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Abstract

In this thesis, a novel software architecture and knowledge representation scheme is de­

scribed that facilitates the combination and reconfiguration of modular sensor and actua­

tor components, termed transducer interface modules (TIMs), to produce flexible modular 

sensor systems. Each TIM provides a core sensing or actuation functionality. A composite 

sensor is able to automatically determine its overall geometry and assume an appropriate 

collective identity, and if reconfigured, may then assume a different identity to match its 

new geometry. In current practice, a fixed combination of sensors and actuators is typ­

ically utilized, and is tailored to a specific application. Such systems cannot be cheaply 

or quickly reconfigured to handle a change in process requirements. Domains that may 

benefit from easily reconfigurable modular sensing systems include flexible inspection, 

mobile robotics, surveillance, and even space exploration.

The software architecture is distributed, and is comprised of six layers where the imple­

mentation of each layer is encapsulated from the layer above, to which it provides service. 

The use of a distributed and layered architecture promotes scalability, mitigates against 

a single point of failure, and enables each layer to be easily implemented, modified, and 

debugged independently of the others. The modularization of the software architecture 

is further facilitated through the utilization of a pre-emptive real-time operating system, 

which enables the concurrent execution of the various software components specific to the 

architecture that implement the services provided within most of its layers.



Among the layers comprising the software architecture is a virtual machine layer, 

which implements a lightweight, architecture-specific version of Sun Microsystems’ Java 

Virtual Machine that runs on top of the real-time operating system. The integration 

of a virtual machine enables the platform-independent template algorithms utilized at 

the composition layer to be written once and executed on any TIM irrespective of its 

underlying hardware architecture. These template algorithms are unique to this software 

architecture and provide intelligence to a set of heterogeneous TIMs, enabling them to 

collaborate and behave as a single entity termed a logical module.

The evaluation of the software architecture consists of performing multiple runs of 

two tests in which select sensors and actuators are associated with TIMs that are then 

allowed to interact in order to form a logical entity. The first test evaluates the behaviour 

of a logical module in which the constituent TIMs interact entirely through wireless 

communication. The second test evaluates the behaviour of a logical module in which the 

constituent TIMs are physically connected in various orientations, and interact through 

both wireless communication as well as through their physically connected faces.

In both tests, correct behaviour was exhibited. However, the performance and scala­

bility of the architecture was somewhat restricted by the limited processing and memory 

resources present in the current implementation of the TIMs. The design of the software 

architecture facilitates easy portability between embedded platforms and scales with in­

creasing hardware capability. Therefore, utilization of future TIM hardware variations 

possessing increased processing and memory resources will reduce the latencies introduced 

throughout the architecture and lead to tangible improvements in its performance.

Keywords: distributed software architecture, adaptive sensing system, modular sensing 

system, sensor module, actuator module, transducer module, logical module, position and 

orientation determination, virtual machine.
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Chapter 1 

Introduction

1.1 Sensors and Actuators in Industry

Sensors and actuators have seen widespread utilization in many of today’s industrial pro­

cesses. These devices respectively convert physical phenomena to and from electrical 

signals for the purpose of measurement, tracking, and/or control by way of digital de­

vices such as microcontrollers, programmable logic controllers (PLCs), and mainstream 

computers. In current practice, fixed combinations of sensors and actuators are typically 

employed, with each combination often deployed in a static orientation and tailored to 

fulfil a specific application.

In order to enhance accuracy and reliability in many such applications, multiple sen­

sors are often directly or indirectly combined into composite entities. For example, a 

single camera is only capable of reporting a grid of values representing the intensity of 

incident light on its array of sensing elements. However, two or more cameras operat­

ing in tandem could, through sensor fusion, effectively form a sensor capable of depth 

perception. Sensors that detect different, but related, types of physical phenomena may 

also be combined to produce a new device that produces measurements that are more

1
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accurate than either of its constituent sensors are capable of providing. An example of 

this would be the combination of a thermocouple and an infrared camera for the purpose 

of increasing the accuracy of sensed temperature.

The sizes of the transistors used in the implementation of microprocessors and other 

integrated circuits through very large-scale integration (VLSI) are becoming ever smaller, 

consistent with M oore’s Law [1], due to advancements in semiconductor fabrication tech­

niques. The sizes of sensors and actuators are also being reduced at an equally rapid rate 

due to advancements in microelectromechanical systems (MEMS) and nanoelectromechan- 

ical systems (NEMS) fabrication techniques. As a result of these technological advance­

ments, it has become quite practical to combine sensing, actuation, processing logic, as 

well as transceivers that provide wired and wireless networking capability into a single 

monolithic device termed a smart transducer. With the ability to transmit information 

and locally execute algorithms independently, without depending upon a larger, static, 

and more powerful mainstream computer system, the potential for smart transducers 

to collaborate amongst themselves without any external influence in order to achieve a 

specific goal becomes worthy of consideration.

1.2 The Need to Combine Sensors and Actuators

Sensing systems designed to be operated in a static orientation and under controlled oper­

ating conditions cannot be cheaply or quickly reconfigured to handle a change in process 

requirements, such as in assembly lines where the product being assembled changes com­

pletely or is now required to be processed in previously unconsidered orientations. Instead 

of merely considering each existing sensor as a strictly self-contained device that is to be 

utilized in an exclusive scenario, or in tandem with others sensors, each sensor may be 

enhanced through physical combination with one or more actuators in addition to other
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sensors, resulting in an active sensing device.

Combining a sensor with an actuator greatly enhances the ability of the sensor, which 

is now augmented with mobility and gains the ability to adapt to changing process re­

quirements, such as monitoring non-stationary objects of interest. For example, a camera 

could be mounted on a rotational stage to form a panoramic camera with a field of view 

of 360 degrees, enabling it to track objects that move anywhere within a particular plane. 

The relocation of processing logic directly onto the hardware comprising a smart trans­

ducer allows such a composite sensing device to be completely self-contained, and scalable 

to even larger combinations of modules. The ability to combine diverse modular sensor 

and actuator components to produce flexible modular sensor systems facilitates rapid 

reconfiguration to suit any requirement, and is a technique that will prove useful in many 

modern applications. Examples of applicable domains include flexible inspection, mobile 

robotics, surveillance, and even space exploration.

1.3 Survey of Related Work

1.3.1 Logical Sensor Architectures

Modular sensing systems are often composed of a number of sensors and possibly ac­

tuators of diverse types. Enabling intercommunication and collaboration among these 

transducers, especially in a manner such that the sensing system is easily reconfigurable, 

is often problematic due to the various interfaces through which communication with in­

herently different types transducers must take place. For example, the interface through 

which readings are obtained from an analog transducer is often quite different from that 

through which readings are obtained from a digital transducer. Therefore, facilitating 

interoperability between the devices often requires solutions that are specific to the in­

terfaces through which they communicate. Reconfiguring such solutions in large systems
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in which numerous sensors and actuators are present can become unwieldy to the system 

user when transducers with newer interfaces are to be introduced and utilized within the 

systems.

One approach that aims to simplify the specification and assembly of multi-sensor 

systems, aspects of which are utilized in the design of the software architecture described 

in thesis, is the Logical Sensor Specification (LSS) [2, 3]. The LSS introduces the useful 

abstraction of a logical sensor, shown in Figure 1.1. The specification of a logical sensor 

facilitates the abstraction of the data produced by many different types of sensors into 

a uniform representation that is adhered to by all the sensors, and thus the internal 

hardware implementation of a sensor and the details of its data acquisition interface are 

completely hidden from the system user. As a result, dynamically reconfigurable modular 

sensing systems may be easily assembled through the composition of the logical sensor 

representations of its comprising sensors.

Since a logical sensor exposes a standardized interface, another strength of the logi­

cal sensor abstraction is that a logical sensor need not necessarily be associated with a 

physical entity. A logical sensor may be a software program that satisfies this abstrac­

tion interface, or may be a physical sensor that is augmented with processing algorithms 

implemented in software. Hierarchies of logical sensors may even be assembled in which 

multiple logical sensors are combined to form a composite logical sensor that appears 

to the system user as a single entity. Logical sensors higher in the hierarchy communi­

cate with encompassed logical sensors lower in the hierarchy through the transmission of 

commands that are interpreted by a control command interpreter, and acquire data from 

the logical sensors through any of a set of programs each designed to obtain data in a 

unique fashion from a set of inputs. The ability of a logical module to selectively utilize 

different methods of acquiring data, through the use of its selector, is useful in the event 

of failure in the lower levels of the hierarchy. An example of a logical sensor hierarchy in
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Logical Sensor 
Output

Incoming Control 
Commands

Logical Sensor Name ir
Selector

Command Control 
Interpreter

Program 1 Program n

Logical Sensor 
Inputs

Logical Sensor 
Inputs

Outgoing Control 
Commands

Figure 1.1: Logical sensor block diagram [2]

which two two-dimensional cameras and a stereo processing algorithm, or alternatively 

an active range camera, are used to implement a three-dimensional measurement system 

is shown in Figure 1.2.

Another existing architecture that provides similar benefits to that of a logical sen­

sor hierarchy is that of logical neighbourhoods [4, 5]. In this architecture, sensor and 

actuator nodes are abstracted into uniform virtual nodes that may in turn be further 

abstracted into a composite collection termed a logical neighbourhood. Logical neighbour­

hoods appear as a single virtual node entity that may be further composed into larger 

neighbourhoods. Virtual nodes higher in the hierarchy transmit commands and data 

to nodes lower in the hierarchy through a wireless interface. The definition of virtual 

nodes and logical neighbourhoods is facilitated through template definitions written in 

the SPIDEY  declarative language [4, 5].
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Figure 1.2: Sample logical sensor hierarchy [3].

1.3.2 The IEEE 1451 Standards

The knowledge representation scheme utilized with the software architecture to represent 

the functionality and capabilities of modular sensing and actuation components utilizes 

aspects of the NIST IEEE 1451 [6, 7] family of standards for smart transducers. These 

standards describe a set of network-independent communication interfaces that simplify 

the connection of sensors or actuators to microprocessors, instrumentation systems, and 

networks, enabling them to be utilized in a “plug-and-play” manner. The core feature of 

these standards is the Transducer Electronic Data Sheets (TEDS) defined for each trans­

ducer type, which is a region of memory that stores information about the functionality 

and capabilities of the transducers, such as calibration information and measurement 

range, in an easily accessible and network-independent form. Where embedded mem­
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ory is not available to facilitate local storage of the TEDS, a remote virtual TEDS may 

instead be used. A standard TEDS layout is shown in Figure 1.3.

The first member of the IEEE 1451 family of standards is IEEE 1451.0. This standard 

defines a common set of commands and TEDS on which the other members of the IEEE 

1451 family are built. Through the use of these commands, sensors and actuators may 

be accessed in a standard fashion independent of the communications medium to which 

they are connected. This also simplifies the addition of further IEEE 1451 standards to 

the family as the need arises. The second standard, IEEE 1451.1, defines a standard 

object-oriented, extensible class hierarchy that describes the behaviour of, and provides a 

software interface to, networked smart transducers. This network-based software interface 

to the transducers is facilitated by a processing node present within each smart transducer 

known as the Network Capable Application Processor (NCAP). The NCAP contains the 

logic and hardware necessary to enable the smart transducer module to be interfaced 

with the communications medium. A customized software framework may be easily 

implemented through the utilization and composition of the classes present within the 

IEEE 1451.1 hierarchy.

Each of the remaining members of the IEEE 1451 family define a unique TEDS 

specification and an interface that provides a link between the NCAP and a particular 

class of transducers, enabling those transducers to be accessed through any communica­

tions medium to which the NCAP may be interfaced. These standards are depicted in 

Figure 1.4 and are outlined below:

• IEEE 1451.2 —  The IEEE 1451.2 standard defines a point-to-point digital inter­

face, termed the Transducer-Independent Interface (TII), between the NCAP and a 

Smart Transducer Interface Module (STIM). A STIM contains and provides a stan­

dard digital interface to the various analog and digital transducers present within 

a particular networked smart transducer module.
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Basic TE D S (64 bits)

Selector (2 bits)
Template ID (8 bits)

Standard T emplate TE D S

Selector (2 bits)
Template ID (8 bits)

Calibration TE D S T emplate

Selector (2 bits)
Extended End Selector (1 bit)

User Data

Figure 1.3: Sample TEDS layout [8].

• IEEE 1451.3 —  The IEEE 1451.3 standard defines a distributed multi-drop dig­

ital interface, facilitated through a Transducer Bus Controller (TBC), between the 

NCAP and any number of Transducer Bus Interface Modules (TBIMs). Each TBIM 

provides a standard digital interface to one or more of the transducers present within 

the multi-drop network.

• IEEE 1451.4 —  The IEEE 1451.4 standard defines a digital mixed-mode interface 

(MMI) between the NCAP and any number of mixed-mode transducers (MMX). 

Mixed-mode transducers are able to transfer data in both analog and digital forms.

• IEEE 1451.5 —  The IEEE 1451.5 standard defines a digital wireless interface be­

tween the NCAP and any number of transducer modules utilizing various standard 

wireless transmission protocols. Supported protocols include WiFi (IEEE 802.11),
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Figure 1.4: Application of the IEEE 1451 standards.

Bluetooth (IEEE 802.15.1), and ZigBee (IEEE 802.15.4).

• IEEE 1451.6 —  The IEEE 1451.6 standard defines a digital interface between the 

NCAP and any number of transducer modules utilizing the CANopen controller area 

network bus protocol. Both intrinsically safe and non-intrinsically safe operating 

modes are supported.

• IEEE 1451.7 —  The IEEE 1451.7 [9] standard defines a digital interface between 

the NCAP and any number of transducer modules that support communication with 

ISO/IEC 24753-compliant radio-frequency identification (RFID) tags. RFID tags 

are normally applied to objects of interest for tracking and identification purposes.

1.3.3 Existing Modular Sensing Systems

A number of implementations of reconfigurable modular sensing systems exist in which 

smart sensor and actuator components may be combined or otherwise collaborate, and 

are described in the following subsections. Further relevant literature pertinent to the 

individual components of the software architecture described in this thesis may be found
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in subsequent chapters.

Mica

A popular implementation of a reconfigurable modular sensing system is the UC Berkeley 

Mica platform [10]. Each Mica node, known as a moie, measures 1.25 x 2.25 inches and 

runs the TinyOS real-time operating system [11] using a 4 MHz ATmegal03L or AT- 

megal28 microcontroller. Wireless communication capability of up to 115 kbps (kilobits 

per second) is facilitated through the use of an RF Monolithics TR1000 transceiver. Al­

though the motes are capable of collaboration through the use of a peer-to-peer multi-hop 

wireless networking protocol, no actuation capabilities are supported, and therefore the 

motes are limited to operating in non-active sensing applications.

Smart-Its

A similar system to the Mica project is the Smart-Its [12] project. Smart-Its are self- 

contained nodes, as small as 17 x 25 x 15 mm, designed to be stuck onto everyday 

objects. The objects are thus enhanced with sensing and computational capabilities. 

Each Smart-Its node is aware of its attached sensors and is capable of relaying this infor­

mation to other nodes in its environment on demand through the use of a query-based 

Perception Application Programming Interface (PAPI). Using the PAPI, each node can 

gather readings from other nodes in its environment in addition to its own sensor reading 

through a wireless interface. These values may then be processed locally and transmitted 

to higher-end devices such as personal computers and personal digital assistants (PDAs). 

However, like the Mica motes, the active operation and automatic reprogramming capa­

bility of Smart-Its nodes is limited.
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eBlocks

More closely related to the system described in this thesis are the eBlocks [13, 14] embed­

ded system building blocks. An eBlock is an electronic module, incorporating a Microchip 

PIC microcontroller to provide local intelligence, that allows a small-scale sensor-based 

system to be created by connecting various eBlocks together. Unlike general purpose 

sensor-network nodes such as the Mica motes, and like the system described in this the­

sis, each eBlock performs a specific, well-defined function. Simple sensor networks may 

be constructed even by users who are not technically adept.

There are four classes of eBlock: sensor blocks, which include sensors such as light 

and motion detectors and output either a digital “yes” or “no” ; logic/state blocks, which 

combine the yes and no outputs from the sensor blocks and generate further outputs 

using combinational or sequential logic; communicate blocks, which transform a wired 

interface into a wireless link; and output blocks, which include an actuator such as an 

LED, buzzer, or relay, and also possess a general-purpose interface that may be used to 

control other electronic devices or communicate with a more powerful processing device 

such as a personal computer. Although reconfigurable, connected blocks are unable to 

determine their overall geometry or quickly and automatically assume a collective identity 

to suit new configuration requirements. The possible applications of the system are also 

limited due to the usage of simple combinational and sequential logic functions to produce 

composite readings and actions.

I-BLOCKS

Another relevant project focusing on the development of modular sensing systems is the 

I-BLOCKS project [15], in which LEGO DUPLO bricks are populated with a PIC16F876 

microcontroller as well as select sensors and actuators. These building blocks, like the 

eBlocks, allow the creation of a modular sensing system without the need to learn and
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use a traditional programming language. When physically connected, the blocks are able 

to communicate with each other through a half-duplex connection, and may also employ 

wireless communication if desired. The blocks have also been demonstrated to be capable 

of achieving a degree of positional awareness through the use of infrared positioning 

techniques based on sensor fusion of the readings produced by multiple infrared sensors. 

However, like the eBlocks, connected blocks are unable to determine their overall geometry 

or automatically assume a collective identity based on their orientations. The blocks are 

also not designed to be easily reprogrammed to suit changing application requirements.

MASS

MASS (Modular Architecture for Sensing Systems) [16] is a modular sensing system 

architecture that is optimized for low power consumption and is based on modular intel­

ligent nodes. Each node itself consists of physically separable and hot-pluggable modules, 

each containing a processing controller that facilitates access to resources specific to the 

module. Node modules communicate through a shared 80-pin bus that also provides 

structural integrity.

There are four types of MASS modules that may be combined as necessary to produce 

a node to suit a specific application: General Purpose Processor modules (GPPs), which 

contain a powerful microprocessor or digital signal processor (DSP) used for heavy local 

data processing or sensor fusion; sensor modules, which contain a specific type of sensor 

and a low power controller that performs rudimentary local sensor data analysis; Wireless 

Network Connector (WNC) modules, which provide wireless connectivity that facilitates 

inter-node communication; and power modules, which provide power to an entire node. 

Upon connection, modules within a particular node detect each other’s resources and the 

node assumes an appropriate behaviour profile based on the resources discovered.

Similar to the software architecture described in this thesis, the MASS software ar­
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chitecture is a layered architecture based on the Open Systems Interconnection (OSI) 

reference model [17], and contains a message-based API (Application Programming In­

terface) for inter-node communication. Exchange of IEEE 1451-compliant datasheets 

as described in Section 1.3.2 is also supported. However, MASS provides no capability 

for active nodes nor the assumption of behaviour profiles based on node positions and 

orientations.

BUG

BUG [18] is a powerful modular sensing system platform consisting of a collection of 

electronic modules that are designed to be snapped together to produce a variety of 

composite components. Available BUG modules include: BUGbase, which is a fully pro­

grammable embedded computer based on the ARM1136JF-S microprocessor possessing 

128 MB (megabytes) of on-board memory, several high-speed communication interfaces 

including Ethernet, and four slots to which other BUG modules are attached; BUGview, 

which contains a 2.46 inch touch-screen LCD with a resolution of 320 x 240 pixels; BUG- 

motion, which consists of an infrared motion detector with a range of 2 meters and an 

accelerometer with a software-selectable 2.5 g to 10 g sensitivity; BUGlocate, which con­

tains a (GPS) receiver based on a SiRF chipset; and BUGcam2MP, which contains a 

2-megapixel camera capable of capturing video. Although extremely flexible, the BUG 

platform does not currently provide functionality to facilitate active sensing. In addi­

tion, the orientations in which BUG modules may be attached to the BUGbase are still 

somewhat limited, and cannot be determined, thus restricting the ability of a composite 

BUG system to form a new collective identity based on the orientation of its constituent 

components.
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Posey

Posey [19] is a hub-and-strut construction kit enhanced with computational ability. 

Within a Posey assembly, hubs and struts are optocoupled into flexible ball-and-socket 

joints with three degrees of freedom, where each ball possesses an array of 11 infrared 

LEDs and each socket possesses an array of four phototransistors. Each hub and strut 

contains an embedded ATmegal68 microcontroller that captures data from the optocou­

pled connections, which is used to determine the geometric configuration of any particular 

joint without requiring explicit alignment of the joint. The microcontroller then relays 

this information through an XBee ZigBee (IEEE 802.15.4) wireless transceiver to a re­

mote personal computer for further processing. Although Posey supports the acquisition 

of position and orientation information from the local processing unit located within each 

ball-and-socket joint, the units themselves do not locally collaborate to form a composite 

entity. Rather, the system depends upon a more powerful mainstream computer system 

to provide the necessary intelligence to compose the data provided from the joints.

1.4 Research Objective

The aim of this work is to develop a software architecture and knowledge representa­

tion scheme that facilitates the flexible, scalable, and reliable combination of modular 

sensing and actuation components for the purpose of forming composite sensing devices 

with motion capability. Each modular component provides a core sensing or actuation 

functionality (such as temperature or pressure measurement) and contains embedded 

knowledge of its capabilities (such as its operating range and response time), which is 

communicated to other modules within its environment. The design of the architectural 

framework should fulfil the following criteria:

• Heterogeneity —  Support the connection of sensor and actuator modules possess-
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ing diverse functionality and capabilities.

• Autonomy —  Support the autonomous discovery of the capabilities of networked 

modules, and the autonomous configuration of these modules based on their dis­

covered capabilities.

• Pose/Geometry Determination —  Support the determination of the absolute 

or relative pose (position and orientation) of individual modules, and by extension 

the overall geometry of a set of connected modules.

• Assumption of a Collective Identity —  Facilitate the assumption of a collective 

identity by successfully connected modules, based on their capabilities and relative 

positions and orientations.

• Process Distribution —  Support the splitting and distribution of a complex task 

among a group of networked modules.

• Resource Management —  Manage the hardware resources on each module in an 

efficient, intuitive, and simple manner.

• Scalability —  Maintain reliable operation with an increasing number of connected 

sensor and actuator modules.

• Robustness —  Adapt automatically to the addition, removal, or failure of modules 

in real-time.

1.5 Thesis Outline

This thesis is divided into eight chapters that progressively describe the design and op­

eration of the software architecture from its lowest level interactions with the module
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hardware to its highest level software components. A brief synopsis of the contents of 

each chapter is provided as follows:

• Chapter 1 — Introduction: This introductory chapter. Outlines the motivation 

behind the development of the software architecture as well as its design criteria, 

and provides a survey of existing modular sensing system architectures as well as 

standards facilitating sensor interoperability.

• Chapter 2 — Architecture Description: Outlines the software architecture 

itself and the hardware on which it executes. Topics covered include the utilized 

real-time operating system and file system, as well as an overview of the various 

layers present within the architecture.

• Chapter 3 — Communication Layer: Describes the communication layer of 

the software architecture, which provides a reliable, connection-oriented service for 

wired and wireless communication to the layers above it, and also facilitates time 

synchronization between modules.

• Chapter 4 — Middleware Layer: Outlines the middleware layer of the software 

architecture, which defines a standard application programming interface (API) that 

facilitates interoperability between the modules on which the architecture executes 

and enables them to request services from each other.

• Chapter 5 — Virtual Machine: Describes the virtual machine utilized within 

the software architecture, based on Sun Microsystems’ Java Virtual Machine, that 

promotes the straightforward portability of collaborative intelligence algorithms be­

tween diverse module hardware platforms.

• Chapter 6 -— Composition Layer: Outlines the composition layer of the software 

architecture, where intelligence is implemented and utilized in the form of platform-
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independent algorithms that enable a group of modules to collaborate and form 

composite entities.

• Chapter 7 —  Architecture Evaluation: Provides results and analysis of the 

behaviour and performance of the software architecture once deployed on actual 

module hardware.

• Chapter 8 —  Conclusions: Provides a final overview of the software architecture 

and also provides recommendations for further improvement.



Chapter 2

Architecture Description

2.1 Introduction

This chapter provides a description of the module hardware on which the software archi­

tecture executes, as well as the layered model on which the architecture is based. The 

real-time operating system utilized for the purpose of concurrent task management is 

then described, followed by information on the file system driver and the organization of 

the standard file structure. A description of the core data types utilized throughout the 

software architecture is then provided.

2.2 Module Hardware Overview

2.2.1 Transducer Interface Modules

The basic module used to construct modular sensing systems is the transducer interface 

module (TIM). Each is capable of a single sensing or actuation function, and is uniquely 

identified by a 64-bit address. This address possesses a most significant bit of zero, since 

addresses with a most significant bit of one are reserved for assignment to composite

18
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module entities termed logical modules that are comprised of a set collaborating TIMs. 

The zero address and the address of all ones are also reserved, and may not be assigned 

to single nor composite modules. The address of all ones is utilized for broadcasts to 

all the modules comprising a modular sensing system. With this addressing scheme, up 

to approximately 9.2 x 1018 physical transducer modules may be uniquely addressed, a 

value which is likely to exceed the number of modules created throughout the lifetime of 

the technology. As specified in the IEEE 1451 standard for smart transducers [6], each 

module possesses one or more Transducer Electronic Data Sheet (TEDS) specifications 

in non-volatile memory, from which a description of the characteristics of its associated 

sensors or actuators may be obtained.

TIMs are cubical in shape, and thus each possesses six faces to which up to five 

other modules may be connected, as shown in Figure 2.1. One face is reserved for use 

by the transducer associated with the module. The hardware which comprises a TIM, 

shown in Figure 2.2, includes the associated transducer; a high-speed NXP Semiconduc­

tors LPC2148 ARM-based microcontroller [20]; a Nordic Semiconductor nRF24L01 [21] 

wireless transceiver supporting high-speed data transmission, multi-channel operation 

and carrier detection; a Secure Digital™ (SD) flash memory card providing high-capacity, 

non-volatile storage for data and algorithms; a power supply capable of providing a volt­

age of 3.3 volts to 9 volts; and five module connectors, which are proprietary interfaces 

used to physically connect additional modules. The interfaces are designed such that the 

relative orientation between any two connected modules may be determined. Further 

details on the electrical and mechanical design aspects of the TIMs may be found in [22].

2.2.2 Other Module Types

A modular sensing system may consist of two other types of modules significant to the 

software architecture. These modules perform tasks unrelated to sensing and actuation;
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Transducer

Figure 2.1: Transducer Interface Modules and interconnects.

Figure 2.2: Transducer Interface Module block diagram.
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instead, they support the inter-operation of a group of TIMs.

Administration Module

An administration module is used by the system user to detect and manage TIMs within 

its vicinity. It possesses only a power supply, a microcontroller, and a transceiver. It 

may be integrated into a complete computer system, or be a small, self-contained console 

with a user interface. Administration modules may also act as a sink for transducer 

readings and as a gateway for communication with a larger network, such as the Internet. 

All TIMs, however, may run an optional shell task which provides the system user with 

administrative functionality.

Interconnect Module

Interconnect modules are each built to assume one of a variety of non-standard shapes, 

and are used to provide angular and translational offsets between connected TIMs which 

would otherwise not be possible due to the cubical shape of the TIMs. An example of 

an interconnect module which provides an angular offset is shown in Figure 2.1. They 

possess only a microcontroller and module connectors, and draw power from the TIMs to 

which they are connected. The nature of the offset provided by a particular interconnect 

module is stored in its TEDS, and may be accessed through its module connectors.

2.3 Software Architecture Stack

The software architecture described in this thesis is a distributed architecture based 

on the Open Systems Interconnection (OSI) reference model [17], and consists of six 

layers (one of which is divided into two sub-layers) as shown in Figure 2.3. The use of 

a distributed architecture ensures that no single point of failure exists within a modular
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Composition Layer

V irtual Machine

M iddleware Layer

Communication Layer

Real-T ime OS Device Drivers

Module Hardware

Figure 2.3: Software architecture stack.

sensing system and also facilitates architecture scalability, unlike centralized architectures, 

in which a single point of failure is often introduced that can also limit scalability in large 

systems where communication between nodes mostly occurs through this point. The 

use of a layered architecture model allows the implementation of any layer to change 

independently of the others, since the implementation of each layer is encapsulated from 

the layer above, to which it provides service. This information-hiding technique also 

facilitates a more robust software architecture, and makes each of the architecture layers 

easier to implement, modify, and debug. The function of each layer is defined as follows:

• Module Hardware —  Contains the physical components of a module needed for 

execution of the operating system, sensing and actuation functionality, as well as 

wired and wireless communication.

• Real-Time Operating System/Device Drivers —  Provides resource manage­

ment functionality and an environment for concurrent task execution, as well as 

the low-level software routines needed to manipulate and manage the hardware 

resources present in the module.

• Communication Layer —  Provides an interface to the wireless transceiver driver
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that automatically accounts for transmission problems such as packet loss and syn­

chronization. This layer also provides an interface through which modules may 

communicate using their face connectors.

• Middleware Layer —  Provides the commands and services through which the 

member TIMs comprising a logical module may interact and communicate with 

each other in order to achieve a specific goal. A logical module is an abstraction 

of one or more collaborating TIMs, a representation of which is present locally 

on each of the TIMs comprising the logical entity. More than one logical module 

representation may be present on a single TIM.

• Virtual Machine —  Provides a platform-independent execution environment for 

the algorithms utilized in the composition layer. This enables the behaviour of a 

group of collaborating TIMs to be specified in a manner that is completely decoupled 

from their underlying hardware architecture. Platform independence is facilitated 

through the use of a compact implementation of Sun Microsystems’ Java Virtual 

Machine [23].

• Composition Layer —  Encompasses one or more logical module template algo­

rithms that process the transducer state and module pose messages transferred 

among a group of collaborating TIMs and enables them behave as a logical entity. 

Each template algorithm, in the form of a Java class, is accompanied by a logical 

module template TEDS that describes the basic characteristics of a logical module 

entity derived from on it.
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2.4 Real-Time Operating System

The software architecture utilizes a real-time operating system (RTOS), which enables 

it to be implemented in a modular fashion through the concurrent execution of various 

tasks. As a result, the management of the hardware resources of a module, as well as 

the development and debugging of the software architecture, is vastly simplified. Tasks 

are implemented as independent functions, each with its own stack and register set, that 

appear to be running simultaneously, but are actually sharing the execution time of 

the microcontroller through the use of scheduling mechanisms implemented within the 

operating system.

2.4.1 Scheduling Policies

In an RTOS, concurrently executing tasks may be scheduled using either a pre-emptive 

scheduling policy or a cooperative scheduling policy. In pre-emptive scheduling, CPU time 

is automatically shared between tasks based on their assigned priority, while in coopera­

tive scheduling each task maintains control of the CPU until it explicitly yields control. 

Pre-emptive scheduling is advantageous since it prevents long-running, low-priority back­

ground tasks from blocking shorter, higher-priority foreground tasks from executing, thus 

improving system response speed to external events. In the popular Tiny OS [11] RTOS, 

which utilizes a cooperative scheduler, all tasks must run to completion. Long-running 

background tasks are therefore prohibited, and care must be taken to ensure that each 

task completes in a reasonable amount of time.

2.4.2 Choice of RTOS

Two real-time operating systems, FreeRTOS [24] and TNKernel [25], were considered for 

use in the software architecture. Due to the limited 40 kilobytes of internal RAM (random-



2 A rchitecture Description 25

access memory) present on the LPC2148 microcontroller, more complex operating systems 

such as eCos and RTLinux could not be assessed. Both FreeRTOS and TNKernel are 

free, open source, compact, and well documented; they also possess a large user base and 

code that has been heavily tested on a variety of embedded architectures, including the 

ARM architecture. In addition, FreeRTOS and TNKernel both contain a priority-based 

pre-emptive task scheduler, and make provisions for message passing and synchronization 

between concurrently executing tasks.

The real-time operating system chosen for use in the software architecture presented 

herein is TNKernel. This RTOS was chosen over FreeRTOS due to its more compact and 

easily modifiable code base. In addition to not relying on the standard C library, TNKer­

nel does not utilize any form of dynamic memory allocation internally, thereby allowing 

the implementation of a simplified dynamic memory allocator to be used exclusively by 

the upper layers of the software architecture where necessary.

