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Figure 3.4 RDA triplot of Hellinger-transformed BMI taxa abundance collected in 70 streams in the Grand River watershed, southern 

Ontario, scaling =1. The first two axes are represented in panel A and the second and third axes are represented in panel B. Not all labels 

are displayed to increase readability of the plots. W.Ag = % agriculture in the sub-watershed; W.Urb = % urban in the sub-watershed; 

B.Ag = % agriculture in the segment buffer.
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Table 3.1 Environmental axis scores for significant axes (p < 0.01) of an RDA analysis on 

Hellinger transformed BMI taxa and trait modality abundances collected in sub-watersheds 

of the Grand River, Southern Ontario. The RDA was constrained by sub-watershed 

agriculture and urban land cover (W·Ag & W·Urb), buffer agriculture land cover (B·Ag), 

and site scores for the first two PCA axes constructed from U.S. EPA habitat assessment 

scores for low gradient streams (Channel Form & Riparian Cover). 

 Taxa Abundance  Trait Modality Abundance 

 RDA1 RDA2 RDA3  RDA1 RDA2 RDA3 

Channel Form -0.70 0.66 -0.03  -0.84 0.44 -0.07 

Riparian Cover -0.63 -0.50 -0.17  -0.48 -0.76 -0.06 

W·Ag 0.09 0.45 0.74  0.04 0.52 0.46 

W·Urb 0.29 0.01 -0.90  0.22 -0.12 -0.79 

B·Ag 0.39 0.43 0.58  0.27 0.68 0.20 
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An RDA of trait abundance constrained by environmental variables resulted in a significant 

model (p < 0.001) with an adjusted R2 of 0.13. The first three RDA axes were significant 

(p < 0.001, p = 0.014, p = 0.081) and accounted for 11.6%, 3.5%, and 2.3% of the total 

variance, respectively. Landscape and habitat variables showed a similar overall pattern to 

the taxa abundance RDA (Figure 3.5). Channel form and Riparian cover were negatively 

associated with the first RDA axis (Figure 3.5A, Table 3.1). The second RDA axis was 

negatively associated with Riparian Cover and positively associated with B∙Ag, W∙Ag, and 

Channel Form. The third axis of the trait abundance RDA was associated with W∙Urb 

(negative) and W∙Ag (positive) (Figure 3.5B, Table 3.1). The trait modalities of tolerance 

level 3, gilled respiration, short adult lifespan, medium body size, rocky microhabitat, 

univoltine, and the ability to attach were positively correlated with Channel Form and 

Riparian Cover. Erosional rheophily, bluff body-shape, semivoltine, no strong temperature 

preference, and herbivory were positively correlated with Channel Form and W∙Ag. A 

flattened body shape, tolerance of 7, a long adult lifespan, poor armor, and large body-size 

were positively correlated with B∙Ag and negatively correlated with Riparian Cover. 

Tubular body-shape, no strong pH preference, and a tolerance level of 5 were positively 

correlated with increasing riparian zone and negatively correlated with increasing W∙Ag 

and B∙Ag. Trait modalities of silt microhabitat and tolerance level 8 were negatively 

correlated with channel form and positively correlated with W∙Urb. Sub-watershed urban 

cover was positively associated with lack of armor, very-short adult lifespan, medium body 

size, and a tolerance level of 9 and negatively associated with clinging, long adult life, and 

macrophyte microhabitat modalities.  

The global models for variation partitioning on taxa and trait modality abundance were 

significant with an adjusted R2 of 0.11 (p = 0.001) and 0.12 (p = 0.001), respectively (Figure 

3.6). For both taxa and trait modalities the partial effects of the reach scale explained the 

largest portion of variation (adjusted R2 = 0.05 and 0.08, respectively) compared to the sub-

watershed and segment scales (Figure 3.6). When considering taxa abundance, both the 

sub-watershed and reach scale were significant (p = 0.034 & 0.001, respectively). 

However, only the reach scale was significant when considering trait modality abundance 

(p = 0.001).
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Figure 3.5 RDA triplot of Hellinger-transformed BMI trait modality abundance collected in 70 streams in the Grand River basin, 

southern Ontario, scaling =1. The first two axes are represented in Figure A and the second and third axes are represented in Figure B. 

Not all labels are displayed to increase readability of the plots. W.Ag = % agriculture in the sub-watershed; W.Urb = % urban in the 

sub-watershed; B.Ag = % agriculture in the segment buffer. See Appendix-B, Table B1 for explanation of trait modality abbreviations.
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Figure 3.6 Venn diagrams of the variation partitioning of taxa abundance (A) and trait modality 

abundance (B) explained by sub-watershed, segment, and reach scale environmental variables. 

Values in circles represent partitions of variance explained by individual scales. Areas of overlap 

between circles show shared variance between scales. Values < 0 are not shown. * indicates 

significance at α = 0.1. 
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3.3.2 Threshold Analysis 

TITAN analysis revealed 19 valid taxa indicators for one or more of the six environmental 

variables (W∙Ag, B∙Ag, Pool Substrate, Sediment Reduction, Natural Channel, and 

Riparian Width) (Appendix-B, Table B.2; Appendix-B, Figures. B.1-B.6). Eight taxa were 

associated with W∙Ag and four taxa were associated with B∙Ag (Appendix-B, Table B.2; 

Appendix-B, Figures B.1-A and B.2-A). Fourteen taxa were associated with one or more 

reach scale variable (Appendix-B, Table B.2; Appendix-B, Figures B.3-A through B.6-A). 

Taxa positively associated with W∙Ag and B∙Ag were largely tolerant taxa (Tolerance ~5 

or greater), whereas taxa responding positively to reach scale variables were intolerant taxa 

(Tolerance ~5 or less). Taxa from the orders Diptera and Coleoptera were the most 

prevalent indicators. No taxa were both positively and negatively associated with two or 

more reach scale variables. Asellidae was an indicator for the most variables and was 

positively associated with W∙Ag and B∙Ag and negatively associated with Natural Channel 

and Riparian Width. Hydropsychidae and Optioservus, were positively associated with 

three reach scale variables (Pools Substrate, Sediment Reduction and Natural Channel) 

while Thienemannimyia was negatively associated with the same variables. Limnephilidae 

was an indicator of three environmental variables and decreased with W∙Ag and B∙Ag and 

increased with Riparian Width. Sediment Reduction had the least number of valid 

indicators (3) and Natural Channel had the most (8). Only three taxa had change points 

with a small quantile range (≤ 20% of the actual variable range): Dubiraphia (CP = riparian 

width habitat score 4) and Hemerodromia (CP = riparian width habitat score 5) and 

Heptageniidae (CP = pool substrate habitat score 16). 

Thirty-two trait modalities were associated with one or more of the environmental variables 

and were considered valid indicators by TITAN analysis (Appendix-B, Table B3; 

Appendix-B, Figures B7-B12). Fifteen trait modalities were considered valid indicators for 

either W∙Ag or B∙Ag. Apart from the Cold-cool eurythermal (T.CCE) and tolerance level 

4 trait modalities, all valid trait indicators of W∙Ag and B∙Ag were associated with at least 

one other environmental variable. Thirty-one trait modalities were considered valid 

indicators of one or more reach scale variables. A tubular body-shape was the only trait 

modality negatively associated with W∙Ag and a reach scale variable (Natural Channel). 
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Five trait modalities (large body size, tolerance level 7 and 3, and medium body-size) were 

considered valid indicators of 4 different environmental variables. The environmental 

variable of natural channel had the highest number of indicator modalities (22), whereas 

B∙Ag, pool substrate, and sediment reduction had the least (8). Five traits modalities had 

change points with a small quantile range (≤ 20% of the actual variable range). Three 

modalities with a small quantile range were indicators of riparian width: ability to attach 

(CP = 6), microhabitat rocks (CP = 4), and univoltinism (CP = 5). The remaining two trait 

modalities with a small quantile range were indicators of the percent agriculture land use 

in the sub-watershed: adult lifespan short (CP = 91% agriculture) and tolerance level 3 (CP 

= 91% agriculture).  

