
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2008

A Software Architecture for Adaptive Modular Sensing Systems A Software Architecture for Adaptive Modular Sensing Systems

Andrew C. Lyle
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Lyle, Andrew C., "A Software Architecture for Adaptive Modular Sensing Systems" (2008). Digitized
Theses. 4087.
https://ir.lib.uwo.ca/digitizedtheses/4087

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4087?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4087&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

A Software A rchitecture for
A daptive Modular Sensing Systems

(Thesis format: Monograph)

by

Andrew C. Lyle

Graduate Program in Engineering Science
Department of Mechanical and Materials Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Engineering Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Andrew C. Lyle 2008

Abstract

In this thesis, a novel software architecture and knowledge representation scheme is de­

scribed that facilitates the combination and reconfiguration of modular sensor and actua­

tor components, termed transducer interface modules (TIMs), to produce flexible modular

sensor systems. Each TIM provides a core sensing or actuation functionality. A composite

sensor is able to automatically determine its overall geometry and assume an appropriate

collective identity, and if reconfigured, may then assume a different identity to match its

new geometry. In current practice, a fixed combination of sensors and actuators is typ­

ically utilized, and is tailored to a specific application. Such systems cannot be cheaply

or quickly reconfigured to handle a change in process requirements. Domains that may

benefit from easily reconfigurable modular sensing systems include flexible inspection,

mobile robotics, surveillance, and even space exploration.

The software architecture is distributed, and is comprised of six layers where the imple­

mentation of each layer is encapsulated from the layer above, to which it provides service.

The use of a distributed and layered architecture promotes scalability, mitigates against

a single point of failure, and enables each layer to be easily implemented, modified, and

debugged independently of the others. The modularization of the software architecture

is further facilitated through the utilization of a pre-emptive real-time operating system,

which enables the concurrent execution of the various software components specific to the

architecture that implement the services provided within most of its layers.

Among the layers comprising the software architecture is a virtual machine layer,

which implements a lightweight, architecture-specific version of Sun Microsystems’ Java

Virtual Machine that runs on top of the real-time operating system. The integration

of a virtual machine enables the platform-independent template algorithms utilized at

the composition layer to be written once and executed on any TIM irrespective of its

underlying hardware architecture. These template algorithms are unique to this software

architecture and provide intelligence to a set of heterogeneous TIMs, enabling them to

collaborate and behave as a single entity termed a logical module.

The evaluation of the software architecture consists of performing multiple runs of

two tests in which select sensors and actuators are associated with TIMs that are then

allowed to interact in order to form a logical entity. The first test evaluates the behaviour

of a logical module in which the constituent TIMs interact entirely through wireless

communication. The second test evaluates the behaviour of a logical module in which the

constituent TIMs are physically connected in various orientations, and interact through

both wireless communication as well as through their physically connected faces.

In both tests, correct behaviour was exhibited. However, the performance and scala­

bility of the architecture was somewhat restricted by the limited processing and memory

resources present in the current implementation of the TIMs. The design of the software

architecture facilitates easy portability between embedded platforms and scales with in­

creasing hardware capability. Therefore, utilization of future TIM hardware variations

possessing increased processing and memory resources will reduce the latencies introduced

throughout the architecture and lead to tangible improvements in its performance.

Keywords: distributed software architecture, adaptive sensing system, modular sensing

system, sensor module, actuator module, transducer module, logical module, position and

orientation determination, virtual machine.

IV

Acknowledgements

Many individuals have played a guiding and supporting role in the completion of this

thesis, whom I would like to thank. Firstly, I would like to thank my supervisor, Dr.

Michael D. Naish, for hisi expert guidance and patience, and for providing me with ther
opportunity to pursue graduate studies at The University of Western Ontario. This

research programme has been an immense learning experience for me, and from him I

have learned a great deal about the engineering process that I will be able to apply in

my future endeavours.

I would like to thank my fellow Sensing and Mechatronics Systems (SaMS) Laboratory

researchers Anita Jain, who coordinated with me on this project, for all her hard work

and Christopher Ward for his insightful input. I am also grateful to the engineers in the

Electrical and Computer Engineering Electronics Shop for their assistance in sourcing

components, as well as their useful technical advice.

I am very grateful to Marie Wyatt, who played a key role in ensuring that my stay

in London was a comfortable one. I am also grateful to my friends and family who

maintained an active interest in my progress, especially to my parents for their steadfast

support and financial assistance, and for always encouraging me to pursue my ambitions.

I am also thankful to God for blessing me throughout my programme.

The financial support of the Natural Sciences and Engineering Research Council of

Canada (NSERC) is also gratefully acknowledged.

v

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements v

Table of Contents vi

List of Figures xii

List of Tables xiv

List of Algorithms xv

1 Introduction 1

1.1 Sensors and Actuators in Industry... 1

1.2 The Need to Combine Sensors and Actuators... 2

1.3 Survey of Related Work ... 3

1.3.1 Logical Sensor Architectures... 3

1.3.2 The IEEE 1451 S tandards... 6

1.3.3 Existing Modular Sensing Systems .. 9

1.4 Research O b je c t iv e ... 14

vi

2 Architecture Description 18

2.1 Introduction.. 18

2.2 Module Hardware O v e rv ie w .. 18

2.2.1 Transducer Interface M o d u le s .. 18

2.2.2 Other Module T y p e s .. 19

2.3 Software Architecture S t a c k .. 21

2.4 Real-Time Operating System ... 24

2.4.1 Scheduling P o lic ie s .. 24

2.4.2 Choice of R T O S .. 24

2.4.3 Task T y p e s ... 25

2.5 File S y s te m .. 27

2.5.1 Choice of FAT32 File System Driver ... 27

2.5.2 Standard File S tru c tu re .. 28

2.6 TEDS Specification Format ... 31

2.7 Core Data T y p e s .. 33

2.7.1 Vector Implementation... 33

2.7.2 Task Data T y p e s ... 34

2.7.3 Module Data T yp es .. 36

2.8 S u m m a ry ... 39

3 Communication Layer 40

3.1 Introduction.. 40

3.2 Communication Layer Services... 41

3.2.1 Logical Link C o n tr o l .. 41

3.2.2 Medium Access Control .. 42

1.5 Thesis Outline.. 15

vii

3.2.3 Time Synchronization ... 46

3.2.4 Wireless S ecu rity ... 47

3.3 Packet Form at.. 51

3.4 Channels and Packet T y p e s .. 53

3.4.1 Control Channel Packet T ypes.. 54

3.4.2 Data Channel Packet T y p e s ... 55

3.5 Initialization.. 55

3.6 Network Communication T a sk ... 56

3.6.1 Standard H a n d lers .. 57

3.6.2 Control Packet H andlers.. 62

3.7 Face Connectivity.. 65

3.7.1 Face Structure.. 65

3.7.2 Face Identification Packet F orm at.. 67

3.7.3 Face Communication T a s k ... 69

3.8 S u m m a ry ... 73

4 Middleware Layer 74

4.1 Introduction.. 74

4.2 Middleware Types ... 74

4.3 Message Form at... 77

4.4 Service Functions and Service C a l ls ... 80

4.4.1 Service Function T y p es ... 82

4.5 Module Message Handler T a sk ... 84

4.5.1 Message A cq u is it io n .. 87

4.5.2 Standard Status C h e c k s .. 90

4.6 S u m m a ry ... 91

viii

5 Virtual Machine 93

5.1 Introduction.. 93

5.1.1 Choice of Dynamic Reprogramming M echanism 93

5.2 Class L oa d in g ... 98

5.3 Class E xecution ... 99

5.4 Standard Class L ibrary .. 103

5.4.1 The java.lang P a ck a g e ... 103

5.4.2 The amss.system P a ck a g e ... 104

5.5 S u m m a ry ... 106

6 Composition Layer 108

6.1 Introduction.. 108

6.2 Template Data T y p es ... 109

6.2.1 Template Structure.. 109

6.2.2 Role Structure.. 110

6.2.3 Local and Remote Join Structures.. 112

6.2.4 Pose Update S tructure... 113

6.3 Template and Role Matching ... 115

6.3.1 Matching Existing Logical M od u les .. 115

6.3.2 Creating New Logical M odules.. 118

6.4 Transducer C om p osition ... 122

6.4.1 Logical Module General O p e r a t io n .. 122

6.4.2 Logical Module Primary Handler O p e ra t io n 122

6.5 Pose Com position.. 125

6.5.1 Pose Representation and Theory .. 125

6.5.2 Pose Composition P r o c e s s ... 128

6.6 S u m m a ry ... 132

IX

7 Architecture Evaluation 134

7.1 Introduction.. 134

7.2 Wireless Collaboration B ehaviour.. 135

7.2.1 Evaluation S e t u p ... 135

7.2.2 Evaluation Procedure.. 137

7.2.3 Results and A n a lys is .. 138

7.3 Physical Collaboration B eh aviour.. 142

7.3.1 Evaluation S e t u p ... 142

7.3.2 Evaluation Procedure.. 143

7.3.3 Results and A n a lys is .. 145

7.4 Collaboration Performance Analysis... 152

7.4.1 Channel Reservation Latencies.. 153

7.4.2 Message Transmission S p e e d s .. 153

7.4.3 Service Call Round-Trip Latencies.. 156

7.4.4 Bytecode Execution S p e e d s ... 158

7.4.5 Startup Memory U tiliza tion ... 160

7.5 S u m m a ry ... 162

8 Conclusions 163

8.1 Concluding R e m a rk s ... 163

8.2 Thesis S u m m a ry .. 165

8.3 Recommendations.. 167

References 171

Appendices 178

x

A Standard Class Library 178

A .l Introduction... 178

A .2 Package java .lang ... 178

A .2.1 java .lang .M ath ... 178

A .2.2 java.lang.String... 180

A. 3 Package am ss.system ... 181

A.3.1 amss.system.AMSS.. 181

A . 3.2 amss. sy st em. M essage... 182

A.3.3 am ss.system .M odule... 185

A .3.4 amss.system.Pose.. 186

A. 3.5 amss.system. V e c to r 3 D .. 187

B Architecture Evaluation Data 189

B. l Introduction... 189

B.2 Module T E D S .. 189

B. 2.1 a cce l.m o d ... 189

B.2.2 lc d .m o d .. 190

B.2.3 ld r .m o d .. 191

B.2.4 servo .m od ... 192

B.3 Template T E D S .. 193

B.3.1 LCDM erge.m od... 193

B.3.2 ServoCon.mod.. 194

B.4 Template Algorithm C la sses .. 196

B.4.1 amss.algo.LCDMerge... 196

B.4.2 amss.algo.ServoCon.. 201

Curriculum Vitae 204

xi

1.1 Logical sensor block diagram.. 5

1.2 Sample logical sensor h ierarchy... 6

1.3 Sample TEDS layout.. 8

1.4 Application of the IEEE 1451 standards... 9

2.1 Transducer Interface Modules and interconnects... 20

2.2 Transducer Interface Module block diagram... 20

2.3 Software architecture stack... 22

2.4 File system block diagram... 29

3.1 Transmission of two packets using an unreliable medium.............................. 42

3.2 Time synchronization packet exchange.. 48

3.3 Stream cipher operation block diagram... 49

3.4 Block cipher operation block diagram.. 50

3.5 ARC4 pseudorandom keystream generator operation..................................... 51

3.6 Communication layer packet format (field sizes in bits)................................ 52

3.7 Multi-channel operation... 54

3.8 Network communication task operation... 58

3.9 Three-dimensional face and contact identifier layout view............................ 66

3.10 Two-dimensional face and contact identifier layout view............................... 66

List of Figures

xii

3.11 Face identification packet format (field sizes in bytes)................................... 69

3.12 Face communication task operation.. 70

3.13 Face contact transmission signals.. 72

4.1 Middleware operation block diagram.. 75

4.2 Middleware layer message format (field sizes in bytes)................................... 78

4.3 Service call operation... 81

4.4 Module message handler task operation.. 86

5.1 Module pose vectors... 106

6.1 Logical module operation block diagram... 123

6.2 Standard TIM object coordinate space.. 127

7.1 Servo TIM positions for given accelerometer TIM angles.............................. 139

7.2 32 x 4 character composite LCD TIM configurations.................................... 146

7.3 16 x 8 character composite LCD TIM configurations..................................... 147

7.4 MAC protocol channel reservation latencies... 154

7.5 PAR protocol message transmission speeds.. 155

7.6 Service call round-trip latencies... 157

7.7 Virtual machine bytecode execution speeds.. 159

7.8 Startup memory utilization after logical module creation............................. 161

xiii

List of Tables

3.1

4.1

6.1

6.2

6.3

Face contact connection patterns and corresponding angular offsets. . . . 72

Service function status constants... 82

Rotations required to bring x-axis perpendicular to locally connected face. 130

Rotations about x-axis required to achieve correct relative angular offset. 131

Rotations required to move locally connected face adjacent to correct re­

mote face... 131

xiv

4.1 Primary handler execution process.. 88

4.2 Secondary handler execution process.. 88

5.1 Method execution process... 101

6.1 Existing logical module matching process... 116

6.2 New logical module matching process.. 119

6.3 New logical module creation process... 120

6.4 Get processing in primary handler for logical module with two roles. . . . 124

List of Algorithms

xv

Chapter 1

Introduction

1.1 Sensors and Actuators in Industry

Sensors and actuators have seen widespread utilization in many of today’s industrial pro­

cesses. These devices respectively convert physical phenomena to and from electrical

signals for the purpose of measurement, tracking, and/or control by way of digital de­

vices such as microcontrollers, programmable logic controllers (PLCs), and mainstream

computers. In current practice, fixed combinations of sensors and actuators are typically

employed, with each combination often deployed in a static orientation and tailored to

fulfil a specific application.

In order to enhance accuracy and reliability in many such applications, multiple sen­

sors are often directly or indirectly combined into composite entities. For example, a

single camera is only capable of reporting a grid of values representing the intensity of

incident light on its array of sensing elements. However, two or more cameras operat­

ing in tandem could, through sensor fusion, effectively form a sensor capable of depth

perception. Sensors that detect different, but related, types of physical phenomena may

also be combined to produce a new device that produces measurements that are more

1

1 Introduction 2

accurate than either of its constituent sensors are capable of providing. An example of

this would be the combination of a thermocouple and an infrared camera for the purpose

of increasing the accuracy of sensed temperature.

The sizes of the transistors used in the implementation of microprocessors and other

integrated circuits through very large-scale integration (VLSI) are becoming ever smaller,

consistent with M oore’s Law [1], due to advancements in semiconductor fabrication tech­

niques. The sizes of sensors and actuators are also being reduced at an equally rapid rate

due to advancements in microelectromechanical systems (MEMS) and nanoelectromechan-

ical systems (NEMS) fabrication techniques. As a result of these technological advance­

ments, it has become quite practical to combine sensing, actuation, processing logic, as

well as transceivers that provide wired and wireless networking capability into a single

monolithic device termed a smart transducer. With the ability to transmit information

and locally execute algorithms independently, without depending upon a larger, static,

and more powerful mainstream computer system, the potential for smart transducers

to collaborate amongst themselves without any external influence in order to achieve a

specific goal becomes worthy of consideration.

1.2 The Need to Combine Sensors and Actuators

Sensing systems designed to be operated in a static orientation and under controlled oper­

ating conditions cannot be cheaply or quickly reconfigured to handle a change in process

requirements, such as in assembly lines where the product being assembled changes com­

pletely or is now required to be processed in previously unconsidered orientations. Instead

of merely considering each existing sensor as a strictly self-contained device that is to be

utilized in an exclusive scenario, or in tandem with others sensors, each sensor may be

enhanced through physical combination with one or more actuators in addition to other

1 Introduction 3

sensors, resulting in an active sensing device.

Combining a sensor with an actuator greatly enhances the ability of the sensor, which

is now augmented with mobility and gains the ability to adapt to changing process re­

quirements, such as monitoring non-stationary objects of interest. For example, a camera

could be mounted on a rotational stage to form a panoramic camera with a field of view

of 360 degrees, enabling it to track objects that move anywhere within a particular plane.

The relocation of processing logic directly onto the hardware comprising a smart trans­

ducer allows such a composite sensing device to be completely self-contained, and scalable

to even larger combinations of modules. The ability to combine diverse modular sensor

and actuator components to produce flexible modular sensor systems facilitates rapid

reconfiguration to suit any requirement, and is a technique that will prove useful in many

modern applications. Examples of applicable domains include flexible inspection, mobile

robotics, surveillance, and even space exploration.

1.3 Survey of Related Work

1.3.1 Logical Sensor Architectures

Modular sensing systems are often composed of a number of sensors and possibly ac­

tuators of diverse types. Enabling intercommunication and collaboration among these

transducers, especially in a manner such that the sensing system is easily reconfigurable,

is often problematic due to the various interfaces through which communication with in­

herently different types transducers must take place. For example, the interface through

which readings are obtained from an analog transducer is often quite different from that

through which readings are obtained from a digital transducer. Therefore, facilitating

interoperability between the devices often requires solutions that are specific to the in­

terfaces through which they communicate. Reconfiguring such solutions in large systems

1 Introduction 4

in which numerous sensors and actuators are present can become unwieldy to the system

user when transducers with newer interfaces are to be introduced and utilized within the

systems.

One approach that aims to simplify the specification and assembly of multi-sensor

systems, aspects of which are utilized in the design of the software architecture described

in thesis, is the Logical Sensor Specification (LSS) [2, 3]. The LSS introduces the useful

abstraction of a logical sensor, shown in Figure 1.1. The specification of a logical sensor

facilitates the abstraction of the data produced by many different types of sensors into

a uniform representation that is adhered to by all the sensors, and thus the internal

hardware implementation of a sensor and the details of its data acquisition interface are

completely hidden from the system user. As a result, dynamically reconfigurable modular

sensing systems may be easily assembled through the composition of the logical sensor

representations of its comprising sensors.

Since a logical sensor exposes a standardized interface, another strength of the logi­

cal sensor abstraction is that a logical sensor need not necessarily be associated with a

physical entity. A logical sensor may be a software program that satisfies this abstrac­

tion interface, or may be a physical sensor that is augmented with processing algorithms

implemented in software. Hierarchies of logical sensors may even be assembled in which

multiple logical sensors are combined to form a composite logical sensor that appears

to the system user as a single entity. Logical sensors higher in the hierarchy communi­

cate with encompassed logical sensors lower in the hierarchy through the transmission of

commands that are interpreted by a control command interpreter, and acquire data from

the logical sensors through any of a set of programs each designed to obtain data in a

unique fashion from a set of inputs. The ability of a logical module to selectively utilize

different methods of acquiring data, through the use of its selector, is useful in the event

of failure in the lower levels of the hierarchy. An example of a logical sensor hierarchy in

1 Introduction 5

Logical Sensor
Output

Incoming Control
Commands

Logical Sensor Name ir
Selector

Command Control
Interpreter

Program 1 Program n

Logical Sensor
Inputs

Logical Sensor
Inputs

Outgoing Control
Commands

Figure 1.1: Logical sensor block diagram [2]

which two two-dimensional cameras and a stereo processing algorithm, or alternatively

an active range camera, are used to implement a three-dimensional measurement system

is shown in Figure 1.2.

Another existing architecture that provides similar benefits to that of a logical sen­

sor hierarchy is that of logical neighbourhoods [4, 5]. In this architecture, sensor and

actuator nodes are abstracted into uniform virtual nodes that may in turn be further

abstracted into a composite collection termed a logical neighbourhood. Logical neighbour­

hoods appear as a single virtual node entity that may be further composed into larger

neighbourhoods. Virtual nodes higher in the hierarchy transmit commands and data

to nodes lower in the hierarchy through a wireless interface. The definition of virtual

nodes and logical neighbourhoods is facilitated through template definitions written in

the SPIDEY declarative language [4, 5].

1 Introduction 6

Figure 1.2: Sample logical sensor hierarchy [3].

1.3.2 The IEEE 1451 Standards

The knowledge representation scheme utilized with the software architecture to represent

the functionality and capabilities of modular sensing and actuation components utilizes

aspects of the NIST IEEE 1451 [6, 7] family of standards for smart transducers. These

standards describe a set of network-independent communication interfaces that simplify

the connection of sensors or actuators to microprocessors, instrumentation systems, and

networks, enabling them to be utilized in a “plug-and-play” manner. The core feature of

these standards is the Transducer Electronic Data Sheets (TEDS) defined for each trans­

ducer type, which is a region of memory that stores information about the functionality

and capabilities of the transducers, such as calibration information and measurement

range, in an easily accessible and network-independent form. Where embedded mem­

1 Introduction 7

ory is not available to facilitate local storage of the TEDS, a remote virtual TEDS may

instead be used. A standard TEDS layout is shown in Figure 1.3.

The first member of the IEEE 1451 family of standards is IEEE 1451.0. This standard

defines a common set of commands and TEDS on which the other members of the IEEE

1451 family are built. Through the use of these commands, sensors and actuators may

be accessed in a standard fashion independent of the communications medium to which

they are connected. This also simplifies the addition of further IEEE 1451 standards to

the family as the need arises. The second standard, IEEE 1451.1, defines a standard

object-oriented, extensible class hierarchy that describes the behaviour of, and provides a

software interface to, networked smart transducers. This network-based software interface

to the transducers is facilitated by a processing node present within each smart transducer

known as the Network Capable Application Processor (NCAP). The NCAP contains the

logic and hardware necessary to enable the smart transducer module to be interfaced

with the communications medium. A customized software framework may be easily

implemented through the utilization and composition of the classes present within the

IEEE 1451.1 hierarchy.

Each of the remaining members of the IEEE 1451 family define a unique TEDS

specification and an interface that provides a link between the NCAP and a particular

class of transducers, enabling those transducers to be accessed through any communica­

tions medium to which the NCAP may be interfaced. These standards are depicted in

Figure 1.4 and are outlined below:

• IEEE 1451.2 — The IEEE 1451.2 standard defines a point-to-point digital inter­

face, termed the Transducer-Independent Interface (TII), between the NCAP and a

Smart Transducer Interface Module (STIM). A STIM contains and provides a stan­

dard digital interface to the various analog and digital transducers present within

a particular networked smart transducer module.

1 Introduction 8

Basic TE D S (64 bits)

Selector (2 bits)
Template ID (8 bits)

Standard T emplate TE D S

Selector (2 bits)
Template ID (8 bits)

Calibration TE D S T emplate

Selector (2 bits)
Extended End Selector (1 bit)

User Data

Figure 1.3: Sample TEDS layout [8].

• IEEE 1451.3 — The IEEE 1451.3 standard defines a distributed multi-drop dig­

ital interface, facilitated through a Transducer Bus Controller (TBC), between the

NCAP and any number of Transducer Bus Interface Modules (TBIMs). Each TBIM

provides a standard digital interface to one or more of the transducers present within

the multi-drop network.

• IEEE 1451.4 — The IEEE 1451.4 standard defines a digital mixed-mode interface

(MMI) between the NCAP and any number of mixed-mode transducers (MMX).

Mixed-mode transducers are able to transfer data in both analog and digital forms.

• IEEE 1451.5 — The IEEE 1451.5 standard defines a digital wireless interface be­

tween the NCAP and any number of transducer modules utilizing various standard

wireless transmission protocols. Supported protocols include WiFi (IEEE 802.11),

1 Introduction 9

Figure 1.4: Application of the IEEE 1451 standards.

Bluetooth (IEEE 802.15.1), and ZigBee (IEEE 802.15.4).

• IEEE 1451.6 — The IEEE 1451.6 standard defines a digital interface between the

NCAP and any number of transducer modules utilizing the CANopen controller area

network bus protocol. Both intrinsically safe and non-intrinsically safe operating

modes are supported.

• IEEE 1451.7 — The IEEE 1451.7 [9] standard defines a digital interface between

the NCAP and any number of transducer modules that support communication with

ISO/IEC 24753-compliant radio-frequency identification (RFID) tags. RFID tags

are normally applied to objects of interest for tracking and identification purposes.

1.3.3 Existing Modular Sensing Systems

A number of implementations of reconfigurable modular sensing systems exist in which

smart sensor and actuator components may be combined or otherwise collaborate, and

are described in the following subsections. Further relevant literature pertinent to the

individual components of the software architecture described in this thesis may be found

1 Introduction 10

in subsequent chapters.

Mica

A popular implementation of a reconfigurable modular sensing system is the UC Berkeley

Mica platform [10]. Each Mica node, known as a moie, measures 1.25 x 2.25 inches and

runs the TinyOS real-time operating system [11] using a 4 MHz ATmegal03L or AT-

megal28 microcontroller. Wireless communication capability of up to 115 kbps (kilobits

per second) is facilitated through the use of an RF Monolithics TR1000 transceiver. Al­

though the motes are capable of collaboration through the use of a peer-to-peer multi-hop

wireless networking protocol, no actuation capabilities are supported, and therefore the

motes are limited to operating in non-active sensing applications.

Smart-Its

A similar system to the Mica project is the Smart-Its [12] project. Smart-Its are self-

contained nodes, as small as 17 x 25 x 15 mm, designed to be stuck onto everyday

objects. The objects are thus enhanced with sensing and computational capabilities.

Each Smart-Its node is aware of its attached sensors and is capable of relaying this infor­

mation to other nodes in its environment on demand through the use of a query-based

Perception Application Programming Interface (PAPI). Using the PAPI, each node can

gather readings from other nodes in its environment in addition to its own sensor reading

through a wireless interface. These values may then be processed locally and transmitted

to higher-end devices such as personal computers and personal digital assistants (PDAs).

However, like the Mica motes, the active operation and automatic reprogramming capa­

bility of Smart-Its nodes is limited.

1 Introduction 11

eBlocks

More closely related to the system described in this thesis are the eBlocks [13, 14] embed­

ded system building blocks. An eBlock is an electronic module, incorporating a Microchip

PIC microcontroller to provide local intelligence, that allows a small-scale sensor-based

system to be created by connecting various eBlocks together. Unlike general purpose

sensor-network nodes such as the Mica motes, and like the system described in this the­

sis, each eBlock performs a specific, well-defined function. Simple sensor networks may

be constructed even by users who are not technically adept.

There are four classes of eBlock: sensor blocks, which include sensors such as light

and motion detectors and output either a digital “yes” or “no” ; logic/state blocks, which

combine the yes and no outputs from the sensor blocks and generate further outputs

using combinational or sequential logic; communicate blocks, which transform a wired

interface into a wireless link; and output blocks, which include an actuator such as an

LED, buzzer, or relay, and also possess a general-purpose interface that may be used to

control other electronic devices or communicate with a more powerful processing device

such as a personal computer. Although reconfigurable, connected blocks are unable to

determine their overall geometry or quickly and automatically assume a collective identity

to suit new configuration requirements. The possible applications of the system are also

limited due to the usage of simple combinational and sequential logic functions to produce

composite readings and actions.

I-BLOCKS

Another relevant project focusing on the development of modular sensing systems is the

I-BLOCKS project [15], in which LEGO DUPLO bricks are populated with a PIC16F876

microcontroller as well as select sensors and actuators. These building blocks, like the

eBlocks, allow the creation of a modular sensing system without the need to learn and

1 Introduction 12

use a traditional programming language. When physically connected, the blocks are able

to communicate with each other through a half-duplex connection, and may also employ

wireless communication if desired. The blocks have also been demonstrated to be capable

of achieving a degree of positional awareness through the use of infrared positioning

techniques based on sensor fusion of the readings produced by multiple infrared sensors.

However, like the eBlocks, connected blocks are unable to determine their overall geometry

or automatically assume a collective identity based on their orientations. The blocks are

also not designed to be easily reprogrammed to suit changing application requirements.

MASS

MASS (Modular Architecture for Sensing Systems) [16] is a modular sensing system

architecture that is optimized for low power consumption and is based on modular intel­

ligent nodes. Each node itself consists of physically separable and hot-pluggable modules,

each containing a processing controller that facilitates access to resources specific to the

module. Node modules communicate through a shared 80-pin bus that also provides

structural integrity.

There are four types of MASS modules that may be combined as necessary to produce

a node to suit a specific application: General Purpose Processor modules (GPPs), which

contain a powerful microprocessor or digital signal processor (DSP) used for heavy local

data processing or sensor fusion; sensor modules, which contain a specific type of sensor

and a low power controller that performs rudimentary local sensor data analysis; Wireless

Network Connector (WNC) modules, which provide wireless connectivity that facilitates

inter-node communication; and power modules, which provide power to an entire node.

Upon connection, modules within a particular node detect each other’s resources and the

node assumes an appropriate behaviour profile based on the resources discovered.

Similar to the software architecture described in this thesis, the MASS software ar­

1 Introduction 13

chitecture is a layered architecture based on the Open Systems Interconnection (OSI)

reference model [17], and contains a message-based API (Application Programming In­

terface) for inter-node communication. Exchange of IEEE 1451-compliant datasheets

as described in Section 1.3.2 is also supported. However, MASS provides no capability

for active nodes nor the assumption of behaviour profiles based on node positions and

orientations.

BUG

BUG [18] is a powerful modular sensing system platform consisting of a collection of

electronic modules that are designed to be snapped together to produce a variety of

composite components. Available BUG modules include: BUGbase, which is a fully pro­

grammable embedded computer based on the ARM1136JF-S microprocessor possessing

128 MB (megabytes) of on-board memory, several high-speed communication interfaces

including Ethernet, and four slots to which other BUG modules are attached; BUGview,

which contains a 2.46 inch touch-screen LCD with a resolution of 320 x 240 pixels; BUG-

motion, which consists of an infrared motion detector with a range of 2 meters and an

accelerometer with a software-selectable 2.5 g to 10 g sensitivity; BUGlocate, which con­

tains a (GPS) receiver based on a SiRF chipset; and BUGcam2MP, which contains a

2-megapixel camera capable of capturing video. Although extremely flexible, the BUG

platform does not currently provide functionality to facilitate active sensing. In addi­

tion, the orientations in which BUG modules may be attached to the BUGbase are still

somewhat limited, and cannot be determined, thus restricting the ability of a composite

BUG system to form a new collective identity based on the orientation of its constituent

components.

1 Introduction 14

Posey

Posey [19] is a hub-and-strut construction kit enhanced with computational ability.

Within a Posey assembly, hubs and struts are optocoupled into flexible ball-and-socket

joints with three degrees of freedom, where each ball possesses an array of 11 infrared

LEDs and each socket possesses an array of four phototransistors. Each hub and strut

contains an embedded ATmegal68 microcontroller that captures data from the optocou­

pled connections, which is used to determine the geometric configuration of any particular

joint without requiring explicit alignment of the joint. The microcontroller then relays

this information through an XBee ZigBee (IEEE 802.15.4) wireless transceiver to a re­

mote personal computer for further processing. Although Posey supports the acquisition

of position and orientation information from the local processing unit located within each

ball-and-socket joint, the units themselves do not locally collaborate to form a composite

entity. Rather, the system depends upon a more powerful mainstream computer system

to provide the necessary intelligence to compose the data provided from the joints.

1.4 Research Objective

The aim of this work is to develop a software architecture and knowledge representa­

tion scheme that facilitates the flexible, scalable, and reliable combination of modular

sensing and actuation components for the purpose of forming composite sensing devices

with motion capability. Each modular component provides a core sensing or actuation

functionality (such as temperature or pressure measurement) and contains embedded

knowledge of its capabilities (such as its operating range and response time), which is

communicated to other modules within its environment. The design of the architectural

framework should fulfil the following criteria:

• Heterogeneity — Support the connection of sensor and actuator modules possess-

1 Introduction 15

ing diverse functionality and capabilities.

• Autonomy — Support the autonomous discovery of the capabilities of networked

modules, and the autonomous configuration of these modules based on their dis­

covered capabilities.

• Pose/Geometry Determination — Support the determination of the absolute

or relative pose (position and orientation) of individual modules, and by extension

the overall geometry of a set of connected modules.

• Assumption of a Collective Identity — Facilitate the assumption of a collective

identity by successfully connected modules, based on their capabilities and relative

positions and orientations.

• Process Distribution — Support the splitting and distribution of a complex task

among a group of networked modules.

• Resource Management — Manage the hardware resources on each module in an

efficient, intuitive, and simple manner.

• Scalability — Maintain reliable operation with an increasing number of connected

sensor and actuator modules.

• Robustness — Adapt automatically to the addition, removal, or failure of modules

in real-time.

1.5 Thesis Outline

This thesis is divided into eight chapters that progressively describe the design and op­

eration of the software architecture from its lowest level interactions with the module

1 Introduction 16

hardware to its highest level software components. A brief synopsis of the contents of

each chapter is provided as follows:

• Chapter 1 — Introduction: This introductory chapter. Outlines the motivation

behind the development of the software architecture as well as its design criteria,

and provides a survey of existing modular sensing system architectures as well as

standards facilitating sensor interoperability.

• Chapter 2 — Architecture Description: Outlines the software architecture

itself and the hardware on which it executes. Topics covered include the utilized

real-time operating system and file system, as well as an overview of the various

layers present within the architecture.

• Chapter 3 — Communication Layer: Describes the communication layer of

the software architecture, which provides a reliable, connection-oriented service for

wired and wireless communication to the layers above it, and also facilitates time

synchronization between modules.

• Chapter 4 — Middleware Layer: Outlines the middleware layer of the software

architecture, which defines a standard application programming interface (API) that

facilitates interoperability between the modules on which the architecture executes

and enables them to request services from each other.

• Chapter 5 — Virtual Machine: Describes the virtual machine utilized within

the software architecture, based on Sun Microsystems’ Java Virtual Machine, that

promotes the straightforward portability of collaborative intelligence algorithms be­

tween diverse module hardware platforms.

• Chapter 6 -— Composition Layer: Outlines the composition layer of the software

architecture, where intelligence is implemented and utilized in the form of platform-

1 Introduction 17

independent algorithms that enable a group of modules to collaborate and form

composite entities.

• Chapter 7 — Architecture Evaluation: Provides results and analysis of the

behaviour and performance of the software architecture once deployed on actual

module hardware.

• Chapter 8 — Conclusions: Provides a final overview of the software architecture

and also provides recommendations for further improvement.

Chapter 2

Architecture Description

2.1 Introduction

This chapter provides a description of the module hardware on which the software archi­

tecture executes, as well as the layered model on which the architecture is based. The

real-time operating system utilized for the purpose of concurrent task management is

then described, followed by information on the file system driver and the organization of

the standard file structure. A description of the core data types utilized throughout the

software architecture is then provided.

2.2 Module Hardware Overview

2.2.1 Transducer Interface Modules

The basic module used to construct modular sensing systems is the transducer interface

module (TIM). Each is capable of a single sensing or actuation function, and is uniquely

identified by a 64-bit address. This address possesses a most significant bit of zero, since

addresses with a most significant bit of one are reserved for assignment to composite

18

2 A rchitecture Description 19

module entities termed logical modules that are comprised of a set collaborating TIMs.

The zero address and the address of all ones are also reserved, and may not be assigned

to single nor composite modules. The address of all ones is utilized for broadcasts to

all the modules comprising a modular sensing system. With this addressing scheme, up

to approximately 9.2 x 1018 physical transducer modules may be uniquely addressed, a

value which is likely to exceed the number of modules created throughout the lifetime of

the technology. As specified in the IEEE 1451 standard for smart transducers [6], each

module possesses one or more Transducer Electronic Data Sheet (TEDS) specifications

in non-volatile memory, from which a description of the characteristics of its associated

sensors or actuators may be obtained.