2.4.3 Task Types

Three standard background tasks, and at least one message handling task, are created 

and executed upon startup and initialization of a module. Multiple message handling 

tasks may also be created and executed by the software architecture at any point during 

its execution, depending on the type of modules that are within close proximity. These 

various task types are briefly described below.

• Network Communication Task —  Performs various duties related to commu­

nication on the various wireless data channels. These duties include broadcasting 

control packets which indicate the presence of the module in the network; trans­

mitting, receiving, and processing data packets; and maintaining synchronization 

with other modules in the environment. This task is described in further detail in

Section 3.6.
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• Face Communication Task —  Manages the communication of the module with 

others physically connected to its faces. This task detects the physical connection 

and disconnection of other modules to any of the five connectible module faces, 

handles the transfer of data through the connectors on the faces, and calculates the 

relative pose (position and orientation) between the module and those to which it 

is physically connected. This task is described in further detail in Section 3.7.3.

• Administrative Interface Task —  Allows the system user to monitor and admin­

istrate any module, or logical group of modules, within the modular sensing system. 

Some of the functionality available to the system user includes listing the modules in 

the environment, manually forming a logical module entity, reading and writing to 

module sensors and actuators, modifying the local clock of the module, and various 

debugging features such as suspending and resuming tasks and monitoring wireless 

channel activity.

• Module Message Handler Task —  Handles middleware layer messages placed 

within the incoming message queues of a TIM or a logical module entity of which 

it is a member. This task is also responsible for performing various status checks 

on its associated module before each received message is processed, such as deter­

mining if a queued write message was received from a source with the appropriate 

write permissions. At least one message handler task is created by default for a 

TIM upon initialization, to process and transmit messages related to its local hard­

ware. Other instances may be created as the TIM becomes a member of one or 

more logical module entities. For physical TIMs, the message handler task is fully 

implemented natively, while for logical modules it is mostly implemented using 

platform-independent Java classes.
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2.5 File System

A file system is a set of data structures that facilitates the storage, organization, and 

retrieval of files from a data storage device. A file system is employed within the software 

architecture to provide an efficient, high-level interface to information and algorithms 

stored on SD flash cards that determine the identity and behaviour of a particular module 

in a network. Utilizing a lightweight and widely adopted file system enables the system 

user to easily access and modify these files using standard computers and operating 

systems.

SD flash cards to be utilized by the software architecture are formatted with the 

FAT32 (32-bit File Allocation Table) [26] file system and initialized with a standard file 

structure that is described in Section 2.5.2. The FAT32 file system was chosen due to 

its wide support on numerous mainstream operating systems for personal computers, 

particularly Microsoft Windows, GNU/Linux, and Mac OS X. FAT32 is also lightweight 

as compared to other popular file systems such as ext3 (Third Extended Filesystem) [27] 

and NTFS (New Technology File System) [28] that utilize additional data structures and 

memory in order to reduce file fragmentation and to provide features such as journaling 

that aid recovery from file corruption, neither of which is crucial to the operation of TIMs. 

Finally, the FAT32 file system is also well understood, resulting in the availability of a 

number of stable and mature FAT32 file system drivers for embedded devices.

2.5.1 Choice of FAT32 File System Driver

Two popular FAT32 file system drivers, the FAT File System Module [29] and the Embed­

ded Filesystems Library (EFSL) [30], were considered for use in the software architecture. 

Both are open source, compact, and easy to use and modify. The FAT File System Mod­

ule was chosen for use in the software architecture due to the availability of the extremely
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compact Tiny-FatFs version of its standard FatFs driver. It consumes much less flash 

memory space and utilizes much less RAM as compared to FatFs and EFSL, and is also 

easily adaptable to any type of input/output (I/O ) device assuming a block I/O  driver 

is provided. Unlike FatFs and EFSL, Tiny-FatFs does not support I/O  transfers to more 

than one storage device at a time; however, the SD card is the only storage device present 

in a TIM.

2.5.2 Standard File Structure

As previously mentioned, an SD card formatted for use with a TIM is initialized with a 

standard file structure for organizational purposes. A standard file structure is utilized 

to ensure that the software architecture is consistently able to locate and access the files 

necessary for its operation from predictable locations irrespective of the underlying hard­

ware on which it executes or the storage medium on which these files are located. Access 

to these files by the users of the system is also made more convenient. The file structure 

designed for the purposes of the software architecture is depicted in Figure 2.4, and con­

sists of four directories as well as up to four different types of files. These directories and 

files are described below.

• Template Class Directory —  The template class directory amss/algo is the di­

rectory in which the Java classes, termed the logical module template classes, are 

placed. These classes provide the platform-independent intelligence that enables 

connected TIMs to collaborate with each other. The template class directory path 

amss/algo adheres to the Java naming convention for package paths, and corre­

sponds to the package amss. algo that all template classes are declared a member of. 

Unlike standard Java classes, template classes possess no . class extension since the 

Tiny-FatFs driver requires strict adherence to the 8.3 file naming convention [31]. 

In this convention files may only possess a name consisting of up to eight characters
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Figure 2.4: File system block diagram.

optionally followed by a period and an extension of three characters. This limita­

tion was imposed by the original FAT file system used in older Microsoft operating 

systems, and is only non-obligatory in the more complex implementations of FAT32 

utilized in mainstream operating systems.

• Module TEDS Directory -— The module TEDS (Transducer Electronic Data 

Sheet) directory teds consists of one or more text files termed module TEDS1 each 

possessing the extension .mod, that identify and describe the characteristics of 

the transducers associated with a particular physical TIM in the form of a list 

of property-value pairs. The format of these text-based specifications is further 

described in Section 2.6.

• Template TEDS Directory —  The template TEDS directory tmpl consists of 

zero or more text files termed template TEDS that identify and describe the char­

acteristics of a combination of collaborating TIMs known as a logical module. Tern-
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plate TEDS are specified using the same format as module TEDS and possess the 

same .mod extension. Each template TEDS specification is associated with one 

template class in the template class directory. In addition to the standard char­

acteristics of the logical module, a template TEDS specification also describes the 

various roles (further outlined in Section 6.2.2), also in the form of property-value 

pairs, that may be fulfilled by a particular TIM within the logical entity. The us­

age of template TEDS files within the software architecture is further outlined in 

Chapter 6.

• ARC4 Key File —  The ARC4 key file k ey .rc4  stores the variable-length key 

required by the Alleged Rivest Cipher 4 (ARC4) cryptographic stream cipher [32] 

utilized by the software architecture for the secure transmission of packets. If this 

file is not found, a default key is used. All packets transmitted by TIMs on the 

wireless communication medium are encrypted and decrypted in software using the 

ARC4 algorithm, and modules are only able to communicate with others that are 

utilizing the same key. Packets received from modules utilizing different keys will 

be indecipherable upon reception and are dropped. More details on the ARC4 

algorithm and key file may be found in Sections 3.2.4 and 3.5 respectively.

• Network Identifier File —  The network identifier file net. id  stores the 5-byte 

network identifier used to indicate that a particular TIM is a member of the network 

of TIMs possessing the network identifier specified. If this file is not found, a 

default identifier is used. Packet transmissions from modules with different network 

identifiers are completely ignored, thus reducing packet processing overhead within 

the software architecture. More details on the network identifier may be found in 

Sections 3.3 and 3.5.
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2.6 TEDS Specification Format

As described in Section 2.5.2, TEDS (Transducer Electronic Data Sheet) specifications are 

text files that are defined to identify and describe the characteristics of the transducers 

associated with a particular physical TIM, or to identify and describe the general char­

acteristics of a combination of collaborating TIMs known as a logical module. A TEDS 

specification always possesses the extension .mod, and consists of a list of property-value 

pairs, each on a separate line, with whitespace used to separate each property name from 

its value. Comments are supported within the file format; all characters on a line after 

and including the # character are ignored. The usage of a text format enables the TEDS 

to be specified in an easily human-understandable form, unlike the binary TEDS format 

normally utilized within the IEEE 1451 standards for smart transducers [8], which is typ­

ically incomprehensible to human readers. The Extensible Markup Language (XML) [33], 

a popular format for representing data through the use of text, is not utilized for the 

purpose of module TEDS specification since it introduces redundant, verbose syntax that 

often makes information of interest difficult to locate by human readers. XML is also 

non-trivial to parse, especially on resource-constrained embedded devices.

Sample module TEDS specifications may be seen in Section B.2, and sample tem­

plate TEDS specifications may be seen in Section B.3. A standard TEDS specification 

consists of three sections. The first section is the AMSS (Adaptive Modular Sensing 

System) TEDS, which is specific to the software architecture and describes the essential 

attributes of a module necessary for the software architecture to utilize it. The other two 

sections, the Basic TEDS and the Standard Template TEDS, facilitate the definition of 

manufacturer-specific information and transducer properties as defined within the IEEE 

1451 standards, and are outlined in [8]. An additional Roles section, also specific to the 

software architecture, is present only within template TEDS specifications. As described 

in Section 2.5.2, the Roles section defines the roles within a logical entity derived from



2 A rchitecture Description 32

the template TEDS that may be fulfilled by its member modules, and is further outlined 

in Section 6.2.2. The fields contained within an AMSS TEDS specification are defined as 

follows:

• Module Address —  The 64-bit address assigned to a module to uniquely identify 

it. This field is not present within template TEDS specifications, since the addresses 

of the logical modules derived from these templates are automatically assigned by 

the software architecture at runtime.

• Module Type —  A constant indicating the type of the module, which may be a 

sensor module, an actuator module, an interconnect module, or an administrator 

module.

• Module Class — A constant indicating the class of the module. A class refers 

to a family of sensors or actuators that may be used to sense a particular physical 

quantity or facilitate a specific type of motion respectively. Currently, the supported 

module classes are acceleration modules, positional modules, rotational modules, 

status modules, text display modules, and voltage modules.

• Module Data Type —  A constant indicating the data type of the array of values 

returned by the module. The return type may be an 8-bit, 16-bit, 32-bit, or 64-bit 

signed or unsigned integer, a 32-bit or 64-bit floating point value, a status string, 

an encompassed middleware layer message (see Section 4.3), or a generic object 

consisting of raw bytes.

• Module Data Type Width —  Specifies the number of columns in the array of 

values returned by the module.

• Module Data Type Height —  Specifies the number of rows in the array of values 

returned by the modules.
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• Primary Handler Name —  A string storing the name of the appropriate driver 

function that handles accesses to the sensing or actuation devices associated with the 

module. This field is not present within template TEDS specifications, since logical 

modules derived from these templates indirectly utilize the sensing or actuation 

resources provided by its member modules.

2.7 Core Data Types

A variety of data structures are used to represent and store information at each layer 

of the software architecture, and many are utilized throughout multiple layers. Most of 

these data structures are defined directly using the standard array, structure, and union 

data types provided within the C programming language used for the development of 

the software architecture. However, lists and queues, which are utilized heavily, are not 

provided as standard constructs within C. Therefore, a custom vector data type was 

implemented to provide the functionality of both a list and a queue. The core data 

structures utilized throughout the software architecture are described in the following 

subsections.

2.7.1 Vector Implementation

A vector may be implemented either as a dynamic array, in which a single block of mem­

ory is allocated for all constituent elements and resized as necessary; or as a linked list, 

in which memory is dynamically allocated for each constituent element as needed. The 

vectors utilized within the software architecture are based on dynamic arrays. Dynamic 

arrays were chosen because they do not require each element to be associated with point­

ers that maintain the links between constituent element nodes. As a result, memory 

utilization is minimized. In addition, the most common operations performed on vectors
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in the software architecture are random access and insertion or deletion at the end of the 

vector, of which random access is generally much faster when utilizing dynamic arrays. 

This is seen upon comparison of the computational complexities of these operations for 

linked lists and dynamic arrays.

The computational complexity of an algorithm, typically specified using big-0 no­

tation, is a theoretical measure of how costly (in terms of execution time or memory 

requirements) the algorithm is relative to an input of size n. A function f (n )  is 0(g(n))  

if f (n)  is less than a constant multiple of g(n).  Linked-lists have O(n) complexity for 

random access operations and 0 ( 1 ) complexity for insertion or deletion operations at the 

end of the list. This indicates that the typical time required to perform a random access 

operation on a linked list is proportional to the number of elements in the list, while 

insertion and deletion operations at the end of the list take constant time irrespective of 

the number of elements. Dynamic arrays have 0 (1 ) complexity for both random access 

operations and insertion or deletion operations at the end of the array, and therefore both 

operations take constant time irrespective of the number of elements in the array.

2.7.2 Task Data Types

Task Structure

A task structure is used to store the properties and data needed to describe and maintain 

an executing task. Additional data is stored within a task structure beyond that uti­

lized internally by the RTOS, and facilitates the provision of identification and statistical 

information. This information is utilized by the administrative interface task to report 

statistics related to the currently running tasks, including itself, on a module. The values 

contained within a task structure are as follows:

• Task Control Block — A structure used internally by the TNKernel RTOS to
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manage the execution of the task. The task control block contains data such as 

task priority and time slice counters.

• Code —  The function that implements the task algorithm and is provided with its 

own context in which to concurrently execute.

• Stack —  A block of memory exclusive to the task that facilitates function calls, 

recursion, local variables, and servicing of interrupts.

• Name —  A variable-length string indicating the name of the task, for easy identi­

fication by the system user.

• Identifier —  A 32-bit unsigned integer unique to each task running on the module 

hardware, used for identification purposes within the software architecture.

• Parameter —  A pointer used to pass a single parameter or multiple parameters 

to the task function.

• Processor Usage —  Two variables used in calculating the percentage of time the 

task spends executing relative to other concurrently executing tasks, and reporting 

it to the system user.

Task Structure List

The task structure list is a global vector used to store the task structures that represent 

each concurrently executing task on a module. The provision of a global task structure 

list makes available to the software architecture a single, standard location from which all 

the task structures representing the tasks running on a module may be accessed. Newly 

created and initialized tasks are automatically appended to the task structure list before 

their execution begins, and are automatically removed from the task structure list when 

their execution ends.
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2.7.3 Module Data Types

Module Structure

A module structure is used to store data that represents the state of a single transducer 

on a physical TIM or the state of a logical entity formed by a group of collaborating 

TIMs. Upon startup, module structures are created and initialized on a TIM based on 

each module TEDS specification found in its module TEDS directory. TIMs are required 

by default to support a single sensing or actuation function, and will normally provide a 

single module TEDS specification. However, a TIM with additional sensing and actuation 

capabilities will normally provide additional module TEDS specifications associated with 

each capability. Each transducer element will appear within the sensing system network 

as a unique TIM.

As a TIM discovers other modules within its network, it will automatically search 

for compatible modules with which it can collaborate and form a logical entity. For each 

logical entity joined or created, a representative module structure is created locally on the 

TIM. Further details on the usage of module structures associated with logical entities 

may be found in Section 6.2. The data that comprises a module structure is described 

below:

• Message Handler Task Identifier —  Identifies the message handler task (fur­

ther outlined in Section 4.5) associated with the module structure that processes 

messages received by the represented module.

• Execution Flag —  Used to track whether the associated logical module task is 

running or shut down. Module structures associated with shut down logical module 

tasks are garbage collected.

• Synchronization Level —  Indicates the degree to which the local clock of the 

module should be considered a reference for synchronization. Lower values corre­
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spond to more accurate references. Interconnect modules are initialized with the 

highest synchronization level of 255, standard TIMs are initialized with a synchro­

nization level of 254, and administration modules are initialized with the lowest 

synchronization level of 1. After each synchronization with a reference, the local 

synchronization level is set to that of the reference plus one.

• Status Check Timestamps —  A set of timestamps, each of which is associated 

with one of a number of status checks that maintain the integrity of the module 

structure. These checks ensure that the module is not indefinitely locked or oth­

erwise becomes incapable of processing incoming messages. After the invocation 

of its associated status check, each timestamp is updated by the module task to 

indicate the time of the next invocation.

• Locking Address —  If non-zero, indicates the address of the remote module that 

has locked the TIM. Locked TIMs can be read by all modules, but can only be 

written to by the module that issued the lock until the lock is released.

• Logical Module Template —  A structure that stores the template class and roles 

that describe the behaviour of a logical module entity. It is used only if the module 

structure represents a logical module.

• Membership List —  Stores membership structures that indicate the roles that 

the module fulfils in one or more logical module entities.

• Incoming Message Queues —  Three queues in which incoming messages to be 

processed by the task associated with the module structure are placed. The Call-At 

and Call-By message queues store messages to be processed at or by a particular 

deadline respectively, while the Return message queue stores messages returned by 

other modules in response to an issued command.
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• TEDS Properties —  A collection of variables and a vector of TEDS entry struc­

tures that collectively describe the properties of a TIM and its associated transducer. 

The values used to initialize the properties are loaded from the respective TEDS 

file located in the module TEDS or template TEDS directories.

• Primary Message Handler —  A pointer to the driver function that handles read 

and write messages to the sensing or actuation device on the module.

Module Structure List

The module structure list is a global vector used to store the module structures that lo­

cally represent each physical or logical module entity associated with a particular TIM. 

The provision of a global module structure list makes available to the software architec­

ture a single, standard location from which all the module structures representing the 

transducer elements or logical entities available on a particular physical TIM may be 

accessed. Newly created and initialized module structures are automatically appended to 

the module structure list before they are utilized, and are automatically removed when 

they are shut down.

Membership Structure

Membership structures are stored within the membership list of a module structure, and 

each provides essential information about a single role that the encompassing module 

fulfils within a particular logical entity in a modular sensing system. The fields comprising 

a membership structure are:

• Logical Module Reference —  A reference to the local module structure as­

sociated with the logical module that the membership structure is representing 

membership of.
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• Role Number —- Indicates the role fulfilled within the referenced logical entity by 

the module possessing the membership structure.

• Physical Dependency Address —  The address of a remote physical TIM (that is 

also a member of the logical entity) to which a direct or indirect physical connection 

must be present for membership to be considered valid.

TEDS Entry Structure

A TEDS entry structure represents a single property-value pair that forms part of a 

complete module TEDS or template TEDS specification. It consists of two 24-byte strings 

used to store the name of the property and its associated value respectively. The use of 

24-byte strings facilitates acceptably small memory consumption by TEDS specifications, 

while being sufficiently large enough to allow the name and associated value of each TEDS 

property to be expressed in an easily human-understandable manner.

2.8 Summary

In this chapter, the transducer interface module (TIM) hardware on which the software 

architecture executes was described, as well as the layered model on which the architecture 

is based. Also outlined was the TNKernel real-time operating system at the heart of the 

software architecture, the FAT32-based file system used for non-volatile data storage, 

and the core data structures utilized throughout the various architecture layers. The use 

of a real-time operating system and a layered model promotes modularity, resulting in 

the software architecture being easier to implement, modify, and debug. The following 

chapter will describe the operation of the communication layer.



Chapter 3

Communication Layer

3.1 Introduction

The purpose of the communication layer is to provide logical link control in the form of 

a secure, reliable, connection-oriented service; medium access control to prevent channel 

access conflicts; a mechanism for time synchronization between modules; and wireless se­

curity through the encryption of transmitted data, facilitated by a cryptographic stream 

cipher. The communication layer accepts messages from the middleware layer and splits 

them into discrete packets, which are then encrypted and transmitted through the wireless 

transceiver driver. Conversely, the communication layer also accepts and decrypts incom­

ing packets from the wireless transceiver driver, merges them into messages if necessary, 

and passes them to the middleware layer. The communication layer also implements a 

wired protocol that facilitates the direct transmission of data through the faces of physi­

cally connected TIMs.

40
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3.2 Communication Layer Services

3.2.1 Logical Link Control

Wireless communication tends to be very unreliable in the absence of an error correction 

mechanism, mainly due to the regular interference encountered by radio waves during 

their propagation. Therefore, a reliable, connection-oriented service must be provided 

within the communication layer to ensure that transmitted packets arrive error-free and 

in the correct order. This service is facilitated in the form of a Positive Acknowledgement 

with Retransmission (PAR) data link protocol, which is partially implemented within the 

nRF24L01 transceiver hardware under the Enhanced ShockBurst™ feature set [21].

In this protocol, depicted in Figure 3.1, each packet that requires guaranteed trans­

mission is automatically acknowledged by the receiving module through the use of an En­

hanced ShockBurst™ acknowledgement packet (ACK). Among the data present within 

each received packet are a cyclic redundancy check (CRC) checksum used to detect packet 

transmission errors and a packet identification (PID) number used to differentiate between 

new and retransmitted packets. The CRC checksum and PID number are both automat­

ically generated by the transceiver of the transmitting module. A received packet is 

considered valid by the receiving module only if its CRC checksum is valid and its PID 

number does not match that of the previously received valid packet. The PID number is 

incremented after the transmission of each packet, and therefore a repeated PID number 

indicates that the previous packet was assumed lost by the transmitting module and was 

therefore retransmitted.

After transmitting a packet the transmitting module listens to the wireless channel 

for an acknowledgement packet, for a period of time known as the valid acknowledge­

ment time window, depicted in Figure 3.1 as an ACK RX block. This time period is set 

to the maximum window length of 4 ps as permitted by the nRF24L01 transceiver. If
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Transmitter I TX(PID =1) I I ACK RX I I TX(PID =1)

▼
(Lost)

ACK RX I I TX (PID = 1 ) 

(Lost)

ACK RX I I TX (PID = 2) I I ACK RX

Figure 3.1: Transmission of two packets using an unreliable medium.

the valid acknowledgement time window elapses without the acknowledgement packet 

being received, the transmitting module assumes that the transmitted packet or its cor­

responding acknowledgement packet was corrupted and automatically resends the packet. 

If the maximum 15 retransmissions permitted by the nRF24L01 transceiver occur with­

out success, transmission attempts are halted and the transceiver generates an interrupt 

indicating the packet transmission failure.

A message which is larger than the 96-bit maximum transmission unit (MTU) defined 

by the communication layer (see Section 3.3) is fragmented into multiple packets before 

transmission. The message transmission and reception process is further detailed in 

Sections 3.6.1 and 3.6.2 respectively.

3.2.2 Medium Access Control

Since a modular sensing system will normally be comprised of a number of collaborating 

modules, a Medium Access Control (MAC) protocol needs to be provided within the 

communication layer to share the single multi-access broadcast channel among the many 

contenders competing for control of the medium. A MAC protocol may generally be 

described as being either a static allocation protocol or a dynamic allocation protocol. 

In static allocation protocols, channel bandwidth is divided into equally sized portions, 

with each portion allocated to one transmitting device. In dynamic allocation protocols, 

channel bandwidth is allocated to each transmitting device on an as-needed basis. The 

following MAC protocols were considered for use in the software architecture:
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• TD M A —  TDMA (Time Division Multiple Access) [17] is a static allocation pro­

tocol in which a single communication channel is shared by dividing access to the 

channel into a number of consecutive time slots. Each user is allocated one time 

slot, and is only permitted to transmit during that time slot. TDMA is efficient at 

high loads; however, when loads fall, time slots will go unused, wasting bandwidth. 

Reallocation of time slots also becomes complex when users regularly enter or leave 

the system. Another disadvantage of TDMA is the need for constant and accurate 

global synchronization between users to ensure that their time slots do not overlap. 

Any loss of synchronization results in packet collisions.

• ALOHA —  ALOHA [17] is a dynamic allocation protocol which has two versions: 

pure and slotted. In pure ALOHA, users are allowed to transmit whenever they 

have packets to send. If a collision occurs, the users which attempted transmission 

wait a random amount of time before attempting to transmit again. This results in 

very high packet collision rates, and thus inefficient usage of bandwidth.

In slotted ALOHA, users are only allowed to transmit at the beginning of discrete 

time intervals. As in pure ALOHA, if a collision occurs, the users which attempted 

transmission wait a random amount of time before attempting to transmit again. 

This results in the bandwidth usage of slotted ALOHA being twice that of pure 

ALOHA, although the packet collision rate is still high since all users are free to 

transmit once the next time slot arrives. Like TDMA, slotted ALOHA requires 

constant and accurate global synchronization between users to prevent overlapping 

of time slots.

• C S M A  —  CSMA (Carrier Sense Multiple Access) [17] is a dynamic allocation 

protocol in which users are able the sense the communication channel and determine 

if a transmission is already in progress.
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In 1-persistent CSMA, a user transmits as soon as the channel becomes idle (that 

is, with probability 1). If a collision occurs, the user waits a random amount of 

time before attempting to sense the channel and transmit again. In nonpersistent 

CSMA, the user does not immediately transmit once the channel becomes idle; 

rather, it waits a random period of time before attempting transmission. In p- 

persistent CSMA, the communication channel is slotted. If the user senses the 

channel is idle, it transmits at the slot interval with probability p, and defers to the 

next slot with probability 1 — p. CSMA/CD (Carrier Sense Multiple Access with 

Collision Detection) is an improvement on the standard CSMA protocols in which 

users cease transmitting as soon as a collision is detected.

CSMA protocols achieve far greater bandwidth utilization than ALOHA protocols. 

CSMA protocols can fail, however, in wireless systems utilizing short-range radio 

waves, since in such systems the sender is able to sense all channel activity within its 

vicinity, but not necessarily all channel activity within the vicinity of the receiver.

# M AC AW  —  M ACAW  (Multiple Access with Collision Avoidance for Wireless) is a 

dynamic allocation protocol designed for wireless networks proposed by Bharghavan 

et al [34], and is an extension of the earlier MAC A (Multiple Access with Collision 

Avoidance) protocol proposed by Karn [35].

In MACA, a user intending to transmit sends a short RTS (Request To Send) packet, 

containing the length of the data to be sent, to the receiver before attempting 

transmission. The receiver responds with a short CTS (Clear To Send) packet, also 

containing the data length specified in the RTS packet. Any user that detects either 

the RTS or CTS packets refrains from transmitting, for the time period needed to 

transmit the amount of data specified in the packets.

MACAW improved upon MACA by adding an ACK (Acknowledgement) packet
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after each successfully transmitted data packet, to ensure faster retransmission of 

lost data packets at the data link layer, rather than at higher layers. Carrier sensing 

was also added to prevent multiple users simultaneously attempting to transmit an 

RTS packet to the same receiver, thus providing MACAW with many of the benefits 

of pure CSMA protocols. The CSMA/CA (Carrier Sense Multiple Access with 

Collision Avoidance) protocol used in 802.11/WiFi networks is based on MACAW.

• IEEE 802.4/Token Bus —  Token Bus [17] is a dynamic allocation protocol in 

which the users are organized into a logical ring, rather than a physical ring as in 

the related IEEE 802.5/Token Ring network [17]. In both the token bus and token 

ring networks, each node is aware of the node immediately before and after it in 

the ring. Bus arbitration is achieved through the use of a token packet, which is 

passed from user to user in sequence around the ring. Only the user in possession 

of the token packet may transmit data, if any, after which the token is passed to 

the next user.

Unlike the logical ring in the token bus network, the physical ring in the token ring 

network has a weakness, in that each user is able to communicate directly only with 

the two users before and after it in the ring. Each user is therefore a point of failure 

for the entire network. The token bus network avoids this limitation since all nodes 

are connected to each other using a multi-access communication medium. However, 

scalability is limited in both the token bus and token ring networks since the delay 

between successive possessions of the token per user increases as additional users 

enter the system.

The MAC protocol utilized in the modular sensing system software architecture is 

a dynamic allocation protocol based on MACAW. The MAC protocol was derived from 

MACAW because its acknowledgement and carrier sensing features are already imple­
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mented in hardware within the nRF24L01 transceiver, facilitating improved performance. 

In addition, MACAW does not depend on global time synchronization between contenders 

for the medium in order to operate reliably, which is important because much of the 

communication layer is implemented in a concurrently executing task running on a pre­

emptive real-time operating system (see Section 2.4). As a result, the task executes at 

unpredictable intervals, making reliable global synchronization very difficult to achieve. 

The operation of the MAC protocol is further detailed in Sections 3.6.1 and 3.6.2.

3.2,3 Time Synchronization

The timers used within each module to generate and compare timestamps need to be 

regularly synchronized during operation. Regular synchronization is necessary since the 

resonant frequency of the crystal oscillator that controls the local time of each module 

may be slightly different from its rated value, or may shift slightly over time. Slight 

imperfections in the crystal manufacturing process cause the discrepancy in rated value, 

while microscopic changes in the crystal size due to environmental effects such as tem­

perature, humidity, and pressure result in the slight shifts in resonant frequency. These 

variations in resonant frequency result in varying degrees of clock drift between module 

clocks, and in turn cause a loss of synchronization between the local times of each module. 

System reliability is therefore reduced, since the reported time of occurrence of an event 

by a particular module may not necessarily be accurate with respect to the local time of 

another module.

The protocol used for time synchronization is based on the Simple Network Time 

Protocol (SNTP) developed by Mills [36], which is a subset of the Network Time Protocol 

(NTP) also developed by Mills [37]. Both SNTP and NTP are standard, well-known 

protocols widely used to synchronize computer clocks over the Internet. The derived 

protocol is further detailed in Sections 3.6.1 and 3.6.2.
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As described in [36], and shown in Figure 3.2, four 64-bit timestamps are needed to 

calculate the signed clock offset 0 between differing module clocks. These four timestamps 

may also be used to calculate the roundtrip delay 6 of exchanged packets, and each times­

tamp is relative to the clock of the module on which it was taken. The first timestamp 

is the Originate timestamp 7T—3, which indicates the time that a synchronizing module 

requested synchronization with a remote module. The second timestamp is the Receive 

timestamp Ti- 2, which indicates the time the remote module received the synchronization 

request. The third timestamp is the Transmit timestamp T*_i, which indicates the time 

that the remote module responded to the synchronizing module. The fourth timestamp 

is the Destination timestamp T̂ , which indicates the time that the synchronizing module 

received the synchronization response.

The Originate and Destination timestamps are temporarily recorded in volatile mem­

ory by the synchronizing module once taken, while the Receive and Transmit timestamps 

are returned to the synchronizing module. The propagation delay of the exchanged 

synchronization packets is assumed to have remained constant over the negligibly short 

period of time during which they were exchanged. The roundtrip delay 5, and the signed 

clock offset 6 which is added to the local clock of the synchronizing module, are then 

accurately calculated by the synchronizing module using Equations 3.1 and 3.2, derived 

by Mills [37].

S =  (Ti — T is )  -  (T,_! -  T i-2)

q (Ti-2 — T i-f)  + (Ti~ 1  — Ti)
2

(3.1)

(3.2)
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Receive Transmit
Timestamp Tn  Timestamp TiA

Figure 3.2: Time synchronization packet exchange.

3.2.4 Wireless Security

Unlike wired transmission mediums such as twisted-pair Ethernet cables, wireless trans­

mission is inherently insecure since the modulated radio signals used for data transmission 

are easily intercepted by any individual possessing a tuner of the appropriate frequency. 

Wireless security is provided within the communication layer in the form of en cryp tion  in 

order to provide confidentiality when privacy of information pertaining to the identifica­

tion of TIMs and their collected data (which is frequently transmitted wirelessly between 

modules) is required.

Two common cryptographic algorithms that facilitate information security are stream  

ciphers  and block ciphers. In a stream cipher, the bits comprising information to be 

transmitted are combined with a pseudorandom keystream  of ciph er bits through the use 

of the ex c lu s iv e -o r  (XOR) logical operation, as depicted in Figure 3.3. The cipher bit 

stream varies with a key  used to initialize the algorithm. In practice, one pseudorandom 

byte is generated and used to encrypt one byte of data at a time within each iteration 

of a stream cipher encryption loop. As a result, stream ciphers are often utilized in 

applications such as wireless transmission, where the information to be encrypted is of 

an indeterminable length. Due to the bit-inverting nature of the XOR operation when its 

input and corresponding output are combined with the same bit sequence, encrypted data
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Figure 3.3: Stream cipher operation block diagram.

can also be decrypted using the encryption algorithm itself. The most popular stream 

cipher currently in use is Rivest Cipher 4 (RC4), which is also referred to as Alleged 

Rivest Cipher 4 (ARC4) [32] in its publicly available reverse-engineered implementation 

in order to limit trademark concerns. ARC4 is the encryption algorithm used within the 

Wired Equivalent Privacy (WEP) encryption protocol [38], which is widely utilized in 

IEEE 802.11 wireless networks.