TITAN results for community change points (CCPs) for land-use variables were generally 

on the higher end of the agricultural gradient (i.e., > 70 %), whereas CCPs for reach scale 

variables spanned almost the entire gradient (i.e., 2- 20) (Table 3.2; Appendix-B, Figures 

B.1-B & C through B.12-B & C). CCP for community taxa and traits negatively associated 

with W∙Ag were very similar at 80% and 81% sub-watershed agriculture, respectively. In 

contrast, the % W∙Ag CCP for which taxa responded positively was greater than the CCP 

for traits (89% and 69% sub-watershed agriculture, respectively). The negative taxa 

response CCP was the smallest for B∙Ag, at 44% agriculture. The positive taxa response 

CCP for B∙Ag (74% agriculture) was similar to the positive and negative trait response 

CCPs for B∙Ag (74% & 76% agriculture). Community change points for the local habitat 

variables ranged from a score of 2 – 20. Riparian Width had the smallest negative response 

CCP (CCP = 4.5) for both taxa and traits. Riparian width also had the smallest habitat CCP 

with a positive community taxa response (CCP = 6). However, Sediment Reduction had 

the smallest habitat positive trait response variable CCP (CCP = 2). Natural Channel had 

the largest CCP for negative taxa and trait response and a positive trait response (CCP = 

8.5, 19.5 & 17.5 respectively; Table 3.2; Appendix-B, Figures B.5-C, B.11-C & B.11-B). 

Pool Substrate had the largest positive habitat CCP for taxa (CCP = 16.5). The empirical 

quantiles (5%, 95%) for CCPs were generally broad (encompassing a large portion of the 

possible gradient) (Appendix-B, Figures B.1 – B.12-B & C. Of the land-use variables, the 

positive and negative taxonomic CCP for W∙Ag had the smallest differences in quantiles 

(16% and 12%, respectively; Table 3.2; Appendix-B, Figures B.1-B & C). The smallest 
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Table 3.2 Community change points (5%, 95% quantiles) for TITAN results using BMI taxa and trait modality abundance and six 

environmental gradients collected for 60 sub-watersheds of the Grand River, southern Ontario. Environmental variables include two 

landscape scale variables: the percentage of agriculture in the sub-watershed and buffer (W·Ag and B·Ag); and four habitat variables 

from the U.S.EPA habitat assessment for low gradient streams: Pool Substrate, Sediment Reduction, Natural Channel, and Riparian 

Width. 

 Response 

(+/-) 
W·Ag % B·Ag % 

Pool    

Substrate 

Sediment 

Reduction 

Natural 

Channel 

Riparian 

Width 

Community 

Taxa 

- 80 (69, 81) 44 (2, 73) 8.0 (0, 12.5) 7 (1.5, 13.5) 8.5 (2, 19.5) 4.5 (1.5, 6) 

+ 89 (78, 94) 74 (62, 99) 16.5 (16, 17) 9 (8.5, 18) 15 (13.5, 20) 6 (5, 19.5) 

Community 

Traits 

- 81 (69, 91) 76 (65, 92) 16.0 (3.5, 17) 16 (2,18) 19.5 (13.5, 20) 4.5 (4,19.5) 

+ 69 (62, 91) 74 (1, 76) 16.0 (13.5, 16.5) 2 (0.5, 15.5) 17.5 (1.5, 19.5) 4 (4, 15) 
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difference in quantiles for habitat CCPs were for the positive responses of both taxa (1) 

and traits (3) to the Pool Substrate variable (Table 3.2; Appendix-B, Figures B.3-B & 

B.9-B). The differences in quantiles for a negative taxa response to Riparian Width were 

also small (4.5) compared to the other quantile differences which with two exceptions 

exceeded 10.   

3.4 Discussion 

BMICs were weakly associated with environmental gradients in the extensively developed 

Grand River watershed. Community variation was most associated with the reach scale, 

especially with variables related to channel structure. The ability of reach scale variables 

to better explain BMIC composition compared to watershed variables is not uncommon in 

systems with high levels of agricultural activity (e.g. Richards et al. 1993, Lammert and 

Allan 1999, Dovciak and Perry 2002, Feld and Hering 2007, Waite 2014). For example, 

Dovciak and Perry (2002) found local habitat to be the primary driver of BMICs within 

tributaries of the agriculturally dominated Minnesota River Basin, USA, when compared 

to watershed and agro-ecoregion landscape descriptors. Likewise, Waite (2014) found that 

land-use types at the watershed scale were generally not important predictors of EPT and 

tolerant taxa richness for three regions of the United States. Rather, instream conditions, 

including nutrients, habitat and riparian disturbance, were the most important explanatory 

variables. Richards et al. (1997) also found local habitat variables were better at predicting 

the BMIC trait composition than landscape variables (i.e. physiography and percent 

agriculture). Even moderate amounts of agriculture in a watershed have been shown to 

increase sediment and nutrient loads and modify stream hydrology (Allan 2004, Blann et 

al. 2009, Chambers et al. 2012b) causing system wide loss of taxonomic and trait diversity 

(Wood and Armitage 1997, Soulsby et al. 2001, Wang et al. 2004, 2007). With extensive 

agricultural land cover throughout the Grand River Watershed, it is possible that most of 

the BMICs have already responded to large-scale agricultural impacts reducing the species 

pool to tolerant taxa and trait modalities leaving local scale habitat differences as the 

primary driver (cf. the habitat template theory, Southwood 1977, Poff and Ward 1990).  
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High levels of anthropogenic influence have been associated with homogenization of the 

BMIC (e.g. Olden and Poff 2004, Donohue et al. 2009, Maloney et al. 2011) and may be 

evident when considering the lack of variation in trait modalities among sites in the Grand 

River watershed (mean Jaccard similarity based on trait modality presence/absence: = 0.87 

(s = 0.05)). However, the sampled communities showed a comparably small amount of 

among site similarity in taxonomic composition (mean Jaccard similarity based on 

taxonomic presence/absence: = 0.26 (s = 0.08)). The observed difference may be the result 

of the harsh environmental filters present in the Grand River watershed and associated loss 

of sensitive traits and taxa. The remaining species pool may thus consist of a variety of 

functionally similar taxa that are randomly distributed amongst the regions streams due to 

stochastic events (e.g., dispersal and disturbance) as opposed to a deterministic response to 

regional land cover patterns (Loreau et al. 2001, Bêche and Statzner 2009, Larsen and 

Ormerod 2014). However, in order to maximize the likelihood that community variation 

observed in our study was associated with agricultural activity our study design limited 

variation in other large-scale factors (i.e., catchment physiography, stream size and 

discharge). As a result, our study may have included limited biogeographical differences 

amongst sample reaches possibly contributing to the minimal among community variation 

in trait modalities observed. Moreover, the taxonomic adjustments to the level of genera 

and family, although necessitated by the attainable level of taxonomic identification may 

also have contributed to the apparent homogenization of trait modalities. Differences in 

trait modalities and functional niches are not uncommon within a genera and family, and 

the taxonomic adjustment of species to these levels may increase the level of 

homogenization simply through the loss of resolution. However, it should be noted that 

several studies have found genus and family level resolution adequate for trait based 

analysis in lotic systems (Dolédec et al. 2000, Gayraud et al. 2003, Floury et al. 2017).  

Most indicators identified by our analyses had broad quantile scores, indicating a gradual 

linear or random response, rather than a narrow non-linear response (Baker and King 2010, 

King and Baker 2014). Furthermore, few of the taxa collected from the sampled Grand 

River tributaries were found to have strong associations with environmental gradients. 

Indeed, no environmental variable had more than 8 indicator taxa. TITAN analysis on the 

trait modality matrix produced a larger number of indicators compared to the taxa results 
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with over 50% of the trait modalities associated with at least one environmental variable. 

However, as with taxonomy, most of the trait modality indicators had broad quantile scores 

indicating a gradual change. The weak association of individual taxa and trait modalities 

to the environmental variables likely account for the broad quantile scores observed for 

most of the CCP results. Drivers that had a narrower quantile range (i.e. Pools Substrate 

and Sub-Watershed Agriculture) had few individual indicators lending little support for 

distinct CCPs (Baker and King 2010, King and Baker 2014).  

