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Abstract 

The combination of cardiovascular and metabolic risk factors including obesity, 

dyslipidemia, hypertension, and insulin resistance, in combination with a prothrombotic 

and proinflammatory state, is a condition termed Metabolic Syndrome (METS). Twenty 

percent of the adult population is afflicted with METS which increases the risk of type-2 

diabetes mellitus and cardiovascular disease. Further, the presence of peripheral vascular 

disease (PVD) is tightly coupled with METS which is a perfusion-demand mismatch of 

blood supply to active skeletal muscle resulting in painful claudication and a late-stage 

potential for amputation. The underlying contributors of METS associated micro-

vasculopathies in the skeletal muscle, their impact on impaired perfusion, and the 

potential for reversibility remain unclear. Owing its hyperphagia to leptin signaling 

resistance, the obese Zucker rat (OZR) is a translationally relevant model for human 

METS and the associated micro-vasculopathies. The overall purpose of this thesis is to 

utilize a multi-scale approach, particularly intravital microscopy and isolate vessels, to 

garner a greater understanding of the observed OZR vasculopathies and to investigate the 

potential of therapeutic interventions for their reversibility. 

Project 1: The purpose was to identify any alterations in postcapillary and collecting 

venule function in the OZR compared to healthy controls. The OZR presented with 

impaired dilator reactivity and elevation in thromboxane A2 constrictor responses for 

both postcapillary and collecting venules. 

Project 2: The purpose was to identify the possible contributors of a disconnect for in-situ 

and ex-vivo vascular studies utilizing the OZR model. Using a multi-scale approach, 

Project 2 provides insight to this disconnect and reveals a heterogenous adrenergic 
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response in the OZR, giving rise to new potential avenues of study. 

Project 3: The purpose was to determine the potential for reversibility or restoration of 

established PVD using the chronic ingestion of an HMG-CoA inhibitor, atorvastatin, 

and/or the implementation of regular exercise. Following a seven-week intervention, the 

intervention groups revealed vascular improvements with the combination group having 

the greatest capacity for reversibility (in specific indices).  

Significance: Therefore, this thesis further advances the understanding of METS 

associated PVD as well as potential modes for improvement following its establishment. 
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Chapter 1  

1 Introduction and Review of the Literature 

 Metabolic Syndrome (METS) is a myriad of cardiovascular disease and metabolic 

disease risk factors including obesity, dyslipidemia, hypertension, and insulin 

resistance/impaired glycemic control tightly coupled with the presence of prothrombotic 

and proinflammatory physiological states (Frisbee & Delp, 2006). The Adult Treatment 

Panel III defines individuals with METS as having 3 of the following 5 criteria: 

abdominal obesity (waist circumference: men >102 cm and women >88 cm), elevated 

triglycerides (≥ 1.7 mmol/L), reduced HDL cholesterol (men<1.04 mmol/L and 

female<1.30 mmol/L), elevated blood pressure (≥130/≥85 mmHg), and elevated fasting 

glucose (≥6.1 mmol/L). 

1.1 Metabolic Syndrome 

 One in five adults between the ages of 18-79 are afflicted with METS (Riediger & 

Clara, 2011) which increases the risk of chronic diseases such as type II diabetes mellitus 

(T2DM) and cardiovascular disease (CVD) by approximately 5-fold and 2.6-fold, 

respectively (Grundy et al., 2002; Lakka, 2002).  CVD is defined by The American Heart 

Association as the presentation of poor heart function and/or inadequate blood supply to 

tissues/organ systems (AHA, 2017) and T2DM is a metabolic disease characterized by 

insulin resistance and impaired glycemic utilization for energy thereby starving working 

cells (ADA, 2015). Further, the resulting hyperglycemia may cause detrimental injuries 

to the eyes, heart, kidneys, and nerves (ADA, 2015). The World Health Organization 

reports CVD as the world’s leading cause of death and T2DM is ranked 7th (WHO, 

2018). More specifically, CVD and T2DM remain significant contributors to Canadian 

mortality rates, accounting for a combined 17% of all health care costs and 43% of all 

deaths in Canada (MetSC, 2018; Heron, 2007).  While METS may serve as a critical 

precursor for these chronic diseases, detrimental changes to peripheral vascular 

circulation, both structurally and functionally, are observed in parallel to the onset and 

progression of METS (Alberti et al., 2009; Chantler & Frisbee, 2015). 



 

2 

 

 A critical consequence of METS on the peripheral vasculature includes the 

reduction of blood supply and perfusion to working skeletal muscle (McClatchey et al., 

2017). Healthy, active muscles produce vasoactive, metabolic byproducts which promote 

increases in blood flow and perfusion to meet the increased metabolic demand of the 

working muscle. This physiological process is termed hyperemic response. Both human 

and animal models have revealed a decreased hyperemic response, despite similar muscle 

phenotypes, with METS compared to healthy controls (Jacqueline et al., 2016; Guarini et 

al., 2016). Further supported by both in-vivo and ex-vivo studies, the blunted hyperemic 

responses observed with METS and inflammation is a result of pathophysiological 

alterations in vessel dilation and constriction, vascular densities, and structural 

compositions (both atherogenic and non-atherogenic changes) all which will be covered 

with greater detail in subsequent sections (Butcher et al., 2013; Frisbee et al., 2009). 

Taken together, this supply/demand mismatching and its associated symptoms is known 

as peripheral vascular disease (PVD). 

 Pathophysiological alterations to the skeletal muscle may result in PVD which is 

independently associated with increases in CVD morbidity and mortality (Paraskevas et 

al. 2010) and that risk is further augmented when coupled with METS (Katsiki et al., 

2013; Wassink et al., 2018; Czel & Tefan, 2006). The National Health and Nutrition 

Examination Survey reported 38.4% of adults with METS, over the age of 40, were 

diagnosed with PVD (Sumner et al., 2012). Individuals afflicted with PVD may 

experience leg muscle fatigue, cramps, and pain during bouts of physical activity and, in 

the more extreme cases of vascular insufficiency when supply/demand mismatching 

occurs at rest, ulceration or gangrene of the feet may occur with a potential for limb 

amputation (Abdulhannan et al., 2012). Without revascularization, patients with vascular 

insufficiency will have a 19% risk of amputation within the first 6 months of initial 

treatment and 23% risk at one year (Marston et al., 2006).  

The Obese Zucker Rat as a Translational Model for Metabolic Syndrome 

 All of the material presented thus far has mainly been emphasized on 

epidemiological observations. While technology and public health records enable us to 
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non-invasively evaluate the broader outcomes of metabolic syndrome in humans, more 

invasive measures using animal models are essential to further investigate the 

vasculopathologies with greater control and detail. Most human studies introduce 

confounding variables such as genetic variations between patients. Albeit, these 

confounding variables may exist in animal models, but the ability to manipulate, 

measure, and control for their presence and/or severity is more feasible in utilizing this 

animal model.  

 The obese Zucker rat (OZR; fa/fa) is a translationally relevant model for 

examining metabolic syndrome. When co-expressed, the autosomal recessive mutation, 

fa, located on chromosome 5 causes a coding error for the leptin receptor gene, thereby 

producing an amino acid substitution on the leptin receptors and reducing leptin binding 

to the cerebral cell surface receptors in the choroid plexus and lateral ventricles of the 

brain (Yarnell et al., 1997; Kurtz, Morris, & Pershadsingh, 1989). Leptin is a key 

regulating hormone for energy consumption. Produced by the adipose tissue in proportion 

to fat storage, leptin is released into the circulatory system and interacts with the brain’s 

leptin receptors to signal for a decrease in consumption and an increase in energy 

expenditure (Halaas et al., 1995). As such, the OZR exhibits an impaired satiety reflex 

resulting in chronic hyperphagia which leads to the onset of excess body fat as early as 3-

4 weeks of life and, by week 14, approximately 40%-50% of the rat’s total body weight is 

adipose tissue while healthy controls from the same litter are measured at approximately 

20% (Artinano & Castro, 2009; Cleary et al., 1980). This rapid onset and progression of 

obesity is paralleled by increases in insulin resistance, dyslipidemia, hyperglycemia, and 

hypertension (Kurtz, Morris, & Pershadsingh, 1989).  

 Both humans with METS and the OZR experience similar systemic pathologies as 

well as prolonged periods of hypertriglyceridemia and insulin resistance prior to the overt 

development of type II diabetes mellitus (Frisbee & Delp, 2006). Further, the OZR 

demonstrates clinically relevant mild to moderate hypertension, which is comparable to 

the severity observed in humans with METS (Johnson et al., 2006) as well as a 

proinflammatory and prothrombotic state (Vaziri et al., 2005; Frisbee & Delp, 2006). 

Therefore, when considering the consistent parameters and the similar progression of 
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those parameters to that of the human conditions, the OZR represents an ideal 

translational model for garnering a greater understanding of METS. 

1.2 Biophysical Consequences 

 Although the cardiovascular system is essential for physiological functions such 

as oxygen and nutrient delivery to the body’s tissues, thermoregulation, combating 

diseases, and the clearance of metabolites and carbon dioxide from tissues, its most basic 

description includes that of a fluid (i.e. blood) transport system. As such, blood flow can 

be described using Ohm’s Law for fluids where flow (Q) is equal to the change in driving 

pressure (P) generated by the heart divided by the resistance (R).  

     Q=ΔP/R 

 Further, blood flow in a single vessel of the cardiovascular system can be 

determined via Poiseuille’s Law where the change in pressure across the vessel is 

multiplied by radius (r) then divided by the vessels length (l) and blood viscosity (η).  

   R=8ηl/ πr4                  Q=(ΔPπr4)/8ηl    

 Due to radius being heavily weighted in the context of fluid/blood resistance, a 

50% decrease in lumen diameter will yield a 16-fold increase in resistance. Therefore, 

radius is a key determinant for fluid resistance and flow in the vasculature. 

 In the dynamic cardiovascular system, vessel radii, mainly at the arteriolar level, 

is regulated via both intrinsic and extrinsic signals. Extrinsic systems such as metabolic 

signals, circulating hormones, and the sympathetic nervous innervation provide external 

regulatory signaling to the vasculature based on the needs of the supplied tissues. 

Intrinsic mechanisms such as myogenic control and shear stress further regulate vessel 

diameter based on intralumenal pressure and shear rate of blood against the lumen walls 

of the vessel, respectively. The range of vasodilator/constrictive responses may vary 

depending on the level of vasculature being interrogated such as the arteries, arterioles 

and their sub-units (Al-Khazraji et al. 2015; Chilian et al., 1989). However, the general 
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premise of these vascular controllers is to regulate vessel radii via vasoconstriction and 

vasodilation, dependent on the metabolic needs of perfused tissues. 

 In the presence of obesity, dyslipidemia, and impaired glycemic control, the 

vascular dilator and constrictor responses in the skeletal muscle are altered to favor that 

of a decrease in vessel radius at rest and in response to both extrinsic and intrinsic 

controllers compared to healthy controls. In accordance with Ohm’s Law for Fluids and 

Poiseuille’s Law, a system which favors a vasoconstrictive state, thereby decreasing radii 

and increasing resistance, will result in a proportional increase in blood pressure and/or a 

decrease in flow. This insufficiency in blood supply to tissues during higher metabolic 

demand can contribute to myocardial infarctions, stroke, and intermittent claudication 

with a potential to result in limb amputation. Biological contributors to these biophysical 

consequences involved in decreased vessel radii compared to healthy controls will be 

further defined in subsequent sections. Additionally, insulin resistance and the resulting 

hyperinsulinemia (Wu et al., 2000) can exert hypertrophic effects on vascular smooth 

muscle cells (i.e. vessel proliferation) and promote atherogenic monocyte adhesion and 

infiltration (Yeh, 2004).  These pathologies can decrease vessel radii (Hutcheson et al., 

2014; Cersosimo et al., 2014) as well as cause decreases in vessel wall deformation 

(Chantler & Frisbee, 2015) thereby further limiting skeletal muscle perfusion (Fossum et 

al., 1998). 

 While temporal regulatory dysfunction of the arterioles is a key contributor 

toward increases in blood flow resistance in the skeletal muscle vasculature of those with 

METS, there are detrimental spatial alterations as well. The Frisbee lab reported 

significant reductions in microvessel densities (i.e. vascular rarefaction) within the 

gastrocnemius muscle of OZR compared to healthy controls (Frisbee, 2003) and 

reductions in vessel density have been shown to exert the largest effect on tissue oxygen 

levels (Greene et al., 1992). As such, tissues of high metabolic demand, but reduced 

densities may result in reduced oxygen levels which could limit the metabolic activity 

and performance of that tissue (Greene et al., 1992). Optimal capillary-to-tissue 

(cylinder) density ratio for sufficient oxygen diffusion across tissues can be described 

using the Krogh Cylinder Model (Krogh, 1919) with respect to the partial pressure 
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gradient of O2 (Fig. 1-A). In this model, decreases in capillary density, in the absence of 

compensatory alterations in tissue density, can shift this optimal ratio and create areas of 

hypoxia as the cylinder becomes too large for the diffusion of O2 across tissue (Fig. 1-B). 

Figure 1-A: Krogh Cylinder Model describing optimal capillary/tissue ratio and O2 

diffusion to surrounding tissue 

  

(Graphic retrieved from PerfusionTheory.com; link in 1.7)  
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Figure 1-B: Krogh Cylinder Model describing suboptimal capillary/tissue ratios and 

resulting areas of hypoxia 

 

 

 

(Graphic retrieved from PerfusionTheory.com; link in 1.7) 

 In addition to implications on gas and nutrient delivery/clearance to the perfused 

tissue, rarefaction can promote increases in overall network resistance (Greene et al., 

1989). Figure 2 describes the decrease in the overall resistance (arbitrary numbers) for 

vessels oriented in parallel to an overall value lower than that of any single vessel within 

the network and how that overall resistance will increase if one of the parallel vessels is 

removed, if other variables remain constant. Therefore, vessels in parallel decrease the 

overall network resistance and reducing the number of vessels in parallel will increase the 

overall resistance of a network. In the context of METS, fifteen-week-old OZRs have a 

20-25% reduction in microvessel density (Frisbee, 2003) which can promote both 

increases in network resistance and decreases in oxygen delivery thereby contributing to 

reduced blood flow and oxygenation of working skeletal muscles. 
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Figure 2: Example of increases in network resistance with decreases in parallel vessels 

(arbitrary units).  

  

     

 Metabolic syndrome is associated with various biophysical consequences such as 

shifted lumen diameters in response to pharmacological and/or muscle stimulation which 

favors a more vasoconstrictive state compared to healthy controls. Coupled with 

structural changes and rarefaction, there is a multitude of factors that increase vascular 

resistance and decrease muscle perfusion thereby contributing to the high prevalence of 

PVD with METS. Although most of microcirculatory research interrogates the arterial 

side, previous studies show the earliest changes in vascular dysfunction can be observed 

on the venular side of skeletal muscle networks with an emphasis on retrograde 

rarefaction from the venules to the arterioles (Frisbee et al., 2014).  Some of the 

contributing pathologies of these biophysical consequences are covered in the following 

sections, with respect to the context of this dissertation. 
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1.3 Biological Contributors to Biophysical Detriments 

 While biophysical detriments associated with METS contribute to the obstruction 

and reduction of blood flow to perfused skeletal muscles, the cause of these detriments 

are rooted in the biological pathologies linked with obesity, impaired glycemic control, 

and dyslipidemia.  This dissertation will explore some of those pathologies and their 

contributions to increases in vascular resistance on both the arteriole side and the venular 

side of the microcirculation in the OZR. Further, we will explore interventional and 

treatment strategies for reversing these pathological contributors with the primary goals 

of decreasing vascular resistance, increasing tissue perfusion, and increasing 

microvascular density.  