In a block cipher, depicted in Figure 3.4, information is processed in fixed-length 

groups of bits known as blocks, which are typically much larger than one byte, thus 

requiring the length of the information provided for encrypting to be a multiple of the 

block size. An pair of complementary transformation functions are used for encryption 

and decryption, the behaviour of which is unique to a supplied key, and are applied 

to information blocks to produce encrypted blocks, and to encrypted blocks to produce 

information blocks, respectively. However, a block cipher may operate within various 

standard modes of operation, some of which enable a block cipher to effectively operate 

as a stream cipher. In these stream-based modes, the encryption transformation function 

is instead applied to a sequence of values, which may be as simple as an incrementing 

counter, that are guaranteed not to repeat for an extensive period of time to produce 

keystream blocks. These keystream blocks are then combined with the bits comprising
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Figure 3.4: Block cipher operation block diagram.

the information to be transmitted using the XOR logical operation, as in a stream cipher. 

The encryption transformation function may be used for both encryption and decryption 

in this case, as with stream ciphers. Block ciphers are typically slower than stream 

ciphers and often require the usage of more memory during their operation; however, 

block ciphers often facilitate the creation of encryption algorithms that provide a greater 

degree of security compared to stream ciphers. Popular block ciphers currently in use 

include Blowfish [39] and the Advanced Encryption Standard (AES) [40], which is based 

on the Rijndael algorithm. AES is adopted for encryption purposes by the United States 

government, and is also the encryption algorithm utilized in the Wi-Fi Protected Access 

(WPA) protocol [41], which has superseded WEP as the encryption standard of choice 

for IEEE 802.11 networks due to major weaknesses that have been discovered in WEP.

All packets generated for transmission by the software architecture are encrypted 

using the ARC4 encryption algorithm due to its straightforward implementation, excellent 

speed, minimal memory usage, and relatively strong security. These criteria are important 

due to the resource-constrained hardware present in the TIMs. The ARC4 pseudorandom 

keystream generator is depicted in Figure 3.5. It utilizes two 8-bit indices i and j  that 

are initialized to zero, and an array S containing a permutation of all 256 possible bytes, 

which is initialized by applying a key scheduler algorithm to a variable length key of 

up to 128 bits. In each iteration of the ARC4 pseudorandom keystream generator i is
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Figure 3.5: ARC4 pseudorandom keystream generator operation.

incremented, after which the value at S[i\ is added to j .  The values at S[i] and S\j] are 

then swapped, and the byte at the index Sr[S'[i] +  S\j}\ is combined with the current byte 

in the input byte stream using the XOR operation to produce the output byte.

The use of encryption also serves to reduce the bit error encountered during trans­

missions in which long runs of unchanging bits are present, since the information stream 

is always replaced by a constantly varying pseudorandom bit pattern before transmis­

sion. Long streams of unchanging bits greatly increase the difficulty encountered by the 

nRF24L01 transceiver in locking onto transmitted radio signals due to its use of Gaussian 

Frequency Shift Keying (GFSK) modulation for transmitting and receiving data [21], in 

which the frequency of the signals is directly related to the value of the bit being trans­

mitted.

3.3 Packet Format

Data is transferred to and from the transceiver driver in 329-bit packets. The packet 

format, shown in Figure 3.6, is designed to be compatible with that of the nRF24L01 

transceiver, which manages the preamble, network identifier, packet control field, and 

firmware checksum fields within its firmware. The 32-byte payload field defined within 

the nRF24L01 packet format is sub-divided into smaller fields for the purposes of the 

software architecture. The communication layer packet fields are described as follows:

• Preamble (8 bits) —  A pattern of alternating ones and zeroes used by a receiving
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Pre (8) Network ID (40) Ctrl (9)
Source Address (64)

Destination Address (64)

Data Field (96)

Type (8) Chan (8) Enc Sum (16) CRC (16)

Figure 3.6: Communication layer packet format (field sizes in bits).

transceiver to synchronize its clock with that of the transmitting transceiver.

• Network Identifier (40 bits) —  A constant value common to all or a subset of 

modules. Any received packet that does not specify this identifier is automatically 

rejected by the transceiver firmware.

• Packet Control Field (9 bits) —  A field used internally by the nRF24L01, which 

contains the packet identification (PID) number used in detecting packet retrans­

missions as well an acknowledgement flag indicating whether or not a particular 

packet requires acknowledgement.

• Source Address (64 bits) —  Identifies the physical or logical module that trans­

mitted the packet.

• Destination Address (64 bits) —  Identifies the physical or logical module that 

should receive the packet.

• Data Field (96 bits) —  Contains the data to be transmitted within the packet. 

Therefore, the maximum transmission unit (MTU) of the communication layer is 

defined to be 96 bits. The data field may be further sub-divided into parameter 

fields used for transmitting various types of data specific to the packet type.

• Packet Type (8 bits) —  Indicates the type of the packet, through which the
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method of interpreting the data field may be determined.

• Packet Channel (8 bits) —  Indicates the channel on which the packet was trans­

mitted.

• Encryption Checksum (16 bits) —  Simple checksum used to verify decrypted 

packets. The checksum is generated by a summation of the 30 bytes comprising 

the source address to the packet channel. The use of this 16-bit checksum greatly 

reduces the chance of misidentifying a packet decrypted with an invalid key as valid 

data.

• CRC Checksum (16 bits) —  Used to detect packet transmission errors. The 

checksum is automatically generated by the transceiver firmware using the Cyclic 

Redundancy Check (CRC) algorithm [17].

3.4 Channels and Packet Types

The nRF24L01 transceiver is able to transmit and receive packets on any one of up to 

125 distinct radio frequency channels at a time, one of which is reserved by the software 

architecture for use as a control channel All modules listen to the control channel by 

default when not transmitting data, and each module can detect the presence of others 

in its vicinity by listening for packet transmission activity on the channel.

The other 124 channels are utilized as data channels. Upon successful reservation of a 

data channel through the use of the RTS and CTS medium allocation packets (described 

in Sections 3.6.1 and 3.6.2), the transmitting and receiving modules switch to the agreed 

channel and carry out the transmission. As depicted in Figure 3.7, lengthy transmissions 

may occur simultaneously on different channels without interference. The various packets 

types defined for use by the software architecture and transmitted on the control and data
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Control Ch. CTS RTS CTS PRE
Data Ch. 1 DAT DAT DAT DAT
Data Ch. 2 DAT DAT DAT

Data Ch. 124 DAT DAT DAT DAT

Figure 3.7: Multi-channel operation.

channels are described below.

3,4.1 Control Channel Packet Types

• P R E  —  Presence packets are regularly broadcast by all modules to indicate their 

continued presence in the sensing system, as well as to facilitate determination of 

their basic properties. The following module properties are specified in the data 

field: type (sensor or actuator), class (temperature, pressure, display, etc.), data 

type (signed or unsigned integer, single-precision or double-precision floating point 

value, status constant, string, or raw bytes), data type array width, and data type 

array height. Also specified in the data field are the synchronization level of the 

module, its connection type (local, physical, or wireless; see Section 6.2 .2 ), and a 

packet timeout counter.

• M E M  —  Member packets are regularly broadcast by modules to indicate their 

continued presence in a particular combination of modules comprising a logical 

module. The hardware address of the module, its role identifier within the logical 

group, as well as a packet timeout counter are specified in the data field.

• S Y Q  —  Synchronization Query packets are used to initiate time synchronization 

with a remote module and transfer the Originate timestamp in the data field. 

The synchronization protocol used is based on the Simple Network Time Protocol
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(SNTP) [36].

• SYR —  Synchronization Response packets are issued in response to a time syn­

chronization request, and contain within the data field the synchronization level of 

the synchronizing module, and a partial calculation used by the unsynchronized 

module to calculate its relative time offset.

• RTS —  Request To Send packets are used to request transmission of a middleware 

layer message. The data channel to be used, the network identifier offset (an offset 

to the network identifier used exclusively for the transfer), as well as the message 

length in bytes, are specified within the data field.

3.4.2 Data Channel Packet Types

• CTS —  Clear To Send packets are issued by a receiving module to the transmitting 

module to indicate that it may proceed with the transmission.

• DAT —  Data packets contain consecutive 12-byte fragments of a middleware layer 

message in the data field.

3.5 Initialization

The communication layer initialization process begins with the allocation of the two main 

vector data structures utilized by the layer. The first is the environment list, which stores 

presence packets detected on the wireless channel, and is used to keep track of the modules 

within the vicinity as well as their basic properties. The second is the outgoing message 

queue, which is a FIFO (first in, first out) queue that stores messages received from the 

middleware layer waiting to be transmitted.
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To determine which network identifier and ARC4 key the module is to utilize for 

packet transmissions, the SD card is searched for the 5-byte network identifier file n e t . id  

and the variable length (up to 16 bytes) key file k ey .rc4  respectively, as described in 

Section 2.5.2. Transmissions from modules with different network identifiers are ignored, 

and packets received from modules utilizing a different ARC4 key will be indecipherable 

upon reception and are dropped. If no n e t . id  file is found, the default network identifier 

0x40414D5353 (which represents the ASCII sequence “@AMSS” ) is used. If no key.rc4  

file is found, the default 128-bit key 0x414D5353414D5353414D5353414D5353 (which rep­

resents the ASCII sequence “AMSSAMSSAMSSAMSS” ) is used. Upon determining the 

network identifier and ARC4 key to be used, the wireless transceiver starts listening for 

transmissions on the control channel.

3.6 Network Communication Task

The network communication task is started upon initialization of the software architecture 

and runs continuously and concurrently with all other tasks in the system. At the heart 

of the task is an infinite loop in which a number of operations are carried out at different 

time intervals. These operations are multiplexed into a single task instead of being split 

into separate tasks due to the limited 40 kilobytes of RAM (random access memory) 

available on the LPC2148 microcontroller present in the TIMs, which places constraints 

on the amount of stack space available to be distributed between concurrently executing 

tasks. The network communication task is required to:

• Transmit presence packets for all modules in the module structure list every two to 

five seconds.

• Transmit member packets for all modules in the module structure list every two to

five seconds.
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• Decrement the timeout counters of all presence packets in the environment list and 

all member packets in the role environment lists (see Section 6.2.2) of all logical 

modules every second.

• Synchronize the local clock with a remote clock of a lower synchronization level (see 

Section 2.7.3) every one to two minutes.

• Perform garbage collection of shut down logical modules and their associated module 

structures and message handler task structures every two seconds.

• Transmit a single outgoing message, if any is pending, on each loop iteration.

• Handle up to five pending control packets, if any were received as indicated by a 

transceiver interrupt, on each loop iteration.

The general operation of the network communication task is depicted in Figure 3.8. 

The nRF24L01 wireless transceiver is locked for the duration of each operation to prevent 

other tasks from simultaneously modifying its registers. Most of the operations in the 

network communication task are performed at randomly determined intervals in order 

to reduce the possibility of all the modules in the environment regularly saturating the 

control channel at similar times, while otherwise leaving the channel empty. The various 

standard handlers and packet handlers that perform the previously mentioned operations 

are further outlined in the following sections.

3.6.1 Standard Handlers

Presence Handler

The presence handler, invoked every two to five seconds, is responsible for transmitting 

the presence packets which indicate that a module is within a particular network. These 

presence packets also provide a basic overview of the attributes and capabilities of the



3 Communication Layer 58

Figure 3.8: Network communication task operation.



3 Communication Layer 59

module. For each physical module structure or primary module structure (which pos­

sesses the lowest address in a logical module entity and is responsible for transmitting and 

processing its messages) found in the module structure list, a presence packet is trans­

mitted through the wireless transceiver and also handled locally. Since presence packets 

are broadcast packets, the destination field of these packets instead serves the purpose 

of indicating the pose base (see Section 6.5) of the module, which is the address of the 

remote module to which its pose is relative.

Due to the small size of the nRF24L01 FIFO incoming packet buffer, which is three 

packets deep, too many presence packets transmitted by one module in rapid succession 

may result in all presence packets transmitted after the third or fourth to go undetected. 

In order to account for this problem, each successive search through the module structure 

list is offset by one, to ensure that the first three presence packets transmitted are almost 

always in a different order.

Member Handler

The member handler, invoked every two to five seconds, is responsible for transmitting 

the member packets that indicate which logical module entities a particular module is a 

member of. As mentioned in Section 2.7.3, each module structure possesses a membership 

list, indicating the roles it fulfils in the logical modules of which it is a member. This role 

information is broadcast within the member packets.

For each module structure found in the module structure list, appropriate member 

packets are transmitted for each role it satisfies in a logical module, which are also handled 

locally. Similar to the presence handler, successive searches through the module structure 

list as well as the member-of list are offset by one on each iteration. This ensures that 

the latter packets in a group of member packets transmitted in rapid succession do not 

repeatedly get dropped while being placed in the FIFO incoming packet buffers of the
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transceivers on other modules.

Timeout Handler

The timeout handler is invoked every second. During each invocation, the environment 

list is scanned and each presence packet found in the list has its timeout counter field 

decremented. If any timeout counter reaches zero, the presence packet is removed from the 

environment list and the corresponding module is considered to have left the environment.

The module structure list is then searched for module structures corresponding to 

logical modules that contain member packets in their role environment lists. A role 

environment list stores the member packets corresponding to the TIMs in the environment 

that fulfil a particular role in the logical entity. These member packets also have their 

timeout counters decremented. If the timeout counter of any packet reaches zero, it is 

removed from its respective role environment list. Removal from the role environment list 

indicates that the module that transmitted the member packet is no longer considered a 

member of the logical entity.

Synchronization Handler

The synchronization handler, invoked every one to two minutes, is responsible for initiat­

ing time synchronization between modules. To determine if synchronization is necessary, 

the presence packets in the environment list are searched to determine which module has 

the lowest synchronization level If multiple modules possess the lowest synchronization 

level, then the lowest address of these is used for synchronization.

Synchronization is only performed if a module with a lower synchronization level is 

found in the environment, or a module with an equivalent synchronization level, but a 

lower address, is found. If synchronization is necessary, a synchronization query (SYQ) 

packet possessing the Originate timestamp T*_3, as described in Section 3.2.3, is trans­
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mitted on the control channel to the module with the lowest synchronization level that 

also possesses the lowest address among modules at that synchronization level.

Garbage Handler

The garbage handler is invoked every two seconds to reclaim memory allocated by shut 

down logical modules and their associated task structures and module structures. Garbage 

collection is necessary since individual tasks cannot deallocate their stack and heap space 

on their own upon completing their execution. Message handler tasks (see Section 4.5) 

strictly associated with any of the transducers on the TIM on which it runs are required 

to execute as long as the TIM is powered, and therefore require no garbage collection. To 

determine if any logical module message handler tasks and structures need to be garbage 

collected, the shutdown flags of all the module structures corresponding to logical modules 

in the module structure list are checked. This flag is clear by default, and is only set im­

mediately before the message handler task associated with a module structure completes 

its execution. If set, the corresponding presence packet for the module in the environment 

list is removed, the module structure itself is deleted from the module structure list, and 

its stack and heap memory is reclaimed.

Outgoing Message Handler

The outgoing message handler is invoked once in each iteration of the main network 

communication task loop. Upon its invocation, the front of the outgoing message queue 

is checked to determine if a message to be transmitted is pending. If a message is pending, 

its destination address is checked to determine if the destination module structure is local 

to the module hardware. In this case transmission would be unnecessary and the message 

is simply moved to the incoming message queue of the destination module structure, 

otherwise the message transmission mechanism is invoked. Only a single message is
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transmitted in each invocation of the outgoing message handler in order to minimize 

the duration of a single iteration of the main network communication task loop, thus 

improving the latency encountered by the other handlers.

In the message transmission mechanism, a request to send (RTS) packet is prepared 

for medium access purposes. It assumes the same source and destination addresses of the 

message to be transmitted, a random network identifier offset, and the channel number 

of the first free data channel found after carrier sensing. Handshaking is attempted ten 

times. In each attempt, the channel is switched to the free data channel and the network 

identifier offset is temporarily added to network identifier in order to minimize packet 

handling overhead by the communication layer should two modules end up transmitting 

on the same data channel. The RTS packet is then transmitted and the module waits up 

to 500 ms for the corresponding clear to send (CTS) packet from the receiver to arrive. 

This handshaking process is repeated until the CTS packet is received and transmission 

may proceed safely.

If the handshaking process is successful, the message is then broken into a number of 

data (DAT) packets that are transmitted sequentially to the receiver. Upon successful 

transmission, or any error, the wireless channel is set back to the control channel and the 

network identifier is set back to its initial value.

3.6.2 Control Packet Handlers

In the main network communication task loop, up to five pending packets are handled 

within each iteration. Depending on the value found in its packet type field, each packet 

is handled by one of six control packet handlers, which are described below.
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PRE Handler

Before the received presence (PRE) packet is processed, its connection type field is 

changed from wireless to physical if the pose base (see Section 6.5) found in its desti­

nation field is the same as that of the module. Possessing the same pose base as another 

module indicates that a direct or indirect physical connection exists to that module. If a 

matching presence packet is already present in the environment list, its timeout counter 

value is reset to the standard environment timeout time of thirty seconds. If the connec­

tion type of the packet was modified, a logical module template search is carried out for 

a new logical module match (see Section 6.3). If the presence packet is not found in the 

environment list, the packet is added to the list and a logical module template search is 

also carried out.

MEM Handler

On receiving a member (MEM) packet, its destination module is determined. Since mem­

ber packets are only relevant to logical modules, the packet is dropped if its destination 

is not a logical module. If the destination is found, and it is a logical module, the role 

member environment list of the role corresponding to the role number field of the member 

packet is located. The list is then searched and if a corresponding member packet is al­

ready present, it is overwritten and its timeout counter reset to the standard environment 

timeout time of thirty seconds. If the member packet is not found in the role member 

environment list, the packet is added to the list.

SYQ Handler

On receiving a synchronization query (SYQ) packet, a timestamp of the local clock, the 

Receive timestamp T^_2, is immediately acquired and stored. The Originate timestamp 

3 is also extracted from the SYQ packet. A synchronization response (SYR) packet
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is then returned to the source, containing a newly acquired Transmit timestamp T^i 

timestamp in the form T^_2 — T*_3 +  T^_i, as well as the synchronization level of the 

module. This partial calculation is employed since there is not enough space in the 12- 

byte data field to transmit both T^_2 and T^i separately within a single SYR packet. The 

partial calculation also removes the need to transmit two SYR packets, each containing 

one of the timestamps.

SYR Handler

On receiving a synchronization response (SYR) packet, a timestamp of the local clock, 

the Destination timestamp Tj, is immediately acquired and stored. The partial calcula­

tion Tj_2 — Ti_3 +  Ti^i is also extracted from the SYR packet. The local clock is then 

updated through the addition of an offset calculated as (T*_2 — T i_3 +  7*_i — Tf)/2. The 

synchronization level of the module is subsequently updated to be one more than that 

specified in the received SYR packet, up to a maximum of 255.

RTS Handler

On receiving a request to send (RTS) packet, the message reception mechanism is in­

voked. In this mechanism, the destination module structure of the received RTS medium 

allocation packet is determined. The request is only handled if the destination address 

corresponds to a physical module or a primary module (which possesses the lowest address 

in a logical module entity of which it is a member). If a suitable destination is found, the 

wireless channel is switched to that specified in the RTS packet and the network identifier 

offset specified in the RTS packet is also temporarily added to the network identifier. A 

clear to send (CTS) packet is then transmitted to the source of the RTS packet to indi­

cate that communication may proceed. The CTS packet itself requires acknowledgement 

and is sent on the data channel to avoid possible interference on the control channel. If
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the CTS packet is acknowledged, a buffer large enough to store the incoming message is 

allocated in memory and transmission proceeds.

The incoming DAT packets from the transmitter, which contain consecutive fragments 

of the incoming message, are used to locally reconstruct the message within the allocated 

buffer. Upon successful transmission of all of the DAT packets, or any error, the wireless 

channel is set back to the control channel and the network identifier is set back to its 

initial value. If the transmission was successful, the recombined message is then moved 

to the incoming message queue of its destination module structure.

3.7 Face Connectivity

Provided within the communication layer is a wired protocol that facilitates the direct 

transmission of data through the faces of physically connected TIMs. The operation of 

this protocol depends on the electrical contacts present on the four clips located on five 

of the six faces of a TIM. In order to facilitate the detection of the relative angular offset 

between two connected TIMs, the TIM faces as well as the electrical contacts located on 

them are each assigned an identifier. Each TIM face is assigned an identifier from 1 to 6, 

while each face contact is assigned an identifier from 1 to 4. These identifier assignments 

are shown in the layouts depicted in Figures 3.9 and 3.10. The design of the face com­

munication protocol is such that a TIM can determine the address of any other TIM it 

is physically connected to, as well as the identifiers of the connected faces and connected 

contacts between itself and these TIMs. The core data elements facilitating face connec­

tivity are the face structure, the face identification packet, and the face communication 

task, which are described in the following subsections.



3 Communication Layer 66

Figure 3.9: Three-dimensional face and contact identifier layout view.

Face 1

Face 4 4 Face 5 2 Face 2 Face 3

3

Figure 3.10: Two-dimensional face and contact identifier layout view.
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3.7.1 Face Structure

A face structure stores the connection state of one of the five faces on a TIM to which 

another TIM may be connected. Each TIM maintains five face structures in memory, 

each of which corresponds to one of its faces on which contacts are present. The values 

contained within a face structure are defined as follows:

• Face Transform Matrix — A 4 x 4 matrix of 32-bit floating point values used 

to store the transformed state of the face represented by the face structure, relative 

to its original orientation. Only 48 bytes are actually utilized to store the matrix 

instead of 64 bytes since the fourth row is understood to always be [0 0 0 1]. The 

face transform matrix is currently always the identity matrix, since the faces of a 

TIM are rigid in its current implementation.

• Remote Address —  The address of the remote module physically connected to 

the local face represented by the face structure.

• Remote Face Identifier —  The identifier of the face on the remote module which 

is physically connected to the local face represented by the face structure.

• Local Face Contact Identifier —  The identifier of the local contact on the 

face represented by the face structure through which the last face identification 

packet was received from the TIM connected to it. Knowledge of this identifier 

facilitates the detection of the relative angular offset between the connected TIMs 

(see Section 3.7.3).

• Timeout Counter —  Indicates the remaining time during which the information 

contained within the face structure is considered valid. If this counter expires, the 

face structure is reset to represent an unconnected state. This counter is initialized 

to 30 seconds.
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3.7.2 Face Identification Packet Format

Face identification information is transferred between faces in the form of 20-byte face 

identification packets, the format of which is depicted in Figure 3.11. The information 

transferred within these packets reveals of the address of the physically connected remote 

module as well as the identifier of the connected face through which the packet was 

received. Examination of the local contact through which the packet is received also 

enables the relative angular offset between the connected TIMs to be determined.

These packets are transmitted on each face of a TIM at regular intervals to serve as a 

form of watchdog timer, indicating the continued presence of a physical connection on the 

respective face to another module. The packets are transmitted unencrypted since wired 

transmissions are not easily intercepted, and the data being transmitted is only critical to 

orientation determination and the detection of the physical connection and disconnection 

of modules. The face identification packet fields are described as follows:

• Header (4 bytes) —  Identifies the packet as a valid face identification packet. The 

header is defined as the byte pattern 0x414D5353 (which represents the ASCII 

sequence “AMSS” ).

• Remote Address (8 bytes) —  Identifies the address of the remote module that 

transmitted the face identification packet, which would place its own address in this 

field.

• Remote Face Identifier (4 bytes) —  Indicates the identifier of the face on the 

remote module through which the face identification packet was received. Although 

a single byte would suffice to represent this information, an additional three bytes 

are reserved for future expansion.

• Checksum (4 bytes) —  Used to detect packet transmission errors. The checksum 

is a simple summation of the bytes comprising the header, remote address, and
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Header (4)

Remote Address

Remote Face Identifier (4)

(8)
Checksum (4)

Figure 3.11: Face identification packet format (field sizes in bytes).

remote face identifier. Although two bytes would suffice to store the checksum, an 

additional two bytes are reserved for future expansion.

3.7.3 Face Communication Task

Like the network communication task, the face communication task is started upon ini­

tialization of the software architecture and runs continuously and concurrently with all 

other tasks in the system. The operations performed by the task are carried out within an 

infinite loop at different time intervals. The general operation of the face communication 

task is depicted in Figure 3.12. The face communication task is required to perform the 

following operations, which are further outlined in the following subsections:

• Decrement the timeout counters of all five face structures every second, and trigger 

an update of the local pose of the module if necessary.

• Transmit face identification packets on each face indicating the address of the mod­

ule and the respective face identifier every five to ten seconds.

• Receive pending face identification packets, if any, from the remote modules con­

nected to each face on each loop iteration, and trigger an update of the local pose 

of the module if necessary.
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START

Figure 3.12: Face communication task operation.
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Decrementing Timeout Counters

The timeout counters associated with each face structure are decremented once per sec­

ond. If any counter expires, each field within the associated face structure is reset to a 

null value, representing an unconnected state. If this occurs, a flag maintained by the 

face communication task is set to indicate that the local pose of the module requires 

updating, since the local pose may be relative to that of the remote module that was 

disconnected. The pose update process is described in Section 6.5.

Transmitting Face Identification Packets

Face identification packets are transmitted on each face every five to ten seconds, indi­

cating the continued presence of a physical connection on the respective face to another 

module. Data signals are transmitted in a format similar to that of RS-232 [42], in that 

transmissions are composed of an asynchronous timed series of bits.

The signals transmitted on each contact are depicted in Figure 3.13. Before transmis­

sion on each face, a face identification packet is allocated and its checksum determined 

and stored within the packet itself. The face contacts, which are normally configured 

to receive data, are temporarily configured to generate data. To indicate to the remote 

module that a transmission is about to occur, a start symbol is transmitted. This symbol 

consists of setting all the contacts on a face to the high logic level for a period of 20 ms, 

then clearing all the contacts for the duration of one bit length, which is approximately 

1.67 ps. The contact with identifier 1 is then set high for one bit length to indicate to the 

remote module not only the contact on which data will be transmitted, but also the rel­

ative angular offset between the two faces, as shown in Table 3.1. The bits of the packet 

are then transmitted sequentially through Contact 1, starting with the least significant 

bit, after which the face contacts are reconfigured to receive input.
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Contact 1 Packet Data

Contacts 2 -4  ;

* *
Start Symbol

Figure 3.13: Face contact transmission signals.

Table 3.1: Face contact connection patterns and corresponding angular offsets.

Face Contact Connection Patterns Local Face Angular Offset 
Relative to Remote Face

Local Face Contact Pattern 1 2 3 4 —

Remote Face Contact Patterns

1 4 3 2 0°
2 1 4 3

o001

3 2 1 4 180°
4 3 2 1 -90 °

Receiving Face Identification Packets

Each face on the module is checked for incoming face identification packets. Reception 

of a face identification packet on a face currently represented by its corresponding face 

structure as being in an unconnected state indicates that a new connection has occurred. 

An incoming packet is indicated by high logic levels being detected on all of the contacts 

on the face, as set by the remote module transmitting the packet during the start symbol. 

As described in Section 3.7.3, the contact on which data will be transmitted is detected 

through examination of the start symbol. Data reception only proceeds if a valid start 

symbol is detected.

Upon detection of a valid start symbol, reception is delayed for half of a bit length. 

This improves the reliability of the data transfer by ensuring that detection of logic 

levels occurs as far away from logic level transitions as possible, the optimum location 

of which is half-way through the length of a bit transmission. The bits comprising the
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face identification packet are then read sequentially, starting with the least significant bit, 

after which the packet is reconstructed in memory. If the header and checksum of the 

packet are valid, the face structure corresponding to the face on which the packet was 

received is updated with the remote address and remote face identifier provided within 

the packet. Also updated within the face structure are the local face contact identifier 

field, in order to reflect the contact on which the packet was received, and the timeout 

counter, which is reset to 30 seconds. If the address of the local module is lower than that 

of the remote address, the flag maintained by the face communication task to indicate 

that the local pose of the module requires updating is set.

3.8 Summary

In this chapter, the communication layer of the software architecture was described. 

The communication layer provides a secure, reliable, connection-oriented interface to the 

unreliable wireless transmission medium. Data is transmitted within 329-bit packets that 

are encrypted using the Alleged Rivest Cipher 4 (ARC4) stream cipher. 125 wireless 

channels are available for packet transmission purposes, one of which is reserved for 

use as a control channel; the others are utilized as data channels. At the core of the 

communication layer is the network communication task, which manages the transmission 

and reception of individual packets, as well as performing important duties such as time 

synchronization and garbage collection. Also present is the face communication task, 

which implements a wired protocol that facilitates the direct transmission of data through 

the faces of physically connected TIMs. The following chapter will describe the operation 

of the middleware layer.



Chapter 4

Middleware Layer

4.1 Introduction

The purpose of the middleware layer is to facilitate interoperability between the various 

TIMs in a modular sensing system. The term middleware refers to software and services 

that simplify connectivity between software components running on distinct and possibly 

heterogeneous devices, in turn simplifying the deployment of distributed applications. At 

the middleware layer in this software architecture, the application programming interface 

(API) for physical and logical modules is defined, which is comprised of a variety of service 

functions. Service functions are the interface through which TIMs, whether homogenous 

or heterogeneous, request services from, and information about, each other. Data is 

transferred between TIMs in the form of variable-length messages.

4.2 Middleware Types

Middleware implementations exist in a variety of forms, which lie between the operating 

system and the distributed application as shown in Figure 4.1 and are classified as being 

either synchronous or asynchronous. Synchronous systems require that each middleware

74
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Figure 4.1: Middleware operation block diagram.

request be carried out to completion before any further requests are processed. As a 

result, multiple threads of execution are necessary for parallelism to occur. Conversely, 

asynchronous systems allow multiple requests to be issued without requiring the prior 

completion of any single request. However, responses are not guaranteed to be processed 

in order within any single thread of execution. The most commonly known types of 

middleware implementations are described below:

• Publish/Subscribe —  Publish/Subscribe [43] is an asynchronous middleware im­

plementation in which publishers of information do not explicitly transfer data to 

specific recipients. Instead, interested clients termed subscribers indicate to the 

publishers the types of data they want to receive. When relevant data becomes 

available, all interested subscribers are notified by the publishers of its availability, 

and each subscriber may thereafter decide to acquire the data. Publish/Subscribe 

middleware implementations are particularly useful in event-driven applications.

• Remote Procedure Call —  Remote Procedure Call (RPC) [44], available in both 

synchronous and asynchronous variations, enables a program to invoke functions
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implemented within another program running on a remote hardware system over 

a network. The details of the network transmissions required to carry out the 

procedure call are transparent to the system user. Asynchronous RPC is highly 

scalable since little information about the state of any single network transaction 

needs to be maintained, however synchronous RPC prevents saturation of network 

bandwidth and provides greater transaction integrity due to the blocking nature of 

synchronous requests.

• Message-Oriented Middleware —  Message-Oriented Middleware (MOM) [43] 

is an asynchronous middleware implementation that is based on the passing of mes­

sages between devices on a network. Messages received by a client are stored in a 

message queue until they are able to be processed. The client may continue pro­

cessing other data while incoming messages are enqueued. Like Publish/Subscribe, 

MOM implementations are well suited to event-driven applications. They also pro­

vide much flexibility in the implementation of when and how messages are enqueued 

and dequeued, and may even be designed in a manner that facilitates real-time per­

formance.

• Object Request Broker —  Object Request Broker (ORB) [45] is a synchronous 

middleware implementation that allows data and services within a distributed sys­

tem to be abstracted to an object-based representation, thus allowing the system to 

be implemented in an object-oriented manner. Invocations on a remote object are 

handled by an ORB process, which tracks all the available objects in the system 

and handles the transmission and any necessary translation of data structures be­

tween the requesting process and the service provider. The implementation details 

of the translational process are completely encapsulated from both the invoker and 

the service provider. ORB middleware is commonly utilized within mainstream
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computer networks, and popular implementations include the Object Management 

Group’s Common Object Request Broker Architecture (CORBA) [46], Microsoft’s 

Distributed Component Object Model (DCOM) [47], and Sun Microsystems’ Java 

Remote Method Invocation (Java RMI) [48].