TIMs are cubical in shape, and thus each possesses six faces to which up to five

other modules may be connected, as shown in Figure 2.1. One face is reserved for use

by the transducer associated with the module. The hardware which comprises a TIM,

shown in Figure 2.2, includes the associated transducer; a high-speed NXP Semiconduc­

tors LPC2148 ARM-based microcontroller [20]; a Nordic Semiconductor nRF24L01 [21]

wireless transceiver supporting high-speed data transmission, multi-channel operation

and carrier detection; a Secure Digital™ (SD) flash memory card providing high-capacity,

non-volatile storage for data and algorithms; a power supply capable of providing a volt­

age of 3.3 volts to 9 volts; and five module connectors, which are proprietary interfaces

used to physically connect additional modules. The interfaces are designed such that the

relative orientation between any two connected modules may be determined. Further

details on the electrical and mechanical design aspects of the TIMs may be found in [22].

2.2.2 Other Module Types

A modular sensing system may consist of two other types of modules significant to the

software architecture. These modules perform tasks unrelated to sensing and actuation;

2 A rchitecture Description 20

Transducer

Figure 2.1: Transducer Interface Modules and interconnects.

Figure 2.2: Transducer Interface Module block diagram.

2 A rchitecture Description 21

instead, they support the inter-operation of a group of TIMs.

Administration Module

An administration module is used by the system user to detect and manage TIMs within

its vicinity. It possesses only a power supply, a microcontroller, and a transceiver. It

may be integrated into a complete computer system, or be a small, self-contained console

with a user interface. Administration modules may also act as a sink for transducer

readings and as a gateway for communication with a larger network, such as the Internet.

All TIMs, however, may run an optional shell task which provides the system user with

administrative functionality.

Interconnect Module

Interconnect modules are each built to assume one of a variety of non-standard shapes,

and are used to provide angular and translational offsets between connected TIMs which

would otherwise not be possible due to the cubical shape of the TIMs. An example of

an interconnect module which provides an angular offset is shown in Figure 2.1. They

possess only a microcontroller and module connectors, and draw power from the TIMs to

which they are connected. The nature of the offset provided by a particular interconnect

module is stored in its TEDS, and may be accessed through its module connectors.

2.3 Software Architecture Stack

The software architecture described in this thesis is a distributed architecture based

on the Open Systems Interconnection (OSI) reference model [17], and consists of six

layers (one of which is divided into two sub-layers) as shown in Figure 2.3. The use of

a distributed architecture ensures that no single point of failure exists within a modular

2 A rchitecture Description 22

Composition Layer

V irtual Machine

M iddleware Layer

Communication Layer

Real-T ime OS Device Drivers

Module Hardware

Figure 2.3: Software architecture stack.

sensing system and also facilitates architecture scalability, unlike centralized architectures,

in which a single point of failure is often introduced that can also limit scalability in large

systems where communication between nodes mostly occurs through this point. The

use of a layered architecture model allows the implementation of any layer to change

independently of the others, since the implementation of each layer is encapsulated from

the layer above, to which it provides service. This information-hiding technique also

facilitates a more robust software architecture, and makes each of the architecture layers

easier to implement, modify, and debug. The function of each layer is defined as follows:

• Module Hardware — Contains the physical components of a module needed for

execution of the operating system, sensing and actuation functionality, as well as

wired and wireless communication.

• Real-Time Operating System/Device Drivers — Provides resource manage­

ment functionality and an environment for concurrent task execution, as well as

the low-level software routines needed to manipulate and manage the hardware

resources present in the module.

• Communication Layer — Provides an interface to the wireless transceiver driver

2 A rchitecture Description 23

that automatically accounts for transmission problems such as packet loss and syn­

chronization. This layer also provides an interface through which modules may

communicate using their face connectors.

• Middleware Layer — Provides the commands and services through which the

member TIMs comprising a logical module may interact and communicate with

each other in order to achieve a specific goal. A logical module is an abstraction

of one or more collaborating TIMs, a representation of which is present locally

on each of the TIMs comprising the logical entity. More than one logical module

representation may be present on a single TIM.

• Virtual Machine — Provides a platform-independent execution environment for

the algorithms utilized in the composition layer. This enables the behaviour of a

group of collaborating TIMs to be specified in a manner that is completely decoupled

from their underlying hardware architecture. Platform independence is facilitated

through the use of a compact implementation of Sun Microsystems’ Java Virtual

Machine [23].

• Composition Layer — Encompasses one or more logical module template algo­

rithms that process the transducer state and module pose messages transferred

among a group of collaborating TIMs and enables them behave as a logical entity.

Each template algorithm, in the form of a Java class, is accompanied by a logical

module template TEDS that describes the basic characteristics of a logical module

entity derived from on it.

2 A rchitecture Description 24

2.4 Real-Time Operating System

The software architecture utilizes a real-time operating system (RTOS), which enables

it to be implemented in a modular fashion through the concurrent execution of various

tasks. As a result, the management of the hardware resources of a module, as well as

the development and debugging of the software architecture, is vastly simplified. Tasks

are implemented as independent functions, each with its own stack and register set, that

appear to be running simultaneously, but are actually sharing the execution time of

the microcontroller through the use of scheduling mechanisms implemented within the

operating system.

2.4.1 Scheduling Policies

In an RTOS, concurrently executing tasks may be scheduled using either a pre-emptive

scheduling policy or a cooperative scheduling policy. In pre-emptive scheduling, CPU time

is automatically shared between tasks based on their assigned priority, while in coopera­

tive scheduling each task maintains control of the CPU until it explicitly yields control.

Pre-emptive scheduling is advantageous since it prevents long-running, low-priority back­

ground tasks from blocking shorter, higher-priority foreground tasks from executing, thus

improving system response speed to external events. In the popular Tiny OS [11] RTOS,

which utilizes a cooperative scheduler, all tasks must run to completion. Long-running

background tasks are therefore prohibited, and care must be taken to ensure that each

task completes in a reasonable amount of time.

2.4.2 Choice of RTOS

Two real-time operating systems, FreeRTOS [24] and TNKernel [25], were considered for

use in the software architecture. Due to the limited 40 kilobytes of internal RAM (random-

2 A rchitecture Description 25

access memory) present on the LPC2148 microcontroller, more complex operating systems

such as eCos and RTLinux could not be assessed. Both FreeRTOS and TNKernel are

free, open source, compact, and well documented; they also possess a large user base and

code that has been heavily tested on a variety of embedded architectures, including the

ARM architecture. In addition, FreeRTOS and TNKernel both contain a priority-based

pre-emptive task scheduler, and make provisions for message passing and synchronization

between concurrently executing tasks.

The real-time operating system chosen for use in the software architecture presented

herein is TNKernel. This RTOS was chosen over FreeRTOS due to its more compact and

easily modifiable code base. In addition to not relying on the standard C library, TNKer­

nel does not utilize any form of dynamic memory allocation internally, thereby allowing

the implementation of a simplified dynamic memory allocator to be used exclusively by

the upper layers of the software architecture where necessary.

2.4.3 Task Types

Three standard background tasks, and at least one message handling task, are created

and executed upon startup and initialization of a module. Multiple message handling

tasks may also be created and executed by the software architecture at any point during

its execution, depending on the type of modules that are within close proximity. These

various task types are briefly described below.

• Network Communication Task — Performs various duties related to commu­

nication on the various wireless data channels. These duties include broadcasting

control packets which indicate the presence of the module in the network; trans­

mitting, receiving, and processing data packets; and maintaining synchronization

with other modules in the environment. This task is described in further detail in

Section 3.6.

2 A rchitecture Description 26

• Face Communication Task — Manages the communication of the module with

others physically connected to its faces. This task detects the physical connection

and disconnection of other modules to any of the five connectible module faces,

handles the transfer of data through the connectors on the faces, and calculates the

relative pose (position and orientation) between the module and those to which it

is physically connected. This task is described in further detail in Section 3.7.3.

• Administrative Interface Task — Allows the system user to monitor and admin­

istrate any module, or logical group of modules, within the modular sensing system.

Some of the functionality available to the system user includes listing the modules in

the environment, manually forming a logical module entity, reading and writing to

module sensors and actuators, modifying the local clock of the module, and various

debugging features such as suspending and resuming tasks and monitoring wireless

channel activity.

• Module Message Handler Task — Handles middleware layer messages placed

within the incoming message queues of a TIM or a logical module entity of which

it is a member. This task is also responsible for performing various status checks

on its associated module before each received message is processed, such as deter­

mining if a queued write message was received from a source with the appropriate

write permissions. At least one message handler task is created by default for a

TIM upon initialization, to process and transmit messages related to its local hard­

ware. Other instances may be created as the TIM becomes a member of one or

more logical module entities. For physical TIMs, the message handler task is fully

implemented natively, while for logical modules it is mostly implemented using

platform-independent Java classes.

2 A rchitecture Description 27

2.5 File System

A file system is a set of data structures that facilitates the storage, organization, and

retrieval of files from a data storage device. A file system is employed within the software

architecture to provide an efficient, high-level interface to information and algorithms

stored on SD flash cards that determine the identity and behaviour of a particular module

in a network. Utilizing a lightweight and widely adopted file system enables the system

user to easily access and modify these files using standard computers and operating

systems.

SD flash cards to be utilized by the software architecture are formatted with the

FAT32 (32-bit File Allocation Table) [26] file system and initialized with a standard file

structure that is described in Section 2.5.2. The FAT32 file system was chosen due to

its wide support on numerous mainstream operating systems for personal computers,

particularly Microsoft Windows, GNU/Linux, and Mac OS X. FAT32 is also lightweight

as compared to other popular file systems such as ext3 (Third Extended Filesystem) [27]

and NTFS (New Technology File System) [28] that utilize additional data structures and

memory in order to reduce file fragmentation and to provide features such as journaling

that aid recovery from file corruption, neither of which is crucial to the operation of TIMs.

Finally, the FAT32 file system is also well understood, resulting in the availability of a

number of stable and mature FAT32 file system drivers for embedded devices.

2.5.1 Choice of FAT32 File System Driver

Two popular FAT32 file system drivers, the FAT File System Module [29] and the Embed­

ded Filesystems Library (EFSL) [30], were considered for use in the software architecture.

Both are open source, compact, and easy to use and modify. The FAT File System Mod­

ule was chosen for use in the software architecture due to the availability of the extremely

2 A rchitecture Description 28

compact Tiny-FatFs version of its standard FatFs driver. It consumes much less flash

memory space and utilizes much less RAM as compared to FatFs and EFSL, and is also

easily adaptable to any type of input/output (I/O) device assuming a block I/O driver

is provided. Unlike FatFs and EFSL, Tiny-FatFs does not support I/O transfers to more

than one storage device at a time; however, the SD card is the only storage device present

in a TIM.

2.5.2 Standard File Structure

As previously mentioned, an SD card formatted for use with a TIM is initialized with a

standard file structure for organizational purposes. A standard file structure is utilized

to ensure that the software architecture is consistently able to locate and access the files

necessary for its operation from predictable locations irrespective of the underlying hard­

ware on which it executes or the storage medium on which these files are located. Access

to these files by the users of the system is also made more convenient. The file structure

designed for the purposes of the software architecture is depicted in Figure 2.4, and con­

sists of four directories as well as up to four different types of files. These directories and

files are described below.

• Template Class Directory — The template class directory amss/algo is the di­

rectory in which the Java classes, termed the logical module template classes, are

placed. These classes provide the platform-independent intelligence that enables

connected TIMs to collaborate with each other. The template class directory path

amss/algo adheres to the Java naming convention for package paths, and corre­

sponds to the package amss. algo that all template classes are declared a member of.

Unlike standard Java classes, template classes possess no . class extension since the

Tiny-FatFs driver requires strict adherence to the 8.3 file naming convention [31].

In this convention files may only possess a name consisting of up to eight characters

2 A rchitecture Description 29

Figure 2.4: File system block diagram.

optionally followed by a period and an extension of three characters. This limita­

tion was imposed by the original FAT file system used in older Microsoft operating

systems, and is only non-obligatory in the more complex implementations of FAT32

utilized in mainstream operating systems.

• Module TEDS Directory -— The module TEDS (Transducer Electronic Data

Sheet) directory teds consists of one or more text files termed module TEDS1 each

possessing the extension .mod, that identify and describe the characteristics of

the transducers associated with a particular physical TIM in the form of a list

of property-value pairs. The format of these text-based specifications is further

described in Section 2.6.

• Template TEDS Directory — The template TEDS directory tmpl consists of

zero or more text files termed template TEDS that identify and describe the char­

acteristics of a combination of collaborating TIMs known as a logical module. Tern-

2 A rchitecture Description 30

plate TEDS are specified using the same format as module TEDS and possess the

same .mod extension. Each template TEDS specification is associated with one

template class in the template class directory. In addition to the standard char­

acteristics of the logical module, a template TEDS specification also describes the

various roles (further outlined in Section 6.2.2), also in the form of property-value

pairs, that may be fulfilled by a particular TIM within the logical entity. The us­

age of template TEDS files within the software architecture is further outlined in

Chapter 6.

• ARC4 Key File — The ARC4 key file k ey .rc4 stores the variable-length key

required by the Alleged Rivest Cipher 4 (ARC4) cryptographic stream cipher [32]

utilized by the software architecture for the secure transmission of packets. If this

file is not found, a default key is used. All packets transmitted by TIMs on the

wireless communication medium are encrypted and decrypted in software using the

ARC4 algorithm, and modules are only able to communicate with others that are

utilizing the same key. Packets received from modules utilizing different keys will

be indecipherable upon reception and are dropped. More details on the ARC4

algorithm and key file may be found in Sections 3.2.4 and 3.5 respectively.

• Network Identifier File — The network identifier file net. id stores the 5-byte

network identifier used to indicate that a particular TIM is a member of the network

of TIMs possessing the network identifier specified. If this file is not found, a

default identifier is used. Packet transmissions from modules with different network

identifiers are completely ignored, thus reducing packet processing overhead within

the software architecture. More details on the network identifier may be found in

Sections 3.3 and 3.5.

2 A rchitecture Description 31

2.6 TEDS Specification Format

As described in Section 2.5.2, TEDS (Transducer Electronic Data Sheet) specifications are

text files that are defined to identify and describe the characteristics of the transducers

associated with a particular physical TIM, or to identify and describe the general char­

acteristics of a combination of collaborating TIMs known as a logical module. A TEDS

specification always possesses the extension .mod, and consists of a list of property-value

pairs, each on a separate line, with whitespace used to separate each property name from

its value. Comments are supported within the file format; all characters on a line after

and including the # character are ignored. The usage of a text format enables the TEDS

to be specified in an easily human-understandable form, unlike the binary TEDS format

normally utilized within the IEEE 1451 standards for smart transducers [8], which is typ­

ically incomprehensible to human readers. The Extensible Markup Language (XML) [33],

a popular format for representing data through the use of text, is not utilized for the

purpose of module TEDS specification since it introduces redundant, verbose syntax that

often makes information of interest difficult to locate by human readers. XML is also

non-trivial to parse, especially on resource-constrained embedded devices.

Sample module TEDS specifications may be seen in Section B.2, and sample tem­

plate TEDS specifications may be seen in Section B.3. A standard TEDS specification

consists of three sections. The first section is the AMSS (Adaptive Modular Sensing

System) TEDS, which is specific to the software architecture and describes the essential

attributes of a module necessary for the software architecture to utilize it. The other two

sections, the Basic TEDS and the Standard Template TEDS, facilitate the definition of

manufacturer-specific information and transducer properties as defined within the IEEE

1451 standards, and are outlined in [8]. An additional Roles section, also specific to the

software architecture, is present only within template TEDS specifications. As described

in Section 2.5.2, the Roles section defines the roles within a logical entity derived from

2 A rchitecture Description 32

the template TEDS that may be fulfilled by its member modules, and is further outlined

in Section 6.2.2. The fields contained within an AMSS TEDS specification are defined as

follows:

• Module Address — The 64-bit address assigned to a module to uniquely identify

it. This field is not present within template TEDS specifications, since the addresses

of the logical modules derived from these templates are automatically assigned by

the software architecture at runtime.

• Module Type — A constant indicating the type of the module, which may be a

sensor module, an actuator module, an interconnect module, or an administrator

module.

• Module Class — A constant indicating the class of the module. A class refers

to a family of sensors or actuators that may be used to sense a particular physical

quantity or facilitate a specific type of motion respectively. Currently, the supported

module classes are acceleration modules, positional modules, rotational modules,

status modules, text display modules, and voltage modules.

• Module Data Type — A constant indicating the data type of the array of values

returned by the module. The return type may be an 8-bit, 16-bit, 32-bit, or 64-bit

signed or unsigned integer, a 32-bit or 64-bit floating point value, a status string,

an encompassed middleware layer message (see Section 4.3), or a generic object

consisting of raw bytes.

• Module Data Type Width — Specifies the number of columns in the array of

values returned by the module.

• Module Data Type Height — Specifies the number of rows in the array of values

returned by the modules.

2 A rchitecture Description 33

• Primary Handler Name — A string storing the name of the appropriate driver

function that handles accesses to the sensing or actuation devices associated with the

module. This field is not present within template TEDS specifications, since logical

modules derived from these templates indirectly utilize the sensing or actuation

resources provided by its member modules.

2.7 Core Data Types

A variety of data structures are used to represent and store information at each layer

of the software architecture, and many are utilized throughout multiple layers. Most of

these data structures are defined directly using the standard array, structure, and union

data types provided within the C programming language used for the development of

the software architecture. However, lists and queues, which are utilized heavily, are not

provided as standard constructs within C. Therefore, a custom vector data type was

implemented to provide the functionality of both a list and a queue. The core data

structures utilized throughout the software architecture are described in the following

subsections.

2.7.1 Vector Implementation

A vector may be implemented either as a dynamic array, in which a single block of mem­

ory is allocated for all constituent elements and resized as necessary; or as a linked list,

in which memory is dynamically allocated for each constituent element as needed. The

vectors utilized within the software architecture are based on dynamic arrays. Dynamic

arrays were chosen because they do not require each element to be associated with point­

ers that maintain the links between constituent element nodes. As a result, memory

utilization is minimized. In addition, the most common operations performed on vectors

2 A rchitecture Description 34

in the software architecture are random access and insertion or deletion at the end of the

vector, of which random access is generally much faster when utilizing dynamic arrays.

This is seen upon comparison of the computational complexities of these operations for

linked lists and dynamic arrays.

The computational complexity of an algorithm, typically specified using big-0 no­

tation, is a theoretical measure of how costly (in terms of execution time or memory

requirements) the algorithm is relative to an input of size n. A function f (n) is 0(g(n))

if f (n) is less than a constant multiple of g(n). Linked-lists have O(n) complexity for

random access operations and 0 (1) complexity for insertion or deletion operations at the

end of the list. This indicates that the typical time required to perform a random access

operation on a linked list is proportional to the number of elements in the list, while

insertion and deletion operations at the end of the list take constant time irrespective of

the number of elements. Dynamic arrays have 0 (1) complexity for both random access

operations and insertion or deletion operations at the end of the array, and therefore both

operations take constant time irrespective of the number of elements in the array.

2.7.2 Task Data Types

Task Structure

A task structure is used to store the properties and data needed to describe and maintain

an executing task. Additional data is stored within a task structure beyond that uti­

lized internally by the RTOS, and facilitates the provision of identification and statistical

information. This information is utilized by the administrative interface task to report

statistics related to the currently running tasks, including itself, on a module. The values

contained within a task structure are as follows:

• Task Control Block — A structure used internally by the TNKernel RTOS to

2 A rchitecture Description 35

manage the execution of the task. The task control block contains data such as

task priority and time slice counters.

• Code — The function that implements the task algorithm and is provided with its

own context in which to concurrently execute.

• Stack — A block of memory exclusive to the task that facilitates function calls,

recursion, local variables, and servicing of interrupts.

• Name — A variable-length string indicating the name of the task, for easy identi­

fication by the system user.

• Identifier — A 32-bit unsigned integer unique to each task running on the module

hardware, used for identification purposes within the software architecture.

• Parameter — A pointer used to pass a single parameter or multiple parameters

to the task function.

• Processor Usage — Two variables used in calculating the percentage of time the

task spends executing relative to other concurrently executing tasks, and reporting

it to the system user.

Task Structure List

The task structure list is a global vector used to store the task structures that represent

each concurrently executing task on a module. The provision of a global task structure

list makes available to the software architecture a single, standard location from which all

the task structures representing the tasks running on a module may be accessed. Newly

created and initialized tasks are automatically appended to the task structure list before

their execution begins, and are automatically removed from the task structure list when

their execution ends.

2 A rchitecture Description 36

2.7.3 Module Data Types

Module Structure

A module structure is used to store data that represents the state of a single transducer

on a physical TIM or the state of a logical entity formed by a group of collaborating

TIMs. Upon startup, module structures are created and initialized on a TIM based on

each module TEDS specification found in its module TEDS directory. TIMs are required

by default to support a single sensing or actuation function, and will normally provide a

single module TEDS specification. However, a TIM with additional sensing and actuation

capabilities will normally provide additional module TEDS specifications associated with

each capability. Each transducer element will appear within the sensing system network

as a unique TIM.

As a TIM discovers other modules within its network, it will automatically search

for compatible modules with which it can collaborate and form a logical entity. For each

logical entity joined or created, a representative module structure is created locally on the

TIM. Further details on the usage of module structures associated with logical entities

may be found in Section 6.2. The data that comprises a module structure is described

below:

• Message Handler Task Identifier — Identifies the message handler task (fur­

ther outlined in Section 4.5) associated with the module structure that processes

messages received by the represented module.

• Execution Flag — Used to track whether the associated logical module task is

running or shut down. Module structures associated with shut down logical module

tasks are garbage collected.

• Synchronization Level — Indicates the degree to which the local clock of the

module should be considered a reference for synchronization. Lower values corre­

2 A rchitecture Description 37

spond to more accurate references. Interconnect modules are initialized with the

highest synchronization level of 255, standard TIMs are initialized with a synchro­

nization level of 254, and administration modules are initialized with the lowest

synchronization level of 1. After each synchronization with a reference, the local

synchronization level is set to that of the reference plus one.

• Status Check Timestamps — A set of timestamps, each of which is associated

with one of a number of status checks that maintain the integrity of the module

structure. These checks ensure that the module is not indefinitely locked or oth­

erwise becomes incapable of processing incoming messages. After the invocation

of its associated status check, each timestamp is updated by the module task to

indicate the time of the next invocation.

• Locking Address — If non-zero, indicates the address of the remote module that

has locked the TIM. Locked TIMs can be read by all modules, but can only be

written to by the module that issued the lock until the lock is released.

• Logical Module Template — A structure that stores the template class and roles

that describe the behaviour of a logical module entity. It is used only if the module

structure represents a logical module.

• Membership List — Stores membership structures that indicate the roles that

the module fulfils in one or more logical module entities.

• Incoming Message Queues — Three queues in which incoming messages to be

processed by the task associated with the module structure are placed. The Call-At

and Call-By message queues store messages to be processed at or by a particular

deadline respectively, while the Return message queue stores messages returned by

other modules in response to an issued command.

2 A rchitecture Description 38

• TEDS Properties — A collection of variables and a vector of TEDS entry struc­

tures that collectively describe the properties of a TIM and its associated transducer.

The values used to initialize the properties are loaded from the respective TEDS

file located in the module TEDS or template TEDS directories.

• Primary Message Handler — A pointer to the driver function that handles read

and write messages to the sensing or actuation device on the module.

Module Structure List

The module structure list is a global vector used to store the module structures that lo­

cally represent each physical or logical module entity associated with a particular TIM.

The provision of a global module structure list makes available to the software architec­

ture a single, standard location from which all the module structures representing the

transducer elements or logical entities available on a particular physical TIM may be

accessed. Newly created and initialized module structures are automatically appended to

the module structure list before they are utilized, and are automatically removed when

they are shut down.

Membership Structure

Membership structures are stored within the membership list of a module structure, and

each provides essential information about a single role that the encompassing module

fulfils within a particular logical entity in a modular sensing system. The fields comprising

a membership structure are:

• Logical Module Reference — A reference to the local module structure as­

sociated with the logical module that the membership structure is representing

membership of.

2 A rchitecture Description 39

• Role Number —- Indicates the role fulfilled within the referenced logical entity by

the module possessing the membership structure.

• Physical Dependency Address — The address of a remote physical TIM (that is

also a member of the logical entity) to which a direct or indirect physical connection

must be present for membership to be considered valid.

TEDS Entry Structure

A TEDS entry structure represents a single property-value pair that forms part of a

complete module TEDS or template TEDS specification. It consists of two 24-byte strings

used to store the name of the property and its associated value respectively. The use of

24-byte strings facilitates acceptably small memory consumption by TEDS specifications,

while being sufficiently large enough to allow the name and associated value of each TEDS

property to be expressed in an easily human-understandable manner.

2.8 Summary

In this chapter, the transducer interface module (TIM) hardware on which the software

architecture executes was described, as well as the layered model on which the architecture

is based. Also outlined was the TNKernel real-time operating system at the heart of the

software architecture, the FAT32-based file system used for non-volatile data storage,

and the core data structures utilized throughout the various architecture layers. The use

of a real-time operating system and a layered model promotes modularity, resulting in

the software architecture being easier to implement, modify, and debug. The following

chapter will describe the operation of the communication layer.

Chapter 3

Communication Layer

3.1 Introduction

The purpose of the communication layer is to provide logical link control in the form of

a secure, reliable, connection-oriented service; medium access control to prevent channel

access conflicts; a mechanism for time synchronization between modules; and wireless se­

curity through the encryption of transmitted data, facilitated by a cryptographic stream

cipher. The communication layer accepts messages from the middleware layer and splits

them into discrete packets, which are then encrypted and transmitted through the wireless

transceiver driver. Conversely, the communication layer also accepts and decrypts incom­

ing packets from the wireless transceiver driver, merges them into messages if necessary,

and passes them to the middleware layer. The communication layer also implements a

wired protocol that facilitates the direct transmission of data through the faces of physi­

cally connected TIMs.

40

3 Communication Layer 41

3.2 Communication Layer Services

3.2.1 Logical Link Control

Wireless communication tends to be very unreliable in the absence of an error correction

mechanism, mainly due to the regular interference encountered by radio waves during

their propagation. Therefore, a reliable, connection-oriented service must be provided

within the communication layer to ensure that transmitted packets arrive error-free and

in the correct order. This service is facilitated in the form of a Positive Acknowledgement

with Retransmission (PAR) data link protocol, which is partially implemented within the

nRF24L01 transceiver hardware under the Enhanced ShockBurst™ feature set [21].

In this protocol, depicted in Figure 3.1, each packet that requires guaranteed trans­

mission is automatically acknowledged by the receiving module through the use of an En­

hanced ShockBurst™ acknowledgement packet (ACK). Among the data present within

each received packet are a cyclic redundancy check (CRC) checksum used to detect packet

transmission errors and a packet identification (PID) number used to differentiate between

new and retransmitted packets. The CRC checksum and PID number are both automat­

ically generated by the transceiver of the transmitting module. A received packet is

considered valid by the receiving module only if its CRC checksum is valid and its PID

number does not match that of the previously received valid packet. The PID number is

incremented after the transmission of each packet, and therefore a repeated PID number

indicates that the previous packet was assumed lost by the transmitting module and was

therefore retransmitted.

After transmitting a packet the transmitting module listens to the wireless channel

for an acknowledgement packet, for a period of time known as the valid acknowledge­

ment time window, depicted in Figure 3.1 as an ACK RX block. This time period is set

to the maximum window length of 4 ps as permitted by the nRF24L01 transceiver. If

3 Communication Layer 42

Transmitter I TX(PID =1) I I ACK RX I I TX(PID =1)

▼
(Lost)

ACK RX I I TX (PID = 1)

(Lost)

ACK RX I I TX (PID = 2) I I ACK RX

Figure 3.1: Transmission of two packets using an unreliable medium.

the valid acknowledgement time window elapses without the acknowledgement packet

being received, the transmitting module assumes that the transmitted packet or its cor­

responding acknowledgement packet was corrupted and automatically resends the packet.

If the maximum 15 retransmissions permitted by the nRF24L01 transceiver occur with­

out success, transmission attempts are halted and the transceiver generates an interrupt

indicating the packet transmission failure.

A message which is larger than the 96-bit maximum transmission unit (MTU) defined

by the communication layer (see Section 3.3) is fragmented into multiple packets before

transmission. The message transmission and reception process is further detailed in

Sections 3.6.1 and 3.6.2 respectively.

3.2.2 Medium Access Control

Since a modular sensing system will normally be comprised of a number of collaborating

modules, a Medium Access Control (MAC) protocol needs to be provided within the

communication layer to share the single multi-access broadcast channel among the many

contenders competing for control of the medium. A MAC protocol may generally be

described as being either a static allocation protocol or a dynamic allocation protocol.

In static allocation protocols, channel bandwidth is divided into equally sized portions,

with each portion allocated to one transmitting device. In dynamic allocation protocols,

channel bandwidth is allocated to each transmitting device on an as-needed basis. The

following MAC protocols were considered for use in the software architecture:

3 Communication Layer 43

• TD M A — TDMA (Time Division Multiple Access) [17] is a static allocation pro­

tocol in which a single communication channel is shared by dividing access to the

channel into a number of consecutive time slots. Each user is allocated one time

slot, and is only permitted to transmit during that time slot. TDMA is efficient at

high loads; however, when loads fall, time slots will go unused, wasting bandwidth.

Reallocation of time slots also becomes complex when users regularly enter or leave

the system. Another disadvantage of TDMA is the need for constant and accurate

global synchronization between users to ensure that their time slots do not overlap.

Any loss of synchronization results in packet collisions.

• ALOHA — ALOHA [17] is a dynamic allocation protocol which has two versions:

pure and slotted. In pure ALOHA, users are allowed to transmit whenever they

have packets to send. If a collision occurs, the users which attempted transmission

wait a random amount of time before attempting to transmit again. This results in

very high packet collision rates, and thus inefficient usage of bandwidth.

In slotted ALOHA, users are only allowed to transmit at the beginning of discrete

time intervals. As in pure ALOHA, if a collision occurs, the users which attempted

transmission wait a random amount of time before attempting to transmit again.

This results in the bandwidth usage of slotted ALOHA being twice that of pure

ALOHA, although the packet collision rate is still high since all users are free to

transmit once the next time slot arrives. Like TDMA, slotted ALOHA requires

constant and accurate global synchronization between users to prevent overlapping

of time slots.

• C S M A — CSMA (Carrier Sense Multiple Access) [17] is a dynamic allocation

protocol in which users are able the sense the communication channel and determine

if a transmission is already in progress.

3 Communication Layer 44

In 1-persistent CSMA, a user transmits as soon as the channel becomes idle (that

is, with probability 1). If a collision occurs, the user waits a random amount of

time before attempting to sense the channel and transmit again. In nonpersistent

CSMA, the user does not immediately transmit once the channel becomes idle;

rather, it waits a random period of time before attempting transmission. In p-

persistent CSMA, the communication channel is slotted. If the user senses the

channel is idle, it transmits at the slot interval with probability p, and defers to the

next slot with probability 1 — p. CSMA/CD (Carrier Sense Multiple Access with

Collision Detection) is an improvement on the standard CSMA protocols in which

users cease transmitting as soon as a collision is detected.

CSMA protocols achieve far greater bandwidth utilization than ALOHA protocols.

CSMA protocols can fail, however, in wireless systems utilizing short-range radio

waves, since in such systems the sender is able to sense all channel activity within its

vicinity, but not necessarily all channel activity within the vicinity of the receiver.

M AC AW — M ACAW (Multiple Access with Collision Avoidance for Wireless) is a

dynamic allocation protocol designed for wireless networks proposed by Bharghavan

et al [34], and is an extension of the earlier MAC A (Multiple Access with Collision

Avoidance) protocol proposed by Karn [35].

In MACA, a user intending to transmit sends a short RTS (Request To Send) packet,

containing the length of the data to be sent, to the receiver before attempting

transmission. The receiver responds with a short CTS (Clear To Send) packet, also

containing the data length specified in the RTS packet. Any user that detects either

the RTS or CTS packets refrains from transmitting, for the time period needed to

transmit the amount of data specified in the packets.

MACAW improved upon MACA by adding an ACK (Acknowledgement) packet

3 Communication Layer 45

after each successfully transmitted data packet, to ensure faster retransmission of

lost data packets at the data link layer, rather than at higher layers. Carrier sensing

was also added to prevent multiple users simultaneously attempting to transmit an

RTS packet to the same receiver, thus providing MACAW with many of the benefits

of pure CSMA protocols. The CSMA/CA (Carrier Sense Multiple Access with

Collision Avoidance) protocol used in 802.11/WiFi networks is based on MACAW.

• IEEE 802.4/Token Bus — Token Bus [17] is a dynamic allocation protocol in

which the users are organized into a logical ring, rather than a physical ring as in

the related IEEE 802.5/Token Ring network [17]. In both the token bus and token

ring networks, each node is aware of the node immediately before and after it in

the ring. Bus arbitration is achieved through the use of a token packet, which is

passed from user to user in sequence around the ring. Only the user in possession

of the token packet may transmit data, if any, after which the token is passed to

the next user.

Unlike the logical ring in the token bus network, the physical ring in the token ring

network has a weakness, in that each user is able to communicate directly only with

the two users before and after it in the ring. Each user is therefore a point of failure

for the entire network. The token bus network avoids this limitation since all nodes

are connected to each other using a multi-access communication medium. However,

scalability is limited in both the token bus and token ring networks since the delay

between successive possessions of the token per user increases as additional users

enter the system.

The MAC protocol utilized in the modular sensing system software architecture is

a dynamic allocation protocol based on MACAW. The MAC protocol was derived from

MACAW because its acknowledgement and carrier sensing features are already imple­

3 Communication Layer 46

mented in hardware within the nRF24L01 transceiver, facilitating improved performance.

In addition, MACAW does not depend on global time synchronization between contenders

for the medium in order to operate reliably, which is important because much of the

communication layer is implemented in a concurrently executing task running on a pre­

emptive real-time operating system (see Section 2.4). As a result, the task executes at

unpredictable intervals, making reliable global synchronization very difficult to achieve.

The operation of the MAC protocol is further detailed in Sections 3.6.1 and 3.6.2.

3.2,3 Time Synchronization

The timers used within each module to generate and compare timestamps need to be

regularly synchronized during operation. Regular synchronization is necessary since the

resonant frequency of the crystal oscillator that controls the local time of each module

may be slightly different from its rated value, or may shift slightly over time. Slight

imperfections in the crystal manufacturing process cause the discrepancy in rated value,

while microscopic changes in the crystal size due to environmental effects such as tem­

perature, humidity, and pressure result in the slight shifts in resonant frequency. These

variations in resonant frequency result in varying degrees of clock drift between module

clocks, and in turn cause a loss of synchronization between the local times of each module.

System reliability is therefore reduced, since the reported time of occurrence of an event

by a particular module may not necessarily be accurate with respect to the local time of

another module.

