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Abstract 

Reverse total shoulder arthroplasty (RTSA) is becoming increasingly utilized in the aging 

population, with a growing list of surgical indications including rotator cuff tear arthropathy, 

proximal humerus fractures, and revision arthroplasty. Acromial insufficiency fractures 

following RTSA are poorly understood, difficult to diagnose, and associated with inferior 

clinical outcomes. There exists a lack of knowledge in the literature regarding the etiology of 

post-operative acromial fractures. The purpose of this study is to evaluate the role of implant 

parameters on acromial strain following RTSA.  

Using a cadaveric model, a custom designed modular RTSA system was implanted that 

allowed for evaluation of modifiable parameters including glenoid lateralization, humeral 

lateralization, and neck-shaft angle. Acromial strain was measured by 4 strain gauges placed 

along the acromion and scapular spine. Total deltoid force was measured as a secondary 

outcome. All specimens were tested in 4 planes of elevation including 0° and 90° abduction 

and 0° and 90° forward flexion.  

Lateralization of the glenoid component was found to increase acromial strain with the arm 

in 0° forward flexion. Lateralization of the humeral component was found to decrease 

acromial strain with the arm in abduction. Neck-shaft angle had no significant effect on 

acromial strain. Disruption of the coracoacromial (CA) ligament had no significant effect on 

acromial strain. The findings of this study have clinical importance in the future research and 

design of RTSA implants. A continued focus needs to be placed on the evaluation of 

additional implant parameters and their role on acromial fractures following RTSA.  

Keywords 

Reverse total shoulder arthroplasty, biomechanics, acromial fracture, glenoid lateralization, 

humeral lateralization, neck-shaft angle, coracoacromial ligament. 
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Chapter 1  

1 Introduction 
The purpose of this thesis is to biomechanically assess the effect of reverse shoulder 

arthroplasty implant parameters on acromial strain and acromial fractures. This chapter 

will focus on providing an overview of the anatomy of the shoulder, including shoulder 

biomechanics. The concept of rotator cuff arthropathy and its treatments options will be 

introduced. A focus will be placed on reverse total shoulder arthroplasty, including its 

indications and complications. Finally, the rationale, objectives, and thesis hypothesis 

will also be reviewed. 

1.1 The Shoulder 
The shoulder, most commonly thought of as the glenohumeral joint, is a diarthrodial 

multi-axial joint with the greatest mobility of any joint in the body. It is made up of the 

articulation of a large humeral head and a relatively small glenoid fossa and relies on a 

complex network of ligamentous and muscular stabilizers. As a ball-in-socket-like joint, 

it affords a large arc of motion including forward flexion, extension, internal rotation, 

external rotation, abduction and adduction and circumduction (Rockwood & Matsen, 

2017).  

1.1.1  Osteology 

The osteology of the shoulder girdle as a whole includes the humerus, scapula, and 

clavicle (Figure 1-1). This includes four major articulations: the glenohumeral joint – 

between the humeral head and glenoid; the acromioclavicular joint – between the scapula 

and clavicle; the sternoclavicular joint – between the clavicle and sternum; and the 

scapulothoracic articulation – between the scapula and the posterior thoracic rib cage 

(Terry & Chopp, 2000).  

 

 



2 

 

 

Figure 1-1: The Shoulder Joint 
This illustration depicts the pertinent osteology of the shoulder girdle including the 
glenohumeral joint (red dashed line). 

 

1.1.1.1 The Humerus 

The humerus is the largest and longest bone of the upper extremity. Anatomically, the 

proximal humerus is made up of the humeral head, the greater and lesser tuberosities, the 

bicipital groove, and the proximal humeral shaft. The anatomical neck of the humerus is 

defined by the junction of the articular surface of the head and the greater and lesser 

tuberosities. At the anatomical neck, the head is angled at an average of 135° relative to 

the shaft (neck-shaft angle) and is retroverted relative to the transepicondylar axis of the 

distal humerus (Jeong, Bryan & Iannotti, 2009). The surgical neck lies just below the 

greater and lesser tuberosities. The tuberosities are important osseous landmarks for the 

insertion of the rotator cuff tendons. Between them lies the bicipital groove, which serves 

as the tract for the long head of the biceps. Finally, the deltoid muscle inserts distally into 

the deltoid tuberosity, a prominence along the anterolateral surface of the humeral shaft 

(Swarm, Mahar, Weichel & Pedowitz, 2007).  
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Figure 1-2: Osseous Anatomy of the Humerus 
Illustration depicting the relevant osseous anatomy of the proximal humerus. 

 

1.1.1.2 The Scapula 

The scapula is a broad, triangular shaped bone located along the posterolateral aspect of 

the thorax. It makes up the posterior aspect of the shoulder girdle. Its main function 

serves as muscular attachment. Along its anterior surface lies the subscapular fossa, and 

posteriorly the scapular spine separates the supraspinous fossa superiorly and the 

infraspinous fossa inferiorly (Figures 1-2 & 1-3). The scapular spine serves as a site of 

insertion for the trapezius muscle, and laterally as a site of origin for the posterior third of 

the deltoid muscle. The scapular spine then continues superiorly and laterally to form the 

base of the acromion (Swarm, Mahar, Weichel & Pedowitz, 2007).  
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Figure 1-3: Anterior View of the Scapula 
Illustration depicting the osseous anatomy of the anterior right scapula and clavicle. 

 

Figure 1-4: Posterior View of the Scapula 
Illustration depicting the osseous anatomy of the posterior right scapula and clavicle. 



5 

 

The glenoid fossa is located laterally along the scapula, inferior to the acromion. In 

relation to the scapular plane, the glenoid fossa is retroverted an average of 2° to 10° and 

tilted superiorly an average of 5°. The scapular plane itself lies 30° to 45° anterior to the 

coronal plane of the body. The glenoid fossa acts as the articulating surface of the 

glenohumeral joint and is covered in hyaline cartilage. The articular surface is concave to 

accommodate the spherical humeral head, although it is only one third to one fourth the 

size of the humeral head. This stability of the glenohumeral joint relies heavily on the 

surrounding complex static and dynamic soft tissue stabilizers. (Terry & Chopp, 2000). 

The acromion – the structure of primary interest in this work – forms a flat, lateral 

projection that acts as a portion of the roof overlying the space for the rotator cuff. 

Laterally, it articulates with the distal clavicle through the acromioclavicular (AC) 

ligament, forming the AC joint. It serves as a site of attachment for the trapezius muscle 

superiorly, and laterally as the origin of the middle third of the deltoid muscle. It serves 

as a prominent lever arm for deltoid muscle function. Three different acromial 

morphologies have been described including type I (flat), type II (curved), and type III 

(hooked). The variations in morphology have implications in subacromial impingement 

and rotator cuff pathology (Balke et al., 2013).  

 
Figure 1-5: Overview of Acromial Morphology  
Illustration depicting variations in acromial morphology including (A) type I (flat), (B) 
type II (curved), and (C) type III (hooked).  
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1.1.1.3 The Clavicle 

The clavicle is an “S-shaped” bone that connects to the shoulder girdle laterally via the 

acromioclavicular joint, and to the axial skeleton medially via the sternoclavicular joint. 

It serves as a site of muscular attachment, including the anterior third of the deltoid 

muscle and the pectoralis major. It has multiple ligamentous attachment sites, which aid 

in its function as a strut to stabilize the shoulder from inferior migration (Terry & Chopp, 

2000).  

1.1.2 Kinematics of the Shoulder 

The shoulder is one of the most mobile joints in the body. As previously described, the 

articulation of the large humeral head with the small glenoid fossa allows for a large arc 

of motion. Again, as discussed, this articulation relies heavily on the complex network of 

surrounding soft tissues which affords the shoulder joint stability.  

Motion through the glenohumeral joint is achieved through both glenohumeral and 

scapulothoracic motion, a concept known as scapulohumeral rhythm. Inman et al. defined 

the ratio of glenohumeral to scapulothoracic motion to be 2:1, although a wide range of 

ratios have been reported (Inman, Saunders & Abbott, 1996).  

Planes of motion of the shoulder include forward flexion and extension in the sagittal 

plane, abduction and adduction in the coronal plane, and internal and external rotation in 

the axial plane. The humerus can also be abducted in the scapular plane, known as 

“scaption”. Through the intricate network of static and dynamic stabilizers, the healthy 

shoulder affords a large arc of motion without compromising stability (Lippitt et al., 

1993; Abboud & Soslowsky, 2002; Hurov, 2009). 
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1.1.3 Static Stabilizers of the Shoulder 

The glenohumeral joint of the shoulder, as noted earlier, is inherently unstable given the 

large spherical humeral head that articulates with the small glenoid fossa. As such, this 

joint relies heavily on surrounding soft tissue stabilizers. During range of motion, static 

stabilizers of the shoulder come under tension and limit any extreme joint angles. Static 

soft tissue stabilizers of the shoulder include the glenoid labrum, the joint capsule, and 

the ligaments (Terry & Chopp, 2000). Figure 1-6 illustrates the soft tissue anatomy of the 

glenohumeral joint and surrounding stabilizers of the shoulder. 

 

Figure 1-6: Soft Tissue Stabilizers of the Shoulder  
Illustration depicting a sagittal view of the right scapula and soft tissue stabilizers 
surrounding the glenohumeral joint. 
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The glenoid labrum is a circumferential fibrous ring attached to the glenoid articular 

margin. The labrum serves to deepen the glenoid socket, increasing the contact surface 

area of the glenohumeral joint, thereby enhancing stability. The labrum also serves as an 

anchor point for numerus glenohumeral ligaments, as well as the long head of the biceps 

tendon (Swarm, Mahar, Weichel & Pedowitz, 2007). 

The joint capsule is a continuous fibrous cylinder surrounding the glenohumeral joint that 

extends from the glenoid labrum down to the neck of the humerus. At rest, it is a 

relatively loose, redundant structure that variably tightens upon glenohumeral range of 

motion. The joint capsule is intimately related to the glenohumeral ligaments, which arise 

from three focal areas of capsular thickening. These ligaments provide additional stability 

to the glenohumeral joint during range of motion (Clark & Harryman, 1992). 

The superior glenohumeral ligament (GHL) extends from the supraglenoid fossa to the 

lesser tuberosity, running in line with the coracohumeral ligament. It functions to 

stabilize the humeral head from inferior and posterior translation while the arm is 

adducted. The middle glenohumeral ligament has more variable anatomy, most 

commonly running from the supraglenoid tubercle and inserting onto the lesser 

tuberosity. It becomes taut as the arm abducts, at which time is resists both anterior and 

posterior translation of the humeral head. The inferior glenohumeral ligament is made up 

of both an anterior and posterior band. It extends from the anteroinferior labrum and 

inferior aspect of the glenoid and inserts into the inferior lesser tuberosity. In a position of 

abduction and external rotation, the inferior glenohumeral ligament prevents anterior 

translation of the humeral head (Terry & Chopp, 2000). Finally, the coracoacromial (CA) 

ligament has been shown to provide static stability to the glenohumeral joint, specifically 

with anterior and superior translation of the humeral head (Lee, Black, Tibone & 

McMahon, 2001; Wellmann et al., 2008).  
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1.1.4 Dynamic Stabilizers of the Shoulder 

Dynamic stabilizers of the shoulder play an important role during functional range of 

motion of the arm when the static stabilizers are not under tension. It is important to note 

that the dynamic and static stabilizers, while all separate entities, form a complex 

network around the glenohumeral joint (Rockwood & Matsen, 2017). For example, the 

long head of biceps originates from the superior labrum, while the rotator cuff tendons 

have attachments along the joint capsule. For the purposes of this work, relevant dynamic 

stabilizers of the shoulder include the rotator cuff muscles, the long head of biceps, and 

the deltoid (Figure 1-7). 

 

 

Figure 1-7: Dynamic Stabilizers of the Shoulder  
Illustration depicting anterior (left) and posterior (right) views of the scapula with 
relevant dynamic soft tissue stabilizers of the shoulder. 
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1.1.4.1 Rotator Cuff Muscles 

The rotator cuff is a structure that surrounds the shoulder and is made up of four distinct 

muscles; supraspinatus, infraspinatus, subscapularis, and teres minor. The supraspinatus 

is the most superior muscle, originating in the supraspinous fossa and inserting into the 

superior aspect of the greater tuberosity. It is innervated by the suprascapular nerve and 

its mechanism of action is that of shoulder abduction. The infraspinatus and teres minor 

muscles both originate on the posterior surface of the scapula, inferior to the scapular 

spine. Both insert onto the posterior aspect of the greater tuberosity. The infraspinatus is 

innervated by the suprascapular nerve, while teres minor is innervated by the axillary 

nerve. Both muscles act to externally rotate the shoulder. Finally, the subscapularis 

muscle originates from the subscapularis fossa on the anterior surface of the scapula and 

inserts onto the lesser tuberosity. It is innervated by both the upper and lower subscapular 

nerves and acts to internally rotate the shoulder. 

When the rotator cuff muscles contract, a compressive force is applied across the joint, 

effectively stabilizing the joint. Described by Lippitt et al, this is a concept known as the 

concavity-compression effect (Lippitt et al, 1993). The superior cuff, particularly 

supraspinatus and upper infraspinatus, also acts as a mechanical constraint to superior 

head migration (Mura et al., 2003). With a large rotator cuff tear the superior structural 

support is lost, leading to superior humeral head migration and abnormal glenohumeral 

wear, a concept first described by Neer in 1983 (Neer, Craig & Fukuda, 1983). 

Finally, because of the antagonistic properties of the rotator cuff muscles, they are able to 

act as a force couple across the joint. This allows for either simultaneous activation of 

both agonist and antagonist muscles or coordinated activation of an agonist with 

inhibition of an antagonist. With force coupling of the rotator cuff, coordinated muscle 

activation and appropriate transfer of forces across the joint can occur (Abboud & 

Soslowsky, 2002). 
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1.1.4.2 Long Head of Biceps Brachii 

The biceps brachii is a muscle responsible for elbow flexion and forearm supination. It is 

innervated by the musculocutaneous nerve. It consists of two heads, the long head and the 

short head. The short head originates from the coracoid process and joins with the long 

head to insert on the bicipital tuberosity of the radius. The long head of biceps originates 

from the supraglenoid tubercle of the scapula at the superior labrum. It has an intra-

articular course before running distally between the greater and lesser tuberosities in the 

bicipital groove. 

As with the rotator cuff, it has been demonstrated that the long head of biceps provides 

compressive forces across the glenohumeral joint. It has been implicated in reducing 

humeral head translation in all directions in cadaveric biomechanical studies. However, 

there still remains some controversy in these results as there is no consensus on the 

physiologic load required to provide glenohumeral stability in cadaveric models (Elser et 

al., 2011). 

1.1.4.3 Deltoid 

The deltoid is a large, broad muscle overlying the shoulder and is separated from the 

rotator cuff muscles by the subacromial and subdeltoid bursae. Historically, the deltoid 

muscle has been divided into three anatomical segments; anterior, middle, and posterior. 

Functionally, these segments all contribute differently to range of motion around the 

shoulder. The anterior and middle deltoid play a large role in forward elevation in the 

scapular plane, while middle deltoid largely contributes to abduction and posterior deltoid 

to extension of the shoulder (Ackland, Pak, Richardson & Pandy, 2008). The deltoid has 

a common insertion into the deltoid tuberosity of the humerus. It is innervated by the 

axillary nerve.  

While the functional role of deltoid remains undisputed, anatomists have long debated the 

morphologic structure of the deltoid muscle. Dating back to the early 1900s, the deltoid 

had been described as being made up of seven functional segments. Wickham and Brown 

further validated this with electromyogram (EMG) and functional studies confirming 
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seven functional segments of deltoid (Brown, Wickham, McAndrew & Huang, 2007; 

Wickham & Brown, 1998). 

More recently, Sakoma et al. utilized cadaveric models to investigate the actual 

morphology of the individual intramuscular tendons and found that deltoid was divided 

into seven anatomical segments. Specifically, the anterior deltoid extended from the 

clavicle to the anterior third of the lateral acromion and was made up of three distinct 

intramuscular tendons. The middle deltoid originated from the middle-third of the lateral 

acromion and was made up of one distinct tendon. The posterior deltoid originated from 

the posterior-third of the lateral acromion and scapular spine and was made up of three 

distinct intramuscular tendons (Sakoma et al., 2011). These seven segments corresponded 

with the three functional segments of deltoid (Figure 1-8). 

While its role in dynamic stability of the shoulder is less recognized, the deltoid has been 

shown to generate compressive and shear forces across the shoulder joint. The middle 

and posterior heads provide the most stability through compressive force. This has an 

implicated role in anterior shoulder instability (Lee & An, 2002). 