Endothelial nitric oxide 

 Endothelial dysfunction is a key vascular consequence of METS and chronic 

inflammation, by which there is a decrease in nitric oxide (NO) bioavailability compared 

to healthy controls under both resting and stimulated conditions. In short, NO is an 

essential molecule which signals for vascular smooth muscle relaxation/dilation which is 

produced in the endothelium and can be stimulated via acetylcholine, bradykinin, and/or 

the shear stress created by blood flow against the endothelial wall which up regulates 

intracellular calcium release to activate the NO synthesizing enzyme, endothelial nitric 

oxide synthase (eNOS; Fig. 3). Following this, eNOS converts L-arginine to L-citrulline 

and synthesizes NO which diffuses out of the endothelial cell to the neighboring vascular 

smooth muscle to dephosphorylate guanine triphosphate to elicit vasodilation and prevent 

smooth muscle proliferation/remodeling thereby promoting decreases in vascular 

resistance and vessel stiffening, respectively. However, the reduced NO bioavailability 

associated with METS can shift the vasculature to a more vasoconstrictive state, thus 

increasing vascular resistance which is a key contributor to elevated blood pressure and 

hypertension. Furthermore, clot formation and leukocyte recruitment are both inhibited 

by NO (Hossain et al., 2012), therefore the decrease in NO bioavailability with METS 

can contribute to the observed prothrombotic and proinflammatory state.  
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Figure 3: Endothelial nitric oxide production 

 

 

Proinflammation and oxidative stress 

 While the presence of a proinflammatory state are reliably associated with METS 

(Ford, 2003), they are not typically considered inclusion criteria for the clinical diagnosis 

of METS. However, both human and animal models with metabolic syndrome risk 

factors consistently report evidence of elevated markers including, but not limited to 

tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and c-reactive protein (CRP), all of 

which can be attributed to excess fat stores (Goodwill, 2008; Ford, 2003; Erdembileg et 

al., 2015; Bickel et al., 2002). TNF-α cytokines can impact endothelial function (Singer 

and Granger, 2007), increase reactive oxygen species (ROS) production (Agharazii et al., 

2015), alter glucose metabolism of the skeletal muscle via the inhibition of insulin 

receptor tyrosine kinase (Hotamisligil et al., 1996), promote smooth muscle cell 

proliferation, and increase monocyte cell adhesion and infiltration (Yeh, 2004). IL-6 is a 

key regulator for CRP production which is a clinical marker of inflammation that serves 

as an early predictor for cardiovascular disease, including asymptomatic patients (Ridker 

et al., 2002). Elevated CRP mediated activity can directly inhibit nitric oxide (NO) 
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production via inhibition of eNOS and endothelial dysfunction (Jialal, 2009) and 

contribute to the elevated levels of ROS production associated with a pro-inflammatory 

state (Prasad, 2004; Singer and Granger, 2007).  

 ROS is a chemically reactive byproduct of oxidative metabolism which is 

essential for cell signaling, immune response, as well as non-pathological apoptosis and 

contain one or more oxygen atoms and unpaired electrons. The highly reactive 

superoxide anion (O2-·) is the initial ROS produced by mitochondrial metabolism which 

is normally and rapidly transformed into H2O2 and then to water via the antioxidant 

enzymes superoxide dismutase (SOD) and catalase/glutathione peroxidase, respectively. 

However, oxidative stress, or elevations in ROS production beyond that of endogenous 

antioxidant systems, can result in the alteration of essential cellular proteins and increases 

in proteolytic susceptibly (Davies et al., 1986).  There are a multitude of studies 

connecting oxidative stress with observed vasculopathies associated with impaired 

glycemic control and insulin resistance, cardiovascular diseases, and a multitude of other 

diseases (Agharazii et al., 2015; Frisbee & Delp, 2006; Davies et al., 1986). A key 

consequence of excess ROS in the context of vascular function is its reactivity with 

endothelial derived NO to form elevated levels of peroxynitrate, which can uncouple 

eNOS, thus decreasing both the production and the bioavailability of NO (Fig 4; 

Goodwill and Frisbee, 2012).  
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Figure 4: Superoxide pathways  

 

 

 Additionally, vascular necrosis/rarefaction can be linked to increased oxidative 

stress as NO is essential for the structural maintenance of the vasculature and 

angiogenesis (Cooke and Losordo, 2002). Decreases in vascular density may lead to 

increases in hypoxia which can further exacerbate ROS production and contribute to a 

self-perpetuating pathology (Chandel et al., 1998). Taken together, ROS production is a 

self-propagating phenomenon which is detrimental to normal cellular function.  In the 

context of this dissertation, 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL), a 

free radical scavenger and superoxide mimetic, is used to measure the contribution of 

ROS on the blunted dilatory response of the OZR vasculature compared to healthy 

controls.  

 An additional consequence includes a ratio shift in prostacyclin (PGI2) and 

thromboxane (TxA2) production attributed mainly to oxidative stress (Goodwill et al, 

2008), dyslipidemia, and the oxidization of low density lipoproteins (Palinski et al. 1989; 

Pfister & Campbell, 1996). PGI2 and TxA2 are two well known, vasoactive end products 

of arachidonic acid (AA) metabolism by cyclooxygenase to prostaglandin endoperoxide 

H2 (Figure 5: AA metabolism).  PGI2 and TxA2 are known to elicit opposite actions on 
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coagulation and vasodilatory/vasoconstrictive response. PGI2 is recognized more so as 

the homeostatic product of AA metabolism as it promotes vasodilation and has anti-

coagulant properties, whereas TxA2 is a potent vasoconstrictor which promotes red blood 

cell and platelet aggregation and is more so observed at the sight of acute injuries or in 

pathophysiological conditions.  

Figure 5: Arachidonic acid metabolism cascade 

  

 In the presence of insulin resistance there is a shift in arachidonic acid metabolism 

which favors TxA2 production (Hishinuma, 2001) which has been attributed to the 

inactivation of prostacyclin synthase via interaction with the elevated levels of 

peroxynitrite (Davis & Zou, 2005). Further, it has been suggested impaired glycemic 

control may promote protein kinase C activity with ensuing increases in the inducible 

isoform, cyclooxygenase-2, activity to produce elevated TXA2 production in circulating 

leukocytes (Nusing et al., 1993). This shift promotes a more vasoconstrictive state of the 

vessels at rest and in response to the TXA2 mimetic U46619 (Goodwill, 2008) thereby 

decreasing the lumen size and contributing to increases in vascular resistance. 

Additionally, the coagulative actions of TXA2 promotes the prothrombic state observed 

with METS risk factors which increases the risk of clot/thrombotic formations and 

associated diseases and detrimental cardiovascular events such as stroke and heart attack. 
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Adrenergic Control 

 The altered vasodilatory signaling and reactivity observed with METS and models 

of METS is well established. Previous studies have also demonstrated the decrease in 

skeletal muscle lumen diameter in the OZR can be further credited to an elevated 

constrictor response to sympathetic nervous system (SNS) innervation compared to 

healthy controls (Stepp & Frisbee, 2002). The SNS elicits vasoconstriction via the release 

neuronal signals and the interaction with their respective receptors (R) which includes the 

following: nor-adrenaline (α1-R & α2-R; adrenergic), adenosine triphosphate (P2X1-R; 

purinergic), and neuropeptide Y (Y1-R; peptidergic). Vascular responses to these signals 

within the arteriole microcirculation experience heterogeneous distribution where 

proximal arterioles are largely under adrenergic control and the distal arterioles are more 

so under purinergic and/or peptidergic control (Anderson & Faber, 1991; Al-Khazraji et 

al. 2015).  

 It has been suggested the decreases in hyperemic response to occlusion and the 

more vasoconstricted state observed in OZR may be attributed to the augmentation of α1-

adrenergic response, validated by the rescuing effects of adrenergic blockers such as 

prazosin and phentolamine (Frisbee, 2006). This dissertation will examine the α-

adrenergic response observed using a mutli-scale (in-situ, in-vivo, and ex-vivo) approach 

at various levels of microcirculation (feed arteries, arterioles, terminal/precapillary 

arteries) to garner a greater understanding of the variability observed when using single 

point interrogations at a single level of the vasculature.  While the majority of previous 

research in the context of microcirculation and blood flow resistance has focused on the 

interrogation of arteries and resistance arterioles, we also examine the effects of α-

adrenergic mediation of venule diameters to identify potential contributors to the overall 

increase in vascular resistance observed in METS and METS models. 
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1.4 Translational Interventions for PVD: Chronic Exercise 
and/or HMG-CoA Reductase Inhibitor 

 An existing clinical and translational disparity in animal models with METS 

associated PVD is that many of the employed interventions are relevant for blunting the 

severity of vasculopathies of the developing PVD. However, from a clinical stance, this 

may not serve as the most relevant model as many patients seek medical assistance due to 

claudication or pain in their extremities when performing physical activity, meaning PVD 

is already well established. Therefore, animal studies which employ early interventions, 

prior to the establishment of PVD, are not translationally relevant for humans presenting 

with established PVD. In the context of this dissertation, we employ interventions 

following the establishment of PVD which includes regular, physical activity/exercise 

and/or the chronic ingestion of the HMG-CoA inhibitor, atorvastatin. 

Chronic Exercise 

 It is well established that regular exercise can improve obesity, insulin resistance, 

and dyslipidemia in both humans and animals (Moller & Kaufman, 2005; Becker-

Zimmermann et al., 1982). Additionally, exercise has been shown to improve vascular 

densities in skeletal muscle, both trained/locomotive muscles (Frisbee, 2006) and non-

trained/systemic muscles (Qui et al., 2018), and improves NO bioavailability (Machado 

et al., 2016). NO bioavailability plays a critical role in angiogenic incompetence and 

rarefaction (Machado et al., 2016; Ungvari et al., 2018) and this dependency has been 

suggested to be the major underlying mechanism of microvascular rarefaction in METS 

(Frisbee, 2005). 

 A multitude of previous studies indicate improvements in NO bioavailability via 

increases in eNOS expression and activity for both healthy controls (Parker et al., 2011) 

and disease states (Orr et al., 2009; Fiuza-Luces et al., 2018). A potential contributor to 

this upregulation may be in adaptation to the regular increases of exercise induced shear 

stress from blood flow, a potent stimulus for NO production and vasodilation (Fleming 

and Busse, 2003). Improvements in NO bioavailability are paralleled by decreases in 

ROS generation and improvements in antioxidant systems (Kojda & Hambrecht, 2005). 
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Potential mechanisms include increases in superoxide dismutase, catalase, and peroxidase 

(Berzosa et al., 2011) as well as decreases in the NADPH oxidase production of ROS 

(Rush et al., 2003). Taken together, these exercise-induced improvements can result in 

increases of NO bioavailability in METS models thereby promoting angiogenesis to 

combat rarefaction and improve many of the other previously listed pathologies 

associated with impaired NO bioavailability.  

HMG-CoA Inhibition  

 Clinically, the inhibition of liver enzyme 3-hydroxy-3-methylglutaryl coenzyme 

A reductase (HMG-CoA) is commonly used in an effort to reduce circulating cholesterol 

levels, thus the target for cholesterol lowering drugs such as the HMG-CoA reductase 

inhibitor, atorvastatin (ATOR). However, statins also have pleiotropic effects and are 

therefore increasingly used for reasons beyond lowering cholesterol levels, including 

anti-inflammation (Fujita et al., 2007). Although the mechanisms are unclear, statins are 

associated with improvements in inflammatory markers and endothelial cell function 

which result in better outcomes of inflammation-linked vascular diseases (Haslinger-

Löffler, 2008). More specifically, ATOR has been reported to decrease the expression of 

the previously mentioned inflammatory cytokines (IL-6 and TNF-α), decrease CRP, and 

improve defense systems against reactive oxygen species (Rabkin et al., 2013; Sodha et 

al., 2015) thus improving the previously mentioned, associated detriments observed with 

established PVD. 

1.5 Specific Aims 

1. To determine alterations for post-capillary venular structure/function in OZR and the 

extent this contributes to elevated network resistance and impaired mass 

transport/exchange. These experiments employ intravital imaging of in situ skeletal 

muscle with specific physiological and pharmacological challenges to determine venular 

hemodynamic and vasomotor diameter responses in METS. 

 

2. To determine the role of adrenergic signaling and its interaction with altered 

endothelial function on resistance in pre-capillary, arteriolar networks of OZR and how it 



 

17 

 

may contribute to skeletal muscle perfusion. These experiments employ in vivo, in situ, 

and ex vivo conditions to interrogate interactions between adrenergic responses and their 

influence on vessel diameters. 

 

3. To determine the potential for reversibility of OZR microvasculopathies using exercise 

and atorvastatin. These experiments employ intravital microscopy of in situ skeletal 

muscle and the study of ex vivo arterioles to determine alterations in vessel diameter 

control, blood flow distribution, and bulk perfusion within arteriolar networks.   

1.6 Significance 

 METS and PVD continue to burden the health of afflicted individuals via 

decreases in quality of life and increases in both morbidity and mortality. Further, these 

burdens extend to higher healthcare spending. Although strides have been made to 

understand these diseases, many of the underlying mechanisms remain unclear. 

Therefore, this dissertation seeks to further advance the understanding of METS 

associated PVD and explore potential modes for improvement following its 

establishment.   
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KEY POINTS: 

• With the development of the metabolic syndrome, both post-capillary and collecting 

venular dilator reactivity within the skeletal muscle of obese Zucker rats (OZR) is 

impaired.   

• The impaired dilator reactivity in OZR reflects a loss in venular nitric oxide and PGI2 

bioavailability, associated with the chronic elevation in oxidant stress.  

• Additionally, with the impaired dilator responses, a modest increase in adrenergic 

constriction, combined with an elevated thromboxane A2 production may contribute 

to impaired functional dilator and hyperemic responses at the venular level.   

• The shift in skeletal muscle venular function with development of the metabolic 

syndrome on issues such as aggregate microvascular perfusion resistance, mass 

transport and exchange within with capillary networks, and fluid handling across the 

microcirculation are compelling avenues for future investigation. 
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2.1 Abstract 

While research into vascular outcomes of the metabolic syndrome has focused on 

arterial/arteriolar and capillary levels, investigation into venular function and how this 

impacts responses has received little attention.  Using the in situ cremaster muscle of 

obese Zucker rats (OZR; with leans (LZR) as controls), we determined indices of venular 

function.  At ~17 weeks of age, skeletal muscle post-capillary venular density was 

reduced by ~20% in LZR vs. OZR, although there was no evidence of remodeling of the 

venular wall.  Venular tone at ~25 µm (post-capillary) and ~75 µm (collecting) diameter 

was elevated in OZR vs. LZR.  Venular dilation to acetylcholine was blunted in OZR vs. 

LZR due to increased oxidant stress-based loss of nitric oxide bioavailability (post-

capillary) and increased α1- (and α2-) mediated constrictor tone (collecting).  Venular 

constrictor responses in OZR were comparable to LZR for most stimuli, although 

constriction to α1 adrenoreceptor stimulation was elevated.  In response to field 

stimulation of the cremaster muscle (0.5, 1, 3 Hz), venular dilator and hyperemic 

responses to lower frequencies were blunted in OZR, but responses at 3 Hz were similar 

between strains.  Venous production of TxA2 was higher in OZR than LZR and 

significantly higher than PGI2 production in either following arachidonic acid challenge.  

These results suggest that multi-faceted alterations to skeletal muscle venular function in 

OZR may contribute to alterations in upstream capillary pressure profiles and the trans-

capillary exchange of solutes and water under conditions of metabolic syndrome. 

Key words:  venous function, microcirculation, metabolic syndrome, skeletal muscle 

blood flow 

Abbreviations: DPEP IV, dipeptidyl peptidase-4; GS-1, griffonia simplicifolia 1; L-

NAME, Nω-Nitro-L-arginine methyl ester hydrochloride; LZR, lean Zucker rat; OZR, 

obese Zucker rat; PGI2, prostacyclin; TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidin-

1-oxyl; TxA2, thromboxane A2 
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2.2 Introduction 

 It is well established that the growing incidence and prevalence of the metabolic 

syndrome presents a consistent threat to aggregate public health cardiovascular outcomes 

across many societies and developed economies (Mameli et al., 2017; Tune et al., 2017; 

Vassalo et al., 2016).  This syndrome is broadly defined as the combined presentation of 

obesity, impaired glycemic control, atherogenic dyslipidemia and hypertension, with the 

additional contributing conditions of pro-oxidant, pro-thrombotic and pro-inflammatory 

phenotypes (American Heart Association, 2017; Vassalo et al., 2016).  While this 

condition is present in a growing number of afflicted persons worldwide, its influence on 

morbidity and mortality (Global Burden of Metabolic Risk Factors for Chronic Diseases 

Collaboration, 2014), as well as the economic costs that must be borne by society 

(Shamsedden et al., 2011; Trasande and Elbel, 2012), mandate the detailed investigation 

into this multi-pathology state. 

