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A b s t r a c t

The intraclass correlation coefficient (ICC), an index of similarity, plays an important 

role in a wide range of disciplines, for example in the assessment of instrument relia­

bility. In this case, the study design may involve recruiting a sample of subjects each 

of whom are assessed severe^ times with a new device and the standard. The ICC 

estimates for the two devices may then be compared using a test of hypothesis. How­

ever it is well known that conclusions drawn from hypothesis testing are confounded 

by sample size, i.e., a significant p-value can result from a sufficiently large sample 

size. In such cases, a confidence interval for a difference between two ICCs is more 

informative since it combines point estimation and hypothesis testing into a single 

inference statement.

The sampling distribution for the ICC is well known to be left-skewed and thus 

confidence limits are usually constructed using Fisher’s Z-transformation or the F- 

distribution. Unfortunately, such an approach is not applicable to a difference between 

two ICCs. The remaining alternative is to apply a simple asymptotic approach, i.e., 

point estimate plus/minus normal quantile multiplied by the estimate of standard 

error. However this method is known to perform poorly because it ignores the fea­

tures of the underlying sampling distribution. In this thesis I develop a confidence 

interval procedure using the method of variance estimate recovery (MOVER). Specifi­

cally, the variance estimates required for the upper and lower limits of a difference are

iii



recovered from those obtained for separate ICCs. An advantage of this approach is 

that it provides a confidence interval that reflects the underlying sampling distribu­

tion. Simulation results show that the MOVER method performs very well in terms 

of overall coverage percentage and tail errors. Two data sets are used to illustrate 

this procedure.

K ey Words: Intraclass correlation, confidence interval, reliability

iv



TABLE OF CONTENTS

Certificate of Examination ii

Abstract iii

Acknowledgments v

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1
1.1 Reliability and intraclass correlation coefficient.......................................  2
1.2 Statistical inference for a single intraclass correlation coefficient . . .  5
1.3 Motivating exam p les ....................................................................................  7

1.3.1 Exam ple-1........................................................................................... 7
1.3.2 Exam ple-2........................................................................................... 8

1.4 The objective of the th es is ..........................................................................  8
1.5 Organization of the t h e s is ..........................................................................  9

Chapter 2 Literature Review 11
2.1 Introduction....................................................................................................  11
2.2 Role of reliability in medical research .......................................................  12
2.3 Some historical aspects of intraclass correlation coefficient ................  13
2.4 Interval estimation of intraclass correlation coefficient..........................  14
2.5 Sample size estimation for intraclass correlation coe ffic ien t................  16

Chapter 3 Development of confidence interval procedure for a dif­
ference between two correlated intraclass correlation co­
efficients 19

3.1 Introduction....................................................................................................  19
3.2 Definition of a confidence interval............................................................... 20
3.3 Inference procedure for a single intraclass correlation coefficient . . .  21

3.3.1 Point estim ator..................................................................................  22
3.3.2 Confidence limits using the simple asymptotic method . . . .  24
3.3.3 Confidence limits based on Fisher’s Z-transform ation..............  25
3.3.4 Confidence limits using a modified Z-transformation.................  27

vi



3.4 Confidence interval procedure for a difference between two intraclass
correlation coefficients ................................................................................. 29
3.4.1 N otation .............................................................................................. 29
3.4.2 Confidence interval for a difference between two intraclass cor­

relation coefficients using simple asymptotic m ethod................  31
3.4.3 Confidence intervals for a difference between two intraclass cor­

relation coefficients using method of variance recovery.............  33
3.4.4 S u m m a ry ..........................................................................................  40

Chapter 4 Simulation 41
4.1 Introduction....................................................................................................  41
4.2 Study design....................................................................................................  42

4.2.1 Parameter selection and data generation ...................................  42
4.2.2 Confidence interval procedures com pared.................................... 43
4.2.3 Evaluation c r ite r ia ..........................................................................  44

4.3 Simulation results..........................................................................................  46
4.4 Discussion of simulation r e s u lts .................................................................. 72

4.4.1 Coverage.............................................................................................. 72
4.4.2 Tail errors ..........................................................................................  74
4.4.3 Confidence interval width .............................................................  75

4.5 Summary .......................................................................................................  76

Chapter 5 Worked examples 79
5.1 Example 1 .......................................................................................................  79

5.1.1 Estimating confidence limits for single I C C ................................  82
5.1.2 Estimating 95% confidence limits for a difference between two

ICCs using MOVER method............................................................ 88
5.1.3 S u m m a ry ..........................................................................................  92

5.2 Example 2 .......................................................................................................  93
5.2.1 Estimating 95% confidence limits for a difference between two

ICCs using MOVER method............................................................ 94
5.2.2 S u m m a ry ..........................................................................................  98

Chapter 6 Discussion 100

Bibliography 103

Vita 108

vii



LIST OF TABLES

3.1 Layout of data in the one-way random effects m od el.............................  22
3.2 Analysis of variance for the one-way random effects m o d e l ................  23

4.1 The performance of the new approach for constructing two-sided 95% 
confidence intervals (Cl) for a difference between two correlated intr­
aclass correlation coefficients based on 10000 runs when sample size 
n =  15. The lower and upper bound of single ICCs were calculated 
using SA, Fisher, Konishi and Exact method. Ideally missing left (ML)
and missing right (MR) should be 2.50%...................................................  54

4.2 The performance of the new approach for constructing two-sided 95% 
confidence intervals (Cl) for a difference between two correlated intr­
aclass correlation coefficients based on 10000 runs when sample size 
n =  50. The lower and upper bound of single ICCs were calculated 
using SA, Fisher, Konishi and Exact method. Ideally missing left (ML)
and missing right (MR) should be 2.50%...................................................  60

4.3 The performance of the new approach for constructing two-sided 95% 
confidence intervals (Cl) for a difference between two correlated intr­
aclass correlation coefficients based on 10000 runs when sample size 
n =  100. The lower and upper bound of single ICCs were calculated 
using SA, Fisher, Konishi and Exact method. Ideally missing left (ML)
and missing right (MR) should be 2.50%...................................................  66

4.4 Comparative performance of the four procedures for constructing a 95% 
two-sided confidence interval for single ICC (summary of 75 parameter 
combinations with 10000 runs for each combination).............................  72

5.1 CAT scan data; log(VBR) on 50 patients...................................................  80
5.2 A 95% two sided confidence interval for a difference between two ICCs,

confidence intervals for single ICCs were obtained using four different 
methods.............................................................................................................. 92

5.3 A 95% two sided confidence interval for a difference between two ICCs,
confidence intervals for single ICCs were obtained using four different 
methods.............................................................................................................. 98

vm



LIST OF FIGURES

4.1 Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence 
interval methods for single ICCs when k\ = fa = 2. Methods 1, 2, 3, and 
4 represents SA, Fisher, Konishi and Exact procedures respectively. Each 
boxplot was drawn from coverage percentage of 20 parameter combinations. 47

4.2 Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence 
interval methods for single ICCs when k\ = 4, &2 =  2. Methods 1, 2, 3, and 
4 represents SA, Fisher, Konishi and Exact procedures respectively. Each 
boxplot was drawn from coverage percentage of 20 parameter combinations. 48

4.3 Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence 
interval methods for single ICCs when k\ — k? = 4. Methods 1, 2, 3, and 
4 represents SA, Fisher, Konishi and Exact procedures respectively. Each 
boxplot was drawn from coverage percentage of 20 parameter combinations. 49

4.4 Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence 
interval methods for single ICCs when k\ = 6, &2 =  3. Methods 1, 2, 3, and 
4 represents SA, Fisher, Konishi and Exact procedures respectively. Each 
boxplot was drawn from coverage percentage of 20 parameter combinations. 50

4.5 Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence 
interval methods for single ICCs when fci = , £ 2  =  6. Methods 1, 2, 3, and 
4 represents SA, Fisher, Konishi and Exact procedures respectively. Each 
boxplot was drawn from coverage percentage of 20 parameter combinations. 51

4.6 Imbalance of tail errors, quantified by the relative bias % [100|MR -  ML|/(MR + ML)], 
of 95% nominal confidence intervals for a difference between two correlated
ICCs using 4 confidence interval methods for single ICCs. Methods 1, 2,
3, and 4 represents SA, Fisher, Konishi and Exact procedures respectively.
Each boxplot was drawn from coverage percentage of 100 parameter combi­
nations................................................................................................................  52

IX



4.7 Confidence interval width of 95% nominal confidence intervals for a differ­
ence between two correlated ICCs using 4 confidence interval methods for 
single ICCs. Methods 1, 2, 3, and 4 represents SA, Fisher, Konishi and Exact 
procedures respectively. Each boxplot was drawn from coverage percentage 
of 100 parameter combinations......................................................................... 53

x



1

Chapter 1

INTRODUCTION

This thesis concerns setting approximate confidence intervals for a difference be­

tween two correlated intraclass correlation coefficients in the context of reliability 

studies. Comparison of two ICCs has been a major focus in many measurement relia­

bility studies in education, psychology and in biomedical research. The problem could 

arise in such situations as when a new instrument is being developed to replace an 

existing instrument or when two competing measurements are being evaluated for reli­

ability. For example, reliability of a new automatic blood pressure monitor compared 

with the reliability of an existing sphygmomanometer which uses the ausculatatory 

method with the purpose of replacing the existing device or using it interchangeably.

In this introductory chapter, I start with providing some background in section

1.1 which follows by inference procedures for single intraclass correlation coefficient in 

section 1.2. Section 1.3 and 1.4 are allocated to present motivation and the objective 

of the thesis. The chapter finishes with the structure of this thesis.
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1.1 Reliability and intraclass correlation coefficient

In health science and in biomedical research, it is very rare to obtain perfectly reliable 

measurements, rather data are often measured with error. Whether it is taking blood 

pressure from a patient or assessing the results of diagnostic procedure or obtaining 

the effects of a therapy, a repetition of the measurement under the same condition 

may not yield identical values. This phenomenon is known as measurement error with 

its extent usually quantified by a reliability coefficient.

A basic requirement of a measurement is its reliability. Reliability refers to the 

consistency of measurements or reproducibility of the same values when the proce­

dure is applied to the same subject under the same condition repeatedly. It can also 

be interpreted as the degree to which the measurement is influenced by the measure­

ment errors. Low reliability of the measurements can have severe consequences on 

the validity of the research results (Lachin, 2004). Data with large amount of mea­

surement error will fail to reflect the criterion of interest and therefore reliability is a 

prerequisite for validity.

Low reliability of the measurements can seriously affect the statistical analysis 

and subsequent interpretation. In correlation analysis, unreliability of measurements 

attenuates the correlation between two variables and hence reduces the power to 

detect the relationship between the two variables. In regression analysis, unreliable 

measurements shrink the estimate of the slope towards zero. In randomization trials,
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responses measured with unreliable devices reduce the overall power of the test by 

increasing the variance of the outcome measure.

According to classical measurement theory an observed score Yj for subject i (i = 

1,2. , . ,n )  is the sum of two components, true score fa and random measurement 

error e* such that (Shrout, 1998),

Ŷ  — fa Cj.

It is assumed that e, is independent of fa and normally distributed with mean 0 and 

variance a The true score fa for a subject i is fixed but varies among subjects in a 

population of subjects with mean /z and variance er2. In classical reliability theory it 

is customary to assume that the variance of the error component a\ is the same for 

different subjects. Under these assumptions, the observed variability of a randomly 

chosen score Yl is,

2 2 , 2
0Y = an + °e'

The reliability coefficient p is defined as the ratio of the true score variance to the 

total score variance of the observed measure Y, i.e.,

P JL
T2TY

a,, + a 2
e

( i . i )
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In other words the reliability coefficient can be interpreted as the proportion of the 

total variance ay that can be attributed to the variation among the values of the true 

score of..

The reliability coefficient may be estimated by a one-way random effects ANOVA 

model. Specifically, let Yij denotes the jth  observation on the zth subject where 

i =  1 , 2 . . . ,  n; j  =  1 ,2 . . . ,  k. Then the one-way random effects model may be written 

as

=  p + a* + eij, (1.2)

where p is the grand mean of all the observations in the population, the subject 

effect {a*} are normally distributed with mean 0 and variance of, the measurement 

error {eij} are normally distributed with mean 0 and variance of, and {a ,}, {e^ } are 

completely independent. Here n refers to the number of subjects and k refers to the 

number of measurements per subject. Throughout out this thesis I use this notation.

From the model (1.2) it is easy to show that the correlation (p) between any two 

observations and Y^ for j  ^ j' is given by

cov{Yij,Yij>) 
yj var(Yij) sj var( Y^')
E[(Yj -  E{Yij)){Yij, -  E Q V))]

V a a + CreV <7a + a2
e

p = coTr(Yij,Yij’ ) =
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E[(flj + 6y)(CIj +
^a +  ê

Thus, if one refers to a subject as a class, the reliability coefficient p is identical 

to the well known ICC (Fisher, 1925, p.76-210). In what follows, I will use ICC and 

reliability coefficient interchangeably.

Unlike the estimate introduced in the next chapter, the coefficient p is necessarily 

positive with values range from 0 to 1. In reliability context ICC will be equal to one 

if and only if a\ =  0, i.e., if and only if there is no measurement error. High p would 

suggest high reliability and low p may be due to either large measurement errors or 

small variability between subjects. In practise, guidelines given by Landis and Koch 

(1977) are usually adopted for interpretation, specifically, slight (0.00 to 0.20), fair 

(0.21 to 0.40), moderate (0.41 to 0.60), substantial (0.61 to 0.80) and almost perfect 

(0.81 to 1.00).

1.2 Statistical inference for a single intraclass correlation coefficient

Although statistical inference in general consists of significance testing and estima­

tion, I will take the view expressed by McGraw and Wong (1996) that the tests 

of hypothesis p =  0 are not particularly informative, and thus focus on confidence 

interval estimation in this thesis.

In the context of reliability studies, the number of repeated measurements k made
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on each subject i or class size is usually fixed. Here the repeated measurement refers 

to two or more measurements on the same subject taken in identical conditions. As 

a consequence of fixed class size, point estimators of different approaches do not 

differ materially. There are at least three different approaches to estimate p, namely, 

pairwise estimation, maximum likelihood estimation (MLE) and ANOVA estimation. 

Specifically, the MLE is the same as pairwise estimator which with reasonably large 

number of subjects is virtually indistinguishable from that of a ANOVA estimator 

(Donner and Koval, 1980). For this reason I will not further discuss point estimation 

of p in this thesis but refer to Donner (1986) for a review.

There are at least two approaches to confidence interval estimation for p. The most 

well known approach is to apply Fisher’s Z-transformation, proposed because the fact 

that the sampling distribution for p is skewed, especially when p is far away from 0 

(Fisher, 1925, p.214-223). Under this method a confidence interval for p is obtained 

by back transforming the confidence interval for Z. The other approach, commonly 

known as the ‘exact method’ is based on the F  distribution (Donner, 1986).

A common feature of these confidence limits is that they are asymmetric to the 

point estimator, reflecting the shape of the underlying sampling distribution. In this 

thesis I will exploit the asymmetry feature of these limits and take the approach 

discussed by Zou and Donner (2008) to develop a method for constructing confidence 

intervals for a difference between two correlated intraclass correlation coefficients.

In reliability studies when the performances of two instruments need to be com­
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pared, a common design is to take replicated measurements using both instruments 

from a single sample of subjects. The resulting reliability coefficients are inherently 

considered to be correlated. Therefore, the method by Zou and Donner (2008) is 

extended to incorporate the dependency between two estimated ICCs.

1.3 Motivating examples

Before getting in to the details of the statistical procedure, I now present two examples 

that have motivated this project.

1.3.1 Example-1

The first example is based on the data from a study conducted by Turner et al. 

(1986) and further analyzed by Dunn (Dunn, 1989, ch-5). These data were derived 

from measurements taken from 50 patients using two devices; an automated (PIX) 

and hand held (PLAN) device. It was noted without performing a hypothesis test 

Ho : pi = P2 , that the automated device is more reliable than the hand-held device 

where pi and P2 are ICCs for automated device and hand-held device respectively. 

Although one may apply a hypothesis testing using methods such as Donner and Zou 

(2002) or Alsawalmeh and Feldt (1994) to compare two correlated ICCs, a confidence 

interval approach may be more informative.
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1.3.2 Example-2

Quantitative ultrasound scanners are used in the diagnosis of osteoporosis and sev­

eral devices are already in use. Giraudeau et al. (2003) reported a study in which 

a comparison of two intraclass correlation coefficients was needed to study the re­

producibility of a newly developed ultrasound bone matrix densitometer, the BEAM 

scanner, in comparison with a currently available device, the UBIS 3000 scanner. In 

their study 5 repeated measurements of the right heel of 34 subjects were measured 

using both devices in three different sessions. Giraudeau et al. (2003) suggested that 

a comparison of two intraclass correlation coefficients would be of interest. Gomez 

et al. (2002) provided more details of the study.

As the sample of 34 subjects was used to draw measurements by both devices, the 

two ICC estimates are correlated. Again, one may conduct a hypothesis test for the 

equality of two correlated ICCs, Hq : pi = p2 - But reporting the confidence interval 

for the difference between p\ — p2 would be more meaningful.

1.4 The objective o f the thesis

From the previous sections, it is clear that researchers often face the problem of 

comparing two correlated ICCs. Specifically, comparing two correlated ICCs when 

the same sample of subjects are chosen to draw measurements by the two devices 

in question. Although procedures for the hypothesis testing of the equality of two 

correlated ICCs have been developed (Donner and Zou, 2002; Alsawalmeh and Feldt,
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1994) little work has been done in developing confidence intervals for a difference 

between two correlated ICCs.

The objective of this thesis is to develop a method for constructing a confidence 

interval for a difference between two correlated ICCs taking in to consideration the 

asymmetric property of ICCs. Specifically, the variance estimates needed for the lower 

and upper limits of a difference of two ICCs are recovered from those of separate ICCs. 

This is an extension of the study by Zou (2007) on the constructing confidence inter­

vals to compare correlations and the study by Zou and Donner (2008) on the general 

approach of constructing confidence limits about effect measures. The advantage of 

this method is that it reflects the underlying sampling distribution. The central idea 

is to recover the variance estimates from readily available confidence limits for single 

ICCs. I thus refer to the method as MOVER which stands for method of variance 

estimates recovery. As the method will be developed based on large sample theory, I 

will use Monte Carlo simulations to assess the performances. Specified criteria for the 

evaluation include overall coverage, tail errors and width of the confidence interval.

