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Abstract
The Internet of Things (IoT) is a concept in which physical objects embedded with sen-

sors, actuators, and network connectivity can communicate and react to their surroundings.
IoT applications connect physical objects for the purpose of decision making by sensing and
analysing generated data from the embeddedsensors in physical objects. IoT applications are
growing rapidly as sensors become less expensive. Sensors generate large amounts of data
that may meaningless unless the data is used to derive knowledge with in a certain period of
time. Stream processing paradigm is used by IoT to provide requirements of IoT applications.
In a stream processing paradigm, unlike traditional data bases, data is not stored but rather
processed as it is generated. To transfer generated data from distributed data sources to a pro-
cessing center such as cloud may not allow for real-time processing due to the network delay.
Another high-demand application is live streaming of video. The performance of live video
stream systems is inferior when there is a sudden large demand in the number of users. This
thesis addresses some of the limitations of current architectures for video streaming systems
and IoT applications based on the use of nearby computing resources (e.g., cloudlet, fog).

First, we addressed the degrading performance in video stream systems when a flash crowd
occurs. The performance of video streaming systems is affected by flash crowd and degrade
the quality of service for subscribers to the content delivery system. A flash crowd happens
when there is a sudden large increase in the number of users. Therefore, flash crowds increase
network traffic for any particular server. The main challenge is to make sure that the video
streaming system has sufficient capacity to handle the occurrence of flash crowds.

Second, we address the limitation of current architectures for running mobile applications
by introducing a dynamic partitioning and offloading of a mobile application. Mobile devices
have limited resources including short battery life, storage capacity and processor performance.
This limits the applications that can run on it. Mobile applications can be partitioned so that
some of the application runs on a cloud. This works well for applications with relatively little
data to be transferred and that do not have a high level of interaction with the user. Challenges
with applications that have large amounts of data to be transferred and have a high level interac-
tiveness is the high latency incurred by the network and packet loss of the wireless network. A
mobile application can be partitioned so that part of it runs on a nearby computing resource e.g.,
fog node or cloudlet. This thesis presents a framework that introduces fine-grained offloading
approach and support for runtime and dynamic partitioning of an application.

Third, we present a solution for placement of stream operators over distributed fog nodes
for live processing of data streams from geographically distributed data sources. This place-
ment of stream operators takes place in such a way that it supports applications with a high
volume of data that require real-time (or near real-time) analysis To this end, this thesis pro-
posed a set of algorithms for placement of stream operators among fog nodes.

Keywords: Internet of Thins, Data Streaming, Big Data, Context-aware, Query Graph,
Fog Platform, Offloading, Partitioning.
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Chapter 1

Introduction

Over the last decade, the cloud paradigm has been extensively adopted [159]. A recent survey
[178] on the adoption rates of cloud computing by enterprises reported that 63% of enterprises
are using the cloud. The reason for the success of the cloud paradigm is that it offers scalability,
flexibility, and services on demand to customers [137][8]. For example, the cloud paradigm
provides services that include infrastructure as a service, platform as a service, and software
as a service [148]. There are a number of commercial cloud platforms that provide computing
resources to their clients over the Internet such as Amazon Web Services and Microsoft Azure
[54]. A key advantage to cloud computing is that computing resources for an application can be
adjusted on demand to support fluctuating workloads and thus drive down costs for enterprises
[8]. Many smartphone applications use the cloud to offload resource intensive computational
tasks. For example, Apple’s Siri [151] performs computational intensive speech recognition in
the cloud and returns the results to the user [81].

The rest of this chapter is organized as follows: Section 1.1 describes emerging trends in
applications. Section 1.2 discusses the characteristics and requirements of Internet of Things
(IoT) applications and real-time data-intensive applications. Limitations of current architec-
tures for these applications is discussed in Section 1.3. The contribution of this thesis is ex-
plained in Section 1.4. Section 1.5 provides the structure of the thesis.

1.1 Internet of Things and Emerging Applications
The Internet of Things (IoT) is a paradigm that envisions the physical world as a smart space in
which physical objects are equipped with sensors, actuators, and network connectivity that can
communicate and react to their surroundings [13]. Cisco estimates that there will be around
25 billion to 50 billion connected devices by 2020 [64]. A new generation of applications is
emerging in which data is collected from the sensors embedded into physical objects. Several
of these applications are described below [108]:

• Early Disaster Alerting: Sensors can collect crucial information about the environment
and detect environmental disasters such as earthquakes and tsunami which help save
lives.

• Health Care and Patients Surveillance: Constant monitoring of patients can save lives.

1
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For example, emergency care can be dispatched immediately when a patient begins to
experience a heart attack.

• Smart Surveillance Camera: The use of smart surveillance cameras allow authorities to
detect when crime has occurred and respond faster.

• Agricultural Efficiency: Soil moisture sensors and weather sensors can sense soil mois-
ture and take weather information into account for smart irrigation systems. Smart ir-
rigation systems only water crops when needed and thus reduce the amount of water
usage.

• Smart Navigation Systems in Smart Cities: Consider a smart city where all the vehicles
are equipped with a sensor that periodically emits a position report that identifies the
vehicle’s location. The position reports can be used to determine congestion. If there is
congestion, vehicles can be notified so that drivers can reroute.

• Smart Buildings: Consider a scenario where a sensor network is used to monitor the
temperature of rooms in a building to sound an alarm in the case of a fire. This allows for
for immediate and necessary fire detection [141]. Each temperature measurement report
generated by any sensor in the building should be checked as soon as possible in order
to detect a fire.

In the near future, the number of sensors are expected to grow exponentially and hence the
increase in IoT applications (with real-time or near real-time requirements) [171].

In the past decade, not only have high data rate sensors such as video cameras become
more pervasive, but the consumption of video contents have also changed from offline viewing
to online streaming [153]. Furthermore, as portable devices with cameras have become more
ubiquitous, users are able to create and share videos. Users are increasingly demanding content
at any time of day, from any device and from any place. With these media streaming applica-
tions, it is important that the user receives the media content in real-time. This is especially
important for live events (e.g., sports events). For example, live streaming events such as video
broadcasts from the Olympic Games can cause very high traffic due to a huge number of fans
[185]. In addition, many security applications use video surveillance cameras to provide secu-
rity. These security applications process the received video content from surveillance cameras
to extract knowledge and deliver the results (suspicious activity) to the user(s) devices (e.g.,
smartphone) through the Internet [31].

1.2 Characteristics of Emerging Applications
IoT applications and media streaming applications (e.g., audio and video applications) are
expected to put the Internet under tremendous pressure due to exponential growth in data [7].
These applications have one or more of these characteristics: (i) high processing requirements;
(ii) low processing latency; (iii) the generated data should be processed within a small window
of time before the data loses its value; (iv) high consumption of network bandwidth; and (v)
large number of subscribers.
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1.3 Limitations of Current Architectures

Currently, IoT applications assume that sensor data is sent to a cloud for analysis and to de-
termine a response. For example, a Fitbit offloads its data to an online account maintained by
services hosted on a cloud. This works well for a Fitbit since real-time analysis and response
is not essential. However, for security applications that use video surveillance this is not the
case. The problem of relying solely on the cloud is the issue of latency. Latency is due to the
network delay from the IoT devices to the cloud, which may often times lead to poor quality
of service (QoS). Furthermore, the network core can become overwhelmed [111]. This makes
the use of a cloud unsuitable for applications that require a high level of interaction with users
and applications with real-time decision making requirements [77][115][44][78][162].

Video streaming applications make use of peer-to-peer networks where processing often
makes use of computing resources close to data sources. This is done to address latency.
However, much of the existing work suffers from overutilization or underutilization of geo-
graphically distributed processing units due to lack of management information [78][162].

1.4 Thesis Focus

This thesis addresses some of the limitations of current architectures for video streaming and
IoT applications by using nearby computing resources (e.g., cloudlet, fog). A cloudlet is de-
fined as a resource-rich computer that is connected to the Internet and is available at the network
edge for use by nearby end-devices (e.g., smartphones, tablets, vehicles) [82][165][154][98][23].
Fog (similar to a cloudlet) extends the cloud power to the edge of networks, in particular wire-
less networks for the Internet of Things (IoT) [89][30]. Fog nodes are located away from the
main cloud data centers (e.g., at any point from the data source to the cloud) [30]. Differences
between cloudlet and fog are discussed in [58]. The rest of this section presents the thesis
contributions.

1.4.1 Video Streaming Applications

Peer-to-Peer (P2P) networks consist of a set of nodes used to share access to data. P2P net-
works provide a robust, reliable and scalable message routing and delivery on top of a physical
(underlay) network. Large-scale commercial P2P streaming networks such as Coolstreaming
[200] and PPLive [166] offer numerous video channels to thousands of users, simultaneously.
These are referred to as multi-channel P2P streaming networks [186]. In these types of net-
works, peers can participate in more than one channel and switch between them. This thesis
addresses the following challenges:

• Imbalance of resource usage of different channels

• Dealing with flash crowds which occur when a large number of peers attempt to join a
popular channel
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1.4.2 IoT Applications and Data Stream Processing

In IoT applications, data takes the form of data streams. A data stream is defined as an un-
bounded sequence of tuples (stream elements) that is produced incrementally over time [76]
[134]. A tuple is defined as an atomic data item embedded in a data stream and can be pro-
cessed by a processing unit [55]. IoT applications can use queries to aggregate continuous
data from data sources and process streams of data to produce the output [198][9]. In an IoT
application, a query may run continuously. This type of query is referred to as continuous
query [14]. A continuous query consists of one or more query operator(s) such as map, join,
aggregate, filter and union. A query operator is a function which is used to process an input
data stream and produce output results [83][157].

This thesis proposes an approach for placing query operators on fog nodes and the cloud.
In this thesis, a query operator placement algorithm is proposed, which supports:

• Real-time aggregating and analysing data streams from different geographically dis-
tributed data sources.

• Combining more operators into one query graph instead of having different query graphs
for each operator helps to save bandwidth and reduce transmission costs.

• Optimized operator placement and operator reuse.

• Scalability for distributed data stream management systems.

1.5 Thesis Structure
The remainder of this thesis is organized as follows:

• Chapter 2: Chapter 2 discusses data stream processing for IoT applications background
and peer-to-peer live video streaming systems.

• Chapter 3: Chapter 3 presents a novel framework for multi-channel P2P live video
streaming that provides de-centralized mechanisms for handling flash crowds that in-
cludes incentive mechanism, load balancing mechanisms, and cross-channel help among
peers for live video streaming in multi-channel P2P systems.

• Chapter 4: Chapter 4 presents a dynamic partitioning strategy that considers network
conditions and the amount of data being transferred, shows how a cloudlet mesh can
be used, and presents performance results that illustrate the advantages of a dynamic
partitioning strategy and a cloudlet mesh.

• Chapter 5: Chapter 5 presents related work for concepts of data streaming such as oper-
ators and continuous queries.

• Chapter 6: In chapter 6 we formulate the query operator placement problem.
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• Chapter 7: Chapter 7 presents the results of experimental studies that compare the use
of using one or more levels of fog nodes for high and low volumes of data. Also, this
chapter explores the need for an approach that places query operators on fog nodes.

• Chapter 8: Chapter 8 presents the proposed algorithms for query operator placement
among distributed fog nodes.

• Chapter 9: Chapter 9 presents simulation results of the algorithms proposed in Chapter
8. The main goal is to show how the proposed algorithms can improve response time.

• Chapter 10: Chapter 10 summarizes the work in this thesis.



Chapter 2

Background on Peer-to-Peer Networks

This chapter presents background knowledge on work related to peer-to-peer (P2P) networks
and streaming of live video over P2P networks.

This chapter is organized as follows: Section 2.1 presents peer-to-peer concepts and seman-
tics. Section 2.2 provides an overview of basic peer-to-peer data streaming systems. Section
2.3 presents peer-to-peer overlay network typologies. Section 2.4 discusses the limitations of
current peer-to-peer live video streaming systems.

2.1 Peer-to-Peer Networks
Peer-to-Peer (P2P) networks consist of a set of nodes (peers) that share their available resources
(e.g., upload and download bandwidth, computational resources, data storage resources). P2P
networks provide a robust, reliable and scalable message routing and delivery on top of a physi-
cal (underlay) network. Peer-to-Peer network applications such as video on demand, live video
streaming, and file sharing have become popular due to their scalability [50]. Recent studies
[185][195][42] have shown that the overall P2P traffic on the Internet has been constantly in-
creasing and that more than 60% of Internet traffic is generated by P2P network applications
.

2.1.1 Classification of P2P Networks
P2P networks can be classified into the following categories:

• Centralized P2P Networks: In a centralized P2P network, a set of servers maintain a
database of available services. A newly joined peer in a centralized P2P network needs
to submit a request for the resource (e.g., a file) to a server. The server then looks to find
the list of peers that can provide the requested service e.g., the requested file.

• Decentralized P2P Networks: Unlike the centralized approach, in a decentralised P2P
network, peers connect to other peers (neighbours) and share resources among each other
without any centralized server. Each peer obtains a service by sending a request to all
its neighbours. Two common types of decentralized P2P networks are unstructured and
structured:
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– Unstructured: In an unstructured P2P network, peers randomly establish a connec-
tion to a set of peers. The main problem with unstructured P2P networks is that a
peer has to search the entire network to find a resource. The result is more latency
and overhead to find a particular piece of data.

– Structured: In a structured P2P network, the overlay is organized into a specific
topology (e.g., tree-based P2P network and mesh-based P2P network) [109].

2.2 P2P Streaming Network

P2P networks have become a popular approach to provide live video and video-on-demand
(VoD) services. Commercial P2P live streaming and video-on-demand networks, such as
PPLive [166], PPStream [176], UUSee [19], have successfully supported large subscribers
[200].

2.2.1 P2P Live Streaming Systems

A P2P live stream includes a continuous flow of video that is generated in real-time. In a P2P
live streaming network, a live video is disseminated to all subscribers in real-time. The video
playbacks on all users are synchronized (i.e., each peer watches almost the same position of
the video). In a P2P live streaming system, peers can join an on-going live streaming session
and start watching the stream from the time they joined.

Recently, a new breed of commercial P2P video streaming applications has emerged [200]
[166][25]. Large-scale commercial Peer-to-Peer (P2P) networks such as Coolstreaming [200]
and PPLive [166] are extensively used for live video streaming. In almost all of these P2P video
streaming systems, multiple channels broadcast video to thousands of users, simultaneously
[48].

2.3 P2P Network Topologies

This section discusses P2P network topologies.

2.3.1 Tree-Based P2P Network for Live Video Streaming

In a tree-based system, peers are connected and organized into a tree where the server acts as
the root. Each peer downloads from its parent and uploads to its children. Accordingly, tree-
based systems use a push-based data-driven method [28][116]. The major drawbacks of the
single-tree based approach is that the leaf peers cannot contribute their upload bandwidth to
the tree. Therefore, to overcome with the aforementioned disadvantage, the multi-tree approach
is introduced. In the multi-tree approach, a peer can join different streaming trees (in the multi-
tree a peer can be a leaf in one tree but be a parent (internal node) in another tree).



8 Chapter 2. Background on Peer-to-Peer Networks

2.3.2 Mesh-based P2P Network for Live Streaming Network
In mesh-based P2P live streaming networks, each peer exchanges resources (e.g., data) with its
neighbours. The main advantage of mesh-based P2P live streaming networks over tree-based
P2P live video streaming is that mesh-based P2P live streaming is robust against peer churn.
In a mesh-based P2P live streaming, if a neighbour peer(s) of a peer leave the system, the peer
can receive stream (or download the video) from the remaining neighbours.

2.4 Gap Analysis
The limitation of the current architecture is that it uses a centralized or semi-centralized ap-
proach to respond to flash crowds[149][114]. The limitation on the centralized approach is that
it uses a centralized management to obtain a global view and the distribution of the bandwidth
among peers. Centralized architectures are unscalable and expensive to maintain. In a semi-
centralized architecture, all of the decision making is with either one peer or a small number of
peers. Selfish behavior of peers can degrade the quality of service.



Chapter 3

Handling Flash Crowd in P2P
Multi-Channel Live Video Streaming

The deployment of live video streaming applications has seen a large growth on the Internet
[196]. P2P networks provide a robust, reliable and scalable message routing and delivery on
top of a physical (underlay) network. Large-scale commercial P2P streaming networks such
as Coolstreaming [200] and PPLive [166] offer many video channels to thousands of users,
simultaneously. These are referred to as multi-channel P2P streaming networks [86]. In these
types of networks, the peers can participate in more than one channel and switch between
them. This chapter focuses on the following challenges: imbalance of resource usage and flash
crowd.

The rest of this chapter is organized as follows: Section 3.1 describes the challenges of
current architecture. Section 3.2 presents related work. The proposed framework is presented
in Section 3.3 and 3.4.

3.1 Challenges
This section describes the following challenges:

• Imbalance of Resource Usage: One challenge with the use of multi-channel networks
is an imbalance in resource (such as bandwidth) usage of different channels [86][40].
This implies that some channels have satisfactory streaming qualities since they have a
surplus of resources, while other channels suffer from unsatisfactory streaming quality
due to a lack of sufficient resources.

• Flash Crowd: A flash crowd occurs when a large number of peers attempt to join a
popular channel. A flash crowd can result in high consumption of upload bandwidth of
a P2P network and thus causes a decrease in Quality of Service (QoS). One result is the
lag between choosing a video and actual playback (i.e., the startup delay is high).

• Limited Available Bandwidth in P2P System: In a P2P system, the available band-
width is limited and constitutes a critical bottleneck for the deployment of large scale
video streaming applications. There is a need for more effective use of existing band-
width.

9
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3.2 Related Work

This section presents previous work with regard to P2P multi-channel live video streaming
networks.

3.2.1 Flash Crowd

Flash crowds occur frequently in P2P live streaming systems. The sudden arrival of numer-
ous peers may consume the bandwidth of a P2P network, and decrease the QoS [114]. Ex-
isting methods for reducing the startup delay of a peer can be categorized into three types
[114][40][189]. First, newcomers prefer to receive those chunks of video which have already
been obtained by most other peers in the network. The reason for this is that this often increases
the number of potential sources of the video chunk. However, if many peers already have the
video chunk, then the video chunk may be removed from the buffer. Second, newcomers re-
quest video chunks sequentially, in order to ensure seamless playback. Therefore, the diversity
among video chunks among peers that arrive in a short period of time is low. As a result, peers
that are part of a flash crowd upload few video chunks among each other. Third, newcomers do
not exchange their buffer-map [85], which indicates which video chunks currently exist in the
player buffer of peer, until they obtain enough video chunks, to decrease the signalling over-
head. Hence, before the peer announces its buffer-map, other peers do not know which chunks
of video their neighbours have and cannot download from them.

From the scalability view of P2P live streaming networks, Chen et al. [186] showed that a
P2P live streaming network with admission control under a flash crowd can increase its upload-
ing capacity to support higher request rates. Liang et al. [112] used a branching process model
to examine the service capacity of BitTorrent-like file sharing systems during flash crowds.

Load balancing problem in P2P networks is recognized as an important factor when en-
suring that peers are not overloaded when flash crowd phenomena occur. Load balancing
approaches depend on the type of P2P architecture [170]. For structured P2P system, Raoet et
al. [114] proposed a scheme in which migration of a virtual server takes place between a set
of heavy nodes and a set of lightly-loaded nodes. However, it has a serious drawback since it
uses a number of directories to store and update the load information of the light nodes in the
system, which consumes a large amount of resources in the P2P system. In unstructured P2Ps
(e.g., Gnutella), random peer selection is commonly adopted. For example, Chawathe et al.
[86] proposed a load balancing scheme based on the use of a random walk. It tries to increase
the probability of visiting a lightly-loaded peer by organizing the overlay in such a way that a
peer with high capacity has a large number of adjacent peers. There is a need for a global view
of the system concerned with the distribution of the node capacities.

In file sharing, Garbacki et al. [186] proposed a load balancing scheme for hierarchical
P2Ps, based on a list of super-peers called super-peer cache. In this scheme, a heavily-loaded
super-peer can reduce the number of requests received from ordinary peers by reducing its
priority in the super-peer cache held by each peer. This occurs when ordinary peers try to
connect to the super-peers in the order indicated in the super-peer cache. However, a selfish
behaviour of the super-peers significantly decrease the performance of the overall system, since
it lacks an incentive mechanism.
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3.2.2 Unbalanced Resource Distribution Among Channels
Multi-channel design techniques can be classified into three groups [184]; (1) In the Naive
Bandwidth Allocation (NBA) approach [45], a peer subscribes only to its watched channels,
and dedicates its upload bandwidth to them; (2) In the Passive Channel-aware Bandwidth Al-
location (PCA) [181], a peer joins only to its watched channels, and optimally dedicates its
upload bandwidth to these channels; (3) With the Active Channel-aware Bandwidth Alloca-
tion (ACA) approach, a peer joins not only to its watched channels, but also to several other
channels as a supporter. The main idea behind ACA is to allow the channels with surplus up-
load bandwidth to help those with deficit upload bandwidth since the upload bandwidth is an
important resource that greatly influences the quality of live video. In ACA, a peer optimally
allocates its upload bandwidth to the watched channels and unwatched channels.

The View-Upload-Decoupling (VUD) [187] is the state-of-the-art framework for multi-
channel live video streaming. VUD provides cross-channel resource sharing. In VUD, each
peer is assigned to one or more channels as a supporter. Therefore, video distribution for
unpopular channels is achieved by utilizing the bandwidth of supporters from other channels.
However, it still suffers from upload bandwidth overhead and distribution swarm management
cost [59]. Liang et al. [112] have proposed a partial decoupling strategy instead of complete
decoupling for viewing and uploading of a peer in multiple channels. Some of the peers with
rich upload bandwidth are assigned to help other channels.

None of the above work proposed a mechanism to handle the flash crowd phenomenon or
provides incentives for peers to share their upload bandwidth [123][61].

3.2.3 Incentive Mechanism
Most incentive mechanisms proposed for P2P networks [199][146] are centralized. CFC pro-
posed a decentralized incentive mechanism. This is done by allowing neighbouring nodes to
disconnect from a peer that is not responsive to its requests. If node i categorizes node j as one
that does not respond to requests or has not sent a message then node i disconnects from node
j. If node j does not respond because it does not want to share its resources then node i will
not respond to node j’s requests. If a peer node is disconnected then it cannot receive video.
This mechanism has elements of both encouragement and penalty schemes [146].

3.2.4 Network Coding
Nguyen et al. [131] used a network coding technique [62] to reduce duplicated storage. In
Yang et al [192] the authors proposed a system, called Avalanche, to distribute large files
by using network coding. Avalanche uses special sets of secure hash functions that support
network coding operations. However, it requires very few computational resources. Li et
al. [110] applied linear network coding to the evaluation of download finish times in a Peer-
to-Peer network. They showed that coding can provide a robust optimal solution and better
performance than routing in a dynamic network environment. Kehdi et al [100] and Wang et
al [183] considered the implementation of network coding and P2P cooperative computing for
wireless network and mobile devices. Wang et al [183] introduced the notion of regenerating
codes, where a new peer only needs functions of the stored data from the surviving parent peers
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to significantly decrease the repair bandwidth. In [182], the author proposed a P2P storage
cloud for on-demand streaming.

3.3 Decentralized approach to handling flash crowds

This section presents the Coping Flash Crowd (CFC) framework [22], that represents a decen-
tralized approach to handling flash crowds. This is handled with the run-time construction of
a hybrid mesh-tree overlay structure at the release time of a video and adapted when needed
(e.g., for peer-churn and, support load balancing). To support resource sharing an incentive
mechanism is proposed that encourages peers to allocate their upload bandwidth to other chan-
nels. Since the quality of video at the peer side is related to its upload rate, it is very important
to implement an incentive scheme for better streaming services. Without this mechanism, the
flash crowd handling technique does not provide any advantages for reducing startup lag for
peers.

3.3.1 Overlay Structure

The use of a single tree structure for delivering video requires a root node, which is the video
source. A peer only has one parent and a video stream is sent through each path. One of
the disadvantages of a single tree is that the upload bandwidth of a leaf node is not utilized.
This is addressed in a multi-tree where the video source divides the stream into multiple sub-
streams. There is a sub-tree for each sub-stream. A leaf peer can be an internal node of
another tree. One major drawback of tree-based streaming systems is their vulnerability to
peer churn. A peer departure will temporarily disrupt video delivery to all peers in the sub-tree
rooted at the departed peer. In a mesh-based structure, peers dynamically connect to a subset
of random peers in the system. A peer pulls video content from its neighbors who have already
obtained the content. Since multiple neighbors are maintained at any given moment, mesh-
based systems are robust to peer churns. However, different data packets may traverse different
routes to a peer. The arrival of data packets is unpredictable and thus peers may observe video
playback quality degradation that includes long startup delays, frequent playback freezes and
low video bit rates.

CFC uses a multi-tree but each peer dynamically connects to a subset of peers to form a
mesh. Each tree in the multi-tree is responsible for a sub-stream but the mesh allows a node
to receive other sub-streams. This reduces the time to receive video content, and to handle
the peer churn. This combination of a multi-tree and mesh provides a pyramid-like overlay
structure.

The video source uses the following formula to assign a sub-stream: i = GOP j mod k,
where k is the number of sub-streams and GOP j represents the jth Group of Picture (GOP).
A GOP is a group of successive pictures within a coded video stream. The number of sub-
streams is equal to the height of the multi-tree. The height of the tree is not to exceed some
threshold value, which in this work is the number of sub-streams. The tree height represents the
maximum length from the video source to a leaf allowed. Longer lengths imply longer paths
for video sub-streams to traverse, and hence have longer download times. The data structures,
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types of peers and protocols needed to create and maintain the overlay are described in this
section. These were designed to support load balancing and flash crowds.

Figure 3.1: Multi-Tree Construction for Sub-Streaming

3.3.2 Bootstrap nodes
Bootstrapping is the process by which a new peer joins the overlay structure. The goal of the
bootstrapping operation is to find a node that is already a member of the overlay for it to connect
to. This requires the use of stretch information. For two nodes i and j, Di j is the number of
overlay hops between two nodes in the overlay network and the number of IP path hops is
represented by di j. The stretch factor is defined as S Ti j =

Di j

di j
. The stretch factor represents the

overlay and underlay network mismatching (i.e., it represents the difference in the lengths of
the shortest route between two nodes in the overlay and the shortest route between these nodes
in the underlay network). For a node i and a set of nodes in set J the average stretch value can
be calculated as seen in Equation 3.1:

Avgstretch =

∑|J|
j=1 S Ti j

ω
(3.1)

where ω =
BWupload

AvgVBR
and BWupload is the average upload bandwidth the peers in set J, and AvgVBR

is the average video bit rate of nodes in J.
The Global Delay Stretch is the average stretch factor when i is the video source and J is the

set of leaf nodes. This represents the average difference between play time of the video (which
is streamed from the video source) and the time to play the video if it has to be transmitted
to a leaf node in the tree. The Local Delay Stretch is the average stretch when i is a parent
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and J is the set of its children. This value changes as children are added. A set of peers are
designated as bootstrap peers. A bootstrap peer is the root of a sub-tree, which is associated
with a sub-stream. Each bootstrap peer directly receives its sub-stream from the video source.
Each bootstrap peer keeps for each node i in its subtree the global delay stretch and available
upload time. A newly arrived peer sends a request to the video source for a list of bootstrap
nodes. The new peer randomly selects a bootstrap node and requests a joining point (a peer
node that it may become the child of). If A is the possible set of joining points then the joining
point select is a node that with the addition of the newly arrived peers results in the smallest
local delay stretch and the number of children associated with node i has not exceeded node i’s
limit. If there is no joining point the new peer will continue to contact bootstrap nodes until it
finds a joining point. If no joining point is found, the new peer sends a message to the video
source. The video source creates a new sub-stream.

The number of children that a node i may have is determined by the size of the sub-stream
and the upload bandwidth of the node. The size of node i’s sub-stream is denoted by S i and
is between between S min and S max, where S min is equal to the size of each GOP and S max is
the length of the video stream. We assume that video has a variable bit rate which implies
that S min and S max changes. If BWu

i is the upload bandwidth of peer i in the multi-tree overlay
network, the number of children for peer i in multi-tree is Ci =

BWu
i

S i
where BWu

i
S min
≤ Ci ≤

BWu
i

S max
.

This calculation provides good QoS by not allowing an excessive number of peers to consume
the upload bandwidth. If there are N peers let C be the min(Ci | 0 ≤ i ≤ N − 1).

Assume that the number of sub-streams is h. The number of peers at level 2 (height 2) and
level 3 (height 3) is h×C and h×C ×C respectively. The number of peers of peers at level i is
heighti = h×Ci. The minimal number (worse case) of peers in the tree is calculated as follows:

h∑
i

heighti = h ∗ ×(C + C2 + ... + Ch−1) = h × (
1 −Ch

1 −C
) (3.2)

When a sub-stream is created each peer in the multi-tree is able to accept at least one
more child. The reason for this is that the number of GOPs becomes less. This allows for
accommodation of flash crowds. The child nodes of a bootstrap node are designated as shadow
or backup nodes. The bootstrap peer for the new sub-stream is chosen from a set of backup
peers. When a bootstrap node leaves, a shadow node is chosen to replace it. This mitigates the
effects of peer churn.

3.3.3 Trackers
Tracker peers, which are a subset of peers, are used to discover possible mesh neighbours for
newly arrived peers. To support a node joining a mesh requires the use of tracker peers. Each
tracker maintains a node-handle list and is referred to as a Local Tracker (LT). A node-handle
list maintains information for a set of peers. Each peer in the node-handle list is a distance of
r from the local tracker in the underlay network. The maximum distance between two peers
in the underlay network is assumed to be no more than 2r. The information kept about a peer
includes the peers IP address, availability time, and the bandwidth. When a new peer wants to
join the network, it initiates a LT discovery procedure by sending a request to the video source
that it wants to receive video from, a request for a list of LTs. Upon receiving the list of trackers
from the video source, it sends a ping message to each tracker in the list within a distance r.
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If the peer does not receive a message, it can then conclude that there are no available trackers
within distance r. Therefore, the peer registers itself with the video source as a tracker. If the
peer receives one or more responses to its ping messages, then the peer calculates the underlay
distance between itself and the responding trackers. The requesting peer registers itself with
the nearest tracker and requests a list of the active peers in the LTs node-handle list. Upon
registration, the local tracker adds the registering peer to its node-handle list.

When a peer receives a list of neighbours it selects a set of neighbours for its mesh. This
work uses physical network locality where choices are based on minimizing the traffic between
the peer and selected neighbours. This is done by calculating the amount of traffic for the set of
links, connecting the peer and a possible neighbour. The amount of traffic T(ta,tb) for sampling
time (ta, tb) for each underlay link, i is calculated as follows:

T(ta ,tb) =

∫ tb

ta
linki(t) dt (3.3)

By approximating the average number of links and routers in the underlay network between
two peers it is possible to estimate the average load on those links. To find the average number
of routers between two peers we need to find the shortest path between two random selected
nodes in the graph. The work described in [49] [103] [142] shows that for any graph the
shortest distance is approximately:

d =
ln[(N − 1)(Ẑ2 − Ẑ1) + Ẑ1

2] − ln(Ẑ1
2)

ln(Ẑ2
2
/Ẑ1

2)
(3.4)

where Ẑ1 is the average number of k hop neighbours and N is the total number of vertices in
graph which are considered as routers. Ẑ1 and Ẑ2 are defined as:

Ẑ1 =
[
∑N

x,y=1 Axy]

N
(3.5)

Ẑ2 =
[
∑N

x,y=1,x,y IÂ(x, y)]

N
(3.6)

In above equation the A is the routing adjacency matrix, and Â is equal to A2, and I is define
as:

IÂ(x, y) = {
1, i f Âxy>0
0, otherwise (3.7)

The traffic between two peers A and B is based on the set of links connecting these two
peers.

D =

B∑
i=A

linki (3.8)

Therefore the average traffic on the underlay network is D × T(ta,tb). The lower the value of
D the lower the amount of traffic in underlay network. This allows peers to choose a neighbour
based on the physical locality. Furthermore, peers do not select neighbour peers randomly.
Each peer in the network redirects requests to its neighbours based on the neighbour’s response
to requests. We defined four categories: (1) Those that have a high probability of a hit rate
(meaning a response is returned); (2) those that have the minimum hit probability; (3) those
that miss requests; and (4) those that the request message is not sent. To implement these
scenarios, each peer categorized its neighbours based on the number of hits. Essentially, peers
use their previous experience to direct their requests.
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3.3.4 Buffer-map
A peer’s buffer-map indicates which video chunks currently exist in the player buffer of a
peer. Most buffer-maps consists of a zero or one representing the availability of a frame in
the buffer of the peer. CFC proposes a new type of buffer-map structure to enhance video
quality by reducing the end-to-end delay. This buffer-map includes four types of information:
1) Availability of the frames in the buffer; 2) Size of each frame in the buffer: 3) Estimation of
response time; and 4) Average amount of free upload bandwidth.

By utilizing the buffer-map, peers estimate the time difference between the current time
and the deadline of a chunk which we refer to as the urgent factor. A peer selects one of its
neighbours to request a video chunk based on the urgent factor. We assume that a video chunk
consists of l frames divided into c chunks, and f represents the frame rate of video (frames per
second). Therefore, each chunk has the c

f seconds of video. Moreover, the playback time of
n-th chunk can be computed as (n − 1) l

f . Let S n be the size (measured in kilobytes) of n-th
chunk, and Ti j be the transmission time between two peers i and j, and BWu

i is the upload
bandwidth of peer i. The n-th chunk should be delivered within the amount of time represented
by Ti j + S n

BWu
i
≤ (n − 1) l

f . Equ. 3.9 shows that the average busy time for each neighbour of a
peer.

Tavg =
(1 − γ)Tavg + γT

2
(3.9)

where Tavg is the average response time of that neighbor, γ is a coefficient for controlling
the effect of sudden changes of video rate. This means that when the video bit rate changes
suddenly, the impact of video bit rate change should not affect the Tavg (refers to Equ. 3.9)
[24]. The average response time is depended on the free upload bandwidth capacity of peer’s
neighbors. When video bit rate increases, it consumes more capacity of upload bandwidth of
the peers to respond the video request message, and T is the necessary time to respond to a
request by that neighbor in the last buffer-map exchange. We define T as follows:

T =
S i

BWu
i

+
S j

BWd
j

+ Ti j (3.10)

Where BWd
i is the download bandwidth of peer i.

3.3.5 Incentive Mechanism
Since the quality of video at the peer side is related to its upload rate, it is important to im-
plement an incentive mechanism for live video streaming. Free riders in the P2P networks are
peers that only use services but provide little or nothing in return. Therefore, it is important to
encourage the peers to act as supporters and allocate their upload bandwidth for other channels.

3.3.6 Performance Evaluation
For simulation, OMNeT++.4.1 [138] and the INET framework [169] is used to create a TCP/IP
network. This framework implements UDP, IP, and Data Link Layer in OMNeT++. With
OverSim [21], a framework in OMNeT++ for simulating P2P systems, the P2P overlay net-
work is constructed. It utilizes the INET framework for simulating the underlay layers. In
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general, OverSim prepares a reusable framework that has two main parts; (1) Overlay layer:
for creating neighbor relation and constructing the mesh (tree or structured systems), and (2)
Application layer.

In this simulation, the underlay topology is generated by using the Georgia Tech Internet
Topology Model (GT-ITM) [34] tools for OMNeT++ v.4. This network is a decentralized and
unstructured P2P network with 28 backbone routers, 748 access routers and 2000 peers. Peers
in overlay network randomly select a router and connect to them by selecting random underlay
link with a bandwidth between 128 Kbps to 2 Mbps and delays between 15 ms to 156 ms. In
this simulation, video trace files are used from the Video Trace Library in [156] for streaming
actual video. Table 3.1 shows the simulation parameters. In order to conduct a simulation
that is more similar to the real world we generate the Constant Bit Rate (CBR) in the physical
network. In order to load the network, it was imperative to set CBR background traffic to vary
network load and enable us to study the proposed approach under different conditions. CBR
traffic has been setup from various sources, with a 512 byte packet size. This background traffic
operates during the entire duration of the simulations.

Table 3.1: Simulation Parameters

Simulation Parameters Value
Video Codec MPEG4
Video FPS 25
Number of Frame in GOP 12 Frames
Selected Trace File Star Wars IV
Peer Upload Bandwidth Random(128,2048) Kbps
Peer Download Bandwidth Random(512,2048) Kbps
Average Video Bit Rate 512 Kbps
LifeTimeChurn Weibull Distribution
Physical Link Delay Random(9, 156) ms
Number of Channels 4

For peer churn, two different configurations are considered: (1) LifeTimeChurn. (2) NoChurn.
In LifeTimeChurn configuration, when a peer is created, its life time is set randomly from the
given probability function. When this life time is reached, the peer is removed from the net-
work and a new peer will be generated. In Nochurn configuration, peers will be added until
the target OverlayTerminalNum (the number of peers in the network) is reached and peers do
not leave the network until the end of simulation. The focus on this work is not on scheduling
algorithms and so a simple scheduling algorithm is used, similar to that proposed in [161]. The
proposed framework is compared with View Upload Decoupling (VUD) which represents the
state-of-the-art mechanism for multi-channel P2P systems.

End-to-End Delay

The average end-to-end delay is defined as the average time between transmission and arrival
of data packets from source to destination. The end-to-end delay is impacted by the average
length of paths from the video source to the peers and the network diameter.

In Fig. 3.2, the x-axis is the end-to-end delay and the y-axis represents values of the cumu-
lative distribution function (CDF). A point (x,y) represents that y percentage of peers have an
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average end-to-end delay that is less than or equal to x seconds. For example, in Fig. 3.2, 50%
of the peers have an average end-to-end delay that is less than 7 seconds but in the VUD-like
implementation, 50% of the peers have an average end-to-end delay of less than 10 seconds.
This represents a significant difference in playing time and shows the approach to neighbour
selection (selection is based on physical network locality). It also shows that the incentive
mechanism used by CFC is effective but VUD is not.
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Figure 3.2: Average End-to-End Delay

Playback Delay

Playback delay (start-up latency) in live video streaming is the difference of video timestamps
between starting transmission time in the source node and playing time in the destination peer.
It shows the time taken to fill the player buffer of the peers by considering the startup buffering
time. The value of this metric increases as the size of the network grows. Fig. 3.3 shows similar
results to Fig. 3.2 and thus provides further evidence of the effectiveness of the mechanisms
introduced for CFC that are not found in VUD.

Distortion

Distortion (or video packet miss ratio) is a performance metric which shows the percentage of
video content that is lost compared to the original video. Equ. 3.11 shows how distortion is
calculated. The distortion rate consists of two parts: (1) Packet loss due to loss in the underlay
links; and (2) Loss from frame play timeout. Fig. 3.4 provides further evidence that the
mechanisms introduced for CFC are effective.

Distortion =
(Total Size of Received Frames) × 100

Total Size of Requested Frames
(3.11)
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Figure 3.3: Average Playback Delay
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Figure 3.4: Average Distortion

Link Stress

Link stress [123] measures the number of replicated video packets that enter an autonomous
system (AS) until all peers in that AS receive those packets. The lowest value is 1 which means



20 Chapter 3. Handling Flash Crowd in P2P Multi-Channel Live Video Streaming

that only one packet enters into an AS, and all peers in that AS receive that packet. The max-
imum number of link stress is N which is the number of peers in the AS. As Fig. 3.5 shows,
redundant traffic can be safely reduced by considering the underlay hop count in neighbour
selection. In CFC, peers select their neighbours by using dual-mode locality awareness, and
implicitly considering the underlay distance between themselves and other peers in the net-
work. As a result, they establish the connection with those peers with shorter distance in the
underlay. It is known that peers in the same AS have shorter distances in underlay network.
Therefore, neighbour selection inside the AS, instead of across AS, can reduce the link stress.
It is noticeable that time is a critical factor for live video streaming. Therefore, video frames
should be delivered to the destination before their playback time.

Figure 3.5: Average Link Stress

Stretch

A lower stretch results in a better query time and reduces unnecessary bandwidth consumption
[123]. Fig. 3.6 shows that the CFC reduces the stretch factor in the P2P network since it
considers the stretch factor in selecting is neighbours for the mesh. This allows for a reduction
in both the number of underlay and overlay hop counts.

3.4 Reducing Bandwidth Consumption
Extended Coping Flash Crowd (ECFC) integrates network coding technology with sub-streaming
to reduce bandwidth consumption [132]. The evaluation consists of extensive simulation stud-
ies that compare the proposed framework with View-Upload-Decoupling (VUD). VUD is com-
monly used as a comparison for multi-channel systems. Many mechanisms have been proposed



3.4. Reducing Bandwidth Consumption 21

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

0.5

1

1.5

2

2.5

3

Number of Peers

S
tr

e
tc

h

Average Stretch

 

 

CFC−Framework

VUD−Like

Figure 3.6: Average Stretch

in the literature and used in P2P streaming networks (e.g., [186][187][188][112]). This work
includes handling flash crowds but most of the work assumes the use of a central management
node. To see the problems with the use of a central management node, consider a scenario such
as a hockey or soccer game where fans want to share their video. In this scenario the identi-
fication of a single management node that is persistent through the game may be difficult to
identify. Load balancing techniques are often inadequate since peers are not always motivated
to act as a supporter for other channels (intra-channel and cross-channel bandwidth allocation).
To more efficiently use bandwidth, network coding was introduced [196].

3.4.1 Live Video Deployment Using Network Coding
Assume that a peer wants to send a stream of video to its neighbours. To increase the through-
put, the peer first divides a video stream into n different chunks. The peers can then exchange
their chunks among their neighbours. Since a peer downloads pieces of the video from its
neighbours simultaneously, the time for a peer to recover all n chunks of the packets is poten-
tially much shorter than that of downloading the file from only a single peer. Figure 3.7 shows
the concept of network coding [132] in the framework.

Figure 3.8 shows how each peer in the framework utilizes the power of network coding
technology to push sub-streams which are in its buffer to its neighbours. S 1, S 2, S 3, . . ., S n

are the input sub-streams to the peer’s buffer. In this case, by using network coding technique
each peer [132] encodes output sub-streams as a linear combination of the input sub-streams.
In particular, assume that ai, and bi are new packets by linearly combining 4 chunks found in
buffer of peers A and B respectively. Therefore, ai =

∑4
j=1 f a

i jc j, bi =
∑5

i=2 f b
i jc j, where f a

i j and
f b
i j are random elements belonging to a finite field FQ [131], and c1, c2, c3, c4, ... are the video

chunks in the peers buffer-map of A and B. Assume that peers A and B are the neighbours
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Figure 3.7: General Network Coding Technology [43]

of peer C. Peer C downloads a1 = f a
11c1 + f a

12c2 + f a
13c3 and a2 = f A

21c1 + f a
22c2 + f a

23c3 from
A and b1 = f a

12c2 + f a13c3 + f a14c4 and b2 = f b
22c2 + f b

23c3 + f b
24c4 from B. Peer C will be

able to reconstruct c1, c2, c3, c4 if f a
i j and f b

i j are known. Also, information about f a
i j and f b

i j can
be included in the data packets. The number of bits required to specify f a

i j and f b
i jare nlog(q)

where n is the number of original packets while q is the size of the finite field. If m >> n then
these bits are negligible. Therefore, for most practical purposes, this network coding scheme
can speed up the download time. However, in this type of network coding some of the packets
received at a peer may be duplicate, and thus resulting in wasteful bandwidth.

Assume that the overlay network is a graph of vertexes and edges. Each vertex in this
graph is a representation of a peer in the network and each edge represents the connection
between neighbours. If node A has c incoming edges {e1, e2, .., ec} and one of the outgoing
edges is e, then the edge function of edge e in a linear network coding scheme can be denoted
by a vector Vei = { f ei

i j }. The message on edge e is generated by the linear function Me =

f e1
1 j Me1 + f e2

2 j Me2 + f e3
3 j Me3 + ...+ f ec

c j Mec , where Mei represents the message transmitted on edge
ei [47] [182].

In this framework, if a source has capacity k, the source can transmit sub-streams k simul-
taneously. If the k sub-streams are represented by a k dimensional vector M, the messages
transmitted over edge e can be represented by the product of vector M and another k dimen-
sional vector V

′

e. Vector V
′

e is called the edge vector of edge e. Therefore, the source generates
the sub-stream and uses network coding to push or (multicast) the sub-stream. The construction
of the multi-tree is discussed in great detail in [22].
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Figure 3.8: Integration of the Sub-streaming and Network Coding Technology

3.4.2 Performance Evaluation for ECFC

This section discusses the simulation results after incorporating network coding.

End-to-End Delay

In Fig. 3.9, the x-axis represents the average end-to-end delay and the y-axis represents values
of the cumulative distribution function (CDF). A point (x,y) represents that y percentage of
peers that have an average end-to-end delay that is less than or equal to x seconds. For example,
Fig. 3.9 shows that 50% of the peers have an average end-to-end delay that is less than 7
seconds but in the VUD-like implemention we see that 50% of the peers have an average end-
to-end delay of less than 10 seconds. This represents a significant difference in playing time.
This shows that the approach to neighbour selection by CFC is effective compared to VUD.
Fig. 3.9 shows a comparison of the end-to-end delay for CFC and ECFC. In ECFC peers try
to establish a connection in the overlay tree as close as possible to the video source. To do
so, they need to dedicate more resources to the network. This means that if any peer supports
more peers in the network by uploading more video content, it can establish a connection to
the higher levels of the tree. Accordingly, it will obtain the video packets in less time.

The comparison of CFC and ECFC shows the effectiveness of network coding in reducing
the end-to-end delay. The network coding method combines received packets using a simple
XoR operation as depicted in Fig 3.10(b). Peer P3 performs one less transmission using net-
work coding which results in higher network throughput. Peer P3 in Fig 3.10.a needs to send
both packets ”b1” and ”b2”, but in Fig 3.10.b, by using a network coding, peer P3 only sends
one packet (e.g,. b1 ⊕ b2). Accordingly, peers P5 and P6 receive requested packets ”b1” and
”b2” with a lower end-to-end delay. The explanation is that the network coding reduces the
number of relayed packets compared with the absence of network coding.
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Figure 3.9: Average End-to-End Delay

Figure 3.10: Packet forwarding without (a) and with network coding (b)

Average Playback Delay

Fig. 3.11 shows similar results as Fig. 3.9 and thus provides further evidence of the effective-
ness of the mechanisms introduced for ECFC that are not found in VUD.
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Figure 3.11: Average Playback Delay

Distortion

The distortion rate is impacted by the following: (1) Packet loss due to the loss in the underlay
links; and (2) Loss from frame play timeout.
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Figure 3.12: Average Distortion
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3.5 Conclusion
This section summarizes the conclusions for CFC and EFC.

CFC is the first multi-channel P2P live video streaming architecture that considers mech-
anisms for coping with the flash crowd phenomena alongside the load balancing, incentive
mechanisms and traffic localization. Moreover, CFC proposed an incentive mechanism that
encourages peers to share their upload bandwidth between different channels. The perfor-
mance evaluation results demonstrated that CFC can decrease the redundant traffic between
ASs. In CFC, even though peers do not have rich resources, upload and download bandwidth
could also contribute to the system. It can cope the flash crowd phenomena in P2P Network,
and reduce the start-up delay because in live video stream networks, a new comer expected to
watch a video immediately. Some of the critical factors that are considered in CFC design that
help mitigate the flash crowd phenomena include: (i) underlay and overlay load balancing; (ii)
incentive mechanism; (iii) traffic localization.

ECFC is the first multi-channel P2P live video streaming architecture that considers mech-
anisms for coping with the flash crowd phenomena alongside the load balancing, traffic local-
ization and network coding. The performance of the framework was evaluated via extensive
simulations and it was compared to the VUD approach. The results demonstrated that the
redundant traffic between ASs decreases significantly. This provides strong evidence of the
effectiveness of networking coding.



