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Abstract

The study is focused on two aspects relating to the bridge design: the gust factor and 
wind load factors. The concept and the assessment of the gust factor developed by Alan 
G. Davenport are essential for bridge design under buffeting forces. However, systematic 
parametric investigation of the standard deviation of fluctuating wind-induced bridge 
responses and the gust factor, by considering the spatio-temporal varying along and cross 
winds and aerodynamic damping has not be given, although a simple to use approximate 
equation is available. Such an investigation is given in the present study by 
including/excluding the aeroelastic self-excited forces. The results obtained are used to 
assess the bias associated with this simple approximate equation, and can be adopted by 
bridge design codes for predicting the gust factor.

Since the gust factor depends on the dynamic structural characteristics and the 
characteristics of wind speed, wind load factors are calibrated by incorporating this 
dependency for both the simple procedure and detailed procedure in the current Canadian 
Highway Bridge Design Code (CHBDC). Based on the calibration results by considering 
a target reliability index of 3.5 for a service period of 75 years, a wind load factor of 1.4 
for simple procedure, and an equation to evaluate wind load factor for detailed procedure 
are recommended for the future edition of die CHBDC. Furthermore, the calibration 
results indicate that an increase of dead load from 1.20 to 1.25 for the ULS combination 4 
given in the current CHBDC is desirable to achieve increased reliability consistency in 
the bridge design.

Key words: bridge, peak factor, gust factor, spatio-temporal correlation, flutter velocity, 
reliability, wind load factor
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Chapter 1 Introduction

1.1 Background
Responses due to buffeting and flutter are of concern for bridge design. The former is 

defined as the wind load caused by the spatio-temporally varying fluctuating wind speed, 
while the latter invokes the aeroelastic self-excited force caused by the interaction of the 
wind flow and oscillation of the bridge.

Bridge design codes such as the Canadian Highway Bridge Design Code (CHBDC) 
(CAN/CSA S6-6 2006), recommend the simplified approach to evaluate bridge responses 
due to the buffeting force. The simplified approach is based on the gust factor concept 
developed by Davenport (1962, 1981, 1983). It considers that the wind load (effect) can 
be approximated by the mean wind load (effect) multiplied by a gust factor that takes into 
account the impact of the buffeting force on the peak response. The CHBDC 
recommends that a gust effect coefficient (or factor) of 2.0 for bridges of spans less than 
125 m. However, since the gust factor varies and depends on the structural dynamic 
characteristics and statistics of the fluctuating wind speed, use of the suggested gust 
factor of 2.0 may not result in reliability-consistent bridge designs for a wide variety of 
design cases. The Commentary on the CHBDC recommends detailed procedures that are 
based on Davenport (1981, 1983) and Davenport and King (1982) which give a simple to 
use expression for evaluating the gust factor for bridges. The expression is derived based 
on flie assumptions that the consideration of the first vibration mode is sufficient, the 
evaluation of the effect o f the spatially varying fluctuating wind can be simplified using a 
joint acceptance function, and that the variance of the response due to fluctuating wind 
speed can be approximately expressed as the sum of variances of the background 
component and the resonant component of the response. Methods and techniques for such 
evaluation are well established (Davenport 1962, 1981, 1983, Jain et al. 1996, Simiu and 
Scanlan 1996, Sim et al. 1999, Chen et al. 2000, Caracoglia and Jones 2003). However, a 
parametric assessment for verifying the accuracy of the mentioned simple expression to 
evaluate the gust factor for bridge design has not been reported in the literature.

Current bridge designs are based on Limit State Design philosophy (LSD), which is 
also known as Load and Resistance Factor Design (LRFD). For the Ultimate Limit State
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(ULS), the current CHBDC specifies different load combinations shown in Table 1. The 
code has three different load combinations for the wind load effect in order to ensure die 
safety of the bridges under possible wind loading scenario (ULS Combinations 3,4 and 7). 
The calibration of wind load factors is focused on die ULS combination 4 where the dead 
load and wind load act simultaneously. Furthermore, it is noted that the CHBDC 
recommends a wind load factor of 1.65 for bridges of spans less than 125 m, and provides 
an equation, which depends on the coefficient of variation of the annual maximum hourly 
mean wind velocity, to calculate the wind load factor for wind sensitive structures and 
wind loads determined from wind tunnel tests. A calibration o f the above suggested wind 
load factors is reported by Bartlett and King (2002). The calibration uses some 
simplifying assumptions and approaches, including the use of lognormal models, and 
distribution tail fitting. Further, the dependency of the gust factor on the wind velocity 
was not taken into account in their calibration analysis, and its impact on the estimated 
reliability is unknown.

1.2 Objectives and thesis outline
The main objectives of this present study are to assess the gust factor considering the 

spatio-temporal along and cross fluctuating winds and aeroelastic forces, to verify the 
accuracy of simple approximate analytical expression to estimate the gust factor, and to 
present the basis, calibration procedure and results for recommending the wind load 
factors and gust factor curves for a future edition of the CHBDC.

In Chapter 2, the bridge flutter analysis and evaluation of the critical wind velocity 
are conducted by using a finite element formulation (Hua et al. 2007); the buffeting 
analysis which adopts the pseudo-excitation method (Sun et al 1999), considers the 
spatially correlated wind fluctuations, and includes the aeroelastic self-excited forces is 
presented. The analysis results are used to validate a simple equation that can be used to 
estimate the gust factor for bridge responses under wind excitation. The verification of 
reliability level of bridges designed according to the current CHBDC and calibration of 
wind load factor to achieve a selected target reliability were carried out in Chapter 3. The 
reliability analysis, which is based on the simple simulation technique, considers that the
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probability distribution of the gust factor is conditioned on the time-averaged wind speed.
Finally, a summary o f conclusions and recommendations is described in Chapter 4.
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Table 1. Load Factors
Permanent Loads Transitory Loads Exceptional Loads

Loads D E P L K W V s EQ F A H
Ultimate Limit 

States1
ULS Combination 1 an aE aP 1.70 0 0 0 0 0 0 0 0
ULS Combination 2 an CCe aP 1.60 1.15 0 0 0 0 0 0 0
ULS Combination 3 <Zd aE aP 1.40 1.00 0.502 0.50 0 0 0 0 0
ULS Combination 4 aD aE aP 0 1.25 1.652 0 0 0 0 0 0
ULS Combination 5 CCD aE aP 0 0 0 0 0 1.00 0 0 0
ULS Combination 6 aD aE aP 0 0 0 0 0 0 1.30 0 0
ULS Combination 7 CCo aE aP 0 0 0.902 0 0 0 0 1.30 0
ULS Combination 8 aD aE aP 0 0 0 0 0 0 0 0 1.00
ULS Combination 9 1.35 aE aP 0 0 0 0 0 0 0 0 0

CHBDC 2006)

Note:
1 For ultimate limit states, use the maximum or minimum value of ccd, aE, ap which denote the load factor for D, E, and P.
2 For wind loads determined from wind tunnel tests, the load factor shall be as specified in Clause 3.10.5.2 of the CHBDC 

which gives an approximation equation for calculating die wind load factor in ULS combination 4.
Legend:
A ice accretion load
D dead load
E  loads due to earth pressure and hydrostatic pressure including surcharges other than dead load
F  loads due to stream pressure and ice forces, or debris torrents



*0 
t"' 

¡55 collision load arising from highway vehicles or vessels
all strains, deformations, displacements, and their effects, including the effects of their restraint and those of friction or 
stiffness in bearings. Strains and deformation include those due to temperature change and temperature differential, 
concrete shrinkage, differential shrinkage and creep; but not elastic strains, 
live load, including dynamic load allowance when applicable, based on CL-625 Truck or Lane, 
secondary prestress effects 

EQ earthquake load
S  load due to differential settlement and/or movement of the foundation
V wind load on traffic
W wind load on structure

U \
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Chapter 2 Sensitivity of gust responses of bridges to spatially varying Hind
excitations

2.1 Introduction
Wind loading on bridges is separated into the time-averaged static, buffeting and 

aeroelastic self-excited force components. The evaluation of the response due to time- 
averaged static force component is simple. The buffeting force represents the wind load 
caused by the spatio-temporally varying wind speed; the aeroelastic self-excited force 
denotes the force caused by the interaction of the wind flow and oscillation of the bridge.

A simplified approach for evaluating bridge responses due to the buffeting force has 
been recommended in many bridge design codes, including the Canadian Highway 
Bridge Design Code (CAN/CSA S6-6 2006). The simplified approach is based on the 
gust factor concept developed by Davenport (1962, 1981, 1983). The gust factor 
approach considers that the wind load (effect) can be approximated by the mean wind 
load (effect) multiplied by a gust factor that takes into account the impact of the buffeting 
force on die peak response. Use of the concept of the gust factor largely simplifies the 
bridge design. The gust factor depends on the structural dynamic characteristics and the 
statistical characteristics of the fluctuating wind speed. It also depends on the magnitude 
of the uncertainty in the mean wind speed. Simple to use expressions for evaluating the 
gust factor for bridge design were given in Davenport (1981, 1983) and Davenport and 
King (1982). These simple equations are derived based on the random vibration analysis, 
and the assumptions that the consideration of the first vibration mode is sufficient, the 
evaluation of die effect o f the spatially varying fluctuating wind can be simplified using a 
joint acceptance function, and the variance of the response due to fluctuating wind speed 
can be approximately expressed as the sum of variances of die background component 
and the resonant component of the response. Methods and techniques for evaluating the 
gust factor in the frequency domain or time domain are well established (Davenport 1981, 
Jain et al. 1996, Simiu and Scanlan 1996, Sun et al. 1999, Chen et al. 2000, Caracoglia 
and Jones 2003). In particular, Sun et al. (1999) provides a finite element formulation and 
uses the pseudo-excitation method in dealing with fully coupled buffeting analysis, where 
possible dynamic coupling between vibration modes, dynamic forces on the bridge deck,
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towers and cables, and spatio-temporally varying wind speed and structural properties 
can be considered. However, a parametric assessment for verifying the accuracy o f the 
mentioned simple expression to evaluate the gust factor for bridge design has not been 
reported in the literature.

The aeroelastic self-excited force can lead to bridge instability (Scanlan and Tomko 
1971). A review of the development of bridge flutter analysis and evaluation of the 
critical wind velocity, including a significant list of references, were given by Ge and 
Tanaka (2000). The critical wind velocity can also be conveniently estimated using a 
widely available finite element software, ANSYS, (Hua et al. 2007).

This study reports the assessment of the gust factor considering the spatio-temporal 
along and cross fluctuating winds, which are characterized by their power spectral 
density (PSD) function. The analysis adopts the frequency domain approach, uses the 
finite element formulation, and considers the aeroelastic self-excited forces. The 
estimated standard deviation and gust factor due to the buffeting force is conveniently 
expressed as a function of only two parameters: the scaled exponential decay coefficient 
and the Monin coordinate evaluated at die frequency of the first vibration mode. For the 
analysis, it is considered that the time-averaged wind speed is below the critical wind 
velocity, and the flutter instability can be ignored. This implicitly assumes that the quasi
steady theory is applicable (Davenport 1966, Davenport and King 1982, Miyata et al. 
1995). The obtained results are compared with those obtained by the simple approximate 
expression given by Davenport (1981, 1983). Also, results by including/excluding the 
aeroelastic self-excited forces are evaluated and compared; details o f the analysis 
procedure, numerical results and conclusions are given.

2.2 Wind loads on bridge deck section
Wind actions on a bridge deck are grouped into drag force D(t), lift force L(f) and 

pitching moment M(t) which are illustrated in Figure 2.1. The actions per unit span of the 
bridge deck can be conveniently expressed as the sum of the time-averaged static, 
buffeting and aeroelastic self-excited contributions (Simiu and Scanlan 1996), 
m  = D,+Dt (t)+D „(t), (2.1a)
L(<) = i ,+ £ s( ') + 4 ,( 0 .  (2-lb)



8

;•
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fiy

and,
M (0 = Ms + M b(t) + Mae(t), (2.1c)
where the subscripts s, b and ae represent the static, buffeting and aeroelastic self-excited 
forces. The calculation of the responses due to static wind load is straightforward, and 
analyses of bridge responses are often concentrated on those caused by buffeting forces 
and aeroelastic self-excited forces.

The static wind forces for the unit length of a bridge deck with a width B are given by, 
D ,= ^pB C DU \  (2.2a)

L,= ±pBCLU \  (2.2b)

and,
Ms = ^pB 2CMU \  (2.2c)

where p is the air mass density; U is a simplified notation for the mean wind velocity at 
die elevation of the bridge deck z (m), U(z); Cd, Cl and Cm are the drag, lift and moment 
coefficients which are functions of angle of attack a . These coefficients can be 
determined based on test results obtained from a section model test in a wind tunnel.

By adopting the quasi-steady model advanced by Davenport (1966) where the 
interaction between the flow and structure can be ignored and the forces are caused by 
the random fluctuating winds, the buffeting (or the aerodynamic) forces for a unit length 
are expressed as,

Dt (() = i p U 2B

Lb(t) = \ p U 2B 

and,

cb XM 1 +c dX! « 1D u u

Qx^+(cl+c0)x

(2.3a)

(2.3b)

1 2 r>2Mb{t) = - p W B C „ xM ) + Cm x^ >U u (2.3c)

where u(t) and w(t) denote the fluctuating wind speeds along the mean wind direction and
orthogonal to the mean wind direction; CD, C'L and Cm represent the derivatives o f Ç&
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Cl and Cm with respect to a . For a given bridge section, these coefficients can be 
determined experimentally from wind tunnel tests. In writing Eq. (2.3), higher order 
effects due to the fluctuating wind are ignored.