1.5 Organization o f the thesis

This thesis is comprised of six chapters. Chapter 2 presents the literature review 

and Chapter 3 describes the development of the confidence interval procedure for a 

difference between two correlated ICCs. Evaluation criteria and the simulation results

are presented in Chapter 4. In Chapter 5, I illustrate the methodology by working
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out the motivating examples. A discussion which includes final conclusions and few 

ideas for future research are presented in Chapter 6.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Intraclass correlation coefficient (ICC) as a measure of reliability index has evolved 

over several decades. Although it was initially applied in social, educational and 

psychological disciplines, it has now been used in a wide range of areas including 

biomedical research (Bartko, 1966; Shrout and Fleiss, 1979; Donner, 1986; Shoukri 

et al., 2004). Thus, an extensive amount of literature on issues regarding this index 

has been published and in this review, I will only provide a summary on statistical 

inference for ICC, largely in the context of medical research.

In section 2.2, I present the role of reliability in medical research and in section 

2.3 present the historical view of the intraclass correlation coefficient. In section 2.4, 

interval estimation of ICC is presented and section 2.5 is allocated for describing the 

sample size estimation of ICC.
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2.2 Role o f reliability in medical research

In medical research, most of the outcomes are measured with random errors. An 

outcome measure may be a clinical characteristic based on subjective or objective 

assessment. It may be a quantitative measure or a qualitative or categorical measure 

used for patient diagnosis or may be employed to assess the eligibility for entry for 

a clinical trial. For example, assessment of radiographs or biopsy readings or scores 

on questionnaires collecting information. The essential requirement for all outcome 

measures is that they should be reproducible or reliable.

Unreliable outcome measures can lead to a wrong patient diagnosis. In clinical 

trials when unreliable measurements are used as an assessment criteria for eligibility 

or exclusion, subjects can be assigned into the wrong arms of the trial. Furthermore, 

unreliable measurements decrease the reliability and as a result the increase in sample 

size is required to maintain the desired level of power. Many authors (e.g., Shrout 

and Fleiss 1979, Lachin 2004) have shown that there is a direct relation between the 

reliability of measurement and the sample size required to provide a desired level of 

power to detect a given effect size. As such, for any experiment assessment of reliabil­

ity is extremely important and many texts on the design and analysis of experiments 

provide descriptions of assessment of reliability (Haggard, 1958; Dunn, 1989).

Satisfactory reliability is a fundamental requirement in instrument development. 

During this process the reliability of a new instrument is compared with the reliability
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of the instrument already in use (Giraudeau et al, 2005). This will enable the in­

vestigator to assess the performance of the new instrument. In some other situations 

reliability is used to evaluate the laboratory assays (He et al., 2006; Pellis et al., 2003).

2.3 Some historical aspects of intraclass correlation coefficient

The concept of intraclass correlation coefficient has evolved over a century. Although 

it was not explicitly stated in a formula, ICC was first used in 1896 to estimate 

the correlation among siblings (Pearson, 1896). In that, ICC was estimated by cal­

culating Pearson product moment correlation over all possible pairs of observation 

within a class and later this estimator of ICC was termed pairwise estimator of ICC 

(Donner and Koval, 1980). However, the most known method of estimating ICC was 

introduced by Fisher in 1925. Estimated ICC under Fisher’s method is known as 

the analysis of variance (ANOVA) estimator of ICC as it is estimated based on the 

variance components of a random effects model (Fisher, 1925, p.188). By introducing 

the ANOVA estimator of ICC, Fisher broadened the scope of application of the ICC, 

which led to its applications in reliability theory, cluster randomization trials and in 

sensitivity analysis.

The use of ICC in reliability studies was summarized by Haggard as early as in the 

1950s (Haggard, 1958, ch.6). Bartko (1966) had further illustrated that estimator of 

ICC obtained from a one-way random effects ANOVA is indeed equal to the correlation 

coefficient between any two measurements on the same subject.
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An extensive amount of literature on inference procedures of ICC were developed 

during the last three decades. Shrout and Fleiss (1979) described the ICC in context 

of reliability studies and discussed six forms of ICC which can be used to assess rater 

reliability. Although it was not in reliability context, McGraw and Wong (1996) 

expanded the discussion of Shrout and Fleiss (1979) by including another two forms 

of ICC. Others have also shown that ICC can be used as an inter-rater and intra-rater 

reliability coefficient (Eliasziw et al, 1994; Rousson et al, 2002; Kottner and Dassen, 

2007) and quantifying the test-retest reliability or reproducibility studies (Nickerson, 

1997; Giraudeau et al., 2003; Schuck, 2004).

2.4 Interval estimation of intraclass correlation coefficient

There are several approaches for constructing confidence intervals for p. Methods 

based on Fisher’s ^-transformation and F-distribution are the most common ap­

proaches. Constructing confidence intervals using the large sample variance of p are 

also familiar to researchers.

Recognizing the skewness of the sampling distribution of p, Fisher (1925, ch.7) in­

troduced the variance stabilizing transformation known as Fisher’s Z-transformation. 

Fisher’s Z-transformation is used to transform the already skewed distribution of p to 

an approximately normal distribution. The confidence intervals for p is then obtained 

by back transforming the confidence intervals for Z. However, according to Konishi 

(1985), Fisher’s Z-transformation does not simultaneously normalize the sampling
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distribution and stabilize variance when the number of observations on each subject 

exceeds two. As a result, he introduced a modified version of Fisher’s transformation 

which may produce better confidence intervals when the number of classes exceeds 

two.

The second method of constructing confidence intervals for p is based on the F- 

distribution (Haggard, 1958, p.23). This method of constructing confidence intervals 

for p was later introduced by Searle (1971) and it was sometimes termed as Searle’s 

exact method. Searle’s method of constructing confidence intervals to analysis of 

variance estimator of ICC was derived for use with normally distributed data from a 

balanced design. In this method the confidence intervals for p are constructed based 

on the assumption that the variance ratio statistic is distributed as multiple of the 

central F-distribution.

A third method of constructing confidence intervals for p uses the large sample ap­

proximation formula to estimate the standard error of p and confidence intervals for p 

is obtained by applying a simple asymptotic approach, i.e., point estimate plus/minus 

normal quantile multiplied by the estimate of standard error. Formulae for large sam­

ple approximation of the standard error of analysis of variance estimator of p were 

derived by several authors. Assuming the sample size is sufficiently large, Fisher 

derived the standard error of ICC (Fisher, 1925, p.187). But this formula has a lim­

itation that it can not be applied in the neighborhood of +1 and — l/(k — 1) even 

when the sample size is large. As Fisher described this is not an accurate formula
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to use in testing significance and thus for constructing confidence intervals. Smith 

(1956) and Swiger et al. (1964), both derived formulae for large sample approximate 

standard error of ICC. Although these two formulae are more suitable for variable 

class sizes it can also be readily used for fixed class sizes.

By Monte Carlo simulation, Donner and Wells (1986) compared the performance 

of assigning confidence intervals to the ICC for normally distributed data. From this 

study they found that the method based on Smith’s approximation to the standard 

error of ICC provides consistently good coverage for all values of p. They also com­

mented that Searle’s exact method and the method based on large sample formula 

derived by Swiger et al. (1964), provide excellent coverage (coverage probability >  .95) 

for p <  0.3 and adequate coverage (coverage probability > .925) for p <  0.7. They 

found that the method based on Fisher’s transformation yields coverage probabilities 

in excess of 98% and is thus conservative. A similar study was performed by Uk- 

oumunne (2002) in the context of cluster randomization trials and it demonstrated 

similar results as Donner and Wells (1986).

2.5 Sample size estimation for intraclass correlation coefficient

Sample size estimation is crucial in planning a reliability study. It decides both 

the number of subjects to be included (n) and the number of replicated measures 

to be performed on each subject (k). Increasing the number of subjects over the 

required minimal amount will increase the cost of research unnecessarily and expose
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the subjects to unwanted burden. In some situations the number of replicates have to 

be limited because of the practical or logical constraints. Shoukri et al. (2004) cited 

several examples drawn from biomedical research with limited replicated observations.

The determination of sample size of a reliability study is based on acquiring a 

specified level of precision for the estimated p. Therefore it can be based on the 

statistical test comparing an estimated reliability to a theoretical value, i.e., based on 

testing the null hypothesis Hq ■ p = po against Hi : p > po where po is a specific value 

of p or it can be based on the width of the confidence interval of p or else it can be 

based on the number of subjects required to minimize the variance of the estimated 

P-

Donner and Eliasziw (1987) investigated values of n and k required to test Hq : 

p =  po against Hi : p > po and provided exact power contours to give guidance 

for planning of a reliability study where the value of po depends on a choice of a 

minimum value of p that the investigators consider applicable. The value of po would 

typically not be 0 as zero reliability is of no interest. Walter et al. (1998) extended the 

study by Donner and Eliasziw (1987) by developing an approximation that allows the 

calculation of required sample size for the number of subjects n, when the number 

of replicates k is fixed. The formula derived by Walter et al. (1998) permits the 

investigator to explore the design options for parameter values.

Giraudeau and Mary (2001) and Bonett (2002) developed formulae for calculating 

the approximate number of subjects required to obtain an exact confidence interval of
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desired width. They pointed out that the approach based on hypothesis testing may 

not be appropriate while planning a reliability study since such an approach requires 

to specify both the values of po and p.

Shoukri et al. (2003) developed a method to determine the number of replicates k 

per subject needed to minimize the variance of the estimated p in which they assumed 

that the total number of observations nk is fixed. In the same study Shoukri et al. 

(2003) incorporated the cost constraints into sample size determination and addressed 

the issues of obtaining combinations of (n, k) under these constraints.

Sample size requirements in designing a study to compare two or more reliability 

coefficients were addressed by Donner (1998). Such problems may arise as discussed 

in section 1.3 of Chapter 1 when comparing the reliability of two instruments. The 

underlying assumption for the sample size formulae presented in Donner (1998) is that 

the estimated reliability coefficients are statistically independent. For studies where 

the same subjects are used for the comparison this assumption is no longer valid 

as the two reliability coefficients are then related. Hypothesis tests for comparing 

dependent ICCs in the case of continuous outcome variable have been considered by 

several authors (Alsawalmeh and Feldt, 1994; Donner et al., 1984; Donner and Zou, 

2002). Therefore an approach of sample size estimation may be obtained by directly 

applying the methods described by these authors to compare two dependent ICCs.
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Chapter 3

DEVELOPMENT OF CONFIDENCE INTERVAL 

PROCEDURE FOR A DIFFERENCE BETWEEN TWO 

CORRELATED INTRACLASS CORRELATION 

COEFFICIENTS

3.1 Introduction

Comparison of two correlated intraclass correlation coefficients (ICC) is a common 

statistical problem frequently encountered in instrument reliability studies. For ex­

ample the performance of a new device is compared with the performance of an old 

device with the intention of replacing the old device. In such situations the dichoto­

mous answer ‘reject’ or ‘not reject’ based on the p value obtained for testing the null 

hypothesis, Ho ■ pi = p% can only provide limited information. In contrast, a confi­

dence interval for the difference between p\ -  p2 produces a range of values that are 

considered to be plausible for the parameter of interest p\ — p2 - Thus, it shows both 

the magnitude and direction of the difference.
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In this chapter, I present the procedures for setting approximate confidence inter­

vals for a difference between two ICCs. Section 3.2 describes the general principles in 

confidence interval construction. Section 3.3 presents a review of confidence interval 

procedures for a single ICC as well as point estimates. In section 3.4, confidence inter­

val construction for a difference between two ICCs, both simple asymptotic method 

(SA) and the new procedure that uses the idea of recovering variances from single 

ICCs will be discussed. In what follows, I refer to this new approach as MOVER, 

reflecting method of variance estimates recovery.

3.2 Definition o f  a confidence interval

Let 0 denote an unknown population parameter and l be a 100(1 — a /2 )%  lower limit 

for it. By definition l is a random variable, under repeated sampling, will fall below 

6 for 100(1 — q /2 )%  of the time. In other words, the lower limit, l, satisfies

Pr{0 > l)  =  1 -  a /2 .

Similarly, the 100(1 — a/2)% upper limit, u, is a random variable that will fall 

above 0 for 100(1 — a /2 )%  of the time, i.e.,

Pr(0 < « )  =  !  — a/2.
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In combination we have

Pr{l < 6 < u) =  1 — a,

i.e., the interval (/, u) constitutes a 100(1 — a)% two sided confidence interval for 

6. A 100(1 — a)% two sided confidence interval for 9 has a coverage probability of 

(1 — a) which implies that a random interval constructed in this way will contain 

0’s true value 100(1 — a)% of the time. A two sided 100(1 — a)% confidence interval 

constructed as such has equal tails, i.e., the total coverage error a is divided up evenly 

between the lower and upper ends of the interval. This is to say that a confidence 

interval may be used to exclude extreme small and large values as the parameter of 

interest, in light of the data.

3.3 Inference procedure for a single intraclass correlation coefficient

I first review estimating ICC in the one-way random effects model. Then I consider 

four procedures for obtaining confidence intervals for a single ICC. These four pro­

cedures are, simple asymptotic method, confidence interval obtained using Fisher’s 

^-transformation (Fisher, 1925), a modified form of Fisher’s ^-transformation (Kon- 

ishi, 1985) and F-distribution based confidence interval (Searle, 1971; Haggard, 1958, 

P-23).
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3.3.1 Point estimator

Suppose the subjects are chosen at random from large population. The measurements 

taken by an instrument on these subjects can be arranged as in Table 3.1.

Table 3.1: Layout of data in the one-way random effects model

Subjects Measurement replicates
1 2 .. • j  ■ k

1 Tn *12 .. . Y^ . ■ ■ Ylk
2 t21 Yl2 ■ ■• YV . ■ ■ Y2k

i To Y>2 ■■. Yij . •• Y*

n Ym Yn 2 ••■ Yni .

An entry in Table 3.1, Y ,̂ represents the jth  observation taken from the ¿th 

randomly selected subject where i = 1,2,... ,n and j  =  1,2,... ,k. Assuming that 

the random row variable in Table 3.1, subjects represents the only source of variance, 

a one-way random effects model may be written as

Yij = fi +  dj +  eij, (3-1)

where fi is the grand mean of all the observations in the population, the subject 

effect {a j} are normally distributed with mean 0 and variance a%, the residual effects 

{etj} are normally distributed with mean 0 and variance â , and the {a j}, {e^ } are
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completely independent. The corresponding analysis of variance (ANOVA) table is 

given in Table 3.2.

Table 3.2: Analysis of variance for the one-way random effects model

Source of Degree of Sum of 
variation freedom (df) squares

Mean
square

Expected 
mean square

Among
groups
Within

n — 1 SSA=A: £ ( ? , - V ) 2 M S A = ^ y  al +  ka,

groups N - n S S E = £ £ ( ^ - n ) 2 M S E = f|  al

Total N -  1 SST= E Z ( Y i j - Y ) 2

In accordance with assumptions made above for the model (3.1), variance of Yij 

is then given by Oy =  +  o f, and the intraclass correlation coefficient p is defined

as p = cPjoy. Since MSE and (MSA — MSE)/fc, are unbiased estimators of a\ and 

a\ respectively, the ANOVA estimator of p can be written as

MSA -  MSE
P MSA +  (A: — 1)MSE ’ K }

where MSA and MSE are mean sum of squares between subjects and mean sum of 

squares within subjects (Donner and Koval, 1980).

Although the ANOVA approach is the most commonly used method to estimate 

ICC, other methods may also be used. Such methods include pairwise estimator, 

obtained by computing the Pearson product-moment correlation over all possible
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pairs of observations within a class. Assuming a multivariate normal assumption, one 

can also apply maximum likelihood estimation (Donner and Koval, 1980).

In the context of reliability studies in which class sizes are constant, all these 

estimators are equivalent (Donner and Koval, 1980). Therefore I do not distinguish 

them in this thesis.

3.3.2 Confidence limits using the simple asymptotic method

An intuitive confidence interval constructed using simple asymptotic (SA) method 

makes use of the fact that when the sample size n, gets larger the distribution of p 

becomes more and more normal, i.e.,

p ~ N ( p , o 2) (3.3)

where a2 is the variance estimator of p, may be estimated using the large sample 

variance formulae for p in Donner (1986) given by

var(p) —
2{nk -  1)(1 -  p)2[l +  (k -  1 )p\2 

k2(k — 1 )n(n — 1)
(3.4)

where n, k, and N are number of subjects, number of repeated observation on each 

subject and total number of observations respectively.
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From the statement (3.3), we can write

P~P N( 0,1). (3.5)

If za indicates the 100.o;th percentile point of a standard normal distribution, then 

from (3.5)

h
Pr  ̂ - z a /2  < < za/2 1 =  1 -  a.

Or, this can be written as

P r |p £ p -  2Q/2\/d2,p + za/2 Vo^j | =  1 -  a.

Therefore a 100(1 — a)% confidence interval for p is given by

(/, u) = (p ~ zq/2V ct2, p +  za/2 V ct2 j  . (3.6)

3.3.3 Confidence limits based on Fisher’s Z-transformation 

Fisher (1925, ch.7), showed that

f 1 +  (fe — l)p  j
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has an approximate normal distribution with mean

f l +  ( f c - l ) p j

and variance

2 ( k - l ) { N - 2 ) ‘

Then, a (1 — a) 100% confidence interval for Zp(p) is given by

(Zi, Zu) =  | zF — za/2\/V,Zp +  zaj2W I

where za / 2 is the upper quantile of the standard normal distribution.

A (1 — a) 100% confidence interval for p obtained by back transforming the above 

interval is given by

An alternative to the classical Fisher’s Z-transformation described above is to 

apply the inverse tanh (hyperbolic tangent) transformation to sample estimation and 

then apply the delta method to derive the variance of Z  (Casella and Berger, 2002, 

p240-245). This approach sometimes has been referred to as the Z-transformation 

(Lachin, 2004; Rosner and Willett, 1988).

According to the delta method, when 9 has the mean and variance as 6 and 

var(0), the mean and variance of g(9) are approximated by g(9) and [g'(0)]2var(0),

{
(3.7)



27

where g'(6) is the derivative of the function g evaluated at 0 = 6. I will use the large

sample variance estimate of ICC derived by Smith (1956) and apply the delta method 

to obtain the variance of Z(p) where Z(p) = \log\z .̂ The confidence interval for p 

based on the Smith’s formula performed well for all values of the parameters (Donner 

and Wells, 1986).

