than 2 seconds 16 seconds

COMET less than 2 seconds 14 seconds

CASTOR | 3 seconds 46 seconds

SCUEAL! | 18 minutes 8 hours

REGA! 31 minutes 19 hours

! The REGA and SCUEAL web servers have limits of 1000 and 500 sequences per

run, respectively.

Thus, 3 batches of sequences were needed for REGA, and 6

batches for SCUEAL to classify all sequences. COMET, CASTOR, and our tool

have no such limits.
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So far, we have only discussed supervised classification, and we have
presented promising results for our approach. However, supervised classifica-
tion requires data with known labels, which can be problematic considering
that the rapid rates of mutation and recombination of viruses (particularly
HIV-1) can lead to novel strains and recombinant forms emerging quickly. Un-
supervised data exploration tools can help address this problem. To demon-
strate, we take the set of all whole genomes from the LANL database and
produce a MoDMap, visualizing their interrelationships, based on the Man-
hattan distance matrix obtained by computing all pairs of k-mer proportion
vectors (see Methods section), for 9 different pure subtypes or groups (Figure
3.2), and just subtypes A, B, and C (Figure 3.3). As can be seen, based on
these distances, the points in the plots are grouped according to known sub-
types, and indeed it can be seen that subtypes A1l and A6 group together, and
as well B and D group together, as could be expected.

Figure 3.2: MoDMap of 4373 full-length HIV-1 genomes of 9 different
pure subtypes or groups, at k£ = 6.
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Figure 3.3: MoDMap of 4124 full-length HIV-1 genomes of subtypes
A, B, and C, at k£ = 6.
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Synthetic data has been useful in the study of viral species such as HIV-
1, because a ground-truth classification is known for synthetic sequences with-
out ambiguity. However, one may wonder how well such synthetic sequences
model natural ones. We attempt to measure this by training a classifier on
natural and synthetic HIV-1 sequence data — if natural and synthetic sequences
cannot be distinguished, one may conclude that the simulation is realistic. For
the ‘natural’ class we use the set of all pol genes from the LANL database, and
for the ‘synthetic’ class we use 1500 synthetic pol genes produced as detailed
previously, and we perform a 10-fold cross-validation at £ = 6 and with the
linear SVM classifier. We obtain an accuracy of 100%, meaning that the clas-
sifier can distinguish natural from synthetic sequences with perfect accuracy.
This suggests that synthetic sequence data should be used with caution, since
this result indicates it may not be perfectly representative of natural sequence

data — specifically, our result suggests there is some characteristic of the syn-
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thetic sequences which differs from the natural sequences, which our method is
able to recognize and use. We explore this further by generating a MoDMap,
as seen in Figure 3.4. Interestingly, even though our supervised classifiers
succeeded to discriminate between real and synthetic sequences with an accu-
racy of 100%, the approach using distances between k-mer proportion vectors
results in the natural and synthetic sequences of specific subtypes grouping to-
gether, indicating that the synthetic sequences have some features that relate

them to the corresponding natural sequences of the same subtype.

Figure 3.4: MoDMap of 9270 natural HIV-1 pol genes vs. 1500 syn-
thetically generated HIV-1 pol genes of various subtypes. The same
plot is colored on the left by type (natural and synthetic) and on the right by
HIV-1 subtype.
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3.4 Discussion

The k-mer based supervised classification method we propose in this
paper has several advantages compared to other popular software packages for
the classification of virus subtypes. First, we have shown on several manually-
curated data sets that k-mer classification can be highly successful for rapid
and accurate HIV-1 subtyping relative to the current state-of-the-art. Fur-

thermore, releasing our method as an open-source software project confers
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significant advantages with respect to data privacy, transparency and repro-
ducibility. Other subtyping algorithms such as REGA [35] and COMET [151]
are usually accessed through a web application, where HIV-1 sequence data
is transmitted over the Internet to be processed on a remote server. This
arrangement is convenient for end-users because there is no requirement for
installing software other than a web browser. However, the act of transmitting
HIV-1 sequence data over a network may present a risk to data privacy and
patient confidentiality — concerns include web applications neglecting to use
encryption protocols such as TLS, or servers becoming compromised by mali-
cious actors. As a concrete example, the webserver hosting the first two major
releases of the REGA subtyping algorithm [35] was recently compromised by
an unauthorized user (last access attempt on November 27, 2017). In con-
trast, our implementation is available as a standalone program, without any
need to transmit sequence data to an external server, eliminating those issues.
In addition, our implementation is released under a permissive open-source
license (MIT). In contrast, REGA [129] and COMET [151] are proprietary
‘closed-source’ software, making it impossible to determine exactly how sub-

type predictions are being generated from the input sequences.

Relying on a remote web server to process HIV-1 sequence data makes
it difficult to determine which version of the software has been used to generate
subtype classifications, and by extension difficult to guarantee that classifica-
tion results can be reproduced. There is growing recognition that tracking the
provenance (origin) of bioinformatic analytical outputs is a necessary compo-
nent of clinical practice. For example, the College of American Pathologists
recently amended laboratory guidelines on next-generation sequence (NGS)
data processing to require that: “the specific version(s) of the bioinformatics

pipeline for clinical testing using NGS data files are traceable for each patient
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report” [8]. In contrast to other tools, our standalone package makes it easy
to use exactly the desired version of the software and thus enables precise

reproducibility.

We now discuss some limitations of our approach. Like many machine
learning approaches, our method does not provide an accessible explanation
as to why a DNA sequence is classified a certain way, compared to a more
traditional alignment-based method. In some sense, the classifiers act more
as a black box, without providing a rationale for their results. Another issue
is our requirement for a sizable, clean set of training data. As opposed to
an alignment-based method that could function with even a single curated
reference genome per class, machine learning requires several examples per
training class, as discussed previously, to properly train. Finally, one issue
common to any HIV-1 subtyping tool is the fact that recombination and rapid
sequence divergence can make subtyping difficult, especially in cases where
the recombinant form was not known at the time of training. Other tools are
capable of giving a result of ‘no match’ to handle ambiguous cases, but our

method always reports results from the classes used for training.