Several PSD functions have been given in the literature (e.g. Dyrbye and Hansen 
1997), including the Davenport’s spectrum, Kaimal’s spectrum, von Karman spectrum. 
The Kaimal’s PSD function is considered in this study because it makes a very good 
approximation in the inertial subrange. In such a case, the PSD function for the 
longitudinal fluctuating wind speed u, Su(z,©), is expressed as (Simiu and Scanlan 1996),

Su(z,co) 200,fui
©(1 + 50/ ) 5/3 ’ (2.4a)

while the PSD function for w, Sj (z,(ù), is given as,
3.36 fu

©(l + 10/ 5/3) (2.4b)

where, co is the circular frequency of wind fluctuations; /  is a non-dimensional quantity 
known as the Monin coordinate; /  -G>z/(2nU); u. is the shear friction velocity; the
standard deviation of the along-wind fluctuation au is considered to be equal to V ói/,. 
By integrating Eq. (2.4b), it can be shown that the standard deviation of the cross wind 
fluctuation a w is equal to V l/7i/,.

The mv-cross spectral density function ¿^(z,© ) is given by,
Suw(z, ©) = Cuw(z, CD) + iQm{z, CD) (2.4c)
where i = V - l ; ^ ( z ,© )  is quadrature spectral density, and its quantitative assessment
is unavailable; C ^ z ,© ) is co-spectral density, and its empirical formula is given as (Jain
et al. 1996),

^ (z ,© ) 14A 2
©(1 + 9.6/ ) 24 (2.4d)

However, since the effect of this co-spectral density on the wind-induced bridge response 
is considered to be small, it is not presented in this study.

The spanwise cross-spectrum is adopted to measure the degree of correlation of wind 
fluctuations at two points Si and Sj. The thickness of bridge deck is acceptably small
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compared with z (m), so assume that any point within the bridge deck is at the same 
elevation above ground or water level. According to the wind tunnel measurements, the 
cross-spectral density function of longitudinal fluctuation u at two points s, and Sj , 
Suu(si,sJ,(a) can be expressed as (Simiu and Scanlan 1996),
Suu (s,, Sj, to) =Su(z, ©) ex p (-/u) (2.5a)
and the cross-spectral density function of vertical fluctuation w at two points s,- and Sj, 
S ^ s ,, Sj, to) can be written as,

(st, Sj, e>) =Sw(z, g>) e x p (-/w) (2.5b)
where,

x  =
and,
A

03 ^  I------C be. — x2nU ' (2.6a)

co
2nU C jfi - X j l (2.6b)

where Cx is the exponential decay coefficient for the spanwise coherence of along wind 
fluctuation; Cw is the exponential decay coefficient for the coherence of vertical wind 
fluctuation; xt and xj represent the coordinates along the span of the two given points. 
Since information on the ww-cross spectral density function at two points -s, and sy is not 
available in the literature, this cross-spectra is not considered.

The aeroelastic self-excited forces are due to the interaction of the wind flow and 
oscillation of bridge. These forces for a unit length of the bridge deck can be expressed as 
(Scanlan 1978, Jain et al. 1996),

£>«(')= i p t f 2B

L«(t) = ̂ p U 2B

KP‘i -  + KP' —  + K 2P 'a + K2p; £- + kp;  — + k 2p;  -1 u  2 U B 5 U 6 B

KH\ ^  +  KH; +  K2H]a  +  K2H*A ̂  + KH5* £  +  KZH; ̂U
Bd
U B

2 „ * £  
B

(2.7a)

(2.7b)

and,

KX — + KX —  + K24 a  + K1A l-+ K 4 £-+ K :‘42 - 1 u  ^  U B ^  B (2.7c)

where K =(oB/U represents the reduced circular frequency; p, h and a  are the lateral,
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vertical and torsional displacements of the bridge section, respectively. Pi*, Hi* and A,* 
for i = 1, 6, are flutter (or aerodynamic) derivatives; and each overdot denotes one
differentiation with respect to time. These derivatives for bridge sections are functions of 
the reduced frequency K  and are estimated using the experimental results obtained from 
the specialized wind tunnel tests.

2.3 Procedure for evaluating responses
2.3.1 Flutter analysis

Bridge responds to the wind excitations and could become unstable. To assess the 
responses, the bridge can be represented by a finite element model and the equation of 
motion is then expressed as,

where M is the global mass matrix, C is the global structural damping matrix, K  is the 
global stiffness matrix, F (t) represents the wind loading vector, and Y is the global nodal 
displacement vector.

If the bridge responses due to the aeroelastic self-excited forces only are of interest, 
F(/) in Eq. (2.8) is replaced by the global aeroelastic loading vector Fae(t). This vector 
can be assembled using a standard finite element method if die load vector for each 
element of the bridge is known. For example, if the bridge deck of a simply supported 
bridge is represented by the beam element of length / shown in Figure 2.2, the distributed
areoelastic force can be lumped on the nodes and the nodal forces F ^(i) expressed as 
(Hua et al. 2007),

MY + CY + KY = F (0 , (2.8)

(2.9)

(2.10a)

(2.10b)
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0 0
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0 CxK 2H \ -  CxK 2H\ — CxK 2H l 0 0
5

B

C ^ p 6 -  C{K  P3 0 0

B
0 C2K 2A'6 ^  C2K 2A\ ^  C,K2Al 0 0

ce ='-'aeO

0
0
0

0
0
0

0 0 
0 0

0
0 C3K2PÎ 1 - - 2- * 1

0 0 0
q k zp;  — q k p 2 — 0 0u u u

0 C K H l— C K H Î— C,KH[ — 0 01 5 u u u
0 C2KAL— C2KAl — C2KAl— 0 02  ̂u u u0 0 0 0 0 0

(2.10c)

(2.10d)

0 0 0 0 0 0 
in which, C, =pU2B /2 , and C2 =pU2B212, K eae and Ceae are known as the element 
aeroelastic stiffness matrix and aeroelastic damping matrix, and Ye = \dxi,dyi,dzi,Qxi,Qyi, 
Qzi, dxJ, dyj, dzj, 0X7, Qyj, Og ]1 is the 12x 1 local nodal displacement vector of die element
shown in Figure 2.3. For simplicity, it is assumed that the flutter derivatives for each 
element of the bridge deck are the same. By assembling Fae(f) based on the aeroelastic 
stiffness and damping coefficients of the elements, F ae(t) can be expressed in terms of the 
global aeroelastic stiffness matrix K<,e and the global aeroelastic damping matrix Cae, 
Fae(0  = K aeY + CaeY , (2.11)
and Eq. (2.8) can be expressed as,
M Ÿ + (C -C ,,)Y + (K .K jy  = 0 > (2.12)
which indicates that the aeroelastic force are incorporated in the stiffness and damping 
matrix. This is advantageous since it can be modeled using a commercial finite element 
software such as ANSYS (i.e., Matrix 27, which can have user-specified coefficients of 
stiffness or damping matrices) to carry out the flutter analysis (i.e., eigenvalue analysis) 
and to find the critical wind velocity Ucr that is associated with the instability. This is 
illustrated in Figure 2.4 for a simply supported bridge.
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To illustrate this approach and the sensitivity o f Ucr to the numerical modeling, 
consider a simply supported beam-like bridge with a thin-airfoil cross section and length 
of 300 m (Hua et al. 2007). It is considered that use of the flutter derivatives of thin- 
airfoil cross section is adequate. The cross sectional properties of the bridge deck are: 
width of the bridge deck B =40m; vertical bending rigidity EIy =2.1><106 MPam4; lateral 
bending rigidity EIZ =1.8 x 107 MPam4; torsional rigidity GIt =4.1xl05 MPam4; mass 
density w* =20,000 kgdn; mass moment of inertia Im =4.5x10 kgm  yin. The air density p 
= 1.248 kg/m3 is considered. By modeling this bridge using ANSYS Parametric Design 
Language (APDL) (Hua et al. 2007) and considering Theodorsen’s theoretical solution of 
the eight aerodynamic derivatives (i.e., H* and 4* for i = 1,2, 3 and 4) for the thin-airfoil
cross section (Scanlan 1993) (see Appendix A), the obtained eigenvalues are shown in 
Figure 2.5a. These results are obtained by considering that the bridge can be modeled 
using 30 beam elements, and that use of 26 values of each aerodynamic derivative 
evaluated at the reduced velocity V(=2n/K) equal to 0, 1, ..., 25 is adequate. The figure 
shows that the critical wind velocity corresponding to the incipient of positive real part of 
an eigenvalue equals 137.9 m/s with the corresponding frequency equal to 0.3844 Hz. 
The unsmoothed solution associated with the complex mode 1 is likely due to numerical 
inaccuracy. These values differ slightly from those given by Hua et al. (2007) which are
135.1 m/s, and 0.3940 Hz. The reason for the differences is that the aerodynamic 
derivative H*A used by Hua et al. (2007) differs from the one employed in the present 
study. Furthermore, the results presented by Hua et al. (2007) (reproduced and shown in 
Figure 2.5b) lead to a constant real part of the eigenvalue of the first mode for the wind 
velocity U greater than 80m/s, while the results presented in the present study do not 
follow such a peculiar behavior although it does not affect the estimated critical wind 
velocity. After detailed inspection of the analyses results, it was concluded that the 
behavior associated with Hua et al’s results was caused by the fact that for their analysis 
the aerodynamic derivative values for V only up to 10 were considered.

Also, an analysis was carried out to investigate the sensitivity of the critical wind 
velocity to the number of (finite) elements, n, used to model the bridge deck, and to the 
number o f the discrete values nae used to represent the aerodynamic derivatives (for V 
ranging from 0 to 25). For n ranging from 30 to 90, and nae ranging from 26 to 251, the
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differences between the obtained critical wind velocities to that shown in Figure 2.5a is 
always less than 2%.

It must be emphasized that the example results shown in Figure 2.5 is for a thin- 
airfoil section rather than a typical bridge section, and it is used to illustrate the use of 
described approach for flutter analysis. For a typical bridge section, the critical wind 
speed is much smaller than that shown in the figure.
2.3.2 Buffeting analysis

For the buffeting analysis, consider again that the bridge deck can be modeled using 2 
node beam element (i.e., 3-D 2-node line element with rotational degrees o f freedom 
shown in ANSYS) as shown in Figure 2.3. For the element, it is considered that the 
distributed buffeting force acting along the length can be approximated by the equivalent 
nodal forces as shown in Figure 2.2, resulting in,
F6e =E;q* (2.13)
where F / denotes the nodal forces, qe = \ue(t),we(t)J denotes the fluctuating along and 
cross wind velocities at midpoint of the element, and Eeb is given by (Sun et al. 1999),
K  =
0 cxcD —1 Djj ClCr —

1 Lu CiCuh
o C,CD l c ,( c ; .+ c D) / c 2c „  /

2 U 2 U 2 U
0 C fiD]_

U C,CL —
1 Lu c  c l

U
0 <&D l CX{C\+CD) l c  c l

2 U 2 U 2 U

c ,c , / 2 C,Cn /
6 U 6 U

c , ( c ; + c D) / 2 CxCn l2
12 U 12 U

C,C, /2

1----

6 U 6 U
c , ( c ; + c D) / 2 CxC'n l2

12 U 12 U.

(2.14)

In deriving the above equation, it is assumed that these coefficients remain unchanged 
within the element length, and that the fluctuating wind velocities within an element can 
be represented by their values at the midpoint o f the element. Details o f die mathematical 
derivation are included in Appendix B for easy reference.

The nodal forces ¥b in the local coordinate for the element are converted into the
global coordinate system through the 6(n+ l)xl2 coordinate transformation matrix T e (n
denotes the number of elements), and the forces in global coordinate represented by FAe,i
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are given by,
F ^  = T T / (2.15)
For the case of simply supported beam considered in this study, the derivation of Te is 
also included in Appendix B. By assembling the buffeting force vector F ^  for all the 
elements, the global buffeting force vector for the bridge deck Fb is,

H -itn r l-S fp r r f l .w  (2.16)
where T  = [(r )l,(r )!,...,(T*)i ,...,(T')t], PT =[(e ; , ' - . ( E i q ' l f ,
and the subscript k denotes the fc-th element.

Since ue(t) and we(t) are stochastic processes that are characterized by their 
corresponding PSD functions, F* represents vector o f stochastic processes for given T* 
and Eeb. In such a case, it can be shown that the spectral density function matrix of F*,
S^Cco), can be expressed as,

SfF(co) = T
S'w (o) 8^ ( 0) -  S^(co) 
S ^(® ) Sem (co) S V »

S^(co) S^(co) ... S^(co)
Tt (2.17a)

where the submatrix S^p (oo) representing die 12x12 cross-spectral density function 
matrix of the nodal forces on the i-th element and the y-th element, is given by 
S'w (®) = W s * w (“ ) k ) J  (2.17b)
in which,

Sm(snsjtG>) ( 2  n

St and Sj are the midpoints of the i-th and y-th element, respectively. The 
quantities Sm(s„Sj,(Q) , and S ^s^S j,® )  were already given in Eq. (2.5), and
Sm (st, Sj, co) and (sj, Sj, co) are assumed to be zero.

There are several approaches that one could adopt for solving Eq. (2.8) when F equals 
which is characterized by the cross-spectral density matrix shown in Eq. (2.17a). The
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approaches can be classified as time domain approach and frequency domain approach. 
The time domain approach uses simulated time histories of wind velocities, and 
determines the response time history; the frequency domain approach uses Fourier 
transformation and the concept o f PSD function, and evaluates the probabilistic 
characterization of the responses, such as the mean and standard deviation. For frequency 
domain analysis, there are several ways to determine the buffeting responses of the bridge 
deck, such as the square-root-of-the-sum-of-squares (SRSS) method, the complete 
quadratic combination (CQC) method and the pseudo-excitation method. In this study, 
for easy implementation we adopted the pseudo-excitation method (Sun et al. 1999). For 
the selected frequencies, this method basically decomposes the spectral density matrix of 
the buffeting force, carries out structural analysis under harmonic excitations, and 
evaluates the values of the PSD function of the response.