The protocol used for time synchronization is based on the Simple Network Time

Protocol (SNTP) developed by Mills [36], which is a subset of the Network Time Protocol

(NTP) also developed by Mills [37]. Both SNTP and NTP are standard, well-known

protocols widely used to synchronize computer clocks over the Internet. The derived

protocol is further detailed in Sections 3.6.1 and 3.6.2.

3 Communication Layer 47

As described in [36], and shown in Figure 3.2, four 64-bit timestamps are needed to

calculate the signed clock offset 0 between differing module clocks. These four timestamps

may also be used to calculate the roundtrip delay 6 of exchanged packets, and each times­

tamp is relative to the clock of the module on which it was taken. The first timestamp

is the Originate timestamp 7T—3, which indicates the time that a synchronizing module

requested synchronization with a remote module. The second timestamp is the Receive

timestamp Ti- 2, which indicates the time the remote module received the synchronization

request. The third timestamp is the Transmit timestamp T*_i, which indicates the time

that the remote module responded to the synchronizing module. The fourth timestamp

is the Destination timestamp T̂ , which indicates the time that the synchronizing module

received the synchronization response.

The Originate and Destination timestamps are temporarily recorded in volatile mem­

ory by the synchronizing module once taken, while the Receive and Transmit timestamps

are returned to the synchronizing module. The propagation delay of the exchanged

synchronization packets is assumed to have remained constant over the negligibly short

period of time during which they were exchanged. The roundtrip delay 5, and the signed

clock offset 6 which is added to the local clock of the synchronizing module, are then

accurately calculated by the synchronizing module using Equations 3.1 and 3.2, derived

by Mills [37].

S = (Ti — T is) - (T,_! - T i-2)

q (Ti-2 — T i-f) + (Ti~ 1 — Ti)
2

(3.1)

(3.2)

3 Communication Layer 48

Originate Destination
Timestamp Timestamp r,

Receive Transmit
Timestamp Tn Timestamp TiA

Figure 3.2: Time synchronization packet exchange.

3.2.4 Wireless Security

Unlike wired transmission mediums such as twisted-pair Ethernet cables, wireless trans­

mission is inherently insecure since the modulated radio signals used for data transmission

are easily intercepted by any individual possessing a tuner of the appropriate frequency.

Wireless security is provided within the communication layer in the form of en cryp tion in

order to provide confidentiality when privacy of information pertaining to the identifica­

tion of TIMs and their collected data (which is frequently transmitted wirelessly between

modules) is required.

Two common cryptographic algorithms that facilitate information security are stream

ciphers and block ciphers. In a stream cipher, the bits comprising information to be

transmitted are combined with a pseudorandom keystream of ciph er bits through the use

of the ex c lu s iv e -o r (XOR) logical operation, as depicted in Figure 3.3. The cipher bit

stream varies with a key used to initialize the algorithm. In practice, one pseudorandom

byte is generated and used to encrypt one byte of data at a time within each iteration

of a stream cipher encryption loop. As a result, stream ciphers are often utilized in

applications such as wireless transmission, where the information to be encrypted is of

an indeterminable length. Due to the bit-inverting nature of the XOR operation when its

input and corresponding output are combined with the same bit sequence, encrypted data

3 Communication Layer 49

Information/Cipher Bit Stream

Key Pseudorandom Bit Stream XOR !

Cipher/lnformation Bit Stream

Figure 3.3: Stream cipher operation block diagram.

can also be decrypted using the encryption algorithm itself. The most popular stream

cipher currently in use is Rivest Cipher 4 (RC4), which is also referred to as Alleged

Rivest Cipher 4 (ARC4) [32] in its publicly available reverse-engineered implementation

in order to limit trademark concerns. ARC4 is the encryption algorithm used within the

Wired Equivalent Privacy (WEP) encryption protocol [38], which is widely utilized in

IEEE 802.11 wireless networks.

In a block cipher, depicted in Figure 3.4, information is processed in fixed-length

groups of bits known as blocks, which are typically much larger than one byte, thus

requiring the length of the information provided for encrypting to be a multiple of the

block size. An pair of complementary transformation functions are used for encryption

and decryption, the behaviour of which is unique to a supplied key, and are applied

to information blocks to produce encrypted blocks, and to encrypted blocks to produce

information blocks, respectively. However, a block cipher may operate within various

standard modes of operation, some of which enable a block cipher to effectively operate

as a stream cipher. In these stream-based modes, the encryption transformation function

is instead applied to a sequence of values, which may be as simple as an incrementing

counter, that are guaranteed not to repeat for an extensive period of time to produce

keystream blocks. These keystream blocks are then combined with the bits comprising

3 Communication Layer 50

Key !

Information Block Cipher Block

5 J J L, \ /
Encryption Transformation Function (Key) ') Decryption Transformation Function

Cipher Block Information Block

Figure 3.4: Block cipher operation block diagram.

the information to be transmitted using the XOR logical operation, as in a stream cipher.

The encryption transformation function may be used for both encryption and decryption

in this case, as with stream ciphers. Block ciphers are typically slower than stream

ciphers and often require the usage of more memory during their operation; however,

block ciphers often facilitate the creation of encryption algorithms that provide a greater

degree of security compared to stream ciphers. Popular block ciphers currently in use

include Blowfish [39] and the Advanced Encryption Standard (AES) [40], which is based

on the Rijndael algorithm. AES is adopted for encryption purposes by the United States

government, and is also the encryption algorithm utilized in the Wi-Fi Protected Access

(WPA) protocol [41], which has superseded WEP as the encryption standard of choice

for IEEE 802.11 networks due to major weaknesses that have been discovered in WEP.

All packets generated for transmission by the software architecture are encrypted

using the ARC4 encryption algorithm due to its straightforward implementation, excellent

speed, minimal memory usage, and relatively strong security. These criteria are important

due to the resource-constrained hardware present in the TIMs. The ARC4 pseudorandom

keystream generator is depicted in Figure 3.5. It utilizes two 8-bit indices i and j that

are initialized to zero, and an array S containing a permutation of all 256 possible bytes,

which is initialized by applying a key scheduler algorithm to a variable length key of

up to 128 bits. In each iteration of the ARC4 pseudorandom keystream generator i is

3 Communication Layer 51

[S(i]
0 2 1 + 253 2 5 4 25 5

sm

T +

Figure 3.5: ARC4 pseudorandom keystream generator operation.

incremented, after which the value at S[i\ is added to j . The values at S[i] and S\j] are

then swapped, and the byte at the index Sr[S'[i] + S\j}\ is combined with the current byte

in the input byte stream using the XOR operation to produce the output byte.

The use of encryption also serves to reduce the bit error encountered during trans­

missions in which long runs of unchanging bits are present, since the information stream

is always replaced by a constantly varying pseudorandom bit pattern before transmis­

sion. Long streams of unchanging bits greatly increase the difficulty encountered by the

nRF24L01 transceiver in locking onto transmitted radio signals due to its use of Gaussian

Frequency Shift Keying (GFSK) modulation for transmitting and receiving data [21], in

which the frequency of the signals is directly related to the value of the bit being trans­

mitted.

3.3 Packet Format

Data is transferred to and from the transceiver driver in 329-bit packets. The packet

format, shown in Figure 3.6, is designed to be compatible with that of the nRF24L01

transceiver, which manages the preamble, network identifier, packet control field, and

firmware checksum fields within its firmware. The 32-byte payload field defined within

the nRF24L01 packet format is sub-divided into smaller fields for the purposes of the

software architecture. The communication layer packet fields are described as follows:

• Preamble (8 bits) — A pattern of alternating ones and zeroes used by a receiving

3 Communication Layer 52

Pre (8) Network ID (40) Ctrl (9)
Source Address (64)

Destination Address (64)

Data Field (96)

Type (8) Chan (8) Enc Sum (16) CRC (16)

Figure 3.6: Communication layer packet format (field sizes in bits).

transceiver to synchronize its clock with that of the transmitting transceiver.

• Network Identifier (40 bits) — A constant value common to all or a subset of

modules. Any received packet that does not specify this identifier is automatically

rejected by the transceiver firmware.

• Packet Control Field (9 bits) — A field used internally by the nRF24L01, which

contains the packet identification (PID) number used in detecting packet retrans­

missions as well an acknowledgement flag indicating whether or not a particular

packet requires acknowledgement.

• Source Address (64 bits) — Identifies the physical or logical module that trans­

mitted the packet.

• Destination Address (64 bits) — Identifies the physical or logical module that

should receive the packet.

• Data Field (96 bits) — Contains the data to be transmitted within the packet.

Therefore, the maximum transmission unit (MTU) of the communication layer is

defined to be 96 bits. The data field may be further sub-divided into parameter

fields used for transmitting various types of data specific to the packet type.

• Packet Type (8 bits) — Indicates the type of the packet, through which the

3 Communication Layer 53

method of interpreting the data field may be determined.

• Packet Channel (8 bits) — Indicates the channel on which the packet was trans­

mitted.

• Encryption Checksum (16 bits) — Simple checksum used to verify decrypted

packets. The checksum is generated by a summation of the 30 bytes comprising

the source address to the packet channel. The use of this 16-bit checksum greatly

reduces the chance of misidentifying a packet decrypted with an invalid key as valid

data.

• CRC Checksum (16 bits) — Used to detect packet transmission errors. The

checksum is automatically generated by the transceiver firmware using the Cyclic

Redundancy Check (CRC) algorithm [17].

3.4 Channels and Packet Types

The nRF24L01 transceiver is able to transmit and receive packets on any one of up to

125 distinct radio frequency channels at a time, one of which is reserved by the software

architecture for use as a control channel All modules listen to the control channel by

default when not transmitting data, and each module can detect the presence of others

in its vicinity by listening for packet transmission activity on the channel.

The other 124 channels are utilized as data channels. Upon successful reservation of a

data channel through the use of the RTS and CTS medium allocation packets (described

in Sections 3.6.1 and 3.6.2), the transmitting and receiving modules switch to the agreed

channel and carry out the transmission. As depicted in Figure 3.7, lengthy transmissions

may occur simultaneously on different channels without interference. The various packets

types defined for use by the software architecture and transmitted on the control and data

3 Communication Layer 54

Control Ch. CTS RTS CTS PRE
Data Ch. 1 DAT DAT DAT DAT
Data Ch. 2 DAT DAT DAT

Data Ch. 124 DAT DAT DAT DAT

Figure 3.7: Multi-channel operation.

channels are described below.

3,4.1 Control Channel Packet Types

• P R E — Presence packets are regularly broadcast by all modules to indicate their

continued presence in the sensing system, as well as to facilitate determination of

their basic properties. The following module properties are specified in the data

field: type (sensor or actuator), class (temperature, pressure, display, etc.), data

type (signed or unsigned integer, single-precision or double-precision floating point

value, status constant, string, or raw bytes), data type array width, and data type

array height. Also specified in the data field are the synchronization level of the

module, its connection type (local, physical, or wireless; see Section 6.2 .2), and a

packet timeout counter.

• M E M — Member packets are regularly broadcast by modules to indicate their

continued presence in a particular combination of modules comprising a logical

module. The hardware address of the module, its role identifier within the logical

group, as well as a packet timeout counter are specified in the data field.

• S Y Q — Synchronization Query packets are used to initiate time synchronization

with a remote module and transfer the Originate timestamp in the data field.

The synchronization protocol used is based on the Simple Network Time Protocol

3 Communication Layer 55

(SNTP) [36].

• SYR — Synchronization Response packets are issued in response to a time syn­

chronization request, and contain within the data field the synchronization level of

the synchronizing module, and a partial calculation used by the unsynchronized

module to calculate its relative time offset.

• RTS — Request To Send packets are used to request transmission of a middleware

layer message. The data channel to be used, the network identifier offset (an offset

to the network identifier used exclusively for the transfer), as well as the message

length in bytes, are specified within the data field.

3.4.2 Data Channel Packet Types

• CTS — Clear To Send packets are issued by a receiving module to the transmitting

module to indicate that it may proceed with the transmission.

• DAT — Data packets contain consecutive 12-byte fragments of a middleware layer

message in the data field.

3.5 Initialization

The communication layer initialization process begins with the allocation of the two main

vector data structures utilized by the layer. The first is the environment list, which stores

presence packets detected on the wireless channel, and is used to keep track of the modules

within the vicinity as well as their basic properties. The second is the outgoing message

queue, which is a FIFO (first in, first out) queue that stores messages received from the

middleware layer waiting to be transmitted.

3 Communication Layer 56

To determine which network identifier and ARC4 key the module is to utilize for

packet transmissions, the SD card is searched for the 5-byte network identifier file n e t . id

and the variable length (up to 16 bytes) key file k ey .rc4 respectively, as described in

Section 2.5.2. Transmissions from modules with different network identifiers are ignored,

and packets received from modules utilizing a different ARC4 key will be indecipherable

upon reception and are dropped. If no n e t . id file is found, the default network identifier

0x40414D5353 (which represents the ASCII sequence “@AMSS”) is used. If no key.rc4

file is found, the default 128-bit key 0x414D5353414D5353414D5353414D5353 (which rep­

resents the ASCII sequence “AMSSAMSSAMSSAMSS”) is used. Upon determining the

network identifier and ARC4 key to be used, the wireless transceiver starts listening for

transmissions on the control channel.

3.6 Network Communication Task

The network communication task is started upon initialization of the software architecture

and runs continuously and concurrently with all other tasks in the system. At the heart

of the task is an infinite loop in which a number of operations are carried out at different

time intervals. These operations are multiplexed into a single task instead of being split

into separate tasks due to the limited 40 kilobytes of RAM (random access memory)

available on the LPC2148 microcontroller present in the TIMs, which places constraints

on the amount of stack space available to be distributed between concurrently executing

tasks. The network communication task is required to:

• Transmit presence packets for all modules in the module structure list every two to

five seconds.

• Transmit member packets for all modules in the module structure list every two to

five seconds.

3 Communication Layer 57

• Decrement the timeout counters of all presence packets in the environment list and

all member packets in the role environment lists (see Section 6.2.2) of all logical

modules every second.

• Synchronize the local clock with a remote clock of a lower synchronization level (see

Section 2.7.3) every one to two minutes.

• Perform garbage collection of shut down logical modules and their associated module

structures and message handler task structures every two seconds.

• Transmit a single outgoing message, if any is pending, on each loop iteration.

• Handle up to five pending control packets, if any were received as indicated by a

transceiver interrupt, on each loop iteration.

The general operation of the network communication task is depicted in Figure 3.8.

The nRF24L01 wireless transceiver is locked for the duration of each operation to prevent

other tasks from simultaneously modifying its registers. Most of the operations in the

network communication task are performed at randomly determined intervals in order

to reduce the possibility of all the modules in the environment regularly saturating the

control channel at similar times, while otherwise leaving the channel empty. The various

standard handlers and packet handlers that perform the previously mentioned operations

are further outlined in the following sections.

3.6.1 Standard Handlers

Presence Handler

The presence handler, invoked every two to five seconds, is responsible for transmitting

the presence packets which indicate that a module is within a particular network. These

presence packets also provide a basic overview of the attributes and capabilities of the

3 Communication Layer 58

Figure 3.8: Network communication task operation.

3 Communication Layer 59

module. For each physical module structure or primary module structure (which pos­

sesses the lowest address in a logical module entity and is responsible for transmitting and

processing its messages) found in the module structure list, a presence packet is trans­

mitted through the wireless transceiver and also handled locally. Since presence packets

are broadcast packets, the destination field of these packets instead serves the purpose

of indicating the pose base (see Section 6.5) of the module, which is the address of the

remote module to which its pose is relative.

Due to the small size of the nRF24L01 FIFO incoming packet buffer, which is three

packets deep, too many presence packets transmitted by one module in rapid succession

may result in all presence packets transmitted after the third or fourth to go undetected.

In order to account for this problem, each successive search through the module structure

list is offset by one, to ensure that the first three presence packets transmitted are almost

always in a different order.

Member Handler

The member handler, invoked every two to five seconds, is responsible for transmitting

the member packets that indicate which logical module entities a particular module is a

member of. As mentioned in Section 2.7.3, each module structure possesses a membership

list, indicating the roles it fulfils in the logical modules of which it is a member. This role

information is broadcast within the member packets.

For each module structure found in the module structure list, appropriate member

packets are transmitted for each role it satisfies in a logical module, which are also handled

locally. Similar to the presence handler, successive searches through the module structure

list as well as the member-of list are offset by one on each iteration. This ensures that

the latter packets in a group of member packets transmitted in rapid succession do not

repeatedly get dropped while being placed in the FIFO incoming packet buffers of the

3 Communication Layer 60

transceivers on other modules.

Timeout Handler

The timeout handler is invoked every second. During each invocation, the environment

list is scanned and each presence packet found in the list has its timeout counter field

decremented. If any timeout counter reaches zero, the presence packet is removed from the

environment list and the corresponding module is considered to have left the environment.

The module structure list is then searched for module structures corresponding to

logical modules that contain member packets in their role environment lists. A role

environment list stores the member packets corresponding to the TIMs in the environment

that fulfil a particular role in the logical entity. These member packets also have their

timeout counters decremented. If the timeout counter of any packet reaches zero, it is

removed from its respective role environment list. Removal from the role environment list

indicates that the module that transmitted the member packet is no longer considered a

member of the logical entity.

Synchronization Handler

The synchronization handler, invoked every one to two minutes, is responsible for initiat­

ing time synchronization between modules. To determine if synchronization is necessary,

the presence packets in the environment list are searched to determine which module has

the lowest synchronization level If multiple modules possess the lowest synchronization

level, then the lowest address of these is used for synchronization.

Synchronization is only performed if a module with a lower synchronization level is

found in the environment, or a module with an equivalent synchronization level, but a

lower address, is found. If synchronization is necessary, a synchronization query (SYQ)

packet possessing the Originate timestamp T*_3, as described in Section 3.2.3, is trans­

3 Communication Layer 61

mitted on the control channel to the module with the lowest synchronization level that

also possesses the lowest address among modules at that synchronization level.

Garbage Handler

The garbage handler is invoked every two seconds to reclaim memory allocated by shut

down logical modules and their associated task structures and module structures. Garbage

collection is necessary since individual tasks cannot deallocate their stack and heap space

on their own upon completing their execution. Message handler tasks (see Section 4.5)

strictly associated with any of the transducers on the TIM on which it runs are required

to execute as long as the TIM is powered, and therefore require no garbage collection. To

determine if any logical module message handler tasks and structures need to be garbage

collected, the shutdown flags of all the module structures corresponding to logical modules

in the module structure list are checked. This flag is clear by default, and is only set im­

mediately before the message handler task associated with a module structure completes

its execution. If set, the corresponding presence packet for the module in the environment

list is removed, the module structure itself is deleted from the module structure list, and

its stack and heap memory is reclaimed.

Outgoing Message Handler

The outgoing message handler is invoked once in each iteration of the main network

communication task loop. Upon its invocation, the front of the outgoing message queue

is checked to determine if a message to be transmitted is pending. If a message is pending,

its destination address is checked to determine if the destination module structure is local

to the module hardware. In this case transmission would be unnecessary and the message

is simply moved to the incoming message queue of the destination module structure,

otherwise the message transmission mechanism is invoked. Only a single message is

3 Communication Layer 62

transmitted in each invocation of the outgoing message handler in order to minimize

the duration of a single iteration of the main network communication task loop, thus

improving the latency encountered by the other handlers.

In the message transmission mechanism, a request to send (RTS) packet is prepared

for medium access purposes. It assumes the same source and destination addresses of the

message to be transmitted, a random network identifier offset, and the channel number

of the first free data channel found after carrier sensing. Handshaking is attempted ten

times. In each attempt, the channel is switched to the free data channel and the network

identifier offset is temporarily added to network identifier in order to minimize packet

handling overhead by the communication layer should two modules end up transmitting

on the same data channel. The RTS packet is then transmitted and the module waits up

to 500 ms for the corresponding clear to send (CTS) packet from the receiver to arrive.

This handshaking process is repeated until the CTS packet is received and transmission

may proceed safely.

If the handshaking process is successful, the message is then broken into a number of

data (DAT) packets that are transmitted sequentially to the receiver. Upon successful

transmission, or any error, the wireless channel is set back to the control channel and the

network identifier is set back to its initial value.

3.6.2 Control Packet Handlers

In the main network communication task loop, up to five pending packets are handled

within each iteration. Depending on the value found in its packet type field, each packet

is handled by one of six control packet handlers, which are described below.

3 Communication Layer 63

PRE Handler

Before the received presence (PRE) packet is processed, its connection type field is

changed from wireless to physical if the pose base (see Section 6.5) found in its desti­

nation field is the same as that of the module. Possessing the same pose base as another

module indicates that a direct or indirect physical connection exists to that module. If a

matching presence packet is already present in the environment list, its timeout counter

value is reset to the standard environment timeout time of thirty seconds. If the connec­

tion type of the packet was modified, a logical module template search is carried out for

a new logical module match (see Section 6.3). If the presence packet is not found in the

environment list, the packet is added to the list and a logical module template search is

also carried out.

MEM Handler

On receiving a member (MEM) packet, its destination module is determined. Since mem­

ber packets are only relevant to logical modules, the packet is dropped if its destination

is not a logical module. If the destination is found, and it is a logical module, the role

member environment list of the role corresponding to the role number field of the member

packet is located. The list is then searched and if a corresponding member packet is al­

ready present, it is overwritten and its timeout counter reset to the standard environment

timeout time of thirty seconds. If the member packet is not found in the role member

environment list, the packet is added to the list.

SYQ Handler

On receiving a synchronization query (SYQ) packet, a timestamp of the local clock, the

Receive timestamp T^_2, is immediately acquired and stored. The Originate timestamp

3 is also extracted from the SYQ packet. A synchronization response (SYR) packet

3 Communication Layer 64

is then returned to the source, containing a newly acquired Transmit timestamp T^i

timestamp in the form T^_2 — T*_3 + T^_i, as well as the synchronization level of the

module. This partial calculation is employed since there is not enough space in the 12-

byte data field to transmit both T^_2 and T^i separately within a single SYR packet. The

partial calculation also removes the need to transmit two SYR packets, each containing

one of the timestamps.

SYR Handler

On receiving a synchronization response (SYR) packet, a timestamp of the local clock,

the Destination timestamp Tj, is immediately acquired and stored. The partial calcula­

tion Tj_2 — Ti_3 + Ti^i is also extracted from the SYR packet. The local clock is then

updated through the addition of an offset calculated as (T*_2 — T i_3 + 7*_i — Tf)/2. The

synchronization level of the module is subsequently updated to be one more than that

specified in the received SYR packet, up to a maximum of 255.

RTS Handler

On receiving a request to send (RTS) packet, the message reception mechanism is in­

voked. In this mechanism, the destination module structure of the received RTS medium

allocation packet is determined. The request is only handled if the destination address

corresponds to a physical module or a primary module (which possesses the lowest address

in a logical module entity of which it is a member). If a suitable destination is found, the

wireless channel is switched to that specified in the RTS packet and the network identifier

offset specified in the RTS packet is also temporarily added to the network identifier. A

clear to send (CTS) packet is then transmitted to the source of the RTS packet to indi­

cate that communication may proceed. The CTS packet itself requires acknowledgement

and is sent on the data channel to avoid possible interference on the control channel. If

3 Communication Layer 65

the CTS packet is acknowledged, a buffer large enough to store the incoming message is

allocated in memory and transmission proceeds.

The incoming DAT packets from the transmitter, which contain consecutive fragments

of the incoming message, are used to locally reconstruct the message within the allocated

buffer. Upon successful transmission of all of the DAT packets, or any error, the wireless

channel is set back to the control channel and the network identifier is set back to its

initial value. If the transmission was successful, the recombined message is then moved

to the incoming message queue of its destination module structure.

3.7 Face Connectivity

Provided within the communication layer is a wired protocol that facilitates the direct

transmission of data through the faces of physically connected TIMs. The operation of

this protocol depends on the electrical contacts present on the four clips located on five

of the six faces of a TIM. In order to facilitate the detection of the relative angular offset

between two connected TIMs, the TIM faces as well as the electrical contacts located on

them are each assigned an identifier. Each TIM face is assigned an identifier from 1 to 6,

while each face contact is assigned an identifier from 1 to 4. These identifier assignments

are shown in the layouts depicted in Figures 3.9 and 3.10. The design of the face com­

munication protocol is such that a TIM can determine the address of any other TIM it

is physically connected to, as well as the identifiers of the connected faces and connected

contacts between itself and these TIMs. The core data elements facilitating face connec­

tivity are the face structure, the face identification packet, and the face communication

task, which are described in the following subsections.

3 Communication Layer 66

Figure 3.9: Three-dimensional face and contact identifier layout view.

Face 1

Face 4 4 Face 5 2 Face 2 Face 3

3

Figure 3.10: Two-dimensional face and contact identifier layout view.

3 Communication Layer 67

3.7.1 Face Structure

A face structure stores the connection state of one of the five faces on a TIM to which

another TIM may be connected. Each TIM maintains five face structures in memory,

each of which corresponds to one of its faces on which contacts are present. The values

contained within a face structure are defined as follows:

• Face Transform Matrix — A 4 x 4 matrix of 32-bit floating point values used

to store the transformed state of the face represented by the face structure, relative

to its original orientation. Only 48 bytes are actually utilized to store the matrix

instead of 64 bytes since the fourth row is understood to always be [0 0 0 1]. The

face transform matrix is currently always the identity matrix, since the faces of a

TIM are rigid in its current implementation.

• Remote Address — The address of the remote module physically connected to

the local face represented by the face structure.

• Remote Face Identifier — The identifier of the face on the remote module which

is physically connected to the local face represented by the face structure.

• Local Face Contact Identifier — The identifier of the local contact on the

face represented by the face structure through which the last face identification

packet was received from the TIM connected to it. Knowledge of this identifier

facilitates the detection of the relative angular offset between the connected TIMs

(see Section 3.7.3).

• Timeout Counter — Indicates the remaining time during which the information

contained within the face structure is considered valid. If this counter expires, the

face structure is reset to represent an unconnected state. This counter is initialized

to 30 seconds.

3 Communication Layer 68

3.7.2 Face Identification Packet Format

Face identification information is transferred between faces in the form of 20-byte face

identification packets, the format of which is depicted in Figure 3.11. The information

transferred within these packets reveals of the address of the physically connected remote

module as well as the identifier of the connected face through which the packet was

received. Examination of the local contact through which the packet is received also

enables the relative angular offset between the connected TIMs to be determined.

These packets are transmitted on each face of a TIM at regular intervals to serve as a

form of watchdog timer, indicating the continued presence of a physical connection on the

respective face to another module. The packets are transmitted unencrypted since wired

transmissions are not easily intercepted, and the data being transmitted is only critical to

orientation determination and the detection of the physical connection and disconnection

of modules. The face identification packet fields are described as follows:

• Header (4 bytes) — Identifies the packet as a valid face identification packet. The

header is defined as the byte pattern 0x414D5353 (which represents the ASCII

sequence “AMSS”).

• Remote Address (8 bytes) — Identifies the address of the remote module that

transmitted the face identification packet, which would place its own address in this

field.

• Remote Face Identifier (4 bytes) — Indicates the identifier of the face on the

remote module through which the face identification packet was received. Although

a single byte would suffice to represent this information, an additional three bytes

are reserved for future expansion.

• Checksum (4 bytes) — Used to detect packet transmission errors. The checksum

is a simple summation of the bytes comprising the header, remote address, and

3 Communication Layer 69

Header (4)

Remote Address

Remote Face Identifier (4)

(8)
Checksum (4)

Figure 3.11: Face identification packet format (field sizes in bytes).

remote face identifier. Although two bytes would suffice to store the checksum, an

additional two bytes are reserved for future expansion.

3.7.3 Face Communication Task

Like the network communication task, the face communication task is started upon ini­

tialization of the software architecture and runs continuously and concurrently with all

other tasks in the system. The operations performed by the task are carried out within an

infinite loop at different time intervals. The general operation of the face communication

task is depicted in Figure 3.12. The face communication task is required to perform the

following operations, which are further outlined in the following subsections:

• Decrement the timeout counters of all five face structures every second, and trigger

an update of the local pose of the module if necessary.

• Transmit face identification packets on each face indicating the address of the mod­

ule and the respective face identifier every five to ten seconds.

• Receive pending face identification packets, if any, from the remote modules con­

nected to each face on each loop iteration, and trigger an update of the local pose

of the module if necessary.

3 Communication Layer 70

START

Figure 3.12: Face communication task operation.

3 Communication Layer 71

Decrementing Timeout Counters

The timeout counters associated with each face structure are decremented once per sec­

ond. If any counter expires, each field within the associated face structure is reset to a

null value, representing an unconnected state. If this occurs, a flag maintained by the

face communication task is set to indicate that the local pose of the module requires

updating, since the local pose may be relative to that of the remote module that was

disconnected. The pose update process is described in Section 6.5.

Transmitting Face Identification Packets

Face identification packets are transmitted on each face every five to ten seconds, indi­

cating the continued presence of a physical connection on the respective face to another

module. Data signals are transmitted in a format similar to that of RS-232 [42], in that

transmissions are composed of an asynchronous timed series of bits.

The signals transmitted on each contact are depicted in Figure 3.13. Before transmis­

sion on each face, a face identification packet is allocated and its checksum determined

and stored within the packet itself. The face contacts, which are normally configured

to receive data, are temporarily configured to generate data. To indicate to the remote

module that a transmission is about to occur, a start symbol is transmitted. This symbol

consists of setting all the contacts on a face to the high logic level for a period of 20 ms,

then clearing all the contacts for the duration of one bit length, which is approximately

1.67 ps. The contact with identifier 1 is then set high for one bit length to indicate to the

remote module not only the contact on which data will be transmitted, but also the rel­

ative angular offset between the two faces, as shown in Table 3.1. The bits of the packet

are then transmitted sequentially through Contact 1, starting with the least significant

bit, after which the face contacts are reconfigured to receive input.

3 Communication Layer 72

Contact 1 Packet Data

Contacts 2 -4 ;

* *
Start Symbol

Figure 3.13: Face contact transmission signals.

Table 3.1: Face contact connection patterns and corresponding angular offsets.

Face Contact Connection Patterns Local Face Angular Offset
Relative to Remote Face

Local Face Contact Pattern 1 2 3 4 —

Remote Face Contact Patterns

1 4 3 2 0°
2 1 4 3

o001

3 2 1 4 180°
4 3 2 1 -90 °

Receiving Face Identification Packets

Each face on the module is checked for incoming face identification packets. Reception

of a face identification packet on a face currently represented by its corresponding face

structure as being in an unconnected state indicates that a new connection has occurred.

An incoming packet is indicated by high logic levels being detected on all of the contacts

on the face, as set by the remote module transmitting the packet during the start symbol.

As described in Section 3.7.3, the contact on which data will be transmitted is detected

through examination of the start symbol. Data reception only proceeds if a valid start

symbol is detected.

Upon detection of a valid start symbol, reception is delayed for half of a bit length.

This improves the reliability of the data transfer by ensuring that detection of logic

levels occurs as far away from logic level transitions as possible, the optimum location

of which is half-way through the length of a bit transmission. The bits comprising the

3 Communication Layer 73

face identification packet are then read sequentially, starting with the least significant bit,

after which the packet is reconstructed in memory. If the header and checksum of the

packet are valid, the face structure corresponding to the face on which the packet was

received is updated with the remote address and remote face identifier provided within

the packet. Also updated within the face structure are the local face contact identifier

field, in order to reflect the contact on which the packet was received, and the timeout

counter, which is reset to 30 seconds. If the address of the local module is lower than that

of the remote address, the flag maintained by the face communication task to indicate

that the local pose of the module requires updating is set.

3.8 Summary

In this chapter, the communication layer of the software architecture was described.

The communication layer provides a secure, reliable, connection-oriented interface to the

unreliable wireless transmission medium. Data is transmitted within 329-bit packets that

are encrypted using the Alleged Rivest Cipher 4 (ARC4) stream cipher. 125 wireless

channels are available for packet transmission purposes, one of which is reserved for

use as a control channel; the others are utilized as data channels. At the core of the

communication layer is the network communication task, which manages the transmission

and reception of individual packets, as well as performing important duties such as time

synchronization and garbage collection. Also present is the face communication task,

which implements a wired protocol that facilitates the direct transmission of data through

the faces of physically connected TIMs. The following chapter will describe the operation

of the middleware layer.

Chapter 4

Middleware Layer

4.1 Introduction

The purpose of the middleware layer is to facilitate interoperability between the various

TIMs in a modular sensing system. The term middleware refers to software and services

that simplify connectivity between software components running on distinct and possibly

heterogeneous devices, in turn simplifying the deployment of distributed applications. At

the middleware layer in this software architecture, the application programming interface

(API) for physical and logical modules is defined, which is comprised of a variety of service

functions. Service functions are the interface through which TIMs, whether homogenous

or heterogeneous, request services from, and information about, each other. Data is

transferred between TIMs in the form of variable-length messages.

4.2 Middleware Types

Middleware implementations exist in a variety of forms, which lie between the operating

system and the distributed application as shown in Figure 4.1 and are classified as being

either synchronous or asynchronous. Synchronous systems require that each middleware

74

4 Middleware Layer 75

Figure 4.1: Middleware operation block diagram.

request be carried out to completion before any further requests are processed. As a

result, multiple threads of execution are necessary for parallelism to occur. Conversely,

asynchronous systems allow multiple requests to be issued without requiring the prior

completion of any single request. However, responses are not guaranteed to be processed

in order within any single thread of execution. The most commonly known types of

middleware implementations are described below:

• Publish/Subscribe — Publish/Subscribe [43] is an asynchronous middleware im­

plementation in which publishers of information do not explicitly transfer data to

specific recipients. Instead, interested clients termed subscribers indicate to the

publishers the types of data they want to receive. When relevant data becomes

available, all interested subscribers are notified by the publishers of its availability,

and each subscriber may thereafter decide to acquire the data. Publish/Subscribe

middleware implementations are particularly useful in event-driven applications.

• Remote Procedure Call — Remote Procedure Call (RPC) [44], available in both

synchronous and asynchronous variations, enables a program to invoke functions

4 M iddleware Layer 76

implemented within another program running on a remote hardware system over

a network. The details of the network transmissions required to carry out the

procedure call are transparent to the system user. Asynchronous RPC is highly

scalable since little information about the state of any single network transaction

needs to be maintained, however synchronous RPC prevents saturation of network

bandwidth and provides greater transaction integrity due to the blocking nature of

synchronous requests.

• Message-Oriented Middleware — Message-Oriented Middleware (MOM) [43]

is an asynchronous middleware implementation that is based on the passing of mes­

sages between devices on a network. Messages received by a client are stored in a

message queue until they are able to be processed. The client may continue pro­

cessing other data while incoming messages are enqueued. Like Publish/Subscribe,

MOM implementations are well suited to event-driven applications. They also pro­

vide much flexibility in the implementation of when and how messages are enqueued

and dequeued, and may even be designed in a manner that facilitates real-time per­

formance.