• SQL-Oriented Data Access —  SQL-Oriented Data Access [43] is a synchronous 

middleware implementation that allows applications to access diverse database 

types over a network. Through this middleware, applications may issue generic, 

database-independent SQL (Structured Query Language) queries that are trans­

lated, if necessary, to database-specific queries. Like ORB, SQL-Oriented Data 

Access middleware is often utilized within mainstream computer networks, and pop­

ular implementations include Microsoft’s Open Database Connectivity (ODBC) [49] 

and Sun Microsystems’ Java Database Connectivity (JDBC) [50].

The middleware layer of the modular sensing system software architecture is based 

on the Message-Oriented Middleware implementation due to its support for real-time 

performance and the low overhead of directly transmitting messages between queues. In 

addition, the implementation flexibility of MOM-based middleware services facilitated the 

addition of synchronous message transmission to the middleware layer for the purposes 

of the software architecture.

4.3 Message Format

A middleware layer message consists of a 44-byte header, followed by a single variable- 

length block containing the data to be transferred in the message, as shown in Figure 4.2. 

The field sizes of the message format were carefully chosen so as to satisfy the memory 

alignment requirements of typical 32-bit modern microprocessors, particularly the ARM- 

based LPC2148 microcontroller utilized in the TIMs. Modules request data and services
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Source Address (8)
Destination Address (8)

Deadline (8)
Timestamp (8)

Message Type (1) Service Fune. (1) Service ID (4)
Param. Type (2) Param. Arr. W. (2) Param. Arr. H. (2)

Data Field (variable-width)

Figure 4.2: Middleware layer message format (field sizes in bytes).

from other modules by issuing service call messages. The requested data or the results of 

the service call are transmitted back to the caller in the form of return messages, either 

synchronously or asynchronously as demanded by the template class algorithm running 

on the caller. The middleware layer message fields are described as follows:

• Source Address (8 bytes) —  The source address field identifies the physical or 

logical module that transmitted the message.

• Destination Address (8 bytes) —  The destination address field identifies the 

physical or logical module intended to receive the message.

• Deadline (8 bytes) —  If the message is a service call, the deadline field indicates 

the time at or before which service call should be completed. A deadline timestamp 

consisting of all bits set except the most significant bit (MSB) corresponds to an 

effectively infinite deadline.

• Timestamp (8 bytes) —  The timestamp field indicates the time at which a partic­

ular message was enqueued for transmission, or the time at which a particular event 

occurred. The timestamp format, which is also used within the deadline field, is 

a 64-bit signed integer representing the number of microseconds that have elapsed 

since midnight on January 1,1.
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« Message Type (1 byte) —  The message type field indicates the method by which 

the contents of a particular message should be processed. Messages may be syn­

chronous or asynchronous Call At or Call By service calls, or a Return message 

issued in response to a service call. Call At messages are processed at the time 

specified in its timestamp field, while Call By messages are processed as early as 

possible before the time specified in its timestamp field.

• Service Function (1 byte) — The service function field indicates what service 

function should be invoked if the message is a service call, or if the message is a 

return message, what service function was invoked.

• Service Identifier (4 bytes) —  The service identifier field contains a 32-bit un­

signed integer that uniquely identifies a service call message and its associated 

return message, and facilitates the tracking of enqueued return messages corre­

sponding to asynchronous service calls. Each TIM internally maintains a service 

identifier counter that is incremented once its value is assigned to the next outgoing 

service call. Upon reaching its maximum value the counter overflows and resets to 

a value of one, since the zero value is reserved.

• Parameter Type (2 bytes) —  The parameter type indicates the type of data 

supplied as parameters within the data field of a service call or return message. 

The supplied data parameters are organized into a two-dimensional array of fixed­

sized elements, of which the element size is implied by the parameter type. The 

supported parameter types are: 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned 

integers] 32-bit single-precision and 64-bit double-precision IEEE 754 floating-point 

values; a 32-bit status type used to transfer various constants indicating the status 

of modules and service calls; a null-terminated string type based on arrays of 8-bit 

ASCII characters; a message container type used to encapsulate other messages
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in the form of raw 8-bit bytes; and an object container type used to encapsulate 

generic data in the form of raw 8-bit bytes.

• Parameter Array Width (2 bytes) —  The parameter array width indicates the 

width of the data field parameter array in terms of the parameter type unit size.

• Parameter Array Height (2 bytes) —  The parameter array height indicates the 

height of the data field parameter array in terms of the parameter type unit size.

• Data Field (variable-width) —  The data field stores the parameter array data to be 

transmitted within the message. The size in bytes of the data field of any particular 

message is given as the product of its parameter array width, its parameter array 

height, and its parameter type unit size in bytes.

4.4 Service Functions and Service Calls

Service functions enable modules to provide services to and exchange information with 

each other. These functions may be invoked automatically by other modules within 

the network, or manually through an administration module. The call/reply mechanism 

used during the invocation and processing of service functions, known as a service call, is 

based on the standard, widely used Remote Procedure Call (RPC) protocol [44]. As seen 

in Figure 4.3, a service call is invoked by a module through the placement of a Call By 

or Call At message in the outgoing message queue common to all the module structures 

present on a TIM. This message specifies the service function type and contains the 

relevant parameters to the function.

Once the message is transmitted and received by the TIM on which the target module 

structure is present, it is placed in the appropriate Call By or Call At incoming message 

queue of the module structure. The message is processed by or at the specified deadline
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Figure 4.3: Service call operation.

respectively, and a return message containing the results of the service call is placed 

in the global outgoing message queue for transmission to the invoking module. This 

return message possesses the same service identifier as the call message, enabling it to be 

identified by the calling module as the results of the service call even if unrelated return 

messages are received from other modules before the call is completed. Depending on the 

state of the target module at the time of a service call or the success of the call itself, the 

return message may contain one of six status constants, outlined in Table 4.1, instead of 

the expected data.

Service calls are issued either synchronously or asynchronously to a remote module. 

A synchronous service call causes the real-time operating system to suspend the calling 

task until the corresponding return message is received from the remote module or the 

service call times out, while during an asynchronous service call the task is allowed to 

concurrently continue execution while the call is being processed. To prevent the indefinite 

blocking of a module message processing task due to a service call in which the return 

message is not forthcoming, synchronous service calls time-out within five seconds.
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Table 4.1: Service function status constants.

Status Constant Description

SUCCESS
The service call was executed successfully by 
the target module.

ERROR
An error occurred on the target module while 
executing the service call.

MISSED DEADLINE The service call was not executed by the tar­
get module before or at the specified deadline.

INVALID PARAMETER The service call was issued to the target mod­
ule with one or more invalid parameters.

LOCKED The target module of the service call is locked 
by a module other than the caller.

NOT ALLOWED The service call is not allowed to be issued to 
the target module.

4,4.1 Service Function Types

The various service functions defined by the software architecture that enable the state 

and properties of a module to be obtained or modified are as follows:

• G et —  The Get service function is used to obtain the value or state of the transducer 

associated with the target TIM. The type of the parameter returned to the invoker 

is dependent on the type of transducer present on the target TIM. If the transducer 

does not allow its value or state to be obtained, the NOT ALLOWED status constant 

is returned.

• Set —  The Set service function is used to modify the state of the transducer asso­

ciated with the target TIM. The type of the parameter supplied in the service call 

message and the behaviour of the call itself is dependent on the type of transducer 

present on the target. Depending on the actuation capabilities of the transducer, 

a Set service call may also result in an update of the pose matrix of the TIM with 

which the transducer is associated. Various status constants may be returned by 

Set service calls. If the TIM is locked by another module, LOCKED is returned. If the
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supplied parameter is invalid, INVALID PARAMETER is returned. If the service call 

fails, ERROR is returned. If the transducer does not allow its state to be modified, 

the NOT ALLOWED status constant is returned. If the call completed successfully, 

SUCCESS is returned.

• Append —  The Append service function is identical to the Set service function 

with the exception that it is used to add to the state of the transducer associated 

with the target TIM instead of changing it directly.

• Reset —  The Reset service function, like the Append service function, is identical 

to the Set service function with the exception that it is used to reset the state of 

the transducer associated with the target TIM to its default value instead of setting 

it to an arbitrary value.

• Get T E D S  —  The Get TEDS service function is used to retrieve from the TEDS 

property list of the target module the TEDS entry value associated with the TEDS 

entry name provided as a string parameter to the service call. If the provided 

parameter is not a string, INVALID PARAMETER is returned. If the parameter is a 

string and an associated TEDS entry value is not found, ERROR is returned.

• Get Pose —  The Get Pose service function is used to obtain a copy of the local 

4 x 4  matrix of single-precision floating-point values representing the pose (position 

and orientation) of a TIM.

• Update Pose — The Update Pose service function is used to force a TIM to 

update its own position and orientation matrix with respect to the pose matrix (see 

Section 6.5) provided within the pose update structure supplied as a parameter. 

This service function, which returns no status constant, is used internally by the 

software architecture to update the poses of a tree of physically connected TIMs
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and is not intended to be called within template algorithms.

• Lock —  The Lock service function is used to prevent 5ei, Append, or Reset calls 

from being performed on a TIM by any module other than that which issued the 

lock. Locking a TIM is useful when multiple modification operations issued by an­

other module need to be performed atomically. A Lock service call only returns 

SUCCESS to the caller if the target is not already locked, otherwise LOCKED is re­

turned.

• Unlock —  The Unlock service function is used to unlocked a previously locked 

module. An Unlock service call only returns SUCCESS if issued by the module that 

holds the lock or if the target is already unlocked, otherwise LOCKED is returned.

• Join —  The Join service function is used to incorporate a TIM into a new or 

existing logical entity. This service function, which returns no status constant, is 

used internally by the software architecture for logical module composition purposes 

and is not intended to be called within template algorithms. The target module 

only processes a Join call from a logical entity if it is not already a member of the 

entity. If it is not a member, a new module structure is created locally on the target 

module to represent the state of the logical entity. A  new membership structure 

entry is then created and added to the membership list of the newly joined target 

module, indicating the role it fulfils within the logical entity as well as the address 

of any physical dependency.

4.5 Module Message Handler Task

Each combination of a module structure (see Section 2.7.3) and a module message handler 

task present on a TIM is termed a module agent. The module structure represents the
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state of the module agent, while the module message handler task represents its behaviour. 

The module message handler task continuously examines and updates the queues and 

status fields of its associated module structure and generates messages in response to 

received messages and other events that occur within its environment. This intelligence 

is provided by either a native message handling function, associated with self-contained 

modules representing a single transducer on a TIM, or by platform-independent template 

classes (see Section 2.5.2), associated with logical module entities and used to facilitate 

collaboration between its member modules. Through the use of a real-time operating 

system within the software architecture, multiple module message handler tasks may 

execute concurrently on a single TIM, each receiving and transmitting messages in real 

time.

The general operation of a module message handler task is depicted in Figure 4.4. 

Similar to the network communication task discussed in Section 3.6, each module message 

handler task contains at its core an infinite loop in which a number of operations are 

carried out at differing time intervals. In the message handler task of logical module 

agents the message loop is invoked within the virtual machine (see Chapter 5), which 

facilitates the execution of platform-independent logical module template classes. A self- 

contained module agent representing a transducer on its local TIM hardware instead 

utilizes a built-in native message loop within its message handler task to reduce the 

overhead incurred by the interpretive mechanism employed by the virtual machine. The 

various operations carried out within each iteration of a native or platform-independent 

module message handler task loop are as follows:

• Obtain the next service call to be processed, if any, from the Call-At and Call-By 

message queues. Call-At and Call-By messages are inserted into their respective 

queues by deadline, but since Call-At messages need to be checked more regularly 

for a deadline match, using separate queues ensures that the next Call-At message
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Figure 4.4: Module message handler task operation.
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is always accessible within a single operation. This might not always be possible 

if a single queue was used for both message types, in the scenario that numerous 

Call-By messages are ahead of the next Call-At message in the queue. The message 

acquisition process is further outlined in Section 4.5.1.

• Process the service call by invoking the primary handler, and if necessary, the sec­

ondary handler. For a module agent associated with a transducer on the TIM 

hardware on which it executes, the primary handler is the relevant driver func­

tion for the transducer. For a module agent that represents a logical module, the 

primary handler is its associated cross-platform template algorithm. The primary 

handler is expected to provide implementations for processing at least the Gei, Set, 

Append, and Reset service calls. The secondary handler is invoked to process the 

service call if the primary handler provides no suitable implementation for handling 

it, and provides default implementations for processing the Get TEDS, Get Pose, 

Update Pose, Lock, Unlock, and Join service calls. If the service call is still not 

handled after invocation of the secondary handler, it is deemed to possess an in­

valid service function type and is deallocated. The general execution processes of 

primary and secondary handlers are depicted algorithmically in Algorithms 4.1 and

4.2 respectively.

• Perform various standard status checks that ensure the integrity of the module agent 

is maintained throughout changes to the environment in which it executes. These 

status checks are outlined in Section 4.5.2.

4.5.1 Message Acquisition

The next service call to be processed is obtained through a continuous search of the Call- 

At and Call-By incoming message queues present in each module structure. These queues
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Algorithm 4.1 Primary handler execution process.
procedure PRiMARYHANDLER(module module, message call) 

if call.servicefunction =  Get then 
return <= module.get (call) 

else if call.servicefunction =  Set then 
return  <̂= module.set(call) 

else if call.servicefunction =  Append then 
return <= module.append(call) 

else if call.servicefunction =  Reset then 
return  -<= module.reset (caM) 

end if
if call was handled then 

deallocate call
if return  was generated then

enqueue return  in outgoing message queue 
end if 

end if
end procedure

Algorithm 4.2 Secondary handler execution process.
procedure SECONDARYHANDLER(module module, message call) 

if call.servicefunction =  G etTED S  then 
return ■<= module.getTeds(call) 

else if call.servicefunction =  GetPose then 
return module.getPose(call) 

else if call.servicefunction =  UpdatePose then 
return <= module.wpdditePose(call) 

else if call.servicefunction =  Lock then 
return <= module.lock(call) 

else if call.servicefunction — Unlock then 
return  -4= module.unlock(ca//) 

else if call.servicefunction =  Join then 
return <= module.]om{call) 

end if
deallocate call
if return  was generated then

enqueue return in outgoing message queue 
end if

end procedure
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are priority queues, and upon reception, messages are inserted into the appropriate queue 

in order of deadline. Since the queues are searched by deadline, the number of operations 

needed to search the queues in each iteration of the message loop is reduced from the 

order of O(n) to 0 (1 ) operations.

Call-At messages are given precedence over Call-By messages since Call-By messages 

may be invoked at any time before their deadline, while Call-At messages need to be con­

tinuously checked with as little delay as possible to determine exactly when their deadline 

timestamp has been matched. Thus, the Call-At message queue is always searched first. 

The message at the front of the queue (which will always have the closest deadline), if 

any, is examined, and the time difference between the message deadline and the local 

TIM system clock is determined. If this time difference is within the one millisecond 

threshold that indicates message validity, the message is dequeued and returned to the 

message handler. If the time difference is not within the threshold and is less than the 

current system time, the message is dequeued and deallocated. Subsequently, a message 

containing the status constant MISSED DEADLINE is enqueued within the outgoing mes­

sage queue, after which the Call-At message queue is searched again. The method in 

which a missed deadline is handled is delegated to the calling module which, depending 

on its current state, may choose to reissue an identical call, issue a different call, or drop 

the call altogether.

If no suitable Call-At message is obtained, the Call-By message queue is searched. 

The message at the front of the queue, if any, is immediately dequeued. The message is 

returned to the message handler for immediate processing unless the message deadline is 

less than the current system time, in which case it is deallocated and a message containing 

the status constant MISSED DEADLINE enqueued within the outgoing message queue. As 

with Call-At messages, the method in which a missed deadline is handled is delegated to 

the calling module, whose state may have changed since the call was issued. The Call-By
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message queue is then searched again.

4.5.2 Standard Status Checks

Module Lock Check

The module lock check, performed every fifteen seconds, is used to determine if the module 

agent should be automatically unlocked due on the absence of the locking module in the 

global environment list (see Section 3.5). This check prevents the module agent from 

being locked indefinitely if the locking module does not reappear within the environment. 

If the module agent is locked, the environment list is searched. If a presence packet 

corresponding to address of the locking module is not found in the environment list, the 

agent is unlocked by setting the locking address in its corresponding module structure to 

the reserved zero address.

Physical Dependency Check

The physical dependency check, performed every fifteen seconds only if the module agent 

is a member of a physically dependent logical module entity, is used to determine if the 

module agent should automatically withdraw from the logical entity due to the lack of 

a physical connection between the local TIM on which the module agent executes and a 

remote TIM that is also a member of the logical entity. This check ensures that a logical 

entity whose correct behaviour depends on physical connections between its member 

modules does not try to utilize member modules that have lost physical connectivity to 

others within the logical entity. In this check, each membership structure entry (if any) 

in the membership list associated with the module agent is examined. If any membership 

structure has a non-zero physical dependency address (indicating that membership in 

the logical entity depends on a physical connection to the TIM possessing the specified 

address), the environment list is searched to locate a presence packet corresponding that
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address. If an associated presence packet is not found, or the packet does not indicate that 

a physical connection between the respective TIMs is present, the membership structure 

is removed from the membership list. Removal of the membership structure indicates 

that the module agent is no longer a member of the collaborating group of modules that 

comprise the logical entity.

Local Member Check

The local member check, performed every fifteen seconds only within logical module 

agents, is used to determine if the message handler task of a particular logical module 

agent should be automatically terminated due to a lack of member module agents located 

on the same TIM hardware on which it executes. Each logical module agent must have 

at least one of its member module agents executing on the same TIM hardware in order 

to guarantee that at least one member module is available that is capable of providing 

sensing or actuation functionality to the logical entity. To determine if this requirement 

is satisfied, the membership lists of all the other module agents executing on the TIM are 

searched. If no other locally executing module agent possesses a membership structure 

entry corresponding to the logical module agent, its associated module message handler 

task is terminated, and its module structure is garbage collected.

4.6 Summary

In this chapter, the middleware layer of the software architecture was described. The 

middleware layer provides the commands and services through which module agents may 

interact and communicate with each other. To exchange data, variable-length messages 

are transferred between module agents. These messages are also used to invoke the 

services provided by module agents in the form of service calls to services functions.
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Each module agent is represented by a module structure used to maintain its state as 

well as a module message handler task that processes incoming messages and generates 

outgoing messages as specified by an associated native or platform-independent message 

processing algorithm. The following chapter will describe the operation of the virtual 

machine.



Chapter 5

Virtual Machine

5.1 Introduction

A virtual machine (VM) is a program which interprets and executes high-level, hardware- 

independent abstract bytecodes. Each bytecode is a sequence of one or more bytes that 

represents an instruction to be executed by the VM. Algorithms defined using these byte­

codes are therefore completely decoupled from the underlying hardware architecture on 

which they execute. A lightweight Java-based VM supported by an architecture-specific 

standard class library was implemented within the software architecture stack, enabling 

the logical module template algorithms that define the behaviour of the collaborating 

TIMs comprising a logical module entity to be specified once and then used, without 

recompilation, in the dynamic reprogramming of a variety of heterogeneous modules and 

hardware architectures as application requirements change.

5.1.1 Choice of Dynamic Reprogramming Mechanism

To facilitate the adaptability and reconfigurability of a group of physically or wirelessly 

collaborating heterogeneous TIMs, a dynamic reprogramming mechanism is necessary

93
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that allows the TIMs to automatically source, load, and execute logical module com­

position algorithms at run-time without disrupting the operation of other algorithms 

executing on any particular TIM. In addition, the reprogramming mechanism should uti­

lize a minimum of system resources during the loading of the algorithms as well as during 

their execution. The composition algorithms themselves should be implementable in a 

hardware-independent format such that they are easy to create, debug, and maintain 

by the system user, and should also expose the behaviour of the group of collaborating 

modules rather than aspects of the underlying hardware architectures of the modules 

themselves. Various dynamic reprogramming mechanisms as referred to in [51] were con­

sidered for use in the software architecture, and are described below:

• Monolithic Binary Update —  In monolithic binary update dynamic reprogram­

ming mechanisms, the operating system, software architecture stack, as well as 

the various executing algorithms comprise a single binary image. Therefore this 

reprogramming mechanism, although providing the maximum flexibility in terms 

of behavioural modification, is very expensive in practice due to the need for the 

entire binary image to be overwritten in non-volatile memory with each change in 

application requirements. In addition, the operation of any executing algorithms 

must be suspended during the overwriting process, thus introducing further la­

tency into the system. Well known implementations of monolithic binary update 

systems include Crossbow Network Programming (XNP) [52], Deluge [53], Multihop 

Network Reprogramming Protocol (MNP) [54], and Multihop Over-the-Air Program­

ming (MOAP) [55], all of which target network reprogramming of wireless sensor 

network platforms based on the Crossbow MICA2 [10] motes.

• Modular Binary Update —  In modular binary update dynamic reprogramming 

mechanisms, the various executing algorithms are decoupled from the operating 

system and software architecture stack into binary modules that are dynamically
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linked into the execution environment at runtime. Although slightly less flexible as 

compared to monolithic binary update mechanisms, programming latency is greatly 

reduced due to the much reduced size of the linked binary modules and the now un­

necessary need to reprogram software components such as the OS and architecture 

stack, which are often static. The smaller module size also greatly reduces network 

transmission latency of the binary module to multiple nodes, while also reducing 

network transmission power consumption on resource-constrained nodes. However, 

the binary modules axe specified using the native instruction set of the micropro­

cessor of the node on which it is intended to execute, and thus remain hardware 

dependent. Well known implementations of modular binary update systems include 

Contiki [56] and SOS [57].

• Virtual Machine —  In virtual machine dynamic reprogramming mechanisms, al­

gorithms specified in the form of architecture-independent abstract bytecodes are 

executed through the use an interpretive loop. Each bytecode is a numeric con­

stant that corresponds to a single machine instruction, some of which may require 

other constants and data to be supplied as parameters. Unlike the opcodes (oper­

ation codes) that comprise the native instruction sets of physical microprocessors, 

the bytecodes that comprise virtual machine instruction sets are designed to be 

portable and are easily translated to the instruction sets of most microprocessors. 

Since the algorithms are completely decoupled from the operating system as well 

as the underlying hardware on which they execute, the behaviour of a node may be 

easily modified without the necessity for its operation to be suspended, and a single 

algorithm specification may be used to dynamically reprogram a variety of hetero­

geneous modules. Virtual machine instruction sets, and by extension the algorithms 

specified using them, tend to be compact and thus also facilitate reduced network 

transmission power consumption on resource-constrained nodes. This is especially
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true for stack-based virtual machine implementations in which data is manipulated 

on a common stack, as opposed to register-based virtual machine implementations 

in which data is manipulated using discrete registers [58]. A disadvantage of virtual 

machine dynamic reprogramming mechanisms is the moderate execution overhead 

incurred due to the need for an continuously executing interpretive loop. However, 

this overhead is negligible on sufficiently fast hardware, such as that utilized in this 

software architecture. Popular virtual machines for high-end computer systems 

and embedded platforms include Sun Microsystems’ Java Virtual Machine [23] and 

Microsoft’s Common Language Runtime (CLR) [59]. Well-known implementations 

of virtual machine dynamic reprogramming mechanisms for resourced-constrained 

embedded platforms include Maté [60] and its successor Application Specific Virtual 

Machines (ASVM) [61], Scylla [62], and VM* [63].

• Query/Parameter-Based Configuration —  In query /parameter-based configu­

ration dynamic reprogramming mechanisms, the behaviour of communicating nodes 

is modified though the issuing of various queries and parameters associated with 

the desired behavioural change. Query/parameter-based configuration frameworks 

are the most inflexible in terms of the extent to which the operation of a given sens­

ing system may be defined, since the range of behaviours supported by the sensing 

system is limited to the possible combinations of the queries and parameters under­

stood by the nodes in the system. However, because there is no need to transmit 

an entire native or cross-platform algorithm specification, the latency associated 

with behavioural modification is extremely low, and the reprogramming mecha­

nism is conducive to even extremely resource-constrained platforms. A well-known 

implementation of a query/parameter-based configuration dynamic reprogramming 

mechanism is TinyDB [64], which provides an SQL-based query interface to MICA2- 

based platforms.
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A stack-based virtual machine dynamic reprogramming mechanism is utilized within 

this software architecture and is based on Sun Microsystems’ Java Virtual Machine [23] 

(JVM). The use of a Java-based virtual machine provides the software architecture with 

a powerful and well-established platform in which hardware-independent algorithms may 

be specified. Due to the widespread adoption of the JVM, there is great flexibility in the 

choice of algorithm specification language. Other than the standard compiler for the Java 

programming language itself, compilers are available for other scripting and programming 

languages such as Groovy [65] and Jython [66] (a Python implementation) that directly 

generate JVM classes from their source files. A subset of the JVM instruction set is 

utilized within the virtual machine of this software architecture and includes bytecode 

instructions for loading and storing data, performing arithmetic and logic operations, con­

verting between numeric types, creating and manipulating class instances, manipulating 

frame operand stacks, branching, and performing method invocations and returns.

The previously mentioned VM* dynamic reprogramming architecture is also based 

on the JVM. In VM*, Java classes are not executed directly; rather, the classes are 

preprocessed by a base station and used to synthesize an interpreter that is suitable 

for execution on resourced-constrained MICA2 motes. Unlike VM*, the virtual machine 

implemented for use within this software architecture requires no external preprocessing 

of classes, and instead loads and executes the classes on the TIMs directly. However, 

due to flash memory and RAM constraints, the extensive standard class library provided 

within a full Java implementation is not present in its entirety. Provided instead is a 

very lightweight and useful subset of the standard class library as well as architecture- 

specific classes that encapsulate the functionality necessary to support the collaboration 

of a group of TIMs.
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5.2 Class Loading

As previously mentioned in Section 2.5.2, the platform-independent logical module tem­

plate classes that enable connected TIMs to collaborate with each other are found in the 

template class directory amss/algo. When a class is to be loaded from this directory, a 

global vector termed the class list in which loaded classes are placed is first searched to 

determine if the specified class is already loaded. By searching the class list first, mem­

ory is conserved through the prevention of loading duplicates of a particular class. The 

complete Java class file format specification is as described in [67]. The main components 

of interest are described below, and are loaded and processed from the class file in the 

order shown.

• Constant Pool —  The constant pool of a class is a table of structures that contains 

all the unchanging values referred to by the bytecode instructions of the class. 

These constants include class names, field and method references, 32-bit and 64-bit 

integers, single-precision and double-precision IEEE 754 floating-point values, and 

UTF-8 (8-bit Unicode Transformation Format) strings.

• Field Information Table —  The field information table of a class is a table of 

structures that describes the fields present within the class. A field is any class 

variable, which are static and common to all class instances, or instance variable, 

which are non-static and unique to each class instance.

• Method Information Table —  The method information table of a class is a 

table of structures that represent the methods present within the class. These 

structures contain among other properties the name, maximum stack size and total 

local variable size of the method, as well as the actual bytecode in which the method 

is implemented.
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Once the class is loaded successfully, it is added to the class list. Its constant pool 

is then searched for field and method references external to the class. If any external 

references are found, they are resolved by recursively loading the class which possesses 

the referenced field or method if it is not already within the class list. However, if the 

referenced class is within the architecture-specific standard class library (described in 

Section 5.4) that supports the operation of the software architecture, a stub class is in­

stead created to resolve the reference. This is necessary because the standard library 

classes, which are unchanging, are actually implemented using the native machine lan­

guage of the TIM microcontroller, instead of platform-independent Java bytecode. The 

standard library classes are implemented in this manner in order to minimize flash mem­

ory and RAM usage. In addition, the speed of calls to methods within these classes, 

which occur very frequently and occupy much of the processing time, is vastly increased 

due to the removal of interpretive overhead.

After all external field and method references are resolved, the method information 

table of the loaded class is searched to determine if the special class initialization method 

< c lin it>  is provided. This function, generated only by the Java compiler if necessary, is 

immediately executed by the virtual machine before beginning or resuming the execution 

of any other method in order to initialize the static fields of the class before it is utilized.

5.3 Class Execution

Upon the creation of a logical module agent message task, an appropriate class from the 

template class directory is loaded to provide the intelligence necessary for the associated 

TIM to function as a member of the logical entity, as described in Section 4.5. The 

standard entry point for this class is the method main, as is normal for Java classes that 

are intended to be executed. However, unlike typical executable Java classes that accept a
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String array as a parameter to the main method, logical module template classes accept 

a Module class reference specific to the software architecture. This reference provides an 

interface through which the contents of the module structure associated with the logical 

module agent may be accessed from within the template class.

Execution of a method in the Java virtual machine, and by extension the virtual 

machine used in this software architecture, is dependent on three main types of runtime 

data areas that are described below:

• Program Counter —  The program counter register is an integer variable unique 

to each thread of execution that always contains the address of the next bytecode 

instruction to be executed. After the execution of each bytecode, the program 

counter is updated to point to the next bytecode instruction.

• Runtime Stack —  The runtime stack is a LIFO (last in, first out) data structure 

composed of frames. Each frame is a dynamically allocated node structure in a 

doubly linked list that collectively comprises the runtime stack. Frames are created 

whenever a new method is invoked, and are used to store data such as local variables 

and also provide an operand stack for storing partial calculations. Frames also 

facilitate method invocations and recursion.

• Runtime Heap —  The runtime heap is a region of memory in which class instances 

and arrays are stored. It is common to all instantiations of the virtual machine 

and comprises a portion of the total heap memory utilized for dynamic memory 

allocation throughout the layers of the software architecture.

The general execution process of a method, carried out within the virtual machine 

execution function, is depicted algorithmically in Algorithm 5.1. Firstly, the program 

counter is reset to zero, where the first bytecode instruction of the method is always 

located. A new local frame is then allocated and pushed onto the runtime stack to
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Algorithm 5.1 Method execution process.
procedure ExecuteMethod(method m eth o d , frame in v o k er) 

pc <= 0
f r a m e  <= allocate local frame 
for i <̂= parameters in in v o k er .stack—1 to 0 do 

f r a m e .locals[z] <= in v o k er .stack.pop() 
end for
if m eth od  is native then

m eth o d .n a iiv eco d e(fra m e)
else

loop
in stru ction  <= m et hod. bytecode[pc] 
pc <= pc +  1
if in stru ction  is an invocation then 

in d ex  <= m e t h od .by tecod e[pc , pc+ 1] 
in voked  <= method in constant pool at in d ex  
pc <= pc +  2
E xE C U T E M E T H O D (in vok ed , fr a m e )  

else if in stru ction  is a return then 
if return value is present then

in vok er, stack. push(/rame.stack.pop()) 
end if 
break loop 

else
execute in stru ction  

end if 
end loop 

end if
deallocate f r a m e  

end procedure
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support the execution of the method. Any parameters passed from a calling method are 

acquired from the calling frame and stored in the local frame as local variables. If the 

method is determined to be a native method, bytecode interpretation is skipped since 

the method is comprised of native machine code instructions intended to be executed 

directly on the microprocessor hardware without interpretation. After execution of the 

native method, the local frame is then popped from the runtime stack and deallocated, 

and the virtual machine execution function returns. If the method is not a native method, 

the bytecode interpretation loop is entered.

The bytecode interpretation loop is generally an infinite loop containing a switching 

mechanism, and implements a fetch, decode, execute cycle similar to that found in modern 

microprocessors. In each iteration of the loop, the next 8-bit bytecode instruction to be 

executed is fetched from the location indicated by the program counter, and its value used 

to select and execute the section of the switching mechanism corresponding the actions 

associated with the instruction. If the instruction is a method invocation instruction, any 

values to be passed to the invoked method will have been pushed onto the local frame 

by the preceding instructions. The reference to the method to be executed is obtained 

from the constant pool at the 16-bit index provided within the invocation instruction. 