An inability to detect distinct indicators is not uncommon in regions with widespread 

agricultural land use. For example, in the agriculturally intensive Piedmont region of 

Maine, Utz et al. (2009) identified 13% of the taxa as indicators of agriculture compared 

to 44% of the taxa in the Highlands, an area of low agricultural land use. In contrast, Waite 

(2014) was able to use boosted regression tree models and invertebrate community metrics 

(i.e. EPT richness, richness of tolerant taxa, and Observed/Expected) to detect distinct 

change points associated with riparian agriculture (e.g. percent agricultural land-use in the 

riparian) and an agricultural intensity index. However, these relationships were found to 

occur at the low end of the agricultural gradient, which is not well represented in our study 

within the Grand River watershed. Strong BMI and BMI trait indicators of agriculture were 

likely difficult to establish in the Grand River for the same reasons associations between 

the BMIC and land cover were difficult to detect. The amount of agriculture in the Grand 

River watershed appears to have degraded the system to a point that mainly tolerant taxa 

and traits remain, and the system has surpassed easily detectable agricultural effects. 

However, our ability to identify a small number of indicators in a region where intensive 

human activities are widespread is encouraging and suggests the ability to detect further 

degradation or recovery in this stressed system using BMI assemblage data.  

Traits are often suggested as alternative, potentially more sensitive, indicators of stress 

compared to taxonomy (Bonada et al. 2006, Poff et al. 2006, Culp et al. 2011, Mouillot et 

al. 2013, Verberk et al. 2013). Indeed, in some studies, traits have shown to be more stable 

over large geographical areas and more sensitive to environmental changes than taxonomy 

(Dolédec et al. 1999, Charvet et al. 2000, Gayraud et al. 2003, Townsend et al. 2008). 

However, in our study trait and taxonomic results were comparable in the strength of 
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association with environmental variables. Nonetheless, traits can offer insights into the 

condition and function of streams that is not necessarily decipherable through taxonomic 

analysis (Dolédec et al. 2006, Culp et al. 2011, Van den Brink et al. 2011). For example, 

our results indicate that in the Grand River watershed large bodied and air-breathing 

invertebrates increase with agriculture while cold water taxa decrease. This finding is in 

line with other studies that have found agriculture reduces oxygen availability and 

increases stream temperature (Gregory et al. 1991, Poole and Berman 2001, Allan 2004). 

It has also been suggested that reproduction rates decrease with the stability of a system 

and increase under stressed conditions (Townsend and Hildrew 1994, Díaz et al. 2008, 

Vandewalle et al. 2010). In the Grand River both univoltinism and semivoltinism increase 

when riparian cover is present and channel alteration is minimal indicating an increase in 

the stability of the system with the reduction of human alteration. Thus, although traits may 

not be substantially more sensitive to increased stress in the intensively developed Grand 

River watershed than taxonomic descriptors, they do appear to provide additional insight 

into the ecology of the system and may have diagnostic potential for specific stressors.  

3.5 Management Implications 

The amount of anthropogenic stress in the Grand River watershed resulted in short 

environmental gradients that made it difficult to isolate environmental variables that are 

predictors of BMI variation and limited detection of BMI indicators and associated 

thresholds. Identified indicators had broad quantile scores, indicating a gradual linear or 

random response, rather than a narrow non-linear response. This suggests the BMIC may 

have already experienced a threshold response yet is still changing with increases in the 

level of agriculture. Identification of indicators with clear breakpoints is essential to inform 

managers of further ecological degradation or improvement, and so that they can 

confidently make science-based, administrative decisions regarding land and resource 

development that can protect stream ecosystems. Methods that would lengthen 

environmental gradients (Chessman and Royal 2004, Growns et al. 2013) may allow 

managers to identify indicators at the lower end of the gradient; however, this provides 

little guidance as to how to identify indicators of continued stress in an extensively 

developed system like the Grand River Watershed. There is thus a need for indicators that 
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show resilience at the low and moderate levels of environmental stress, yet still 

demonstrate a threshold type response once moderate levels of stress have been exceeded.  

Based on our findings BMI taxonomic and trait composition can provide only general 

linear indication of further effects of land use activities in highly stressed systems such as 

the Grand River. Additions of new traits (Snape et al. 2004, Salmaso et al. 2015, Wagner 

et al. 2015) or improved resolution of known traits (e.g. watershed scale measurements of 

invertebrate body-size (Petchey and Belgrano 2010, Donadi et al. 2015) may be a pathway 

to producing quality indicators for the Grand River or other highly stressed systems. Other 

options include development of functional indicators such as stream metabolism and cotton 

strip decay, but additional research and refinement of these techniques needs to continue 

(Gessner and Chauvet 2002, Young et al. 2008, Imberger et al. 2010). It is also plausible 

that the identification of more than a few indicators for multiple drivers, in a system like 

the Grand River, is not reasonable. It may be necessary to address the issue by focusing on 

indicators of specific agriculture types such as cash crops or livestock or individual 

stressors such as sediment or temperature (Yates and Bailey 2010, Yates et al. 2014). 

Research into the development of indicators that are sensitive to changes in anthropogenic 

stress in systems that have few areas minimally affected by humans needs to continue as 

the spatial extent and intensity of human activities is predicted to increase in the near future. 

Development of effective assessment tools that can inform evidence-based land use 

management decisions are thus essential.  
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Chapter 4  

4 Patterns and drivers of stream benthic 
macroinvertebrate beta diversity in an agricultural 
landscape 

4.1 Introduction 

Beta diversity can be a valuable tool in understanding the processes that control community 

change within a region (Whittaker 1960, Baselga 2010). Broadly defined as the change in 

community similarity among sites, beta diversity incorporates regional (gamma) and local 

(alpha) diversity in its calculation, thus connecting these two scales and incorporating a 

spatial component into beta diversity (Baselga 2010, Anderson et al. 2011). Influences of 

spatial extent on beta diversity are generally considered the result of species dispersal 

ability, whereas local controls are considered a result of habitat filtering or species 

interactions (Thompson and Townsend 2006, Patrick and Swan 2011, Brown et al. 2011, 

Heino et al. 2015a, 2015c). For example, if a species can disperse to all sites in a region, 

the result will be reduced beta diversity. However, if the spatial extent is increased such 

that a species can no longer spread throughout the region, beta diversity will increase 

(Mouquet and Loreau 2003, Cadotte 2006). However, even if a species can reach a specific 

site, they must also have the ecological traits to be successful in the local habitat. Thus, 

regional and local drivers of beta diversity may interact in complex ways to control 

community structure. Indeed, studies have found both spatial and habitat variables to be 

important in driving community structure (Thompson and Townsend 2006, Heino et al. 

2015b). 

Taxonomic beta-diversity studies are common; however, it is increasingly recognized that 

functional diversity research is essential to understanding community structure and 

function (Villéger et al. 2008, 2013, Heino and Tolonen 2017). For example, high 

functional beta diversity would suggest that differences among communities are not only 

taxonomically different, but functionally as well. For instance, Su et al. (2015) found 

functional and taxonomic dissimilarity of fish in nine lakes to be similarly high (> 0.80) 

indicating the lakes were unique in fish fauna and the taxa occupied different functional 
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niches. However, high taxonomic beta diversity combined with low functional beta 

diversity would indicate communities are functionally similar. For example, Villéger et al. 

(2013) observed that, taxonomic beta diversity of European fish faunas was more than three 

times higher than functional beta diversity suggesting communities are taxonomically 

variable, but functionally redundant.  

Further understanding of how communities vary among sites can be gained by 

decomposing beta diversity into its turnover and nestedness components (Baselga 2010, 

Villéger et al. 2013, Legendre 2014). Turnover is the replacement of taxa among sites with 

other species while keeping richness the same and is often driven by regional and local 

scale drivers such as spatial extent, dispersal ability, and habitat heterogeneity (Thompson 

and Townsend 2006, Baselga 2010, Patrick and Swan 2011, Astorga et al. 2014). The 

nested component of beta diversity is a representation of richness differences; that is the 

degree one community is a subset of another (Koleff et al. 2003, Baselga 2010, Legendre 

2014). Differences in nestedness results from the loss of habitat complexity, species 

specific extinctions, or geographic barriers that prevent taxa from reaching all areas within 

a region (Worthen 1996, Heino 2005, Buendia et al. 2013). Furthermore, the proportion of 

turnover to nestedness can indicate different processes at work. For example, Braghin et 

al. (2018) found the proportion of turnover and nestedness components were near equal in 

lakes along a free-flowing river, while the nested component dominated total beta diversity 

in lakes along a dammed river. This suggests in the free-flowing river community 

composition is the result of differing environmental filters in lakes. In contrast, the high 

proportion of functional nestedness among dammed lakes suggests environmental filters 

are similar among lake communities but differ in their intensity (Villéger et al. 2013). 