To more clearly demonstrate this last issue, we generate a random
sequence of length 10,000 with equal occurrence probabilities for A, C, G,
and T, and we ask the five subtyping tools evaluated in our study to predict
its HIV-1 subtype. As expected, REGA gives a result of ‘unassigned’ and
SCUEAL reports a failure to align with the reference. Our tool reports subtype
‘U’ with 100% confidence, CASTOR predicts HIV-1 group ‘O’ with 100%
confidence, and COMET reports SIVpyz (simian immunodeficiency virus from
chimpanzee) with 100% confidence. These outcomes are consistent with the
disproportionately large genetic distances that separate HIV-1 group O and

SIVepy from HIV-1 group M — a line drawn from a random point in sequence
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space is more likely to intersect the branch relating either of these distant
taxa to group M. Similarly, branches leading to subtype U sequences tend to
be longer and to intersect the HIV-1 group M tree at a basal location®. This
artificial example implies that real HIV-1 sequences that do not readily fit
into any of the defined subtypes or circulating recombinant forms may result

in incorrect predictions with misleadingly high confidence scores.

In spite of these limitations, our method not only matches or improves
upon current HIV-1 subtyping algorithms, but it should also be broadly ap-
plicable to any DNA sequence classification problem, including other virus
subtyping problems. To demonstrate this, we use the same method (with &
set to 6 and a linear SVM classifier) and 10-fold cross-validation to measure the
accuracies for classifying dengue, hepatitis B, hepatitis C, and influenza type
A virus full-length genomes (described in the Datasets section) to their re-
spective reference subtypes. Overall, we obtain accuracies of 100% for dengue
virus, 95.81% for hepatitis B virus, 100% for hepatitis C virus, and 96.68% for
influenza A virus. We also provide a MoDMap visualization of the subtypes of
hepatitis B, as seen in Figure 3.5. This plot displays not only clear separation
between subtypes but also structure within subtypes A and B, which would

be an interesting target for future study.

2HIV-1 subtype U does not comprise a distinct clade. Rather, the LANL database
labels sequences as ‘U’ when they belong to a lineage not meeting the criteria required
for a designation as a subtype [139]. However, practical but anecdotal experience suggests
subtype U sequences are typically basal.



38 CHAPTER 3. SUBTYPING OF HIV-1 GENOMES

Figure 3.5: MoDMap of 5164 whole hepatitis B genomes of 6 different
pure subtypes.
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In all the experiments presented above, we use whole assembled genomes
or gene sequences. However, next-generation sequencing (NGS) technolo-
gies produce as output short reads, often of length 150 to 300 base pairs,
and computationally-intensive assembly is required to produce contiguous se-
quences. Usefully, our method works equally well on short reads, without any
requirement for assembly. To validate this, we begin with the full set of whole
HIV-1 genomes from the LANL database, and we assume a read length of
150 bp. Recall that the average genome length for this dataset is 8970 bp, so
each sequence contains about 60 reads’ worth of data, on average. For each
sequence, we select 60 random positions, take the subsequence of length 150
bp starting at each position, and concatenate these 60 subsequences to form
a new sequence — in this way, we simulate the process of a DNA sequencer.

Then, we repeat the same 10-fold cross-validation at k& = 6 and with the
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linear SVM classifier as before, but with this new set of “stitched-together”
sequences. We obtain an accuracy of 96.46% (compared to an accuracy of
96.49% with the original sequences), demonstrating the applicability of our
method to unassembled read data. We also rerun the same experiment but
using fewer samples per sequence, with the results shown in Figure 3.6. As
can be seen, fewer samples give lower accuracy but good performance is still

achieved even with a low degree of coverage of the original sequence.

Figure 3.6: Classification accuracy scores for the HIV-1 simulated
NGS read experiment, with different numbers of samples per se-
quence (each sample of length 150 bp).
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Because of the exponential growth of sequence databases, modern bioin-
formatics tools increasingly must be capable of handling NGS sequence data
and must be scalable enough to manage huge sets of data. As well, researchers
often demand the privacy, security, and reproducibility characteristics an open-
source, standalone, offline tool such as ours provides. However, there remain
several areas for future work. Although our tool matches or exceeds the clas-
sification speed of the competing state-of-the-art, performance optimization

was not a focus of this study and we believe there is room to substantially
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improve running time even further. Similarly, although we match or exceed
the classification accuracy of the competing state-of-the-art, different modern
machine learning methods such as GeneVec [7] or deep neural networks may
permit us to achieve even higher accuracy on challenging datasets. As well,
given the rapid rate of mutation of many viruses, it would be highly useful
for our tool to be capable of giving a result of ‘no match’ with its training
data. Each of these possibilities could make our method and software even

more useful in the future.



Chapter 4

Taxonomic classification of
genomic sequences:

demonstrating generality

4.1 Taxonomic classification

We have demonstrated that our method is highly successful in viral
subtyping, particularly of HIV-1, but our results in this study will demon-
strate its potential to be applicable to a variety of different genomic sequence
classification tasks. For our next set of experiments, we turn our attention to
the problem of taxonomic classification. For this task, we wish to assign a se-
quence to the phylogenetic group of the organism it belongs to — for example,
we may wish to determine whether a sequence from an unknown vertebrate
belongs to one of the classes of subphylum Vertebrata, such as Amphibia, Aves,
Mammoalia, or Reptilia. A solution to this problem may help researchers deter-
mine the taxonomic classification of a newly discovered organism, or to resolve

controversial phylogenetic assignments.

41



42 CHAPTER 4. TAXONOMIC CLASSIFICATION: THE GENERAL CASE

We wish to demonstrate that our method is able to solve the taxonomic
classification problem across as much of the spectrum of genomic diversity as
possible. For this reason, we evaluate our method on a total of 28 datasets
related to taxonomic classification, including whole genomes from a variety of
sources: mitochondrial, nuclear, plastid, plasmid, and viral; and taxonomic

groupings at every level from kingdom down to family.