Chapter 4

MC-SkyNet: Mobile-Cloud Dynamic
Partitioning for Mobile Cloud
Applications

Mobile devices have limited resources including short battery life, storage capacity and pro-
cessor performance. This limits the applications that can run on it. A mobile application can be
partitioned so that some parts of the application runs on a cloud. This works well for applica-
tions with relatively little data to be transferred and that do not have a high level of interaction
with the user. High latency is a challenge with applications that have large amounts of data
to be transferred with a high level interactiveness. A cloudlet is a resource-rich computer or
cluster of computers that is connected to the Internet and is available for use by nearby mobile
devices. A mobile application can be partitioned so that part of it runs on the cloudlet. This
work presents the MC-Skynet framework which introduces fine-grained offloading approach
and support for runtime and dynamic partitioning of a mobile application. This is different
from previous approaches, in that MC-Skynet does not only provides dynamic partitioning and
offloading, but is also adaptive to the changes of the state of a cloudlet. It does this by in-
troducing a cloudlet mesh network and self learning decision making module to estimate the
offloading cost.

4.1 Introduction

Mobile device applications either entirely run on mobile devices or computation is split be-
tween the mobile device and a remote service. The remote service provides a well-defined API
that can be used by mobile device applications (e.g., weather applications can use a remote ser-
vice that collects weather data that becomes available through a well-defined API). The remote
service may be hosted on a cloud. Regardless of the network distance between the cloud in-
frastructure and the mobile device, the use of a remote service is well suited for mobile device
applications with relatively little data to be transferred. However, long network distances be-
tween mobile devices and remote services makes this approach unsuitable for applications that
require larger amounts of data to be transferred and/or have a high level of interaction with the
user. This includes mobile video communications (e.g., Skype, Face-Time, Google-Hangout),

27
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gaming applications that require sophisticated rendering, traffic applications and cloud media
analytics that can be used to offer more personalized services. Long network distances result
in high latency that makes it difficult to support real-time and interactive applications. Latency
can be reduced with the use of a cloudlet [164]. A cloudlet is a resource-rich computer or
cluster of computers that is connected to the Internet and is available for use by nearby mobile
devices [154]. Compared to the cloud, the cloudlet would be closer to the access point used by
mobile devices to connect to the backbone.

There are several challenges with making effective use of cloudlets: (i) The nearest cloudlet
in proximity to a mobile device may not have sufficient available computing capacity. In this
MC-Skynet we propose a cloudlet mesh. A cloudlet mesh consists of multiple cloudlets that are
dispersed through the Internet infrastructure and can communicate with each other; (ii) Often
with mobile device applications some of the required computation takes place on the remote
service. The part of computation that takes place on the mobile device at the remote service
is static. The same partitioning strategy is not always suitable for all network conditions and
inputs. For example, when considering a speech recognition application, performance depends
on the size of the input and the type of connectivity to the backbone. If the connectivity to
the backbone is through WiFi then more data can be transferred than if connectivity is through
a cellular network. There is a need for a dynamic offloading strategy that considers the type
of network connectivity and the amount of data being transferred. The amount of data to be
transferred is not always known since this depends on the user.

MC-Skynet presents a dynamic partitioning strategy that considers network conditions and
the amount of data being transferred, shows how a cloudlet mesh can be used, and presents per-
formance results that illustrate the advantages of a dynamic partitioning strategy and a cloudlet
mesh.

The rest of this chapter is organized as follows. In Section 4.2, we survey the literature
related to the principal themes of this MC-Skynet framework. The proposed framework is pre-
sented in Section 4.3 . In Section 4.4, the performance evaluation of the proposed framework
is provided. Finally, Section 4.5 summarizes the results and presents the conclusion and gives
a description of future work respectively.

4.2 Related Work
This section describes some of the representative work in the literature on dynamic partitioning
and offloading of applications [164] [105].

4.2.1 Partitioning
Application partitioning refers to dividing an application such that part of the application runs
on the mobile device and the other part runs on a remote server. Partitioning decisions made
during development refers to as static partitioning. If the partitioning decision is made during
execution it is referred to as dynamic partitioning. Static partitioning has low overhead in that
no time is used in determining a partition. However, static partitioning is not able to guarantee
the best application partition for all possible execution environments. Dynamic partitioning
makes decisions based on run-time conditions. However, this imposes additional overhead
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since it requires run-time profiling [53] [46]. Representative work in dynamic partitioning is
described in the rest of this section.

Cuervo et al [53] propose, MAUI, which allows developers to annotate the methods of an
application that can be offloaded to a remote server. MAUI uses on-line profiling to determine
if future invocations of annotated methods should be offloaded. In making decisions about
offloading MAUI considers the number of CPU cycles that would be reduced if the method
is offloaded (this directly relates to CPU consumption) and the amount of state information to
be transferred to the remote server. The methods that can be offloaded are determined during
development but the decision for offloading is at run-time. CloneCloud [46] is similar to Maui
but developers are not expected to annotate their programs.

Ra et al [139] propose, Odessa, a dynamic partitioning-offloading tool for interactive ap-
plications. Odessa models applications as data flow graphs. Each node represents computation
and an edge between nodes represents a flow of data. At run-time an application profiler de-
termines any performance bottlenecks at any of the nodes or edges. One possible action is to
offload a node that is a bottleneck to a remote server. During run-time it is possible that several
nodes are offloaded.

Qi et al [193] present a genetic algorithm for application partitioning. They argue that
the genetic algorithm is more likely to converge to the global optimal partition. However, the
complexity of genetic algorithm is very high and it takes a long time to come up with optimum
partitions.

Our work differs in that we consider the communication costs between nodes. Our work is
able to calculate communication costs based on run-time behaviour.

4.2.2 Offloading
Dynamic partitioning requires the offloading of tasks to a remote server. Remote execution
incurs some overhead e.g., transfer of input data over the network to the remote server and the
transfer of the results from the remote server to the mobile service. To minimize the overhead
some of the existing work (e.g., [105] [17] [104] [145]) suggest that tasks offloaded should
represent large amounts of execution times. This is not always advantageous because of com-
munication costs associated with the transfer of data between the mobile device and the remote
server. Many methods have been proposed in the literature for making offloading decisions
(e.g., [106] [95]). Typically the developers implicitly assume that the same copy of application
is also installed in the remote server.

On-line profiling and history-based approaches can be used for predicting the offloading
cost based on previous behaviour. Attributes used to determine costs include speed-up factor,
power consumption and available bandwidth. The current load of both mobile device and the
remote server effect the cost of offloading; however, none of the previous efforts considered
this in cost estimation [158].

An example of using on-line profiling for offloading decisions is Spectra [67]. Spectra
focusses on reducing latency and energy consumption by monitoring energy consumption of
local and remote execution. Therefore, when the input data of a task changes, Spectras es-
timations become inaccurate and it requires significant effort from developers. Chroma [18]
tries to improve Spectra by reducing the burden on developers. Chroma, like Spectra, uses a
history-based approach to predict future resource demands. It should be noticed that Spectra
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and Chroma both assume that the application is installed on the surrogates and there is no need
to ship the application code.

Slingshot [172] addresses the latency issue by first trying to use a server accessible by LAN.
If not possible it uses the Internet to connect to a remote service. The higher delay and lower
bandwidth of the Internet slows task offloading to the remote server.

4.3 MC-Skynet Overview

The architectural framework for MC-Skynet is graphically depicted in Figure 4.1. MC-Skynet
provides a framework for making decisions on whether to offload and which computational
components are to be offloaded.

MC-Skynet consists of the following components: An application partitioning module that
computes the set of application components to be offloaded. This component constructs a graph
where each vertex represents application components that are tightly coupled. The prediction
module is used to predict the amount of data to be transferred between two application compo-
nents based on information on the amount of data that has already been transferred The graphs
and the predictions from the prediction module are used by the decision making module to de-
termine the applications to be offloaded and whether offloading should occur. This is described
in more detail in Sections 4.3.1 and 4.3.2. Section 4.3.3 discusses how a mesh of cloudlets is
used.

Figure 4.1: Framework
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4.3.1 Partitioning
This section describes a dynamic partitioning approach that is used to determine the set of
application components that are to be executed on the cloud. This allows the set of application
components that are to be executed on the cloud to change while the application is executing
in response to changes in the network connectivity to the backbone network e.g., a switch
from WiFi to 3G. For determining the partitions of the applications the data flow between
components which depends on the user and changes over time is considered. This is dealt with
by periodically calculating the amount of data sent between application components.

Assume that M is the set of application components. The goal of partitioning is to find sets
PMD = {PMD

i |i = 1, 2, 3, ..., k} and PRS = {PRS
i |i = 1, 2, 3, ..., l} such that PMD∪PRS = M. The set

of application components in PRS is to be offloaded to a cloudlet. Assume that G = (V, E) is an
application graph where V is the set of application components i.e., V=M. Each edge between
vertices, vi and v j, is associated with a weight, wi j. The weights are periodically adjusted during
run-time in fixed intervals of time and represent communication cost.

Weight calculation is based on the predicted amount of data to be transferred. At time t + 1
for each pair of vertices, vi and v j, the predicted amount of data to be transferred, ∗Di j

t+1 is
calculated using Equ. 4.1. The calculation is based on the amount of data transferred in time
slots t and t − 1 and is represented by Di j

t and Di j
t−1 respectively [122][163].

∗Di j
t+1 =

Di j
t × ω

2 + Di j
t−1 × (1 − ω)2

2
(4.1)

There may be large fluctuations in the data transferred. We use a controlling coefficient, ω, to
reduce the impact of sudden changes. This controlling coefficient may be different for different
applications. Applications that are highly time sensitive may have a higher value for ω.

The weight (communication cost) for each pair of application components, i and j, is cal-
culated using Equation 4.2.

wi j =

∗Di j
t+1

Bt+1
(4.2)

where Bt+1 represents the average bandwidth in the time period between t and t + 1 and and wi j

is the calculated communication cost. An estimate of the average bandwidth at time B0 is based
on a technique described in [90] which makes use of a ping message. MC-Skynet determines
the value of B0 at the start of the execution of the application. Values of Bt where t is greater
than zero is calculated as follows: For each data transfer between the mobile device and the
cloudlet, timestamps are associated with the start of the transfer from the sender and the end of
the transfer of the data. The mobile device uses the difference in time to determine how long
it took for the data to arrive. Since the data size is known and the amount of time it took to
transfer the data is also known, it is now possible to estimate the available bandwidth for that
data transfer. The value of Bt+1 is the average of the estimated bandwidth for data transfers that
took place between time t and t + 1.

The partitioning of the set V is based on the edge weights. The weights are used to partition
the graph vertices into disjoint subsets where each subset represent a group of application
components that are to be considered as a single unit. Application components in these units
are either all offloaded or will all remain on the mobile device. Each of the subsets represents
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a multi-node. Let Pi j represents the set of edges on the path from vi and v j. The distance of
locality, Li j, between two vertices vi and v j is defined as the sum of the edge weights of the
edges found in Pi j. If the value of Li j is below some threshold value then the vertices vi and
v j are put in the same set. If any of the vertices in a disjoint set directly depends on a device
driver then that set is said to be device dependent. These sets are used to create a new graph, V ′,
where each vertex corresponds to a disjoint set. For any two vertices Vi and V j an edge exists
in E′ if at least one node in Vi has an edge with a node in V j in E. The new graph constructed
is represented as G′ = (V ′, E′).

Figure 4.2: Regression Tree Structure

The sets, PMD and PRS , are determined using a regression tree that is applied to G′. The
regression tree is a decision tree that uses a tree-like graph or model of decisions and their
possible consequences, including chance event outcomes. It uses a decision tree as a predictive
model which maps observations about a vertex in G to conclusions about the vertex’s target
value. In these tree structures, leaves represent class labels and branches represent conjunctions
of features that lead to those class labels.

Figure 4.2 shows the regression tree which is constructed in the MC-Skynet framework. For
different types of network like 3G, 4G, Wi-Fi, and etc, different regression trees are constructed.
The regression tree partitions the vertices in G′ into two sets: those application components that
interact with the user and those that do not. These sets are further partitioned based on device
dependencies. The last partition is based on the tolerance delay of the application.

4.3.2 Offloading

Section 4.3.1 describes what is involved in making a decision regarding what is to be offloaded.
This section focuses on what is involved in making the decision on whether to offload or not.
The analysis described in this section is carried out when there is a change in network connec-
tivity

We assume that a mobile device is associated with a cloudlet. The cloudlet is chosen based
on its proximity to the mobile device. More information on how a cloudlet is selected is found
in [101]. We assume that the execution time on the remote site (e.g., cloud or cloudlet) can be
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approximated by ETm × λ where ETm and λ represent the execution time on the mobile device
and speed up factor of running the execution time on the cloudlet respectively[163].

The time it takes a result to return to a device from the part of the mobile application that
has been offloaded to a remote site (cloudlet) is denoted by ETc. An approximation of ETc is
represented by Equ. 4.3[163].

ETc ≈ ETm × λ +
Vc + Vr + Vd

BWi
(4.3)

where Vc is the size of the offloaded set (PRS ), Vd represents the size of the data which is
transferred between application partitions PMD and PRS over the network, and Vr is the size of
result in the previous communication between the application components in PMD and PRS . At
time t + 1, for any two components, vi and v j, where vi is in PRS and v j is in PMD, the value
of ∗Di j

t+1 is calculated. The sum of of these values is the value of Vr. We assume that BWi is
the bandwidth available for a network of type i. Between a mobile device and a cloudlet the
different types of network include WiFi and cellular. As can been seen, Equ. 4.3 considers
both computation cost as well as communication costs.

If ETm <
Vc

BWl
, offloading does not improve the performance. The mobile device will decide

to offload if ETm � ETc.
Let BWl represent the end-to-end bandwidth which is large enough for offloading. If the

estimated available bandwidth is less than BWl then offloading is considered worthwhile.
The value of BWl should have the property specified in Equation 4.4. Essentially BWl

should be sufficiently large enough that the transmission of Vc (the size of the tasks to be
offloaded) should be significantly less than the estimated difference between execution all tasks
on the mobile device and execution of some of the tasks in the cloud.

BWl �
Vc

ETm − ETm × λ
(4.4)

4.3.3 Use of a Cloudlet Mesh
The discussion so far assumes a single cloudlet. A cloudlet may have many mobile devices
associated with it. A cloudlet could become overloaded. We take advantage of nearby cloudlets
which create a mesh network that uses Peer-to-Peer (P2P) protocols. The use of a mesh of
cloudlets reduces the cost of utilizing the cloud, avoids the long latency introduced by wide-
area networks for accessing the cloud, and localizes the Internet traffic and thus reduces the
cost for the Internet Service Providers. By using the mesh of cloudlets we have a large amount
of computational resources in the neighbourhood of end-users. This means that if the cloudlets
to which the end-user is connected is busy or it does not have sufficient resources, it could
redirect the request to its neighbours in the cloudlet mesh.

The introduction of a cloudlet mesh results in two types of offloading decisions. The first
type of offloading occurs when a decision is made to offload application components to a
cloudlet. The second type of offloading decisions occurs when a cloudlet becomes overloaded
and requires the components of an application to be offloaded to another cloudlet. In the
cloudlet mesh, the cloudlets exchange their availability of spares resources with each other
periodically. Assume that cloudlet A wants to offload something to one of its neighbours. It
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first finds the neighbour which has more available resources (assume find cloudlet B). It then
sends a message to cloudlet B and reserves the resources of the cloudlet B for next time slot
and after receiving an acknowledgement, it transmits the components to cloudlet B.

By utilizing the cloudlet mesh, mobile application service providers are be able to provide
better services to mobile users by adapting their deployment services regarding with user mo-
bility that might cause service degradation. Moreover, different types of networks such as 3G,
Wi-Fi, and LTE have different feature and bandwidth. Also, user mobility causes network dis-
connection which causes more energy consumption and delay. Therefore, mobility of mobile
devices should be taken into consideration for making offloading decision.

MC-Skynet either runs on the mobile devices or cloudlet. Since MC-Skynet needs to mon-
itor the different parameters such as network bandwidth, resource consumption on the mobile
devices, it needs to run on the mobile device. It also runs on cloudlets since cloudlets must also
make offloading decisions. MC-Skynet dose not consider the battery and energy consumption
for mobile devices into consideration. All the decision making regarding with partitioning and
offloading takes place at the nearby ckoudlet.

4.4 Performance Evaluation

MC-Skynet proposes an estimation of communication and offloading costs as part of the de-
cision making related to application partitioning and offloading. For measuring the offloading
cost, MC-Skynet considers communication traffic, the size of data being transferred and exe-
cution time. The advantage of using a cloudlet mesh is that, it could localize the traffic and
accordingly reduce Internet backbone traffic and the response time.

4.4.1 Simulation Setup

For simulation, OMNeT++.4.1 [138] and the INET framework [169] is used to create a TCP/IP
network. This framework implements UDP, IP, and Data Link Layer in OMNeT++. With
OverSim [21], a framework in OMNeT++ for simulating P2P overlay systems, we construct
the P2P overlay network. It utilizes the INET framework for simulating the underlay layers. In
our simulation, the underlay topology is generated by using Georgia Tech Internet Topology
Model (GT-ITM) [34] tools for OMNeT++ v.4. In this simulation, the underlay network has 28
backbone routers and 748 access routers. In order to have a simulation which is more similar
to the real world we generate the Variable Bit Rate (VBR) in the physical network. The VBR
traffic has been setup from different sources to different destinations with packet sizes between
64 to 512 bytes. We simulate changes in connectivity by randomly changing the background
traffic generated. Low connectivity is associated with high amounts of background traffic.

The simulation scenario is as follows. In this simulation there are muliple players in an on-
line game. This on-line game has a computational part and a live video streaming part. For the
computational part each player finds the matrix inverse of a matrix A. The matrix A is a buffer-
map. Buffer-maps are exchanged among players periodically. Each player calculates A−1 and
sends it to other players. After each player receives A−1, the player computes A and then it is
able to sends back the request message for receiving some parts of video. We compare different
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scenarios: (1) players directly connect to a server inside the cloud; (2) players use a cloudlet
mesh; and (3) each player connects to a cloudlet. Table 4.1 shows the simulation parameters.

Table 4.1: Simulation Parameters

Simulation Parameters Value
Video Codec MPEG4
Video FPS 25
Number of Frame in GOP 12 Frames
Selected Trace File Star Wars IV
Mobile-user Upload Bandwidth Random(128,2048) Kbps
Mobile-user Download Bandwidth Random(512,2048) Kbps
Average Video Bit Rate 512 Kbps
Physical Link Delay Random(9, 156) ms

In our simulation we design a processing unit for the mobile devices, cloudlets and the
cloud. We model each processing unit as a M/M/1 queue. This model represents Qi =

{Qi|1, 2, 3, ...,K} which is a M/M/1 queue, where the first M represents the arrival rate, the
second M represents the service rate and the 1 indicates that there is only one service unit in
the system. Assume that Ci = {1, 2, 3, ..., n} is the set of application components.

If the γ is the arrival rate and the µ is the service rate of resource R, then the throughput
of r is ρ =

γ

µ
. The expected queue length is E[ql] =

ρ

1−ρ and the expected average total time
(queuing time plus service time) is E[Tc] =

ρ

γ(1−ρ) , where E[Tc] is the total accomplish time.
Also, the average waiting time is E[Tw] = E[Tc] − 1

µ
where 1

µ
is the service time. Thereby, we

could measure the execution time of each application component on the mobile device or on
the cloudlet or the cloud.

4.4.2 Evaluation

Response Time

The average response time is defined as the average time between transmission and arrival of
data packets from source to destination. In fig. 4.3 the x-axis is the response time and the y-axis
represents values of the cumulative distribution function (CDF). A point (x,y) represents that y
percentage of peers have an average end-to-end delay that is less than or equal to x seconds. For
example, in fig. 4.3 we see that 50% of the mobile users have an average response time that is
less than 1.5 seconds. This does represent a significant difference in playing time. Accordingly,
we conclude hat the approach to utilize the cloudlet mesh and localizing the computations is
effective.

Average Computation Cost

The average computation cost is defined as the time which is needed to accomplish the compu-
tation part in the simulation. In the other words, it shows the average time for calculation the
matrix inverse of the buffer-map. Fig. 4.4 shows the performance comparison of running an ap-
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Figure 4.3: Average Response Time

plication stand-alone on the mobile device versus three different scenario for remote execution
to servers that are successively further away.
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Figure 4.4: Average Execution Time

Distortion

Distortion (or video packet miss ratio) is a performance metric that represents the percentage of
video content which is lost compared to the original video. Equ. 4.5 shows how we calculate
distortion. The distortion rate consists of two parts: (1) Packet loss due to the loss in the
underlay links; and (2) Loss from frame play time-out. Since the underlay network is the
same for the all systems, the loss due to the physical link is the same for all algorithms in the
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framework. Fig. 4.5 provides further evidence that the mechanisms introduced for MC-Skynet
are effective.

Distortion =
(Total Size of Received Frames) × 100

Total Size of Requested Frames
(4.5)
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Figure 4.5: Average Distortion

Throughput

Assume that the Ci j is the communication cost (time). In the application graph it represents
the weight on the edge. Let CPi be the computation cost (time) which is representative of
the weight in the vertex in the application graph. Therefore, the throughput is calculated as
follows:

T P =
1

max{max(CPi),max(Ci j)}
(4.6)

On the other hand, throughput means the number of data input data the data flow is able to
process per second.

Estimating the Time Constraint

In the mobile devices side it is necessary to estimate the last possible time which result has to
get back to the mobile device. Let xi be the observed end-to-end bandwidth and the yi is the
predication end-to-end bandwidth and H is the number of observation and predication during
the application execution. By calculating the Mean Square Error (MSE) we could compute the
End-to-End Square Prediction Error (ESPE) during the executing time (refer to Equ.4.7).

ES PE =
1
Z

H∑
i=1

(xi − yi)2 (4.7)
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By approximating the average number of links and routers in the underlay network between
two points it is possible to estimate the average delay between those points. In MC-Skynet
cloudlets are able to estimate the delay between each other in the clouldlet mesh network. To
find the average number of routers between two cloudlets we need to find the shortest path
between two random selected nodes in the graph. The work described in [49] [103] shows that
for any graph the shortest distance is approximately:

d =
ln[(N − 1)(Ẑ2 − Ẑ1) + Ẑ1

2
] − ln(Ẑ1

2
)

ln(Ẑ2
2
/Ẑ1

2
)

(4.8)

where Ẑ1 is the average number of k hop neighbours and N is the total number of vertices in
graph which are considered as routers. Ẑ1 and Ẑ2 are defined as:

Ẑ1 =
[
∑N

x,y=1 Axy]

N
(4.9)

Ẑ2 =
[
∑N

x,y=1,x,y IÂ(x, y)]

N
(4.10)

In above equation the A is the routing adjacency matrix, and Â is equal to A2, and I is define
as:

IÂ(x, y) = {
1, i f Âxy>0
0, otherwise (4.11)

From what we discuss above we see that the cloudlet mesh is able to localize the traffic and
as a result the communication time could be reduced. Moreover, cloudlet mesh by finding the
path between two cloudlets inside the mesh which has a minimum hop distance (d in Equ. 3.4)
is able to reduce the communication time.
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4.5 Conclusion
MC-Skynet presents a dynamic partitioning strategy that considers network conditions and the
amount of data being transferred, shows how a cloudlet mesh can be used, and presents per-
formance results that illustrate the advantages of a dynamic offloading strategy and a cloudlet
mesh.



Chapter 5

Related Work on Data Stream Processing

This chapter presents background information and a comprehensive description of work related
to data streams, geo-referenced data streams and continuous queries.

This chapter is organized as follows: Section 5.1 discusses the related work on data stream
processing and addresses the challenges. In Section 5.2, related work on management systems
for geo-streaming applications is explained. Section 5.3 discusses query operator placement
related work. Last, section 5.4, explains the gap introduced by the current architecture for data
stream processing.

5.1 Data Streaming Processing

Data Stream Management Systems or data stream processing has received considerable re-
search attention. This section describes data stream management systems and specific data
stream platforms.

The key difference between a classical Database Management System (DBMS) and a Data
Stream Management System (DSMS) is the data stream model [6]. A traditional database
query executes once and returns tuples reflecting the current state of the tables. A tuple is
defined as a data item embedded in a data stream and can be processed by a processing unit
[55]. With data streams, data elements arrive on-line and stay only for a limited time period in
memory [75]. Consequently, the DSMS has to handle the data elements before it runs out of
memory. Also, the order in which the data elements arrive cannot be controlled by the system.
Unlike one-time queries to regular databases, continuous queries continuously deliver results
to an output stream. A continuous query is terminated either explicitly by the system or by a
termination condition in the query. Since continuous streams may not terminate, intermediate
results of continuous queries are often generated over a predefined window and then either
stored, updated, or used to generate a new data stream of intermediate results.

Examples of DSMS include the following: Aurora [36], Telegraph[37], Gigascope [52],
Nile [83], STREAM[11], Borealis [2], HiFi [70], IrisNet [73], Cougar [29], Apache S4 [130],
T-Storm [190], C-MR [15], ESC [155], Apache Storm [1] and Tribeca [173]. The remainder
of this section reviews the main data stream processing systems.

40
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5.1.1 Classification of stream processing systems
As Fig.5.1 illustrates, stream processing systems can be classified based on three criteria [147]:

• The first criterion is concerned with the topology of a continuous query within a DSMS:

– Workflow-based: A workflow-based system is based on a step-by-step execution
model. Basically, in workflow-based systems, a query (set of operators) is turned
into a workflow (set of nodes in specific order).

– MapReduced-based: A MapReduce system uses a MapReduce paradigm to mas-
sively parallelize query processing.

– Hybrid approach.

• The second criterion is concerned with a window incremental processing mechanism
(time-based window) or there is support for window batch processing mechanisms (tuple-
based window).

• The third criterion is concerned with whether the DSMS is centralized or distributed.

DSMS

Batch 
Window

Incremental
Window

Batch 
Window

Incremental
Window

Incremental
Window

Workflow-based MapReduce-based Hybird

Centralized Distributed Centralized Distributed Centralized Distributed Distributed Distributed
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Figure 5.1: Data Stream Management Systems classification [147]

5.1.2 Representative Data Stream Processing Platforms
• STREAM: STREAM is Stanford’s DSMS project that introduces a language specif-

ically for querying stream. This is the continuous query language (CQL) which is an
evolution of the SQL language by adding sliding window operators [11]. The idea is to
represent streams by means of relations. Basically, the authors propose that the relevant
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portion of the incoming stream that is queried is maintained like a relation. This allows
the data to be queried by using traditional DBMSs queries. Finally, the resulting rela-
tional data is converted to a stream of tuples. STREAM constructs tree-shaped query
plans. STREAM is focused on effectively processing data streams with bursty arrival
rates. Basically, when the input rate is high, the system approximates query results after
shedding some data. However, it does not support sharing across multiple queries.

• Aurora: Aurora [36], developed by Brown University and MIT, is a distributed stream
processing network structure. Initially, Aurora was designed as a single site stream pro-
cessing engine. Later, the Aurora functionality was combined with the Medusa [201]
system to achieve distributed processing. In Aurora, a stream is modelled as a sequence
of time-stamped tuples [5]. Aurora provides some processing in the neighbourhood of
the data sources instead of transferring the generated raw data from data sources to a
centralized processing environment such as a cloud. This approach can increase the effi-
ciency of using of processing and network resources.

• TelegraphCQ: TelegraphCQ [37] is a continuous query processing system developed
by the University of Berkeley. Operators, in TelegraphCQ, are called dataflow modules
(TelegraphCQ nodes). TelegraphCQ nodes are assigned to different machines. A node, in
TelegraphCQ, can receive several input data streams to be processed. The query engine
of Telegraph is called Eddies.

• Borealis: Borealis [2] is a distributed stream processing system and is based on the data
stream processing model of Aurora and Medusa. Borealis added the ability to modify
queries during runtime [2].

• IrisNet: The IrisNet [73] provides an infrastructure that allows data consumers to ac-
cess data from distributed sensors. IrisNet consists of a sensor agent nodes, and orga-
nizational agent nodes. Sensor agents are the nodes that provides an interface to collect
data from sensors. Organizational agents are the nodes that provide distributed databases
for storing observations from sensor agents.

• Cougar: Cougar [29] is a project from Cornell. Cougar is used for querying sensor
networks. The objective of Cougar is to combine live data from a sensor network with
required stored data by using using continuous queries.

• NiagaraCQ: NiagaraCQ [38] focuses on running continuous queries over XML data.
The query language for XML data is called XML-QL.

• Apache Storm: Apache Storm [1] is a real-time stream processing framework built by
Twitter. There are three main modules in an Apache Storm cluster: (i) Nimbus compo-
nent; (ii) Supervisor component; (iii) ZooKeeper component.

• Apache S4: The Simple Scalable Streaming System (S4) [130] was developed by Ya-
hoo. S4 is a distributed real-time stream processing system. S4 forms a network of
processing elements. The processing elements are assigned to distributed processing
nodes and processing nodes accept data streams.
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5.2 Geo-Stream Management System (GSMS)

Continuing development in sensor technology makes it easier to gather geo-referenced data in
real-time. Geo-referenced data streams are data streams with geographical (location) informa-
tion [16][26]. Geo-referenced data streams are often generated by millions of users and devices
[160][126][150][133] [92].

Many applications require the results of geo-streaming data to be timely. For example, a
weather warning system watches special weather conditions and issues weather warnings (such
as flood or tornado warnings). People can be notified of warnings via text messages [92]. For
example, people within a certain distance of an evacuation area can be notified by text message.

5.2.1 Real-time Sensor Data Stream

A sensor data stream is a time series of sensor measurements which represents a tuple with
a following schema si =< ts, lsi , v1, v2, .., vn > where ts and lsi represent the time-stamp and
location of generated tuple by a sensor node si [133].

There may be a large number of sensor nodes within a geographic region which may result
in sensor streams being spatially dense. The sensors can generate data at a high frequency.
For example, the deployment of sensors in a city could vary between 200 to 20k sensors
[133][126][150] and sample rates could vary between two seconds to every 10 minutes.

Due to the nature of the sensor networks, geo-sensor networks can be composed of streams
from different devices which introduces varying accuracy that needs to be accounted for in
analysis [129][167][74][99].

Real-time analysis of geo-referenced streams introduces new challenges. For example,
analysis of geo-sensor data streams includes looking for patterns in the raw data, cross-correlating
raw streams with other sensor streams, historic data and/or model predictions, and aggregating
and summarizing raw sensor data. The following are requirements for designing a system for
analyzing saptio- tempoeral streams of data in real-time [124].

• Supporting huge volume of raw sensor streams analysis: A data management system
should be capable of providing efficient support for real-time queries over very large
amounts of sensor data streams and be able to keep up with incoming data.

• Integration with traditional data: Since understanding, analyzing and interpreting cur-
rent data is often performed through correlation with historic and/or model data, data
management tools should provide seamless data representation and query capabilities
between real-time sensor streams and historic and model data.

5.2.2 Sensor Data Stream Management Systems

In the following section, we introduce some of current data management approaches to support
analysis of real-time sensor data streams.
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Hadoop-GIS

Hadoop/GIS (geographic information systems) [57] tools are useful for spatial analysis of col-
lected and stored data. Some tools such as [10][26] use Hadoop/GIS to integrate large stored
data with the processing of real-time data [10][26].

Spatial and Spatio-Temporal Database Systems

Spatial-temporal database systems are widely used today [102]. These systems use data types
to describe spatial data streams. A spatio-temporal database system uses database concepts
for both space and time information [133]. Spatial-temporal systems are candidates for ap-
plications with sensor data streams that generate low volume of data [133] [113]. However,
spatial-temporal database systems do not support continuous queries [69] and they are not de-
signed for real time streaming applications.

5.3 Query Operator Placement

Distributed data stream processing systems (e.g., Borealis [2], Medusa [201], and IrisNet [73]),
support applications with real-time processing requirements [4]. These data stream processing
systems do this by pushing data streaming operators (query operators) away from a centralized
processing point such as a cloud to try to reduce the communication network traffic. Pushing
query operators into the network and away from a centralized processing node is known as
query operator placement. A data streaming operator (query operator) is a function which
is used to process an input data stream and produce output results [83][157]. Each operator
has at least one input stream and one output stream. Typically these operators can take one
or more input streams and produce one or more output streams. There is a body of work
(e.g., [83][157][120][177][80]) that describes semantics for these operators. The basic data
streaming operators are map, join, aggregate, filter and union.

The query operator placement problem is NP-hard. Several heuristics have been proposed.
Several query operator placement approaches have been proposed in the literature (e.g., [175]
[202] [191] [91] [93] [136] [144][168][60] [30]).

Huang et al. [93] model the relationship between the query operator execution time and
an amount of remaining computing capacity on a resource node. They proposed a heuristic
placement method to minimize the network usage. Pietzuch et al. [136] and Rizou et al. [144]
proposed a decentralized placement algorithm to minimize network usage. Eidenbenz et al.
[60] analysed the placement problem for a subset of distributed stream processing application.

The primary approach to minimize overall cost would be to place operators as close as
possible to the data sources. However, data sources (e.g., sensors) are likely to have limited
processing and storage capabilities. Previous work on operator placement problems for dis-
tributed query processing includes [175][35][144][136][93][167][117][63][118]. Some previ-
ous work (e.g., [117]) focuses on placement of aggregation operators, and does not consider
filter operators or join operators.
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5.4 Gap Analysis
This chapter presented the data stream processing systems and query operator distribution.
The main problem that was addressed in this thesis was how to find the best point inside the
network for placement of continuous query operators. In other words, we try to detect the
distributed computational resources for hosting and executing the operator of the IoT applica-
tion. The problems addressed in this thesis have been studied in the literature in the context of
specific individual stream-based applications. For example, in the literature, distributed stream
processing systems (e.g., [2][201][94][39][73]) show that moving query operators into the net-
work (closer to the data sources) reduces the overhead in terms of latency and bandwidth
consumption. Although, query operator placement is critical to improve the performance of
data stream processing systems, the query operator placement is not addressed by current data
stream processing systems [135] [136] [87][51][35].



Chapter 6

Query Operator Problem Formulation

This work looks to find the best point for placement of stream processing operator(s) to meet
the requirements of real-time stream-based applications. A set of stream operators that are
placed in a specific order to analyse the flow of data is known as a query graph. The flow of
data can either come directly from a data source (e.g. sensor) or after one or more operators
have been applied to the data from the data source. On the one hand, placing query operator(s)
on computing nodes close to the network edge reduces transmission costs. On the other hand,
placing query operators closer to computing resources at the network edge could result in high
costs due to limited processing resources. The goal is to properly balance these opposing
effects to minimize overall cost.

This chapter is organized as following: Section 6.1 reviews the impact of using fog platform
on IoT application. Section 6.2 defines the query graph by using set notations and explains
the query graph properties. Section 6.4 gives an analytical model for query graph operator
placement by considering computational cost and communication cost. Section 6.3 discuses
the motivation IoT application scenarios and query graph that are used for the motivation IoT
application.

6.1 Reviewing the Impact of Using Fog Platform on IoT Ap-
plications

There is considerable work [72] [41] [174] [56] [125] [97] [127] [119] that describes the chal-
lenges in deploying IoT applications through the use of relying only on a cloud. These include
satisfying QoS requirements which may be difficult to satisfy due to latency between IoT de-
vices and the cloud and the high amount of bandwidth that is needed due to the large amount
of data expected to be generated.

Researchers have studied the effectiveness of using the fog node for specific use cases.
Brogi et al [32] proposed that fog nodes can reduce the amount of data sent to the cloud through
filtering the generated data streams and that analytic operations be processed on the fog node.
Hassanalieragh et al [84] proposed the use of a cloudlet for applying an aggregation operation
to sensor data. The result is sent to the cloud. Yue et al [197] associates a cloudlet with
a community where a community consists of users with common interests in specific data
e.g., transportation data. Satyanarayanan et al [152] introduced a multilevel cloudlet hierarchy
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expansion to the basic cloudlet option. There are no experiments that evaluate the effectiveness.
Fesehaye et al [66] studied the impact of cloudlets for mobile applications that included

file editing, video streaming and collaborative chatting. Their experimental results show that
cloudlets outperform clouds provided that the number of hops to the data sources is small. This
work does not consider IoT applications. Experimental work by Mahmud et al [119] suggests
that the effectiveness of using fog nodes is limited by the number of sensors i.e. fog nodes are
effective until the number of sensors produces so much data that it cannot be accommodated by
a fog node and thus must be sent to the cloud. Maier et al [121] shows that a two-level cloudlet
and cloud architecture can provide good response times for applications for heavy traffic loads.
Most of the existing work motives the use of having computing nodes close to the data sources
but there is relatively little work on evaluating the effectiveness of different organization of
multiple fog nodes.

The query operator placement problem has been widely studied in the literature under dif-
ferent modeling assumptions and optimization goals (e.g., [175] [202][191][91][93][136][144]
[168][60]). Since the query operator placement problem is NP-hard, several heuristics have
been proposed [136][51][35].

6.2 Definition of a Query Graph

A query operator is a function which is used to process an input data stream and produce a
result [83][157]. Each query operator has at least one input stream and one output stream.
Data stream operators are categorized as stateless or stateful. Stateless operators process each
input tuple individually and the corresponding output is generated without maintaining any
state. Stateful operators maintain state as they process multiple input tuples in order to produce
the result. For example, aggregate operators are stateful. A filter operator is an example of a
stateless operator. A query for processing a stream of data is represented by a query graph and a
query graph consists of a set of query operators. In the other words, a query receives an input,
applies an operation to produce an output. A query graph is represented by GQ = (VQ, EQ)
where VQ represents a set of queries: q0, q1, q2, . . . , qn−1 . An edge (qi, q j) ∈ EQ means that qi’s
output is an input to q j.

6.3 Example Application Scenarios and Query Graphs

This section presents four application scenarios. Two of the applications require data process-
ing and decision making based on data from local data sources. The other two applications re-
quire geospatial analysis. Geospatial analysis is a process of gathering and analysis of the data
with geographical (location) information [16][26]. In this section we present several applica-
tions an their query graphs. These will be used to illustrate query graphs and in the experiments
presented in chapters 7 and 9.
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6.3.1 Local Congested Highway Notification Scenario
A fog node is assigned to a highway segment. Each fog node periodically receives reports from
each vehicle currently in the segment assigned to the fog node. The fog node uses these reports
to determine if there is congestion on that segment. If there is congestion then the fog node
sends a notification to the vehicles in its segment as well as to the other fog nodes. Figure 6.1
illustrates a query graph that is used for detecting traffic congestion.

• Query Q1 receives a stream of positions reports from vehicles. Query Q1 applies an
operation that returns the segment number from longitude and latitude information from
a position report.

• Query Q2 returns the number of vehicles in a segment within a window of time.

• Query Q3 returns the summation of vehicles’ speed in a segment within a window of
time.

• Query Q4 returns the average of vehicles’ speed in one segment within a window of time.

• Query Q5 takes the average speed of one segment form query Q4 and generates the con-
gestion notification message if the average speed of that segment is less than a threshold
value.

SegSpeedStr

ActivieVehicleSegRel

AvgSegSpeedStr CongestionNotificationStr

S1

Q4

Q2

Q1 Q5

SumVehicleSpeedSegRel

Q3

PosSpeedStr

Figure 6.1: Query Graph for Local Traffic Congestion Notification Scenario

6.3.2 Local Camera Surveillance Scenario
In this scenario the goal is to measure the average crowd size by using cameras. One of the
goals of crowd size measurement is to ensure safety and security in public in the case of emer-
gency evacuations (in the event of fire, natural disaster) [143]. For example, in the event of an
emergency such as a fire we require an estimate of crowd size to provide a reasonable estimate
of people for emergency evacuations and evacuation path planning. Camera video streams can
be used to determine the crowd size. Periodically a camera sends a tuple of data to a fog node
or a cloud. Each tuple consist of a timestamp, camera location information as identified by
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longitude and latitude, camera identifier, and a sequence of video frames taken over a specific
period of time. A fog node is assigned to a street intersection. A fog node accepts connections
from more than one camera but each camera only connects to one fog node. Each intersection
can have one or more cameras. Figure 6.2 illustrates a query graph that is used for measurement
of crowd size.

• Query Q1 receives stream of video from camera(s) for an intersection. Query Q1 applies
an operation that returns I frames corresponding to an intersection.

• Query Q2 returns the list of camera(s) for an intersection over a window of time.

• Query Q3 measures the number of people for an intersection over a window of time by
analysing the stream of I frames for an intersection over a window of time. Query Q3

receives the stream of I frames from query Q1.

• Query Q4 calculates the average crowd size of people.

PeoplePerIntersection

AvgCrowdSizeStr

ActiveCameras

Q4

Q2

Q3

CameraStr
Camera_IFrame

Q1

Figure 6.2: Local Camera Crowd Size Scenario Query Graph

6.3.3 Regional Congestion Traffic Notification

Each vehicle has a sensor that periodically emits a position report that identifies the vehicle’s
location [12]. The position reports can be used to determine if there is congestion. If there
is congestion then vehicles can be notified so that the driver can reroute. Re-routing requires
information from multiple areas since traffic congestion can occur over multiple areas. The
approach we take is based on calculating traffic congestion for a segment of a highway. Traffic
is calculated for larger areas based on segment traffic. Segments can be determined based on
the longitude and latitude found in the position report. Traffic congestion for a segment is based
on the calculation of the average speed over a window of time. The average speed of a region
consists of the average speed of vehicles of all segments in that region. When congestion is
detected in a region then a congestion notification message is sent to vehicles to re-route. Fog
nodes provide an alternative route to the vehicles. Figure 6.3 illustrates a query graph that is
used for detecting traffic congestion.
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• Query Q1 receives a stream of positions reports from vehicles. Query Q1 applies an
operation that returns the segment number from longitude and latitude information from
the position report.

• Query Q2 returns the number of vehicles in a segment within a window of time.

• Query Q3 returns the summation of vehicles’ speed in a segment within a window of
time.

• Query Q4 returns the average of vehicles’ speed in one segment within a window of time.

• Query Q5 returns the number of active segments of highways that an aggregation needs
to be done for.

• Query Q6 takes the average speed of multiple segment form query Q4 and generates the
congestion notification message if the average speed of the multiple segments is less than
a threshold value. Query Q6 obtains the list of multiple segments from query Q5.

• Query Q7 generates congestion notification if the average speed for the multiple segments
is less that a certain speed.

SegSpeedStr
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Figure 6.3: Query Graph for Traffic Congestion Notification Scenario

6.3.4 Regional Camera Crowd Size Measurement Scenario Results
In this scenario the goal is to measure the average crowd size of people by using cameras
in a region. Video streams from multiple cameras can be used to determine the crowd size
of people in a region. Cameras send a tuple of data to a fog node or a cloud periodically.
Each tuple consist of a timestamp, camera location information as identified by longitude and
latitude, camera identifier, and a sequence of video frames taken over a specific period of
time. An intersection represents the minimal unit for which crowd size of people is calculated.
Intersections can be determined based on the longitude and latitude found in the tuple sent
by the cameras. Each intersection is associated with a camera. A region includes multiple
intersections. A region has boundaries that can be represented in terms of longitudes and
latitudes [88]. Figure 6.4 illustrates a query graph that is used for measurement of crowd size.
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• Query Q1 receives stream of video from camera(s) for an intersection. Query Q1 applies
an operation that returns I frames corresponding to an intersection.

• Query Q2 returns the list of camera(s) for each intersection over a window of time.

• Query Q3 measures the number of people for an intersection over a window of time by
analysing the stream of I frames for an intersection over a window of time. Query Q4

receives the stream of I frames from query Q1.

• Query Q4 calculates the average crowd size.

• Query Q5 returns the list of intersections in a region.

• Query Q6 calculates the average number of people for the intersections in a region over
a window of time.
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Figure 6.4: Camera Crowd Size Scenario Query Graph

6.4 Query Plan Embedding
A guest graph is a query graph that represented by Gguest = (Vguest, Eguest) and a host graph
is a distributed processing environment consisting of fog nodes that is represented by Ghost =

(Vhost, Ehost) where Ehost = {(u, v, d)} where d is the underlay path distance in terms of underlay
hops between u and v for u, v ∈ Vhost and d is calculated by using Equ.4.8. The embedding of
a given guest graph into a host graph is defined by an injective function M : Gguest → Ghost

[27]. The mapping function M assigns to each edge (u, v) ∈ Eguest a path in Ghost. Embedding
a given guest graph into a host graph can be formulated as an optimization problem that has
been shown to be NP-complete [180][71][65].

6.4.1 Embedding Distortion Computation
The distortion (or dilation) of an embedding is defined as the difference in the lengths of the
shortest path between two vertices in the guest graph and the shortest path between these ver-
tices after embedding into the host graph. Let D(u, v) be the distance function, which is the
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shortest path distance between u and v for every pair of vertices u, v ∈ Gguest. The distortion of
the embedding indicate the communication slowdown caused by embedding. The distortion of
an embedding M is calculated as follows [68]:

dM = maxu,v∈Vguest(
D(u, v)

D(M(u),M(v))
) (6.1)

where M(u),M(v) ∈ Ghost. The value of dM is between 0 and 1. For a mapping function M if
dM is closer to 1 then we can conclude that M maps the query operator close to the data source
in terms of underlay hops. For a mapping function M if dM is closer to 0 then we can conclude
that M maps the query operator close to the network core in terms of hops.

6.4.2 Cost of Embedding a Query Graph
The cost calculation for embedding a host query graph is based on the following: (i) the relative
amount of available bandwidth (network traffic) and (ii) the available computational power on
fog nodes. A weighting factor is required to determine which part of the cost function should
be more dominant. The cost of embedding a query graph by using an embedding function M
into the fog nodes is calculated by using Equ 6.2.

min
∑

u,v∈Vguest
e=(u,v)

C(e) (6.2)

where C(e) is the cost function and e ∈ Eguest. C(e) is defined by using Equ 6.3[167].

C(e) =
∑

u,v∈Vguest ,x∈Vhost

(
ψ × Tx + (1 − ψ) ×

∑
e′∈D(M(u),M(v))

Dtx

ω(e′)

)
(6.3)

where D(M(u),M(v)) represents the shortest path between M(u) and M(v) and ω represents
the minimum available amount of bandwidth on the shortest path between M(u) and M(v). A
weight factor ψ has been introduced to determine which part of the cost function should be
more dominant. Dtx is the sum of all data transmitted by each operator running at fog node
x ∈ Vhost and is calculated by using Equ 6.4. Tx represents the amount of time that is required
to process received data at the fog node x and is calculated by using Equ 6.5. Then we select
an embedding, among all possible embeddings, that introduces the smallest distortion factor
(by Equ. 6.1). The calculation of Dtx and Tx is explained [4][107][167][68].

For each fog node x ∈ Vhost, the data transmitted Dtx is the sum of all data transmitted
by each operator hosted on fog node x. The amount of data transmitted from a fog node x is
calculated by Equ. 6.4. Each operator oi (or each query vertex) transmits its output to all of its
children.

Dtx =
∑

{oi:M(oi)=x}

output(oi) × |S i| (6.4)
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where |S i| is the cardinality of the successors for operator oi and output(oi) be the amount of
data generated by oi.

We assume that Ex is the execution power of a fog node x ∈ Vhost. Therefore, the amount of
time that is required to process received data at the fog node x is calculated by using Equ. 6.5.

Tx =
Erx

Ex
(6.5)

where Erx represents the amount of required processing power which is required to process
received data at a fog node x ∈ Vhost. Erx is calculated by using Equ 6.6.