 

Figure 1-8: Anatomical Segments of the Deltoid Muscle Origin   
Illustration depicting the seven anatomical segments of the deltoid muscle as it originates 
from the clavicle, acromion and scapular spine. (A1, A2, A3 = anterior intramuscular 
tendons, M1 = middle tendon, P1, P2, P3 = posterior intramuscular tendons) 
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1.2 Rotator Cuff Tear Arthropathy  

1.2.1 Overview 

Rotator cuff tear arthropathy was first described by Neer in 1983 when he began to 

recognize an abnormal pattern of glenohumeral wear following massive rotator cuff tears 

(Neer, Craig & Fukuda, 1983). These patients all had three essential findings in common: 

rotator cuff insufficiency associated with degenerative changes of the glenohumeral joint 

and superior migration of the humeral head (Jensen, Williams, Russell & Rockwood, 

1999). Despite decades of research, there still exists controversy on the underlying 

etiology of this process. An early school of thought was that of a crystal-induced 

arthropathy, in which an inflammatory process resulted in severe degeneration of the 

rotator cuff, termed “Milwaukee shoulder syndrome” (McCarty et al., 1981). Neer et al. 

hypothesized a more commonly accepted concept that a massive rotator cuff tear leads to 

progression of arthropathy through both mechanical and nutritional factors (Neer, Craig 

& Fukuda, 1983). Figures 1-9 and 1-10 depict early and advanced radiographic findings 

of rotator cuff arthropathy. 
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Figure 1-9: Rotator Cuff Tear Arthropathy (early) 
Anteroposterior (AP) radiograph of the right shoulder demonstrating early stage rotator 
cuff tear arthropathy with superior humeral head migration. 
 

 

Figure 1-10: Rotator Cuff Tear Arthropathy (advanced) 

Anteroposterior (AP) radiograph of the right shoulder demonstrating advanced rotator 
cuff tear arthropathy. 
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1.2.2 Clinical Manifestations 

Rotator cuff tear arthropathy usually presents in the elderly population with symptoms of 

pain, weakness, and decreased range of motion of the shoulder. Physical examination 

findings may vary from pseudoparalysis to full shoulder range of motion if the deltoid is 

able to compensate. Diagnosis can be made clinically, radiographically, or with advanced 

imaging such as ultrasound (US), computed tomography (CT), or magnetic resonance 

imaging (MRI). Classic radiographic findings of rotator cuff tear arthropathy include 

superior migration of the humeral head causing abnormal glenohumeral and acromial 

wear (Nam et al., 2012). 

1.2.3 Treatment Options 

Treatment options for rotator cuff tear arthropathy depend on the patient, the severity of 

their presentation, and the effect on their quality of life. Treatment options include 

conservative measures such as activity modifications, oral analgesics, physiotherapy, and 

intra-articular injections. Surgical treatment algorithms exist, taking into consideration 

age, pseudoparalysis and presence of glenohumeral arthritis. In these cases, the rotator 

cuff tears are deemed unrepairable, and so surgical options typically include either 

hemiarthroplasty or reverse total shoulder arthroplasty (Nam et al., 2012).  

1.3 Reverse Total Shoulder Arthroplasty 

1.3.1 Overview 

The conception of reverse total shoulder arthroplasty (RTSA) dates back to the 1970s 

when Neer realized the shortcomings of the standard total shoulder implant in the setting 

of patients with rotator cuff deficiency.  The idea was to reverse the anatomy of the 

native glenohumeral joint by placing the “ball” on the glenoid side and the “socket’ on 

the humerus. His original designs involved a highly constrained implant with a stemmed 

neck on the glenoid component, lateralizing the center of rotation of the shoulder. This 

design had inherent faults, resulting in poor outcomes associated with continued pain, 

poor range of motion, and glenoid component loosening (Berliner, Regalado-Magdos, 
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Ma & Feeley 2015; Boileau, Watkinson, Hatzidakis & Balg, 2005; Boileau, Watkinson, 

Hatzidakis & Hovorka, 2006; Flatow & Harrison, 2011; Gerber & Nyffeler, 2009). 

It was in 1985 that Paul Grammont revolutionized the design of the reverse shoulder 

implant, from which implants are still based off of today (Figure 1-11). His key changes 

included medializing and distalizing the center of rotation in relation to the glenoid 

surface, which increased the moment arm of the deltoid, giving it a mechanical advantage 

(Ackland, Roshan-Zamir, Richardson & Pandy, 2010; Walker et al., 2016b). In contrast 

to the native glenohumeral joint, this center of rotation was fixed through range of 

motion, which minimized shear forces and maximized compressive forces at the bone-

implant interface. He also created a large glenosphere which articulated with a small 

humeral cup, giving the implant a semiconstrained design and allowing for a large arc of 

motion (Berliner, Regalado-Magdos, Ma & Feeley 2015; Boileau, Watkinson, Hatzidakis 

& Balg, 2005; Boileau, Watkinson, Hatzidakis & Hovorka, 2006; Flatow & Harrison, 

2011; Gerber & Nyffeler, 2009). 

 

Figure 1-11: Reverse Total Shoulder Arthroplasty   
Illustration depicting the components of a reverse total shoulder arthroplasty implant 

Glenoid Baseplate
Glenosphere

Humeral Stem

Polyethylene Insert
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1.3.2 Importance of Deltoid 

The deltoid is arguably the most important structure required for a successful RTSA 

implant. As discussed, the medialized and distalized center of rotation in the reverse 

implant increases the deltoid’s mechanical advantage. The deltoid moment arm has been 

reported to increase as much as 42% following RTSA (Kontaxis & Johnson, 2009). The 

shift in center of rotation of the glenohumeral joint also allows for improved deltoid 

efficiency by increasing recruitment of deltoid muscle fibers. Increased recruitment of 

both anterior and posterior deltoid fibers has been reported after RTSA, with all three 

portions of deltoid becoming even stronger abductors (Ackland, Roshan-Zamir, 

Richardson & Pandy, 2010; Walker et al., 2016b). Figure 1-12 depicts the change in 

deltoid biomechanics following RTSA implantation. 

 

Figure 1-12: Deltoid Biomechanics Following RTSA Implantation   
Illustration depicting the increased deltoid moment arm following RTSA implantation. 
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There is also a reported decrease in deltoid force required to generate abduction and 

flexion following RTSA. Henninger et al. reported a 30% decrease in abduction force 

following RTSA (Henninger et al., 2012b). Ackland et al. reported a 10.7% body weight 

(BW) decrease of middle deltoid and 2.3% BW decrease of posterior deltoid force during 

abduction, and a 3.1%BW decrease of middle deltoid and 6.0%BW decrease of anterior 

deltoid force during flexion (Ackland, Roshan-Zamir, Richardson & Pandy, 2011). These 

changes in deltoid action in the setting of a rotator cuff deficient shoulder do cause 

changes in the direction of force through the shoulder with a resultant increase in superior 

shear through the baseplate (Ackland, Roshan-Zamir, Richardson & Pandy, 2011; 

Berliner, Regalado-Magdos, Ma & Feeley 2015; Kontaxis & Johnson, 2009; Terrier, 

Reist, Merlini & Farron, 2008).  

1.3.3 Indications 

Reverse total shoulder arthroplasty has been well validated as a successful treatment 

option for patients with symptomatic rotator cuff tear arthropathy, relieving symptoms 

and restoring function (Drake, O’Connor & Edwards, 2010; Ek, Neukom, Cantanzaro & 

Gerber, 2013; Nolan, Ankerson & Wiater, 2011). Leung et al. demonstrated improved 

outcomes at 2-year follow-up with pain relief and function following RTSA as compared 

to hemiarthroplasty in the treatment of rotator cuff tear arthropathy (Leung, Horodyski, 

Struk & Wright, 2012). While RTSA has been historically indicated in elderly patients, 

Ek et al. reported significant functional improvement at 10-year follow-up in patients 

under the age of 65 treated with RTSA for irreparable rotator cuff tears (Ek, Neukom, 

Cantanzaro & Gerber, 2013). RTSA can also improve function in patients who have 

failed previous rotator cuff repair and who continue to have symptoms, however their 

results are inferior to primary RTSA (Boileau et al., 2009). 

RTSA usage is continuously growing, accounting for one third of all shoulder 

arthroplasty procedures in North America in 2011. With this comes a growing list of 

operative indications. A report with data from 2011 indicated that 59% of all RTSA 

implants were for osteoarthritis, 21% for rotator cuff tear, and 10% for proximal humerus 

fracture. RTSA was also more likely to be performed in elderly patients than total 

shoulder arthroplasty (TSA) or hemiarthroplasty (Schairer et al., 2015a). 
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In the setting of acute proximal humerus fractures, RTSA has become increasingly 

utilized. An advantage of RTSA over hemiarthroplasty is that it has known success in 

elderly patients with rotator cuff insufficiency, and additionally does not need to rely on 

healing of the tuberosities. Reports suggest improved functional outcomes of RTSA 

versus hemiarthroplasty, however RTSA is associated with a higher complication rate but 

a lower revision rate (Ferrel, Trinh & Fischer, 2015; Gallinet et al., 2018; Schairer et al, 

2015b; Sebastiá-Forcada, Cebrián-Gómez, Lizaur-Utrilla & Gil-Guillén, 2014). Reports 

have also demonstrated positive outcomes of RTSA in the setting of proximal humerus 

fracture malunion (Willis et al., 2012).  

RTSA is also indicated in the setting of failed hemiarthroplasty or failed total shoulder 

arthroplasty. If there is any uncertainty of satisfactory rotator cuff function in these 

patients, RTSA may be considered. RTSA has been shown to have positive outcomes in 

treating pain and function in the revision setting, however this procedure is known to be 

associated with higher complication rates (Flury et al., 2011; Levy, Frankle, Mighell & 

Pupello, 2007; Levy, Virani, Pupello & Frankle, 2007; Walker et al., 2012). 

1.3.4 Outcomes 

While the indications for surgery vary, so do the functional, radiographic, and patient-

reported outcomes. As discussed, RTSA has been well studied as an effective treatment 

option for the appropriate indication in the appropriate patient. Wall et al. followed 

RTSA patients post-operatively for a mean of 39.9 months and found an increase in the 

average Constant score from 23 points to 60 points post-operatively, with 93% of patients 

being satisfied or very satisfied with their results (Wall, 2007). In 2009, Young et al. 

reported that at a mean follow-up of 38 months, 89% of patients reported good or 

excellent outcomes following RTSA. They reported a mean American Shoulder and 

Elbow Surgeon (ASES) Score of 70.1, with patients achieving a mean active anterior 

elevation of 122° and a mean external rotation of 14.7° (Young et al., 2009). 

Frankle et al. followed patients for an average of 33.3 months and found significant 

improvements in all of their outcome measures. The mean total ASES score improved 

from 34.3 to 68.2 post-operatively, with the mean function score improving from 16.1 to 
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29.4 and the mean pain score improving from 18.2 to 38.7. In terms of range of motion, 

forward flexion improved from 55° to 105.1°, and abduction increased from 41.4° to 

101.8° (Frankle et al., 2006). More recently, Baumgarten et al. demonstrated that RTSA 

significantly improved patient’s activity levels postoperatively, as well as their quality of 

life (Baumgarten, Chang, Dannenbring & Foley, 2018). While the longevity and 

survivorship of these implants continues to be studied, early five and ten-year follow-up 

results suggest high survival rate and promising long-term clinical results. Using revision 

as an end point, two recent studies reported a 10-year overall prosthesis survival rate of 

91% and 93 % (Bacle, Nové-Josserand, Garaud & Walch, 2017; Cuff et al., 2017) 

1.3.5 Complications 

As RTSA becomes a more widely utilized surgical procedure, complications continue to 

be identified even in the most experienced of hands. RTSA has been reported to have an 

overall complication rate of 15%, while that of revision RTSA approaches 40%. 

Furthermore, RTSA has been reported to have a higher overall complication rate than 

total shoulder arthroplasty (Barco et al., 2016). Confusion lies in the exact definition and 

reporting of complications, making the literature difficult to navigate. The most 

commonly reported and studied complications following RTSA include infection, 

neurologic injury, intra-operative fracture, periprosthetic fracture, scapular notching, 

component loosening, and acromial fracture (Ascione et al., 2018; Barco et al., 2016; 

Cheung et al., 2011; Gerber & Nyffeler, 2009; Nam et al., 2012). For the purposes of this 

work, the focus will be placed on acromial fractures following RTSA.  

1.3.5.1 Acromial Fractures  

1.3.5.1.1 Overview  

Acromial fractures following RTSA are a poorly understood, underdiagnosed entity, with 

a reported incidence ranging as high as 10% (Crosby, Hamilton & Twiss, 2011; Cuff et 

al., 2017; Frankle et al., 2005; Hamid, Connor, Fleischli & D’Alessandro, 2011; Hattrup, 

2010; Levy, Anderson & Samson, 2013; Mayne, Bell, Wright & Coghlan, 2016; Walch et 

al., 2009). This value is likely understated as these fractures are a challenge to identify 

and diagnose. They are thought to arise through an insufficiency fracture mechanism, in 
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which excessive stress at the deltoid attachment causes microtrauma that exceeds the 

ability of the body to repair the damaged bone (Gerber & Nyffeler, 2009; Hamid, 

Connor, Fleischli & D’Alessandro, 2011; Mayne, Bell, Wright & Coghlan, 2016; Walch 

et al., 2009; Wong, Langohr, Athwal & Johnson, 2016). Wong et al. used a finite element 

model to demonstrate that even with an RTSA configuration that caused maximal stress 

through the acromion, it did not approach the threshold of traumatic fracture of cortical 

bone (Wong, Langohr, Athwal & Johnson, 2016). 

Patients with acromial fractures following RTSA may present with symptoms on a 

spectrum, from being asymptomatic to having complete loss of function and range of 

motion. Acromial fractures most often occur within the first three to ten months 

following surgery (Hamid, Connor, Fleischli & D’Alessandro, 2011; Teusink, Otto, 

Cottrell & Frankle, 2014). Presenting symptoms include pain, no improvement in motion 

with physiotherapy, and loss of range of motion (Cheung et al., 2011; Hamid, Connor, 

Fleischli & D’Alessandro, 2011; Mayne, Bell, Wright & Coghlan, 2016).  

1.3.5.1.2 Etiology 

Considerations for the etiology of an insufficiency fracture include both patient and 

technical factors. Otto et al. reported that osteoporosis significantly increased the risk of 

post-operative acromial fractures following RTSA (Otto et al., 2013). While wear to the 

acromion before surgery was thought to be a risk factor, such as in rotator cuff 

arthropathy when superior humeral head migration leads to acetabulization of the 

acromion, Walch et al. reported that this had no significant bearing on post-operative 

outcomes (Walch et al., 2009).  

Technical factors that have been discussed include lengthening of the arm causing 

increased deltoid tension, as well as the position and length of the glenoid baseplate 

screws. Crosby et al. reported that the superior metaglene screw in the Delta III implant 

acted as a stress riser and recommended that this not be used routinely (Crosby, Hamilton 

& Twiss, 2011). Mayne et al. recommended the use of a short posterior screw (<20 mm) 

and a superior screw measuring less than 24 mm (Mayne, Bell, Wright & Coghlan, 

2016). While the concept of arm lengthening and deltoid tension causing increased risk of 
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fracture has been described, no evidence-based recommendations have been made 

(Dubrow et al., 2014; Lädermann, Edwards & Walch, 2014). 

1.3.5.1.3 Classification 

Crosby et al. and Levy et al. have both proposed classification systems for acromial 

fractures following RTSA. Crosby et al. retrospectively reviewed 400 patients treated 

with RTSA and identified 22 who had an identified acromial fracture. They recognized 

three discrete fracture patterns and defined these in relation to the acromioclavicular (AC) 

joint. Type I fractures were avulsion fractures of the anterior acromion, type II fractures 

occurred posterior to the AC joint, and type III fractures occurred along the scapular 

spine (Crosby, Hamilton & Twiss, 2011). Unfortunately, no functional data was included 

in this report and the reproducibility of this classification system was later validated by 

Otto et al. with only moderate reliability (Otto et al., 2013).  

Levy et al. later proposed a new classification system based on the anatomic origin of the 

deltoid (Figure 1-13). Type I fractures were the most lateral, extending along the tip of 

the acromion and involving a portion of both the anterior and middle deltoid. Type II 

fractures involved the entire middle deltoid origin while type III fractures involved the 

posterior deltoid origin along the scapular spine (Levy, Anderson & Samson, 2013). 