We obtain mitochondrial sequences from the National Center for Biotech-
nology Information (NCBI) RefSeq sequence database release version 81, plas-
tid sequences from NCBI RefSeq release version 82, plasmid sequences from
NCBI RefSeq release version 83, nucleoid genomes from the NCBI genomes
browser at https://www.ncbi.nlm.nih.gov/genome/browse/ with a level of
‘complete’ or ‘chromosome’, and viral genomes from the NCBI Nucleotide
database with query "txid10239" [Organism:exp] AND ("complete
genome" [Title] OR "complete sequence"[Title]) NOT "miRNA"[Title]
NOT "long terminal repeat"[Title] NOT "ltr"[Title] NOT
"contig"[Title] NOT "spacer"[Title] NOT "pseudogene"[Title] NOT
"genes" [Title] NOT "gene"[Title] NOT "segment"[Title] NOT
"partial"[Title] NOT "cds"[Title] NOT "except"[Title] NOT
"region"[Title] NOT "incomplete"[Title]. In the case of nucleoid genomes
with multiple chromosomes, we concatenate all chromosomes to produce a sin-
gle genome sequence. We select 28 subsets of these sequences as shown in Ta-
ble 4.1; Table 4.2 additionally shows the number of sequences and number of
classes for each dataset. As discussed in the previous chapter, machine learn-
ing models are unable to ‘learn’ unless given a sufficient quantity of training
data, and to this end every dataset was constructed so that every class had a

minimum of 10 elements.

Since we use cross-validation to measure accuracy on these datasets, it
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is necessary to ensure no duplication exists between the training and testing
partitions. This may occur if a dataset has many sequences of the same species
— in this case, we may be testing our model on sequences highly similar to
sequences used for training, which would unfairly inflate accuracy. We use the
RefSeq sequence databases to avoid this case, because RefSeq databases are

curated to contain at most one representative sequence for any species.
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Table 4.1: Descriptions of datasets used for taxonomic classification
experiments on whole genomes.

Name

Description

genomes-nuclear/5kingdoms

Nucleoid genomes, split into 5 of the 6 kingdoms: an-
imals, archaea, bacteria, fungi, and plants

genomes-nuclear/archaea

Archaeal nucleoid genomes, split into 3 phyla

genomes-nuclear/bacteria

Bacterial nucleoid genomes, split into 4 phyla

genomes-nuclear/proteobacteria

Proteobacterial nucleoid genomes, split into 5 classes

genomes-nuclear/fungi

Fungal nucleoid genomes, split into 3 phyla or sub-
phyla

genomes-nuclear/plants

Plant nucleoid genomes, split into 2 clades

genomes-nuclear/vertebrates

Vertebrate genomes into birds, fish, and mammals

mtdna/amphibians Amphibian mitochondrial genomes, split into 3 orders

mtdna/fungi Fungal mitochondrial genomes, split into 3 phyla or
subphyla

mtdna/ Animal mitochondrial genomes, split into insects,

insects-mammals-amphibians

mammals, and amphibians

mtdna/insects Insect mitochondrial genomes, split into 7 orders or
superorders

mtdna/mammals Mammal mitochondrial genomes, split into 8 orders
or superorders

mtdna/ Eukaryote mitochondrial genomes, split into plants,

plants-animals-fungi-protists | animals, fungi, and protists

mtdna/plants Plant mitochondrial genomes, split into 2 clades

mtdna/primates Primate mitochondrial genomes, split into 2 subor-
ders

mtdna/protists Protist mitochondrial genomes, split into 3 super-
phyla

mtdna/vertebrates Vertebrate mitochondrial genomes, split into amphib-
ians, birds, fish, mammals, and reptiles

plasmids/bacteria Bacterial plasmid genomes, split into into 4 phyla

plasmids/proteobacteria

Protobacterial plasmid genomes, split into into 3
classes

plastids/plants Plant plastid genomes, split into into 5 clades

plastids/protists Protist plastid genomes, split into into 3 superphyla

viruses/dsDNA Genomes from double-stranded DNA virus with no
RNA stage, split into 6 families

viruses/groups Viral genomes, split into 6 groups from the Baltimore

virus classification

viruses/retrotranscribing

Retrotranscribing virus genomes, split into 6 families

viruses/satellites

Satellite virus genomes, split into 6 families

viruses/ssDNA

ssDNA virus genomes, split into 4 families

viruses/ssRNAnegative

ssRNA negative-strand virus genomes, split into 4
families

viruses/ssRNApositive

ssRNA positive-strand virus genomes, split into 7
families




4.1. TAXONOMIC CLASSIFICATION 45

Table 4.2: Statistics for datasets used for taxonomic classification
experiments on whole genomes.

] Name # of classes | # of sequences
genomes-nuclear/bkingdoms ) 3362
genomes-nuclear/archaea 3 209
genomes-nuclear/bacteria 4 2500
genomes-nuclear/proteobacteria ) 1350
genomes-nuclear/fungi 3 71
genomes-nuclear/plants 2 66
genomes-nuclear/vertebrates 3 o7
mtdna/amphibians 3 290
mtdna/fungi 3 226
mtdna/insects-mammals-amphibians 3 2170
mtdna/insects 7 898
mtdna/mammals 8 830
mtdna/plants-animals-fungi-protists | 4 7385
mtdna/plants 2 254
mtdna/primates 2 148
mtdna/protists 3 160
mtdna/vertebrates ) 4327
plasmids/bacteria 4 8664
plasmids/proteobacteria 3 4691
plastids/plants 5 1208
plastids/protists 3 126
viruses/dsDNA 6 6630
viruses/groups 6 50112
viruses/retrotranscribing 2 9946
viruses/satellites 2 1574
viruses/ssDNA 4 7927
viruses/ssRNAnegative 4 3460
viruses/ssRNApositive 7 16650

Each of these datasets and others found in this chapter are available on-
line at https://github.com/stephensolis/kameris-experiments; on the
same page can also be found step-by-step instructions for the reproduction of

every experiment presented here.

Again following the example of the previous chapter, we perform 10-fold

cross-validation on each of these datasets, at £ = 6 and with the linear SVM
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classifier, in order to measure performance. In all cases, we obtain extremely

high accuracy scores, as shown in Table 4.3.