More specifically, the spectral density matrix of the buffeting force SF/r(a>), which is 
a real symmetric matrix with the dimension 6(«+l)x6(«+l), can be decomposed as,
SFF (co) = L* (co)D(g))Lt (co) (2.18a)
in which L(co) is a low triangular matrix with dimension of 6(n+l)x/n, m is the rank of 
SFF(co), D(co) i s a m*m diagonal matrix, and the superscript *  denotes the complex 
conjugate.

Let L*(cd) denote the &-th column of L(co) and af*(co) denote the fc-th diagonal element 
of D(co). SFF(co) shown in Eq. (2.18a) can then be re-written as,

m (2.18b)

Then the spectral density function o f Y, Syy((o) , is given by (Sun at el. 1996),
m

Sn.(io) = £ d i (a>)Y;(o>)Yt> )  (2.19)
4=1

where,
Yk (to) = H(i'co)ft (co), (2.20a)
H(z'co) is the transfer function for the bridge system represented by Eq. (2.8) and can be 
written as,
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H(ko) = [- co2M + ioi(C - C ae)+ (K - K ae)]"‘ (2.20b)
and,
fk (co, t) = L* (to) exp(zcoi) (k= 1,2 m) (2.20c)
After establishing the bridge model in ANSYS, the 6(«+l) vector ik (to,/) can be applied 
to the corresponding degrees of freedom of the bridge system to evaluate its responses 
due to the buffeting force, and S ^oa) according to Eq. (2.19).

To illustrate the pseudo-excitation method for evaluating S „,(©), consider the same 
simple bridge shown in Figure 2.4. The structural damping ratio for each natural 
vibration mode was assumed to be 0.005. The static coefficients of the bridge deck 
section at the zero angle of attack are Co = 0.0697, Cl = 0.128, Cm = -0.0074, CD = 0, C'L 
= -5.56 and CM = 1.27; the elevation of the bridge deck was considered to be 60 m above 
the ground (i.e., z = 60 m); the shear friction velocity u, was assumed to be 1.84 m/s; and 
the exponential decay coefficients Cx and Cw were taken equal to 16 and 8, respectively 
(Ding et al. 2002). The cross spectra between u and w is neglected in this study. Eeb is
assumed to be the same for all the elements. The structural analysis was carried out using 
the pseudo-excitation method for the frequency ranging from 0.0003 Hz to 1.6 Hz with 
an increment of 0.0003 Hz, and the obtained PSD functions of the responses at midspan 
of the bridge under both along and cross wind fluctuations (which are obtained by using 
the Frontal Solver option in die ANSYS) are shown in Figure 2.6 for a mean wind speed 
of 40m/s.
2.3.3 Probabilistic characterization of the peak responses

Once the PSD function of the response of interest r, such as the bridge midspan 
horizontal, vertical or torsional displacement, is known (e.g., see Figure 2.6), die 
remaining task is to assess the statistics of peak response or mean peak response of r from 
its PSD function and its response due to mean wind speed. Let r\ denote the peak 
response of r over a period T (s). According to Davenport (1964), the probability 
distribution of peak response r\ can be approximated by the Gumbel probability 
distribution expressed as,
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F(r\) = exp exp . S n ( n _ F _ 0rV^ ) l ] (2.21a)
JJ

where r is the response due to mean wind speed, the zero up-crossing rate Vq is given by,
1 a.v0 = (2.21b)271 <J r

and CTr and a- are the standard deviations of r and its temporal derivative, respectively 
that can be calculated using,
a? = j°S r(co)cf(Q (2.22a)
and,
a- = |°  (D2Sr((o)cf(Q (2.22b)
in which SXco) denotes the PSD function of r.

The mean peak response (i.e., the mean o f rj), mA, based on the Gumbel probability 
distribution shown in Eq. (2.21) is,
mn = r+ gpa r (2.23)

where gp = -y/21n(v,jT) + 0.577 / ̂ /21n(v<jT) is known as the peak factor, and
gT =l + vrgP (2.24)
is known as the gust factor, in which vr equals a r /F , representing the coefficient of 
variation of the response.

For example, by using the PSD function of the midspan displacement shown in 
Figure 2.6 and the above equations the obtained standard deviation for the horizontal 
displacement at the midspan, p, equals 3.6><10"3 (m). The corresponding peak factor and 
gust factor are 3.94 and 1.87.

2.4 Numerical results
2.4.1 Responses to buffeting force
2.4.1.1 Responses to along wind excitations

Based on the formulation given in the previous section, a sensitivity analysis was 
conducted to investigate the impact of each of the parameters on the obtained standard
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deviation of the displacement due to fluctuating wind loading.
For the analysis, it can be shown (see Appendix C) that if  the bridge is modeled as a 

simply supported beam with uniform cross sectional properties and equal damping ratio 
for each natural vibration mode £, the normalized standard deviation, ap , for the
horizontal displacement caused by the fluctuating along wind defined by, 
op = op/(p/un) (2.25)
depends only on c'= CXL !z  and f pX = zcapX /(2kU) , where Iu denotes the turbulence

_  4Z>Z4intensity o f the longitudinal fluctuation, p  = —j 1—  represents the horizontal response toK EIZ
the mean wind pressure by considering only the first vibration mode, EIZ is the laterally 
bending rigidity o f the bridge deck and (ùpl is the first horizontal natural vibration
frequency. This largely simplifies the parametric study since we only need to vary the 
scaled exponential decay coefficient c' and the f pl (i.e., Monin coordinate evaluated at
the fundamental frequency).

The calculated values of a p based on the formulation shown in Section 3.2 are
shown in Figure 2.7a for a few selected c' and a range of f pl values. The figure indicates
that as c' increases (i.e., the correlation decreases) the normalized standard deviation 
decreases, which is expected.

A simple equation for a p that is derived based on an often used approximation given
in Davenport (1981) and Davenport and King (1982) can be expressed as (see Appendix
C),
5 ,*  5(0.045,/ pl) , (2.26a)
where,

S (6 ,/)  = 1 1 n
n2/4  + L /X  7t2/4  + c '/4 (Ç  + Ça) b f -2/3 (2.26b)

%a represents the aerodynamic damping ratio and X is a constant known as the integral 
spanwise turbulence scale, which is equal to about 60 m. It is instructive to compare this 
solution with those depicted in Figure 2.7a. Such a comparison is shown in Figure 2.7b
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for a bridge with a span length of 100 m. The results shown in the figure indicates that 
the use o f the approximation shown in Eq. (2.26) introduces a maximum relative error of 
about 16%. Further comparison indicates that the error is an increasing function of the 
span length. For L equal to 150, 200 and 250 m and for c ' less than about 10, the 
maximum error is about 23%, 28% and 32%, respectively. This implies that for such 
cases die higher mode or cross modal contribution becomes more significant. Also, 
inspection of the results depicted in Figure 2.7b indicates that the accuracy of Eq. (2.26) 
depends on the values of c ' and f p\.

The derived approximation shown in Eq. (2.26) is based on Davenport’s PSD 
function. If the PSD function shown in Eq. (2.4a) is used, for consistency, in deriving the 
approximate equation, the value of b equal to 0.045 is to be replaced by 0.049, and a 
slight improved match between the approximation and the results shown in Figure 2.7a 
can be observed.

Similarly, we can derive the expressions for the normalized standard deviations for 
the vertical and the torsional displacements. For comparison purpose, these expressions 
are summarized in Table 2.1. The approximations for the normalized standard deviations 
for responses p, h and a  are identical, while it can be shown that theoretically a p is
identical to a h but Sa differs from op . Values of 5 a obtained by numerical analysis
(i.e., by using the finite element method and random vibration theory) is depicted in 
Figure 2.8a; comparison o f the numerical solution to those calculated using the 
approximate expression with L equal to 100 m is shown in Figure 2.8b. The results 
shown in the figure indicate that the adequacy of the approximation for oa is similar to
that for a p .

Since comparison o f the results shown in Figures 2.7 and 2.8 suggests that the 
difference between 5 a and c p is negligible, one can use ap to represent o a as well.
This is advantageous because the gust factor for horizontal, vertical or torsional 
displacement under fluctuating along wind, gr, can be represented by, 
gT =l + gp*I*™p- (2-27)
The calculated peak factor gp and the gust factor gT for typical values of /„ equal to 0.11 
and 0.15 are shown in Figure 2.9, where the abscissa f \  represents f Pi,fhi or f a\, while the
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ordinate represents the gust factor for the horizontal, vertical or torsional displacement 
under fluctuating along wind loading. Figure 2.9 indicates that the estimated gr based on 
Eq. (2.26) differs from that obtained based on the normalized standard deviation shown 
in Figures 2.7a and 2.8a. The difference depends on both c ' and/i.
2.4.1.2 Responses to cross wind excitations

As shown in Eqs. (2.3) and (2.4), the buffeting force due to cross wind differs from 
those due to along wind; the PSD function for the cross wind is not the same as that for 
the along wind. Therefore, the results shown in Figure 2.7 and 2.8 are not applicable to 
those associated with the cross wind. Let a pc , a hc and oac denote the standard
deviations of die horizontal, vertical and torsional responses at midspan due to cross wind 
fluctuation. Similar to Section 2.4.1.1, their corresponding normalized values, denoted by 
apc , a hc and 5 ^  , respectively, which are defined in Table 2.1, are calculated
numerically and shown in Figures 2.10 and 2.11 for several values of c'= CwL /z . In
these figures, these estimated values are compared with their corresponding 
approximations given in Table 2.1. Inspection of the results shown in these figures to 
those shown in Figures 2.7 and 2.8 indicates that the conclusions drawn from the results 
for the along wind excitations are equally applicable to those for the cross wind 
excitations.

Again, the derived approximation shown in Eq. (2.26) is based on a PSD function that 
is different from the adopted one shown in Eq. (2.4b). For consistency, if  Eq. (2.4b) is 
used to derive the approximation, file value of b equal to 0.24 is to be replaced by 0.20, 
and a slight improved match can be observed.

For the cross wind excitations, the gust factor for the horizontal, vertical or torsional 
displacement gr,
gT=l + gPx P pIu™ pc, (2-28)
can be calculated by using a pc values shown in Figure 2.10 and gp values shown in
Figure 2.12a for given values of Pp and /„. Since PP depends on the considered bridge, 
values of gp x l u%a^ for typical values of /„ equal to 0.11 and 0.15 rather than gr are
plotted in Figures 2.12b and 2.12c to indicate the magnitude of the buffeting force 
induced response.
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2.4.2 Impact of aeroelastic phenomena on estimated responses
The results presented in the previous section do not include the effect of aeroelastic 

self-excited contributions discussed in Section 2.3.1. To investigate the impact of this 
effect on the estimated bridge responses, it is considered that the flutter derivatives given 
by Theodorsen’s solution for the thin airfoil are applicable, and that only H* and A’ , for 
i = 1,2, 3 and 4, are o f interest since usually the effect o f aeroelastic self-excited force on 
die lateral response is small. Table 2.2 shows a set of cases used to assess the impact of 
the flutter derivatives on the estimated normalized standard deviations. For the analysis, 
the buffeting forces due to along wind and cross wind excitations are considered. The 
obtained normalized standard deviations by including/excluding the self-excited 
contributions are shown in Table 2.2 as well. Comparison o f these standard deviations 
suggests that the consideration of aeroelastic self-excited forces (for time-averaged wind 
speed much less than the critical wind speed) decreases the normalized standard 
deviations. In other words, the estimated responses are conservative by ignoring the 
aeroelastic self-excited forces, provided that the wind velocity is lower than the critical 
wind velocity. Furthermore, using the structural properties and the flutter derivatives, 
values o f the aerodynamic damping ^  for some of the cases are calculated and used to 
estimate the approximate normalized standard deviations according to the equations 
shown in Table 2.2. The calculated values are compared to those obtained based on the 
finite element method and random vibration theory in Table 2.2. The comparison 
indicates that:
a) The latter is greater than the former for the cases without or with the consideration of 

aeroelastic self-excited forces for the fluctuating along wind excitations; this trend is 
reversed for the fluctuating cross wind excitations; and

b) In all cases, the inaccuracy is more pronounced by considering aeroelastic self- 
excited forces.

The observed differences in the estimated gust factors shown in Figures 2.9 and 2.12 and 
in Table 2.2 could have implications in bridge design or bridge design code calibration if 
they are not properly taken into account. Furthermore, we note that an improved equation 
to predict the gust factor could be achieved by modifying L/X shown in Eq. (2.26b). 
However, this is not pursued in this study.
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2.5 Conclusions
A parametric study of the gust responses of bridges to spatio-temporally varying wind 

excitations was carried out. For die analysis, die bridge was modeled using the finite 
element method and the wind excitations were represented by their power spectral 
density functions. It was shown that the standard deviation of a response of interest, such 
as the bridge midspan horizontal, vertical or torsional displacement, is directly 
proportional to a normalized standard deviation, which depends on two parameters: a 
scaled exponential decay coefficient for the spanwise coherence of fluctuating winds and 
Monin coordinate evaluated at the frequency o f the first vibration mode. This largely 
simplifies the parametric investigation and also allows us to provide a set of gust factors 
considering spatio-temporally varying fluctuating winds such as those shown in Figures 
2.9 and 2.12. It is recommended that the estimated gust factors to be implemented in 
bridge design codes.