• Object Request Broker — Object Request Broker (ORB) [45] is a synchronous

middleware implementation that allows data and services within a distributed sys­

tem to be abstracted to an object-based representation, thus allowing the system to

be implemented in an object-oriented manner. Invocations on a remote object are

handled by an ORB process, which tracks all the available objects in the system

and handles the transmission and any necessary translation of data structures be­

tween the requesting process and the service provider. The implementation details

of the translational process are completely encapsulated from both the invoker and

the service provider. ORB middleware is commonly utilized within mainstream

4 M iddleware Layer 77

computer networks, and popular implementations include the Object Management

Group’s Common Object Request Broker Architecture (CORBA) [46], Microsoft’s

Distributed Component Object Model (DCOM) [47], and Sun Microsystems’ Java

Remote Method Invocation (Java RMI) [48].

• SQL-Oriented Data Access — SQL-Oriented Data Access [43] is a synchronous

middleware implementation that allows applications to access diverse database

types over a network. Through this middleware, applications may issue generic,

database-independent SQL (Structured Query Language) queries that are trans­

lated, if necessary, to database-specific queries. Like ORB, SQL-Oriented Data

Access middleware is often utilized within mainstream computer networks, and pop­

ular implementations include Microsoft’s Open Database Connectivity (ODBC) [49]

and Sun Microsystems’ Java Database Connectivity (JDBC) [50].

The middleware layer of the modular sensing system software architecture is based

on the Message-Oriented Middleware implementation due to its support for real-time

performance and the low overhead of directly transmitting messages between queues. In

addition, the implementation flexibility of MOM-based middleware services facilitated the

addition of synchronous message transmission to the middleware layer for the purposes

of the software architecture.

4.3 Message Format

A middleware layer message consists of a 44-byte header, followed by a single variable-

length block containing the data to be transferred in the message, as shown in Figure 4.2.

The field sizes of the message format were carefully chosen so as to satisfy the memory

alignment requirements of typical 32-bit modern microprocessors, particularly the ARM-

based LPC2148 microcontroller utilized in the TIMs. Modules request data and services

4 M iddleware Layer 78

Source Address (8)
Destination Address (8)

Deadline (8)
Timestamp (8)

Message Type (1) Service Fune. (1) Service ID (4)
Param. Type (2) Param. Arr. W. (2) Param. Arr. H. (2)

Data Field (variable-width)

Figure 4.2: Middleware layer message format (field sizes in bytes).

from other modules by issuing service call messages. The requested data or the results of

the service call are transmitted back to the caller in the form of return messages, either

synchronously or asynchronously as demanded by the template class algorithm running

on the caller. The middleware layer message fields are described as follows:

• Source Address (8 bytes) — The source address field identifies the physical or

logical module that transmitted the message.

• Destination Address (8 bytes) — The destination address field identifies the

physical or logical module intended to receive the message.

• Deadline (8 bytes) — If the message is a service call, the deadline field indicates

the time at or before which service call should be completed. A deadline timestamp

consisting of all bits set except the most significant bit (MSB) corresponds to an

effectively infinite deadline.

• Timestamp (8 bytes) — The timestamp field indicates the time at which a partic­

ular message was enqueued for transmission, or the time at which a particular event

occurred. The timestamp format, which is also used within the deadline field, is

a 64-bit signed integer representing the number of microseconds that have elapsed

since midnight on January 1,1.

4 M iddleware Layer 79

« Message Type (1 byte) — The message type field indicates the method by which

the contents of a particular message should be processed. Messages may be syn­

chronous or asynchronous Call At or Call By service calls, or a Return message

issued in response to a service call. Call At messages are processed at the time

specified in its timestamp field, while Call By messages are processed as early as

possible before the time specified in its timestamp field.

• Service Function (1 byte) — The service function field indicates what service

function should be invoked if the message is a service call, or if the message is a

return message, what service function was invoked.

• Service Identifier (4 bytes) — The service identifier field contains a 32-bit un­

signed integer that uniquely identifies a service call message and its associated

return message, and facilitates the tracking of enqueued return messages corre­

sponding to asynchronous service calls. Each TIM internally maintains a service

identifier counter that is incremented once its value is assigned to the next outgoing

service call. Upon reaching its maximum value the counter overflows and resets to

a value of one, since the zero value is reserved.

• Parameter Type (2 bytes) — The parameter type indicates the type of data

supplied as parameters within the data field of a service call or return message.

The supplied data parameters are organized into a two-dimensional array of fixed­

sized elements, of which the element size is implied by the parameter type. The

supported parameter types are: 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned

integers] 32-bit single-precision and 64-bit double-precision IEEE 754 floating-point

values; a 32-bit status type used to transfer various constants indicating the status

of modules and service calls; a null-terminated string type based on arrays of 8-bit

ASCII characters; a message container type used to encapsulate other messages

4 M iddleware Layer 80

in the form of raw 8-bit bytes; and an object container type used to encapsulate

generic data in the form of raw 8-bit bytes.

• Parameter Array Width (2 bytes) — The parameter array width indicates the

width of the data field parameter array in terms of the parameter type unit size.

• Parameter Array Height (2 bytes) — The parameter array height indicates the

height of the data field parameter array in terms of the parameter type unit size.

• Data Field (variable-width) — The data field stores the parameter array data to be

transmitted within the message. The size in bytes of the data field of any particular

message is given as the product of its parameter array width, its parameter array

height, and its parameter type unit size in bytes.

4.4 Service Functions and Service Calls

Service functions enable modules to provide services to and exchange information with

each other. These functions may be invoked automatically by other modules within

the network, or manually through an administration module. The call/reply mechanism

used during the invocation and processing of service functions, known as a service call, is

based on the standard, widely used Remote Procedure Call (RPC) protocol [44]. As seen

in Figure 4.3, a service call is invoked by a module through the placement of a Call By

or Call At message in the outgoing message queue common to all the module structures

present on a TIM. This message specifies the service function type and contains the

relevant parameters to the function.

Once the message is transmitted and received by the TIM on which the target module

structure is present, it is placed in the appropriate Call By or Call At incoming message

queue of the module structure. The message is processed by or at the specified deadline

4 M iddleware Layer 81

Figure 4.3: Service call operation.

respectively, and a return message containing the results of the service call is placed

in the global outgoing message queue for transmission to the invoking module. This

return message possesses the same service identifier as the call message, enabling it to be

identified by the calling module as the results of the service call even if unrelated return

messages are received from other modules before the call is completed. Depending on the

state of the target module at the time of a service call or the success of the call itself, the

return message may contain one of six status constants, outlined in Table 4.1, instead of

the expected data.

Service calls are issued either synchronously or asynchronously to a remote module.

A synchronous service call causes the real-time operating system to suspend the calling

task until the corresponding return message is received from the remote module or the

service call times out, while during an asynchronous service call the task is allowed to

concurrently continue execution while the call is being processed. To prevent the indefinite

blocking of a module message processing task due to a service call in which the return

message is not forthcoming, synchronous service calls time-out within five seconds.

4 Middleware Layer 82

Table 4.1: Service function status constants.

Status Constant Description

SUCCESS
The service call was executed successfully by
the target module.

ERROR
An error occurred on the target module while
executing the service call.

MISSED DEADLINE The service call was not executed by the tar­
get module before or at the specified deadline.

INVALID PARAMETER The service call was issued to the target mod­
ule with one or more invalid parameters.

LOCKED The target module of the service call is locked
by a module other than the caller.

NOT ALLOWED The service call is not allowed to be issued to
the target module.

4,4.1 Service Function Types

The various service functions defined by the software architecture that enable the state

and properties of a module to be obtained or modified are as follows:

• G et — The Get service function is used to obtain the value or state of the transducer

associated with the target TIM. The type of the parameter returned to the invoker

is dependent on the type of transducer present on the target TIM. If the transducer

does not allow its value or state to be obtained, the NOT ALLOWED status constant

is returned.

• Set — The Set service function is used to modify the state of the transducer asso­

ciated with the target TIM. The type of the parameter supplied in the service call

message and the behaviour of the call itself is dependent on the type of transducer

present on the target. Depending on the actuation capabilities of the transducer,

a Set service call may also result in an update of the pose matrix of the TIM with

which the transducer is associated. Various status constants may be returned by

Set service calls. If the TIM is locked by another module, LOCKED is returned. If the

4 Middleware Layer 83

supplied parameter is invalid, INVALID PARAMETER is returned. If the service call

fails, ERROR is returned. If the transducer does not allow its state to be modified,

the NOT ALLOWED status constant is returned. If the call completed successfully,

SUCCESS is returned.

• Append — The Append service function is identical to the Set service function

with the exception that it is used to add to the state of the transducer associated

with the target TIM instead of changing it directly.

• Reset — The Reset service function, like the Append service function, is identical

to the Set service function with the exception that it is used to reset the state of

the transducer associated with the target TIM to its default value instead of setting

it to an arbitrary value.

• Get T E D S — The Get TEDS service function is used to retrieve from the TEDS

property list of the target module the TEDS entry value associated with the TEDS

entry name provided as a string parameter to the service call. If the provided

parameter is not a string, INVALID PARAMETER is returned. If the parameter is a

string and an associated TEDS entry value is not found, ERROR is returned.

• Get Pose — The Get Pose service function is used to obtain a copy of the local

4 x 4 matrix of single-precision floating-point values representing the pose (position

and orientation) of a TIM.

• Update Pose — The Update Pose service function is used to force a TIM to

update its own position and orientation matrix with respect to the pose matrix (see

Section 6.5) provided within the pose update structure supplied as a parameter.

This service function, which returns no status constant, is used internally by the

software architecture to update the poses of a tree of physically connected TIMs

4 Middleware Layer 84

and is not intended to be called within template algorithms.

• Lock — The Lock service function is used to prevent 5ei, Append, or Reset calls

from being performed on a TIM by any module other than that which issued the

lock. Locking a TIM is useful when multiple modification operations issued by an­

other module need to be performed atomically. A Lock service call only returns

SUCCESS to the caller if the target is not already locked, otherwise LOCKED is re­

turned.

• Unlock — The Unlock service function is used to unlocked a previously locked

module. An Unlock service call only returns SUCCESS if issued by the module that

holds the lock or if the target is already unlocked, otherwise LOCKED is returned.

• Join — The Join service function is used to incorporate a TIM into a new or

existing logical entity. This service function, which returns no status constant, is

used internally by the software architecture for logical module composition purposes

and is not intended to be called within template algorithms. The target module

only processes a Join call from a logical entity if it is not already a member of the

entity. If it is not a member, a new module structure is created locally on the target

module to represent the state of the logical entity. A new membership structure

entry is then created and added to the membership list of the newly joined target

module, indicating the role it fulfils within the logical entity as well as the address

of any physical dependency.

4.5 Module Message Handler Task

Each combination of a module structure (see Section 2.7.3) and a module message handler

task present on a TIM is termed a module agent. The module structure represents the

4 M iddleware Layer 85

state of the module agent, while the module message handler task represents its behaviour.

The module message handler task continuously examines and updates the queues and

status fields of its associated module structure and generates messages in response to

received messages and other events that occur within its environment. This intelligence

is provided by either a native message handling function, associated with self-contained

modules representing a single transducer on a TIM, or by platform-independent template

classes (see Section 2.5.2), associated with logical module entities and used to facilitate

collaboration between its member modules. Through the use of a real-time operating

system within the software architecture, multiple module message handler tasks may

execute concurrently on a single TIM, each receiving and transmitting messages in real

time.

The general operation of a module message handler task is depicted in Figure 4.4.

Similar to the network communication task discussed in Section 3.6, each module message

handler task contains at its core an infinite loop in which a number of operations are

carried out at differing time intervals. In the message handler task of logical module

agents the message loop is invoked within the virtual machine (see Chapter 5), which

facilitates the execution of platform-independent logical module template classes. A self-

contained module agent representing a transducer on its local TIM hardware instead

utilizes a built-in native message loop within its message handler task to reduce the

overhead incurred by the interpretive mechanism employed by the virtual machine. The

various operations carried out within each iteration of a native or platform-independent

module message handler task loop are as follows:

• Obtain the next service call to be processed, if any, from the Call-At and Call-By

message queues. Call-At and Call-By messages are inserted into their respective

queues by deadline, but since Call-At messages need to be checked more regularly

for a deadline match, using separate queues ensures that the next Call-At message

4 M iddleware Layer 86

START

Logical
Module Agent?

No

Enter Built-In Native
Message Loop

Enter Cross-Platform
Java Message Loop

^ Pending
■Â x C Call-By

Message?

Yes

Yes

Enqueue
MISSED DEADLINE

Message

►

Perform Module
Lock Check

Yes

STOP

Perform Local
Member Check

Figure 4.4: Module message handler task operation.

4 M iddleware Layer 87

is always accessible within a single operation. This might not always be possible

if a single queue was used for both message types, in the scenario that numerous

Call-By messages are ahead of the next Call-At message in the queue. The message

acquisition process is further outlined in Section 4.5.1.

• Process the service call by invoking the primary handler, and if necessary, the sec­

ondary handler. For a module agent associated with a transducer on the TIM

hardware on which it executes, the primary handler is the relevant driver func­

tion for the transducer. For a module agent that represents a logical module, the

primary handler is its associated cross-platform template algorithm. The primary

handler is expected to provide implementations for processing at least the Gei, Set,

Append, and Reset service calls. The secondary handler is invoked to process the

service call if the primary handler provides no suitable implementation for handling

it, and provides default implementations for processing the Get TEDS, Get Pose,

Update Pose, Lock, Unlock, and Join service calls. If the service call is still not

handled after invocation of the secondary handler, it is deemed to possess an in­

valid service function type and is deallocated. The general execution processes of

primary and secondary handlers are depicted algorithmically in Algorithms 4.1 and

4.2 respectively.

• Perform various standard status checks that ensure the integrity of the module agent

is maintained throughout changes to the environment in which it executes. These

status checks are outlined in Section 4.5.2.

4.5.1 Message Acquisition

The next service call to be processed is obtained through a continuous search of the Call-

At and Call-By incoming message queues present in each module structure. These queues

4 M iddleware Layer

Algorithm 4.1 Primary handler execution process.
procedure PRiMARYHANDLER(module module, message call)

if call.servicefunction = Get then
return <= module.get (call)

else if call.servicefunction = Set then
return <̂= module.set(call)

else if call.servicefunction = Append then
return <= module.append(call)

else if call.servicefunction = Reset then
return -<= module.reset (caM)

end if
if call was handled then

deallocate call
if return was generated then

enqueue return in outgoing message queue
end if

end if
end procedure

Algorithm 4.2 Secondary handler execution process.
procedure SECONDARYHANDLER(module module, message call)

if call.servicefunction = G etTED S then
return ■<= module.getTeds(call)

else if call.servicefunction = GetPose then
return module.getPose(call)

else if call.servicefunction = UpdatePose then
return <= module.wpdditePose(call)

else if call.servicefunction = Lock then
return <= module.lock(call)

else if call.servicefunction — Unlock then
return -4= module.unlock(ca//)

else if call.servicefunction = Join then
return <= module.]om{call)

end if
deallocate call
if return was generated then

enqueue return in outgoing message queue
end if

end procedure

4 Middleware Layer 89

are priority queues, and upon reception, messages are inserted into the appropriate queue

in order of deadline. Since the queues are searched by deadline, the number of operations

needed to search the queues in each iteration of the message loop is reduced from the

order of O(n) to 0 (1) operations.

Call-At messages are given precedence over Call-By messages since Call-By messages

may be invoked at any time before their deadline, while Call-At messages need to be con­

tinuously checked with as little delay as possible to determine exactly when their deadline

timestamp has been matched. Thus, the Call-At message queue is always searched first.

The message at the front of the queue (which will always have the closest deadline), if

any, is examined, and the time difference between the message deadline and the local

TIM system clock is determined. If this time difference is within the one millisecond

threshold that indicates message validity, the message is dequeued and returned to the

message handler. If the time difference is not within the threshold and is less than the

current system time, the message is dequeued and deallocated. Subsequently, a message

containing the status constant MISSED DEADLINE is enqueued within the outgoing mes­

sage queue, after which the Call-At message queue is searched again. The method in

which a missed deadline is handled is delegated to the calling module which, depending

on its current state, may choose to reissue an identical call, issue a different call, or drop

the call altogether.

If no suitable Call-At message is obtained, the Call-By message queue is searched.

The message at the front of the queue, if any, is immediately dequeued. The message is

returned to the message handler for immediate processing unless the message deadline is

less than the current system time, in which case it is deallocated and a message containing

the status constant MISSED DEADLINE enqueued within the outgoing message queue. As

with Call-At messages, the method in which a missed deadline is handled is delegated to

the calling module, whose state may have changed since the call was issued. The Call-By

4 M iddleware Layer 90

message queue is then searched again.

4.5.2 Standard Status Checks

Module Lock Check

The module lock check, performed every fifteen seconds, is used to determine if the module

agent should be automatically unlocked due on the absence of the locking module in the

global environment list (see Section 3.5). This check prevents the module agent from

being locked indefinitely if the locking module does not reappear within the environment.

If the module agent is locked, the environment list is searched. If a presence packet

corresponding to address of the locking module is not found in the environment list, the

agent is unlocked by setting the locking address in its corresponding module structure to

the reserved zero address.

Physical Dependency Check

The physical dependency check, performed every fifteen seconds only if the module agent

is a member of a physically dependent logical module entity, is used to determine if the

module agent should automatically withdraw from the logical entity due to the lack of

a physical connection between the local TIM on which the module agent executes and a

remote TIM that is also a member of the logical entity. This check ensures that a logical

entity whose correct behaviour depends on physical connections between its member

modules does not try to utilize member modules that have lost physical connectivity to

others within the logical entity. In this check, each membership structure entry (if any)

in the membership list associated with the module agent is examined. If any membership

structure has a non-zero physical dependency address (indicating that membership in

the logical entity depends on a physical connection to the TIM possessing the specified

address), the environment list is searched to locate a presence packet corresponding that

4 M iddleware Layer 91

address. If an associated presence packet is not found, or the packet does not indicate that

a physical connection between the respective TIMs is present, the membership structure

is removed from the membership list. Removal of the membership structure indicates

that the module agent is no longer a member of the collaborating group of modules that

comprise the logical entity.

Local Member Check

The local member check, performed every fifteen seconds only within logical module

agents, is used to determine if the message handler task of a particular logical module

agent should be automatically terminated due to a lack of member module agents located

on the same TIM hardware on which it executes. Each logical module agent must have

at least one of its member module agents executing on the same TIM hardware in order

to guarantee that at least one member module is available that is capable of providing

sensing or actuation functionality to the logical entity. To determine if this requirement

is satisfied, the membership lists of all the other module agents executing on the TIM are

searched. If no other locally executing module agent possesses a membership structure

entry corresponding to the logical module agent, its associated module message handler

task is terminated, and its module structure is garbage collected.

4.6 Summary

In this chapter, the middleware layer of the software architecture was described. The

middleware layer provides the commands and services through which module agents may

interact and communicate with each other. To exchange data, variable-length messages

are transferred between module agents. These messages are also used to invoke the

services provided by module agents in the form of service calls to services functions.

4 M iddleware Layer 92

Each module agent is represented by a module structure used to maintain its state as

well as a module message handler task that processes incoming messages and generates

outgoing messages as specified by an associated native or platform-independent message

processing algorithm. The following chapter will describe the operation of the virtual

machine.

Chapter 5

Virtual Machine

5.1 Introduction

A virtual machine (VM) is a program which interprets and executes high-level, hardware-

independent abstract bytecodes. Each bytecode is a sequence of one or more bytes that

represents an instruction to be executed by the VM. Algorithms defined using these byte­

codes are therefore completely decoupled from the underlying hardware architecture on

which they execute. A lightweight Java-based VM supported by an architecture-specific

standard class library was implemented within the software architecture stack, enabling

the logical module template algorithms that define the behaviour of the collaborating

TIMs comprising a logical module entity to be specified once and then used, without

recompilation, in the dynamic reprogramming of a variety of heterogeneous modules and

hardware architectures as application requirements change.

5.1.1 Choice of Dynamic Reprogramming Mechanism

To facilitate the adaptability and reconfigurability of a group of physically or wirelessly

collaborating heterogeneous TIMs, a dynamic reprogramming mechanism is necessary

93

5 V irtual Machine 94

that allows the TIMs to automatically source, load, and execute logical module com­

position algorithms at run-time without disrupting the operation of other algorithms

executing on any particular TIM. In addition, the reprogramming mechanism should uti­

lize a minimum of system resources during the loading of the algorithms as well as during

their execution. The composition algorithms themselves should be implementable in a

hardware-independent format such that they are easy to create, debug, and maintain

by the system user, and should also expose the behaviour of the group of collaborating

modules rather than aspects of the underlying hardware architectures of the modules

themselves. Various dynamic reprogramming mechanisms as referred to in [51] were con­

sidered for use in the software architecture, and are described below:

• Monolithic Binary Update — In monolithic binary update dynamic reprogram­

ming mechanisms, the operating system, software architecture stack, as well as

the various executing algorithms comprise a single binary image. Therefore this

reprogramming mechanism, although providing the maximum flexibility in terms

of behavioural modification, is very expensive in practice due to the need for the

entire binary image to be overwritten in non-volatile memory with each change in

application requirements. In addition, the operation of any executing algorithms

must be suspended during the overwriting process, thus introducing further la­

tency into the system. Well known implementations of monolithic binary update

systems include Crossbow Network Programming (XNP) [52], Deluge [53], Multihop

Network Reprogramming Protocol (MNP) [54], and Multihop Over-the-Air Program­

ming (MOAP) [55], all of which target network reprogramming of wireless sensor

network platforms based on the Crossbow MICA2 [10] motes.

• Modular Binary Update — In modular binary update dynamic reprogramming

mechanisms, the various executing algorithms are decoupled from the operating

system and software architecture stack into binary modules that are dynamically

5 V irtual Machine 95

linked into the execution environment at runtime. Although slightly less flexible as

compared to monolithic binary update mechanisms, programming latency is greatly

reduced due to the much reduced size of the linked binary modules and the now un­

necessary need to reprogram software components such as the OS and architecture

stack, which are often static. The smaller module size also greatly reduces network

transmission latency of the binary module to multiple nodes, while also reducing

network transmission power consumption on resource-constrained nodes. However,

the binary modules axe specified using the native instruction set of the micropro­

cessor of the node on which it is intended to execute, and thus remain hardware

dependent. Well known implementations of modular binary update systems include

Contiki [56] and SOS [57].

• Virtual Machine — In virtual machine dynamic reprogramming mechanisms, al­

gorithms specified in the form of architecture-independent abstract bytecodes are

executed through the use an interpretive loop. Each bytecode is a numeric con­

stant that corresponds to a single machine instruction, some of which may require

other constants and data to be supplied as parameters. Unlike the opcodes (oper­

ation codes) that comprise the native instruction sets of physical microprocessors,

the bytecodes that comprise virtual machine instruction sets are designed to be

portable and are easily translated to the instruction sets of most microprocessors.

Since the algorithms are completely decoupled from the operating system as well

as the underlying hardware on which they execute, the behaviour of a node may be

easily modified without the necessity for its operation to be suspended, and a single

algorithm specification may be used to dynamically reprogram a variety of hetero­

geneous modules. Virtual machine instruction sets, and by extension the algorithms

specified using them, tend to be compact and thus also facilitate reduced network

transmission power consumption on resource-constrained nodes. This is especially

5 V irtual Machine 96

true for stack-based virtual machine implementations in which data is manipulated

on a common stack, as opposed to register-based virtual machine implementations

in which data is manipulated using discrete registers [58]. A disadvantage of virtual

machine dynamic reprogramming mechanisms is the moderate execution overhead

incurred due to the need for an continuously executing interpretive loop. However,

this overhead is negligible on sufficiently fast hardware, such as that utilized in this

software architecture. Popular virtual machines for high-end computer systems

and embedded platforms include Sun Microsystems’ Java Virtual Machine [23] and

Microsoft’s Common Language Runtime (CLR) [59]. Well-known implementations

of virtual machine dynamic reprogramming mechanisms for resourced-constrained

embedded platforms include Maté [60] and its successor Application Specific Virtual

Machines (ASVM) [61], Scylla [62], and VM* [63].

• Query/Parameter-Based Configuration — In query /parameter-based configu­

ration dynamic reprogramming mechanisms, the behaviour of communicating nodes

is modified though the issuing of various queries and parameters associated with

the desired behavioural change. Query/parameter-based configuration frameworks

are the most inflexible in terms of the extent to which the operation of a given sens­

ing system may be defined, since the range of behaviours supported by the sensing

system is limited to the possible combinations of the queries and parameters under­

stood by the nodes in the system. However, because there is no need to transmit

an entire native or cross-platform algorithm specification, the latency associated

with behavioural modification is extremely low, and the reprogramming mecha­

nism is conducive to even extremely resource-constrained platforms. A well-known

implementation of a query/parameter-based configuration dynamic reprogramming

mechanism is TinyDB [64], which provides an SQL-based query interface to MICA2-

based platforms.

5 V irtual Machine 97

A stack-based virtual machine dynamic reprogramming mechanism is utilized within

this software architecture and is based on Sun Microsystems’ Java Virtual Machine [23]

(JVM). The use of a Java-based virtual machine provides the software architecture with

a powerful and well-established platform in which hardware-independent algorithms may

be specified. Due to the widespread adoption of the JVM, there is great flexibility in the

choice of algorithm specification language. Other than the standard compiler for the Java

programming language itself, compilers are available for other scripting and programming

languages such as Groovy [65] and Jython [66] (a Python implementation) that directly

generate JVM classes from their source files. A subset of the JVM instruction set is

utilized within the virtual machine of this software architecture and includes bytecode

instructions for loading and storing data, performing arithmetic and logic operations, con­

verting between numeric types, creating and manipulating class instances, manipulating

frame operand stacks, branching, and performing method invocations and returns.

The previously mentioned VM* dynamic reprogramming architecture is also based

on the JVM. In VM*, Java classes are not executed directly; rather, the classes are

preprocessed by a base station and used to synthesize an interpreter that is suitable

for execution on resourced-constrained MICA2 motes. Unlike VM*, the virtual machine

implemented for use within this software architecture requires no external preprocessing

of classes, and instead loads and executes the classes on the TIMs directly. However,

due to flash memory and RAM constraints, the extensive standard class library provided

within a full Java implementation is not present in its entirety. Provided instead is a

very lightweight and useful subset of the standard class library as well as architecture-

specific classes that encapsulate the functionality necessary to support the collaboration

of a group of TIMs.

5 V irtual Machine 98

5.2 Class Loading

As previously mentioned in Section 2.5.2, the platform-independent logical module tem­

plate classes that enable connected TIMs to collaborate with each other are found in the

template class directory amss/algo. When a class is to be loaded from this directory, a

global vector termed the class list in which loaded classes are placed is first searched to

determine if the specified class is already loaded. By searching the class list first, mem­

ory is conserved through the prevention of loading duplicates of a particular class. The

complete Java class file format specification is as described in [67]. The main components

of interest are described below, and are loaded and processed from the class file in the

order shown.

• Constant Pool — The constant pool of a class is a table of structures that contains

all the unchanging values referred to by the bytecode instructions of the class.

These constants include class names, field and method references, 32-bit and 64-bit

integers, single-precision and double-precision IEEE 754 floating-point values, and

UTF-8 (8-bit Unicode Transformation Format) strings.

• Field Information Table — The field information table of a class is a table of

structures that describes the fields present within the class. A field is any class

variable, which are static and common to all class instances, or instance variable,

which are non-static and unique to each class instance.

• Method Information Table — The method information table of a class is a

table of structures that represent the methods present within the class. These

structures contain among other properties the name, maximum stack size and total

local variable size of the method, as well as the actual bytecode in which the method

is implemented.

5 V irtual Machine 99

Once the class is loaded successfully, it is added to the class list. Its constant pool

is then searched for field and method references external to the class. If any external

references are found, they are resolved by recursively loading the class which possesses

the referenced field or method if it is not already within the class list. However, if the

referenced class is within the architecture-specific standard class library (described in

Section 5.4) that supports the operation of the software architecture, a stub class is in­

stead created to resolve the reference. This is necessary because the standard library

classes, which are unchanging, are actually implemented using the native machine lan­

guage of the TIM microcontroller, instead of platform-independent Java bytecode. The

standard library classes are implemented in this manner in order to minimize flash mem­

ory and RAM usage. In addition, the speed of calls to methods within these classes,

which occur very frequently and occupy much of the processing time, is vastly increased

due to the removal of interpretive overhead.

After all external field and method references are resolved, the method information

table of the loaded class is searched to determine if the special class initialization method

< c lin it> is provided. This function, generated only by the Java compiler if necessary, is

immediately executed by the virtual machine before beginning or resuming the execution

of any other method in order to initialize the static fields of the class before it is utilized.

5.3 Class Execution

Upon the creation of a logical module agent message task, an appropriate class from the

template class directory is loaded to provide the intelligence necessary for the associated

TIM to function as a member of the logical entity, as described in Section 4.5. The

standard entry point for this class is the method main, as is normal for Java classes that

are intended to be executed. However, unlike typical executable Java classes that accept a

5 V irtual Machine 100

String array as a parameter to the main method, logical module template classes accept

a Module class reference specific to the software architecture. This reference provides an

interface through which the contents of the module structure associated with the logical

module agent may be accessed from within the template class.

Execution of a method in the Java virtual machine, and by extension the virtual

machine used in this software architecture, is dependent on three main types of runtime

data areas that are described below:

• Program Counter — The program counter register is an integer variable unique

to each thread of execution that always contains the address of the next bytecode

instruction to be executed. After the execution of each bytecode, the program

counter is updated to point to the next bytecode instruction.

• Runtime Stack — The runtime stack is a LIFO (last in, first out) data structure

composed of frames. Each frame is a dynamically allocated node structure in a

doubly linked list that collectively comprises the runtime stack. Frames are created

whenever a new method is invoked, and are used to store data such as local variables

and also provide an operand stack for storing partial calculations. Frames also

facilitate method invocations and recursion.

• Runtime Heap — The runtime heap is a region of memory in which class instances

and arrays are stored. It is common to all instantiations of the virtual machine

and comprises a portion of the total heap memory utilized for dynamic memory

allocation throughout the layers of the software architecture.

The general execution process of a method, carried out within the virtual machine

execution function, is depicted algorithmically in Algorithm 5.1. Firstly, the program

counter is reset to zero, where the first bytecode instruction of the method is always

located. A new local frame is then allocated and pushed onto the runtime stack to

5 V irtual Machine 101

Algorithm 5.1 Method execution process.
procedure ExecuteMethod(method m eth o d , frame in v o k er)

pc <= 0
f r a m e <= allocate local frame
for i <̂= parameters in in v o k er .stack—1 to 0 do

f r a m e .locals[z] <= in v o k er .stack.pop()
end for
if m eth od is native then

m eth o d .n a iiv eco d e(fra m e)
else

loop
in stru ction <= m et hod. bytecode[pc]
pc <= pc + 1
if in stru ction is an invocation then

in d ex <= m e t h od .by tecod e[pc , pc+ 1]
in voked <= method in constant pool at in d ex
pc <= pc + 2
E xE C U T E M E T H O D (in vok ed , fr a m e)

else if in stru ction is a return then
if return value is present then

in vok er, stack. push(/rame.stack.pop())
end if
break loop

else
execute in stru ction

end if
end loop

end if
deallocate f r a m e

end procedure

5 V irtual Machine 102

support the execution of the method. Any parameters passed from a calling method are

acquired from the calling frame and stored in the local frame as local variables. If the

method is determined to be a native method, bytecode interpretation is skipped since

the method is comprised of native machine code instructions intended to be executed

directly on the microprocessor hardware without interpretation. After execution of the

native method, the local frame is then popped from the runtime stack and deallocated,

and the virtual machine execution function returns. If the method is not a native method,

the bytecode interpretation loop is entered.

The bytecode interpretation loop is generally an infinite loop containing a switching

mechanism, and implements a fetch, decode, execute cycle similar to that found in modern

microprocessors. In each iteration of the loop, the next 8-bit bytecode instruction to be

executed is fetched from the location indicated by the program counter, and its value used

to select and execute the section of the switching mechanism corresponding the actions

associated with the instruction. If the instruction is a method invocation instruction, any

values to be passed to the invoked method will have been pushed onto the local frame

by the preceding instructions. The reference to the method to be executed is obtained

from the constant pool at the 16-bit index provided within the invocation instruction.

The virtual machine execution function is then recursively called to execute the invoked

method. If the instruction is a return instruction, any value to be returned to the calling

method is stored in the calling frame. The local frame is then popped from the runtime

stack and deallocated. The bytecode interpretation loop is then broken and the virtual

machine execution function returns.

5 V irtual Machine 103

5.4 Standard Class Library

The software architecture provides a standard collection of classes and methods, grouped

into packages, designed specifically for use within template classes. As described in

Section 5.2, these classes are not physically present on the local storage of the modules;

rather, references to methods in these classes due to invocations are caught and handled

at runtime in order to minimize flash memory and RAM usage and also substantially

increase performance. The classes in the packages comprising the standard class library

of the software architecture, and their purpose, are described in the following subsections.

5.4,1 The java.lang Package

The official Java class library provided within distributions of the Java Virtual Machine

is comprised of numerous packages and classes which provide a base for the development

of Java applications. One of the most important of these packages is java.lang, which

provides fundamental classes and methods facilitating features such as mathematics and

string processing. A subset of the complete java.lang package, the comprising classes

of which are depicted in Section A .2, was included within the standard class library of

the software architecture to provide these two features, which are considered critical to

its operation. These classes are outlined below:

• Math — The class java.lang.Math contains methods that facilitate the calcula­

tion of trigonometric, hyperbolic, logarithmic, exponential, randomization, round­

ing, minimum and maximum, and absolute value operations. It also defines the

mathematical constants e and 7 r .

• String — The class java.lang.String is used to represent an immutable string of

characters, and contains methods that facilitate a variety of commonly used string

5 V irtual Machine 104

comparisons and operations such as determination of string length, tests for string

equality, substring generation, and case conversion.

5.4.2 The amss.system Package

In addition to the java.lang package, a package of classes unique to the software ar­

chitecture are provided to support and provide an interface to its core operations. This

package is amss. system, the comprising classes of which are depicted in Section A .3, and

consists of five classes that provide access to various internal software architecture func­

tions that facilitate operations such as manipulating messages, modules, pose matrices as

well as vectors. These classes are outlined below:

• AMSS — The class amss. system. AMSS is a collection of static methods and con­

stants that support various system-level operations provided by the software archi­

tecture. It is analogous to the class java.lang.System in the official Java class

library. Operations to perform explicit garbage collection (since automatic garbage

is unsupported within the lightweight virtual machine), atomic operations, obtain­

ing the local system time, and setting the current task to sleep are provided, along

with commonly utilized time constants. A variety of data input and printing func­

tions are also provided mainly for debugging purposes.

• Message — The class amss. system.Message contains methods that facilitate per­

forming operations on and obtaining data from messages. Methods are provided

for creating and enqueuing new messages, obtaining information about a particu­

lar message such as its source and destination, and retrieving and setting elements

within its parameter array. Also provided are static constants that represent the

various types of messages, service functions, parameters, and status values utilized

within the software architecture.

5 V irtual Machine 105

• Module — The class amss. system.Module contains methods that facilitate per­

forming operations on and obtaining information about modules. Methods are

provided for obtaining the pose matrix (see Section 6.5) of a particular module,

retrieving and modifying its TEDS properties, and querying the state of the mod­

ule, such as if it is running or is located on the primary member module hardware.