Additionally, Wahlquist et al. described “acromial base fractures” as a similar pattern to 

type III fractures, occurring at the connection of the scapular spine and the acromion 

(Wahlquist, Hunt & Braman, 2011). Levy et al. acknowledged that these fractures were 

very difficult to identify, with even radiographs being unreliable. They recommended 

computed tomography (CT) scans to better delineate these fractures if there was any 

uncertainty in diagnosis. They were able to validate their classification system with 

excellent interobserver reliability (Levy, Anderson & Samson, 2013). They reported that 

type II fractures were the most common, followed by type III. This was consistent with 

results published by Wong et al. in a finite element analysis which demonstrated that the 

location of maximal acromial stress following RTSA was in the region of Levy type II 

fractures (Wong, Langohr, Athwal & Johnson, 2016). 
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Figure 1-13: Levy Classification of Acromial Fractures   
Illustration depicting the Levy classification of acromial fractures. 

 

1.3.5.1.4 Treatment Outcomes 

Treatment of acromial insufficiency fractures ranges from observation and non-operative 

treatment to open reduction internal fixation (ORIF). This largely depends on patient 

characteristics, symptoms, bone quality, fracture pattern, and surgeon preference and 

experience (Hattrup, 2010). While many case reports have been described, these fractures 

continue to be underdiagnosed and unrecognized and as such, no large-scale studies exist 

with evidence-based treatment recommendations. A survey by the American Shoulder 

and Elbow Surgery (ASES) members found that 61.5% had encountered post-operative 

acromial fractures in their practice, and 75% treated them non-operatively (Hamid, 

Connor, Fleischli & D’Alessandro, 2011). 

In a retrospective case-control study by Teusink et al., 25 patients with acromial fractures 

following RTSA were treated non-operatively and followed for a minimum period of 2 

years. They found that these patients had inferior clinical outcomes following fracture, 

but that overall, they had improved function as compared to pre-operatively. These 

patients did not gain as much forward elevation as compared to control patients, with a 
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mean gain of 26° and 76° respectively (Teusink, Otto, Cottrell & Frankle, 2014). In 

another study, authors reported a 50% reduction in expected pain improvement and active 

elevation, and a 60% decrease in outcome scores as compared to the control group 

(Hattrup, 2010). 

Acromial base fractures, or type III fractures, are thought to act differently than their type 

I and type II counterparts. It is speculated that acromial base fractures cause a larger 

portion of deltoid to be defunctioned, resulting in poor functional capacity. Furthermore, 

deltoid pull causes distraction at the fracture site and an increased risk of non-union. 

Wahlquist et al. reported on five patients with acromial base fractures following RTSA. 

Two were treated operatively with ORIF, while three were treated non-operatively. Non-

operative treatment included an abduction pillow sling for 3 months with no active or 

passive range of motion, and a bone stimulator. Patients had improvement in pain and 

function after both treatment options, but because of the small sample size, no significant 

treatment recommendations could be made (Wahlquist, Hunt & Braman, 2011). 

Rouleau et al. performed a review of the literature and identified 30 cases of patients with 

fractures of the acromial base or scapular spine following RTSA. Seven were treated with 

ORIF while 21 were treated non-operatively. Amongst those treated non-operatively, 

fourteen had non-union (67%) and four had malunion (19%). Amongst those with ORIF, 

one patient had persistent non-union, two required revision ORIF, and one patient 

required removal of hardware (Rouleau & Gaudelli, 2013).  

Hamid et al. retrospectively reviewed 162 patients who underwent RTSA, of which they 

identified eight with acromial fractures. All were treated non-operatively, and six of the 

eight (75%) went on to fracture non-union. Hamid et al. also commented on fracture 

location having a role in clinical outcomes (Hamid, Connor, Fleischli & D’Alessandro, 

2011). As discussed, fractures located more medially are associated with increased 

deltoid disruption and dysfunction, and with a high rate of non-union they may have 

significant loss of function. Some have advocated for non-operative treatment of lateral 

acromial fractures and consideration for operative intervention of medial acromial 

fractures, but again the evidence is not adequate.  
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1.3.6 RTSA Surgical and Implant Considerations 

As discussed, the RTSA design drastically alters the biomechanics of the shoulder. In 

order to optimize range of motion and function, as well as decrease complications such as 

scapular notching, modifications can be made to both surgical technique and implant 

configuration. 

As the reverse implant design has continued to evolve, so has the surgical technique. 

Scapular notching has become an increasingly recognized complication of the 

Grammont-style RTSA, in which impingement of the humeral component on the inferior 

scapular neck during adduction causes bone erosion (Nicholson, Strauss & Sherman, 

2011). While the impact of this phenomenon continues to be under debate, techniques 

have been developed to minimize impingement. Numerous studies have validated the 

technique of placing the glenosphere baseplate flush with the inferior edge of the glenoid, 

improving range of motion and reducing impingement (Gutiérrez et al., 2008a; Nyffeler, 

Werner & Gerber, 2005; Simovitch et al., 2007). Gutiérrez et al. also recommended 

placement of the glenosphere baseplate with 15° of inferior tilt to minimize mechanical 

failure (Gutiérrez et al., 2007a). Another surgical technique to decrease notching included 

placement of structural bone graft beneath the glenosphere baseplate, known as bony 

increased-offset reverse shoulder arthroplasty (BIO-RSA). This has been shown to 

decrease scapular notching while maintaining range of motion and function (Athwal et 

al., 2015; Boileau, Moineau, Roussanne & O’Shea, 2011). 

Surgical techniques to reduce the risk of acromial fracture following RTSA are largely 

unknown. As previously discussed, glenoid baseplate screw placement may have a role in 

acting as a stress riser, and care should be taken intra-operatively while these are being 

placed. While large-scale studies do not exist, some argue that the anterosuperior 

approach reduces the risk of acromial fractures as compared to the deltopectoral approach 

(Molé et al., 2011). 

Optimal implant configuration continues to be a source of discussion. Some parameters 

are set when the implant is manufactured, while others can be chosen at time of 

implantation. Modifications to these parameters are known to play a role in determining 
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range of motion, impingement, and stability (Roche et al., 2009). Some modifiable 

implant parameters include glenoid lateralization, glenosphere diameter, cup constraint, 

polyethylene thickness, neck-shaft angle, and humeral lateralization. For the purpose of 

this work, a focus will be placed on glenoid lateralization, humeral lateralization, and 

neck-shaft angle.  

1.3.6.1 Glenoid Lateralization 

The concept of lateralizing the glenoid equates to lateralizing the center of rotation 

(COR). While this goes against Grammont’s initial design of medializing the COR, it has 

been shown to have implications in regards to range of motion, deltoid abduction force, 

and joint stability.  

There exists two main methods to lateralize the glenoid component. The first is through 

metallic lateralization of the glenoid baseplate itself. Gutiérrez has advocated that 

lateralizing the COR allows for improved range of motion and reduced impingement 

(Gutiérrez et al., 2007a; Gutiérrez et al., 2008b; Gutiérrez et al., 2007b). Using a 

Sawbones model, Gutiérrez et al. demonstrated that lateralizing the COR (+0, +5 and +10 

mm) resulted in the greatest improvement in abduction ROM as compared to other 

variables tested (Gutiérrez et al., 2008b). This hypothesis has since been demonstrated 

with computational models, cadaveric biomechanical studies, and retrospective and 

prospective reviews (Berhouet, Garaud & Favard, 2014; Jobin et al., 2012; Li et al., 2013; 

Valenti et al., 2011; Virani et al., 2013). Others have found that lateralization in fact did 

not greatly affect ROM. In a cadaveric biomechanical study, Henninger et al. 

demonstrated that a lateralized COR had no effect on adduction or external rotation, 

which contradicted the previous literature likely due to inherent differences of the types 

of studies. Henninger et al. did find that higher offset increased the force required to 

dislocate the joint, meaning the construct was more stable. The authors also demonstrated 

that lateralizing the COR caused an increase in deltoid abduction force and moment arm, 

which could have implications for acromial stress fractures and glenoid component 

loosening (Henninger et al., 2012a). This concept has been demonstrated by several 

computational, finite element analyses, and biomechanical studies, which confirmed that 

lateralization of the COR caused an increase in joint-reactive forces and deltoid force 
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required for ROM (Costantini, Choi, Kontaxis & Gulotta, 2015; Giles, Langohr, Johnson 

& Athwal, 2015; Hettrich, Permeswaran, Goetz & Anderson, 2015; Hoenecke, Flores-

Hernandez & D’Lima, 2014; Liou et al., 2017). Hettrich et al. demonstrated that for every 

1 mm of lateralization of the COR, an additional 2.6% of deltoid force was required 

(Hettrich, Permeswaran, Goetz & Anderson, 2015). 

The second method for lateralizing the COR, as previously discussed, is through bone 

grafting beneath the glenosphere baseplate. This technique, known as bony increased-

offset reverse shoulder arthroplasty (BIO-RSA), has been described by Boileau et al. as 

having an advantage over metallic glenoid lateralization as it maintains the COR at the 

bone-prosthetic interface, which allows for decreased torque and shear through the 

implant (Boileau, Moineau, Roussanne & O’Shea, 2011). Again, as discussed, this was 

primarily used to decrease scapular notching and improve ROM. Many studies, including 

a randomized controlled trial by Greiner et al. in 2015, found that there was no 

statistically significant improvement in ROM or other outcome scores as compared to a 

standard RSA (Athwal et al., 2015; Collin et al., 2018; Greiner et al., 2015; Lädermann et 

al., 2018). 

From the perspective of acromial stress fractures, Wong et al. demonstrated using a 

computational model that lateralization of the glenosphere caused an increase in acromial 

stress. They found that lateralizing the COR from 0 to 5 mm and 0 to 10 mm caused an 

increase of acromial stress by 7.7% and 17.2% respectively. They concluded that glenoid 

lateralization had a larger effect on acromial stress than inferiorization of the glenoid 

component (Wong, Langohr, Athwal & Johnson, 2016). Figure 1-14 demonstrates 

increased glenoid lateralization of a custom modular RTSA implant. 

1.3.6.2 Humeral Lateralization 

Modifications to humeral implant design include use of a straight versus a curved stem, 

use of an inlay versus an onlay humeral tray, inclination of the neck (neck-shaft angle), 

and medialized versus lateralized offset. Lädermann et al. investigated the effect of these 

modifications on range of motion following RTSA using a computational model. Specific 

to humeral lateralization, the authors found that by lateralizing the humeral tray, there 
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was a very small influence on improving the mechanical advantage of the deltoid in 

abduction, with an even smaller effect on flexion and external rotation (Lädermann et al., 

2015).  

The type of humeral stem used in RTSA has been implicated as having a role in arm 

lengthening following surgery. They key behind arm lengthening involves adequate 

tensioning of the deltoid after implantation. If the deltoid isn’t under enough tension, this 

may cause instability and reduced mechanical advantage of the deltoid. If the deltoid is 

under too much tension, this may cause neurologic injury, fixed abduction of the arm, or 

acromial fracture (Lädermann et al., 2009). While several studies have proposed 

techniques for assessing appropriate deltoid tension intra-operatively, as well as 

techniques for measuring amount of arm lengthening, few are validated (Lädermann, 

Edwards & Walch, 2014). Of note, Dubrow et al. performed a retrospective review on 

patients who underwent RTSA and found no significant difference in arm lengthening 

between those who sustained acromial fractures and those who did not (Dubrow et al., 

2014). 

Several studies have demonstrated a correlation between humeral offset and changes in 

deltoid moment arm (Berhouet et al., 2015; Walker et al., 2016a). Berhouet et al. 

performed a computational study which concluded that lateralization of the humeral 

component allowed for maximum abduction, forward flexion, and external rotation 

(Berhouet et al., 2015). Giles et al. used a cadaveric model to demonstrate that increasing 

humeral lateralization lead to a decrease in deltoid force required for active abduction 

(Giles, Langohr, Johnson & Athwal, 2015). Conversely, Tashjian et al. found that 

increased humeral offset lead to an increased deltoid abduction force and reduced passive 

rotation in the Reverse Shoulder Prosthesis manufactured by DJO Surgical (Tashjian, 

Burks, Zhang & Henninger, 2015). 

In regards to acromial stress, Wong et al. used a finite element model to demonstrate that 

lateralization of the humeral component caused an increase in acromial stress. They 

found that lateralizing the humeral shaft from -5 to 0 mm and 0 to 5 mm increased 

acromial stress by 1.4% and 1.7% respectively. They also concluded that having a more 
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medial humeral shaft allowed for a slight increase in deltoid mechanical advantage 

(Wong, Langohr, Athwal & Johnson, 2016). Figure 1-15 demonstrates increased humeral 

lateralization of a custom modular RTSA implant. 

 

Figure 1-14: Glenoid Lateralization   
Illustration depicting increased glenoid lateralization using a custom modular implant. 

 

 

Figure 1-15: Humeral Lateralization   
Illustration depicting increased humeral lateralization using a custom modular implant. 
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1.3.6.3 Neck-shaft Angle  

Historically, the Grammont-style prosthesis was designed with a non-anatomic neck-shaft 

angle of 155°. The idea of the valgus neck was to add length to the humerus and therefore 

increase deltoid tension, allowing it to compensate for the deficient rotator cuff (Boileau, 

Watkinson, Hatzidakis & Balg, 2005). This design later changed as it was noted that a 

more valgus neck was associated with increased inferior scapular impingement and 

adduction deficit. This was demonstrated by Gutiérrez et al. with a Sawbones model, and 

later by several computational studies (de Wilde, Poncet, Middernacht & Ekelund, 2010; 

Gutiérrez et al., 2008a; Gutiérrez et al., 2008b; Lädermann et al., 2015; Virani et al., 

2013; Werner, Chaoui & Walch, 2017).  de Wilde used a two-dimensional computer 

model to demonstrate that a reduction in NSA from 155° to 145° allowed for a gain of 

10° of impingement-free adduction (de Wilde, Poncet, Middernacht & Ekelund, 2010). 

Werner et al. used a three-dimensional RTSA model to demonstrate that a lower NSA 

allowed for improved adduction, but decreased abduction (Werner, Chaoui & Walch, 

2017). Finally, Langohr et al. used finite element analysis and found that a decrease in 

NSA, while increasing ROM, caused an increase in maximum articular contact stress 

across the implant (Langohr et al., 2016). Figure 1-16 demonstrates variations in NSA of 

a RTSA implant. No studies have examined the role of neck-shaft angle directly on 

acromial strain following RTSA.  

 

Figure 1-16: Neck-shaft Angle   
Illustration depicting increasing neck-shaft using a custom modular RTSA implant. 
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1.4 Thesis Rationale 
Reverse total shoulder arthroplasty (RTSA) is becoming an increasingly utilized surgical 

procedure in the aging population. This, associated with ongoing developments to 

increase longevity of the implant, means an associated increase in complications and 

adverse outcomes. Acromial stress fractures following RTSA continue to be a challenge 

to diagnose and are associated with inferior clinical outcomes. Unfortunately, while the 

existing literature focuses on etiology, classification and treatment, very little focus is 

placed on strategies to prevent or minimize the risk of acromial stress fractures. To date, 

there are no cadaveric biomechanical studies investigating the role of implant 

configuration on acromial insufficiency fractures.  

The purpose of this thesis is to evaluate the role of RTSA implant configuration on 

acromial strain using a cadaveric, biomechanical model. This thesis encompasses three 

main studies. The first study focuses on the role of both glenoid and humeral 

lateralization on acromial strain following RTSA implantation. The second study 

examines the role of neck-shaft angle on acromial strain following RTSA implantation. 

Finally, the third study assesses the role of the coracoacromial (CA) ligament following 

RTSA implantation. These studies will yield important, relevant information regarding 

the optimal implant minimal strain configuration to decrease the risk of acromial stress 

fractures following RTSA. 
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1.5 Thesis Objectives 
The objectives of this thesis were to examine the role of modifiable implant parameters 

on acromial strain following reverse total shoulder arthroplasty, as well as the role of the 

coracoacromial ligament. 

The primary objectives of this thesis are:  

1. To evaluate the role of glenoid lateralization on acromial strain following reverse 

total shoulder arthroplasty implantation (Chapter 2). 

 

2. To evaluate the role of humeral lateralization on acromial strain following reverse 

total shoulder arthroplasty implantation (Chapter 2). 

 

3. To evaluate the role of neck-shaft angle on acromial strain following reverse total 

shoulder arthroplasty implantation (Chapter 3). 

 

4. To evaluate the role of the coracoacromial ligament following reverse total 

shoulder arthroplasty implantation (Chapter 4). 
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1.6 Thesis Hypothesis  
The hypotheses of this thesis based on the objectives are: 

1. Increasing glenoid lateralization will correlate with an increase in acromial strain 

following reverse total shoulder arthroplasty implantation (Chapter 2). 

 

2. Increasing humeral lateralization will correlate with an increase in acromial strain 

following reverse total shoulder arthroplasty implantation (Chapter 2). 

 

3. Changes in neck-shaft angle will have no significant influence on acromial strain 

following reverse total shoulder arthroplasty implantation (Chapter 3). 

 

4. Disruption of the coracoacromial ligament will not have any significant effect on 

acromial strain and shoulder biomechanics following reverse total shoulder 

arthroplasty implantation (Chapter 4).  