The virtual machine execution function is then recursively called to execute the invoked 

method. If the instruction is a return instruction, any value to be returned to the calling 

method is stored in the calling frame. The local frame is then popped from the runtime 

stack and deallocated. The bytecode interpretation loop is then broken and the virtual 

machine execution function returns.
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5.4 Standard Class Library

The software architecture provides a standard collection of classes and methods, grouped 

into packages, designed specifically for use within template classes. As described in 

Section 5.2, these classes are not physically present on the local storage of the modules; 

rather, references to methods in these classes due to invocations are caught and handled 

at runtime in order to minimize flash memory and RAM usage and also substantially 

increase performance. The classes in the packages comprising the standard class library 

of the software architecture, and their purpose, are described in the following subsections.

5.4,1 The java.lang Package

The official Java class library provided within distributions of the Java Virtual Machine 

is comprised of numerous packages and classes which provide a base for the development 

of Java applications. One of the most important of these packages is java.lang, which 

provides fundamental classes and methods facilitating features such as mathematics and 

string processing. A subset of the complete java.lang package, the comprising classes 

of which are depicted in Section A .2, was included within the standard class library of 

the software architecture to provide these two features, which are considered critical to 

its operation. These classes are outlined below:

• Math —  The class java.lang.Math contains methods that facilitate the calcula­

tion of trigonometric, hyperbolic, logarithmic, exponential, randomization, round­

ing, minimum and maximum, and absolute value operations. It also defines the 

mathematical constants e and 7 r .

• String —  The class java.lang.String is used to represent an immutable string of 

characters, and contains methods that facilitate a variety of commonly used string
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comparisons and operations such as determination of string length, tests for string 

equality, substring generation, and case conversion.

5.4.2 The amss.system Package

In addition to the java.lang package, a package of classes unique to the software ar­

chitecture are provided to support and provide an interface to its core operations. This 

package is amss. system, the comprising classes of which are depicted in Section A .3, and 

consists of five classes that provide access to various internal software architecture func­

tions that facilitate operations such as manipulating messages, modules, pose matrices as 

well as vectors. These classes are outlined below:

• AMSS —  The class amss. system. AMSS is a collection of static methods and con­

stants that support various system-level operations provided by the software archi­

tecture. It is analogous to the class java.lang.System in the official Java class 

library. Operations to perform explicit garbage collection (since automatic garbage 

is unsupported within the lightweight virtual machine), atomic operations, obtain­

ing the local system time, and setting the current task to sleep are provided, along 

with commonly utilized time constants. A variety of data input and printing func­

tions are also provided mainly for debugging purposes.

• Message —  The class amss. system.Message contains methods that facilitate per­

forming operations on and obtaining data from messages. Methods are provided 

for creating and enqueuing new messages, obtaining information about a particu­

lar message such as its source and destination, and retrieving and setting elements 

within its parameter array. Also provided are static constants that represent the 

various types of messages, service functions, parameters, and status values utilized 

within the software architecture.
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• Module —  The class amss. system.Module contains methods that facilitate per­

forming operations on and obtaining information about modules. Methods are 

provided for obtaining the pose matrix (see Section 6.5) of a particular module, 

retrieving and modifying its TEDS properties, and querying the state of the mod­

ule, such as if it is running or is located on the primary member module hardware. 

Role-specific methods for logical modules are also provided, such as methods for 

determining the number of roles, determining the number of matched modules in 

the environment for a particular role, and issuing service calls to and retrieving 

results from matched members.

• Pose —  The class amss. system.Pose contains methods that facilitate the acquisi­

tion of five pose vectors that are derived from the matrices representing the poses of 

one or a pair of modules. These pose vectors are utilized within template algorithms 

(see Chapter 6) to facilitate the simple determination of the relative positions be­

tween any two indirectly or directly connected modules in a logical entity, irrespec­

tive of their orientations. The first vector represents the position of a module, and 

the other four vectors are depicted in Figure 5.1. The face normal, which initially 

points along the positive y-axis, is perpendicular to the top face of the module and 

indicates its upright orientation; the face north vector, which initially points along 

the negative ¿-axis, and face east vector, which initially points along the positive 

x-axis, both lie within the plane of the top face of the module and represent their 

respective cardinal directions relative to this plane; and the module separation vec­

tor indicates the direction and magnitude of the displacement between the centres 

of a pair of modules.

• V ector3D  —  The class amss.system.Vector3D contains methods that facilitate 

operations on three-dimensional vector quantities. These operations include obtain-
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Face Normal

Figure 5.1: Module pose vectors.

ing the constituent components and magnitude of a particular vector, normalization 

of the vector, common operations between two vectors such as addition and scalar 

product, as well as methods to determine the relationship between two vectors, such 

as the angle and parallelism between them.

5.5 Summary

In this chapter, the virtual machine of the software architecture as well as the stan­

dard class library that is specific to the software architecture and supports its operation 

were described. The Java-based virtual machine facilitates the execution of the platform- 

independent template classes that describe the behaviour of the collaborating TIMs in a 

logical module entity. The platform-independence of the template classes enables them 

to be created once and then used in the dynamic reprogramming of a variety of TIMs 

irrespective of their underlying hardware architecture, the capabilities of which are ab­
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stracted through the various classes and methods provided within the standard class 

library of the software architecture. The following chapter will describe the operation of 

the composition layer.



Chapter 6

Composition Layer

6.1 Introduction

At the composition layer, logical module template algorithms are loaded and executed 

that enable a group of TIMs to collaborate and behave as a logical entity known as a 

logical module. The intelligence needed to facilitate module collaboration is encompassed 

within a Java class that is interpreted by the virtual machine, and is accompanied by a 

logical module template TEDS that describes the standard characteristics of the composite 

logical module entity. Within each template TEDS, various roles are also defined.

Each module agent within the sensing system environment continually tests the oth­

ers in its environment against the roles defined within its locally stored logical module 

template TEDS, as well as its currently loaded logical module structures, in order to 

locate a match. If a module agent is found that is capable of providing the sensing or 

actuation behaviour outlined by at least one of the specified roles, the matched agent will 

be assimilated into the existing or a newly created logical entity containing the matched 

role. Physically connected TIMs within a logical entity will also intelligently relay their 

position and orientation to each other, ensuring that all the member TIMs comprising

108
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the logical entity possess a representation of their position and orientation that is relative 

to the pose of one of the members, designated the pose base.

6.2 Template Data Types

Logical module template TEDS specifications are similar in structure to standard module 

TEDS specifications. The two TEDS specification types differ in that template TEDS 

support the specification of a set of role descriptors included after the list of standard 

TEDS properties. Sample module TEDS and template TEDS specifications may be seen 

and compared in Sections B.2 and B.3 respectively. Upon loading a required template 

TEDS file, it is parsed, stored, and utilized through the data structures described in the 

following subsections.

6.2.1 Template Structure

The template structure is a representation of a locally stored template TEDS specification 

from which a logical module may be created, and is a transformation of the text-based 

template TEDS specification into a structural form usable by the software architecture. 

The fields contained within a template structure are defined as follows:

• File Name —  Stores the name of the template TEDS used to construct the tem­

plate structure, and is used for identification purposes.

• Class Name —  Stores the name of the Java class that provides the intelligence 

necessary for the members of the composite entity to communicate and collaborate, 

and is also used for identification purposes.

• Roles List —  A vector used to store the role structures (described in Section 6.2.2) 

specific to the template, as found in the template TEDS specification.
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• Template Class —  A structure used to store the actual Java class bytecodes that 

implement the platform-independent intelligence facilitating collaboration between 

module agents in a logical entity. This class is found at the path provided by the 

RoleTemplateClass property of the template TEDS. The main components of the 

template class structure are described in Section 5.2.

6.2.2 Role Structure

A role structure represents the characteristics required of a particular module agent within 

the environment to satisfy a particular behavioural role within a logical module entity.

A  template TEDS specification contains one or more role descriptors that are used to 

create corresponding role structures within an encompassing template structure. One or 

more module agents may be assigned to each role. Like the template structure, each 

role structure is a transformation of a corresponding role descriptor contained within a 

text-based template TEDS specification into a form usable by the software architecture. 

The fields contained within a role structure are defined as follows:

• Role Environment List —  A list of member (MEM) packets corresponding to 

the module agents currently detected within the environment that are assigned to 

the role.

• Role Number —  An unsigned integer assigned to the role that is used to uniquely 

identify it.

• Assignment Limit —  Specifies a numerical range indicating the number of mod­

ules that may be utilized to satisfy the role. The number of modules may be less 

than, less than or equal to, equal to, greater than or equal to, or greater than the 

provided limit.
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• Connection Type —  A bit field indicating the types of connections allowed be­

tween current member modules of the logical entity and candidate non-member 

modules that satisfy the role. The connection type may be local, which corresponds 

to candidate module agents being present on the same TIM hardware as a member 

of the composite entity; physical, which corresponds to candidate module agents 

being present on TIM hardware that is physically connected to that of a member 

of the composite entity; wireless, which corresponds to candidate module agents 

being present on TIM hardware that is not physically connected to but within the 

environment of that of a member of the composite entity; or any combination of 

the three.

• Module Type —  A bit field indicating the types of modules that satisfy the role. 

The module type may be a sensor module, an actuator module, an interconnect 

module, an administrator module, or any combination of the four.

• Module Class —  A bit field indicating the classes of modules that satisfy the role. 

As previously described in Section 2.6, a class refers to a family of sensors or actua­

tors that may be used to sense a particular physical quantity or facilitate a specific 

type of motion respectively. Currently, the classes include any combination of an 

acceleration module, a positional module, a rotational module, a status module, a 

text display module, or a voltage module. Unused bits are left within the bit field 

for future expansion.

• Module Data Type —  A bit field indicating the acceptable data types for the 

array of values returned by modules that satisfy the role. The return type may be 

any combination of an 8-bit, 16-bit, 32-bit, or 64-bit signed or unsigned integer, a 

32-bit or 64-bit floating point value, a status string, an encompassed middleware 

layer message, or a generic object consisting of raw bytes.
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• Module Data Type Width —  Specifies a numerical range indicating the number 

of acceptable columns in the array of values returned by modules that satisfy the 

role. The width of the data array may be less than, less than or equal to, equal to, 

greater than or equal to, or greater than the provided number of columns.

• Module Data Type Height —  Specifies a numerical range indicating the number 

of acceptable rows in the array of values returned by modules that satisfy the role. 

The height of the data array may be less than, less than or equal to, equal to, 

greater than or equal to, or greater than the provided number of rows.

6.2.3 Local and Remote Join Structures

A join structure is issued by members of a logical module entity to candidate module 

agents that they have discovered within their environment, providing information to the 

candidate module agents indicating the actual logical module template it should load 

from its local template TEDS directory, as well as the matched role it should perform. 

Remote join structures differ from local join structures in that they are used to transmit 

the full template TEDS specification text of the logical module itself along with its asso­

ciated template algorithm class to a matched candidate module, which are then stored on 

the candidate module. This ensures that the library of template TEDS specifications and 

processing algorithms available locally on each module within any particular sensing sys­

tem is updated in an automatic, peer-to-peer fashion, without requiring user intervention. 

Local join structures only specify the filename of the template TEDS specification to be 

used, and conserve bandwidth when the specification is known to be available locally on 

the candidate module. The fields contained within a join structure are as described be­

low, where all values except the template data field are common to both local and remote 

join structures:
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• Role Number —  An unsigned integer identifying the role in the respective logical 

module template that is to be fulfilled by the candidate module.

• Physical Dependency —  Indicates the address of a member module within the 

logical module entity to which the candidate module is physically connected, if 

the role requires a physical connection between member TIMs to be satisfied. If 

the physical connection between the matched candidate module and the physical 

dependency is lost at any time, the matched module will no be longer considered a 

member of the logical module entity.

• Template Filename —  Stores the name of the template TEDS specification that 

was used to construct the logical module entity that is to be joined by the candidate 

module.

• Template Data —  A 6 kilobyte array present only in remote join structures that is 

used to store the matched template TEDS specification and its associated template 

algorithm class. The size of the array is sufficiently large to store typical TEDS 

specifications and algorithm classes without consuming excessive bandwidth dur­

ing transmission. Contains in the specified order: an unsigned integer indicating 

the length of the template TEDS, the bytes comprising the encompassed template 

TEDS data, an unsigned integer indicating the length of the template algorithm 

class, and the bytes comprising the encompassed template algorithm class.

6.2.4 Pose Update Structure

A pose update structure is transmitted from a TIM to other TIMs physically connected 

to its faces, providing the information necessary for the connected TIMs to update their 

position and orientation relative to that of the TIM that issued the pose update. The 

calculations utilized in performing this update are outlined in Section 6.5. Pose update
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calls are propagated throughout the tree of physically connected modules within a logical 

entity, ensuring that each member module within the entity may query the pose of the 

others knowing that the returned pose will be relative to a given reference orientation, 

termed the pose base, which is common to the entire entity. The fields contained within 

a pose update structure are defined as follows:

« Remote Pose Base —  Indicates the assigned pose base of the remote module, 

which is then assigned to the local module. Two TIMs possessing the same pose 

base indicates that a direct or indirect physical connection exists between them.

• Remote Face Contact Identifier -— The identifier of the contact on the face 

of the remote module through which the local module transmitted its last face 

identification packet Knowledge of this identifier facilitates the detection of the 

relative angular offset between the connected TIMs (see Section 3.7).

• Remote Face Identifier —  The identifier of the face on the remote module that 

is physically connected to the local face of the TIM receiving the pose update 

structure.

• Local Face Identifier -— The identifier of the face on the local module, as detected 

by the remote module, that is physically connected to the remote face of the TIM 

transmitting the pose update structure.

• Remote Effective Pose —  Stores the effective pose of the remote TIM issuing the 

pose update, which is generated through the matrix multiplication of its absolute 

pose by the face transform m atrix of its face through which it is connected to the 

local TIM. As stated in Section 3.7.1, the face transform matrix is currently always 

the identity matrix, since the faces of a TIM are rigid in its current implementation. 

Thus, the remote effective pose is always the absolute pose of the remote TIM.
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6.3 Template and Role Matching

Creation of new logical module entities or the addition of module agents to existing logical 

modules is facilitated through the matching of the various roles in a logical module tem­

plate TEDS. Each TIM in a sensing system observes the presence (PRE) packets being 

transmitted by the modules within its environment, from which it selects candidate mod­

ules that may be used in the formation or augmentation of logical modules. As described 

in Section 3.4.1, various fields are contained within each presence packet that reveal the 

capabilities of the module that transmitted it. This information is then compared to 

the corresponding fields present in the role structures contained within all loaded logical 

module structures. If no existing role is matched, the templates in the template TEDS 

directory are then searched for new matches.

Template match attempts occur only when new modules are detected within the envi­

ronment, or the connection state between any two modules in the sensing system changes. 

This state change may be due to a connection between disconnected modules (a wireless 

to physical connection state change), or a disconnection between connected modules (a 

physical to wireless connection state change). Connection state changes trigger template 

match attempts because, as outlined in Section 6.2.2, connection type is one of the criteria 

that determines the validity of a role match.

6.3.1 Matching Existing Logical Modules

The process through which an existing logical module is matched is shown algorithmically 

in Algorithm 6.1. This process consists of iterating through each role structure within 

each logical module structure present in memory. In order to prevent infinitely recursive 

matching, a logical module is not allowed to match itself. This is detected by examining 

the address of all presence packets being tested for a role match within the logical module.
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Algorithm 6.1 Existing logical module matching process.
procedure MATCHExiSTiNGLoGiCAL(packet p resen ce) 

m atch ed  false
for each logical module m odule in module structure list do 

if m o d u le .address ^  p r e s e n s e .source then 
for each role role  in m odule do 

if role.m a,tch(presence) then
if m odu le is primary module structure then 

role .]om (p resen ce)  
end if
m atch ed <= true 
break for 

end if 
end for 

end if 
end for
if m atch ed  =  false then

if p re se n c e .connection =  ‘physical’ or ‘local’ then 
MatchNewLogical (presence) 

end if 
end if

end procedure
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If this address is the same as that of the logical module, testing is discontinued for that 

presence packet. In a role match test, each property specified in the presence packet being 

tested is compared to the corresponding fields within each role defined by the logical 

module. If the value of each property matches or falls within the bounds specified by the 

corresponding role field (starting with the C onnection Type field; see Section 6.2.2), the 

match is considered successful. Assuming the assignm ent limit for the role is not exceeded, 

the search ends and a rem ote jo in  message is issued by the prim ary module of the logical 

entity to the remote module that transmitted the matched presence packet. The primary 

module possesses the lowest address of all detected member modules comprising the 

logical entity and is responsible for managing its operation.

If no existing role matches are found for the tested presence packet, the local template 

TEDS directory is searched for a satisfactory template that may be used to form a 

new logical module containing a role that matches the presence packet. In addition, 

a module agent local to the TIM on which the test is being performed must also be 

matched, and the connection type between the matched remote TIM and local TIM 

must be either physical or local The local module agent match is required in order 

to satisfy the local m em ber check of the logical module (see Section 4.5.2). W ireless 

connections do not automatically trigger searches for new template matches because 

presence packets indicating wireless connections will be frequently detected within the 

environment of a sensing system comprised of a substantial amount of TIMs. Frequent 

template TEDS directory searches are expensive in terms of processing time and memory 

usage, especially when the directory consists of numerous TEDS specifications. Also, 

unlike with physically connected TIMs, automatic collaboration between unconnected 

TIMs will often be undesirable by the system user. If desired, wireless logical module 

formation may be invoked by the system user through an administrative interface.
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6.3.2 Creating New Logical Modules

Searching For Template TEDS Matches

The process through which a new logical module is created is shown algorithmically in 

Algorithms 6.2 and 6.3. When a search for a new template TEDS match is initiated, 

each template TEDS specification file (possessing a .mod extension) within the template 

TEDS directory is processed while sub-directories and other file types are disregarded. 

Each template TEDS specification is loaded, parsed, and stored in memory in the form 

of a template structure, previously described in Section 6.2.1. As with an existing logical 

module role search, each role within the loaded template structure is iterated through 

and tested against the supplied presence packet. In addition, a module agent local to the 

TIM on which the test is being performed must also be matched. However, new logical 

module searches differ from existing logical module searches in that all the other presence 

packets within the environment list are also tested against the roles of the template in 

order to assimilate other candidate modules.

During each role test, a count is maintained of the number of matches found in the 

environment. This count is thereafter compared with the assignment limit for the role, 

and the assignment limit for every role must be satisfied in order for logical module 

structure creation to proceed. The presence packet which triggered the template search, 

and at least one module agent local to the TIM on which the test is being performed, 

must contribute to the role match count. As with existing logical module role searches, 

the local module agent match is required in order to satisfy the local member check of the 

logical module (see Section 4.5.2). If, however, the template search was invoked manually 

through an administrative interface, the local module agent match is not required since 

administrative interfaces do not provide sensing nor actuation functionality. If matching 

is unsuccessful, the loaded template structure is deallocated, and the remaining template
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Algorithm 6.2 New logical module matching process._______________________________
procedure MATCHNEwLoGiCAL(packet presence) 

for each file f i le  in template TEDS directory do
if f i le  is not a directory and name of f i le  ends with ‘ .mod’ then 

template <= create template structure from f i le  
fullymatched ■<= true 
for each role role in template do 

matches <= 0
for each packet environmentpresence in environment list do 

if role.ma,tch(environmentpresence) then 
matches <= matches +  1 

end if 
end for
if role .assignmentlimit not satisfied by matches then 

fullymatched <= false 
deallocate template 
break for 

end if 
end for
if fullymatched =  true then

if presence matched and local module agent matched then 
CREATENEwLOGiCAL(iempJaie)

else if presence matched and matching invoked by system user then 
CREATENEwLOGiCAL(£empZa£e) 

else
deallocate template 

end if 
end if 

end if 
end for

end procedure
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Algorithm 6.3 New logical module creation process.
procedure CREATENEwLoGiCAL(template tem plate) 

ad dress <= random logical module address 
while address exists in environment list do 

address <= random logical module address 
end while
m odule 4= create logical module structure from tem pla te and address  
for each role role in m odu le do 

m a tch es <= 0
for each packet en viro n m en tp resen ce  in environment list do 

if role.m a ,tch (en viron m en tp resen ce) then 
m a tch es <= m a tch es +  1
if roZe.assignmentlimit satisfied by m a tch es  then 

ro le .]o m (p resen ce) 
else

break for 
end if 

end if 
end for 

end for
if local module agent matched then

create module message handler task for m odule  
else

deallocate m odule  
end if

end procedure
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TEDS specifications in the template TEDS directory are tested for matches.

Creating A New Logical Module Structure

When a loaded template structure is successfully matched, iteration ends and a random 

64-bit logical module address is generated. The most significant bit of this address, termed 

the logical module bit, is always set, and differentiates logical entities from standard 

module agents. The address will be assigned to a newly created logical module structure 

that is based on the loaded template. Before assignment, the environment list is searched, 

and if the address is detected within the environment, random address generation is 

repeated until a unique logical module address is discovered. Once a suitable address is 

obtained, a new logical module structure is allocated and initialized using the matched 

template structure. As with successful existing match searches, rem ote jo in  messages 

are thereafter issued to each local and remote match found for the roles in the template 

structure. These transmissions need not be carried out by a primary module, since the 

primary module of the newly created logical module entity is currently undefined. To 

ensure the assignment limit of each role is satisfied, a count is maintained of the number 

of matches assimilated thus far in the environment.

If the template search was invoked manually by the system user through an admin­

istrative interface, the newly created logical module structure is deallocated, since an 

administrative interface is not allowed to become a member of a logical entity. In this 

case, the matched module in the environment with the lowest address always assumes the 

position of primary member of the logical module entity. Otherwise, a module message 

handler task (see Section 4.5) is created to process the messages received by the entity 

during the times in which the local module assumes the position of primary member.
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6.4 Transducer Composition

6.4.1 Logical Module General Operation

The mechanism behind transducer composition in logical modules is shown in Figure 6.1 

and described algorithmically in Algorithm 6.4, utilizing the example of a logical module 

possessing two defined roles. As described in Section 6.2.2, each role within a template 

from which a logical module is formed possesses a role environment list, which stores 

member (MEM) packets corresponding to the currently detectable module agents within 

the environment that were assigned to the role after having been issued a join  request.

As shown in Figure 6.1, the logical module F3 (8-bit addresses are depicted for sim­

plicity), which has representative module structures present on all its members, consists 

of two roles. Module 1A is the primary member due its possession of the lowest address 

among the members of the logical entity. Therefore 1A currently processes messages 

transmitted to the logical module, and also generates messages on behalf of the logical 

entity. Since only four of the eight other modules that comprise F3 are within range of 

1A, the regularly transmitted member packets of these four modules are the only ones 

that are detectable by F3. Thus, from the perspective of 1A, only five modules, including 

itself, are currently available to fulfil the specific roles within F3 that they were matched 

and assigned to.

6.4.2 Logical Module Primary Handler Operation

The primary handler of a typical logical module such as F3 is shown algorithmically in 

Algorithm 6.4. Because all service function types are handled in a similar manner, only 

the processing methodology for Get service calls is depicted within the handler. Within 

the call to the Get service call handler, the role environment count for each defined role 

is determined. The role environment count is the number of detected members in the
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Module 2B
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Figure 6.1: Logical module operation block diagram.

environment that satisfy a particular role. The method that facilitates determination of 

role environment counts within a logical module is roleEnvironmentCount, found within 

the standard library class amss. system.Module (see Section A.3.3). This function takes 

a role number as its only parameter.

The role environment counts are then utilized within loops in order to acquire trans-
*

ducer readings from all the member modules within each role, which are stored within a 

vector or processed on the fly during acquisition. Acquisition of member module readings 

is performed through the invocation of a number of Get service calls. The invocation 

of service calls is facilitated through the methods serv iceC a ll and serviceCallAsync, 

also found within the standard library class amss.system.Module. These methods take 

as parameters the service call message to be transmitted, the role number to which the 

target module is assigned, and the index of the member packet associated with the tar­

get module (within the role environment list of the specified role). These service call 

methods, combined with the ability to dynamically determine role environment counts,
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Algorithm 6.4 Get processing in primary handler for logical module with two roles.
procedure LoGlCALPRiMARYHANDLER(module module, message call) 

if call.servicefunction =  Get then
rolecountl <= moduie.roleEnvironmentCount(l) 
rolecount2 <= module.roleEnvironmentCount(2) 
getreturns <= allocate new vector 
for i 4= from 0 to rolecountl do

getcall -t= create Get service call message for role 1 member i 
getreturn <= module.serviceCdll(getcall, l , i )  
getreturns.scp'pend(getreturn) 

end for
for i <= from 0 to rolecountl do

getcall ^  create Get service call message for role 2 member i 
getreturn <= module.serviceCall(getcall, 2 , i) 
getreturns.ecppend(getreturn) 

end for
compositedata <= process role member returns in getreturns 
deallocate getreturns contents and vector
return <= create return message for call containing compositedata 

end if
if call was handled then 

deallocate call
if return  was generated then

enqueue return  in outgoing message queue 
end if 

end if
end procedure
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provide convenient access to the services of the member modules available to a particular 

role without necessarily knowing how many members are accessible or their addresses.

After all member readings are acquired, manufacturer-provided or user-provided intel­

ligence within the primary handler produces a composite reading based on the properties 

of the messages in which the readings were returned, as well as the assigned roles of 

the member modules from which they were acquired. This composite reading is then 

enqueued in the outgoing message queue to be returned to the module that invoked the 

initial service call on the logical module. If other logical modules are assigned to fulfil 

roles within the logical module, the composition process as described is recursively in­

voked on each member logical module until the composed readings produced by each are 

generated and returned up the tree of logical modules. These composed readings are then 

themselves composed and returned.

6.5 Pose Composition

6,5.1 Pose Representation and Theory

The pose (position and orientation) of each TIM in a modular sensing system is repre­

sented locally on each TIM in the form of a 4 x 4 pose matrix P . Other popular methods 

as described in [68] of representing orientation itself include Euler angles, which are a set 

of three angular rotations (roll, pitchy and yaw) about mutually perpendicular axes, and 

quaternions. Quaternions are an extension of complex numbers in which each number 

possesses a single real part (w) representing a scalar, and three imaginary parts (i, j ,  

and k) representing a vector. From each number, information describing a single angular 

rotation about a completely arbitrary axis may be ascertained.

A matrix is chosen to represent position and orientation rather than Euler angles 

and quaternions because among these, only a matrix can provide a unique representation
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of a given orientation. Euler angles in particular are susceptible to the phenomenon of 

gimbal lock, where a degree of freedom may occasionally be lost due to a pitch rotation 

of 90 degrees causing the roll and yaw rotations to effectively occur about the same axis. 

Matrices also facilitate the convenient representation of position and orientation as an 

atomic, combined entity, enabling operations to be performed on both a position and its 

associated orientation simultaneously. In addition, to facilitate transformations between 

coordinate spaces, representations such as Euler angles and quaternions must, in any 

case, be converted to matrix representations. As with the face transform matrix (see 

Section 3.7.1), only 48 bytes are actually utilized to store the matrix instead of 64 bytes 

since the fourth row is understood to always be [0 0 0 1]. The data stored within a pose 

matrix is as shown in Equation 6.1:

axx ayx azx Px

axy ayy azy Py

axz ayz azz Pz

0 0 0 1

Each column within the pose matrix represents a three-dimensional geometric vector, 

defined relative to the cardinal axes within a right-handed coordinate system. In this 

coordinate system, a positive rotation about an axis is defined as a counter-clockwise 

rotation from the point of view of an observer facing the opposite direction of the axis. The 

first three columns of the pose matrix respectively represent the x, y, and z axes defining 

the object coordinate space of the TIM, represented in terms of the standard coordinate 

space defined by the cardinal axes. The standard object coordinate space of a TIM is 

depicted in Figure 6.2. The fourth column represents the absolute position of the TIM 

(more specifically, the origin of its object coordinate space) relative to the cardinal axes, 

in centimetres (cm). The matrix representation chosen facilitates the transformation of
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Y

Figure 6.2: Standard TIM object coordinate space.

one TIM coordinate space into another to be performed through consecutive pose matrix 

multiplications applied from right to left.

Within a logical module comprised of physically connected TIMs, the pose of all 

member modules must be defined relative to the object coordinate space of a single 

member module defined as the pose base. The use of a pose base allows each member 

module to access the pose of any other physically connected member knowing that the 

pose matrix returned will be within the same coordinate space as the locally represented 

pose. This may be done even if the TIMs are indirectly connected through any number 

of physically connected members. The transformation of the pose matrix coordinate 

space of member TIM A  into that of member TIM B is facilitated through the matrix



6 Composition Layer 128

multiplication shown in Equation 6.2, applied from right to left:

p Anew = Pb X PA (6.2)

6.5.2 Pose Composition Process

Pose Transformation Theory

As described in Section 3.7.3, pose updates are triggered whenever physical connections 

or disconnections between TIMs occur. The necessary information facilitating the update 

of a pose matrix is transferred within pose update structures, outlined in Section 6.2.4. 

This information is used to transform the local pose matrix of the TIM receiving the pose 

update structure through a series of rotations and translations. A pose rotation through 

the cardinal z, y, and x  axes of angles 7 , /?, and a  respectively, in that order, followed 

by a pose translation along these axes of A 2 , A y, and A x centimetres respectively, is 

performed through the matrix multiplication shown in Equation 6.3, applied from right 

to left:

where:

Z r o t  —

Y r o t  —

cos 7  ■-s in  7 0 0

sin 7 cos 7 0 0

0 0 1 0

0 0 0 1

cos (3 0 sin p 0

0 1 0 0

—sin ¡3 0 cos p 0

0 0 0 1

(6.3)

(6.4)

(6.5)
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1 0 0 0

0 cos a —sin a 0

0 sin a cos a 0

0 0 0 1

1 0 0 Ax

0 1 0 Ay

0 0 1 A z

0 0 0 1

Local Pose Update Transformations

(6.6)

(6.7)

Upon receiving a pose update structure as transmitted within an Update Pose service 

call received from a physically connected TIM, a series of transformations are carried out 

from which the new pose of the local TIM relative to the physically connected TIM will be 

determined. Firstly, the starting pose matrix on which the transformations will be carried 

out is set to the inverse of the face transform matrix associated with the connected face 

as indicated in the local face identifier field of the pose update structure. This is done 

since, for convenience, subsequent transformations are applied to the face as if it was in its 

default position and orientation within the object coordinate space of the local TIM. As 

stated in Section 3.7.1, the face transform matrix is currently always the identity matrix, 

since the faces of a TIM are rigid in its current implementation. Thus, the starting pose 

matrix is also always the identity matrix, which is its own inverse.

The first transformation applied to the pose matrix rotates it about the origin in a 

manner such that the positive x-axis in the object coordinate space of the local TIM 

passes directly through the centre of the locally connected face and is perpendicular to 

it. This requirement is already satisfied by Face 2 within the object coordinate space 

of the TIM. The locally connected face is that possessing the identifier (see Section 3.7)
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specified in the local face identifier field of the pose update structure. This transformation 

prepares the locally connected face to be trivially rotated about the x-axis in a subsequent 

transformation based on its angular offset relative to the remote connected face. The 

rotations necessary to achieve this transformation, depending on the identifier of the 

locally connected face, are shown in Table 6.1.

Table 6.1: Rotations required to bring a;-axis perpendicular to locally connected face.

Local Face Identifier Required Rotation About Origin
2 None
3 —90° about y - axis
4 180° about y - axis
5 90° about y - axis
6 90° about z -axis, then 90° about x-axis

The second transformation applied to the pose matrix rotates it about the x-axis in 

a manner such that the relative angular offset between the locally connected face and 

the remote connected face matches that implied by the contact connection pattern (see 

Section 3.7.3) between the two faces. The contact connection pattern may be immediately 

determined from the value contained within the rem ote face contact identifier field of the 

pose update structure, which indicates the contact on the remote connected face to which 

Contact 1 on the local connected face is attached. The angular offset associated with each 

contact connection pattern, and thus the rotation to apply, is as shown in Table 3.1. The 

rotations necessary to achieve this transformation, based on the remote face contact 

identifier, are shown in Table 6.2.