Role-specific methods for logical modules are also provided, such as methods for

determining the number of roles, determining the number of matched modules in

the environment for a particular role, and issuing service calls to and retrieving

results from matched members.

• Pose — The class amss. system.Pose contains methods that facilitate the acquisi­

tion of five pose vectors that are derived from the matrices representing the poses of

one or a pair of modules. These pose vectors are utilized within template algorithms

(see Chapter 6) to facilitate the simple determination of the relative positions be­

tween any two indirectly or directly connected modules in a logical entity, irrespec­

tive of their orientations. The first vector represents the position of a module, and

the other four vectors are depicted in Figure 5.1. The face normal, which initially

points along the positive y-axis, is perpendicular to the top face of the module and

indicates its upright orientation; the face north vector, which initially points along

the negative ¿-axis, and face east vector, which initially points along the positive

x-axis, both lie within the plane of the top face of the module and represent their

respective cardinal directions relative to this plane; and the module separation vec­

tor indicates the direction and magnitude of the displacement between the centres

of a pair of modules.

• V ector3D — The class amss.system.Vector3D contains methods that facilitate

operations on three-dimensional vector quantities. These operations include obtain-

5 V irtual Machine 106

Face Normal

Figure 5.1: Module pose vectors.

ing the constituent components and magnitude of a particular vector, normalization

of the vector, common operations between two vectors such as addition and scalar

product, as well as methods to determine the relationship between two vectors, such

as the angle and parallelism between them.

5.5 Summary

In this chapter, the virtual machine of the software architecture as well as the stan­

dard class library that is specific to the software architecture and supports its operation

were described. The Java-based virtual machine facilitates the execution of the platform-

independent template classes that describe the behaviour of the collaborating TIMs in a

logical module entity. The platform-independence of the template classes enables them

to be created once and then used in the dynamic reprogramming of a variety of TIMs

irrespective of their underlying hardware architecture, the capabilities of which are ab­

5 V irtual Machine 107

stracted through the various classes and methods provided within the standard class

library of the software architecture. The following chapter will describe the operation of

the composition layer.

Chapter 6

Composition Layer

6.1 Introduction

At the composition layer, logical module template algorithms are loaded and executed

that enable a group of TIMs to collaborate and behave as a logical entity known as a

logical module. The intelligence needed to facilitate module collaboration is encompassed

within a Java class that is interpreted by the virtual machine, and is accompanied by a

logical module template TEDS that describes the standard characteristics of the composite

logical module entity. Within each template TEDS, various roles are also defined.

Each module agent within the sensing system environment continually tests the oth­

ers in its environment against the roles defined within its locally stored logical module

template TEDS, as well as its currently loaded logical module structures, in order to

locate a match. If a module agent is found that is capable of providing the sensing or

actuation behaviour outlined by at least one of the specified roles, the matched agent will

be assimilated into the existing or a newly created logical entity containing the matched

role. Physically connected TIMs within a logical entity will also intelligently relay their

position and orientation to each other, ensuring that all the member TIMs comprising

108

6 Composition Layer 109

the logical entity possess a representation of their position and orientation that is relative

to the pose of one of the members, designated the pose base.

6.2 Template Data Types

Logical module template TEDS specifications are similar in structure to standard module

TEDS specifications. The two TEDS specification types differ in that template TEDS

support the specification of a set of role descriptors included after the list of standard

TEDS properties. Sample module TEDS and template TEDS specifications may be seen

and compared in Sections B.2 and B.3 respectively. Upon loading a required template

TEDS file, it is parsed, stored, and utilized through the data structures described in the

following subsections.

6.2.1 Template Structure

The template structure is a representation of a locally stored template TEDS specification

from which a logical module may be created, and is a transformation of the text-based

template TEDS specification into a structural form usable by the software architecture.

The fields contained within a template structure are defined as follows:

• File Name — Stores the name of the template TEDS used to construct the tem­

plate structure, and is used for identification purposes.

• Class Name — Stores the name of the Java class that provides the intelligence

necessary for the members of the composite entity to communicate and collaborate,

and is also used for identification purposes.

• Roles List — A vector used to store the role structures (described in Section 6.2.2)

specific to the template, as found in the template TEDS specification.

6 Composition Layer 110

• Template Class — A structure used to store the actual Java class bytecodes that

implement the platform-independent intelligence facilitating collaboration between

module agents in a logical entity. This class is found at the path provided by the

RoleTemplateClass property of the template TEDS. The main components of the

template class structure are described in Section 5.2.

6.2.2 Role Structure

A role structure represents the characteristics required of a particular module agent within

the environment to satisfy a particular behavioural role within a logical module entity.

A template TEDS specification contains one or more role descriptors that are used to

create corresponding role structures within an encompassing template structure. One or

more module agents may be assigned to each role. Like the template structure, each

role structure is a transformation of a corresponding role descriptor contained within a

text-based template TEDS specification into a form usable by the software architecture.

The fields contained within a role structure are defined as follows:

• Role Environment List — A list of member (MEM) packets corresponding to

the module agents currently detected within the environment that are assigned to

the role.

• Role Number — An unsigned integer assigned to the role that is used to uniquely

identify it.

• Assignment Limit — Specifies a numerical range indicating the number of mod­

ules that may be utilized to satisfy the role. The number of modules may be less

than, less than or equal to, equal to, greater than or equal to, or greater than the

provided limit.

6 Composition Layer 111

• Connection Type — A bit field indicating the types of connections allowed be­

tween current member modules of the logical entity and candidate non-member

modules that satisfy the role. The connection type may be local, which corresponds

to candidate module agents being present on the same TIM hardware as a member

of the composite entity; physical, which corresponds to candidate module agents

being present on TIM hardware that is physically connected to that of a member

of the composite entity; wireless, which corresponds to candidate module agents

being present on TIM hardware that is not physically connected to but within the

environment of that of a member of the composite entity; or any combination of

the three.

• Module Type — A bit field indicating the types of modules that satisfy the role.

The module type may be a sensor module, an actuator module, an interconnect

module, an administrator module, or any combination of the four.

• Module Class — A bit field indicating the classes of modules that satisfy the role.

As previously described in Section 2.6, a class refers to a family of sensors or actua­

tors that may be used to sense a particular physical quantity or facilitate a specific

type of motion respectively. Currently, the classes include any combination of an

acceleration module, a positional module, a rotational module, a status module, a

text display module, or a voltage module. Unused bits are left within the bit field

for future expansion.

• Module Data Type — A bit field indicating the acceptable data types for the

array of values returned by modules that satisfy the role. The return type may be

any combination of an 8-bit, 16-bit, 32-bit, or 64-bit signed or unsigned integer, a

32-bit or 64-bit floating point value, a status string, an encompassed middleware

layer message, or a generic object consisting of raw bytes.

6 Composition Layer 112

• Module Data Type Width — Specifies a numerical range indicating the number

of acceptable columns in the array of values returned by modules that satisfy the

role. The width of the data array may be less than, less than or equal to, equal to,

greater than or equal to, or greater than the provided number of columns.

• Module Data Type Height — Specifies a numerical range indicating the number

of acceptable rows in the array of values returned by modules that satisfy the role.

The height of the data array may be less than, less than or equal to, equal to,

greater than or equal to, or greater than the provided number of rows.

6.2.3 Local and Remote Join Structures

A join structure is issued by members of a logical module entity to candidate module

agents that they have discovered within their environment, providing information to the

candidate module agents indicating the actual logical module template it should load

from its local template TEDS directory, as well as the matched role it should perform.

Remote join structures differ from local join structures in that they are used to transmit

the full template TEDS specification text of the logical module itself along with its asso­

ciated template algorithm class to a matched candidate module, which are then stored on

the candidate module. This ensures that the library of template TEDS specifications and

processing algorithms available locally on each module within any particular sensing sys­

tem is updated in an automatic, peer-to-peer fashion, without requiring user intervention.

Local join structures only specify the filename of the template TEDS specification to be

used, and conserve bandwidth when the specification is known to be available locally on

the candidate module. The fields contained within a join structure are as described be­

low, where all values except the template data field are common to both local and remote

join structures:

6 Composition Layer 113

• Role Number — An unsigned integer identifying the role in the respective logical

module template that is to be fulfilled by the candidate module.

• Physical Dependency — Indicates the address of a member module within the

logical module entity to which the candidate module is physically connected, if

the role requires a physical connection between member TIMs to be satisfied. If

the physical connection between the matched candidate module and the physical

dependency is lost at any time, the matched module will no be longer considered a

member of the logical module entity.

• Template Filename — Stores the name of the template TEDS specification that

was used to construct the logical module entity that is to be joined by the candidate

module.

• Template Data — A 6 kilobyte array present only in remote join structures that is

used to store the matched template TEDS specification and its associated template

algorithm class. The size of the array is sufficiently large to store typical TEDS

specifications and algorithm classes without consuming excessive bandwidth dur­

ing transmission. Contains in the specified order: an unsigned integer indicating

the length of the template TEDS, the bytes comprising the encompassed template

TEDS data, an unsigned integer indicating the length of the template algorithm

class, and the bytes comprising the encompassed template algorithm class.

6.2.4 Pose Update Structure

A pose update structure is transmitted from a TIM to other TIMs physically connected

to its faces, providing the information necessary for the connected TIMs to update their

position and orientation relative to that of the TIM that issued the pose update. The

calculations utilized in performing this update are outlined in Section 6.5. Pose update

6 Composition Layer 114

calls are propagated throughout the tree of physically connected modules within a logical

entity, ensuring that each member module within the entity may query the pose of the

others knowing that the returned pose will be relative to a given reference orientation,

termed the pose base, which is common to the entire entity. The fields contained within

a pose update structure are defined as follows:

« Remote Pose Base — Indicates the assigned pose base of the remote module,

which is then assigned to the local module. Two TIMs possessing the same pose

base indicates that a direct or indirect physical connection exists between them.

• Remote Face Contact Identifier -— The identifier of the contact on the face

of the remote module through which the local module transmitted its last face

identification packet Knowledge of this identifier facilitates the detection of the

relative angular offset between the connected TIMs (see Section 3.7).

• Remote Face Identifier — The identifier of the face on the remote module that

is physically connected to the local face of the TIM receiving the pose update

structure.

• Local Face Identifier -— The identifier of the face on the local module, as detected

by the remote module, that is physically connected to the remote face of the TIM

transmitting the pose update structure.

• Remote Effective Pose — Stores the effective pose of the remote TIM issuing the

pose update, which is generated through the matrix multiplication of its absolute

pose by the face transform m atrix of its face through which it is connected to the

local TIM. As stated in Section 3.7.1, the face transform matrix is currently always

the identity matrix, since the faces of a TIM are rigid in its current implementation.

Thus, the remote effective pose is always the absolute pose of the remote TIM.

6 Composition Layer 115

6.3 Template and Role Matching

Creation of new logical module entities or the addition of module agents to existing logical

modules is facilitated through the matching of the various roles in a logical module tem­

plate TEDS. Each TIM in a sensing system observes the presence (PRE) packets being

transmitted by the modules within its environment, from which it selects candidate mod­

ules that may be used in the formation or augmentation of logical modules. As described

in Section 3.4.1, various fields are contained within each presence packet that reveal the

capabilities of the module that transmitted it. This information is then compared to

the corresponding fields present in the role structures contained within all loaded logical

module structures. If no existing role is matched, the templates in the template TEDS

directory are then searched for new matches.

Template match attempts occur only when new modules are detected within the envi­

ronment, or the connection state between any two modules in the sensing system changes.

This state change may be due to a connection between disconnected modules (a wireless

to physical connection state change), or a disconnection between connected modules (a

physical to wireless connection state change). Connection state changes trigger template

match attempts because, as outlined in Section 6.2.2, connection type is one of the criteria

that determines the validity of a role match.

6.3.1 Matching Existing Logical Modules

The process through which an existing logical module is matched is shown algorithmically

in Algorithm 6.1. This process consists of iterating through each role structure within

each logical module structure present in memory. In order to prevent infinitely recursive

matching, a logical module is not allowed to match itself. This is detected by examining

the address of all presence packets being tested for a role match within the logical module.

6 Composition Layer 116

Algorithm 6.1 Existing logical module matching process.
procedure MATCHExiSTiNGLoGiCAL(packet p resen ce)

m atch ed false
for each logical module m odule in module structure list do

if m o d u le .address ^ p r e s e n s e .source then
for each role role in m odule do

if role.m a,tch(presence) then
if m odu le is primary module structure then

role .]om (p resen ce)
end if
m atch ed <= true
break for

end if
end for

end if
end for
if m atch ed = false then

if p re se n c e .connection = ‘physical’ or ‘local’ then
MatchNewLogical (presence)

end if
end if

end procedure

6 Composition Layer 117

If this address is the same as that of the logical module, testing is discontinued for that

presence packet. In a role match test, each property specified in the presence packet being

tested is compared to the corresponding fields within each role defined by the logical

module. If the value of each property matches or falls within the bounds specified by the

corresponding role field (starting with the C onnection Type field; see Section 6.2.2), the

match is considered successful. Assuming the assignm ent limit for the role is not exceeded,

the search ends and a rem ote jo in message is issued by the prim ary module of the logical

entity to the remote module that transmitted the matched presence packet. The primary

module possesses the lowest address of all detected member modules comprising the

logical entity and is responsible for managing its operation.

If no existing role matches are found for the tested presence packet, the local template

TEDS directory is searched for a satisfactory template that may be used to form a

new logical module containing a role that matches the presence packet. In addition,

a module agent local to the TIM on which the test is being performed must also be

matched, and the connection type between the matched remote TIM and local TIM

must be either physical or local The local module agent match is required in order

to satisfy the local m em ber check of the logical module (see Section 4.5.2). W ireless

connections do not automatically trigger searches for new template matches because

presence packets indicating wireless connections will be frequently detected within the

environment of a sensing system comprised of a substantial amount of TIMs. Frequent

template TEDS directory searches are expensive in terms of processing time and memory

usage, especially when the directory consists of numerous TEDS specifications. Also,

unlike with physically connected TIMs, automatic collaboration between unconnected

TIMs will often be undesirable by the system user. If desired, wireless logical module

formation may be invoked by the system user through an administrative interface.

6 Composition Layer 118

6.3.2 Creating New Logical Modules

Searching For Template TEDS Matches

The process through which a new logical module is created is shown algorithmically in

Algorithms 6.2 and 6.3. When a search for a new template TEDS match is initiated,

each template TEDS specification file (possessing a .mod extension) within the template

TEDS directory is processed while sub-directories and other file types are disregarded.

Each template TEDS specification is loaded, parsed, and stored in memory in the form

of a template structure, previously described in Section 6.2.1. As with an existing logical

module role search, each role within the loaded template structure is iterated through

and tested against the supplied presence packet. In addition, a module agent local to the

TIM on which the test is being performed must also be matched. However, new logical

module searches differ from existing logical module searches in that all the other presence

packets within the environment list are also tested against the roles of the template in

order to assimilate other candidate modules.

During each role test, a count is maintained of the number of matches found in the

environment. This count is thereafter compared with the assignment limit for the role,

and the assignment limit for every role must be satisfied in order for logical module

structure creation to proceed. The presence packet which triggered the template search,

and at least one module agent local to the TIM on which the test is being performed,

must contribute to the role match count. As with existing logical module role searches,

the local module agent match is required in order to satisfy the local member check of the

logical module (see Section 4.5.2). If, however, the template search was invoked manually

through an administrative interface, the local module agent match is not required since

administrative interfaces do not provide sensing nor actuation functionality. If matching

is unsuccessful, the loaded template structure is deallocated, and the remaining template

6 Composition Layer 119

Algorithm 6.2 New logical module matching process._______________________________
procedure MATCHNEwLoGiCAL(packet presence)

for each file f i le in template TEDS directory do
if f i le is not a directory and name of f i le ends with ‘ .mod’ then

template <= create template structure from f i le
fullymatched ■<= true
for each role role in template do

matches <= 0
for each packet environmentpresence in environment list do

if role.ma,tch(environmentpresence) then
matches <= matches + 1

end if
end for
if role .assignmentlimit not satisfied by matches then

fullymatched <= false
deallocate template
break for

end if
end for
if fullymatched = true then

if presence matched and local module agent matched then
CREATENEwLOGiCAL(iempJaie)

else if presence matched and matching invoked by system user then
CREATENEwLOGiCAL(£empZa£e)

else
deallocate template

end if
end if

end if
end for

end procedure

6 Composition Layer 120

Algorithm 6.3 New logical module creation process.
procedure CREATENEwLoGiCAL(template tem plate)

ad dress <= random logical module address
while address exists in environment list do

address <= random logical module address
end while
m odule 4= create logical module structure from tem pla te and address
for each role role in m odu le do

m a tch es <= 0
for each packet en viro n m en tp resen ce in environment list do

if role.m a ,tch (en viron m en tp resen ce) then
m a tch es <= m a tch es + 1
if roZe.assignmentlimit satisfied by m a tch es then

ro le .]o m (p resen ce)
else

break for
end if

end if
end for

end for
if local module agent matched then

create module message handler task for m odule
else

deallocate m odule
end if

end procedure

6 Composition Layer 121

TEDS specifications in the template TEDS directory are tested for matches.

Creating A New Logical Module Structure

When a loaded template structure is successfully matched, iteration ends and a random

64-bit logical module address is generated. The most significant bit of this address, termed

the logical module bit, is always set, and differentiates logical entities from standard

module agents. The address will be assigned to a newly created logical module structure

that is based on the loaded template. Before assignment, the environment list is searched,

and if the address is detected within the environment, random address generation is

repeated until a unique logical module address is discovered. Once a suitable address is

obtained, a new logical module structure is allocated and initialized using the matched

template structure. As with successful existing match searches, rem ote jo in messages

are thereafter issued to each local and remote match found for the roles in the template

structure. These transmissions need not be carried out by a primary module, since the

primary module of the newly created logical module entity is currently undefined. To

ensure the assignment limit of each role is satisfied, a count is maintained of the number

of matches assimilated thus far in the environment.

If the template search was invoked manually by the system user through an admin­

istrative interface, the newly created logical module structure is deallocated, since an

administrative interface is not allowed to become a member of a logical entity. In this

case, the matched module in the environment with the lowest address always assumes the

position of primary member of the logical module entity. Otherwise, a module message

handler task (see Section 4.5) is created to process the messages received by the entity

during the times in which the local module assumes the position of primary member.

6 Composition Layer 122

6.4 Transducer Composition

6.4.1 Logical Module General Operation

The mechanism behind transducer composition in logical modules is shown in Figure 6.1

and described algorithmically in Algorithm 6.4, utilizing the example of a logical module

possessing two defined roles. As described in Section 6.2.2, each role within a template

from which a logical module is formed possesses a role environment list, which stores

member (MEM) packets corresponding to the currently detectable module agents within

the environment that were assigned to the role after having been issued a join request.

As shown in Figure 6.1, the logical module F3 (8-bit addresses are depicted for sim­

plicity), which has representative module structures present on all its members, consists

of two roles. Module 1A is the primary member due its possession of the lowest address

among the members of the logical entity. Therefore 1A currently processes messages

transmitted to the logical module, and also generates messages on behalf of the logical

entity. Since only four of the eight other modules that comprise F3 are within range of

1A, the regularly transmitted member packets of these four modules are the only ones

that are detectable by F3. Thus, from the perspective of 1A, only five modules, including

itself, are currently available to fulfil the specific roles within F3 that they were matched

and assigned to.

6.4.2 Logical Module Primary Handler Operation

The primary handler of a typical logical module such as F3 is shown algorithmically in

Algorithm 6.4. Because all service function types are handled in a similar manner, only

the processing methodology for Get service calls is depicted within the handler. Within

the call to the Get service call handler, the role environment count for each defined role

is determined. The role environment count is the number of detected members in the

6 Composition Layer 123

Module 2B

F3: Role 2

Module 1B

F3: Role 1

Module 2D

F3: Role 1

Module 1C

F3: Role 2

Module 2A

F3: Role 2

Logical Module F3 (Structure on 1A)

1A ! 18 2D Role 1

2A 1E Role 2

Module 1E

F3: Role 2

Module 2C

F3: Role 1

Wireless Signal
Range of 1A Module 1A

F3: Role 1

Module 1D

F3: Role 1

Figure 6.1: Logical module operation block diagram.

environment that satisfy a particular role. The method that facilitates determination of

role environment counts within a logical module is roleEnvironmentCount, found within

the standard library class amss. system.Module (see Section A.3.3). This function takes

a role number as its only parameter.

The role environment counts are then utilized within loops in order to acquire trans-
*

ducer readings from all the member modules within each role, which are stored within a

vector or processed on the fly during acquisition. Acquisition of member module readings

is performed through the invocation of a number of Get service calls. The invocation

of service calls is facilitated through the methods serv iceC a ll and serviceCallAsync,

also found within the standard library class amss.system.Module. These methods take

as parameters the service call message to be transmitted, the role number to which the

target module is assigned, and the index of the member packet associated with the tar­

get module (within the role environment list of the specified role). These service call

methods, combined with the ability to dynamically determine role environment counts,

6 Composition Layer 124

Algorithm 6.4 Get processing in primary handler for logical module with two roles.
procedure LoGlCALPRiMARYHANDLER(module module, message call)

if call.servicefunction = Get then
rolecountl <= moduie.roleEnvironmentCount(l)
rolecount2 <= module.roleEnvironmentCount(2)
getreturns <= allocate new vector
for i 4= from 0 to rolecountl do

getcall -t= create Get service call message for role 1 member i
getreturn <= module.serviceCdll(getcall, l , i)
getreturns.scp'pend(getreturn)

end for
for i <= from 0 to rolecountl do

getcall ^ create Get service call message for role 2 member i
getreturn <= module.serviceCall(getcall, 2 , i)
getreturns.ecppend(getreturn)

end for
compositedata <= process role member returns in getreturns
deallocate getreturns contents and vector
return <= create return message for call containing compositedata

end if
if call was handled then

deallocate call
if return was generated then

enqueue return in outgoing message queue
end if

end if
end procedure

6 Composition Layer 125

provide convenient access to the services of the member modules available to a particular

role without necessarily knowing how many members are accessible or their addresses.

After all member readings are acquired, manufacturer-provided or user-provided intel­

ligence within the primary handler produces a composite reading based on the properties

of the messages in which the readings were returned, as well as the assigned roles of

the member modules from which they were acquired. This composite reading is then

enqueued in the outgoing message queue to be returned to the module that invoked the

initial service call on the logical module. If other logical modules are assigned to fulfil

roles within the logical module, the composition process as described is recursively in­

voked on each member logical module until the composed readings produced by each are

generated and returned up the tree of logical modules. These composed readings are then

themselves composed and returned.

6.5 Pose Composition

6,5.1 Pose Representation and Theory

The pose (position and orientation) of each TIM in a modular sensing system is repre­

sented locally on each TIM in the form of a 4 x 4 pose matrix P . Other popular methods

as described in [68] of representing orientation itself include Euler angles, which are a set

of three angular rotations (roll, pitchy and yaw) about mutually perpendicular axes, and

quaternions. Quaternions are an extension of complex numbers in which each number

possesses a single real part (w) representing a scalar, and three imaginary parts (i, j ,

and k) representing a vector. From each number, information describing a single angular

rotation about a completely arbitrary axis may be ascertained.

A matrix is chosen to represent position and orientation rather than Euler angles

and quaternions because among these, only a matrix can provide a unique representation

6 Composition Layer 126

of a given orientation. Euler angles in particular are susceptible to the phenomenon of

gimbal lock, where a degree of freedom may occasionally be lost due to a pitch rotation

of 90 degrees causing the roll and yaw rotations to effectively occur about the same axis.

Matrices also facilitate the convenient representation of position and orientation as an

atomic, combined entity, enabling operations to be performed on both a position and its

associated orientation simultaneously. In addition, to facilitate transformations between

coordinate spaces, representations such as Euler angles and quaternions must, in any

case, be converted to matrix representations. As with the face transform matrix (see

Section 3.7.1), only 48 bytes are actually utilized to store the matrix instead of 64 bytes

since the fourth row is understood to always be [0 0 0 1]. The data stored within a pose

matrix is as shown in Equation 6.1:

axx ayx azx Px

axy ayy azy Py

axz ayz azz Pz

0 0 0 1

Each column within the pose matrix represents a three-dimensional geometric vector,

defined relative to the cardinal axes within a right-handed coordinate system. In this

coordinate system, a positive rotation about an axis is defined as a counter-clockwise

rotation from the point of view of an observer facing the opposite direction of the axis. The

first three columns of the pose matrix respectively represent the x, y, and z axes defining

the object coordinate space of the TIM, represented in terms of the standard coordinate

space defined by the cardinal axes. The standard object coordinate space of a TIM is

depicted in Figure 6.2. The fourth column represents the absolute position of the TIM

(more specifically, the origin of its object coordinate space) relative to the cardinal axes,

in centimetres (cm). The matrix representation chosen facilitates the transformation of

6 Composition Layer 127

Y

Figure 6.2: Standard TIM object coordinate space.

one TIM coordinate space into another to be performed through consecutive pose matrix

multiplications applied from right to left.

Within a logical module comprised of physically connected TIMs, the pose of all

member modules must be defined relative to the object coordinate space of a single

member module defined as the pose base. The use of a pose base allows each member

module to access the pose of any other physically connected member knowing that the

pose matrix returned will be within the same coordinate space as the locally represented

pose. This may be done even if the TIMs are indirectly connected through any number

of physically connected members. The transformation of the pose matrix coordinate

space of member TIM A into that of member TIM B is facilitated through the matrix

6 Composition Layer 128

multiplication shown in Equation 6.2, applied from right to left:

p Anew = Pb X PA (6.2)

6.5.2 Pose Composition Process

Pose Transformation Theory

As described in Section 3.7.3, pose updates are triggered whenever physical connections

or disconnections between TIMs occur. The necessary information facilitating the update

of a pose matrix is transferred within pose update structures, outlined in Section 6.2.4.

This information is used to transform the local pose matrix of the TIM receiving the pose

update structure through a series of rotations and translations. A pose rotation through

the cardinal z, y, and x axes of angles 7 , /?, and a respectively, in that order, followed

by a pose translation along these axes of A 2 , A y, and A x centimetres respectively, is

performed through the matrix multiplication shown in Equation 6.3, applied from right

to left:

where:

Z r o t —

Y r o t —

cos 7 ■-s in 7 0 0

sin 7 cos 7 0 0

0 0 1 0

0 0 0 1

cos (3 0 sin p 0

0 1 0 0

—sin ¡3 0 cos p 0

0 0 0 1

(6.3)

(6.4)

(6.5)

6 Composition Layer 129

1 0 0 0

0 cos a —sin a 0

0 sin a cos a 0

0 0 0 1

1 0 0 Ax

0 1 0 Ay

0 0 1 A z

0 0 0 1

Local Pose Update Transformations

(6.6)

(6.7)

Upon receiving a pose update structure as transmitted within an Update Pose service

call received from a physically connected TIM, a series of transformations are carried out

from which the new pose of the local TIM relative to the physically connected TIM will be

determined. Firstly, the starting pose matrix on which the transformations will be carried

out is set to the inverse of the face transform matrix associated with the connected face

as indicated in the local face identifier field of the pose update structure. This is done

since, for convenience, subsequent transformations are applied to the face as if it was in its

default position and orientation within the object coordinate space of the local TIM. As

stated in Section 3.7.1, the face transform matrix is currently always the identity matrix,

since the faces of a TIM are rigid in its current implementation. Thus, the starting pose

matrix is also always the identity matrix, which is its own inverse.

The first transformation applied to the pose matrix rotates it about the origin in a

manner such that the positive x-axis in the object coordinate space of the local TIM

passes directly through the centre of the locally connected face and is perpendicular to

it. This requirement is already satisfied by Face 2 within the object coordinate space

of the TIM. The locally connected face is that possessing the identifier (see Section 3.7)

6 Composition Layer 130

specified in the local face identifier field of the pose update structure. This transformation

prepares the locally connected face to be trivially rotated about the x-axis in a subsequent

transformation based on its angular offset relative to the remote connected face. The

rotations necessary to achieve this transformation, depending on the identifier of the

locally connected face, are shown in Table 6.1.

Table 6.1: Rotations required to bring a;-axis perpendicular to locally connected face.

Local Face Identifier Required Rotation About Origin
2 None
3 —90° about y - axis
4 180° about y - axis
5 90° about y - axis
6 90° about z -axis, then 90° about x-axis

The second transformation applied to the pose matrix rotates it about the x-axis in

a manner such that the relative angular offset between the locally connected face and

the remote connected face matches that implied by the contact connection pattern (see

Section 3.7.3) between the two faces. The contact connection pattern may be immediately

determined from the value contained within the rem ote face contact identifier field of the

pose update structure, which indicates the contact on the remote connected face to which

Contact 1 on the local connected face is attached. The angular offset associated with each

contact connection pattern, and thus the rotation to apply, is as shown in Table 3.1. The

rotations necessary to achieve this transformation, based on the remote face contact

identifier, are shown in Table 6.2.

The third and fourth transformations complete the movement of the local pose from

the object coordinate space of the local TIM into the object coordinate space of the remote

TIM. The third transformation is a 12 cm (equal in magnitude to the length of the edge of

a TIM) negative translation of the local pose along the x-axis. This transformation places

6 Composition Layer 131

Table 6.2: Rotations about x-axis required to achieve correct relative angular offset.

Remote Face Contact Identifier Required Rotation About x-axis
i None
2 90°
3 180°
4 -90 °

the local and remote TIMs directly adjacent to each other within the object coordinate

space of the remote TIM, with the locally connected face of the local TIM in contact with

Face 4 of the remote TIM. This may not necessarily be the remote face to which the local

face is actually physically connected.

The fourth and final transformation applied to the pose matrix is a rotation within the

object coordinate space of the remote module that moves the local TIM and its locally

connected face, if necessary, adjacent to the remote face on the remote TIM to which it

is actually physically connected. The rotations necessary to achieve this transformation,

depending on the identifier of the remote connect face given in the remote face identifier

field, are shown in Table 6.3.

Table 6.3: Rotations required to move locally connected face adjacent to correct remote
face.

Remote Face Identifier Required Rotation About Origin
2 180° about y-axis
3 —90° about y-axis
4 None
5 90° about y-axis
6 90° about z-axis, then —90° about y-axis

After the preceding transformations are applied, the local pose is now completely

defined in terms of the object coordinate space of the remote TIM, and specifies an

appropriate position and orientation based on the face on the remote TIM to which the

6 Composition Layer 132

local face is connected. However, as described in Section 6.2.4, the coordinate spaces

of all physically connected TIMs must be defined relative to the TIM in the composite

entity designated the pose base. Since the pose of the remote module would have already

been transformed such that it is defined in terms of the coordinate space of the pose

base, the local pose may also be brought into the coordinate space of the pose base by

multiplying it by the remote pose, as per Equation 6.2. This operation is valid even if

the pose base is only indirectly connected to both the local and remote TIMs, due to the

accumulative effect of multiplying transformation matrices in which all previously applied

transformations are carried over into successive transformations.

Recursive Pose Update Invocation

Upon completion of the pose update process, the pose of other TIMs physically connected

to the other faces of the local module will require updating. For each of the physically

connected TIMs (except the TIM that issued the initial pose update service call to the

local module), an appropriate pose update structure is allocated as part of an Update P ose

service call message. These service call messages are then enqueued into the outgoing

message queue for transmission.

6.6 Summary

In this chapter, the com position layer of the software architecture was described. In this

layer, platform-independent logical module template algorithms are loaded and executed

in order to provide intelligence to a collaborating group of TIMs. The prim ary module of

the logical entity, which processes and transmits messages on its behalf, actively seeks new

candidate module agents within the environment that may fulfil a behavioural role within

the logical module. Physically connected TIMs within the logical entity intelligently

6 Composition Layer 133

transmit their position and orientation to each other and ensure that the pose of all

physically connected members is defined relative to that of a member designated the pose

base. The following chapter will provide a description of the process used to evaluate the

operation and performance of the software architecture as well as a description of the

results observed and an analysis of these results.

Chapter 7

Architecture Evaluation

7.1 Introduction

This chapter presents an evaluation of the behaviour and performance of the software

architecture when utilized on actual TIM hardware. This evaluation will be facilitated

through two tests, in which select homogeneous and heterogeneous sensors and actua­

tors will be associated with TIMs and connected together. Upon assuming a composite

representation, the interactions of the TIMs are then logged locally on the non-volatile

storage present on each TIM and examined thereafter. The module TEDS specifications,

template TEDS specifications and template algorithm classes utilized for the purposes of

evaluating the software architecture are listed in Appendix B.

The first test will be used to evaluate the operation of a logical module in which the

constituent TIMs interact entirely through wireless communication. The second test will

be used to evaluate the behaviour of a logical module in which the constituent TIMs are

physically connected in various orientations, and interact through both wireless communi­

cation as well as through their physically connected faces. During these tests, performance

criteria that strongly impact the real-world performance of a composite sensing system

134

7 A rchitecture Evaluation 135

are considered for each constituent layer of the architecture implemented on top of the

real-time operating system, drivers, and module hardware. These criteria are outlined

below:

• Communication Layer — Channel reservation latency during execution of the

Medium Access Control (MAC) protocol, and message transmission speed between

TIMs during execution of the Positive Acknowledgement with Retransmission (PAR)

protocol.

• Middleware Layer — Latency encountered between the invocation of a service

function on a remote TIM and the reception of the associated return message by

the invoking TIM.

• Virtual Machine — Speed of bytecode execution in template class methods during

which service calls may occur intermittently.

• Composition Layer — Logical module agent startup memory utilization and

correctness of the expected behaviour of the logical entity being evaluated.

7.2 Wireless Collaboration Behaviour

7.2.1 Evaluation Setup

The purpose of this test is to evaluate the behaviour of a modular sensing system when its

constituent TIMs are wirelessly connected. A modular sensing system will be created in

which a servo motor TIM, an digital accelerometer TIM, and an analog light-dependent

resistor (LDR) TIM are placed within range of each other. The behaviour of the composite

entity comprising the heterogeneous sensor and actuator modules is then examined and

evaluated according to the performance criteria specified in Section 7.1. Throughout

7 A rchitecture Evaluation 136

the collaboration tests, the TIMs relay their status to and receive data from the system

user through a console-based administrative interface running on a personal computer

workstation.

The apparatus utilized to perform testing of a wirelessly interacting modular sensing

system is depicted in Figure 7.1. For the purposes of TIM identification throughout the

evaluation, each module utilized is assigned a letter. In this particular test, the LDR

TIM is designated Module A, the accelerometer TIM is designated Module B, and the

servo TIM is designated Module C. Interfaces to three 5 V adaptors and an RS232 port

connected to the personal computer workstation are provided through means of a standard

breadboard. These interfaces solely serve the respective purposes of providing a stable

voltage to the TIMs and providing a link to their administrative task through which their

behaviour may be monitored, and otherwise have no influence of the behaviour of the

composite system.