 

5. The acromial strain will be highest in the region of Levy type II fractures. 

 

1.7 Thesis Overview 
This thesis examines the biomechanics of RTSA in a cadaveric specimen, focusing on 

acromial strain. The first chapter is an overview of the relevant anatomy and pathology as 

well as a literature review of RTSA and acromial insufficiency fractures. Chapter 2 is 

focused on the biomechanics of both glenoid and humeral lateralization, and their role on 

acromial strain. Chapter 3 focuses solely on the role of neck-shaft angle on acromial 

strain. Chapter 4 examines the role of the coracoacromial ligament following reverse total 

shoulder arthroplasty. Finally, Chapter 5 will provide a discussion of the findings, 

summary of the thesis, and potential future areas of work.  
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Chapter 2  

2 The Role of Glenoid and Humeral Lateralization on 
Acromial Strain 

Acromial insufficiency fractures occur in up to 10% of patients following reverse total 

shoulder arthroplasty (RTSA). The etiology is largely unknown, and there is a paucity of 

literature on factors that minimize the risk of acromial insufficiency fractures. This 

chapter investigates the role of both glenoid lateralization and humeral lateralization on 

acromial strain following RTSA, which has not been investigated by any previous 

biomechanical studies. 

2.1 Introduction  
[NB: A portion of this material was presented in Chapter 1 and is also included here in 

order to ensure that this chapter is in “article” format]. 

Reverse total shoulder arthroplasty (RTSA) is a successful surgical treatment option for 

symptomatic rotator cuff tear arthropathy, acute proximal humerus fractures, and revision 

arthroplasty (Boileau et al., 2009; Drake, O’Connor & Edwards, 2010; Ek, Neukom, 

Cantanzaro & Gerber, 2013; Ferrel, Trinh & Fischer, 2015; Flury et al., 2011; Gallinet et 

al., 2018; Leung, Horodyski, Struk & Wright, 2012; Levy, Frankle, Mighell & Pupello, 

2007; Levy, Virani, Pupello & Frankle, 2007; Nolan, Ankerson & Wiater, 2011; Schairer 

et al, 2015b; Sebastiá-Forcada, Cebrián-Gómez, Lizaur-Utrilla & Gil-Guillén, 2014; 

Walker et al., 2012; Willis et al., 2012). RTSA is becoming a more widely accepted and 

utilized procedure across the United States (Schairer et al., 2015a). RTSA is associated 

with a 15% overall complication rate (Barco et al., 2016). Amongst this, acromial 

insufficiency fractures are reported to occur in up to 10% of patients, usually within the 

first 3 to 10 months following surgery (Crosby, Hamilton & Twiss, 2011; Cuff et al., 

2017; Frankle et al., 2005; Hamid, Connor, Fleischli & D’Alessandro, 2011; Hattrup, 

2010; Levy, Anderson & Samson, 2013; Mayne, Bell, Wright & Coghlan, 2016; Teusink, 

Otto, Cottrell & Frankle, 2014; Walch et al., 2009).  
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Acromial insufficiency fractures following RTSA are poorly understood, difficult to 

diagnose, and associated with inferior clinical outcomes. They are hypothesized to occur 

through an insufficiency fracture mechanism as opposed to an acute traumatic event 

(Gerber & Nyffeler, 2009; Hamid, Connor, Fleischli & D’Alessandro, 2011; Mayne, 

Bell, Wright & Coghlan, 2016; Walch et al., 2009; Wong, Langohr, Athwal & Johnson, 

2016). Wong et al. confirmed in their finite element analysis that after RTSA 

implantation, the acromion never reached the threshold of traumatic fracture even with 

the highest stress implant configuration (Wong, Langohr, Athwal & Johnson, 2016).  

The deltoid muscle is arguably the most crucial structure required for a successful RTSA 

reconstruction. The deltoid muscle has a broad origin along the entire scapular spine, 

acromion, and lateral clavicle. The biomechanics of the shoulder, including the deltoid, 

are completely altered in the RTSA construct.  The center of rotation (COR) is 

medialized and distalized, causing an increase in deltoid moment arm as high as 42% 

(Kontaxis & Johnson, 2009). With this, the deltoid becomes more efficient, with 

increased recruitment of both anterior and posterior fibers and overall increased strength 

of abduction (Ackland, Roshan-Zamir, Richardson & Pandy, 2010; Walker et al., 2016b). 

These changes in deltoid mechanics cause a resultant shift in the muscle line of action 

and the pull of the tendon along its origin on the acromion. 

Commercially available RTSA systems vary in their implant configurations. Modifiable 

parameters include glenoid lateralization, humeral lateralization, neck-shaft angle, 

glenosphere diameter, and polyethylene thickness, amongst others. The optimal RTSA 

implant configuration has long been debated, and with improvement in one outcome 

comes compromise of another. For example, lateralization of the glenoid, while reducing 

scapular impingement, leads to an increase in joint-reactive forces and deltoid force 

required for range of motion (Costantini, Choi, Kontaxis & Gulotta, 2015; Hettrich, 

Permeswaran, Goetz & Anderson, 2015; Hoenecke, Flores-Hernandez & D’Lima, 2014; 

Liou et al., 2017).  
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It is for this purpose that glenoid lateralization has been addressed in some investigations, 

from basic science studies to randomized controlled trials. Unfortunately, very little of 

this literature focuses on the effect of glenoid lateralization on the acromion. Wong et al. 

examined this in their finite element analysis, which found that incremental lateralization 

of the glenoid COR caused a resultant increase in acromial stress (Wong, Langohr, 

Athwal & Johnson, 2016). 

Humeral lateralization has been studied as a subset of modifications that can be made to 

the humeral stem. Humeral stem type has been implicated in post-operative deltoid 

tension and arm lengthening (Lädermann et al., 2009). Humeral lateralization has been 

shown by computational models and biomechanical studies to have mixed effects on 

range of motion and deltoid mechanical advantage. Wong et al. reported that with 

lateralization of the humeral shaft, small increases in acromial stress were noted (Wong, 

Langohr, Athwal & Johnson, 2016). 

Overall, there remains a lack of evidence regarding which RTSA implant configurations 

minimize strain through the acromion.  Hence, the purpose of this in-vitro biomechanical 

cadaveric simulator study was to specifically investigate the role of both glenoid 

lateralization and humeral lateralization on acromial strain following RTSA implantation. 

This was evaluated with 9 different implant configurations through 4 planes of elevation 

(0° and 90° abduction, 0° and 90° forward flexion). A custom modular RTSA system 

permitted testing of 145° neck-shaft angle implants with varying glenoid lateralization (0, 

5, and 10 mm) and humeral lateralization (-5, 5, and 15 mm). It is hypothesized that 

increasing both glenoid lateralization and humeral lateralization will correlate with an 

increase in acromial strain. It is hypothesized that acromial strain will be highest in the 

region of Levy type II fractures (Levy, Anderson & Samson, 2013). These conclusions 

will yield important information regarding the role of modifiable implant parameters on 

acromial insufficiency fractures.  



50 

 

2.2 Materials and Methods 

2.2.1 Specimen Preparation  

Eight fresh frozen right male cadaveric shoulders (8 males, mean age 73 years, range 61-

88 years) were thawed for at least 24 hours prior to testing. The humerus was transected 

midshaft to accommodate the shoulder simulator. Overlying soft tissues were dissected 

and the underlying muscles were exposed, leaving the deltoid and rotator cuff muscles 

intact. In order to enter and visualize the glenohumeral (GH) joint, the subscapularis 

muscle was elevated off of the subscapular fossa of the scapula, leaving its insertion 

along the lesser tuberosity intact. The GH capsule was breached in order to enter the joint 

and released circumferentially. The labrum was resected, as well as any remaining 

articular cartilage on the glenoid.  

In order to simulate a rotator-cuff deficient shoulder, full-thickness supraspinatus and 

upper infraspinatus tears were created by releasing them from their insertion on the 

greater tuberosity. The infraspinatus was released such that it was level with the upper 

edge of the subscapularis tendon so as to have a symmetric anterior and posterior force 

couple for testing. As shown in Figure 2-1, the anterior (subscapularis) and posterior 

(lower infraspinatus and teres minor) cuff were sutured with a running locking stitch 

using a heavy #5 non-absorbable braided suture (Ethibond, Ethicon, Johnson & Johnson, 

New Jersey, USA). 
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Figure 2-1: Tagged Rotator Cuff Tendons 

Heavy #5 Ethibond suture used to tag the anterior and posterior rotator cuff tendons. A 
tear in supraspinatus and upper infraspinatus was created in order to mimic a rotator 
cuff-deficient shoulder.  
 

The deltoid was then released from its distal insertion on the deltoid tuberosity of the 

humerus. The three heads of deltoid were then identified based on the anatomic 

description by Sakoma et al (Sakoma et al., 2011). The lateral edge of the acromion was 

divided into thirds. The anterior deltoid extended from the lateral aspect of the distl 

clavicle to the anterior third of the lateral acromion. The middle deltoid originated from 

the middle-third of the lateral acromion. The posterior deltoid originated from the 

posterior-third of the lateral acromion and extended along the medial aspect of the 

scapular spine. As shown in Figure 2-2, nylon mesh was sewn at the muscle origin along 

the tendinous edge of each deltoid segment using #5 Ethibond suture (Ethibond, Ethicon, 

Johnson & Johnson, New Jersey, USA). Another #5 Ethibond suture was then sutured 

through the Nylon mesh in order to attach it to the pneumatic actuators of the shoulder 

simulator. 
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Figure 2-2: Tagged Heads of Deltoid Origin 

Nylon mesh and heavy #5 Ethibond suture used to tag three heads of deltoid at the 
tendinous origin along the lateral clavicle, acromion and scapular spine. 
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The humerus and glenoid were then prepared for RTSA implantation. A sagittal saw was 

used to resect the humeral head circumferentially at the level of the articular margin 

(anatomical neck). The proximal humerus was first reamed using a power reamer, 

followed by reaming of the humeral shaft. The glenoid was reamed with a power reamer 

so as to remove all cartilage and accommodate placement of a vertically oriented 

baseplate. 

The custom RTSA system was then implanted using a modified technique from the 

Wright Medical – Tornier Aequalis surgical technique manual (Wright Medical 

Technologies, Memphis, Tennessee). The humeral component was cemented in anatomic 

version relative to the transepicondylar axis, with humeral distalization dictated by 

aligning the inferior edge of the humeral cup with the superior aspect of the greater 

tuberosity. A humeral rod was cemented into the distal humeral shaft to allow for 

attachment to the shoulder simulator. The glenoid baseplate was then secured by drilling 

screws into the glenoid and placed in neutral orientation, with the inferior edge of the 

baseplate lining up with the inferior-most rim of the native glenoid. 

The surface of the acromion was prepared for strain gauge placement. All soft tissue, 

muscle, and periosteum were dissected off the superior edge of the acromion and scapular 

spine, leaving the deltoid insertion intact along its edge. The bone was then cleaned and 

degreased with ethanol, and sandpaper was used to smooth the bone surface for strain 

gauge (SG) placement. Once the acromion was adequately prepared, adhesive glue was 

then used to place four strain gauges along the acromion and scapular spine (Strain gauge 

model # KFH-06-120-C1-11L3M3R, OMEGA Engineering, Quebec, Canada). The strain 

gauges were left to set for 30 minutes after the adhesive was applied. 
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For reproducibility between specimens, four specific landmarks were used for strain 

gauge placement (Figure 2-3, Figure 2-4):  

1. Strain gauge 1 was placed midway between the anterior and posterior edge of the 

acromioclavicular (AC) joint, and midway between the medial and lateral edge of 

the acromial tip. The strain gauge was positioned in line with the anterior 

acromion, with the gauge leads exiting posteriorly. 

2. Strain gauge 2 was placed halfway between the leading edge of SG 3 and the 

lateral edge of the acromion. The strain gauge was positioned in line with the 

scapular spine, with the gauge leads exiting medially. 

3. Strain gauge 3 was placed directly above the spinoglenoid notch. The strain gauge 

was positioned in line with the scapular spine, with the gauge leads exiting 

medially. 

4. Strain gauge 4 was placed 2 cm medial to the first strain gauge, measured from 

the leading edge (lateral edge) of both gauges. The strain gauge was positioned in 

line with the scapular spine, with the gauge leads exiting medially. 

Strain gauge leads were then connected through a data acquisition unit (National 

Instruments, Model # NI USB-9237) to a central computer for data collection. 
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Figure 2-3: Illustration depicting the anatomic location of the strain gauges on a 

right scapula 

 

Figure 2-4: Strain gauge placement as seen on the right scapular spine and 

acromion of a study specimen 
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2.2.2 Shoulder Simulator  

The scapulae were mounted onto the shoulder simulator using a scapular clamp and bolts 

drilled into the lateral scapular body (Figure 2-5). The distal humeral rod made contact 

with the simulator such that all load first passed through a load cell which was mounted 

to an abduction arc. This permitted freedom of motion of the humerus in all three 

directions of translation, as well as axial rotation, while constraining plane of elevation 

angles. The scapula was oriented so that the glenoid was vertical and the glenoid COR 

was in line with the abduction arc COR. The tagged rotator cuff muscles and three heads 

of deltoid were attached to cables and routed along their physiologic lines of action to 

computer-controlled pneumatic actuators. The clavicle was affixed to the simulator in its 

anatomic position. 

 

A specimen is seen mounted to the shoulder simulator using a scapular clamp. The 
humeral rod makes contact with the load cell sensor located on the abduction arc. Cables 
from tagged tendons (deltoid, rotator cuff) are seen running to pneumatic actuators (out 
of view). 

Figure 2-5: Shoulder Simulator Setup 
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Computer-controlled pneumatic actuators were used to apply loads to each muscle tendon 

unit. Deltoid muscle loading ratios were calculated based on data from a biomechanical 

study reporting on muscle load contribution after RTSA implantation (Ackland, Roshan-

Zamir, Richardson & Pandy, 2011). Based on these calculations, deltoid muscle loading 

ratios for shoulder abduction motion (15% anterior deltoid, 70% middle deltoid, 15% 

posterior deltoid) and flexion motion (40% anterior deltoid, 50% middle deltoid, 10% 

posterior deltoid) were used to guide the force applied by the simulator. The anterior and 

posterior cuff had a cumulative load of 10 N applied to preserve tension around the 

implant. 

2.2.3 Testing Protocol   

After mounting the specimen, the distance from the COR of the glenosphere to the distal 

humerus where it contacted the load cell was measured. This represented the moment arm 

length that permitted the conversion of abduction force measured at the load cell to an 

abduction moment. 

Using a custom modular RTSA system, implant configurations were evaluated in a 

randomized order (Giles, Langohr, Johnson & Athwal, 2015; Langohr, Giles, Athwal & 

Johnson, 2015). With a set neck-shaft angle of 145°, nine implant configurations were 

evaluated based on two parameters at three levels: (1) glenosphere lateralization 0, 5, 10 

mm; and (2) humeral lateralization -5, 5, 15 mm (Figure 1-14, Figure 1-15). All other 

parameters were held constant, with a glenosphere and humeral cup size of 42 mm and 

glenosphere inferiorization of 0 mm.  

For each configuration, static range of motion was simulated in two planes of elevation at 

two angles: 0° and 90° abduction in the scapular plane (scaption), and 0° and 90° forward 

flexion. Elevation in both planes was measured at 60° of glenohumeral elevation, which 

corresponds to 90° of humerothoracic elevation. An increasing deltoid force was applied 

by the simulator until a target abduction moment of 1.5 N⋅m, as measured by the load 

cell, was achieved. Once a steady state was reached, the deltoid force was held constant, 

and ten seconds of strain gauge data was captured. This cycle was repeated three times 

for each plane of elevation to improve accuracy. 
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2.2.4 Outcome Variables   

The main outcome variable of this study was acromial strain, as measured by the 4 strain 

gauges placed along the acromion and scapular spine. For each implant configuration, 

acromial strain was recorded in four planes of elevation, and each cycle was repeated 

three times for accuracy. Strain, which is defined as a change in length of a material over 

the original length, has no units and is reported as a ratio or a percentage. For the purpose 

of this study, strain values were analyzed in microstrain units (µStrain, strain x 106). 

As a secondary outcome, total deltoid force was recorded across all three heads of the 

deltoid. This represented the force required for the muscle to abduct or forward flex the 

arm to reach a target moment of 1.5 N⋅m, as measured by the load cell. Again, deltoid 

force was measured for all implant configurations, in four planes of elevation, and 

repeated three times for accuracy. This outcome variable was measured to assess the 

efficiency of the deltoid across all implant configurations. 