Erx =
∑
oi∈Pi

E(oi) (6.6)

where E(oi) is a function that measures the required processing power for oi.

Impact of Weight Factor ψ in the Cost Function

For embedding a query graph to distributed fog nodes we make the assumption that the dis-
tributed fog nodes that are closer (in terms of physical network hop distance) to the edge of the
network (data sources) have less computational power compared to those closer to the network
core. Also, fog nodes closer to the core of the network have more processing power compared
to fog nodes close to the network edge. For embedding a query graph the cost function which
is represented by Equation 6.3 is considered. We can consider the following embedding based
on the weight factor ψ:

• ψ = 0: In this case the entire query graph is embedded to fog nodes at the edge of the
network. In the other words, the cost function considers the communication cost only.
Considering the query graph for local congestion highway notification scenario. The
query graph includes five query vertices Q1, Q2, Q3, Q4, and Q5. In this case all of Q1,
Q2, Q3, Q4, and Q5 are mapped to fog nodes in the neighborhood of data sources to
minimize cost.

• ψ = 1: In this case the entire query graph is embedded to a cloud. In the other words, the
cost function considers only processing cost. Considering the query graph for the local
congestion highway notification scenario. The query graph includes five query vertices
Q1, Q2, Q3, Q4, and Q5. In this case all of Q1, Q2, Q3, Q4, and Q5 are mapped to a cloud
to minimize the processing cost.

• 0 < ψ < 1: In this case, as the value of ψ approaches 1, the query vertices are mapped
to the fog nodes closer to the network core and as the value of ψ approaches 0 then the
query vertices are mapped to the fog nodes close to the network edge. In other words, the
cost function considers the sum of processing cost and communication cost together. For
the local congestion highway notification scenario the query graph includes five query
vertices Q1, Q2, Q3, Q4, and Q5. In this case Q1, Q2, Q3, Q4, and Q5 are mapped to fog
nodes in such a way to minimize the communication cost.



Chapter 7

Study the Impact of Using Fog Platform
on IoT Applications

This chapter presents the results of experimental studies that compares the use of using one or
more levels of fog nodes for high and low volumes of data. We used the applications described
in Section 6.3.

This chapter is organized as follows: Section 7.1 presents the performance metrics that are
used for evaluation. The experimental environment is described in Section 7.2. Section7.3
presents the results for the local congested highway notification scenario. Section 7.4 presents
the results for local crowd size measurement using camera surveillance. Section 7.5 presents
the results for the regional congestion traffic notification scenario. Section 7.6 presents the
results for the regional camera surveillance scenario.

7.1 Performance Metrics
This section describes the evaluation metrics.
Execution Time. The execution time consists of two components as follows:

• Buffering Time: The buffering time is the amount of time that a tuple is kept in the
buffer of the fog node before it is processed.

• Time to Perform a Task: This is the amount of time that is spent by a processing unit
to perform an analysis on a received stream of data.

End-to-End Delay: The end-to-end delay refers refers to the time taken for a packet to be
transmitted across a network from source to destination [3]. End-to-end delay is also referred
to as network latency.
Response Time: The response time is defined as the time between the generation of a tuple
and the delivery of results of the analysis of the tuple. The response time consists of execution
time and end-to-end delay.
Distortion: Distortion (or tuple miss ratio) is a performance metric that represents the percent-
age of tuples that are lost compared to the total number of generated tuples. The distortion
rate consists of two parts: (1) Tuple loss due to the loss in the communication network (UDP
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protocol was the transportation protocol); and (2) Loss from time-out. Time-out is defined as a
specified period of time that will be allowed to elapse for a tuple to reach the sender.

7.2 Experimental Environment
The experimental environment is a set of networked fog nodes that are organized hierarchically.
Fog nodes closer to the data sources have less computational power compared to those closer to
the network core [194][128]. The number of hops between data sources and a cloud is between
28 to 32 and the number of hops between data sources and fog nodes is between 4 to 6. In this
simulations for level-0 fog nodes the CPU power is 1.7K MIPS, the CPU power for fog nodes
in level 1 is 2.7K MIPS, and the CPU power of the cloud is 48K MIPS [179].

7.3 Results of Local Congested Highway Notification
This section presents the evaluation results for the Local Congested Highway Notification sce-
nario. A position report tuple includes the following attributes: timestamp, longitude info,
latitude info, direction, vehicle identifier, speed, and highway number. The size of the position
report tuple that is able to include these attributes is 210 bytes with average size of an attribute
being 30 bytes [96]. For local congested highway notification all the operators in queries Q1,
Q2, Q3, Q4, and Q5 are being placed in level 0 fog nodes and when using the cloud all the
operators in queries Q1, Q2, Q3, Q4, and Q5 are placed in the cloud.

Table 7.1 shows that increasing the number of fog nodes decreases the execution time as
the number of fog nodes and vehicles increases. From the results in Table 7.1, we conclude
that a sufficient number of fog nodes close to the data sources results in better execution time
than the use of a cloud.

Table 7.1: Average Execution Time

Number of Fog Nodes
#Vehicles

300 Vehicles 600 Vehicles 1500 Vehicles 3000 Vehicles

3 48.753 (s) 311.152 (s) 15731.719(s) 43481.013 (s)
6 22.981 (s) 40.86 (s) 2889.138 (s) 16731.023 (s)
9 15.509 (s) 32.421 (s) 76.911 (s) 7966.051 (s)
12 9.891 (s) 23.031 (s) 55.428 (s) 3065.892 (s)
30 4.330 (s) 9.159 (s) 20.981 (s) 44.043 (s)
60 1.882 (s) 4.102 (s) 10.827 (s) 21.221 (s)
Cloud 3.509 (s) 5.908 (s) 12.199 (s) 24.581 (s)

Table 7.2 shows that as the number of fog nodes increases the end-to-end delay decreases
since fewer tuples are being sent to each fog node.

Table 7.3 shows that a sufficient number of fog nodes close to the data sources results
in better response time than the use of a cloud. Table 7.4 shows that as the number of fog
nodes increases the distortion decreases. Table 7.5 shows the average distortion due to network
latency as the number of fog nodes and vehicles varies. The results reflect the small amount of
data in a position report.

The results shows that increasing the number of fog nodes results in shorter execution times
and less distortion for larger amounts of data.



56 Chapter 7. Study the Impact of Using Fog Platform on IoT Applications

Table 7.2: Average End-to-End Delay

Number of Fog Nodes
#Vehicles

300 Vehicles 600 Vehicles 1500 Vehicles 3000 Vehicles

3 0.00214 (s) 0.00412 (s) 0.01723 (s) 0.10612 (s)
6 0.00164 (s) 0.00217 (s) 0.00536 (s) 0.01173 (s)
9 0.00054 (s) 0.00139 (s) 0.00373 (s) 0.00785 (s)
12 0.00053 (s) 0.00123 (s) 0.00264 (s) 0.00533 (s)
30 0.00021 (s) 0.00044 (s) 0.00103 (s) 0.00215 (s)
60 0.00013 (s) 0.00021 (s) 0.00055 (s) 0.00109 (s)
Cloud 0.03743 (s) 0.08424 (s) 0.19727 (s) 0.39432 (s)

Table 7.3: Average Response Time

Number of Fog Nodes
#Vehicles

300 Vehicles 600 Vehicles 1500 Vehicles 3000 Vehicles

3 48.75514 (s) 311.15612 (s) 15731.73623 (s) 43481.11912 (s)
6 22.98264 (s) 40.86217 (s) 2889.14336 (s) 16731.03473 (s)
9 15.50954 (s) 32.42239 (s) 76.91473 (s) 7966.05885 (s)
12 9.89153 (s) 23.03223 (s) 55.43064 (s) 3065.89733 (s)
30 4.33021 (s) 9.15944 (s) 20.98203 (s) 44.04515 (s)
60 1.88213 (s) 4.10221 (s) 10.82755 (s) 21.22209 (s)
Cloud 3.54643 (s) 5.99224 (s) 12.39627 (s) 24.97532 (s)

Table 7.4: Distortion Due to Buffering

Number of Fog Nodes
#Vehicles

300 Vehicles 600 Vehicles 1500 Vehicles 3000 Vehicles

3 0 % 18.01 % 49.78 % 51.08 %
6 0 % 0 % 45.73 % 47.01 %
9 0 % 0 % 0 % 44.17 %
12 0 % 0 % 0 % 40.18 %
30 0 % 0 % 0 % 0 %
60 0 % 0 % 0 % 0 %
Cloud 0 % 0 % 0 % 0 %

Table 7.5: Distortion Due to Network Latency

Number of Fog Nodes
#Vehicles

300 Vehicles 600 Vehicles 1500 Vehicles 3000 Vehicles

3 0 % 0 % 0 % 0 %
6 0 % 0 % 0 % 0 %
9 0 % 0 % 0 % 0 %
12 0 % 0 % 0 % 0 %
30 0 % 0 % 0 % 0 %
60 0 % 0 % 0 % 0 %
Cloud 0 % 0 % 0 % 0 %

7.4 Results of Local Crowd Size Measurement with Camera
Surveillance

In this section, we show the results for the Local Camera Surveillance Scenario. The number
of cameras, in total, varies as follows: 9, 18, 27, 36, 135, and 180. It was assumed that there are
three areas under camera surveillance. An area is defined using four coordinates where each
coordinate is associated with a longitude and latitude values. An area includes intersections
and there is a camera associated with an intersection. A fog node receives the video stream



7.4. Results of Local Crowd SizeMeasurement with Camera Surveillance 57

and calculates the crowd size by analysing the video frames. The number of fog nodes varies
as follows: 3, 6, 9, 12, 30, 60. The size of a video tuple varies between 190 KB and 204 KB.
Each tuple consists of a timestamp, camera longitude information, camera latitude information,
camera identifier, frame number, I frame, B frame, P frame. The experimental environment is
the same as it was explained in Section 7.2. The amount of required processing power to
process each video chunk is 4500 MIPS [79][140]. Each chunk includes 24 frames. For local
crowd size measurement with camera surveillance all the operators in queries Q1, Q2, Q3, and
Q4 are placed in a level 0 fog nodes when only fog nodes are being used and when only the
cloud is used all the operators in queries Q1, Q2, Q3, and Q4 are placed in the cloud.

The results in Table 7.6 shows that increasing the number of fog nodes results in better
execution time. As the number of fog nodes increases for a larger number of cameras, the
execution time is significantly better than using only the cloud.

Table 7.6: Average Execution Time

Number of Fog Nodes
#Cameras in Total

9 Cameras 18 Cameras 27 Cameras 36 Cameras 135 Cameras 180 Cameras

3 89.081 (s) 1915.554 (s) 3775.503 (s) 7434.134 (s) 25977.594(s) 33480.366(s)
6 59.522 (s) 89.095 (s) 1297.455 (s) 1915.622 (s) 12448.445 (s) 16785.665(s)
9 30.393 (s) 58.996 (s) 88.443 (s) 678.099 (s) 7492.288(s) 10590.233(s)
12 28.124 (s) 58.865 (s) 57.933 (s) 88.385 (s) 5634.838 (s) 7492.342(s)
30 28.083 (s) 28.969 (s) 29.023 (s) 58.328 (s) 1297.633 (s) 1915.421 (s)
60 27.892 (s) 28.043 (s) 28.299 (s) 28.523 (s) 88.955(s) 89.554 (s)
Cloud 9.453 (s) 17.933 (s) 28.303 (s) 37.766 (s) 1176.774(s) 2163.828(s)

Table 7.7 shows that as the number of fog nodes increases the end-to-end delay decreases
when the number of cameras increases.

Table 7.7: Average End-to-End Delay

Number of Fog Nodes
#Cameras in Total

9 Cameras 18 Cameras 27 Cameras 36 Cameras 135 Cameras 180 Cameras

3 0.0431(s) 0.0912 (s) 0.1273 (s) 0.1783 (s) 0.6291(s) 0.8376 (s)
6 0.0131(s) 0.0423 (s) 0.0705 (s) 0.0852 (s) 0.3367(s) 0.4278(s)
9 0.0130(s) 0.0285 (s) 0.0412 (s) 0.0541 (s) 0.2096(s) 0.2785(s)
12 0.0128(s) 0.0284 (s) 0.0285 (s) 0.0426 (s) 0.1593(s) 0.1992(s)
30 0.0127(s) 0.0129 (s) 0.0129 (s) 0.0285(s) 0.0705 (s) 0.0843(s)
60 0.0127(s) 0.0128(s) 0.0129 (s) 0.0127 (s) 0.0418 (s) 0.0416(s)
Cloud 0.4635 (s) 0.8272 (s) 1.3865 (s) 1.8418 (s) 6.9233(s) 9.2412(s)

Table 7.8 shows that increasing the number of fog nodes decreases the average response
time as the number of fog nodes and vehicles increase and the average response time is signif-
icantly less than the use of the cloud.

Table 7.9 shows that as the number of fog nodes increases the distortion decreases. Table
7.9 also shows that increasing the number of fog nodes results in a smaller distortion than
relying only on a cloud for larger number of cameras.
Table 7.10 shows a significant difference for distortion due to network latency between using
only the cloud and a set of fog nodes for a large number of cameras.

Overall the results show that relying only on the use of a cloud can be bottleneck for a large
number of cameras. The results show that increasing the number of fog nodes results in shorter
execution times. Although most of the reduction is due to decreasing the response time by
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Table 7.8: Average Response Time

Number of Fog Nodes
#Cameras in Total

9 Cameras 18 Cameras 27 Cameras 36 Cameras 135 Cameras 180 Cameras

3 89.1241 (s) 1915.6452 (s) 3775.6303 (s) 7434.3123 (s) 25978.2231(s) 33481.2036(s)
6 59.5351 (s) 89.1373 (s) 1297.5255 (s) 1915.7072 (s) 12448.7817 (s) 16786.0928(s)
9 30.406 (s) 59.0245 (s) 88.4842 (s) 678.1531 (s) 7492.4976(s) 10590.5115(s)
12 28.1368 (s) 58.8934 (s) 57.9615 (s) 88.4276 (s) 5634.9973 (s) 7492.5412(s)
30 28.0957 (s) 28.9819 (s) 29.0359 (s) 58.3565 (s) 1297.7035 (s) 1915.5053 (s)
60 27.9047 (s) 28.0558 (s) 28.3119 (s) 28.5357 (s) 88.9968(s) 89.5956 (s)
Cloud 9.9165 (s) 18.7602 (s) 29.6895 (s) 39.6078 (s) 1183.6973(s) 2173.0692(s)

Table 7.9: Average Distortion Due to Buffering

Number of Fog Nodes
#Cameras in Total

9 Cameras 18 Cameras 27 Cameras 36 Cameras 135 Cameras 180 Cameras

3 44.94 % 49.76 % 49.88 % 49.93 % 49.98 % 50.19 %
6 34.74 % 44.24 % 49.69 % 49.76 % 49.31 % 49.97 %
9 33.72 % 42.37 % 44.94 % 47.33 % 48.92% 48.95%
12 33.15 % 42.21 % 42.37 % 44.94 % 48.53 % 48.84%
30 30.88 % 33.14 % 34.72 % 42.37% 47.65 % 47.96%
60 29.94 % 29.92 % 29.84 % 29.93 % 44.19% 44.89%
Cloud 2.35 % 26.11 % 34.6 % 37.22 % 49.12 % 49.32%

Table 7.10: Average Distortion Due to Network Latency

Number of Fog Nodes
#Cameras in Total

9 Cameras 18 Cameras 27 Cameras 36 Cameras 135 Cameras 180 Cameras

3 24.66 % 37.5 % 41.65 % 43.56 % 48.33 % 48.75 %
6 0 % 25.02 % 35.17 % 37.56 % 46.87 % 47.5 %
9 0 % 13.11 % 25.77 % 30.55 % 45.66% 46.11%
12 0 % 12.88 % 13.74 % 25.76 % 43.35% 45.33%
30 0% 0 % 0 % 13.01% 35.71% 37.55 %
60 0% 0 % 0 % 0% 25.68% 25.75%
Cloud 47.23 % 48.8 % 49.26 % 49.34% 49.84% 49.85 %

increasing the number of fog nodes, we also see that for a high number of cameras the network
latency is also much smaller due to much less data being transferred to the cloud.

7.5 Results of Regional Congestion Traffic Notification
This section presents the evaluation results for Regional Congested Highway Notification. This
section first describes the experimental configuration while later this Section presents the re-
sults.

7.5.1 Experimental Configurations
The following configurations of fog nodes were used in the experiments.

Configuration 1 assumes only the use of the cloud. Configuration 2 uses a Cloud and level
0 fog nodes. In configuration 2 each level 0 fog node measures the average speed for vehicles
currently in the segment assigned to the fog node with results sent to the cloud. The cloud
measures the average speed and identifies traffic congestion in a region by using information
received from fog nodes in level 0. The cloud determines if the segment is inside the region by
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comparing the longitudes and latitudes of segment and the region boundaries. Configurations
3, 4, 5, and 6 use two levels of fog nodes. Level-0 fog nodes directly receive data from data
sources while level-1 fog nodes receive data from level-0 fog nodes. Each level-1 fog node
measures the average speed for vehicles currently in the segment assigned to the fog node and
sends results to a fog node in level 1. Each level 1 fog node measures the average speed for
a larger region by using information received from fog nodes in level 0 in order to identify
multiple segment traffic congestion. The difference between configurations 3, 4, 5, and 6 are
the number of level-1 fog nodes. Configuration 3 has one level-1 fog nodes, configuration 4
has two level-1 fog nodes, configuration 5 has 3 level 1 fog nodes, and configuration 6 has 10
level-1 fog nodes.

The number of fog nodes in level 0 for each segment of a highway varies as follows: 2, 4,
10, 20, 50, 60, 80. There is one cloud. The number of vehicles for each level-0 fog node varies
as follows: 25, 50, 75, 100, 125, 150, 200, 250, 375 , 500, 750, and 1000. Therefore, the total
number of vehicles for each segment varies as follows: 500, 1000, 1500, and 2000.

For configuration 1 all the operators in queries Q1, Q2, Q3, Q4, Q5, Q6, and Q7 are placed
in a cloud. For configuration 2 the query operators in queries Q1, Q2, Q3, and Q4 are mapped
to level 0 fog nodes and the query operators in queries Q5, Q6, Q7 are mapped to a cloud. For
configurations 3, 4, 5, and 6 the query operators in queries Q1, Q2, Q3, and Q4 are mapped
to level 0 fog nodes and the query operators in queries Q5, Q6, Q7 are mapped to level 1 fog
nodes.

Table 7.11: Maximum Mapping Distortion for Congested Highway Notification Scenario

Config # mapping distortion
Config 1 0.08
Config 2 0.08

Config 3,4,5,6 0.66

7.5.2 Results of Configuration 1, 2, 3, 4, 5, and 6

Table 7.12 shows the results for execution time. Configuration 1 consistently outperforms all
configurations (2,3,4,5, and 6) when the number of level 0 fog nodes is 20 or less. However,
configuration 6 outperforms the use of only the cloud for a higher number of level-0 fog nodes.

The results in Table 7.13 show that the use of only the cloud (configuration 1) has a higher
end-to-end delay than configurations 2,3,4,5, and 6 but this delay represents a small part of
the response time results presented in Table 7.14 which shows that response time has similar
characteristics as execution time.

We conclude that more fog nodes that concurrently analyze data close to the data sources
leads to better response time than relying on the cloud. This is the result of introducing a large
amount of computing power close to the data sources.

Table 7.15 shows the average distortion due to buffering for configurations 1, 2, 3, 4, 5, and
6. Table 7.15 shows that as the number of fog nodes increases the distortion decreases which
improves the quality of service. A data stream tuple is placed in a fog node’s buffer upon its
arrival. The fog node reads from the buffer and processes the tuples. When the number of
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Table 7.12: Average Execution Time-Configuration 1, 2, 3, 4, 5, and 6

Number of Level 0 Fog Nodes Config # 500 vehicles 1000 vehicles 1500 vehicles 2000 vehicles

2 fog nodes
Config 1 8.54 (s) 15.72 (s) 24.63 (s) 32.83 (s)
Config 2 3068.81 (s) 16938.67 (s) 30806.55 (s) 44673.01 (s)
Config 3 3069.33 (s) 16939.21 (s) 30808.64 (s) 44676.64 (s)
Config 4 3069.185 (s) 16938.285 (s) 30808.018 (s) 44674.178 (s)
Config 5 3068.681 (s) 16936.085 (s) 30806.508 (s) 44674.018 (s)
Config 6 3068.01 (s) 16936.35 (s) 30806.77 (s) 44673.78 (s)

4 fog nodes
Config 1 8.54 (s) 15.72 (s) 24.63 (s) 32.83 (s)
Config 2 58.53 (s) 3069.34 (s) 10003.44 (s) 16935.32 (s)
Config 3 60.42 (s) 3070.81 (s) 10004.25 (s) 16940.22 (s)
Config 4 60.075 (s) 3070.075 (s) 10003.573 (s) 16939.037 (s)
Config 5 59.085 (s) 3068.883 (s) 10001.386 (s) 16937.917 (s)
Config 6 58.21 (s) 3067.02 (s) 10001.26(s) 16937.35 (s)

10 fog nodes
Config 1 8.54 (s) 15.72 (s) 24.63 (s) 32.83 (s)
Config 2 22.59 (s) 45.5 (s) 58.11 (s) 292.54 (s)
Config 3 25.41 (s) 48.16 (s) 60.51 (s) 295.91 (s)
Config 4 23.752 (s) 46.252 (s) 58.902 (s) 294.912 (s)
Config 5 22.451 (s) 45.045 (s) 55.465 (s) 292.716 (s)
Config 6 20.61 (s) 42.56 (s) 54.62 (s) 287.69 (s)

20 fog nodes
Config 1 8.54 (s) 15.72 (s) 24.63 (s) 32.83 (s)
Config 2 11.35 (s) 22.33 (s) 34.23 (s) 45.85 (s)
Config 3 17.91 (s) 28.41 (s) 40.54 (s) 52.07 (s)
Config 4 14.895 (s) 25.235 (s) 37.315 (s) 48.335 (s)
Config 5 13.421 (s) 24.472 (s) 36.432 (s) 47.492 (s)
Config 6 10.11 (s) 19.43 (s) 33.49 (s) 42.02 (s)

50 fog nodes
Config 1 8.54 (s) 15.72 (s) 24.63 (s) 32.83 (s)
Config 2 5.58 (s) 10.67 (s) 14.58 (s) 19.53 (s)
Config 3 16.07 (s) 23.34 (s) 27.24 (s) 32.41 (s)
Config 4 11.585 (s) 16.117 (s) 20.755 (s) 25.384 (s)
Config 5 9.255 (s) 13.864 (s) 18.425 (s) 23.601 (s)
Config 6 4.94 (s) 12.03 (s) 16.38 (s) 24.98 (s)

60 fog nodes
Config 1 8.54 (s) 15.72 (s) 24.63 (s) 32.83 (s)
Config 2 5.21 (s) 7.84 (s) 11 (s) 15.66 (s)
Config 3 21.43 (s) 24.76 (s) 28.77 (s) 32.85 (s)
Config 4 12.625 (s) 16.269 (s) 19.926 (s) 24.089 (s)
Config 5 9.825 (s) 13.449 (s) 17.616 (s) 21.789 (s)
Config 6 3.131 (s) 6.93 (s) 10.43 (s) 14.91 (s)

80 fog nodes
Config 1 8.54 (s) 15.72 (s) 24.63 (s) 32.83 (s)
Config 2 4.52 (s) 6.21 (s) 9.54 (s) 12.31 (s)
Config 3 25.31 (s) 28.39 (s) 31.88 (s) 39.01 (s)
Config 4 14.25 (s) 17.001 (s) 19.785 (s) 28.371 (s)
Config 5 9.485 (s) 13.002 (s) 15.915 (s) 24.202 (s)
Config 6 3.01 (s) 5.203 (s) 7.94 (s) 8.65 (s)

fog nodes increases there are fewer vehicles associated with each fog node. Accordingly, the
length of a buffer is shorter and as a results the amount of time a tuple waits in a buffer until it
is processed is smaller.

Table 7.16 shows the average distortion due to network latency for configuration 1, 2, 3,
4, 5 and 6 as the number of fog nodes and vehicles vary. The results show that the distortion
due to network latency is zero. The reason is that in the local congestion highway notification
scenario the generated tuples (position reports) represent a low volume of data.

Overall the results show that increasing the number of level 0 fog nodes results in smaller
response time regardless of the configuration. If there isn’t a high amount of sensor data then
doing all the analysis in the cloud is better.
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Table 7.13: Average End-to-End Delay-Configuration 1, 2, 3, 4, 5,and 6

Number of Level 0 Fog Nodes Config # 500 vehicles 1000 vehicles 1500 vehicles 2000 vehicles

2 fog nodes
Config 1 0.096 (s) 0.283 (s) 0.301 (s) 0.471 (s)
Config 2 0.0087 (s) 0.0167 (s) 0.0247 (s) 0.0327 (s)
Config 3 0.008 (s) 0.016 (s) 0.024 (s) 0.032 (s)
Config 4 0.008 (s) 0.015 (s) 0.023 (s) 0.03 (s)
Config 5 0.0079 (s) 0.015 (s) 0.023 (s) 0.03 (s)
Config 6 0.0078 (s) 0.0148 (s) 0.024 (s) 0.029 (s)

4 fog nodes
Config 1 0.096 (s) 0.283 (s) 0.301 (s) 0.471 (s)
Config 2 0.0095 (s) 0.0095 (s) 0.0135 (s) 0.0135 (s)
Config 3 0.004 (s) 0.008 (s) 0.012 (s) 0.016 (s)
Config 4 0.003 (s) 0.007 (s) 0.012 (s) 0.015 (s)
Config 5 0.0027 (s) 0.0068 (s) 0.0113 (s) 0.0142 (s)
Config 6 0.0025 (s) 0.0061 (s) 0.0109 (s) 0.0117 (s)

10 fog nodes
Config 1 0.096 (s) 0.283 (s) 0.301 (s) 0.471 (s)
Config 2 0.0055 (s) 0.0071 (s) 0.0087 (s) 0.0103 (s)
Config 3 0.0018 (s) 0.0034 (s) 0.005 (s) 0.0066 (s)
Config 4 0.0017 (s) 0.0033 (s) 0.0049 (s) 0.0065 (s)
Config 5 0.00023 (s) 0.00327 (s) 0.00487 (s) 0.00647 (s)
Config 6 0.00011 (s) 0.00202 (s) 0.00299 (s) 0.00401 (s)

20 fog nodes
Config 1 0.096 (s) 0.283 (s) 0.301 (s) 0.471 (s)
Config 2 0.0012 (s) 0.0094 (s) 0.0102 (s) 0.011 (s)
Config 3 0.0012 (s) 0.002 (s) 0.0028 (s) 0.0034 (s)
Config 4 0.001 (s) 0.0018 (s) 0.0026 (s) 0.0034 (s)
Config 5 0.00092 (s) 0.00172 (s) 0.00252 (s) 0.00332 (s)
Config 6 0.00021 (s) 0.00167 (s) 0.00211 (s) 0.00297 (s)

50 fog nodes
Config 1 0.096 (s) 0.283 (s) 0.301 (s) 0.471 (s)
Config 2 0.01982 (s) 0.01714 (s) 0.02046 (s) 0.02078 (s)
Config 3 0.00152 (s) 0.00184 (s) 0.00216 (s) 0.00248 (s)
Config 4 0.00092 (s) 0.00124 (s) 0.0028 (s) 0.00188 (s)
Config 5 0.00072 (s) 0.00104 (s) 0.00136 (s) 0.00168 (s)
Config 6 0.000481 (s) 0.00096 (s) 0.00128 (s) 0.00137 (s)

60 fog nodes
Config 1 0.096 (s) 0.283 (s) 0.301 (s) 0.471 (s)
Config 2 0.02361 (s) 0.0238 (s) 0.024 (s) 0.024216 (s)
Config 3 0.00141 (s) 0.00172 (s) 0.00202 (s) 0.002316 (s)
Config 4 0.00101 (s) 0.0012 (s) 0.0012 (s) 0.001616 (s)
Config 5 0.00071 (s) 0.0009 (s) 0.0011 (s) 0.001316 (s)
Config 6 0.000064 (s) 0.00081 (s) 0.00082 (s) 0.00115 (s)

80 fog nodes
Config 1 0.096 (s) 0.283 (s) 0.301 (s) 0.471 (s)
Config 2 0.03134 (s) 0.0331 (s) 0.03163 (s) 0.03184 (s)
Config 3 0.00214 (s) 0.00288 (s) 0.00243 (s) 0.00264 (s)
Config 4 0.00114 (s) 0.00128 (s) 0.00143 (s) 0.00164 (s)
Config 5 0.00084 (s) 0.00098 (s) 0.00113 (s) 0.00134 (s)
Config 6 0.000059 (s) 0.00062 (s) 0.00079 (s) 0.00109 (s)

7.6 Results of Regional Camera Surveillance Scenario

In this scenario the goal is to measure the crowd size by using cameras. One of the goals
of crowd size measurement is to ensure safety and security in public roadways in the case of
emergency evacuations as the result of a fire or if a natural disaster occurs [143]. Emergency
evacuations require an estimate of crowd size for planning a path for evacuation path planning.
Camera video streams can be used to determine the crowd size. Periodically a camera sends a
tuple of data. Each tuple consist of a timestamp, camera location information as identified by
longitude and latitude, camera identifier, and a sequence of video frames taken over a specific
period of time. An intersection represents the minimal unit for which crowd size is calculated
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Table 7.14: Average Response Time-Configuration 1, 2, 3, 4, 5,and 6

Number of Level 0 Fog Nodes Config # 500 vehicles 1000 vehicles 1500 vehicles 2000 vehicles

2 fog nodes
Config 1 8.636 (s) 16.003 (s) 24.931 (s) 33.301 (s)
Config 2 3068.8187 (s) 16938.6867 (s) 30806.5747 (s) 44673.0427 (s)
Config 3 3069.338 (s) 16939.226 (s) 30808.664 (s) 44676.672 (s)
Config 4 3069.185 (s) 16938.285 (s) 30808.018 (s) 44674.178 (s)
Config 5 3068.6889 (s) 16936.1 (s) 30806.531 (s) 44674.048 (s)
Config 6 3068.0178 (s) 16936.3648 (s) 30806.794 (s) 44673.809 (s)

4 fog nodes
Config 1 8.636 (s) 16.003 (s) 24.931 (s) 33.301 (s)
Config 2 58.5395 (s) 3069.3495 (s) 10003.4535 (s) 16935.3335 (s)
Config 3 60.424 (s) 3070.818 (s) 10004.262 (s) 16940.236 (s)
Config 4 60.075 (s) 3070.075 (s) 10003.573 (s) 16939.037 (s)
Config 5 59.0877 (s) 3068.8898 (s) 10001.3973 (s) 16937.9312 (s)
Config 6 58.2125 (s) 3067.0261 (s) 10001.2709 (s) 16937.3617 (s)

10 fog nodes
Config 1 8.636 (s) 16.003 (s) 24.931 (s) 33.301 (s)
Config 2 22.5955 (s) 45.5071 (s) 58.1187 (s) 292.5503 (s)
Config 3 25.4118 (s) 48.1634 (s) 60.515 (s) 295.9166 (s)
Config 4 23.752 (s) 46.252 (s) 58.902 (s) 294.912 (s)
Config 5 22.4533 (s) 45.04827 (s) 55.46987 (s) 291.42247 (s)
Config 6 20.61011 (s) 42.56202 (s) 54.62299 (s) 287.69401 (s)

20 fog nodes
Config 1 8.636 (s) 16.003 (s) 24.931 (s) 33.301 (s)
Config 2 11.3512 (s) 22.3394 (s) 34.2402 (s) 45.861 (s)
Config 3 17.9112 (s) 28.412 (s) 40.5428 (s) 52.0734 (s)
Config 4 14.895 (s) 25.235 (s) 37.315 (s) 48.335 (s)
Config 5 13.42192 (s) 24.47372 (s) 36.43452 (s) 47.49532 (s)
Config 6 10.11021 (s) 19.43167 (s) 33.49211 (s) 42.02297 (s)

50 fog nodes
Config 1 8.636 (s) 16.003 (s) 24.931 (s) 33.301 (s)
Config 2 5.59982 (s) 10.68714 (s) 14.60046 (s) 19.55078 (s)
Config 3 16.07152 (s) 23.34184 (s) 27.24216 (s) 32.41248 (s)
Config 4 11.585 (s) 16.117 (s) 20.755 (s) 25.384 (s)
Config 5 9.25572 (s) 13.86504 (s) 18.42636 (s) 23.60268 (s)
Config 6 4.940481 (s) 12.03096 (s) 16.38128 (s) 24.98137 (s)

60 fog nodes
Config 1 8.636 (s) 16.003 (s) 24.931 (s) 33.301 (s)
Config 2 5.23361 (s) 7.24148 (s) 11.024 (s) 15.684216 (s)
Config 3 21.43141 (s) 24.76172 (s) 28.7701 (s) 32.852316 (s)
Config 4 12.625 (s) 16.269 (s) 19.926 (s) 24.089 (s)
Config 5 9.82571 (s) 13.4499 (s) 17.6171 (s) 21.790316 (s)
Config 6 3.131064 (s) 6.93081 (s) 10.43082 (s) 14.91115 (s)

80 fog nodes
Config 1 8.636 (s) 16.003 (s) 24.931 (s) 33.301 (s)
Config 2 4.55134 (s) 6.2431 (s) 9.57163 (s) 12.34184 (s)
Config 3 25.31214 (s) 28.39288 (s) 31.88243 (s) 39.01264 (s)
Config 4 14.25 (s) 17.001 (s) 19.785 (s) 28.371 (s)
Config 5 9.48584 (s) 13.00298 (s) 15.91613 (s) 24.20334 (s)
Config 6 3.010059 (s) 5.20362 (s) 7.94079 (s) 8.65109 (s)

[88]. Intersections can be determined based on the longitude and latitude found in the tuple
sent by the cameras. Each intersection is associated with a camera. A region includes multiple
intersections. A region has boundaries that can be represented in terms of longitudes and
latitudes. An area is defined with using four coordinates where each coordinate is associated
with a longitude and latitude values.

For configuration 1 all the operators in queries Q1, Q2, Q3, Q4, Q5, and Q6 are placed in
a cloud. For configuration 2 the query operators in queries Q1, Q2, Q3, and Q5 are mapped to
level 0 fog nodes and the query operators in Q4 and Q6 are mapped to a cloud. For configura-
tions 3, 4, 5, and 6 the query operators in queries Q1, Q2, Q3, and Q5 are mapped to level 0 fog
nodes and the query operators in queries Q4 and Q6 are mapped to level 1 fog nodes.
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Table 7.15: Average Distortion Due to Buffering-Configuration 1, 2, 3, 4, 5,and 6

Number of Level 0 Fog Nodes Config # 500 vehicles 1000 vehicles 1500 vehicles 2000 vehicles

2 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 45.11 (%) 48.94 (%) 49.79 (%) 49.88 (%)
Config 3 44.11 (%) 48.04 (%) 49.22 (%) 49.57 (%)
Config 4 43.13 (%) 46.21 (%) 49.08 (%) 49.11 (%)
Config 5 43.09 (%) 46.13 (%) 48.11 (%) 49.02 (%)
Config 6 43.08 (%) 46.14 (%) 48.12 (%) 49.02 (%)

4 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 45.23 (%) 48.93 (%) 49.75 (%)
Config 3 0 (%) 44 (%) 47.70 (%) 48.24 (%)
Config 4 0 (%) 42.87 (%) 46.37 (%) 46.17 (%)
Config 5 0 (%) 42.71 (%) 46.34 (%) 46.02 (%)
Config 6 0 (%) 41.92 (%) 45.19 (%) 44.82 (%)

10 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

20 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

50 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

60 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

80 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

7.6.1 Experimental Configurations

The experiment configurations for the Regional Camera Surveillance Scenario are the same as
in section 7.5.

The number of level 0 fog nodes varied as follows: 2, 4, 8, 16, 32, 64. All level 0 fog nodes
of a region are assigned to a level 1 fog node. The total number of cameras varies as 8, 16, 32,
64, 128, 256, and 512. In this simulations the fog nodes have the processing power 1700 MIPS
for level 0 and the processing power for fog nodes in level 1 was considered to be 2700 MIPS
[179]. The size of video tuples varies between 190 KB and 204 KB.
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Table 7.16: Average Distortion Due to Network Latency-Configuration 1, 2, 3, 4, 5,and 6

Number of Level 0 Fog Nodes Config # 500 vehicles 1000 vehicles 1500 vehicles 2000 vehicles

2 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

4 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

10 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

20 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

50 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

60 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

80 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%)
Config 6 0 (%) 0 (%) 0 (%) 0 (%)

Table 7.17: Maximum Mapping Distortion for Congested Highway Notification Scenario

Config # mapping distortion
Config 1 0.06
Config 2 0.06

Config 3,4,5,6 0.5

7.6.2 Results for Configuration 1, 2, 3, 4, 5, and 6
From Table 7.18 we make the following observations:

• There is no significant difference for average execution time for a small set of cameras
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in configurations 2, 3, 4, 5, and 6. Configuration 6 has the smallest execution time. In
configurations 2, 3, 4, 5, and 6 level 0 fog nodes perform analysis on video streams and
the results are produced for a level 1 fog node or cloud. Performing analysis on video
streams requires high processing power which level 0 fog nodes perform in configura-
tions 2, 3, 4, 5 and 6. For configurations 3, 4, 5 and 6 the results of video stream analysis
are sent to level 1 fog nodes to measure the crowd size for a region and in configuration 2,
results of video stream analysis is sent to a cloud to measure the crowd size for a region.
In other words, level 1 fog nodes (configurations 3, 4, 5, 6) and cloud (configuration 2)
are responsible for aggregation of results from level 0 fog nodes. Since aggregation is
not computationally intensive, there is no significant difference in the average execution
time for configuration 3, 4 and 5. However, by increasing the number of level 1 fog
nodes, in configuration 6, we achieved lower execution time.

• Table 7.18 shows that the use of a sufficient number of fog nodes at level 0 results in a
shorter execution time than using only the cloud since increasing the level 0 fog nodes
meant that more computational power is introduced close to data sources.

Table 7.19 shows the average end-to-end delay for configurations 1, 2, 3, 4, 5 and 6. The re-
sults in Table 7.19 show that configuration 6 has the lowest end-to-end delay. We observed that
for a small number of cameras end-to-end delay decreases by increasing the number of level 0
fog nodes. The generated video stream by cameras is distributed among level 0 fog nodes and
thus communication networks are not overwhelmed with video stream traffic. However, for a
large number of cameras end-to-end delay decreases by increasing the number of level 0 fog
nodes. The generated data by level 0 fog nodes needs to be transmitted to a level 1 fog node.

Table 7.20 shows the average response time for configurations 1, 2, 3, 4, 5 and 6. Table
7.20 shows that configuration 6 results in a better response time. Also, configuration 6 has the
lowest response time for a large number of cameras. The results show the benefits of placing
computing resource close the data sources when the number of cameras increases.

Table 7.21 shows the average distortion due to buffering for configurations 1, 2, 3, 4, 5 and
6. The results show that increasing the number of fog nodes provides better quality of service.
Table 7.21 shows that as the number of fog nodes increases the distortion decreases. Increasing
the number of fog nodes means more available processing resources close to the data sources.
A data stream tuple (video tuple) is placed in a fog node’s buffer upon its arrival. The fog node
reads from the buffer and processes the tuples. As the number of fog nodes increases there
are fewer cameras associated with each fog node. This means that the buffer is smaller as the
number of level 0 fog nodes increases and thus the amount of time that a tuple waits in the
buffer is smaller.

Table 7.22 shows average distortion as the number of fog nodes and cameras vary. We can
make the following conclusions:

• Table 7.22 shows that by increasing the number of level 0 fog nodes we can better cope
with the network latency for a large number of data sources by increasing the number of
fog nodes. Decreasing in end-to-end delay decreases the average distortion.

• Table 7.22 shows that for a large number of cameras end-to-end delay decreases by
increasing the number of level 0 fog nodes. However, increasing the number of level
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Table 7.18: Average Execution Time-Configuration 1, 2, 3, 4, 5, and 6

# of Level 0 Fog Nodes Config # 8 Cameras 16 Cameras 32 Cameras 64 Cameras 128 Cameras 256 Cameras 512 Cameras

2 fog nodes
Config 1 8.42(s) 17.05 (s) 33.53(s) 62.84(s) 1035.46(s) 3842.37(s) 14985.23 (s)
Config 2 684.63 (s) 3174.26 (s) 8165.73 (s) 18179.53 (s) 38137.24(s) 78141.55 (s) 161751.81 (s)
Config 3 699.91 (s) 3198.23 (s) 8196.42 (s) 18202.33 (s) 38217.72(s) 78231.13 (s) 161938.11 (s)
Config 4 699.522 (s) 3197.452 (s) 8194.868 (s) 18199.166 (s) 38211.512(s) 78218.714 (s) 161911.73 (s)
Config 5 699.108 (s) 3197.11 (s) 8192.416 (s) 18192.043 (s) 38192.218(s) 78173.151 (s) 161808.11 (s)
Config 6 699.05 (s) 3197.03 (s) 8192.5 (s) 18192.33 (s) 38192.104(s) 78173.16 (s) 161808.52 (s)

4 fog nodes
Config 1 8.42(s) 17.05 (s) 33.53(s) 62.84(s) 1035.46(s) 3842.37(s) 14985.23 (s)
Config 2 55.37 (s) 689.74 (s) 3178 (s) 8166 (s) 18182.74 (s) 38134.64(s) 78557.35 (s)
Config 3 59.13 (s) 694.55 (s) 3195.23 (s) 8195.81 (s) 18199.21 (s) 38212.98(s) 79865.12(s)
Config 4 58.936 (s) 694.161 (s) 3194.454 (s) 8194.228 (s) 18196.106 (s) 38206.772 (s) 78705.95 (s)
Config 5 58.742 (s) 693.772 (s) 3193.678 (s) 8192.646 (s) 18193.002 (s) 38200.564 (s) 78693.16 (s)
Config 6 54.2 (s) 681.12 (s) 3181.811 (s) 8187.011 (s) 18180.23 (s) 38182.32 (s) 78581.32 (s)

8 fog nodes
Config 1 8.42(s) 17.05 (s) 33.53(s) 62.84(s) 1035.46(s) 3842.37(s) 14985.23 (s)
Config 2 26.76 (s) 56.46 (s) 686.46 (s) 3172.63 (s) 8162.82 (s) 18182.54 (s) 40001.58 (s)
Config 3 30.42 (s) 59.39 (s) 694.19 (s) 3188.33 (s) 8194.91 (s) 18201.34(s) 40042.94 (s)
Config 4 30.129 (s) 58.808 (s) 693.026 (s) 3186.002 (s) 8190.26 (s) 18192.028(s) 40023.46 (s)
Config 5 30.032 (s) 58.602 (s) 692.638 (s) 3185.162 (s) 8188.702 (s) 18188.924 (s) 40006.63 (s)
Config 6 20.07 (s) 20.37 (s) 679.11 (s) 3122.92 (s) 8131.34 (s) 18126.94 (s) 39016.82 (s)

16 fog nodes
Config 1 8.42(s) 17.05 (s) 33.53(s) 62.84(s) 1035.46(s) 3842.37(s) 14985.23 (s)
Config 2 26.73 (s) 26.84 (s) 55.61 (s) 687.96 (s) 3178.84 (s) 8166.19 (s) 16904.01 (s)
Config 3 29.38 (s) 29.11 (s) 58.83 (s) 689.334 (s) 3196.41(s) 8183.45 (s) 17185.24 (s)
Config 4 28.856 (s) 28.586 (s) 57.79 (s) 687.27 (s) 3192.21(s) 8175.06 (s) 17004.12 (s)
Config 5 28.602 (s) 28.333 (s) 57.278 (s) 686.226 (s) 3190.201(s) 8171.034 (s) 16914.04 (s)
Config 6 17.47 (s) 17.73 (s) 17.81 (s) 661.38(s) 3002.87 (s) 3911.09 (s) 15821.44 (s)

32 fog nodes
Config 1 8.42(s) 17.05 (s) 33.53(s) 62.84(s) 1035.46(s) 3842.37(s) 14985.23 (s)
Config 2 26.25(s) 26.32 (s) 25.98 (s) 56.34 (s) 685.28 (s) 3172.36 6661.956 (s)
Config 3 29.82(s) 29.32 (s) 28.31 (s) 58.42 (s) 687.42(s) 3185.51(s) 7645.224 (s)
Config 4 28.85(s) 28.35 (s) 31.97 (s) 56.48 (s) 683.52(s) 3173.81(s) 6982.382 (s)
Config 5 28.26(s) 27.76 (s) 26.75 (s) 55.32 (s) 681.22(s) 3173.01(s) 6618.719 (s)
Config 6 14.65(s) 14.81 (s) 16.21 (s) 20.82 (s) 648.12 (s) 3068.51 (s) 3815.31 (s)

60 fog nodes
Config 1 8.42(s) 17.05 (s) 33.53(s) 62.84(s) 1035.46(s) 3842.37(s) 14985.23 (s)
Config 2 26.21(s) 25.92 (s) 25.93 (s) 29.37 (s) 61.52 (s) 696.57 (s) 2236.52 (s)
Config 3 27.93(s) 28.31 (s) 27.31 (s) 28.21 (s) 57.92 (s) 688.41 (s) 2301.57 (s)
Config 4 27.18(s) 25.09 (s) 25.82 (s) 26.31 (s) 54.92 (s) 681.32 (s) 2224.13 (s)
Config 5 23.21(s) 24.67 (s) 24.72 (s) 24.28 (s) 50.64 (s) 626.52 (s) 2092.16(s)
Config 6 11.13 (s) 11.56 (s) 12.83 (s) 14.25 (s) 17.97 (s) 511.93 (s) 1937.13 (s)

64 fog nodes
Config 1 8.42(s) 17.05 (s) 33.53(s) 62.84(s) 1035.46(s) 3842.37(s) 14985.23 (s)
Config 2 25.88(s) 25.27 (s) 25.33 (s) 26.14 (s) 55.73 (s) 681.22 (s) 2201.13 (s)
Config 3 28.43(s) 28.89 (s) 28.44 (s) 28.92 (s) 59.71 (s) 691.33 (s) 2313.52 (s)
Config 4 26.4(s) 26.86 (s) 26.41 (s) 26.89 (s) 55.68 (s) 683.21 (s) 2264.43 (s)
Config 5 25.33(s) 25.79 (s) 25.34 (s) 25.82 (s) 53.51 (s) 678.93 (s) 2186.28(s)
Config 6 12.52 (s) 12.77 (s) 13.02 (s) 14.83 (s) 18.7 (s) 572.63 (s) 1386.84 (s)

70 fog nodes
Config 1 8.42(s) 17.05 (s) 33.53(s) 62.84(s) 1035.46(s) 3842.37(s) 14985.23 (s)
Config 2 23.27(s) 23.73 (s) 23.81 (s) 24.09 (s) 51.37 (s) 648.32 (s) 2163.52 (s)
Config 3 29.61(s) 29.29 (s) 29.54 (s) 30.06 (s) 61.11 (s) 694.91 (s) 2324.92 (s)
Config 4 27.34(s) 27.3 (s) 27.64 (s) 28.32 (s) 56.35 (s) 691.64 (s) 2271.40 (s)
Config 5 26.41(s) 26.09 (s) 26.94 (s) 27.14 (s) 55.14 (s) 698.98 (s) 2223.71(s)
Config 6 13.91 (s) 13.08 (s) 13.97 (s) 15.17 (s) 21.83 (s) 772.02 (s) 1517.64 (s)

80 fog nodes
Config 1 8.42(s) 17.05 (s) 33.53(s) 62.84(s) 1035.46(s) 3842.37(s) 14985.23 (s)
Config 2 22.21(s) 23.77 (s) 23.84 (s) 24.39 (s) 48.95 (s) 634.23 (s) 2113.22 (s)
Config 3 28.93(s) 29.41 (s) 29.83 (s) 29.15 (s) 59.51 (s) 692.03 (s) 2321.63 (s)
Config 4 28.02(s) 27.93 (s) 27.55 (s) 28.27 (s) 54.25 (s) 691.44 (s) 2267.53 (s)
Config 5 26.34(s) 25.89 (s) 27.02 (s) 26.02 (s) 54.24 (s) 695.16 (s) 2219.43(s)
Config 6 13.42 (s) 13.11 (s) 13.12 (s) 15.21 (s) 19.62 (s) 768.93 (s) 1509.71 (s)

0 fog nodes will lead to an increase in end-to-end delay and increasing the end-to-end
delay results in an increase of the average distortion due to network latency.