Each TIM is equipped with an SD card that stores within the module TEDS directory

(see Section 2.5.2) the module Transducer Electronic Data Sheet specifications (TEDS)

that identify and describe the characteristics of the transducer associated with it. The

module TEDS specifications describing the characteristics of the accelerometer, LDR,

and servo TIMs are listed in Sections B.2.1, B.2.3, and B.2.4 respectively. Also stored

on the SD card are a collection of template TEDS specifications and their associated

template algorithm classes, located in the template TEDS directory and template class

directory respectively (see Section 2.5.2). As stated in Section 4.5, a template TEDS and

an associated template class together define the identity, characteristics, and behaviour

of a particular combination of specific classes of collaborating TIMs. The template TEDS

specification and the source code of the template algorithm class applicable to the TIMs

utilized in this test are listed in Sections B.3.2 and B.4.2 respectively.

7 A rchitecture Evaluation 137

7.2.2 Evaluation Procedure

Upon discovering each other, the modules in the sensing system are expected to be ca­

pable of utilizing an appropriate template specification and class to automatically form

a composite entity that implements a new behaviour. To prevent multiple template

matches from limiting the free memory available for the logical module to operate, the

only suitable template provided within the non-volatile storage on the TIMs during this

test is that of rotational actuator control through the averaging of voltage sensor read­

ings (see Sections B.3.2 and B.4.2), corresponding to the TIMs available within in the

system. Thus, a single composite system should be created that finds and utilizes the

average readings of all the available voltage-based sensing TIMs (specifically, the LDR in

a potential divider configuration and the accelerometer) in the system to influence the

position of all the available rotational actuator TIMs (the servo motor), as per the pro­

vided template specification and template class. Module C (the servo TIM) is the module

possessing the lowest address in the system and thus should automatically designate itself

the primary module, responsible for executing the template class upon formation of the

logical entity.

To test if the described system behaviour is realized, the accelerometer TIM is phys­

ically rotated through five increasing angular degree positions of 0°, 45°, 90°, 135°, and

180° once the formation of a logical module entity is confirmed through the administra­

tive interface. For each accelerometer angle, the LDR TIM is also exposed to high and

low levels of ambient light. The angular position assumed by the servo motor TIM in

response to changes to the duty cycle of the input pulse-width modulation (PWM) signal

(which itself changes due to variations in the readings continuously acquired and averaged

by the primary module during execution of the template class) provided by its associated

TIM is then examined and analyzed in order to determine the correlation between the

accelerometer TIM angular positions, LDR TIM ambient light voltage readings, and servo

7 A rchitecture Evaluation 138

TIM angular positions. The angular position of the servo motor is more easily identified

through a black indicator attached to the rotating head.

7.2.3 Results and Analysis

Figure 7.1 depicts the behaviour of the composite sensing system formed in the first

evaluation setup, which consists entirely of wirelessly interacting TIMs. As previously

outlined in Section 7.2.2, the data acquired from two sensor TIMs (LDR module A and

accelerometer module B) is used to wirelessly control the behaviour of an actuator TIM

(servo motor module C). Having detected that the TIMs present in the environment,

including itself, satisfy the requirements for matching the ServoCon.mod template (see

Section B.3.2), Module C loads the template into memory from the directory tmpl in

its non-volatile storage as well as its associated template class ServoCon (source code

listed in Section B.4.2) from the directory amss/algo. A logical module with a randomly

determined logical address is formed locally on Module C, with the most significant bit

in the logical address correctly set. The logical module thereafter issues Join service calls

to the module agents running on Modules A, B, and C that represent the interface to the

associated transducers on these TIMs. Local representations of the logical entity are also

created on Modules A and B. Correctly identifying itself as the primary module of the

composite entity due to its possession of the lowest address in the environment, Module

C commences execution of the template class.

In the ServoCon template class executing on Module C, the readings from all of the

acceleration (utilizing solely their x-axis readings) and voltage sensing module agents

which comprise the logical entity are continuously acquired and averaged, through the

use of Get service calls, to produce a value that is then applied, through the use of Set

service calls, to all of the rotational module agents within the entity. The behaviour

observed is as depicted in Figure 7.1, where the position of the rotational head of the

7 A rchitecture Evaluation 139

Figure 7.1: Servo TIM positions for given accelerometer TIM angles

7 A rchitecture Evaluation 140

(c) Accelerometer TIM angle of 90°.

Figure 7.1: Servo TIM positions for given accelerometer TIM angles

7 A rchitecture Evaluation 141

(e) Accelerometer TIM angle of 180°.

Figure 7.1: Servo TIM positions for given accelerometer TIM angles.

7 A rchitecture Evaluation 142

servo motor directly assumes, within the limits of its physical rotational range, an angle

proportional to the degree to which the accelerometer is offset about its x-axis. Likely due

to its limited sensitivity, varying the ambient light incident on the LDR did not affect the

angle of the servo to as great a degree as changing the orientation of the accelerometer;

however, minor variations were distinctly noticeable, indicating that the voltage readings

returned by the LDR were in fact influencing the average reading applied to the servo

motor.

As a result of overhead encountered during the transmission and processing of the

continuous stream of service calls issued by the primary module to the sensor module

agents within the logical entity, reliable real-time performance was difficult to achieve.

An intentional half-second delay was introduced between sensor reading acquisitions and

averaging in order to limit the frequency of dropped service call messages and achieve

complete stability. Nevertheless, the modular sensing system exhibited correct behaviour,

with real-time performance limited mainly by the capabilities of the microcontroller and

wireless transceiver utilized in the TIMs. Improvements in real-time performance may be

attained through the utilization of a more recent variant of the ARM microcontroller as

well as a transceiver capable of higher sustained transmission speeds in a newer version of

the TIM hardware. The cost of such attaining such components for prototyping purposes

is rapidly falling to reasonable levels, and these components will facilitate greatly reduced

latencies in scenarios where service calls are continuously invoked.

7.3 Physical Collaboration Behaviour

7.3.1 Evaluation Set up

The purpose of this test is to evaluate the behaviour of a modular sensing system when its

constituent TIMs are physically connected. A modular actuator system will be created

7 A rchitecture Evaluation 143

in which two 16 x 4 character HD44780-based liquid-crystal display (LCD) TIMs are

physically connected in various orientations. The behaviour of the composite entity com­

prising the homogeneous modules is then examined and evaluated as per the performance

criteria specified in Section 7.1.

The apparatus used to test the physically interacting modular sensing system is de­

picted in Figures 7.2 and 7.3. As with the wirelessly interacting composite module test,

each module utilized in this test is assigned a letter for the purposes of identification. In

this particular test, one LCD TIM is designated Module A, while the other is designated

Module B. A breadboard is also used within the experiment solely to provide an interface

to a single 5 V adaptor to provide power and an RS232 port connected to a personal

computer workstation for administrative purposes. As with the wirelessly interacting

composite module test, the components on this breadboard otherwise have no influence

on the behaviour of the composite system.

The module TEDS specification describing the characteristics of the two LCD TIMs

utilized in this test is listed in Section B.2.2. This specification is stored within the

standard module TEDS directory located on the SD cards local to each module. The

template TEDS specification applicable to the TIMs utilized in this test and the source

code of its associated template class are listed in Sections B.3.1 and B.4.1 respectively.

The template TEDS specification and compiled template class bytecode are stored in the

template TEDS directory and template class directory on the local SD cards respectively.

7,3.2 Evaluation Procedure

After being placed within range of each other, the LCD modules are expected to detect

each other and attempt to form a composite entity. To prevent multiple template matches

from limiting the free memory available for the logical module to operate, the only suitable

template provided within the non-volatile storage on the TIMs during this test is that

7 A rchitecture Evaluation 144

enabling physically connected text displays to produce a larger, composite display based

on their detected orientation and relative positions (see Sections B.3.1 and B.4.1), which is

satisfied by the LCD modules within the system only when they are physically connected.

Thus, while the template is matched based on module type, class, and data type, the

modules should not form a composite entity until they detect a physical connection to

each other through their faces. Upon connection, a composite system should be created

that finds and utilizes all of the available text displays (the two LCD TIMs) in order to

form a suitable logical entity that effectively functions as a larger display if the displays

detect that they are connected in a suitable orientation, as per the provided template

specification and template class. The LCD TIM designated Module B is the module

possessing the lower address in the system and thus should automatically designate itself

the primary module, responsible for executing the template class upon formation of the

logical entity.

To test if the described system behaviour is realized, the LCD TIMs are connected

together in four configurations such that the LCD displays on the modules are aligned

in suitable horizontal and vertical orientations. For the horizontal orientation, the LCD

TIM designated Module A is connected on the left of the one designated Module B.

In this configuration, Face 2 of Module A is connected to Face 4 of Module B, where

the assigned face numbers are as described in Section 3.7. Once formation of a logical

module entity is indicated through confirmation received on the administrative interface,

alphanumeric text strings are then transmitted through the administrative interface to the

logical module. The text output on the LCD displays is then examined and analyzed in

order to determine the correlation between the orientations of the LCD display modules

and the text outputs observed. In this configuration, the two 16 x 4 character LCD

displays should form and behave as a logical 32 x 4 LCD display, thus possessing double

the width. The test is then repeated with Face 2 of Module B connected to Face 4 of

7 A rchitecture Evaluation 145

Module A, which should produce the same behaviour.

After completion of the second test, the LCD displays are connected in a vertical

configuration, in which the LCD TIM designated Module A is connected above the one

designated Module B. In this configuration, Face 5 of Module A is connected to Face 3 of

Module B. Once formation of a logical module entity is indicated through confirmation

received on the administrative interface, alphanumeric text strings are then transmitted

through the administrative interface to the logical module, as done previously for the

horizontal configurations. The text output on the LCD displays is then examined and

analyzed in order to determine the correlation between the orientations of the LCD display

modules and the text outputs observed. In this configuration, the two 16 x 4 character

LCD displays should form and behave as a logical 16 x 8 LCD display, thus possessing

double the height. The test is then repeated with Face 5 of Module B connected to Face

3 of Module A, which should produce the same behaviour.

7.3.3 Results and Analysis

Figures 7.2 and 7.3 depict the behaviour of the composite sensing system formed in the

second evaluation setup, which consists of TIMs interacting wirelessly as well as physically

through their faces. As previously outlined in Section 7.3.2, alphanumeric text strings

are transmitted through the administrative interface to the logical module formed upon

the physical connection between the two LCD modules A and B present in the system.

These strings are used to confirm that the LCD modules are correctly behaving as an

effectively larger LCD entity for any valid connection orientation between the modules.

Upon each of the four physical connections made between the TIMs in this test, the pose

base addresses of both modules are updated to indicate that a physical connection now

exists between them. Due to the fact that Module B possesses the lower address of the

two modules, its orientation in each case correctly becomes the reference orientation for

7 A rchitecture Evaluation 146

(a) Face 2 of Module A connected to Face 4 of Module B.

(b) Face 2 of Module B connected to Face 4 of Module A.

Figure 7.2: 32 x 4 character composite LCD TIM configurations.

m
am

m
7 A rchitecture Evaluation 147

(a) Face 5 of Module A connected to Face 3 of Module B.

Figure 7.3: 16 x 8 character composite LCD TIM configurations.

7 A rchitecture Evaluation 148

(b) Face 5 of Module B connected to Face 3 of Module A.

Figure 7.3: 16 x 8 character composite LCD TIM configurations.

7 A rchitecture Evaluation 149

both modules, and thus the pose bases of both modules are set to the address of Module

B. As the pose base, the pose matrix of Module B correctly remains the identity matrix

upon each physical connection made to Module A. The updated pose matrices of Module

A as logged by the TIM hardware upon each physical connection to Module B are listed

below, with the standard TIM object coordinate space defined as shown in Figure 6.2,

the face numbers designated as per Section 3.7, and the magnitude of the length of the

edge of a TIM equal to 12 centimetres (cm):

• Pose matrix of Module A when Face 2 of Module A is connected to Face 4 of

Module B, as shown in Figure 7.2a, correctly indicating a negative translation of

12 cm along the x-axis relative to the object coordinate space of Module B:

1 0 0 - 1 2

0 1 0 0

0 0 1 0

0 0 0 1

(7.1)

• Pose matrix of Module A when Face 2 of Module B is connected to Face 4 of Module

A, as shown in Figure 7.2b, correctly indicating a positive translation of 12 cm along

the x-axis relative to the object coordinate space of Module B:

1 0 0 12

0 1 0 0

0 0 1 0

0 0 0 1

(7.2)

• Pose matrix of Module A when Face 5 of Module A is connected to Face 3 of

Module B, as shown in Figure 7.3a, correctly indicating a negative translation of

7 A rchitecture Evaluation 150

12 cm along the z-axis relative to the object coordinate space of Module B:

1 0 0 0

0 1 0 0

0 0 1 - 1 2

0 0 0 1

(7.3)

• Pose matrix of Module A when Face 5 of Module B is connected to Face 3 of Module

A, as shown in Figure 7.3b, correctly indicating a positive translation of 12 cm along

the z-axis relative to the object coordinate space of Module B:

1 0 0 0

0 1 0 0

0 0 1 12

0 0 0 1

(7.4)

After each physical connection between the two LCD TIMs, Module B detects that

both itself and Module A satisfy the requirements for matching the LCDMerge.mod tem­

plate (see Section B.3.1), and loads the template into memory from its local tm p l directory

as well as the associated template class LCDMerge (source code listed in Section B.4.1)

from its local am ss/a lgo directory. Upon each physical connection, a logical module with

a randomly determined logical address is formed locally on Module B, with the most sig­

nificant bit in the logical address correctly set for each logical module formed. The logical

module thereafter issues Join service calls to the module agents running on both Module

A and Module B that respectively represent the interface to the LCD module on each

TIM. For each logical module formed, a local representation of the entity is also created

on Module A. Correctly identifying itself as the primary module of the composite entity

7 A rchitecture Evaluation 151

due to its possession of the lowest address in the environment, Module B commences

execution of the template class in each case.

One of four alphanumeric strings (each of which starts with the letters of the alphabet

in lower case followed by upper case) is transmitted through the administrative interface

to each of the logical display modules upon formation, through the use of a Set service

call. The behaviour observed is as depicted in Figures 7.2 and 7.3, where as long as the

LCD displays associated with the member TIMs are aligned horizontally or vertically

alongside each other in a common plane, the alphanumeric string is always displayed in

a consistent left-to-right, top-to-bottom fashion across TIMs. This behaviour is realized

even if the relative positions of Module A and Module B are swapped, resulting in an

effectively larger display of either 32 x 4 characters as depicted in Figure 7.2, or 16 x 8

characters as depicted in Figure 7.3. Since the member TIMs are physically connected,

they possess a common pose base, and the LCDMerge template class executing on Module

B is therefore able to query and analyze their pose vectors (see Figure 5.1), derived from

their respective pose matrices, in order to determine their relative orientations and thus

the overall geometry of the logical entity. With knowledge of the overall geometry, the

original alphanumeric string is internally split (if necessary) into segments by the primary

module, each of which is recursively transmitted using Set service calls to the appropriate

member LCD TIMs in order to achieve the correct behaviour.

Due to limitations in the amount of memory available within the TIMs, which restrict

the complexity of the template classes utilized by logical module agents as well as the

size of the structures used to maintain the state of the logical module agents themselves,

the LCDMerge template class utilized in this test is unable to scale beyond two LCD

modules. Nevertheless, the logical module entity exhibited the ability to assume a new

behaviour based on the relative orientations between its physically connected member

modules, and by extension, the overall geometry of the composite entity. Through the

7 A rchitecture Evaluation 152

utilization of TIMs possessing greater amounts of memory (which is quickly becoming

less cost prohibitive as semiconductor fabrication techniques improve), scaling to three

LCD modules and beyond would not be difficult to achieve.

7.4 Collaboration Performance Analysis

In this section, measurements obtained during the evaluation of various performance

criteria in the wireless and physical collaboration tests are graphically presented. For

each criterion, the maximum, minimum, and mean performance readings are shown, as

well as the standard deviation from the mean. These readings are then analyzed in

order to characterize the performance of the architecture in each case. Latency and

speed performance evaluations were facilitated through the use of the hardware system

clock provided by the LPC2148 microcontroller present within each TIM, which is read

immediately before and immediately after each event being timed. At least one hundred

and up to three thousand event occurrences are timed, logged, and analyzed during the

collaboration test runs. Upon the occurrence of each event, the elapsed time is obtained by

calculating the difference between each pair of system clock readings and is subsequently

utilized to derive performance data. This data is thereafter logged to non-volatile storage

for analysis. Reading the system clock requires only a few tens of cycles (23 instructions

executed at 60 MHz, most executed in effectively a single cycle due to pipelining), thus

completing in about 1 fis or less. This overhead is considerably less than the time duration

of events encountered during the operation of the software architecture, which are on the

order of milliseconds, and is thus deemed negligible.

7 A rchitecture Evaluation 153

7.4.1 Channel Reservation Latencies

In Figure 7.4, the MAC protocol channel reservation latencies encountered at the com­

munication layer during the collaboration tests are depicted. This latency is defined

as the time elapsed between the transmission of an RTS packet and reception a CTS

packet in response. The results show that the time required to reserve a channel is on

the order of tens of milliseconds (about 40 ms to 50 ms on average). In comparison, the

channel reservation latencies encountered in typical 802.11/WiFi networks, which employ

the MACAW-based CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)

protocol that operates similarly to the MAC protocol utilized in this software architec­

ture, are typically around 20 ms when few nodes are contending for access to the wireless

channel [69].

The relatively large channel reservation period (which was rarely, but occasionally,

on the order of seconds) typically encountered during the operation the software ar­

chitecture can likely be attributed to the greatly reduced interrupt response sometimes

encountered within the software architecture due to its frequent usage of critical sections

during timing-critical operations and operations that must be performed atomically. Crit­

ical sections are facilitated through the disabling of interrupts, during which reception of

medium allocation packets by the wireless transceiver may go undetected for a substan­

tial period of time. The impact of the large channel reservation overhead is somewhat

mitigated by the fact that it occurs only once per message transmission, is independent

of the message length, and only becomes a major issue in real-time scenarios in which

data is streamed between TIMs.

7.4.2 Message Transmission Speeds

Figure 7.5 depicts the speeds at which messages are wirelessly transmitted using the PAR

protocol at the communication layer during the collaboration tests. The results clearly

7 A rchitecture Evaluation 154

Channel Reservation Latency (ms)

Figure 7.4: MAC protocol channel reservation latencies.

show a maximum transmission speed of about 9,650 bytes per second, or about 9.42 kBps

(kilobytes per second), with mean transmission speeds approaching this maximum. The

messages transmitted during the physical collaboration test were generally larger than

those transmitted during the wireless collaboration test; a message data field of at least 52

bytes was required to store the alphanumeric strings transmitted in the physical collabo­

ration test, compared to the at most 12 bytes required in the wireless collaboration test

to store the three floating point accelerometer axis readings transmitted. This results

in an increased chance of packet retransmissions during the transmission of the larger

messages due to interference encountered in the popular 2.4 GHz radio frequency spec-

7 A rchitecture Evaluation 155

Maximum

Minimum

Mean

Standard Deviation

0 2000 4000 6000 8000 10000 12000

Message Transmission Speed (bytes/second)

Figure 7.5: PAR protocol message transmission speeds.

trum utilized by the nRF24L01 transceiver within the TIMs. As a result, a lower mean

message transmission speed was attained during the physical collaboration test, as well

as a noticeably larger transmission speed variance. Nevertheless, the mean transmission

speed was far closer to the maximum attained than the minimum.

The 9.42 kBps maximum transmission speed is much lower than the specified theoreti­

cal maximum of 2 Mbps (megabits per second), or 256 kBps, attainable by the nRF24L01

transceiver. This performance discrepancy may be attributed to a number of key factors.

The first is the speed of the 1.875 MHz SPI bus linking the LPC2148 microcontroller and

the nRF24L01 transceiver, the bandwidth of which is partially consumed in the issuing of

7 A rchitecture Evaluation 156

commands bytes to the transceiver to inform it of each forthcoming packet payload to be

transmitted. The second is the acknowledgement packet transmission overhead encoun­

tered as required by the PAR protocol utilized at the communication layer, in which each

packet requires an acknowledgement packet (ACK) to be returned by the recipient before

the next packet transmission may occur in order to improve the reliability of the wireless

link. The final factor is the overhead encountered during the encryption and decryption

of each packet through the use of the ARC4 stream cipher, used to ensure the security

of transmitted information. The maximum message transmission speed of 9.42 kBps is,

however, very well suited to a wide variety of sensor-actuator systems and applications.

7.4.3 Service Call Round-Trip Latencies

Figure 7.6 depicts the latencies encountered during the invocation of synchronous Call By

service functions in the collaboration tests, which are usually minimal functions intended

to be immediately carried out to completion by the target module agent. This latency is

defined as the time elapsed, or round-trip interval, between the transmission of the service

call message to the target module agent and the reception of the associated return message

from the target. Service calls that are asynchronous or Call At calls are not considered

since such service calls are typically subject to lengthy and/or widely varying latencies,

and will be utilized less often in practice than synchronous Call By service calls.

The results show that the return message reception latencies for synchronous Call By

service function invocations are typically around 300 to 500 ms on average. However, it

is also seen that the latencies may occasionally be on the order of seconds, as is the case

with the channel reservation latencies encountered during execution of the MAC protocol.

In comparison, the round-trip latencies encountered during the operation of the standard

Remote Procedure Call (RPC) protocol on which the service call mechanism is based,

and which is usually employed on high-speed wired and wireless networks, are typically

7 A rchitecture Evaluation 157

Maximum

Minimum

Mean

Standard Deviation

0 1000 2000 3000 4000 5000 6000

Service Call Round-Trip Latency (ms)

Figure 7.6: Service call round-trip latencies.

below 100 ms for small messages on the order of tens of kilobytes in size [70].

The relatively large service call message reception latencies typically encountered dur­

ing the operation the software architecture can noticeably limit the responsiveness of a

composite module, limiting the ability of the TIMs (in their current form) to be applied

to real-time streaming applications. In addition to the previously outlined factors that

impact channel reservation latencies and message transmission speeds (which in turn im­

pact the speed of service function invocations), a major factor impacting return message

reception latencies is the substantial overhead encountered in the interpretation and exe­

cution of Java bytecodes at the virtual machine layer (further outlined in Section 7.4.4).

7 A rchitecture Evaluation 158

These platform-independent bytecodes comprise the template classes that provide the

service function definitions for logical modules, and must be interpreted during each call

to these service functions.

7.4.4 Bytecode Execution Speeds

Figure 7.7 depicts the speeds at which the Java virtual machine bytecode instructions

comprising logical module template classes are interpreted and executed at the virtual

machine layer. Each bytecode interpretation speed reading is determined by dividing

the number of instructions executed during the invocation of a particular template class

service function by the length of time required to complete the call. As seen in the re­

sults, the mean bytecode execution speed attained during the wireless collaboration test

of about 47 instructions/second is noticeably lower than the mean speed of about 266

instructions/second attained during the physical collaboration test; in fact, the maximum

speed of about 91 instructions/second is also noticeably lower. During the physical col­

laboration test, much higher maximum speeds of up to about 886 instructions/second

were realized.

This discrepancy may be attributed to the fact that during the wireless collaboration

test, synchronous service calls are being issued multiple times per second by the primary

module of the modular sensing system to the other constituent TIMs within the logical

entity (to perform near real-time acquisition of sensor readings). Synchronous service

calls result in the suspension of template class execution until the completion of the call,

therefore potentially extending the execution time of the template class method from

which the service call originated by a substantial amount. In the physical collaboration

test, the primary module of the formed logical entity only issues synchronous service

calls to the constituent TIMs within the logical entity upon a change in state of the

system (the text being displayed), thus vastly reducing the performance impact of the

7 A rchitecture Evaluation 159

Maximum

Minimum

Mean

Standard Deviation

0 100 200 300 400 500 600 700 800 900 1000

Bytecode Execution Speed (instructions/second)

Figure 7.7: Virtual machine bytecode execution speeds.

calls. However, the intermittent occurrence of these synchronous service calls noticeably

increased the variance of the bytecode interpretation speed readings observed during the

physical collaboration test.

The attained bytecode interpretation speeds during the collaboration tests are consid­

erably slower (on the order of thousands of times) than native machine code execution.

The low processor clock speeds and limited memory available in the TIM hardware, as

well many other resource-constrained embedded devices, are not conducive to popular

acceleration techniques such as dynamic recompilation, also termed just-in-time recompi­

lation (JIT) [71], in which newly encountered bytecodes are recompiled on the fly into

7 A rchitecture Evaluation 160

native machine code. The JIT recompilation approach significantly increases interpreta­

tion speed by caching the dynamically generated machine code in memory and executing

it as necessary, instead of reinterpreting the associated bytecodes. Newer versions of

the ARM processor core, on which the LPC2148 microcontroller present in the TIMs is

based, overcome the performance limitations of purely interpretive Java virtual machines

by supporting the execution of Java bytecodes directly in hardware, through the use of

the Jazelle [71] architecture extension.

7.4.5 Startup Memory Utilization

Figure 7.8 depicts the amount of random access memory (RAM) utilized on the TIMs

(from an available heap of 31,656 bytes, or approximately 31 kilobytes, integrated into

the LPC2148 microcontroller) by the software architecture upon formation of the logical

modules within each collaboration test before they begin execution. This memory utiliza­

tion includes the representative structures for all the main background tasks (the network

communication task, face communication task, and administrative shell task), the mod­

ule message handler task associated with the local transducer on each TIM, as well as for

the module message handler task associated with the local representation of the logical

module of which the TIM is a member. Also included in the memory utilization is the

template class and TEDS entries associated with the logical module.

The results clearly show that about 20 to 24 KB (kilobytes) on average, or about 65%

to 77% of the available memory, is typically utilized upon logical module formation. The

minimum, mean, and maximum memory utilization readings are shown to be relatively

close in each collaboration test, but do deviate by small amounts. This may be attributed

to packets and messages that arrive and are buffered during the initialization of the logical

module at varying intervals, which introduce minor variations in the memory utilization

detected. The consistently larger memory utilization by the physical collaboration test as

7 A rchitecture Evaluation 161

Maximum

Minimum

Mean

Standard Deviation

0 5 0 0 0 100 00 1 5 0 00 2 0 0 0 0 2 5 0 0 0 3 0 0 00 3 5 0 00

Startup Memory Utilization (bytes)

Figure 7.8: Startup memory utilization after logical module creation.

compared to the wireless collaboration test may be attributed to the LCDMerge template

class utilized in the physical collaboration test, which is larger and more complex than the

ServoCon template class utilized in the wireless collaboration test. Due to the fact that

complex template classes, such as the LCDMerge template class, will often require on the

order of 4 KB of memory or more just for representation purposes, scalability to greater

than one or two logical module representations per TIM is very difficult. Nevertheless,

the software architecture is designed to scale with increasing amounts of processing power

and available memory, which is quickly becoming less cost prohibitive with improvements

in semiconductor fabrication techniques.

7 A rchitecture Evaluation 162

7.5 Summary

In this chapter, a description was provided of the process used to evaluate the operation

and performance of the software architecture as well as a description the results observed

and an analysis of these results. It was seen that the software architecture exhibited

correct behaviour in both the wireless and physical collaboration tests performed. How­

ever, processing and memory limitations imposed by the hardware present in the current

implementation of the TIMs noticeably limited the responsiveness and scalability of the

architecture. Due to the hardware-independent design of the software architecture, uti­

lization of future variations of the TIM hardware possessing increased processing and

memory resources will lead to immediate improvements in its performance. The follow­

ing chapter will conclude the thesis and summarize the implementation of the software

architecture, as well as provide recommendations for future enhancements of the software

architecture.

Chapter 8

Conclusions

8.1 Concluding Remarks

This thesis presented a novel software architecture and knowledge representation scheme

that facilitates the flexible, scalable, and reliable combination of heterogeneous modular

sensor and actuator components. The ability to combine a sensor with an actuator allows

the sensor to be augmented with motion capability, enabling the now active sensor to

adapt to changing process requirements.

Each modular component provides a core sensing or actuation functionality and also

possesses embedded knowledge of its capabilities, which may be communicated to other

modules in its environment. This facilitates collaboration among a group of sensor and ac­

tuator modules, and enables all or a subset of the group to dynamically exhibit completely

new behaviour. The proposed software architecture was implemented and evaluated us­

ing a prototype transducer module implementation in order to test its viability, and this

work is a first step towards a highly adaptive architecture that will prove useful in appli­

cable domains such as flexible inspection, mobile robotics, surveillance, and even space

exploration.

163

8 Conclusions 164

In order to achieve the proposed research objective, the following features were con­

sidered for the design of the architectural framework, each of which were incorporated

into the resulting design to varying degrees:

• Heterogeneity — Support the connection of modular sensor and actuator com­

ponents of diverse types.

• Autonomy — Support the autonomous discovery and intelligent configuration of

networked modules.

• Pose/Geometry Determination -— Support the determination of the pose (po­

sition and orientation) of individual modules, and therefore the determination of

the overall geometry of a group of connected modules.

• Assumption of a Collective Identity — Facilitate the assumption of a collective

identity by a set of collaborating modules based on their capabilities and poses.

• Process Distribution — Support task splitting and distribution among a group

of networked modules.

• Resource Management — Manage the hardware resources on each module in an

efficient and straightforward manner.

• Scalability — Maintain reliable operation with an increasing number of connected

modules.

• Robustness — Automatically adapt to the addition, removal, or failure of modules

in real-time.

8 Conclusions 165

8.2 Thesis Summary

The software architecture described in this thesis is a distributed, layered architecture

composed of six layers. The implementation of each layer is encapsulated from the layer

above, to which it provides service. Utilizing a layered architecture enables each layer to

be easily implemented, modified, and debugged independently of the others, while the

distributed nature of the architecture mitigates against a single point of failure within a

system of collaborating modules.

The first and lowest layer, described in Chapter 2, is the module hardware layer. This

layer comprises the processing, memory, storage, communication and sensing/actuation

resources needed by the software architecture to operate. These resources are provided

by the modular sensor and actuator components for which the software architecture is

designed, termed Transducer Interface Modules (TIMs) [22].

The second layer is the real-time operating system (RTOS)/device drivers layer, also

described in Chapter 2. This layer provides straightforward management of TIM hard­

ware resources and also provides an environment for the concurrent execution of inde­

pendent tasks, which promotes a modular and easily maintained software architecture

implementation. The device drivers present within this layer are the low-level software

routines through which manipulation of the hardware resources present in TIMs occurs.

The third layer is the communication layer, described in Chapter 3. This layer serves

as an interface to the wireless transceiver driver, and provides logical link control to

transform the unreliable wireless medium into a reliable, connection-oriented medium;

medium access control in order to prevent wireless channel access conflicts; a protocol for

maintaining time synchronization between modules; and wireless security for transmitted

packets facilitated by the A R C f [32] cryptographic stream cipher. Also provided by

this layer is a novel wired protocol facilitating the transfer of data through the faces of

connected TIMs for the purposes of pose and overall geometry determination.

8 Conclusions 166

The fourth layer is the middleware layer, outlined in Chapter 4. This layer defines

the various architecture-specific service functions through which the heterogeneous or

homogeneous member TIMs comprising a logical module may request services from and

information about each other, thus facilitating distributed operation. These service func­

tions define the application programming interface (API) for both physical and logical

modules. Variable-length messages are used to transfer data between TIMs.

The fifth layer is the virtual machine layer, outlined in Chapter 5. This layer provides

a environment for the execution of the platform-independent template algorithm classes

that define the behaviour dynamically assumed by the collaborating TIMs comprising

logical modules. The definition of platform-independent algorithms enables the behaviour

of a group of collaborating TIMs to be specified in a manner that is completely decoupled

from their underlying hardware architecture. The virtual machine itself is a custom

lightweight implementation of Sun Microsystems’ well documented and widely utilized

Java Virtual Machine [23] designed specifically for this software architecture.

The sixth and final layer is the composition layer, outlined in Chapter 6. In this layer

logical module template TEDS specifications as well as their associated logical module

template algorithm classes, both unique to this software architecture, are loaded by a

TIM from its non-volatile storage in response to modules it detects within its environment

that satisfy at least one role definition within any of the specifications. If all of the roles

within a particular template TEDS specification are matched, a logical module task and

structure representation is created locally on each matching module. The template class

associated with the template TEDS is then executed on each module in order to realize

the defined behaviour of the logical entity through the collaboration of its members.

Evaluation results showed that the software architecture exhibited correct behaviour

in both the wireless collaboration and physical collaboration scenarios considered. How­

ever, the responsiveness and scalability of the architecture was notably restricted as a

8 Conclusions 167

result of the processing and memory limitations imposed by the current TIM hardware

implementation. Key latencies were encountered during channel reservation at the com­

munication layer as well as during service call message round-trips at the middleware

layer. Limited packet and message transmission speeds at the communication layer also

impacted these latencies. The limited processing capability noticeably affected virtual

machine bytecode interpretation performance, particularly since acceleration techniques

such as dynamic recompilation and direct bytecode execution could not be leveraged

with the current TIM hardware. The memory footprint upon initialization of a logical

module at the composition layer was also noticeably large. In spite of these performance

restrictions, the software architecture was designed to scale with increased processing and

memory resources, and therefore the utilization of future variations of the TIM hardware

possessing increased processing and memory resources will lead to tangible performance

improvements.

8.3 Recommendations

Although the adaptive modular sensing system software architecture exhibited correct

behaviour when implemented and evaluated on actual TIM hardware, a number of areas

in the design and implementation of the software architecture may be improved, and new

features may be added, in order to increase its applicability.

As discovered through the evaluation of the software architecture, processing and

memory limitations imposed by the current TIM hardware implementation resulted in

relatively large latencies being introduced into multiple layers of the software architecture.

These latencies cumulatively act to reduce system performance, limiting its applicability

to demanding scenarios where real-time performance is required. Utilizing a revision of

the TIM hardware possessing a microcontroller based on more recent, high-speed versions

8 Conclusions 168

of the ARM processor, such as those in the ARM9 and ARM 11 series, would result in

substantially improved architecture performance. In addition, these microcontrollers also

expose an interface providing direct access to their address bus, data bus, and chip select

lines, facilitating the incorporation of vasts amounts of high-speed static random access

memory (on the order of hundreds of megabytes) into newer TIM implementations. This

would greatly increase the number of concurrent logical modules of which a TIM may be

a collaborating member. Increased processing and memory resources would also enable

very bandwidth-intensive sensors which regularly transfer large volumes of data, such as

embedded cameras, to be associated with TIMs and utilized in a modular sensing system.

Greater sustained packet and message transmission speeds would also noticeably im­

prove the performance of the overall software architecture, particularly in scenarios requir­

ing real-time collaboration between member modules transferring substantial amounts of

data, since the round-trip latency for every service call issued would be reduced. Mov­

ing channel reservation and switching logic into the firmware of the transceiver would

also aid in reducing these latencies. A transceiver based on the 2.4 GHz short-range,

frequency-hopping spread spectrum (FHSS) technology Bluetooth [72] would be well

suited to achieving these goals. In addition, due to the pseudorandom frequency-hopping

sequence utilized in switching between channels, data transmissions are indistinguishable

from background noise without knowledge of the sequence. This provides an extra layer

of data security to supplement its firmware-level encryption.