Numerical results suggest that an often used practical approximation underestimates 
the gust factor. The underestimation depends on the spanwise coherence of the 
fluctuating wind, and is more significant for an increased bridge span length. Furthermore, 
the approximation becomes increasingly biased if  the effect of aeroelastic self-excited 
contributions is considered.
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Table 2.1 Derived equations for estimating the standard deviations of along wind induced responses
Responses Horizontal Vertical Torsion
Mean1 p  = 4D,L'I{ksEI,) h =4LSL4/(n5Ely) a  = 4Msl}  /{n3GIf)
Standard deviation for along wind GP = S p(^/„7l) = 5 a (« V 0
Approximate normalized standard deviation for 
along wind excitations2,3

op * 5 (0 .045 ,/^ ),
fpl=Z<»pl/(2KU)

o k * ct(0.045,/Ai) 
fh l=zmUf{2llU)

5 a *5(0 .045 ,/al), 
fa  1 = Z® a l /(2wl7)

Numerically evaluate normalized standard 
deviation for along wind excitations

See Figure 2.7a See Figure 2.7a See Figure 2.8a
Standard deviation for cross wind excitations4 <*pc=apc(PpPW> 

P _ CD p  _  (Q, +Cd)
^ a c = 5oc(Pa^ 
p  CM

P Gu 2Cd 2Cl ok 2Cm
Approximate normalized standard deviation for 
cross wind excitations5

» 5 (0 .2 4 ,/,,) ofAc * ct(0 .24 ,/m) oac * o(0.24,/al)
Numerically evaluate normalized standard 
deviation for cross wind excitations

See Figure 2.10a See Figure 2.10a See Figure 2.11a
Aerodynamic damping6

V U J - P l  u / ( « . )J
Note 1) Response to the mean wind pressure by considering only the first vibration mode; 2) copi, cô i and (Dai are the first vibration 
frequency for horizontal, vertical and torsional responses, respectively; 3) Approximations are for the value of the non-dimensional 
Monin coordinate evaluated at first vibration mode greater than about 0.5; for along wind fluctuation c'=  CXL / z; 4) For the adopted
spectrum the ratio of ctw to ou equals 0.532 (i.e., a w/o u = V l.7 /6 ); 5) for cross wind fluctuation c'=  CWL /z  and 6) the equations for
aerodynamic damping are taken from Davenport and King (1982), H[ (OyB

U represents value of H*x evaluated at G)hlB /U , and

A U represents value of evaluated at coalB /U .



to fluctuating
Modified
Variables

/ pi fhl
3-----P " —

Approx. 
solution2 for a h fa\ 5 a Approx. 

solution2 for a a
Base
Case1 0.785 0.628 0.268

0.998,
0.505

0.919,
0.418 0.755

0.630,
0.537

0.519,
0.415

mb (104 kg/m) mb = 1.6 0.878 0.611 0.300
0.938,
0.496

0.854,
0.407 0.755

0.630,
0.539

0.519,
0.415

mb = 2.4 0.717 0.645 0.245 1.052,0.515
0.976,
0.430 0.755

0.630,0.534 0.5190.415
Im (104 kgm2/m) Im = 360 0.785 0.628 0.268

0.998,
0.505

0.919,
0.418 0.844

0.611,
0.522

0.497,
0.405

Im = 540 0.785 0.628 0.268
0.998,
0.505

0.919
0.418 0.689

0.648,
0.550

0.540,
0.425

B(m) B = 32 0.785 0.628 0.268
0.998,
0.513

0.919,
0.427 0.755

0.630,0.560
0.519,
0.437

5  = 48 0.785 0.628 0.268
0.998,
0.500

0.919,
0.412 0.755

0.630,
0.520

0.519,
0.400

U (m/s) U= 32 0.982 0.595 0.335
0.884,
0.577

0.796,
0.413 0.943

0.595,
0.591

0.478,
0.408

£7=48 0.655 0.663 0.224
1.109,
0.578

1.038,
0.422 0.629

0.668,
0.656

0.563,
0.422

I>(m") 7V = 8 0.785 0.628 0.240
1.064,
0.506

0.989,0.421 0.755
0.630,0.539

0.519,0.415
7V= 12 0.785 0.628 0.294

0.949,
0.505

0.866,
0.416 0.755

0.630,
0.534

0.519,
0.415

i( m 4) It = 4.06 0.785 0.628 0.268
0.998,0.505 0.919,0.418 0.675

0.652,0.544 0.545,
0.419

It = 6.09 0.785 0.628 0.268
0.998,
0.505

0.919,
0.418 0.827

0.614,
0.530

0.501,
0.412

L{m) 1  = 240 1.227 0.571 0.419
0.792,
0.505

0.696,
0.408 0.943

0.595,
0.518

0.478,
0.408

1  = 360 0.545 0.708 0.186
1.237,
0.506

1.175,
0.426 0.629

0.668,
0.564

0.563,
0.422

Note 1) For the base case, (mb, Im, B, U, Iy, It X)=
second entries represent the results without and 
according to equations shown in Table 2.1.

o a , the first and=(2.0, 400, 40, 40, 10, 5.08, 300), and Cx equals 16; For a h and 
with aerodynamic derivatives, respectively; and 2) these values are calculated

Si



Table 2.2b Sensitivity of normalized responses due to fluctuating cross wind to structural and wind characteristics
Modified
Variables

fpl fhl Approx. 
solution2 for a hc fa\ 3„c Approx.

solution2 for Sac
Base
Case1 0.785 0.268

1.881,
0.527

2.646,
0.728 0.755

1.118,
0.693

1.236,
0.728

mb (104 kg/m) mb = 1.6 0.878 0.300
1.804,
0.500

2.439,
0.664 0.755

1.116,
0.695

1.236,
0.728

mh = 2.4 0.717 0.245 1.940,0.548 2.826,0.787 0.755 1.116,0.688 1.236,0.728
/m (104 kgm2/m) Im = 360 0.785 0.268

1.881,
0.525

2.646,
0.728 0.844

1.048,
0.636

1.140,
0.667

Im = 540 0.785 0.268
1.881,
0.526

2.646,
0.728 0.689

1.178,
0.742

1.321,
0.784

B (m) B = 32 0.785 0.268
1.881,
0.559

2.646,
0.776 0.755

1.118,
0.800

1.236,
0.850

B = 48 0.785 0.268
1.881,
0.504

2.646,
0.690 0.755

1.118,
0.605

1.236,
0.634

U (m/s) U= 32 0.982 0.335
1.721,
0.548

2.248,
0.704 0.943

0.983,
0.652

1.053,
0.683

U= 48 0.655 0.224
1.994,
0.500

3.017,
0.745 0.629

1.242,
0.724

1.412,
0.762

Iy (m4) Iv = 8 0.785 0.240
1.953,
0.509

2.868,
0.738 0.755

1.118,0.690 1.236,0.728
7V= 12 0.785 0.294 1.818,

0.538
2.476,
0.718 0.755

1.118,
0.692

1.236,
0.728

h  (m4) It = 4.06 0.785 0.268
1.881,
0.528

2.646,
0.728 0.675

1.191,
0.713

1.340,
0.749

/, = 6.09 0.785 0.268
1.881,
0.524

2.646,
0.728 0.827

1.059,
0.674

1.157,
0.710

L (m) 1  = 240 1.227 0.419 1.549,0.562
1.906,
0.677 0.943

0.983,0.654 1.053,0.683
1  = 360 0.545 0.186

2.084,
0.466

3.433,
0.760 0.629

1.242,
0.723

1.412,
0.762

Note 1) For the base case, (m^ Im, B, U, Iy, / , ,  L)
second entries represent the results without and 
according to equations shown in Table 2.1.

=(2.0, 400, 40, 40, 10, 5.08, 300) and Cw equals 8; For a hc and o ac, the first and 
with aerodynamic derivatives, respectively; and 2) these values are calculated
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Figure 2.1 The wind actions on the deck section.

Figure 2.2 The lumped forces on the beam element.
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da  dg

Figure 2.3 Illustration and adopted displacement notations for the two-node beam
element.

Figure 2.4 The finite element model of the bridge deck.
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W ind velocity (m /a)

(a) Aerodynamic derivatives are specified for F  up to 25

*0,08

-0,10

-0.12

-0 .14

-0 .16

-0 .1 8

m C om plex m ode 1
*  Com plex m ode 2
*  Com plex m ode 3  
v  Com plex m ode 4  
4  C om plex m ode 5  
4  C om plex m ode 6  
►  C om plex m ode 7
* C om plex m ode 8  
4  Com plex m ode 9
*  C om plex m ode 10

20  4 0  60 80  100 120 140
W ind velocity (m /$)

(b) Aerodynamic derivatives are specified for V up to 10 (Hua et al. 2007, Hua personal
communication 2008)

Figure 2.5 The variation o f complex eigenvalue versus wind velocity.
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(a) PSD of lateral response of the deck at the midspan

(b) PSD of vertical response of the deck at the midspan
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(c) PSD of torsional response of the deck at the midspan 

Figure 2.6 Spectral density function of the displacements of deck at the bridge midspan.
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(a) Numerical solutions for c p and a h

(b) Comparison of numerical (solid lines) and approximate solutions (dashed lines) for
a p and S h

Figure 2.7 Normalized standard deviation of horizontal and vertical displacements under
along wind fluctuation with and without spatial correlation (for S, = 0.5% and h# = 0).
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(b) Comparison of numerical (solid lines) and approximate solutions (dashed lines) for

Figure 2.8 Normalized standard deviation for the torsional response under along wind
fluctuation with and without spatial correlation (for £, = 0.5% and ^  = 0).
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(a) Peak factor

(b) Comparison o f numerical (solid lines) and approximate solutions (dashed lines)
for gust factor for Iu -  0.11

S.S

4.8

Ctt 3 9 
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1.5

(c) Comparison of numerical (solid lines) and approximate solutions (dashed lines)
for gust factor for Iu = 0.15

Figure 2.9 Gust factor for fluctuating along wind excitations (/I =fpi orf,j).
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(b) Comparison of numerical (solid lines) and approximate solutions (dashed lines) for
^  or a Ae

Figure 2.10 Normalized standard deviation of horizontal and vertical displacements under
cross wind fluctuation with and without spatial correlation (for £, = 0.5% and ^  = 0).
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Figure 2.11 Normalized standard deviation of torsional displacement under cross wind
fluctuation with and without spatial correlation (for £, = 0.5% and ^  = 0).



(b) gp x h™pc for lu = 0.11

Figure 2.12 Peak factor and gp x /u7iopc for fluctuating cross wind excitations
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Chapter 3 Calibration of wind load factors for Canadian bridge design code

3.1 Introduction
Canadian Highway Bridge Design Code (CHBDC) (CAN/CSA S6-6 2006) 

recommends that a gust effect coefficient (or factor) of 2.0 and a wind load factor of 1.65 
should be used for bridges of spans less than 125 m. The code further recommends that 
for wind sensitive structures the wind loads are to be determined on the basis of a detailed 
analysis of dynamic wind action, using an approved method and including buffeting 
effects. For wind loads determined from wind tunnel tests, the code recommends that the 
wind load factor is to be calculated from an equation, which depends on the coefficient of 
variation of the annual maximum hourly mean wind velocity. Use of these values is 
aimed at achieving reliability consistency in bridge designs.

The application of the gust factor approach simplifies the designers’ task in 
evaluating wind load. However, since the gust factor varies and depends on the dynamic 
characteristics of structural characteristics and statistics of the fluctuating wind speed, use 
of the suggested value of the gust factor (i.e., 2.0) may not result in reliability-consistent 
bridge designs for a wide variety o f design cases. The evaluation o f the gust factor can be 
carried out in frequency-domain or time-domain. Methods and techniques for such 
evaluation are well established (Davenport 1962, 1981, 1983, Jain et al. 1996, Simiu and 
Scanlan 1996, Sun et al. 1999, Chen et al. 2000, Caracoglia and Jones 2003). Results 
from die numerical analyses can be used to verify the accuracy of a simple to use 
approximate analytical equation, that was elaborated in Davenport (1981, 1983) and, 
Davenport and King (1982), to predict the gust factor for bridge design. In some cases 
bridges could be sensitive to the aeroelastic self-excited forces that can lead to the bridge 
instability (Scanlan and Tomko 1971). A review of bridge flutter analysis was given by 
Ge and Tanaka (2000). Since this study is focused on the wind loading used in strength 
design, the aerodynamic instability problem which are extremely important for wind 
sensitive bridges are not considered.

Calibration of the wind load factors employed in the current CHBDC was reported by 
Bartlett and King (2002). The calibration uses some simplifying assumptions and 
approaches, including the use o f lognormal models, and distribution tail fitting. It
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provided a forward step towards rational consideration of wind load in die CHBDC for a 
reliability index of 3.5 considering a service period o f 75 years. Since die gust factor is 
not only a function of the frequency of the first vibration mode but also a function of the 
time-averaged wind speed, use o f simple curves for gust factor instead o f a single gust 
factor value could be desirable for a wide range of bridge design cases. Furthermore, use 
of more efficient and/or accurate reliability analysis approaches such as the first-order 
reliability method (Madsen et al. 1986) and nested reliability method (Wen and Chen 
1989) or simulation techniques in calibrating the wind load factor is needed to take into 
account that the probability distribution of the gust factor is conditioned on the time- 
averaged wind speed. The objective of this chapter is to present the basis, calibration 
procedure and results for recommending the wind load factors and gust factor curves for 
a future edition of the CHBDC.