Table 4.3: Classification accuracy results for taxonomic classification
experiments.

Name Classification accuracy ‘
genomes-nuclear/5kingdoms 97.08%
genomes-nuclear/archaea 97.14%
genomes-nuclear/bacteria 98.72%
genomes-nuclear/proteobacteria 96.96%
genomes-nuclear/fungi 94.46%
genomes-nuclear/plants 92.86%
genomes-nuclear/vertebrates 98.33%
mtdna/amphibians 100%
mtdna/fungi 96.46%
mtdna/insects-mammals-amphibians 100%
mtdna/insects 98.89%
mtdna/mammals 99.76%
mtdna/plants-animals-fungi-protists | 99.54%
mtdna/plants 96.45%
mtdna/primates 100%
mtdna/protists 98.75%
mtdna/vertebrates 99.95%
plasmids/bacteria 97.67%
plasmids/proteobacteria 97.17%
plastids/plants 99.42%
plastids/protists 96.92%
viruses/dsDNA 99.50%
viruses/groups 96.37%
viruses/retrotranscribing 100%
viruses/satellites 100%
viruses/ssDNA 98.74%
viruses/ssRNAnegative 99.55%
viruses/ssRNApositive 98.54%

However, these accuracy scores could be even higher. Double-stranded
DNA molecules can have either their sense or antisense strand sequenced, and
by convention, all sequences in the NCBI RefSeq database should be of the

sense strand [133]. k-mer count vectors are clearly different for a sequence
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and its reverse complement, so if a classifier were trained on sequences of
one sense and tested on a sequence of the opposite sense, one would not ex-
pect the classifier to be capable of making an accurate prediction. In fact,
we have evidence this occurs: in the mtdna/vertebrates dataset, we have
an accuracy score of 99.95%, and only 3 sequences were misclassified, namely
Serinus canaria (NCBI ID NC_023375.1), Channa micropeltes (NC_030542.1),
and Sinibotia reevesae (NC_030322.1). For each of these sequences, we find
another sequence in the dataset from the same genus, and we compute the
Manhattan distance from its k-mer proportion vector to both the original se-
quence and its reverse complement, and find a much lower distance to the
reverse complement for all 3 cases. This suggests those genomes were mistak-
enly included in their antisense form rather than the sense form like the rest
of the dataset. When we re-run the experiment with those sequences replaced

with their reverse complement, we obtain a classification accuracy of 100%.

More generally, we observe that our method does not gracefully handle
the case of a reverse-complemented sequence, which can be an issue for some
datasets. Some other k-mer counting-based solutions solve the problem by
concatenating every sequence with its reverse complement before computing
counts, but more research is needed to determine whether accuracy could be

impacted by doing so.

We may also generate MoDMap plots for these datasets, which re-
veals one of the limitations of MoDMaps. In the previous chapter, we propose
MoDMaps as an unsupervised data exploration tool, and we demonstrate cases
where they are successful in showing known relationships between viral sub-
types. Similarly, for some of these datasets, MoDMaps do a good job in de-
picting class relationships, for instance with the primate suborders in Figure

4.1. However, for other datasets, the MoDMap does not show much structure,
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for instance with the virus groups in Figure 4.2, even though classification
accuracy is over 96% for those data. It is important to note that a ‘messy’

MoDMap does not imply poor classification performance.

Figure 4.1: MoDMap of whole primate mitochondrial genomes, split
into suborders, at k£ = 6.
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Figure 4.2: MoDMap of whole viral genomes, split into groups, at
k = 6.
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Ours is not the only k-mer-based software capable of performing tax-
onomic classification, and a different one is Logic Alignment Free (LAF) of
Weitschek et al. [167]. Essentially, LAF works by generating a list of small if-
then rules capable of determining whether a sequence belongs to a class of data
— an example of such a rule would be (f(ACGT) > 0.15) A (f(GGCT) < 0.6).
As part of their work, the LAF authors benchmark their algorithm on 9 parti-
tionings of a dataset of 1964 whole bacterial genomes, so we perform a head-to-
head comparison using KAMERIS. The class splitting performed by the LAF
authors was done by taxonomic level, and they additionally produce ‘filtered’
and ‘not filtered’ versions of the same datasets where the ‘filtered” versions
omit any genomes belonging to species with fewer than 9 other specimens in
the dataset: there are 413 genomes in the filtered sets. We use k& = 4 to match
the settings used with LAF and use the linear SVM classifier, and we obtain
accuracy scores listed in Table 4.4. As can be seen, we outperform LAF in 8 of
the 9 datasets, in some cases by as much as 5%. This demonstrates KAMERIS

is competitive with the state-of-the-art in the task of taxonomic classification.

Table 4.4: Classification accuracy and dataset statistics of Kameris
vs. LAF on datasets of whole bacterial genomes.

Dataset Classification accuracy
Kameris | LAF
25 species, filtered 99.76% 97.61%
21 genera, filtered 100% 98.79%
14 orders, filtered 100% 99.27%
9 classes, filtered 100% 98.79%
6 phyla, filtered 99.75% 98.78%
590 genera, not filtered || 71.28% 73.04%
120 orders, not filtered | 87.02% 85.68%
57 classes, not filtered || 90.17% 89.10%
36 phyla, not filtered 91.17% 86.08%
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4.2 'Transcriptome data

In the previous chapter, we provide some evidence to suggest KAMERIS
does not require contiguous, assembled sequence data, and it works almost
equally well when ‘stitching together’ short sequence fragments. This capa-
bility is highly applicable to dealing with reads from next-generation sequenc-
ing (NGS) technologies without having the requirement to first assemble the
sequences. To provide further evidence, we perform some more ‘stitching to-
gether’ experiments, this time with datasets of messenger RNA (mRNA) tran-
scriptome data. As opposed to a full genome, the transcriptome comprises only
that part of an organism’s genetic information transcribed to RNA by RNA

polymerase.