Applying the delta method to Z(p)

By back transforming the above Cl, a 100(1 -  a)% Cl for p can be obtained.

3.3.4 Confidence limits using a modified Z-transformation

A modified form of Fisher’s Z-transformation was introduced by Konishi (1985) and 

Konishi and Gupta (1987) in which they showed that for k > 2, a more effective 

transformation is given by

var(Z(p)) =  [Z(p)'(p)]2var(p)

(3.8)

Confidence interval for Z(p) is then given by

(Zh Zu) =  jz ( p )  -  2a/2\/var(Z(p)), Z(p) +  2tt/ 2\/var(Z(p)) j



28

which is asymptotically normally distributed as

N Z(p)m + 7 - 5 k  1_
N y/18k(k-iy  N

where the second term in the mean of Zm is a bias correction factor.

Lower and upper bounds of (1 — a) 100% confidence interval for Z{p)m are given

by

•j _  5 .̂
z » - w i £ -  N ^ kjr~ \ )

y _
Zm + za/, V v ^ - - ^ = = = ,

where Vm — 1/N. Back transforming the above interval yields a (1—a)100% confidence 

interval for p using the Konishi modified method given by

A -  1 k îj _  i

e(3m.»v^?i) + ( k - l )  eiZm'u + ( k - l )

3.3.5 Confidence limits based on F-distribution

(3-9)

Let F — MSA/MSE be the variance ratio statistic. Prom Table 3.2, equating observed 

and expected mean squares we can obtain

MSA ■ =  o2e + ka\

MSE
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M SA/(/cCTq +  al)
MSE/ae

is distributed as Fn-\,n{k~\) (Searle, 1971). Let FL and Fv be the lower and upper 

limits which enclose (1 -  a) of the i,n(fc—l) distribution. Thus,

P r[ Ft(a/2,n—l,nk—n) 5: f~a2 2̂ — r (l~a/2,n-l,nk-n)
MSA cr:

< Ft]

Pr \ FL < F kal +  ol <  Fri

l — a 

1 — a.

Rearranging the above equation

Pr
F/Fu -  1 al F/Fl -  1

k +  F/Fu -  1 -  al +  ol ~ k +  F/FL -  1
=  1 — a

Therefore a (1 -  a) 100% confidence interval for p is given by

f F/Fu- 1 F/Fl -  1 }  
{k  + F / F u -V  k +  F/FL - l j  ' (3.10)

3.4 Confidence interval procedure for a difference between two intra­

class correlation coefficients

3-4-1 Notation

Y ,  2) ■ • • j Y l , i , k i  > ^2,i,A:i+l ; /̂2,j,^i+2> • • • j ^2fi,A:i + k 2 )

Let
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where i =  1 , . . . ,  n, the p-vector of measures associated to subject i with Yj^i , . . . ,  Yjii)fel 

being the k\ vector of measures realised with device 1 and i, • • •, V2,i,fci+fc2 being

the ki vector of measures realised with device 2. The total number of measures 

associated to each of the n subjects, p is fixed and equals to p — k\ +

We assume that the following model holds:

Y , ~  N(p, £ ) ,  (3.11)

where pT =  ( / i i l£ ,  M2I l2) and

£  =
{(1 — +PiJki)ai PnO\o^k^k2

PnG {(1 ~ ^2)Ifc2 +  P2Jk2}G2

\

/

Here l p is a column vector with all the p elements equal to 1, Ip is a p x p identity 

matrix and Jp and JpX9 are p x p and p x q matrices with all the elements equal 

to 1. This model assumes that the fci observations taken by the first device have 

common mean p\, common variance a\ and common intraclass correlation p\, whereas 

the k<2 observations taken by the second device have common mean /Z2 , common 

variance erf and common intraclass correlation p2 - It is also assumed that the interclass 

correlation coefficient p12 between any pair of observations =  1 ,2 , . . . , /^ )  and

Y2,iM+A f  =  1 )2 , . . . ,  fc2) be constant across all subjects in the population. For £  to 

be positive definitive we must have pn < Pip2 -
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Let pi and P2 are intraclass correlation coefficients for device 1 and device 2 re­

spectively and estimate them as described in section 3.3.1. Therefore

MSAj -  MSE;
Pl n MSA; +  (ki — l)M SEi’ ’ ‘

3.4-2 Confidence interval for a difference between two intraclass correlation coeffi­

cients using simple asymptotic method

Let pi, fa be the sample estimates of pi, p2 obtained from the measurements from 

device 1 and device 2 and let var(pi), var(p2) be the variance estimates of f>\, p2 

respectively. By the central limit theorem and Slutsky’s theorem (Casella and Berger, 

2002, p239), the 100(1 — a)% confidence interval for a difference between two ICCs, 

Pi -  p2 is given by

{(p i -  p2) -  zQ/ 2 \/var(pi -  P2 ), (pi -  p2) +  za/2\/vSx(pi- f>2 ) } ,  (3.12)

where var(pi — p2) is the sample estimate of var(pi — p2).

Assuming pi and p2 are independent, the variance estimate of (pi — p2) can be written 

as

vat(pi -  p2) =  var(pi) +  \̂ t(p2).

Substituting var(pi — p2) in (3.12) will result a 100(1 — a)% confidence interval for a
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difference between two independent ICCs as

{(p i  ~  fa) ±  2Q/2\/var(pi) +  var(p2)| (3.13)

Assuming p\ and fa are correlated

var(pi -  fa) =  var(pj) +  var(/52) -  2cov(fa,fa).

Substituting var(pi — fa) in (3.12), a 100(1 — a)% confidence interval for a difference 

between 2 correlated ICCs is given as

{(Pi -  fa) ±  za/2\/va,r(pi) +  var(p2) -  2cov(pi, fa) j (3.14)

In the above confidence interval cov(fa, fa) may be estimated from the formula derived 

by (Elston, 1975, p.136) as

cov(pi,p2) ^Pl2
n (1 ~ P i ) ( l  - fa )- (3.15)

The term pj2 is the estimated interclass correlation between any two pairs of obser­

vation of device 1 and device 2 which may be obtained using the formula given in
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Rosner (1982),

E " - ,  E S S V . f a ,  -  m * »  -  fc)
'fci+fc2

Pl2 =
E L ,  £ £ = ,(» «  -  S.)2 E ? .i  fc E S ^ i f e  -  fc)

/Cl+fc2 ¿5 \2
(3.16)

where

Up ~
E n -

t=i Vip
n

Vic --

V̂ fcl+fc2
fel+1 W
&2

5.^.5 Confidence intervals for a difference between two intraclass correlation coeffi­

cients using method of variance recovery

Confidence intervals constructed using simple asymptotic (SA) method are accurate 

only when the sample size is large or when the sampling distribution is close to normal. 

It is a well known that the distribution of p is highly skewed. The poor performance of 

the simple asymptotic method is that it does not adjust for skewness of the sampling 

distribution of p and as a result, the simple asymptotic method does not reflect the 

asymmetry of the underlying sampling distribution. The simple asymptotic method 

forces the confidence intervals to be symmetrical over the parameter of interest, i.e., 

p—l = u — p where l and u are the 100(1 — a)% lower and upper limit of p respectively. 

Therefore variance estimates for p at p = l and at p = u are equal and hence the 

variance estimate is independent of p.

In the case of intraclass correlation coefficient it is known that the variance of p
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is a function of itself, i.e., var(p) depends on p (Fisher, 1925, p.187). As a result, 

symmetrical confidence intervals for p which assume a variance estimate independent 

of p do not adjust for the asymmetry of p. Confidence intervals for p accounting 

for the skewness in the underlying distribution of p do so, as shown below, through 

different variance estimates at the lower (l) and upper (u) limits of p (Zou, 2007). This 

is the same logic of the score-type confidence intervals which are known to perform 

well in practice (Bartlett, 1953).

Suppose a 100(1 — a)% confidence interval for p is given by (l,u) where

l =  p ~ Za/2 \/var(p), u =  p +  za/2\/var(p),

Without assuming l and u are symmetrical about p, we can recover variance estimates 

for p

at p =  l as

var((p) =  ^  2 ^ , (3.17)
Za/2

and at p =  u as

var«(p) =  ^  2 ^  ■ (3-18)
Za/2

Therefore in this thesis I use different variance estimates for lower and upper 

limits of confidence interval (Cl) to develop a new method of constructing Cl for a 

difference between two ICCs. In doing so I adjust the required Cl for the skewness
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of the underlying sampling distribution. Zou and Donner (2008) have extended the 

idea to a wide range of applications.

Let L and U be the lower and upper limits of 100(1 — a)% confidence interval 

for a difference between two ICCs. And also let and (l2,u2) be separate

100(1 — a)% confidence intervals which contain the plausible values of p\ and p2 

respectively. Again in the spirit of score-type confidence intervals, one can estimate 

the variance of (p\ — p2) in the neighborhood of L when obtaining L and estimate 

variance in the neighborhood of U when obtaining U.

We can reasonably argue that among the plausible values provided by the two 

pairs of confidence limits, l\ — u2 is the value near L and Ui — /2 is the value near 

U. Therefore for the lower limit for (pi — p2), the variance of (p\ — p2) is estimated 

under the condition p\ = l\ and p2 = u2. Similarly for the upper limit for (pi — p2), 

variance of (pi — P2) is estimated under the condition pi =  u\ and p2 =  l2 (Zou and 

Donner, 2008; Zou, 2007).

By the central limit theorem and under the assumption that pi and p2 are in­

dependent, we have a 100(1 — a)% confidence interval for a difference between two 

ICCs, pi -  p2 as

L =  (pi -  p2) -  za/2\/veLiL(pi -  p2)

=  (pi -  P2) -  Za/^vaxtiipi) +  varU2(p2)

(3.19)
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Similarly, estimated variance of (pi — p2) for the upper limit of (pi — P2 ) uses the 

variance estimates when pi =  ui and p2 =  /2.

vaiu(pi -  p2)

varUl (pi)

vari2(p2)

=  varUl(pi) +  vari2(p2), 

(^i ~  Pi)2
Za/2

(P 2 -h )2 
~ ~2

Therefore a 100(1 — a)% upper confidence interval for a difference between two ICCs, 

Pi — P2 can be written as

U = (p i -  p2) +  Pl)2 +  (-~ 2 —  • (3.20)
V Za/2 Za/2

The above argument may be extended to the case where pi and p2 are dependent. 

Specifically,

v a r ^ P i  -  p 2) 

v a rL (p i  -  p 2)

var/j(pi) -f var„2(p2) -  2cov(px, p2)

(Pi -  /1 ) 2 , (u2 ~ p2)2 0 —  ^-----2------ + -------5---------- 2cov(pi,pa)
<s/2 <'a /2
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and

varCr(/5i -  p2)

var[/(pi -  f>2)

varui(pi) +  vari2(p2) -  2cov(pi, p2)

2cov(p!,p2).C“i -  Pi)2 . {fa ~ k)2n > o
ca/2 °a /2

Therefore a 100(1 — a)%  confidence interval for a difference between two dependent 

ICCs, pi — p2 can be written as

L = {fa -  fa) -  Za/2 {fa -  ¿i)2 , (u2 -  fa)2
-2 ~2za/2 za/2

2cov(pi, p2), (3.21)

U — {p\ — fa) +  2q/2
(wx -  p i)2 (p2 -  Z2)2 

~2 +  ~2 
Za/2 Za/2

2cov(pi, p2). (3.22)

The cov(pi,p2) can be estimated from the well known formula

corr(pi,p2)
cov(pi,p2) 

v/var(pi) x var(p2)

Then equation (3.21) gives

(3.23)

L = { fa -  p2) -  za/2 {fa -  li)2 , (u2 -  p2)2
-----o-------- 1------- O 2corr(pi,p2), /(Pi -  h)2 (U2 -  fa)2

\ za/2 za/2 \ za/2 V

=  (pi -  p2) -  \/(pi -  li)2 + (u2 -  fa)2 -  2coS(pi,p2)(pi -  /l)(u2 -  fa).

* q /2
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From equation (3.22) we can write

U = (fa -  fa) +  za/2
(ui -  fa)2 (fa -  l2)+ -  2corr(pi, fa). l(u\ -  fa)2 I (fa -  h)2

Za/2 4q/2 q /2 q /2

= (pi -  P2) + \/(ui -  fa)2 + (fa -  h)2 ~ 2corr(pi,p2)(ui -  pi)(p2 -  h)-

Therefore a 100(1 — a)%  confidence interval for a difference between two correlated 

ICCs, pi — p2 can be written as

L = (fa - fa) -  \/(Pi -  h)2 + (U2 -  fa)2 ~ 2con(fa,fa)(fa -  h)(u2 -  fa) (3.24) 

U = (fa - fa) + V  (ui -  Pi)2 + (fa ~ h)2 ~ 2coTr(pi, p2)(ui -  fa)(fa -  l2) (3.25)

In equation (3.23) and (3.24), corr(fa,fa) can be obtain using the following asymptotic 

formulas derived in Elston (1975).

var< «  =  +  ; ,  =  1’ 2’

cov(pi,p2) =  ^ ( 1  -P l)(l - p 2)

Substituting var(fa) and cov(fa,fa) in equation (3.23)

corr(px,p2)
2p2 

n ( 1  -  p0 ( i -  P2)

f t )2 ( ¿ 1  + f t ) ' 2(fc2~l)f1 nfe2 ' P2)2 ( ¿ 1  +  P2)

P12 [hfajh  - l ) ( k 2 -  1)]1/2
[1 +  (ki — l)pi] [1 +  (k2 — l)p2]

(3.26)
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By substituting p\ =  l\ and p2 = u2 in the above equation, corr(pi, p2) for the 

100(1 — a)%  lower limit for (pi -  p2) is obtained. Similarly, corr(pi, p2) for the 

100(1 — a)% upper limit for (pi — p2) is obtained by substituting p\ =  u,\ and p2 — l2.

Confidence intervals given by (3.23) and (3.24) reduce to (3.13) when SA method 

has been used to obtain the Cl for a single ICC. This can be shown as below.

From equation (3.6)

Pi -  2a/2>/var(Pl)

*a/2var(Pl)

and

=

( P i - * i ) 2 -

ui =  pi +  2Q/ 2 \/var(p1)

( U l - P l ) 2 =  4 /2 var(Pl)

According to the SA method confidence limits are symmetrical around the param­

eter of estimate and hence

(Pi -  h )  =  (ui -  Pi)

and therefore

(pi -  h f  =  (in -  p i)2 =  22/2var(p!).
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Similarly

(P2 -  h f  =  (u2 -  p2)2 =  zl/2var{p2).

This again shows the key feature of the MOVER method which recognizes the 

asymmetric nature of the sampling distribution of the single ICC, in contrast to the 

SA method which ignores this fact.

3-4-4 Summary

The simple asymptotic method of constructing confidence intervals may perform 

poorly when the underlying sampling distribution is skewed. Since the sampling 

distribution of p is skewed, I applied the idea of recovering variance estimates from 

single ICCs to construct confidence intervals for a difference between two ICCs. The 

resulting confidence intervals in general are not symmetrical such that it reflects the 

sampling distribution for single ICCs which are well known to be left skewed (Fisher, 

1925, p.180).
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Chapter 4

SIMULATION

4.1 Introduction

The theoretical properties of the proposed confidence interval estimation procedures 

discussed in the last chapter are asymptotic and intractable in finite samples. I there­

fore used simulation studies to evaluate the performance of the proposed method. 

Simulation studies provide empirical estimation of the sampling distribution of pa­

rameters of interest. Therefore this technique is employed to evaluate statistical 

methods which can not be achieved with studies of real data alone.

In section 4.2 of this chapter, I describe the parameter selection, data generation, 

statistical methods to be evaluated, number of simulations needed to be performed 

and the criteria for evaluation of the simulation procedure. Section 4.3 presents the 

simulation results and section 4.4 presents discussion and conclusion of simulation 

results. The summary of chapter 4 is given in section 4.5.
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4.2 Study design

4-2.1 Parameter selection and data generation

The parameters for the simulation of this thesis include the number of subjects (n), 

number of measurements from each device (fci,/^), values for pi, p2 and pn- Values 

for pi and p2 were selected based on the arbitrary benchmark values of reliability 

coefficient suggested by Landis and Koch (1977) as slight (0.00 to 0.20), fair (0.21 to 

0.40), moderate (0.41 to 0.60), substantial (0.61 to 0.80) and almost perfect (0.81 to 

1.00). Therefore the parameter values of pi range from 0.1 to 0.9 with increments of 

0.2, i.e., the values are 0.1, 0.3, 0.5, 0.7, 0.9 and p2 was selected such that p2 =  Pi + 6 

where 6 range from 0 to 0.06 with increment of 0.02. Since the primary objective of 

this thesis is to propose a method of constructing confidence interval for p\ — p2 taking 

into account the dependence induced by the positive values of pi2 , it was chosen such 

that pn = y/pip2 — 0.05 (range from 0.05 to 0.87) so that it would satisfy the condition 

that S  is a positive definitive matrix. For the sample size n, considered n =  15,50,100 

to represent small, medium and large sample sizes. As for k\ and /c2 , five parameter 

combinations such as k\ =  k2 — 2; k\ =  2, k2 — 4; k\ =  fc2 =  4; k\ =  6, /C2 — 3; 

ki = k2 =  6 were chosen, so that the different methods can be evaluated with small 

number of observations as well as with large number of observations. Without loss 

of generality, pi =  p-2 — 0 and o\ =  02 =  1 were set where pi, /¿2 and aj, o\ are the

common mean and common variance of the measurements taken from device 1 and
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device 2 respectively.

For each of 300 parameter combinations, I generated 10000 observations from a 

multivariate normal distribution with correlation structure as defined in Chapter 3, 

expression (3.10). The minimum number of simulations required was calculated based 

on 0.4% margin of error and expected the empirical coverage vary between 94.6% to 

95.4%. All simulations were performed using exact computations in SAS 9.1 Proc 

IML (SAS Institute, NC).

4-2.2 Confidence interval procedures compared

Simulation studies were used to study the performances of the MOVER method. 