2.2.5 Statistical Analysis  

Two three-way (glenoid lateralization, plane of elevation, angle of elevation; humeral 

lateralization, plane of elevation, angle of elevation) repeated measures analysis of 

variance (RM-ANOVA) were used for statistical analysis (SPSS Version 25.0; SPSS Inc, 

Chicago, IL, USA). Pairwise comparisons and analyses of interactions were performed to 

assess for significance. Statistical significance was defined as p < 0.05. A sample size of 

eight specimens was chosen based on previous similar biomechanical cadaver studies 

(Ackland, Roshan-Zamir, Richardson & Pandy, 2011; Chan et al., 2017; Schwartz et al., 

2013). All statistically significant differences detected in the outcome variables were 

found to have a power greater than 0.8. 
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2.3 Results  

2.3.1 Acromial Strain 

Acromial strain was measured by 4 strain gauges placed along the acromion and scapular 

spine. Figure 2-6 shows the measured acromial strain of each SG and each plane of 

elevation for an implant with 145° NSA, 5 mm glenoid lateralization and 5 mm humeral 

lateralization. In abduction, SG 2 had a significantly higher strain measurement than SG 

1 (p=0.007, p=0.005), SG 3 (p=0.036, p=0.049), and SG 4 (p=0.001, p=0.046). In 0° 

forward flexion, SG 2 had a significantly higher strain measurement than SG 1 (p=0.044) 

and SG 3 (p=0.042). In 90° forward flexion, SG 2 had a significantly higher strain 

measurement than SG 1 (p=0.021). Overall, significantly higher strain values were 

measured in forward flexion than in abduction (p=0.001). 

 

Figure 2-6: Averaged Acromial Strain for All Strain Gauges  

Mean (+/- 1 SD) acromial strain measured by all 4 strain gauges at (A) 0° abduction, (B) 
90° abduction, (C) 0° forward flexion, and (D) 90° forward flexion for an implant with 
145° NSA, 5 mm glenoid lateralization, and 5 mm humeral lateralization. Significance 
(p<0.05) denoted with a ‘*’. 
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2.3.1.1 The Effect of Glenoid Lateralization on Acromial Strain 

Figure 2-7 shows the results of glenoid lateralization on acromial strain for each strain 

gauge at each plane of elevation.  

For SG 1, lateralization of the glenosphere from 0 to 10 mm in 0° forward flexion 

increased acromial strain by 28.7% (p = 0.009). At 90° forward flexion, acromial strain 

increased by 14.9% as glenoid lateralization increased from 5 to 10 mm (p = 0.038). 

There was no significant change in strain measured at SG 1 with glenoid lateralization 

when the arm was in abduction.  

For SG 2, there was an opposite trend as lateralization of the glenosphere from 0 to 10 

mm in 0° forward flexion decreased acromial strain by 20.2% (p = 0.007). At 90° 

forward flexion, acromial strain decreased by 39% as glenoid lateralization increased 

from 5 to 10 mm (p = 0.01). There was no significant change in strain measured at SG 2 

with glenoid lateralization when the arm was in abduction. 

For SG 3, lateralization of the glenosphere from 0 to 10 mm in 0° forward flexion 

increased acromial strain by 15.1% (p = 0.002). Conversely, at 90° forward flexion, 

acromial strain decreased by 18.7% as glenoid lateralization increased from 5 to 10 mm 

(p = 0.004). There was no significant change in strain measured at SG 3 with glenoid 

lateralization when the arm was in abduction. 

For SG 4, a significant increase in strain was seen with the arm in 0° forward flexion as 

lateralization of the glenosphere from 0 to 10 mm increased acromial strain by 12.3% (p 

= 0.026). At 90° forward flexion, acromial strain decreased by 21.1% as glenoid 

lateralization increased from 5 to 10 mm (p = 0.008). At 0° abduction, a significant 

decrease in strain was measured as glenoid lateralization increased from 0 to 10 mm (p = 

0.05). There was no significant effect on strain with glenoid lateralization when the arm 

was in 90° abduction.
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Figure 2-7: The Effect of Glenoid Lateralization on Acromial Strain 

Mean (+/- 1 SD) acromial strain measured by (A) strain gauge 1, (B) strain gauge 2, (C) strain gauge 3, and (D) strain gauge 4 for 
increasing glenosphere lateralization (0, 5, and 10 mm) during all 4 planes of elevation. Significance (p<0.05) denoted with a ‘*’. 
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2.3.1.2 The Effect of Humeral Lateralization on Acromial Strain 

Figure 2-8 shows the results of humeral lateralization on acromial strain for each strain 

gauge at each plane of elevation.  

For SG 1, lateralization of the humeral component did not cause any significant change in 

acromial strain in either abduction or forward flexion. 

For SG 2, a trend was seen towards decreased acromial strain with increasing humeral 

lateralization. With the arm in 0° abduction, acromial strain decreased by 20.4% and 

69.8% as the humerus was lateralized from -5 to 5 mm (p =0.013) and 5 to 15 mm 

(p=0.026), with an overall 76% decrease (p=0.015) from -5 to 15mm. Similarly, at 90° 

abduction, acromial strain decreased by 7.9% and 84.7% as the humerus was lateralized 

from -5 to 5 mm (p =0.025) and 5 to 15 mm (p=0.003), with an overall 85.9% decrease 

from -5 to 15 mm (p=0.002). There was a trend towards decreasing acromial strain at 0° 

forward flexion, but this did not reach statistical significance. At 90° forward flexion, an 

8.7% decrease in acromial strain was measured as the humerus was lateralized from -5 to 

5 mm (p=0.046). 

For SG 3, a similar trend was observed with a significant decrease in acromial strain with 

increasing humeral lateralization at both 0° and 90° abduction (p=0.006, p<0.001). 

Statistical significance was not reached at 0° forward flexion, however there was a 

significant decrease in acromial strain at 90° forward flexion as humeral lateralization 

increased from -5 to 15 mm (p=0.032). 

For SG 4, again a similar trend was observed with a significant decrease in acromial 

strain with increasing humeral lateralization at both 0° and 90° abduction (p=0.04, 

p=0.009). Statistical significance was not reached at 0° and 90° forward flexion. 
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Figure 2-8: The Effect of Humeral Lateralization on Acromial Strain 

Mean (+/- 1 SD) acromial strain measured by (A) strain gauge 1, (B) strain gauge 2, (C) strain gauge 3, and (D) strain gauge 4 for 
increasing humeral lateralization (-5, 5, and 15 mm) during all 4 planes of elevation. Significance (p<0.05) denoted with a ‘*’.
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2.3.2 Total Deltoid Force 

For all implant configurations, a higher total deltoid force was required to achieve 

forward flexion than abduction (p=0.012). 

2.3.2.1 The Effect of Glenoid Lateralization on Total Deltoid Force 

Figure 2-9 shows the results of glenoid lateralization on total deltoid force. Total deltoid 

force was found to significantly decrease with increasing glenoid lateralization at both 0° 

and 90° abduction (p=0.023, p=0.008). Though no statistically significant, there was a 

trend towards increased total deltoid force with increased glenoid lateralization at 0° 

forward flexion. 

 

Figure 2-9: The Effect of Glenoid Lateralization on Total Deltoid Force 

Mean (+/- 1 SD) total deltoid force measured for increasing glenoid lateralization (0, 5, 
and 10 mm) during all 4 planes of elevation. Significance (p<0.05) denoted with a ‘*’. 
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2.3.2.2 The Effect of Humeral Lateralization on Total Deltoid Force  

Figure 2-10 demonstrates the effect of humeral laterization on total deltoid force. There 

was no significant effect of humeral lateralization on total deltoid force with the arm in 

abduction. At 0° forward flexion, total deltoid force significantly increased as humeral 

lateralization increased from -5 to 15 mm (p=0.005). At forward flexion of 90°, total 

deltoid force increased as humeral lateralization increased from 5 to 15 mm (p=0.011). 

 

Figure 2-10: The Effect of Humeral Lateralization on Total Deltoid Force 

Mean (+/- 1 SD) total deltoid force measured for increasing humeral lateralization (-5, 
5, and 15 mm) during all 4 planes of elevation. Significance (p<0.05) denoted with a ‘*’. 
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2.4 Discussion 

The primary objective of this study was to assess the role of implant configuration on 

acromial strain following RTSA implantation. Specifically, this study focused on glenoid 

lateralization (0, 5, and 10 mm) and humeral lateralization (-5, 5, and 15 mm) while 

keeping all other parameters constant. Strain was measured by 4 strain gauges through 4 

planes of elevation (0° and 90° abduction, 0° and 90° forward flexion). To review, strain 

is defined as a change in length of a material over its original length. In order to 

positively correlate deltoid force and acromial strain, one must assume that with 

increased deltoid force, there is a relative deformation of the acromion which results in a 

change in strain. 

In this study, it was found that acromial strain was significantly higher in the region of 

SG 2. This SG was positioned in the area of Levy type II acromial fractures, which is 

reported to be the most common pattern of acromial fracture (Levy, Anderson & Samson, 

2013). Furthermore, in order to comment on the physiologic failure of cortical bone, 

deltoid load can be used as a metric for physiologic load. With the arm at 90° abduction, 

deltoid load should approach 1 body weight in a physiologic model. Based on the deltoid 

loads achieved in this study, and an average body weight of 60-80 kg (600-800 N), the 

loads in this study are about 10-fold less than physiologic. Assuming that this is a linear 

system, strain values can therefore be amplified by a factor of 10 in order to compare to 

the physiologic failure of cortical bone. With the arm at 90° abduction, the highest 

measured value for acromial strain can be converted to stress using Young’s modulus for 

cortical bone, yielding a maximal acromial stress of 10.73 MPa in this study. Increasing 

this by 10-fold, a maximal stress of 107.3 MPa would be reached in a physiologic model. 

Interestingly, this is very close to approaching the traumatic fracture yield of cortical 

bone reported in the literature of 120-130 MPa (Cezaryirliouglu, Bahniuk, Davy & 

Heiple, 1985; Rho, Ashman & Turner, 1993). Of note, the highest values for acromial 

stress in this study were reached with the arm in forward flexion, with values as high as 

28.67 MPa. If the same assumptions for a physiologic model are made with the arm in 

forward flexion, this would equate to stress values that exceed the traumatic fracture yield 

of cortical bone.  
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This study also found that acromial strain was measured to be significantly higher in 

forward flexion than in abduction. This is supported by the finding that total deltoid force 

was also measured to be higher in forward flexion than in abduction. There exists strong 

evidence that the direction of force of the deltoid in the setting of a rotator cuff-deficient 

shoulder is converted from compressive force to superior shear (Ackland, Roshan-Zamir, 

Richardson & Pandy, 2011; Berliner, Regalado-Magdos, Ma & Feeley 2015; Kontaxis & 

Johnson, 2009; Terrier, Reist, Merlini & Farron, 2008). Ackland et al. further validated 

this by showing that superior shear across a RTSA implant is greater in flexion than in 

abduction (Ackland, Roshan-Zamir, Richardson & Pandy, 2010). The findings of this 

study support the existing literature and suggest that forward flexion should be avoided 

under excessive load in the post-operative healing phase.  

2.4.1 Glenoid Lateralization  

Based on the results of this study, a few overarching patterns were observed. With the 

arm in abduction, there was no significant change in acromial strain as the glenosphere 

was lateralized. At 0° forward flexion, there was a general trend towards increased strain 

with increased glenoid lateralization. At 90° forward flexion, there was a general trend 

towards decreased strain with increased glenoid lateralization, specifically from 5 to 10 

mm. 

Total deltoid force was also measured as a secondary outcome. Overall, it was found that 

as the glenoid was lateralized, a decrease in total deltoid force was required for both 0° 

and 90° abduction. While not statistically significant, a trend was seen towards increased 

total deltoid force as the glenoid was lateralized with the arm at 0° forward flexion. 

Specifically looking at the data with the arm at 0° forward flexion, the results of this 

study support the literature. Overall, with increased glenoid lateralization, there was both 

an increase in acromial strain and, although not statistically significant, a trend towards 

increased total deltoid force. A host of biomechanical studies exist which have focused 

on the effect of lateralizing the glenosphere. Overall, the concept is that as the COR is 

lateralized, deltoid moment arm decreases, resulting in a less efficient deltoid muscle that 

requires more force to perform range of motion and increased joint-reactive forces 
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(Costantini, Choi, Kontaxis & Gulotta, 2015; Giles, Langohr, Johnson & Athwal, 2015; 

Hettrich, Permeswaran, Goetz & Anderson, 2015; Hoenecke, Flores-Hernandez & 

D’Lima, 2014; Liou et al., 2017). Wong et al. have been the only to specifically focus on 

acromial stress, finding that lateralization of the COR from 0 to 5 mm and 0 to 10 mm 

caused an increase of acromial stress by 7.7% and 17.2% respectively (Wong, Langohr, 

Athwal & Johnson, 2016). However, this computational model simulated only an 

abduction arc of motion from 0° to 120° and did not investigate forward flexion.  

2.4.2 Humeral Lateralization  

Humeral lateralization was also associated with several overarching patterns. An overall 

trend towards decreased acromial strain with increased humeral lateralization was seen. 

SG 1, located at the tip of the acromion, did not measure any significant change in 

acromial strain. The remaining 3 strain gauges found that in abduction, acromial strain 

decreased as the humerus was lateralized. Total deltoid force did not significantly change 

in abduction but did increase in forward flexion with increasing humeral lateralization. 

With regards to abduction, acromial strain decreased as the humerus was lateralized. 

Giles et al. demonstrated in a cadaveric model that increasing humeral lateralization 

decreased deltoid force required for active abduction (Giles, Langohr, Johnson & Athwal, 

2015). While total deltoid force required for abduction in this study did not reach 

statistical significance, this existing literature does lend itself to the finding of decreased 

acromial strain with increased humeral lateralization in abduction. This does, however, 

contradict the findings by Wong et al. In their computational study, they found that 

humeral lateralization from -5 to 0 mm and 0 to 5 mm increased acromial stress by 1.4% 

and 1.7% respectively (Wong, Langohr, Athwal & Johnson, 2016). As per this present 

study, they did not increase humeral lateralization as far as 15 mm, and this model was 

only simulated in abduction. 
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2.4.3 Strengths and Limitations  

This is the first cadaveric biomechanical study to examine the role of glenoid and 

humeral component lateralization on acromial strain following RTSA implantation. 

Using a custom designed prosthesis system, multiple permutations of implant 

configurations were able to be tested. As this was a modular system, it allowed for all 

configurations to be tested in each specimen. The shoulder simulator used in this study 

allowed for computer-controlled range of motion in both forward flexion and abduction. 

Few studies have focused on both planes of elevation in such a biomechanical model.  

Biomechanical studies using cadaveric models have inherent limitations. Despite an 

attempt to best replicate in-vivo mechanics and physiology, a computer-controlled 

simulator cannot account for dynamic muscle changes, soft tissue adaptation, and 

proprioception. In dissecting the specimens, much of the surrounding soft tissues were 

removed, including the distal deltoid insertion, which may have played a role in soft 

tissue tensioning post-implantation. Similarly, while a rotator cuff tear was simulated in 

this study, it does not truly replicate the in-vivo degenerative, torn rotator cuff. While the 

shoulder simulator was able to accommodate elevation in both forward flexion and 

abduction, this still limits the true multiaxial nature of the joint. Additionally, the scapula 

was mounted to the simulator in a fixed position, thus preventing true scapulohumeral 

rhythm during humeral elevation. To account for this, 60° of glenohumeral elevation was 

used to simulate 90° of humerothoracic elevation based on a 2:1 ratio described by Inman 

et al. (Inman, Saunders & Abbott, 1996). 
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2.5 Conclusions 

This study provides further insight into the role of glenoid and humeral component 

lateralization on acromial strain following RTSA implantation. Specifically, an overall 

trend was found that increasing glenoid lateralization causes an increase in acromial 

strain in 0° forward flexion, while increasing humeral lateralization caused a decrease in 

acromial strain in abduction. Total deltoid force was found to generally correlate with 

acromial strain, although not always with statistical significance.  

The findings in this study have clinical importance in the future research and design of 

RTSA implants. From an implant design perspective, glenoid lateralization has been used 

to eliminate scapular notching and impingement while conversely causing decreased 

deltoid efficiency and increased joint-reactive forces (Berhouet, Garaud & Favard, 2014; 

Costantini, Choi, Kontaxis & Gulotta, 2015; Giles, Langohr, Johnson & Athwal, 2015; 

Gutiérrez et al., 2007a; Gutiérrez et al., 2008; Gutiérrez et al., 2007b; Hettrich, 

Permeswaran, Goetz & Anderson, 2015; Hoenecke, Flores-Hernandez & D’Lima, 2014; 

Jobin et al., 2012; Li et al., 2013; Liou et al., 2017; Valenti et al., 2011; Virani et al., 

2013). Humeral lateralization has been reported to increase deltoid moment arm, decrease 

joint-reactive forces, improve rotator cuff torque, and restore the normal shoulder contour 

(Berhouet et al., 2015; Chan et al., 2017; Giles, Langohr, Johnson & Athwal, 2015; 

Walker et al., 2016a). 