Specifically, we consider two sources of data: first, the data from the
Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) [90].
This is a collection of 678 transcriptomes of abundant and ecologically signif-
icant microbial eukaryotes from the oceans, assembled at the gene level. A
key goal of the MMETSP project was to build a dataset representative of the
organisms in a typical environmental sample. Within this dataset, every gene
is given in two forms: ‘nt’ which is the whole mRNA transcript, and ‘cds’
which is only the portion of the transcript translated by a ribosome. As well,
we work with the data from the 1000 Plants (1KPlants) project [109]. Despite
the name, this is a collection of 1314 transcriptomes from species of kingdom
Plantae. Assembly is again done to the gene level, and sequences are of whole

mRNA transcripts.

We again want to perform taxonomic classification, so we begin by par-
titioning the MMETSP data 6 ways, into groups given by different taxonomic

levels — from high-level to low: 6 superphyla, 10 phyla, 15 classes, 22 orders, 19



4.2. TRANSCRIPTOME DATA 51

families, and 18 genera. For each transcriptome, we construct a single sample
sequence by randomly selecting genes and concatenating them until the total
sample length is greater than some variable threshold. We again perform 10-
fold cross-validation with k& = 6 and the linear SVM classifier, with the results
shown in Table 4.5. We observe that even 50 kbp of sequence data suffice to
accurately classify transcriptomes on taxonomic groups, with more data giving
more accurate results. Further, we see that the whole-transcript (‘nt’) dataset
gives generally lower accuracy than the coding-region (‘cds’) dataset, suggest-
ing that the non-coding region of a mRNA transcript is in fact not useful for

taxonomic classification.

Table 4.5: Classification accuracy results for classification of the
MMETSP transcriptomes, with different lengths of random sam-
ples. ‘nt’ denotes whole-transcript data and ‘cds’ denotes coding-region-only
data.

Dataset Classification accuracy
10 kbp sample | 50 kbp sample | 500 kbp sample

6 superphyla, ‘nt” | 79.87% 88.57% 92.59%
6 superphyla, ‘cds’ | 82.93% 90.98% 93.23%
10 phyla, ‘nt’ 81.17% 93.54% 93.73%
10 phyla, ‘cds’ 84.58% 92.47% 95.88%
15 classes, ‘nt’ 78.20% 90.86% 93.59%
15 classes, ‘cds’ 82.11% 92.03% 94.56%
22 orders, ‘nt’ 67.27% 89.58% 93.65%
22 orders, ‘cds’ 72.57% 90.35% 93.67%
19 families, ‘nt’ 76.53% 93.08% 95.48%
19 families, ‘cds’ 78.30% 95.17% 95.18%
18 genera, ‘nt’ 69.03% 93.33% 97.19%
18 genera, ‘cds’ 75.02% 92.63% 96.82%

We repeat the exact same experiment again but this time after parti-
tioning the 1KPlants data 3 ways, also into groups given by different taxonomic
levels — from high-level to low: 15 clades, 27 orders, and 28 families, with the

results shown in Table 4.6. Interestingly, we note that the difference in classi-
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fication accuracy between amounts of sampling is much more pronounced for
the 1KPlants data versus the MMETSP data — since land plants tend to have
fairly large genomes, this result may suggest that their genomes have a lower

signal-to-noise ratio in terms of taxonomic classification.

Table 4.6: Classification accuracy results for taxonomic classification
of the 1,000 Plants Project transcriptomes, with different lengths of
random samples.

Dataset Classification accuracy
10 kbp samples | 50 kbp samples | 500 kbp samples
15 clades | 61.04% 80.59% 93.56%
27 orders | 54.69% 75.00% 89.74%
28 families | 58.47% 85.89% 96.98%

As mentioned, supervised classifiers typically perform better if given
more training data. To test this, we repeat the same experiment, with the
whole-transcript datasets and 50 kbp samples, but take multiple samples per
transcriptome. Since this would increase the number of points per class, this
may make it easier for the classifier to learn the classes, increasing accuracy. In
order to avoid concerns of overfitting, we ensure all samples from a particular
organism are placed in the same cross-validation group. Results can be seen
in Table 4.7. We observe that the accuracy obtained by 5 samples of length 50
kbp is about the same as, but slightly lower than, that of 1 sample of length
500 kbp. Further, we do not see an improvement in performance beyond
5 samples per transcriptome. This suggests that, at least for this dataset,
training a model on multiple samples per organism does not improve accuracy

compared to a single longer sample.
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Table 4.7: Classification accuracy results for taxonomic classification
of MMETSP transcriptomes, with samples of length 50 kbp and
different numbers of samples per transcriptome.

Taxonomic level Classification accuracy
1 sample | 5 samples | 10 samples
6 superphyla 88.57% 90.82% 90.95%
10 phyla 93.54% 94.29% 93.93%
15 classes 90.86% 93.66% 93.23%
22 orders 89.58% 94.06% 92.81%
19 families 93.08% 95.05% 95.36%
18 genera 93.33% 96.62% 96.62%

Overall, these results are particularly surprising since every sequence
given to the classifier is composed of sequence data randomly sampled from dif-
ferent parts of each genome. Using an alignment-based technique here would
be impossible, since there is no common data to be aligned — each sample is of a
different set of genes. The fact that classification performance is high suggests
that k-mer bias patterns persist and are preserved across the entire transcrip-
tome, with a strong enough signal to allow accurate taxonomic classification

of samples as short as 10 kbp.

There are other interesting transcriptome datasets which could be ex-
plored — for instance, NCBI GenBank has a collection of tens of thousands of
vertebrate transcriptomes. Also, in order to add still more support to the idea
of randomly sampling genomes, it may be interesting to reproduce the tax-
onomic classification experiments from the previous section while randomly
sampling and ‘stitching together’ all genomes in the same way as was done
with the HIV-1 sequences. Even more interesting would be to determine clas-
sification accuracy for datasets taken from the NCBI Sequence Read Archive
(SRA), which is a collection of real NGS read data. In this work, we inten-
tionally avoided using real read data because there are some important data

cleanup steps needed before such data would be usable — low-quality, low-
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entropy (for example, ATATAT...), and duplicated (multiple reads of almost
exactly the same region) reads would need to be filtered out to avoid adding
noise to the classifier. By using only data which has been at least partially
assembled, we allow the assembly pipeline to perform these cleanup steps for
us. In the future, we could add functionality to KAMERIS to support read

filtering directly.