Environmental disturbance is an important driver of β-diversity but can have contradictory 

results depending on scale (Rolls et al. 2018). For example, landscape scale disturbance 

such as flooding, deforestation, or land cover modification have been shown to homogenize 

metacommunities (Vellend et al. 2007, Siqueira et al. 2015, Bozelli et al. 2015). In contrast, 

disturbances at the local scale can increase β-diversity across the region (Cadotte 2007). 

Agriculture induces disturbances to river systems at multiple scales, which in turn affect 

the benthic community (see Allan 2004a, b). Research on the influence of agriculture on 
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β-diversity are less common than studies on local diversity (i.e. alpha diversity) and results 

have been contradictory. For example, agricultural practices have been linked to increased 

β-diversity in streams (Gutiérrez-Cánovas et al. 2013, Hawkins et al. 2015, Fugère et al. 

2016), but agricultural related nutrient enrichment and habitat degradation (e.g. 

sedimentation, channel straightening) has also been associated with decreased β-diversity 

and homogenized communities (e.g. Donohue et al. 2009, Cook et al. 2018, Simião-

Ferreira et al. 2018). Moreover, Larsen and Ormerod (2014) found β-diversity among 

natural streams to be no different than streams located within a pasture setting. 

There has been limited research on beta diversity in regions dominated by agricultural land 

cover (but see Hill et al. 2016, Ishiyama et al. 2016). Moreover, studies in lotic systems 

including functional beta diversity and partitioning both the taxonomic and functional beta 

diversity into turnover and nestedness components are few (but see Villéger et al. 2013, 

2014, Heino and Tolonen 2017, Maasri et al. 2018). However, if society is to make 

informed decisions on how stream ecosystems should look and function in agricultural 

dominated systems, we first must have a better understanding of communities in these 

highly stressed systems (Hill et al. 2016). The goal of this study was thus to determine 

patterns and associated drivers of benthic macroinvertebrate (BMI) beta diversity in 

streams within an agricultural landscape. To achieve this goal, we completed three 

objectives using total beta diversity and its two components, turnover and nestedness. First, 

we described patterns of multi-site beta diversity within and among three drainage areas of 

southwest Ontario, Canada. Second, we applied variation partitioning to identify the 

drivers of beta-diversity among sample sites. Finally, we controlled agricultural effects to 

assess the influence of the agricultural landscape on the drivers of beta diversity. In 

addition, we compared the response of taxonomic beta diversity and functional beta 

diversity to environmental drivers. 

4.2 Methods 

4.2.1 Study Area 

We studied 208, 2nd and 3rd order streams, in the southwestern Ontario portion of the 

Laurentian Great Lakes Basin (Figure 4.1, Appendix-F, Table F.1). Agriculture is the most 
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prominent land cover within the region (approximately 75% of land cover) and includes 

row crop cultivation and livestock operations (e.g. pork, dairy, and poultry) (Yates and 

Bailey 2011). Regional surface geology is characterized by glacial till in the north, a 

combination of till, gravel, and sand in the central area, and by sand and clay deposits in 

the southern portions that drain into the Great Lakes (Yates and Bailey 2010b, Phillips and 

Desloges 2014).  

 

Figure 4.1 Map of the three drainage areas (Grand River [circles], Long Point [squares], 

and Thames River [pentagons]) and 123 sample sites used in this study and located within 

southern Ontario, Canada (inset). 
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Sub-watersheds of the Grand River (123 sub-watersheds), Thames River (54 sub-

watersheds), and Long Point (31 sub-watersheds) drainage area ranged from 3 to 36 km2 

in area with sample sites an average of 80 km apart (Appendix-C, Figures C.1 & C.2). Sub-

watershed boundaries were delineated using ArcMap 10.0 (ESRI 2013) and intersected 

with land cover data (Ontario Ministry of Natural Resources, 2008) to calculate the 

proportion of agricultural land cover and to ensure all sub-watersheds had less than 5% 

urban cover. Resultant agricultural land cover for the sampled sub-watersheds ranged from 

35% to 97% with a mean of 79% (s = 13%) (Figure 4.2). In addition, surface geology 

(Ontario Ministry of Northern Development and Mines; www.mndm.gov.on.ca) was used 

to determine the portions of sub-watersheds consisting of till, gravel, organic sand silt, 

bedrock, and clay deposits.  

 

  



102 

 

 

Figure 4.2 Boxplots summarizing agricultural land cover in sampled sub-watershed of the 

Grand River (GR), Long Point (LP), and Thames River (TR) drainage areas, and all 

sampled catchments combined in southern Ontario, Canada. The boxes represent the first 

quartile, median, and third quartile. Whiskers represent the maximum and minimum values 

or the first quartile – 1.5* interquartile range (IQR) and the third quartile + 1.5*IQR. Open 

circles represent data points beyond 1.5*IQR. 
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4.2.2 Benthic Invertebrate Sample Collection and Processing 

BMI and habitat data were collected in October and November of 2006, 2007, 2012, 2013, 

and 2015 to maximize invertebrate maturity. Multi-habitat, 3-minute kick samples using a 

400 μm A-frame net were used to collect benthic macroinvertebrate community (BMIC) 

samples following the Canadian Aquatic Biomonitoring Network (CABIN) protocol 

(Government of Canada 2012). Samples were fixed in the field using 95% ethanol or a 

10% formalin solution buffered with borax and transferred to a 75% ethanol solution for 

storage prior to subsampling and identification. Samples were subsampled to a minimum 

of 5% of the sample or 300 individuals using a Marchant box and identified to the highest 

taxonomic resolution feasible, usually genus or family. However, due to among year 

differences in subsampling efficiency and taxonomist, we elected to transform BMI data 

to presence/absence at the level of family for all analyses.  

Habitat at each site was characterized using the U.S. EPA habitat assessment for low 

gradient streams, which assigns a score ranging from poor to optimal habitat quality (0-20; 

Appendix-E) (Barbour et al. 1999). In this study, the category of channel flow status was 

not used due to its dependency on precipitation and sampling took place over several years. 

The nine remaining habitat characteristics were placed into one combined group and three 

sub-groups associated with specific stream zones: habitat-combined, habitat-substrate, 

habitat-channel, and habitat-riparian.  

4.2.3 Trait Diversity 

Taxa were assigned trait modalities using the U.S. Freshwater Traits Database (U.S. 

Environmental Protection Agency (EPA) 2012) and methods described in Krynak and 

Yates (2018). In brief, taxa were assigned trait modalities based on the most abundant 

modality for that taxa in the northern range of Ecological Region 8.0 (U. S. Environmental 

Protection Agency (2018)), except for Enrichment Tolerance for which taxa scores were 

averaged. Only traits identified by Krynak and Yates (2018) as indicators of agricultural 

effects (i.e. body size, attachment ability, functional feeding group, microhabitat, thermal 

preference, and tolerance) were used in this study. The trait matrix was then used to 

calculate functional richness (FRic) as in Villéger et al. (2008). First, the gowdis function 
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(package ‘FD’, Laliberte and Legendre 2010, Laliberté et al. 2014) was used to make a 

Gower dissimilarity matrix of the traits. Due to the high amount of missing data in the trait 

database, the Gower distance matrix was not Euclidean and was thus transformed using the 

quasieuclid function (package ‘ade4’, Dray and Dufour 2007) to generate a distance matrix 

using only positive eigenvalues. Principal coordinates analysis (PCoA; function dudi.pco, 

package ‘ade4’,Dray and Dufour 2007) was then performed on the transformed matrix to 

create synthetic traits based on the PCoA axes. Synthetic traits were then used to calculate 

FRic per site by calculating the minimum convex hull volume measured in 

multidimensional space that encompasses all taxa in each community. 