 While enormous investment has been made in understanding the impact of the 

metabolic syndrome on arterial/arteriolar and capillary function (Goodwill et al., 2012, 

Lemaster et al., 2017, Tune et al. 2017), dedicated study of venular function has been 

limited and has largely focused on leukocyte-endothelial cell interactions as well as 

inflammatory and pro-thrombotic processes (Estato et al., 2017; Iba et al., 2012; Scallan 

et al., 2015).  Although these are important aspects of altered venular function, our 

understanding of venous tone regulation and its potential contribution to integrated 

microvascular function through the transition from health to disease is far from complete.  

Population health studies, using the retinal microcirculation as a “window” into altered 

venular function, suggest that the control of venular diameter and venular network 

structure can be significantly altered with metabolic disease (Lammert et al., 2012; Wong 

et al., 2004; Zhao et al., 2012).  However, there has been a limited attempt at 

investigating these relationships in relevant animal models. 

 The obese Zucker rat (OZR; fa/fa) represents a translationally-relevant model to 

study the metabolic syndrome, as cardiovascular disease in this model tracks well with 

cardiovascular (dys)function in afflicted humans.  OZR develop the metabolic syndrome 

due to chronic hyperphagia based in leptin resistance, and rapidly develop all of the 
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systemic phenotypes listed above to comparable levels of severity to that commonly 

identified in human subjects.  Also similar to the health outcomes in humans, OZR 

exhibiting the metabolic syndrome suffer from a progressive vasculopathy that ultimately 

develops into overt peripheral vascular disease (Frisbee and Delp, 2006), albeit one 

without the development of significant atherosclerotic lesions.  While there has been 

extensive interrogation of the impact of metabolic syndrome on the arterial side of the 

microcirculation in OZR and in comparable models (Tune et al., 2017), there has been 

less effort devoted to understanding the potential for altered venular function under these 

conditions and the potential impact on integrated microvascular function.   

The purpose of the present study was to begin to understand how the function of in situ 

post-capillary and collecting venules from obese Zucker rats manifesting the full 

metabolic syndrome can be impacted as a result of the multi-pathology state.  To assess 

this, we used an array of physiological and pharmacological challenges to understand 

how function is altered at these two levels within the venular networks.  The present 

study tested the hypothesis that post-capillary and collecting venular function in the in 

situ skeletal muscle of OZR is altered in a manner that can increase venular blood flow 

resistance and negatively impact function within the capillary networks. 

2.3 Materials and Methods 

 Ethical Approval: All procedures in the present study had received prior review and 

approval by the Institutional Animal Care and Use Committee.  All animal use procedures, 

including anesthesia and euthanasia, conform to standards established by the UK/European 

Union legislation (set out in in ASPA Schedule 1 in the UK and in Annex IV in the 

European Directive 2010/63/EU), the Canadian Council for Animal Care and the United 

States Department of Agriculture.  All details of animal use are provided in the subsequent 

paragraphs. 

Animals: Male lean (LZR, Harlan/Envigo) and obese Zucker rats (OZR, Harlan/Envigo) 

were acquired at 6-7 weeks of age, and after one week of acclimation, were aged to ~17 

weeks of age.  All animals were fed standard chow and tap water ad libitum for all 

experiments.  On the experiment day, after an 8 hour fast, rats were anesthetized with 
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injections of sodium pentobarbital (50 mg•kg-1 i.p.), and all rats received tracheal intubation 

to facilitate maintenance of a patent airway.  In all rats a carotid artery and an external 

jugular vein were cannulated for determination of arterial pressure and for intravenous 

infusion of additional substances as necessary (e.g., anesthesia, heparin, etc.).  Any animal 

in which mean arterial pressure was found to be below 85 mmHg (<5% in both LZR and 

OZR), or where it had decreased by more than 15% from that following equilibration 

(without any pharmacological intervention; ~5% in LZR, ~10% in OZR) was not used in the 

present study.  Blood samples were drawn from the venous cannula for determination of 

glucose and insulin concentrations (Millipore, Billerica, MA) as well as 

cholesterol/triglyceride levels (Wako Diagnostics, Richmond, VA), and nitrotyrosine (Oxis 

International. Foster City, CA).  Blood gases were determined using a Corning RapidLab 

248 Blood Gas Analyzer (Siemens Medical Solutions, Malvern, PA). Unless otherwise 

noted, all drugs and chemicals were purchased from Sigma-Aldrich (St. Louis, MO).  

Adequate depth of anesthesia was confirmed at ~15 minute intervals by monitoring 

ventilation patterns and noting an absence of whisker movement, startle and toe-pinch 

withdrawal reflexes.  Additional anesthetic was introduced in 10 mg•kg-1 increments, as 

needed, through the jugular vein cannula.  After all experiments, the anesthetized rat was 

euthanized with an intravenous overdose of sodium pentobarbital (>200 mg•kg-1) followed 

by a bilateral pneumothoracotomy and physical removal of the heart. Due to the lasting 

effects of some of the pharmacological interventions and the inherent difficulties in 

reversing them, not all observations could be gathered from every animal.  As a result, in 

specific experiment groups, the actual number of animals used can exceed the number of 

specific observations.  This was done in order to preserve quality and experiment rigor.  For 

clarity, total animal numbers used for the present study, and their distribution across the 

experimental groups, are summarized in Table 1.   
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Table 1.  Animal numbers, experimental group distributions and condition observation 

numbers within groups for the present study.  All other experiment data came from ex 

vivo tissue analyses recovered from within these animal groups.  Please see text for 

details. 

 

 

Preparation of In Situ Cremaster Muscle:  In each rat, the left cremaster muscle was 

prepared for television microscopy (Butcher et al., 2013).  After completion of the 

preparation, the cremaster muscle was superfused with PSS, equilibrated with a gas mixture 

containing 5% CO2 and 95% N2, and maintained at 35C as it flowed over the muscle.  The 

ionic composition of the PSS was as follows (mM): NaCl 119.0, KCl 4.7, CaCl2 1.6, 

NaH2PO4 1.18, MgSO4 1.17, and NaHCO3 24.0. Venular diameter was determined with an 

on-screen video micrometer.  After an initial post-surgical equilibration period of 30 

minutes, venules of two sizes, ~75 µm diameter; (“collecting”) and ~25 m diameter (“post-

capillary”) were selected for investigation in a clearly visible region of the muscle.  Venules 

selected for study had walls that were clearly visible, a brisk flow velocity, and active tone, 

as indicated by the occurrence of significant dilation in response to topical application of 10-

5 M adenosine.  All venules studied were located in a region of the muscle that was away 

from any incision.  In all experiments, at the conclusion of all procedures, 10-3 M adenosine 

and 10-3 M sodium nitroprusside were added to the superfusate to determine maximal 

diameter of the monitored venules. 

 LZR OZR 

 Animals Observations Animals Observations 

Experiment Group 1 6 6 8 8 

Experiment Group 2 12 6 12 6 

Experiment Group 3 12 6 12 6 

Experiment Group 4  6 6 8 8 

Experiment Group 5  5 5 5 5 

Total Animal Number 41 --- 45 --- 
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Experiments Group 1:  These experiments were designed to determine fundamental 

cremaster muscle venular responses to pharmacological stimuli between LZR and OZR.  

Following an equilibration period, the responses of selected venules within the cremaster 

muscle of LZR and OZR were assessed in response to increasing concentrations of 

acetylcholine (10-10 – 10-6 M), phenylephrine (α1 adrenoreceptor agonist; 10-10 – 10-6 M), 

clonidine (α2 adrenoreceptor agonist, 10-10 – 10-6 M), angiotensin II (vasoconstrictor 

peptide, 10-10 – 10-6 M), endothelin (vasoconstrictor peptide, 10-10 – 10-6 M) or 

acetylcholine (endothelium-dependent dilator, 10-10 – 10-6 M).   

Experiments Group 2:  These experiments determined basic signaling mechanisms that can 

contribute to the alterations in dilator reactivity to acetylcholine and the constrictor reactivity 

to phenylephrine determined between LZR and OZR in Group 1.  For these experiments, 

following the determination of baseline responses to acetylcholine and phenylephrine (as 

above), the cremaster muscle was treated with L-NAME (nitric oxide synthase inhibitor; 10-4 

M), indomethacin (cyclooxygenase inhibitor; 10-5 M), TEMPOL (cell-permeable antioxidant; 

10-4 M) or SQ-29548 (PGH2/TxA2 receptor antagonist, 10-5 M).   As in our previous studies 

(Butcher et al., 2013; Frisbee et al., 2014), to exert maximum effectiveness, each inhibitor 

was applied for at least 45 minutes prior to evaluation of venular reactivity.  

 In a subset of animals from Experiment Groups 1 and 2, the cremaster muscle of LZR 

(n=10) and OZR (n=10) was treated with prazosin (α1 adrenoreceptor blocker, 10-5 M), 

yohimbine (α2 adrenoreceptor blocker, 10-5 M), or both and constrictor responses to 

norepinephrine (10-10 – 10-6 M) were determined to assess any differences in receptor 

contribution between the strains. 

Experiments Group 3:  These experiments determined basic signaling mechanisms that 

contribute to acetylcholine-induced dilation or phenylephrine-induced constriction of 

cremaster muscle venules of LZR and OZR following pretreatment with 10-4 M TEMPOL.  

Following incubation with the antioxidant, venular responses to increasing concentrations of 

acetylcholine and phenylephrine were assessed under the new “control” conditions, and 

following treatment of the muscle with L-NAME, indomethacin, or SQ-29548, as described 

above. 
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Experiment Group 4:  These experiments determined the responses of in situ cremaster 

muscle venules of LZR and OZR in response to increased metabolic demand.  Contraction of 

the cremaster muscle was evoked by three minutes of electrical field stimulation at 0.5, 1 or 3 

Hz (400 ms duration, 60 Hz within train, 7V; Grass SD 48).   At the conclusion of the muscle 

contraction period, venular diameter and center-line erythrocyte velocity (optical Doppler 

velocimeter, Texas A&M University, College Station, TX) were determined and used for the 

calculation of hyperemic responses (see below). 

Experiment Group 5:  These experiments determined the degree of leukocyte adhesion and 

rolling on the post-capillary venular endothelium between LZR and OZR.  In a separate 

cohort of LZR and OZR, the in situ extensor digitorum longus muscle was prepared as 

described previously (Frisbee et al., 2014; Tyml and Budreau, 1991).  Following 

preparation of the muscle for imaging, 10 random high magnification fields of view (Plan-

Neo 20x/0.5 and 40x/0.75; Zeiss) were recorded using a high-speed cooled digital imaging 

system (Axiocam HSm; Zeiss) for later analyses. Animals received a bolus injection of 

rhodamine 6G (0.3 mg/kg; Sigma) to permit visualization of leukocytes. Rhodamine 6G-

labeled vascular cells were visualized by epi-illumination at 510-560 nm, using a 590-nm 

emission filter. The number of rolling and adherent leukocytes in venules was expressed 

as cells/mm2 of endothelial surface, calculated from the diameter and length of the venular 

segment. Leukocytes were considered adherent if they remained stationary for a 30 second 

observation period. Leukocytes were considered rolling if their velocity was less than 250 

μm/sec (Zeintl et al., 1989). 

Histological Determination of Microvessel Density:  From LZR and OZR that were 

selected from each of the above groups, the gastrocnemius muscle from the left leg was 

removed, rinsed in PSS and fixed in 0.25% formalin.  Muscles were embedded in paraffin 

and cut into 5 µm cross sections.  Sections were incubated with Griffonia simplicifolia I 

lectin (GS-1) and dipeptidylpeptidase IV (DPEP IV), for subsequent determination of 

microvessel density.  GS-1 is a general stain that labels all microvessels <20 µm in diameter 

(Greene et al., 1990) and DPEP IV preferentially stains venular ends of capillaries 

(Mrázková et al., 1986).  Labeled microvessel density was determined using fluorescent 

(for GS-1) or light microscopy (for DPEP IV) as described previously (Frisbee et al., 2014). 
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Determination of Vascular Metabolites of Arachidonic Acid:  Vascular production of 6-

keto-prostaglandin F1α(6-keto-PGF1α; the stable breakdown product of PGI2; Liu et al., 1997; 

Nies 1986), and 11-dehydro-thromboxane B2 (11-dehydro-TxB2; the stable plasma 

breakdown product of TxA2; Catella et al., 1986) in response to challenge with arachidonic 

acid (10-6 M) was assessed using pooled conduit veins (e.g., femoral, saphenous) from LZR 

and OZR.  Pooled vessels from each animal were incubated in microcentrifuge tubes in 1 ml 

of physiological salt solution for 30 minutes under control conditions (21% O2 with the 

arachidonic acid challenge).  After this time, the superfusate was removed, stored in a new 

microcentrifuge tube and frozen in liquid N2, while a new aliquot of PSS with arachidonic 

acid was added to the vessels for the subsequent 30 minutes.  After the second 30 minute 

period, this PSS was transferred to a fresh tube, frozen in liquid N2 and stored at -80C.  

Metabolite release by the vessels was determined using commercially available EIA kits for 

6-keto-PGF1 and 11-dehydro-TxB2 (Cayman).  

Data and Statistical Analyses:  Blood flow in venular segments within in situ cremaster 

muscle of LZR and OZR was calculated as: 

𝑄 = (𝑉 × 1.6−1)(𝜋𝑟2)(0.001) 

where Q represents venular perfusion (nl•s-1), V represents the measured red cell velocity 

from the optical Doppler velocimeter (mm•s-1; with V/1.6 representing an estimated 

average velocity assuming a parabolic flow profile; Baker and Wayland, 1974), and r 

represents venular radius (µm; Davis, 1987).    

 All data are presented as mean±SD.  Statistically significant differences in measured 

and calculated parameters between LZR and OZR in the present study were determined using 

repeated measures analysis of variance (RM-ANOVA), where agonist concentration or 

muscle stimulation frequency were used as the repeated measures.  Statistically significant 

differences in arachidonic acid metabolite production, leukocyte adhesion/rolling and 

measures of microvessel density between LZR and OZR were assessed using standard 

ANOVA or Student’s t-test, as appropriate.  Student-Newman-Keuls post hoc test was used 

when appropriate and p<0.05 was taken to reflect statistical significance.   
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2.4 Results 

 At ~17 weeks, OZR exhibited all aspects of the metabolic syndrome, being obese as 

compared to age-matched LZR, with impaired glycemic control, dyslipidemia in both 

cholesterol and triglyceride levels, with a moderate level of hypertension (Table 2).  In 

addition, OZR exhibited both a chronic level of oxidant stress within the vasculature as well 

as a chronic state of inflammation.  Within the in situ cremaster muscle, venular diameters 

under untreated conditions demonstrated a modest reduction in diameter in OZR as compared 

to LZR, and there was no difference in venular diameter under passive conditions.   When 

taken together, however, calculated active tone of in situ venules for OZR in the post-capillary 

level, but not in the collecting venules, was elevated as compared to that for LZR. 

 

Table 2.  Baseline characteristics (mean±SD) of ~17 week old LZR and OZR used in the present study.  * p<0.05 versus LZR. 

 

 LZR OZR 

Mass (g) 35859 67971* 

MAP (mmHg) 98±21 129±35* 

[Glucose]plasma (mg/dl) 105±49 164±65* 

[Insulin]plasma (ng/ml) 1.4±1.1 7.6±6.0* 

[Cholesterol]plasma (mg/dl) 84±38 132±65* 

[Triglycerides]plasma (mg/dl) 91±53 361±118* 

[Nitrotyrosine]plasma (ng/ml) 11±16 44±36* 

[TNF-]plasma (pg/ml) 2.1±1.6 7.4±4.7* 

[MCP-1]plasma (pg/ml) 32±27 94±47* 

 Post-Capillary Venules 

Resting Diameter (m) 21±11 19±12 

Maximum/Passive Diameter (m) 36±16 37±18 

Active Tone (%) 40±17 49±17* 

 Collecting Venules 

Resting Diameter (m) 66±17 62±18 

Maximum/Passive Diameter (m) 105±21 107±24 

Active Tone (%) 37±16 42±18 
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 Figure 1 summarizes post-capillary venular dilator responses (to acetylcholine, Panel 

A) or constrictor responses (to endothelin, Panel B; angiotensin II, Panel C; clonidine, Panel 

D; or phenylephrine, Panel E).  In response to increasing concentrations of acetylcholine, 

dilator responses of both distal and proximal venules of OZR were attenuated as compared to 

responses in LZR.  Venules from OZR and LZR all demonstrated a robust constriction in 

response to increasing concentrations of endothelin, angiotensin II and clonidine (Panels B-

D), although there were no demonstrable differences in these responses between strains.  