Four different confidence interval estimation methods were used to obtain a Cl for 

single ICC and then applied to the MOVER for a difference between ICCs. Confidence 

intervals for single ICCs were obtained using, 1) simple asymptotic method, 2) Fisher’s 

Z-transformation (Fisher, 1925, p.185) with variance derived using Delta method, 

3) modified Z-transformation by Konishi (Konishi, 1985) and 4) based on the F 

distribution (Donner, 1986). In this thesis I named these four methods as ‘SA’, 

‘Fisher’ , ‘Konishi’ and ‘Exact’ respectively. For all 300 parameter combinations, 95% 

confidence intervals were constructed using all four methods.



44

4-2.3 Evaluation criteria

In simulation studies, comparison of simulated results with the true values used to 

simulate the data, provides a measure of performance. When describing performance 

of methods of constructing confidence intervals, I focus on the following three criteria. 

Coverage

The coverage of a confidence interval is the proportion of times, in repeated sam­

pling, that the obtained confidence interval contains the true parameter value. If a 

procedure is working well, we expect the empirical coverage of the confidence interval 

constructed to be approximately equal to nominal coverage of 95%. To evaluate the 

extent to which the empirical coverage of the confidence interval constructed matched 

with the nominal coverage of 95%, I use three criteria adapted by many authors as: 

strict criterion (94.5% to 95.5%); moderate criterion (93.75% to 96.25%); liberal cri­

terion (92.5% to 97.5%) (Zou, 2007; Robey and Barcikowski, 1992). Over coverage is 

an indication that the results are too conservative which leads to a loss of statistical 

power with too many type II errors. Similarly under coverage is an indication that 

the results are too liberal which leads to too many type I errors. The empirical cov­

erage percentage was estimated by the relative frequency out of 10000 intervals that 

contains the true parameter.

Tail errors

If the confidence intervals constructed are appropriate, then the two sided overall 

error rate shall approximately be equal to a , which in our case is 0.05. As Efron and
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Tibshirani (1993, p.156) pointed out, for a two tailed confidence interval it requires 

that one sided miscoverage of the interval be a/2 on each side, left and right, rather 

than just an overall error of a. According to this point of view, if the entire error 

probability was contained in one tail, reporting overall error will mask the true picture. 

Therefore when constructing confidence intervals using different methods I recorded 

the number of intervals that ‘miss left’ and ‘miss right’ where ‘miss left’ occurs when 

the interval is completely to the left of the parameter and ‘miss right’ occurs when 

the interval is completely to the right of the parameter. Therefore in this thesis 

I consider confidence interval procedures which produce confidence intervals with 

coverage probability approximately close to the nominal coverage of 95% with left miss 

and right miss approximately close to 2.5% as procedures with better performances. 

And also when two Cl procedures satisfy the same coverage criterion I prefer the 

procedure that yields the least difference between miss left and miss right. 

Confidence interval width

A narrower confidence interval with satisfactory coverage provides greater accu­

racy. Therefore in a given simulation study, when two procedures both have good 

coverage, I prefer the procedure which yields the substantially shorter confidence in­

terval. The length of a confidence interval was calculated by subtracting the lower 

limit from the upper limit.
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4.3 Simulation results

Empirical coverage percentage based on 10000 runs for 95% nominal confidence inter­

vals for a difference between two dependent ICCs using MOVER method are graph­

ically presented in Fig 4.1 to Fig 4.5. Each boxplot was drawn from coverage per­

centages of 20 parameter combinations and presented based on the sample size. A 

reference line has been drawn at 95% of the empirical coverage percentage axis (y- 

axis) to aid in the interpretations. These figures illustrate four summaries; location, 

spread, skewness and longtailedness of the results obtained. Figure 4.6 presents the 

imbalance of tail errors, quantify by relative bias percentage obtained as

|MR -  ML\ 
MR +M L

x 100

and Fig 4.7 presents the Cl width for 95% nominal confidence intervals for a difference 

between two dependent ICCs using MOVER method. Each boxplot was drawn from 

coverage percentages of 100 parameter combinations. In reliability context, higher 

reliability coefficients are of great importance. Therefore I present the simulation 

results obtained for high reliability coefficients, i.e., p\ and p2 are greater than or equal 

to 0.5 and are presented in Table 4.1, 4.2 and 4.3. A summary of the performances 

of SA, Fisher, Konishi and Exact methods to construct Cl for single p in terms of 

coverage, tail errors and width which can be used as an aid to explain the good 

performance of MOVER method, are given in Table 4.4.
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Sample slze,n=15 Sample slze,n=50 Sample size,n=100

I

Figure 4.1: Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence interval methods 
for single ICCs when k\ =  &2 = 2. Methods 1, 2, 3, and 4 represents SA, Fisher, Konishi 
and Exact procedures respectively. Each boxplot was drawn from coverage percentage of 
20 parameter combinations.
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Sample slze,n*15 Sample size.nsSO Sample 8ize,n=100

•5.
EUJ

Method Method Method

Figure 4.2: Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence interval methods 
for single ICCs when fci =  4, &2 =  2. Methods 1, 2, 3, and 4 represents SA, Fisher, Konishi 
and Exact procedures respectively. Each boxplot was drawn from coverage percentage of 
20 parameter combinations.
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Sample size,n»15 Sample size,n*50 Sample size,n=100

Method Method Method

Figure 4.3: Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence interval methods 
for single ICCs when fci =  &2 =  4. Methods 1, 2, 3, and 4 represents SA, Fisher, Konishi 
and Exact procedures respectively. Each boxplot was drawn from coverage percentage of 
20 parameter combinations.



50

Sample size,n»15 Sample slze,n=50 Sample size,n=100

•a.
E

a.
E

Figure 4.4: Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence interval methods 
for single ICCs when fci =  6, = 3. Methods 1, 2, 3, and 4 represents SA, Fisher, Konishi
and Exact procedures respectively. Each boxplot was drawn from coverage percentage of 
20 parameter combinations.
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Sample size,n>15 Sample size,n>50 Sample size,n=100

Figure 4.5: Mean coverage percentage based on 10,000 runs for nominal 95% confidence 
intervals for a difference between two correlated ICCs using 4 confidence interval methods 
for single ICCs when fci = ,& 2  =  6. Methods 1, 2, 3, and 4 represents SA, Fisher, Konishi 
and Exact procedures respectively. Each boxplot was drawn from coverage percentage of 
20 parameter combinations.
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Sample slze,n>15 Sample eize,n»50 Sample slze,n=100

Figure 4.6: Imbalance of tail errors, quantified by the relative bias %
[100|MR -  ML|/(MR +  ML)], of 95% nominal confidence intervals for a difference 
between two correlated ICCs using 4 confidence interval methods for single ICCs. Methods 
1, 2, 3, and 4 represents SA, Fisher, Konishi and Exact procedures respectively. Each 
boxplot was drawn from coverage percentage of 100 parameter combinations.
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Sample size,n»15 Sample slze,n*50 Sample size,n°100

Figure 4.7: Confidence interval width of 95% nominal confidence intervals for a difference 
between two correlated ICCs using 4 confidence interval methods for single ICCs. Methods 
1, 2, 3, and 4 represents SA, Fisher, Konishi and Exact procedures respectively. Each 
boxplot was drawn from coverage percentage of 100 parameter combinations.



Table 4.1: The performance o f the new approach for constructing 

two-sided 95% confidence intervals (C l) for a difference between 

two correlated intraclass correlation coefficients based on 10000 

runs when sample size n = 15. The lower and upper bound o f 

single ICCs were calculated using SA, Fisher, Konishi and Exact 

method. Ideally missing left (M L) and missing right (M R ) should 

be 2.50%.

n — 15 SA Fisher Konishi Exact

Pi P2 Coverage (% ) C l Coverage (% ) Cl Coverage (% ) Cl Coverage (% ) C l

(M L, M R) (% ) W idth (M L, M R) (%) W idth (M L, M R ) (% ) W idth (M L, M R) (% ) W idth

ki = 2 &2 =  2

0.50 0.50 95.60 (2.13, 2.27) 0.99 94.50 (2.64, 2.86) 0.99 94.04 (2.87, 3.09) 0.94 95.54 (2.12, 2.34) 1.02

0.52 95.43 (2.30, 2.27) 0.98 94.21 (2.91, 2.88) 0.98 93.61 (3.27, 3.12) 0.93 95.13 (2.51, 2.36) 1.01

0.54 95.44 (2.53, 2.03) 0.96 94.14 (3.21, 2.65) 0.96 93.60 (3.56, 2.84) 0.91 95.13 (2.71, 2.16) 1.00

0.56 95.59 (2.20, 2.21) 0.95 94.25 (3.03, 2.72) 0.95 93.67 (3.45, 2.88) 0.90 95.18 (2.55, 2.27) 0.98

0.70 0.70 97.98 (0.93, 1.09) 0.67 94.08 (2.83, 3.09) 0.73 93.37 (3.21, 3.42) 0.67 94.97 (2.42, 2.61) 0.76

Continued on next page m



Table 4.1 -  continued from previous page

n = 15 SA Fisher Konishi Exact

pi P2 Coverage (% ) 

(M L, M R) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth

0.72 97.75 (1.27, 0.98) 0.66 94.09 (3.03, 2.88) 0.71 93.39 (3.46, 3.15) 0.66 94.99 (2.58, 2.43) 0.74

0.74 97.85 (1.33, 0.82) 0.64 94.30 (3.20, 2.50) 0.70 93.71 (3.66, 2.63) 0.64 95.16 (2.72, 2.12) 0.72

0.76 97.53 (1.65, 0.82) 0.62 94.18 (3.07, 2.75) 0.68 93.48 (3.73, 2.79) 0.63 95.10 (2.67, 2.23) 0.70

0.90 0.90 99.88 (0.07, 0.05) 0.26 94.19 (2.99, 2.82) 0.32 93.31 (3.38, 3.31) 0.29 95.12 (2.47, 2.41) 0.34

0.92 99.25 (0.70, 0.05) 0.23 94.36 (3.01, 2.63) 0.29 93.42 (3.83, 2.75) 0.26 95.17 (2.60, 2.23) 0.30

0.94 95.59 (4.38, 0.03) 0.22 94.52 (3.28, 2.20) 0.27 93.62 (4.38, 2.00) 0.24 95.13 (3.10, 1.77) 0.28

0.96 92.18 (7.80, 0.02) 0.20 94.49 (3.14, 2.37) 0.25 93.68 (4.35, 1.97) 0.22 95.36 (2.75, 1.89) 0.26

ki =  4 fc2 =  2

0.50 0.50 93.26 (1.64, 5.10) 0.81 94.09 (2.50, 3.41) 0.81 93.70 (2.65, 3.65) 0.75 94.98 (2.55, 2.47) 0.81

0.52 94.09 (1.50, 4.41) 0.79 94.51 (2.51, 2.98) 0.80 94.16 (2.68, 3.16) 0.74 95.37 (2.53, 2.10) 0.80

0.54 93.68 (1.51, 4.81) 0.78 94.10 (2.51, 3.39) 0.78 93.76 (2.70, 3.54) 0.72 95.05 (2.61, 2.34) 0.78

0.56 94.26 (1.27, 4.47) 0.76 94.43 (2.25, 3.32) 0.77 93.98 (2.58, 3.44) 0.71 95.37 (2.46, 2.17) 0.77

0.70 0.70 95.41 (0.67, 3.92) 0.55 94.34 (2.38, 3.28) 0.60 93.62 (2.56, 3.82) 0.54 95.31 (2.43, 2.26) 0.59

Continued on next page CnCn
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n —15 SA Fisher Konishi Exact

pi P2 Coverage (% ) 

(ML, M R) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(ML, M R ) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth

0.72 96.19 (0.44, 3.37) 0.53 94.62 (2.10, 3.28) 0.58 94.13 (2.33, 3.54) 0.52 95.32 (2.28, 2.40) 0.57

0.74 96.70 (0.42, 2.88) 0.51 94.91 (2.17, 2.92) 0.56 94.17 (2.72, 3.11) 0.50 95.56 (2.43, 2.01) 0.55

0.76 96.80 (0.58, 2.62) 0.49 94.21 (2.61, 3.18) 0.55 93.50 (3.34, 3.16) 0.48 94.77 (3.03, 2.20) 0.53

0.90 0.90 98.09 (0.04, 1.87) 0.21 94.38 (2.27, 3.35) 0.26 93.40 (2.50, 4.10) 0.23 94.97 (2.34, 2.69) 0.26

0.92 99.39 (0.06, 0.55) 0.19 94.69 (2.32, 2.99) 0.24 93.54 (3.32, 3.14) 0.20 95.03 (2.91, 2.06) 0.23

0.94 98.14 (1.59, 0.27) 0.17 95.30 (2.05, 2.65) 0.21 94.02 (3.57, 2.41) 0.18 95.48 (3.00, 1.52) 0.20

0.96 95.54 (4.14, 0.32) 0.16 95.33 (1.40, 3.27) 0.19 94.04 (3.40, 2.56) 0.16 95.62 (2.51, 1.87) 0.18

ki =  4 fe2 =  4

0.50 0.50 94.08 (2.98, 2.94) 0.58 94.42 (2.80, 2.78) 0.59 93.93 (3.06, 3.01) 0.54 95.10 (2.42, 2.48) 0.56

0.52 94.53 (2.74, 2.73) 0.57 94.89 (2.61, 2.50) 0.59 94.36 (2.93, 2.71) 0.53 95.52 (2.40, 2.08) 0.56

0.54 94.30 (2.95, 2.75) 0.57 94.83 (2.63, 2.54) 0.58 94.02 (3.24, 2.74) 0.52 95.35 (2.57, 2.08) 0.55

0.56 94.18 (3.15, 2.67) 0.56 94.63 (2.95, 2.42) 0.57 93.91 (3.60, 2.49) 0.51 95.27 (2.92, 1.81) 0.54

0.70 0.70 96.07 (1.92, 2.01) 0.41 94.90 (2.42, 2.68) 0.45 93.91 (2.94, 3.15) 0.38 95.20 (2.29, 2.51) 0.41

Continued on next page
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n = 15 SA Fisher Konishi Exact

pi P2 Coverage (% ) 

(M L, M R) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(ML, M R ) (% )

W idth Coverage (%) 

(M L, M R) (% )

W idth

0.72 95.95 (2.26, 1.79) 0.40 94.81 (2.70, 2.49) 0.44 93.60 (3.54, 2.86) 0.37 95.07 (2.85, 2.08) 0.40

0.74 96.12 (2.23, 1.65) 0.39 94.90 (2.47, 2.63) 0.43 93.87 (3.42, 2.71) 0.36 95.06 (2.78, 2.16) 0.39

0.76 96.27 (2.43, 1.30) 0.38 95.38 (2.28, 2.34) 0.42 94.18 (3.62, 2.20) 0.35 95.34 (2.91, 1.75) 0.38

0.90 0.90 98.93 (0.51, 0.56) 0.16 95.09 (2.26, 2.65) 0.20 93.33 (3.12, 3.55) 0.16 94.72 (2.46, 2.82) 0.17

0.92 97.80 (1.99, 0.21) 0.15 95.34 (2.05, 2.61) 0.19 93.52 (3.77, 2.71) 0.15 95.02 (2.91, 2.07) 0.16

0.94 94.84 (4.87, 0.29) 0.14 95.00 (1.69, 3.31) 0.17 93.70 (3.77, 2.53) 0.14 95.18 (2.84, 1.98) 0.15

0.96 93.03 (6.59, 0.38) 0.14 94.35 (1.42, 4.23) 0.16 94.18 (3.31, 2.51) 0.14 95.38 (2.58, 2.04) 0.15

fci =  6 k2 = 3

0.50 0.50 93.58 (2.47, 3.95) 0.59 94.24 (3.01, 2.75) 0.60 93.74 (2.78, 3.48) 0.55 95.04 (2.28, 2.68) 0.58

0.52 93.82 (2.36, 3.82) 0.59 94.56 (2.93, 2.51) 0.60 93.86 (2.80, 3.34) 0.54 95.33 (2.29, 2.38) 0.57

0.54 94.57 (2.26, 3.17) 0.58 95.02 (2.79, 2.19) 0.59 94.62 (2.74, 2.64) 0.53 95.69 (2.31, 2.00) 0.56

0.56 94.20 (2.29, 3.51) 0.56 94.52 (3.07, 2.41) 0.58 93.90 (3.16, 2.94) 0.52 95.45 (2.56, 1.99) 0.55

0.70 0.70 95.55 (1.36, 3.09) 0.42 94.47 (2.78, 2.75) 0.45 93.64 (2.83, 3.53) 0.39 94.87 (2.39, 2.74) 0.41

Continued on next page cn
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n = 15 SA Fisher Konishi Exact

pi P2 Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(ML, M R ) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

Width

0.72 95.95 (2.26, 1.79) 0.40 94.81 (2.70, 2.49) 0.44 93.60 (3.54, 2.86) 0.37 95.07 (2.85, 2.08) 0.40

0.74 96.12 (2.23, 1.65) 0.39 94.90 (2.47, 2.63) 0.43 93.87 (3.42, 2.71) 0.36 95.06 (2.78, 2.16) 0.39

0.76 96.27 (2.43, 1.30) 0.38 95.38 (2.28, 2.34) 0.42 94.18 (3.62, 2.20) 0.35 95.34 (2.91, 1.75) 0.38

0.90 0.90 98.93 (0.51, 0.56) 0.16 95.09 (2.26, 2.65) 0.20 93.33 (3.12, 3.55) 0.16 94.72 (2.46, 2.82) 0.17

0.92 97.80 (1.99, 0.21) 0.15 95.34 (2.05, 2.61) 0.19 93.52 (3.77, 2.71) 0.15 95.02 (2.91, 2.07) 0.16

0.94 94.84 (4.87, 0.29) 0.14 95.00 (1.69, 3.31) 0.17 93.70 (3.77, 2.53) 0.14 95.18 (2.84, 1.98) 0.15

0.96 93.03 (6.59, 0.38) 0.14 94.35 (1.42, 4.23) 0.16 94.18 (3.31, 2.51) 0.14 95.38 (2.58, 2.04) 0.15

f c i = 6 * 2 = 3

0.50 0.50 93.58 (2.47, 3.95) 0.59 94.24 (3.01, 2.75) 0.60 93.74 (2.78, 3.48) 0.55 95.04 (2.28, 2.68) 0.58

0.52 93.82 (2.36, 3.82) 0.59 94.56 (2.93, 2.51) 0.60 93.86 (2.80, 3.34) 0.54 95.33 (2.29, 2.38) 0.57

0.54 94.57 (2.26, 3.17) 0.58 95.02 (2.79, 2.19) 0.59 94.62 (2.74, 2.64) 0.53 95.69 (2.31, 2.00) 0.56