4.3 Intra-species classification

So far, we have demonstrated success on the tasks of viral subtyping and
taxonomic classification, with very high accuracy. We have demonstrated we
can even classify accurately after randomly sampling the genomes or sequences
being classified. Here, we present further results on classifying sets of sequences

of the same species, and demonstrate how KAMERIS still performs very well.

First, we consider human mitochondrial DNA. In humans, mitochon-
drial DNA does not undergo genetic recombination, and is inherited solely
through the mother’s side. Thus, mitochondrial DNA can be used to iden-
tify maternal lineage, and the human matrilinear line has been organized into
haplogroups, identified by a letter sometimes followed by letters and numbers.
Every haplogroup is defined by a panel of specific single-nucleotide polymor-
phisms (SNPs) at specific positions of the mitochondrial genome — typically,
these panels have about 20 positions. Although SNP panels are used for hap-
logroup determination, they are not necessarily the only mutations between
genomes of different haplogroups. Indeed, since a single point mutation may
only change the proportions of at most 2k —1 surrounding k-mers, it is unlikely
that such a small number of SNPs would, on its own, result in enough infor-

mation for use in classification. Our method only looks at substrings of length
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k, so we capture no information about the position of a mutation beyond its

surrounding window of size k — 1.

We consider the set of whole human mitochondrial genomes, partitioned
by haplogroup from the MitoMap project [107]. Since this dataset has just
under 28,000 sequences, and in order to avoid issues with class size imbalance,
we omit any haplogroup classes with fewer than 100 examples. This gives
66 different haplogroup classes and 23 classes of top-level haplogroups (that
is, considering only the first letter of the haplogroup name). As before, we
perform a 10-fold cross-validation with £ = 6 and the linear SVM classifier,
and we obtain a classification accuracy of 98.43% with the haplogroup classes
and 99.55% with the top-level haplogroups. This result demonstrates that, al-
though haplogroups are defined by a few tens of SNPs, they must also exhibit
overall k-mer proportion biases, which our classifier is able to recognize and
use. As mentioned, if overall k-mer biases would not exist, we would have in-
sufficient information to accurately distinguish haplogroups with our method.
More work is needed to further investigate such biases, and to determine a

biological explanation for them.

Some diseases are similar to haplogroups in that they are linked to a
specific set of SNPs. For example, congenital lactose intolerance in humans
is linked to a single point mutation in chromosome 2. In this work, we do
not explore the possibility of using KAMERIS to diagnose genetic disease, but

given this result, such a study may prove to be fruitful.

In order to further explore the idea of ‘unexpected’ k-mer proportion
biases allowing better classification, we consider again the set of influenza virus
genomes from Chapter , but this time considering genomic regions rather than
whole genomes. Influenza virus genomes are divided into 8 distinct segments:

in order, these are PB2, PB1, PA, HA, NP, NA, MP, and NS. Subtypes of
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influenza are determined by a code ‘H?N?’ where the ‘7’ are numbers, and
this code represents a classification based on the HA and NA genomic regions.
The remaining regions should not be relevant for the purpose of influenza
virus subtyping, since subtype assignment is not done using those regions at
all. However, in the same way as our result with human mitochondrial DNA
haplogroups, we predict training a subtype classifier using regions other than

HA and NA may in fact work.

We test this by taking the set of influenza genomes from Chapter 2,
and for every genome, we extract each of the 8 segments in turn, and split the
set of genomes both into subtypes (H?N?), HA-only subtype (H?), and NA-
only subtype (N?7). We perform a 10-fold cross-validation on each set, with
results in Table 4.8 — for comparison, accuracy for the full subtype using the
full genome was 96.68%. As can be seen, we confirm our hypothesis that the
‘irrelevant’ regions in fact do have the ability to predict subtypes. Although
the accuracy scores for those regions are lower than those for the HA and
NA regions, they are fairly significant, and in the same way as the human
haplogroup experiment, this result suggests that there are some influenza-
genome-wide k-mer proportion biases which the classifier is able to recognize

and use.
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Table 4.8: Classification accuracy results for subtyping of segments
of influenza genomes, for full subtypes (H?N?7), HA subtype (H?),
and NA subtype (N7?).

Segment Classification accuracy
Full subtype | HA subtype | NA subtype

PB2 79.57% 78.16% 77.20%

PB1 79.90% 78.41% 77.53%

PA 79.32% 78.44% 76.73%

HA 90.51% 97.45% 87.62%

NP 78.82% 77.92% 76.06%

NA 89.83% 87.31% 97.57%

MP 78.19% 78.14% 76.17%

NS 77.52% 77.58% 75.67%

4.4 Conclusions

In this chapter, we demonstrate KAMERIS is highly successful in classi-
fying genomic sequences by taxonomic group. We show very high classification
accuracy scores for 28 different datasets composed of whole mitochondrial, nu-
clear, plastid, plasmid, and viral genomes for taxonomic groupings at every
level from kingdom down to genus. This is in contrast with previous studies
in this space, which typically test methods with one or a small number of
datasets, typically of one type of genome and one or few taxonomic levels. We
perform a head-to-head comparison with Logic Alignment Free (LAF), a com-
peting tool, and find we exceed its classification accuracy on several datasets

of whole bacterial genomes.

We further classify with high accuracy randomly sampled transcrip-
tomes of marine microbes and plants by taxonomic group, human mitochon-
drial genomes into haplogroups, and partial influenza genomes into subtypes.
These results all suggest the presence of genome-wide k-mer proportion biases,

which certainly deserves further study.
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Conclusions and Future Work

In this work, we present a remarkably simple, supervised, alignment-
free method for sequence classification based on k-mer counting, and we im-
plement the method in a fully standalone, easy to use, open-source software

package called KAMERIS.