4.2.4 Statistical Analysis 

All data analyses were completed using R, version 3.4.3 (Kite-Eating Tree, R Core Team 

2017) and specific packages and functions utilized are indicated as appropriate below.  

Mean taxonomic and FRic among drainage areas were compared using analysis of variance 

(function aov, package ‘stats’, R Core Team 2017). Significant models were followed by 

a Tukey Honest Significant Differences post hoc test (TukeyHSD function, package ‘stats’, 

R Core Team 2017) to determine differences among individual drainage basins. 

All beta diversity calculations were completed using the ‘betapart’ package (Baselga et al. 

2018) with the Sørensen dissimilarity as the family index. The ‘betapart’ package 

calculates three components of beta diversity: total beta diversity (βsor), turnover (βsim), 

and nestedness (βsne), sensu Baselga 2010). βsor incorporates spatial turnover and richness 

differences (Koleff et al. 2003, Baselga 2010), whereas βsim is pure spatial turnover (i.e. 

species replacement). βsne is the dissimilarity due to nestedness (i.e. degree a community is 

a subset of a second community) and is calculated using the difference between βsor and 

βsim (Baselga 2010). βsne is not a direct measure of nestedness, but rather a measure of the 

portion of the dissimilarity that is not caused by taxa replacement (Baselga 2010, 2012). 

Pairwise measurements of beta diversity are indicated by a lowercase subscript (e.g. βsor) 

and multi-site measurements of beta diversity are indicated by an uppercase subscript (e.g. 

βSOR). Beta diversity was calculated using both taxonomic richness (taxonomic beta 

diversity), and FRic (functional beta diversity). Taxonomic beta diversity measures the 



105 

 

number of taxa in common and unique among communities where functional beta diversity 

uses convex hull volume to measure the volume shared and unique among communities 

(Villéger et al. 2011, 2013, Baselga et al. 2012, 2018, Baselga 2012). 

4.2.5 Multi-site Beta Diversity  

To determine if there was a difference in beta diversity among sampled drainage areas, we 

calculated the multi-site beta diversity for each individual drainage area and for all sites 

combined using the beta.sample function in the betapart package (Baselga et al. 2018) and 

a modified version of this function for functional diversity (see Appendix-D). The 

bet.sample function allows for comparison of groups with different number of samples by 

iteratively calculating multi-site beta diversity for a random subset of sites. Because multi-

site functional beta diversity is computationally burdensome, and the burden increases with 

increased number of sites and increased trait axes, Baselga et al. (2018) limits the number 

of sites to a maximum of 10 and the number of trait axis to a maximum of 4. Thus, to limit 

computational time, we used n = 8 sites and three PCoA synthetic trait axes with a random 

resampling of 250 iterations for functional multi-site beta diversity and multi-site trait beta 

diversity for consistency. Significant difference among drainage areas was determined by 

the degree of overlap between the parameter distributions estimated through the 

bootstrapping procedure (Baselga 2017). 

4.2.6 Variation Partitioning 

To test the associations of agricultural land cover, habitat scores, site distance and 

physiography with pairwise beta diversity (functions beta.pair & functional.beta.pair; 

package ‘betapart’, Baselga et al. 2018) among all the sites, we employed distance based 

redundancy analysis (db-RDA; capscale function, package ‘vegan’,Oksanen et al. 2018) 

followed by variation partitioning (varpart function, package ‘vegan’, Oksanen et al. 

2018). Prior to db-RDA, site coordinates were transformed to a site-to-site distance matrix 

using the spDists function (package ‘sp’, Pebesma and Bivand 2005) and then transformed 

to a rectangular matrix using Principal Coordinates of Neighborhood Matrix (PCNM, 

Borcard and Legendre 2002, Dray et al. 2006) using the ‘pcnm’ function, package vegan 

(Oksanen et al. 2018). Groups of variables (i.e. habitat scores, site distance, and 
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physiography) were individually tested for significance using a permutation test with 999 

permutations (anova.cca, package ‘vegan’, Oksanen et al. 2018) on the db-RDA model. If 

the model proved significant, variables were reduced to the most parsimonious set using a 

forward selection process (ordistep function, package ‘vegan’, Oksanen et al. 2018) with 

two stopping rules: an adjusted R2 greater than global model and p-value greater than 0.05 

(Blanchet et al. 2008). Significant variables from each group were then combined for use 

in db-RDA and variation partitioning analyses. Groups of environmental variables (i.e. site 

distance, habitat, physiography, and agriculture) and individual fractions (each group while 

controlling for the other groups), were tested for significance (functions db-RDA and 

anova.cca, package ‘vegan’, Oksanen et al. 2018). This procedure was repeated for all 

three of the beta diversity components for both taxonomic and functional beta diversity.  

Interactions between agricultural land cover and the other environmental variables were 

disentangled by binning samples in 5% agricultural land cover intervals. Distance matrices 

for EPA habitat scores were computed for all habitat-combined and for scores representing 

habitat-substrate (i.e. substrate, sediment deposition, and pool substrate), habitat-channel 

(i.e. channel alteration, channel sinuosity, bank stability, and pool variability) and habitat-

riparian (i.e. vegetative protection and riparian width). Within each bin, we calculated βsor, 

βsim, and βsne pairwise dissimilarity matrices for invertebrate taxa and FRic to identify 

associations between binned beta diversity measures and predictor variables including 

grouped EPA habitat variables, philography, and straight -line distances among sites. A 

Mantel test (function mantel, package ‘vegan’, Oksanen et al. 2018) was used to establish 

associations between pairwise beta diversity measures and Euclidean dissimilarity matrices 

(function vegdist, package ‘vegan’, Oksanen et al. 2018) of EPA habitat scores, 

physiography, and straight-line distance among sites (sensu T6 of Anderson et al. 2011) 

(function spDist package ‘sp’, Pebesma and Bivand 2005).  

4.3 Results 

4.3.1 Community and Land Cover Description 

Mean taxonomic richness was different among drainage basins (F2,205 = 9.80, p < 0.001) 

with the Grand River having a greater mean than the Long Point drainage area (TukeyHSD 
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p = 0.024) and the Thames River (TukeyHSD p < 0.001). Mean taxonomic richness was 

not different between the Long Point drainage area and Thames River (TukeyHSD p = 

0.819). Taxa richness was greatest in the Grand River (x̅ = 20, s = 6), followed by the 

Thames River (x̅ = 17, s = 5) and Long Point drainage area (x̅ = 17, s = 5, Figure 4.3). 

Family level BMI richness for all drainage basins combined totaled 111 taxa (Figure 4.3). 

Mean taxonomic richness (x̅ = 19, s = 5) used approximately 18% of the available taxa 

pool. Mean FRic was different among drainage basins (F2,205 = 9.37, p < 0.001) with the 

Grand River having a greater mean than the Long Point drainage area (TukeyHSD p-value 

= 0.001) and the Thames River (TukeyHSD p-value = 0.005). Mean FRic was not different 

between the Long Point drainage area and the Thames River (TukeyHSD p-value = 0.618). 

FRic was highest in the Grand River drainage area (x̅ = 11.1, s = 4.8), followed by the 

Thames River drainage area (x̅ = 8.7, s = 4.27) and the Long Point drainage area (x̅ = 7.8, 

s = 3.5; Figure 4.3). Mean FRic (i.e. convex hull space with 3 trait axes; x̅ = 10.0, s = 4.7) 

of all sites combined used approximately 29% of the total available functional space.  
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Figure 4.3 Boxplots summarizing taxonomic and functional richness of sample sites (i.e. 

alpha diversity) in the Grand River (GR), Long Point (LP), and Thames River (TR) 

drainage areas, and all sampled catchments combined in southern Ontario, Canada. 