However, venular constrictor responses to increasing concentrations of the 1 adrenoreceptor 

agonist phenylephrine were significantly increased in OZR over the mid-range of the agonist 

challenge (Panel E).   

 

Figure 1.  Data describing the reactivity of post-capillary venules within in situ cremaster muscle of LZR  and OZR in response 

to increasing concentrations of acetylcholine (Panel A), endothelin (Panel B), angiotensin II (Panel C), clonidine (Panel D) 

and phenylephrine (Panel E).  Data are presented as the mean±SD change in venular inner diameter, expressed as a percentage 

of the initial resting state (~ 25 m).  * represents p<0.05 versus responses from LZR at that agonist concentration.  Results 

and determination of statistically significant difference represent n=6 observations from 6 animals in LZR; n=8 observations 

from 8 animals in OZR. 

 Data describing the reactivity of collecting venules within the in situ cremaster muscle 

of LZR and OZR are presented in Figure 2.  As with the smaller venules, dilator responses of 

larger collecting venules to acetylcholine were attenuated in OZR as compared to responses 

in LZR (Panel A), while responses to increasing concentrations of endothelin (Panel B) and 

angiotensin II (Panel C) were comparable.  However, while venular constrictor responses to 
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phenylephrine were enhanced in OZR as compared to LZR (Panel D), responses to clonidine 

(Panel E) were also increased versus those in LZR.     

 

Figure 2.  Data describing the reactivity of collecting venules within in situ cremaster muscle of LZR and OZR in response 

to increasing concentrations of acetylcholine (Panel A), endothelin (Panel B), angiotensin II (Panel C), clonidine (Panel D) 

and phenylephrine (Panel E).  Data are presented as the mean±SD change in venular inner diameter, expressed as a percentage 

of the initial resting state (~ 70 m).  * represents p<0.05 versus responses from LZR at that agonist concentration. Results 

and determination of statistically significant difference represent n=6 observations from 6 animals in LZR; n=8 observations 

from 8 animals in OZR. 

 Figure 3 presents the mechanistic contributors to the venular dilation to acetylcholine 

in post-capillary venules of LZR (Panels A and C) and OZR (Panels B and D).  In LZR, dilator 

responses of venules to increasing concentrations of acetylcholine were largely nitric oxide-

dependent, as treatment with L-NAME significantly attenuated responses (Panel A).  While 

there was a contribution from cyclooxygenase products to this response, it was less substantial 

than that for nitric oxide.   In OZR, the attenuated venular dilation to acetylcholine was 

abolished following treatment of the cremaster muscle with L-NAME, but only minimally 

impacted as a result of treatment with indomethacin.  However, incubation of the tissue with 

TEMPOL resulted in a more robust dilation to increasing concentrations of acetylcholine 

(Panel B).   If the cremaster muscle of LZR or OZR was incubated with TEMPOL prior to 

challenge with increasing concentrations of acetylcholine, these relationships were not 

fundamentally altered in venules of LZR (Panel C).  However, the improvement in the 

acetylcholine-induced venular dilation in OZR was abolished by L-NAME, unaffected by 
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indomethacin, and mildly improved by blockade of PGH2/TxA2 receptors with SQ-29548 

(Panel D). 

   

Figure 3.  The dilator reactivity of post-capillary venules within in situ cremaster muscle of LZR and OZR in response to 

increasing concentrations of acetylcholine (Panels A and B, respectively).  Data are presented for venular reactivity under 

untreated control conditions, and following pre-treatment of the cremaster muscle with L-NAME, indomethacin (INDO) or 

TEMPOL.  For Panels A and B, results represent n=6 observations from 12 animals in LZR; n=6 observations from 12 animals 

in OZR.  Also presented are data describing the reactivity of post-capillary venules following pre-treatment with TEMPOL in 

LZR and OZR (Panels C and D, respectively), where the cremaster muscle was subsequently treated with L-NAME, 

indomethacin (INDO) or SQ-29548 to assess the contributions of nitric oxide, cyclooxygenase products or PGH2/TxA2 to 

reactivity.  Data are presented as the mean±SD change in venular inner diameter, expressed as a percentage of the initial resting 

state (~ 25 m).  * represents p<0.05 versus responses from LZR at that agonist concentration.  For Panels C and D, results 

represent n=6 observations from 12 animals in LZR; n=6 observations from 12 animals in OZR.  All statistical analyses were 

done on the number of observations within the group, not the number of animals within the group.   Please see text and Table 

1 for details. 

The relationships between acetylcholine-induced dilation (with or without pre-

treatment with TEMPOL) and its basic mechanistic contributors were consistent in the larger 

collecting venules within in situ cremaster muscle of LZR and OZR with some exceptions 

(Figure 4, Panels A-D).  In post-capillary venules from LZR and OZR rats and in collecting 

venules from OZR, indomethacin did not have a demonstrable impact on dilator responses 

to acetylcholine, but significantly attenuated collecting venular dilation in LZR.  Further, 



 

42 

 

the indomethacin-sensitive component of the collecting venular dilation to acetylcholine 

was absent in OZR and in LZR and OZR pre-treated with TEMPOL. 

 

Figure 4.  The dilator reactivity of collecting venules within in situ cremaster muscle of LZR and OZR in response to 

increasing concentrations of acetylcholine (Panels A and B, respectively).  Data are presented for venular reactivity under 

untreated control conditions, and following pre-treatment of the cremaster muscle with L-NAME, indomethacin (INDO) or 

TEMPOL.  For Panels A and B, results represent n=6 observations from 12 animals in LZR; n=6 observations from 12 animals 

in OZR.   Also presented are data describing the reactivity of collecting venules following pre-treatment with TEMPOL to 

normalize responses in OZR (Panels C and D, respectively), where the cremaster muscle was subsequently treated with L-

NAME, indomethacin (INDO) or SQ-29548 to assess the contributions of nitric oxide, cyclooxygenase products or 

PGH2/TxA2 to reactivity.  Data are presented as the mean±SD change in venular inner diameter, expressed as a percentage of 

the initial resting state (~ 70 m).  * represents p<0.05 versus responses from LZR at that agonist concentration.  For Panels 

C and D, results represent n=6 observations from 12 animals in LZR; n=6 observations from 12 animals in OZR. All statistical 

analyses were done on the number of observations within the group, not the number of animals within the group.   Please see 

text and Table 1 for details. 

 Using prazosin (1 adrenergic receptor blocker) and yohimbine (2 adrenergic 

receptor blocker), alone and in combination, the constrictor responses of post-capillary and 

collecting venules within cremaster muscle of LZR and OZR in response to increasing 

concentrations of norepinephrine were demonstrated to be almost entirely 1-receptor-

dependent in postcapillary venules and predominantly 1-receptor dependent (with a smaller 

contribution from 2 adrenergic receptors) in collecting venules in both strains (data not 
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shown).  Data describing the interaction of altered endothelial function and the venular 

constriction to increasing concentration of norepinephrine are summarized in Figure 5.  In the 

immediate post-capillary venules, treatment of the cremaster muscle with L-NAME increased 

constrictor responses to norepinephrine in LZR (Panel A), but was without effect in OZR 

(Panel B).   While treatment with indomethacin was largely without effect in either strain, 

treatment of the muscle with TEMPOL had only a minor effect on venular responses in LZR, 

but attenuated the constrictor response in OZR venules.  Following pre-treatment of the 

cremaster muscle with TEMPOL in LZR, responses to increasing concentrations of 

norepinephrine and the impact of L-NAME, indomethacin and SQ-29548 were similar to that 

determined under untreated conditions (Panel C).  In contrast, pre-treatment of the cremaster 

muscle of OZR with TEMPOL (moderating the severity of the norepinephrine-induced 

constriction), shifted venular reactivity such that constrictor responses were increased 

following treatment with L-NAME, were unaffected by indomethacin, but were reduced 

following additional treatment with SQ-29548 (Panel D).  Comparable to the responses to 

acetylcholine challenge, these relationships between norepinephrine-induced venular 

constriction (with or without pre-treatment with TEMPOL) and its basic contributors were 

similar in the collecting venules within in situ cremaster muscle of LZR and OZR (Figure 6, 

Panels A-D). 
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Figure 5.  The constrictor reactivity of post-capillary venules within in situ cremaster muscle of LZR and OZR in response to 

increasing concentrations of norepinephrine (Panels A and B, respectively).  Data are presented for venular reactivity under 

untreated control conditions, and following pre-treatment of the cremaster muscle with L-NAME, indomethacin (INDO) or 

TEMPOL.  For Panels A and B, results represent n=6 observations from 12 animals in LZR; n=6 observations from 12 animals 

in OZR.   Also presented are data describing the reactivity of post-capillary venules following pre-treatment with TEMPOL 

(Panels C and D, respectively), where the cremaster muscle was subsequently treated with L-NAME, indomethacin (INDO) 

or SQ-29548 to assess the contributions of nitric oxide, cyclooxygenase products or PGH2/TxA2 to reactivity.  Data are 

presented as the mean (±SD) change in venular inner diameter, expressed as a percentage of the initial resting state (~ 25 m).  

* represents p<0.05 versus responses from LZR at that agonist concentration.  For Panels C and D, results represent n=6 

observations from 12 animals in LZR; n=6 observations from 12 animals in OZR.  All statistical analyses were done on the 

number of observations within the group, not the number of animals within the group.   Please see text and Table 1 for details. 
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Figure 6.  The constrictor reactivity of collecting venules within in situ cremaster muscle of LZR and OZR in response to 

increasing concentrations of norepinephrine (Panels A and B, respectively).  Data are presented for venular reactivity under 

untreated control conditions, and following pre-treatment of the cremaster muscle with L-NAME, indomethacin (INDO) or 

TEMPOL.  For Panels A and B, results represent n=6 observations from 12 animals in LZR; n=6 observations from 12 animals 

in OZR.   Also presented are data describing the reactivity of collecting venules following pre-treatment with TEMPOL (Panels 

C and D, respectively), where the cremaster muscle was subsequently treated with L-NAME, indomethacin (INDO) or SQ-

29548 to assess the contributions of nitric oxide, cyclooxygenase products or PGH2/TxA2 to reactivity.  Data are presented as 

the mean (±SD) change in venular inner diameter, expressed as a percentage of the initial resting state (~ 70 m).  * represents 

p<0.05 versus responses from LZR at that agonist concentration.  For Panels C and D, results represent n=6 observations from 

12 animals in LZR; n=6 observations from 12 animals in OZR.  All statistical analyses were done on the number of 

observations within the group, not the number of animals within the group.   Please see text and Table 1 for details. 

 In response to field stimulation of the in situ cremaster muscle of LZR and OZR at 

increasing metabolic demand, the dilator and perfusion responses of post-capillary and 

collecting venules are summarized in Figure 7.  In response to increasing metabolic demand, 

the dilator responses of post-capillary (Panel A) and collecting (Panel B) cremaster muscle 

venules was attenuated at the low (0.5 Hz) and moderate (1.0 Hz) contraction frequencies, but 

was similar at the high (2.0 Hz) contraction frequency.  Perfusion responses followed a similar 

pattern, exhibiting a restrained hyperemic response at the lower two contraction frequencies 

in both post-capillary (Panel C) and collecting (Panel D) venules, that was not present at the 

high contraction frequency. 
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Figure 7.  The responses of venules within in situ cremaster muscle of LZR and OZR in response to increasing metabolic 

demand, imposed via field stimulation across the muscle.  Dilator responses to elevated metabolic demand are presented for 

post-capillary and collecting venules in Panels A and B, respectively; while functional hyperemic responses are presented in 

Panels C and D, respectively.  Data (mean±SD) are presented for venular responses, expressed as a percentage of values at the 

initial resting state. * represents p<0.05 versus responses from LZR at that stimulation frequency. Results represent n=6 

observations from 6 animals in LZR; n=8 observations from 8 animals in OZR. All statistical analyses were done on the 

number of observations within the group, not the number of animals within the group.   Please see text and Table 1 for details. 

 Pre-treatment of the cremaster muscle with TEMPOL moderated this difference in 

metabolism-induced venular dilation in the post-capillary venules of OZR, but had no 

significant effect on the dilator responses to muscle contraction in the larger collecting venules 

(Figure 8, Panels A and B).  A similar impact was determined on blood flow responses, where 

hyperemia was improved in both venular diameter ranges, although responses in the larger 

venules failed to achieve statistical significance (Panels C and D).  In contrast, pre-treatment 

of the cremaster muscle with phentolamine (1/2 adrenoreceptor blocker) had minimal 

impact on contraction-induced dilation or perfusion in post-capillary venules (Panels A and 

C), although both the dilator and hyperemic responses were improved in the larger collecting 

venules (Panels B and D).   
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Figure 8.  The responses of venules within in situ cremaster muscle of LZR and OZR in response to increasing metabolic 

demand, imposed via field stimulation across the muscle.  Dilator responses to elevated metabolic demand are presented for 

post-capillary and collecting venules in Panels A and B, respectively; while functional hyperemic responses are presented in 

Panels C and D, respectively.  Data (mean±SD) are presented under control conditions for each strain, and following pre-

treatment of the cremaster muscle (from OZR only) with TEMPOL or phentolamine.  All data are expressed as a percentage 

of values at the initial resting state.  * represents p<0.05 versus responses from LZR at that stimulation frequency.  Results 

represent n=6 observations from 6 animals in LZR; n=8 observations from 8 animals in OZR.  All statistical analyses were 

done on the number of observations within the group, not the number of animals within the group.   Please see text and Table 

1 for details. 

 The venous production of PGI2 and TxA2 in response to challenge with arachidonic 

acid is summarized in Figure 9.  Venous PGI2 production, estimated from the levels of 6-keto-

PGF1, was reduced in OZR as compared to levels in LZR under control conditions (Panel 

A).  Pre-treatment of the pooled veins with TEMPOL had no effect on responses in LZR, but 

resulted in an increase in the production of PGI2 in OZR.   In contrast, venous production of 

TxA2, estimated from the levels of 11-dehydro-TxB2, was elevated in OZR vs. LZR under 

control conditions (Panel B), but was reduced toward levels determine in LZR following pre-

treatment of veins with TEMPOL.  Venous production of either PGI2 or TxA2 was abolished 

following treatment of the vessels with indomethacin.   
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Figure 9.  Venous production of 6-keto-PGF1 (from PGI2; Panel A) and 11-dehydro-TxB2 (from TxA2; Panel B) following 

challenge with arachidonic acid in pooled vessels from LZR and OZR. Data (mean±SD) are presented under control conditions 

for each strain, and following pre-treatment of the pooled vessels with either TEMPOL or indomethacin (INDO).  * represents 

p<0.05 versus responses from LZR within the treatment group.  Results represent n=6 observations from 6 animals in LZR; 

n=6 observations from 6 animals in OZR.   All tissues for these ex vivo experiments were taken from animals within 

Experimental Groups 1 and 2.  Please see text for details. 

 Data describing the adhesion and rolling of leukocytes in the post-capillary venules of 

the in situ extensor digitorum longus muscle of LZR and OZR are summarized in Figure 10.  

For both adhesion of leukocytes and rolling of adherent cells, responses were increased in the 

networks of OZR as compared to that for LZR. 

Adherent Rolling

#
 W

B
C

 c
el

ls
/1

0
0
 

m
2

0

1

2

3

4

5

LZR
OZR

*

*

 

Figure 10.  Data describing the adhesion and rolling of leukocytes in the post-capillary venules of in situ extensor digitorum 

longus muscle of LZR and OZR.  Rhodamine 6G-labeled vascular cells were visualized by epi-illumination and the number 

of rolling and adherent leukocytes in venules was expressed as number of cells/are of endothelial surface, calculated from the 

diameter and length of the venular segment.  * represents p<0.05 vs. LZR.  Results represent n=5 observations from 5 animals 

in LZR; n=5 observations from 5 animals in OZR.  Please see text for details. 
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 Figure 11 presents data describing microvessel and post-capillary venular density 

within skeletal muscle of OZR and LZR.  In both cases, microvascular and post-capillary 

venular density were significantly reduced in OZR as compared to levels in age-matched 

LZR.   
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Figure 11.  The change in skeletal muscle microvessel density in LZR and OZR.  Results are presented following 

tissue staining with Griffonia simplicifolia 1 lectin (GS-1 lectin; for general microvessel density) or dipeptidylpeptidase 

IV (DPEP IV; for the post-capillary venular ends of capillaries).  Data are presented as mean±SD, n=8 for both strains 

of rats.  * represents p<0.05 vs. LZR.  Results represent n=8 observations from 8 animals in LZR; n=8 observations 

from 8 animals in OZR.   All tissues for these ex vivo experiments were taken from animals within Experimental 

Groups 1 and 2.  Please see text for details. 