3.2 Wind load and responses
3.2.1 Design wind load

Wind load in the CHBDC (2006) is defined based on the hourly mean reference (T- 
year return period value of) wind pressure, qr,

9t ~ (3.1)

where p is the air mass density, vr is reference (T-year return period value of) wind 
velocity. Values of qr for return period of 10, 25, 50 and 100 years are tabulated in the 
CHBDC (2006) for many locations. For bridges with spans less than 125 m, 50-year 
return period value of qT is to be used; for bridges with spans equal to or greater than 125 
m, 100-year return period value of wind pressure is to be used (see Clause 3.10.1.2 of the 
CHBDC). qr is calculated directly using vj- The horizontal wind load pressure, pr, is then 
evaluated using,
Pt ~ QrCeCgCf, j (3-2)
where Ce, Cg and C* denote die exposure, gust effect and horizontal wind drag 
coefficients. The wind load effect W„ that is directly proportional to pt  is expressed as, 
Wn = C xC eCgChv2T, (3.3)
where C denotes the analysis coefficient including the exposure area and air density.
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This wind load effect needs to be considered in the load combinations for ultimate limit 
states (ULS). In particular, if  the secondary prestress effects, loads due to earth pressure 
and hydrostatic pressure, and the load effect caused by restraint o f deformations due to 
temperature change and temperature differential, concrete shrinkage, differential 
shrinkage, and creep, are not present, die design requirements given in the CHBDC 
(2006),
RD> aDDn+ awW„ (3.4a)
for the dead load and wind load combination (ie., ULS combination 4) and,
Rd > cxdD„ (3.4b)
for the dead load acting alone (i.e., ULS combination 9) are to be satisfied, where Rd 
denotes the factored resistance, ao and a  w are die dead load and wind load factors, and 
D„ is nominal dead load effect, a d for cast-in-place concrete, wood, and all non-structural 
components equals 1.20 for Eq. (3.4a) and 1.35 for Eq. (3.4b), and an takes value less 
than 1.0 if  the dead load effect counteracts the wind load effect; a  w equals 1.65 for the 
ULS combination 4, where the basis for the suggested wind load factor will be discussed 
shortly.
3.2.2 Response to buffeting and aeroelastic self-excited forces

The wind load shown in Eq. (3.2) depends on the exposure, horizontal wind drag and 
gust effect coefficients (Ce, Ch and Cg). According to the CHBDC (2006), the exposure 
coefficient is a function of the height and varies from 1.0 to 1.6; the drag coefficient is 
considered to be 2.0 for horizontal wind load. The commentary to the CHBDC code 
states that the drag coefficient of 2.0, based on the entire exposed frontal area, is 
conservative for common slab, plate girder, and box girder superstructures. Furthermore, 
the CHBDC (2006) recommends that a gust effect coefficient (or factor) of 2.0 should be 
used for bridges of spans less than 125 m. Use of a gust factor of 2.0 may not necessarily 
be economic and/or unconservative since the gust factor depends on the structural and 
wind characteristics. To show this, we note that the wind actions per unit span length of 
the bridge deck are grouped into drag force D(t), lift force L(t) and pitching moment M(t); 
and they are expressed as the sum o f the time-averaged static, buffeting and aeroelastic 
self-excited contributions (Simiu and Scanlan 1996),
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Z)(0 = a +A(0+A*(0,

L(t) = Ls +Lb(t) + Lae(t), 
and,
M (0  = M s+ M i (0  + M ae(/),

(3.5a)
(3.5b)

(3.5c)
where the subscripts s, b and ae represent the static, buffeting and aeroelastic self-excited 
forces. The static wind forces for the unit length of a bridge deck of width B are given by,

where U (or U(z)) denotes the mean wind velocity at the elevation of the bridge deck z 
(m); Ch, Cl and Cm are the drag, lift and moment coefficients, which are commonly 
determined based on tests at the boundary layer wind tunnel and are functions of angle of 
attack. Since the reference (J-year return period value of) wind velocity vt is given at the

from the power law or logarithmic law. In particular, if the power low or logarithmic law 
is adopted (Simiu and Scanlan 1996), U(z) is calculated from,

where h(z) represents the ratio of U(z) to the wind speed at the height of 10 m.
The buffeting forces are due to stochastic fluctuating along and cross wind excitations, 

which are commonly characterized by their power spectral density (PSD) functions and 
coherence function (Davenport 1966, Simiu and Scanlan 1996). The aeroelastic self- 
excited forces are due to the interaction o f the wind flow and oscillation o f bridge 
(Scanlan 1978, Jain et al. 1996, Simiu and Scanlan 1996).

Based on the above wind load characterization, if  the aeroelastic self-excited forces 
are ignored, the mean of the wind-induced peak response (such as displacement or 
rotation) 13, denoted by mn, can be expressed as (Davenport 1962),

(3.6b)

(3.6a)

and,
(3.6c)

height of 10 m, the wind speed at the elevation o f the bridge deck z  (m) can be calculated

U(z) = vTh(z) , (3.7)

(3.8a)
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where gp = -^2 In(v<|T) + 0.577/^2 \xi(VqT) is the peak factor and depends on the zero- 
upcrossing rate v„, and
gT =l + vrgp , (3.8b)
is the gust factor, in which vr equals ar ! r , representing the coefficient of variation (cov) 
o f the response, and r denotes response due to the mean wind speed. The notation gr is 
used in here to distinguish it from Cg used in the CHBDC (2006).

Methods and techniques for evaluating the gust factor in the frequency-domain or 
time-domain are well established (Davenport 1981, Jain et al. 1996, Simiu and Scanlan 
1996, Sun et al. 1999, Chen et al. 2000, Caracoglia and Jones 2003). If the Kaimal’s PSD 
function (as shown in Simiu and Scanlan 1996) and Davenport’s coherence function are 
adopted, it can be shown that the mean peak response for a simply supported bridge of 
span length L (m) (see Chapter 2) is a function o f damping ratio, and other two 
parameters: the scaled exponential decay coefficient c ' and the Monin coordinate f\  
evaluated at the frequency of the first vibration mode. They are defined as: 
c'=CEDL /z  and f  = zg>1/(2kU), (3.9)
where Ced denotes the exponential decay coefficient for fluctuating wind, and coi 
represents the frequency of the first vibration mode for horizontal, vertical or torsional 
displacement.

For a typical turbulence intensity lu of 0.11, the calculated peak factor and gust factor 
for fluctuating along wind by using the finite element method and random vibration 
theory (See Chapter 2) are shown in Figures 3.1 and 3.2 for ranges of c’ and f i  values. 
The curves shown in the figures are for horizontal, vertical and torsional displacements. 
Figure 3.2 indicates that gr can differ significantly from 2.0: gr is smaller than 2.0 for a 
large c’ value, stiff structures and/or low mean wind speed value; it is greater than 2.0 
for a small c' value, flexible structures and/or high mean wind speed. Most importantly, 
since gr is a function of f \  which is inversely proportional to U, this dependency should 
be considered in evaluating bridge reliability and code calibration under the wind loading. 
Figure 3.1 indicates that the peak factor is an increasing function of logarithmic off\, and 
for a range of c' values that are not equal to zero, it can be approximated by,
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g ^ a .+ a . ln i f , )  (3.10)
where ao and ai are 4.0 and 0.16 for along-wind induced vibrations, respectively.

Rather than using the numerical procedure to assess the gust factor, we follow 
Davenport (1981) and Davenport and King (1982) but considering lhat Kaimal’s PSD 
function is adequate, and obtained the equation below to estimate gr for fluctuating along 
wind,
gT =l + gPIunxo(0 .049 ,c ',f), (3.11a)
where,

G{b,c\fl) = 1 1 n
k2/4  + L/X  tc2/4  + c,/ 14(^ + ̂ )

•2/3 (3.11b)

£, represents the damping coefficient which is taken equal to 0.5% throughout this study, 
represents the damping coefficient due to aerodynamic damping and X is a constant 

known as integral spanwise turbulence scale which is equal to about 60 m (Davenport 
1981). The approximation shown in Eq. (3.11b) is a function of Z,, c ' and f \  while the 
results obtained based on theoretical formulation depend on c' and f\. The inclusion of L 
as an argument is not convenient since different sets of curves may be needed for 
different spans. To make this approximation more consistent with that shown in Figure 
3.2, we replace Eq. (3.1 lb) by,

1 1 71
7t2 / 4 +0.025c' 7i2/4  + c '/i 4(^ + ̂ ) kf\ - 2/3 (3.11c)

which depends on c ’ , and f\. Substituting Eq. (3.11c) instead of Eq. (3.11b) into Eq. 
(3.11a) provides a better approximation to the results shown in Figure 3.2. Ratios of the 
gust factors shown in Figure 3.2 to those estimated by using Eqs. (3.10), (3.11a) and 
(3.11b) are shown in Figure 3.3 for equal to zero. The figure indicates that the 
proposed approximation mimics well the numerical results with the ratio within 0.95 to 
1.05. This provided the basis and justification for using the proposed approximation in 
code calibration and for possibly including them in design code in addition to the curves 
shown in Figure 3.2.

Now, if the aeroelastic self-excited forces are considered and quasi-steady theory is 
adopted, it can be shown that the aerodynamic damping coefficient can be expressed as
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(Davenport and King 1982),

$ .= - p ’hV
u /(4m), (3.12)

for vertical displacement and,

=~pB44 U
(3.13)

for torsional displacement, where H[{k ) and ^(K .) denote the aerodynamic derivatives
evaluated at K, cô i represents the frequency of the first vertical vibration mode, and o)ai 
represents the frequency of the first torsional vibration mode. The adequacy of using 
these equations was already assessed in Chapter 2 of this study for a thin-airfoil cross 
section.

3.3 Probabilistic models and wind load factor
3.3.1 Probabilistic models

The wind load effect, dead load effect and the structural member strength are 
uncertain. These uncertainties are considered in the limit state design approach by using 
load and resistance factors (or material resistance factors), such as that shown in Eq. (3.4). 
By considering the resistance R, the dead load effect D, and the wind load effect W, these 
factors are calibrated such that the probability that g < 0, P(g < 0), where,
g = R -(D  + W), (3.14)
equals, on average, a selected tolerable value Pjt. The estimated P(g < 0) could be 
sensitive to the selected probabilistic models of the random variables that need to be 
considered in the limit state function g  (Madsen et al. 1986).

For simplicity, the calibration in this study will be based on structural steel, although 
probabilistic member resistance characterization for steel concrete structural members 
can be found in Hong and Zhou (2000). For structural steel, the resistance R is considered 
to be lognormally distributed with mean to nominal ratio o f 1.13 and a cov of 0.10. 
These values are in agreement with those reported in the literature (Ellingwood et al. 
1980; Nowak 1999), although the mean is less than that recommended by Bartlett et al. 
(2003) for buildings. For easy reference, this and subsequently adopted probabilistic 
models are summarized in Table 3.1.
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Dead load represents the self-weight o f the materials used in constructing the bridge. 
Nowak (1999) suggested that the mean to nominal ratio of dead load ranges from 1.03 to
1.05 depending on the considered component (e.g., weight of factory made material, cast- 
in-place concrete, wearing surface, etc.) and a cov value varies from 0.08 to 0.1 (except 
for asphalt a cov of 0.25 is appropriate). This leads us to consider the dead load as a 
normal variate with a mean of 1.05 and a cov of 0.10.

The wind load effect, as discussed in the previous section, is expressed as a 
multiplication of several variables that are uncertain. By considering the suggested 
statistics given in Ellingwood et al. (1980) and Bartlett and King (2002), it is assumed 
that C can be modeled as a normal variate with a mean to nominal ratio of 1.0 and a cov 
of 0.056.

The exposure coefficient Ce depends on the structural surrounding and is considered 
to have a cov value ranging from 0.13 to 0.20 for building (Ellingwood et al. 1980, 
Davenport 1981, Ellingwood and Tekie 1999, Davenport 2000). Davenport et al. (1993) 
recommended a cov of 0.075 for calibrating the wind load factors for the Confederation 
Bridge (MacGregor et al. 1997). In all cases, the mean to nominal value is assumed to be 
equal to 1.0. Since the calibration o f the wind load factor used for designing bridges with 
spans less than 125 m (i.e., simple procedure) requires the consideration for designing a 
wide range o f bridges and their locations, for the present study, Ce is assumed to be 
normally distributed with a mean to nominal ratio of 1.0 and a cov of 0.15. However, for 
bridges that require detailed analysis and wind tunnel testing (i.e., detailed procedure), 
the cov of Ce is assumed to be equal to 0.075 since the magnitude of uncertainty in Ce 
(i.e., cov) for such design cases is likely to be reduced.

For typical highway bridges, and considering the width-to-depth ratio ranging from 1 
to 16 and the fact that a value of 2.0 is recommended by CHBCD (2006), Bartlett and 
King (2002) concluded that for the simple procedure the mean to nominal ratio for C* 
equal to 0.71 mid cov equal to 0.14 are adequate. Therefore, Ch is assumed to be normally 
distributed with these statistics. For bridges or bridge sections that require wind tunnel 
testing, it is assumed that the mean and cov of Ch are equal to 1.0 and 0.075, respectively. 
Such an assumption was adopted by Bartlett and King (2002).

As shown in the previous section, the gust factor depends not only on the dynamic
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characteristics of the bridge but also is a function of f\, which is inversely proportional to 
the mean wind velocity (See Eq. (3.9)). Therefore, the gust factor is conditioned on the 
time-averaged wind velocity. By considering that gr can be estimated from Figure 3.2 or 
using Eqs. (3.10), (3.11a) and (3.11c) as well as the bias shown in Figure 3.3 and that the 
code recommended a gust factor of 2.0, the mean to nominal ratio for Cg can be evaluated 
for the current CHBDC. The suggested cov values of Cg vary significantly, and range 
from 0.05 to 0.20 for buildings (Ellingwood et al. 1980, Davenport 1981, Davenport 
2000). Also, a cov value of 0.075 was suggested by Davenport et al. (1993) for 
calibrating the wind load factor for the Confederation Bridge (MacGregor et al. 1997). 
Therefore, it seems reasonable to consider a cov of 0.10 for the present study.