Different lowercase letters indicate significant difference (p ≤0.10). The combined group 

was not tested for significant difference. The boxes represent the first quartile, median, and 

third quartile. Whiskers represent the maximum and minimum values or the first quartile 

– 1.5*IQR and the third quartile + 1.5*IQR. Open circles represent data points beyond 

1.5*IQR. n represents the number of sample sites in each drainage area. TRic and FRic 

represents the total taxonomic and functional (respectively) richness for the entire drainage 

area community (i.e. gamma diversity).  
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4.3.2 Multi-site Beta Diversity 

There was no difference (p > 0.1) in the bootstrapped multi-site taxonomic beta diversity 

among the three drainage areas for the three components of beta diversity. Total taxonomic 

beta diversity (βSOR) ranged from 0.72 (s = 0.02) in the Long Point drainage area to 0.75 

(s = 0.02) in the Grand River drainage area and was 0.76 (s = 0.02) for all sites combined. 

Spatial turnover (βSIM) ranged from 0.63 (s = 0.03) in the Long Point drainage area to 0.68 

((s = 0.03) in the Grand River drainage area and all sites combined. Nestedness (βSNE) 

made up a small portion of the total beta diversity with a value of 0.08 (s = 0.02 – 0.03) in 

all three drainage areas and all sites combined.  

Functional βSOR was 0.65 (s = 0.05) for each drainage basin and 0.67 (s = 0.05) for all sites 

combined. However, the proportions of functional βSIM and βSNE were more balanced 

compared to taxonomic beta diversity. Mean functional βSIM ranged from 0.36 (s = 0.08) 

in the Thames River to 0.40 (s = 0.07) in all sites combined. Mean functional βSNE ranged 

0.25 (s = 0.07) in the Grand River to 0.29 (s = 0.08) in the Thames River and was 0.27 (s 

= 0.07) in all sites combined. Using distribution overlap, there was no difference (p > 0.1) 

in functional βSOR, βSIM, or βSNE among drainage basins and all sites combined.  

Based on the lack of taxonomic and functional multi-site beta diversity differences among 

basins, the combination of all sites was used for the remaining analyses. With all sites 

combined, taxonomic βSOR was composed of 89% βSIM and 11% βSNE. In comparison, 

Functional βSOR for all sites combined was composed of 60% βSIM and 40% βSNE. 

4.3.3 Drivers of Beta Diversity 

Forward selection of predictor variables within each group for taxonomic βsor resulted in 

retention of 6 distance variables (PCNM 1, 2, 3, 4, 5, & 6), 7 habitat variables (riparian 

width, epifaunal substrate, vegetative protection, sediment deposition, channel sinuosity, 

and bank stability), and 5 physiographic variables (sand, organic, gravel, till, and bedrock) 

(Appendix-C, Table C.1). Selected variables for taxonomic βsim distance matrix were 

similar to those of βsor for site distance (PCNM 1, 2, 3, 4, 5, 6, 17, 64, and 85) and habitat 

(riparian width, channel alteration, epifaunal substrate, vegetative protection, sediment 

deposition, and bank stability) (Appendix-C, Table C.2), and the same for physiographic 
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variables. Percent agriculture was significantly associated with βsor and βsim and was thus 

included in the final models with distance, habitat, and physiography variables. Only the 

habitat variables were significantly associated with βsne (F9,198 = 2.252, p = 0.045, R2 = 

0.052) with no reduction of variables.  

Following variable selection, the reduced models for variation partitioning on taxonomic 

βsor and βsim were significant with 21% and 26% total variance explained, respectively 

(Figure 4.4). For βsor, the partial effects of site distance and habitat explained the greatest 

amount of variation (4.8% & 4.3% respectively) followed by physiography (1.7 %, Figure 

4.4). For βsim, the partial effects of site distance explained the greatest amount of variation 

(6.8%) followed by habitat and physiography variables (4.3% and 2.1 % respectively, 

Figure 4.4). The partial effects of agricultural land cover were not significant for taxonomic 

βsor or βsim. In all cases, the sum of shared variation (Figure 4.4) contributed more to the 

explained variation than that of the partial effects of site distance, habitat, physiography 

and agriculture.  

Selected variables within each predictor group for the functional βsor included 6 distance 

variables (PCNM 1, 2, 3, 4, 5, & 11), 5 habitat variables (epifaunal substrate, channel 

alteration, vegetative protection, sediment deposition, and riparian width), and 4 

physiographic variables (till, gravel, sand and clay) (Appendix-C, Table C.3). Distance 

predictor variables selected for functional βsim increased in quantity compared to functional 

βsor (i.e. PCNM 3, 4, 5, 6, 10, 11, 12, 16, 19, 20, & 36) and two habitat variables (i.e. 

riparian width and channel alteration) were selected (Appendix-C, Table C.4). Selected 

physiographic variables for functional βsim included gravel, sand, clay, and silt 

physiography. The model of percent agriculture and taxonomic βsor or βsim was significant 

and thus included in the final model along with spatial, habitat and physiography variables. 

Only the EPA habitat variable of epifaunal substrate was significant following forward 

selection for functional βsne (F1,206 = 16.845, p = 0.001, R2 = 0.071).  

The reduced models for variation partitioning of functional βsor and βsim explained 19% and 

40% of the variation, respectively (Figure 4.4). Partial effects of site distance, habitat, 

physiography and agriculture were numerically similar to their taxonomic counterparts for  
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Figure 4.4 Venn diagrams of the variation partitioning of taxonomic and functional βsor 

and βsim explained by site distance, habitat, physiography, and agriculture. Values in 

ellipses represent partitions of variation explained by categories. Areas of overlap between 

ellipses represent shared variation between categories. Values < 0 are not shown. Only 

values relevant to this study were tested for significance. ** indicates significance at <0.05, 

* indicates significance at <0.1, -- indicates non-significant results, and no symbol indicates 

fractions that were not tested for significance.  

 



112 

 

βsor with the exception that the portion of variation explained by the partial effects of 

agriculture (0.4%) was significant. Similarly, the sum of shared variation for βsor surpassed 

that of the partial effects. In contrast, the amount of variation in functional βsim explained 

by the partial effects of site distance (18.2%) was more than double all other fractions, 

including the taxonomic models (Figure 4.4). Habitat also demonstrated an increase in the 

amount of functional βsim variation explained (6.8%) compared to other variation 

partitioning models. Physiography and agriculture were not significant predictors of 

functional βsim (Figure 4.4). Moreover, except for site distance, the sum of shared variation 

among habitat, physiography and agriculture surpassed the partial effects of each category. 

Sequential Mantels along the binned agricultural gradient indicated correlation of 

taxonomic beta diversity and groups of predictor variables at moderate and high levels of 

agricultural land cover. In total, there were 26 significant relationships in βsor bins, 23 

significant relationships in βsim bins, and 6 significant relationships in βsne bins (Table 4.1). 

For both βsor and βsim, habitat-combined, habitat-substrate, and habitat-channel had 10 out 

of 13 significant results in bins with less than 80% agriculture. Habitat-riparian for βsor and 

βsim had more significant relationships above 80% agricultural land cover (4 out of 6). βsor 

and βsim for site distance was almost equally dispersed above and below 80% agricultural 

land cover with a total of 6 significant bins below and 5 bins above (Table 4.1). Significant 

taxonomic βsne bins included substrate at 80-85% agricultural land cover and channel and 

riparian in the 55-60% bin. In addition, the habitat-channel group was correlated with βsne 

in the 65-70% bin and site distance and physiography were correlated with βsne in the 90-

95% and 95-100% agricultural land- cover bins, respectively (Table 4.1). 
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Table 4.1 Table of Mantel-r statistics representing mantel tests of taxonomic βsor and its 

two components (βsim & βsne) and habitat variable groups within 5% agriculture bins. 