 

2.5 Discussion 

To date, studies elucidating the impact of the metabolic syndrome on vascular regulation have 

focused on arterial/arteriolar control. However, the arterial/arteriolar dysregulation observed 

in the metabolic syndrome are (at least partially) a result of a pro-oxidant, pro-inflammatory 

and pro-thrombotic environment, conditions which are known to also impact the 

venular/venous side of the circulation. In an effort to provide a foundation from which more 

targeted investigation can be directed, the present study investigated the impact of the 

metabolic syndrome on skeletal muscle venular function at two levels (post-capillary and 

collecting venules.  Further, it was recently suggested that the pro-inflammatory and pro-

oxidant conditions observed in post-capillary venules may be the initiating site for 

microvascular rarefaction that is commonly associated with chronic metabolic disease 

(Clough, 2015; Frisbee et al., 2014; Gilbert, 2013) and that fluid handling across the 



 

50 

 

microcirculation may be altered by chronic impairments to glycemic control (Huxley and 

Scallan, 2011; Scallan et al., 2015).   

 In the present study, impaired acetylcholine-induced venular dilation in OZR 

appeared to be a result of elevated oxidative stress on venular nitric oxide bioavailability, as 

treatment of the cremaster muscle with the antioxidant TEMPOL partially restored venular 

function to that determined in LZR.  While this is consistent with data determined in multiple 

organs (Tune et al., 2017) and across arterial/arteriolar levels (Goodwill and Frisbee, 2012), 

these data are critical for our understanding of both capillary handling of erythrocytes as well 

as fluid exchange across the microcirculation.  Interestingly, there appears to be a role for an 

increased arachidonic acid-induced production of TxA2 in the loss of normal endothelium-

dependent dilator reactivity, which is likely associated with the chronic pro-inflammatory 

condition observed in OZR.  While this increase in TxA2 can have multiple effects, including 

impacting leukocyte adhesion (Morris et al., 2009; Tole et al., 2010; Totani et al., 2012) and 

venular reactivity and responses, this also may represent a mechanism for modifying fluid 

filtration/absorption across the capillary networks under settings of chronic metabolic disease 

(Huxley and Scallan, 2011; Scallan et al., 2015) as well as contributing to the genesis of the 

microvessel rarefaction discussed above (Frisbee et al., 2014).  

 Similar to arteries and arterioles, the sympathetic nervous system is a major 

regulator of venous and venular tone, with sympathetic nerve fibers directly innervating α1 

and α2 adrenoreceptors on vascular smooth muscle cells (Mellander and Lewis, 1963; 

Tabrizchi and Pang, 1992; van Brummelen et al., 1986).   However, in contrast to arterioles, 

increased sympathetic nerve activity to small veins and venules results in a reduction in 

vascular compliance, thus altering venous volume (capacitance) with comparatively less 

impact on systemic resistance (Rothe, 1983).  Although outside of the scope of the present 

study, recent work has also demonstrated that a neuropeptide Y (NPY) -induced 

constriction of veins in humans suggest that, in addition to α1- and α2-adrenoreceptor 

mediated control, sympathetic activity can modify venous or venular tone through NPY 

Y1 receptor activation (Luu et al., 1992; Pongor et al., 2010).  
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 The results from the present study suggest that venular reactivity to adrenergic stimuli 

was elevated in OZR vs. LZR, with this effect being predominantly mediated via the 1 

adrenoreceptor, but with an apparent role for the 2 adrenoreceptor as well in the larger 

collecting venules.    While there appeared to be a contribution to this effect mediated via the 

impaired endothelial function, it was not clear that these contributions, whether mediated via 

a loss of nitric oxide bioavailability or an increase in venular levels of TxA2 were significant 

contributors to the altered tone regulation.  However, it was clear this represented an alteration 

to adrenergic signaling itself, and not a broad-spectrum shift in venular constrictor reactivity 

at either the post-capillary or collecting venular level of the microcirculation.   

 The alterations to venular reactivity between LZR and OZR take on additional 

significance when evaluated in response to metabolic challenge.  Increasing metabolic 

demand, instigated via electrical field stimulation of the cremaster muscle at increasing 

frequency (McKay et al., 1998; Saito et al., 1994), resulted in a functional dilator and 

hyperemic response in OZR that was restrained in comparison to that determined in LZR, 

with the exception of the highest frequency of stimulation (3 Hz; where responses between 

LZR and OZR venules were comparable).   

 Previous work by Hester’s group has implicated the venular release of prostacyclin 

(PGI2), as a contributing mechanism to the dilation of the adjacent arterioles that perfuse the 

capillary network under conditions of elevated metabolic demand in skeletal muscle (Hester 

and Hammer, 2002; McKay et al., 1998; Saito et al., 1994).  Further, it has also been 

established that, under conditions of high oxidant stress and inflammation, the production of 

PGI2 can be shifted to TxA2 (Zou. 2007), and that there is an increased arterial (Butcher et al., 

2013; Goodwill et al., 2008; Xiang et al., 2006) and venous (above) production of TxA2 in 

OZR manifesting the metabolic syndrome.  Speculatively, it may be that the negative impact 

of vascular production of TxA2 on muscle perfusion that has been demonstrated previously 

may partially be of venular origin, impacting not only its own reactivity, but also the caliber 

of adjacent resistance arterioles leading into the microcirculation and contributing to the loss 

in overall system flexibility and adaptive potential to imposed challenges (Frisbee et al., 2016; 

Hester and Hammer, 2002).  This speculation requires further investigation.   
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 As has been well established, the venular circulation is a low pressure “collecting 

network” for the output of the high pressure “distribution network” of arteriolar perfusion 

through the capillaries.  While the increased adrenergic reactivity and impaired endothelial 

function can serve to increase venular tone, the extent to which this shift in function acts to 

increase perfusion resistance across the microcirculation is unclear at this time and will require 

additional investigation.  However, given the observation of an increased leukocyte adhesion 

to the venular endothelium, this physical blockade has been previously demonstrated to 

increase perfusion resistance within those regions (Harris et al., 1994; Harris and Skalak, 

1993; Lipowsky et al., 1988) through the establishment of regions of “low radius” that are 

no longer functionally able to effectively regulate diameter.  From the perspective of mass 

transport and exchange, the extent to which an increase in venular tone is sufficient to elevate 

resistance downstream from the capillaries is unclear.  From a network perspective, it is 

reasonable to postulate that alterations in venular function may contribute to erythrocyte 

distribution heterogeneity and lowered microvascular hematocrit previously reported in OZR 

(Butcher et al., 2014).   

 An obvious implication for the increase in venular resistance would also be an increase 

in the intravascular pressure within the venular environment, leading to an increased net fluid 

filtration into the tissue across the microcirculation.  Recent study by Scallan et al. (2015) may 

provide insight into this outcome as the loss of nitric oxide bioavailability in the lymphatic 

vessels of diabetic mice (where vascular nitric oxide levels have also been established to be 

impaired) results in a release on the inhibition of phosphodiesterase 3 (PDE3), compromising 

lymphatic integrity and increasing tissue edema.  It will be intriguing to determine if this 

fascinating observation on fluid handling across the microcirculation in diabetes represents 

multiple contributing pathways involving impaired venular function as well. 

 In summary, with the development of the metabolic syndrome, venular function 

within the skeletal muscle of OZR is impaired at both the post-capillary and collecting venular 

segments.  Along with an impaired endothelium dependent dilation, and a modest increase in 

adrenergic constriction, the combination of a significant elevation in TxA2 production may 

act to impair functional dilator and hyperemic responses at the venular level, and may 

contribute to the impaired function at the adjacent arteriolar level as well (Hester and Hammer, 
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2002).  The implications of this shift in skeletal muscle venular function with the development 

of the metabolic syndrome on issues such as aggregate microvascular perfusion resistance, 

mass transport and exchange within with capillary networks, and fluid handling across the 

microcirculation are compelling avenues for future interrogation. 
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3.1 Abstract 

Purpose: Although studies suggest elevated adrenergic activity paralleling metabolic 

syndrome in obese Zucker rats (OZR), the moderate hypertension and modest impact on 

organ perfusion questions the multi-scale validity of these data.  Methods: To understand 

how adrenergic function contributes to vascular reactivity in OZR, we utilized a multi-

scale approach to investigate pressure responses, skeletal muscle blood flow and vascular 

reactivity following adrenergic challenge.  Results: For OZR, adrenergic challenge 

resulted in increased pressor responses vs. lean Zucker rats (LZR); mediated via 1 

receptors, with minimal contribution by either ROS or NO bioavailability.  In situ 

gastrocnemius muscle of OZR exhibited blunted functional hyperemia, partially restored 

with 1 inhibition, although improved muscle performance and VO2 required combined 

treatment with TEMPOL. Within OZR in situ cremaster muscle, proximal arterioles 

exhibited a more heterogeneous constriction to adrenergic challenge, biased toward 

hyperresponsiveness, vs. LZR.  This increasingly heterogeneous pattern was mirrored in 

ex vivo arterioles, mediated via 1 receptors, with roles for ROS and NO bioavailability 

evident in hyperresponsive vessels only.  Conclusions: These results support the central 

role of the 1 adrenoreceptor for augmented pressor responses and elevations in vascular 

resistance but identify an increased heterogeneity of constrictor reactivity in OZR that is 

presently of unclear purpose. 
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List of Abbreviations 

 

LZR: lean Zucker rat 

OZR: obese Zucker rat 

PRZ: prazosin 

PHT: phentolamine 

YOH: yohimbine 

ROS: reactive oxygen species 

NO: nitric oxide 

PVD: peripheral vascular disease 

TEMPOL: 4-hydroxy-2,2,6,6-tetramethylpiperidin-1 -oxyl 

L-NAME: L-NG-Nitroarginine methyl ester  

PSS: physiological salt solution 

VO2: oxygen uptake  

Q: muscle blood flow 

CaO2: arterial oxygen content 

CvO2: venous oxygen content 
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3.2 Introduction 

 As has been well established, the development of peripheral vascular disease (PVD) 

risk factors of sufficient severity can lead to profound alterations in the ability of resistance 

vessels to regulate their degree of tone, and thus the levels of perfusion to and within the 

tissues and organs they serve (17).  Multiple previous studies across laboratories have 

implicated alterations to vascular nitric oxide (NO) bioavailability and effectiveness (3), 

altered arachidonic acid metabolism and the ensuing impacts on vascular tone (7, 15), the 

impacts of reactive oxygen species (ROS; 13, 19), myogenic activation (16, 23, 28) and 

alterations mediated via adrenergic signaling and vascular reactivity (1, 6, 21).  However, 

it is unclear that conclusions from previous studies on the impact of altered adrenergic 

signaling/responses represent an accurate reflection of the true alterations to the integrated 

system of microvascular perfusion and control within the setting of elevated PVD risk. 

 The metabolic syndrome is a multi-pathology state represented by the combined 

presentation of multiple risk factors for PVD, including obesity, impaired glycemic control, 

atherogenic dyslipidemia, and moderate hypertension; with the additional systemic 

outcomes of a pro-oxidant, pro-inflammatory and pro-thrombotic state (4, 18).    Arguably 

the most important outcome of this condition is that it results in the impairment of perfusion 

(both bulk perfusion and the spatial-temporal matching of perfusion with metabolic 

demand) in the tissues and organs of the afflicted subject (8, 12). Previous studies have 

provided compelling evidence that adrenergic traffic (5), adrenergic signaling (21) and 

adrenergic vascular responses (9) may all be elevated within the metabolic syndrome (the 

setting for elevated PVD risk).  Further, it can clearly be demonstrated that treatment of 

the moderate hypertension within metabolic syndrome in the obese Zucker rat (OZR) 

model with prazosin (50 µg/kg) not only abolishes the elevated blood pressure that 

develops within this state, it can equalize blood pressure characteristics to those determined 

in the control strain, the lean Zucker rat (LZR, 27).  However, what is unclear at this point 

is how a general elevation in vascular adrenergic output with the potential for multiple 

contributing elements, producing significant elevations in vascular resistance, functions 

within the in vivo setting to produce the relatively mild/moderate elevations in arterial 
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pressure that have been determined (9, 29).  Clearly, we have not arrived at an accurate 

understanding of adrenergic control over muscle perfusion in the OZR model. 

 The purpose of the present study was to employ a multi-scale approach, integrating 

in vivo, in situ, and ex vivo conditions to garner a more accurate understanding of the 

changes in adrenergic control that are implicit for the development of skeletal muscle 

microvasculopathy within the metabolic syndrome.  In vivo approaches will incorporate 

whole animal pressor responses with hindlimb blood flow measurements in anesthetized 

animals, while in situ approaches will employ perfusion/muscle performance relationships 

for gastrocnemius muscle and direct microscopic evaluation of vascular reactivity in 

cremaster muscle, and ex vivo approaches will employ studies of isolated vascular 

responses under specific challenged states.  Taken together, these data will allow for a more 

accurate understanding of adrenergic function in the control of muscle blood flow in OZR 

will the full manifestation of the metabolic syndrome. 

3.3 Materials and Methods 

Animals: Male LZR (n=27) and OZR (n=45) were delivered at 6-7 weeks of age, and after 

one week of acclimation to the local environment, were aged to ~17 weeks for final 

experiment usage.  All animals were used between 16 and 18 weeks of age.  Animals were 

fed standard chow and tap water ad libitum for all experiments unless otherwise noted.   

Animals were housed in an accredited animal care facility, and all protocols received prior 

IACUC approval from the West Virginia University.  At ~17 weeks of age, each rat was 

anesthetized with injections of sodium pentobarbital (50 mg•kg-1 i.p.), and all rats received 

tracheal intubation to facilitate maintenance of a patent airway.  In all rats a carotid artery and 

an external jugular vein were cannulated for determination of arterial pressure and for 

intravenous infusion of additional substances as necessary (e.g., anesthetic, heparin, etc.).  In 

addition, an aliquot of mixed venous blood was drawn from the jugular vein cannula for a full 

profiling of metabolic and endocrine biomarkers (see below). 

Experimental Series #1:  In Vivo Whole Pressor Responses: Following the initial surgical 

preparation (above), the femoral artery was isolated midway between the femoral triangle and 

the knee and a perivascular blood flow probe was placed around the vessel (Transonic 0.7V) 
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which was held in place via a micromanipulator.  After a period of equilibration, each animal 

was challenged with an intravenous infusion of the -adrenoreceptor agonist 

norepinephrine (10 µg/kg), with pressor responses and hindlimb blood flow continuously 

recorded.  Subsequently, rats received a bolus intravenous infusion of the α1 adrenoreceptor 

antagonist prazosin (1 mg/kg), the α2 adrenoreceptor antagonist yohimbine (5 mg/kg), or the 

α1/α2 adrenoreceptor antagonist phentolamine (10 mg/kg), each followed by 30 minutes of 

equilibration, in order to remove different components of adrenergic tone from the system 

(n=5 for each antagonist; total n=15 for each strain).  After a second norepinephrine challenge 

with the respective antagonist present, animals were treated with bolus intravenous infusions 

of TEMPOL (50 mg/kg) and a final subsequent treatment with L-NAME (100 mg/kg) to 

assess the roles of reactive oxygen species and nitric oxide bioavailability in contributing to 

responses following adrenergic challenge.  After treatment with TEMPOL and again after the 

treatment with L-NAME, a new challenge with norepinephrine was performed as described 

above.  Alterations in mean arterial pressure and femoral artery perfusion were monitored 

following agonist infusion in order to determine peak responses and the restoration of baseline 

(pre-treatment) conditions.  All infused intravenous doses of drugs were corrected for 

differences in circulating blood volume between LZR and OZR at this age (10, 24). 

Experimental Series #2:  In Situ Skeletal Muscle Perfusion:  In a separate cohort of LZR 

and OZR (n=5 for LZR; n=15 for OZR), the left gastrocnemius muscle was isolated in situ 

as fully described previously (9).  Subsequently, a perivascular flow probe (Transonic 0.5V 

or 0.7V) was placed around the femoral artery, immediately proximal to its entry into the 

muscle group, in order to measure blood flow to the gastrocnemius muscle.  At the conclusion 

of these procedures, an angiocatheter (24 gauge) was inserted into the femoral vein to allow 

for sampling of venous blood from the contracting muscle to determine blood gas levels (done 

using a Corning Rapid Lab Blood Gas Analyzer).  The preparation was covered in PSS-

soaked gauze and plastic film to minimize evaporative water loss and was placed under a heat 

lamp to maintain temperature at 37C.  At this time, heparin (500 IU/kg) was infused via the 

jugular vein to prevent blood coagulation.   