Throughout the software architecture, critical sections are extensively utilized to facil­

itate the atomic operation of timing-critical operations. Critical sections are implemented

through the disabling of interrupts, which has the side effect of preventing the real-time

operating system (RTOS) from performing context switches between concurrently ex­

ecuting tasks. However, critical sections are also utilized in a number of areas of the

software architecture to provide atomic access to queues and other forms of data to con­

8 Conclusions 169

currently executing tasks competing for these resources. With frequent utilization, criti­

cal sections often result in greatly increased execution latencies. Although the TNKernel

RTOS utilized within the software architecture supports constructs such as mutexes and

semaphores that are designed to allow atomic access to shared data without preventing

context switches, they were not utilized in order to avoid the overhead involved in their

use on the microcontroller. In the TNKernel RTOS, each use of these constructs requires

a switch to kernel code. On hardware possessing greater processing capability, mutexes

and semaphores should be utilized to implement task-safe access to shared data.

To keep the implementation of the Java-based virtual machine within the software ar­

chitecture lightweight, features of complete Java virtual machine implementations deemed

not critical to logical module member collaboration, such as threads and automatic

garbage collection, were not implemented due to the previously mentioned limited pro­

cessing capability of the TIMs. However, these features are recognized as part of the

standard definition of the Java language, and would likely be seen as a requirement by

some system users. On more capable TIM hardware, these features should be provided

in order to bring the capabilities of the implemented virtual machine in line with the

complete Java virtual machine specification as defined by Sun Microsystems [67]. Alter­

natively, if the utilized TIM hardware possesses enough memory resources to parse, and

possibly compile, logical module behaviour specified strictly in the form of a text-based

script, interpreters for well-supported and well-documented scripting languages such as

Lua [73] and Python [74] may be incorporated into the software architecture in place of the

Java-based virtual machine. These languages are somewhat less flexible than a complete

Java implementation, but the lack of a need for source code compilation may simplify

template algorithm implementation, deployment, and debugging. The Lua interpreter is

particularly conducive to being embedded within a larger, encompassing application.

The library of template TEDS specifications and processing algorithms stored in the

8 Conclusions 170

non-volatile memory local to each TIM within a modular sensing system is updated,

without requiring user intervention, in an automatic, peer-to-peer fashion through the

use of join structures (see Section 6.2.3) issued by Join service calls during the formation

of logical modules. However, no mechanism is provided by which only the latest version of

a particular template TEDS specification and its associated template class is transferred

between TIMs before execution. A versioning scheme, possibly in the form of a new TEDS

field, should be incorporated into TEDS specifications to ensure that a module with the

latest version of a particular specification (and its associated template class if applicable)

does not have its stored specification overwritten by older versions during peer-to-peer

updates. In the presence of a connection to the administrative interface on a module

possessing conflicting TEDS specification versions, the system user may be queried for

conformation before the older TEDS specification is overwritten.

In summary, implementing and evaluating the software architecture proposed in this

thesis has enabled numerous performance limitations to be exposed that would otherwise

be difficult to discover. Addressing the latencies encountered at multiple layers within

the software architecture stack as well as improving the speeds of message transmission

and bytecode execution will result in a greatly improved adaptive modular sensing system

architecture that will prove useful in its many applicable domains.

References

[1] G. E. Moore, “Cramming more components onto integrated circuits,” in Proceedings
of the IEEE, vol. 86, pp. 82-85, January 1998.

[2] T. Henderson, C. Hansen, and B. Bhanu, “A framework for distributed sensing and
control,” in Proceedings of the International Joint Conference on Artificial Intelli­
gence (IJCAI ’85), (Los Angeles, CA, USA), pp. 1106-1109, August 1985.

[3] M. Dekhil and T. C. Henderson, “Instrumented sensor systems,” in Proceedings
of the 1996 IEEE /SICE/RSJ International Conference on Multisensor Fusion and
Integration for Intelligent Systems, (Washington, DC, USA), pp. 193-200, IEEE,
December 1996.

[4] L. Mottola and G. P. Picco, “Logical neighborhoods: A programming abstraction for
wireless sensor networks,” in Proceedings of the Second IEEE International Confer­
ence on Distributed Computing in Sensor Systems (DCOSS 2006), (San Francisco,
CA, USA), pp. 150-168, Springer-Verlag, June 2006.

[5] P. Ciciriello, L. Mottola, and G. P. Picco, “Building virtual sensors and actuators over
logical neighborhoods,” in Proceedings of the International Workshop on Middleware
for Sensor Networks (MidSens 2006), (Melbourne, Australia), pp. 19-24, Association
for Computing Machinery, November 2006.

[6] K. Lee, “IEEE 1451: A standard in support of smart transducer networking,” in
Proceedings of the 17th IEEE Instrumentation and Measurement Technology Con­
ference, vol. 2, (Baltimore, MD, USA), pp. 525-528, IEEE, May 2000.

[7] National Institute of Standards and Technology, “NIST IEEE-P1451 draft standard
home page.” [Online]. Available: h t t p : / / i e e e l4 5 1 .n is t .g o v / , January 2008 [Ac­
cessed: April 16, 2008].

[8] National Instruments, “An overview of IEEE 1451.4 transducer electronic data sheets
(TEDS).” [Online]. Available: h ttp ://w w w .n i.com /ted s /, September 2006 [Ac­
cessed: April 16, 2008].

[9] Institute of Electrical and Electronics Engineers, “IEEE P1451.7D0.3: Draft stan­
dard for a smart transducer interface for sensors and actuators - RFID commu­

171

http://ieeel451.nist.gov/
http://www.ni.com/teds/

R eferences 172

nication protocols and transducer electronic data sheet (TEDS) formats.” [On­
line]. Available: h ttp ://w w w .a u to id .o rg /s c 3 1 /w g 4 s g l/0 7 /N o v /S G l_ 2 0 0 7 1 1 _ 1 4 9 _
IEEE_042_P1451_7D0_03_10_23_2007.doc, November 2007 [Accessed: April 16,
2008].

[10] J. L. Hill and D. E. Culler, “Mica: A wireless platform for deeply embedded net­
works,” IEEE Micro, vol. 22, pp. 12-24, November 2002.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System archi­
tecture directions for networked sensors,” in Proceedings of the Ninth International
Conference on Architectural Support for Programming Languages and Operating Sys­
tems (ASPLOS-IX), vol. 34, (Cambridge, MA, USA), pp. 93-104, ACM, December
2000.

[12] L. E. Holmquist, H.-W. Gellersen, G. Kortuem, A. Schmidt, M. Strohbach, S. An-
tifakos, F. Michahelles, B. Schiele, M. Beigl, and R. Maze, “Building intelligent
environments with Smart-Its,” IEEE Computer Graphics and Applications, vol. 24,
pp. 56-64, January 2004.

[13] S. Cotterell, R. Mannion, F. Vahid, and H. Hsieh, “eBlocks - an enabling technology
for basic sensor based systems,” in Proceedings 2005 Fourth International Symposium
on Information Processing in Sensor Networks, (Los Angeles, CA, USA), pp. 422-
427, IEEE, April 2005.

[14] S. Cotterell, K. Downey, and F. Vahid, “Applications and experiments with eBlocks
- electronic blocks for basic sensor-based systems,” in Proceedings 2004 First Annual
IEEE Communications Society Conference on Sensor and Ad Hoc Communications
and Networks, (Santa Clara, CA, USA), pp. 7-15, IEEE, October 2004.

[15] T. D. Ngo and H. H. Lund, “Modular artefacts,” in Component-Oriented Approaches
to Context-aware Computing (ECOOP 2004j, (Oslo, Norway), June 2004.

[16] N. Edmonds, D. Stark, and J. Davis, “MASS: Modular architecture for sensor sys­
tems,” in Proceedings of the 4th International Symposium on Information Processing
in Sensor Networks (IPSN 2005), (Los Angeles, CA, USA), pp. 393-397, IEEE, April
2005.

[17] A. S. Tanenbaum, Computer Networks. Upper Saddle River, NJ, USA: Prentice Hall,
4th ed., 2003.

[18] Bug Labs, “Bug labs: Products.” [Online]. Available: h ttp : / /w w w .b u g la b s .n e t /
p ro d u c ts /, 2008 [Accessed: April 16, 2008].

[19] M. P. Weller, E. Y.-L. Do, and M. D. Gross, “Posey: Embedding computation in a
poseable hub and strut construction kit for undirected play,” in 2nd ACM Conference
on Tangible and Embedded Interaction, (Bonn, Germany), February 2008.

http://www.autoid.org/sc31/wg4sgl/07/Nov/SGl_200711_149_
http://www.buglabs.net/

References 173

[20] NXP Semiconductors, “LPC2141, LPC2142, LPC2144, LPC2146, and LPC2148 de­
vice highlight.” [Online]. Available: h ttp ://w w w .standardics.nxp.com /products/
Ipc2000/lpc214x/, 2007 [Accessed: June 30, 2007].

[21] Nordic Semiconductor, “nRF24L01 single chip 2.4GHz transceiver product specifi­
cation.” [Online]. Available: h ttp : / /w w w .n o rd ic s e m i.c o m /f i le s /P ro d u c t /d a ta _
sh ee t/nR F 24L01_P roduc t_S pec ific a t io n _ v 2 _ 0 .p d f, July 2007 [Accessed: May
15, 2008].

[22] A. Jain and M. D. Naish, “Building blocks for adaptive modular sensing systems,”
in Proceedings of the 2007 IEEE International Conference on Systems, Man and
Cybernetics, (Montreal, QC, Canada), pp. 184-189, IEEE, October 2007.

[23] Sun Microsystems Inc., “Java technology.” [Online]. Available: h t t p :/ / ja v a .s u n .
com/, 2007 [Accessed: March 4, 2007].

[24] R. Barry, “PreeRTOS real-time operating system.” [Online]. Available: h ttp : / /w w w .
f r e e r to s . o r g / , 2007 [Accessed: March 4, 2007].

[25] Y. Tiomkin, “TNKernel real-time kernel.” [Online]. Available: http ://w w w .
tnkernel.com /, 2006 [Accessed: June 29, 2007].

[26] Microsoft Corporation, “FAT technical reference.” [Online]. Available: h t t p : / /
te c h n e t .m ic ro s o ft .c o m /e n -u s / l ib ra ry /c c 7 5 8 5 8 6 .a s p x , March 2003 [Accessed:
August 13, 2008].

[27] S. Tweedie, “EXT3, journaling filesystem.” [Online]. Available: h t t p : / / o l s t r a n s .
s o u rc e fo rg e .n e t/re le a s e /0 L S 2 0 0 0 -e x t3 /0 L S 2 0 0 0 -e x t3 .h tm l, July 2000 [Ac­
cessed: February 28, 2008].

[28] Microsoft Corporation, “NTFS technical reference.” [Online]. Available: h t t p : / /
te c h n e t.m ic ro s o ft .c o m /e n -u s / l ib ra ry /c c 7 5 8 6 9 1 .a s p x , March 2003 [Accessed:
August 13, 2008].

[29] Electronic Lives Manufacturing, “FAT file system module.” [Online]. Available:
h t tp : / /e lm -chan . o r g /fs w /f f /0 0 in d e x _ e .html, 2007 [Accessed: January 28,
2008].

[30] L. Ysboodt and M. De Nil, “EFSL embedded filesystems library.” [Online]. Available:
h t t p : / / e f s l . b e / , 2005 [Accessed: January 28, 2008].

[31] Microsoft Corporation, “Naming a file.” [Online]. Available: h t t p : / /m sdn .
m ic ro s o ft .c o m /e n -u s /l ib ra ry /a a 3 6 5 2 4 7 .a s p x , June 2008 [Accessed: July 7,
2008].

http://www.standardics.nxp.com/products/
http://www.nordicsemi.com/files/Product/data_
http://java.sun
http://www
http://www
http://olstrans
http://efsl.be/

R eferences 174

[32] K. Kaukonen and R. Thayer, “A stream cipher encryption algorithm: Arc-
four.” [Online]. Available: h t tp : / /w w w .m o z i l la .o r g /p r o je c t s / s e c u r i t y /p k i /
n s s /d r a f t - k a u k o n e n - c ip h e r - a r c fo u r - 0 3 . tx t , July 1999 [Accessed: May 13,
2008].

[33] The World Wide Web Consortium, “Extensible markup language (XML).” [Online].
Available: h ttp ://w w w .w 3 .o rg /X M L /, January 2008 [Accessed: May 13, 2008].

[34] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: A media access
protocol for wireless LANs,” in Proceedings ACM SIGCOMM Conference on
Communications Architectures, Protocols and Applications, (London, UK), pp. 212—
225, August 1994.

[35] P. Karn, “MACA — a new channel access method for packet radio,” in Proceedings of
the 9th ARRL/CRRL Amateur Radio Computer Networking Conference, (London,
ON, Canada), pp. 134-140, September 1990.

[36] D. L. Mills, “Simple network time protocol (SNTP) version 4 for IPv4, IPv6 and
OSI.” [Online]. Available: h t t p : / / w w w . fa q s . o r g / f t p / r f c / p d f / r f c 4 3 3 0 . t x t . p d f ,
January 2006 [Accessed: March 4, 2007].

[37] D. L. Mills, “Network time protocol (version 3) specification, implementation
and analysis.” [Online]. Available: h t t p : / / w w w . fa q s . o r g / f t p / r f c / r f c l3 0 5 . p d f ,
March 1992 [Accessed: March 4, 2007].

[38] T. Karygiannis and L. Owens, “Wireless network security: 802.11, Bluetooth and
handheld devices (NIST special publication 800-48).” [Online]. Available: h t t p : / /
csrc.n ist.gov /p u b lica tion s /n istp u bs/8 00 -48 /N IS T _S P _800 -48 .p d f, Novem­
ber 2002 [Accessed: May 15, 2008].

[39] B. Schneier, “Description of a new variable-length key, 64-bit block cipher (Blow-
fish),” in Fast Software Encryption, Cambridge Security Workshop Proceedings,
(Cambridge, UK), pp. 191-204, Springer-Verlag, December 1993.

[40] National Institute of Standards and Technology, “Federal information processing
standards publication 197: Announcing the Advanced Encryption Standard (AES).”
[Online]. Available: h t t p : / / w w w . c s r c . n is t . g o v /p u b l ic a t io n s / f ip s / f ip s l9 7 /
f ip s - 1 9 7 .p d f , November 2001 [Accessed: May 13, 2008].

[41] The Wi-Fi Alliance, “Wi-Fi Protected Access: Strong, standards-based, interoper­
able security for todays Wi-Fi networks.” [Online]. Available: h t t p : / / w w w . w i - f i .
o rg /f i le s /w p _ 8 _ W P A S e c u r ity _ 4 -2 9 -0 3 .p d f , April 2003 [Accessed: May 13, 2008].

[42] C. E. Strangio, “The RS232 standard: A tutorial with signal names and defi­
nitions.” [Online]. Available: h t t p : //www. cam iresearch.com /D ata_C om _B asics/
R S 232_standard .h tm l, 2006 [Accessed: May 17, 2008].

http://www.mozilla.org/projects/security/pki/
http://www.w3.org/XML/
http://www.faqs.org/ftp/rfc/pdf/rfc4330.txt.pdf
http://www.faqs.org/ftp/rfc/rfcl305.pdf
http://www.csrc.nist.gov/publications/fips/fipsl97/
http://www.wi-fi

References 175

[43] J. Hurwitz, “Sorting out middleware.” [Online]. Available: h ttp ://w w w .dbm sm ag .
com/980ld 0 4 .h tm l, January 1998 [Accessed: February 12, 2008].

[44] R. Srinivasan, “RPC: Remote procedure call protocol specification version 2.” [On­
line], Available: h t t p : / / w w w . f a q s . o r g / f t p / r f c / p d f / r f c l8 3 1 . t x t . p d f , August
1995 [Accessed: February 12, 2008].

[45] Carnegie Mellon Software Engineering Institute, “Object request broker.” [On­
line]. Available: h t tp : / /w w w .s e i . c m u .e d u /s tr /d e s c r ip t io n s /o rb _ b o d y .h tm l,
January 2007 [Accessed: February 12, 2008].

[46] Object Management Group, “Common object request broker architecture: Core
specification.” [Online]. Available: h ttp : / /w w w .o m g .o rg /d o c s / fo rm a l/0 4 -0 3 -1 2 .
p d f, March 2004 [Accessed: February 12, 2008].

[47] P. E. Chung, Y. Huang, S. Y. D. Liang, J. C. Shih, C.-Y. Wang, and Y.-
M. Wang, “DCOM and CORBA side by side, step by step, and layer by
layer.” [Online]. Available: h t t p : / / r e s e a r c h . m ic r o s o f t . com/~ymwang/papers/
HTML/DCOMnCORBA/S.html, September 1997 [Accessed: February 12, 2008].

[48] Sun Microsystems Inc., “Java remote method invocation - distributed comput­
ing for Java.” [Online]. Available: h ttp : / / ja v a .s u n .c o m / ja v a s e / te c h n o lo g ie s /
c o re /b a s ic / rm i/w h ite p a p e r / in d e x . js p , 2008 [Accessed: February 12, 2008],

[49] K. North, “Understanding multidatabase APIs and ODBC.” [Online]. Available:
h ttp ://w w w .d b m sm a g .co m /9 4 0 3 d l3 .h tm l, June 1994 [Accessed: February 12, 2008].

[50] Sun Microsystems Inc., “JDBC overview.” [Online]. Available: h t t p : / / j a v a . s u n .
c o m /p ro d u c ts / jd b c /o v e rv ie w .h tm l, 2008 [Accessed: February 12, 2008].

[51] R. Balani, S. Han, R. Kumar, I. Tsigkogiannis, and M. Srivastava, “Multi-level soft­
ware reconfiguration for sensor networks,” in Proceedings of the 6th ACM and IEEE
International Conference on Embedded Software (EMSOFT 2006), (Seoul, South
Korea), pp. 112-121, Association for Computing Machinery, October 2006.

[52] J. Jeong, “Node-level representation and system support for network programming,”
tech, rep., University of California, Berkeley, December 2003.

[53] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol
for network programming at scale,” in Proceedings of the 2nd International Confer­
ence on Embedded Networked Sensor Systems (SenSys ’Of), (Baltimore, MD, USA),
pp. 81-94, ACM, November 2004.

[54] S. S. Kulkarni and L. Wang, “MNP: Multihop network reprogramming service for
sensor networks,” in Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems Workshops (ICDCS 2005), (Columbus, OH, USA),
pp. 7-16, IEEE, June 2005.

http://www.dbmsmag
http://www.faqs.org/ftp/rfc/pdf/rfcl831.txt.pdf
http://www.sei
http://www.omg.org/docs/formal/04-03-12
http://research.microsoft
http://java.sun.com/javase/technologies/
http://www.dbmsmag.com/9403dl3.html
http://java.sun

R eferences 176

[55] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code update mechanism
for wireless sensor networks,” tech, rep., University of California, Los Angeles, 2003.

[56] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki: A lightweight and flexible oper­
ating system for tiny networked sensors,” in Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks (LCN 2004)■> (Tampa, FL,
USA), pp. 455-462, IEEE, November 2004.

[57] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic operating
system for sensor nodes,” in Proceedings of the Third International Conference on
Mobile Systems, Applications, and Services (MobiSys 2005), (Seattle, WA, USA),
pp. 163-176, USENIX Association, June 2005.

[58] Y. Shi, D. Gregg, A. Beatty, and M. A. Ertl, “Virtual machine showdown: Stack ver­
sus registers,” in Proceedings of the First ACM/USENIX International Conference
on Virual Execution Environments (VEE ’05), (Chicago, IL, USA), pp. 153-163,
ACM, June 2005.

[59] E. Meijer and J. Gough, “Technical overview of the common language runtime,”
tech, rep., Microsoft, 2000.

[60] P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor networks,” in Pro­
ceedings of the Tenth International Conference on Architectural Support for Program­
ming Languages and Operating Systems, vol. 37, (San Jose, CA, USA), pp. 85-95,
ACM, October 2002.

[61] P. Levis, D. Gay, and D. Culler, “Active sensor networks,” in Proceedings of the 2nd
Symposium on Networked Systems Design & Implementation (NSDI ’05), (Boston,
MA, USA), pp. 343-356, May 2005.

[62] P. Stanley-Marbell and L. Iftode, “Scylla: A smart virtual machine for mobile em­
bedded systems,” in Proceedings of the Third IEEE Workshop on Mobile Computing
Systems and Applications, (Los Alamitos, CA, USA), pp. 41-50, IEEE, December
2000.

[63] J. Koshy and R. Pandey, “VM*: Synthesizing scalable runtime environments for
sensor networks,” in Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems (SenSys ’05), (San Diego, California, USA), pp. 243-254,
ACM, November 2005.

[64] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: An acquisi-
tional query processing system for sensor networks,” ACM Transactions on Database
Systems, vol. 30, pp. 122-173, March 2005.

[65] Codehaus Foundation, “Groovy: An agile dynamic language for the Java platform.”
[Online]. Available: h ttp ://g ro o v y .co d e h a u s .o rg /, 2006 [Accessed: February 27,
2008].

http://groovy.codehaus.org/

R eferences 177

[66] Python Software Foundation, “The Jython project.” [Online]. Available: h t t p : / /
w w w .jython.org/, 2007 [Accessed: February 27, 2008].

[67] T. Lindholm and F. Yellin, “The Java™ virtual machine specification, second
edition.” [Online]. Available: h t tp : / / j ava. sun. com /docs/books/jvm s/second ,
edition/html/VMSpecTOC.doc.htm l, 1999 [Accessed: February 27, 2008].

[68] F. Dunn and I. Parberry, 3D Math Primer for Graphics and Game Development
Plano, TX, USA: Wordware Publishing, Inc., 2002.

[69] L. Yun, L. Ke-Ping, Z. Wei-Liang, and W. Chong-Gang, “Analyzing the channel
access delay of IEEE 802.11 DCF,” in Proceedings of the 2005 IEEE Global Telecom­
munications Conference (GLOBECOM ’05), vol. 5, (St. Louis, MO, USA), pp. 2997-
3001, IEEE, November 2005.

[70] A. M. Khandker, P. Honeyman, and T. J. Teorey, “Performance of DCE RPC,” in
Proceedings of the Second International Workshop on Services in Distributed and
Networked Environments, (Whistler, BC, Canada), pp. 2-10, IEEE, June 1995.

[71] C. Porthouse, “High-performance Java on embedded devices.” [Online]. Avail­
able: h t tp : / /www.arm. com /pdfs/JazelleDBX.W hitePaper_2007vlpl.p d f, Octo­
ber 2005 [Accessed: July 5, 2007].

[72] Bluetooth Special Interest Group Inc., “How Bluetooth technology works.”
[Online]. Available: h t tp : / / www. b lu e to o th . com /Bluetooth/Technology/W orks/,
2008 [Accessed: July 9, 2008].

[73] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho, “Lua — an extensible
extension language,” Software: Practice and Experience, vol. 26, pp. 635-652, June
1996.

[74] Python Software Foundation, “The Python programming language.” [Online]. Avail­
able: h ttp ://w w w .pyth on .org /, 2006 [Accessed: March 14, 2007].

http://www.jython.org/
http://www.arm.com/pdfs/JazelleDBX.WhitePaper_2007vlpl.pdf
http://www.python.org/

Appendix A

Standard Class Library

A .l Introduction

In this appendix, the standard class library provided for use within the software archi­

tecture is depicted. Each class package within the standard class library contains classes

that provide a higher-level interface to various native methods defined within the software

architecture. Further details may be found in Section 5.4.

A .2 Package java.lang

A .2.1 java.lang.Math

/ / ---

/ / ja v a .la n g .M a th c la s s
/ / C o p y r ig h t (c) 2008 Andrew L y le
/ / --
/ / T h is program is f r e e s o ftw a re : you can r e d is t r ib u te i t a n d /o r m o d ify
/ / i t under th e te rm s o f th e GNU G enera l P u b lic L ice n se as p u b lis h e d by
/ / th e Free S o ftw a re F o u n d a tio n , e i t h e r v e rs io n 3 o f th e L ic e n s e , o r
/ / (a t y o u r o p t io n) any l a t e r v e rs io n .

/ /

178

A Standard Class Library 179

/ / T h is program is d is t r ib u t e d in th e hope th a t i t w i l l be u s e fu l,
/ / b u t WITHOUT ANY WARRANTY; w ith o u t even th e im p lie d w a rra n ty o f
/ / MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE. See th e
/ / GNU G enera l P u b lic L ice n se f o r more d e t a i ls .

/ /
/ / You sh ou ld have re c e iv e d a copy o f th e GNU G enera l P u b lic L icense
/ / a lo ng w ith t h i s p rogram . I f n o t , see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package ja v a . la n g ;

p u b l ic f i n a l c la s s Math {
p u b l ic s t a t i c f i n a l d oub le E = 2.7182818284590452354;
p u b l ic s t a t i c f i n a l d oub le P I = 3.14159265358979323846;

p r iv a te M athO
p u b lic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b lic s t a t i c
p u b lic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b lic s t a t i c
p u b lic s t a t i c
p u b lic s t a t i c
p u b lic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c
p u b l ic s t a t i c

O
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e
n a t iv e

dou b le s in (d o u b le d) ;
dou b le c o s (d o u b le d) ;
dou b le ta n (d o u b le d) ;
dou b le a s in (d o u b le d) ;
dou b le a cos(do u b le d) ;
doub le a ta n (d o u b le d) ;
doub le e xp (do u b le a) ;
doub le lo g (d o u b le a) ;
dou b le c e il(d o u b le a) ;
dou b le f lo o r (d o u b le a) ;
dou b le r in t (d o u b le a) ;
dou b le a ta n 2 (d o u b le y , dou b le x) ;
dou b le pow (double a , doub le b) ;
i n t r o u n d (f lo a t a) ;
lo n g ro u n d (d o u b le a) ;
doub le random0 ;
i n t a b s (in t a) ;
lo n g a b s (lo n g a) ;
f l o a t a b s (f lo a t a) ;
dou b le a bs (do u b le a) ;
i n t m a x (in t a , i n t b) ;
lo n g m ax(long a, lo n g b) ;
f l o a t m a x (f lo a t a , f l o a t b) ;
d oub le m ax(double a , doub le b) ;
i n t m in (in t a , i n t b) ;
lo n g m in (lo n g a, lo n g b) ;
f l o a t m in (f lo a t a , f l o a t b) ;
d oub le m in (d o u b le a , doub le b) ;

http://www.gnu.org/licenses/

A Standard Class Library 180

p u b lic s t a t i c n a t iv e doub le s in h (d o u b le x) ;
p u b l ic s t a t i c n a t iv e dou b le co sh(doub le x) ;
p u b lic s t a t i c n a t iv e dou b le ta n h (d o u b le x) ;

}

A .2.2 java.lang.String

/ / --
/ / ja v a . la n g .S t r in g c la s s
/ / C o p y r ig h t (c) 2008 Andrew L y le
/ / --
/ / T h is program is f r e e s o ftw a re : you can r e d is t r ib u te i t a n d /o r m o d ify
/ / i t under th e te rm s o f th e GNU G enera l P u b lic L ice n se as p u b lis h e d by
/ / th e Free S o ftw a re F o u n d a tio n , e i t h e r v e rs io n 3 o f th e L ic e n s e , o r
/ / (a t y o u r o p t io n) any l a t e r v e rs io n .

/ /
/ / T h is program is d is t r ib u t e d in th e hope th a t i t w i l l be u s e fu l,
/ / b u t WITHOUT ANY WARRANTY; w ith o u t even th e im p lie d w a rra n ty o f
/ / MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE. See th e
/ / GNU G enera l P u b lic L ice n se f o r more d e t a i ls .

/ /
/ / You sh o u ld have re c e iv e d a copy o f th e GNU G enera l P u b lic L icense
/ / a lo n g w ith t h i s p rogram . I f n o t , see <h t tp : / /w w w .g n u .o r g / l ic e n s e s />.

package ja v a . la n g ;

p u b l ic f i n a l c la s s S t r in g {
p r iv a te S t r in g O {>
p u b lic n a t iv e ch ar c h a r A t (in t in d e x) ;
p u b lic n a t iv e boo lean e n d s W ith (S tr in g s u f f i x) ;
p u b lic n a t iv e boo lean e q u a ls (O b je c t a n O b je c t) ;
p u b l ic n a t iv e boo lean e q u a ls Ig n o re C a s e (S tr in g a n o th e r S t r in g) ;
p u b l ic n a t iv e i n t le n g th O ;
p u b l ic n a t iv e b oo lean s ta r ts W ith (S t r in g p r e f i x) ;
p u b l ic n a t iv e S t r in g s u b s t r in g (in t b e g in ln d e x , i n t e n d ln d e x);
p u b l ic n a t iv e S t r in g to L o w e rC a se O ;
p u b l ic n a t iv e S t r in g toU pp e rC a seQ ;

>

http://www.gnu.org/licenses/

A Standard Class Library 181

A .3 Package amss.system

A .3.1 amss.system.AMSS

/ / --
/ / amss.system.AMSS c la s s
/ / C o p y r ig h t (c) 2008 Andrew L y le
/ / --
/ / T h is program is f r e e s o ftw a re : you can r e d is t r ib u t e i t a n d /o r m o d ify
/ / i t under th e te rm s o f th e GNU G enera l P u b lic L ice n se as p u b lis h e d by
/ / th e Free S o ftw a re F o u n d a tio n , e i t h e r v e rs io n 3 o f th e L ic e n s e , o r
/ / (a t y o u r o p t io n) any l a t e r v e rs io n .

/ /
/ / T h is program is d is t r ib u t e d in th e hope th a t i t w i l l be u s e fu l,
/ / b u t WITHOUT ANY WARRANTY; w ith o u t even th e im p lie d w a rra n ty o f
/ / MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE. See the
/ / GNU G enera l P u b lic L ice n se f o r more d e t a i ls .

/ /
/ / You sh ou ld have re c e iv e d a copy o f th e GNU G enera l P u b lic L icense
/ / a lo n g w ith t h i s p rogram . I f n o t , see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.system ;

p u b l ic f i n a l c la s s AMSS {
/ / s le e p c o n s ta n ts
p u b l ic s t a t i c f i n a l lo n g TICK_1MS = 1;
p u b l ic s t a t i c f i n a l lo n g TICK.1S = 1000 * TICK.1MS;
p u b l ic s t a t i c f i n a l lo n g TICK_1M = 60 * TICK__1S;

/ / c lo c k c o n s ta n ts
p u b l ic s t a t i c f i n a l lo n g TIME_1US = 1;
p u b l ic s t a t i c f i n a l lo n g TIME_1MS = 1000 * TIME_1US;
p u b l ic s t a t i c f i n a l lo n g TIME_1S = 1000 * TIME.1MS;
p u b l ic s t a t i c f i n a l lo n g TIME_1M = 60 * TIME_1S;

p r iv a te AMSSO { }
p u b l ic s t a t i c n a t iv e v o id
p u b l ic s t a t i c n a t iv e v o id
p u b l ic s t a t i c n a t iv e v o id
p u b l ic s t a t i c n a t iv e lo n g
p u b l ic s t a t i c n a t iv e v o id

g c (O b je c t o b j) ;
e n te rA to m ic O ;
le a v e A to m ic O ;
g e tC lo c k O ;
s le e p d o n g m i l l i s) ;

http://www.gnu.org/licenses/

A Standard Class Library 182

p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic

s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e

i n t re a dA syn cO ;
i n t re a d O ;
S t r in g r e a d S t r in g (in t m a x ie n);
i n t r e a d ln t (in t b a se);
lo n g re a d L o n g (in t b a se);
dou b le re a d D o u b le (in t b a s e);
i n t in tV a lu e (S t r in g s , i n t b a se);
f l o a t f lo a tV a lu e (S t r in g s , i n t b a se);

p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b lic
p u b l ic
p u b lic
p u b lic
p u b lic
p u b lic
p u b l ic
p u b lic

s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e
s t a t i c n a t iv e

v o id p r in t (S t r in g s) ;
v o id p r in t (b o o le a n b) ;
v o id p r in t (c h a r c) ;
v o id p r i n t (i n t i) ;
v o id p r in t (lo n g 1) ;
v o id p r i n t (f l o a t f) ;
v o id p r in t (d o u b le d) ;
v o id p r in t ln (S t r in g s) ;
v o id p r in t ln (b o o le a n b) ;
v o id p r in t ln (c h a r c) ;
v o id p r i n t l n (i n t i) ;
v o id p r in t ln (lo n g 1) ;
v o id p r i n t l n (f l o a t f) ;
v o id p r in t ln (d o u b le d) ;
v o id p r in t l n O ;

A .3.2 amss. system. Message

/ / --
/ / amss.system .M essage c la s s
/ / C o p y rig h t (c) 2008 Andrew L y le
/ / --
/ / T h is program is f r e e s o ftw a re : you can r e d is t r ib u te i t a n d /o r m o d ify
/ / i t under th e term s o f th e GNU G enera l P u b lic L ice n se as p u b lis h e d by
/ / th e Free S o ftw a re F o u n d a tio n , e i t h e r v e rs io n 3 o f th e L ic e n s e , o r
/ / (a t y o u r o p t io n) any l a t e r v e rs io n .
/ /
/ / T h is program is d is t r ib u t e d in th e hope th a t i t w i l l be u s e fu l,
/ / b u t WITHOUT ANY WARRANTY; w ith o u t even th e im p lie d w a rra n ty o f
/ / MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE. See th e
/ / GNU G enera l P u b lic L ice n se f o r more d e t a i ls .