Finally, the annual maximum wind speed V is commonly modeled as a Gumbel 
variate. The mean and cov of the annual wind speed for more than 230 locations, each 
having more than at least 10 years of record, that were provided by the Engineering 
Climatology Section of the Canadian Meteorological Centre in Downsview for the 
calibration of 2005 edition of NBCC were considered (Bartlett et al. 2003). For majority 
o f the locations, die statistics indicate that the cov of the annual maximum wind speed, vv, 
ranges from about 0.08 to about 0.18 and an overall cov value of about 0.13, and that the 
mean of V, mv, varies from about 10 to 30 (m/s), and an overall mean of about 18 (m/s). 
An inspection of the data also suggests that there is no clear trend between cov and the 
mean of V, and that the overall mean of 50- and 100-year return period values of V are 
about 24.4 and 25.7 (m/s), respectively. Therefore, vv equal to 0.11,0.13 and 0.15, and mv 
equal to 15.0, 18.0 and 21.0 (m/s) were considered for the wind load factor calibration 
and verification analysis for bridges of spans less than 125 m. Wider ranges o f the mean 
and cov values of V were considered to calibrate information-sensitive wind load factors 
for bridges that require detailed analysis and wind tunnel testing.

The T-year return period value for the Gumbel distributed annual maximum wind 
velocity vt is given by,

V T ~  m v 1 - V6v r
n

r
0.577 + In In T - l (3.15)

3.3.2 Analysis procedure and results
For the calibration, it is considered that the structural member of the bridge is
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designed to satisfy the minimum strength requirement. This and Eq. (3.4) lead to,
Rd = m ax(l.35,a0 + awy)Dn (3.16)
where y denotes the ratio of nominal wind load to nominal dead load. Therefore, except a 
positive scaling constant the limit state function g  shown in Eq. (3.14) can be re-written 
as,

g = 1 R 1
f  K  m ax(l.35,a0 + a^ y ) j ^  + lX rX c,X c X t ' v ^

\ VT J
(3.17)

where ^  that equals 0.95 denotes the resistance factor for the structural steel considering 
flexure, tension or shear failure (Clause 10.5.7, CAN/CSA S6-06 2006); Xc, Xce Xcg mid 
Xch denote the ratios of C, Ce, Cg and Ch to their corresponding nominal values, 
respectively; and V denotes the annual maximum wind speed model as a Gumbel variate.

If the simple procedure is employed for bridge design, two more issues need to be 
considered in establishing the limit state function. They are related to the directionality 
effect and static failure mode effect. The directionality effect considers that the direction 
of the largest extreme wind speed may not be along the (critical) direction, where largest 
wind load effect can be produced. The static failure mode effect considers that the 
dynamic load effect can be increased before significant yield occurs in a well designed 
structure. According to Bartlett and King (2002) reductions for the former and the latter 
are equal to 1.25. By considering these reductions, Eq. (3.17) can be expressed as,

(3.18a)1 R 1 d  t y X ,x „ x cllx Mf v ] 2 ̂
K  m ax(l.35,aD+ a r y) D„ 1.25x1.25 X t / )

However, if  the detailed procedure is followed, the directionality effect needs not to 
be considered because it has already been taken into account in the detailed (climatology) 
analysis and wind tunnel testing. In such a case, Eq. (3.17) is expressed as,

g = 1 R 1
Rn raax{l.35ta D+ awy)

D , lX cX ceX CKX d, 
D. 1.25

f , r \* \
\ VT J

(3.18b)

Since the mean of is conditioned on the (time-averaged) wind velocity at the 
bridge deck height which is a function of v, the calculation of P(g < 0) for given aD, aw
and y values can be carried out using the nested reliability method (Wen and Chen 1989)
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or combination of the first order reliability method and point estimate method for 
numerical efficiency (Hong 1996). Alternatively, P(g  < 0) for a service period of 75 
years can be estimated using simple simulation technique according to the steps below:
1) Sample values of the random variables R/R„, D/D„, Xc, Xce, and XCh',
2) Sample value of V, v, and the mean of Xcg to define its probabilistic model; and 

sample Xcg and evaluate the limit state function g\
3) Repeat Step 2) up to 75 times (years) if  g is greater than zero before the end of 75 

years;
4) Repeat Steps 1) to 3) n times and count number of times, w/, that g  is less than zero; 

and the estimated P(g < 0) equals n/n.
Using the estimated failure probability, P{g < 0), the corresponding reliability index 

P defined as,
P = ® -‘( l-P (g < 0 ))  (3.19)
can be evaluated for combinations of a#, a w, and y values, and wind characteristics, 
where 0 _1( ) denotes the inverse o f the standard normal distribution function. In the 
present study, the simulation cycle n is selected such that there is at least 50 failure 
samples (i.e., n is selected to be greater than 50/P(g<0)).
3.3.2.1 Results for simple procedure

First, reliability estimates are carried out by using the above outlined procedure and 
considering the simple procedure. For the analysis, a d = 1.2 and a w = 1.65, that are 
recommended in the CHBDC (2006), are employed for Eq. (3.4a); a d = 1.35 is used for 
Eq. (3.4b)./i equal to 5 and 10 (calculated based on the design wind speed) and, c' equal 
to 10 and 40 are selected. The selected values are based on the consideration that ©i 
ranges from 6 to 60 (rad/s) for typical bridges with spans less than 125 m (Billing and 
Green 1984, Barth and Wu 2007), Ced takes a value of 8 or 16 (Simiu and Scanlan 1996), 
z is between 10 to 20 (m), and L varies from 10 to 125 (m). Typical obtained results of 
the reliability index for a 75-year design life, p75, are shown in Figure 3.4 for y varying 
from 0 to 1.0, and combinations of wind characteristics. The figure shows that P75 fo r/„ = 
0.11 is greater than that for /„ = 0.15. This is expected since as the turbulence intensity 
increases the gust factor gr and the mean to nominal ratio of the wind load effect
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increases. Furthermore, the estimated P75 is insensitive to the cov o f wind velocity, vv, for 
y less than about 0.3. For y equal to 1/11 representing the condition where the factored 
design load effect by Eq. (3.4a) equals to that by Eq. (3.4b), P75 takes, on average, a value 
of about 2.8. In all cases, the results show that if  the design condition is for y near 1/11, 
p75 is significantly lower than the target reliability index of 3.5, while if the wind load 
becomes significant part of the total design load, P75 is significantly higher than the target 
reliability index of 3.5. The latter implies that there is potential for the wind load factor to 
be reduced without compromise die desired safety level. The former, although, is 
expected since the target reliability level for permanent load alone is often considered to 
be less than that for variable loads, an increase in the dead load factor is desirable. For 
example, if  a d equal to 1.25 is used to replace 1.20, P75 takes, on average, a value of 
about 2.87 for y equal to 1/14. Therefore, to achieve an improved reliability consistency, 
a d equal to 1.25 seems to be desirable.

To suggest new wind load factor and to adequately take into account the dead load 
effect, the above reliability analyses were repeated by varying aw from 1.3 to 1.65 with 
an increment of 0.05 but considering aD = 1.25. It was found that if  the wind load factor 
a w equal to 1.40 is employed, the estimated P75 values for y ranging from 0.2 to 0.3, as 
illustrated in Figure 3.5, are close to the target reliability index of 3.5 for combinations of 
wind characteristics shown in Table 3.1. The consideration of y ranging from 0.2 to 0.3 is 
justified since the contribution of the wind load effect to the total load effects is usually 
small for bridges of spans less than 125 m. Therefore, it is recommended that cld = 125 
and CLw= 1.40 are to be implemented in a future CHBDC for the simple procedure.
3.3.2.2 Results for detailed procedure

By considering the detailed procedure with the corresponding limit state function 
shown in Eq. (3.8b), the reliability analysis similar to the simple procedure is carried out. 
The estimated P75 values by adopting the probabilistic models shown in Table 3.1 are 
illustrated in Figure 3.6 for f \  = 0.5 or 1, c ' = 40 and mv =18 (m/s). The trends of the 
estimated P75 shown in the figure are similar to those presented in Figure 3.4. The results 
are calculated using the CHBDC recommended dead and wind load factors: cld = 1.20 
and a w equal to the value estimated using (see Clause 3.10.5.2 of the CHBDC),
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a w = 0.808r  exp 3.5vw
V

(3.20)

that equals 1.53, 2.07 and 2.88 for the bias factor bw = 1.0, and the cov of wind load

The results shown in Figure 3.6 indicate that the estimated £75 values can be 
significantly higher than the target reliability index of 3.5 if  y is greater than 0.3 and vv

index of 3.5 if  y is less than 0.2 and vv equals 0.13. Also, if  vv equals 0.08, the estimated 
P75 is less than 3.5; this and the above indicate that Eq. (3.20) does not lead to consistent

considering the possible differences caused by permanent load and variable loads in cost 
effectiveness bridge design, again, cld = 1.25 for ULS combination 4 could be 
recommended for a future CHBDC. It must be noted that according to the current 
CHBDC vt represents 100-year return period, although the wind load factor for the 
detailed procedure was calibrated based on 50-year return period value (Bartlett and King 
2002).

Additional analyses by considering c ' within 20 to 80 are carried out and the 
differences between the obtained results to those shown in Figure 3.6 are less than 5%. 
This simply implies that the estimated P75 is insensitive to c ' if it is greater than 20.

Based on these considerations, the following calibration analyses for the wind load 
factor are carried out using c ' = 40, cld = 1.25 and the probabilistic models shown in 
Table 3.1. For the analyses, a range of values o f a w is considered. For a given vv value 
within 0.08 and 0.18 and mv = 18 (m/s), the value of aw that leads to £75 equal to 3.5 for y 
equal to 1.0 are presented in Figure 3.7a, and the estimated P75 values by using these a w 
values are illustrated in Figure 3.7b for y within 0 to 1.0 and vv = 0.08, 0.13 and 0.18. 
Figure 3.7b shows that in all cases, the calculated P75 values are greater than 3.5 for y 
greater than about 0.4, and as expected for y = 1.0 the calculated P75 values are, on 
average, equal to 3.5.

The analyses leading to the curve shown in Figure 3.7a is repeated for mv equal to 10 
and 28 (m/s) and the obtained relations between a w and vv are almost identical to that

effect, vw, equal to 0.22,0.30 and 0.39 (i.e., for vv = 0.08,0.13 and 0.18).

equals 0.13 and 0.18, and that the estimated P75 is much lower than the target reliability

reliability levels. Therefore, to improve reliability consistency in bridge design and
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shown in Figure 3.7a, indicating that the relation between a w and vv is insensitive to mv. 
Therefore, it is not shown. The difference between the calibrated aw values to those 
estimated by using Eq. (3.20) increases as vv increases. A simple fitting exercise to the 
estimated a w versus vv shown in Figure 3.7a indicates that the following empirical 
equation could be adequate,
a w = 0.92 + 8 x vv (3.21)
for vv within 0.08 to 0.18.

By repeating the analyses but considering a target reliability index, pr, o f 3, 4, or 4.5, 
it was concluded that the following equation for estimating aw for pr within 3 to 4.5 
could be recommended,
a r  =0.89 + (5 -5 x p r +1.68xp£)xvv (3.22)

3.4 Conclusions
It is shown that use of gust effect coefficient (or factor) o f 2.0 and a corresponding 

wind load factor of 1.65 for bridges of spans less than 125 m in the current CHBDC for 
the simple procedure is too conservative considering a target reliability index of 3.5 for a 
service life of 75 years. The suggested equation for estimating the wind load factor 
recommended in the code does not ensure the reliability consistency for the detailed 
procedure unless different bias factor for wind loading is considered. Furthermore, the 
results indicate that use of a dead load factor of 1.20 could lead to a reliability index 
significantly lower than 3.5 for wind to dead load ratio about 0.09. Based on these 
observations and calibration results, it is recommended that:
(1) A dead load factor a d for cast-in-place concrete, wood, and all non-structural 

components equal to 1.25 is to be used to replace the current value of 1.20 for the 
ULS combination 4;

(2) A wind load factor a  w equal to 1.40 is to be used to replace current 1.65 for the 
simple procedure since the latter leads to significantly conservative design for a target 
reliability index o f 3.5; and

(3) For the detailed procedure (i.e., for wind loads determined from wind tunnel tests), a 
new equation for evaluating a w (i.e., Eq. (3.22) ) is proposed. Also, simple to use
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charts and corresponding equations are recommended for estimating the gust factor.
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Table 3.1 Probabilistic models adopted for design code calibration1.
Parameter Mean Coefficient of 

variation
Distribution

type
Mean to nominal ratio for R, R/R„ 1.13 0.10 Lognormal
Mean to nominal ratio for D, D/Dn 1.05 0.10 Normal
Mean to nominal ratio for C, Xc 1.0 0.056 Normal
Mean to nominal ratio for Ce, Xce 1.0 0.15 (0.075) Normal
Mean to nominal ratio for Ch, XCh 0.71 (1.0) 0.14(0.075) Normal
Mean to nominal ratio for CQ, Xce See Note 2 0.10 Normal

Annual maximum wind speed V (m/s) 15,18,21 
(10 to 30)

0.11,0.13,0.15 
(0.08 to 0.18)

Gumbel
Note:

1) In cases where values considered for the simple procedure are different from those 
for the detailed procedure, the values associated with detailed procedure are given 
within the parenthesis.