• Table 7.22 shows the average distortion due to network latency for configuration 1, 2, 3,
4, 5 and 6. As Table 7.22 shows the average distortion due to network latency decreases
as the number of level 0 fog nodes increased for a small set of level 0 fog nodes. However
the average distortion due to network latency increases for a large number of level 0 fog
nodes since more data is generated by increasing the level 0 fog nodes. Moreover, there
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Table 7.19: Average End-to-End Delay-Configuration 1, 2, 3, 4, 5, and 6

# of Level 0 Fog Nodes Config # 8 Cameras 16 Cameras 32 Cameras 64 Cameras 128 Cameras 256 Cameras 512 Cameras

2 fog nodes
Config 1 0.5988(s) 1.167 (s) 2.5612(s) 4.7099 (s) 9.1316(s) 19.8418 (s) 44.243 (s)
Config 2 0.0613 (s) 0.1305 (s) 0.266 (s) 0.5328 (s) 1.235(s) 2.229(s) 6.725 (s)
Config 3 0.057 (s) 0.1155 (s) 0.232 (s) 0.4525 (s) 0.966(s) 1.846(s) 4.215 (s)
Config 4 0.0565 (s) 0.1137 (s) 0.228 (s) 0.456 (s) 0.931(s) 1.831(s) 4.206 (s)
Config 5 0.0563 (s) 0.1131 (s) 0.2266 (s) 0.4533 (s) 0.9193(s) 1.8183(s) 4.181 (s)
Config 6 0.0564 (s) 0.113 (s) 0.2264 (s) 0.4531 (s) 0.9195 (s) 1.8184 (s) 4.1808 (s)

4 fog nodes
Config 1 0.5988(s) 1.167 (s) 2.5612(s) 4.7099 (s) 9.1316(s) 19.8418 (s) 44.243 (s)
Config 2 0.0596 (s) 0.0769 (s) 0.1542 (s) 0.3054 (s) 0.6176(s) 1.2363(s) 5.633(s)
Config 3 0.0311 (s) 0.061 (s) 0.117 (s) 0.288 (s) 0.498(s) 0.998 (s) 3.187 (s)
Config 4 0.029 (s) 0.0585 (s) 0.1145 (s) 0.234 (s) 0.468 (s) 0.936 (s) 3.109 (s)
Config 5 0.0286 (s) 0.0576 (s) 0.1136 (s) 0.23 (s) 0.461 (s) 0.922 (s) 3.097 (s)
Config 6 0.0272 (s) 0.0553 (s) 0.111 (s) 0.213 (s) 0.428 (s) 0.909 (s) 3.002 (s)

8 fog nodes
Config 1 0.5988(s) 1.167 (s) 2.5612(s) 4.7099 (s) 9.1316(s) 19.8418 (s) 44.243 (s)
Config 2 0.0564 (s) 0.1117 (s) 0.2261 (s) 0.4528 (s) 0.9024 (s) 1.7051 (s) 5.648 (s)
Config 3 0.022 (s) 0.0451 (s) 0.089 (s) 0.1781 (s) 0.355 (s) 0.7034(s) 2.822 (s)
Config 4 0.0188 (s) 0.036 (s) 0.072 (s) 0.144 (s) 0.281 (s) 0.576(s) 2.673 (s)
Config 5 0.0168 (s) 0.033 (s) 0.067 (s) 0.133 (s) 0.0.262 (s) 0.5341(s) 2.902(s)
Config 6 0.0132 (s) 0.0281 (s) 0.049 (s) 0.125 (s) 0.247 (s) 0.528(s) 2.814(s)

16 fog nodes
Config 1 0.5988(s) 1.167 (s) 2.5612(s) 4.7099 (s) 9.1316(s) 19.8418 (s) 44.243 (s)
Config 2 0.0541 (s) 0.1833 (s) 0.3688(s) 0.7282 (s) 1.4673 (s) 2.8365(s) 8.0417(s)
Config 3 0.0218 (s) 0.045 (s) 0.093 (s) 0.1834 (s) 0.3692 (s) 0.7374(s) 2.872 (s)
Config 4 0.0183 (s) 0.037 (s) 0.067 (s) 0.124 (s) 0.242 (s) 0.4834(s) 2.565 (s)
Config 5 0.0164 (s) 0.024 (s) 0.049 (s) 0.0986 (s) 0.1974 (s) 0.3946(s) 2.4577 (s)
Config 6 0.0123 (s) 0.0212 (s) 0.0453 (s) 0.0939 (s) 0.1927 (s) 0.3911(s) 2.4515 (s)

32 fog nodes
Config 1 0.5988(s) 1.167 (s) 2.5612(s) 4.7099 (s) 9.1316(s) 19.8418 (s) 44.243 (s)
Config 2 0.0558 (s) 0.1853 (s) 0.6924 (s) 2.3926 (s) 2.7764 (s) 5.5442(s) 13.864 (s)
Config 3 0.0206 (s) 0.0458 (s) 0.142(s) 0.5911 (s) 0.7721 (s) 1.1409 (s) 3.2892 (s)
Config 4 0.0186 (s) 0.0322 (s) 0.0786(s) 0.156 (s) 0.312 (s) 0.618 (s) 2.7045(s)
Config 5 0.0163 (s) 0.02456 (s) 0.056 (s) 0.1133 (s) 0.2213 (s) 0.4571 (s) 2.5117 (s)
Config 6 0.0148 (s) 0.0236 (s) 0.0524 (s) 0.108 (s) 0.2201 (s) 0.4482 (s) 2.509 (s)

60 fog nodes
Config 1 0.5988(s) 1.167 (s) 2.5612(s) 4.7099 (s) 9.1316(s) 19.8418 (s) 44.243 (s)
Config 2 0.0558 (s) 0.1852 (s) 0.6895 (s) 2.7452 (s) 5.4847 (s) 11.9716 (s) 15.5221 (s)
Config 3 0.0207 (s) 0.0449 (s) 0.1389 (s) 0.5448 (s) 1.0726 (s) 2.1533 (s) 4.9053 (s)
Config 4 0.0189 (s) 0.0319 (s) 0.0785 (s) 0.2852 (s) 0.569 (s) 0.8874 (s) 4.651 (s)
Config 5 0.0165 (s) 0.0247 (s) 0.0492 (s) 0.1992 (s) 0.3411 (s) 0.6247 (s) 2.6932 (s)
Config 6 0.0149 (s) 0.0231 (s) 0.0526 (s) 0.1961 (s) 0.3917 (s) 0.6241 (s) 3.9816 (s)

64 fog nodes
Config 1 0.5988(s) 1.167 (s) 2.5612(s) 4.7099 (s) 9.1316(s) 19.8418 (s) 44.243 (s)
Config 2 0.0562 (s) 0.1859 (s) 0.6893 (s) 2.7447 (s) 5.4844 (s) 10.9711 (s) 14.726 (s)
Config 3 0.0201 (s) 0.0445 (s) 0.1382 (s) 0.5441 (s) 1.0723 (s) 2.1528 (s) 4.454 (s)
Config 4 0.0184 (s) 0.0311 (s) 0.0781 (s) 0.284 (s) 0.562 (s) 0.886 (s) 3.01 (s)
Config 5 0.0161 (s) 0.02413 (s) 0.0488 (s) 0.1986 (s) 0.393 (s) 0.6241 (s) 2.711 (s)
Config 6 0.0148 (s) 0.0229 (s) 0.0525 (s) 0.195 (s) 0.3911 (s) 0.623 (s) 2.706 (s)

70 fog nodes
Config 1 0.5988(s) 1.167 (s) 2.5612(s) 4.7099 (s) 9.1316(s) 19.8418 (s) 44.243 (s)
Config 2 0.0561 (s) 0.1851 (s) 0.6891 (s) 2.7421 (s) 5.4831 (s) 10.9688 (s) 14.7252 (s)
Config 3 0.0202 (s) 0.0443 (s) 0.1383 (s) 0.5432 (s) 1.0704 (s) 2.1511 (s) 4.4517 (s)
Config 4 0.0181 (s) 0.0324 (s) 0.0782 (s) 0.2831 (s) 0.5614 (s) 0.8828 (s) 2.9021 (s)
Config 5 0.0159 (s) 0.0246 (s) 0.0474 (s) 0.1956 (s) 0.3919 (s) 0.6212 (s) 2.6893 (s)
Config 6 0.0133 (s) 0.0228 (s) 0.0523 (s) 0.1937 (s) 0.3893 (s) 0.6214 (s) 2.6849 (s)

80 fog nodes
Config 1 0.5988(s) 1.167 (s) 2.5612(s) 4.7099 (s) 9.1316(s) 19.8418 (s) 44.243 (s)
Config 2 0.0559 (s) 0.1849 (s) 0.6907 (s) 2.7419 (s) 49809 (s) 8.6327 (s) 12.9802 (s)
Config 3 0.0201 (s) 0.0441 (s) 0.1388 (s) 0.5433 (s) 1.0594 (s) 2.1232 (s) 4.1646 (s)
Config 4 0.0179 (s) 0.0327 (s) 0.0786 (s) 0.2833 (s) 0.5434 (s) 0.8755(s) 2.1943 (s)
Config 5 0.0163 (s) 0.0244 (s) 0.0471 (s) 0.1955 (s) 0.3522 (s) 0.6128 (s) 2.1902 (s)
Config 6 0.0137 (s) 0.0232 (s) 0.0519 (s) 0.1936 (s) 0.3508 (s) 0.6119 (s) 2.1822 (s)

is no significant difference in distortion due to network latency for a large number of
cameras.
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Table 7.20: Average Response Time-Configuration 1, 2, 3, 4, 5, and 6

# of Level 0 Fog Nodes Config # 8 Cameras 16 Cameras 32 Cameras 64 Cameras 128 Cameras 256 Cameras 512 Cameras

2 fog nodes
Config 1 9.018 (s) 18.217 (s) 36.091 (s) 67.549 (s) 1044.591 (s) 3862.211 (s) 15029.473 (s)
Config 2 684.6913 (s) 3174.3905(s) 8165.996 (s) 18180.0628 (s) 38138.475 (s) 78143.779 (s) 161758.535 (s)
Config 3 699.967 (s) 3198.345 (s) 8196.652 (s) 18202.782 (s) 38218.172(s) 78232.976 (s) 161942.325 (s)
Config 4 699.5785 (s) 3197.5657 (s) 8195.096 (s) 18199.622 (s) 38212.443 (s) 78220.545 (s) 161915.936 (s)
Config 5 699.1643 (s) 3197.2231 (s) 8192.6426 (s) 18192.4963 (s) 38193.1373(s) 78174.9693 (s) 161812.291 (s)
Config 6 699.1064 (s) 3197.143 (s) 8192.7264 (s) 18192.7831 (s) 38193.0235 (s) 78174.9784 (s) 161812.7008 (s)

4 fog nodes
Config 1 9.018 (s) 18.217 (s) 36.091 (s) 67.549 (s) 1044.591 (s) 3862.211 (s) 15029.473 (s)
Config 2 55.4296 (s) 689.8169 (s) 3178.1542 (s) 8166.3054 (s) 18183.3576 (s) 38135.8763 (s) 78562.983 (s)
Config 3 59.161 (s) 694.611 (s) 3195.347 (s) 8196.098 (s) 18199.708 (s) 38213.978(s) 79868.307 (s)
Config 4 58.965 (s) 694.2195 (s) 3194.5685 (s) 8194.462 (s) 18196.574 (s) 38207.708 (s) 78709.059 (s)
Config 5 58.7706 (s) 693.8296 (s) 3193.7916 (s) 8192.876 (s) 18193.463 (s) 38201.486 (s) 78696.257(s)
Config 6 54.2272 (s) 681.1753 (s) 3181.922 (s) 8187.224 (s) 18180.658 (s) 38183.229 (s) 78584.322 (s)

8 fog nodes
Config 1 9.018 (s) 18.217 (s) 36.091 (s) 67.549 (s) 1044.591 (s) 3862.211 (s) 15029.473 (s)
Config 2 26.8164 (s) 56.5717 (s) 686.6861 (s) 3173.0828 (s) 8163.7224 (s) 18184.2451 (s) 40007.228 (s)
Config 3 30.442 (s) 59.4351 (s) 694.279 (s) 3188.508 (s) 8195.265 (s) 18202.043(s) 40045.762 (s)
Config 4 30.1478 (s) 58.844 (s) 693.098 (s) 3186.146 (s) 8190.541 (s) 18192.604 (s) 40026.133 (s)
Config 5 30.0488 (s) 58.635 (s) 692.705 (s) 3185.295 (s) 8188.964 (s) 18189.4581 (s) 40009.532 (s)
Config 6 20.0832 (s) 20.3981 (s) 679.159 (s) 3123.045 (s) 8131.587 (s) 18127.468 (s) 39019.634 (s)

16 fog nodes
Config 1 9.018 (s) 18.217 (s) 36.091 (s) 67.549 (s) 1044.591 (s) 3862.211 (s) 15029.473 (s)
Config 2 26.7841 (s) 27.0233 (s) 55.9788 (s) 688.6882 (s) 3180.3073 (s) 8169.0265 (s) 16912.0517 (s)
Config 3 29.401 (s) 29.155 (s) 58.923 (s) 689.513 (s) 3196.779(s) 8184.187 (s) 17188.112 (s)
Config 4 28.8743 (s) 28.623 (s) 57.857 (s) 687.394 (s) 3192.452 (s) 8175.5434 (s) 17006.685 (s)
Config 5 28.6184 (s) 28.357 (s) 57.327 (s) 686.3246 (s) 3190.3984(s) 8171.4286 (s) 16916.4977 (s)
Config 6 17.4823 (s) 17.7512 (s) 17.8553 (s) 661.4739 (s) 3003.0627 (s) 3911.4811 (s) 15823.8915 (s)

32 fog nodes
Config 1 9.018 (s) 18.217 (s) 36.091 (s) 67.549 (s) 1044.591 (s) 3862.211 (s) 15029.473 (s)
Config 2 26.3058 (s) 26.5053 (s) 26.6724 (s) 58.7326 (s) 688.0564 (s) 3177.9042 (s) 6675.82 (s)
Config 3 29.841(s) 29.365 (s) 28.452 (s) 61.711 (s) 687.992(s) 3186.650(s) 7648.5132 (s)
Config 4 28.8686(s) 28.3822 (s) 32.0486 (s) 56.636 (s) 683.832(s) 3174.428(s) 6985.0865 (s)
Config 5 28.2763 (s) 27.78456 (s) 26.806 (s) 55.4333 (s) 681.4413(s) 3173.4671(s) 6621.2307 (s)
Config 6 14.6618 (s) 14.8296 (s) 16.2524 (s) 20.928 (s) 648.3401 (s) 3068.9582 (s) 3817.819 (s)

60 fog nodes
Config 1 9.018 (s) 18.217 (s) 36.091 (s) 67.549 (s) 1044.591 (s) 3862.211 (s) 15029.473 (s)
Config 2 26.2658(s) 26.1052 (s) 26.6195 (s) 32.1152 (s) 67.0047(s) 708.5416(s) 2252.0421 (s)
Config 3 27.9507(s) 28.3549 (s) 27.4489 (s) 28.7548 (s) 58.9926 (s) 690.5633 (s) 2306.4753 (s)
Config 4 27.1989 (s) 25.1219 (s) 25.8985 (s) 26.5952(s) 55.489 (s) 682.2074 (s) 2228.781 (s)
Config 5 23.2265 (s) 24.6947(s) 24.7692(s) 24.479(s) 50.9811 (s) 627.1447 (s) 2094.853 (s)
Config 6 11.1449 (s) 11.5831 (s) 12.8826 (s) 14.4461(s) 18.3617 (s) 512.5541 (s) 1941.1116 (s)

64 fog nodes
Config 1 9.018 (s) 18.217 (s) 36.091 (s) 67.549 (s) 1044.591 (s) 3862.211 (s) 15029.473 (s)
Config 2 25.9362(s) 25.4559 (s) 26.0193 (s) 28.8847 (s) 61.2144 (s) 692.1911 (s) 2215.856 (s)
Config 3 28.450 (s) 28.934 (s) 28.5782 (s) 29.464 (s) 60.782 (s) 693.482 (s) 2317.974 (s)
Config 4 26.4184 (s) 26.8911 (s) 26.4881 (s) 27.174 (s) 56.242 (s) 684.096 (s) 2267.44 (s)
Config 5 25.3461(s) 25.81413 (s) 25.3588 (s) 26.0186 (s) 53.903 (s) 679.5541 (s) 2188.991(s)
Config 6 12.5348 (s) 12.7929 (s) 13.0375 (s) 15.025 (s) 19.0911 (s) 573.253 (s) 1389.546 (s)

70 fog nodes
Config 1 9.018 (s) 18.217 (s) 36.091 (s) 67.549 (s) 1044.591 (s) 3862.211 (s) 15029.473 (s)
Config 2 23.3261(s) 23.9151(s) 24.4991 (s) 26.832 (s) 56.8531 (s) 659.2888 (s) 2178.2452 (s)
Config 3 29.6302(s) 29.3343 (s) 29.6783 (s) 30.6032 (s) 62.1804 (s) 697.0611 (s) 2329.3717 (s)
Config 4 27.3581 (s) 27.3324 (s) 27.7182 (s) 28.6031 (s) 56.9114(s) 692.5228 (s) 2274.3021 (s)
Config 5 26.4259 (s) 26.1146 (s) 26.987 (s) 27.3356 (s) 55.5319 (s) 699.6012 (s) 2226.3993 (s)
Config 6 13.9233 (s) 13.1028 (s) 14.0223 (s) 15.3637 (s) 22.2193 (s) 772.6414 (s) 1520.3249 (s)

80 fog nodes
Config 1 9.018 (s) 18.217 (s) 36.091 (s) 67.549 (s) 1044.591 (s) 3862.211 (s) 15029.473 (s)
Config 2 22.2659(s) 23.9549(s) 24.5307 (s) 24.5307 (s) 49857.95 (s) 642.8627 (s) 2126.2002(s)
Config 3 28.9501(s) 29.4541(s) 29.9688 (s) 29.6933 (s) 60.5694 (s) 694.1532 (s) 2325.7946 (s)
Config 4 28.0379(s) 27.9627 (s) 27.6286 (s) 28.5533 (s) 54.7934 (s) 692.3155(s) 2269.7243(s)
Config 5 26.3563(s) 25.9144 (s) 27.0671(s) 26.2155 (s) 54.5922 (s) 695.7728(s) 2221.6202 (s)
Config 6 13.4337 (s) 13.1332 (s) 13.1719 (s) 15.4036 (s) 19.9708 (s) 769.5419 (s) 1511.8922 (s)
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Table 7.21: Average Distortion Due to Buffering-Configuration 1, 2, 3, 4, 5, and 6

# of Level 0 Fog Nodes Config # 8 Cameras 16 Cameras 32 Cameras 64 Cameras 128 Cameras 256 Cameras 512 Cameras

2 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%) 21.01 (%) 42.32 (%) 97.59 (%)
Config 2 6.14 (%) 40.54 (%) 46.32 (%) 48.34 (%) 49.42 (%) 49.61(%) 49.88 (%)
Config 3 7.08 (%) 40.61 (%) 46.13 (%) 48.35 (%) 49.35(%) 49.61(%) 49.88 (%)
Config 4 7.08 (%) 40.61 (%) 46.33 (%) 48.35 (%) 49.21 (%) 49.61 (%) 49.89(%)
Config 5 7.01 (%) 40.11 (%) 45.69 (%) 47.9 (%) 48.15 (%) 49.21 (%) 49.88 (%)
Config 6 7.01(%) 40.1 (%) 45.69 (%) 47.89 (%) 48.15 (%) 49.19(%) 49.88 (%)

4 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%) 21.01 (%) 42.32 (%) 48.79 (%)
Config 2 0 (%) 6.12 (%) 41.09 (%) 46.29 (%) 48.13 (%) 49.23 (%) 49.77 (%)
Config 3 0 (%) 7.12 (%) 40.21 (%) 46.41 (%) 48.67 (%) 49.11(%) 49.77 (%)
Config 4 0 (%) 6.77 (%) 40.6 (%) 46.01 (%) 48.31 (%) 49.21 (%) 49.77 (%)
Config 5 0 (%) 6.62 (%) 40.42 (%) 45.21 (%) 48.26 (%) 49.01 (%) 49.54 (%)
Config 6 0(%) 6.21 (%) 39.26(%) 44.12(%) 47.82(%) 48.29(%) 49.76 (%)

8 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%) 21.01 (%) 42.32 (%) 48.79 (%)
Config 2 0 (%) 0 (%) 6.09 (%) 40.04 (%) 46.82 (%) 48.94 (%) 49.55 (%)
Config 3 0 (%) 0 (%) 7.07 (%) 40.49 (%) 46.23 (%) 48.21 (%) 49.55 (%)
Config 4 0 (%) 0 (%) 6.64 (%) 40.58 (%) 46.33 (%) 49.17 (%) 49.55 (%)
Config 5 0 (%) 0 (%) 6.31 (%) 39.81 (%) 44.31 (%) 47.39 (%) 49.55(%)
Config 6 0(%) 0 (%) 6.08 (%) 38.47 (%) 41.57 (%) 42.01 (%) 49.53 (%)

16 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%) 21.01 (%) 42.32 (%) 48.79(%)
Config 2 0 (%) 0 (%) 0 (%) 7.01 (%) 40.54 (%) 47.59 (%) 48.93 (%)
Config 3 0 (%) 0 (%) 0 (%) 7.02 (%) 40.58 (%) 46.13 (%) 48.95 (%)
Config 4 0 (%) 0 (%) 0 (%) 6.26 (%) 40.59 (%) 46.32 (%) 48.94 (%)
Config 5 0 (%) 0 (%) 0 (%) 6.13 (%) 38.51 (%) 45.82 (%) 48.94 (%)
Config 6 0(%) 0 (%) 0 (%) 0 (%) 37.56 (%) 43.01(%) 48.86 (%)

32 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%) 21.01 (%) 42.32 (%) 48.79 (%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%) 6.89 (%) 41.09 (%) 47.29 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%) 7.09 (%) 40.52 (%) 47.64 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%) 5.94 (%) 40.54 (%) 47.42 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%) 5.94 (%) 40.54 (%) 47.28 (%)
Config 6 0(%) 0 (%) 0 (%) 0 (%) 4.45(%) 33.26 (%) 45.28 (%)

64 fog nodes
Config 1 0 (%) 0 (%) 0 (%) 0 (%) 21.01 (%) 42.32 (%) 48.79(%)
Config 2 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 6.74 (%) 41.82 (%)
Config 3 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 7.04 (%) 42.1 (%)
Config 4 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 5.75 (%) 42.05 (%)
Config 5 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 5.52 (%) 41.76 (%)
Config 6 0(%) 0 (%) 0(%) 0 (%) 0 (%) 4.13 (%) 27.02 (%)
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Table 7.22: Average Distortion Due to Network Latency-Configuration 1, 2, 3, 4, 5, and 6

# of Level 0 Fog Nodes Config # 8 Cameras 16 Cameras 32 Cameras 64 Cameras 128 Cameras 256 Cameras 512 Cameras

2 fog nodes
Config 1 48.78(%) 49.37 (%) 49.71(%) 49.84 (%) 49.87(%) 49.93(%) 52.03 (%)
Config 2 38.17 (%) 44.44 (%) 47.27 (%) 48.63 (%) 49.41(%) 49.67 50.22 (%)
Config 3 37.41 (%) 43.57 (%) 46.72 (%) 48.06 (%) 49.24 (%) 49.89 (%) 50.32 (%)
Config 4 24.33 (%) 37.24 (%) 43.64 (%) 46.82 (%) 48.44 (%) 49.2 (%) 50.35 (%)
Config 5 24.24 (%) 37.17 (%) 43.6 (%) 46.8 (%) 48.42 (%) 49.2 (%) 50.34 (%)
Config 6 24.34 (%) 37.25 (%) 43.64 (%) 46.82 (%) 48.44 (%) 49.19 (%) 50.34 (%)

4 fog nodes
Config 1 48.78(%) 49.37 (%) 49.71(%) 49.84 (%) 49.87(%) 49.93(%) 52.03 (%)
Config 2 37.83 (%) 40.72 (%) 45.29 (%) 47.62 (%) 48.82 (%) 49.41(%) 50.05 (%)
Config 3 26.52 (%) 38.97 (%) 43.54 (%) 47.22 (%) 48.44(%) 49.21(%) 49.54 (%)
Config 4 0 (%) 25.21 (%) 37.33 (%) 43.8 (%) 46.9(%) 48.45 (%) 49.54 (%)
Config 5 0 (%) 24.82 (%) 37.23 (%) 43.69 (%) 46.85 (%) 48.42 (%) 49.43 (%)
Config 6 0 (%) 24.79 (%) 37.23 (%) 43.66 (%) 46.79 (%) 48.41 (%) 49.22 (%)

8 fog nodes
Config 1 48.78(%) 49.37 (%) 49.71(%) 49.84 (%) 49.87(%) 49.93(%) 52.03 (%)
Config 2 37.14 (%) 43.50 (%) 46.79 (%) 48.39 (%) 49.19 (%) 49.57(%) 50.05 (%)
Config 3 17.83 (%) 33.82 (%) 41.03 (%) 46.94 (%) 47.31 (%) 48.63(%) 49.38 (%)
Config 4 0 (%) 9.72 (%) 29.88 (%) 39.86 (%) 44.83 (%) 47.48 (%) 49.38 (%)
Config 5 0 (%) 6.06 (%) 28.35 (%) 39.09 (%) 44.46 (%) 47.28 (%) 49.41 (%)
Config 6 0 (%) 0 (%) 26.12 (%) 37.56 (%) 43.07 (%) 46.11 (%) 49.42 (%)

16 fog nodes
Config 1 48.78(%) 49.37 (%) 49.71(%) 49.84 (%) 49.87(%) 49.93(%) 52.03 (%)
Config 2 36.59 (%) 46.04 (%) 48.03 (%) 49.11 (%) 49.51(%) 49.74(%) 50.05 (%)
Config 3 16.15 (%) 33.59 (%) 42.42 (%) 46.32 (%) 48.12 (%) 49.04(%) 49.29 (%)
Config 4 0 (%) 10.81 (%) 28.38 (%) 39.93 (%) 44.82 (%) 47.5(%) 49.11 (%)
Config 5 0 (%) 0 (%) 20.4 (%) 35.29 (%) 42.65 (%) 46.32 (%) 49.02 (%)
Config 6 0 (%) 0 (%) 19.92 (%) 35.01 (%) 41.12 (%) 46.23 (%) 48.17 (%)

32 fog nodes
Config 1 48.78(%) 49.37 (%) 49.71(%) 49.84 (%) 49.87(%) 49.93(%) 52.03 (%)
Config 2 37.01 (%) 46.08 (%) 48.95 (%) 49.47 (%) 49.73 (%) 49.86 (%) 51.02 (%)
Config 3 16.72 (%) 33.11 (%) 44.15 (%) 47.05 (%) 48.36(%) 49.17(%) 49.53 (%)
Config 4 0 (%) 4.96 (%) 31.55 (%) 40.7 (%) 45.35 (%) 47.65 (%) 49.27 (%)
Config 5 0 (%) 0 (%) 21.1 (%) 37.2 (%) 43.44 (%) 46.82 (%) 49.19 (%)
Config 6 0 (%) 0 (%) 19.81 (%) 35.11 (%) 42.42 (%) 45.91 (%) 48.02 (%)

64 fog nodes
Config 1 48.78(%) 49.37 (%) 49.71(%) 49.84 (%) 49.87(%) 49.93(%) 52.03 (%)
Config 2 37.09 (%) 46.1 (%) 48.94 (%) 49.73 (%) 49.86 (%) 49.89 (%) 51.61 (%)
Config 3 13.31 (%) 33.49 (%) 44.23 (%) 48.92 (%) 49.52 (%) 49.82(%) 49.41 (%)
Config 4 0 (%) 3.37 (%) 31.44 (%) 44.89 (%) 47.41 (%) 48.42 (%) 49.36 (%)
Config 5 0 (%) 0 (%) 0 (%) 42.69 (%) 46.31 (%) 47.67 (%) 49.31 (%)
Config 6 0 (%) 0 (%) 0 (%) 42.32 (%) 45.22 (%) 47.21 (%) 49.23 (%)
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7.7 Conclusion
The results in this chapter show that the use of a large number of fog nodes placed close to
the data sources provides the parallelism needed to improve response times. The parallelism
is through multiple fog nodes concurrently analyzing a subset of sensor data e.g., camera data,
car data. The applications in Section 7.5 only require the analysis of data from a local area in
order to make decisions. The data analysis can be done by a single fog node. However, other
scenarios require data from an area where the use of one fog node would become a bottleneck.
In this case it is beneficial to have a fog nodes cover a relatively small area representing a
local region. These fog nodes send data to another fog node that does analysis of data sent
by multiple fog nodes. This represents a hierarchical configuration of fog nodes. Section 7.6
showed the advantages of doing so but the results were mixed where the use of a hierarchical
configuration of fog nodes did not always improve performance. The challenge is determining
the placement of query operators among the fog nodes.



Chapter 8

Proposed Embedding Algorithms

The results in Section 7.5 show that the use of a large number of fog nodes placed close to
the data sources provides the parallelism needed to improve response times especially for large
amounts of data. The parallelism is through multiple fog nodes concurrently analyzing a subset
of sensor data e.g., camera data, car data. The applications in Section 7.5 only require the
analysis of data from a local area in order to make decisions. The data analysis can be done
by a single fog node. However, other scenarios require data from an area where the use of
one fog node would become a bottleneck. In this case it is beneficial to have a fog nodes
cover a relatively small area representing a local region. These fog nodes send data to another
fog node that does analysis of data sent by multiple fog nodes. This represents a hierarchical
configuration of fog nodes. Section 7.6 showed the advantages of doing so but the results
were mixed where the use of a hierarchical configuration of fog nodes did not always improve
performance. The challenge is determining the placement of query operators among the fog
nodes.

This chapter is organized as following: Section 8.1 discusses the proposed algorithms for
analyzing query graphs. Section 8.2 presents the proposed mapping algorithms that is used to
find the host fog nodes for query operators.

8.1 Query Graph Reshaping Algorithms
The placement of query operators needs to consider that too much processing on a fog node
may result in the overloading of a fog node but too much distribution typically means more
data transmission which increases network latency. One approach to reducing communication
cost is to place query operators representing non-aggregation operators (e.g. filter operations)
with query operators representing aggregation operators on the same fog node. This allows for
the reduction of data transmission.

8.1.1 Reconfiguration Query Graph Algorithm

Algorithm 8.1 takes as input the original query graph and produces a new graph that combines
non-aggregation operators and aggregation operators. In line 11 a new vertex w is created. The
set F[w] represents the set of query nodes in G (the input query graph) that will be associated
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Figure 8.1: Camera Crows Size Scenario Query Graph

with vertex w. Lines 9 to 14 create the root nodes of Grec and for each root node, w, a root
node in G is assigned to F[w]. The input query graph is traversed in Lines 15-29 using BFS.
For each edge (u, v), if v represents an aggregation operator then a new node,w, is created (line
20), v is assigned to F[w] (line 21), w is added to Vrec (line 22) and an edge representing a
link between the node in Grec that has u and the node in Grec that has v is added to Erec.If v
represents a non-aggregation operator then v will be associated with the same node as u.

Figure 8.1 represents an example input graph and Figure 8.2 represents an example output
graph. More details of the query associated with Figure 8.1 can be found in Section 6.3.4 of
chapter 6.
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Figure 8.2: Reconfigured Query Graph
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Algorithm 8.1 Query Graph Reconfiguration Algorithm
1: INPUT GQ = (V, E) : A Query Graph
2: OUTPUT Grec = (Vrec, Erec): Reconfigured Query Graph
3: F[x] : Each element of F is a node of Grec and represents the set of queries of G associated with the

node.
4: OP(x) : The function returns the operators used in query x
5: ROOT () : Returns the root nodes of a given graph
6: queue : A queue for Breadth-First Search
7: H[x] : H[x] is the node that x in G is associated with in the graph Grec

8: queue = NULL
9: for all u ∈ ROOT (GQ) do

10: queue.Enqueue(u)
11: w = createNode()
12: F[w] = {u}
13: Vrec = Vrec ∪ w
14: end for
15: while queue is not empty do
16: u = queue.DEQUEUE()
17: for all (u, v) ∈ E do
18: queue.Enqueue(v)
19: if OP(v) ∈ AggregateOperators then
20: w = createNode()
21: F[w] = v
22: Vrec = Vrec ∪ {w}
23: Erec = Erec ∪ (H[u],w)
24: else if OP(v) ∈ NonAggregateOperators then
25: H[u] = H[u] ∪ {v}
26: F[H[u]] = F[H[u]] ∪ F[v]
27: end if
28: end for
29: end while
30: Return Grec
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8.1.2 Adjustment of Reconfigured Query Graph Algorithm
In a reconfigured query graph (output of algorithm 8.1) there might be redundant data flow
among query vertices. For example, consider query vertices Q4, and Q5 in Fig. 8.1. Q4, and Q5

are children of the query vertex Q2 and receive the same input data flow from Q2. This causes
redundant flow of data among query vertices. Therefore algorithm 8.2 was proposed which
applies an adjustment to a reconfigured query graph. In Fig. 8.2 vertex Q2 sends the same data
flow to Q4 and Q5. Accordingly algorithm 8.2 is proposed to cope with the aforementioned
problem. Algorithm 8.2 merges children if any vertex of the graph produced in by Algorithm
8.1 of they receive the same data-flow.

The Query Graph Adjustment algorithm reduces the transfer of redundant data flow among
query vertices. Algorithm 8.2 merges aggregate sibling-vertices (any two or more query ver-
tices with a common parent are considered as sibling vertices) that receive the same data flow
from the common parent. A vertex in a query graph can have no parent, one parent, or more
than one parent. The Query Graph Adjustment algorithm uses the following steps to adjust the
given reconfigured query graph.

1. Algorithm 8.2 starts from the root(s) of the reconfigured query graph.

2. At each level of the reconfigured query graph:

(a) If a vertex has more than one child then algorithm 8.2 determines the children.

(b) If there is no vertex with more than one child then algorithm 8.2 goes to the next
level in the reconfigured query graph.

3. For those vertices with more than one child, the Query Graph Adjustment algorithm
determines the type of input data flow to each child. If there are two or more children
that receive the same type of data flow then the children are merged together.

In line 12 a new vertex w is created. The set F[w] represents the set of query nodes that will
be associated with vertex w. Lines 10 to 15 create the root nodes of Gad j and for each root node,
w, a root node in Grec is assigned to F[w]. The input reconfigured query graph is traversed in
Lines 16-49 using BFS. In lines 18 to 23 if vertex u has more than one child then the children
of u is added to the queue and Vtemp to determine the existence of the data flow redundancy
among children of vertex u. In a query graph an edge between two vertices represents a data
flow. In lines 30 to 42 the algorithm identifies the siblings that receive the same data flow from
their parent and merges them.

Figure 8.3 presents the output of of applying algorithm 8.2 to the graph shown in Figure
8.2.
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Algorithm 8.2 Query Graph Adjustment Algorithm
1: INPUT G = (V, E): Original Query Graph
2: INPUT Grec = (Vrec, Erec): A Reconfigured Query Graph
3: OUTPUT Gad j = (Vad j, Ead j): Adjustment Query Graph
4: Fad j[x] : Each element of Fad j is a node of Gad j and represents the set of queries of Grec associated with the

node.
5: S ubVer(x) : The function returns the sub-vertices in vertex x
6: ROOT () : Returns the root nodes of a given graph
7: queue : A queue for Breadth-First Search
8: Had j[x] : Had j[x] is the set of node(s) that x in Grec is associated with in the graph Gad j

9: queue = NULL
10: for all u ∈ ROOT (Grec) do
11: queue.Enqueue(u)
12: w = createNode()
13: Fad j[w] = {u}
14: Vad j = Vad j ∪ w
15: end for
16: while queue is not empty do
17: u = queue.DEQUEUE()
18: if #Children(u) > 1 then
19: Vtemp = NULL
20: for all (u, v) ∈ Erec do
21: queue.ENQUEUE(v)
22: Vtemp = Vtemp ∪ v
23: end for
24: q = queue.DEQUEUE()
25: Vtemp = Vtemp ∪ (Children(q))
26: w = createNode()
27: Fad j[w] = {q}
28: Vad j = Vad j ∪ {w}
29: Ead j = Ead j ∪ (H[u],w)
30: for all p ∈ Vtemp do
31: if p , q then
32: for all x ∈ S ubVer(u) do
33: if (∃y ∈ S ubVer(q) | (x, y) ∈ E) && (∃z ∈ S ubVer(p) | (x, z) ∈ E) then
34: Had j[w] = Had j[w] ∪ {p}
35: Fad j[H[w]] = Fad j[Had j[w]] ∪ Fad j[p]
36: Vtemp = Vtemp - p
37: Vtemp = Vtemp - q
38: queue.REMOVE(p)
39: end if
40: end for
41: end if
42: end for
43: else if #Children(u) ≤ 1 then
44: w = createNode()
45: Fad j[w] = {q}
46: Vad j = Vad j ∪ {w}
47: Ead j = Ead j ∪ (Had j[u],w)
48: end if
49: end while
50: Return Gad j
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8.2 Mapping Algorithm
This section describes the proposed mapping algorithms for mapping a given query graph
into a set of fog nodes. The fog nodes are organized hierarchically. Fog nodes closer to the
data sources have less computational power compare than those closer to the network core
[194][128].

We categorise query vertices into anchor vertices and floating vertices. An anchor vertex
is a vertex with no incoming edges or with no outgoing edges, and is typically assigned to a
level 0 fog. A floating vertex is a vertex which is not an anchor vertex. Consider the query
graph in Fig. 8.4. In Fig. 8.4 q′1 and q′4 are anchor vertices and q′2, and q′3 are floating vertices.
Algorithm 8.3 focuses on mapping the floating vertices.

q’4

q’3

q’1

q’2

Figure 8.4: Example of a Query Graph

8.2.1 Proposed Mapping Algorithm
Algorithm 8.3 assumes that the anchor nodes have been assigned to a fog node. Anchor nodes
with no incoming edges are assigned to level-0 fog nodes and anchor nodes with no outgoing
edges are assigned to a fog node at the highest level. Lines 11 to 13 ensure that all anchor
nodes are the first to be put into queueQ and thus enables the algorithm to assign vertices in
VQ starting from vertices that receive data from an anchor node. In lines 19 to 23 the children
of u are added to queueQ so that they are considered in the next iteration of the WHILE loop.
Lines 24 through 30 are used to find a fog node to host node v. Line 24 is used to determine
the candidate fog nodes by considering all fog nodes that are not at the same level as the fog
node hosting u. Lines 24-30 goes through each of the candidate fog nodes to determine a fog
node that has the minimum cost for placing the vertex being considered for placement. It is
worth noting that the input GQ in algorithm 8.3 can be the original query graph or any of the
reshaped query graphs (output of algorithms 8.2 or 8.2).
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Algorithm 8.3 Embedding Algorithm
1: INPUT GQ = (VQ, EQ) : A Query Graph
2: INPUT GT = (VT , ET ) : A Tree Overlay Network of Fog Nodes
3: INPUT IMV : IMV = {(x, y) : x ∈ VQ, y ∈ Pc}

4: INPUT Pc: Pc = {x : x ∈ VT and f oreign degIn(x) == TRUE} , f oreign degIn(y) = {TRUE :
y ∈ VQ, x < VQ, (x, y) < EQ} (Returns TRUE if x ∈ VQ receives raw data)

5: Ancestor(x) returns all the ancestor vertices of x ∈ VT in GT

6: g(x, FMV ) = {y : (x, y) ∈ FMV }, FMV = {(x, y) : x ∈ VQ, y ∈ VT }

7: contains(x) = {TRUE : if a queue data structure has x, otherwise FALSE}
8: OUTPUT FMV

9: FMV = IMV

10: queueQ = NULL
11: for all (x, y) ∈ IMV do
12: queueQ.Enqueue(x)
13: end for
14: while queueQ! = NULL do
15: u = queueQ.Dequeue()
16: candidateFogNodes = ∅

17: minCostFog = NULL
18: minCostValue = ∞

19: for all (u, v) ∈ EQ do
20: if !queueQ.contains(v) then
21: queueQ.Enqueue(v)
22: end if
23: end for
24: candidateFogNodes = Ancestor(g(u, FMV )) ∪ g(u, FMV )
25: for all f ∈ candidateFogNodes do
26: if minCostValue > C f ((u, v)) then
27: minCostValue = C f ((u, v))
28: minCostFog = f
29: end if
30: end for
31: FMV = FMV ∪ (v,minCostFog)
32: end while
33: Return FMV



Chapter 9

Performance Evaluation

This chapter presents an evaluation of the algorithms proposed in Chapter 8. The metrics used
are the same as those introduced in Section 7.1 of chapter 7.

This chapter is organized as follows: Section 9.1 describes the configuration of the sim-
ulation environment. Section 9.2 presents the results for the congested highway notification
scenario. Section 9.3 presents the results for the camera surveillance scenario.

9.1 Configuring the Simulation Environment
This section describes the simulation environment configurations for the following: (1) orga-
nization of fog nodes, (2) three cost functions to be used by the mapping algorithm, and (3)
applications.

9.1.1 Fog Node Networks Used
The fog nodes are organized as a tree where level 0 fog nodes directly receive data from the
local data sources, level 1 fog nodes receive data from a subset of level 0 fog nodes, etc.
Equation 9.1 is used to estimate the maximum height (number of levels) in a tree. In Equation
9.1, h represents the height of a tree with N nodes, and K represents the maximum number
of children. With a fixed number of fog nodes as the maximum number of children increases
the number height of the tree decreases. In the simulation, not all of the fog nodes have the
maximum number of children allowed.

h = dlogk((k − 1) × N + 1) − 1e (9.1)

• Tree 1: Tree 1 (total number of fog nodes is 256)

– Maximum number of children for each fog node is 2

– Number of levels is 8

• Tree 2: Tree 2 (total number of fog nodes is 256)

– Maximum number of children for each fog node is 3

80
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– Number of levels is 6

• Tree 3: Tree 3 (total number of fog nodes is 256)

– Maximum number of children for each fog node is 4

– Number of levels is 5

Tree 1 is considered to be a tall tree and Tree 3 is considered to be a short tree. A shorter
tree means that the non-leaf fog nodes communicate with more lower level fog nodes. Level
1 fog nodes communicate with more collector fog nodes which cover a broader geographical
area. As a result the number of hops between fog nodes in two consecutive levels is higher in
a shorter tree compared to a taller tree.

9.1.2 Applications

The applications described in Chapter 6 are used.

9.1.3 Cost Functions for Mapping Algorithm

Chapter 7 showed the possible benefits of using multiple levels in a fog-tree hierarchy. The
cost functions presented in this section represent different approaches for mapping nodes in the
query graph to nodes in the fog-tree hierarchy. These cost functions are used by the mapping
algorithm presented in Chapter 8. The cost functions are based on Equation 6.3.

• C1: With the cost function, C1, the mapping algorithm maps all the nodes at the same
level in the query graph to the same level in the fog-tree hierarchy. In addition, the cost
function is designed such that for edge (qi, q j) of the query graph the length of the path
between the nodes in the fog-tree hierarchy that qi and q j are mapped to is minimized as
much as possible. The weights used in C1 were selected such that for any (qi, q j) the cost
of assigning qi to a level k fog node and assigning q j to a level k+1 fog node is less than
assigning qi to a level k fog node and assigning q j to a level k+2 fog node. Furthermore
any qi at level 0 in the query graph is assigned to a fog node at level 0. The weight value
used for the traffic congestion application is 0.16 and for the camera surveillance is 0.23.

• C2: With the cost function, C2, the mapping algorithm maps query vertices at different
levels of the query graph to fog nodes at different levels in the fog-tree hierarchy i.e.,
for each edge (qi, q j) in the query graph qi and q j are mapped to different levels in the
fog-tree hierarchy. High volume edges are mapped such that the number of hops are
minimized as much as possible i.e., if (qi, q j) is a high volume edge and qi is mapped
to level k then the cost of mapping q j to level k+1 is less than the cost of mapping qi to
level k+2. Compared to C1, C2 is designed to distribute the processing across more nodes
such that a fog node is not overwhelmed with computation but also tries to minimize the
transfer of data. The weight value used for the traffic congestion application is 0.28 and
for the camera surveillance is 0.37.
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• C3: With the cost function, C3, the mapping algorithm maps each query vertex in a
level of a query graph with one level of a tree that provides the lowest response time.
C3 considers the importance of value for execution time and network end-to-end delay
equally. The weight value used for the traffic congestion application is 0.28 and for the
camera surveillance is 0.5.

9.2 Congested Highway Notification Scenario Results
In this section, we show the evaluation results for the Local Congested Highway Notification
scenario. The information about details of query operators that are used in query graph for the
congested highway notification scenario can be found in Appendix B.

Table 9.1 shows the embedding distortion for C1, C2, and C3 for embedding the query op-
erators that used by the congested highway notification scenario. The definition for embedding
distortion can be found in Chapter 6. Distortion values that are closer to 1 means that query
operators are placed closer to the data sources than mappings that result in lower distortion
values.