We comprehensively demonstrate its general applicability and flexibil-
ity by computing its accuracy in the subtyping of HIV-1, dengue, influenza A,
hepatitis B, and hepatitis C virus genomes in Chapter 3; the taxonomic clas-
sification of whole mitochondrial, nuclear, plastid, plasmid, and viral genomes
in Section 4.1, and sampled marine eukaryote and plant transcriptomes in Sec-
tion 4.2, into taxonomic groupings at every level from kingdom down to genus;
and the determination of human haplogroups from mitochondrial genomes in
Section 4.3. We show how accurate classification remains possible even when
using only the pol gene region of the HIV-1 genome, or only a single seg-
ment of the influenza virus genome. We perform head-to-head comparisons
with competing state-of-the-art software in the tasks of HIV-1 subtyping and
taxonomic classification of whole bacterial genomes, and show that we match

or exceed all competitors in accuracy and speed. Further, we demonstrate
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the applicability of our method to NGS read data by showing it is accurate
even when using randomly sampled HIV-1 genomes and marine eukaryote and
plant transcriptomes, and study the amount of sequence data needed to obtain

accurate classification.

However, we identify a number of important limitations. As opposed
to, for example, sequence alignment, our classifier algorithms generally act as
a black box and do not provide an accessible explanation as to why a sequence
is classified in a certain way. As well, the classifier algorithms we use require
a sizable, clean set of training data. Further, we have no ability to provide a
‘no match’ result in case the given sequence does not match any training set

classes.

There exist some means by which we may try to gain some insights
into classification rationale, so as to peek inside the ‘black box’. One tech-
nique is recursive feature elimination (RFE) [58] — essentially, it works by
training a classifier capable of assigning weights to features, eliminating the
least-weighted features, and repeating until there are no more features. In
this way, it is able to estimate the relative ‘importance’ of each feature, and
thus identify the specific k-mers which are particularly relevant for a particular
classification task. We apply the RFE algorithm to the mtdna/vertebrates
taxonomic classification dataset from the previous chapter, using the linear
SVM classifier and k£ = 5, and without performing dimensionality reduction
on the k-mer vectors. k& = 5 was chosen for ease of plotting. We show the
results by wrapping the 1024-element vector into a 32x32 square, as shown in
Figure 5.2 — the elements of the square are ordered as in Chaos Game Repre-
sentation plots, described in [76]. More specifically, the order is recursive by
quadrant of the square, as shown in Figure 5.1. For example, the small square

at the top left of the figure represents the 5-mer CCCCC. Each square in the
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figure represents the importance of a particular k-mer, with values being rel-
ative importance, that is, two squares with value 200 and 400 would indicate
the first corresponding k-mer being half as important as the other. We find
some k-mers identified as important but more research is needed to determine
whether the k-mers identified as important have any biological relevance. Fea-
ture importance is not necessarily limited to single k-mers, but correlations
or interdependence between k-mers may be relevant as well and also deserves

study.

Figure 5.1: Diagram of k-mers in a Chaos Game Representation plot.

C G
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Figure 5.2: Plot of RFE-determined k-mer importance values, for
mtdna/vertebrates using the linear SVM classifier at £ = 5. Each
square in the figure represents the importance of a particular k-mer, with
values being relative importance (two squares with value 200 and 400 would
indicate the first corresponding k-mer being half as important as the second).
The 1024-element vector is wrapped into a 32x32 square for ease of display.
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As well, although we do not support a ‘no match’ result, it is inter-
esting to consider cases where data is ‘between’ two classes in some sense.
This has particular relevance to synthetic biology, where sequence data may
be mixed from multiple species. For this, we require a classifier capable
of outputting confidence scores, so we use the logistic regression classifier.
We begin with the human mitochondrial genome, and we progressively re-
place the first N base pairs of the genome with the first N base pairs of
the A.thaliana mitochondrial genome. We train a logistic regression classifier
on the mtdna/plants-animals-fungi-protists dataset (with plant, animal,

fungi, and protist classes), and show the confidence scores for the classes in
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Figure 5.3. We see that the classifier is indeed able to infer a mix of classes, and
we see the predictions cross over exactly when replacing half of the sequence.
In a similar way, it is interesting to consider the resilience of our method to
mutational events — specifically, how many point mutations may be introduced
to a sequence before our model loses the ability to accurately classify it; this
has implications for the real-world use of our method and deserves further

research.

Figure 5.3: Plot of confidence score of different classes for sequences
composed of different proportions of the human and A.thaliana mi-
tochondrial genomes, using a classifier trained on plants, animals,
fungi, and protists. Sequences are constructed by replacing the first N base
pairs of the human mitochondrial genome with the first N base pairs of the
A.thaliana mitochondrial genome, with NV given on the z-axis. ‘Other’ means
any class other than animal or plant.
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There are a few other potential avenues of research. Given the demon-
strated generality of this method, it may be interesting to try an application
to protein classification — however this would require careful attention to the
construction of k-mer vectors, since using the protein alphabet directly would
result in an exponential growth of vector length, which may make training

intractable. It would also be interesting to look in more detail at the datasets,
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such as plant nuclear DNA, which performed more poorly than others: there
may be some interesting biological reasons for it. Also, there were some as-
sumptions we made without quantitative evidence, which may not have been
justified: we can assess how small training classes may be before classifica-
tion becomes impossible rather than arbitrarily selecting minimum class sizes;
whether our selection of k£ = 6 remains optimal for datasets other than HIV-1
genomes, and if not, how the optimal value of k changes; whether raw reads
may be classified accurately without performing low-quality, low-entropy, and
redundancy filtering; and whether we can use our method to diagnose genetic
diseases. Regarding genetic diseases specifically, it is known that some dis-
eases, such as some forms of cancer, cause systemic mutations across a whole
genomic region — our method may be able to use this to make accurate predic-
tions. As well, since computational performance was not a focus of this study,
relatively large speed improvements may be easy to obtain. Any of directions

could help make KAMERIS even more general and useful.
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First, visit https://github.com/stephensolis/kameris and follow
the instructions for installing KAMERIS. It is highly recommended you also
work through the demo instructions on the same page, to understand how the
software works.