 Upon completion of the surgical preparation, the gastrocnemius muscle was 

stimulated to perform (via the sciatic nerve) bouts of isometric twitch contractions (4 Hz, 0.4 
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ms duration, 5V) lasting for 3 minutes followed by 15 minutes of self-perfused recovery time, 

with arterial pressure and femoral artery blood flow continuously monitored.   Following the 

initial contraction regimen under control conditions, rats were given an intravenous injection 

of either prazosin (1 mg/kg; n=5), phentolamine (5 mg/kg; n=5) or yohimbine (5 mg/kg; n=5) 

and the contraction regimen was repeated.  Each animal was treated with only one 

adrenoreceptor antagonist.  As above, following treatment of the animal with either 

adrenoreceptor antagonist, animals were treated with TEMPOL and L-NAME as described 

above and the contraction regimen was repeated with all data and blood collection also 

repeated as described above. 

Experiment Series #3: In Situ Skeletal Muscle Arterioles: In a dedicated cohort of rats 

(n=7 for LZR; n=15 for OZR), the left cremaster muscle was prepared for television 

microscopy (9).  After completion of the preparation, the cremaster muscle was superfused 

with PSS, equilibrated with a gas mixture containing 5% CO2 and 95% N2, and maintained at 

35C as it flowed over the muscle.  The ionic composition of the PSS was as follows (mM): 

NaCl 119.0, KCl 4.7, CaCl2 1.6, NaH2PO4 1.18, MgSO4 1.17, and NaHCO3 24.0. Arteriolar 

diameter was determined with an on-screen video micrometer.  After an initial post-surgical 

equilibration period of 30 minutes, proximal (~75 µm diameter) and distal arterioles (~30 m 

diameter) were selected for investigation in a clearly visible region of the muscle.  Arterioles 

chosen for study had walls that were clearly visible, a brisk flow velocity, and active tone, as 

indicated by the occurrence of significant dilation in response to topical application of 10-5 M 

adenosine.  All arterioles that were studied were located in a region of the muscle that was 

away from any incision.   

 Following an equilibration period, the responses of selected arterioles within the 

cremaster muscle of LZR and OZR were assessed in response to increasing concentrations 

of norepinephrine (10-10 – 10-5 M) or phentolamine (10-10 – 10-5 M), as described above, to 

establish baseline reactivity to increasing adrenergic receptor activation and inhibition, 

respectively.   As above, following washout, the cremaster muscle was treated with 

TEMPOL by adding it to the superfusate (10-4 M), and the challenge with increasing 

concentrations of norepinephrine and phentolamine was repeated.  Finally, the TEMPOL-
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treated cremaster muscle was also treated with L-NAME (10-4 M; in the superfusate) and 

challenge with the adrenergic agonist and antagonist was repeated.       

Experiment Series #4: Ex Vivo Isolated Skeletal Muscle Resistance Arterioles: In 

anesthetized rats, prior to the preparation of the cremaster muscle (above), the 

intramuscular continuation of the right gracilis artery was identified, it’s in vivo diameter 

determined using an eyepiece micrometer, and the vessel was surgically removed.  In LZR, 

arteriolar diameter estimated using this method was 1054 µm, while in OZR, the value 

was reduced to 984 µm.  Arterioles were placed in a heated chamber (37C) that allowed 

the vessel lumen and exterior to be perfused and superfused, respectively, with 

physiological salt solution (PSS; equilibrated with 21% O2, 5% CO2; 74% N2) from 

separate reservoirs.  Vessels were cannulated at both ends and were secured to inflow and 

outflow pipettes connected to a reservoir perfusion system allowing intralumenal pressure 

and lumenal gas concentration to be controlled.  Vessel diameter was measured using 

television microscopy and an on-screen video micrometer. Arterioles were extended to 

their in situ length and were equilibrated at ~80% of the animal's mean arterial pressure 

(~80 mmHg for LZR, ~100 mmHg for OZR).  Active tone for vessels in the present study, 

calculated as (ΔD/Dmax)•100, where ΔD is the diameter increase from rest in response to 

Ca2+-free PSS, and Dmax is the maximum diameter measured at the equilibration pressure 

in Ca2+-free PSS, averaged 333% in LZR and 353% in OZR.  To get a more accurate 

presentation of the impact of altered adrenergic function on microvascular perfusion, we 

elected to reduce the inclusion criteria for isolated arterioles in this study.  Traditionally, 

three criteria are employed to assess the viability of an individual vessel: 1) active tone 

>25%, 2) robust constrictor response to challenge with phenylephrine, 3) viable endothelial 

layer (dilator response to pharmacological challenge such as methacholine).  However, as 

one of the inclusion criteria represent the key outcome variable of the present study, this 

has the potential to cause experimental bias in terms of which vessels get included into 

experiments/analyses and which vessels are omitted for failing to achieve all three criteria.  

For the purposes of the present study, we omitted criterion #2 and simply considered 

vessels with sufficient active tone and viable endothelial function as having met the 

inclusion requirements. 
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 Prior to subsequent evaluation of arteriolar reactivity, the in vivo diameter of vessels 

was restored through addition of low levels of norepinephrine to the vessel chamber.  This 

process required ~310-10 M norepinephrine in vessels from OZR.  While vessels from 

LZR usually regained their in vivo diameter without treatment with norepinephrine (n=12), 

some vessels required a maximum norepinephrine concentration of ~110-10 M (n=3).   

Following an equilibration period, arteriolar constriction was assessed in response to 

increasing concentrations of phenylephrine (10-10 M – 10-5 M) or clonidine (10-10 M – 10-5 

M) to establish baseline reactivity to α1- and α2-adrenoreceptor agonists, respectively.   

Subsequently, reactivity of these isolated arterioles from LZR and OZR was assessed 

following treatment of the vessel with TEMPOL (10-4 M), and following incubation with 

L-NAME (10-4 M) to the TEMPOL-treated vessel.   

Data and Statistical Analyses:  In all cases, p<0.05 was taken to reflect statistical significance.  

All data are presented as mean±SE. 

In Vivo Pressor Response Experiments:  All arterial pressure, hindlimb blood flow, and 

calculated hindlimb vascular resistance (pressure/flow) data are presented as the change in the 

parameter following treatment or challenge (Δ mmHg, Δ ml/g/min, Δ mmHg/(ml/g/min), 

respectively). 

Vascular Reactivity Experiments: Arteriolar constrictor responses following challenge with 

adrenergic agonists or antagonists were fit with a three-parameter logistic equation: 
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where y  represents the change in arteriolar diameter, “min” and “max” represent the lower 

and upper bounds, respectively, of the change in arteriolar diameter with increasing agonist 

concentration, x  is the logarithm of the agonist concentration and 50log ED  represents the 

logarithm of the agonist concentration ( x ) at which the response ( y ) is halfway between the 

lower and upper bounds. Statistically significant differences in lower bound employed 

ANOVA followed by Student-Newman-Keuls-test post-hoc as appropriate.  Statistically 
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significant differences in the distribution of adrenergic responses between LZR and OZR 

utilized Student’s t-test for mean and variance. 

 For the purposes of categorizing arteriolar responses to adrenergic challenge into 

“high’, “normal”, and “low” responders, the reactivity of all vessels (both OZR and LZR) 

was compared to mean responses in LZR.  Given the degree of heterogeneity in the 

responses in OZR, a value of 20% was used as the threshold for inclusion into the “high” 

or “low” responder categories.   

In Situ Gastrocnemius Muscle Experiments:  Muscle blood flow data were normalized to 

gastrocnemius muscle mass, which did not differ between LZR (2.290.08 g) and OZR 

(2.250.09 g).  Muscle oxygen uptake (VO2) was calculated using the Fick equation: 

𝑉𝑂2 = 𝑄 ×  (𝐶𝑎𝑂2 − 𝐶𝑣𝑂2) 

where Q represents blood flow, CaO2 represents arterial oxygen content and CvO2 

represents venous oxygen content.  Muscle fatigue curves were fit using a semi-logarithmic 

relationship and the slope (β) coefficient was determined using curve fitting techniques.  

Differences in muscle blood flow, O2 extraction, VO2 and the slope coefficient describing 

muscle fatigue curves of contraction were determined using ANOVA, with Student-

Newman-Keuls-test post-hoc as appropriate.   
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3.4 Results 

 As summarized in Table 1, ~17 week old OZR demonstrated the full complement of 

the metabolic syndrome.  This included obesity, impaired glycemic control, dyslipidemia and 

moderate hypertension.  In addition, OZR also demonstrated a high level of chronic oxidant 

stress and inflammation, with elevated levels of nitrotyrosine and TNF-, respectively.  

Table 1.  Baseline characteristics of 17-week-old LZR and OZR used in the present study.  * p<0.05 versus LZR. 

 

 Table 2 presents the initial conditions for the vascular/systemic phenotypes across the 

conditions of the present study.  In these data, blockade of the 1 adrenergic system was 

effective in blunting the development of hypertension in OZR, as well as many of the vascular 

diameter and perfusion responses system.  Further, the impact altering the vascular NO 

bioavailability in OZR in terms of contributing to integrated vascular function was relatively 

modest compared to the impact of alterations to adrenergic function.  

 

 

 

 

 

 LZR OZR 

Mass (g) 35811 67912* 

MAP (mmHg) 98±4 129±6* 

[Glucose]plasma (mg/dl) 105±9 164±11* 

[Insulin]plasma (ng/ml) 1.4±0.2 7.6±1.0* 

[Cholesterol]plasma (mg/dl) 84±7 132±11* 

[Triglycerides]plasma (mg/dl) 91±10 361±20* 

[Nitrotyrosine]plasma (ng/ml) 11±3 44±6* 
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Table 2.  Baseline hemodynamic characteristics of 17 week-old LZR and OZR used in the present study under control 

conditions and in response to the different interventional treatments.  AMP: mean arterial pressure (mmHg); QFEM: femoral 

artery blood flow (ml/g/min); RFEM: resistance (mmHg/[ml/g/min]); (a-v)O2: oxygen extraction (ml/ml blood).  * p<0.05 versus 

LZR value.; † p<0.05 vs. strain control. 

 

 Figures 1 and 2 summarize data describing the pressor responses (Panels A), hindlimb 

blood flow (Panels B) and perfusion resistance (Panels C) in OZR versus LZR under control 

conditions and following treatment with phentolamine (Figure 1) and prazosin or yohimbine 

(Figure 2).  Any differences between LZR and OZR in terms of blood pressure and the 

pressor response to intravenous infusion of norepineprhine itself were abolished by 

treatment with either prazosin (the 1 blocker) or phentolamine (the 1/2 blocker), with 

minimal impact of yohimbine (the 2 blocker).    Treatment of OZR with TEMPOL (to blunt 

ROS and increase NO bioavailability) or TEMPOL/L-NAME (to remove NO bioavailability 

from a low ROS condition) had minimal impact on systemic responses to adrenergic 

challenges. 
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Figure 1.  In vivo pressor responses (Panel A), in situ hindlimb blood flow (Panel B) and calculated vascular resistance across 

the hindlimb (Panel C) for LZR and OZR following intravenous infusion of 10 mg/kg norepinephrine.  Data are presented as 

the change in the respective parameter from unstimulated, under control conditions and following pre-treatment with 

phentolamine (PHT), phentolamine+TEMPOL (PHT-TEM) or phentolamine+L-NAME (PHT-LNM). * p<0.05 vs. LZR in 

that condition; † p<0.05 vs. CON within that strain.  Data are presented as mean±SE; n=5 for LZR; n=15 for OZR; please 

see text for details. 
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Figure 2.  In vivo pressor responses (Panel A), in situ hindlimb blood flow (Panel B) and calculated vascular resistance across 

the hindlimb (Panel C) for LZR and OZR following intravenous infusion of 10 mg/kg norepinephrine.  Data are presented as 

the change in the respective parameter from unstimulated, under control conditions and following pre-treatment with prazosin 

(PRZ), prazosin+TEMPOL (PRZ-TEM), prazosin+L-NAME (PRZ-LNM), yohimbine (YOH), yohimbine+TEMPOL (YOH-

TEM) or yohimbine+L-NAME (YOH-LNM).. * p<0.05 vs. LZR in that condition; † p<0.05 vs. CON within that strain. Data 

are presented as mean±SE; n=5 for LZR; n=15 for OZR; please see text for details. 

 Data describing the fatigue curves (Panel A), active hyperemia (Panel B), oxygen 

extraction (Panel C) and oxygen uptake (VO2; Panel D) for in situ gastrocnemius muscle of 

LZR and OZR contracting at 4Hz (isometric twitch) under control conditions and following 

treatment with phentolamine are presented in Figure 3.   Following three minutes of imposed 

elevations in metabolic demand, OZR demonstrated an increased development of muscle 

fatigue, co-incident with a blunted hyperemic response.  While O2 extraction was very similar 

between the two strains, the combination of extraction and reduced blood flow resulted in a 

significant reduction in VO2.  Treatment of OZR with the combined 1/2 adrenoreceptor 

antagonist phentolamine improved hyperemic responses when given alone, with additional 

improvements to muscle performance and VO2 when followed up with antioxidant 

(TEMPOL) treatment.  Treatment of OZR with prazosin (Figure 4) mirrored the effect of 

phentolamine, with an improved hyperemic responses when given alone and improved 
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muscle performance and VO2 when given with the antioxidant.  Any beneficial impacts of 

TEMPOL in OZR were abolished by combined treatment with TEMPOL and L-NAME.  

Treatment of OZR with the 2-adrenoreceptor antagonist yohimbine had no consistent or 

significant effect from control values on muscle performance, hyperemic responses or blood 

gas exchange measurements (Figure 5).   

 

 

Figure 3.  Data describing the performance (Panel A) and active hyperemic responses (Panel B) of in situ gastrocnemius 

muscle of LZR and OZR contracting at 4Hz (isometric twitch).  Also presented are O2 extraction (Panel C) and oxygen uptake 

(VO2, Panel D) at three minutes of the contraction regimen.  Data are presented under untreated control conditions and 

following pre-treatment with phentolamine (PHT), phentolamine+TEMPOL (PHT-TEM) or phentolamine+L-NAME (PHT-

LNM). * p<0.05 vs. LZR; † p<0.05 vs. OZR; ‡ p<0.05 vs. OZR + PHT.  Data are presented as mean±SE; n=5 for LZR; n=15 

for OZR; please see text for details. 
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Figure 4.  Data describing the performance (Panel A) and active hyperemic responses (Panel B) of in situ gastrocnemius 

muscle of LZR and OZR contracting at 4Hz (isometric twitch).  Also presented are O2 extraction (Panel C) and oxygen uptake 

(VO2, Panel D) at three minutes of the contraction regimen.  Data are presented under untreated control conditions and 

following pre-treatment with prazosin (PRZ), prazosin+TEMPOL (PRZ-TEM) or prazosin+L-NAME (PRZ-LNM). * p<0.05 

vs. LZR in that condition; † p<0.05 vs. CON (100%) within that strain; ‡ p<0.05 vs. PRZ within that strain.  Data are presented 

as mean±SE; n=5 for LZR; n=15 for OZR; please see text for details. 
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Figure 5.  Data describing the performance (Panel A) and active hyperemic responses (Panel B) of in situ gastrocnemius 

muscle of LZR and OZR contracting at 4Hz (isometric twitch).  Also presented are O2 extraction (Panel C) and oxygen uptake 

(VO2, Panel D) at three minutes of the contraction regimen.  Data are presented under untreated control conditions and 

following pre-treatment with yohimbine (YOH), yohimbine+TEMPOL (YOH-TEM) or yohimbine+L-NAME (YOH-LNM). 

* p<0.05 vs. LZR in that condition.  Data are presented as mean±SE; n=5 for LZR; n=15 for OZR; please see text for details. 