0.56 94.20 (2.29, 3.51) 0.56 94.52 (3.07, 2.41) 0.58 93.90 (3.16, 2.94) 0.52 95.45 (2.56, 1.99) 0.55

0.70 0.70 95.55 (1.36, 3.09) 0.42 94.47 (2.78, 2.75) 0.45 93.64 (2.83, 3.53) 0.39 94.87 (2.39, 2.74) 0.41

Continued on next page cn-3
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n —15 SA Fisher Konishi Exact

pi P2 Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (%) 

(M L, M R ) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(ML, M R ) (% )

W idth

0.72 96.50 (1.24, 2.26) 0.40 94.95 (2.81, 2.24) 0.44 94.03 (3.10, 2.87) 0.38 95.35 (2.63, 2.02) 0.40

0.74 96.29 (1.24, 2.47) 0.39 94.94 (2.37, 2.69) 0.43 93.99 (2.87, 3.14) 0.37 95.20 (2.43, 2.37) 0.39

0.76 96.64 (1.30, 2.06) 0.38 94.95 (2.47, 2.58) 0.42 93.83 (3.40, 2.77) 0.35 95.21 (2.87, 1.92) 0.38

0.90 0.90 98.36 (0.20, 1.44) 0.16 95.13 (2.37, 2.50) 0.20 93.40 (2.93, 3.67) 0.17 94.78 (2.51, 2.71) 0.18

0.92 98.75 (0.61, 0.64) 0.14 95.31 (1.96, 2.73) 0.18 93.29 (3.67, 3.04) 0.15 94.75 (2.96, 2.29) 0.16

0.94 96.59 (2.94, 0.47) 0.13 95.81 (1.24, 2.95) 0.17 94.30 (3.26, 2.44) 0.14 95.61 (2.52, 1.87) 0.15

0.96 94.08 (5.41, 0.51) 0.13 94.66 (1.10, 4.24) 0.16 93.82 (3.43, 2.75) 0.13 95.27 (2.68, 2.05) 0.14

fci =  6 k2 =  6

0.50 0.50 93.82 (3.19, 2.99) 0.47 94.67 (2.77, 2.56) 0.48 93.87 (3.18, 2.95) 0.44 95.35 (2.40, 2.25) 0.46

0.52 94.25 (3.12, 2.63) 0.47 94.95 (2.70, 2.35) 0.48 94.08 (3.29, 2.63) 0.43 95.56 (2.45, 1.99) 0.46

0.54 94.72 (2.56, 2.72) 0.46 95.41 (2.27, 2.32) 0.47 94.56 (2.90, 2.54) 0.43 95.98 (2.17, 1.85) 0.45

0.56 94.25 (2.90, 2.85) 0.45 94.99 (2.47, 2.54) 0.47 93.93 (3.38, 2.69) 0.42 95.53 (2.45, 2.02) 0.44

0.70 0.70 95.68 (2.02, 2.30) 0.34 95.14 (2.39, 2.47) 0.37 93.71 (3.12, 3.17) 0.31 95.16 (2.39, 2.45) 0.33

Continued on next page Cn
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Table 4.1 -  continued from previous page

n =  15 SA Fisher Konishi Exact

Pi P2 Coverage (% ) 

(M L, M R) (% )

W idth Coverage (% ) 

(M L, M R ) (%)

W idth Coverage (% ) 

(ML, M R ) (% )

W idth Coverage (% ) 

(M L, M R) (%)

W idth

0.72 95.89 (2.29, 1.82) 0.33 95.11 (2.44, 2.45) 0.36 93.55 (3.48, 2.97) 0.30 95.10 (2.76, 2.14) 0.32

0.74 95.84 (2.50, 1.66) 0.32 95.36 (2.28, 2.36) 0.36 93.88 (3.62, 2.50) 0.30 95.20 (2.93, 1.87) 0.31

0.76 95.68 (2.63, 1.69) 0.31 95.42 (1.88, 2.70) 0.35 93.70 (3.82, 2.48) 0.29 95.27 (2.88, 1.85) 0.31

0.90 0.90 98.51 (0.72, 0.77) 0.13 95.68 (2.05, 2.27) 0.17 93.08 (3.32, 3.60) 0.13 94.64 (2.56, 2.80) 0.14

0.92 97.24 (2.39, 0.37) 0.12 95.62 (1.63, 2.75) 0.16 93.41 (3.75, 2.84) 0.12 94.72 (3.06, 2.22) 0.13

0.94 94.20 (5.39, 0.41) 0.12 94.78 (1.36, 3.86) 0.15 93.44 (3.73, 2.83) 0.12 94.81 (3.06, 2.13) 0.13

0.96 93.54 (5.98, 0.48) 0.13 94.16 (0.82, 5.02) 0.14 94.27 (2.95, 2.78) 0.12 95.58 (2.35, 2.07) 0.13

mco



Table 4.2: The performance o f  the new approach for constructing 

two-sided 95% confidence intervals (C l) for a difference between 

two correlated intraclass correlation coefficients based on 10000 

runs when sample size n — 50. The lower and upper bound o f 

single ICCs were calculated using SA, Fisher, Konishi and Exact 

method. Ideally missing left (M L) and missing right (M R) should 

be 2.50%.

n = 50 SA Fisher Konishi Exact

Pi Pi Coverage (% ) C l Coverage (% ) Cl Coverage (%) Cl Coverage (% ) Cl

(M L, M R ) (% ) W idth (M L, M R ) (% ) W idth (M L, M R ) (% ) W idth (M L, M R) (% ) W idth

k\ — 2 ÌC2 — 2

0.50 0.50 95.45 (2.38, 2.17) 0.54 95.06 (2.60, 2.34) 0.54 94.93 (2.66, 2.41) 0.53 95.38 (2.44, 2.18) 0.55

0.52 95.40 (2.35, 2.25) 0.53 95.08 (2.46, 2.46) 0.53 94.98 (2.50, 2.52) 0.52 95.26 (2.37, 2.37) 0.54

0.54 95.41 (2.51, 2.08) 0.52 95.11 (2.63, 2.26) 0.52 94.91 (2.76, 2.33) 0.51 95.33 (2.53, 2.14) 0.53

0.56 95.30 (2.54, 2.16) 0.51 94.94 (2.69, 2.37) 0.52 94.81 (2.81, 2.38) 0.50 95.20 (2.57, 2.23) 0.52

0.70 0.70 95.92 (2.04, 2.04) 0.35 94.70 (2.73, 2.57) 0.36 94.52 (2.83, 2.65) 0.35 94.90 (2.62, 2.48) 0.36

Continued on next page
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Table 4.2 -  continued from previous page

n = 50 SA Fisher Konishi Exact

pi P2 Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(ML, M R ) (% )

Width Coverage (%) 

(M L, M R ) (% )

W idth Coverage (%) 

(M L, M R) (% )

W idth

0.72 96.25 (1.98, 1.77) 0.34 94.89 (2.52, 2.59) 0.35 94.74 (2.59, 2.67) 0.34 95.09 (2.46, 2.45) 0.35

0.74 95.93 (2.38, 1.69) 0.33 94.92 (2.74, 2.34) 0.34 94.70 (2.95, 2.35) 0.33 95.15 (2.63, 2.22) 0.34

0.76 95.71 (2.77, 1.52) 0.32 94.67 (2.91, 2.42) 0.33 94.48 (3.12, 2.40) 0.32 94.86 (2.82, 2.32) 0.33

0.90 0.90 97.05 (1.55, 1.40) 0.12 94.55 (2.95, 2.50) 0.13 94.36 (3.02, 2.62) 0.13 94.80 (2.80, 2.40) 0.14

0.92 96.60 (2.68, 0.72) 0.11 94.91 (2.85, 2.24) 0.12 94.70 (3.10, 2.20) 0.12 95.09 (2.74, 2.17) 0.12

0.94 95.28 (4.26, 0.46) 0.10 94.88 (2.83, 2.29) 0.11 94.64 (3.25, 2.11) 0.11 95.19 (2.67, 2.14) 0.11

0.96 93.83 (5.87, 0.30) 0.10 95.24 (2.78, 1.98) 0.11 95.06 (3.22, 1.72) 0.10 95.49 (2.66, 1.85) 0.11

ki =  4 k2 = 2

0.50 0.50 94.47 (1.69, 3.84) 0.44 94.87 (2.29, 2.84) 0.44 94.73 (2.35, 2.92) 0.43 95.21 (2.44, 2.35) 0.44

0.52 94.44 (1.55, 4.01) 0.43 94.68 (2.38, 2.94) 0.43 94.53 (2.44, 3.03) 0.42 94.95 (2.56, 2.49) 0.43

0.54 94.40 (1.67, 3.93) 0.42 94.72 (2.46, 2.82) 0.42 94.61 (2.57, 2.82) 0.41 94.88 (2.70, 2.42) 0.42

0.56 94.59 (1.65, 3.76) 0.41 94.65 (2.47, 2.88) 0.41 94.45 (2.70, 2.85) 0.40 94.66 (2.84, 2.50) 0.41

0.70 0.70 95.16 (1.04, 3.80) 0.29 94.81 (2.31, 2.88) 0.30 94.64 (2.33, 3.03) 0.29 95.08 (2.45, 2.47) 0.29

Continued on next page



Table 4.2 -  continued from previous page

n = 50 SA Fisher Konishi Exact

pi P2 Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(ML, M R ) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth Coverage (% ) 

(ML, M R) (%)

W idth

0.72 95.24 (1.10, 3.66) 0.27 94.68 (2.31, 3.01) 0.28 94.56 (2.39, 3.05) 0.27 94.96 (2.49, 2.55) 0.28

0.74 95.50 (1.17, 3.33) 0.26 94.77 (2.34, 2.89) 0.27 94.60 (2.48, 2.92) 0.26 94.96 (2.49, 2.55) 0.27

0.76 95.74 (1.19, 3.07) 0.25 94.99 (2.16, 2.85) 0.26 94.82 (2.39, 2.79) 0.25 95.16 (2.41, 2.43) 0.26

0.90 0.90 96.12 (0.71, 3.17) 0.10 94.63 (2.57, 2.80) 0.11 94.36 (2.61, 3.03) 0.11 94.76 (2.70, 2.54) 0.11

0.92 96.54 (1.34, 2.12) 0.09 94.60 (2.61, 2.79) 0.10 94.18 (3.03, 2.79) 0.09 94.60 (3.01, 2.39) 0.10

0.94 96.21 (2.67, 1.12) 0.08 95.28 (2.25, 2.47) 0.09 94.70 (3.07, 2.23) 0.08 95.13 (2.84, 2.03) 0.09

0.96 95.27 (3.85, 0.88) 0.08 95.28 (1.73, 2.99) 0.08 94.79 (2.82, 2.39) 0.08 95.26 (2.50, 2.24) 0.08

ki =  4 fe2 =  4

0.50 0.50 94.98 (2.44, 2.58) 0.32 95.12 (2.38, 2.50) 0.32 94.99 (2.45, 2.56) 0.31 95.31 (2.30, 2.39) 0.31

0.52 95.08 (2.47, 2.45) 0.31 95.16 (2.42, 2.42) 0.31 94.99 (2.57, 2.44) 0.30 95.37 (2.37, 2.26) 0.31

0.54 94.82 (2.60, 2.58) 0.31 94.93 (2.53, 2.54) 0.31 94.77 (2.70, 2.53) 0.30 95.06 (2.53, 2.41) 0.30

0.56 95.24 (2.46, 2.30) 0.30 95.31 (2.40, 2.29) 0.30 95.16 (2.57, 2.27) 0.29 95.46 (2.45, 2.09) 0.30

0.70 0.70 95.35 (2.24, 2.41) 0.21 94.98 (2.46, 2.56) 0.22 94.71 (2.62, 2.67) 0.21 95.02 (2.44, 2.54) 0.21

Continued on next page



Table 4.2 -  continued from previous page

n = 50 SA Fisher Konishi Exact

p\ Pi Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth

0.72 95.59 (2.27, 2.14) 0.20 95.25 (2.36, 2.39) 0.21 94.85 (2.75, 2.40) 0.20 95.25 (2.46, 2.29) 0.20

0.74 95.69 (2.39, 1.92) 0.20 95.31 (2.31, 2.38) 0.21 94.96 (2.72, 2.32) 0.20 95.35 (2.49, 2.16) 0.20

0.76 95.30 (2.73, 1.97) 0.19 95.01 (2.41, 2.58) 0.20 94.65 (2.98, 2.37) 0.19 94.98 (2.75, 2.27) 0.19

0.90 0.90 96.43 (1.85, 1.72) 0.08 95.09 (2.56, 2.35) 0.08 94.48 (2.94, 2.58) 0.08 94.92 (2.65, 2.43) 0.08

0.92 95.99 (2.83, 1.18) 0.07 94.93 (2.33, 2.74) 0.08 94.53 (2.88, 2.59) 0.07 94.93 (2.68, 2.39) 0.07

0.94 95.08 (4.40, 0.52) 0.07 94.98 (2.13, 2.89) 0.07 94.76 (3.16, 2.08) 0.07 95.26 (2.77, 1.97) 0.07

0.96 94.02 (5.03, 0.95) 0.07 94.63 (1.87, 3.50) 0.07 94.42 (2.94, 2.64) 0.07 94.75 (2.65, 2.60) 0.07

ki =  6 k2 =  3

0.50 0.50 94.75 (2.16, 3.09) 0.32 94.87 (2.64, 2.49) 0.32 94.84 (2.37, 2.79) 0.31 95.18 (2.34, 2.48) 0.32

0.52 94.93 (2.12, 2.95) 0.32 95.01 (2.62, 2.37) 0.32 94.90 (2.48, 2.62) 0.31 95.24 (2.40, 2.36) 0.31

0.54 94.88 (2.22, 2.90) 0.31 94.92 (2.73, 2.35) 0.31 94.83 (2.63, 2.54) 0.30 95.16 (2.56, 2.28) 0.31

0.56 95.02 (2.10, 2.88) 0.30 95.22 (2.47, 2.31) 0.31 95.11 (2.42, 2.47) 0.30 95.39 (2.40, 2.21) 0.30

0.70 0.70 95.50 (1.72, 2.78) 0.22 95.23 (2.43, 2.34) 0.22 95.05 (2.37, 2.58) 0.21 95.32 (2.32, 2.36) 0.22

Continued on next page o>
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Table 4.2 -  continued from previous page

n = 50 SA Fisher Konishi Exact

pi P2 Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(ML, M R ) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(ML, M R) (% )

W idth

0.72 95.71 (1.61, 2.68) 0.21 95.28 (2.39, 2.33) 0.22 94.97 (2.43, 2.60) 0.20 95.35 (2.37, 2.28) 0.21

0.74 95.44 (1.89, 2.67) 0.20 94.93 (2.53, 2.54) 0.21 94.64 (2.71, 2.65) 0.20 95.01 (2.61, 2.38) 0.20

0.76 95.27 (1.97, 2.76) 0.19 94.73 (2.50, 2.77) 0.20 94.45 (2.78, 2.77) 0.19 94.91 (2.66, 2.43) 0.19

0.90 0.90 95.88 (1.31, 2.81) 0.08 94.84 (2.51, 2.65) 0.09 94.37 (2.61, 3.02) 0.08 94.77 (2.51, 2.72) 0.08

0.92 96.28 (2.07, 1.65) 0.07 95.09 (2.39, 2.52) 0.08 94.51 (2.99, 2.50) 0.07 94.89 (2.86, 2.25) 0.07

0.94 95.73 (3.24, 1.03) 0.06 95.62 (1.74, 2.64) 0.07 95.12 (2.76, 2.12) 0.07 95.54 (2.54, 1.92) 0.07

0.96 94.68 (4.30, 1.02) 0.06 94.93 (1.67, 3.40) 0.07 94.83 (2.75, 2.42) 0.06 95.22 (2.55, 2.23) 0.07

fci =  6 &2 =  6

0.50 0.50 95.44 (2.14, 2.42) 0.25 95.70 (2.05, 2.25) 0.26 95.51 (2.11, 2.38) 0.25 95.84 (1.99, 2.17) 0.25

0.52 94.65 (2.66, 2.69) 0.25 94.87 (2.54, 2.59) 0.25 94.68 (2.70, 2.62) 0.24 95.06 (2.50, 2.44) 0.25

0.54 94.64 (2.77, 2.59) 0.25 94.91 (2.60, 2.49) 0.25 94.63 (2.87, 2.50) 0.24 95.03 (2.61, 2.36) 0.25

0.56 94.70 (2.79, 2.51) 0.24 94.94 (2.66, 2.40) 0.25 94.71 (2.93, 2.36) 0.24 95.05 (2.77, 2.18) 0.24

0.70 0.70 95.49 (2.31, 2.20) 0.17 95.31 (2.40, 2.29) 0.18 94.92 (2.59, 2.49) 0.17 95.33 (2.38, 2.29) 0.17

Continued on next page 01



Table 4.2 -  continued from previous page

n = 50 SA Fisher Konishi Exact

Pi P2 Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(M L, M R ) (%)

W idth Coverage (%) 

(ML, M R ) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth

0.72 95.29 (2.63, 2.08) 0.17 94.93 (2.60, 2.47) 0.18 94.51 (2.96, 2.53) 0.16 95.00 (2.77, 2.23) 0.17

0.74 95.17 (2.75, 2.08) 0.16 95.00 (2.44, 2.56) 0.17 94.52 (3.00, 2.48) 0.16 94.96 (2.83, 2.21) 0.16

0.76 94.75 (3.10, 2.15) 0.16 94.60 (2.73, 2.67) 0.17 94.15 (3.41, 2.44) 0.16 94.56 (3.18, 2.26) 0.16

0.90 0.90 96.42 (1.74, 1.84) 0.06 95.26 (2.40, 2.34) 0.07 94.46 (2.88, 2.66) 0.06 94.86 (2.62, 2.52) 0.07

0.92 95.77 (2.94, 1.29) 0.06 94.85 (2.11, 3.04) 0.07 94.41 (2.81, 2.78) 0.06 94.76 (2.67, 2.57) 0.06

0.94 94.67 (4.47, 0.86) 0.06 94.86 (1.87, 3.27) 0.06 94.45 (3.22, 2.33) 0.06 94.88 (3.01, 2.11) 0.06