This study found that both acromial strain and total deltoid force were highest in forward 

flexion as opposed to abduction. This suggests that post-operative rehabilitation should 

avoid excessive loading of the arm in this plane of elevation. This study has also given 

further evidence into the pattern and etiology of acromial fractures. The highest strain 

values were measured in the region of Levy type II acromial fractures, which supports the 

existing literature. Interestingly, when compared to a physiologic model, stress values 

approached the traumatic fracture yield of cortical bone, which contests the theory of an 

insufficiency mechanism of acromial fractures. 
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Chapter 3  

3 The Role of Neck-Shaft Angle on Acromial Strain 

Modifiable implant parameters in reverse total shoulder arthroplasty (RTSA) have been 

well studied with respect to the variables of range of motion, deltoid function, and 

stability. A lack of knowledge exists, however, on the impact of these changes on 

acromial strain. This chapter will focus specifically on the role of neck-shaft angle (NSA) 

on acromial strain. Similar concepts to Chapter 2 will be discussed in the introduction, 

and similar methodology will be applied. This is the first cadaveric biomechanical study 

to examine the role of NSA on acromial strain following RTSA implantation. 

3.1 Introduction 

[NB: A portion of this material was presented in Chapters 1 and 2 and is also included 

here in order to ensure that this chapter is in “article” format]. 

Reverse total shoulder arthroplasty (RTSA) is becoming a more widely accepted surgical 

treatment option in the setting of severe rotator cuff tear arthropathy, acute proximal 

humerus fractures, and revision surgery after failed rotator cuff repair or failed 

arthroplasty (Boileau et al., 2009; Drake, O’Connor & Edwards, 2010; Ek, Neukom, 

Cantanzaro & Gerber, 2013; Ferrel, Trinh & Fischer, 2015; Flury et al., 2011; Gallinet et 

al., 2018; Leung, Horodyski, Struk & Wright, 2012; Levy, Frankle, Mighell & Pupello, 

2007; Levy, Virani, Pupello & Frankle, 2007; Nolan, Ankerson & Wiater, 2011; Schairer 

et al, 2015; Sebastiá-Forcada, Cebrián-Gómez, Lizaur-Utrilla & Gil-Guillén, 2014; 

Walker et al., 2012; Willis et al., 2012). As more surgeons are performing this procedure, 

post-operative complications are becoming more evident. Acromial fractures have a 

reported incidence as high as 10% following RTSA, although his value is likely 

underestimated as these fractures are a challenge to identify and diagnose (Crosby, 

Hamilton & Twiss, 2011; Cuff et al., 2017; Frankle et al., 2005; Hamid, Connor, Fleischli 

& D’Alessandro, 2011; Hattrup, 2010; Levy, Anderson & Samson, 2013; Mayne, Bell, 

Wright & Coghlan, 2016; Teusink, Otto, Cottrell & Frankle, 2014; Walch et al., 2009). 
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The pathophysiology of acromial fractures following RTSA is thought to be through an 

insufficiency fracture mechanism. Osteoporosis was found to be the only risk factor that 

increased the chance of acromial fractures post-operatively (Otto et al., 2013). Walch et 

al. demonstrated that pre-operative acromial lesions caused no increased risk of post-

operative fracture (Walch et al., 2009). Wong et al. validated this hypothesis in their 

computational study which demonstrated that the acromion never reached a threshold of 

traumatic fracture following RTSA, but rather sustained repetitive stress through the 

deltoid that likely exceeded the ability of the body to repair the damaged bone (Wong, 

Langohr, Athwal & Johnson, 2016). 

RTSA, as the name implies, reverses the native anatomy of the glenohumeral joint. 

Originally conceptualized by Neer in the 1970s, Grammont later revolutionized the 

design to the reverse implant that is known today. His original designs involved a glenoid 

center of rotation (COR) that was medialized and distalized, allowing for improved 

deltoid mechanical advantage. The original design was also semiconstrained, with a non-

anatomic NSA of 155° aimed to lengthen the arm and increase deltoid tension, again 

allowing for optimized deltoid function (Ackland, Roshan-Zamir, Richardson & Pandy, 

2010; Boileau, Watkinson, Hatzidakis & Balg, 2005; Walker et al., 2016). 

The evolution of the design later changed, as the valgus neck (155°) was noted to cause 

scapular notching and a deficit in adduction range of motion. Computational studies 

demonstrated a trade-off in range of motion, with a decrease in NSA allowing for 

improved adduction, but decreased abduction (de Wilde, Poncet, Middernacht & 

Ekelund, 2010; Werner, Chaoui & Walch, 2017).  Langohr et al. demonstrated with a 

finite element analysis that decreasing the NSA caused a resultant increase in contact 

stress across the implant (Langohr et al., 2016). 

Commercially available RTSA systems today offer neck-shaft angles ranging from 

127.5° to 155° (Werthel et al., 2018). There remains a lack of knowledge regarding the 

consequence of a more varus or valgus neck and how this affects acromial strain. The 

purpose of this in-vitro biomechanical cadaveric simulator study was to investigate the 

role of NSA on acromial strain following RTSA implantation. This was evaluated with 
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three different implants through four planes of elevation (0° and 90° abduction, 0° and 

90° forward flexion). A custom modular RTSA system will allow for testing of implants 

with varying neck-shaft angles (135°, 145°, and 155°) and otherwise identical 

configuration parameters. It is hypothesized that changes in NSA will not have a 

significant effect on acromial strain following RTSA implantation. To the author’s 

knowledge, this is the first biomechanical study to investigate the relationship between 

NSA and acromial strain.  

3.2 Materials and Methods 

3.2.1 Specimen Preparation 

[NB: Cadaveric specimen preparation is similar to that described in Chapter 2]. 

Eight fresh frozen right male cadaveric shoulders (8 males, mean age 73 years, range 61-

88 years) were thawed for at least 24 hours prior to testing. The humerus was cut 

midshaft, and soft tissues were dissected and removed including skin and subcutaneous 

tissue. The rotator cuff muscles and deltoid were identified and left intact. The 

subscapularis muscle was elevated off the subscapular fossa in order to enter the 

glenohumeral joint. The joint capsule and labrum were incised and resected 

circumferentially, and the glenoid articular cartilage was removed. 

Full-thickness supraspinatus and upper infraspinatus tears were created in order to 

simulate a rotator-cuff deficient shoulder. The tear was extended so as to create a 

balanced force couple both anteriorly and posteriorly; to do so, infraspinatus was released 

to the level of the upper edge of subscapularis tendon. The anterior (subscapularis) and 

posterior (lower infraspinatus and teres minor) cuff were tagged with a running locking 

stitch using a heavy #5 non-absorbable braided suture (Ethibond, Ethicon, Johnson & 

Johnson, New Jersey, USA). 

The deltoid muscle was then released from its distal insertion on the deltoid tuberosity, 

and the three heads of deltoid were identified. Based on the anatomic description by 

Sakoma et al. (Sakoma et al., 2011), the acromion was divided into thirds and the deltoid 

was tagged with nylon mesh in a similar fashion as described in Chapter 2.  
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Next, the specimen was prepared for RTSA implantation. The humeral head was resected 

at the anatomical neck using a sagittal saw, and the canal was reamed using a power 

reamer. The glenoid was reamed in order to place a vertically oriented baseplate. Using a 

modified technique from the Wright Medical – Tornier Aequalis surgical technique 

manual, the custom RTSA system was implanted as described in Chapter 2 (Wright 

Medical Technologies, Memphis, Tennessee). The components were placed in neutral 

orientation. The acromion was prepared for strain gauge placement. The bone was 

stripped of all soft tissue and periosteum. The surface was cleaned and dried with ethanol 

and sandpaper. Using adhesive glue, 4 strain gauges were placed along the acromion and 

scapular spine (Strain gauge model # KFH-06-120-C1-11L3M3R, OMEGA Engineering, 

Quebec, Canada). The strain gauges were left to set for 30 minutes once the adhesive was 

applied. 

The placement of the strain gauges is described in Chapter 2. For summary, their location 

is reviewed below and shown in Figure 3-1:  

1. Strain gauge 1 was placed midway between the anterior and posterior edge of the 

acromioclavicular (AC) joint, and midway between the medial and lateral edge of 

the acromial tip. The strain gauge was positioned in line with the anterior 

acromion, with the gauge leads exiting posteriorly. 

2. Strain gauge 2 was placed halfway between the leading edge of SG 3 and the 

lateral edge of the acromion. The strain gauge was positioned in line with the 

scapular spine, with the gauge leads exiting medially. 

3. Strain gauge 3 was placed directly above the spinoglenoid notch. The strain gauge 

was positioned in line with the scapular spine, with the gauge leads exiting 

medially. 

4. Strain gauge 4 was placed 2 cm medial to the first strain gauge, measured from 

the leading edge (lateral edge) of both gauges. The strain gauge was positioned in 

line with the scapular spine, with the gauge leads exiting medially. 

Strain gauge leads were then connected through a data acquisition unit (National 

Instruments, Model # NI USB-9237) to a central computer for data collection. 
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Figure 3-1: Strain Gauge Placement  

Illustration depicting the anatomic location of the 4 strain gauges on a right scapula. 

 

3.2.2 Shoulder Simulator 

The shoulder simulator used in this study is the same as that described in Chapter 2. To 

review, a scapular clamp was drilled into the lateral scapular body in order to mount the 

specimens onto the shoulder simulator. The shoulder simulator consisted of a load cell 

that was mounted to an abduction arc. The specimen was positioned as described in 

Chapter 2. The same deltoid muscle loading ratios were used in this study. To review, 

deltoid muscle loading ratios were calculated for shoulder abduction (15% anterior 

deltoid, 70% middle deltoid, 15% posterior deltoid) and flexion (40% anterior deltoid, 

50% middle deltoid, 10% posterior deltoid) based on previous biomechanical data 

(Ackland, Roshan-Zamir, Richardson & Pandy, 2011). The rotator cuff had a combined 

load of 10 N applied by the simulator.  
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3.2.3 Testing Protocol 

Once the specimen was appropriately mounted, the moment arm length was measured. 

This was defined by the distance from the center of rotation (COR) of the glenosphere to 

the distal aspect of the humerus at the point that it contacted the load cell. The moment 

arm length allowed for conversion of the abduction force to an abduction moment, as 

measured by the load cell. 

Using a custom modular RTSA system (Giles, Langohr, Johnson & Athwal, 2015; 

Langohr, Giles, Athwal & Johnson, 2015), three implant configurations were evaluated in 

a randomized order. These three implants all had varying NSA of 135°, 145°, and 155° 

(Figure 1-16). The remainder of the implant parameters remained unchanged: 5 mm 

glenoid laterl offset with 0 mm of inferiorization, 5 mm humeral lateralization, and 42 

mm glenosphere and humeral cup size. 

For each of these three configurations, static range of motion was simulated in a similar 

fashion as described in Chapter 2. This included 0° and 90° abduction in the scapular 

plane (scaption), and 0° and 90° forward flexion. Again, elevation was measured at 60° 

of glenohumeral elevation in both planes, which corresponds to 90° of humerothoracic 

elevation. Similar to Chapter 2, deltoid force was applied by computer-controlled 

pneumatic actuators until a target abduction moment of 1.5 N⋅m was reached as measured 

by the load cell. Ten seconds of data was captured once deltoid force reached a steady 

state. This cycle was repeated three times for each plane of elevation.  

3.2.4 Outcome Variables 

This study targeted the same outcome variables as those described in Chapter 2. The 

principal outcome variable was acromial strain. This was measured by 4 strain gauges 

placed along the acromion and scapular spine. Strain values were analyzed in microstrain 

units (µStrain, strain x 106). Total deltoid force was also recorded as a secondary 

outcome. This represents the efficiency of the deltoid in its ability to abduct or forward 

flex the arm in order to reach a target moment of 1.5 N⋅m, as measured by the load cell. 

Both of these outcome variables were measured for all three implant configurations, in 

four planes of elevation, and repeated three times at each level for accuracy.  
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3.2.5 Statistical Analysis 

Statistical analysis was similar to that described in Chapter 2. A three-way (NSA, plane 

of elevation, angle of elevation) repeated measures analysis of variance (RM-ANOVA) 

was used for statistical analysis (SPSS Version 25.0; SPSS Inc, Chicago, IL, USA). 

Pairwise comparisons and analyses of interactions were performed to assess for 

significance. Statistical significance was defined as p < 0.05. A sample size of eight 

specimens had been chosen based on previous similar biomechanical cadaver studies 

(Ackland, Roshan-Zamir, Richardson & Pandy, 2011; Chan et al., 2017; Schwartz et al., 

2013). All outcome variables that reached statistical significance were found to have a 

power greater than 0.8. 

3.3 Results 

3.3.1 Acromial Strain 

3.3.1.1 The Effect of Neck-Shaft Angle on Acromial Strain 

Figure 3-3 shows the results of NSA on acromial strain for each strain gauge at each 

plane of elevation. With a change in NSA, no statistically significant effect was measured 

on acromial strain (p>0.136). In abduction, an overall trend of decreased strain with 

increasing NSA was noted, however this did not reach statistical significance. 
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Figure 3-2: The Effect of Neck-Shaft Angle on Acromial Strain 

Mean (+/- 1 SD) acromial strain measured by (A) strain gauge 1, (B) strain gauge 2, (C) strain gauge 3, and (D) strain gauge 4 for 
increasing neck-shaft angle (135°, 145°, 155°) during all 4 planes of elevation. 
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3.3.2 Total Deltoid Force  

3.3.2.1 The Effect of Neck-Shaft Angle on Total Deltoid Force 

Figure 3-4 shows the results of increasing NSA on total deltoid force. Overall, change in 

NSA was not shown to have a significant effect on total deltoid force (p>0.087). 

 

Figure 3-3: The Effect of Neck-Shaft Angle on Total Deltoid Force  

Mean (+/- 1 SD) total deltoid force measured for increasing neck-shaft angle (135°, 
145°, 155°) during all 4 planes of elevation.  
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3.4 Discussion 
The primary objective of this study was to assess the role of NSA on acromial strain 

following RTSA implantation. This was measured using 4 strain gauges placed along the 

acromion and scapular spine. Through 4 planes of elevation (0° and 90° abduction, 0° 

and 90° forward flexion), no significant change in strain was measured as NSA was 

altered (135°, 145°, 155°).  

Total deltoid force was measured as a secondary outcome. This included total force of all 

three heads of the deltoid required to achieve a target moment of 1.5 N⋅m, as measured 

by a load cell. Changing the NSA was not found to have a significant effect on total 

deltoid force required for abduction or forward flexion.  

NSA has been thoroughly investigated for its role in range of motion and inferior 

scapular impingement. There exists a trade-off in range of motion, as a more varus neck 

allows for improved adduction by decreasing impingement, but limits abduction. This 

occurs as a lower humeral inclination causes a small increase in humeral offset, which 

may lead to impingement of the greater tuberosity on the acromion (Lädermann et al., 

2015; Werner, Chaoui & Walch, 2017). Lädermann et al. demonstrated that with a 

decrease in humeral inclination from 155° to 135°, there was only a 2 mm increase in 

humeral offset (Lädermann et al., 2015). As such, the effect of this change in offset is 

likely negligible and supports the finding that NSA has no significant effect on acromial 

strain. 

While not statistically significant, a trend was noted towards decreased strain with 

increased NSA with the arm in abduction, most notably measured by SG 2, SG 3 and 

SG4. A similar pattern was found in a finite element analysis by Langohr et al. who 

concluded that increasing the NSA lead to a decrease in maximum articular contact stress 

of the implant (Langohr et al., 2016). While implant contact stress and acromial strain are 

two separate entities, they exist within the same mechanical construct and thus may be 

interrelated.  
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Grammont’s original design with a 155° valgus neck was felt to add length to the arm 

and thereby increase passive deltoid tension. Appropriate tensioning of the deltoid after 

RTSA implantation is felt to be important for avoiding complications; if deltoid is over-

tensioned, it may cause undue stress on the acromion and a resultant acromial fracture, 

whereas if deltoid is not under adequate tension, this may cause instability of the implant 

(Boileau, Watkinson, Hatzidakis & Balg, 2005; Lädermann et al., 2009). In this study, the 

deltoid was released from its distal insertion on the humerus in order to mount it to the 

shoulder simulator. As such, the concept of NSA affecting deltoid tension was unable to 

be evaluated in this study. 

3.4.1 Strengths and Limitations 

This is the first cadaveric biomechanical study to examine the role of NSA on acromial 

strain following RTSA implantation. While many studies have examined RTSA implant 

parameters in a cadaveric model, none have focused specifically on acromial strain. 