The third and fourth transformations complete the movement of the local pose from 

the object coordinate space of the local TIM into the object coordinate space of the remote 

TIM. The third transformation is a 12 cm (equal in magnitude to the length of the edge of 

a TIM) negative translation of the local pose along the x-axis. This transformation places
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Table 6.2: Rotations about x-axis required to achieve correct relative angular offset.

Remote Face Contact Identifier Required Rotation About x-axis
i None
2 90°
3 180°
4 -90 °

the local and remote TIMs directly adjacent to each other within the object coordinate 

space of the remote TIM, with the locally connected face of the local TIM in contact with 

Face 4 of the remote TIM. This may not necessarily be the remote face to which the local 

face is actually physically connected.

The fourth and final transformation applied to the pose matrix is a rotation within the 

object coordinate space of the remote module that moves the local TIM and its locally 

connected face, if necessary, adjacent to the remote face on the remote TIM to which it 

is actually physically connected. The rotations necessary to achieve this transformation, 

depending on the identifier of the remote connect face given in the remote face identifier 

field, are shown in Table 6.3.

Table 6.3: Rotations required to move locally connected face adjacent to correct remote 
face.

Remote Face Identifier Required Rotation About Origin
2 180° about y-axis
3 —90° about y-axis
4 None
5 90° about y-axis
6 90° about z-axis, then —90° about y-axis

After the preceding transformations are applied, the local pose is now completely 

defined in terms of the object coordinate space of the remote TIM, and specifies an 

appropriate position and orientation based on the face on the remote TIM to which the
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local face is connected. However, as described in Section 6.2.4, the coordinate spaces 

of all physically connected TIMs must be defined relative to the TIM in the composite 

entity designated the pose base. Since the pose of the remote module would have already 

been transformed such that it is defined in terms of the coordinate space of the pose 

base, the local pose may also be brought into the coordinate space of the pose base by 

multiplying it by the remote pose, as per Equation 6.2. This operation is valid even if 

the pose base is only indirectly connected to both the local and remote TIMs, due to the 

accumulative effect of multiplying transformation matrices in which all previously applied 

transformations are carried over into successive transformations.

Recursive Pose Update Invocation

Upon completion of the pose update process, the pose of other TIMs physically connected 

to the other faces of the local module will require updating. For each of the physically 

connected TIMs (except the TIM that issued the initial pose update service call to the 

local module), an appropriate pose update structure is allocated as part of an Update P ose  

service call message. These service call messages are then enqueued into the outgoing 

message queue for transmission.

6.6 Summary

In this chapter, the com position layer of the software architecture was described. In this 

layer, platform-independent logical module template algorithms are loaded and executed 

in order to provide intelligence to a collaborating group of TIMs. The prim ary module of 

the logical entity, which processes and transmits messages on its behalf, actively seeks new 

candidate module agents within the environment that may fulfil a behavioural role within 

the logical module. Physically connected TIMs within the logical entity intelligently
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transmit their position and orientation to each other and ensure that the pose of all 

physically connected members is defined relative to that of a member designated the pose 

base. The following chapter will provide a description of the process used to evaluate the 

operation and performance of the software architecture as well as a description of the 

results observed and an analysis of these results.



Chapter 7

Architecture Evaluation

7.1 Introduction

This chapter presents an evaluation of the behaviour and performance of the software 

architecture when utilized on actual TIM hardware. This evaluation will be facilitated 

through two tests, in which select homogeneous and heterogeneous sensors and actua­

tors will be associated with TIMs and connected together. Upon assuming a composite 

representation, the interactions of the TIMs are then logged locally on the non-volatile 

storage present on each TIM and examined thereafter. The module TEDS specifications, 

template TEDS specifications and template algorithm classes utilized for the purposes of 

evaluating the software architecture are listed in Appendix B.

The first test will be used to evaluate the operation of a logical module in which the 

constituent TIMs interact entirely through wireless communication. The second test will 

be used to evaluate the behaviour of a logical module in which the constituent TIMs are 

physically connected in various orientations, and interact through both wireless communi­

cation as well as through their physically connected faces. During these tests, performance 

criteria that strongly impact the real-world performance of a composite sensing system

134
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are considered for each constituent layer of the architecture implemented on top of the 

real-time operating system, drivers, and module hardware. These criteria are outlined 

below:

• Communication Layer —  Channel reservation latency during execution of the 

Medium Access Control (MAC) protocol, and message transmission speed between 

TIMs during execution of the Positive Acknowledgement with Retransmission (PAR) 

protocol.

• Middleware Layer —  Latency encountered between the invocation of a service 

function on a remote TIM and the reception of the associated return message by 

the invoking TIM.

• Virtual Machine —  Speed of bytecode execution in template class methods during 

which service calls may occur intermittently.

• Composition Layer —  Logical module agent startup memory utilization and 

correctness of the expected behaviour of the logical entity being evaluated.

7.2 Wireless Collaboration Behaviour

7.2.1 Evaluation Setup

The purpose of this test is to evaluate the behaviour of a modular sensing system when its 

constituent TIMs are wirelessly connected. A modular sensing system will be created in 

which a servo motor TIM, an digital accelerometer TIM, and an analog light-dependent 

resistor (LDR) TIM are placed within range of each other. The behaviour of the composite 

entity comprising the heterogeneous sensor and actuator modules is then examined and 

evaluated according to the performance criteria specified in Section 7.1. Throughout
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the collaboration tests, the TIMs relay their status to and receive data from the system 

user through a console-based administrative interface running on a personal computer 

workstation.

The apparatus utilized to perform testing of a wirelessly interacting modular sensing 

system is depicted in Figure 7.1. For the purposes of TIM identification throughout the 

evaluation, each module utilized is assigned a letter. In this particular test, the LDR 

TIM is designated Module A, the accelerometer TIM is designated Module B, and the 

servo TIM is designated Module C. Interfaces to three 5 V  adaptors and an RS232 port 

connected to the personal computer workstation are provided through means of a standard 

breadboard. These interfaces solely serve the respective purposes of providing a stable 

voltage to the TIMs and providing a link to their administrative task through which their 

behaviour may be monitored, and otherwise have no influence of the behaviour of the 

composite system.

Each TIM is equipped with an SD card that stores within the module TEDS directory 

(see Section 2.5.2) the module Transducer Electronic Data Sheet specifications (TEDS) 

that identify and describe the characteristics of the transducer associated with it. The 

module TEDS specifications describing the characteristics of the accelerometer, LDR, 

and servo TIMs are listed in Sections B.2.1, B.2.3, and B.2.4 respectively. Also stored 

on the SD card are a collection of template TEDS specifications and their associated 

template algorithm classes, located in the template TEDS directory and template class 

directory respectively (see Section 2.5.2). As stated in Section 4.5, a template TEDS and 

an associated template class together define the identity, characteristics, and behaviour 

of a particular combination of specific classes of collaborating TIMs. The template TEDS 

specification and the source code of the template algorithm class applicable to the TIMs 

utilized in this test are listed in Sections B.3.2 and B.4.2 respectively.
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7.2.2 Evaluation Procedure

Upon discovering each other, the modules in the sensing system are expected to be ca­

pable of utilizing an appropriate template specification and class to automatically form 

a composite entity that implements a new behaviour. To prevent multiple template 

matches from limiting the free memory available for the logical module to operate, the 

only suitable template provided within the non-volatile storage on the TIMs during this 

test is that of rotational actuator control through the averaging of voltage sensor read­

ings (see Sections B.3.2 and B.4.2), corresponding to the TIMs available within in the 

system. Thus, a single composite system should be created that finds and utilizes the 

average readings of all the available voltage-based sensing TIMs (specifically, the LDR in 

a potential divider configuration and the accelerometer) in the system to influence the 

position of all the available rotational actuator TIMs (the servo motor), as per the pro­

vided template specification and template class. Module C (the servo TIM) is the module 

possessing the lowest address in the system and thus should automatically designate itself 

the primary module, responsible for executing the template class upon formation of the 

logical entity.

To test if the described system behaviour is realized, the accelerometer TIM is phys­

ically rotated through five increasing angular degree positions of 0°, 45°, 90°, 135°, and 

180° once the formation of a logical module entity is confirmed through the administra­

tive interface. For each accelerometer angle, the LDR TIM is also exposed to high and 

low levels of ambient light. The angular position assumed by the servo motor TIM in 

response to changes to the duty cycle of the input pulse-width modulation (PWM) signal 

(which itself changes due to variations in the readings continuously acquired and averaged 

by the primary module during execution of the template class) provided by its associated 

TIM is then examined and analyzed in order to determine the correlation between the 

accelerometer TIM angular positions, LDR TIM ambient light voltage readings, and servo
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TIM angular positions. The angular position of the servo motor is more easily identified 

through a black indicator attached to the rotating head.

7.2.3 Results and Analysis

Figure 7.1 depicts the behaviour of the composite sensing system formed in the first 

evaluation setup, which consists entirely of wirelessly interacting TIMs. As previously 

outlined in Section 7.2.2, the data acquired from two sensor TIMs (LDR module A and 

accelerometer module B) is used to wirelessly control the behaviour of an actuator TIM 

(servo motor module C). Having detected that the TIMs present in the environment, 

including itself, satisfy the requirements for matching the ServoCon.mod template (see 

Section B.3.2), Module C loads the template into memory from the directory tmpl in 

its non-volatile storage as well as its associated template class ServoCon (source code 

listed in Section B.4.2) from the directory amss/algo. A logical module with a randomly 

determined logical address is formed locally on Module C, with the most significant bit 

in the logical address correctly set. The logical module thereafter issues Join service calls 

to the module agents running on Modules A, B, and C that represent the interface to the 

associated transducers on these TIMs. Local representations of the logical entity are also 

created on Modules A and B. Correctly identifying itself as the primary module of the 

composite entity due to its possession of the lowest address in the environment, Module 

C commences execution of the template class.

In the ServoCon template class executing on Module C, the readings from all of the 

acceleration (utilizing solely their x-axis readings) and voltage sensing module agents 

which comprise the logical entity are continuously acquired and averaged, through the 

use of Get service calls, to produce a value that is then applied, through the use of Set 

service calls, to all of the rotational module agents within the entity. The behaviour 

observed is as depicted in Figure 7.1, where the position of the rotational head of the
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Figure 7.1: Servo TIM positions for given accelerometer TIM angles
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(c) Accelerometer TIM angle of 90°.

Figure 7.1: Servo TIM positions for given accelerometer TIM angles
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(e) Accelerometer TIM angle of 180°.

Figure 7.1: Servo TIM positions for given accelerometer TIM angles.
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servo motor directly assumes, within the limits of its physical rotational range, an angle 

proportional to the degree to which the accelerometer is offset about its x-axis. Likely due 

to its limited sensitivity, varying the ambient light incident on the LDR did not affect the 

angle of the servo to as great a degree as changing the orientation of the accelerometer; 

however, minor variations were distinctly noticeable, indicating that the voltage readings 

returned by the LDR were in fact influencing the average reading applied to the servo 

motor.

As a result of overhead encountered during the transmission and processing of the 

continuous stream of service calls issued by the primary module to the sensor module 

agents within the logical entity, reliable real-time performance was difficult to achieve. 

An intentional half-second delay was introduced between sensor reading acquisitions and 

averaging in order to limit the frequency of dropped service call messages and achieve 

complete stability. Nevertheless, the modular sensing system exhibited correct behaviour, 

with real-time performance limited mainly by the capabilities of the microcontroller and 

wireless transceiver utilized in the TIMs. Improvements in real-time performance may be 

attained through the utilization of a more recent variant of the ARM microcontroller as 

well as a transceiver capable of higher sustained transmission speeds in a newer version of 

the TIM hardware. The cost of such attaining such components for prototyping purposes 

is rapidly falling to reasonable levels, and these components will facilitate greatly reduced 

latencies in scenarios where service calls are continuously invoked.

7.3 Physical Collaboration Behaviour

7.3.1 Evaluation Set up

The purpose of this test is to evaluate the behaviour of a modular sensing system when its 

constituent TIMs are physically connected. A modular actuator system will be created
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in which two 16 x 4 character HD44780-based liquid-crystal display (LCD) TIMs are 

physically connected in various orientations. The behaviour of the composite entity com­

prising the homogeneous modules is then examined and evaluated as per the performance 

criteria specified in Section 7.1.

The apparatus used to test the physically interacting modular sensing system is de­

picted in Figures 7.2 and 7.3. As with the wirelessly interacting composite module test, 

each module utilized in this test is assigned a letter for the purposes of identification. In 

this particular test, one LCD TIM is designated Module A, while the other is designated 

Module B. A breadboard is also used within the experiment solely to provide an interface 

to a single 5 V  adaptor to provide power and an RS232 port connected to a personal 

computer workstation for administrative purposes. As with the wirelessly interacting 

composite module test, the components on this breadboard otherwise have no influence 

on the behaviour of the composite system.

The module TEDS specification describing the characteristics of the two LCD TIMs 

utilized in this test is listed in Section B.2.2. This specification is stored within the 

standard module TEDS directory located on the SD cards local to each module. The 

template TEDS specification applicable to the TIMs utilized in this test and the source 

code of its associated template class are listed in Sections B.3.1 and B.4.1 respectively. 

The template TEDS specification and compiled template class bytecode are stored in the 

template TEDS directory and template class directory on the local SD cards respectively.

7,3.2 Evaluation Procedure

After being placed within range of each other, the LCD modules are expected to detect 

each other and attempt to form a composite entity. To prevent multiple template matches 

from limiting the free memory available for the logical module to operate, the only suitable 

template provided within the non-volatile storage on the TIMs during this test is that
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enabling physically connected text displays to produce a larger, composite display based 

on their detected orientation and relative positions (see Sections B.3.1 and B.4.1), which is 

satisfied by the LCD modules within the system only when they are physically connected. 

Thus, while the template is matched based on module type, class, and data type, the 

modules should not form a composite entity until they detect a physical connection to 

each other through their faces. Upon connection, a composite system should be created 

that finds and utilizes all of the available text displays (the two LCD TIMs) in order to 

form a suitable logical entity that effectively functions as a larger display if the displays 

detect that they are connected in a suitable orientation, as per the provided template 

specification and template class. The LCD TIM designated Module B is the module 

possessing the lower address in the system and thus should automatically designate itself 

the primary module, responsible for executing the template class upon formation of the 

logical entity.

To test if the described system behaviour is realized, the LCD TIMs are connected 

together in four configurations such that the LCD displays on the modules are aligned 

in suitable horizontal and vertical orientations. For the horizontal orientation, the LCD 

TIM designated Module A is connected on the left of the one designated Module B. 

In this configuration, Face 2 of Module A is connected to Face 4 of Module B, where 

the assigned face numbers are as described in Section 3.7. Once formation of a logical 

module entity is indicated through confirmation received on the administrative interface, 

alphanumeric text strings are then transmitted through the administrative interface to the 

logical module. The text output on the LCD displays is then examined and analyzed in 

order to determine the correlation between the orientations of the LCD display modules 

and the text outputs observed. In this configuration, the two 16 x 4 character LCD 

displays should form and behave as a logical 32 x 4 LCD display, thus possessing double 

the width. The test is then repeated with Face 2 of Module B connected to Face 4 of
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Module A, which should produce the same behaviour.

After completion of the second test, the LCD displays are connected in a vertical 

configuration, in which the LCD TIM designated Module A is connected above the one 

designated Module B. In this configuration, Face 5 of Module A is connected to Face 3 of 

Module B. Once formation of a logical module entity is indicated through confirmation 

received on the administrative interface, alphanumeric text strings are then transmitted 

through the administrative interface to the logical module, as done previously for the 

horizontal configurations. The text output on the LCD displays is then examined and 

analyzed in order to determine the correlation between the orientations of the LCD display 

modules and the text outputs observed. In this configuration, the two 16 x 4 character 

LCD displays should form and behave as a logical 16 x 8 LCD display, thus possessing 

double the height. The test is then repeated with Face 5 of Module B connected to Face 

3 of Module A, which should produce the same behaviour.

7.3.3 Results and Analysis

Figures 7.2 and 7.3 depict the behaviour of the composite sensing system formed in the 

second evaluation setup, which consists of TIMs interacting wirelessly as well as physically 

through their faces. As previously outlined in Section 7.3.2, alphanumeric text strings 

are transmitted through the administrative interface to the logical module formed upon 

the physical connection between the two LCD modules A and B present in the system. 

These strings are used to confirm that the LCD modules are correctly behaving as an 

effectively larger LCD entity for any valid connection orientation between the modules. 

Upon each of the four physical connections made between the TIMs in this test, the pose 

base addresses of both modules are updated to indicate that a physical connection now 

exists between them. Due to the fact that Module B possesses the lower address of the 

two modules, its orientation in each case correctly becomes the reference orientation for
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(a) Face 2 of Module A connected to Face 4 of Module B.

(b) Face 2 of Module B connected to Face 4 of Module A.

Figure 7.2: 32 x 4 character composite LCD TIM configurations.
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(a) Face 5 of Module A connected to Face 3 of Module B.

Figure 7.3: 16 x 8 character composite LCD TIM configurations.
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(b) Face 5 of Module B connected to Face 3 of Module A.

Figure 7.3: 16 x 8 character composite LCD TIM configurations.
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both modules, and thus the pose bases of both modules are set to the address of Module 

B. As the pose base, the pose matrix of Module B correctly remains the identity matrix 

upon each physical connection made to Module A. The updated pose matrices of Module 

A as logged by the TIM hardware upon each physical connection to Module B are listed 

below, with the standard TIM object coordinate space defined as shown in Figure 6.2, 

the face numbers designated as per Section 3.7, and the magnitude of the length of the 

edge of a TIM equal to 12 centimetres (cm):

• Pose matrix of Module A when Face 2 of Module A is connected to Face 4 of 

Module B, as shown in Figure 7.2a, correctly indicating a negative translation of 

12 cm along the x-axis relative to the object coordinate space of Module B:

1 0 0 - 1 2

0 1 0 0

0 0 1 0

0 0 0 1

(7.1)

• Pose matrix of Module A when Face 2 of Module B is connected to Face 4 of Module 

A, as shown in Figure 7.2b, correctly indicating a positive translation of 12 cm along 

the x-axis relative to the object coordinate space of Module B:

1 0 0 12

0 1 0 0

0 0 1 0

0 0 0 1

(7.2)

• Pose matrix of Module A when Face 5 of Module A is connected to Face 3 of 

Module B, as shown in Figure 7.3a, correctly indicating a negative translation of
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12 cm along the z-axis relative to the object coordinate space of Module B:

1 0 0 0

0 1 0 0

0 0 1 - 1 2

0 0 0 1

(7.3)

• Pose matrix of Module A when Face 5 of Module B is connected to Face 3 of Module 

A, as shown in Figure 7.3b, correctly indicating a positive translation of 12 cm along 

the z-axis relative to the object coordinate space of Module B:

1 0 0 0

0 1 0 0

0 0 1 12

0 0 0 1

(7.4)

After each physical connection between the two LCD TIMs, Module B detects that 

both itself and Module A satisfy the requirements for matching the LCDMerge.mod tem­

plate (see Section B.3.1), and loads the template into memory from its local tm p l directory 

as well as the associated template class LCDMerge (source code listed in Section B.4.1) 

from its local am ss/a lgo  directory. Upon each physical connection, a logical module with 

a randomly determined logical address is formed locally on Module B, with the most sig­

nificant bit in the logical address correctly set for each logical module formed. The logical 

module thereafter issues Join service calls to the module agents running on both Module 

A and Module B that respectively represent the interface to the LCD module on each 

TIM. For each logical module formed, a local representation of the entity is also created 

on Module A. Correctly identifying itself as the primary module of the composite entity
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due to its possession of the lowest address in the environment, Module B commences 

execution of the template class in each case.

One of four alphanumeric strings (each of which starts with the letters of the alphabet 

in lower case followed by upper case) is transmitted through the administrative interface 

to each of the logical display modules upon formation, through the use of a Set service 

call. The behaviour observed is as depicted in Figures 7.2 and 7.3, where as long as the 

LCD displays associated with the member TIMs are aligned horizontally or vertically 

alongside each other in a common plane, the alphanumeric string is always displayed in 

a consistent left-to-right, top-to-bottom fashion across TIMs. This behaviour is realized 

even if the relative positions of Module A and Module B are swapped, resulting in an 

effectively larger display of either 32 x 4 characters as depicted in Figure 7.2, or 16 x 8 

characters as depicted in Figure 7.3. Since the member TIMs are physically connected, 

they possess a common pose base, and the LCDMerge template class executing on Module 

B is therefore able to query and analyze their pose vectors (see Figure 5.1), derived from 

their respective pose matrices, in order to determine their relative orientations and thus 

the overall geometry of the logical entity. With knowledge of the overall geometry, the 

original alphanumeric string is internally split (if necessary) into segments by the primary 

module, each of which is recursively transmitted using Set service calls to the appropriate 

member LCD TIMs in order to achieve the correct behaviour.

Due to limitations in the amount of memory available within the TIMs, which restrict 

the complexity of the template classes utilized by logical module agents as well as the 

size of the structures used to maintain the state of the logical module agents themselves, 

the LCDMerge template class utilized in this test is unable to scale beyond two LCD 

modules. Nevertheless, the logical module entity exhibited the ability to assume a new 

behaviour based on the relative orientations between its physically connected member 

modules, and by extension, the overall geometry of the composite entity. Through the
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utilization of TIMs possessing greater amounts of memory (which is quickly becoming 

less cost prohibitive as semiconductor fabrication techniques improve), scaling to three 

LCD modules and beyond would not be difficult to achieve.

7.4 Collaboration Performance Analysis

In this section, measurements obtained during the evaluation of various performance 

criteria in the wireless and physical collaboration tests are graphically presented. For 

each criterion, the maximum, minimum, and mean performance readings are shown, as 

well as the standard deviation from the mean. These readings are then analyzed in 

order to characterize the performance of the architecture in each case. Latency and 

speed performance evaluations were facilitated through the use of the hardware system 

clock provided by the LPC2148 microcontroller present within each TIM, which is read 

immediately before and immediately after each event being timed. At least one hundred 

and up to three thousand event occurrences are timed, logged, and analyzed during the 

collaboration test runs. Upon the occurrence of each event, the elapsed time is obtained by 

calculating the difference between each pair of system clock readings and is subsequently 

utilized to derive performance data. This data is thereafter logged to non-volatile storage 

for analysis. Reading the system clock requires only a few tens of cycles (23 instructions 

executed at 60 MHz, most executed in effectively a single cycle due to pipelining), thus 

completing in about 1 fis or less. This overhead is considerably less than the time duration 

of events encountered during the operation of the software architecture, which are on the 

order of milliseconds, and is thus deemed negligible.
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7.4.1 Channel Reservation Latencies

In Figure 7.4, the MAC protocol channel reservation latencies encountered at the com­

munication layer during the collaboration tests are depicted. This latency is defined 

as the time elapsed between the transmission of an RTS packet and reception a CTS 

packet in response. The results show that the time required to reserve a channel is on 

the order of tens of milliseconds (about 40 ms to 50 ms on average). In comparison, the 

channel reservation latencies encountered in typical 802.11/WiFi networks, which employ 

the MACAW-based CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) 

protocol that operates similarly to the MAC protocol utilized in this software architec­

ture, are typically around 20 ms when few nodes are contending for access to the wireless 

channel [69].

The relatively large channel reservation period (which was rarely, but occasionally, 

on the order of seconds) typically encountered during the operation the software ar­

chitecture can likely be attributed to the greatly reduced interrupt response sometimes 

encountered within the software architecture due to its frequent usage of critical sections 

during timing-critical operations and operations that must be performed atomically. Crit­

ical sections are facilitated through the disabling of interrupts, during which reception of 

medium allocation packets by the wireless transceiver may go undetected for a substan­

tial period of time. The impact of the large channel reservation overhead is somewhat 

mitigated by the fact that it occurs only once per message transmission, is independent 

of the message length, and only becomes a major issue in real-time scenarios in which 

data is streamed between TIMs.

7.4.2 Message Transmission Speeds

Figure 7.5 depicts the speeds at which messages are wirelessly transmitted using the PAR 

protocol at the communication layer during the collaboration tests. The results clearly
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Channel Reservation Latency (ms)

Figure 7.4: MAC protocol channel reservation latencies.

show a maximum transmission speed of about 9,650 bytes per second, or about 9.42 kBps 

(kilobytes per second), with mean transmission speeds approaching this maximum. The 

messages transmitted during the physical collaboration test were generally larger than 

those transmitted during the wireless collaboration test; a message data field of at least 52 

bytes was required to store the alphanumeric strings transmitted in the physical collabo­

ration test, compared to the at most 12 bytes required in the wireless collaboration test 

to store the three floating point accelerometer axis readings transmitted. This results 

in an increased chance of packet retransmissions during the transmission of the larger 

messages due to interference encountered in the popular 2.4 GHz radio frequency spec-
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Figure 7.5: PAR protocol message transmission speeds.

trum utilized by the nRF24L01 transceiver within the TIMs. As a result, a lower mean 

message transmission speed was attained during the physical collaboration test, as well 

as a noticeably larger transmission speed variance. Nevertheless, the mean transmission 

speed was far closer to the maximum attained than the minimum.

The 9.42 kBps maximum transmission speed is much lower than the specified theoreti­

cal maximum of 2 Mbps (megabits per second), or 256 kBps, attainable by the nRF24L01 

transceiver. This performance discrepancy may be attributed to a number of key factors. 

The first is the speed of the 1.875 MHz SPI bus linking the LPC2148 microcontroller and 

the nRF24L01 transceiver, the bandwidth of which is partially consumed in the issuing of
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commands bytes to the transceiver to inform it of each forthcoming packet payload to be 

transmitted. The second is the acknowledgement packet transmission overhead encoun­

tered as required by the PAR protocol utilized at the communication layer, in which each 

packet requires an acknowledgement packet (ACK) to be returned by the recipient before 

the next packet transmission may occur in order to improve the reliability of the wireless 

link. The final factor is the overhead encountered during the encryption and decryption 

of each packet through the use of the ARC4 stream cipher, used to ensure the security 

of transmitted information. The maximum message transmission speed of 9.42 kBps is, 

however, very well suited to a wide variety of sensor-actuator systems and applications.

7.4.3 Service Call Round-Trip Latencies

Figure 7.6 depicts the latencies encountered during the invocation of synchronous Call By 

service functions in the collaboration tests, which are usually minimal functions intended 

to be immediately carried out to completion by the target module agent. This latency is 

defined as the time elapsed, or round-trip interval, between the transmission of the service 

call message to the target module agent and the reception of the associated return message 

from the target. Service calls that are asynchronous or Call At calls are not considered 

since such service calls are typically subject to lengthy and/or widely varying latencies, 

and will be utilized less often in practice than synchronous Call By service calls.

The results show that the return message reception latencies for synchronous Call By 

service function invocations are typically around 300 to 500 ms on average. However, it 

is also seen that the latencies may occasionally be on the order of seconds, as is the case 

with the channel reservation latencies encountered during execution of the MAC protocol. 

In comparison, the round-trip latencies encountered during the operation of the standard 

Remote Procedure Call (RPC) protocol on which the service call mechanism is based, 

and which is usually employed on high-speed wired and wireless networks, are typically
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Figure 7.6: Service call round-trip latencies.

below 100 ms for small messages on the order of tens of kilobytes in size [70].

The relatively large service call message reception latencies typically encountered dur­

ing the operation the software architecture can noticeably limit the responsiveness of a 

composite module, limiting the ability of the TIMs (in their current form) to be applied 

to real-time streaming applications. In addition to the previously outlined factors that 

impact channel reservation latencies and message transmission speeds (which in turn im­

pact the speed of service function invocations), a major factor impacting return message 

reception latencies is the substantial overhead encountered in the interpretation and exe­

cution of Java bytecodes at the virtual machine layer (further outlined in Section 7.4.4).
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These platform-independent bytecodes comprise the template classes that provide the 

service function definitions for logical modules, and must be interpreted during each call 

to these service functions.

7.4.4 Bytecode Execution Speeds

Figure 7.7 depicts the speeds at which the Java virtual machine bytecode instructions 

comprising logical module template classes are interpreted and executed at the virtual 

machine layer. Each bytecode interpretation speed reading is determined by dividing 

the number of instructions executed during the invocation of a particular template class 

service function by the length of time required to complete the call. As seen in the re­

sults, the mean bytecode execution speed attained during the wireless collaboration test 

of about 47 instructions/second is noticeably lower than the mean speed of about 266 

instructions/second attained during the physical collaboration test; in fact, the maximum 

speed of about 91 instructions/second is also noticeably lower. During the physical col­

laboration test, much higher maximum speeds of up to about 886 instructions/second 

were realized.

This discrepancy may be attributed to the fact that during the wireless collaboration 

test, synchronous service calls are being issued multiple times per second by the primary 

module of the modular sensing system to the other constituent TIMs within the logical 

entity (to perform near real-time acquisition of sensor readings). Synchronous service 

calls result in the suspension of template class execution until the completion of the call, 

therefore potentially extending the execution time of the template class method from 

which the service call originated by a substantial amount. In the physical collaboration 

test, the primary module of the formed logical entity only issues synchronous service 

calls to the constituent TIMs within the logical entity upon a change in state of the 

system (the text being displayed), thus vastly reducing the performance impact of the
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Figure 7.7: Virtual machine bytecode execution speeds.

calls. However, the intermittent occurrence of these synchronous service calls noticeably 

increased the variance of the bytecode interpretation speed readings observed during the 

physical collaboration test.

The attained bytecode interpretation speeds during the collaboration tests are consid­

erably slower (on the order of thousands of times) than native machine code execution. 

The low processor clock speeds and limited memory available in the TIM hardware, as 

well many other resource-constrained embedded devices, are not conducive to popular 

acceleration techniques such as dynamic recompilation, also termed just-in-time recompi­

lation (JIT) [71], in which newly encountered bytecodes are recompiled on the fly into
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native machine code. The JIT recompilation approach significantly increases interpreta­

tion speed by caching the dynamically generated machine code in memory and executing 

it as necessary, instead of reinterpreting the associated bytecodes. Newer versions of 

the ARM processor core, on which the LPC2148 microcontroller present in the TIMs is 

based, overcome the performance limitations of purely interpretive Java virtual machines 

by supporting the execution of Java bytecodes directly in hardware, through the use of 

the Jazelle [71] architecture extension.

7.4.5 Startup Memory Utilization

Figure 7.8 depicts the amount of random access memory (RAM) utilized on the TIMs 

(from an available heap of 31,656 bytes, or approximately 31 kilobytes, integrated into 

the LPC2148 microcontroller) by the software architecture upon formation of the logical 

modules within each collaboration test before they begin execution. This memory utiliza­

tion includes the representative structures for all the main background tasks (the network 

communication task, face communication task, and administrative shell task), the mod­

ule message handler task associated with the local transducer on each TIM, as well as for 

the module message handler task associated with the local representation of the logical 

module of which the TIM is a member. Also included in the memory utilization is the 

template class and TEDS entries associated with the logical module.

The results clearly show that about 20 to 24 KB (kilobytes) on average, or about 65% 

to 77% of the available memory, is typically utilized upon logical module formation. The 

minimum, mean, and maximum memory utilization readings are shown to be relatively 

close in each collaboration test, but do deviate by small amounts. This may be attributed 

to packets and messages that arrive and are buffered during the initialization of the logical 

module at varying intervals, which introduce minor variations in the memory utilization 

detected. The consistently larger memory utilization by the physical collaboration test as
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Figure 7.8: Startup memory utilization after logical module creation.

compared to the wireless collaboration test may be attributed to the LCDMerge template 

class utilized in the physical collaboration test, which is larger and more complex than the 

ServoCon template class utilized in the wireless collaboration test. Due to the fact that 

complex template classes, such as the LCDMerge template class, will often require on the 

order of 4 KB of memory or more just for representation purposes, scalability to greater 

than one or two logical module representations per TIM is very difficult. Nevertheless, 

the software architecture is designed to scale with increasing amounts of processing power 

and available memory, which is quickly becoming less cost prohibitive with improvements 

in semiconductor fabrication techniques.