2) For die simple procedure, the mean of Xcg, mxcg, is given by the ratio of gr (shown in 
Figure 3.2) evaluated at the sampled wind speed at deck height to the code value of 
2.0, and for the detailed procedure, mxcg, is given by ratio of g r evaluated at the 
sampled wind speed at deck height to that evaluated at the design wind speed at deck 
height.
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(a) For horizontal/vertical vibration ( / j  = f pl or f hl)

(b) For torsional vibration ( f l = f al)

Figure 3.1 Peak factor from numerical results and proposed approximation (see Eq.
(3.10)).
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(a) For horizontal and vertical vibration or fhi)

f,
(c) For torsional vibration (fi=fa 1)

Figure 3.2 Estimated gust factor using numerical procedure for 4=0.11 (see Chapter 2).
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f,
(a) For horizontal or vertical vibration (f\=fpi or fi, 1)

f,
(b) For torsional vibration (fi=fai)

Figure 3.3 Ratio of the calculated gust factor to that estimated based on Eqs. (3.10),
(3.1 la) and (3.1 lb) for 7„=0.11.
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Figure 3.4 Estimated reliability for ao=1.20 and a^=1.65 (results shown in a) to d) are
for 7„=0.11 and in e) to h) are for 7„=0.15).
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Figure 3.5. Estimated reliability considering azr=l.25 and =1.40.

Figure 3.6 Calculated reliability considering the detailed procedure using ar>=1.20 and 
aw estimated using code recommended equation (see Eq. (3.20)).
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(b) Estimated P75 using az> = 1.25 and a w shown in (a).

Figure 3.7 Derived new a w and calculated P75 for the detailed procedure.
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Chapter 4 Summary, conclusions and future works

4.1 Summary and conclusions
This study focused on the assessment of the gust factor considering the spatio- 

temporal along and cross fluctuating winds and aeroelastic forces, and the verification of 
the accuracy o f simple approximate analytical expression for estimating the gust factor. 
It also provided the probability basis, calibration procedure and results for recommending 
the wind load factors and gust factor curves for a future edition of the CHBDC.

The conclusions that can be drawn from the study include:
1) The standard deviation of a response of interest, such as the bridge midspan 

horizontal, vertical or torsional displacement, is directly proportional to a normalized 
standard deviation that depends on: a scaled exponential decay coefficient for the 
spanwise coherence of the fluctuating wind, Monin coordinate evaluated at the 
frequency of the first vibration mode, and structural damping ratio. This simplifies the 
parametric investigation.

2) A set o f curves for gust factor, which could be implemented in bridge design codes,
was obtained based on the finite element analysis. Comparison of the curves to an
often used practical approximation indicates that although the approximation is/sufficiently accurate, it slightly underestimates the gust factor. The underestimation 
depends on the spanwise coherence of the fluctuating wind, and is more significant 
for an increased bridge span length. Furthermore, the approximation can be slightly 
biased if the effect of aeroelastic self-excited contributions is considered.

3) It is shown that use of gust effect coefficient (or factor) of 2.0 and a corresponding 
wind load factor of 1.65 for bridges of spans less than 125 m in the current CHBDC 
for the simple procedure is too conservative considering a target reliability index of
3.5 for a service life o f 75 years, and that the use of the current dead load factor of 
1.20 leads to unconservative designs.

4) Calibration results indicate that for simple procedure, a dead load factor of 1.25 and a 
wind load factor of 1.4 can be recommended for a future edition of the CHBDC 
considering a target reliability index of 3.5 for a service life of 75 years.

5) For the detailed procedure (i.e., for wind loads determined from wind tunnel tests), a
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new equation for evaluating aw (i.e., Eq. (3.22)) is proposed. Also, simple to use 
charts and corresponding approximate equations are recommended for estimating the 
gust factor.

4.2 Suggested future works
Several topics which are not covered by die present study can be of interest and

valuable for assessing the safety of bridges. Only two are listed below:
1) The effect o f uncertainty in aerodynamic derivatives in the estimated aerodynamic 

damping, and critical wind speed. Such a study requires die information of the 
aerodynamic derivatives of bridge sections obtained from wind tunnel as well as the 
bridge dynamic characteristics.

2) An investigation of the cost-benefit effect and the consideration of structural 
deterioration such as corrosion on the selection of target reliability levels is needed. 
The investigation will indicate how close the currently adopted target reliability index 
is to that implied by the optimal design.
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Appendix A Using ANSYS to evaluate the critical wind velocity

The following ANSYS Parametric Design Language (APDL) code is taken from Hua 
et al. (2007) with slight modifications and extra comments. The output from ANSYS is 
employed to find the critical wind velocity Ucr that is associated with instability (i.e., 
wind velocity corresponding to the incipient o f positive real part of an eigenvalue).

FINISH
/CLEAR,START
/TITLE, Flutter Analysis for a simply supported-beam like bridge 
! define the structure parameters
LL—300 
TNE=30 
NN=TNE+1 
AA—10 
IYY=10 
IZZ=85.714 
IXX=5.076 
TKY=40 
TKZ-0.25 
IMM=4.5e2 
EXX=2.Ie7 
DE=0.2 
SH=8.077e6

! the 
! the 
! the 
! the 
!lyy 
! Izz 
! Ixx

length of the bridge (m) 
total number of beam4 element 
total nodes
area of (m4)(m4)
(m4)

cross-section (m‘

!the width of the bridge deck (m)
!the height of the bridge deck (m)
!the mass moment of inertia per length (104 kg*m4/m) 
!the Young’s modulus (104 Pa)
!the mass of the bridge per length (104 kg/m3)
!the Shear modulus (104 Pa)

! Build the model of the bridge deck with beam4 and mass21 element
/PREP7
ET,1,BEAM4
ET,2,MASS21
N,1,0,0
N,NN,LL, 0,0
FILL,1,NN
R,1,AA,IZZ,IYY,TKZ,TKY,,,
RMORE,0,IXX,,,,,,
R,2,,,,IMM*LL/TNE,,,
MP,EX,1,EXX 
MP, DENS, 1, DE 
MP,GXY,1,SH 
TYPE,1 
REAL, 1
* DO,i,1,TNE,1 
E,i,i+1 
*ENDDO 
TYPE,2 
REAL, 2
*DO, i, 2, TNE, 1
E,i
*ENDDO
D,1,UX,0,0,,,UY,UZ,ROTX 
D,NN,UY,0,0,,,,UZ,ROTX 
FINISH
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\ Wo&e\ YteY.rix 21
/ SOIM
ANTYPE,MODAL 
MODOPT,LANB,10 
MXPAND,10 
LUMPM,ON 
ALLSEL,ALL,ALL
SOLVE ! undamped eigenvalue analysis
FINISH
*DIM,freqO,ARRAY,10 
*CFOPEN,naturalirequency,TXT 
/POSTI
*DO,i,1,10,1
*GET, freqO(i),MODE,i,FREQ,,, 
temp=freqO(i)
*VWRITE,i,temp 
(5X,FIO.2,5X,F20.10)
*ENDDO
FINISH
*CFCLOS
! Add Matrix 27 into the bridge model 
/PREP7
ET,3,MATRIX27,,1,4,,,,, ! Type 3 aeroelastic stiffness matrix
ET,4,MATRIX27,,1,5,,,,, ! Type 4 aeroelastic damping matrix
R/3,,,,,, ! Real constant 3 for aeroelastic stiffness matrix
R/4,,,,,, ! Real constant 4 for aeroelastic damping matrix
NGEN,2,TNE,2,TNE,1,0,0,-10 ! create the fictitious nodes
TYPE,3 
REAL, 3
*DO,i,2,TNE,1 
E,i,i+TNE 
*ENDDO 
TYPE,4 
REAL,4
*DO,i,2,TNE,1 
E,i,i+TNE 
*ENDDO
NSEL,S,,,2+TNE,2*TNE
D,ALL,ALL
FINISH
*DIM,STIF,ARRAY,4,
*DIM,DMP,ARRAY,4,
*DIM,drv,TABLE,26,8,,, , , ,
! input flutter derivatives from Flutterdrv.txt 
*TREAD,drv,Flutterdrv,TXT,,,
*DIM,freqlr,ARRAY,10,
*DIM,freqli,ARRAY,10,
! Write the results into [result].txt 
*CFOPEN,RESULT,TXT



B=40 ! the
p=l.248e-4 ! the
lle=LL/TNE ! the

width of the bridge deck (m) 
air mass density (104 kg/m3) 
length of one beam4 element

*DO,ii,0,160,1 
u=ii
*DO,jj,1,10,1 
flag=l 
count=l 
ntol=20

! define the wind velocity range 0-160 m/s 
! number of complex modes considered

! Maximum iterations
omiga=freq0(jj)*2*3.1415926
f0=omiga/(2*3.1415926) 
*DOWHILE,flag 
rv=u/(f0*B) 
uk=2*3.1415926*f0*B 
/PREP7
KKK=0.5*lle*p*uk*uk 
CCC=0.5*lle*p*B*uk 
STIF(1)=-KKK*drv(rv,8)
STIF(2)=-KKK*B*drv(rv,7) 
STIF(3)=-KKK*B*drv(rv,4) 
STIF(4)=-KKK*B*B*drv(rv,3) 
DMP(1)=-CCC * drv(rv,5)
DMP(2)=-CCC*B*drv(rv,6)
DMP(3)=-CCC*B*drv(rv,1)
DMP(4)=-CCC*B*B*drv(rv,2) 
RMODIF,3,24,STIF(1),STIF(2) 
RMODIF,3,34,STIF(4)
RMODIF,3,69,STIF(1),STIF(2) 
RMODIF,3,73,STIF(4)
RMODIF,3,84,STIF(3)
RMODIF,3,123,STIF(3)
RMODIF,4,24,DMP(1),DMP(2) 
RMODIF,4,34,DMP(4)
RMODIF,4,69,DMP(1),DMP(2) 
RMODIF,4,73,DMP(4)
RMODIF,4,84,DMP(3)
RMODIF,4,123,DMP(3)
FINISH

set the initial oscillation frequency
reduced wind 
uk=u*k=w*B

velocity rv

H4
H3
A4
A3
HI
H2
Al
A2

stiffness coefficient 
damping coefficient

! Model analysis with Matrix 27 
/SOLU
ANTYPE,MODAL 
MODOPT,DAMP,20 
MXPAND,20 
LUMPM,ON 
ALLSEL,ALL,ALL 
SOLVE 
FINISH
ik=2* (j j-l)+l
! extract the real part of complex mode 
*GET,freqlr(jj),MODE,ik,FREQ,,,,
! extract the imaginary part of complex mode 
*GET,freqli(jj),MODE,ik,FREQ,IMAG,,,
norm=abs((freqli(jj)-f0)/freqli(jj)) ! Define error norm
! Control if error norm is within tolerance
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*IF,norm,LE,le-3,THEN
flag=-l ! Exit loop if satisfied
*ELSE
fO=freqli(jj) ! Otherwise define a new frequency
count=count+l
*E N D IF

*IF,count,EQ,ntol,THEN
flag=-l ! Exit loop after ntol iterations
*E N D IF

*IF,abs(freqlr(jj)),LE,le-5,THEN
freqlr(jj)=0
*E N D IF

*ENDDO
/POS-T1
templ=freqlr(jj) 
temp2=freqli(jj)
*VWRITE,u,tempi,temp2,count
(5X, F6.2,5X,F10.5,5X,F10.5,5X, F4.1)
FINISH
*ENDDO ! enddo jj
*ENDDO ! enddo u
*CFCLOS

Note the aerodynamic derivatives that are needed for the example analysis presented 
in Figure 2.4 are given in Table A. 1.
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Table A.1. Aerodynamic derivatives calculated based on Theodorsen’s solution.
V A , A i ^3 A4 #2 H i H a

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5708
1 0.1264 - 0.0324 0.0716 0.0096 - 0.5058 - 0.3703 - 0.0901 1.5325
2 0.2597 - 0.0713 0.1406 0.0354 - 1.0390 - 0.7146 - 0.3661 1.4291
3 0.4026 - 0.1216 0.2595 0.0728 - 1.6105 - 1.0137 - 0.8417 1.2797
4 0.5555 - 0.1862 0.4322 0.1179 - 2.2221 - 1.2554 - 1.5325 1.0993
5 0.7180 - 0.2667 0.6625 0.1680 - 2.8720 - 1.4332 - 2.4535 0.8987
6 0.8893 - 0.3640 0.9536 0.2213 - 3.5570 - 1.5440 - 3.6180 0.6857
7 1.0685 - 0.4782 1.3085 0.2763 - 4.2738 - 1.5871 - 5.0377 0.4656
8 1.2548 - 0.6092 1.7297 0.3321 - 5.0190 - 1.5633 - 6.7225 0.2423
9 1.4474 - 0.7564 2.2193 0.3880 - 5.7894 - 1.4742 - 8.6808 0.0188
10 1.6456 - 0.9195 2.7790 0.4435 - 6.5823 - 1.3221 - 10.9196 - 0.2032
11 1.8488 - 1.0976 3.4103 0.4983 - 7.3951 - 1.1096 - 13.4448 - 0.4222
12 2.0564 - 1.2902 4.1145 0.5520 - 8.2255 - 0.8392 - 16.2615 - 0.6373
13 2.2679 - 1.4965 4.8926 0.6046 - 9.0716 - 0.5138 - 19.3739 - 0.8478
14 2.4829 - 1.7160 5.7455 0.6560 - 9.9317 - 0.1360 - 22.7855 - 1.0533
15 2.7011 - 1.9479 6.6739 0.7061 - 10.8042 0.2916 - 26.4993 - 1.2536
16 2.9220 - 2.1916 7.6786 0.7548 - 11.6880 0.7665 - 30.5179 - 1.4485
17 3.1454 - 2.4466 8.7600 0.8022 - 12.5816 1.2865 - 34.8435 - 1.6380
18 3.3711 - 2.7123 9.9185 0.8482 - 13.4843 1.8492 - 39.4778 - 1.8222
19 3.5987 - 2.9881 11.1547 0.8930 - 14.3949 2.4526 - 44.4225 - 2.0011
20 3.8282 - 3.2737 12.4688 0.9364 - 15.3129 3.0947 - 49.6788 - 2.1749
21 4.0593 - 3.5684 13.8611 0.9786 - 16.2374 3.7737 - 55.2480 - 2.3436
22 4.2919 - 3.8720 15.3318 1.0196 - 17.1678 4.4880 - 61.1309 - 2.5075
23 4.5259 - 4.1839 16.8812 1.0594 - 18.1035 5.2358 - 67.3285 - 2.6667
24 4.7610 - 4.5039 18.5095 1.0980 - 19.0442 6.0157 - 73.8415 - 2.8213
25 4.9973 - 4.8316 20.2167 1.1356 - 19.9893 6.8263 - 80.6704 - 2.9716



71

Appendix B Evaluation of buffeting force

The derivation of the matrices shown in this appendix is provided in detail in Sun et 
al. (1999). For completeness and easy reference, they are listed below.