 % Ag 
Habitat-

Combined 

Habitat-

Substrate 

Habitat- 

Channel 

Habitat-

Riparian 
Physiography Distance 

βsor 

55-60     0.45** 0.28** 

60-65 0.32** 0.17* 0.38**   0.20** 

65-70 0.20** 0.27**   0.25** 0.29** 

70-75 0.36** 0.32** 0.29**    

75-80 0.20**  0.28** 0.16** 0.40**  

80-85       

85-90 0.13** 0.08* 0.11** 0.10**  0.11** 

90-95    0.16**  0.33** 

95-100     0.40* 0.32* 

βsim 

55-60       

60-65 0.18**  0.24*   0.28** 

65-70  0.36**   0.36** 0.37** 

70-75 0.34** 0.29** 0.25**  0.15*  

75-80 0.14**  0.18** 0.17** 0.33** 0.21** 

80-85       

85-90 0.21** 0.12** 0.17** 0.12**   

90-95 0.08*   0.16**  0.14** 

95-100      0.42** 

βsne 

55-60   0.30* 0.32*   

60-65       

65-70   0.27**    

70-75       

75-80       

80-85  0.13**     

85-90       

90-95      0.24** 

95-100     0.45*  

* indicates significance ≤ 0.10; ** indicates significance ≤ 0.05 
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Correlations of functional beta diversity and groups of predictor variables along the binned 

agricultural gradient were more dispersed and fewer compared to taxonomic beta diversity. 

In total, βsor had 12 significant relationships, βsim had 17 significant relationships, and there 

were 6 significant relationships of βsne and predictor variables (Table 4.2). The pattern of 

significant bins for functional βsor and βsim was similar to taxonomic βsor and βsim with the 

majority of habitat-combined, habitat-substrate, and habitat-channel significant bins 

occurring at less than 80% agricultural land cover (Table 4.2). Groups of habitat variables 

that were significantly associated with βsim bins over 80% agricultural land cover had 

mantel-r scores less than 0.15 and a p-value between 0.05 and 0.10. In contrast to 

taxonomic results, the group of habitat-riparian variables were more likely to be significant 

below 80% agricultural land cover (3 out of 4 significant bins). Functional βsne was 

significantly correlated with the habitat-combined variables, the habitat-channel variables, 

and the habitat-riparian variables at 65-70% agricultural land cover. Physiography was 

significantly correlated with βsne at 70-75% agriculture, and site distance was significantly 

correlated with βsne at 85-90% and 90-95% agricultural land cover (Table 4.2). 
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Table 4.2 Table of Mantel-r statistics representing mantel tests of functional βsor and its 

two components (βsim & βsne) and habitat variable groups within 5% agriculture bins.  

 % Ag 
Habitat-

Combined 

Habitat-

Substrate 

Habitat- 

Channel 

Habitat-

Riparian 
Physiography Distance 

βsor 

55-60       

60-65       

65-70 0.27**  0.21* 0.34**   

70-75 0.26** 0.20** 0.24**    

75-80   0.14*  0.30**  

80-85       

85-90     0.21** 0.20** 

90-95      0.37** 

95-100       

βsim 

55-60       

60-65 0.30**  0.28** 0.33** 0.16** 0.33** 

65-70  0.18*     

70-75 0.30** 0.19** 0.24** 0.14**   

75-80     0.16*  

80-85   0.13*    

85-90 0.07*  0.07* 0.06* 0.18**  

90-95      0.14** 

95-100       

βsne 

55-60       

60-65       

65-70 0.30**  0.34** 0.34*   

70-75     0.19**  

75-80       

80-85       

85-90      0.19** 

90-95      0.26** 

95-100       

* indicates significance ≤ 0.10; ** indicates significance ≤ 0.05 
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4.4 Discussion 

Multi-site taxonomic beta diversity in southern Ontario streams (βSOR = 0.76) demonstrated 

dissimilarity among sites with communities differing due to taxa turnover among sites, yet 

nestedness is limited. Comparison of beta diversity results among studies can be difficult 

due to the multitude of methods available for its calculation. However, studies that have 

used beta.multi and bet.sample (Baselga et al. 2018) using macroinvertebrates and other 

freshwater organisms (e.g. fish, macrophytes) in mostly pristine, or near pristine streams, 

have found values (range 0.72 - 0.96) similar to those calculated in our study (Heino et al. 

2017, Zbinden and Matthews 2017, Maasri et al. 2018). Moreover, similar past studies 

have also observed that βSOR was composed of high turnover and low nestedness (Heino et 

al. 2017, Zbinden and Matthews 2017, Maasri et al. 2018). However, Hill et al. (2016) 

found agricultural ditches to have high beta diversity measured as significant among site 

community heterogeneity. Furthermore, Fugère et al. (2016) found beta diversity to be 

higher in an agricultural setting than within a forested landscape. Our results in 

combination with Hill et al. (2016) and Fugère et al. (2016) seem contradictory to the 

hypothesis that anthropogenic stress will reduce beta diversity and homogenize sites with 

few tolerant taxa (Donohue et al. 2009, Heino 2013, Larsen and Ormerod 2014).  

Many studies have demonstrated a reduction of beta diversity in the presence of 

anthropogenic stress (e.g. Delong and Brusven 1998, Johnson and Angeler 2014, Cook et 

al. 2018). Other studies have identified agriculture related stress (e.g. sedimentation) as a 

nesting agent of communities (Angeler et al. 2008, Larsen and Ormerod 2010, 2010, 

Buendia et al. 2013). Our results indicate that the taxonomic communities are only 

minimally nested in the agricultural landscape of southern Ontario. However, 

homogenization and nestedness associated with anthropogenic stress is often attributed to 

homogenization of habitat structure. In this study, measured habitat scores were similarly 

distributed throughout the agricultural land cover gradient (Appendix-C, Figures C.3 – 

C.6). Furthermore, this study focused sampling within headwater streams. High beta 

diversity in headwater streams is common due to hydrologic disconnect from other 

headwater streams, high variability in flow, their intimate association with variations in 

terrestrial habitat, and high habitat variability within the stream reach scale (Brown and 
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Swan 2010, Finn and Poff 2011, Brown et al. 2011). In the three agriculturally dominated 

drainage areas studied here, environmental and geographic gradients are strong enough that 

total taxonomic beta diversity and spatial turnover do not appear to be limited.  

Our results indicate that taxonomic βsim is almost equally the result of site distance and 

habitat variation. This finding suggests taxa dispersal and habitat sorting are the drivers of 

taxonomic turnover in our study system. Other studies have found habitat variables as the 

main driver of aquatic communities with spatial variables taking on less of a role or having 

no influence (but see Thompson and Townsend 2006, Heino et al. 2015b). For example, 

Heino and Mykrä (2008) found that stream insect communities at the drainage basin scale 

were associated with environmental data, but not spatial variables. In another example, 

Heino et al. (2015b) used data from 61 metacommunities and 31 worldwide drainage 

basins and found significant spatial predictors in only 13 metacommunities compared to 

28 metacommunities for environmental. Moreover, spatial predictors explained the 

greatest portion of variation for only 4 metacommunities, and in those metacommunities 

environmental variables were not significant (Heino et al. 2015b).  

The interaction of geographic distance and habitat variables depends on (in part) the 

dispersal ability of the community, the extent of the study area, and the habitat 

heterogeneity in the study area (Finn and Poff 2011, Heino 2013, Heino et al. 2015a, 2015c 

and citations therein). For example, a combination of a small geographic area and a highly 

mobile community would reduce the importance of geographic distance, while increasing 

the importance of habitat variables in determining the amount of beta diversity in the study 

system. In contrast, reduced dispersal ability and/or an increase in spatial distance would 

increase the importance of spatial distance and reduce the importance of habitat variables 

as drivers of beta diversity. In our study, dispersal was limited to over-land dispersal by 

using non-nested headwater streams. Yet, 2.5% of site pairs were in close proximity (< 10 

km) even among different drainage areas. We also included taxa with flying adult stages 

(e.g. Plecoptera) and taxa that are aquatic throughout all life stages (e.g. Oligochaeta, 

Decapoda). This juxtaposition of isolating (e.g. differing drainage basins, headwater 

streams, non-flying adults) and uniting (e.g. proximity of some sites, mobile adults) effects 
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may be why we found site-site distance on par with habitat variables as a driver of 

taxonomic beta diversity.  