 Table 3 presents the baseline characteristics of in situ cremaster muscle proximal and 

distal arterioles from LZR and OZR for the experiments described in Figures 6-9.   Figures 6 

and 7 summarize data describing the responses of in situ cremaster muscle arterioles located 

proximally within the microvascular network to bi-directional manipulation of adrenergic 

stimulation.  In response to increasing adrenergic stimulation (increased norepinephrine) 

proximal arterioles from both LZR and OZR exhibited robust constrictor responses (Figure 

6).  However, while arterioles from LZR exhibited a relatively consistent response, with 38/50 

vessels constricting by at least 60% of their resting diameter with 10-6 M norepinephrine, there 

was a significant shift in the distribution of reactivity with the development of the metabolic 

syndrome in OZR as only 19/50 vessels demonstrated a comparable  response, while 21/50 

vessels exhibited a stronger degree of reactivity, with a significantly reduced ED50 value, 

essentially closing off fully at lower concentrations of stimulation, and 10/50 vessels exhibited 

a significant reduction to constrictor responses, with an elevated ED50.  In both LZR and OZR, 
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treatment with either TEMPOL or L-NAME had minimal consistent impacts on adrenergic 

responses in either strain.  

Table 3.  Baseline vascular characteristics of 17 week-old LZR and OZR used in the present study under control 

conditions and in response to the different interventions.  Data are presented for in situ cremaster muscle proximal 

(CPA) and distal arterioles (CDA) as well as ex vivo gracilis muscle resistance arterioles (GA).  ID: internal diameter 

(resting; m); MaxD: maximum diameter (m) under 10-3M adenosine + 10-3M sodium nitroprusside (in situ) or Ca2+-

free conditions (ex vivo); AT: calculated active tone (%; please see text for detail).  Despite multiple trends, no 

significant differences in the results below were determined.   

 

 

 

 

Figure 6.  Constrictor responses from in situ cremaster muscle proximal arterioles from LZR (Panel A) and OZR (Panel D) 

in response to increasing concentrations of norepinephrine.  In Panels A and D, different levels of reactivity are colored such 

that “high” responders are red, “low” responders are green and “normal” responders are blue.  These colors are “greyed” in 

subsequent panels to facilitate comparisons.  Panels B and E present the impact of TEMPOL on arteriolar constrictor responses 

in LZR and OZR, respectively.   Panels C and F present the impact of L-NAME on arteriolar constrictor responses in LZR 

and OZR, respectively.   * p<0.05 vs. “normal” in that strain; † p<0.05 vs. responses in untreated arterioles within that strain 

and reactivity category.  Data are presented as mean±SE; n=7 for LZR; n=15 for OZR; please see text for details. 
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 With increasing phentolamine treatment (Figure 7), used to simulate progressive 

removal of adrenergic tone to proximal arterioles of LZR and OZR, “normal” responders in 

both strains exhibited comparable dilation.  However, arterioles in both strains that were 

identified as being “high” responders exhibited a very limited dilator response with increasing 

phentolamine concentration, while arterioles that were “low” responders to norepinephrine 

challenge demonstrated the greatest dilation in response to increasing concentration of 

phentolamine.  In both strains, neither TEMPOL nor L-NAME treatment had a consistent and 

significant impact on the phentolamine-induced dilation in “normal” and “high” responders. 

However, in “low” responders of either strain, treatment of arterioles with L-NAME blunted 

dilator responses to phentolamine.  

 

Figure 7.  Dilator responses from in situ cremaster muscle proximal arterioles from LZR (Panel A) and OZR (Panel D) in 

response to increasing concentrations of phentolamine.  In Panels A and D, different levels of reactivity are colored such that 

“high” responders are red, “low” responders are green and “normal” responders are blue (classification of responders was 

performed for Figure 8).  These colors are “greyed” in subsequent panels to facilitate comparisons.  Panels B and E present 

the impact of TEMPOL on arteriolar dilator responses in LZR and OZR, respectively.   Panels C and F present the impact of 

L-NAME on arteriolar dilator responses in LZR and OZR, respectively.   * p<0.05 vs. “normal” in that strain; † p<0.05 vs. 

responses in untreated arterioles within that strain and reactivity category.  Data are presented as mean±SE; n=7 for LZR; 

n=15 for OZR; please see text for details. 

 Using the data presented above, Figure 8 presents the relationship between in situ 

proximal arteriolar constrictor responses to 10-8 M norepinephrine and the number of 

occurrences (out of a total n=50 for each strain).  These data clearly illustrate the changing 

distribution in constrictor responses to adrenergic challenge, where LZR exhibit a tighter 
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distribution of responses with lower variability than OZR, where proximal arteriolar responses 

to adrenergic challenge are more distributed, with a greater occurrence of constrictor 

responses at the “tails” of the distribution.  Statistical analysis of the mean and variance 

between LZR and OZR demonstrated that the distributions of adrenergic responses where 

significantly different between the two strains. 

 

Figure 8.  Distribution of constrictor responses of in situ cremaster muscle proximal arterioles to 10-8 M norepinephrine.  Data 

are presented as the frequency of occurrence for a level of constrictor response (out of 50 occurrences) for arterioles from LZR 

and OZR; demonstrating the widening and flattening of the distribution in OZR as compared to that for LZR.  The distribution 

for LZR passes the normality test (p=0.834), while that for OZR does not (p=0.025).  As such, while the distributions for LZR 

and OZR are considered to be significantly different (p=0.026), they cannot both be classified as normal distributions. 

 Figure 9 presents the responses of distal in situ cremaster muscle arterioles of LZR 

and OZR to increasing concentrations of norepinephrine (Panels A and B) and phentolamine 

(Panels C and D), respectively.  Under neither control conditions, nor pre-treatment conditions 

(TEMPOL or L-NAME) were responses of in situ distal arterioles significantly different 

between strains, nor was any evidence for an altered distribution of reactivity present (Panel 

E). 
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Figure 9.  Mechanical responses from in situ cremaster muscle distal arterioles from LZR (Panel A) and OZR (Panel B) in 

response to increasing concentrations of norepinephrine (Panels A and B, respectively) or phentolamine (Panels C and D, 

respectively).  Data are presented under untreated control conditions and following pre-treatment of the cremaster muscle with 

TEMPOL or L-NAME.  Also presented is the distribution of constrictor responses of in situ cremaster muscle proximal 

arterioles to 10-8 M norepinephrine (Panel E).  Data are presented as the frequency of occurrence for a level of constrictor 

response (out of 50 occurrences) for arterioles from LZR and OZR; demonstrating the lack of a difference between the 

distribution for LZR and OZR (p=0.909).  Data are presented as mean±SE; n=7 for LZR; n=15 for OZR; please see text for 

details.  Please see text for details. 
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 Figure 10 presents the reactivity of ex vivo gracilis muscle first order resistance 

arterioles of LZR and OZR to increasing concentrations of the 1 adrenoreceptor agonist 

phenylephrine (for data describing the baseline characteristics of ex vivo arterioles, please see 

Table 3).  When the inclusion criteria of “sufficient adrenergic reactivity” was eliminated 

(please see above), a similar widening of constrictor responses to adrenergic challenge was 

determined in OZR as compared to LZR (Panel A).  In “high” responders, the increased 

constrictor reactivity was significantly attenuated following treatment of the vessel with 

TEMPOL, while treatment with L-NAME was without effect (Panel B).  This effect was less 

evident in “normal” (Panel C) and “low” (Panel D) responding arterioles from OZR, such that 

treatment with either TEMPOL or L-NAME resulted in minimal impact to phenylephrine-

induced reactivity. Constrictor responses to increasing concentrations of the 2 

adrenoreceptor agonist clonidine did not exhibit a difference between LZR and OZR (Panel 

E), and this was not significantly impacted by treatment with TEMPOL or L-NAME. 
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Figure 10.  Constrictor responses from ex vivo gracilis muscle resistance arterioles from LZR and OZR in response to 

increasing concentrations of phenylephrine (α1 agonist; Panels A-D) or clonidine (α2 agonist; Panel E).  Data for 

phenylephrine-induced constriction under control conditions are presented in Panel A, which also demonstrate the different 

classes of reactivity.  These data are “greyed” in subsequent panels such that the impact of pre-treatment with TEMPOL, L-

NAME or both are presented for vessels in the “high” (Panel B), “normal” (Panel C) and “low” responder (Panel D) categories.  

* p<0.05 vs. “normal” in that strain; † p<0.05 vs. responses in untreated arterioles within that strain and reactivity category.  

Data are presented as mean±SE; n=5 for LZR; n=15 for OZR; please see text for details. 
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3.5 Discussion 

 The underlying logic of the present study stemmed from a lack of clarity between the 

results of previous studies suggesting an increase in sympathetic activity (5), adrenergic 

constrictor reactivity (9, 11) and an increase in some elements of adrenergic intracellular 

signaling (21) in metabolic syndrome, despite the consistent observation that the development 

of both hypertension and any elevations in vascular resistance of adrenergic origin were 

relatively modest (4, 12, 16, 29).  This suggests that a potential disconnect may exist between 

the interpretations from data collected at higher resolutions (e.g., in situ vascular networks, ex 

vivo resistance vessels), and responses determined under in vivo conditions.  The present study 

was designed to address this discrepancy by identifying the source for this lack of clarity. 

 At the lowest level of spatial resolution, the in vivo preparation, OZR clearly exhibited 

an increased pressor response following adrenergic challenge as compared to responses 

determined in LZR, while use of adrenoreceptor antagonists demonstrated that this increased 

response was largely mediated via the 1 receptors.   While consistent with previous evidence 

(9, 11), results from the present study also provide insight into the role of vascular oxidant 

stress/nitric oxide bioavailability balance on the pressor response to adrenoreceptor 

stimulation.  Despite the clearly established presence of elevated vascular oxidant stress in 

OZR, the current results suggest that the reduction in vascular ROS levels following 

TEMPOL treatment was without significant impact on the magnitude of the pressor response 

in OZR, nor did the subsequent L-NAME–based abolition of rescued nitric oxide 

bioavailability consistently impact the magnitude of the pressor responses between groups.  

Given the well-established relationships in question and the effectiveness of the treatment 

interventions in impacting ROS and NO levels, the most reasonable interpretation of these 

data is that, in comparison to the 1-mediated responses, a manipulation of vascular nitric 

oxide bioavailability was of insufficient significance to impact pressor responses at this level 

of resolution. 

 When taking these observations to the next higher level of resolution, the in situ 

skeletal muscle, a roughly comparable condition was evident to that for the in vivo setting.  

Specifically, the accelerated rate of muscle fatigue and blunted active hyperemia with 4Hz 
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twitch contraction in OZR vs. LZR were improved following 1 receptor blockade (but only 

with concurrent antioxidant treatment); with no significant effect associated with 2 receptor 

antagonism under any condition. This enhanced function was associated with the greatest 

improvements to VO2 which also suggests that the combination of adrenoreceptor antagonism 

and antioxidant therapy results in an overall improvement to the perfusion-based elements of 

mass transport and exchange beyond that for 1 adrenoreceptor antagonism alone.  Further, 

the importance of “rescued” vascular nitric oxide bioavailability on contributing to skeletal 

muscle blood flow, especially during periods of elevated metabolic demand, was 

demonstrated following the application of L-NAME under TEMPOL-treated conditions.   

 These results also provide support for previous observations indicating that general 

blunting of adrenergic constriction can improve hyperemic responses in skeletal muscle in 

metabolic syndrome (8, 9, 11, 21), but are of limited effectiveness in terms of improving 

muscle performance unless treatments are combined with antioxidant agents to directly 

improve endothelial function (8).  As antioxidant treatment alone was without impact on either 

bulk flow responses or muscle performance in the absence of 1 adrenoreceptor inhibition, 

these observations suggest that a conceptual division may be appropriate for the impact of the 

metabolic syndrome muscle performance outcomes.  It may be that the modest reduction in 

skeletal muscle blood flow in OZR primarily reflects adrenergic constraint sufficient to hinder 

metabolic sympatholysis, while endothelial dysfunction (although ubiquitously present) is 

more important for the higher resolution matching of perfusion distribution to metabolic need 

within tissue.   

 Previous studies have suggested that there is a general increase in sympathetic traffic, 

intracellular signaling, and/or vascular constrictor responses to adrenergic challenge with the 

development of metabolic syndrome (5, 9, 21).  However, as stated above, in vivo data do not 

strongly support this contention.  Results from the in situ cremaster muscle of OZR as 

compared to responses in LZR may provide insight into this discrepancy, as constrictor 

responses of proximal resistance arterioles to increasing adrenergic stimulation exhibited a 

much more consistent response in LZR than in OZR, with a narrower distribution.  In contrast, 

the responses to adrenergic challenge in OZR exhibited a larger spread in their magnitude 

with a greater proportion of vessels demonstrating both increased and decreased 



 

84 

 

responsiveness (although more commonly toward increased reactivity).  Similarly, when 

treated with increasing concentrations of the 1/2 adreneroreceptor antagonist phentolamine, 

arterioles that were classified as “high responders” exhibited the lowest degree of dilation, 

while the reverse was true for vessels that were “low responders”.   Obviously, this somewhat 

skewed, but broader distribution of adrenergic constrictor responses, may contribute to the in 

vivo outcomes that have been identified in OZR, and may explain why they are more modest 

than would otherwise be predicted.  

 Based on the current data, some of this heterogeneity in reactivity may reflect 

variability in the initial conditions.  Arterioles with increased tone under resting conditions 

will be unable to exhibit the full range of constriction in response to any stimulus as compared 

to levels from those of a greater initial diameter/reduced level of tone.  Conversely, those with 

less tone (greater diameter) at rest have less ability to respond to the removal of adrenergic 

constriction as compared to those with a greater degree of tone.  Given this, the greater 

heterogeneity of reactivity in the microcirculation of OZR vs. LZR may reflect the concept of 

the “optimal diameter” or “optimal wall tension” as originally described by Gore (14).  In that 

work, the author determined that the greatest degree of reactivity was realized when vessels 

had the ability to constrict or dilate through a set range of optimal responsiveness and that 

moving the initial condition away from this range in either direction was associated with a 

severe decline in stimulus-induced reactivity.  It may be that the more heterogeneous 

reactivity of proximal resistance arterioles from OZR in response to adrenergic challenge 

could partially reflect a loss of coordination through the sympathetic nerves that results in an 

increasingly heterogeneous initial “resting” condition which impacts adrenergic control over 

resistance at both the individual vessel and network levels.   Recent work by Rachev and 

colleagues (22) has shed further light on this concept and provided compelling evidence of an 

optimal state of vascular mechanics that may result in the most efficient adaptability to 

changing conditions. 

 Interestingly, the increased variability in resistance arteriolar adrenergic reactivity in 

OZR following development of the metabolic syndrome in proximal arterioles, was not 

evident in distal arterioles. Using intravital microscopy, our group has shown that adrenergic 

vasoconstriction, in the rat gluteus maximus microcirculation, displays spatial-dependency. 
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In this work, we reported that the greatest 1R and 2R effects were noted in lower order 

(proximal) arterioles (i.e., 1A and 2A); whereas, sympathetically-mediated peptidergic and 

purinergic control dominated in higher order distal and terminal arterioles (2). Such spatial 

heterogeneity in sympathetic control provides a plausible explanation for the lack of 

adrenergic influences measured in distal microcirculation of OZR. Thus, future work 

addressing the contributions of NPY and ATP to microvascular regulation/dysregulation in 

the metabolic syndrome will likely reveal new mechanisms of sympathetic dysregulation in 

the distal microcirculation.  

 An important component of the present study was the removal of “robust adrenergic 

reactivity” as an inclusion criterion for the study of ex vivo resistance arterioles.  When this 

was incorporated, a comparable pattern of divergence in adrenergic constrictor reactivity is 

present in the larger resistance arterioles of OZR vs. LZR to that for the proximal arterioles 

within the cremaster muscle.    The increased variability in the adrenergic constrictor reactivity 

of ex vivo arterioles of OZR appears to reflect intrinsic vascular, and perhaps endothelial cell, 

function itself, as treatment of “high responders” with TEMPOL blunted the adrenergic 

responses, which was subsequently abolished following additional treatment with L-NAME.  

These effects were not observed in “normal” or “low” responders where the ability of 

TEMPOL and/or L-NAME to impact adrenergic constriction was severely attenuated.  As a 

result of a relaxed inclusion criteria, the magnitude of the net increase in adrenergic 

constriction in large resistance arterioles of OZR was elevated as compared to LZR, but to a 

far less extent than previously estimated.   