Table 9.1: Maximum Embedding Distortion for Congested Highway Notification Scenario

Tree 1 Tree 2 Tree 3
Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1 0.17 0.22 0.22 0.13 0.17 0.17 0.095 0.11 0.11
C2 0.11 0.13 0.17 0.11 0.11 0.13 0.095 0.095 0.095
C3 0.095 0.11 0.11 0.11 0.11 0.11 0.095 0.095 0.095

9.2.1 Average Execution Time
Tables 9.2 and 9.3 show the average execution time used to process the original query graph, re-
configured query graph, and adjusted query graph for the cost functions. In this thesis collector
fog nodes (CFNs) and level-0 fog nodes are used interchangeably.
Effectiveness of Collector Fog Nodes: The results in Table 9.2 show that when the number
of CFNs is 50 or less the average execution time decreases by increasing the CFNs. When the
number of CFNs is 60 or higher the average execution time starts to increase since the number
of fog notes associated with a level 1 fog node increases. A similar pattern is seen in Table 9.3
where the number of vehicles is 2000.
Effectiveness of Fog-Tree Hierarchy: Tree 3, representing the shortest tree, has the lowest
execution time as the result of providing more fog nodes closer to data sources than the other
two trees.
Effectiveness of Algorithms 8.1 and 8.2: From Table 9.2 and 9.3 we see that the original
query graph results in less execution time compared to the reconfigured and the adjusted query
graph since in the reconfigured or adjusted query graph some of query vertices are merged and
as a result more processing power is required to process the merged vertices.
Comparison of Cost Functions: From Table 9.2 and 9.3 we see that cost function C3 has
lower execution time compared to C1 and C2. The cost function C3 favours mapping query
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Table 9.2: Average Execution Time-1000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 18.915 (s) 33.809 (s) 33.889 (s) 17.926 (s) 31.834 (s) 31.587 (s) 15.24 (s) 27.945 (s) 27.873 (s)
10 6.175 (s) 8.234 (s) 8.233 (s) 5.139 (s) 8.665 (s) 8.001 (s) 5.044 (s) 6.485 (s) 6.433 (s)
20 6.763 (s) 7.786 (s) 7.726 (s) 5.653 (s) 6.829 (s) 5.829 (s) 4.096 (s) 4.114 (s) 4.987 (s)
30 6.003 (s) 7.434 (s) 7.834 (s) 5.341 (s) 6.462 (s) 6.507 (s) 3.897 (s) 3.906 (s) 4.772 (s)
40 5.871 (s) 8.821 (s) 8.834 (s) 5.302 (s) 6.175 (s) 6.831 (s) 3.681 (s) 3.682 (s) 4.802 (s)
50 5.452 (s) 10.982 (s) 10.885 (s) 5.272 (s) 5.657 (s) 7.125 (s) 6.237 (s) 6.158 (s) 6.402 (s)
60 13.775 (s) 13.428 (s) 13.728 (s) 11.393 (s) 9.694 (s) 9.704 (s) 8.247 (s) 9.102 (s) 9.822 (s)
70 14.183 (s) 13.839 (s) 14.113 (s) 11.738 (s) 10.231 (s) 10.409 (s) 8.492 (s) 9.773 (s) 10.191 (s)
80 17.084 (s) 16.352 (s) 16.412 (s) 14.175 (s) 13.853 (s) 13.923 (s) 11.033 (s) 11.539 (s) 11.621 (s)

C2

2 17.401 (s) 31.104 (s) 31.177 (s) 16.491(s) 29.287(s) 29.064 (s) 14.028 (s) 25.704 (s) 25.643(s)
10 5.681 (s) 7.575(s) 7.574(s) 4.727(s) 7.971(s) 7.36(s) 4.648(s) 5.966(s) 5.918(s)
20 6.221 (s) 7.163 (s) 7.107(s) 5.206 (s) 6.282(s) 5.362(s) 3.768 (s) 3.784 (s) 4.584(s)
30 5.522 (s) 6.839 (s) 7.207 (s) 4.913(s) 5.945 (s) 5.986(s) 3.585(s) 3.593 (s) 4.39 (s)
40 5.401(s) 8.1153 (s) 8.127(s) 4.877 (s) 5.681 (s) 6.284(s) 3.386(s) 3.387 (s) 4.417(s)
50 5.0158 (s) 10.103 (s) 10.014(s) 4.85(s) 5.204 (s) 6.555(s) 5.738(s) 5.665 (s) 5.889(s)
60 12.673 (s) 12.353 (s) 12.629 (s) 10.481 (s) 8.918(s) 8.927(s) 7.587(s) 8.373 (s) 9.036(s)
70 13.048 (s) 12.731(s) 12.983(s) 10.798(s) 9.412 (s) 9.576(s) 7.812(s) 8.991 (s) 9.375(s)
80 15.717(s) 15.043 (s) 14.731 (s) 13.041(s) 12.836 (s) 12.809 (s) 10.15(s) 10.891 (s) 10.991(s)

C3

2 16.645 (s) 29.751 (s) 29.822 (s) 15.774 (s) 28.013 (s) 27.796(s) 13.411 (s) 24.591 (s) 24.528 (s)
10 5.434(s) 7.245 (s) 7.245(s) 4.522(s) 7.622 (s) 7.048 (s) 4.438(s) 5.708 (s) 5.664 (s)
20 5.951 (s) 6.851 (s) 6.798 (s) 4.974 (s) 6.002 (s) 5.122(s) 3.608 (s) 3.622(s) 4.388 (s)
30 5.282 (s) 6.541 (s) 6.893 (s) 4.708 (s) 5.656 (s) 5.726(s) 3.426 (s) 3.438(s) 4.199(s)
40 5.166 (s) 7.762 (s) 7.773(s) 4.665 (s) 5.434 (s) 6.018(s) 3.239(s) 3.246(s) 4.226(s)
50 4.797 (s) 9.664(s) 9.578 (s) 4.639 (s) 4.9786 (s) 6.27(s) 5.488(s) 5.414(s) 5.633(s)
60 12.122 (s) 11.816 (s) 12.08 (s) 10.024 (s) 8.532 (s) 8.532 (s) 7.256 (s) 8.006(s) 8.646(s)
70 12.484 (s) 12.178 (s) 12.419(s) 10.329 (s) 9.003 (s) 9.1592(s) 7.476 (s) 8.602 (s) 8.968(s)
80 15.032 (s) 14.389 (s) 14.09 (s) 12.474 (s) 12.278 (s) 12.252 (s) 9.709 (s) 10.418 (s) 10.226 (s)

Table 9.3: Average Execution Time-2000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 36.015 (s) 69.134 (s) 69.238 (s) 35.116 (s) 68.235 (s) 67.192 (s) 30.851 (s) 58.763 (s) 58.718 (s)
10 10.146 (s) 15.182 (s) 15.478 (s) 9.004 (s) 14.044 (s) 14.031 (s) 8.164 (s) 12.175 (s) 12.163 (s)
20 8.233 (s) 9.235 (s) 9.603 (s) 7.056 (s) 6.452 (s) 6.834 (s) 5.975 (s) 6.958 (s) 6.652 (s)
30 7.099 (s) 8.137 (s) 8.525 (s) 6.047 (s) 5.396 (s) 5.756 (s) 5.008 (s) 5.981 (s) 5.661 (s)
40 7.959 (s) 9.047 (s) 9.445 (s) 6.369 (s) 5.827 (s) 6.185 (s) 4.987 (s) 5.953 (s) 5.63 (s)
50 12.812 (s) 11.613 (s) 11.682 (s) 10.648 (s) 10.734 (s) 10.013 (s) 8.857 (s) 8.523 (s) 8.835 (s)
60 13.951 (s) 14.034 (s) 14.905 (s) 11.994 (s) 10.451 (s) 10.804 (s) 10.008 (s) 9.102 (s) 9.048 (s)
70 14.97 (s) 15.1 (s) 15.993 (s) 13.082 (s) 11.497 (s) 11.822 (s) 10.889 (s) 9.864 (s) 9.72 (s)
80 17.971 (s) 17.849 (s) 17.902 (s) 14.245 (s) 15.324 (s) 15.157 (s) 12.033 (s) 12.089 (s) 12.284 (s)

C2

2 32.415 (s) 62.206(s) 62.312 (s) 31.604 (s) 61.415(s) 60.472(s) 27.769(s) 52.867(s) 52.842(s)
10 9.114 (s) 13.668(s) 13.932 (s) 8.106(s) 12.636(s) 12.629(s) 7.346(s) 10.955(s) 10.947 (s)
20 7.407(s) 8.315(s) 8.642(s) 6.304(s) 5.806 (s) 6.106(s) 5.375(s) 6.222 (s) 5.986 (s)
30 6.381(s) 7.323(s) 7.675(s) 5.443(s) 4.84(s) 5.184(s) 4.507(s) 5.389(s) 5.094 (s)
40 7.161(s) 8.143(s) 8.505(s) 5.732(s) 5.243(s) 5.565(s) 4.483(s) 5.357(s) 5.06 (s)
50 11.508 (s) 10.417(s) 10.518 (s) 9.52(s) 9.666(s) 9.011(s) 7.913 (s) 7.677(s) 7.955 (s)
60 12.559 (s) 12.606 (s) 13.415(s) 10.796(s) 9.409(s) 9.726(s) 9.072(s) 8.118(s) 8.142 (s)
70 13.473(s) 13.59(s) 14.39(s) 11.77 (s) 10.347(s) 10.639 (s) 9.801(s) 8.877(s) 8.748(s)
80 16.139(s) 16.041(s) 16.118 (s) 12.805 (s) 13.796(s) 13.641 (s) 10.897(s) 10.801 (s) 11.056(s)

C3

2 30.979 (s) 59.454(s) 59.548(s) 30.196(s) 58.681(s) 57.782 (s) 26.531(s) 50.538 (s) 50.448 (s)
10 8.726 (s) 13.052 (s) 13.311(s) 7.744 (s) 12.074 (s) 12.066 (s) 7.004(s) 10.475 (s) 10.468 (s)
20 7.088 (s) 7.941(s) 8.258 (s) 6.066 (s) 5.542(s) 5.824(s) 5.135 (s) 5.983(s) 5.722 (s)
30 6.104 (s) 6.992 (s) 7.335 (s) 5.202(s) 4.64(s) 4.916 (s) 4.368(s) 5.146(s) 4.846(s)
40 6.844(s) 7.782 (s) 8.122 (s) 5.474(s) 5.011 (s) 5.311(s) 4.282(s) 5.118(s) 4.848(s)
50 11.012 (s) 9.988 (s) 10.046 (s) 9.158 (s) 9.224 (s) 8.618 (s) 7.602 (s) 7.378 (s) 7.581 (s)
60 11.996 (s) 12.069(s) 12.83 (s) 10.314(s) 8.986(s) 9.294 (s) 8.608(s) 7.872(s) 7.788(s)
70 12.874(s) 12.98 (s) 13.758 (s) 11.252 (s) 9.882(s) 10.192(s) 9.354(s) 8.484(s) 8.352(s)
80 15.455 (s) 15.354(s) 15.392 (s) 12.257 (s) 13.174(s) 13.235 (s) 10.348(s) 10.594 (s) 10.764(s)

vertices of a given query graph to upper levels of the fog-node hierarchy. These fog nodes have
more processing power compared to fog nodes in the lower levels of the fog node hierarchy.
The results also show that since C2 uses more levels than C1 that more powerful computing
power is available resulting in lower execution times.

9.2.2 Average End-to-End Delay

Tables 9.4 and 9.5 show that the average end-to-end delay for processing of the original query
graph, reconfigured query graph, and adjusted query graph.
Effectiveness of Collector Fog Nodes: The results in Table 9.4 show that the end-to-end delay
decreases as the number of CFNs increases until the number of CFNs reaches 60. At that point
the average end-to-end delay increases as the number of CFNs increases. This trend is true for
each of the trees. A similar pattern is seen in Table 9.5 where the number of vehicles is 2000
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Table 9.4: Average End-to-End Delay-1000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 0.036862 (s) 0.036745 (s) 0.03678 (s) 0.183858 (s) 0.165876 (s) 0.129411 (s) 0.227913 (s) 0.172311 (s) 0.33047 (s)
10 0.01192 (s) 0.01028 (s) 0.01003 (s) 0.012892 (s) 0.03883 (s) 0.03065 (s) 0.017645 (s) 0.03923 (s) 0.03585 (s)
20 0.008793 (s) 0.00552 (s) 0.00443 (s) 0.023532 (s) 0.023706 (s) 0.018542 (s) 0.042153 (s) 0.02823 (s) 0.02123 (s)
30 0.008102 (s) 0.004913 (s) 0.003971 (s) 0.028924 (s) 0.022819 (s) 0.018301 (s) 0.047153 (s) 0.029931 (s) 0.022501 (s)
40 0.007589 (s) 0.004863 (s) 0.003809 (s) 0.030951 (s) 0.022706 (s) 0.018103 (s) 0.051003 (s) 0.032197 (s) 0.025538 (s)
50 0.006757 (s) 0.00487 (s) 0.00383 (s) 0.051255 (s) 0.022158 (s) 0.020448 (s) 0.056923 (s) 0.03632 (s) 0.03189 (s)
60 0.007512 (s) 0.004812 (s) 0.003662 (s) 0.052203 (s) 0.02383 (s) 0.01262 (s) 0.06475 (s) 0.040564 (s) 0.03468 (s)
70 0.011093 (s) 0.005102 (s) 0.003959 (s) 0.073181 (s) 0.063201 (s) 0.018355 (s) 0.110301 (s) 0.07301 (s) 0.041305 (s)
80 0.011264 (s) 0.008264 (s) 0.007382 (s) 0.080544 (s) 0.051048 (s) 0.022089 (s) 0.11282 (s) 0.079144 (s) 0.07104 (s)

C2

2 0.0409168 (s) 0.0407865 (s) 0.040825(s) 0.204073(s) 0.184038(s) 0.143634(s) 0.25197 (s) 0.191265(s) 0.36682(s)
10 0.023231(s) 0.011418 (s) 0.011133(s) 0.014208(s) 0.0431013(s) 0.0340215(s) 0.019536(s) 0.043545(s) 0.039793(s)
20 0.009763 (s) 0.006122(s) 0.004917(s) 0.026085 (s) 0.026307(s) 0.020535(s) 0.046731 (s) 0.031335(s) 0.023565(s)
30 0.008993(s) 0.005453 (s) 0.004481(s) 0.032079(s) 0.025329 (s) 0.020313(s) 0.052281 (s) 0.033221(s) 0.024976(s)
40 0.008427(s) 0.005393 (s) 0.004227 (s) 0.034356 (s) 0.025197 (s) 0.020091(s) 0.05661(s) 0.035738(s) 0.028347(s)
50 0.0075027 (s) 0.005457 (s) 0.00425(s) 0.056832 (s) 0.024531 (s) 0.022644 (s) 0.063159 (s) 0.040315(s) 0.035397(s)
60 0.008338 (s) 0.005341 (s) 0.004062(s) 0.057942 (s) 0.026418(s) 0.01332(s) 0.07104(s) 0.044955 (s) 0.038494 (s)
70 0.012313(s) 0.005663(s) 0.004399(s) 0.081141(s) 0.070152 (s) 0.020313 (s) 0.122433 (s) 0.08103(s) 0.045848(s)
80 0.012503(s) 0.009173 (s) 0.008192 (s) 0.089355 (s) 0.056654 (s) 0.02442(s) 0.12432 (s) 0.087801(s) 0.078854(s)

C3

2 0.0423913 (s) 0.042256 (s) 0.042297 (s) 0.2114367 (s) 0.1907574(s) 0.148826 (s) 0.26209 (s) 0.198145 (s) 0.3795 (s)
10 0.023708 (s) 0.011822 (s) 0.01265 (s) 0.014825(s) 0.044654 (s) 0.035247 (s) 0.0203742 (s) 0.04511(s) 0.04025 (s)
20 0.010111(s) 0.00632(s) 0.00506 (s) 0.0270618 (s) 0.027255 (s) 0.021323 (s) 0.04859(s) 0.032465(s) 0.02415 (s)
30 0.009317 (s) 0.00564(s) 0.004566 (s) 0.03326(s) 0.026241(s) 0.021045(s) 0.05422 (s) 0.03406(s) 0.025875 (s)
40 0.008723 (s) 0.00552 (s) 0.00437 (s) 0.035595 (s) 0.026105(s) 0.020815 (s) 0.05865 (s) 0.037026(s) 0.029325 (s)
50 0.007775 (s) 0.00552(s) 0.00437(s) 0.058945 (s) 0.025481(s) 0.023512(s) 0.065445(s) 0.041768 (s) 0.03565 (s)
60 0.00868 (s) 0.005538 (s) 0.00345 (s) 0.06003 (s) 0.027405(s) 0.014513 (s) 0.074462 (s) 0.046648 (s) 0.03988 (s)
70 0.012756 (s) 0.005863 (s) 0.004555 (s) 0.084151 (s) 0.07268 (s) 0.021045 (s) 0.126845 (s) 0.08395(s) 0.047505 (s)
80 0.01293(s) 0.009503 (s) 0.008483 (s) 0.092626 (s) 0.058702(s) 0.0253 (s) 0.129743 (s) 0.091016 (s) 0.08165 (s)

Table 9.5: Average End-to-End Delay-2000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 0.073465 (s) 0.07233 (s) 0.071232 (s) 0.347518 (s) 0.330676 (s) 0.25829 (s) 0.454846 (s) 0.344011 (s) 0.35481 (s)
10 0.02536 (s) 0.02143 (s) 0.02031 (s) 0.02556 (s) 0.07179 (s) 0.056428 (s) 0.122048 (s) 0.073578 (s) 0.07071 (s)
20 0.01154 (s) 0.00954 (s) 0.00837 (s) 0.027165 (s) 0.040872 (s) 0.032296 (s) 0.06485 (s) 0.044721 (s) 0.04265 (s)
30 0.00988 (s) 0.007731 (s) 0.007131 (s) 0.025502 (s) 0.033197 (s) 0.029701 (s) 0.066091 (s) 0.044531 (s) 0.041771 (s)
40 0.009731 (s) 0.006891 (s) 0.006935 (s) 0.041475 (s) 0.028977 (s) 0.028302 (s) 0.066103 (s) 0.044392 (s) 0.040013 (s)
50 0.009353 (s) 0.00625 (s) 0.005143 (s) 0.059226 (s) 0.02923 (s) 0.025243 (s) 0.066274 (s) 0.042648 (s) 0.03768 (s)
60 0.010203 (s) 0.008763 (s) 0.007609 (s) 0.060752 (s) 0.04228 (s) 0.036724 (s) 0.070331 (s) 0.058107 (s) 0.05267 (s)
70 0.011873 (s) 0.008898 (s) 0.008572 (s) 0.072133 (s) 0.048703 (s) 0.039981 (s) 0.120985 (s) 0.097827 (s) 0.058313 (s)
80 0.023812 (s) 0.023035 (s) 0.020151 (s) 0.088492 (s) 0.054969 (s) 0.043854 (s) 0.23804 (s) 0.18809 (s) 0.078439 (s)

C2

2 0.0896273(s) 0.088242(s) 0.086904 (s) 0.423976(s) 0.403424 (s) 0.3151138 (s) 0.55491212 (s) 0.419642(s) 0.4328682 (s)
10 0.0309392 (s) 0.0261446(s) 0.024782 (s) 0.0311832 (s) 0.087588(s) 0.068846(s) 0.148886 (s) 0.089766 (s) 0.086262(s)
20 0.0140788 (s) 0.011688(s) 0.0102114 (s) 0.0331413 (s) 0.04984(s) 0.039402(s) 0.079117(s) 0.054552 (s) 0.052033 (s)
30 0.0120536 (s) 0.009418 (s) 0.008699 (s) 0.031114(s) 0.040504(s) 0.036235(s) 0.0806102(s) 0.054382(s) 0.0509602(s)
40 0.011872(s) 0.008402(s) 0.0084607 (s) 0.050595 (s) 0.035351 (s) 0.034528 (s) 0.080646(s) 0.0541824 (s) 0.048818(s)
50 0.011406 (s) 0.007625 (s) 0.006274 (s) 0.072272 (s) 0.035606 (s) 0.030796(s) 0.080854(s) 0.052036 (s) 0.0459696 (s)
60 0.012447(s) 0.010608(s) 0.009289 (s) 0.0741144 (s) 0.051586(s) 0.044803(s) 0.085802(s) 0.070954 (s) 0.06254(s)
70 0.014486(s) 0.010855 (s) 0.010454 (s) 0.088002(s) 0.059417(s) 0.048776 (s) 0.1476017(s) 0.1193484 (s) 0.0711486 (s)
80 0.029064 (s) 0.0281027(s) 0.024542 (s) 0.107964 (s) 0.067062 (s) 0.053501 (s) 0.290408(s) 0.229498 (s) 0.09595(s)

C3

2 0.093305(s) 0.091859 (s) 0.0904646 (s) 0.441347 (s) 0.419952(s) 0.328028 (s) 0.577654(s) 0.436893 (s) 0.450607 (s)
10 0.03222(s) 0.027216(s) 0.025793(s) 0.032461 (s) 0.091173(s) 0.071663(s) 0.1550096(s) 0.093406(s) 0.089807(s)
20 0.01465(s) 0.012115(s) 0.010629 (s) 0.034499 (s) 0.051904(s) 0.041012 (s) 0.0823595 (s) 0.056767(s) 0.054165(s)
30 0.012547(s) 0.009818(s) 0.009056(s) 0.032387(s) 0.046019(s) 0.037727(s) 0.083937 (s) 0.05657(s) 0.053049(s)
40 0.012358 (s) 0.008757 (s) 0.008807(s) 0.052673 (s) 0.036809(s) 0.0359434 (s) 0.083908(s) 0.056374 (s) 0.05081(s)
50 0.011878 (s) 0.007937 (s) 0.006531(s) 0.075217 (s) 0.0371221(s) 0.0320861 (s) 0.084168(s) 0.054162(s) 0.047853 (s)
60 0.012957(s) 0.011121 (s) 0.009663 (s) 0.077504 (s) 0.053656(s) 0.0466348 (s) 0.089337(s) 0.073799(s) 0.066899 (s)
70 0.015078(s) 0.011304(s) 0.010884 (s) 0.091609 (s) 0.061858(s) 0.0507758(s) 0.153655(s) 0.124249 (s) 0.074057(s)
80 0.030241 (s) 0.029254(s) 0.025591(s) 0.1123884 (s) 0.069806(s) 0.0556948 (s) 0.3023108 (s) 0.23883(s) 0.099617 (s)

although the effectiveness of CFNs decreases when the number of CFNs goes from 50 to 60.
Effectiveness of the Fog-Tree Hierarchy: Tables 9.4 and 9.5 show that Tree 1 has the lowest
end-to-end delay compared to Tree 2 and Tree 3. Tree 1 is considered a tall tree and Tree 3 is
considered a short tree. In Table 9.5 as the number of vehicles were doubled, the end-to-end
delay did not significantly increase in the presence of a large number of collector fog nodes.
In the other words, we can conclude that the by using hierarchy network of fog nodes we can
keep end-to-end delay low when the number of data sources increases.
Effectiveness of Algorithm 8.1 and 8.2: From Tables 9.4 and 9.5 we see that the use of
the original query graph results in the highest end-to-end delay compared to the use of the
reconfigured and adjusted query graphs.
Comparison of Cost Functions C1, C2, and C3: From Tables 9.4 and 9.5 we see that cost
function C1 has lower delay time compared to cost functions C2 and C3 . This is expected since
the cost function C1 favours the mapping of the query vertices as close as possible to the data
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sources.

9.2.3 Average Response Time
Tables 9.6 and 9.7 shows the average response time for processing of the original query graph,
reconfigured query graph, and adjusted query graph as the number of fog nodes and vehicles
vary.

Table 9.6: Average Response Time-1000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 18.951862 (s) 33.845745 (s) 33.92578 (s) 18.109858 (s) 31.999876 (s) 31.716411 (s) 15.467913 (s) 28.117311 (s) 28.20347 (s)
10 6.176192 (s) 8.24428 (s) 8.24303 (s) 5.151892 (s) 8.70383 (s) 8.03165 (s) 5.061645 (s) 6.52423 (s) 6.46885 (s)
20 6.771793 (s) 7.79152 (s) 7.73043 (s) 5.676532 (s) 6.852706 (s) 5.847542 (s) 4.138153 (s) 4.14223 (s) 5.00823 (s)
30 6.011102 (s) 7.438913 (s) 7.837971 (s) 5.369924 (s) 6.484819 (s) 6.525301 (s) 3.944153 (s) 3.935931 (s) 4.794501 (s)
40 5.878589 (s) 8.825863 (s) 8.837809 (s) 5.332951 (s) 6.197706 (s) 6.849103 (s) 3.732003 (s) 3.714197 (s) 4.827538 (s)
50 5.458757 (s) 10.98687 (s) 10.88883 (s) 5.323255 (s) 5.679158 (s) 7.145448 (s) 6.293923 (s) 6.19432 (s) 6.43389 (s)
60 13.782512 (s) 13.432812 (s) 13.731662 (s) 11.445203 (s) 9.71783 (s) 9.71662 (s) 8.31175 (s) 9.142564 (s) 9.85668 (s)
70 14.194093 (s) 13.844102 (s) 14.116959 (s) 11.811181 (s) 10.294201 (s) 10.427355 (s) 8.602301 (s) 9.84601 (s) 10.232305 (s)
80 17.095264 (s) 16.360264 (s) 16.419382 (s) 14.255544 (s) 13.904048 (s) 13.945089 (s) 11.14582 (s) 11.618144 (s) 11.69204 (s)

C2

2 17.4427 (s) 31.14506(s) 31.2187(s) 16.6959(s) 29.4713(s) 29.2036(s) 14.272(s) 25.9006(s) 26.0099(s)
10 5.6823 (s) 7.58669(s) 7.58549(s) 4.742(s) 8.0149(s) 7.39494(s) 4.66(s) 6.0097(s) 5.95815(s)
20 6.23172 (s) 7.16924 (s) 7.11283(s) 5.2268(s) 6.3089(s) 5.3832(s) 3.81505 (s) 3.81621 (s) 4.6116(s)
30 5.53175 (s) 6.84473 (s) 7.21168781 (s) 4.94579(s) 5.97036 (s) 6.0067(s) 3.6375(s) 3.6267 (s) 4.41521(s)
40 5.40974(s) 8.12071(s) 8.131507(s) 4.91219 (s) 5.7061 (s) 6.30461(s) 3.44313(s) 3.42317 (s) 4.44618(s)
50 5.02334(s) 10.10884 (s) 10.01845(s) 4.907 (s) 5.22897 (s) 6.57764(s) 5.8011 (s) 5.70567 (s) 5.9252 (s)
60 12.6813 (s) 12.3591 (s) 12.63382 (s) 10.5395 (s) 8.94489(s) 8.94(s) 7.658(s) 8.418 (s) 9.07473(s)
70 13.0606(s) 12.73754(s) 12.98835(s) 10.8801(s) 9.4826 (s) 9.5965(s) 7.935(s) 9.0721 (s) 9.4215(s)
80 15.7297(s) 15.053(s) 14.73923 (s) 13.1303(s) 12.89341(s) 12.833(s) 10.274(s) 10.979(s) 11.0701(s)

C3

2 16.6875 (s) 29.79417 (s) 29.864(s) 15.9863(s) 28.20467(s) 27.945382(s) 13.67329 (s) 24.7897 (s) 24.907 (s)
10 5.43537 (s) 7.2577 (s) 7.257(s) 4.53714(s) 7.66985 (s) 7.07612 (s) 4.45909 (s) 5.7519 (s) 5.7012(s)
20 5.96155(s) 6.858(s) 6.8039 (s) 5.0017(s) 6.0367 (s) 5.15084(s) 3.65307 (s) 3.6527(s) 4.41271 (s)
30 5.29195(s) 6.5475 (s) 6.898(s) 4.73334 (s) 5.712801 (s) 5.7472(s) 3.48358 (s) 3.4717(s) 4.2252(s)
40 5.1752(s) 7.768 (s) 7.778(s) 4.70135(s) 5.4601(s) 6.03209(s) 3.2979(s) 3.2771(s) 4.255(s)
50 4.8055 (s) 9.6696(s) 9.583(s) 4.6983(s) 5.0036 (s) 6.2935(s) 5.554021(s) 5.4608(s) 5.669(s)
60 12.133 (s) 11.8221 (s) 12.084 (s) 10.0858 (s) 8.5581 (s) 8.554 (s) 7.3318(s) 8.0564(s) 8.6832(s)
70 12.4937 (s) 12.1841(s) 12.4239(s) 10.4135(s) 9.0759 (s) 9.1809(s) 7.5998 (s) 8.6841 (s) 9.01558(s)
80 15.04687 (s) 14.3992 (s) 14.099 (s) 12.5666 (s) 12.3373 (s) 12.277(s) 9.8387 (s) 10.5093 (s) 10.308(s)

Effectiveness of Collector Fog Nodes: The results in Table 9.6 show that when the number of
CFNs is 50 or less the average response time decreases. When the number of CFNs is 60 or
higher the average response time starts increasing. A similar pattern is seen in Table 9.7 where
the number of vehicles is 2000.
Effectiveness of Algorithms 8.1 and 8.2: From Table 9.6 and 9.7 we see that the original query
graph results in smaller response times compared to the reconfigured and the adjusted query
graph. The response time of the reconfigured and adjusted query graphs is significantly higher
for a small number of CFNs. However, when the number of CFNs increases the differences
decreases.
Effectiveness of Fog-Tree Hierarchy: By comparing the results in Tables 9.6 and 9.7, we can
conclude that the Tree 3, representing the shortest tree, has the lowest response time as the
result of providing more fog nodes closer to data sources than the other two trees. In Table
9.7, when the number of vehicles was doubled, we did not observe a significant change in the
average response time when the number of level 0 fog nodes was sufficient. As the results
show, Tree 3 (which is a shortest tree among Tree 1 and Tree 2) has the lowest response time.
The explanation is that Tree 3 provides more processing power closer to the data sources and
this results in lower execution time.
Comparison of Cost Functions C1, C2, and C3: From Table 9.6 and 9.7 we see that cost
function C3 has lower response time compare to cost functions C1 and C2. The explantation is
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Table 9.7: Average Response Time-2000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 36.088465 (s) 69.20633 (s) 69.97032 (s) 35.32318 (s) 68.5676 (s) 67.45029 (s) 31.305846 (s) 12.27104 (s) 59.07281 (s)
10 10.17136 (s) 15.20343 (s) 15.49831 (s) 9.02956 (s) 14.11579 (s) 14.087428 (s) 8.286048 (s) 12.248578 (s) 12.23371 (s)
20 8.24454 (s) 9.24454 (s) 9.61137 (s) 7.083165 (s) 6.49282 (s) 6.866296 (s) 6.03985 (s) 7.00221 (s) 6.69465 (s)
30 7.10888 (s) 8.144731 (s) 8.532131 (s) 6.072502 (s) 5.4297 (s) 5.785701 (s) 5.074091 (s) 6.025531 (s) 5.702771 (s)
40 7.968731 (s) 9.053891 (s) 9.451935 (s) 6.410475 (s) 5.8557 (s) 6.213302 (s) 5.053103 (s) 5.99392 (s) 5.670013 (s)
50 12.82133 (s) 11.61925 (s) 11.6871 (s) 10.70726 (s) 10.76323 (s) 10.03823 (s) 8.923274 (s) 8.56548 (s) 8.87268 (s)
60 13.96103 (s) 14.042763 (s) 14.912609 (s) 12.054752 (s) 10.49328 (s) 10.8404 (s) 10.078331 (s) 9.260107 (s) 9.10067 (s)
70 14.98873 (s) 15.108898 (s) 16.001572 (s) 13.154133 (s) 11.545703 (s) 11.86181 (s) 11.0099(s) 9.96187 (s) 9.778313 (s)
80 17.9942 (s) 17.8725 (s) 17.92251 (s) 14.333492 (s) 15.3769 (s) 15.200854 (s) 12.27104 (s) 12.27709 (s) 12.3629 (s)

C2

2 32.5031 (s) 62.30884(s) 62.4011 (s) 32.02837(s) 61.81492(s) 60.7879(s) 28.3208(s) 53.3063(s) 53.276(s)
10 9.1623 (s) 13.6899(s) 13.9549 (s) 8.1347(s) 12.7278(s) 12.6967(s) 7.4964(s) 11.047(s) 11.032 (s)
20 7.4237(s) 8.3231(s) 8.6529(s) 6.3835(s) 5.8566 (s) 6.19(s) 5.456(s) 6.3167(s) 6.0388 (s)
30 6.40115(s) 7.3327(s) 7.6811(s) 5.4731(s) 4.8969(s) 5.2163(s) 4.5883(s) 5.43727(s) 5.14586 (s)
40 7.1749(s) 8.1507(s) 8.50896(s) 5.782(s) 5.2796(s) 5.601(s) 4.5694(s) 5.41185(s) 5.1151(s)
50 11.54221 (s) 10.459 (s) 10.52007 (s) 9.6554(s) 9.6962(s) 9.04246(s) 8.052154 (s) 7.7205(s) 7.99746(s)
60 12.5686(s) 12.64129(s) 13.42378(s) 10.8687(s) 9.4574(s) 9.7684(s) 9.093(s) 8.2626(s) 8.2074 (s)
70 13.4874(s) 13.6008(s) 14.40415(s) 11.86102 (s) 10.4066(s) 10.685(s) 9.9477(s) 8.994(s) 8.819(s)
80 16.2025(s) 16.0922(s) 16.13638(s) 12.9284(s) 13.8562(s) 13.6948 (s) 11.1201(s) 11.1099 (s) 11.1519(s)

C3

2 31.0662 (s) 59.54709(s) 59.63514(s) 30.641107(s) 59.10205(s) 58.11314 (s) 27.1092(s) 50.973 (s) 50.948(s)
10 8.75776 (s) 13.0837 (s) 13.3368(s) 7.7759 (s) 12.169 (s) 12.1383 (s) 7.17604(s) 10.5639(s) 10.549 (s)
20 7.09503(s) 7.954215(s) 8.2692(s) 6.1026(s) 5.60062(s) 5.91825(s) 5.2208 (s) 6.0406(s) 5.7748 (s)
30 6.11768 (s) 7.00763 (s) 7.3405(s) 5.2328(s) 4.6827(s) 4.9878(s) 4.3908(s) 5.20021(s) 4.9215(s)
40 6.857(s) 7.78917 (s) 8.1315(s) 5.53001(s) 5.048 (s) 5.35504(s) 4.37272(s) 5.1755(s) 4.8926(s)
50 11.0301 (s) 9.9957(s) 10.0535 (s) 9.2324(s) 9.2683(s) 8.6432 (s) 7.70118(s) 7.3834(s) 7.6459(s)
60 12.0108 (s) 12.0803(s) 12.8279 (s) 10.3919(s) 9.04155(s) 9.33804 (s) 8.696(s) 7.901515(s) 7.8481(s)
70 12.8892(s) 12.9973 (s) 13.7648 (s) 11.34212 (s) 9.9497(s) 10.217(s) 9.5181(s) 8.6072(s) 8.4332(s)
80 15.4853(s) 15.379(s) 15.42131 (s) 12.3634(s) 13.2484(s) 13.2901(s) 10.6506(s) 10.8341 (s) 10.8635(s)

that cost function C3 considers both execution time and network latency at the same time for
mapping vertices of query graph to find a mapping that provide lower response time.

9.2.4 Average Distortion Due to Buffering

Tables 9.8 and 9.9 show the average distortion due to buffering for processing of the original
query graph, reconfigured query graph, and adjusted query graph as the number of fog nodes
and vehicles vary. As Tables 9.8 and 9.9 show the distortion due to buffering is zero.

9.2.5 Average Distortion Due to Network Latency

Tables 9.10 and 9.11 show the average distortion due to buffering for processing of the original
query graph, reconfigured query graph, and adjusted query graph as the number of fog nodes
and vehicles vary.
Tables 9.10 and 9.11 show that for a large number of vehicles the average distortion due to
network latency decreases by increasing the number of level 0 fog nodes. However, increasing
the number of level 0 fog nodes will lead to an increase in end-to-end delay and increasing the
end-to-end delay results in an increase of the average distortion due to network latency. We ex-
perience more network delay because an increase in the number of fog nodes at level 0 results
in generating more results for upper levels fog nodes. Furthermore, as Tables 9.10 and 9.11
show processing the original query graph has a larger distortion compared with the reconfig-
ured and adjusted query graph. The reason is that an original query graph results in the transfer
of more data (sometimes redundant data) among query vertices which can lead to an increase
in the network latency. However, when we merge query vertices in a configured/adjusted query
graph then less data is transferred among query graph vertices.
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Table 9.8: Average Distortion Due to Buffering-1000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C2

2 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C3

2 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

Table 9.9: Average Distortion Due to Buffering-2000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C2

2 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C3

2 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

9.3 Camera Crowd Size Measurement Scenario Results

This section presents the results for the Camera Crowd Size Scenario. The information about
details of query operators that are used in the query graph can be found in Appendix B.

Table 9.12 shows the embedding distortion for mapping the query graph that is used by
camera crowd size measurement scenario. Distortion values that are closer to 1 means that
query operators are placed closer to the data sources than mappings that result in lower distor-
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Table 9.10: Average Distortion Due to Network Latency-1000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 9.68 (%) 9.53 (%) 9.57 (%) 40.12 (%) 39.25 (%) 36.79 (%) 41.63 (%) 39.58 (%) 43.61 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 10.65 (%) 0.69 (%) 0 (%) 11.03 (%) 7.55 (%)
20 0 (%) 0 (%) 0 (%) 0(%) 0 (%) 0(%) 13.61 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 15.24 (%) 0.55 (%) 0 (%)
40 0 (%) 0 (%) 0 (%) 1.15 (%) 0 (%) 0 (%) 19.57 (%) 2.96 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 19.69 (%) 0 (%) 0 (%) 22.52 (%) 8.07 (%) 2.53 (%)
60 0 (%) 0 (%) 0 (%) 20.23 (%) 0 (%) 0 (%) 25.6 (%) 12.25 (%) 6.18 (%)
70 0 (%) 0 (%) 0 (%) 28.18 (%) 25.05 (%) 0 (%) 34.85 (%) 17.34 (%) 12.89 (%)
80 0 (%) 0 (%) 0 (%) 29.98 (%) 19.59 (%) 0 (%) 35.14 (%) 29.67 (%) 27.58 (%)

C2

2 14.56 (%) 14.55 (%) 14.55 (%) 42.89 (%) 42.12 (%) 39.9 (%) 44.24 (%) 42.41 (%) 46.01(%)
10 0 (%) 0 (%) 0 (%) 0 (%) 16.35 (%) 7.37 (%) 0 (%) 16.69 (%) 13.56 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 18.97 (%) 3.71 (%) 0 (%)
30 0 (%) 0(%) 0(%) 4.78(%) 0 (%) 0 (%) 22.11 (%) 6.35 (%) 0 (%)
40 0 (%) 0(%) 0(%) 7.79 (%) 0 (%) 0 (%) 24.38 (%) 9.42 (%) 0 (%)
50 0 (%) 0(%) 0(%) 24.48 (%) 0 (%) 0 (%) 27.02 (%) 14.01 (%) 9.02 (%)
60 0 (%) 0(%) 0(%) 24.97 (%) 0 (%) 0 (%) 29.57 (%) 17.7 (%) 12.32 (%)
70 0 (%) 0(%) 0(%) 32.12 (%) 29.33 (%) 0 (%) 38.15 (%) 32.09 (%) 18.37 (%)
80 0 (%) 0 (%) 0 (%) 33.77 (%) 24.4 (%) 0 (%) 38.33 (%) 33.46 (%) 31.61 (%)

C3

2 15.79 (%) 15.68 (%) 15.71 (%) 43.14 (%) 42.39 (%) 40.25 (%) 44.46 (%) 42.68 (%) 46.17 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 17.52 (%) 8.85 (%) 0 (%) 17.85 (%) 13.93 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 20.16 (%) 5.33 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 6.4 (%) 0 (%) 0 (%) 23.25 (%) 7.87 (%) 0 (%)
40 0 (%) 0 (%) 0 (%) 9.26 (%) 0 (%) 0 (%) 25.25 (%) 10.83 (%) 0.54 (%)
50 0 (%) 0 (%) 0 (%) 25.39 (%) 0 (%) 0 (%) 27.84 (%) 15.27 (%) 9.26 (%)
60 0 (%) 0 (%) 0 (%) 25.84 (%) 0 (%) 0 (%) 30.52 (%) 18.91 (%) 13.64 (%)
70 0 (%) 0 (%) 0 (%) 32.77 (%) 30.04 (%) 0 (%) 38.56 (%) 32.71 (%) 19.47 (%)
80 0 (%) 0 (%) 0 (%) 34.34(%) 25.3 (%) 0 (%) 38.82 (%) 34.06 (%) 32.23 (%)

Table 9.11: Average Distortion Due to Network Latency-2000 Vehicles

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 30.26 (%) 29.95 (%) 29.64 (%) 45.82 (%) 45.61 (%) 44.33 (%) 46.81 (%) 45.78 (%) 45.91 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 29.8 (%) 24.3 (%) 38.11 (%) 30.29 (%) 42.99 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 14.52 (%) 5.1 (%) 27.64 (%) 17.57 (%) 16.01 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 6.32 (%) 1.18 (%) 28.06 (%) 17.43 (%) 15.28 (%)
40 0 (%) 0 (%) 0 (%) 15.01 (%) 0 (%) 0 (%) 28.06 (%) 17.33 (%) 13.76 (%)
50 0 (%) 0 (%) 0 (%) 25.51 (%) 0.39 (%) 0 (%) 28.36 (%) 16.03 (%) 11.51 (%)
60 0 (%) 0 (%) 0 (%) 26.13 (%) 15.7 (%) 10.51 (%) 29.43 (%) 40.82 (%) 22.47 (%)
70 0 (%) 0 (%) 0 (%) 29.89 (%) 20.22 (%) 13.73 (%) 38.01 (%) 35.17 (%) 25.13 (%)
80 0 (%) 0 (%) 0 (%) 33.61 (%) 23.62 (%) 16.93 (%) 43.9 (%) 42.18 (%) 31.51 (%)

C2

2 33.82 (%) 33.56 (%) 33.31 (%) 46.57 (%) 46.4 (%) 45.39 (%) 47.38 (%) 46.54 (%) 46.65 (%)
10 3.13 (%) 0 (%) 0 (%) 3.5 (%) 33.44 (%) 28.93 (%) 40.26 (%) 33.84 (%) 33.19 (%)
20 0 (%) 0 (%) 0 (%) 6.24 (%) 20.92 (%) 13.19 (%) 31.67 (%) 23.42 (%) 22.13 (%)
30 0 (%) 0 (%) 0 (%) 3.49 (%) 14.19 (%) 9.98 (%) 32.01 (%) 23.3 (%) 21.54 (%)
40 0 (%) 0 (%) 0 (%) 21.34 (%) 8.98 (%) 8.08 (%) 32.02 (%) 23.22 (%) 20.29 (%)
50 0 (%) 0 (%) 0 (%) 29.93 (%) 9.33 (%) 2.91 (%) 32.06 (%) 22.13 (%) 18.45 (%)
60 0 (%) 0 (%) 0 (%) 30.25 (%) 21.88 (%) 17.63 (%) 33.1 (%) 29.54 (%) 27.43 (%)
70 0 (%) 0 (%) 0 (%) 33.52 (%) 25.59 (%) 20.27 (%) 40.17 (%) 37.85 (%) 29.61 (%)
80 0.08 (%) 0 (%) 0 (%) 36.56 (%) 28.37 (%) 22.89 (%) 45.07 (%) 43.68 (%) 34.84 (%)

C3

2 34.45 (%) 34.21 (%) 33.97 (%) 46.71 (%) 46.54 (%) 45.57 (%) 47.48 (%) 46.68 (%) 46.78 (%)
10 4.97 (%) 0 (%) 0 (%) 5.32 (%) 34.09 (%) 29.76 (%) 40.64 (%) 34.48 (%) 33.85 (%)
20 0 (%) 0 (%) 0 (%) 7.96 (%) 22.06 (%) 14.64 (%) 32.39(%) 24.46 (%) 23.22 (%)
30 0 (%) 0 (%) 0 (%) 5.21 (%) 15.6 (%) 11.55 (%) 32.72 (%) 24.36 (%) 22.66 (%)
40 0 (%) 0 (%) 0 (%) 22.47 (%) 10.59 (%) 9.65 (%) 32.72 (%) 24.28 (%) 21.46 (%)
50 0 (%) 0 (%) 0 (%) 30.72 (%) 10.93 (%) 4.75 (%) 32.77 (%) 23.22 (%) 19.69 (%)
60 0 (%) 0 (%) 0 (%) 31.2 (%) 22.99 (%) 18.9 (%) 33.76 (%) 30.35 (%) 28.32 (%)
70 0 (%) 0 (%) 0 (%) 34.17 (%) 26.55 (%) 21.43 (%) 40.56 (%) 38.32 (%) 30.42 (%)
80 2.05 (%) 0.43 (%) 0 (%) 37.09 (%) 29.22 (%) 23.96 (%) 45.2 (%) 43.92 (%) 3544 (%)

tion values.