7 A rchitecture Evaluation 162

7.5 Summary

In this chapter, a description was provided of the process used to evaluate the operation 

and performance of the software architecture as well as a description the results observed 

and an analysis of these results. It was seen that the software architecture exhibited 

correct behaviour in both the wireless and physical collaboration tests performed. How­

ever, processing and memory limitations imposed by the hardware present in the current 

implementation of the TIMs noticeably limited the responsiveness and scalability of the 

architecture. Due to the hardware-independent design of the software architecture, uti­

lization of future variations of the TIM hardware possessing increased processing and 

memory resources will lead to immediate improvements in its performance. The follow­

ing chapter will conclude the thesis and summarize the implementation of the software 

architecture, as well as provide recommendations for future enhancements of the software 

architecture.



Chapter 8 

Conclusions

8.1 Concluding Remarks

This thesis presented a novel software architecture and knowledge representation scheme 

that facilitates the flexible, scalable, and reliable combination of heterogeneous modular 

sensor and actuator components. The ability to combine a sensor with an actuator allows 

the sensor to be augmented with motion capability, enabling the now active sensor to 

adapt to changing process requirements.

Each modular component provides a core sensing or actuation functionality and also 

possesses embedded knowledge of its capabilities, which may be communicated to other 

modules in its environment. This facilitates collaboration among a group of sensor and ac­

tuator modules, and enables all or a subset of the group to dynamically exhibit completely 

new behaviour. The proposed software architecture was implemented and evaluated us­

ing a prototype transducer module implementation in order to test its viability, and this 

work is a first step towards a highly adaptive architecture that will prove useful in appli­

cable domains such as flexible inspection, mobile robotics, surveillance, and even space 

exploration.

163
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In order to achieve the proposed research objective, the following features were con­

sidered for the design of the architectural framework, each of which were incorporated 

into the resulting design to varying degrees:

• Heterogeneity —  Support the connection of modular sensor and actuator com­

ponents of diverse types.

• Autonomy —  Support the autonomous discovery and intelligent configuration of 

networked modules.

• Pose/Geometry Determination -— Support the determination of the pose (po­

sition and orientation) of individual modules, and therefore the determination of 

the overall geometry of a group of connected modules.

• Assumption of a Collective Identity —  Facilitate the assumption of a collective 

identity by a set of collaborating modules based on their capabilities and poses.

• Process Distribution —  Support task splitting and distribution among a group 

of networked modules.

• Resource Management — Manage the hardware resources on each module in an 

efficient and straightforward manner.

• Scalability —  Maintain reliable operation with an increasing number of connected 

modules.

• Robustness —  Automatically adapt to the addition, removal, or failure of modules

in real-time.
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8.2 Thesis Summary

The software architecture described in this thesis is a distributed, layered architecture 

composed of six layers. The implementation of each layer is encapsulated from the layer 

above, to which it provides service. Utilizing a layered architecture enables each layer to 

be easily implemented, modified, and debugged independently of the others, while the 

distributed nature of the architecture mitigates against a single point of failure within a 

system of collaborating modules.

The first and lowest layer, described in Chapter 2, is the module hardware layer. This 

layer comprises the processing, memory, storage, communication and sensing/actuation 

resources needed by the software architecture to operate. These resources are provided 

by the modular sensor and actuator components for which the software architecture is 

designed, termed Transducer Interface Modules (TIMs) [22].

The second layer is the real-time operating system (RTOS)/device drivers layer, also 

described in Chapter 2. This layer provides straightforward management of TIM hard­

ware resources and also provides an environment for the concurrent execution of inde­

pendent tasks, which promotes a modular and easily maintained software architecture 

implementation. The device drivers present within this layer are the low-level software 

routines through which manipulation of the hardware resources present in TIMs occurs.

The third layer is the communication layer, described in Chapter 3. This layer serves 

as an interface to the wireless transceiver driver, and provides logical link control to 

transform the unreliable wireless medium into a reliable, connection-oriented medium; 

medium access control in order to prevent wireless channel access conflicts; a protocol for 

maintaining time synchronization between modules; and wireless security for transmitted 

packets facilitated by the A R C f [32] cryptographic stream cipher. Also provided by 

this layer is a novel wired protocol facilitating the transfer of data through the faces of 

connected TIMs for the purposes of pose and overall geometry determination.
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The fourth layer is the middleware layer, outlined in Chapter 4. This layer defines 

the various architecture-specific service functions through which the heterogeneous or 

homogeneous member TIMs comprising a logical module may request services from and 

information about each other, thus facilitating distributed operation. These service func­

tions define the application programming interface (API) for both physical and logical 

modules. Variable-length messages are used to transfer data between TIMs.

The fifth layer is the virtual machine layer, outlined in Chapter 5. This layer provides 

a environment for the execution of the platform-independent template algorithm classes 

that define the behaviour dynamically assumed by the collaborating TIMs comprising 

logical modules. The definition of platform-independent algorithms enables the behaviour 

of a group of collaborating TIMs to be specified in a manner that is completely decoupled 

from their underlying hardware architecture. The virtual machine itself is a custom 

lightweight implementation of Sun Microsystems’ well documented and widely utilized 

Java Virtual Machine [23] designed specifically for this software architecture.

The sixth and final layer is the composition layer, outlined in Chapter 6. In this layer 

logical module template TEDS specifications as well as their associated logical module 

template algorithm classes, both unique to this software architecture, are loaded by a 

TIM from its non-volatile storage in response to modules it detects within its environment 

that satisfy at least one role definition within any of the specifications. If all of the roles 

within a particular template TEDS specification are matched, a logical module task and 

structure representation is created locally on each matching module. The template class 

associated with the template TEDS is then executed on each module in order to realize 

the defined behaviour of the logical entity through the collaboration of its members.

Evaluation results showed that the software architecture exhibited correct behaviour 

in both the wireless collaboration and physical collaboration scenarios considered. How­

ever, the responsiveness and scalability of the architecture was notably restricted as a
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result of the processing and memory limitations imposed by the current TIM hardware 

implementation. Key latencies were encountered during channel reservation at the com­

munication layer as well as during service call message round-trips at the middleware 

layer. Limited packet and message transmission speeds at the communication layer also 

impacted these latencies. The limited processing capability noticeably affected virtual 

machine bytecode interpretation performance, particularly since acceleration techniques 

such as dynamic recompilation and direct bytecode execution could not be leveraged 

with the current TIM hardware. The memory footprint upon initialization of a logical 

module at the composition layer was also noticeably large. In spite of these performance 

restrictions, the software architecture was designed to scale with increased processing and 

memory resources, and therefore the utilization of future variations of the TIM hardware 

possessing increased processing and memory resources will lead to tangible performance 

improvements.

8.3 Recommendations

Although the adaptive modular sensing system software architecture exhibited correct 

behaviour when implemented and evaluated on actual TIM hardware, a number of areas 

in the design and implementation of the software architecture may be improved, and new 

features may be added, in order to increase its applicability.

As discovered through the evaluation of the software architecture, processing and 

memory limitations imposed by the current TIM hardware implementation resulted in 

relatively large latencies being introduced into multiple layers of the software architecture. 

These latencies cumulatively act to reduce system performance, limiting its applicability 

to demanding scenarios where real-time performance is required. Utilizing a revision of 

the TIM hardware possessing a microcontroller based on more recent, high-speed versions
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of the ARM processor, such as those in the ARM9 and ARM 11 series, would result in 

substantially improved architecture performance. In addition, these microcontrollers also 

expose an interface providing direct access to their address bus, data bus, and chip select 

lines, facilitating the incorporation of vasts amounts of high-speed static random access 

memory (on the order of hundreds of megabytes) into newer TIM implementations. This 

would greatly increase the number of concurrent logical modules of which a TIM may be 

a collaborating member. Increased processing and memory resources would also enable 

very bandwidth-intensive sensors which regularly transfer large volumes of data, such as 

embedded cameras, to be associated with TIMs and utilized in a modular sensing system.

Greater sustained packet and message transmission speeds would also noticeably im­

prove the performance of the overall software architecture, particularly in scenarios requir­

ing real-time collaboration between member modules transferring substantial amounts of 

data, since the round-trip latency for every service call issued would be reduced. Mov­

ing channel reservation and switching logic into the firmware of the transceiver would 

also aid in reducing these latencies. A transceiver based on the 2.4 GHz short-range, 

frequency-hopping spread spectrum (FHSS) technology Bluetooth [72] would be well 

suited to achieving these goals. In addition, due to the pseudorandom frequency-hopping 

sequence utilized in switching between channels, data transmissions are indistinguishable 

from background noise without knowledge of the sequence. This provides an extra layer 

of data security to supplement its firmware-level encryption.

Throughout the software architecture, critical sections are extensively utilized to facil­

itate the atomic operation of timing-critical operations. Critical sections are implemented 

through the disabling of interrupts, which has the side effect of preventing the real-time 

operating system (RTOS) from performing context switches between concurrently ex­

ecuting tasks. However, critical sections are also utilized in a number of areas of the 

software architecture to provide atomic access to queues and other forms of data to con­
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currently executing tasks competing for these resources. With frequent utilization, criti­

cal sections often result in greatly increased execution latencies. Although the TNKernel 

RTOS utilized within the software architecture supports constructs such as mutexes and 

semaphores that are designed to allow atomic access to shared data without preventing 

context switches, they were not utilized in order to avoid the overhead involved in their 

use on the microcontroller. In the TNKernel RTOS, each use of these constructs requires 

a switch to kernel code. On hardware possessing greater processing capability, mutexes 

and semaphores should be utilized to implement task-safe access to shared data.

To keep the implementation of the Java-based virtual machine within the software ar­

chitecture lightweight, features of complete Java virtual machine implementations deemed 

not critical to logical module member collaboration, such as threads and automatic 

garbage collection, were not implemented due to the previously mentioned limited pro­

cessing capability of the TIMs. However, these features are recognized as part of the 

standard definition of the Java language, and would likely be seen as a requirement by 

some system users. On more capable TIM hardware, these features should be provided 

in order to bring the capabilities of the implemented virtual machine in line with the 

complete Java virtual machine specification as defined by Sun Microsystems [67]. Alter­

natively, if the utilized TIM hardware possesses enough memory resources to parse, and 

possibly compile, logical module behaviour specified strictly in the form of a text-based 

script, interpreters for well-supported and well-documented scripting languages such as 

Lua [73] and Python [74] may be incorporated into the software architecture in place of the 

Java-based virtual machine. These languages are somewhat less flexible than a complete 

Java implementation, but the lack of a need for source code compilation may simplify 

template algorithm implementation, deployment, and debugging. The Lua interpreter is 

particularly conducive to being embedded within a larger, encompassing application.

The library of template TEDS specifications and processing algorithms stored in the
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non-volatile memory local to each TIM within a modular sensing system is updated, 

without requiring user intervention, in an automatic, peer-to-peer fashion through the 

use of join structures (see Section 6.2.3) issued by Join service calls during the formation 

of logical modules. However, no mechanism is provided by which only the latest version of 

a particular template TEDS specification and its associated template class is transferred 

between TIMs before execution. A versioning scheme, possibly in the form of a new TEDS 

field, should be incorporated into TEDS specifications to ensure that a module with the 

latest version of a particular specification (and its associated template class if applicable) 

does not have its stored specification overwritten by older versions during peer-to-peer 

updates. In the presence of a connection to the administrative interface on a module 

possessing conflicting TEDS specification versions, the system user may be queried for 

conformation before the older TEDS specification is overwritten.

In summary, implementing and evaluating the software architecture proposed in this 

thesis has enabled numerous performance limitations to be exposed that would otherwise 

be difficult to discover. Addressing the latencies encountered at multiple layers within 

the software architecture stack as well as improving the speeds of message transmission 

and bytecode execution will result in a greatly improved adaptive modular sensing system 

architecture that will prove useful in its many applicable domains.
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Appendix A

Standard Class Library

A .l  Introduction

In this appendix, the standard class library provided for use within the software archi­

tecture is depicted. Each class package within the standard class library contains classes 

that provide a higher-level interface to various native methods defined within the software 

architecture. Further details may be found in Section 5.4.

A .2 Package java.lang

A .2.1 java.lang.Math

/ / -----------------------------------------------------------------------------------

/ /  ja v a .la n g .M a th  c la s s  
/ /  C o p y r ig h t (c )  2008 Andrew L y le  
/ / --------------------------------------------------------
/ /  T h is  program  is  f r e e  s o ftw a re : you can r e d is t r ib u te  i t  a n d /o r m o d ify  
/ /  i t  under th e  te rm s o f th e  GNU G enera l P u b lic  L ice n se  as p u b lis h e d  by 
/ /  th e  Free S o ftw a re  F o u n d a tio n , e i t h e r  v e rs io n  3 o f  th e  L ic e n s e , o r 
/ /  (a t  y o u r o p t io n )  any l a t e r  v e rs io n .

/ /
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/ /  T h is  program  is  d is t r ib u t e d  in  th e  hope th a t  i t  w i l l  be u s e fu l,
/ /  b u t WITHOUT ANY WARRANTY; w ith o u t  even th e  im p lie d  w a rra n ty  o f 
/ /  MERCHANTABILITY o r  FITNESS FOR A PARTICULAR PURPOSE. See th e  
/ /  GNU G enera l P u b lic  L ice n se  f o r  more d e t a i ls .

/ /
/ /  You sh ou ld  have re c e iv e d  a copy o f th e  GNU G enera l P u b lic  L icense  
/ /  a lo ng  w ith  t h i s  p rogram . I f  n o t ,  see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package ja v a . la n g ;  

p u b l ic  f i n a l  c la s s  Math {
p u b l ic  s t a t i c  f i n a l  d oub le  E = 2.7182818284590452354; 
p u b l ic  s t a t i c  f i n a l  d oub le  P I = 3.14159265358979323846;

p r iv a te  M athO  
p u b lic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b lic  s t a t i c  
p u b lic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b lic  s t a t i c  
p u b lic  s t a t i c  
p u b lic  s t a t i c  
p u b lic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c  
p u b l ic  s t a t i c

O
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e

dou b le  s in (d o u b le  d ) ;
dou b le  c o s (d o u b le  d ) ;
dou b le  ta n (d o u b le  d ) ;
dou b le  a s in (d o u b le  d ) ;
dou b le  a cos(do u b le  d ) ;
doub le  a ta n (d o u b le  d ) ;
doub le  e xp (do u b le  a ) ;
doub le  lo g (d o u b le  a ) ;
dou b le  c e il( d o u b le  a ) ;
dou b le  f lo o r ( d o u b le  a ) ;
dou b le  r in t ( d o u b le  a ) ;
dou b le  a ta n 2 (d o u b le  y ,  dou b le  x ) ;
dou b le  pow (double  a , doub le  b ) ;
i n t  r o u n d ( f lo a t  a ) ;
lo n g  ro u n d (d o u b le  a ) ;
doub le  random0 ;
i n t  a b s ( in t  a ) ;
lo n g  a b s ( lo n g  a ) ;
f l o a t  a b s ( f lo a t  a ) ;
dou b le  a bs (do u b le  a ) ;
i n t  m a x ( in t a , i n t  b ) ;
lo n g  m ax(long  a, lo n g  b ) ;
f l o a t  m a x ( f lo a t  a , f l o a t  b ) ;
d oub le  m ax(double  a , doub le  b ) ;
i n t  m in ( in t  a , i n t  b ) ;
lo n g  m in ( lo n g  a, lo n g  b ) ;
f l o a t  m in ( f lo a t  a , f l o a t  b ) ;
d oub le  m in (d o u b le  a , doub le  b ) ;
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p u b lic  s t a t i c  n a t iv e  doub le  s in h (d o u b le  x ) ; 
p u b l ic  s t a t i c  n a t iv e  dou b le  co sh(doub le  x ) ; 
p u b lic  s t a t i c  n a t iv e  dou b le  ta n h (d o u b le  x ) ;

}

A .2.2 java.lang.String

/ / ------------------------------------------------------
/ /  ja v a . la n g .S t r in g  c la s s  
/ /  C o p y r ig h t (c )  2008 Andrew L y le  
/ / --------------------------------------------------------
/ /  T h is  program  is  f r e e  s o ftw a re : you can r e d is t r ib u te  i t  a n d /o r m o d ify  
/ / i t  under th e  te rm s o f  th e  GNU G enera l P u b lic  L ice n se  as p u b lis h e d  by 
/ /  th e  Free S o ftw a re  F o u n d a tio n , e i t h e r  v e rs io n  3 o f  th e  L ic e n s e , o r  
/ /  (a t  y o u r o p t io n )  any l a t e r  v e rs io n .

/ /
/ /  T h is  program  is  d is t r ib u t e d  in  th e  hope th a t  i t  w i l l  be u s e fu l,
/ /  b u t WITHOUT ANY WARRANTY; w ith o u t  even th e  im p lie d  w a rra n ty  o f 
/ /  MERCHANTABILITY o r  FITNESS FOR A PARTICULAR PURPOSE. See th e  
/ /  GNU G enera l P u b lic  L ice n se  f o r  more d e t a i ls .

/ /
/ /  You sh o u ld  have re c e iv e d  a copy o f  th e  GNU G enera l P u b lic  L icense  
/ /  a lo n g  w ith  t h i s  p rogram . I f  n o t ,  see <h t tp : / /w w w .g n u .o r g / l ic e n s e s />.

package ja v a . la n g ;

p u b l ic  f i n a l  c la s s  S t r in g  {  
p r iv a te  S t r in g O  {>  
p u b lic  n a t iv e  ch ar c h a r A t ( in t  in d e x ) ;  
p u b lic  n a t iv e  boo lean  e n d s W ith (S tr in g  s u f f i x ) ;  
p u b lic  n a t iv e  boo lean  e q u a ls (O b je c t a n O b je c t) ; 
p u b l ic  n a t iv e  boo lean  e q u a ls Ig n o re C a s e (S tr in g  a n o th e r S t r in g ) ; 
p u b l ic  n a t iv e  i n t  le n g th O ;
p u b l ic  n a t iv e  b oo lean  s ta r ts W ith ( S t r in g  p r e f i x ) ;  
p u b l ic  n a t iv e  S t r in g  s u b s t r in g ( in t  b e g in ln d e x , i n t  e n d ln d e x ); 
p u b l ic  n a t iv e  S t r in g  to L o w e rC a se O ; 
p u b l ic  n a t iv e  S t r in g  toU pp e rC a seQ ;

>
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A .3 Package amss.system

A .3.1 amss.system.AMSS

/ / ------------------------------------------------------
/ /  amss.system.AMSS c la s s  
/ /  C o p y r ig h t (c )  2008 Andrew L y le  
/ / --------------------------------------------------------
/ /  T h is  program  is  f r e e  s o ftw a re : you can r e d is t r ib u t e  i t  a n d /o r m o d ify  
/ /  i t  under th e  te rm s o f th e  GNU G enera l P u b lic  L ice n se  as p u b lis h e d  by 
/ /  th e  Free S o ftw a re  F o u n d a tio n , e i t h e r  v e rs io n  3 o f  th e  L ic e n s e , o r 
/ /  ( a t  y o u r o p t io n )  any l a t e r  v e rs io n .

/ /
/ /  T h is  program  is  d is t r ib u t e d  in  th e  hope th a t  i t  w i l l  be u s e fu l,
/ /  b u t WITHOUT ANY WARRANTY; w ith o u t  even th e  im p lie d  w a rra n ty  o f 
/ /  MERCHANTABILITY o r  FITNESS FOR A PARTICULAR PURPOSE. See the  
/ /  GNU G enera l P u b lic  L ice n se  f o r  more d e t a i ls .

/ /
/ /  You sh ou ld  have re c e iv e d  a copy o f  th e  GNU G enera l P u b lic  L icense  
/ /  a lo n g  w ith  t h i s  p rogram . I f  n o t ,  see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.system ;

p u b l ic  f i n a l  c la s s  AMSS {
/ /  s le e p  c o n s ta n ts
p u b l ic  s t a t i c  f i n a l  lo n g  TICK_1MS = 1;
p u b l ic  s t a t i c  f i n a l  lo n g  TICK.1S = 1000 * TICK.1MS;
p u b l ic  s t a t i c  f i n a l  lo n g  TICK_1M = 60 *  TICK__1S;

/ /  c lo c k  c o n s ta n ts
p u b l ic  s t a t i c  f i n a l  lo n g  TIME_1US = 1;
p u b l ic  s t a t i c  f i n a l  lo n g  TIME_1MS = 1000 * TIME_1US;
p u b l ic  s t a t i c  f i n a l  lo n g  TIME_1S = 1000 * TIME.1MS;
p u b l ic  s t a t i c  f i n a l  lo n g  TIME_1M = 60 *  TIME_1S;

p r iv a te  AMSSO { }  
p u b l ic  s t a t i c  n a t iv e  v o id  
p u b l ic  s t a t i c  n a t iv e  v o id  
p u b l ic  s t a t i c  n a t iv e  v o id  
p u b l ic  s t a t i c  n a t iv e  lo n g  
p u b l ic  s t a t i c  n a t iv e  v o id

g c (O b je c t o b j ) ;  
e n te rA to m ic O  ; 
le a v e A to m ic O  ; 
g e tC lo c k O  ; 
s le e p d o n g  m i l l i s ) ;
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p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic

s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e

i n t  re a dA syn cO ;
i n t  re a d O ;
S t r in g  r e a d S t r in g ( in t  m a x ie n );
i n t  r e a d ln t ( in t  b a se );
lo n g  re a d L o n g ( in t b a se );
dou b le  re a d D o u b le ( in t b a s e );
i n t  in tV a lu e ( S t r in g  s , i n t  b a se );
f l o a t  f lo a tV a lu e ( S t r in g  s , i n t  b a se );

p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b l ic
p u b lic
p u b lic
p u b lic
p u b lic
p u b l ic
p u b lic

s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e  
s t a t i c  n a t iv e

v o id  p r in t ( S t r in g  s ) ; 
v o id  p r in t (b o o le a n  b ) ; 
v o id  p r in t ( c h a r  c ) ; 
v o id  p r i n t ( i n t  i ) ; 
v o id  p r in t ( lo n g  1 ) ;  
v o id  p r i n t ( f l o a t  f ) ;  
v o id  p r in t ( d o u b le  d ) ; 
v o id  p r in t ln ( S t r in g  s ) ; 
v o id  p r in t ln ( b o o le a n  b ) ; 
v o id  p r in t ln ( c h a r  c ) ; 
v o id  p r i n t l n ( i n t  i ) ; 
v o id  p r in t ln ( lo n g  1 ) ;  
v o id  p r i n t l n ( f l o a t  f ) ;  
v o id  p r in t ln ( d o u b le  d ) ; 
v o id  p r in t l n O ;

A .3.2 amss. system. Message

/ / ------------------------------------------------------
/ /  amss.system .M essage c la s s  
/ /  C o p y rig h t (c ) 2008 Andrew L y le  
/ / --------------------------------------------------------
/ /  T h is  program  is  f r e e  s o ftw a re : you can r e d is t r ib u te  i t  a n d /o r m o d ify  
/ /  i t  under th e  term s o f  th e  GNU G enera l P u b lic  L ice n se  as p u b lis h e d  by 
/ /  th e  Free S o ftw a re  F o u n d a tio n , e i t h e r  v e rs io n  3 o f  th e  L ic e n s e , o r 
/ /  (a t  y o u r o p t io n )  any l a t e r  v e rs io n .
/ /
/ /  T h is  program  is  d is t r ib u t e d  in  th e  hope th a t  i t  w i l l  be u s e fu l,
/ /  b u t WITHOUT ANY WARRANTY; w ith o u t  even th e  im p lie d  w a rra n ty  o f 
/ /  MERCHANTABILITY o r  FITNESS FOR A PARTICULAR PURPOSE. See th e  
/ /  GNU G enera l P u b lic  L ice n se  f o r  more d e t a i ls .
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/ /
/ /  You sh ou ld  have re c e iv e d  a copy o f th e  GNU G enera l P u b lic  L icense  
/ /  a lo n g  w ith  t h i s  p rogram . I f  n o t ,  see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.system ;

p u b l ic  f i n a l  c la s s  Message {
/ /  message ty p e  c o n s ta n ts
p u b l ic  s t a t i c  f i n a l  lo n g  NO_ADDRESS = 0;
p u b l ic  s t a t i c  f i n a l  lo n g  NCLDEADLINE = 0 x 7 f f f f f f f f f f f f f f f L ;
p u b lic s t a t i c f i n a l i n t CALLAT = l ;
p u b lic s t a t i c f i n a l i n t CALLBY = 2;
p u b lic s t a t i c f i n a l i n t RETURN = 3;

/ /  s e rv ic e  fu n c t io n c o n s ta n ts
p u b lic s t a t i c f i n a l i n t GET = 1;
p u b lic s t a t i c f i n a l i n t SET = 2;
p u b lic s t a t i c f i n a l i n t APPEND = 3;
p u b lic s t a t i c f i n a l i n t RESET = 4;
p u b lic s t a t i c f i n a l i n t GETTEDS = 5;
p u b lic s t a t i c f i n a l i n t GETPOSE = 6;
p u b lic s t a t i c f i n a l i n t UPDATEPOSE = 7;
p u b lic s t a t i c f i n a l i n t LOCK = 8;
p u b lic s t a t i c f i n a l i n t UNLOCK = 9;
p u b l ic s t a t i c f i n a l i n t JOIN = 10;

/ /  pa ram ete r typ e s
p u b lic s t a t i c f i n a l i n t NO.PARAM - 0;
p u b lic s t a t i c f i n a l i n t INT8 = ( 1 « 0 )
p u b l ic s t a t i c f i n a l i n t INT16 = ( l « l )
p u b lic s t a t i c f i n a l i n t INT32 = ( 1 « 2 )
p u b lic s t a t i c f i n a l i n t INT64 = ( 1 « 3 )
p u b lic s t a t i c f i n a l i n t UINT8 = ( 1 « 4 )
p u b l ic s t a t i c f i n a l i n t UINT16 = ( 1 « 5 )
p u b l ic s t a t i c f i n a l i n t UINT32 = ( 1 « 6 )
p u b lic s t a t i c f i n a l i n t UINT64 = ( 1 « 7 )
p u b lic s t a t i c f i n a l i n t FLOAT = ( 1 « 8 )
p u b lic s t a t i c f i n a l i n t DOUBLE = ( 1 « 9 )
p u b l ic s t a t i c f i n a l i n t STATUS = (1 « 1 0 )  ;
p u b lic s t a t i c f i n a l i n t STRING = (1 « 1 1 )  ;
p u b lic s t a t i c f i n a l i n t OBJECT = (1 « 1 2 )  ;

/ /  s ta tu s  c o n s ta n ts
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p u b lic  s t a t i c  f i n a l  i n t  SUCCESS = 1;
p u b l ic  s t a t i c  f i n a l  i n t  ERROR = 2;
p u b l ic  s t a t i c  f i n a l  i n t  MISSED_DEADLINE = 3;
p u b l ic  s t a t i c  f i n a l  i n t  INVALID_PARAMETER = 4;
p u b l ic  s t a t i c  f i n a l  i n t  LOCKED = 5;
p u b l ic  s t a t i c  f i n a l  i n t  NOT_ALLOWED = 6;

/ /  co re  methods 
p r iv a te  Message()  O
p u b l ic  s t a t i c  n a t iv e  Message c re a te ( lo n g  s rc ,  lo n g  d s t ,  

lo n g  d e a d lin e , lo n g  tim e s ta m p , i n t  ty p e , i n t  s rv fu n c ,  
i n t  p a r ty p e , i n t  parw , i n t  p a r h ) ; 

p u b l ic  s t a t i c  n a t iv e  Message c lo n e ( lo n g  s rc ,  lo n g  d s t ,  
lo n g  d e a d lin e , lo n g  tim e s ta m p , i n t  ty p e , i n t  s rv fu n c ,
Message m sg);

p u b l ic  s t a t i c  n a t iv e  Message e n c lo s e ( lo n g  s rc ,  lo n g  d s t ,  
lo n g  d e a d lin e , lo n g  tim e s ta m p , i n t  ty p e , i n t  s rv fu n c ,
Message m sg );

p u b l ic  s t a t i c  n a t iv e  Message crea teR eturn (M essage  m c a ll,  
i n t  p a r ty p e , i n t  parw , i n t  p a rh ) ;  

p u b l ic  s t a t i c  n a t iv e  Message c re a te R e tu rnS ta tu s (M essa g e  m c a ll,  
i n t  s t a t u s ) ;

p u b lic  s t a t i c  n a t iv e  boo lean  enqueueMessageOut(Message m );

/ /  p ro p e r ty  methods 
p u b l ic  n a t iv e  lo n g  s o u rc e O ; 
p u b l ic  n a t iv e  lo n g  d e s t in a t io n O ; 
p u b l ic  n a t iv e  lo n g  d e a d lin e ( ) ;  
p u b l ic  n a t iv e  lo n g  tim e s ta m pO  ; 
p u b l ic  n a t iv e  i n t  ty p e O ;  
p u b l ic  n a t iv e  i n t  s e rv ic e F u n c t io n O ; 
p u b l ic  n a t iv e  i n t  s e r v ic e ld O  ; 
p u b lic  n a t iv e  i n t  param ete rT ypeO  ; 
p u b l ic  n a t iv e  i n t  p a ra m e te rW id th O  ; 
p u b l ic  n a t iv e  i n t  p a ra m e te rH e ig h t( ) ;

/ /  g e t /s e t  methods 
p u b l ic  n a t iv e  char 
p u b l ic  n a t iv e  s h o r t  
p u b l ic  n a t iv e  i n t  
p u b l ic  n a t iv e  lo n g  
p u b l ic  n a t iv e  char 
p u b l ic  n a t iv e  s h o r t

g e t ln t 8 ( in t  y , i n t  x ) ; 
g e t l n t l 6 ( i n t  y , i n t  x ) ; 
g e t ln t 3 2 ( in t  y , i n t  x ) ; 
g e t ln t 6 4 ( in t  y , i n t  x ) ; 
g e tU in t8 ( in t  y , i n t  x ) ; 
g e t U in t l6 ( in t  y ,  i n t  x ) ;
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>

p u b lic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b lic  n a t iv e  
p u b lic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b lic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b l ic  n a t iv e  
p u b lic  n a t iv e  
p u b lic  n a t iv e

i n t  g e tU in t3 2 ( in t  y , i n t  x ) ;
lo n g  g e tU in t6 4 ( in t  y , i n t  x ) ;
f l o a t  g e t F lo a t ( in t  y , i n t  x ) ; 
doub le  g e tD o u b le ( in t  y , i n t  x ) ;
i n t  g e tS ta tu s ( in t  y ,  i n t  x ) ;
S t r in g  g e t S t r in g ( in t  y ) ;
Message getM essageO  ;
O b je c t g e tO b je c tO  ;
v o id  s e t l n t 8 ( i n t  y ,  i n t  x ,  ch a r v a l ) ; 
v o id  s e t l n t l 6 ( i n t  y , i n t  x ,  s h o r t  v a l ) ;
v o id  s e t ln t 3 2 ( in t  y , i n t  x , i n t  v a l ) ;
v o id  s e t ln t 6 4 ( in t  y , i n t  x , lo n g  v a l ) ;
v o id  s e tU in t8 ( in t  y , i n t  x ,  ch a r v a l ) ;
v o id  s e t U in t l6 ( in t  y , i n t  x 3 s h o r t  v a l ) ;
v o id  s e tU in t3 2 ( in t  y , i n t  x , i n t  v a l ) ;
v o id  s e tU in t6 4 ( in t  y ,  i n t  x ,  lo n g  v a l ) ;
v o id  s e tF lo a tC in t  y , i n t  x , f l o a t  v a l ) ;  
v o id  s e tD o u b le ( in t  y ,  i n t  x , dou b le  v a l ) ;
v o id  s e tS ta tu s ( in t  y ,  i n t  x , i n t  v a l ) ;
v o id  s e tS t r in g ( in t  y , S t r in g  v a l ) ;

A .3.3 amss.system.Module

/ / ------------------------------------------------------
/ /  am ss.system .M odule  c la s s  
/ /  C o p y r ig h t (c )  2008 Andrew L y le  
/ / --------------------------------------------------------
/ /  T h is  program  is  f r e e  s o ftw a re : you can r e d is t r ib u te  i t  a n d /o r m o d ify  
/ /  i t  under th e  te rm s o f  th e  GNU G enera l P u b lic  L ice n se  as p u b lis h e d  by 
/ /  th e  Free S o ftw a re  F o u n d a tio n , e i t h e r  v e rs io n  3 o f  th e  L ic e n s e , o r 
/ /  (a t  y o u r o p t io n )  any l a t e r  v e rs io n .