0.96 94.92 (4.06, 1.02) 0.06 94.48 (1.29, 4.23) 0.06 94.73 (2.42, 2.85) 0.06 95.20 (2.26, 2.54) 0.06
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Table 4.3: The performance o f the new approach for constructing 

two-sided 95% confidence intervals (C l) for a difference between 

two correlated intraclass correlation coefficients based on 10000 

runs when sample size n =  100. The lower and upper bound o f 

single ICCs were calculated using SA, Fisher, Konishi and Exact 

method. Ideally missing left (M L) and missing right (M R ) should 

be 2.50%.

n = 100 SA Fisher Konishi Exact

pi P2 Coverage (% ) C l Coverage (%) Cl Coverage (% ) Cl Coverage (% ) Cl

(M L, M R) (% ) W idth (ML, M R ) (% ) W idth (ML, M R) (% ) W idth (M L, M R) (% ) W idth

= 2 k2 = 2

0.50 0.50 95.12 (2.43, 2.45) 0.38 94.94 (2.50, 2.56) 0.38 94.85 (2.56, 2.59) 0.38 95.05 (2.44, 2.51) 0.38

0.52 95.31 (2.31, 2.38) 0.37 95.02 (2.42, 2.56) 0.37 94.97 (2.45, 2.58) 0.37 95.21 (2.33, 2.46) 0.38

0.54 95.31 (2.43, 2.26) 0.37 95.08 (2.49, 2.43) 0.37 94.99 (2.56, 2.45) 0.36 95.21 (2.42, 2.37) 0.37

0.56 95.23 (2.38, 2.39) 0.36 95.06 (2.43, 2.51) 0.36 94.96 (2.53, 2.51) 0.36 95.18 (2.37, 2.45) 0.36

0.70 0.70 95.63 (2.15, 2.22) 0.24 95.00 (2.47, 2.53) 0.25 94.91 (2.55, 2.54) 0.24 95.15 (2.38, 2.47) 0.25

Continued on next page
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Table 4.3 -  continued from previous page

n =  100 SA Fisher Konishi Exact

Pi P2 Coverage (% ) 

(M L, M R) (% )

W idth Coverage (% ) 

(ML, M R ) (%)

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (%) 

(M L, M R ) (% )

W idth

0.72 95.67 (2.31, 2.02) 0.23 95.03 (2.49, 2.48) 0.24 94.94 (2.56, 2.50) 0.24 95.13 (2.42, 2.45) 0.24

0.74 95.46 (2.64, 1.90) 0.23 94.84 (2.72, 2.44) 0.23 94.68 (2.88, 2.44) 0.23 94.91 (2.70, 2.39) 0.23

0.76 95.07 (3.06, 1.87) 0.22 94.47 (3.03, 2.50) 0.23 94.32 (3.21, 2.47) 0.22 94.56 (3.00, 2.44) 0.23

0.90 0.90 96.14 (1.93, 1.93) 0.08 94.85 (2.60, 2.55) 0.09 94.74 (2.61, 2.65) 0.09 95.05 (2.49, 2.46) 0.09

0.92 96.22 (2.57, 1.21) 0.08 95.15 (2.48, 2.37) 0.08 95.09 (2.59, 2.32) 0.08 95.27 (2.44, 2.29) 0.08

0.94 95.11 (3.90, 0.99) 0.07 94.80 (2.72, 2.48) 0.08 94.60 (3.06, 2.34) 0.07 94.89 (2.65, 2.46) 0.08

0.96 94.52 (4.75, 0.73) 0.07 94.94 (2.53, 2.53) 0.07 94.93 (2.81, 2.26) 0.07 95.09 (2.46, 2.45) 0.07

fci =  4 k2 = 2

0.50 0.50 94.68 (1.84, 3.48) 0.31 94.89 (2.46, 2.65) 0.31 94.83 (2.48, 2.69) 0.31 95.07 (2.52, 2.41) 0.31

0.52 94.81 (1.63, 3.56) 0.30 95.02 (2.15, 2.83) 0.30 94.97 (2.17, 2.86) 0.30 95.15 (2.29, 2.56) 0.30

0.54 94.91 (1.83, 3.26) 0.29 94.94 (2.47, 2.59) 0.30 94.85 (2.56, 2.59) 0.29 95.01 (2.67, 2.32) 0.30

0.56 94.83 (1.66, 3.51) 0.29 95.01 (2.19, 2.80) 0.29 94.95 (2.26, 2.79) 0.29 95.11 (2.37, 2.52) 0.29

0.70 0.70 94.84 (1.62, 3.54) 0.20 94.62 (2.58, 2.80) 0.20 94.55 (2.58, 2.87) 0.20 94.75 (2.68, 2.57) 0.20

Continued on next page a>-a



Table 4.3 -  continued from previous page

n = 100 SA Fisher Konishi Exact

Pi P2 Coverage (% ) 

(M L, M R) (% )

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth

0.72 94.87 (1.81, 3.32) 0.19 94.48 (2.77, 2.75) 0.20 94.40 (2.82, 2.78) 0.19 94.52 (2.90, 2.58) 0.19

0.74 95.16 (1.66, 3.18) 0.18 94.55 (2.64, 2.81) 0.19 94.46 (2.77, 2.77) 0.18 94.67 (2.82, 2.51) 0.19

0.76 95.40 (1.74, 2.86) 0.17 95.08 (2.40, 2.52) 0.18 94.98 (2.57, 2.45) 0.17 95.15 (2.62, 2.23) 0.18

0.90 0.90 95.75 (1.10, 3.15) 0.07 95.10 (2.28, 2.62) 0.07 94.96 (2.28, 2.76) 0.07 95.17 (2.35, 2.48) 0.07

0.92 95.84 (1.73, 2.43) 0.06 94.95 (2.45, 2.60) 0.06 94.83 (2.61, 2.56) 0.06 94.96 (2.63, 2.41) 0.06

0.94 95.46 (2.72, 1.82) 0.05 94.62 (2.37, 3.01) 0.06 94.31 (2.95, 2.74) 0.06 94.65 (2.83, 2.52) 0.06

0.96 94.88 (3.72, 1.40) 0.05 94.95 (2.18, 2.87) 0.05 94.78 (2.86, 2.36) 0.05 94.96 (2.72, 2.32) 0.05

fci =  4 =  4

0.50 0.50 95.18 (2.44, 2.38) 0.22 95.21 (2.44, 2.35) 0.22 95.18 (2.45, 2.37) 0.22 95.29 (2.38, 2.33) 0.22

0.52 94.61 (2.92, 2.47) 0.22 94.73 (2.90, 2.37) 0.22 94.59 (3.01, 2.40) 0.22 94.84 (2.89, 2.27) 0.22

0.54 95.01 (2.52, 2.47) 0.22 95.02 (2.52, 2.46) 0.22 94.99 (2.55, 2.46) 0.21 95.12 (2.52, 2.36) 0.21

0.56 94.68 (2.72, 2.60) 0.21 94.68 (2.70, 2.62) 0.21 94.67 (2.80, 2.53) 0.21 94.86 (2.73, 2.41) 0.21

0.70 0.70 95.30 (2.45, 2.25) 0.15 95.18 (2.51, 2.31) 0.15 95.03 (2.57, 2.40) 0.15 95.20 (2.49, 2.31) 0.15
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Table 4,3 — continued from previous page

n = 100 SA Fisher Konishi Exact

pi P2 Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(ML, M R ) (% )

W idth Coverage (% ) 

(ML, M R) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth

0.72 95.43 (2.35, 2.22) 0.14 95.16 (2.37, 2.47) 0.15 94.99 (2.55, 2.46) 0.14 95.19 (2.45, 2.36) 0.14

0.74 95.52 (2.61, 1.87) 0.14 95.28 (2.47, 2.25) 0.14 95.05 (2.77, 2.18) 0.14 95.27 (2.65, 2.08) 0.14

0.76 95.54 (2.51, 1.95) 0.14 95.27 (2.29, 2.44) 0.14 95.13 (2.61, 2.26) 0.13 95.31 (2.49, 2.20) 0.14

0.90 0.90 95.84 (2.07, 2.09) 0.05 95.17 (2.36, 2.47) 0.06 94.98 (2.50, 2.52) 0.05 95.12 (2.38, 2.50) 0.05

0.92 95.78 (2.73, 1.49) 0.05 95.30 (2.03, 2.67) 0.05 95.05 (2.52, 2.43) 0.05 95.24 (2.41, 2.35) 0.05

0.94 94.94 (3.80, 1.26) 0.05 95.10 (1.97, 2.93) 0.05 94.78 (2.79, 2.43) 0.05 95.05 (2.61, 2.34) 0.05

0.96 94.61 (4.19, 1.20) 0.05 95.01 (2.06, 2.93) 0.05 94.92 (2.80, 2.28) 0.05 95.15 (2.58, 2.27) 0.05

fci =  6 fc2 =  3

0.50 0.50 94.88 (2.16, 2.96) 0.23 94.89 (2.54, 2.57) 0.23 94.89 (2.34, 2.77) 0.22 95.09 (2.34, 2.57) 0.23

0.52 94.85 (2.23, 2.92) 0.22 95.00 (2.56, 2.44) 0.22 94.80 (2.48, 2.72) 0.22 95.13 (2.46, 2.41) 0.22

0.54 94.88 (2.61, 2.51) 0.22 94.89 (2.90, 2.21) 0.22 94.89 (2.85, 2.26) 0.22 94.99 (2.84, 2.17) 0.22

0.56 94.72 (2.34, 2.94) 0.21 94.93 (2.57, 2.50) 0.21 94.80 (2.56, 2.64) 0.21 95.04 (2.56, 2.40) 0.21

0.70 0.70 95.34 (1.79, 2.87) 0.15 95.23 (2.38, 2.39) 0.15 95.02 (2.34, 2.64) 0.15 95.27 (2.33, 2.40) 0.15

Continued on next page
CO



Table 4.3 -  continued from previous page

n = 100 SA Fisher Konishi Exact

Pi P2 Coverage (% ) W idth Coverage (% ) W idth Coverage (% ) W idth Coverage (% ) W idth

(M L, M R ) (% ) (ML, M R ) (% ) (ML, M R) (% ) (M L, M R ) (% )

0.72 95.24 (2.05, 2.71) 0.14 95.13 (2.50, 2.37) 0.15 95.00 (2.49, 2.51) 0.14 95.22 (2.48, 2.30) 0.14

0.74 94.90 (2.15, 2.95) 0.14 94.76 (2.48, 2.76) 0.14 94.56 (2.64, 2.80) 0.14 94.73 (2.62, 2.65) 0.14

0.76 95.38 (2.24, 2.38) 0.13 95.06 (2.58, 2.36) 0.14 94.87 (2.82, 2.31) 0.13 95.00 (2.79, 2.21) 0.13

0.90 0.90 95.43 (1.62, 2.95) 0.05 94.82 (2.47, 2.71) 0.06 94.65 (2.47, 2.88) 0.05 94.80 (2.47, 2.73) 0.05

0.92 95.78 (2.21, 2.01) 0.05 95.02 (2.43, 2.55) 0.05 94.74 (2.81, 2.45) 0.05 94.90 (2.77, 2.33) 0.05

0.94 95.28 (3.13, 1.59) 0.04 94.86 (2.27, 2.87) 0.05 94.67 (2.82, 2.51) 0.04 94.87 (2.73, 2.40) 0.05

0.96 94.82 (3.65, 1.53) 0.05 95.05 (1.76, 3.19) 0.05 94.98 (2.54, 2.48) 0.04 95.13 (2.48, 2.39) 0.05

ki = 6 fe2 =  6

0.50 0.50 95.04 (2.47, 2.49) 0.18 95.11 (2.45, 2.44) 0.18 95.04 (2.46, 2.50) 0.18 95.20 (2.39, 2.41) 0.18

0.52 94.79 (2.58, 2.63) 0.18 94.89 (2.55, 2.56) 0.18 94.80 (2.60, 2.60) 0.17 95.00 (2.55, 2.45) 0.18

0.54 94.97 (2.50, 2.53) 0.17 95.06 (2.44, 2.50) 0.18 94.96 (2.55, 2.49) 0.17 95.13 (2.46, 2.41) 0.17

0.56 94.71 (2.71, 2.58) 0.17 94.80 (2.65, 2.55) 0.17 94.64 (2.85, 2.51) 0.17 94.83 (2.75, 2.42) 0.17

0.70 0.70 95.35 (2.39, 2.26) 0.12 95.28 (2.41, 2.31) 0.12 95.11 (2.46, 2.43) 0.12 95.28 (2.41, 2.31) 0.12

Continued on next page



Table 4.3 -  continued from previous page

n =  100 SA Fisher Konishi Exact

Pi P2 Coverage (% ) 

(ML, M R) (%)

W idth Coverage (% ) 

(M L, M R ) (% )

W idth Coverage (% ) 

(M L, M R) (% )

W idth Coverage (% ) 

(ML, M R ) (% )

W idth

0.72 95.05 (2.62, 2.33) 0.12 94.98 (2.55, 2.47) 0.12 94.76 (2.78, 2.46) 0.12 94.94 (2.67, 2.39) 0.12

0.74 94.65 (2.84, 2.51) 0.11 94.60 (2.63, 2.77) 0.12 94.36 (2.96, 2.68) 0.11 94.54 (2.88, 2.58) 0.11

0.76 95.22 (2.70, 2.08) 0.11 95.21 (2.26, 2.53) 0.11 94.93 (2.82, 2.25) 0.11 95.17 (2.68, 2.15) 0.11

0.90 0.90 95.42 (2.37, 2.21) 0.04 94.98 (2.64, 2.38) 0.05 94.79 (2.74, 2.47) 0.04 94.85 (2.70, 2.45) 0.04

0.92 95.66 (2.85, 1.49) 0.04 95.23 (2.04, 2.73) 0.04 94.98 (2.63, 2.39) 0.04 95.20 (2.54, 2.26) 0.04

0.94 94.94 (3.78, 1.28) 0.04 95.12 (1.92, 2.96) 0.04 94.91 (2.79, 2.30) 0.04 95.19 (2.65, 2.16) 0.04

0.96 94.79 (3.91, 1.30) 0.04 94.87 (1.52, 3.61) 0.04 94.91 (2.56, 2.53) 0.04 95.16 (2.43, 2.41) 0.04
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Table 4.4: Comparative performance of the four procedures for constructing a 95% 
two-sided confidence interval for single ICC (summary of 75 parameter combinations 
with 10000 runs for each combination)

Method
n =  15 n =  50 n =  100

Mean Min Max Mean Min Max Mean Min Max
SA C 91.63 89.85 94.50 93.96 93.00 95.30 94.47 93.92 95.37

ML 3.23 0.00 8.52 2.38 0.31 5.29 2.24 0.71 4.14
MR 5.13 0.64 9.52 3.68 0.94 6.40 3.28 1.29 5.08
W 0.50 0.07 0.96 0.27 0.04 0.54 0.19 0.02 0.39

F C 93.39 90.90 94.59 94.53 93.52 95.14 94.75 94.11 95.34
ML 4.73 2.73 8.68 3.44 2.38 5.37 3.09 2.19 4.40
MR 1.87 0.38 3.11 2.02 0.77 3.16 2.15 1.20 2.96
W 0.49 0.08 0.89 0.27 0.04 0.53 0.19 0.02 0.38

K C 93.56 93.03 94.02 94.60 93.97 95.07 94.77 94.08 95.30
ML 2.88 2.13 3.68 2.49 1.99 2.99 3.09 2.19 4.40
MR 3.56 2.77 4.29 2.90 2.44 3.70 2.77 2.35 3.29
W 0.46 0.07 0.87 0.27 0.03 0.53 0.19 0.02 0.38

E C 95.02 94.56 95.41 95.01 94.59 94.49 94.48 94.37 95.47
ML 2.48 2.09 2.89 2.50 2.18 2.82 2.49 2.13 2.96
MR 2.49 2.17 2.92 2.49 2.15 3.00 2.52 2.23 2.95
W 0.50 0.07 0.92 0.27 0.04 0.53 0.19 0.02 0.38

SA: simple asymptotic method; F: Fisher’s method; K: Konishi method; E: Exact method 
C: coverage; ML: the confidence interval lies completely below the parameter; MR: the 
confidence interval lies completely above the parameter; W: average confidence interval 
width; Min: minimum; Max: Maximum

4.4 Discussion o f simulation results

4-4-1 Coverage

Sample size of n = 15

Simulation results in Table 4.1 indicate that empirical coverage provided by simple
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asymptotic method was somewhat erratic. For example, when pi =  0.7 to 0.9 and 

p2 =  0.7 to 0.94, the CIs provided by simple asymptotic method are too conservative 

and for pi =  0.9 and p2 =  0.96, it is too liberal. But for pi, p2 <  0.7, simple asymptotic 

method provided adequate coverage close to the nominal level of 95%. It can also be 

seen that Fisher’s method provided an empirical coverage within the desired interval 

of 94.6% to 95.4% for all parameter values but the coverage provided by this method 

were always less than the coverage provided by Exact method. Empirical coverage 

percentages provided by Konishi method were outside the desired interval of 94.6% 

to 95.4% and for some parameter values it even falls short of the moderate criterion 

of 93.75%. In contrast to the coverage percentages provided by these three methods, 

Exact method consistently provided excellent coverage percentages within the desired 

interval for all values of p\ and p2. Empirical coverage percentages provided by Exact 

method are much closer to the nominal level of 95%.

Sample size of n = 50

Results in Table 4.2 shows, when ki, /c2 =  2, SA method provided empirical cover­

age close to the nominal coverage of 95% for pi, p2 <  0.7, but for p2 >  0.7, the simple 

asymptotic method provided over coverage. The simulation results in the Table 4.2 

shows that both Fisher and Konishi methods provided coverage within the desired 

interval of 94.6% to 95.4% but the coverage percentages provided by Konishi were 

always less than that provided by Fisher’s method. Again Exact method provided an 

excellent empirical coverage percentages very close to the nominal coverage of 95%.
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Sample size of n=100

The simulation results in the Table 4.3 shows that Fisher, Konish and Exact methods 

provided excellent empirical coverage within the desired interval which were very 

close to the nominal coverage of 95%. Simple asymptotic method provided empirical 

coverage within the desired interval except for some parameter values (pi,p2 >0 .94  

for ki,k2 — 2) where the empirical coverage is outside the desired interval.