A Standard Class Library 183

/ /
/ / You sh ou ld have re c e iv e d a copy o f th e GNU G enera l P u b lic L icense
/ / a lo n g w ith t h i s p rogram . I f n o t , see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.system ;

p u b l ic f i n a l c la s s Message {
/ / message ty p e c o n s ta n ts
p u b l ic s t a t i c f i n a l lo n g NO_ADDRESS = 0;
p u b l ic s t a t i c f i n a l lo n g NCLDEADLINE = 0 x 7 f f f f f f f f f f f f f f f L ;
p u b lic s t a t i c f i n a l i n t CALLAT = l ;
p u b lic s t a t i c f i n a l i n t CALLBY = 2;
p u b lic s t a t i c f i n a l i n t RETURN = 3;

/ / s e rv ic e fu n c t io n c o n s ta n ts
p u b lic s t a t i c f i n a l i n t GET = 1;
p u b lic s t a t i c f i n a l i n t SET = 2;
p u b lic s t a t i c f i n a l i n t APPEND = 3;
p u b lic s t a t i c f i n a l i n t RESET = 4;
p u b lic s t a t i c f i n a l i n t GETTEDS = 5;
p u b lic s t a t i c f i n a l i n t GETPOSE = 6;
p u b lic s t a t i c f i n a l i n t UPDATEPOSE = 7;
p u b lic s t a t i c f i n a l i n t LOCK = 8;
p u b lic s t a t i c f i n a l i n t UNLOCK = 9;
p u b l ic s t a t i c f i n a l i n t JOIN = 10;

/ / pa ram ete r typ e s
p u b lic s t a t i c f i n a l i n t NO.PARAM - 0;
p u b lic s t a t i c f i n a l i n t INT8 = (1 « 0)
p u b l ic s t a t i c f i n a l i n t INT16 = (l « l)
p u b lic s t a t i c f i n a l i n t INT32 = (1 « 2)
p u b lic s t a t i c f i n a l i n t INT64 = (1 « 3)
p u b lic s t a t i c f i n a l i n t UINT8 = (1 « 4)
p u b l ic s t a t i c f i n a l i n t UINT16 = (1 « 5)
p u b l ic s t a t i c f i n a l i n t UINT32 = (1 « 6)
p u b lic s t a t i c f i n a l i n t UINT64 = (1 « 7)
p u b lic s t a t i c f i n a l i n t FLOAT = (1 « 8)
p u b lic s t a t i c f i n a l i n t DOUBLE = (1 « 9)
p u b l ic s t a t i c f i n a l i n t STATUS = (1 « 1 0) ;
p u b lic s t a t i c f i n a l i n t STRING = (1 « 1 1) ;
p u b lic s t a t i c f i n a l i n t OBJECT = (1 « 1 2) ;

/ / s ta tu s c o n s ta n ts

http://www.gnu.org/licenses/

A Standard Class Library 184

p u b lic s t a t i c f i n a l i n t SUCCESS = 1;
p u b l ic s t a t i c f i n a l i n t ERROR = 2;
p u b l ic s t a t i c f i n a l i n t MISSED_DEADLINE = 3;
p u b l ic s t a t i c f i n a l i n t INVALID_PARAMETER = 4;
p u b l ic s t a t i c f i n a l i n t LOCKED = 5;
p u b l ic s t a t i c f i n a l i n t NOT_ALLOWED = 6;

/ / co re methods
p r iv a te Message() O
p u b l ic s t a t i c n a t iv e Message c re a te (lo n g s rc , lo n g d s t ,

lo n g d e a d lin e , lo n g tim e s ta m p , i n t ty p e , i n t s rv fu n c ,
i n t p a r ty p e , i n t parw , i n t p a r h) ;

p u b l ic s t a t i c n a t iv e Message c lo n e (lo n g s rc , lo n g d s t ,
lo n g d e a d lin e , lo n g tim e s ta m p , i n t ty p e , i n t s rv fu n c ,
Message m sg);

p u b l ic s t a t i c n a t iv e Message e n c lo s e (lo n g s rc , lo n g d s t ,
lo n g d e a d lin e , lo n g tim e s ta m p , i n t ty p e , i n t s rv fu n c ,
Message m sg);

p u b l ic s t a t i c n a t iv e Message crea teR eturn (M essage m c a ll,
i n t p a r ty p e , i n t parw , i n t p a rh) ;

p u b l ic s t a t i c n a t iv e Message c re a te R e tu rnS ta tu s (M essa g e m c a ll,
i n t s t a t u s) ;

p u b lic s t a t i c n a t iv e boo lean enqueueMessageOut(Message m);

/ / p ro p e r ty methods
p u b l ic n a t iv e lo n g s o u rc e O ;
p u b l ic n a t iv e lo n g d e s t in a t io n O ;
p u b l ic n a t iv e lo n g d e a d lin e () ;
p u b l ic n a t iv e lo n g tim e s ta m pO ;
p u b l ic n a t iv e i n t ty p e O ;
p u b l ic n a t iv e i n t s e rv ic e F u n c t io n O ;
p u b l ic n a t iv e i n t s e r v ic e ld O ;
p u b lic n a t iv e i n t param ete rT ypeO ;
p u b l ic n a t iv e i n t p a ra m e te rW id th O ;
p u b l ic n a t iv e i n t p a ra m e te rH e ig h t() ;

/ / g e t /s e t methods
p u b l ic n a t iv e char
p u b l ic n a t iv e s h o r t
p u b l ic n a t iv e i n t
p u b l ic n a t iv e lo n g
p u b l ic n a t iv e char
p u b l ic n a t iv e s h o r t

g e t ln t 8 (in t y , i n t x) ;
g e t l n t l 6 (i n t y , i n t x) ;
g e t ln t 3 2 (in t y , i n t x) ;
g e t ln t 6 4 (in t y , i n t x) ;
g e tU in t8 (in t y , i n t x) ;
g e t U in t l6 (in t y , i n t x) ;

A Standard Class Library 185

>

p u b lic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b lic n a t iv e
p u b lic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b lic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b l ic n a t iv e
p u b lic n a t iv e
p u b lic n a t iv e

i n t g e tU in t3 2 (in t y , i n t x) ;
lo n g g e tU in t6 4 (in t y , i n t x) ;
f l o a t g e t F lo a t (in t y , i n t x) ;
doub le g e tD o u b le (in t y , i n t x) ;
i n t g e tS ta tu s (in t y , i n t x) ;
S t r in g g e t S t r in g (in t y) ;
Message getM essageO ;
O b je c t g e tO b je c tO ;
v o id s e t l n t 8 (i n t y , i n t x , ch a r v a l) ;
v o id s e t l n t l 6 (i n t y , i n t x , s h o r t v a l) ;
v o id s e t ln t 3 2 (in t y , i n t x , i n t v a l) ;
v o id s e t ln t 6 4 (in t y , i n t x , lo n g v a l) ;
v o id s e tU in t8 (in t y , i n t x , ch a r v a l) ;
v o id s e t U in t l6 (in t y , i n t x 3 s h o r t v a l) ;
v o id s e tU in t3 2 (in t y , i n t x , i n t v a l) ;
v o id s e tU in t6 4 (in t y , i n t x , lo n g v a l) ;
v o id s e tF lo a tC in t y , i n t x , f l o a t v a l) ;
v o id s e tD o u b le (in t y , i n t x , dou b le v a l) ;
v o id s e tS ta tu s (in t y , i n t x , i n t v a l) ;
v o id s e tS t r in g (in t y , S t r in g v a l) ;

A .3.3 amss.system.Module

/ / --
/ / am ss.system .M odule c la s s
/ / C o p y r ig h t (c) 2008 Andrew L y le
/ / --
/ / T h is program is f r e e s o ftw a re : you can r e d is t r ib u te i t a n d /o r m o d ify
/ / i t under th e te rm s o f th e GNU G enera l P u b lic L ice n se as p u b lis h e d by
/ / th e Free S o ftw a re F o u n d a tio n , e i t h e r v e rs io n 3 o f th e L ic e n s e , o r
/ / (a t y o u r o p t io n) any l a t e r v e rs io n .

/ /
/ / T h is program is d is t r ib u t e d in th e hope th a t i t w i l l be u s e fu l,
/ / b u t WITHOUT ANY WARRANTY; w ith o u t even th e im p lie d w a rra n ty o f
/ / MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE. See th e
/ / GNU G enera l P u b lic L ice n se f o r more d e t a i ls .

/ /
// You should have received a copy of the GNU General Public License
// along with th is program. I f not, see <http://www.gnu.org/licenses/>.

http://www.gnu.org/licenses/

A Standard Class Library 186

package am ss.system ;

p u b l ic f i n a l c la s s Module {
/ / co re fu n c t io n s
p r iv a te M odule() { }
p u b l ic s t a t i c n a t iv e Pose g e tL o c a lP o s e O ;

/ / h a n d le r fu n c t io n s
p u b lic n a t iv e boo lean
p u b l ic n a t iv e boo lean
p u b l ic n a t iv e boo lean
p u b l ic n a t iv e Message
p u b l ic n a t iv e v o id
p u b l ic n a t iv e v o id
p u b lic n a t iv e i n t
p u b lic n a t iv e i n t
p u b lic n a t iv e Message

i n t e n v in d e x) ;
p u b l ic n a t iv e i n t

i n t e n v in d e x) ;
p u b l ic n a t iv e Message

is R u n n in g O ;
is P r im a ry O ;
isLocked(M essage m) ;
n e x tS e rv ic e C a llO ;
secondaryH andler(M essage c a l l) ;
s ta tu sC h e ckO ;
ro le C o u n t() ;
ro le E n v iro n m e n tC o u n t(in t r o le) ;
s e rv ic e C a ll(M e s s a g e m, i n t r o le ,

se rv ice C a llA syn c(M e ssa ge m, i n t r o le ,

g e tR e tu r n (in t s e r v ic e id) ;

/ / lo g ic a l te d s g e t /s e t fu n c t io n s
p u b lic n a t iv e ch ar g e tT e d s C h a r(S tr in g propnam e);
p u b lic n a t iv e i n t g e tT e d s In t (S t r in g propname, i n t b a se);
p u b lic n a t iv e f l o a t g e tT e d s F lo a t(S tr in g propname, i n t b a se);
p u b l ic n a t iv e S t r in g g e tT e d s S tr in g (S tr in g propnam e);
p u b l ic n a t iv e boo lean s e tT e d s C h a r(S tr in g propname, ch a r v a l) ;
p u b l ic n a t iv e boo lean s e tT e d s In t (S t r in g propname, i n t v a l) ;
p u b l ic n a t iv e boo lean s e tT e d s F lo a t(S tr in g propname, f l o a t v a l) ;
p u b l ic n a t iv e boo lean s e tT e d s S tr in g (S tr in g propname, S t r in g v a l) ;

>

A .3.4 amss.system.Pose

/ / --
/ / am ss.system .Pose c la s s
/ / C o p y r ig h t (c) 2008 Andrew L y le
/ / --
/ / T h is program is f r e e s o ftw a re : you can r e d is t r ib u t e i t a n d /o r m o d ify
/ / i t under th e te rm s o f th e GNU G enera l P u b lic L ice n se as p u b lis h e d by

A Standard Class Library 187

/ / th e Free S o ftw a re F o u n d a tio n , e i t h e r v e rs io n 3 o f th e L ic e n s e , o r
/ / (a t y o u r o p t io n) any l a t e r v e rs io n .

/ /
/ / T h is program is d is t r ib u t e d in th e hope th a t i t w i l l be u s e fu l,
/ / b u t WITHOUT ANY WARRANTY; w ith o u t even th e im p lie d w a rra n ty o f
/ / MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE. See th e
/ / GNU G enera l P u b lic L ice n se f o r more d e t a i ls .

/ /
/ / You sh ou ld have re c e iv e d a copy o f th e GNU G enera l P u b lic L icense
/ / a lo n g w ith t h i s p rogram . I f n o t , see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.system ;

p u b l ic f i n a l c la s s Pose {
p r iv a te PoseO { }
p u b lic n a t iv e Vector3D g e tT ra n s d u c e rP o s it io n O ;
p u b lic n a t iv e Vector3D g e tT ra n sd u ce rF a ce N o rm a lO ;
p u b lic n a t iv e Vector3D g e tT ra n s d u c e rF a c e N o rth O ;
p u b l ic n a t iv e Vector3D g e tT ra n sd u ce rF a ce E a s t() ;
p u b l ic n a t iv e Vector3D g e tT ra n sd u ce rS e p a ra tio n (P o se p o s e) ;

}

A .3.5 amss.system. Vector3D

/ / --
/ / amss. system .V ecto r3D c la s s
/ / C o p y rig h t (c) 2008 Andrew L y le
/ / --
/ / T h is program is f r e e s o ftw a re : you can r e d is t r ib u te i t a n d /o r m o d ify
/ / i t under th e te rm s o f th e GNU G enera l P u b lic L ice n se as p u b lis h e d by
/ / th e Free S o ftw a re F o u n d a tio n , e i t h e r v e rs io n 3 o f th e L ic e n s e , o r
/ / (a t y o u r o p t io n) any l a t e r v e rs io n .

/ /
/ / T h is program is d is t r ib u t e d in th e hope th a t i t w i l l be u s e fu l,
/ / b u t WITHOUT ANY WARRANTY; w ith o u t even th e im p lie d w a rra n ty o f
/ / MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE. See th e
/ / GNU G enera l P u b lic L ice n se f o r more d e t a i ls .

/ /
// You should have received a copy of the GNU General Public License
// along with th is program. I f not, see <http://www.gnu.org/licenses/>.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

A Standard Class Library 188

package amss. system ;

p u b l ic f i n a l c la s s V ector3D {
p r iv a te V e c to r3 D () { }
p u b l ic n a t iv e f l o a t
p u b l ic n a t iv e f l o a t
p u b l ic n a t iv e f l o a t
p u b l ic n a t iv e f l o a t
p u b l ic n a t iv e Vector3D
p u b l ic n a t iv e Vector3D
p u b l ic n a t iv e Vector3D
p u b l ic n a t iv e f l o a t
p u b l ic n a t iv e Vector3D
p u b l ic n a t iv e f l o a t
p u b l ic n a t iv e boo lean
p u b l ic n a t iv e boo lean
p u b l ic n a t iv e boo lean

g e t lO ;
g e tJ O ;
g e tK () ;
m a g n itu d e () ;
n o rm a liz e () ;
add(V ector3D v) ;
s u b tra c t(V e c to r3 D v) ;
d o t(V e c to r3 D v) ;
c ro ss (V e c to r3 D v) ;
a n g le (V e c to r3 D v) ;
p a ra l le l(V e c to r3 D v) ;
a n t ip a ra l le l(V e c to r3 D v) ;
p e rp e n d ic u la r(V e c to r3 D v) ;

Appendix B

Architecture Evaluation Data

B .l Introduction

In this appendix, the module TEDS, template TEDS, and template algorithm classes

utilized for the purposes of evaluating the functionality and performance of the software

architecture as described in Chapter 7 are depicted.

B.2 Module TEDS

B.2.1 accel.mod

A cce le ro m e te r Module TEDS F i le

AMSS TEDS

M oduleAddress
ModuleType
M oduleC lass
ModuleDataType
M oduleDataTypeW idth

2000000000000001
1 # Sensor
10 # A c c e le ra t io n

F lo a t100
3

M oduleD ataTypeH eight 1

189

B A rchitecture Evaluation Data 190

Prim aryHandlerNam e a c c e l

B as ic TEDS

M a n u fa c tu re rlD 1
ModelNumber 1
V e rs io n L e tte r A
VersionNum ber 1
S eria lN um ber 1

S tandard Tem plate TEDS

Tem pla te lD 30 # V o lta g e Tem plate
E lecS igT ype 0 # V o lta g e Sensor
MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e E x c ita t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 0.0006 # Amps
CalDate 1
C a l l n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

B .2.2 lcd.mod

LCD Module TEDS F i le

AMSS TEDS

M oduleAddress
ModuleType
M oduleC lass
ModuleDataType
M oduleDataTypeW idth
M oduleDataTypeHeight
Prim aryHandlerNam e

1000000000000005
2 # A c tu a to r
4 # T e x t
800 # S t r in g
16
4
lc d

and 2000000000000005

B A rchitecture Evaluation Data 191

B as ic TEDS
#
M a n u fa c tu re rlD 1
ModelNumber 1
V e rs io n L e tte r A
VersionNum ber 1
S eria lN um ber 1

S tandard Tem plate TEDS

MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e E x c i ta t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 0 .003 # Amps
CalDate 1
C a l l n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

B .2.3 ldr.mod

LDR Module TEDS F i le
--

AMSS TEDS

ModuleAddress
ModuleType
M oduleC lass
ModuleDataType
M oduleDataTypeW idth
M oduleDataTypeHeight
Prim aryHandlerNam e

B a s ic TEDS

M a n u fa c tu re rlD
ModelNumber

3000000000000006
1 # Sensor
8 # V o lta g e
100 # F lo a t
1
1
l d r

1
1

B A rchitecture Evaluation Data 192

V e rs io n L e tte r A
VersionNum ber 1
S eria lN um ber 1

S tandard Tem plate TEDS

Tem pla te lD 30 # V o lta g e Tem plate
E lecS igT ype 0 # V o lta g e Sensor
MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e E x c ita t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E x c ite C u rre n tD ra w 0.00033 # Amps
CalDate 1
C a l I n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

B .2.4 servo.mod

Servo Module TEDS F i le

AMSS TEDS

M oduleAddress 1000000000000007
ModuleType 2 # A c tu a to r
M oduleC lass 20 # R o ta t io n
ModuleDataType 100 # F lo a t
M oduleDataTypeW idth 1
M oduleD ataTypeH eight 1
Prim aryHandlerNam e servo

B a s ic TEDS

M a n u fa c tu re rlD 1
ModelNumber 1
V e rs io n L e tte r A
VersionNum ber 1

B A rchitecture Evaluation Data 193

S eria lN um ber 1

S tandard Tem plate TEDS

MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e E x c i ta t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 1 .0 # Amps
CalDate 1
C a l I n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

B .3 Template TEDS

B .3.1 LCDMerge.mod

LCD Merge Tem plate TEDS F i le

AMSS TEDS

ModuleType 2 # A c tu a to r
M oduleC lass 4 # T e x t
ModuleDataType 00 o o # S t r in g
M oduleDataTypeW idth 1
M oduleD ataTypeH eight 1

B as ic TEDS
4f#
M a n u fa c tu re rlD 1
ModelNumber 1
V e rs io n L e tte r A
VersionNum ber 1
S eria lN um ber 1

S tandard Tem plate TEDS

B A rchitecture Evaluation Data 194

#
MapMeth 0 # L in e a r
S e le c tE x c ita t io n 1 # In c lu d e E x c i ta t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 0.006 # Amps
CalDate 1
C a l I n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

R oles

Role 1
R o le A ss ig n m e n tL im it >=1
R oleC onnectionType 3 # L o c a l/P h y s ic a l
RoleModuleType 2 # A c tu a to r
RoleM oduleC lass 4 # T ex t
RoleModuleDataType 00 o o # S t r in g
RoleM oduleDataTypeW idth >=1
R oleM oduleD ataTypeH eight >=1

B .3.2 ServoCon.mod

Servo C o n tro l Tem plate TEDS F i le

AMSS TEDS

ModuleType
M oduleC lass
ModuleDataType
M oduleDataTypeW idth
M oduleD ataTypeH eight

B a s ic TEDS

Manufa c tu re r ID 1
ModelNumber 1

2 # A c tu a to r
20 # R o ta t io n
100 # F lo a t
1
1

B A rchitecture Evaluation Data 195

V e rs io n L e tte r A
VersionNum ber 1
S eria lN um ber 1

S tandard Tem plate TEDS
f f ---
MapMeth 0 # L in e a r
S e le c tE x c ita t io n i # In c lu d e E x c i ta t io n
ExciteAmplNom 3 .3 # V o lts
E xc iteA m plM in 3 .3 # V o lts
ExciteAm plM ax 3 .3 # V o lts
E xc ite T ype 0 # DC
E xc ite C u rre n tD ra w 1.0 # Amps
CalDate 1
C a l l n i t i a l s NUL
C a lP e rio d 365 # Days
MeasID 1

R oles
#
Role 1
R o le A ss ig n m e n tL im it >=1
R oleC onnectionType 7 # Any
RoleModuleType 1 # Sensor
RoleM oduleC lass 18 # A c c é lé râ t io n /V o lta g e
RoleModuleDataType 100 # F lo a t
RoleM oduleDataTypeW idth >=1
R oleM oduleD ataTypeH eight ==1

Role 2
R o le A ss ig n m e n tL im it >=1
R oleC onnectionType 7 # Any
RoleModuleType 2 # A c tu a to r
RoleM oduleC lass 20 # R o ta t io n
RoleModuleDataType 100 # F lo a t
RoleM oduleDataTypeW idth ==1
R oleM oduleD ataTypeH eight ==1

B A rchitecture Evaluation Data 196

B.4 Template Algorithm Classes

B.4.1 amss,algo.LCDMerge

/ / --
/ / amss. a lg o . LCDMerge c la s s
/ / C o p y r ig h t (c) 2008 Andrew L y le
/ / --
/ / T h is program is f r e e s o ftw a re : you can r e d is t r ib u te i t a n d /o r m o d ify
/ / i t under th e te rm s o f th e GNU G enera l P u b lic L ice n se as p u b lis h e d by
/ / th e Free S o ftw a re F o u n d a tio n , e i t h e r v e rs io n 3 o f th e L ic e n s e , o r
/ / (a t y o u r o p t io n) any l a t e r v e rs io n .

II
I I T h is program is d is t r ib u t e d in th e hope th a t i t w i l l be u s e fu l,
/ / b u t WITHOUT ANY WARRANTY; w ith o u t even th e im p lie d w a rra n ty o f
/ / MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE. See th e
I I GNU G enera l P u b lic L ice n se f o r more d e t a i ls .

/ /
I I You sh ou ld have re c e iv e d a copy o f th e GNU G enera l P u b lic L icense
/ / a lo n g w ith t h i s p rogram . I f n o t , see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.a lgo ;
im p o rt a m ss .sys te m .*;

p u b l ic f i n a l c la s s LCDMerge {
p u b l ic s t a t i c v o id m ain(M odule mod) {

w h ile (mod. is R u n n in g O) {
Message m c a ll = m o d .n e x tS e rv ic e C a llO ;

i f (m c a l l != n u l l && !p rim a ryH a n d le r(m o d , m c a ll))
m o d .s e c o n d a ry H a n d le r(m c a ll) ;

mod. s ta tu sC h e ckO ;
}

>

p u b lic s t a t i c boo lean p rim a ryH a n d le r(M o d u le mod, Message m c a ll) {
boo lean h and led = t r u e ;
Message m re t = n u l l ;
i n t s rv fu n c = m c a l l . s e rv ic e F u n c t io n Q ;

http://www.gnu.org/licenses/

B A rchitecture Evaluation Data 197

i f (s r v f u n c == Message.GET)
m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll, Message.N0T_ALL0WED);

e ls e i f (s r v f u n c == Message.SET) {
i f (m o d . is L o c k e d (m c a ll))

m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll, Message.LOCKED);
e ls e

m re t = lcdM ergeSet(m od, m c a l l) ;

>
e ls e i f (s r v f u n c == Message.APPEND) {

i f (m o d . is L o c k e d (m c a ll))
m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll, Message.LOCKED);

e ls e
m ret = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll, Message.N0T_ALL0WED);

e ls e i f (s r v f u n c == Message.RESET) {
i f (m o d . is L o c k e d (m c a ll))

m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll, Message.LOCKED);
e ls e

m re t = M e s s a g e .c re a te R e tu rn S ta tu s (m c a ll, Message.N0T_ALL0WED);

e ls e
hand led = f a ls e ;

i f (h a n d le d) {
A M S S .g c(m ca ll);

i f (m r e t != n u l l)
Message. enqueueM essageO ut(m ret);

>

r e tu r n h an d le d ;
}

p u b lic s t a t i c Message lcdM ergeS et(M odule mod, Message m c a ll) {
i f (m o d . ro le E n v iro n m e n tC o u n t(1) >= 2) {

/ / g e t pose f o r f i r s t LCD
Message msgl = Message.create(Message.NO_ADDRESS,

Message.NO_ADDRESS, Message.NO_DEADLINE, A M S S .ge tC lockO ,
Message.CALLBY, Message.GETPOSE, Message. N0_PARAM, 0, 0) ;

Message m r e t l = m o d .s e rv ic e C a ll(m s g l, 1, 0) ;
Pose mposel = n u l l ;

i f (m r e t l != n u l l)

B A rchitecture Evaluation Data 198

mposel = (P o s e)m re t l.g e tO b je c t() ;

/ / g e t pose f o r second LCD
Message msg2 = Message.create(Message.NO_ADDRESS,

Message.NO_ADDRESS, Message.NO_DEADLINE, AMSS. g e tC lo c k O ,
Message.CALLBY, Message.GETPOSE, Message.N0_PARAM, 0 , 0) ;

Message m re t2 = m o d .s e rv ic e C a ll(m s g 2 , 1, 1) ;
Pose mpose2 = n u l l ;

i f (m r e t2 != n u l l)
mpose2 = (P o s e)m re t2 .g e tO b je c t() ;

/ / g e t pose v e c to rs
V ector3D v n l = mposel .g e tT ra n sd u ce rF a ce N o rth O ;
V ector3D v e l = m p o se l.g e tT ra n sd u ce rF a ce E a s t() ;
Vector3D vn2 = m p o se 2 .g e tT ra n sd u ce rF a ce N o rth O ;
Vector3D ve2 = mpose2. g e tT ra n sd u ce rF a ce E a s t() ;

i f (v n l != n u l l kk vn2 != n u l l kk v e l != n u l l kk ve2 != n u l l kk
v n l . p a r a l le l (v n 2) kk v e l . p a r a l le l (v e 2)) {

Vector3D v s l = m p o s e l.g e tT ra n s d u c e rS e p a ra tio n (m p o s e 2);

i f (v s l == n u l l)
A M S S .prin t("LC D M erge: Could n o t d e te rm in e LCD s e p a r a t io n . ") ;

e ls e {
boo lean s ta cke d = f a ls e ;
boo lean f i r s t ls P r im a r y = f a ls e ;
boo lean in i t e d = t r u e ;

/ / d e te rm in e geom etry
i f (v s l . p a r a l l e l (v n l)) {

s ta cke d = t r u e ;
f i r s t ls P r im a r y = t r u e ;

>
e ls e i f (v s l . a n t i p a r a l l e l (v n l)) {

s ta cke d = t r u e ;
f i r s t ls P r im a r y = f a ls e ;

}
e ls e i f (v s l . a n t i p a r a l l e l (v e l)) {

s ta cke d = f a ls e ;
f i r s t ls P r im a r y = t r u e ;

>
e ls e i f (v s l . p a r a l l e l (v e l)) {

B A rchitecture Evaluation Data 199

s ta cke d = f a ls e ;
f i r s t ls P r im a r y = f a ls e ;

>
e ls e

in i t e d = f a ls e ;

i f (i n i t e d) {
/ / p r in t debug messages
AM SS.print("LC D M erge: V e r t ic a l /s ta c k e d c o n f ig u ra t io n ? ") ;
A M S S .p r in t ln (s ta c k e d) ;
AM SS.print("LC D M erge: F i r s t LCD module is p rim a ry ? ") ;
A M S S .p r in t ln (f i r s t ls P r im a r y) ;

/ / c re a te messages to send to LCD modules based
/ / o n com posite geom etry
Message m s t r p r i = Message.create(Message.NCLADDRESS,

Message.NCLADDRESS, Message.NCLDEADLINE, A M S S .ge tC lockQ ,
Message. CALLBY, Message. SET, Message. STRING,
m c a ll.p a ra m e te rW id th O , m c a ll.p a ra m e te rH e ig h tO) ;

Message m s trse c = Message.create(Message.NCLADDRESS,
Message.NCLADDRESS, Message. NO_DEADLINE, A M S S .ge tC lockO ,
Message. CALLBY, Message.SET, Message. STRING,
m c a l l . p a ra m e te rW id th O , m c a l l .p a ra m e te rH e ig h t()) ;

i f (m s t r p r i != n u l l && m strse c != n u l l) {
i f (s ta c k e d) {

f o r (i n t i = 0; i < 64 &&
i < m c a ll.p a ra m e te rW id th O ; i+ +)

m s t r p r i . s e t In t8 (0 , i , m c a l l .g e t In t8 (0 , i)) ;

f o r (i n t i = 64; i < 128 &&
i < m c a ll.p a ra m e te rW id th O ; i+ +)

m s t r s e c .s e t ln t8 (0 , i - 64, m c a l l .g e t ln t8 (0 , i)) ;
>
e ls e { / / h o r iz o n ta l c o n f ig u r a t io n

boo lean prim arym od = t r u e ;
i n t in d e x p r i = 0 ;
i n t in d exse c = 0;

f o r (i n t i = 0; i < m c a ll.p a ra m e te rW id th O ; i+ +) {
if(p r im a ry m o d)

m s t r p r i . s e t ln t 8 (0 , in d e x p r i+ + , m c a l l . g e t ln t 8 (0 , i)) ;
e ls e

B A rchitecture Evaluation Data 200

m s trs e c . s e t ln t8 (0 , indexsec+ + , m c a l l .g e t ln t8 (0 , i)) ;

i f ((i + 1) % 16 == 0)
prim arym od = Ip rim arym od;

>
}

A M S S .g c (m o d .s e rv ic e C a ll(f ir s tIs P r im a ry ? m s t r p r i : m s trs e c ,

1, 0)) ;
A M S S .g c (m o d .s e rv ic e C a ll(f ir s tIs P r im a ry ? m strse c : m s t r p r i ,

l , D) ;
>

}
e ls e / / p r in t debug e r r o r message

A M S S .prin tlnC 'LC D M erge : C ould n o t d e te rm in e g e o m e try .") ;

>

A M S S .g c (v s l);
}
e ls e {

i f (v n l != n u l l kk vn2 != n u l l && (v n l .g e tJ O != v n 2 .g e tJ () II
v n l .g e tJ O ! = v n 2 .g e tJ () I I v n l.g e tK O != v n 2 .g e tK ())) {

AM S S.printlnC 'LC D M erge: Face n o r th v e c to rs n o t e q u a l. ") ;
A M S S .p r in t (v n l .g e t lO) ; A M S S .p rin t(" , ") ;
AMSS.p r i n t (v n l . g e tJ ()) ; A M S S .p rin t(" , ") ;
AMSS. p r in t (v n l . g e t K O) ; AMSS. p r in t (" != ") ;
A M S S .p r in t (v n 2 .g e t l ()) ; A M S S .p rin t(" , ") ;
AMSS. p r in t (vn 2 . g e t J O) ; AMSS. p r in t (" , ") ;
A M S S .p r in t ln (v n 2 .g e tK ()) ;

i f (v e l != n u l l kk ve2 != n u l l kk (v e l .g e tJ O != v e 2 .g e tJ () II
v e l .g e tJ O != v e 2 .g e tJ () I I v e l.g e tK O != v e 2 .g e tK ())) {

AM SS.printlnC 'LC D M erge: Face e a s t v e c to rs n o t e q u a l. ") ;
A M S S .p r in t(v e l . g e t l O) ; A M S S .p rin t(" , ") ;
AMSS. p r in t (v e l . g e t J O) ; AMSS. p r in t (" , ") ;
A M S S .p rin t(ve 1 .g e tK O) ; A M S S .p rin tO != ") ;
A M S S .p r in t (v e 2 .g e t l ()) ; A M S S .p rin tO , ") ;
AMSS. p r in t (ve 2 . g e t J O) ; A M S S .p rin tO , ") ;
A M S S .p r in t ln (v e 2 .g e tK O) ;

}

B A rchitecture Evaluation Data 201

A M S S .g c (vn l);
A M S S .g c (ve l);
AM SS.gc(vn2);
AM SS.gc(ve2);

>

r e tu r n n u l l ;
}

>

B.4.2 amss.algo.ServoCon

/ / --
/ / am ss.a lgo .S ervoC on c la s s
/ / C o p y r ig h t (c) 2008 Andrew L y le
/ / --
/ / T h is program is f r e e s o ftw a re : you can r e d is t r ib u te i t a n d /o r m o d ify
/ / i t under th e te rm s o f th e GNU G enera l P u b lic L ice n se as p u b lis h e d by
/ / th e Free S o ftw a re F o u n d a tio n , e i t h e r v e rs io n 3 o f th e L ic e n s e , o r
/ / (a t y o u r o p t io n) any l a t e r v e rs io n .
/ /
/ / T h is program is d is t r ib u t e d in th e hope th a t i t w i l l be u s e fu l,
/ / b u t WITHOUT ANY WARRANTY; w ith o u t even th e im p lie d w a rra n ty o f
/ / MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE. See th e
/ / GNU G enera l P u b lic L ice n se f o r more d e t a i ls .
/ /
/ / You sh o u ld have re c e iv e d a copy o f th e GNU G enera l P u b lic L icense
/ / a lo n g w ith t h i s program . I f n o t , see <h ttp : / /w w w .g n u .o r g / l ic e n s e s />.

package am ss.a lgo ;
im p o rt amss. s y s te m .* ;

p u b l ic f i n a l c la s s ServoCon {
p u b lic s t a t i c v o id m ain(M odule mod) {

w h ile (m o d .is R u n n in g O) {
Message m c a ll = m o d .n e x tS e rv ic e C a llO ;

i f (m c a l l != n u l l && !p rim a ryH a n d le r(m o d , m c a ll))
m o d .s e c o n d a ry H a n d le r(m c a ll) ;

mod. s ta tu sC h e ckO ;

http://www.gnu.org/licenses/

B A rchitecture Evaluation Data 202

>
>

i f (mod. is P r im a ry ())
u p d a te (m od);

p u b l ic s t a t i c boo lean p rim a ryH a n d le r(M o d u le mod, Message m c a ll) {
boo lean hand led = t r u e ;
Message m re t = n u l l ;
i n t s rv fu n c = m c a l l . s e rv ic e F u n c t io n O ;

i f (s r v f u n c == Message.GET)
AMSS.p r i n t l n ("S ervoC on: R eceived

e ls e i f (s r v f u n c == Message.SET)
A M S S .p rin tln ("S e rvo C o n : R eceived

e ls e i f (s r v f u n c == Message.APPEND)
AMSS.p r i n t l n ("S ervoC on: R eceived

e ls e i f (s r v f u n c == Message.RESET)
A M S S .p rin tln ("S e rvo C o n : R eceived

e ls e
hand led = f a ls e ;

Get s e rv ic e c a l l . ") ;

Set s e rv ic e c a l l . ") ;

Append s e rv ic e c a l l . ") ;

Reset s e rv ic e c a l l . ") ;

i f (h a n d le d) {
A M S S .g c(m ca ll);

i f (m r e t != n u l l)
Message. enqueueM essageO ut(m ret);

}

r e tu r n han d le d ;

>

p u b lic s t a t i c v o id update (M odu le mod) {
i n t e n v c o u n tro le l = m o d .ro le E n v iro n m e n tC o u n t(1) ;
i n t e n v c o u n tro le 2 = m o d .ro le E n v iro n m e n tC o u n t(2) ;
f l o a t s e rv o v o lta g e = 0;

/ / a c q u ire a l l v o lta g e s
f o r (i n t i = 0 ; i < e n v c o u n tro le l; i+ +) {

Message msg = Message.create(Message.NCLADDRESS,
Message.NCLADDRESS, Message.N0_DEADLINE, A M S S .ge tC lockO ,
Message.CALLBY, Message.GET, Message.N0_PARAM, 0 , 0) ;

Message m re t = m o d .s e rv ic e C a ll(m s g , 1, i) ;

B A rchitecture Evaluation Data 203

s e rv o v o lta g e += m r e t .g e tF lo a t (0 , 0) ;

i f (m r e t != n u l l)
A M S S .gc(m ret);

>

/ / average and l i m i t to v a lu e s a t most e qu a l to 1
s e rv o v o lta g e = M a th .m in (s e rv o v o lta g e / (f lo a t) e n v c o u n t r o le l , 1) ;

/ / s e t se rvo p o s i t io n
f o r (i n t i = 0 ; i < e n v c o u n tro le 2 ; i+ +) {

Message m c a ll = Message.create(Message.N0_ADDRESS,
Message.N0_ADDRESS, Message.N0_DEADLINE, A M S S .ge tC lockO ,
Message.CALLBY, Message.SET, Message.FLOAT, 1, 1) ;

i f (m c a l l != n u l l) {
m c a l l . s e tF lo a t (0 , 0 , s e rv o v o lta g e) ;
A M S S .g c (m o d .s e rv ic e C a ll(m c a ll, 2, i)) ;

>
>

/ / d e la y due to la te n c y c o n s id e ra t io n s
AM SS.sleep(AMSS.TICK.1S / 2) ;

}
>

	A Software Architecture for Adaptive Modular Sensing Systems
	Recommended Citation

	tmp.1687895313.pdf.AnSwx