/ /
/ /  T h is  program  is  d is t r ib u t e d  in  th e  hope th a t  i t  w i l l  be u s e fu l,
/ /  b u t WITHOUT ANY WARRANTY; w ith o u t  even th e  im p lie d  w a rra n ty  o f 
/ /  MERCHANTABILITY o r  FITNESS FOR A PARTICULAR PURPOSE. See th e  
/ /  GNU G enera l P u b lic  L ice n se  f o r  more d e t a i ls .

/ /
// You should have received a copy of the GNU General Public License
// along with th is  program. I f  not, see <http://www.gnu.org/licenses/>.
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package am ss.system ;

p u b l ic  f i n a l  c la s s  Module {
/ /  co re  fu n c t io n s  
p r iv a te  M odule()  { }
p u b l ic  s t a t i c  n a t iv e  Pose g e tL o c a lP o s e O ;

/ /  h a n d le r fu n c t io n s  
p u b lic  n a t iv e  boo lean  
p u b l ic  n a t iv e  boo lean  
p u b l ic  n a t iv e  boo lean  
p u b l ic  n a t iv e  Message 
p u b l ic  n a t iv e  v o id  
p u b l ic  n a t iv e  v o id  
p u b lic  n a t iv e  i n t  
p u b lic  n a t iv e  i n t  
p u b lic  n a t iv e  Message 

i n t  e n v in d e x ) ; 
p u b l ic  n a t iv e  i n t  

i n t  e n v in d e x ) ; 
p u b l ic  n a t iv e  Message

is R u n n in g O  ; 
is P r im a ry O  ; 
isLocked(M essage m) ; 
n e x tS e rv ic e C a llO  ; 
secondaryH andler(M essage c a l l ) ;  
s ta tu sC h e ckO  ; 
ro le C o u n t( ) ;
ro le E n v iro n m e n tC o u n t( in t r o le ) ;  
s e rv ic e C a ll(M e s s a g e  m, i n t  r o le ,

se rv ice C a llA syn c(M e ssa ge  m, i n t  r o le ,

g e tR e tu r n ( in t  s e r v ic e id ) ;

/ /  lo g ic a l  te d s  g e t /s e t  fu n c t io n s
p u b lic  n a t iv e  ch ar g e tT e d s C h a r(S tr in g  propnam e);
p u b lic  n a t iv e  i n t  g e tT e d s In t (S t r in g  propname, i n t  b a se );
p u b lic  n a t iv e  f l o a t  g e tT e d s F lo a t(S tr in g  propname, i n t  b a se );
p u b l ic  n a t iv e  S t r in g  g e tT e d s S tr in g (S tr in g  propnam e);
p u b l ic  n a t iv e  boo lean  s e tT e d s C h a r(S tr in g  propname, ch a r v a l ) ;
p u b l ic  n a t iv e  boo lean  s e tT e d s In t (S t r in g  propname, i n t  v a l ) ;
p u b l ic  n a t iv e  boo lean  s e tT e d s F lo a t(S tr in g  propname, f l o a t  v a l ) ;
p u b l ic  n a t iv e  boo lean  s e tT e d s S tr in g (S tr in g  propname, S t r in g  v a l ) ;

>

A .3.4 amss.system.Pose

/ / ------------------------------------------------------
/ /  am ss.system .Pose c la s s  
/ /  C o p y r ig h t (c )  2008 Andrew L y le  
/ / --------------------------------------------------------
/ /  T h is  program  is  f r e e  s o ftw a re : you can r e d is t r ib u t e  i t  a n d /o r m o d ify  
/ /  i t  under th e  te rm s o f  th e  GNU G enera l P u b lic  L ice n se  as p u b lis h e d  by
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/ /  th e  Free S o ftw a re  F o u n d a tio n , e i t h e r  v e rs io n  3 o f  th e  L ic e n s e , o r  
/ /  (a t  y o u r o p t io n )  any l a t e r  v e rs io n .

/ /
/ /  T h is  program  is  d is t r ib u t e d  in  th e  hope th a t  i t  w i l l  be u s e fu l,
/ /  b u t WITHOUT ANY WARRANTY; w ith o u t  even th e  im p lie d  w a rra n ty  o f 
/ /  MERCHANTABILITY o r  FITNESS FOR A PARTICULAR PURPOSE. See th e  
/ /  GNU G enera l P u b lic  L ice n se  f o r  more d e t a i ls .

/ /
/ /  You sh ou ld  have re c e iv e d  a copy o f th e  GNU G enera l P u b lic  L icense  
/ /  a lo n g  w ith  t h i s  p rogram . I f  n o t ,  see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.system ;

p u b l ic  f i n a l  c la s s  Pose {  
p r iv a te  PoseO { }
p u b lic  n a t iv e  Vector3D  g e tT ra n s d u c e rP o s it io n O ;
p u b lic  n a t iv e  Vector3D  g e tT ra n sd u ce rF a ce N o rm a lO ;
p u b lic  n a t iv e  Vector3D  g e tT ra n s d u c e rF a c e N o rth O ;
p u b l ic  n a t iv e  Vector3D  g e tT ra n sd u ce rF a ce E a s t( ) ;
p u b l ic  n a t iv e  Vector3D  g e tT ra n sd u ce rS e p a ra tio n (P o se  p o s e ) ;

}

A .3.5 amss.system. Vector3D

/ / ------------------------------------------------------
/ /  amss. system .V ecto r3D  c la s s  
/ /  C o p y rig h t (c )  2008 Andrew L y le  
/ / --------------------------------------------------------
/ /  T h is  program  is  f r e e  s o ftw a re : you can r e d is t r ib u te  i t  a n d /o r m o d ify  
/ /  i t  under th e  te rm s o f  th e  GNU G enera l P u b lic  L ice n se  as p u b lis h e d  by 
/ /  th e  Free S o ftw a re  F o u n d a tio n , e i t h e r  v e rs io n  3 o f  th e  L ic e n s e , o r 
/ /  (a t  y o u r o p t io n )  any l a t e r  v e rs io n .

/ /
/ /  T h is  program  is  d is t r ib u t e d  in  th e  hope th a t  i t  w i l l  be u s e fu l,
/ /  b u t WITHOUT ANY WARRANTY; w ith o u t  even th e  im p lie d  w a rra n ty  o f 
/ /  MERCHANTABILITY o r  FITNESS FOR A PARTICULAR PURPOSE. See th e  
/ /  GNU G enera l P u b lic  L ice n se  f o r  more d e t a i ls .

/ /
// You should have received a copy of the GNU General Public License
// along with th is  program. I f  not, see <http://www.gnu.org/licenses/>.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
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package amss. system ; 

p u b l ic  f i n a l  c la s s  V ector3D  {
p r iv a te  V e c to r3 D () { }  
p u b l ic  n a t iv e  f l o a t  
p u b l ic  n a t iv e  f l o a t  
p u b l ic  n a t iv e  f l o a t  
p u b l ic  n a t iv e  f l o a t  
p u b l ic  n a t iv e  Vector3D  
p u b l ic  n a t iv e  Vector3D  
p u b l ic  n a t iv e  Vector3D  
p u b l ic  n a t iv e  f l o a t  
p u b l ic  n a t iv e  Vector3D  
p u b l ic  n a t iv e  f l o a t  
p u b l ic  n a t iv e  boo lean  
p u b l ic  n a t iv e  boo lean  
p u b l ic  n a t iv e  boo lean

g e t lO  ; 
g e tJ O  ; 
g e tK ( ) ; 
m a g n itu d e ( ) ;  
n o rm a liz e ( ) ;  
add(V ector3D  v ) ; 
s u b tra c t(V e c to r3 D  v ) ; 
d o t(V e c to r3 D  v ) ; 
c ro ss (V e c to r3 D  v ) ; 
a n g le (V e c to r3 D  v ) ; 
p a ra l le l(V e c to r3 D  v ) ; 
a n t ip a ra l le l( V e c to r3 D  v ) ; 
p e rp e n d ic u la r(V e c to r3 D  v ) ;



Appendix B

Architecture Evaluation Data

B .l Introduction

In this appendix, the module TEDS, template TEDS, and template algorithm classes 

utilized for the purposes of evaluating the functionality and performance of the software 

architecture as described in Chapter 7 are depicted.

B.2 Module TEDS

B.2.1 accel.mod

# A cce le ro m e te r Module TEDS F i le
#  ---------------------------------------------------------------------------------

# AMSS TEDS
#  -----------------------
M oduleAddress
ModuleType
M oduleC lass
ModuleDataType
M oduleDataTypeW idth

2000000000000001 
1 # Sensor
10 # A c c e le ra t io n

# F lo a t100
3

M oduleD ataTypeH eight 1

189
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Prim aryHandlerNam e a c c e l

# B as ic  TEDS
#  -------------------------
M a n u fa c tu re rlD 1
ModelNumber 1
V e rs io n L e tte r A
VersionNum ber 1
S eria lN um ber 1

# S tandard  Tem plate TEDS

Tem pla te lD 30 # V o lta g e Tem plate
E lecS igT ype 0 # V o lta g e Sensor
MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e E x c ita t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 0.0006 # Amps
CalDate 1
C a l l n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

B .2.2 lcd.mod

# LCD Module TEDS F i le
#  -----------------------------------------------------

# AMSS TEDS
#  -----------------------
M oduleAddress
ModuleType
M oduleC lass
ModuleDataType
M oduleDataTypeW idth
M oduleDataTypeHeight
Prim aryHandlerNam e

1000000000000005 
2 # A c tu a to r
4 # T e x t
800 # S t r in g  
16 
4
lc d

# and 2000000000000005
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# B as ic  TEDS
#
M a n u fa c tu re rlD 1
ModelNumber 1
V e rs io n L e tte r A
VersionNum ber 1
S eria lN um ber 1

# S tandard  Tem plate TEDS
# -------------------------------
MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e  E x c i ta t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 0 .003 # Amps
CalDate 1
C a l l n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

B .2.3 ldr.mod

# LDR Module TEDS F i le
#  ------------------------------------------------

# AMSS TEDS
#  -----------------------
ModuleAddress 
ModuleType 
M oduleC lass 
ModuleDataType 
M oduleDataTypeW idth 
M oduleDataTypeHeight 
Prim aryHandlerNam e

# B a s ic  TEDS
#  --------------------------
M a n u fa c tu re rlD  
ModelNumber

3000000000000006 
1 # Sensor
8 # V o lta g e
100 # F lo a t  
1 
1
l d r

1
1
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V e rs io n L e tte r  A
VersionNum ber 1
S eria lN um ber 1

# S tandard  Tem plate TEDS
#  -------------------------------------------------
Tem pla te lD 30 # V o lta g e Tem plate
E lecS igT ype 0 # V o lta g e Sensor
MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e E x c ita t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E x c ite C u rre n tD ra w 0.00033 # Amps
CalDate 1
C a l I n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

B .2.4 servo.mod

# Servo Module TEDS F i le
#  -----------------------------------------------------------

# AMSS TEDS
#  --------
M oduleAddress 1000000000000007
ModuleType 2 # A c tu a to r
M oduleC lass 20 # R o ta t io n
ModuleDataType 100 # F lo a t
M oduleDataTypeW idth 1
M oduleD ataTypeH eight 1
Prim aryHandlerNam e servo

# B a s ic  TEDS
#  -----------
M a n u fa c tu re rlD 1
ModelNumber 1
V e rs io n L e tte r A
VersionNum ber 1
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S eria lN um ber 1

# S tandard  Tem plate TEDS
#  -----------------------------------------------------------
MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e  E x c i ta t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 1 .0 # Amps
CalDate 1
C a l I n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

B .3 Template TEDS

B .3.1 LCDMerge.mod

# LCD Merge Tem plate  TEDS F i le
#  ---------------------------------------------------------------------------

# AMSS TEDS
#  -------------
ModuleType 2 # A c tu a to r
M oduleC lass 4 # T e x t
ModuleDataType 00 o o # S t r in g
M oduleDataTypeW idth 1
M oduleD ataTypeH eight 1

# B as ic  TEDS
4f#
M a n u fa c tu re rlD 1
ModelNumber 1
V e rs io n L e tte r A
VersionNum ber 1
S eria lN um ber 1

# S tandard  Tem plate TEDS
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#
MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e  E x c i ta t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 0.006 # Amps
CalDate 1
C a l I n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

# R oles
# ---------
Role 1
R o le A ss ig n m e n tL im it >=1
R oleC onnectionType 3 # L o c a l/P h y s ic a l
RoleModuleType 2 # A c tu a to r
RoleM oduleC lass 4 # T ex t
RoleModuleDataType 00 o o # S t r in g
RoleM oduleDataTypeW idth >=1
R oleM oduleD ataTypeH eight >=1

B .3.2 ServoCon.mod

# Servo C o n tro l Tem plate TEDS F i le
#  -----------------------------------------------

# AMSS TEDS
#  ----------------------
ModuleType 
M oduleC lass 
ModuleDataType 
M oduleDataTypeW idth 
M oduleD ataTypeH eight

# B a s ic  TEDS
#  -------------------------
Manufa c tu re r ID  1
ModelNumber 1

2 # A c tu a to r
20 # R o ta t io n
100 # F lo a t  
1 
1
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V e rs io n L e tte r  A 
VersionNum ber 1 
S eria lN um ber 1

# S tandard  Tem plate TEDS
f f -----------------------------------------
MapMeth 0 # L in e a r
S e le c tE x c ita t io n i # In c lu d e  E x c i ta t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 1.0 # Amps
CalDate 1
C a l l n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

# R oles
#
Role 1
R o le A ss ig n m e n tL im it >=1
R oleC onnectionType 7 # Any
RoleModuleType 1 # Sensor
RoleM oduleC lass 18 # A c c é lé râ t io n /V o lta g e
RoleModuleDataType 100 # F lo a t
RoleM oduleDataTypeW idth >=1
R oleM oduleD ataTypeH eight ==1

Role 2
R o le A ss ig n m e n tL im it >=1
R oleC onnectionType 7 # Any
RoleModuleType 2 # A c tu a to r
RoleM oduleC lass 20 # R o ta t io n
RoleModuleDataType 100 # F lo a t
RoleM oduleDataTypeW idth ==1
R oleM oduleD ataTypeH eight ==1
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B.4 Template Algorithm Classes

B.4.1 amss,algo.LCDMerge

/ / ----------------------------------------------------------------------------------
/ /  amss. a lg o . LCDMerge c la s s  
/ /  C o p y r ig h t (c )  2008 Andrew L y le  
/ / --------------------------------------------------------
/ /  T h is  program  is  f r e e  s o ftw a re : you can r e d is t r ib u te  i t  a n d /o r m o d ify  
/ /  i t  under th e  te rm s o f th e  GNU G enera l P u b lic  L ice n se  as p u b lis h e d  by 
/ /  th e  Free S o ftw a re  F o u n d a tio n , e i t h e r  v e rs io n  3 o f  th e  L ic e n s e , o r 
/ /  (a t  y o u r o p t io n )  any l a t e r  v e rs io n .

II
I I  T h is  program  is  d is t r ib u t e d  in  th e  hope th a t  i t  w i l l  be u s e fu l,
/ /  b u t WITHOUT ANY WARRANTY; w ith o u t  even th e  im p lie d  w a rra n ty  o f 
/ /  MERCHANTABILITY o r  FITNESS FOR A PARTICULAR PURPOSE. See th e  
I I  GNU G enera l P u b lic  L ice n se  f o r  more d e t a i ls .

/ /
I I  You sh ou ld  have re c e iv e d  a copy o f  th e  GNU G enera l P u b lic  L icense  
/ /  a lo n g  w ith  t h i s  p rogram . I f  n o t ,  see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.a lgo ; 
im p o rt a m ss .sys te m .*;

p u b l ic  f i n a l  c la s s  LCDMerge {
p u b l ic  s t a t i c  v o id  m ain(M odule  mod) {  

w h ile  (mod. is R u n n in g O ) {
Message m c a ll = m o d .n e x tS e rv ic e C a llO ;

i f ( m c a l l  != n u l l  && !p rim a ryH a n d le r(m o d , m c a ll ) )  
m o d .s e c o n d a ry H a n d le r(m c a ll) ;

mod. s ta tu sC h e ckO  ;
}

>

p u b lic  s t a t i c  boo lean  p rim a ryH a n d le r(M o d u le  mod, Message m c a ll)  {  
boo lean  h and led  = t r u e ;
Message m re t = n u l l ;
i n t  s rv fu n c  = m c a l l . s e rv ic e F u n c t io n Q  ;

http://www.gnu.org/licenses/
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i f ( s r v f u n c  == Message.GET)
m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll, Message.N0T_ALL0WED); 

e ls e  i f ( s r v f u n c  == Message.SET) {  
i f (m o d . is L o c k e d (m c a ll) )

m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll, Message.LOCKED); 
e ls e

m re t = lcdM ergeSet(m od, m c a l l ) ;

>
e ls e  i f ( s r v f u n c  == Message.APPEND) {  

i f (m o d . is L o c k e d (m c a ll) )
m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll,  Message.LOCKED); 

e ls e
m ret = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll,  Message.N0T_ALL0WED);

e ls e  i f ( s r v f u n c  == Message.RESET) {  
i f ( m o d . is L o c k e d (m c a ll) )

m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll,  Message.LOCKED); 
e ls e

m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll,  Message.N0T_ALL0WED);

e ls e
hand led  = f a ls e ;

i f ( h a n d le d )  {
A M S S .g c(m ca ll);

i f ( m r e t  != n u l l )
Message. enqueueM essageO ut(m ret);

>

r e tu r n  h an d le d ;
}

p u b lic  s t a t i c  Message lcdM ergeS et(M odule  mod, Message m c a ll)  {  
i f ( m o d . ro le E n v iro n m e n tC o u n t(1 ) >= 2) {

/ /  g e t pose f o r  f i r s t  LCD
Message msgl = Message.create(Message.NO_ADDRESS,

Message.NO_ADDRESS, Message.NO_DEADLINE, A M S S .ge tC lockO , 
Message.CALLBY, Message.GETPOSE, Message. N0_PARAM, 0, 0 ) ;  

Message m r e t l  = m o d .s e rv ic e C a ll(m s g l, 1, 0 ) ;
Pose mposel = n u l l ;

i f ( m r e t l  !=  n u l l )
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mposel = (P o s e )m re t l.g e tO b je c t( ) ;

/ /  g e t pose f o r  second LCD
Message msg2 = Message.create(Message.NO_ADDRESS,

Message.NO_ADDRESS, Message.NO_DEADLINE, AMSS. g e tC lo c k O , 
Message.CALLBY, Message.GETPOSE, Message.N0_PARAM, 0 , 0 ) ;  

Message m re t2  = m o d .s e rv ic e C a ll(m s g 2 , 1, 1 ) ;
Pose mpose2 = n u l l ;

i f ( m r e t2  != n u l l )
mpose2 = (P o s e )m re t2 .g e tO b je c t( ) ;

/ /  g e t pose v e c to rs
V ector3D  v n l = mposel .g e tT ra n sd u ce rF a ce N o rth O  ;
V ector3D  v e l = m p o se l.g e tT ra n sd u ce rF a ce E a s t( ) ;
Vector3D  vn2 = m p o se 2 .g e tT ra n sd u ce rF a ce N o rth O ;
Vector3D  ve2 = mpose2. g e tT ra n sd u ce rF a ce E a s t( ) ;

i f ( v n l  != n u l l  kk vn2 != n u l l  kk v e l != n u l l  kk ve2 != n u l l  kk 
v n l . p a r a l le l ( v n 2 )  kk v e l . p a r a l le l ( v e 2 ) ) {

Vector3D  v s l  = m p o s e l.g e tT ra n s d u c e rS e p a ra tio n (m p o s e 2 );

i f ( v s l  == n u l l )
A M S S .prin t("LC D M erge: Could n o t d e te rm in e  LCD s e p a r a t io n . " ) ;  

e ls e  {
boo lean  s ta cke d  = f a ls e ;  
boo lean  f i r s t ls P r im a r y  = f a ls e ;  
boo lean  in i t e d  = t r u e ;

/ /  d e te rm in e  geom etry 
i f ( v s l . p a r a l l e l ( v n l ) ) {  

s ta cke d  = t r u e ;  
f i r s t ls P r im a r y  = t r u e ;

>
e ls e  i f ( v s l . a n t i p a r a l l e l ( v n l ) ) {  

s ta cke d  = t r u e ;  
f i r s t ls P r im a r y  = f a ls e ;

}
e ls e  i f ( v s l . a n t i p a r a l l e l ( v e l ) ) {  

s ta cke d  = f a ls e ;  
f i r s t ls P r im a r y  = t r u e ;

>
e ls e  i f ( v s l . p a r a l l e l ( v e l ) )  {
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s ta cke d  = f a ls e ;  
f i r s t ls P r im a r y  = f a ls e ;

>
e ls e

in i t e d  = f a ls e ;

i f ( i n i t e d )  {
/ /  p r in t  debug messages
AM SS.print("LC D M erge: V e r t ic a l /s ta c k e d  c o n f ig u ra t io n ?  " ) ;  
A M S S .p r in t ln (s ta c k e d ) ;
AM SS.print("LC D M erge: F i r s t  LCD module is  p rim a ry ?  " ) ;  
A M S S .p r in t ln ( f i r s t ls P r im a r y ) ;

/ /  c re a te  messages to  send to  LCD modules based 
/ / o n  com posite  geom etry
Message m s t r p r i  = Message.create(Message.NCLADDRESS,

Message.NCLADDRESS, Message.NCLDEADLINE, A M S S .ge tC lockQ , 
Message. CALLBY, Message. SET, Message. STRING, 
m c a ll.p a ra m e te rW id th O  , m c a ll.p a ra m e te rH e ig h tO )  ;

Message m s trse c  = Message.create(Message.NCLADDRESS,
Message.NCLADDRESS, Message. NO_DEADLINE, A M S S .ge tC lockO , 
Message. CALLBY, Message.SET, Message. STRING, 
m c a l l . p a ra m e te rW id th O , m c a l l .p a ra m e te rH e ig h t( ) ) ;

i f ( m s t r p r i  != n u l l  && m strse c  != n u l l )  {  
i f ( s ta c k e d )  {

f o r ( i n t  i  = 0; i  < 64 && 
i  < m c a ll.p a ra m e te rW id th O ; i+ + )

m s t r p r i . s e t In t8 ( 0 ,  i ,  m c a l l .g e t In t8 ( 0 ,  i ) ) ;

f o r ( i n t  i  = 64; i  < 128 && 
i  < m c a ll.p a ra m e te rW id th O ; i+ + )

m s t r s e c .s e t ln t8 ( 0 ,  i  -  64, m c a l l .g e t ln t8 ( 0 ,  i ) ) ;
>
e ls e  {  / /  h o r iz o n ta l  c o n f ig u r a t io n  

boo lean  prim arym od = t r u e ;  
i n t  in d e x p r i = 0 ; 
i n t  in d exse c  = 0;

f o r ( i n t  i  = 0; i  < m c a ll.p a ra m e te rW id th O ; i+ + ) {  
if(p r im a ry m o d )

m s t r p r i . s e t ln t 8 (0 , in d e x p r i+ + , m c a l l . g e t ln t 8 (0 , i ) ) ;  
e ls e
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m s trs e c . s e t ln t8 ( 0 ,  indexsec+ + , m c a l l .g e t ln t8 ( 0 ,  i ) ) ;

i f ( ( i  + 1) % 16 == 0)
prim arym od = Ip rim arym od;

>
}

A M S S .g c (m o d .s e rv ic e C a ll( f ir s tIs P r im a ry  ? m s t r p r i  : m s trs e c , 

1, 0 ) ) ;
A M S S .g c (m o d .s e rv ic e C a ll( f ir s tIs P r im a ry  ? m strse c  : m s t r p r i ,

l ,  D ) ;
>

}
e ls e  / /  p r in t  debug e r r o r  message

A M S S .prin tlnC 'LC D M erge : C ould n o t d e te rm in e  g e o m e try ." ) ;

>

A M S S .g c (v s l);
}
e ls e  {

i f ( v n l  != n u l l  kk  vn2 != n u l l  && ( v n l .g e tJ O  != v n 2 .g e tJ ( )  II  
v n l .g e tJ O  ! = v n 2 .g e tJ ( )  I I  v n l.g e tK O  != v n 2 .g e tK ( ) ) )  {  

AM S S.printlnC 'LC D M erge: Face n o r th  v e c to rs  n o t e q u a l. " ) ;
A M S S .p r in t ( v n l .g e t lO ) ; A M S S .p rin t( " , " )  ;
AMSS.p r i n t ( v n l . g e tJ ( ) ) ;  A M S S .p rin t( " , " ) ;
AMSS. p r in t  ( v n l . g e t K O ) ; AMSS. p r in t  ( "  != " ) ;
A M S S .p r in t ( v n 2 .g e t l ( ) ) ; A M S S .p rin t( " , " ) ;
AMSS. p r in t  (vn 2 . g e t J O ) ; AMSS. p r in t  ( " ,  " ) ;  
A M S S .p r in t ln (v n 2 .g e tK ( ) ) ;

i f ( v e l  != n u l l  kk  ve2 != n u l l  kk ( v e l .g e tJ O  != v e 2 .g e tJ ( )  II  
v e l .g e tJ O  !=  v e 2 .g e tJ ( )  I I  v e l.g e tK O  != v e 2 .g e tK ( ) ) )  {  

AM SS.printlnC 'LC D M erge: Face e a s t v e c to rs  n o t e q u a l. " ) ;  
A M S S .p r in t(v e l . g e t l O ) ; A M S S .p rin t( " , " )  ;
AMSS. p r in t  ( v e l . g e t J O ) ; AMSS. p r in t  ( " , " )  ;
A M S S .p rin t( ve 1 .g e tK O ) ; A M S S .p rin tO  !=  " ) ;
A M S S .p r in t ( v e 2 .g e t l ( ) ) ; A M S S .p rin tO  , " ) ;
AMSS. p r in t  (ve 2 . g e t J O ) ; A M S S .p rin tO  , " ) ;
A M S S .p r in t ln (v e 2 .g e tK O ) ;

}
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A M S S .g c (vn l); 
A M S S .g c (ve l); 
AM SS.gc(vn2); 
AM SS.gc(ve2);

>

r e tu r n  n u l l ;
}

>

B.4.2 amss.algo.ServoCon

/ / ----------------------------------------------------------------------------------
/ /  am ss.a lgo .S ervoC on c la s s  
/ /  C o p y r ig h t (c )  2008 Andrew L y le  
/ / --------------------------------------------------------
/ /  T h is  program  is  f r e e  s o ftw a re : you can r e d is t r ib u te  i t  a n d /o r m o d ify  
/ /  i t  under th e  te rm s o f  th e  GNU G enera l P u b lic  L ice n se  as p u b lis h e d  by 
/ /  th e  Free S o ftw a re  F o u n d a tio n , e i t h e r  v e rs io n  3 o f  th e  L ic e n s e , o r  
/ /  (a t  y o u r o p t io n )  any l a t e r  v e rs io n .
/ /
/ /  T h is  program  is  d is t r ib u t e d  in  th e  hope th a t  i t  w i l l  be u s e fu l,
/ /  b u t WITHOUT ANY WARRANTY; w ith o u t  even th e  im p lie d  w a rra n ty  o f 
/ /  MERCHANTABILITY o r  FITNESS FOR A PARTICULAR PURPOSE. See th e  
/ /  GNU G enera l P u b lic  L ice n se  f o r  more d e t a i ls .
/ /
/ /  You sh o u ld  have re c e iv e d  a copy o f  th e  GNU G enera l P u b lic  L icense  
/ /  a lo n g  w ith  t h i s  program . I f  n o t ,  see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.a lgo ; 
im p o rt amss. s y s te m .* ;

p u b l ic  f i n a l  c la s s  ServoCon {
p u b lic  s t a t i c  v o id  m ain(M odule mod) {  

w h ile (m o d .is R u n n in g O ) {
Message m c a ll = m o d .n e x tS e rv ic e C a llO ;

i f ( m c a l l  != n u l l  && !p rim a ryH a n d le r(m o d , m c a ll ) )  
m o d .s e c o n d a ry H a n d le r(m c a ll) ;

mod. s ta tu sC h e ckO  ;

http://www.gnu.org/licenses/
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>
>

i f  (mod. is P r im a ry  ( )  ) 
u p d a te (m od);

p u b l ic  s t a t i c  boo lean  p rim a ryH a n d le r(M o d u le  mod, Message m c a ll)  {  
boo lean  hand led  = t r u e ;
Message m re t = n u l l ;
i n t  s rv fu n c  = m c a l l . s e rv ic e F u n c t io n O  ;

i f ( s r v f u n c  == Message.GET)
AMSS.p r i n t l n ( "S ervoC on: R eceived 

e ls e  i f ( s r v f u n c  == Message.SET) 
A M S S .p rin tln ("S e rvo C o n : R eceived 

e ls e  i f ( s r v f u n c  == Message.APPEND) 
AMSS.p r i n t l n ( "S ervoC on: R eceived 

e ls e  i f ( s r v f u n c  == Message.RESET) 
A M S S .p rin tln ("S e rvo C o n : R eceived 

e ls e
hand led  = f a ls e ;

Get s e rv ic e  c a l l . " ) ;

Set s e rv ic e  c a l l . " ) ;  

Append s e rv ic e  c a l l . " ) ;  

Reset s e rv ic e  c a l l . " ) ;

i f ( h a n d le d )  {
A M S S .g c(m ca ll);

i f ( m r e t  != n u l l )
Message. enqueueM essageO ut(m ret);

}

r e tu r n  han d le d ;

>

p u b lic  s t a t i c  v o id  update (M odu le  mod) {
i n t  e n v c o u n tro le l = m o d .ro le E n v iro n m e n tC o u n t(1 ) ;  
i n t  e n v c o u n tro le 2  = m o d .ro le E n v iro n m e n tC o u n t(2 ) ;  
f l o a t  s e rv o v o lta g e  = 0;

/ /  a c q u ire  a l l  v o lta g e s
f o r ( i n t  i  = 0 ; i  < e n v c o u n tro le l;  i+ + ) {

Message msg = Message.create(Message.NCLADDRESS,
Message.NCLADDRESS, Message.N0_DEADLINE, A M S S .ge tC lockO , 
Message.CALLBY, Message.GET, Message.N0_PARAM, 0 , 0 ) ;  

Message m re t = m o d .s e rv ic e C a ll(m s g , 1, i ) ;
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s e rv o v o lta g e  += m r e t .g e tF lo a t (0 , 0 ) ;

i f ( m r e t  != n u l l )
A M S S .gc(m ret);

>

/ /  average and l i m i t  to  v a lu e s  a t  most e qu a l to  1 
s e rv o v o lta g e  = M a th .m in (s e rv o v o lta g e  /  ( f lo a t ) e n v c o u n t r o le l , 1 ) ;

/ /  s e t se rvo  p o s i t io n
f o r ( i n t  i  = 0 ; i  < e n v c o u n tro le 2 ; i+ + ) {

Message m c a ll = Message.create(Message.N0_ADDRESS,
Message.N0_ADDRESS, Message.N0_DEADLINE, A M S S .ge tC lockO , 
Message.CALLBY, Message.SET, Message.FLOAT, 1, 1 ) ;

i f ( m c a l l  != n u l l )  {
m c a l l . s e tF lo a t (0 , 0 , s e rv o v o lta g e ) ;
A M S S .g c (m o d .s e rv ic e C a ll(m c a ll, 2, i ) ) ;

>
>

/ /  d e la y  due to  la te n c y  c o n s id e ra t io n s  
AM SS.sleep(AMSS.TICK.1S /  2 ) ;

}
>
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