4-4-2 Tail errors 

Sample size of n = 15

The simulation results in Table 4.1 show that the tail errors provided by the simple 

asymptotic method has a better balance only when k\ = k2, otherwise the tail errors 

were severely unbalanced, i.e., the tails errors were concentrated in one tail either 

left or right. Also the tail errors (ML and MR) were not close to the nominal level 

of 2.5%. The tail errors provided by the Fisher and Konishi methods also exceeded 

the desired level of 2.5% and the errors were not equally divided between the two 

tails. The Exact method provided tail errors close to nominal level of 2.5% for most 

parameter combinations.

Sample size of n = 50

The simulation results in Table 4.2 indicate that, the simple asymptotic method 

provided tail errors with an erratic pattern. The errors were not equally divided

between two tails and ML and MR were not close to the nominal level. From this
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table it can be seen that although Fisher method provided tail errors close to nominal 

level of 2.5% for k\ = k2 =  2, the errors were concentrated in one tail when ki, /c2 > 2 

and Pi, P2 >  0.9. Konishi method always provided tail errors in excess of 2.5%. 

In contrast to the simple asymptotic, Fisher and Konishi methods, Exact method 

consistently provided tail errors close to nominal level of 2.5% except for pi,p2 > 0.9. 

Sample size of n = 100

Results in Table 4.3 shows that for most parameter combinations, tail errors provided 

by the simple asymptotic method were not close to the nominal level of 2.5%. For 

higher values of p\, P2 errors were concentrated in one tail. Fisher and Exact methods 

provided tail errors very close to the nominal level while Konishi method exceeded 

the nominal level.

4-4-3 Confidence interval width 

Sample size of n — 15

Table 4.1 shows that for p\,p2 > 0.9, Cl width provided by the simple asymptotic 

method were always narrower than that provided by other three methods. Confidence 

interval widths provided by the Fisher method were narrower than that provided by 

the Exact method for ki, k2 = 2. However, for ki, k2 > 2, the Cl width provided by 

the Fisher method were equal to or wider than that provided by the Exact method. 

Konishi method always provided a narrower Cl than that provided by the other three 

methods except for pi,p2 > 0.9.
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Sample size of n = 50

It can be observed that confidence interval width provided by all four methods were 

having near similar values once the sample size was increased to 50 except that the 

Fisher method provided narrower Cl than the Exact method for k\, =  2. Also the

simple asymptotic method provides a wider Cl for pi, p2 > 0.9.

Sample size of n = 100

From Table 4.3, it can be seen that the Cl width provided by all four methods 

were almost similar. As noted above the Fisher method provided narrow confidence 

intervals than the Exact method for fci, k? =  2. As for the simple asymptotic method, 

it provided narrower CIs for P\, P2 > 0.9 when compared with that provided by the 

other three methods.

4.5 Summary

Simulation results indicate that the simple asymptotic method provided coverage 

outside the desired interval of 94.6% to 95.4% for sample size n =  15 and the resulting 

CIs were wide. As the sample size increases, the coverage percentages tend to reach 

the nominal level of 95%. The box plots given in Figure 4.1 to 4.5, clearly show this 

behavior. These box plots also show that coverage percentage provided by the simple 

asymptotic method for small sample size, spread over a wide range and became narrow 

when the sample size increased. Although the simple asymptotic method provided 

coverage percentage close to nominal level when the sample size increased, the tail
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errors provided by this method were not close to the nominal level and the tail errors 

were severely unbalanced. The problem with the simple asymptotic method is that 

for most parameter values the errors were concentrated in one tail (Fig 4.6). The poor 

performance of the simple asymptotic method is due to that it does not adjusted for 

the skewness of the underlying sampling distribution when calculating the CIs for 

single ICCs. The summary statistic given in Table 4.4 for a single ICC shows the 

poor performance of the simple asymptotic method.

The coverage percentages provided by Konishi method were always outside of the 

desired interval and CIs were overly narrow. The box plots shows that the empirical 

coverage percentages provided by this method were not as wide as in the simple 

asymptotic method. The tail errors provided by Konishi method always exceeded the 

nominal level of 2.5%.

Both the Fisher and Exact methods perform well except that the coverage provided 

by the Fisher method is always less than that of the Exact method. The Exact 

method provided empirical coverage closer to the nominal level of 95%. The box 

plots show that the empirical coverage percentages provided by the Exact method 

had a smaller range than other three methods. Considering the tail errors the Exact 

method achieved a better balance in the left and right tails (Fig 4.6) and it consistently 

provided tail errors close to the nominal level of 2.5% except for parameter values pi, 

P2 > 0.9 . The Fisher method did not provide balanced tail errors consistently but for 

some parameter values (ki, =  2) the Fisher method provide narrower CIs than the



Exact method. Table 4.4 shows the excellent performance of the Exact method for 

constructing CIs for a single ICC, this excellent performances for a single ICC explains 

the simulation results for the difference between two ICCs. But the performance of 

the Exact method for parameter values pi, p2 > 0.9 are consistent with the results 

obtained by Donner and Wells (1986) that performance of the Searle’s exact method 

decreases for p > 0.7.

78
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Chapter 5

WORKED EXAMPLES

In this chapter, I describe the use of the MOVER method as applied to the mo­

tivating examples discussed in Chapter 1. In the two examples discussed below, the 

data from studies reported by Turner et al. (1986) and Gomez et al. (2002) are used 

to calculate the confidence intervals for a difference between two correlated ICCs us­

ing the MOVER method. The common features of both these studies are that both 

were carried out to compare the performances of two devices and they used the same 

sample of subjects to draw measurements from the two devices. Hence each of these 

two studies leads to a comparison of two correlated reliability coefficients.

5.1 Example 1

As the first example, I consider the data derived from computer-aided tomographic 

scans (CAT scans) of the heads of 50 psychiatric patients (Turner et al., 1986). The 

purpose of this study was to determine the size of the brain ventricle relative to that 

of the patient’s skull given by,

Ventricle brain ratio or VBR= (ventricle size/brain size)xl00.
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For a given scan VBR was determined from measurements of the perimeter of the 

patient’s ventricle together with the perimeter of the inner surface of the skull. These 

measurements were made using a hand held planimeter (PLANN) on a projection 

of the X-ray image or using an automated pixel count (PIX) based on the image 

displayed on a television screen. As described in Chapter 1, section 1.3.2 of this 

thesis, Dunn (Dunn, 1989, ch.5) used these data to compare the performance of the 

two devices PIX and PLANN by examining the raw data visually. Subsequent to this, 

these data were analyzed by Donner and Zou (2002) using a proper hypothesis test for 

testing the equality of two dependent ICCs. The logged VBRs for single scans from 

50 patients are given in Table 5.1. The first two columns corresponds to repeated 

determinations based on pixel counts and the second two columns corresponds to 

repeated determinations based on the use of a planimeter (Dunn, 1989, ch.5).

Table 5.1: CAT scan data; log(VBR) on 50 patients.

Subject PIX1 PIX3 PLANI PLAN3 Subject PIX PINX3 PLANI PLAN3

1 1.79 1.77 2.05 2.13 26 2.33 2.37 2.24 2.03

2 0.00 0.00 1.72 1.28 27 1.22 1.19 1.63 1.76

3 1.53 1.55 1.93 1.79 28 1.63 1.39 1.55 1.53

4 1.57 1.57 2.16 1.96 29 1.87 1.84 2.12 2.30

5 1.65 1.70 2.27 1.95 30 1.19 1.10 1.63 1.34

6 2.05 2.12 2.53 2.17 31 0.34 0.34 1.46 0.96

Continued on next page
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Table 5.1 -  continued from previous page

Subject PIX1 PIX3 PLANI PLAN3 Subject PIX PINX3 PLANI PLAN3

7 1.59 1.65 1.79 1.67 32 1.19 1.25 1.87 1.41

8 1.03 1.03 1.87 1.48 33 1.53 1.53 1.79 1.84

9 0.69 0.74 1.57 1.57 34 1.63 1.65 2.33 1.84

10 1.69 1.79 1.39 1.39 35 0.83 0.88 1.39 1.16

11 1.50 1.55 1.89 1.84 36 1.10 1.10 1.96 1.53

12 1.74 1.72 2.39 2.26 37 0.76 1.76 2.40 2.30

13 1.50 1.63 1.67 1.72 38 1.41 1.44 2.09 1.89

14 0.74 0.74 1.57 1.39 39 0.92 0.96 1.39 1.41

15 1.67 1.69 2.30 2.25 40 1.63 1.65 2.22 1.89

16 1.61 1.59 2.03 1.93 41 0.74 0.79 1.67 1.34

17 1.03 0.99 1.19 1.70 42 0.74 0.79 2.03 1.46

18 0.88 0.96 1.13 0.41 43 1.36 1.36 2.26 2.12

19 1.25 1.28 1.63 1.22 44 1.28 1.31 1.69 1.63

20 1.79 1.77 1.93 2.03 45 2.30 2.29 2.30 2.50

21 1.84 1.89 1.89 1.50 46 1.39 1.34 2.01 1.50

22 1.22 1.22 1.63 2.03 47 1.16 1.16 1.57 1.59

23 1.90 1.99 1.70 1.96 48 0.69 0.69 2.08 1.55

24 2.91 2.93 2.82 2.84 49 1.95 1.95 2.13 2.09

25 1.19 1.10 0.53 0.99 50 1.57 1.55 1.69 1.13
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The intraclass correlation coefficient for the measurements obtained from the two 

devices were estimated using equation (3.2) in Chapter 3, section 3.3.1. For PIX, 

MSAi — 0.546, MSEi =  0.001 and k =  2. Therefore from equation (3.2)

MSA -  MSE
Pl ~  MSA + (k — 1)MSE 

0.546 -  0.001 
0.546+ ( 2 -  1)0.001

=  0.994.

Similarly for PLANN, MSA2 =  0.315, MSE2 =  0.049 and k =  2.

MSA -  MSE
P2 ~~ MSA +  (k — 1)MSE 

0.315 -  0.049 
0.315 +  (2 -  1)0.049

=  0.730.

5.1.1 Estimating confidence limits for single ICC

Here I used the method described in Chapter 3, to obtain the required confidence 

limits for pi and p2 -

A 95% confidence limits for p\ and p2 obtained using simple asymptotic method

described in section 3.3.2 of Chapter 3.
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For PIX,

h =  0.991 

ui =  0.997

and for PLANN,

l2 =  0.599

U2 =  0.860

A 95% confidence limits for pi and p2 obtained using Fisher’s Z-transformation 

and variance obtained using delta method as described in section 3.3.3 of Chapter 3. 

For PIX,

=  2.903

var(Z(p0)

var(Zi(pi))

var(^i(Pi))

2(nk -  1)(1 -  p)2[l + (k — 1 )p]2 
k2(k — 1 )n(n — 1)

. 2 ( l - p ) [ l  +  ( * - l ) ,> ] ]

0.020



Using,

(Zl,Zu) ^Zp} Za/2 f̂ViZpi ~\~ Za j 2 

(Zt,Zu) =  (2.624,3.181)

Therefore using

Similarly,

( p?Zi — 1 g2Zu — i 1

e2Zi -  1 
1 ~ e2Zl +  1

g2x 2.624 _  

g2x2.624 _|_ ̂

=  0.989

e2Zu — 1 
1 e2Zu + 1

g2x3.181 _  j 

—  g2x3.181 _|_ }

=  0.997.

Z2 =  0.929 

var(Z2(p2)) =  0.020

(ZhZu) =  (0.650,1.207) 

(¿2 , « 2) =  (0.572,0.836)
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A 95% confidence limits for p\ and p2 obtained using Konishi modified Z-transformation 

described in section 3.3.4 of Chapter 3.

For PIX,

Therefore

Zm

Z\ m

k -
2k

2 ^ 1
4

2.903

r ln { i ± i i _ i ) £ }

f l  +  ( 2 -  1)0.994'! 
n \ 1 -  0.994 /

V (Z lm) =  -1_
N

=  0.02

Zm,i -

Z\ jn.I =

Zm, u =

Zltm,u — 

Zltm,u —

7 - 5  k
Ny/18k(k -  1) 

7 - 1 0

Zm Za/2\JVvn

2.903 — 2 .05/ 2^ 0.02  

2.635

7 _  i n
2.903 +  2.o5/2\/0.02 —

50^/36(2 -  1)

7 - 5  k

50y/36(2 -  1)

3.190
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Therefore using (3.8) in Chapter 3 confidence limits for PIX is obtained as follows.

e(2l _  1

e(Ẑ ,l\ fS ) + (fc_  1)
e(2.635v^ )  _  j

e(2.635y3I) + (2 _  1)

=  0.989

and

JZm.uyfS) _  J 

e (3 m .« V ^ i)  +  (fc -  1)

e (3.190v/ 3 r )  _  J 

e (3.i90v^ ? r )  +  (4  _  1)

=  0.997.

Similarly, for PLANN,

Z2m =  0.929 

Zi ,m,i =  0.662

Z2 ,m,u =  1.216

h =  0.579

U2 = 0.838



87

A 95% confidence limits for pi and p2 obtained using Exact method as described 

in section 3.3.5 of Chapter 3, variance ratio statistic F  obtained for PIX and PLANN 

are given below.

For PIX,

MSAj =  0.546 

MSEi =  0.001 

F\ =  339.447

For PLANN,

MSA2 =  0.315 

MSE2 -  0.049 

F2 =  6.042

Confidence limits for p\ and p2 were obtained using the formula (3.9) given in 

Chapter 3

f  F/Fy- 1 F/Fl -  1 \
\k + F/Fv - l '  k + F / F u - l ]

where

F l  —  -F (a /2 ,n -l,n fc-n ) — -^(.025,49,50) =  0.568
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and

F ü  =  F {\ —a/2,n—l,n k —n) =  F ( 0.975,49,50) =  1-755

By substituting the values for F, Fu and Fl, the exact 95% confidence limits for 

Pi and p2 obtained are as follows.

For PIX,

h =  0.989 

ui = 0.997

and for PLANN,

l2 =  0.570 

u2 =  0.837

5.1.2 Estimating 95% confidence limits for a difference between two ICCs using 

MOVER method.

Interclass correlation coefficient p\2 of PIX and PLANN was estimated using (3.15) 

in section 3.4.2 of Chapter 3. The value of pi2 is substitute in (3.25) to obtain the
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corr(pi,p2) as follows.

corr(pi,p2) p\2 [k M h  ~ l)(fca -  1)]1/2
[1 +  (&i — l)pi] [1 +  (k2 — 1 )^2] 

0.6472 [2 x 2(2 -  1)(2 -  1)]1/2 
[1 +  (2 -  1)0.994] [1 +  (2 -  1)0.730]

0.246

A 95% confidence limits for {p\ — p2) was obtained using (3.23) and (3.24) of Chapter 

3.

L =  ( p i -  p2) -  V (p i -  l\)2 +  (u2 -  p2)2 -  2corr(pi, p2)(p! -  ii)(u2 -  p2) (5.1)

U = ( p i -  p2) +  V (« 1  -  Pi)2 +  (P2 -  k )2 ~ 2corr(pi, p2)(m -  pi)(p2 -  l2) (5.2)

A 95% confidence limits for (p\ — p2) using MOVER method when 95% confidence 

limits for (pi and p2) are obtained by simple asymptotic method.

(¿r.tii) =  (0.991,0.997)

(l2,u2) =  (0.599,0.860)
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Substituting these values in equation (5.1) and (5.2) will result a 95% confidence 

limits for (pi — p2) as given below.

L =  (Pi -  fa) ~ y/{fa -  h)2 +  (u2 -  fa)2 -  2corr(pi,p2)(pi -  h)(u2 -  fa)

-  0.034 -  y/(0.994 -  0.991)2 + (0.860 -  0.730)2 -  2corr(pi,p2)(0.003)(0.130)

=  0.135

U = (Pi~ fa) +  y/ («1 -  Pi)2 +  {fa ~ h)2 ~ 2corr(pi, p2)(ui -  pi)(Ai -  h)

=  0.034 +  y/(0.997 -  0.994)2 +  (0.730 -  0.599)2 -  2corr(pi, p2)(0.003)(0.131)

= 0.393

A 95% confidence limits for (px -  p2) using MOVER method when 95% when 

confidence limits for pi and p2 are obtained by Fisher’s Z-transformation, variance 

obtained using Delta method.

(h,ui) =  (0.989,0.997)

(Z2,u2) =  (0.572,0.836)

Substituting these values in equation (5.1) and (5.2) will result a 95% confidence 

limits for (pi — p2) as

(.L,U) =  (0.159,0.421)

A 95% confidence limits for (pi -  p2) using MOVER method when 95% when
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confidence limits for pi and p2 are obtained by Konishi modified Z-transformation.

(h,ui) =  (0.989,0.997)

(l2,u2) =  (0.579,0.838)

Substituting these values in equation (5.1) and (5.2) will result a 95% confidence 

limits for (pi — p2) as

(L,U) =  (0.157,0.414)

A 95% confidence limits for (pi — p2) using MOVER method when 95% when 

confidence limits for pi and p2 are obtained by Exact method.

{li,ui) =  (0.989,0.997)

(l2,u2) =  (0.570,0.837)

Substituting these values in equation (5.1) and (5.2) will result a 95% confidence 

limits for (pi — p2) as given below.

(L, U) = (0.158,0.423)

Confidence intervals for (pi~p2) obtained using MOVER method are summarized

in Table 5.2 below.
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Table 5.2: A 95% two sided confidence interval for a difference between two ICCs, 
confidence intervals for single ICCs were obtained using four different methods.

Method for 
single ICC

95% Cl for pi 
(h,ui)

95% Cl for p2
(hiU?)

95% Cl for (pi -  p2) 
(L,U)

Simple asymptotic (0.991,0.997) (0.599,0.860) (0.135,0.393)
Fisher’s Z transformation (0.989,0.997) (0.572,0.836) (0.159,0.421)
Fisher’s modified Z transformation (0.989,0.997) (0.579,0.838) (0.157,0.414)
Exact (0.989,0.997) (0.570,0.837) (0.158,0.423)

Cl: confidence interval.

5.1.3 Summary

The difference between the two reliability coefficients of the two instruments PIX and 

PLANN could be as high as 0.422 based on the MOVER as applied to exact limits for 

single ICCs. The obtained results suggests that there is statistically significant differ­

ence exists between the two instruments at 5% level of significance. These results are 

in consistent with the results obtained by Donner and Zou (2002). The confidence 

intervals and widths obtained in this example can be explained based on the simu­

lation results as follows. When p >  0.9, SA method provide Cl even narrower than 

that provided by the Konishi method and when k\ =  =  2, Fisher method provide

Cl narrower than that provided by the Exact method. In light of simulation results, 

the interval based on Exact method for single ICC should be the standard.
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5.2 Example 2

As the second example I consider the study reported by Gomez et al. (2002) on com­

paring performances of two qualitative ultrasound scanners. Qualitative ultrasound 

devices are mainly used in osteoporosis diagnosis and several are already available. 