9.3.1 Average Execution Time

Tables 9.13, 9.14, 9.15, 9.16, and 9.17 show the average execution time needed to process the
original query graph, reconfigured query graph, and adjusted query graph for the cost functions
as the number of fog nodes and cameras vary as well as for the different types of trees.
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Table 9.12: Maximum Embedding Distortion for Camera Crowd Size Measurement Scenario

Tree 1 Tree 2 Tree 3
Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C
1 0.17 0.25 0.25 0.12 0.17 0.17 0.08 0.1 0.1

C
2 0.1 0.12 0.17 0.08 0.1 0.12 0.07 0.07 0.08

C
3 0.08 0.08 0.1 0.08 0.08 0.08 0.07 0.07 0.07

Table 9.13: Average Execution Time-64 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 929.925 (s) 8044.054 (s) 8045.111 (s) 891.303 (s) 7824.061 (s) 7826.948 (s) 726.974 (s) 6896.109 (s) 6898.166 (s)
10 16.831 (s) 1289.147 (s) 1291.109 (s) 16.328 (s) 1241.752 (s) 1243.166 (s) 14.508 (s) 1038.084 (s) 1049.042 (s)
20 10.688 (s) 480.591 (s) 480.898 (s) 10.442 (s) 454.834 (s) 463.034 (s) 9.221 (s) 336.102 (s) 337.833 (s)
30 10.538 (s) 40.283 (s) 50.382 (s) 9.834 (s) 27.891 (s) 30.401 (s) 7.531 (s) 23.906 (s) 24.112 (s)
40 10.012 (s) 32.601 (s) 36.481 (s) 9.321 (s) 27.02 (s) 27.842 (s) 7.344 (s) 23.838 (s) 24.1 (s)
50 9.029 (s) 28.995 (s) 29.395 (s) 8.413 (s) 27.011 (s) 27.362 (s) 7.339 (s) 24.065 (s) 24.165 (s)
60 9.006 (s) 28.018 (s) 29.133 (s) 8.014 (s) 26.141 (s) 27.143 (s) 7.029 (s) 23.046 (s) 24.022 (s)
70 9.221 (s) 27.806 (s) 28.414 (s) 8.421 (s) 26.136 (s) 26.529 (s) 7.311 (s) 19.033 (s) 19.872 (s)
80 9.455 (s) 17.003 (s) 17.198 (s) 8.44 (s) 15.001 (s) 15.833 (s) 7.301 (s) 13.941 (s) 14.491 (s)

C2

2 910.28 (s) 718.957(s) 721.805 (s) 873.628(s) 709.051(s) 711.052(s) 711.853(s) 625.083(s) 621.682 (s)
10 16.976(s) 109.823(s) 112.139(s) 17.073 (s) 113.48454 (s) 114.616(s) 15.295 (s) 91.056(s) 93.4741 (s)
20 11.603 (s) 40.593 (s) 40.4758(s) 11.3188(s) 38.267(s) 39.559 (s) 10.125(s) 28.541(s) 29.695(s)
30 11.404(s) 5.808 (s) 5.998(s) 10.724(s) 3.654 (s) 3.9736(s) 8.473(s) 3.293(s) 3.812 (s)
40 10.95 (s) 4.017(s) 4.084(s) 10.214(s) 3.575(s) 3.867907 (s) 8.29(s) 3.287 (s) 3.99(s)
50 9.501(s) 3.84(s) 3.909(s) 9.335(s) 3.573(s) 3.857(s) 8.285 (s) 3.308(s) 3.863(s)
60 9.474(s) 3.668(s) 3.685(s) 8.945(s) 3.496 (s) 3.604(s) 7.982(s) 3.215(s) 3.762(s)
70 9.385(s) 3.65(s) 3.674(s) 9.34351(s) 3.494(s) 3.599(s) 8.258(s) 2.852(s) 3.74(s)
80 9.225 (s) 2.673(s) 2.681(s) 9.356(s) 2.511(s) 2.564(s) 8.312(s) 2.395(s) 3.397(s)

C3

2 819.334 (s) 644.523 (s) 632.608 (s) 786.344(s) 626.924(s) 623.184(s) 640.732(s) 552.682 (s) 544.858 (s)
10 15.28(s) 104.176(s) 98.282(s) 15.368 (s) 100.34 (s) 100.453(s) 13.767 (s) 84.046 (s) 81.923 (s)
20 10.444 (s) 39.428 (s) 35.474(s) 10.188(s) 37.372(s) 32.042 (s) 9.114(s) 27.888 (s) 26.026 (s)
30 10.274(s) 5.224 (s) 4.0306 (s) 9.653(s) 3.23128 (s) 3.132(s) 7.627(s) 2.912(s) 2.728 (s)
40 9.856 (s) 3.608(s) 3.518(s) 9.202(s) 3.161(s) 3.127 (s) 7.462(s) 2.907 (s) 2.628(s)
50 8.552(s) 3.396 (s) 3.251(s) 8.403(s) 3.16(s) 3.118(s) 7.458 (s) 2.925(s) 2.51(s)
60 8.528(s) 3.244(s) 3.204 (s) 8.052(s) 3.0918 (s) 3.071(s) 7.185(s) 2.843(s) 2.421(s)
70 8.448(s) 3.228(s) 3.212 (s) 8.41(s) 3.09 (s) 2.822 (s) 7.433(s) 2.522 (s) 2.409 (s)
80 8.304 (s) 2.364(s) 2.324(s) 8.422(s) 2.221(s) 2.204(s) 7.48(s) 2.118 (s) 2.101(s)

Table 9.14: Average Execution Time-128 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 1143.807 (s) 10860.899 (s) 11181.235 (s) 1096.302 (s) 10566.379 (s) 10718.963 (s) 894.178 (s) 9312.524 (s) 9447.669 (s)
10 21.702 (s) 1742.997 (s) 1769.131 (s) 20.083 (s) 1678.241 (s) 1721.224 (s) 17.844 (s) 1404.056 (s) 1432.175 (s)
20 14.146 (s) 648.797 (s) 658.83 (s) 12.843 (s) 614.259 (s) 622.058 (s) 11.383 (s) 456.074 (s) 460.974 (s)
30 13.961 (s) 57.382 (s) 71.023 (s) 12.695 (s) 37.566 (s) 43.045 (s) 10.263 (s) 32.273 (s) 33.033 (s)
40 13.314 (s) 44.011 (s) 50.978 (s) 12.464 (s) 38.017 (s) 38.587 (s) 10.033 (s) 32.181 (s) 33.017 (s)
50 12.105 (s) 40.683 (s) 42.723 (s) 12.347 (s) 36.93 (s) 37.128 (s) 10.026 (s) 32.622 (s) 32.969 (s)
60 12.077 (s) 39.384 (s) 39.729 (s) 11.857 (s) 36.508 (s) 36.635 (s) 9.64 (s) 31.573 (s) 32.429 (s)
70 12.341 (s) 39.094 (s) 39.358 (s) 11.357 (s) 26.529 (s) 35.321 (s) 9.992 (s) 26.075 (s) 26.827 (s)
80 12.629 (s) 24.217 (s) 24.294 (s) 11.301 (s) 21.551 (s) 23.374 (s) 9.98 (s) 19.062 (s) 19.599 (s)

C2

2 1124.53(s) 1013.09(s) 1026.7252 (s) 1077.921(s) 961.281(s) 977.448 (s) 879.594(s) 852.539 (s) 895.059 (s)
10 23.523(s) 161.923(s) 162.926(s) 21.935(s) 152.7312(s) 158.55 (s) 19.738(s) 121.61(s) 124.183 (s)
20 16.109(s) 56.621(s) 57.551 (s) 14.831 (s) 56.988 (s) 58.752 (s) 13.398 (s) 40.29 (s) 41.51(s)
30 16.243(s) 7.958 (s) 8.582(s) 14.686(s) 6.123 (s) 6.385(s) 12.299 (s) 5.335(s) 5.988(s)
40 15.311(s) 7.678(s) 7.748(s) 14.419 (s) 5.7217 (s) 6.533 (s) 12.074(s) 5.189(s) 5.984 (s)
50 14.075(s) 5.704 (s) 5.77(s) 14.312(s) 5.743 (s) 5.964(s) 12.06(s) 5.368 (s) 5.962(s)
60 14.24(s) 5.23 (s) 5.689(s) 13.866(s) 5.74 (s) 5.965(s) 11.688 (s) 5.135(s) 5.927(s)
70 14.28(s) 5.855 (s) 5.926(s) 13.375(s) 5.248(s) 5.79 (s) 12.037 (s) 4.743(s) 4.971(s)
80 13.549(s) 4.404(s) 4.472(s) 13.366(s) 4.398(s) 4.4904(s) 12.0226(s) 3.97(s) 3.989 (s)

C3

2 1008.556(s) 900.525 (s) 816.498 (s) 966.746 (s) 854.472 (s) 799.514 (s) 788.874(s) 757.813 (s) 700.493 (s)
10 21.097(s) 150.154 (s) 143.548(s) 19.673 (s) 144.65 (s) 139.692 (s) 17.702(s) 114.32(s) 109.413 (s)
20 14.448 (s) 54.775(s) 50.706 (s) 13.30184 (s) 54.212 (s) 51.764 (s) 12.017 (s) 38.485 (s) 36.573(s)
30 14.568 (s) 7.0745 (s) 6.681(s) 13.1716 (s) 5.443 (s) 4.745(s) 11.031 (s) 4.743 (s) 4.642(s)
40 13.732(s) 6.825(s) 5.074(s) 12.932 (s) 5.086 (s) 4.875 (s) 10.829 (s) 4.613 (s) 4.441 (s)
50 12.624 (s) 5.151 (s) 5.084(s) 12.836 (s) 5.105 (s) 4.97(s) 10.822(s) 4.772 (s) 4.637 (s)
60 12.776(s) 5.538 (s) 4.132(s) 12.436(s) 5.103 (s) 4.93 (s) 10.483 (s) 4.565(s) 4.394 (s)
70 12.808(s) 5.205(s) 4.164(s) 11.996(s) 4.665(s) 4.228 (s) 10.796 (s) 4.216(s) 4.116 (s)
80 12.152 (s) 3.915(s) 3.852(s) 11.988 (s) 3.91 (s) 3.692 (s) 10.7824(s) 3.529 (s) 3.462 (s)
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Table 9.15: Average Execution Time-256 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 5519.175 (s) 33977.192 (s) 33980.167 (s) 5364.932 (s) 33107.432 (s) 33107.533 (s) 4657.464 (s) 29381.033 (s) 29388.083 (s)
10 643.753 (s) 6423.823 (s) 6443.834 (s) 612.33 (s) 6235.441 (s) 6239.231 (s) 478.432 (s) 5491.024 (s) 5491.331 (s)
20 166.442 (s) 3719.919 (s) 3722.515 (s) 162.311 (s) 3612.252 (s) 3614.166 (s) 64.655 (s) 3144.094 (s) 3148.621 (s)
30 98.517 (s) 2727.108 (s) 2730.388 (s) 98.221 (s) 2725.927 (s) 2730.144 (s) 18.382 (s) 2045.442 (s) 2066.726 (s)
40 90.212 (s) 1819.972 (s) 1821.737 (s) 90.198 (s) 1817.021 (s) 1817.378 (s) 16.482 (s) 1541.303 (s) 1552.261 (s)
50 17.997 (s) 1017.833 (s) 1020.626 (s) 17.533 (s) 979.275 (s) 979.621 (s) 15.643 (s) 802.266 (s) 805.112 (s)
60 17.097 (s) 1009.356 (s) 1011.833 (s) 17.414 (s) 965.914 (s) 966.013 (s) 14.932 (s) 790.732 (s) 793.028 (s)
70 16.442 (s) 491.938 (s) 492.772 (s) 14.892 (s) 464.532 (s) 466.341 (s) 13.234 (s) 338.03 (s) 341.293 (s)
80 16.099 (s) 477.992 (s) 480.393 (s) 14.874 (s) 452.802 (s) 453.157 (s) 13.114 (s) 336.932 (s) 337.633 (s)

C2

2 5029.347(s) 2892.302 (s) 2899.421(s) 4888.791(s) 2487.9 (s) 2499.609 (s) 4244.11 (s) 2387.557 (s) 2397.773(s)
10 586.612(s) 546.757 (s) 580.717 (s) 557.696 (s) 460.021 (s) 469.164(s) 435.97 (s) 467.422(s) 466.372(s)
20 151.67 (s) 316.579 (s) 377.052 (s) 147.904(s) 307.493 (s) 318.983 (s) 58.942 (s) 267.64(s) 278.937(s)
30 89.771(s) 201.127 (s) 209.465(s) 89.503 (s) 201.104(s) 207.2 (s) 16.742 (s) 174.118(s) 179.464(s)
40 82.206(s) 134.268(s) 135.15 (s) 82.192(s) 154.672 (s) 155.253 (s) 16.146 (s) 131.202 (s) 135.49 (s)
50 20.876(s) 86.435 (s) 86.195(s) 17.103(s) 83.357 (s) 82.907 (s) 15.944(s) 59.186 (s) 58.801 (s)
60 20.077(s) 85.815 (s) 85.438 (s) 16.993(s) 82.23 (s) 71.894(s) 15.855(s) 58.336 (s) 56.651(s)
70 18.351(s) 41.96(s) 36.593(s) 16.944(s) 34.274 (s) 34.3242 (s) 15.633(s) 24.938(s) 23.919 (s)
80 18.0528(s) 35.263(s) 34.383(s) 16.924(s) 31.406 (s) 32.042(s) 15.088 (s) 19.454 (s) 20.779 (s)

C3

2 4470.531(s) 2548.284 (s) 2523.512(s) 4345.592(s) 2191.983 (s) 2183.065 (s) 3772.544 (s) 2103.575 (s) 2094.125 (s)
10 521.433(s) 481.725 (s) 419.841 (s) 495.73 (s) 405.305 (s) 383.55 (s) 387.529 (s) 411.826 (s) 389.845(s)
20 134.818 (s) 278.925 (s) 241.9675 (s) 131.471(s) 270.919 (s) 234.92 (s) 52.375 (s) 235.807 (s) 226.146(s)
30 79.797(s) 177.202 (s) 165.472 (s) 79.559 (s) 177.185 (s) 154.76 (s) 14.882 (s) 153.408 (s) 148.004 (s)
40 73.072(s) 118.298 (s) 115.415 (s) 73.06(s) 136.275 (s) 118.1257 (s) 14.352 (s) 115.597 (s) 100.865 (s)
50 18.557(s) 76.155 (s) 66.546(s) 15.203 (s) 73.4425 (s) 63.675 (s) 14.173 (s) 52.147 (s) 51.355 (s)
60 17.847(s) 75.608 (s) 65.885 (s) 15.105(s) 72.45 (s) 62.790(s) 14.094(s) 51.398 (s) 49.477(s)
70 16.312 (s) 36.97 (s) 31.959 (s) 15.062(s) 30.198 (s) 29.9775 (s) 13.719(s) 21.972(s) 20.89 (s)
80 16.047 (s) 31.069 (s) 30.029(s) 15.044(s) 29.433 (s) 27.985(s) 13.234 (s) 18.903 (s) 17.275 (s)

Table 9.16: Average Execution Time-512 Cameras

Tree 1 Tree 2 Tree 3

C1

#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG
2 15398.498(s) 95475.909(s) 95144.467(s) 11749.201(s) 73829.573(s) 75154.099(s) 9827.249(s) 64050.651(s) 63772.14 (s)

10 1796.07 (s) 18050.942 (s) 18042.735 (s) 1341.002 (s) 13905.033 (s) 14163.054 (s) 1009.491(s) 11970.432(s) 11916.188 (s)
20 464.373 (s) 10452.972(s) 10423.042(s) 355.461 (s) 8163.689 (s) 8204.156 (s) 136.422(s) 6854.124(s) 7147.369 (s)
30 274.862(s) 7663.173(s) 7781.605(s) 215.103 (s) 6160.595 (s) 6197.426 (s) 38.786(s) 4459.063 (s) 4484.795 (s)
40 251.691 (s) 5114.121(s) 5100.863(s) 197.533 (s) 4124.637 (s) 4307.185 (s) 34.777(s) 3360.04 (s) 3368.406 (s)
50 50.211(s) 2860.117(s) 2857.7528(s) 38.397 (s) 2222.955 (s) 2223.739 (s) 33.00673(s) 1748.939(s) 1747.093 (s)
60 47.706 (s) 2836.29(s) 2833.132(s) 38.136 (s) 2192.624 (s) 2192.849 (s) 31.506(s) 1723.795 (s) 1720.87 (s)
70 45.873 (s) 1382.345(s) 1379.761(s) 32.613 (s) 1049.842 (s) 1058.594 (s) 27.923(s) 736.91 (s) 740.605 (s)
80 44.916 (s) 1343.157(s) 1345.104(s) 32.574 (s) 1032.388 (s) 1037.729 (s) 27.67(s) 734.511 (s) 732.663(s)

C2

2 12286.538(s) 7012.595(s) 7100.511(s) 9374.745(s) 4226.742(s) 4353.175(s) 7841.211(s) 3666.899(s) 3710.9(s)
10 1433.092(s) 1365.757 (s) 1450.361(s) 1069.99 (s) 910.566 (s) 965.999(s) 805.472(s) 799.545(s) 800.291 (s)
20 370.525(s) 658.275(s) 691.31(s) 283.624(s) 467.372 (s) 464.56(s) 108.325(s) 392.398(s) 379.812(s)
30 219.31(s) 482.587(s) 481.514(s) 171.43(s) 352.45(s) 368.634(s) 30.946(s) 254.393(s) 253.039 (s)
40 200.825 (s) 322.054(s) 337.988(s) 157.612 (s) 236.139(s) 237.62 (s) 27.748(s) 230.834(s) 224.19 (s)
50 40.063(s) 180.115(s) 183.397(s) 32.637(s) 127.266 (s) 120.609(s) 26.335(s) 120.151(s) 119.916(s)
60 38.059 (s) 144.264(s) 147.034(s) 32.429 (s) 125.527(s) 117.313(s) 25.139(s) 72.35(s) 66.126 (s)
70 36.445(s) 64.153(s) 60.966(s) 31.022(s) 53.104 (s) 51.341(s) 22.27(s) 42.187(s) 39.773(s)
80 35.838(s) 51.684(s) 51.565 (s) 28.744(s) 51.102(s) 50.269(s) 22.078(s) 29.515(s) 28.137(s)

C3

2 10825.144(s) 5251.175(s) 5108.668(s) 8259.688(s) 3691.478(s) 3509.243(s) 6908.556(s) 3202.532(s) 3126.328(s)
10 1262.637(s) 1192.801 (s) 1082.564(s) 942.724 (s) 795.255 (s) 749.783(s) 709.672(s) 698.521(s) 614.971 (s)
20 326.454 (s) 574.913(s) 425.38(s) 249.889(s) 408.186 (s) 402.22(s) 95.904(s) 342.706(s) 328.842(s)
30 193.228(s) 421.474(s) 416.896(s) 151.218(s) 308.021(s) 301.848(s) 27.266(s) 222.178 (s) 219.082 (s)
40 176.939 (s) 281.27(s) 206.051(s) 138.866 (s) 206.235 (s) 188.416 (s) 24.448(s) 201.602(s) 194.104 (s)
50 35.298(s) 157.306(s) 141.465(s) 26.993(s) 111.15 (s) 104.424(s) 23.203(s) 104.936(s) 103.824(s)
60 33.533 (s) 125.995(s) 109.987(s) 26.81 (s) 109.631 (s) 101.57(s) 22.149(s) 63.188 (s) 57.252 (s)
70 32.111(s) 56.029(s) 52.785(s) 22.927(s) 52.492 (s) 50.512 (s) 19.622(s) 36.845(s) 34.436 (s)
80 31.576(s) 50.873(s) 50.706 (s) 21.801 (s) 51.618(s) 48.718(s) 19.452(s) 28.398(s) 26.959 (s)

Effectiveness of Collector Fog Nodes: The results in Tables 9.13, 9.14, 9.15, 9.16, and 9.17
show that by increasing the number of CFNs the average execution time decreases for the
reconfigured and adjusted query graphs.
Effectiveness Fog-Tree Hierarchy: Tree 3, representing the shortest tree, has the lowest ex-
ecution time as the result of providing more CFNs closer to data sources than the other two
trees. With Tree 2 each fog node can accept up to three children while each fog node in Tree 3
can accept up to four children. By comparing the results in Tables 9.13, 9.14, 9.15, 9.16, and
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Table 9.17: Average Execution Time-640 Cameras

Tree 1 Tree 2 Tree 3

C1

#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG
2 17862.257(s) 110752.055(s) 110367.582(s) 13629.073(s) 85642.305(s) 87178.755(s) 11399.608(s) 74298.756(s) 73975.682(s)

10 2083.442(s) 20939.093 (s) 20929.572(s) 1555.563(s) 16129.837(s) 16429.142 (s) 1171.011(s) 13885.701(s) 13822.772(s)
20 538.672 (s) 12125.447(s) 12090.728(s) 412.33484 (s) 9469.878 (s) 9516.821 (s) 158.278(s) 7950.772(s) 8290.982 (s)
30 318.84(s) 8889.281(s) 9026.662(s) 249.52 (s) 7146.29 (s) 7189.008 (s) 44.991(s) 5172.516 (s) 5202.362 (s)
40 291.968(s) 5932.38(s) 5917.006(s) 229.138(s) 4784.579(s) 4996.356 (s) 40.342(s) 3897.644(s) 3907.352 (s)
50 58.245(s) 3317.728(s) 3314.99(s) 44.54(s) 2578.623 (s) 2579.538(s) 38.2878(s) 2028.77(s) 2026.627(s)
60 55.332 (s) 3290.096(s) 3286.434(s) 44.236(s) 2543.444 (s) 2543.705 (s) 36.54732(s) 1999.603(s) 1996.216 (s)
70 53.212(s) 1603.521(s) 1600.526(s) 37.868 (s) 1217.819(s) 1227.969 (s) 32.394(s) 854.864 (s) 859.106 (s)
80 52.102(s) 1558.062(s) 1560.314(s) 37.785 (s) 1197.576 (s) 1203.766(s) 32.094(s) 852.033(s) 849.86(s)

C2

2 13883.787(s) 7924.235(s) 8023.53(s) 10593.465(s) 4776.216(s) 4919.085(s) 8860.563(s) 4143.597(s) 4193.317(s)
10 1619.396(s) 1543.301 (s) 1638.903(s) 1209.088 (s) 1028.938 (s) 1091.587(s) 910.183(s) 903.485(s) 904.383 (s)
20 418.695(s) 743.85(s) 781.183(s) 320.49512(s) 528.13 (s) 524.958(s) 122.405(s) 443.409(s) 429.186(s)
30 247.803(s) 545.321(s) 544.11(s) 193.7159(s) 398.265(s) 416.552(s) 34.968(s) 287.469(s) 285.907 (s)
40 226.925(s) 363.902(s) 381.924(s) 178.10156 (s) 266.837(s) 268.516(s) 31.324(s) 260.842(s) 253.337 (s)
50 45.279(s) 203.525(s) 207.231(s) 36.881(s) 143.818 (s) 136.287(s) 29.758(s) 135.773(s) 135.505(s)
60 43.007 (s) 163.012(s) 166.142(s) 36.647(s) 128.841(s) 132.569(s) 28.407(s) 81.755(s) 74.728(s)
70 41.185(s) 72.492(s) 68.898(s) 35.056(s) 60.002(s) 58.013(s) 25.1651(s) 47.671(s) 44.949(s)
80 40.494(s) 58.402(s) 58.265 (s) 32.482(s) 57.746(s) 56.807(s) 24.944(s) 33.355(s) 31.741(s)

C3

2 12124.161(s) 5881.316(s) 5721.708(s) 9250.85(s) 4134.456(s) 3930.356(s) 7737.582(s) 3586.834(s) 3501.486(s)
10 1414.154(s) 1335.937 (s) 1212.471(s) 1055.858 (s) 890.66 (s) 839.756(s) 794.834(s) 782.342(s) 688.762(s)
20 365.628 (s) 643.906(s) 476.425(s) 279.878(s) 457.162 (s) 450.484(s) 107.418(s) 383.832(s) 368.304(s)
30 216.416(s) 472.058(s) 466.923(s) 169.366(s) 344.982(s) 338.066(s) 30.532(s) 248.836(s) 245.374 (s)
40 198.178 (s) 315.022(s) 230.777(s) 155.522 (s) 230.982 (s) 211.022 (s) 27.386(s) 225.794(s) 217.398 (s)
50 39.533(s) 176.182(s) 158.448(s) 30.216(s) 124.488(s) 116.958(s) 25.986(s) 117.522(s) 116.288(s)
60 37.556 (s) 141.114(s) 123.184(s) 30.022 (s) 122.782(s) 113.754(s) 24.808(s) 70.776 (s) 64.124 (s)
70 35.964(s) 62.752(s) 59.112(s) 25.674(s) 56.794 (s) 54.574 (s) 21.974(s) 41.264(s) 38.562 (s)
80 35.365(s) 54.977(s) 54.792(s) 24.412(s) 53.816(s) 51.566(s) 21.784(s) 31.806(s) 30.198(s)

9.17, we can conclude that the fog-tree hierarchy has a good tolerance for processing of a huge
volume of data.
Effectiveness of Algorithms 8.1 and 8.2: From Tables 9.13, 9.14, 9.15, 9.16, and 9.17 we
see that the original query graph results in less execution time compared to the reconfigured
and the adjusted query graph. A fog node is assigned only one node (representing an data
operation) of the original graph, while Algorithm 8.1 and Algorithm 8.2 are used to map one
or more nodes to a single fog node. The execution time of the reconfigured and adjusted query
graphs is significantly higher for a small number of CFNs. However, when the number of
CFNs increases the differences decrease.
Comparison of Cost Functions C1, C2, and C3: From Tables 9.13, 9.14, 9.15, 9.16, and 9.17
we see that the use of cost function C3 has lower execution time compared to cost functions
C1 and C2. The cost function C3 favours mapping query vertices of a given query graph to
upper levels of the fog-tree hierarchy. These fog nodes have more processing power compared
to fog nodes in the lower levels of the fog-tree hierarchy. The results also show that since the
cost function C2 uses more levels than C1 that more powerful computing power is available
resulting in lower execution times.

9.3.2 Average End-to-End Delay
Tables 9.18, 9.19, 9.20, and 9.21 show the average end-to-end delay for the processing of the
original query graph, reconfigured query graph, and adjusted query graph.
Effectiveness of Collector Fog Nodes: Tables 9.18, 9.19, 9.20, and 9.21 show that the average
end-to-end delay as the number of fog nodes and cameras vary. Tables 9.18, 9.19, 9.20, and
9.21 show that as the number of fog nodes increases the end-to-end delay decreases when the
number of cameras increases. When there are fewer fog nodes available then all the gener-
ated tuples from cameras are sent to a limited number of fog nodes which leads to a network
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Table 9.18: Average End-to-End Delay-64 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 0.867951 (s) 0.458208 (s) 0.433715 (s) 0.903544 (s) 0.472824 (s) 0.45584 (s) 1.606712 (s) 0.599311 (s) 0.59777 (s)
10 0.299223 (s) 0.107592 (s) 0.102055 (s) 0.309946 (s) 0.108299 (s) 0.10798 (s) 0.369963 (s) 0.142017 (s) 0.13501 (s)
20 0.202463 (s) 0.072436 (s) 0.06933 (s) 0.228255 (s) 0.078455 (s) 0.075637 (s) 0.233773 (s) 0.081384 (s) 0.081093 (s)
30 0.172506 (s) 0.072132 (s) 0.067171 (s) 0.225137 (s) 0.078218 (s) 0.073091 (s) 0.218013 (s) 0.080742 (s) 0.080109 (s)
40 0.137021 (s) 0.068017 (s) 0.067009 (s) 0.179083 (s) 0.078311 (s) 0.075513 (s) 0.199367 (s) 0.080665 (s) 0.080346 (s)
50 0.097564 (s) 0.066899 (s) 0.065365 (s) 0.112517 (s) 0.078617 (s) 0.077339 (s) 0.175033 (s) 0.080163 (s) 0.080104 (s)
60 0.106158 (s) 0.074449 (s) 0.073915 (s) 0.123327 (s) 0.079042 (s) 0.078321 (s) 0.188931 (s) 0.086192 (s) 0.086048 (s)
70 0.081732 (s) 0.074732 (s) 0.073919 (s) 0.118741 (s) 0.090521 (s) 0.090039 (s) 0.182097 (s) 0.091372 (s) 0.090171 (s)
80 0.065671 (s) 0.075874 (s) 0.074897 (s) 0.115163 (s) 0.092714 (s) 0.092169 (s) 0.149965 (s) 0.094828 (s) 0.093742 (s)

C2

2 1.170431(s) 0.535507(s) 0.423652 (s) 1.218429 (s) 0.552589 (s) 0.441253 (s) 2.166651132 (s) 0.70041476 (s) 0.5839017 (s)
10 0.403502 (s) 0.1257427 (s) 0.099687 (s) 0.417962181 (s) 0.126569(s) 0.1054744(s) 0.4988951 (s) 0.165976(s) 0.131877(s)
20 0.273015(s) 0.084655 (s) 0.06774(s) 0.307806 (s) 0.091695 (s) 0.073882(s) 0.315242(s) 0.095113 (s) 0.079216(s)
30 0.232624(s) 0.084306 (s) 0.065612(s) 0.303597 (s) 0.0914133(s) 0.071392(s) 0.293903(s) 0.094367(s) 0.0782507(s)
40 0.184772(s) 0.079494 (s) 0.065459(s) 0.241493(s) 0.091522(s) 0.07376104 (s) 0.268846(s) 0.094278 (s) 0.078417(s)
50 0.131565(s) 0.078183 (s) 0.063848 (s) 0.1517291 (s) 0.091879(s) 0.075544(s) 0.236032 (s) 0.093686 (s) 0.078257(s)
60 0.143154(s) 0.087004 (s) 0.0722017 (s) 0.166306 (s) 0.09237(s) 0.076503(s) 0.2547734(s) 0.1007325 (s) 0.084016 (s)
70 0.110215(s) 0.087339(s) 0.0722047 (s) 0.160122(s) 0.105791(s) 0.0879509(s) 0.245558 (s) 0.106786(s) 0.088079 (s)
80 0.088557 (s) 0.088673 (s) 0.07315(s) 0.155273 (s) 0.10835 (s) 0.090036 (s) 0.202227 (s) 0.110825(s) 0.091567 (s)

C3

2 1.3019265 (s) 0.5956704(s) 0.4770865 (s) 1.355316 (s) 0.6146712 (s) 0.501424 (s) 2.410068 (s) 0.7791043 (s) 0.657547 (s)
10 0.4488345 (s) 0.1398696(s) 0.1122605 (s) 0.464919 (s) 0.1407887 (s) 0.118778(s) 0.554945 (s) 0.184622 (s) 0.148511(s)
20 0.3036945 (s) 0.094166 (s) 0.076263(s) 0.3423825 (s) 0.1019915 (s) 0.0832007(s) 0.350659(s) 0.1057992 (s) 0.089202(s)
30 0.258759(s) 0.0937716 (s) 0.073888 (s) 0.3377055 (s) 0.1016834(s) 0.0804001 (s) 0.327015 (s) 0.104966(s) 0.088119(s)
40 0.2055315 (s) 0.08842 (s) 0.073709 (s) 0.268625(s) 0.1018043(s) 0.0830643 (s) 0.299055 (s) 0.1048645 (s) 0.088306 (s)
50 0.146346(s) 0.086968 (s) 0.0719015 (s) 0.1687755 (s) 0.1022021(s) 0.0850729 (s) 0.262545 (s) 0.1042119 (s) 0.088114(s)
60 0.159237 (s) 0.096783 (s) 0.0813065 (s) 0.1849905 (s) 0.102754(s) 0.0861531 (s) 0.28339(s) 0.1120496 (s) 0.094652 (s)
70 0.122598 (s) 0.097116 (s) 0.081309 (s) 0.178115 (s) 0.117673(s) 0.099029(s) 0.2731455 (s) 0.1187836 (s) 0.099188 (s)
80 0.09855 (s) 0.098636 (s) 0.082367 (s) 0.1727445 (s) 0.120528 (s) 0.1013859 (s) 0.2249475 (s) 0.1232764 (s) 0.103116 (s)

Table 9.19: Average End-to-End Delay-128 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 1.132861 (s) 0.617775 (s) 0.56845 (s) 1.175217 (s) 0.634291 (s) 0.592307 (s) 2.011987 (s) 0.877221 (s) 0.745591 (s)
10 0.456075 (s) 0.221578 (s) 0.210219 (s) 0.468835 (s) 0.222377 (s) 0.217698 (s) 0.540255 (s) 0.260479 (s) 0.24581 (s)
20 0.34093 (s) 0.181852 (s) 0.174876 (s) 0.371623 (s) 0.188654 (s) 0.181687 (s) 0.378189 (s) 0.191963 (s) 0.187584 (s)
30 0.305282 (s) 0.181509 (s) 0.172544 (s) 0.367913 (s) 0.188386 (s) 0.178938 (s) 0.359436 (s) 0.191238 (s) 0.186517 (s)
40 0.263054 (s) 0.176859 (s) 0.172369 (s) 0.313108 (s) 0.188491 (s) 0.181554 (s) 0.337246 (s) 0.191151 (s) 0.186773 (s)
50 0.216101 (s) 0.175595 (s) 0.170594 (s) 0.233895 (s) 0.188837 (s) 0.183526 (s) 0.308289 (s) 0.191843 (s) 0.190584 (s)
60 0.226328 (s) 0.184127 (s) 0.179828 (s) 0.246759 (s) 0.189317 (s) 0.184586 (s) 0.324827 (s) 0.197396 (s) 0.092931 (s)
70 0.197261 (s) 0.184447 (s) 0.179832 (s) 0.241301 (s) 0.192288 (s) 0.182421 (s) 0.316695 (s) 0.197636 (s) 0.193712 (s)
80 0.178148 (s) 0.1857372 (s) 0.180886 (s) 0.237043 (s) 0.204766 (s) 0.199542 (s) 0.278458 (s) 0.207155 (s) 0.202429 (s)

C2

2 1.731351(s) 0.833069 (s) 0.664347 (s) 1.796084 (s) 0.855341(s) 0.692229(s) 3.074917(s) 1.182931(s) 0.8713722 (s)
10 0.697019 (s) 0.298797 (s) 0.24568294 (s) 0.71652053(s) 0.299875 (s) 0.2544236(s) 0.82567171 (s) 0.35125(s) 0.2873713 (s)
20 0.52104331(s) 0.245227(s) 0.204312 (s) 0.567943(s) 0.254399(s) 0.212335(s) 0.577982(s) 0.258821(s) 0.219224(s)
30 0.46656(s) 0.244768(s) 0.201652(s) 0.56228143(s) 0.2540382 (s) 0.209124(s) 0.549326(s) 0.257884 (s) 0.217984(s)
40 0.402022(s) 0.238494(s) 0.201446(s) 0.4785229 (s) 0.2541803 (s) 0.212182(s) 0.515411(s) 0.257767 (s) 0.21828(s)
50 0.33026715 (s) 0.236789(s) 0.1993732(s) 0.357468(s) 0.254646(s) 0.214468(s) 0.47115807(s) 0.258002 (s) 0.222735 (s)
60 0.3458974 (s) 0.248295(s) 0.2101649 (s) 0.3771217(s) 0.255293(s) 0.215756(s) 0.4964331(s) 0.266188 (s) 0.1086084(s)
70 0.301473(s) 0.248726 (s) 0.2101695(s) 0.3687803(s) 0.259003(s) 0.213154(s) 0.4840049 (s) 0.266512(s) 0.226391(s)
80 0.272263(s) 0.25046 (s) 0.211414(s) 0.362272(s) 0.276126951 (s) 0.2332047(s) 0.42556736 (s) 0.279348 (s) 0.236578(s)

C3

2 1.925863(s) 0.926662 (s) 0.738985 (s) 1.9978689 (s) 0.9514365 (s) 0.76999(s) 3.4203779(s) 1.3158315 (s) 0.969268 (s)
10 0.775327 (s) 0.332367 (s) 0.2732847 (s) 0.7970195(s) 0.3335655 (s) 0.2830074 (s) 0.918433 (s) 0.390718(s) 0.319553 (s)
20 0.579581(s) 0.272778(s) 0.2273388 (s) 0.6317591(s) 0.282981(s) 0.2361931s) 0.6429213(s) 0.2879445(s) 0.243859(s)
30 0.518979(s) 0.272263 (s) 0.224307(s) 0.6254521(s) 0.282579 (s) 0.232619(s) 0.6110412(s) 0.286857 (s) 0.242472(s)
40 0.447191(s) 0.265288(s) 0.2240797(s) 0.532283 (s) 0.2827365 (s) 0.236022(s) 0.5733182 (s) 0.2867265 (s) 0.242804(s)
50 0.3673717 (s) 0.263392 (s) 0.221772(s) 0.3976215(s) 0.283255(s) 0.238583 (s) 0.5240913(s) 0.2877645 (s) 0.2477592 (s)
60 0.384757 (s) 0.276195(s) 0.233776 (s) 0.4194903(s) 0.2839755(s) 0.239961(s) 0.552205(s) 0.296094 (s) 0.120813(s)
70 0.335343(s) 0.276675 (s) 0.233781 (s) 0.4102117 (s) 0.288432(s) 0.2371473(s) 0.5383815 (s) 0.296454(s) 0.251826(s)
80 0.302851(s) 0.278605 (s) 0.235151(s) 0.4029731(s) 0.307149 (s) 0.2594046(s) 0.4733786 (s) 0.3107325 (s) 0.263157 (s)

congestion and a long end-to-end delay. As the number of fog nodes increases the end-to-end
delay decreases since fewer tuples are being sent to each fog node.
Effectiveness of Fog-Tree Hierarchy: From Tables 9.18, 9.19, 9.20, and 9.21we see that
Tree 1 has the lowest end-to-end delay compared to Tree 2 and Tree 3. As we go up the fog-
tree hierarchy the number of network hops increases and the processing power of fog nodes
increases as well.
Effectiveness of Algorithms 8.1 and 8.2: From Tables 9.18, 9.19, 9.20, and 9.21 we see that
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Table 9.20: Average End-to-End Delay-256 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 4.467373 (s) 2.828648 (s) 2.730123 (s) 4.60726 (s) 2.885391 (s) 2.81574 (s) 7.403225 (s) 3.38352 (s) 3.376091 (s)
10 1.213663 (s) 0.878809 (s) 0.85887 (s) 1.245372 (s) 0.89564 (s) 0.87832 (s) 1.818515 (s) 0.989103 (s) 0.987628 (s)
20 0.952543 (s) 0.744054 (s) 0.731465 (s) 0.976222 (s) 0.75522 (s) 0.746313 (s) 1.333287 (s) 0.804315 (s) 0.803386 (s)
30 0.915198 (s) 0.688352 (s) 0.663751 (s) 0.956113 (s) 0.697051 (s) 0.688725 (s) 1.289708 (s) 0.778995 (s) 0.758211 (s)
40 0.91073 (s) 0.681531 (s) 0.643987 (s) 0.692371 (s) 0.67256 (s) 0.658803 (s) 1.270152 (s) 0.773351 (s) 0.703721 (s)
50 0.705957 (s) 0.624589 (s) 0.619046 (s) 0.725176 (s) 0.63747 (s) 0.634017 (s) 0.814809 (s) 0.71949 (s) 0.619149 (s)
60 0.687382 (s) 0.617373 (s) 0.596329 (s) 0.707818 (s) 0.63256 (s) 0.58469 (s) 0.838829 (s) 0.638911 (s) 0.601621 (s)
70 0.685301 (s) 0.617932 (s) 0.663201 (s) 0.800931 (s) 0.637024 (s) 0.566941 (s) 0.80112 (s) 0.659702 (s) 0.600972 (s)
80 0.676606 (s) 0.617098 (s) 0.555303 (s) 0.699655 (s) 0.636855 (s) 0.604478 (s) 0.899865 (s) 0.654318 (s) 0.613669 (s)

C2

2 9.628082 (s) 4.8262392 (s) 4.1678057(s) 9.929566(s) 4.9230542(s) 4.298508(s) 15.955052 (s) 5.7729618(s) 5.153052 (s)
10 3.513686(s) 1.4994239(s) 1.311150942(s) 3.582073(s) 1.5281409(s) 1.340843(s) 4.817235(s) 1.68760753(s) 1.5077129 (s)
20 2.9509206 (s) 1.269504(s) 1.1166544(s) 3.001965 (s) 1.288563 (s) 1.1393212(s) 4.669001 (s) 1.372322 (s) 1.2264406 (s)
30 2.8704372 (s) 1.1744661(s) 1.01328227 (s) 2.958614(s) 1.1893081 (s) 1.051075(s) 4.575578(s) 1.3291212 (s) 1.157481 (s)
40 2.860802 (s) 1.16282819 (s) 0.9831105(s) 3.288197(s) 1.1475218(s) 1.005726(s) 4.353815(s) 1.3194917(s) 1.074307(s)
50 2.4194752 (s) 1.06573(s) 0.945036(s) 3.35889(s) 1.0876513(s) 0.967803(s) 4.00103(s) 1.227593(s) 0.9451928 (s)
60 2.379446(s) 1.0533611(s) 0.910355(s) 3.321435(s) 1.0792732 (s) 0.892587(s) 3.963044(s) 1.0901099 (s) 0.918434 (s)
70 2.3749607(s) 1.0543155(s) 1.0124426 (s) 3.522164(s) 1.08689(s) 0.865492(s) 3.79196(s) 1.12558(s) 0.9174438(s)
80 2.356228(s) 1.0528926 (s) 0.84772555 (s) 3.303896(s) 1.086602 (s) 0.9227961(s) 3.735389 (s) 1.1163977(s) 0.936827 (s)

C3

2 10.721695 (s) 5.3744312 (s) 4.641209(s) 11.057424(s) 5.48224(s) 4.786758(s) 17.76774 (s) 6.428688 (s) 5.7393547 (s)
10 3.912791 (s) 1.669737(s) 1.460079(s) 3.988898(s) 1.701716(s) 1.493144(s) 5.364436(s) 1.8792957(s) 1.6789676 (s)
20 3.286103 (s) 1.4137026(s) 1.2434905(s) 3.34298 (s) 1.434918 (s) 1.2687321(s) 5.199888 (s) 1.5281985 (s) 1.365752 (s)
30 3.196475 (s) 1.307868(s) 1.1283767 (s) 3.2946712 (s) 1.3243969 (s) 1.170835(s) 5.09529(s) 1.480005 (s) 1.288958 (s)
40 3.185752 (s) 1.2949089 (s) 1.094777(s) 3.6616904 (s) 1.277864(s) 1.119961 (s) 4.848364(s) 1.469366(s) 1.196327(s)
50 2.694296 (s) 1.1867191(s) 1.0523782(s) 3.740424 (s) 1.211193 (s) 1.077829 (s) 4.45554(s) 1.367031(s) 1.052553 (s)
60 2.649716 (s) 1.1730087(s) 1.013759(s) 3.698732(s) 1.201864 (s) 0.993973 (s) 4.413189(s) 1.2139309 (s) 1.022757 (s)
70 2.644722(s) 1.1740708(s) 1.1274417 (s) 3.92223(s) 1.210345(s) 0.963799(s) 4.22268(s) 1.253433(s) 1.021652(s)
80 2.623854(s) 1.1724862 (s) 0.9440151 (s) 3.679172(s) 1.2100245 (s) 1.027612(s) 4.159676 (s) 1.243204(s) 1.043237 (s)

Table 9.21: Average End-to-End Delay-512 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 23.75610651(s) 7.6373496 (s) 3.52185867(s) 27.957752 (s) 9.03127383 (s) 5.9975262(s) 47.938705 (s) 10.6919232 (s) 8.67655387(s)
10 9.91053881(s) 2.3727843(s) 1.1079423(s) 10.4759344 (s) 2.8033532(s) 1.8708216(s) 15.547387(s) 3.12556548 (s) 2.53820396 (s)
20 9.63888441(s) 2.0089458 (s) 0.94358985 (s) 9.0763544 (s) 2.3638386 (s) 1.58964669(s) 13.7330646(s) 2.5416354 (s) 2.06470202 (s)
30 8.45701426(s) 1.8585504 (s) 0.85623879(s) 9.9717876(s) 2.18176963(s) 1.46698425 (s) 13.4803064(s) 2.4616242 (s) 1.94860227(s)
40 8.4352551(s) 1.8401337(s) 0.83074323(s) 8.6003292(s) 2.1051128 (s) 1.40325039(s) 12.3668816(s) 2.44378916(s) 1.80856297(s)
50 8.43801059(s) 1.6863903 (s) 0.79856934 (s) 8.7709152(s) 1.9952811(s) 1.35045621(s) 12.7258922(s) 2.2735884(s) 1.59121293(s)
60 7.34755034(s) 1.6669071(s) 0.76926441(s) 8.6806536(s) 1.9799128(s) 1.2453897(s) 11.8652082(s) 2.01895876 (s) 1.54616597(s)
70 7.33741587(s) 1.6684164 (s) 0.75552929(s) 9.1648412(s) 1.99388512 (s) 1.20758433(s) 10.646496 (s) 2.08465832(s) 1.54449804 (s)
80 7.29507122(s) 1.6661646 (s) 0.71634087 (s) 9.638206(s) 1.99335615 (s) 1.28753814 (s) 10.219217 (s) 2.3555448 (s) 1.57712933(s)

C2

2 58.048045(s) 15.205962(s) 7.012026(s) 68.314767 (s) 17.9812661 (s) 11.941074 (s) 117.138225(s) 21.287619 (s) 17.27501(s)
10 24.216408(s) 4.7242134(s) 2.2059131(s) 25.59794(s) 5.581476(s) 3.7248058 (s) 37.9900401 (s) 6.2230008 (s) 5.053564 (s)
20 23.552613(s) 3.999811 (s) 1.878687(s) 22.17807(s) 4.7064026 (s) 3.1649865 (s) 33.55674 (s) 5.060395(s) 4.110821 (s)
30 20.664706(s) 3.700373 (s) 1.70477142(s) 24.36606(s) 4.343903(s) 2.920765(s) 32.93912(s) 4.9010937 (s) 3.879667(s)
40 20.61154(s) 3.663706(s) 1.6540097(s) 21.01489(s) 4.1912795 (s) 2.793871(s) 30.2184751 (s) 4.8655841 (s) 3.600848(s)
50 20.61827(s) 3.35760 (s) 1.589951(s) 21.431731(s) 3.972604(s) 2.688758 (s) 31.0957167 (s) 4.526714(s) 3.1681048 (s)
60 18.95373(s) 3.3188114(s) 1.5316054(s) 21.21117(s) 3.9420063(s) 2.4795708(s) 28.99263 (s) 4.019746 (s) 3.0784164(s)
70 18.92897(s) 3.321816 (s) 1.5042587(s) 22.394289 (s) 3.8793252 (s) 2.40429(s) 26.0147129(s) 4.150554(s) 3.075095 (s)
80 18.8255(s) 3.31733 (s) 1.4262346(s) 23.55095(s) 3.70384517 (s) 2.563488(s) 25.33265 (s) 3.785101(s) 3.1400644(s)

C3

2 64.141487(s) 16.802169(s) 7.748089(s) 75.4859304 (s) 19.868802 (s) 13.1945576 (s) 129.434503 (s) 23.522231 (s) 19.088418 (s)
10 26.758454(s) 5.2201254(s) 2.437473(s) 28.285022(s) 6.16737704(s) 4.11580752 (s) 41.9779449 (s) 6.876244 (s) 5.584048 (s)
20 26.024987(s) 4.4196807 (s) 2.075897 (s) 24.506156 (s) 5.200444 (s) 3.4972227 (s) 37.079274 (s) 5.591597 (s) 4.542344 (s)
30 22.83393(s) 4.0888108 (s) 1.883725(s) 26.9236 (s) 4.799893(s) 3.227365 (s) 36.396827 (s) 5.41557324 (s) 4.2869249(s)
40 22.775188(s) 4.048294(s) 1.8276351(s) 23.22088 (s) 4.631248 (s) 3.0871508 (s) 33.390583 (s) 5.3763361 (s) 3.97888(s)
50 22.782628(s) 3.710058 (s) 1.75685(s) 23.681471 (s) 4.3896184(s) 2.9710036 (s) 34.359908 (s) 5.0018944(s) 3.500663 (s)
60 19.838385(s) 3.667195(s) 1.692381(s) 23.437764 (s) 4.355808(s) 2.739834(s) 32.0360621 (s) 4.4417092 (s) 3.4015651(s)
70 19.811028(s) 3.670516 (s) 1.662164(s) 24.7450712 (s) 4.2865472 (s) 2.65668(s) 28.745532 (s) 4.5862404(s) 3.397895 (s)
80 19.696692(s) 3.665562 (s) 1.575941(s) 26.023156 (s) 4.1153835 (s) 2.832583(s) 27.991889 (s) 4.1824321(s) 3.469684(s)

the original query graph results in the highest end-to-end delay compared to the reconfigured
and adjusted query graphs. A fog node is assigned only one node of the original graph, while
Algorithm 8.1 and Algorithm 8.2 are used to map one or more nodes (representing multiple
data operations) to a single fog node and this reduced the network latency due to the amount
of data that needs to be transferred among fog nodes.
Comparison of Cost Functions C1, C2, and C3: From Tables 9.18, 9.19, 9.20, and 9.21 we
see that cost function C1 has lower end-to-end delay compared to cost functions C2 and C3.
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Table 9.22: Average End-to-End Delay-640 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 30.882934(s) 9.928554(s) 4.5784162(s) 36.3456 (s) 11.740655 (s) 7.796706(s) 62.320315 (s) 13.899001 (s) 11.279501(s)
10 12.883004(s) 3.084619(s) 1.440324(s) 13.618714(s) 3.644358(s) 2.432068(s) 20.211601(s) 4.06324(s) 3.299664 (s)
20 12.53097(s) 2.611654 (s) 1.22666(s) 11.79926(s) 3.072998 (s) 2.06654(s) 17.85298(s) 3.304126(s) 2.684112(s)
30 10.994118(s) 2.416115(s) 1.113117(s) 12.963323(s) 2.836305(s) 1.907079 (s) 17.52439(s) 3.200111 (s) 2.533182(s)
40 10.965831(s) 2.392173(s) 1.079966(s) 11.180427(s) 2.736646(s) 1.824225(s) 16.076946(s) 3.176925(s) 2.351131(s)
50 10.969417(s) 2.192303 (s) 1.0381401 (s) 11.402189(s) 2.59365(s) 1.755593(s) 16.543659(s) 2.955664(s) 2.068576(s)
60 9.55154(s) 2.166979(s) 1.000047(s) 11.284849(s) 2.573886(s) 1.619006(s) 15.424776(s) 2.624648 (s) 2.010015(s)
70 9.53831(s) 2.168941(s) 0.982187(s) 11.914293(s) 2.5920506 (s) 1.569859(s) 13.84044(s) 2.71006(s) 2.0078474 (s)
80 9.483592(s) 2.1660139 (s) 0.9312431(s) 12.529667(s) 2.591362 (s) 1.673799 (s) 13.284982 (s) 3.062208 (s) 2.050268(s)

C2

2 78.364865(s) 20.528048(s) 9.4662281(s) 92.224945 (s) 24.2747035 (s) 16.1204499 (s) 158.136603(s) 28.738265 (s) 23.32125(s)
10 32.692141(s) 6.377688(s) 2.9779826(s) 34.557219(s) 7.53499287(s) 5.02848783 (s) 51.2865541 (s) 8.401108(s) 6.822114 (s)
20 31.7960275(s) 5.399743 (s) 2.536227(s) 29.94039(s) 6.3536435 (s) 4.272731(s) 45.301599(s) 6.831533(s) 5.549605 (s)
30 27.89735(s) 4.995503 (s) 2.301441(s) 32.8941(s) 5.864269(s) 3.943032(s) 44.46781(s) 6.6164764 (s) 5.23755(s)
40 27.825579(s) 4.946(s) 2.232913(s) 28.370101(s) 5.658273 (s) 3.771725(s) 40.7949413 (s) 6.568538 (s) 4.861144(s)
50 27.83466(s) 4.5327(s) 2.146433(s) 28.9326(s) 5.36301(s) 3.629823(s) 41.979217545(s) 6.111063(s) 4.2769414 (s)
60 25.58755(s) 4.480395(s) 2.067667(s) 28.635079(s) 5.321085(s) 3.34742(s) 39.14005 (s) 5.4266571 (s) 4.155864(s)
70 25.5541095(s) 4.484451 (s) 2.0307375(s) 30.232901 (s) 5.23089(s) 3.24579(s) 35.119862(s) 5.603248(s) 4.151375 (s)
80 25.414425(s) 4.4783955 (s) 1.92541671(s) 31.793725(s) 5.000197 (s) 3.460708(s) 34.199075(s) 5.109886(s) 4.239084(s)

C3

2 89.15666(s) 23.355011(s) 10.769843(s) 104.925436 (s) 27.617638(s) 18.34034(s) 179.91357(s) 32.69589 (s) 26.5329 (s)
10 37.194206(s) 7.255974(s) 3.3880874(s) 39.31618(s) 8.572654(s) 5.72097(s) 58.34934(s) 9.557976 (s) 7.7618276 (s)
20 36.174731(s) 6.1433561(s) 2.885497(s) 34.063556 (s) 7.22864 (s) 4.861139 (s) 51.54019(s) 7.772319 (s) 6.313858(s)
30 31.73916(s) 5.683447(s) 2.618378(s) 37.424118 (s) 6.6718514(s) 4.486037(s) 50.59158(s) 7.5276468 (s) 5.958825(s)
40 31.65751(s) 5.627128(s) 2.5404127(s) 32.2770 (s) 6.437434(s) 4.291139(s) 46.412906 (s) 7.4731071 (s) 5.530585(s)
50 31.667853(s) 5.15698 (s) 2.4420247(s) 32.917269(s) 6.10156(s) 4.129695(s) 47.760272(s) 6.95263(s) 4.865929 (s)
60 27.575355(s) 5.097405(s) 2.35246(s) 32.578496 (s) 6.054574(s) 3.8084017(s) 44.53012 (s) 6.173957 (s) 4.728175(s)
70 27.537321(s) 5.102017(s) 2.310405(s) 34.39564 (s) 5.9583 (s) 3.692752(s) 39.956299 (s) 6.374885(s) 4.72307 (s)
80 27.3784(s) 5.0951311 (s) 2.1905703(s) 36.172186(s) 5.7203831 (s) 3.937221(s) 39.160647(s) 5.81358(s) 4.822145(s)

This is expected since the cost function C1 favours the mapping of the query vertices as close
as possible to the data sources.