10-fold cross-validation on the full set of full-length HIV-1 genomes

Run kameris run-job https://raw.githubusercontent.com/stephensolis/
kameris-experiments/master/experiments/hivl/lanl-whole.yml https:
//raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.
yml

10-fold cross-validation on the full set of HIV-1 pol genes

Run kameris run-job https://raw.githubusercontent.com/stephensolis/
kameris-experiments/master/experiments/hivl/lanl-pol.yml https://
raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.
yml

Classification of the HIV-1 benchmark dataset

1. Run kameris run-job https://raw.githubusercontent.com/stephensolis/
kameris-experiments/master/experiments/hivl/lanl-reference-model.
yml https://raw.githubusercontent.com/stephensolis/kameris/master/
demo/settings.yml to train the model.

2. Download
https://drive.google.com/uc?export=download&id=0B70X388vZjTvalNNYXh5WEM2Z28
and extract the mixed-polfragments folder.

3. Run kameris classify output/lanl-reference-model/subtype-k=
6/model_linear-svm.mm-model "path to the mixed-polfragments folder"

4. Compare the output stored in results.json with the ground-truth
subtypes from https://raw.githubusercontent.com/stephensolis/
kameris-experiments/master/metadata/hivi-mixed-polfragments.
json.

10-fold cross-validation on the synthetic-vs-natural HIV-1 pol genes

Run kameris run-jobhttps://raw.githubusercontent.com/stephensolis/
kameris-experiments/master/experiments/hivl/real-vs-synthetic.yml


https://github.com/stephensolis/kameris
https://raw.githubusercontent.com/stephensolis/kameris-experiments/master/metadata/hiv1-mixed-polfragments.json
https://raw.githubusercontent.com/stephensolis/kameris-experiments/master/metadata/hiv1-mixed-polfragments.json
https://raw.githubusercontent.com/stephensolis/kameris-experiments/master/metadata/hiv1-mixed-polfragments.json
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https://raw.githubusercontent.com/stephensolis/kameris/master/demo/
settings.yml

Classification of randomly-generated sequence

1. Follow steps 1-2 from Classification of the HIV-1 benchmark dataset.

2. Generate a random sequence, for example using http://www.faculty.
ucr.edu/~mmaduro/random.htm, save it to a file, and put the file in a
new folder by itself.

3. Run kameris classify output/lanl-reference-model/subtype-k=
6/model_linear-svm.mm-model "path to the folder you created"

10-fold cross-validation on the set of whole dengue virus genomes

Run kameris run-jobhttps://raw.githubusercontent.com/stephensolis/
kameris-experiments/master/experiments/dengue/ncbi-whole.yml https:
//raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.
yml

10-fold cross-validation on the set of whole hepatitis B genomes

Run kameris run-jobhttps://raw.githubusercontent.com/stephensolis/
kameris-experiments/master/experiments/hepatitis/hbv-whole.yml https:
//raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.
yml

10-fold cross-validation on the set of whole hepatitis C genomes

Run kameris run-jobhttps://raw.githubusercontent.com/stephensolis/
kameris-experiments/master/experiments/hepatitis/hcv-whole.yml https:
//raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.
yml

10-fold cross-validation on the set of whole influenza A genomes

Run kameris run-jobhttps://raw.githubusercontent.com/stephensolis/
kameris-experiments/master/experiments/flu/ncbi-whole.yml https://
raw.githubusercontent.com/stephensolis/kameris/master/demo/settings.
yml


http://www.faculty.ucr.edu/~mmaduro/random.htm
http://www.faculty.ucr.edu/~mmaduro/random.htm

Appendix B

Lists of subtypes of viral species

from datasets used
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Whole HIV-1 genomes

Subtype | Recombinant?
01B Yes
01BC Yes
01_AE Yes
02A1 Yes
02_AG Yes
07_BC Yes
08_BC Yes
11_cpx Yes
35_AD Yes
Al No
A1C Yes
A1CD Yes
A1D Yes
A6 No
B No
BC Yes
BF Yes
BF1 Yes
C No
CD Yes
D No
F1 No
No
No
No




Full set of HIV-1 pol genes

Subtype | Recombinant?
0107 Yes
01B Yes
01BC Yes
01_AE Yes
02A1 Yes
02_AG Yes
07_BC Yes
08_-BC Yes
11 _cpx Yes
35_AD Yes
Al No
A1C Yes
A1CD Yes
A1D Yes
A6 No
B No
BC Yes
BF Yes
BF1 Yes
C No
CD Yes
D No
F1 No
No
No
No

93



94

CHAPTER B. LISTS OF SUBTYPES OF VIRAL SPECIES

HIV-1 pol genes from the 2010 LANL Web alignment

Subtype | Recombinant?
01B Yes
01_AE Yes
02_AG Yes
Al No
A1C Yes
A1D Yes
B No
BC Yes
BF Yes
BF1 Yes
C No
D No
F1 No
No
No
Whole dengue virus genomes

Subtype

1

2




Whole

hepatitis B genomes

Subtype | Recombinant?
A No
B No
C No
D No
E No
F No
G No
H No
RF-BC Yes
RF-CB Yes
RF-DC Yes
RF-DE Yes

Whole

hepatitis C genomes

Subtype

la

1b

2a

2b

3a

6a

95



96

Whole
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influenza A genomes

Subtype || Subtype
HIN1 H6N6
HIN2 H6NS
HIN3 H7N1
HING H7N2
HIN9 H7N3
H2N1 H7N4
H2N2 H7N6
H2N3 H7N7
H2NT7 H7N9
H2N9 H8N4
H3N1 HION2
H3N2 H10N1
H3N3 H10N3
H3N6 H10N4
H3N8 H10N5
H4N?2 H10N6
H4N6 H10N7
H4NS H10NS
H4N9 H11N1
H5N1 H11N2
H5N2 H11N3
H5N3 H11N9
H5N5 H12N5
H5N6 H13N2
H5N8 H13N6
H6N1 H13N8
H6N2 H16N3
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