B .l) Derivation of E  m atrix for beam element
According to potential energy method, the buffeting force vector acting on the 

element of the bridge deck, F / , can be obtained by,
F*' = ¡BeTK q edx

(B l)
where / is the length of the element; qe = \ue(t),we(t)J denotes the fluctuating along and
vertical cross wind velocities at midpoint o f the element,

-iT

'2Ae -  A b
c ,  2C ° C ,2C‘ c 2C"u 1 u * u
C - 5 l c (C o -* Q  q S l

does not change within the element length;
U U

B£ is the 3x12 shape function matrix of the beam element, and is given as,
0 Vi 0 0 0 v 3 0 V2 0 0 0 V4

Be = 0 0 Vi 0 - v 3 0 0 0 ¥2 0 -V 4 0 (B2)
0 0 0 1 - x / l 0 0 0 0 0 x / l 0 0

in which \|/j = 1 -  3 ^ y j  + 2^y , i|/2 = 3 - 2 ^ 3 and

V s M 1
A

So E £ for the bridge deck can be derived as follows:
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e  ̂= Jb *ta ^ =

c . c „ — 
1 Du C C ,—

1 Lu c2cM—2 M jj CXCL l2 
6 U

c , c D /

6 U
C,CD / c , ( c ; .+ c D) / c 2c m / c T( c ; .+ c D) / 2 C,CD /2

2 U 2 U 2 U 12 U 12 U
CCD —

1 Du c , c , —1 Ljj c2cM—2 M jj CXCL l2 
6 U

CXCD 1 1T 

6 U
C,CD / c , ( c ; .+ c D) / C2Cm l c , ( c ; .+ c D) / 2 cxc'n l2

2 U 2 U 2 U 12 U 12 U \

(B3)

0

The bridge tower can also be modeled as a beam element, similarly the buffeting 
force vector acting on the element of die bridge tower, F£,, can be derived by,

K  = (B4)l
where, re = \ue{t) denotes the fluctuating along and lateral cross wind velocities

_ 2C,
at midpoint o f the element ; =

r V jj
C'

c ,

„  2Cucu — —u v Ms"IS
„  (CDJ+ C i)  „  c m
'■'V T T

does not
x‘ u M U * u

change within die element length, where the second subscript t denotes the corresponding 
symbols for the bridge tower. It should notice that the wind angle of attack here is the 
angle of normal incident wind referring to the vertical plane of the tower segment.

Ej for die bridge tower, termed as E ^ , can be derived as,

K  =
c uc D1— CUCLJ — C C. — C C 12l̂Ŝ LS * lis Ds jj U  LS jj IS MS jj 6 U 6 u
C\sCds l CU(C'LJ+CDJ)  / ÎŜ MS ? Cu (C'Lj +CDj)12 c  cÎŜ DS l2

2 U 2 £ / 2 U 12 i / 12 Uo

0 , rU a . c , . — u'ht Lj
C C l2

u u u
0 CuCD, l  Cu {Cu +CD, ) l  C2f m l cu(Cu+cD,)i2 cucDJ V

u u u 12 u 12 U
(B5)
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B.2) Derivation of E  m atrix for cable element
The buffeting force vector acting on the element of the bridge cable, Ffte c, can be 

expressed as,

K  = JB‘X  ■ '* (B6)

where ue = [«*(/)] denotes the fluctuating along wind velocity at midpoint of the element;
T

^ bfc Ç 2 Cn 2 CrD,c L,c
C T Tu u does not change within the element length, where the

second subscript c denotes the corresponding symbols for the bridge cable. B* is the 2x6 
shape function matrix of the cable element which is given as,

0 1 - x / l  0 0 x l l  0K  = 0 0 1 - x / l  0 0 x / l
Ej for the bridge cable, termed as , can be derived as,

(B7)

EL  = / /o Cu CL t 0 c u c Dtj j (B8)

B.3) Derivation of T  m atrix for simply supported beam
For the simply supported beam, the element number is assigned in sequence from left 

to right, so the right node of (fc-l)-th element and left node of &-th element are the same. 
Then, the transformation matrix T® is derived as,

j e  _ 0 0 I
----------v--------- -

6(i-l)
0 9 )

where I is the 12 X 12 identity matrix, 0 is the 12 X 1 zero array.
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Appendix C Simplified approach for evaluating buffeting effect on short and
medium span bridges

Consider a simply supported bridge at the height z above the ground shown in Figure 
C .l. The governing equation of motion for lateral deflection o f the beam p ,p =  p(x, t), is 
well known and can be expressed as (Clough and Penzien 1993),
E L 8 ^ ( ^  + m 3 ^ ) = D (xJh

dx4 dr
(C l)

where Elz is the flexural rigidity o f the beam, E  is the Young’s modulus, of elasticity of 
the beam, Iz is the moment o f inertia, m is mass of the beam per unit length, x denotes the 
coordinate along the bridge axis, D(x,t) represents the time-dependent wind-induced 
pressure at x.

Before solving the governing equation, we note that the wind pressure D(x, t) varies 
in time and space and is a stochastic process. It can be related to the wind velocity at the 
height z,
D(x, t) = ̂  pBCD (U + u(x, t))2, (C2)

where, U and u(x,t) are the mean component and the longitudinal fluctuating of the 
wind velocity at the height z, respectively; CD is the pressure coefficient; B is the width 
o f the bridge deck; and p is the air density. Since the fluctuating wind velocity is
considered to be much smaller than its corresponding mean component in magnitude, Eq. 
(C2) is approximated by,
D(x, t)x D s + d{x, t) (C3)
where Ds = pBCDUz /2 , and d(x,t) = 2Dsit(x ,t)/U . u(x,f) at the height z (m) above the 
ground surface is usually treated as a stationary process and is characterized by its power 
spectral density (PSD) function ¿"„(z,®), where ® is the frequency. The PSD function
Su (z, co) could be modeled using the Davenport spectrum, Kaimal spectrum, or von
Karman spectrum (see Simiu and Scanlan 1996). The Kaimal spectrum as given in Simiu 
and Scanlan (1996), which is adopted in the present study, is shown in Eq. (2.4a) for the 
longitudinal fluctuating wind speed. By using this PSD function, the PSD function of the
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fluctuating wind pressure d(x,t), SdJz, co) can be expressed as,
S ^ ,e ,) = 4 D ; i2,S.(z,m)l<!l (C4)
where /„denotes the longitudinal turbulence intensity which equals gu/U  , and a„ is the 
standard deviation of u(x,t).

To take into account the spatial variability of fluctuating wind, it is considered that 
the co-spectrum of the wind fluctuation for two points on the bridge deck with 
coordinates x  and x 5f(x,x',co) can be expressed as,
£„c (x, x',(£>) = Su (z, (n)R(x, x' , cd) (C5)
where R(x, x',co) is the normalized co-spectrum of wind fluctuation, and can expressed
as,
R(x, Jt',tt>) = expl C >

2nU *1 (C6)

and Cx is known as the exponential decay coefficient for the spanwise coherence of along 
wind fluctuation.

Based on Eqs. (C4) and (C6), Eq. (C5) can be written as,

(C7)

where q = x /L  and q'= x'/L  represent the normalized coordinates, and L is the bridge 
span length.

To solve the governing equation given in Eq. (C l) under the above described wind 
loading, we note that for the simply supported beam, the frequency of y-th vibration mode 
(0/ is given by,
cOj = (Jn/L)2tJE!z / m (rad/sec), (C8)
and the shape function <()/x) is given by,
<|)j (x) = sin(y 7tx IV), (C9)
By introducing viscous damping to the system, the solution of the equation can be 
expressed as,
P(x,0 = '£ l+j(x)yJ(t) ,

j
(CIO)
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where (0  is governed by

M jy fi)  + + K ,y f i )  -  D,(t) , (Cl 1)
in which represents the damping ratio for the y'-th modal, and the generalized mass 
M j , stiffness Kj and force Dj(t) are given by,

Mj = mifyj {x)f clx = mL / 2 (C l 2a)

KJ = ^ E I1( r j ( x ) f s Ĉ / ^  (C12b)

and,
Dj =DS (x)dx + d(x, t)$j (x)dx (C12c)
The response due to mean wind pressure by considering the y'-th mode, , is simply 
given by,
? ,= D . £♦ ,(*)«&/*, , (C13)
The response due to fluctuating wind pressure can be evaluated based on the random 
vibration theory (Simiu and Scanlan 1996). In such a case, the PSD function of p(x,t), 
Spp(x,(£>), is given by,

■ V*-®) = (C14)
j  *

where the superscript *  denotes the complex conjugate;

SQfiS(0̂ = f f SliX’X '^ j ix y k k ix ' ) ^ '
and,

H j ( ^  l - ( ( £ > / ( O j f  +2i' (̂co/(oy)

(Cl 5)

(D16)

The variance ofp(x,t), a2 (x) , due to fluctuating wind velocity is calculated from,

j  k

Based on Eqs. (C4), (C7), (C14), (C15), (C16), and (C17), we have

(Cl 7)
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(<jp (x) /{plün jf  = s^°Um  ! E) sin(Aroc / L) x
y *

U f

200
6(1 + 5 0 /) 5/3 ex p (-c '/|r i -  ri'|)sinO'7rri) sin(fanV )H} ( / ,  f pl )H*k ( / ,  / pl df

where,

p  =DS f  sin(nx / L)dx / Kl 4DLa
n5EIz ’

represents the horizontal response at bridge midspan to the mean wind pressure by 
considering only the first vibration mode; c'=CxL lz ,  f pl = zg>1/(2%U);/ = za/(2nU);

and H j ( f , f pl) = - . The variable f  is known as the Monin

(or similarity) coordinate. In particular, based on Eq. (C l 8a) the standard deviation of the 
displacement at bridge midspan, ap , can be written as,
(ctp /(p lun jf  = 2  £  s in (/t / 2) sin(*7i / 2) x

j  k

200 exp(~ c' /f a  ~ fi^sinO'^Ti) sin(fotr|' )H} ( / ,  f pl f pl )dr\dr\' d f

(C19)
U i 6(1 + 50/ ) 5/3

Let a p denotes the normalized standard deviation of die displacement defined as,
/( / /r c )  (C20)

Use o f this definition is convenient since given value o f op the coefficient of variation of 
the response at the mid-span vp can be simply calculated from,
VP = rfuVp (C21)

Note that p  shown in Eq. (C l8b) differs about 0.3% from p  = 5DSÜ  /(384£72) 
which is obtained based on static analysis, and that for practical applications, ap , is 
commonly approximated by the following equation (Davenport 1981),

(C22)2 1 2 1 rr y \ 7C®1
a p  = ^ T CTa

in which Og = |°  SQ& (co)i/co,
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In Eq. (C22), the first term on the right hand side represents the background 
component of the response and is termed as a2B ; the second term represents the resonant 
component of the response and is denoted as a \ . Based on Eqs. (C l5) and (C22), 
considering Su(z,(ù) = 0.045f~ 2na 2u /  to (Davenport 1981), it can be shown that at the
midspan, is approximated by (Davenport 1981)
o*B=(pi„nf\7(L/xtf (C23a)
while by including the aerodynamic damping ^  ,<j \  is given by,

4(5+%.) <*;
1L

2nU (C23b)

where X is a constant known as integral spanwise turbulence scale which is equal to 
about 60 m, and |j(,4)|2 is known as the joint acceptance function evaluated from,

\j(A )f = I  |exp(-|q-q^)sin(rcq)sin(7lr|')í/r^£fr|, (C24)
In particular, for single span simply supported bridge, the joint acceptance function can 
be approximated by (Davenport 1977),
\j{4 i (C25)A + nr 14
Based on the above equations (i.e., Eqs. (C20), (C22) to (C25)), o  is approximated by,

7 t
° P  t l  _ 2  / >. . r  1 _ 2 0M5(fpiy213, (C26)n2/4 + L/X  n /4 + c ' fpl 4(^ + ̂ a) 
which depends only on c'= CxL / z ,  L, and f pX = ztox / ( inU). Values of ap for a few sets 
of L and c' values by using Eq. (C26) are calculated and illustrated in Figure C.2 for a 
range o f f pl values.
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Figure C .l An illustration of a simply supported bridge at the elevation z.



Figure C.2 An illustration o f the standardized standard deviation ap
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