Furthermore, few studies have examined both abduction and forward flexion in such a 

biomechanical model. This study utilized a custom designed prosthesis system which 

allowed for multiple implant configurations to be tested with only minor technical 

adjustments. This study also used a shoulder simulator apparatus which allowed for 

computer-controlled active shoulder motion and real-time feedback. 

Cadaveric studies have inherent limitations. An attempt is always made to best replicate 

in-vivo mechanics and loading. Computer-controlled simulation cannot account for 

proprioception and dynamically changing muscle control. The specimens were dissected 

so that only the deltoid and rotator cuff muscles spanned the glenohumeral joint. The 

deltoid was also released from its distal insertion on the humerus, thereby eliminating the 

contribution of deltoid muscle tensioning. The present study did not account for 

scapulohumeral rhythm during humeral elevation, as the scapula was clamped to the 

shoulder simulator in a static state. However, based on a 2:1 scapulohumeral rhythm, 60° 

of glenohumeral elevation was used to simulate 90° of humerothoracic elevation (Inman, 

Saunders & Abbott, 1996). While a rotator cuff tear was simulated in this study with 

balanced anterior and posterior tendons, this does not necessarily recreate the dynamic in-

vivo forces of patients with rotator cuff disease. Finally, despite static testing in 4 planes 
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of elevation, this does not capture the true multiaxial and continuous nature of the 

glenohumeral joint.  

3.5 Conclusions 
This study provides further insight into the role of RTSA implant configurations. 

Specifically, this study has found that with all other parameters held constant, a change in 

NSA does not have a significant effect on acromial strain or total deltoid force required 

for abduction or forward flexion. This finding has importance in the future design and 

manufacturing of implants. 
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Chapter 4  

4 The Effect of Coracoacromial Ligament State on 
Acromial Strain 

The coracoacromial (CA) ligament is known to play an important role in joint stability 

and proprioception in the native shoulder. In reverse total shoulder arthroplasty (RTSA), 

the anatomy is reversed, and the center of rotation is constrained, altering the 

biomechanics of the shoulder. The role of the CA ligament after RTSA implantation is 

largely unknown. This chapter will examine changes in acromial strain and deltoid force 

after complete incision of the CA ligament following RTSA implantation. This is the first 

biomechanical study to examine the role of the CA ligament in the RTSA construct. 

4.1 Introduction 
[NB: A portion of this material was presented in Chapters 1, 2 and 3 and is also included 

here in order to ensure that this chapter is in “article” format]. 

The coracoacromial (CA) ligament is a structure that runs from the inferior anterolateral 

acromion to the lateral boarder of the coracoid process (Figure 4-1). Based on anatomical 

studies, the CA ligament is known to be intimately related to the anterior deltoid where it 

originates off the acromion (Hunt, Moore & Krishnan, 2000). The CA ligament, along 

with the coracoid process and the acromion, make up an osseoligamentous complex 

known as the coracoacromial arch.   

As part of the coracoacromial arch, the CA ligament has been described as a static 

stabilizer of the shoulder. Biomechanical studies have investigated the role of the CA 

ligament in the native shoulder, specifically focusing on humeral head translation before 

and after ligament resection. These studies have found that the CA ligament is an 

important secondary restraint to anterior and superior migration of the humeral head 

(Lee, Black, Tibone & McMahon, 2001; Wellmann et al., 2008). It has been 

demonstrated that after the CA ligament has been resected in the native shoulder, a 

resultant 25-30% increase in rotator cuff force is required to maintain glenohumeral 

mechanics (Budoff et al., 2016). 
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Figure 4-1: Anatomy of the Coracoacromial Ligament  

Illustration depicting the anatomy of the CA ligament, running from the anterolateral 
acromion to the lateral coracoid process. 

 

The CA ligament has also been described as a tension band, through which muscle forces 

exerted on the coracoid process are able to be transmitted to the acromion (Gallino, 

Battiston, Annaratone & Terragnoli, 1995). The CA ligament may also have a role in 

pain generation and proprioception. It is known to have a high density of 

mechanoreceptors. Diederichsen et al. found that with direct stimulation of the ligament, 

there was an involuntary loss of muscle control (Diederichsen et al., 2004). This suggests 

that the CA ligament may play a part in muscle coordination and proprioception. 

Very few studies have focused on the role of the CA ligament in shoulder arthroplasty. A 

biomechanical study focusing on hemiarthroplasty after irreparable rotator cuff tear 

confirmed that even in this construct, the CA ligament acted as a restraint to 

anterosuperior dislocation (Hockman, Lucas & Roth, 2004). The authors went on to 

conclude that the coracoacromial arch itself may act as a superior fulcrum through which 

the humerus is able to produce functional range of motion. 

There exists a lack of knowledge regarding the importance of the CA ligament in reverse 

total shoulder arthroplasty (RTSA) specifically. As previously discussed, RTSA is used 



102 

 

successfully for many surgical indications including rotator cuff tear arthropathy, acute 

proximal humerus fractures, and revision arthroplasty (Boileau et al., 2009; Drake, 

O’Connor & Edwards, 2010; Ek, Neukom, Cantanzaro & Gerber, 2013; Ferrel, Trinh & 

Fischer, 2015; Flury et al., 2011; Gallinet et al., 2018; Leung, Horodyski, Struk & 

Wright, 2012; Levy, Frankle, Mighell & Pupello, 2007; Levy, Virani, Pupello & Frankle, 

2007; Nolan, Ankerson & Wiater, 2011; Schairer et al, 2015; Sebastiá-Forcada, Cebrián-

Gómez, Lizaur-Utrilla & Gil-Guillén, 2014; Walker et al., 2012; Willis et al., 2012). The 

RTSA construct itself dates back to the 1970s when Neer conceptualized the idea of 

reversing the “ball” and “socket” of the native glenohumeral joint in order to compensate 

for the rotator cuff-deficient shoulder. Paul Grammont later revised this design in 1985, 

with important modifications that are still used today. This design included a center of 

rotation (COR) that was medialized and distalized, which allowed the deltoid improved 

mechanical advantage. Additionally, the COR in this construct was fixed through range 

of motion, in contrast to the native glenohumeral joint. This allowed for maximal 

compressive forces at the joint while minimizing shear forces across the implant 

(Berliner, Regalado-Magdos, Ma & Feeley, 2015; Boileau, Watkinson, Hatzidakis & 

Balg, 2005; Boileau, Watkinson, Hatzidakis & Hovorka, 2006; Flatow & Harrison, 2011; 

Gerber & Nyffeler, 2009). 

When considering the surgical approach to the shoulder for RTSA implantation, two 

main techniques have been described. Perhaps more commonly used is the deltopectoral 

approach, which utilizes the interval between anterior deltoid and pectoralis major to 

enter the joint and gain adequate exposure to the glenoid without compromising the 

deltoid muscle. It also allows for an extended incision in complex or revision cases 

(Nové-Josserand & Clavert, 2018). Conversely, less commonly used is the anterosuperior 

approach for RTSA which has been described as a “simpler” approach, with good glenoid 

exposure, less trauma to subscapularis, and a lower reported rate of post-operative 

glenohumeral instability (Molé et al., 2011). This technique utilizes a transdeltoid 

approach, in which deltoid is split between the anterior and middle heads, and the anterior 

deltoid is released off of the acromion along with the CA ligament. An important 

drawback of this approach includes compromise to the anterior deltoid (Molé et al., 2011; 

Nové-Josserand & Clavert, 2018). While several studies have compared the 
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complications and outcomes of these two approaches, none have commented on the 

importance of the CA ligament.  

The purpose of this in-vitro biomechanical cadaveric study was to further investigate and 

elucidate the role of the CA ligament in the RTSA construct with a focus on acromial 

loading. This was evaluated by measuring acromial strain and deltoid force before and 

after performing a full incision of the CA ligament.  The custom modular RTSA system 

previously described was used, with implant parameters set at 145° neck-shaft angle, 5 

mm glenoid lateral offset, and 5 mm humeral lateralization. Given the constrained design 

of the reverse implant, it was hypothesized that complete incision of the CA ligament 

would not cause any significant changes in acromial strain or deltoid force.  

4.2 Materials and Methods 

4.2.1 Specimen Preparation 

[NB: Cadaveric specimen preparation is similar to that described in Chapters 2 and 3]. 

Eight fresh frozen right male cadaveric shoulders (8 males, mean age 73 years, range 61-

88 years) were thawed for at least 24 hours prior to dissection. The humerus was 

transected midshaft in order to be mounted onto the shoulder simulator. Soft tissue 

dissection was carried out as is described in Chapters 2 and 3. This involved isolating the 

rotator cuff muscles and deltoid. Subscapularis muscle was reflected off of the 

subscapular fossa in order to enter the glenohumeral joint. The capsule was incised and 

resected circumferentially along with the glenoid labrum and articular cartilage. The 

coracoacromial (CA) ligament was left intact. 

In order to mimic a rotator-cuff deficient shoulder, full-thickness supraspinatus and upper 

infraspinatus tears were created. Infraspinatus was released to the level of upper 

subscapularis tendon in order to create a symmetric force couple anteriorly and 

posteriorly. The anterior and posterior cuff were then tagged with a running locking #5 

Ethibond suture (Ethibond, Ethicon, Johnson & Johnson, New Jersey, USA). The deltoid 

was then released distally from its insertion on the deltoid tuberosity. Based on the 

anatomic description by Sakoma et al. (Sakoma et al., 2011), the three heads of deltoid 
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were identified and tagged using #5 Ethibond suture (Ethibond, Ethicon, Johnson & 

Johnson, New Jersey, USA) as is described in Chapters 2 and 3. 

The specimen was then prepared for RTSA implantation as described in Chapters 2 and 

3. The custom RTSA system was implanted using a modified technique from the Wright 

Medical – Tornier Aequalis surgical technique manual (Wright Medical Technologies, 

Memphis, Tennessee). The components were all placed in anatomic alignment. 

Finally, the surface of the acromion was prepared for strain gauge placement. All soft 

tissues were dissected off the bone, being careful not to disrupt the tendon origin of the 

deltoid. Ethanol was used to clean and degrease the bone surface, followed by sandpaper. 

Adhesive glue was then used to apply four strain gauges along the acromion and scapular 

spine (Strain gauge model # KFH-06-120-C1-11L3M3R, OMEGA Engineering, Quebec, 

Canada). The strain gauges were left to set for 30 minutes after the adhesive was applied. 

As described in Chapters 2 and 3, the strain gauges were placed in relation to specific 

landmarks for reproducibility (Figure 4-2):  

1. Strain gauge 1 was placed midway between the anterior and posterior edge of the 

acromioclavicular (AC) joint, and midway between the medial and lateral edge of 

the acromial tip. The strain gauge was positioned in line with the anterior 

acromion, with the gauge leads exiting posteriorly. 

2. Strain gauge 2 was placed halfway between the leading edge of SG 3 and the 

lateral edge of the acromion. The strain gauge was positioned in line with the 

scapular spine, with the gauge leads exiting medially. 

3. Strain gauge 3 was placed directly above the spinoglenoid notch. The strain gauge 

was positioned in line with the scapular spine, with the gauge leads exiting 

medially. 

4. Strain gauge 4 was placed 2 cm medial to the first strain gauge, measured from 

the leading edge (lateral edge) of both gauges. The strain gauge was positioned in 

line with the scapular spine, with the gauge leads exiting medially. 

Strain gauge leads were then connected through a data acquisition unit (National 

Instruments, Model # NI USB-9237) to a central computer for data collection. 
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Figure 4-2: Strain Gauge Placement 

Illustration depicting the anatomic location of 4 strain gauges on a right scapula. 

 

4.2.2 Shoulder Simulator 

The specimens were mounted onto the shoulder simulator using a scapular clamp that 

was drilled into the lateral scapular body. The shoulder simulator is described in Chapters 

2 and 3. A load cell mounted onto an abduction arc allowed the humerus freedom of 

motion in all planes. Computer-controlled pneumatic actuators were used to apply loads 

to the three heads of deltoid. As per Chapters 2 and 3, deltoid muscle loading ratios were 

calculating from previous biomechanical data (Ackland, Roshan-Zamir, Richardson & 

Pandy, 2011). To review, this included deltoid muscle loading ratios for shoulder 

abduction (15% anterior deltoid, 70% middle deltoid, 15% posterior deltoid) and flexion 

(40% anterior deltoid, 50% middle deltoid, 10% posterior deltoid). The rotator cuff had a 

cumulative load of 10 N applied to maintain tension around the implant. 



106 

 

4.2.3 Testing Protocol 

Once the specimen was prepared and mounted, the moment arm length was measured 

from the center of rotation (COR) of the glenosphere to the distal humerus where it 

contacted the load cell. In order to assess the role of the CA ligament, each specimen was 

tested in an “intact” state, followed by a “cut” state. For both shoulder states, the same 

implant parameters were used. Using a custom modular RTSA system (Giles, Langohr, 

Johnson & Athwal, 2015; Langohr, Giles, Athwal & Johnson, 2015), implant 

configuration included a neck-shaft angle of 145°, 5 mm glenoid lateral offset with 0 mm 

of inferiorization, 5 mm humeral lateralization, and 42 mm glenosphere and humeral cup 

size. 

The specimens were first cycled through static range of motion in the “intact” state as 

described in Chapters 2 and 3. This included 0° and 90° abduction in the scapular plane 

(scaption), and 0° and 90° forward flexion. Elevation was defined as 60° of glenohumeral 

elevation, which corresponds to 90° of humerothoracic elevation. The simulator increased 

the deltoid force until it reached a target abduction moment of 1.5 N⋅m, as measured by 

the load cell. Data was then captured once a steady state was reached, and this was 

repeated three times for each plane of elevation. 

Next, a complete release of the CA ligament was performed. To do so, the specimens 

were placed in 0° abduction and load was applied to the deltoid, as in the standard 

protocol. Once a steady state was reached, ten seconds of data were then captured during 

which the CA ligament was cut. The CA ligament was cut entirely off its coracoid 

attachment. Within this ten second window, three seconds of data was captured before 

and after CA ligament release. The testing protocol was then repeated in the “cut” state in 

the same fashion as described above. 
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4.2.4 Outcome Variables 

The outcome variables of this study are similar to those described in Chapters 2 and 3. 

This includes acromial strain as a main outcome variable. This was measured by the 4 

strain gauges placed along the acromion and scapular spine. Strain is defined as a change 

in length of a material over the original length, is reported as a ratio or a percentage. For 

the purpose of this study, strain values were analyzed in microstrain units (µStrain, strain 

x 106). Total deltoid force was measured as a secondary outcome in order to assess the 

efficiency of the deltoid across all implant configurations.  

4.2.5 Statistical Analysis 

A three-way (CA ligament state, plane of elevation, angle of elevation) repeated 

measures analysis of variance (RM-ANOVA) was used for statistical analysis (SPSS 

Version 25.0; SPSS Inc, Chicago, IL, USA). Pairwise comparisons and analyses of 

interactions were performed to assess for significance. Statistical significance was 

defined as p < 0.05. A sample size of eight specimens had been chosen based on previous 

similar biomechanical cadaver studies (Ackland, Roshan-Zamir, Richardson & Pandy, 

2011; Chan et al., 2017; Schwartz et al., 2013). All statistically significant differences 

detected in the outcome variables were found to have a power greater than 0.8. 
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4.3 Results 

4.3.1 Acromial Strain 

4.3.1.1 The Effect of Coracoacromial Ligament State on Acromial 
Strain 

Figure 4-4 shows the results of cutting the CA ligament on acromial strain for each strain 

gauge at each plane of elevation.  

Overall, no significant change in strain was measured with release of the CA ligament 

(p>0.078). SG 3 was the only to measure a decrease in strain at 90° abduction (p=0.032). 

While not statistically significant, a trend was seen in all strain gauges towards increased 

acromial strain after the CA ligament was cut with the arm in 0° forward flexion. Strain 

gauges 1, 3 and 4 measured an increase in acromial strain that approached significance 

(p=0.072, p=0.079, p=0.084).
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Figure 4-3: The Effect of Coracoacromial Ligament State on Acromial Strain 

Mean (+/- 1 SD) acromial strain measured by (A) strain gauge 1, (B) strain gauge 2, (C) strain gauge 3, and (D) strain gauge 4 for 
both CA ligament states (cut vs. uncut) during all 4 planes of elevation. Significance (p<0.05) denoted with a ‘*’.
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4.3.2 Total Deltoid Force 

4.3.2.1 The Effect of Coracoacromial Ligament State on Total 
Deltoid Force 

Figure 4-5 shows the results of cutting the CA ligament on total deltoid force. No 

significant effect was seen on total deltoid force once the CA ligament was cut. Similar to 

acromial strain, a trend was seen towards increased total deltoid force at 0° forward 

flexion once the CA ligament was cut.  