Gomez et al. (2002) compared the performance of a newly developed scanner (BEAM 

scanner) with the performance of a scanner (UBIS 3000) already in use with regard 

to broadband ultrasound attenuation (BUA) and speed of sound (SOS). Broadband 

ultrasound attenuation and speed of sound are the two parameters used in clinical 

bone investigations. The study included 34 healthy volunteers as subjects and five 

repeated measurements of the right heel with interim repositioning were performed 

using the two devices.

In this thesis I used the intraclass correlation coefficients given in Giraudeau et al. 

(2005) which are estimated for the BUA data set of the study by Gomez et al. (2002). 

The estimated values are p\ =  0.982, p2 =  0.948 and pj2 =  0.915. When number 

of repeated measurements k and the value of the estimated ICC is available, we can 

easily calculate the variance ratio statistic F  as below.

MSA -  MSE 
MSA + (k — l)MSE  

F -  1
F + ( k -  1)
(k -  l ) p +  1 

l - p

P =

F  =
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5.2.1 Estimating 95% confidence limits for a difference between two ICCs using 

MOVER method.

As for Example 1, described earlier in this chapter the required confidence limits for 

single ICCs were obtained.

A 95% confidence limits for (pi — p2) using MOVER method when confidence 

limits for single ICCs obtained using simple asymptotic method are given below.

(lu ui) =  (0.972,0.992)

(¿2 , 1*2) =  (0.921,0.975)

Substituting these values in equation (5.1) and (5.2) will result a 95% confidence 

limits for (pi — p2) as

L =  (pi -  h ) ~ V (Pi -  h)2 + (u2 -  fa)2 -  2corr(pi, p2)(pi -  h)(u2 -  fa)

= 0.01 -  v7(0.982 -  0.972)2 + (0.975 -  0.948)2 -  2corr(pi, p2)(0.010)(0.027)

=  0.013

u =  (pi -  p2) + y/(ui -  Pi)2 + (p2 -  Z2)2 -  2corr(pi,p2)(tti -  pi)(p2 -  l2)

U =  0.01 +  y/(0.992 -  0.982)2 +  (0.948 -  0.921)2 -  2corr(pi,p2)(0.010)(0.027)

=  0.055

A 95% confidence limits for (pi — p2) using MOVER method when confidence limits
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for single ICCs obtained using Fisher’s ^-transformation are given below. For BEAM 

scanner,

Zx

vSx(Zx(pi))

(Zi,Zu)

( h , U i )

=  2.350 

=  0.018 

=  (2.083,2.618) 

=  (0.969,0.989)

For UBIS 3000 scanner,

z 2 = 1.811

var(Z2(/32)) = 0.018

(Zi,Zu) = (1.547,2.076)

(l2,u2) = (0.913,0.969)

Therefore a 95% confidence limits for (pi -  p2) obtained following the similar steps as 

described in Example 1 are given below.

(L,U) =  (0.019,0.064)

A 95% confidence limits for (pi — p2) using MOVER method when confidence limits
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for single ICCs obtained using Konishi modified Z- transformation are given below. 

For BEAM scanner,

For UBIS 3000 scanner,

Z1¡m =  3.549 

(Zm,i,Zm<u) =  (3.241,3.913) 

(h,ui) =  (0.971,0.989)

Z2,m =  2.860 

{ZmhZm,u) =  (2.552,3.224) 

(/2,u2) =  (0.917,0.970)

Therefore a 95% confidence limits for (pi — p2) obtained following the similar steps as 

described in Example 1 are given below.

(L, U) =  (0.018,0.060)

A 95% confidence limits for (pi — p2) using MOVER method when confidence limits 

for single ICCs obtained using exact method are given below.
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For BEAM scanner,

p =  0.982 

fci =  5

Fi =  ( * - l ) p + l  
1 1 - P

(5 -  1)0.982 +  1 
1 -  0.982

=  273.777

For UBIS 3000 scanner,

p =  0.948 

*2 =  5

p  _ ( * - l ) p + l
^2 =  ----- :----- :-----

1 - P
(5 -  1)0.948 +  1 

1 -  0.948

=  92.1538

(¿i, rti) =  (0.971,0.989) 

(l2,u2) =  (0.917,0.971)

Therefore a 95% confidence limits for (pi — p2) obtained following the similar steps as
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described in Example 1 are given below.

P12 =  0.915

corr(pi,/ô2) =  0.537

{L,U ) =  (0.017,0.060)

Confidence intervals for (pi — P2) obtained using MOVER method are summarized 

in Table 5.3 below.

Table 5.3: A 95% two sided confidence interval for a difference between two ICCs, 
confidence intervals for single ICCs were obtained using four different methods.

Method for 
single ICC

95% Cl for px
(h,Ui)

95% Cl for p2

(h,U2)
95% Cl for {pi -  p2) 

(L, U)
Simple asymptotic (0.972,0.992) (0.921,0.975) (0.013,0.055)
Fisher’s Z transformation (0.969,0.989) (0.913,0.969) (0.019,0.064)
Fisher’s modified Z transformation (0.971,0.989) (0.917,0.970) (0.018,0.060)
Exact (0.971,0.989) (0.917,0.971) (0.017,0.060)

Cl: confidence interval.

5.2.2 Summary

The difference between the two reliability coefficients of the two scanners BEAM and 

UBIS 3000 could be as high as 0.060. The obtained results suggests that there is 

statistically significant difference exists between the two instruments at 5% level of 

significance. These results are in consistent with the results obtained by Giraudeau



et al. (2005). In this example too, the confidence intervals and Cl widths obtained 

can be explained based on the simulation results as well. When p >  0.9, SA method 

provide Cl even narrower than that provided by the Konishi method and when k\,k<i > 

2, Cl provided by the Exact method are narrower than that provided by the Fisher
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method.
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Chapter 6

DISCUSSION

In this thesis, I have focused on setting approximate Cl for a difference between 

two ICCs. As noted by several authors (Giraudeau et al, 2005; Donner and Zou, 

2002; Alsawalmeh and Feldt, 1994; Feldt, 1980) there are many situations in which a 

comparison of two ICCs is required. Although one can perform a statistical hypothesis 

testing for this purpose, reporting confidence intervals may be more informative.

Reporting Cl as a supplement of the p value or instead of only the p value has been 

advocated (Rothman, 1986; Wilkinson, 1999; Altman and Garner, 1992; Cummings 

and Rivara, 2003; Altman, 2005). Confidence intervals are regarded as more informa­

tive than hypothesis testing because they provide a range of values that are considered 

plausible for the parameter of the population. Confidence interval encompasses the 

hypothesis testing by capturing the value reflecting ‘no difference’ and hence it can 

always answer the questions that the p value answers.

The confidence interval constructing procedure discussed in this thesis takes the 

skewness of the sampling distribution of p into account, hence this procedure derives 

its validity from the validity of the confidence limits for a single ICC. Simulation 

results have shown that, even for small sample size (N =  15), the MOVER method
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performs excellent in terms of coverage, tail errors and Cl width when the Exact 

method is used to obtain the CIs for single ICCs. For large sample sizes, all four 

methods perform well in terms of coverage. However, even for large sample sizes, 

the SA method provides severely unbalanced tail errors. This is because the SA 

method ignores the skewness of the sampling distribution. Therefore based on the 

simulation results, the Exact method is recommended for obtaining the required Cl 

for single ICC. One should note that, if number of observations on each subject is 

two, Fisher’s Z transformation provides narrower CIs than that provided by the Exact 

method. However, the tail errors provided by the Exact method has better balance 

than provided by the Fisher method. Looking at coverage rates only would lead a one 

to say that there is no difference among the four methods when the sample size are 

large, but it should be noted that the Exact method performs much better in terms 

of tail errors.

The procedure discussed in this thesis on setting an approximate Cl for a difference 

between two ICCs, used the ICCs based on the one-way random effects ANOVA. 

But, the procedure can be readily used for ICCs obtained based on two-way ANOVA 

models (two-way random effects or two way mixed effects model).

The procedure developed in this thesis for a difference between two ICCs may also 

be extended to construct confidence intervals for a difference between two Cronbach’s 

alpha. Cronbach’s alpha is another measure of reliability and is a one to one function
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of ICC. Estimated Cronbach’s alpha (pQ) can be given as

kpi
P a  l  +  ( k - l ) p , '

where pj is the intraclass correlation coefficient (Kistner and Muller, 2004). Therefore 

application of the Delta method can provide the estimated variances required for the 

construction of the lower and upper Cl for a difference between two Cronbach’s alpha.

An assumption underlying the procedure discussed in this thesis is that the num­

ber of observations ki is constant across all the subjects for l =  1,2. Although in 

reliability context, variable number of observations for each subject is uncommon it 

could happen due to reasons such as investigator fatigue. In this case, ki may be re­

placed by the harmonic mean of class sizes; Thomas and Hultquist (1978) have shown 

that this substitution in the F-distribution based formula for single ICCs works well, 

provided p >  0.3, which is reasonable in reliability studies. One could then apply 

MOVER to this situation. Evaluation in this case is needed and left out for future

research.



103

BIBLIOGRAPHY

Alsawalmeh, Y. M. and Feldt, L. S. (1994). Testing the equality of two related 
intraclass reliability coefficients. Applied Psychological Measurement 18, 183-190.

Altman, D. G. (2005). Why we need confidence intervals. World Journal of Surgery 
29, 554-556.

Altman, D. G. and Garner, M. J. (1992). Confidence intervals for research findings. 
British Journal of Obstetrics and Gynaecology 99, 90-91.

Bartko, J. J. (1966). The intraclass correlation coefficient as a measure of reliability. 
Psychological Reports 19, 3-11.

Bartlett, M. S. (1953). Approximate confidence intervals. 2. more than one unknown 
parameter. Biometrika 40, 306-317.

Bonett, D. G. (2002). Sample size requirements for estimating intraclass correlation 
with desired precision. Statistics in Medicine 21, 1331-1335.

Casella, G. and Berger, R. L. (2002). Statistical Inference. Duxbury, Thomson Learn­
ing.

Cummings, P. and Rivara, F. P. (2003). Reporting statistical information in medical 
articles. Archives of Pediatrics and Adolescent Medicine 157, 321-324.

Donner, A. (1986). A review of inference procedures for the intraclass correlation 
coefficient in the one-way random effects model. International Statistical Review 
54, 67-82.

Donner, A. (1998). Sample size requirements for the comparison of two or more 
coefficients of inter-observer agreement. Statistics in Medicine 17, 1157-1168.

Donner, A. and Eliasziw, M. (1987). Sample size requirements for reliability studies. 
Statistics in Medicine 6, 441-448.

Donner, A. and Koval, J. J. (1980). The estimation of intraclass correlation in the 
analysis of family data. Biometrics 36, 19-25.

Donner, A., Koval, J. J. and Bull, S. (1984). Testing the effect of sex differences on 
sib-sib correlations. Biometrics 40, 349-356.



104

Donner, A. and Wells, G. (1986). A comparison of confidence interval methods for 
the intraclass correlation coefficient. Biometrics 42, 401-412.

Donner, A. and Zou, G. (2002). Testing the equality of dependent intraclass correla­
tion coefficients. The Statistician 51, 367-379.

Dunn, G. A. (1989). Design and Analysis of Reliability Studies: The Statistical Eval­
uation of Measurement Errors. Edward Arnold.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman &; 
Hall.

Eliasziw, M., Young, S. L., Woodbury, M. G. and Fryday-Field, K. (1994). Statistical 
methodology for the concurrent assessment of interrater and intrarater reliability: 
using Goniometric measurements as an example. Physical Therapy 74, 777-788.

Elston, R. C. (1975). On the correlation between correlations. Biometrika 62, 133- 
140.

Feldt, L. S. (1980). A test of the hypothesis that Cronbach’s alpha reliability coef­
ficient is the same for two tests administered to the same sample. Psychometrika 
45, 99-105.

Fisher, R. A. (1925). Statistical Methods for Research Workers. Edinburgh: Oliver 
and Boyd.

Giraudeau, B., Gomez, M. A. and Defontaine, M. (2003). Assessing the reproducibility 
of quantitative ultrasound parameters with standardized coefficient of variation or 
intraclass correlation coefficient: a unique approach. Osteoporosis International 
14, 614-615.

Giraudeau, B. and Mary, J. Y. (2001). Planning a reproducibility study: how many 
subjects and how many replicates per subject for an expected width of the 95 
per cent confidence interval of the intraclass correlation coefficient. Statistics in 
Medicine 20, 3205-3214.

Giraudeau, B., Porcher, R. and Mary, J. Y. (2005). Power calculation for the likeli­
hood ratio-test when comparing two dependent intraclass correlation coefficients. 
Computer Methods and Programs in Biomedicine 77, 165-173.

Gomez, M. A., Defontaine, M., Giraudeau, B., Camus, E., Colin, L., Laugier, P. and 
Patat, F. (2002). In vivo performance of a matrix-based quantitative ultrasound 
imagine device dedicated to calcaneus investigation. Ultrasound in Medicine and 
Biology 28, 1285-1293.



105

Haggard, E. A. (1958). Intraclass Correlation and the Analysis of Variance. The 
Dryden Press, Inc, New York.

He, W., Bull, S. B., Gokgoz, N., Andrulis, I. and Wunder, J. (2006). Application 
of reliability coefficients in cDNA microarray data analysis. Statistics in Medicine 
25, 1051-1066.

Kistner, E. O. and Muller, K. E. (2004). Exact distribution of intraclass correlation 
and cronbach’s alpha with gaussian and general covariance. Psychometrica 69, 
459-474.

Konishi, S. (1985). Normalizing and variance stabilizing transformations for intraclass 
correlations. Annals of the Institute of Statistical Mathematics 37, 87-94.

Kottner, J. and Dassen, T. Interpreting interrater reliability coefficients of the Braden 
scale: A discussion paper. Article in press.

Lachin, J. M. (2004). The role of measurement reliability in clinical trials. Clinical 
Trials 1, 553-566.

Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for 
categorical data. Biometrics 33, 159-174.

McGraw, K. O. and Wong, S. (1996). Forming inference about some intraclass corre­
lation coefficients. Psychological Methods 1, 30-46.

Nickerson, C. A. E. (1997). A note on ‘A concordance correlation coefficient to 
evaluate reproducibility’ . Biometrics 53, 1503-1507.

Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution - 
III. Regression, heredity and panmixia. Philosophical Transactions of the Royal 
Society, Series A 187, 253-318.

Pellis, L., van Hal, N. L. W. F., Burema, J. and Keijer, J. (2003). The intraclass cor­
relation coefficient applied for evaluation of data correction, labeling methods and 
rectal biopsy sampling in DNA microarray experiments. Physiological Genomics 
16, 99-106.

Robey, R. R. and Barcikowski, R. S. (1992). Type I error and the number of itera­
tions in Monte Carlo studies of robustness. British Journal of Mathematical and 
Statistical Psychology 45, 283-288.

Rosner, B. (1982). On the estimation and testing of intraclass correlations: The gen­
eral case of multiple replicates for each variable. American Journal of Epidemioloqy 
116, 722-730.



106

Rosner, B. and Willett, W. C. (1988). Interval estimates for correlation coefficients 
correacted for within-person varaition : implications for study design and hypoth­
esis testing. American Journal of Epidemiology 127, 377-386.

Rothman, K. J. (1986). Significance questing (editorial). Annals of Internal Medicine 
105, 445-447.

Rousson, V., Gasser, T. and Seifert, B. (2002). Assessing intrarater, interrater and 
test-retest reliability of continuous measurements. Statistics in Medicine 21, 3431- 
3446.

Schuck, R  (2004). Assessing reproducibility for interval data in health related qual­
ity of the life questionnaires: Which coefficient should be used? Quality of Life 
Research 13, 571-586.

Searle, S. R. (1971). Topics in variance component estimation. Biometrics 27, 1-76.

Shoukri, M. M., Asyali, M. H. and Donner, A. (2004). Sample size requirements 
for the design of reliability study: review and new results. Statistical Methods in 
Medical Research 13, 251-271.

Shoukri, M. M., Asyali, M. H. and Walter, S. D. (2003). Issues of cost and efficiency 
in the design of reliability studies. Biometrics 59, 1107-1112.

Shrout, P. E. (1998). Measurement reliability and agreement in psychiatry. Statistical 
Methods in Medical Research 7, 301-317.

Shrout, P. E. and Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater 
reliability. Psychological Bulletin 86, 420-428.

Smith, C. A. B. (1956). On the estimation of intraclass correlation. Annals of Human 
Genetics 105, 445-447.

Swiger, L. A., Harvey, W. R., Everson, D. O. and Gregory, K. E. (1964). The variance 
of intraclass correlation involving groups with one observation. Biometrics 20, 
818-826.

Thomas, J. D. and Hultquist, R. A. (1978). Interval estimation for the unbalanced 
case of the one-way random effects model. The Annals of Statistics 6, 582-587.

Turner, S. W., Toone, B. K. and Brett-Jones, J. R. (1986). Computerized tomographic 
scan changes in early schizophrenia-preliminary finding. Psychological Methods 16, 
219-225.



107

Ukoumunne, O. C. (2002). A comparison of confidence interval methods for the 
intraclass correlation coefficient in cluster randomized trials. Statistics in Medicine 
21, 3757-3774.

Walter, S. D., Eliasziw, M. and Donner, A. (1998). Sample size and optimal designs 
for reliability studies. Statistics in Medicine 17, 101-110.

Wilkinson, L. (1999). Statistical methods in psychological journals guidelines and 
explanations. American Psychologist 54, 594-604.

Zou, G. (2007). Toward using confidence intervals to compare correlations. Psycho­
logical Methods 12, 399-413.

Zou, G. and Donner, A. (2008). Construction of confidence limits about effect mea­
sures: A general approach. Statistics in Medicine 27, 1693-1702.


	CONFIDENCE INTERVAL ESTIMATION FOR A DIFFERENCE BETWEEN CORRELATED INTRACLASS CORRELATION COEFFICIENTS
	Recommended Citation

	tmp.1688067335.pdf.oAn9p