9.3.3 Average Response Time
Tables 9.23, 9.24, 9.25, and 9.26 show the average response time of the processing of the
original query graph, reconfigured query graph, and adjusted query graph as the number of fog
nodes and cameras vary as well as for the different types of trees.
Effectiveness of Collector Fog Nodes: The results in Tables 9.23, 9.24, 9.25, 9.26, and 9.27
show that when the number of CFNs increases the average response time decreases signifi-
cantly for both reconfigured and adjusted query graphs.
Effectiveness Fog-Tree Hierarchy: Tree 3, representing the shortest tree, has the lowest
response time as the result of providing more CFNs closer to data sources than the other two
trees.
Effectiveness of Algorithms 8.1 and 8.2: From Tables 9.23, 9.24, 9.25, 9.26, and 9.27 we
see that the original query graph results in less response time compared to the reconfigured
and the adjusted query graph. A fog node is assigned only one node (representing an data
operation) of the original graph, while Algorithm 8.1 and Algorithm 8.2 are used to map one
or more nodes to a single fog node. The response time of the reconfigured and adjusted query
graphs is significantly higher for a small number of CFNs. However, when the number of
CFNs increases the differences decrease.
Effectiveness of Fog-Tree Hierarchy: By comparing the results in Tables 9.23, 9.24, 9.25,
9.26, and 9.27 we can conclude that the fog-tree hierarchy has a good tolerance for processing
the huge volume of data. The results in tables 9.23, 9.24, 9.25, 9.26, and 9.27 show that the
increases of the number of cameras were not significantly change the average response time
when the number of level 0 fog nodes are sufficient. As the results show, Tree 3 (which is a



9.3. Camera Crowd SizeMeasurement Scenario Results 95

Table 9.23: Average Response Time-64 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 930.79295 (s) 8044.5122 (s) 8045.54471 (s) 892.20654 (s) 7824.5338 (s) 7827.4038 (s) 728.58071 (s) 6896.70831 (s) 6898.7637 (s)
10 17.13022 (s) 1289.25459 (s) 1291.21105 (s) 16.63794 (s) 1241.86029 (s) 1243.2739 (s) 14.8779 (s) 1038.22601 (s) 1049.177 (s)
20 10.89046 (s) 480.66343 (s) 480.9673 (s) 10.67025 (s) 454.9124 (s) 463.10963 (s) 9.45477 (s) 336.18338 (s) 337.91409 (s)
30 10.7105 (s) 40.35513 (s) 50.44917 (s) 10.05913 (s) 27.96921 (s) 30.474091 (s) 7.749013 (s) 23.986742 (s) 24.1921 (s)
40 10.14902 (s) 32.66901 (s) 36.548 (s) 9.50008 (s) 27.09831 (s) 27.917513 (s) 7.54336 (s) 23.91866 (s) 24.18034 (s)
50 9.12656 (s) 29.06189 (s) 29.46036 (s) 8.52551 (s) 27.08961 (s) 27.4393 (s) 7.51403 (s) 24.14516 (s) 24.2451 (s)
60 9.11215 (s) 28.09244 (s) 29.20691 (s) 8.13732 (s) 26.22004 (s) 27.221321 (s) 7.21793 (s) 23.13219 (s) 24.108 (s)
70 9.30273 (s) 27.88073 (s) 28.48791 (s) 8.53974 (s) 26.22652 (s) 27.4293 (s) 7.49309 (s) 19.12437 (s) 19.96217 (s)
80 9.52067 (s) 17.07887 (s) 17.27289 (s) 8.55516 (s) 15.09371 (s) 15.92516 (s) 7.45096 (s) 14.03582 (s) 14.0358 (s)

C2

2 911.45043 (s) 719.4912 (s) 722.229(s) 874.846(s) 709.603(s) 711.4941(s) 714.019 (s) 625.783(s) 622.266 (s)
10 17.37958 (s) 109.9487(s) 112.239(s) 17.49181 (s) 113.6111(s) 114.722347(s) 15.79403(s) 91.222(s) 93.606(s)
20 11.876305 (s) 40.677 (s) 40.543(s) 11.626(s) 38.35(s) 39.633 (s) 10.44(s) 28.636(s) 29.774(s)
30 11.6367(s) 5.9926 (s) 5.664(s) 11.02808 (s) 3.745 (s) 3.645(s) 8.76758(s) 3.3878(s) 3.1908(s)
40 11.134782(s) 4.156(s) 4.0794(s) 10.45571(s) 3.666(s) 3.64166(s) 8.55912(s) 3.382(s) 3.07702(s)
50 9.632837(s) 3.919(s) 3.773(s) 9.487(s) 3.665(s) 3.6331(s) 8.5218 (s) 3.401861(s) 3.94215(s)
60 9.61776(s) 3.7559(s) 3.72796(s) 9.112(s) 3.589 (s) 3.58051(s) 8.2373(s) 3.3161(s) 3.8464(s)
70 9.49596(s) 3.738(s) 3.73709(s) 9.503(s) 3.6005(s) 3.30785(s) 8.5036(s) 2.95916(s) 3.8367(s)
80 9.3143 (s) 2.7623(s) 2.724(s) 9.51213(s) 2.6203(s) 2.60479(s) 8.512507(s) 2.5062(s) 3.488(s)

C3

2 820.635(s) 645.118 (s) 633.085 (s) 786.699 (s) 627.538 (s) 623.685 (s) 641.511 (s) 555.092 (s) 545.515 (s)
10 15.728 (s) 104.315 (s) 98.394 (s) 15.832 (s) 100.4807 (s) 100.571(s) 14.321 (s) 84.23(s) 82.071 (s)
20 10.747 (s) 39.522 (s) 35.55 (s) 10.53 (s) 37.473 (s) 32.125 (s) 9.464 (s) 27.993 (s) 25.115 (s)
30 10.532 (s) 5.317(s) 4.104 (s) 9.99 (s) 3.332 (s) 3.212 (s) 7.954 (s) 3.016 (s) 2.816 (s)
40 10.061 (s) 3.696 (s) 3.591 (s) 9.47 (s) 3.262 (s) 3.21 (s) 7.761 (s) 3.011 (s) 1.716 (s)
50 10.698(s) 3.482 (s) 3.322 (s) 8.571 (s) 3.262 (s) 3.203 (s) 7.72 (s) 3.029 (s) 2.598 (s)
60 10.687 (s) 3.3407 (s) 3.285 (s) 8.236 (s) 3.194 (s) 3.157 (s) 7.468 (s) 2.955 (s) 2.515 (s)
70 10.57 (s) 3.325 (s) 3.293 (s) 8.588 (s) 3.207 (s) 2.921 (s) 7.706 (s) 2.64 (s) 2.508 (s)
80 10.402 (s) 2.462 (s) 2.406 (s) 8.594 (s) 2.341 (s) 2.305 (s) 7.704 (s) 2.241 (s) 2.204 (s)

Table 9.24: Average Response Time-128 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 1144.9398 (s) 10861.5167 (s) 11181.803 (s) 1097.4772 (s) 10567.0132 (s) 10719.5553 (s) 896.1899 (s) 9313.4012 (s) 9448.4145 (s)
10 22.15807 (s) 1743.21857 (s) 1769.34121 (s) 20.55183 (s) 1678.46337 (s) 1721.44169 (s) 18.3842 (s) 1404.3164 (s) 1432.4208 (s)
20 14.4869 (s) 648.97885 (s) 659.00487 (s) 13.21462 (s) 614.4476 (s) 622.2396 (s) 11.761189 (s) 456.2659 (s) 461.1615 (s)
30 14.26628 (s) 57.5635 (s) 71.19554 (s) 13.06291 (s) 37.754386 (s) 43.2239 (s) 10.6224 (s) 32.46423 (s) 33.219517 (s)
40 13.57705 (s) 44.18785 (s) 51.15036 (s) 12.7771 (s) 38.205491 (s) 38.7685 (s) 10.3702 (s) 32.37215 (s) 33.203773 (s)
50 12.3211 (s) 40.85859 (s) 42.8935 (s) 12.58089 (s) 37.11883 (s) 37.31152 (s) 10.3342 (s) 32.8138 (s) 33.15958 (s)
60 12.3033 (s) 39.56812 (s) 39.9088 (s) 12.10375 (s) 36.69731 (s) 36.8195 (s) 9.9648 (s) 31.77039 (s) 32.52193 (s)
70 12.53826 (s) 39.2784 (s) 39.5378 (s) 11.5983 (s) 26.72128 (s) 35.3234 (s) 10.3086 (s) 26.2726 (s) 27.02071 (s)
80 12.80714 (s) 24.40273 (s) 24.4748 (s) 11.53804 (s) 21.7557 (s) 23.5735 (s) 10.2584 (s) 19.2691 (s) 19.80142 (s)

C2

2 1126.261 (s) 1013.923 (s) 1027.38 (s) 1079.711(s) 962.136(s) 978.1406 (s) 882.669(s) 853.7225(s) 895.93 (s)
10 24.22 (s) 162.22199(s) 163.1726(s) 22.651(s) 153.0311(s) 158.804 (s) 20.564(s) 121.961(s) 124.471(s)
20 16.63 (s) 56.867 (s) 57.7556(s) 15.3995 (s) 57.242(s) 58.964 (s) 13.97694 (s) 40.554 (s) 41.729(s)
30 16.709(s) 8.20357 (s) 8.7845(s) 15.2486(s) 6.3774 (s) 6.594(s) 12.84889 (s) 5.5937(s) 5.4866(s)
40 15.713(s) 7.9166(s) 7.9604(s) 14.8977 (s) 5.9759 (s) 6.7453 (s) 12.5897(s) 5.4473921(s) 5.25881 (s)
50 14.406 (s) 6.0316(s) 5.9697132(s) 14.669(s) 5.997(s) 5.855(s) 12.537(s) 5.6272 (s) 5.4857 (s)
60 14.591(s) 6.47854(s) 5.899(s) 14.2432(s) 5.9961 (s) 5.811(s) 12.184978 (s) 5.4018(s) 5.0957(s)
70 14.582(s) 6.10435 (s) 5.936(s) 13.744(s) 5.5074(s) 6.0119 (s) 12.52154 (s) 5.009512(s) 5.89805(s)
80 13.8217(s) 4.6548(s) 4.583(s) 13.7288(s) 4.67487(s) 4.423(s) 12.44794(s) 4.24947(s) 4.1659487(s)

C3

2 1010.481 (s) 897.451 (s) 817.236 (s) 968.743 (s) 855.423 (s) 800.283 (s) 792.294 (s) 759.128 (s) 671.462 (s)
10 21.872 (s) 150.486(s) 143.821 (s) 20.47 (s) 142.983 (s) 139.975(s) 18.621(s) 114.71(s) 109.733 (s)
20 15.027 (s) 55.0477 (s) 50.933 (s) 13.933 (s) 54.494 (s) 52.0001 (s) 12.659 (s) 38.772 (s) 36.816 (s)
30 15.086 (s) 7.346 (s) 6.905 (s) 13.797 (s) 5.725 (s) 4.977 (s) 11.642 (s) 5.029 (s) 4.884 (s)
40 14.179 (s) 7.09 (s) 5.298 (s) 13.464 (s) 5.368 (s) 5.111 (s) 11.402 (s) 4.899 (s) 4.683(s)
50 12.991 (s) 5.414 (s) 5.3057 (s) 13.233 (s) 5.388 (s) 5.208 (s) 11.346 (s) 5.059 (s) 4.884 (s)
60 13.16 (s) 5.814 (s) 4.365 (s) 12.855 (s) 5.386 (s) 5.169 (s) 11.035 (s) 4.861 (s) 4.514 (s)
70 13.143 (s) 5.481 (s) 4.397 (s) 12.406 (s) 4.953 (s) 3.465 (s) 11.334 (s) 4.512 (s) 4.367 (s)
80 12.454 (s) 4.193 (s) 4.087 (s) 12.39 (s) 4.217 (s) 3.951 (s) 11.255 (s) 3.839 (s) 3.725 (s)

shortest tree among Tree 1 and Tree 2) has the lowest response time. The explanation is that
Tree 3 provides more processing power closer to the data sources and this results in lower the
execution time.
Comparison of Cost Functions: From Tables 9.23, 9.24, 9.25, 9.26, and 9.27 we see that
cost function C3 has a lower response time compared to cost functions C1 and C2. The reason
is that the cost function C3 considers both execution time and network latency at the same time
for mapping vertices of a query graph.
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Table 9.25: Average Response Time-256 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 5523.6423 (s) 33980.0208 (s) 33982.8973 (s) 5369.536 (s) 33110.3191 (s) 33110.374 (s) 4664.8675 (s) 29384.41652 (s) 29391.4591 (s)
10 644.963 (s) 6424.7018 (s) 6444.69287 (s) 613.5753 (s) 6236.33664 (s) 6240.10932 (s) 480.250515 (s) 5492.0131 (s) 5492.31628 (s)
20 167.39454 (s) 3720.6634 (s) 3723.2465 (s) 163.2872 (s) 3613.0072 (s) 3614.91233 (s) 65.98828 (s) 3144.89835 (s) 3149.4243 (s)
30 99.432198 (s) 2727.7963 (s) 2731.051751 (s) 99.1713 (s) 2726.6241 (s) 2730.8327 (s) 19.671708 (s) 2046.2209 (s) 2067.484211 (s)
40 91.12273 (s) 1820.65353 (s) 1822.3809 (s) 90.890371 (s) 1817.6935 (s) 1818.0368 (s) 17.752152 (s) 1542.07635 (s) 1552.964721 (s)
50 18.702957 (s) 1018.45758 (s) 1021.24504 (s) 18.25817 (s) 979.91247 (s) 980.255 (s) 16.457809 (s) 802.9854 (s) 805.73114 (s)
60 17.784382 (s) 1009.97337 (s) 1012.42932 (s) 18.12181 (s) 966.54656 (s) 966.59769 (s) 15.770829 (s) 791.370911 (s) 793.6296 (s)
70 17.127301 (s) 492.5559 (s) 493.435201 (s) 15.692931 (s) 465.169024 (s) 466.907941 (s) 14.03512 (s) 338.6897 (s) 341.8939 (s)
80 16.7756 (s) 478.609 (s) 480.9483 (s) 15.573655 (s) 453.43885 (s) 453.761478 (s) 14.013865 (s) 337.586318 (s) 338.2466 (s)

C2

2 5038.9754 (s) 2897.128 (s) 2903.589(s) 4898.72 (s) 2492.823 (s) 2503.907 (s) 4260.065 (s) 2393.329 (s) 2402.927 (s)
10 590.125 (s) 548.257 (s) 582.029 (s) 561.278(s) 461.5496 (s) 470.505 (s) 440.787 (s) 469.109(s) 467.884(s)
20 154.621(s) 317.849 (s) 378.169(s) 150.905(s) 308.7815(s) 320.122 (s) 63.6119 (s) 269.0132 (s) 280.163(s)
30 92.642(s) 202.2987(s) 210.478(s) 92.4616 (s) 202.294(s) 208.251 (s) 21.317 (s) 175.4472(s) 180.622(s)
40 85.0668(s) 135.431 (s) 136.1332 (s) 85.48(s) 155.819 (s) 156.259 (s) 20.499(s) 132.522 (s) 136.564(s)
50 23.296 (s) 87.5015(s) 87.1402(s) 20.4622(s) 84.444 (s) 83.8757 (s) 19.945(s) 60.403 (s) 59.7461 (s)
60 22.4573(s) 86.868(s) 86.348 (s) 20.3146(s) 83.31 (s) 72.7871(s) 19.818(s) 59.4268 (s) 57.569 (s)
70 20.725(s) 43.0152(s) 37.6054(s) 20.466 (s) 35.361 (s) 35.189 (s) 19.225 (s) 26.063 (s) 24.836 (s)
80 20.409(s) 36.316(s) 35.23(s) 20.228(s) 32.493 (s) 32.965(s) 19.623(s) 20.5713 (s) 21.7167 (s)

C3

2 4481.252(s) 2553.658 (s) 2528.153 (s) 4356.649(s) 2197.465 (s) 2187.851 (s) 3790.311 (s) 2110.003 (s) 2099.864(s)
10 525.345(s) 483.394 (s) 421.301 (s) 499.718 (s) 407.006 (s) 385.043 (s) 392.893 (s) 413.705 (s) 391.52(s)
20 138.104 (s) 280.338 (s) 243.21 (s) 134.813 (s) 272.353 (s) 236.188 (s) 57.574(s) 237.335 (s) 227.511 (s)
30 82.993 (s) 178.509(s) 166.6 (s) 82.853 (s) 178.509 (s) 155.93 (s) 19.9772 (s) 154.888 (s) 149.292 (s)
40 76.257(s) 119.592 (s) 116.509 (s) 76.721 (s) 137.552 (s) 119.245 (s) 19.2 (s) 117.066 (s) 102.0613 (s)
50 21.251 (s) 77.341(s) 67.598(s) 18.943 (s) 74.653 (s) 64.7528 (s) 18.628 (s) 53.514 (s) 52.407 (s)
60 20.496(s) 76.781 (s) 66.89 (s) 18.803 (s) 73.651 (s) 63.78 (s) 18.507 (s) 52.611 (s) 50.499 (s)
70 18.956 (s) 38.144 (s) 33.086 (s) 18.984 (s) 31.408 (s) 30.941 (s) 17.941(s) 23.225 (s) 21.911 (s)
80 18.67 (s) 32.241 (s) 30.973 (s) 18.723 (s) 30.643 (s) 29.0126 (s) 17.393 (s) 20.146 (s) 18.318 (s)

Table 9.26: Average Response Time-512 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 15422.254(s) 95483.546(s) 95147.989(s) 11777.1588(s) 73838.604(s) 75160.097(s) 9875.1877(s) 64061.343(s) 63780.816 (s)
10 1805.9814 (s) 18053.315 (s) 18043.843 (s) 1351.4786 (s) 13907.836 (s) 14164.925 (s) 1025.0385 (s) 11973.5578 (s) 11918.726 (s)
20 474.012 (s) 10454.981(s) 10423.985 (s) 364.5373 (s) 8166.053(s) 8205.746 (s) 150.155(s) 6856.66 (s) 7149.4343 (s)
30 283.319(s) 7665.0319(s) 7782.462(s) 225.0757 (s) 6162.7767 (s) 6198.893 (s) 52.2663 (s) 4461.5251 (s) 4486.744 (s)
40 260.1267 (s) 5115.961(s) 5101.694(s) 206.1339 (s) 4126.7427 (s) 4308.589 (s) 47.1439(s) 3362.4843 (s) 3370.2149 (s)
50 58.6496(s) 2861.797(s) 2858.551(s) 47.1681 (s) 2224.9495 (s) 2225.0901 (s) 45.732(s) 1751.2134(s) 1748.6842 (s)
60 55.0481 (s) 2837.957(s) 2833.901(s) 46.817 (s) 2194.6046 (s) 2194.0948 (s) 43.3717(s) 1725.8147 (s) 1722.4169 (s)
70 53.2105 (s) 1384.0141(s) 1380.517(s) 41.7783 (s) 1051.8362 (s) 1059.8016 (s) 38.5701 (s) 738.99 (s) 742.1503 (s)
80 52.2112 (s) 1344.823 (s) 1345.816 (s) 42.2122 (s) 1034.381 (s) 1039.017(s) 37.889 (s) 736.867 (s) 734.24 (s)

C2

2 12344.586 (s) 7027.801(s) 7107.523(s) 9443.059(s) 4244.723(s) 4365.116(s) 7958.3492(s) 3688.186(s) 3728.175(s)
10 1457.308 (s) 1370.481 (s) 1452.566(s) 1095.587 (s) 916.147 (s) 969.7241(s) 843.462(s) 805.768(s) 805.344 (s)
20 394.077 (s) 662.2748(s) 693.188(s) 305.802(s) 472.0793(s) 467.72498(s) 141.881(s) 397.458(s) 383.923(s)
30 239.964 (s) 486.2876 (s) 483.218(s) 195.796(s) 356.793(s) 371.5547(s) 63.886(s) 259.294(s) 256.919 (s)
40 221.4365 (s) 325.717(s) 339.642(s) 178.626 (s) 240.33(s) 240.41387(s) 57.966(s) 235.6995(s) 227.79 (s)
50 60.6812(s) 183.472(s) 184.987(s) 54.0687(s) 131.239 (s) 123.298(s) 57.4311(s) 124.678(s) 123.084(s)
60 57.01273 (s) 147.582(s) 148.565(s) 53.6401 (s) 129.469(s) 119.792(s) 54.131(s) 76.37(s) 69.204 (s)
70 55.37397(s) 67.4748(s) 62.47025(s) 53.41628(s) 56.983 (s) 53.7456(s) 48.2847(s) 46.337(s) 42.848(s)
80 54.6635(s) 60.0013(s) 52.991 (s) 53.294(s) 56.806(s) 52.832(s) 47.41(s) 33.3(s) 31.277(s)

C3

2 10889.285 (s) 5267.977 (s) 5116.416 (s) 8335.173 (s) 3711.346(s) 3522.437 (s) 7037.99 (s) 3226.054 (s) 3145.416(s)
10 1289.395 (s) 1198.0211 (s) 1085.001 (s) 971.009 (s) 801.422 (s) 753.898 (s) 751.649(s) 705.397 (s) 620.555 (s)
20 352.478 (s) 579.332 (s) 427.455 (s) 274.395 (s) 413.386 (s) 405.717(s) 132.983 (s) 348.297 (s) 333.384 (s)
30 216.061 (s) 425.562(s) 418.779 (s) 178.141 (s) 312.82 (s) 305.075 (s) 63.662 (s) 227.593(s) 223.368(s)
40 199.714(s) 285.318 (s) 207.878 (s) 162.086 (s) 210.866 (s) 191.503 (s) 57.838 (s) 206.9783 (s) 198.082(s)
50 58.08 (s) 161.016 (s) 143.221 (s) 50.674 (s) 115.539 (s) 107.395 (s) 57.5629(s) 109.937 (s) 107.324 (s)
60 53.371 (s) 129.662(s) 111.679(s) 50.247 (s) 113.986 (s) 104.309 (s) 54.185(s) 67.629 (s) 60.653(s)
70 51.922 (s) 59.699(s) 54.447(s) 47.672(s) 56.778 (s) 53.168 (s) 48.367(s) 41.431(s) 37.833 (s)
80 51.272 (s) 54.538(s) 52.281 (s) 47.824 (s) 55.733 (s) 51.55 (s) 47.443(s) 32.58(s) 30.428 (s)

9.3.4 Average Distortion Due to Buffering

Tables 9.28, 9.29, 9.30, 9.30, 9.31, and 9.32 show the average distortion due to buffering for
processing of the original query graph, reconfigured query graph, and adjusted query graph as
the number of fog nodes and cameras vary.
The observations made from Tables 9.28, 9.29, 9.30, 9.30, 9.31, and 9.32 are described in the
rest of this section.
Effectiveness of Collector Fog Nodes: The results in Tables 9.28, 9.29, 9.30, 9.30, 9.31,
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Table 9.27: Average Response Time-640 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 17893.13(s) 110761.98 (s) 110372.16(s) 13665.37 (s) 85654.04(s) 87186.551(s) 11461.92(s) 74312.64(s) 73986.962(s)
10 2096.32 (s) 20942.178(s) 20931.013(s) 1569.181(s) 16133.482(s) 16431.57 (s) 1191.22(s) 13889.764(s) 13826.07(s)
20 551.2033 (s) 12128.05(s) 12091.95(s) 424.13 (s) 9472.952 (s) 9518.887 (s) 176.101(s) 7954.08(s) 8293.632 (s)
30 329.83(s) 8891.697(s) 9027.77(s) 262.483 (s) 7149.126 (s) 7190.922 (s) 62.515(s) 5175.71 (s) 5204.895(s)
40 302.92(s) 5934.772(s) 5918.081(s) 240.319(s) 4787.316(s) 4998.159 (s) 56.418(s) 3900.824(s) 3909.7021 (s)
50 69.214(s) 3319.92(s) 3316.03(s) 55.942(s) 2581.219 (s) 2581.29(s) 54.83(s) 2031.725(s) 2028.688(s)
60 64.884 (s) 3292.262(s) 3287.433(s) 55.522(s) 2546.01(s) 2545.324 (s) 51.972(s) 2002.22(s) 1998.22(s)
70 62.75(s) 1605.6(s) 1601.5(s) 49.745 (s) 1220.409(s) 1229.53 (s) 46.231(s) 857.52(s) 861.109(s)
80 61.5863(s) 1560.22(s) 1561.247(s) 50.315 (s) 1200.162 (s) 1205.43(s) 45.381(s) 855.09(s) 851.939(s)

C2

2 13962.15274 (s) 7944.76035 (s) 8033.04365(s) 10685.686 (s) 4800.492 (s) 4935.208(s) 9018.705(s) 4172.3332(s) 4216.63(s)
10 1652.0861 (s) 1549.68309 (s) 1641.8859(s) 1243.6459(s) 1036.474572 (s) 1096.6073(s) 961.469(s) 911.886(s) 911.151(s)
20 450.489277 (s) 749.250(s) 783.7165(s) 350.43551(s) 534.484 (s) 529.2255(s) 167.7087(s) 450.24127(s) 434.73716(s)
30 275.717(s) 550.31831(s) 546.41222(s) 226.6059(s) 404.1327(s) 420.49945(s) 79.43598(s) 294.08049(s) 291.17107 (s)
40 254.757(s) 368.861(s) 384.15935(s) 206.47166 (s) 272.49527(s) 272.28232(s) 72.15018(s) 267.41092(s) 258.195844(s)
50 73.10519(s) 208.05995(s) 209.38504(s) 65.81181(s) 149.173 (s) 139.91797(s) 71.7377(s) 141.88163(s) 139.78202(s)
60 68.59422(s) 167.49871(s) 168.21602(s) 65.27984(s) 134.16721(s) 135.91111(s) 67.54707(s) 87.18215(s) 78.87738(s)
70 66.73695(s) 76.97734(s) 70.922317(s) 65.28715(s) 65.23832(s) 61.26103(s) 60.28496(s) 53.274312(s) 49.09479(s)
80 65.91094(s) 62.88131(s) 60.193454 (s) 64.2745(s) 62.74545(s) 60.264678(s) 59.14714(s) 38.46183(s) 36.03381(s)

C3

2 12213.317 (s) 5904.67(s) 5732.478(s) 9355.775(s) 4162.07296(s) 3948.692(s) 7917.496(s) 3619.531(s) 3528.017(s)
10 1451.347 (s) 1343.193 (s) 1215.859(s) 1095.166(s) 899.258 (s) 845.477(s) 853.181(s) 791.901(s) 696.529(s)
20 401.803 (s) 650.045(s) 479.311(s) 313.939(s) 464.396 (s) 455.3475(s) 158.952(s) 391.603(s) 374.616(s)
30 248.154(s) 477.734(s) 469.541(s) 206.788(s) 351.655(s) 342.555(s) 81.129(s) 256.36(s) 251.33 (s)
40 229.828 (s) 320.64952(s) 233.3175(s) 187.7999(s) 237.42 (s) 215.317 (s) 73.794(s) 233.267(s) 222.9269 (s)
50 71.201(s) 181.339(s) 160.882(s) 63.1493(s) 130.58956(s) 121.08448(s) 73.7476(s) 124.48(s) 121.148(s)
60 65.1322(s) 146.211(s) 125.5374(s) 62.60569 (s) 128.841(s) 117.56(s) 69.337(s) 76.944 (s) 68.8504 (s)
70 63.501641(s) 67.85449(s) 61.429608(s) 60.07384(s) 62.749 (s) 58.26622(s) 61.932(s) 47.641285(s) 43.2913(s)
80 62.74352(s) 60.07289(s) 56.98129(s) 60.5896(s) 59.53231(s) 55.50138(s) 60.94688(s) 37.61934(s) 35.01622(s)

Table 9.28: Average Distortion Due to Buffering-64 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 30.62 (%) 47.76 (%) 47.76 (%) 29.79 (%) 47.69 (%) 25.2 (%) 47.38 (%) 47.37 (%) 47.39 (%)
10 0 (%) 36.04 (%) 36.05 (%) 0 (%) 35.19 (%) 35.2 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 12.5 (%) 12.5 (%) 0 (%) 10.35 (%) 11.29 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C2

2 30.21 (%) 24.93 (%) 25.03 (%) 29.32 (%) 24.61 (%) 24.68 (%) 24.68 (%) 21.28 (%) 21.01 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C3

2 28.02 (%) 22.04 (%) 21.51 (%) 27.09 (%) 21.24 (%) 21.24 (%) 21.54 (%) 17.39 (%) 16.91 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

and 9.32 show that by increasing the number of CFNs the average distortion due to buffering
decreases. The reason is that increasing the number of fog nodes means more available pro-
cessing resources close to the cameras. Video chunks are placed in a fog node’s buffer upon its
arrival. The fog node reads from the buffer and processes the video chunks. When the number
of fog nodes increases there are fewer cameras associated with each fog node. Accordingly,
the buffer size when there are more level 0 fog nodes and as a result the amount of time for
video chunks to wait in a buffer until it is processed is smaller and this results in a reduction of
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Table 9.29: Average Distortion Due to Buffering-128 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 34.25 (%) 48.34 (%) 48.39 (%) 33.57 (%) 48.29 (%) 48.32 (%) 29.86 (%) 48.06 (%) 48.09 (%)
10 0 (%) 39.66 (%) 39.82 (%) 0 (%) 39.27 (%) 39.54 (%) 0 (%) 37.17 (%) 37.43 (%)
20 0 (%) 22.21 (%) 22.64 (%) 0 (%) 20.68 (%) 21.06 (%) 0 (%) 10.52 (%) 10.86 (%)
30 0 (%) 0 (%) 0 (%) (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (%) (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C2

2 33.98 (%) 32.23 (%) 32.45 (%) 33.28 (%) 31.26 (%) 31.57 (%) 29.52 (%) 28.87 (%) 29.88 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C3

2 32.14 (%) 30 (%) 27.94 (%) 33.66 (%) 28.92 (%) 27.47 (%) 27.15 (%) 26.22 (%) 24.28 (%)
10 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

Table 9.30: Average Distortion Due to Buffering-256 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 46.73 (%) 49.47 (%) 49.47 (%) 46.64 (%) 49.45 (%) 49.45 (%) 46.13 (%) 49.38 (%) 49.38 (%)
10 22.05 (%) 47.19 (%) 23.6 (%) 20.58 (%) 47.11 (%) 47.11 (%) 12.34 (%) 46.72 (%) 46.72 (%)
20 0 (%) 45.15 (%) 45.16 (%) 0 (%) 45.01 (%) 45.01 (%) 0 (%) 44.27 (%) 44.27 (%)
30 0 (%) 43.39 (%) 43.4 (%) 0 (%) 43.39 (%) 43.39 (%) 0 (%) 41.19 (%) 41.28 (%)
40 0 (%) 40.1 (%) 40.11 (%) 0 (%) 40.09 (%) 40.09 (%) 0 (%) 38.31 (%) 38.4 (%)
50 0 (%) 32.3 (%) 32.35 (%) 0 (%) 31.61 (%) 31.61 (%) 0 (%) 27.55 (%) 27.63 (%)
60 0 (%) 32.16 (%) 32.19 (%) 0 (%) 31.34 (%) 31.18 (%) 0 (%) 27.21 (%) 27.3 (%)
70 0 (%) 13.34 (%) 13.41 (%) 0 (%) 11.2 (%) 11.37 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 12.26 (%) 12.5 (%) 0 (%) 10.17 (%) 10.26 (%) 0 (%) 0 (%) 0 (%)

C2

2 46.42 (%) 43.77 (%) 43.79 (%) 46.31 (%) 42.76 (%) 42.79 (%) 45.75 (%) 42.45(%) 42.49 (%)
10 19.28 (%) 17.03 (%) 18.96 (%) 17.68 (%) 10.86 (%) 11.62 (%) 8.62 (%) 11.45(%) 11.37 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C3

2 45.97 (%) 42.93 (%) 42.86 (%) 45.85 (%) 41.78 (%) 41.75 (%) 45.22 (%) 41.44 (%) 41.4 (%)
10 15.45 (%) 12.57 (%) 7.04 (%) 27.27 (%) 5.55 (%) 3 (%) 3.48 (%) 6.2 (%) 3.72 (%)
20 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

the distortion due to buffering.
Effectiveness of Fog-Tree Hierarchy: Tree 3, representing the shortest tree, has the lowest
response time as the result of providing more CFNs closer to data sources than the other two
trees. With Tree 2 each fog node can accept up to three children while each fog node in Tree 3
can accept up to four children. By comparing the results in Tables 9.28, 9.29, 9.30, 9.30, 9.31,
and 9.32, we can conclude that the fog-tree hierarchy has a good tolerance for processing the
huge volume of data stream.
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Table 9.31: Average Distortion Due to Buffering-512 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 48.83 (%) 49.81 (%) 49.81 (%) 48.46 (%) 49.75(%) 49.76 (%) 48.18 (%) 49.71 (%) 49.71 (%)
10 39.97 (%) 49 (%) 49 (%) 36.57 (%) 48.7(%) 48.71 (%) 64.32/2 (%) 48.42 (%) 48.13 (%)
20 11.2 (%) 48.27 (%) 48.27 (%) 0 (%) 47.79 (%) 47.8 (%) 0 (%) 47.37 (%) 47.48(%)
30 0 (%) 47.65 (%) 47.68(%) 0 (%) 47.07(%) 47.09 (%) 0 (%) 45.96 (%) 45.98 (%)
40 0 (%) 46.48 (%) 46.47 (%) 0 (%) 45.63 (%) 45.82 (%) 0 (%) 44.64 (%) 44.65 (%)
50 0 (%) 43.7 (%) 43.69 (%) 0 (%) 41.89 (%) 41.89 (%) 0 (%) 39.7 (%) 39.69 (%)
60 0 (%) 43.65 (%) 43.64 (%) 0 (%) 41.78 (%) 41.78 (%) 0 (%) 39.55 (%) 39.55 (%)
70 0 (%) 36.97(%) 36.94 (%) 0 (%) 32.84 (%) 32.98 (%) 0 (%) 25.54 (%) 25.67 (%)
80 0 (%) 36.59 (%) 36.59 (%) 0 (%) 32.55 (%) 32.55 (%) 0 (%) 25.475 (%) 25.37(%)

C2

2 48.53 (%) 47.43 (%) 47.46 (%) 48.7(%) 45.74(%) 45.86 (%) 47.7 (%) 45.09 (%) 45.14 (%)
10 37.43 (%) 34.89 (%) 37.58 (%) 33.16 (%) 30.21 (%) 31.34(%) 27.63 (%) 27.47(%) 27.5 (%)
20 1.35 (%) 22.64 (%) 23.95 (%) 0 (%) 11.45 (%) 11.2 (%) 0 (%) 3.96 (%) 2.5 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C3

2 48.33 (%) 46.57 (%) 46.47 (%) 47.82 (%) 45.12 (%) 44.87 (%) 47.39(%) 44.37(%) 44.24 (%)
10 35.73 (%) 34.89 (%) 33.36 (%) 30.89 (%) 27.35 (%) 25.96 (%) 24.71 (%) 24.21 (%) 20.68 (%)
20 0 (%) 6.28 (%) 7.64 (%) 0 (%) 5.88 (%) 5.22 (%) 0 (%) 0 (%) 0 (%)
30 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
40 0 (%) 0 (%) 0 (s) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

Table 9.32: Average Distortion Due to Buffering-640 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 48.99 (%) 55.88 (%) 54.31 (%) 48.44 (%) 49.78 (%) 49.79 (%) 48.42 (%) 49.57 (%) 49.75 (%)
10 41.35 (%) 49.14 (%) 49.13 (%) 38.42 (%) 48.88 (%) 48.9 (%) 34.62 (%) 48.7 (%) 48.69 (%)
20 15.54 (%) 48.51 (%) 48.51 (%) 6.31 (%) 48.09 (%) 48.1 (%) 0 (%) 47.73 (%) 46.53 (%)
30 0 (%) 46.97 (%) 48.01 (%) 0 (%) 47.48 (%) 47.19 (%) 0 (%) 46.51 (%) 46.53 (%)
40 0 (%) 46.96 (%) 46.95 (%) 0 (%) 46.23 (%) 46.39 (%) 0 (%) 45.38 (%) 45.39 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C2

2 48.7 (%) 47.66 (%) 47.75 (%) 48.3 (%) 46.23 (%) 46.34 (%) 47.96 (%) 45.65 (%) 45.7 (%)
10 38.88 (%) 38.33 (%) 39.01 (%) 35.11 (%) 32.49 (%) 33.5 (%) 30.21 (%) 30.06 (%) 30.03 (%)
20 6.93 (%) 25.77 (%) 26.95 (%) 0 (%) 15.9 (%) 15.64 (%) 0 (%) 9.36 (%) 8.04 (%)
30 0 (%) 16.99 (%) 16.91 (%) 0 (%) 4.77 (%) 6.73 (%) 0 (%) 0 (%) 0 (%)
40 0(%) 0.82 (%) 2.75 (%) 0 (%) 0(%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

C3

2 48.51 (%) 46.93 (%) 46.85 (%) 48.05 (%) 45.64 (%) 45.41 (%) 47.67 (%) 44.98 (%) 44.85 (%)
10 37.27 (%) 36.51 (%) 35.14 (%) 32.93 (%) 29.77 (%) 28.54 (%) 27.32 (%) 26.98 (%) 23.83 (%)
20 0.68 (%) 22 (%) 12.18 (%) 0(%) 13.89 (%) 10.02 (%) 0 (%) 3 (%) 1.08 (%)
30 0 (%) 11.86 (%) 11.37 (%) 0 (%) 0 (%) 0(%) 0 (%) 0(%) 0 (%)
40 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
50 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
60 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
70 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)
80 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%) 0 (%)

Effectiveness of Algorithms 8.1 and 8.2: From Tables 9.28, 9.29, 9.30, 9.30, 9.31, and 9.32
we see that the original query graph results in less distortion compared to the reconfigured and
the adjusted query graph.
Comparison of Cost Functions: From Tables 9.28, 9.29, 9.30, 9.30, 9.31, and 9.32 we see
that cost function C3 has lower distortion due to buffering compared to the cost functions C1

and C2. The reason is that cost function C3 maps query vertices of a given query graph to nodes
in the upper level of the tree overlay network of fog nodes. Fog nodes in upper level of the
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hierarchy of fog nodes have more processing power compared to fog nodes in the lower levels
of the hierarchy.

9.3.5 Average Distortion Due to Network Latency
Tables 9.33, 9.34, 9.35, 9.36, and 9.37 show the average distortion due to buffering for pro-
cessing of the original query graph, reconfigured query graph, and adjusted query graph as
the number of fog nodes and vehicles vary. Moreover, tables 9.33, 9.34, 9.35, 9.36, and 9.37
compares the effect of Tree 1, Tree 2, and Tree 3 on the distortion due to network latency pa-
rameter. Tables 9.33, 9.34, 9.35, 9.36, and 9.37 shows that by increasing the number of level 0
fog nodes we can better cope with the network latency for a large number of data sources by
increasing the number of fog nodes. The result of decreasing end-to-end delay decreases the
average distortion.