 

Figure 4-4: The Effect of Coracoacromial Ligament State on Total Deltoid Force 

Mean (+/- 1 SD) total deltoid force measured for both CA ligament states (cut vs. uncut) 
during all 4 planes of elevation.  
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4.4 Discussion 
The primary objective of this study was to assess the effect of CA ligament state on 

acromial strain following RTSA implantation. Strain was measured through 4 planes of 

elevation (0° and 90° abduction, 0° and 90° forward flexion) before and after the CA 

ligament was cut. All other implant parameters were held constant (145° neck-shaft 

angle, 5 mm glenoid lateralization, 5 mm humeral lateralization). Overall, no significant 

change in strain was measured after the CA ligament was cut.  

There currently exists no literature that examines the role of the CA ligament in RTSA in 

any capacity. As such, the hypothesis of this study was based on the existing knowledge 

surrounding both CA ligament and RTSA biomechanics. In the native shoulder, the CA 

ligament is known to prevent superior and anterior migration of the humeral head, acting 

to stabilize the glenohumeral joint through range of motion (Budoff et al., 2016; Lee, 

Black, Tibone & McMahon, 2001; Wellmann et al., 2008). The RTSA construct hinges 

on a fixed center of rotation, which is thought to minimize shear force and maximize 

compressive force through the bone-implant interface and allow for a large arc of motion 

(Berliner, Regalado-Magdos, Ma & Feeley, 2015; Boileau, Watkinson, Hatzidakis & 

Balg, 2005; Boileau, Watkinson, Hatzidakis & Hovorka, 2006; Flatow & Harrison, 2011; 

Gerber & Nyffeler, 2009). Hence, it is hypothesized that the constrained RTSA construct 

does not rely on the CA ligament for stability. This supports the findings of this study. 

The CA ligament is also known to be intimately related to the anterior deltoid as it 

originates off the acromion and has been described as a structure that distributes muscle 

forces exerted between the acromion and the coracoid process (Gallino, Battiston, 

Annaratone & Terragnoli, 1995; Hunt, Moore & Krishnan, 2000). The extent of this is 

unknown. In this study, SG 1 was placed at the tip of the acromion in close proximity to 

the attachment of the CA ligament. Again, there was no significant change in strain 

measured in this area after cutting of the CA ligament. There was a trend towards 

increased strain at 0° forward flexion which did approach significance after the CA 

ligament was cut. Forward flexion does employ a higher percentage of anterior deltoid 

muscle fibers than abduction. Without the CA ligament intact, the anterior deltoid fibers 

may have increased tension and thus cause an increase in strain at the acromion. Again, 
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total deltoid force did not have a significant change with cutting of the CA ligament, but 

a similar trend was seen at 0° forward flexion. 

4.4.1 Strengths and Limitations 

This is the first cadaveric biomechanical study to examine the effect of CA ligament state 

on acromial strain in the setting of RTSA. No previous study has commented on the role 

of the CA ligament in the RTSA construct, and this is the first to specifically examine 

acromial strain in this setting as well. The findings of this study provide relevant and 

important information for surgeons performing this procedure. The shoulder simulator 

used in this study allowed for real-time computer-controlled active shoulder range of 

motion in both abduction and forward flexion, and the placement of 4 strain gauges 

allowed for a detailed evaluation of strain distribution across the acromion.   

Any biomechanical study that utilizes cadaveric specimens has inherent limitations. From 

a soft tissue perspective, it is difficult to replicate the true dynamic nature of in-vivo 

mechanics and joint loading. For appropriate specimen preparation, all soft tissues were 

dissected around the glenohumeral joint except for deltoid and the rotator cuff. The 

deltoid was required to be released from its distal insertion on the deltoid tuberosity in 

order to mount it to the simulator. While a rotator cuff tear was simulated, it does not 

necessarily reflect the true pathology that is seen in patients with chronic rotator cuff tear 

arthropathy. While an attempt was made to best mimic in-vivo shoulder biomechanics, 

this study did not account for scapulohumeral rhythm during humeral elevation and was 

limited to four planes of static elevation.  

Another final limitation of this study was the sample size. A trend was seen towards 

statistical significance however p-values remained greater than 0.05. If more specimens 

had been included in the study, these results may have reached statistical significance.  
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4.5 Conclusions 
This study provides further insight into the role of the CA ligament in the RTSA 

construct. This finding has importance in our understanding of shoulder biomechanics 

following RTSA as well as the significance of soft tissue disruption during surgical 

approaches to the shoulder. This study has found that disruption of the CA ligament has 

no effect on acromial strain or total deltoid force after RTSA implantation. 
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Chapter 5  

5 Thesis Conclusions 
Acromial insufficiency fractures following reverse total shoulder arthroplasty (RTSA) are 

poorly understood, a challenge to diagnose, and associated with inferior clinical 

outcomes. As RTSA becomes an increasingly utilized surgical procedure in the aging 

population, the incidence of this complication will likely increase. There is a paucity of 

literature focusing on factors to prevent or minimize acromial stress fractures. The 

purpose of this thesis was to utilize a cadaveric, biomechanical model to evaluate the role 

of RTSA implant configuration on acromial strain.  

 

The primary objectives of this thesis were: 

1. To evaluate the role of glenoid lateralization on acromial strain following reverse 

total shoulder arthroplasty implantation (Chapter 2). 

 

2. To evaluate the role of humeral lateralization on acromial strain following reverse 

total shoulder arthroplasty implantation (Chapter 2). 

 

3. To evaluate the role of neck-shaft angle on acromial strain following reverse total 

shoulder arthroplasty implantation (Chapter 3). 

 

4. To evaluate the role of the coracoacromial ligament following reverse total 

shoulder arthroplasty implantation (Chapter 4). 
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5.1 Summary of Chapter 2: The Role of Glenoid and 
Humeral Lateralization on Acromial Strain 

The purpose of this study was to evaluate the role of both glenoid lateralization and 

humeral lateralization on acromial strain following RTSA implantation. Total deltoid 

force was also measured as a secondary outcome. 

In regards to glenoid lateralization, the hypothesis of this study was that increasing 

glenoid lateralization would correlate with an increase in acromial strain. This was based 

on previous biomechanical and computational literature, although no previous studies 

have evaluated acromial strain directly. The rationale was that with increased glenoid 

lateralization, the center of rotation (COR) is also lateralized, causing a decrease in 

deltoid moment arm, decreased deltoid efficiency, and a resultant increase in deltoid 

force required for range of motion. The results of this study showed that with increasing 

glenoid lateralization, there was a significant increase in acromial strain when the arm 

was in 0° forward flexion. There was a concurrent trend towards increased total deltoid 

force however this did not reach statistical significance. With the arm in other planes of 

elevation, a significant change in acromial strain was not measured.  

For humeral lateralization, the hypothesis of this study was that increasing humeral 

lateralization would correlate with an increase in acromial strain. This was also based on 

previous literature, specifically a finite element analysis which found increased acromial 

stress with increased humeral lateralization. The biomechanical effect of humeral 

lateralization is difficult to interpret in a cadaver model. Multiple factors are at play, 

including deltoid tension which was not able to be assessed in this study. In fact, the 

results of this study found that increasing humeral lateralization lead to a decrease in 

acromial strain with the arm in abduction. This finding is supported by biomechanical 

literature which suggests that increased humeral lateralization causes a decrease in 

deltoid force required for abduction. In this study, increased humeral lateralization did 

not cause a significant change in total deltoid force.  

This is the first biomechanical study to investigate the effect of glenoid and humeral 

component lateralization on acromial strain following RTSA implantation. The findings 
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of this study provide an important contribution to the existing literature and are relevant 

for the future design and manufacturing of RTSA implants.  

5.2 Summary of Chapter 3: The Role of Neck-Shaft Angle 
on Acromial Strain 

The purpose of this study was to assess the role of neck-shaft angle (NSA) on acromial 

strain following RTSA implantation. Total deltoid force was measured as a secondary 

outcome. 

The hypothesis of this study was that changing NSA would have no significant effect on 

acromial strain. This was assessed using a custom modular prosthesis system with neck-

shaft angles of 135°, 145°, and 155° and all other implant parameters held constant. The 

rationale behind this hypothesis was that changing NSA results in a very small change in 

humeral offset, which is negligible for its effect on deltoid moment arm and acromial 

strain. Additionally, altering the inclination of the humeral stem has an implicated role in 

arm lengthening and deltoid tensioning, however this was not assessed in this study as the 

deltoid was released from its distal insertion. In fact, the results of this study found that 

changing NSA had no significant effect on acromial strain or total deltoid force required 

for range of motion.  

This is the first biomechanical cadaveric study to investigate the effect of NSA on 

acromial strain following RTSA implantation. Again, the findings of this study have an 

important application for surgeons and implant manufacturers as the optimal implant 

configuration continues to be studied. 

 

 

 



123 

 

5.3 Summary of Chapter 4: The Effect of Coracoacromial 
Ligament State on Acromial Strain 

The purpose of this study was to assess the effect of coracoacromial (CA) ligament state 

on acromial strain in the setting of RTSA. Total deltoid force was measured as a 

secondary outcome. 

The hypothesis of this study was that disruption of the CA ligament would not cause a 

significant change in acromial strain or total deltoid force. The rationale behind this 

hypothesis is that the RTSA construct has a constrained COR. While the native shoulder 

relies on the CA ligament as a soft tissue stabilizer for superior and anterior head 

migration, the RTSA construct does not. The results of this study found that with 

disruption of the CA ligament, there was no change in strain or total deltoid force 

required for range of motion.  

This is the first biomechanical study to investigate the role of the CA ligament in the 

RTSA construct. The results of this study provide an important and relevant contribution 

to the literature and to surgeons who employ this procedure.  

 

5.4 Future Directions 
The current study was able to evaluate 3 specific modifiable implant parameters and their 

effect on acromial strain: glenoid lateralization, humeral lateralization, and neck-shaft 

angle. Throughout the testing protocol, all other implant parameters remained constant. 

As such, the opportunity exists to continue exploring the topic of acromial strain through 

the assessment of other implant parameters, such as glenoid inferiorization, glenosphere 

diameter, and polyethylene thickness. Overall, a better understanding of acromial 

insufficiency fractures beyond implant configuration is warranted. 
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5.5 Significance  
Reverse total shoulder arthroplasty is becoming a more widely used surgical procedure in 

the setting of rotator cuff tear arthropathy, proximal humerus fractures, and revision 

arthroplasty. Its use is continuing to grow and be adopted worldwide. With its increasing 

popularity comes a resultant increase in complications and adverse outcomes. Acromial 

insufficiency fractures are reported to occur in up to 10% of patients, usually within the 

first 3 to 10 months following surgery. Often underdiagnosed, this complication causes 

increased patient morbidity and poor clinical outcomes. With a wealth of literature 

focused on RTSA indications, biomechanics and outcomes, few studies have focused on 

acromial insufficiency fractures.  

This study highlights the importance of how implant parameter selection can alter the 

biomechanics of the shoulder. It is important to take this into consideration when 

choosing a surgical implant. Considerations include functional range of motion, implant 

stability, contact mechanics, and acromial strain. While some of the implant parameters 

that were evaluated in this study are not able to be modified at time of surgery, they may 

be addressed at the manufacturing level, highlighting the significance of this study in 

future RTSA implant design. Table 5-1 outlines some commonly used commercial 

implants and their associated implant parameters as a reference.  

Additional significant conclusions can be drawn from this study. The CA ligament has 

been shown to provide no additional stability to the RTSA construct, which may be of 

interest to surgeons as they plan their surgical approach and soft-tissue dissection. It was 

also concluded from this study that greater acromial strain and total deltoid force 

occurred with the arm in forward flexion, suggesting that excessive loading in this 

position should be limited during the post-operative period. Furthermore, the highest 

strain values were measured in the region of Levy type II acromial fractures in all 

implants tested, supporting the existing literature. Finally, when converting the measured 

strain in this study to stress at physiologic levels, these values approached if not exceeded 

the traumatic fracture yield of cortical bone. This suggests that the etiology of acromial 

fractures may be more of a traumatic fracture mechanism than was previously believed. 
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Table 5-1: Commercial Implant Parameters 

Adapted from Werthel et al., 2018.
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APPENDIX A: Glossary of Terms 

ABDUCTION 

 

Movement away from the midline of the 
body 

ADDUCTION 

 

Movement towards the midline of the body 

AMERICAN SHOULDER AND 
ELBOW SURGEON (ASES) SCORE 

 

 

A standardized outcome score for the 
shoulder graded on a 100-point scale to 
assess pain and function 

ANTERIOR 

 

 

Located towards the front of the body in 
the sagittal plane  

ARTHROPATHY 

 

Disease of a joint 

ARTHROPLASTY 

 

 

Surgical reconstruction or artificial 
replacement of a joint 

ARTICULAR CARTILAGE 

 

 

Highly specialized connective tissue 
covering the articular surface of synovial 
joints 

ARTICULATION 

 

 

A joint; a connection between two or more 
bones  
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AVULSION FRACTURE 

 

 

When a fragment of bone tears away from 
the main mass of bone by attached soft 
tissues 

BURSA 

 

A fluid-filled sac, usually around a joint 

CADAVERIC 

 

 

A part of a dead body used for scientific or 
medical research 

CASE-CONTROL STUDY 

 

 

Retrospective study to determine whether 
an exposure is associated with an outcome 

CIRCUMDUCTION 

 

Circular movement of a limb 

COMPUTATIONAL MODEL 

 

 

Use of a computer program to study a 
material 

CONSTANT SCORE 

 

 

 

A standardized outcome score for the 
shoulder graded on a 100-point scale to 
assess pain and function 

COMPUTED TOMOGRAPHY (CT)  

 

 

Cross-sectional imaging of the body using 
a series of x-rays 

DISTAL 

 

Located away from the trunk of the body 
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ELEVATION 

 

Movement away from the body in any 
plane 

EXTENSION 

 

 

As it pertains to the arm, movement of the 
limb in a posterior direction in the sagittal 
plane 

EXTERNAL ROTATION 

 

 

Rotation away from the midline of the 
body, or laterally 

FINITE ELEMENT ANALYSIS (FEA) 

 

 

Computer analysis of a material using 
finite elements 

FORWARD FLEXION 

 

 

As it pertains to the arm, movement of the 
limb in an anterior direction in the sagittal 
plane 

IMPINGEMENT 

 

 

Abnormal contact of two or more bones or 
structures 

INFERIOR 

 

Located below 

INTERNAL ROTATION 

 

 

Rotation towards the midline of the body, 
or medially 

IN-VITRO 

 

Outside a living organism 

IN-VIVO Within a living organism 
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KINEMATICS 

 

 

Mechanics focusing on the motion of 
objects without considering the 
contributing forces 

LATERAL 

 

 

Located away from the midline of the 
body in the coronal plane 

MAGNETIC RESONANCE IMAGING 
(MRI) 

 

 

Detailed imaging of the body using high-
frequency radio waves from a strong 
magnetic field  

MECHANICAL ADVANTAGE 

 

 

Advantage gained by improving the 
effectiveness of a force 

MEDIAL 

 

Located towards the midline of the body in 
the coronal plane 

MOMENT 

 

Turning effect of a force (torque) 

MOMENT ARM 

 

 

Measured length between a joint axis and 
the force acting on that joint  

MULTI-AXIAL 

 

Movement in a number of axes 

PERIPROSTHETIC 

 

In close proximity to or surrounding a joint 

PHYSIOLOGIC Considered normal, not pathologic 



130 

 

PLANE OF ELEVATION 

 

Degree of freedom in which a limb 
elevates 

POSTERIOR 

 

 

Located towards the back of the body in 
the sagittal plane 

PROSPECTIVE STUDY 

 

 

Longitudinal study that follows an 
outcome over time 

PROXIMAL 

 

Located towards the trunk of the body 

RADIOGRAPH 

 

An image produced by x-ray 

RANDOMIZED CONTROLLED 
TRIAL (RCT) 

 

A clinical trial in which interventions are 
allocated at random 

RETROSPECTIVE STUDY 

 

A study that looks back in time  

RETROVERSION 

 

Tilting or tipping backwards 

SCAPTION 

 

 

Abduction of the humerus in the scapular 
plane 

SHEAR 

 

Line of force parallel to an object 

STRAIN Change in length of a material over its 
original length  
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STRAIN GAUGE 

 

A device used to measure strain of an 
object 

STRESS 

 

Force applied to a material per unit area 

SUPERIOR 

 

Located above 

TRANSEPICONDYLAR AXIS 

 

 

Axis in line with the medial and lateral 
epicondyles 

ULTRASOUND (US) 

 

 

Form of medical imaging used to examine 
anatomic structures using ultrasound 
waves 

YOUNG’S MODULUS  

 

Measure of elasticity or stiffness of a 
material 
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