With an agricultural gradient range of 35% - 97% agricultural land cover, we expected 

agriculture to have a strong influence on beta diversity in the study area. However, we 

found agriculture was not a strong driver of taxonomic beta diversity. There are many 

reasons the effects of agriculture on beta diversity may be difficult to detect. First, the high 

disturbance rate in stream communities, especially those of headwaters streams, can result 

in a cycling of taxonomic extirpation and colonization increasing the variability of stream 

communities in time and space and disrupting the link between agricultural land cover and 

species turnover (Heino and Mykrä 2008, Finn and Poff 2011, Heino 2013). The disconnect 

between agricultural land cover and the BMIC can be exacerbated by the common practice 

of collecting BMI samples as singular events, which may fail to capture temporal 

stochasticity and the community response to anthropogenic influences (Heino et al. 2015b, 

Maceda-Veiga et al. 2017).  

Second, unaccounted for landscape characteristics may have reduced our ability to detect 

community-land-use associations. For example, a recovered stream reach located in a once 

agriculturally dominated landscape can have a BMIC closer in similarity to the disturbed 

landscape than to communities in comparable natural habitat (Harding et al. 1998, Maloney 

et al. 2008). Furthermore, an intact riparian buffer can disrupt the agriculture-community 

connection, even at agricultural land cover levels greater than 80% (Allan 2004a, Feld 

2013, Sweeney and Newbold 2014). The selection of riparian width and stream alteration 

as variables associated with beta diversity supports these hypotheses.  

Third, there is the potential that the communities in our study area have already surpassed 

an agricultural threshold. Because of the nature of our study region, catchments included 

in our study had a minimum of 35% and a mean of 79% agricultural land cover. Land cover 

of less than 50% agriculture has been identified as disruptive to biological communities 

(Wang et al. 1997, Allan 2004b, Utz et al. 2009, Waite 2014), below most sub-watersheds 

in this study. Conversion of land cover to agricultural use could disrupt the environment-

beta diversity connection by sorting out taxa with sensitive traits leaving functionally 



119 

 

similar taxa. This would, in effect, shift community assemblage from deterministic (species 

sorting at the local level) to more stochastic (dispersal limited) and to appear taxonomically 

random (Loreau et al. 2001, Bêche and Statzner 2009, Larsen and Ormerod 2014, Krynak 

and Yates 2018).  

Fourth, in general, BMICs are difficult to predict and models often have low explanatory 

power (Heino et al. 2015b). Extensive variability in this system might suppress our ability 

to detect an agriculture-beta diversity connection.  

Fifth and finally, there is the possibility that there is not an agricultural land cover – beta 

diversity connection. However, this seems unlikely given the number of studies that have 

connected benthic communities to agricultural land cover (see Allan et al. 2004 for a 

review). Taxonomic beta diversity is minimally associated with agricultural land cover in 

southern Ontario streams. To understand why, more beta diversity research in intensely 

farmed regions is needed and comparisons made with similar physiochemical regions with 

agriculture gradients populating the lower end of the agricultural land cover spectrum.  

Functional richness and beta diversity observed in our study suggests there is functional 

redundancy within the taxonomic pool of BMIs. The portion of total available FRic used 

per site was higher compared to taxonomy, and the portion of functional βsim was about 2/3 

of the portion of taxonomic βsim indicating taxa are functionally interchangeable among 

communities in southern Ontario streams. Functional diversity is predicted to be more 

stable over larger geographical areas compared to taxonomy (Charvet et al. 2000, Gayraud 

et al. 2003, Mouillot et al. 2006, De Bello et al. 2009, Péru and Dolédec 2010, Culp et al. 

2011), but see Heino et al. 2013). Yet, in our study, variation in the βsim portion of 

functional βsor was explained by site distance more than any other explanatory variable 

group. This finding may be a consequence of the spatial extent of our study.  

As spatial extent increases so does the length of environmental gradients and the 

probability that environmental variables are spatially structured (Heino 2013, Heino et al. 

2015a, 2017). Indeed, spatially structured and collinear environmental variables are 

difficult to avoid (Yates and Bailey 2006, 2010a). In our results, shared variation between 

distance variables and the other predictor groups suggests the presence of spatial 
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autocorrelation. Increased spatial distance in combination with spatially correlated 

environmental variables could explain the portion of functional βSIM variation explained by 

distance variables. In comparison, βSNE made up 40% of functional βSOR yet had no strong 

predictor variables. This suggests that the βSNE is due mainly to stochastic processes not 

associated with spatial variables. However, a portion of βSNE is specifically attributed to 

epifaunal substrate. The U.S. EPA habitat parameter for epifaunal substrate cover is 

essentially a measure of habitat complexity (Appendix-E, Barbour et al. 1999). Numerous 

studies have demonstrated that a reduction in habitat complexity (e.g. sedimentation) 

results in increased community nestedness (e.g. Larsen and Ormerod 2010, Larsen et al. 

2011, Buendia et al. 2013, Braghin et al. 2018). Total functional beta diversity (βsor) was 

similar to taxonomic βsor, and site distance and habit were the most important drivers of 

community dissimilarity. Yet, the proportion of βsim and βsne were divided differently in 

functional βsor than for taxonomic βsor, an indication predictor variables are acting 

differently on functional compared to taxonomic beta diversity. Higher explained variation 

for functional βsim related to habitat scores and spatial distance suggests functional βsim is 

more predictable than taxonomic βsim in our study system.  

Agriculture was not found to be a significant driver of functional beta diversity, however, 

at high levels of agriculture, the association between functional beta diversity and habitat 

predictor variables become less distinct. At agricultural land cover above 75%, there 

appears to be a threshold where the influence of agricultural land cover overcomes the 

influence of habitat and causes a disconnect between functional beta-diversity and the 

habitat gradient. Indeed, previous work in southern Ontario has found trait modality 

thresholds near or above 75% agricultural land cover (Krynak and Yates 2018). Thus, at 

lower levels of agriculture, traits are free to track habitat changes, but as agricultural land 

cover increases, habitat quality has less influence on functional diversity. This has 

implications for land management and ecosystem conservation as focusing on within and 

near stream habitat restoration may not be the most economical use of funds or resources 

when agricultural land cover exceeds 75% because agricultural effects may overwhelm 

restoration efforts, at least in regard to preserving functional diversity. 
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4.5 Conclusions 

Research combining functional and taxonomic beta diversity are still relatively uncommon 

even though it is recognized that taxonomy alone is inadequate for understanding the 

ecology of communities (Villéger et al. 2008, 2013, Mouillot et al. 2011). The partitioning 

of functional beta diversity into its turnover and nested components is relatively new, and 

even less common. We have shown that functional beta diversity can add important insight 

into community structure in agricultural streams. Indeed, in this study we have 

demonstrated that in an intensely farmed region, both taxonomic and functional beta 

diversity are still high and driven by spatial and habitat variables. However, functional 

turnover is more stable and more predictable across the study region. The percent of 

agricultural land cover in sub-watershed was not a significant predictor of beta diversity, 

yet at high levels it appears to unravel the habitat-functional beta diversity relationship. 

Our results have implications for both land management and conservation. With a goal of 

conserving both taxonomic and functional diversity, it would be best to stratify habitat 

heterogeneity over large areas rather than concentrating conservation efforts on small local 

areas. If functional diversity is an important component of a regional conservation plan, 

efforts should be made to keep sub-watershed agricultural cover levels below 75% or 

provide incentives to set aside 25% the landscape for conservational purposes.  

Our findings also have implications for bioassessment protocols. Most bioassessment 

measurements are taken at the local scale. However, it is important to place local 

communities in the landscape context by considering spatially driven processes, such as 

dispersal (Brown et al. 2011). It may improve bioassessment if communities within 

dispersal range of the assessed community are considered during the assessment process. 

Neighboring communities that can act as a source for sensitive taxa could potentially skew 

assessment results and drive false conclusions. Moreover, in an agricultural intensive 

landscape, high rates of taxonomic turnover associated with spatial variables suggest 

assessments may be best focused within smaller land cover areas. The drainage basin scale 

may be the ideal scale for assessments, but this may be location and/or taxa specific (Heino 

et al. 2013, 2015c, 2015a, 2017). Bioassessment protocols may benefit from modeling 

spatial variables to reduce their influence and even breaking assessment areas into smaller 
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units if necessary (sensu Yates and Bailey 2010a). Finally, functional metrics are likely to 

help improve assessment due to their stability over a larger area and by supplying 

information beyond taxonomy that can help make land-use decisions.  
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