Table 9.33: Average Distortion Due to Network Latency-64 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 48.32 (%) 46.83 (%) 46.65 (%) 48.39 (%) 46.93 (%) 46.81 (%) 49.09 (%) 47.58 (%) 47.57 (%)
10 45.15 (%) 36.52 (%) 35.79 (%) 45.32 (%) 36.61 (%) 36.57 (%) 46.08 (%) 39.78 (%) 39.26 (%)
20 42.83 (%) 29.98 (%) 29.08 (%) 43.64 (%) 31.51 (%) 30.82 (%) 43.79 (%) 32.18 (%) 32.11 (%)
30 41.59 (%) 29.89 (%) 28.41 (%) 43.55 (%) 31.46 (%) 30.16 (%) 43.34 (%) 32.04 (%) 31.89 (%)
40 39.41 (%) 28.68 (%) 28.36 (%) 41.9 (%) 31.47 (%) 30.79 (%) 42.72 (%) 32.02 (%) 31.95 (%)
50 35.13 (%) 28.32 (%) 27.81 (%) 37.11 (%) 31.55 (%) 31.25 (%) 41.71 (%) 31.91 (%) 31.89 (%)
60 36.34 (%) 30.52 (%) 30.38 (%) 38.24 (%) 31.65 (%) 31.48 (%) 42.32 (%) 33.17 (%) 33.14 (%)
70 32.25 (%) 30.59 (%) 30.38 (%) 37.78 (%) 33.98 (%) 33.89 (%) 43.52 (%) 34.13 (%) 33.915 (%)
80 27.92 (%) 30.88 (%) 30.64 (%) 37.4 (%) 34.36 (%) 34.26 (%) 40.33 (%) 34.7 (%) 34.53 (%)

C2

2 48.76 (%) 47.29 (%) 46.57 (%) 48.8 (%) 47.37 (%) 46.71 (%) 49.33 (%) 4792 (%) 47.51 (%)
10 46.4 (%) 38.46 (%) 35.44 (%) 46.53 (%) 38.54 (%) 36.25 (%) 47.09 (%) 41.26 (%) 38.99 (%)
20 44.68 (%) 32.87 (%) 28.58 (%) 45.28 (%) 34.18 (%) 30.37 (%) 45.39 (%) 34.75 (%) 31.69 (%)
30 43.76 (%) 32.79 (%) 27.89 (%) 45.22 (%) 34.13 (%) 29.69 (%) 45.06 (%) 34.63(%) 31.46 (%)
40 42.15 (%) 31.75 (%) 27.82(%) 43.99 (%) 34.15 (%) 30.34 (%) 44.6 (%) 34.61 (%) 31.52 (%)
50 38.97 (%) 31.45 (%) 27.28 (%) 40.44 (%) 34.21 (%) 30.8 (%) 43.85 (%) 34.5 (%) 31.46 (%)
60 39.87 (%) 16.66 (%) 29.91 (%) 41.28(%) 34.29 (%) 31.04 (%) 44.3 (%) 3.58 (%) 32.74 (%)
70 36.84 (%) 33.39 (%) 29.91 (%) 40.94 (%) 36.29 (%) 33.51 (%) 44.09 (%) 36.42 (%) 33.53 (%)
80 33.62(%) 33.64 (%) 30.16 (%) 40.66 (%) 36.61 (%) 33.89 (%) 42.82 (%) 36.91 (%) 34.16 (%)

C3

2 48.88 (%) 47.56 (%) 46.96 (%) 48.93 (%) 47.64 (%) 47.1 (%) 49.39 (%) 48.13 (%) 47.79 (%)
10 46.76 (%) 39.63 (%) 37.08 (%) 46.88 (%) 39.7 (%) 37.79 (%) 47.38 (%) 42.14 (%) 40.23 (%)
20 45.22 (%) 34.6 (%) 30.98 (%) 45.76 (%) 35.78 (%) 32.57 (%) 45.86 (%) 36.18 (%) 33.74 (%)
30 44.39 (%) 34.53 (%) 30.37 (%) 45.7 (%) 35.73 (%) 31.96 (%) 45.56 (%) 36.17 (%) 33.54 (%)
40 42.94 (%) 33.6 (%) 30.32 (%) 44.6 (%) 35.75 (%) 32.54 (%) 45.15 (%) 36.08 (%) 33.57 (%)
50 40.09(%) 33.32 (%) 29.83 (%) 42.16 (%) 35.88 (%) 33.16 (%) 44.88 (%) 37.05 (%) 33.54 (%)
60 40.89 (%) 35.01 (%) 32.16 (%) 41.85 (%) 37.67 (%) 35.35 (%) 44.69 (%) 37.79 (%) 34.68 (%)
70 38.17 (%) 35.07 (%) 32.16 (%) 41.73 (%) 37.73 (%) 35.75 (%) 44.43 (%) 37.89 (%) 35.38 (%)
80 35.27 (%) 35.29 (%) 32.39 (%) 41.6 (%) 37.96 (%) 35.79 (%) 43.55 (%) 38.23 (%) 35.93 (%)



9.3. Camera Crowd SizeMeasurement Scenario Results 101

Table 9.34: Average Distortion Due to Network Latency-128 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 48.72 (%) 47.65 (%) 47.44 (%) 48.76 (%) 47.71 (%) 47.55 (%) 49.27 (%) 48.34 (%) 48.05 (%)
10 46.82 (%) 43.45 (%) 43.1 (%) 46.9 (%) 43.47 (%) 43.33 (%) 47.31 (%) 44.43 (%) 44.1 (%)
20 45.74 (%) 42.02 (%) 41.7 (%) 46.09 (%) 42.31 (%) 42.01 (%) 46.16 (%) 42.44 (%) 42.27 (%)
30 45.25 (%) 42.01 (%) 41.59 (%) 46.05 (%) 42.3 (%) 41.89 (%) 45.96 (%) 42.41 (%) 42.22 (%)
40 44.48 (%) 41.8 (%) 41.58 (%) 45.36 (%) 42.3 (%) 42.01 (%) 45.7 (%) 42.41 (%) 42.23 (%)
50 43.29 (%) 41.74 (%) 41.5 (%) 43.8 (%) 42.32 (%) 42.09 (%) 45.29 (%) 42.49 (%) 42.39 (%)
60 43.59 (%) 42.12 (%) 41.93 (%) 44.12 (%) 42.34 (%) 42.14 (%) 45.53 (%) 42.66 (%) 42.51 (%)
70 42.64 (%) 42.13 (%) 41.93 (%) 43.99 (%) 42.45 (%) 42.05 (%) 45.42 (%) 42.66 (%) 42.51 (%)
80 41.86 (%) 42.19 (%) 41.98 (%) 43.88 (%) 42.91 (%) 42.73 (%) 44.79 (%) 43 (%) 42.83 (%)

C2

2 49.16 (%) 48.25 (%) 47.81 (%) 49.19 (%) 48.3 (%) 47.9 (%) 49.52 (%) 48.77 (%) 48.33 (%)
10 47.91 (%) 45.14 (%) 44.09 (%) 47.97 (%) 45.16 (%) 44.3 (%) 48.24 (%) 45.87 (%) 44.95 (%)
20 47.21 (%) 44.08 (%) 42.9 (%) 47.44 (%) 44.29 (%) 43.17 (%) 47.49 (%) 44.39 (%) 43.38 (%)
30 46.89 (%) 44.07 (%) 42.8 (%) 47.42 (%) 44.29 (%) 43.06 (%) 47.36 (%) 44.37 (%) 43.34 (%)
40 46.39 (%) 43.92 (%) 42.8 (%) 46.96 (%) 44.29 (%) 43.16 (%) 47.18 (%) 44.37 (%) 43.35 (%)
50 45.6 (%) 43.87 (%) 85.45 (%) 45.94 (%) 44.3 (%) 43.23 (%) 46.92 (%) 44.39 (%) 43.48 (%)
60 45.8 (%) 44.16 (%) 43.1 (%) 46.15 (%) 44.31 (%) 43.27 (%) 47.07 (%) .4455 (%) 36.64 (%)
70 45.19 (%) 44.17 (%) 43.1 (%) 46.06 (%) 44.4 (%) 43.19 (%) 47 (%) 44.55 (%) 43.59 (%)
80 44.67 (%) 44.21 (%) 43.12 (%) 45.99 (%) 44.74 (%) 43.78 (%) 46.59 (%) 44.8 (%) 43.87 (%)

C
3

2 49.24 (%) 48.43 (%) 48.03 (%) 49.27 (%) 48.47 (%) 48.11 (%) 49.57 (%) 48.89 (%) 48.5 (%)
10 48.12 (%) 45.63 (%) 44.69 (%) 48.18 (%) 45.65 (%) 44.87 (%) 48.42 (%) 46.28 (%) 45.46 (%)
20 47.49 (%) 44.68 (%) 43.62 (%) 47.7 (%) 44.87 (%) 43.86 (%) 47.74 (%) 44.96 (%) 44.05 (%)
30 47.2 (%) 44.67 (%) 43.53 (%) 47.68 (%) 44.86 (%) 43.76 (%) 47.62 (%) 44.94 (%) 44.01 (%)
40 46.75 (%) 44.53 (%) 43.52 (%) 47.27 (%) 44.87 (%) 43.85 (%) 47.47 (%) 44.94 (%) 44.02 (%)
50 46.05 (%) 44.49 (%) 43.45 (%) 46.35 (%) 44.88 (%) 43.92 (%) 47.23 (%) 44.96 (%) 44.14 (%)
60 46.23 (%) 44.74 (%) 43.79 (%) 46.54 (%) 44.89 (%) 43.95 (%) 47.37 (%) 45.1 (%) 37.99 (%)
70 45.67 (%) 44.75 (%) 43.79 (%) 46.46 (%) 44.97 (%) 43.88 (%) 47.3 (%) 45.1 (%) 44.24 (%)
80 45.21 (%) 44.79 (%) 43.83 (%) 46.4 (%) 45.27 (%) 44.41 (%) 46.93 (%) 4.53 (%) 44.48 (%)

Table 9.35: Average Distortion Due to Network Latency-256 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 49.67 (%) 49.48 (%) 49.46 (%) 49.68 (%) 49.49 (%) 49.48 (%) 49.8 (%) 49.57 (%) 49.57 (%)
10 48.8 (%) 48.35 (%) 48.31 (%) 48.835 (%) 48.38 (%) 48.34 (%) 49.2 (%) 48.53 (%) 48.53 (%)
20 48.47 (%) 48.05 (%) 48.01 (%) 48.51 (%) 48.05 (%) 47.97 (%) 48.91 (%) 48.19 (%) 48.19 (%)
30 48.41 (%) 47.89 (%) 47.81 (%) 48.48 (%) 47.91 (%) 47.89 (%) 48.87 (%) 48.13 (%) 48.08 (%)
40 48.4 (%) 47.87 (%) 47.74 (%) 47.9 (%) 47.84 (%) 47.79 (%) 48.85 (%) 48.12 (%) 47.93 (%)
50 47.94 (%) 47.65 (%) 47.65 (%) 48 (%) 47.71 (%) 47.71 (%) 48.22 (%) 47.98 (%) 47.58 (%)
60 47.89 (%) 47.65 (%) 47.56 (%) 47.95 (%) 47.7 (%) 47.52 (%) 48.27 (%) 47.73 (%) 47.58 (%)
70 47.88 (%) 47.65 (%) 47.81 (%) 48.18 (%) 47.72 (%) 47.44 (%) 48.19 (%) 47.8 (%) 47.58 (%)
80 47.85 (%) 47.65 (%) 47.38 (%) 47.92 (%) 47.72 (%) 48.38 (%) 48.38 (%) 47.78 (%) 47.63 (%)

C2

2 49.84 (%) 49.69 (%) 49.68 (%) 49.85 (%) 49.7 (%) 49.69 (%) 49.88 (%) 49.74 (%) 49.72 (%)
10 49.58 (%) 49.03 (%) 49.02 (%) 49.58 (%) 49.02 (%) 49.03 (%) 49.69 (%) 49.15 (%) 49.14 (%)
20 49.5 (%) 49.02 (%) 49.02 (%) 49.5 (%) 49.02 (%) 49.02 (%) 49.69 (%) 49.05 (%) 49.05(%)
30 49.5 (%) 49.02 (%) 49.02(%) 49.5 (%) 49.01 (%) 49.01 (%) 49.67 (%) 49.05 (%) 49.04 (%)
40 49.5 (%) 49.02 (%) 49.02(%) 49.51 (%) 49.01 (%) 48.89 (%) 49.67 (%) 49.04 (%) 48.88 (%)
50 49.48 (%) 49.02 (%) 49.02 (%) 49.51 (%) 49.01 (%) 48.87 (%) 49.58 (%) 49.04 (%) 48.87 (%)
60 49.48 (%) 49.01 (%) 49.01 (%) 49.5 (%) 49.01 (%) 48.87 (%) 49.58 (%) 49.01 (%) 48.87 (%)
70 49.48 (%) 49.02 (%) 49.02 (%) 49.52 (%) 49.01 (%) 48.87 (%) 49.58 (%) 49.01(%) 48.87 (%)
80 49.48 (%) 49.01 (%) 48.98 (%) 49.52 (%) 49.01 (%) 48.87 (%) 49.58 (%) 49.01 (%) 48.87 (%)

C3

2 49.85 (%) 49.69 (%) 49.68 (%) 49.86 (%) 49.74 (%) 49.69 (%) 49.91 (%) 49.76 (%) 49.74 (%)
10 49.58 (%) 49.03 (%) 49.02 (%) 49.58 (%) 49.04 (%) 49.02 (%) 49.73 (%) 49.13 (%) 49.11 (%)
20 49.58 (%) 49.02 (%) 49.02(%) 49.58 (%) 49.03 (%) 49.02 (%) 49.73 (%) 49.12 (%) 49.09 (%)
30 49.58 (%) 49.02 (%) 49.02 (%) 49.57 (%) 49.02(%) 49.02 (%) 49.69 (%) 49.11 (%) 49.02 (%)
40 49.58 (%) 49.02 (%) 49.01 (%) 49.58 (%) 49.02 (%) 49.02 (%) 49.69 (%) 49.05 (%) 49.01 (%)
50 49.49 (%) 49.02 (%) 49.01 (%) 49.58 (%) 49.02 (%) 49.01 (%) 49.69 (%) 49.03 (%) 49.01 (%)
60 49.49 (%) 49.01 (%) 49.01 (%) 49.58 (%) 49.02 (%) 49.98(%) 49.68 (%) 49.02 (%) 49.01 (%)
70 49.49 (%) 49.01 (%) 49.02 (%) 49.58 (%) 49.02(%) 48.97 (%) 49.67 (%) 49.02 (%) 49.01 (%)
80 49.49 (%) 49.01 (%) 48.98(%) 49.58 (%) 49.02(%) 49.01 (%) 49.66 (%) 49.02 (%) 49.01 (%)
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Table 9.36: Average Distortion Due to Network Latency-512 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 98.77 (%) 96.2 (%) 91.76 (%) 98.96 (%) 96.77 (%) 94.2 (%) 99.38 (%) 97.1 (%) 96.37(%)
10 97.07 (%) 87.77 (%) 73.82 (%) 97.23 (%) 89.65 (%) 84.49 (%) 98.13 (%) 90.72 (%) 88.57 (%)
20 96.99 (%) 84.39 (%) 69.27 (%) 87.73 (%) 87.73 (%) 81.74 (%) 97.88 (%) 88.59 (%) 85.95 (%)
30 96.56 (%) 84.23 (%) 66.12 (%) 97.09 (%) 86.7 (%) 80.23 (%) 97.84 (%) 88.21 (%) 85.11(%)
40 96.56 (%) 84.23 (%) 65.08 (%) 96.62 (%) 86.22 (%) 79.33 (%) 97.65 (%) 88.13 (%) 83.96(%)
50 96.56 (%) 82.79 (%) 63.65 (%) 96.69 (%) 85.46 (%) 78.52 (%) 97.72 (%) 87.24 (%) 81.77 (%)
60 96.05 (%) 82.6 (%) 61.62 (%) 96.65 (%) 85.35 (%) 76.71 (%) 97.55 (%) 85.63 (%) 81.24 (%)
70 96.04 (%) 82.6 (%) 61.61 (%) 96.83 (%) 85.45 (%) 75.98 (%) 97.27 (%) 86.08 (%) 81.22(%)
80 96.02 (%) 82.6 (%) 59.51 (%) 96.99 (%) 85.45 (%) 77.47 (%) 97.16 (%) 87.68 (%) 81.61 (%)

C2

2 49.97 (%) 49.9 (%) 49.79 (%) 49.97 (%) 49.91 (%) 49.87 (%) 49.98 (%) 49.92 (%) 49.91 (%)
10 49.93 (%) 49.69 (%) 49.34 (%) 49.95 (%) 49.74 (%) 49.61 (%) 49.96 (%) 49.73 (%) 49.71 (%)
20 49.93 (%) 49.58 (%) 48.99 (%) 49.93 (%) 49.66 (%) 49.46 (%) 49.95 (%) 49.71 (%) 49.64 (%)
30 49.93 (%) 49.58(%) 48.99 (%) 49.94 (%) 49.66 (%) 49.46 (%) 49.95 (%) 49.68 (%) 49.54 (%)
40 49.93 (%) 49.58(%) 48.99 (%) 49.93 (%) 49.65 (%) 49.43 (%) 49.95 (%) 49.68 (%) 49.53 (%)
50 49.92 (%) 49.58 (%) 48.99 (%) 49.93 (%) 49.63 (%) 49.43 (%) 49.95 (%) 49.67 (%) 49.53 (%)
60 49.92 (%) 49.57 (%) 48.99 (%) 49.93 (%) 49.63 (%) 49.43(%) 49.95 (%) 49.65 (%) 49.53 (%)
70 49.92 (%) 49.56 (%) 48.98 (%) 49.93 (%) 49.63 (%) 49.43(%) 49.94 (%) 49.65 (%) 49.53 (%)
80 49.92 (%) 49.56 (%) 48.98 (%) 49.93 (%) 49.63 (%) 49.43 (%) 49.94 (%) 49.61 (%) 49.53 (%)

C3

2 49.97 (%) 49.91 (%) 49.81 (%) 49.98 (%) 49.92 (%) 49.89 (%) 49.99 (%) 49.93 (%) 49.9 (%)
10 49.94 (%) 49.72 (%) 49.31 (%) 49.93 (%) 49.76 (%) 49.64 (%) 49.96 (%) 49.76 (%) 49.76 (%)
20 49.94 (%) 49.69 (%) 49.3 (%) 49.92 (%) 49.73 (%) 49.58 (%) 49.96 (%) 49.76 (%) 49.75 (%)
30 49.93 (%) 49.64 (%) 49.09 (%) 49.94 (%) 49.66 (%) 49.58 (%) 49.95 (%) 49.76 (%) 49.75 (%)
40 49.93 (%) 49.64 (%) 49.08 (%) 49.92 (%) 49.66 (%) 49.57 (%) 49.92 (%) 49.75 (%) 49.63 (%)
50 49.93 (%) 49.63 (%) 49.07 (%) 49.92 (%) 49.67 (%) 49.48 (%) 49.91 (%) 49.74 (%) 49.63 (%)
60 49.92 (%) 49.6 (%) 49.07 (%) 49.92 (%) 49.66 (%) 49.48(%) 49.91 (%) 49.67 (%) 49.63 (%)
70 49.92 (%) 49.6(%) 49.07 (%) 49.92 (%) 49.55 (%) 49.48 (%) 49.91 (%) 49.67 (%) 49.62 (%)
80 49.92 (%) 49.6 (%) 49.07 (%) 49.94 (%) 49.53 (%) 49.48 (%) 49.9 (%) 49.66 (%) 49.63 (%)

Table 9.37: Average Distortion Due to Network Latency-640 Cameras

Tree 1 Tree 2 Tree 3
#CFNs Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG Original QG Reconfigured QG Adjusted QG

C1

2 49.95 (%) 49.85 (%) 49.68 (%) 49.96 (%) 49.87(%) 49.81 (%) 49.97 (%) 49.89 (%) 49.87 (%)
10 49.88 (%) 49.52 (%) 48.99 (%) 49.89 (%) 49.6 (%) 49.4 (%) 49.91 (%) 49.64 (%) 49.56(%)
20 49.88 (%) 49.44 (%) 48.81 (%) 49.87 (%) 49.64 (%) 49.44 (%) 49.91 (%) 49.56(%) 49.45 (%)
30 49.86 (%) 49.39 (%) 48.69 (%) 49.88 (%) 49.48 (%) 49.23 (%) 49.91 (%) 49.56 (%) 49.45 (%)
40 49.86 (%) 49.39 (%) 48.69 (%) 49.87 (%) 49.48 (%) 49.07 (%) 49.21 (%) 49.59 (%) 49.38 (%)
50 49.86 (%) 49.33 (%) 48.6 (%) 49.87 (%) 49.48 (%) 49.08 (%) 49.93 (%) 49.46 (%) 49.29 (%)
60 49.84 (%) 49.33 (%) 48.55 (%) 49.87 (%) 49.44 (%) 49.07 (%) 49.9 (%) 49.46 (%) 49.29 (%)
70 49.84 (%) 49.33 (%) 48.52 (%) 49.87 (%) 49.44 (%) 49.05 (%) 49.89 (%) 49.46 (%) 49.29 (%)
80 49.84 (%) 49.33 (%) 48.47 (%) 49.88 (%) 49.44 (%) 49.13 (%) 49.89 (%) 49.52 (%) 49.29 (%)

C2

2 49.98 (%) 49.92 (%) 49.84 (%) 49.98 (%) 49.94 (%) 49.91 (%) 49.99 (%) 49.94 (%) 49.93 (%)
10 49.95 (%) 49.77 (%) 49.51 (%) 49.95 (%) 49.80 (%) 49.71 (%) 49.97 (%) 49.82 (%) 49.71 (%)
20 49.95 (%) 49.73 (%) 49.42 (%) 49.94 (%) 49.78 (%) 49.66 (%) 49.96 (%) 49.78 (%) 49.66 (%)
30 49.94 (%) 49.7 (%) 49.36 (%) 49.95 (%) 49.77 (%) 49.58 (%) 49.96 (%) 49.78 (%) 49.66 (%)
40 49.94 (%) 49.7 (%) 49.35 (%) 49.94 (%) 49.76 (%) 49.57 (%) 49.96 (%) 49.77 (%) 49.58 (%)
50 49.94 (%) 49.68 (%) 49.32 (%) 49.94 (%) 49.76 (%) 49.57 (%) 49.97 (%) 49.75 (%) 49.58 (%)
60 49.83 (%) 49.68 (%) 49.29 (%) 49.94 (%) 49.76 (%) 49.55 (%) 49.96 (%) 49.73(%) 49.55 (%)
70 49.83 (%) 49.67 (%) 49.29 (%) 49.95 (%) 49.76 (%) 49.55 (%) 49.59 (%) 49.74 (%) 49.55 (%)
80 49.83 (%) 49.66 (%) 49.24 (%) 49.95 (%) 49.71 (%) 49.58 (%) 49.95 (%) 49.71 (%) 49.56 (%)

C3

2 49.98 (%) 49.93 (%) 49.86 (%) 49.98 (%) 49.94 (%) 49.92 (%) 49.99 (%) 49.95 (%) 49.94 (%)
10 49.95 (%) 49.8 (%) 49.57 (%) 49.96 (%) 49.83 (%) 49.74 (%) 49.97(%) 49.84 (%) 49.82 (%)
20 49.95 (%) 49.76 (%) 49.49 (%) 49.95 (%) 49.81 (%) 49.73 (%) 49.97 (%) 49.82 (%) 49.76 (%)
30 49.95 (%) 49.74 (%) 49.44 (%) 49.96 (%) 49.78 (%) 49.68 (%) 49.97 (%) 49.81 (%) 49.75 (%)
40 49.95 (%) 49.74 (%) 49.42 (%) 49.95 (%) 49.78 (%) 49.68 (%) 49.96 (%) 49.8 (%) 49.74 (%)
50 49.95 (%) 49.74 (%) 49.4 (%) 49.95 (%) 49.76 (%) 49.68 (%) 49.96 (%) 49.79 (%) 49.86 (%)
60 49.94 (%) 49.71 (%) 49.38 (%) 49.95 (%) 49.76 (%) 49.67 (%) 49.96 (%) 49.76 (%) 49.66 (%)
70 49.94 (%) 49.71 (%) 49.38 (%) 49.96 (%) 49.74 (%) 49.63 (%) 49.96 (%) 49.77 (%) 49.7 (%)
80 49.94 (%) 49.71 (%) 49.33 (%) 49.95 (%) 49.74 (%) 49.63 (%) 49.96 (%) 49.74 (%) 49.69 (%)



Chapter 10

Conclusion

In a nutshell, this thesis addresses some of the limitations of current architectures for video
streaming and IoT applications based on nearby computing resources e.g., cloudlet, fog. The
contributions of this thesis can be divided into two parts as described below:

1. In the first part of this thesis we presented the following contribution:

• A framework (Coping Flash Crowd) for multi-channel P2P live video streaming
that provides de-centralized mechanisms for handling flash crowds that includes
incentive mechanism, load balancing mechanisms, and cross-channel help among
the peers for live video streaming in multi-channel P2P systems. The performance
evaluation results demonstrated that CFC decreases the redundant traffic between
autonomous systems. It can cope the flash crowd phenomena in P2P Network, and
reduce the startup delay because in live video stream networks a newcomer expects
to watch a video immediately.

• We extended Coping Flash Crowd framework to increase the quality of service
for multi-channel P2P live video streaming systems. The extended Coping Flash
Crowd framework considers mechanisms for coping with the flash crowd phenom-
ena alongside the load balancing, traffic localization and network coding. Our per-
formance results demonstrated that the redundant traffic between autonomous sys-
tems decreases significantly. This provides strong evidence of the effectiveness of
using networking coding in extended Coping Flash Crowd framework.

• A dynamic partitioning framework was proposed that considers network conditions
and the amount of data being transferred, shows how a cloudlet mesh can be used,
and presents performance results that illustrate the advantages of a dynamic parti-
tioning strategy and a cloudlet mesh.

2. In the second part of this thesis we addressed the challenges of the current architecture
for IoT applications. Currently the architecture for IoT applications assumes that data
streams are sent to a cloud for analysis in order to determine a response. The major
problem relying only on the cloud is the latency. The latency is due to the long net-
work distance from the IoT devices to the cloud, which could lead to poor quality of
service. Moreover, the network core could be overwhelmed [111] due to huge amount
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of data that is generated by IoT devices. Accordingly, the use of a cloud is unsuitable
for applications which require a high level of interaction with users and applications
with real-time decision making requirements. This thesis we proposed a query operator
placement algorithm which supports: Real-time aggregation and analysis of data streams
from geographically distributed data sources; Combining more operators into one query
vertex instead of having different query vertices for each operators helps to save more
bandwidth and reduce the transmission costs; Optimized operator placement and opera-
tor reuse; Provide scalability for distributed data stream management systems.

10.1 Future Work
An adaptive approach for placement of query operators has been left for the future. In other
words, a mechanism is required to periodically collects processing loads on fog nodes and if a
processing loads on a fog node that hosts a query operator is higher that a predefined threshold
then tries to find a new host for the query operators. Future work considers how the change of
communication load and processing load in the networked fog nodes to find the hosts for query
operators.
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Appendix A

Simulator

A.1 Introduction to the Simulator
For the simulation, iFogSim [79] was extended. iFogsim uses the event simulation functional-
ities of CloudSim [33]. Basically, the core CloudSim layer is responsible for handling events
between fog computing entities in iFogSim. The main components of this simulation are the
following:

• Fog Node: In iFogSim [79] the FogDevice class was used for a fog node. FogDe-
vice class specifies hardware characteristics of a fog node and its connections to other
fog nodes and sensors. FogDevice class is an extension of the PowerDatacenter class in
CloudSim [33]. The major attributes of the FogDevice class are memory, processor, stor-
age size, uplink and downlink bandwidths. In the simulation by using createFogDevice
function we can create a fog node and set up the required specifications. The required
specifications for a fog node are: < node−name; MIPS ; Memory ;upload−bandwidth;
download − bandwidth >.

• Sensor: This class contains attributes representing the characteristics of a sensor such as
a sensor’s connectivity and output attributes. This class includes an attribute which spec-
ifies a gateway to a fog device. Moreover, this class defines the output characteristics of
the sensor. There is no processing capacity was considered for sensors in this simulation.

• Tuple: Tuples are represented as instances of the Tuple class in iFogSim. iFogSim
inherited Tuple class from the Cloudlet class of CloudSim. A tuple in CloudSim is
characterized by its type and the source and destination application component. In this
simulation the same specifications were used as described by Verma et al [179]. The
attributes of the class specify the processing speed requirements (defined in terms of
Million Instructions Per Second).

• Application: An application is modeled as a directed acyclic graph (DAG), the vertices
of the DAG representing modules that perform processing on incoming data (tuple) and
edges denoting data-dependencies between modules.

iFogSim/CloudSim does not have any built-in classes for simulating the physical network.
This is a problem for experimentation where we want to assess the impact of the distance
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between the data sources and some sort of processing entity. This requires that we modify
iFogSim so that the time that the data transmission time is calculated. For this work we devel-
oped a new class, Gateway, that is responsible for handling the incoming traffic to a processing
entity (fog node or cloud). The Gateway is responsible for calculating delay for incoming
tuples.

A.1.1 Data Stream Processing in the Simulator

Figure A.1: Sequence diagram of the generation and execution [79]

A sequence diagram demonstrating tuple emission and subsequent execution is shown in
Fig. A.1 [79]. In the simulator the processing on a data stream is performed as follows:

• A tuple is generated by a sensor and sent to a fog node or a cloud. The function send()
is used to send the tuple to another entity.

• Once the tuple reaches the fog node or a cloud the processTupleArrival() function is
called to handle an incoming tuple. Also, the latency for the received tuple is calculated.
Latency calculation is described in Section A.2. In case the tuple needs to be routed to
another Fog device, it is sent immediately without processing.
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• The executeTuple() function is called to process the arrived tuple. The executeTuple()
function in the processing node contains the tuple processing logic where the device
updates its resource utilization. The executeTuple() method in the processing node class
contains the tuple processing logic. The function checkCloudletCompletion() is called
on the Fog device on completion of execution of the tuple.

A.2 iFogSim Extension

This section describes how network delay is introduced in the simulation and how end-to-
end delay is measured in the simulation. iFogSim [79] only uses a constant delay for each
connection between any two nodes, however we added a feature to dynamically calculate the
network latency as the network traffic changes. This section has two parts: (1) Setting up the
delay in the Simulator; (2) Calculation of End-to-End delay metric.

A.2.1 Setting up Delay in the iFogSim

We added module to iFogSim which is used to simulate a network of routers and switches.
This model maintains an n × n matrix where n represents the number of routers or switches.
Fig. A.2 illustrates an example of the underlay network related to the adjacency matrix in Fig.
A.3.

u1
u2

u3

u4
u5

u7
u6

u8

u9
u10

u11

u12

u13

u14

u15

u16

u17

u18

u19

Figure A.2: An Example of an Underlay Network

A transmission rate matrix corresponding to the adjacency matrix was introduced to spec-
ify the weight (packet transmission rate) for the underlay adjacency matrix. Each entry in a
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19
u1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u2 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

u3 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

u4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u5 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0

u6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u7 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1

u8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

u9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

u10 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

u11 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

u12 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0

u13 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

u14 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

u16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

u17 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

u18 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

u19 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

A=

Figure A.3: An Example of an Underlay Adjecency Martrix

transmission rate matrix represents a transmission rate in a link between two adjacent nodes
(such as routers).

End-to-End Calculation

In a communication network the amount of time needed for a packet to be transferred between
two nodes is known as end-to-end delay. As Fig .A.5 shows the end-to-end delay consists of
following parts: (1) Processing delay; (2) Queuing delay; (3) Propagation delay; (4) Transmis-
sion delay.

DEnd−to−End = Dprocessing + Dpropagation + Dtransmission + Dqueue (A.1)

The following explain the calculation of the end-to-end delay:

• Processing Delay: Processing delay is the time it takes routers to process the packet
header. The processing delay is not taken into consideration in our extension of iFogSim.

• Propagation Delay: Propagation delay is defined as the amount of time for a signal
to reach its destination (i.e., the amount of time it takes for a bit to propagate from one
router to the next). The propagation delay is not taken into consideration in our extension
of iFogSim.
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18
u1 r1,2
u2 r1,2 r2,3 r2,13
u3 r2,3 r3,4 r3,14
u4 r3,4
u5 r6,5 r7,5 r12,5 r14,5
u6 r6,5
u7 r7,5 r7,8 r10,7 r7,18
u8 r7,8 r16,8 r17,8

u9 r10,9
u10 r10,7 r10,9 r10,11
u11 r10,11 r12,11
u12 r12,5 r12,11 r12,13
u13 r2,13 r12,13
u14 r3,14 r14,5
u15 r15,18
u16 r16,8

u17 r17,8
u18 r7,18 r15,18

Figure A.4: Example of a Transmission Rate Matrix for an Underlay Network

Figure A.5: An Example of an End-to-End Delay [20]

• Transmission Delay :Dtransmission is obtained from the rate adjacency matrix. Transmis-
sion delay is defined as the amount of time required for the router to push out a packet.
A packet transmission time in seconds can be obtained from the packet size in bit and
the transmission rate or bit rate in bit

s as: packetS ize
bitRate .

• Queuing delay: Queuing delay is the time the packet spends in a router’s queue. Queu-
ing delay represents how long would a packet is kept in a router queue.

A.2.2 Gateway

The iFogS im/CloudS im has no actual entities for simulating network entities, such as
routers or switches. Therefore, this simulation uses the following method to show the
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affect of the queuing network related to the routers or switches in the underlay network.
Each fog node/cloud in the simulation uses an instance of a module called ”Gateway”.
Figure A.7 is used to illustrate the Gateway. As seen in Fig. A.7 all data sources send
generated data stream to the processing node. However, in the simulation as it was
illustrated in Fig. A.8, all the data streams from all the data sources are passed though
the gateway (each fog node has a gateway module).

C2

C3 C4
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u9
u10

u11

u12

u13

u14
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u16
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C7

u18

Cloud

u19

Figure A.6: An Example of a Cloud and Fog Nodes
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Fog Node 
Communication 

Gateway

Data Source : 

Figure A.7: An Example of Fog Node and Data Sources
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Fog Node

Data Source : 

Figure A.8: An Example of Fog Node and Data Sources with a Gateway

Gateway: A Gateway is responsible for calculating and adding the queuing delay for in-
coming traffic to a fog node/cloud. Considering an entity ei in the simulation. An entity can
be a sensor, a fog node, and a cloud. A gateway of an entity such as ei calculates the queuing
delay by using gateway rate between ei and all the sender entities to ei. Equ. A.2 is used to
calculate the gateway rate between ei and e j when e j sends a packet of length L to ei.

L
RGateway

=
L
r1

+
L
r2

+ ... +
L
ri

(A.2)

where ri represents the transmission rate of a router i belong to a shortest path from e j to ei.
Equation A.2 can be simplified at Equation A.3.

1
RGateway

=
1
r1

+
1
r2

+ ... +
1
ri

(A.3)

Consider the example in Fig A.9(a). The entity X sends tuples to the entity Y . The gateway
associated with entity Y receives all the tuples from X. The gateway associated with Y is
responsible for adding queuing time to the received tuples before placing them in a buffer
associated with entity Y . The gateway associated with Y uses an adjacency matrix to obtain
the path from X to Y . As an example the path from X to Y is illustrated in Fig A.9(b). As
Fig A.9(b) illustrates, it is required for the entity X to use a path which includes routers with
the following transmission rate: r1, r2, r3, and r4 to send a packet to the fog node Y . The path
from X to Y is obtained from adjacency matrix which was introduced in Section A.2.1. Let us
assume that X sends a packet of length L to the entity Y . The transmission rate of a Gateway
associated with Y is obtained from equation A.4.
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Entity Y 

Gateway

Entity Y 

Gateway

(a)

ƮxEntity X Entity Y 

r1

r2

r3

r4

Ʈx

Ʈx

Ʈx

Ʈx

(b)

Figure A.9: (a) An Example of two entities in the Simulation, (b) An Example of Two entities
with Physical Network Connection

1
RY

=
1
r1

+
1
r2

+
1
r3

+
1
r4

(A.4)

Equation A.5 calculates the transmission rate for the Gateway in Fig A.9(b) by solving the
equation A.4 for RGateway.

RY =
r1 × r2 × r3 × r4

(r2 × r3 × r4) + (r1 × r3 × r4) + (r1 × r2 × r4) + (r1 × r2 × r3)
(A.5)

Equ A.5 is used for calculating the rate gateway rate between any two fog nodes X and Y .
Now, consider an example that was illustrated in Fog A.10 where entities X, Z, W, V , and

U sends tuples to an entity Y . The gateway associated with entity Y requires to calculate the
transmission rate for each of X, Z, W, V , and U. In this example the gateway in Y requires to
calculate the transmission rate from each X, Z, W, V , and U. In the other words, Y uses RX, RZ,
RW , RV , and RU to calculated the queuing time form X, Z, W, V , and U. Entity Y can obtain the
shortest path from adjacency matrix. Fig. A.11 shows the example after Y obtains the shortest
path to X, Z, W, V , and U from the adjacency matrix.

Fig A.11 an example where there are more than one entity are connected to a entity. For
example, RX =

r7×r8×r9×r10
r8×r9×r10+r7×r9×r10+r7×r8×r10+r7×r8×r9

where RX represents the transmission rate that
the gateway associated with Y uses to calculate the queuing time for tuples from X. In the same
way Rw, RU , RZ, and RV will be calculated.

There is a queue associated with a gateway. Received tuples from senders are placed in the
gateway queue first based on their arrival time-stamp. Now let’s assume that Fig ?? illustrated a
snap of the Gateway’s queue in Fig A.11 and τ j represents a sent tuple from entity j. Let’s start
from the beginning of the queue. Because τX is in the front of the queue and there is no other
tuple in front of it therefore the Gateway dose not add any queuing time to τX. Let’s considering
τZ in the queue. τZ and τX passed thought the same underlay path as it was illustrated in Fig
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Figure A.10: An Example of Five Fog Nodes in the Simulation
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Figure A.11: An Example of Five Fog Nodes with Physical Network Connection

A.11, therefore the Gateway to calculate the queuing time for τZ uses the RZ which is equal to
RX. The queuing time for τZ is equal to L

RX
(or L

RZ
). Where L represents the length a tuple (all

tuples have the same length L). When the Gateway in A.10 submits τX to the buffer of entity Y
it adds L

RX
amount of waiting time to all the tuples in the queue that came from the same path

az τX but it only adds L
R10

to the rest of tuples in the queue.



Appendix B

Query Graph

B.1 Query Graph for Congested Highway Notification Sce-
nario

Figure B.1 illustrates a query graph that is used for the Congested Highway Notification Sce-
nario [12].

SegSpeedStr

ActiveVehicleSegRel

AvgSegSpeedStr

NumberofActiveSegRel

AvgSegmentsSpeedStr CongestionNotificationStr

S1

Q4

Q5Q2

Q1 Q7Q6

SumVehicleSpeedSegRel

Q3

PosSpeedStr

Figure B.1: Original Query Graph for Traffic Congestion Notification Scenario

• PosSpeedStr(timestamp, longitudein f o, latitudein f o, dir, vehicleID, speed, hwy#): this
is the a position report stream that is received from vehicles.

• SegSpeedStr(timestamp, vehicleID, speed, segNo, dir, hwy#) : This is a non-aggregation
and it is like a filter that returns the segment number from longitude and latitude infor-
mation from PosSpeedStr.

• ActivieVehicleSegRel: This returns the number of vehicles in a segment over a window
of time (e.g., 3 minutes).
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• SumVehicleSpeedSegRel: This returns the summation of vehicles’ speed in a segment
over a window of time (e.g., 3 minutes).

• AvgSegSpeedStr(timestamp, avgS peed, segNo, dir, hwy#) : This returns the average of
vehicles’ speed in one segment over a window of time (e.g., 3 minutes).

• NumberofActivieSegRel(timestamp, segIDs, dir): this returns number of active seg-
ments and number of highways that an aggregation needs to be done for them. segIDs
represents the segNo and the corresponding hwy#.

• AvgSegmentsSpeedStr(timestamp, avgS peed, segIDs, dir): Calculates the average speed
from all segments. So here we can aggregate from different fog nodes

• CongestionNotificationStr(timestamp, segIDs, dir): If the average speed for all the
segments in AvgSegmentsSpeedStr is less that a certain speed then a congestion noti-
fication will be sent.

Proposed cost functions map the given query graph to Tree 1 as following:

• C1:

– Original Query Graph: Q1 is mapped to level 0 fog nodes; Q2 and Q3 are mapped
to level 1 fog nodes; Q4 and Q5 are mapped to level 2 fog nodes; Q6 is mapped to
level 3 fog nodes; Q7 is mapped to level 4 fog nodes.

– Reconfigured Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3, Q4,
and Q5 are mapped to level 1 fog nodes; Q6 is mapped to level 2 fog nodes; Q7 is
mapped to level 3 fog nodes.

– Adjusted Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3, Q4, and Q5

are mapped to level 1 fog nodes; Q6 is mapped to level 2 fog nodes; Q7 is mapped
to level 3 fog nodes.

• C2:

– Original Query Graph: Q1 is mapped to level 0 fog nodes; Q2 is mapped to level 1
fog nodes; Q3 is mapped to level 2 fog nodes; Q4 is mapped to level 3 fog nodes;
Q5 is mapped to level 4 fog nodes; Q6 is mapped to level 5 fog nodes; Q7 is mapped
to level 6 fog nodes;

– Reconfigured Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3 is
mapped to level 1 fog nodes; Q4 is mapped to level 2 fog nodes; Q5 is mapped to
level 3 fog nodes; Q6 is mapped to level 4 fog nodes; Q7 is mapped to level 5 fog
nodes.

– Adjusted Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q4and Q5 are
mapped to level 1 fog nodes; Q3 is mapped to level 2 fog nodes; Q6 is mapped to
level 3 fog nodes; Q7 is mapped to level 4 fog nodes.

• C3:
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– Original Query Graph: Q1 is mapped to level 0 fog nodes; Q2 is mapped to level 2
fog nodes; Q3 is mapped to level 3 fog nodes; Q4 is mapped to level 4 fog nodes;
Q5 and Q6 are mapped to level 6 fog nodes; Q7 is mapped to level 7 fog nodes;

– Reconfigured Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3 is
mapped to level 1 fog nodes; Q4 is mapped to level 2 fog nodes; Q5 is mapped to
level 3 fog nodes; Q6 is mapped to level 5 fog nodes; Q7 is mapped to level 6 fog
nodes.

– Adjusted Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q4 and Q5 are
mapped to level 1 fog nodes; Q3 is mapped to level 2 fog nodes; Q6 is mapped to
level 5 fog nodes; Q7 is mapped to level 6 fog nodes.

Proposed cost functions map the given query graph to Tree 2 as following:

• C1:

– Original Query Graph: Q1 is mapped to level 0 fog nodes; Q2 and Q3 are mapped
to level 1 fog nodes; Q4 and Q5 are mapped to level 2 fog nodes; Q6 is mapped to
level 3 fog nodes; Q7 is mapped to level 4 fog nodes.

– Reconfigured Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3, Q4,
and Q5 are mapped to level 1 fog nodes; Q6 is mapped to level 2 fog nodes; Q7 is
mapped to level 3 fog nodes.

– Adjusted Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3, Q4, and Q5

are mapped to level 1 fog nodes; Q6 is mapped to level 2 fog nodes; Q7 is mapped
to level 3 fog nodes.

• C2:

– Original Query Graph: Q1 is mapped to level 0 fog nodes; Q2 is mapped to level 1
fog nodes; Q3 is mapped to level 2 fog nodes; Q4 is mapped to level 3 fog nodes;
Q5 is mapped to level 4 fog nodes; Q6 and Q7 are mapped to level 5 fog nodes

– Reconfigured Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3 is
mapped to level 1 fog nodes; Q4 is mapped to level 2 fog nodes; Q5 is mapped to
level 3 fog nodes; Q6 is mapped to level 4 fog nodes; Q7 is mapped to level 5 fog
nodes.

– Adjusted Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q4and Q5 are
mapped to level 1 fog nodes; Q3 is mapped to level 2 fog nodes; Q6 is mapped to
level 3 fog nodes; Q7 is mapped to level 4 fog nodes.

• C3 :

– Original Query Graph: Q1 is mapped to level 0 fog nodes; Q2 is mapped to level 2
fog nodes; Q3 is mapped to level 3 fog nodes; Q4 is mapped to level 4 fog nodes;
Q5, Q6 and Q7 are mapped to level 5 fog nodes.
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– Reconfigured Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3 is
mapped to level 1 fog nodes; Q4 is mapped to level 2 fog nodes; Q5 is mapped to
level 3 fog nodes; Q6 and Q7 are mapped to level 5 fog nodes.

– Adjusted Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q4 and Q5 are
mapped to level 1 fog nodes; Q3 is mapped to level 2 fog nodes; Q6 and Q7 are
mapped to level 5 fog nodes.

Proposed cost functions map the given query graph to Tree 3 as following:

• C1:

– Original Query Graph: Q1 is mapped to level 0 fog nodes; Q2 and Q3 are mapped
to level 1 fog nodes; Q4 and Q5 are mapped to level 2 fog nodes; Q6 is mapped to
level 3 fog nodes; Q7 is mapped to level 4 fog nodes.

– Reconfigured Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3, Q4,
and Q5 are mapped to level 1 fog nodes; Q6 is mapped to level 2 fog nodes; Q7 is
mapped to level 3 fog nodes.

– Adjusted Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3, Q4, and Q5

are mapped to level 1 fog nodes; Q6 is mapped to level 2 fog nodes; Q7 is mapped
to level 3 fog nodes.

• C2:

– Original Query Graph: Q1 is mapped to level 0 fog nodes; Q2 is mapped to level 1
fog nodes; Q3 is mapped to level 2 fog nodes; Q4 is mapped to level 3 fog nodes;
Q5, Q6 and Q7 are mapped to level 4 fog nodes.

– Reconfigured Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3 is
mapped to level 1 fog nodes; Q4 is mapped to level 2 fog nodes; Q5 is mapped to
level 3 fog nodes; Q6 and Q7 are mapped to level 4 fog nodes.

– Adjusted Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q4and Q5 are
mapped to level 1 fog nodes; Q3 is mapped to level 2 fog nodes; Q6 is mapped to
level 3 fog nodes; Q7 is mapped to level 4 fog nodes.

• C3:

– Original Query Graph: Q1 is mapped to level 0 fog nodes; Q2 is mapped to level
2 fog nodes; Q3 is mapped to level 3 fog nodes; Q4, Q5, Q6 and Q7 are mapped to
level 4 fog nodes.

– Reconfigured Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q3 is
mapped to level 2 fog nodes; Q4 and Q5 are mapped to level 3 fog nodes; Q6 and
Q7 are mapped to level 4 fog nodes.

– Adjusted Query Graph: Q1 and Q2 are mapped to level 0 fog nodes; Q4 and Q5 are
mapped to level 2 fog nodes; Q3 is mapped to level 3 fog nodes; Q6 and Q7 are
mapped to level 4 fog nodes;
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B.2 Camera Crowd Size Measurement Scenario
Figure 6.2 illustrates a query graph that is used for measurement of crowd size in the Camera
Crowd Size Measurement Scenario.

• Query Q1 receives stream of video from camera(s) for an intersection. Query Q1 applies
an operation that returns I frames corresponding to an intersection.

• Query Q2 returns the list of camera(s) for each intersection over a window of time.

• Query Q3 measures the number of people for an intersection over a window of time by
analysing the stream of I frames for an intersection over a window of time. Query Q4

receives the stream of I frames from query Q1.

• Query Q4 calculates the average crowd size.

• Query Q5 returns the list of intersections in a region.

• Query Q6 calculates the average number of people for the intersections in a region over
a window of time.

PeoplePerIntersection AvgCrowdSizeStr

ActiveCameras

Q5

Q2

Q3

Q6

CameraStr
Camera_IFrame

Q1

IntersectionsAvgCrowdSizeStr

ActiveIntersections

Q4

Figure B.2: Camera Crowd Size Scenario Query Graph

The proposed cost functions map the given query graph to Tree 1 as follows:

• C1:

– Original Query Graph: Q1 is mapped into level 0; Q2 , Q3 are mapped into level 1;
Q4, Q5 are mapped into level 3; Q6 is mapped to level 3.

– Reconfigured Query Graph: Q1, Q2 are mapped into level 0; Q3, Q4, Q5 is mapped
into level 1; Q6 is mapped to level 2.

– Adjusted Query Graph: Q1,Q2 are mapped into level 0; Q3, Q4,Q5 is mapped into
level 1, Q6 is mapped to level 2.

• C2:
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– Original Query Graph: Q1 is mapped into level 0; Q2 is mapped into level 1; Q3 is
mapped into level 2; Q5 is mapped into level 3; Q4 is mapped into level 4: Q6 is
mapped to level 5.

– Reconfigured Query Graph: Q1, Q2 are mapped into level 0; Q3 is mapped into
level 1; Q4 is mapped into level 2; Q5 is mapped into level 3; Q6 is mapped to level
4.

– Adjusted Query Graph: Q1,Q2 are mapped into level 0;Q3 is mapped into level 1;
Q4,Q5 are mapped into level 2;Q6 is mapped to level 3.

• C3 :

– Original Query Graph: Q1 is mapped into level 0; Q2 is mapped into level 1; Q3 is
mapped into level 2; Q4 is mapped into level 4 ; Q5 is mapped into level 6.

– Reconfigured Query Graph: Q1, Q2 are mapped into level 0;Q3 is mapped into level
1; Q4 is mapped into level 4; Q5 is mapped into level 6.

– Adjusted Query Graph: Q1,Q2 are mapped into level 0; Q3 is mapped into level 1;
Q4,Q5 are mapped into level 5.

Proposed cost functions map the given query graph to Tree 2 as following:

• C1:

– Original Query Graph: Q1 is mapped into level 0; Q2 , Q3 are mapped into level 1;
Q4, Q5 are mapped into level 3; Q6 is mapped to level 3.

– Reconfigured Query Graph: Q1, Q2 are mapped into level 0; Q3, Q4, Q5 is mapped
into level 1; Q6 is mapped to level 2.

– Adjusted Query Graph: Q1,Q2 are mapped into level 0; Q3, Q4,Q5 is mapped into
level 1, Q6 is mapped to level 2.

• C2:

– Original Query Graph: Q1 is mapped into level 0; Q2 is mapped into level 1; Q3 is
mapped into level 2; Q5 is mapped into level 3; Q4 is mapped into level 4: Q6 is
mapped to level 5.

– Reconfigured Query Graph: Q1, Q2 are mapped into level 0; Q3 is mapped into
level 1; Q4 is mapped into level 2; Q5 is mapped into level 3; Q6 is mapped to level
4.

– Adjusted Query Graph: Q1,Q2 are mapped into level 0; Q3 is mapped into level 1;
Q4,Q5 are mapped into level 2;Q6 is mapped to level 3.

• C3 :

– Original Query Graph: Q1 is mapped into level 0; Q2 is mapped into level 1; Q3 is
mapped into level 2; Q4 is mapped into level 4 ; Q5 is mapped into level 5.



B.2. Camera Crowd SizeMeasurement Scenario 137

– Reconfigured Query Graph: Q1, Q2 are mapped into level 0; Q3 is mapped into
level 1; Q4 is mapped into level 4; Q5 is mapped into level 5.

– Adjusted Query Graph: Q1,Q2 are mapped into level 0; Q3 is mapped into level 1;
Q4,Q5 are mapped into level 5.

Proposed cost functions map the given query graph to Tree 3 as following:

• C1:

– Original Query Graph: Q1 is mapped into level 0; Q2 , Q3 are mapped into level 1;
Q4, Q5 are mapped into level 3; Q6 is mapped to level 3.

– Reconfigured Query Graph: Q1, Q2 are mapped into level 0; Q3, Q4, Q5 is mapped
into level 1; Q6 is mapped to level 2.

– Adjusted Query Graph: Q1,Q2 are mapped into level 0; Q3, Q4,Q5 is mapped into
level 1, Q6 is mapped to level 2.

• C2:

– Original Query Graph: Q1 is mapped into level 0; Q2 is mapped into level 1; Q3 is
mapped into level 2; Q5 is mapped into level 3; Q4 and are mapped into level 4.

– Reconfigured Query Graph: Q1, Q2 are mapped into level 0; Q3 is mapped into
level 1; Q4 is mapped into level 2; Q5 is mapped into level 3; Q6 is mapped to level
4.

– Adjusted Query Graph: Q1,Q2 are mapped into level 0; Q3 is mapped into level 1;
Q4,Q5 are mapped into level 2;Q6 is mapped to level 3.

• C3 :

– Original Query Graph: Q1 is mapped into level 0; Q2 is mapped into level 1; Q3 is
mapped into level 2; Q4 and Q5 is mapped into level 4.

– Reconfigured Query Graph: Q1, Q2 are mapped into level 0; Q3 is mapped into
level 1; Q4 and Q5 are mapped into level 4.

– Adjusted Query Graph: Q1,Q2 are mapped into level 0; Q3 is mapped into level 1;
Q4,Q5 are mapped into level 4.
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