 The results of the present study are important for several reasons.  Foremost, these 

data provide evidence for the role of altered adrenoreceptor reactivity in the metabolic 

syndrome on integrated vascular function from a multi-scale perspective.  Clearly, the 

increased pressor response to adrenergic challenge largely reflects activity mediated through 

the 1 receptor and does not appear to be substantially impacted by treatment against elevated 

oxidant stress or a potential loss in vascular nitric oxide bioavailability.  While responses from 

the hindlimb preparation suggested that hyperemic responses of OZR skeletal muscle can be 

improved by 1 adrenoreceptor inhibition, additional antioxidant treatment of OZR was 

required to improve muscle performance, suggesting divergent roles for adrenergic constraint 
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on bulk flow and endothelial function for higher resolution perfusion:demand matching.  

Finally, results at the highest levels of spatial resolution, the in situ cremaster muscle and ex 

vivo microvessel revealed an increased diversity of vascular reactivity in OZR following 

adrenergic challenge.  The immediate question from these results is why an increased diversity 

of adrenergic constrictor reactivity develops in OZR with progression of metabolic syndrome.     

 There does not appear to be evidence that a compensatory change in constrictor 

reactivity for the shifts in adrenergic responses develops in OZR, as there is no evidence that 

changes in myogenic activation between strains or within an individual animal that would 

match with increased adrenergic reactivity heterogeneity exists (i.e., vessels with low 

adrenergic reactivity having elevated myogenic responses, etc.).  Additionally, there is no 

prior evidence to which the authors are aware that constrictor responses to other agents (e.g., 

endothelin, angiotensin II, serotonin) are significantly altered in OZR (27).  However, there 

is evidence from some investigators that pressor reflexes may be blunted in OZR, although 

the mechanism underlying this and its generalizability for the model remain unclear (25).  As 

such, one is left with speculation.  Do vessels with “low” adrenergic constriction help the 

networks maintain an appropriate active hyperemic response, or at least largely maintain it?  

In an animal model that has been established as suffering from a profound loss of the 

microvascular network flexibility necessary to respond to imposed stressors (8), does the 

increased heterogeneity of adrenergic responses help to maintain system flexibility?    

 Perhaps even more importantly for clinical/population health outcomes, alterations in 

adrenergic tone and function have been previously implicated as contributing to the regulation 

of microvessel density, and chronic 1 adrenoreceptor inhibition with prazosin is an 

established systemic model of angiogenesis (30).  Of greatest relevance to the present study, 

may be recent work from the Haas group, where chronic prazosin treatment blunted the 

development of microvessel rarefaction in chronic corticosterone-treated rats (20).  Given the 

presence of high cortisol/corticosterone levels in OZR, it may be that tissue regions containing 

resistance arterioles with elevated adrenergic reactivity may be associated with earlier or more 

severe levels of microvascular rarefaction (12).  At this point, answers to the above questions 

are unknown.  However, the challenge that the metabolic syndrome and PVD risk pose for 

public health outcomes (26), combined with the clear potential for improving microvascular 
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network function and perfusion with appropriate intervention, make this a compelling avenue 

for future investigation. 
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4.1 Abstract 

It has been long known that chronic metabolic disease is associated with a parallel increase 

in the risk for developing peripheral vascular disease.  Although more clinically relevant, 

our understanding about reversing established vasculopathy is limited in comparison to our 

understanding of the mechanisms and development of impaired vascular structure/function 

under these conditions.  Using the 13-week old obese Zucker rat (OZR) model of the 

metabolic syndrome, where microvascular dysfunction is sufficiently established to 

contribute to impaired skeletal muscle function, we imposed a 7-week intervention of 

chronic atorvastatin (ATOR) treatment, chronic treadmill exercise (EXER), or both.  By 

20 weeks of age, untreated OZR manifested a diverse vasculopathy that was a central 

contributor to poor muscle performance, perfusion and impaired O2 exchange.  ATOR or 

EXER, with the combination being most effective, improved skeletal muscle vascular 

metabolite profiles (i.e., nitric oxide, PGI2 and TxA2 bioavailability), reactivity and 

perfusion distribution at both individual bifurcations and within the entire microvascular 

network versus responses in untreated OZR. However, improvements to microvascular 

structure (i.e., wall mechanics and microvascular density) were less robust.  The 

combination of the above improvements to vascular function with interventions resulted in 

an improved muscle performance and O2 transport and exchange versus untreated OZR, 

especially at moderate metabolic rates (3Hz twitch contraction).  These results suggest that 

specific interventions can improve specific indices of function from established 

vasculopathy, but this process was either incomplete after 7 weeks duration or that 

measures of vascular structure are either resistant to reversal or require better targeted 

interventions. 

 

Key Words:  vascular dysfunction, rodent models of the metabolic syndrome, regulation of 

blood flow, peripheral vascular disease, microvascular dysfunction, reversing vascular 

disease 
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New and Noteworthy 

We used atorvastatin and/or chronic exercise to reverse established microvasculopathy in 

skeletal muscle of rats with metabolic syndrome.  With established vasculopathy, 

atorvastatin or exercise had moderate abilities to reverse dysfunction, combined 

application of both was more effective at restoring function.  However, increased vascular 

wall stiffness and reduced microvessel density were more resistant to reversal.   
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4.2 Introduction 

One of the major contributors to the functional or clinical manifestations of 

peripheral vascular disease is the progressive loss of microvessel and microvascular 

network structure and function which is tightly coupled to developing metabolic disease in 

afflicted animals (9, 15) or humans (20, 25).  This compromised function within the 

microcirculation can take multiple forms, including impairments to arteriolar reactivity, 

mechanical changes to the microvessel wall, and a progressive lowering of microvessel 

density (rarefaction) within the skeletal muscle (14, 26).  Taken together, these impede 

effective mass transport and exchange, and the regulation of blood flow to, and perfusion 

within, skeletal muscle (9, 23).  In addition, while the functional impact of these 

impairments may be modest under resting or low-metabolic demand conditions, their 

cumulative impact becomes more severe as muscle activity increases (6, 13, 28).  Given 

the insidious nature of the development of peripheral vascular diseases (PVD), and the very 

real clinical challenge of reversing the development of established vasculopathy in affected 

patients (rather than blunting its subsequent development from an otherwise “healthy” 

condition), investigation into if/how a compromised microvascular network can be restored 

to a more normal level of structure and integrated function represents an important area of 

investigation.  Arterial reconstructive surgery for symptomatic PVD can restore 

macrovascular perfusion but its effects on microvascular dysfunction are unclear. 

Persistent microvascular dysfunction following successful macrovascular reperfusion may 

explain why arterial reconstruction does not always lead to wound healing or amelioration 

of symptoms in patients with PVD (12) 

Previous studies in our laboratory (13, 14) and from others (9, 31-34) have clearly 

established that the loss of normal microvascular structure and function parallels the 

development of metabolic disease.  Of particular relevance to the present study, we have 

recently demonstrated that rarefaction in the skeletal muscle of the obese Zucker rat (OZR) 

appears to develop in stages, where an early reduction of microvessel density is well 

predicted by an oxidant stress- and inflammation-dependent shift in arachidonic acid 

metabolism toward increasing levels of thromboxane A2 (TxA2), with a later stage of 

rarefaction that is associated with a loss in vascular nitric oxide bioavailability (14).   
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However, any interventions that have been employed to improve these vascular outcomes 

have been relevant for blunting the severity of the vasculopathy that ultimately develops, 

rather than reversing an established compromised condition once it has already developed 

(16, 18).  

The OZR (fa/fa) represents a model of the metabolic syndrome that is 

fundamentally grounded in a mutation in the leptin receptor leading to severe leptin 

resistance, chronic hyperphagia and the ensuing development of severe obesity (2, 11).  

Tracking with the severe obesity is a steadily worsening glycemic control, a progressive 

dyslipidemia and a moderate hypertension, with the additional co-morbidities of a growing 

pro-oxidant, pro-inflammation, and pro-thrombotic state (22).  OZR exhibit high 

translational relevance to the metabolic syndrome condition in humans (29) and manifest 

a progressively worsening skeletal muscle microvascular structure and function that 

parallels that determined in affected humans.   

The purpose of the present study was to utilize two clinically-relevant interventions 

against the further development of established PVD – increased physical activity/exercise 

and chronic ingestion of the HMG CoA-reductase inhibitor atorvastatin – to determine if 

an established impairment to skeletal muscle arteriolar and microvascular structure and 

function can be reversed toward normal prior to reaching its maximum severity.  For this 

study, “reversibility” is defined as the effectiveness of the imposed intervention in OZR to 

restore the normal level of measured parameter (e.g., nitric oxide bioavailability) to that 

determined in untreated LZR.  This study tested the hypothesis that, once developed, 

skeletal muscle microvascular impairments in the OZR model of the metabolic syndrome 

cannot be reversed, as the environment within the microvasculature cannot be modified 

sufficiently to generate a condition that allows for reversibility.  We propose that a deeper 

understanding of the reversibility of skeletal muscle microvasculopathy that occurs in 

metabolic disease will provide greater insight into the clinical challenge of most direct 

relevance to human subjects. 
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4.3 Materials and Methods 

Animals:  Male lean (LZR) and OZR (Harlan) were fed standard chow and drinking water ad 

libitum, unless otherwise indicated, were housed in an accredited animal care facility at either 

the West Virginia University Health Sciences Center (all experimental procedures) or at the 

University of Western Ontario (ex vivo vascular experiments only) and all protocols received 

prior IACUC approval.   Animals were used for terminal experiments at 13 (initial condition) 

or 20 (following intervention) weeks of age.  At 13 weeks of age, LZR and OZR (n=6 for 

each) were either used for terminal experiments (to establish the initial condition within the 

microcirculation) or were placed into one of four groups: 

1. Time control (n=6; rats were housed without intervention and aged to ~20 weeks) 

2. Atorvastatin (n=6; 25 mg•kg-1
•day-1; mixed with food; Ref.18) 

3. Treadmill exercise (n=6; 20 m/min, 5% incline, 60 minutes/day, 6 days/week; Ref. 

16) 

4. A combination of atorvastatin treatment and treadmill exercise as described above, to 

~20 weeks of age; n=6. 

At the time of final usage, after an overnight fast, rats were anesthetized with injections of 

sodium pentobarbital (50 mg/kg, i.p.), and received tracheal intubation to facilitate 

maintenance of a patent airway.  In all rats, a carotid artery and an external jugular vein were 

cannulated for determination of arterial pressure and for infusion of supplemental anesthetic 

or pharmacological agents, as necessary.  Blood samples were drawn from the venous cannula 

within approximately 20 minutes following implantation for determination of insulin 

concentrations (Cayman Chemical Company, Ann Arbor, MI), plasma nitrotyrosine levels 

and markers of inflammation using commercially available EIA systems (Luminex 100 PS; 

EMD Millipore, Billerica, MA).  While glucose levels were determined at the time of the 

blood draw (Freestyle, Abbott Diabetes Care, Inc, Alameda, CA), all other samples were spun 

to remove the plasma, which was snap frozen in liquid N2 until they could be analyzed as 

groups.     

Preparation of Isolated Skeletal Muscle Resistance Arterioles: In anesthetized rats, prior 

to the preparation of the cremaster muscle (below), the intramuscular continuation of the 

right gracilis artery was identified, the in vivo length and diameter estimated using an 
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eyepiece micrometer, and the vessel was surgically removed and doubly-cannulated (7).  

Within each arteriole, vessel reactivity was evaluated in response to application of 

acetylcholine (10-9 M – 10-6 M) or hypoxia (reduction in PO2 from ~135 mmHg to ~50 

mmHg).  Subsequently, vessels were treated with TEMPOL (10-4 M) to assess the 

contribution of vascular oxidant stress to these mechanical responses.   

At the conclusion of all procedures described above, vessel diameter was 

determined under Ca2+-free conditions over a range of intraluminal pressures spanning 0 

mmHg to 160 mmHg (in 20 mmHg increments) for the subsequent calculation of wall 

mechanics.  For these procedures, 5 mmHg was used as the “zero pressure” condition to 

prevent vessel collapse and to eliminate the potential for creating a vacuum within the 

vessel. 

Preparation of In Situ Cremaster Muscle: In each rat, the left cremaster muscle was 

prepared for television microscopy (24).  After completion of the preparation, the muscle was 

superfused with PSS, equilibrated with a gas mixture containing 5% CO2 and 95% N2, and 

maintained at 35C as it flowed over the muscle at a rate of 2.5 – 3.0 ml/min.  The ionic 

composition of the PSS was as follows (mM): NaCl 119.0, KCl 4.7, CaCl2 1.6, NaH2PO4 

1.18, MgSO4 1.17, NaHCO3 24.0, and disodium EDTA 0.03. After an initial post-surgical 

equilibration period of 30 minutes, two sets of arterioles and their bifurcations were selected.  

Proximal (~75 m diameter) and distal (~40 m) parent arterioles and their immediate 

daughter branches were selected for investigation in a clearly visible region of the muscle 

(please see reference 17 for a full description).  All arterioles chosen for study had walls that 

were clearly visible, a brisk flow velocity, and active tone, as indicated by the occurrence of 

significant dilation in response to topical application of 10-5 M adenosine.  All arterioles that 

were studied were located in a region of the muscle that was away from any incision.   

Initial evaluations of in situ arteriolar reactivity were assessed by determining mechanical 

responses (using on-screen videomicroscopy) to increasing concentrations of acetylcholine 

(10-9-10-6 M) and norepinephrine (10-10-10-7 M).  Subsequently, the diameter and perfusion 

(using optical Doppler velocimetry) responses of both the ‘parent’ and ‘daughter’ arterioles 

at either level of the microcirculation were assessed under resting conditions within the 
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cremaster muscle of each rat.  All procedures were then repeated following treatment of 

the in situ cremaster muscle with the anti-oxidant TEMPOL (10-3 M; within the 

superfusate; for a minimum of 40 minutes prior to any subsequent data collection).   

Measurement of Vascular NO Bioavailability: From each rat, the abdominal aorta was 

removed and vascular NO production was assessed using amperometric sensors (World 

Precision Instruments, Sarasota, FL).  Briefly, aortae were isolated, sectioned 

longitudinally, pinned in a silastic coated dish and superfused with warmed (37C) PSS 

equilibrated with 95% O2 and 5% CO2.  An NO sensor (ISO-NOPF 100) was placed in 

close apposition to the endothelial surface and a baseline level of current was obtained.  

Subsequently, increasing concentrations of methacholine (10-10–10-6 M) were added to the 

bath and the changes in current were determined.  To verify that responses represented NO 

release, these procedures were repeated following pre-treatment of the aortic strip with L-

NAME (10-4 M).   

Determination of Vascular Metabolites of Arachidonic Acid:  Vascular production of 6-

keto-prostaglandin F1 (6-keto-PGF1; the stable breakdown product of PGI2; Ref. 27), and 

11-dehydro-thromboxane B2 (11-dehydro-TxB2; the stable plasma breakdown product of 

TxA2; Ref. 8) was assessed in response to challenge with reduced PO2 using pooled arteries 

(femoral, saphenous, iliac) from LZR and OZR.  Pooled arteries from each animal were 

incubated in microcentrifuge tubes in 1 ml of PSS for 30 minutes under control conditions 

(21% O2).  After this time, the superfusate was removed, stored in a new microcentrifuge tube 

and frozen in liquid N2, while a new aliquot of PSS was added to the vessels and the 

equilibration gas was switched to 0% O2 for the subsequent 30 minutes.  After the second 30-

minute period, this new PSS was transferred to a fresh tube, frozen in liquid N2 and stored at 

-80C.  Metabolite release by the vessels was determined using commercially available EIA 

kits for 6-keto-PGF1 and 11-dehydro-TxB2 (Cayman). 

Histological Determination of Microvessel Density:  From each rat, the gastrocnemius 

muscle from the left leg was removed, rinsed in PSS and fixed in 0.25% formalin.  Muscles 

were embedded in paraffin and cut into 5 m cross sections.  Sections were incubated with 

Griffonia simplicifolia I lectin (GS-1) for subsequent determination of microvessel density.  
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GS-1 is a general stain that labels all microvessels <20 m in diameter (19).  Gastrocnemius 

muscle microvessel density was determined using fluorescence microscopy) as described 

previously (14). 

Preparation of In Situ Blood Perfused Gastrocnemius: In a separate set of age-matched 

LZR and OZR under the conditions outlined above, the left gastrocnemius of each animal 

was isolated in situ (13).  Heparin (500 IU/kg) was infused via the jugular vein to prevent 

blood coagulation.  Subsequently, an angiocatheter was inserted into the femoral artery, 

proximal to the origin of the gastrocnemius muscle to allow for bolus tracer injection.  

Additionally, a small shunt was placed in the femoral vein draining the gastrocnemius muscle 

that allowed for diversion of flow into a port which facilitated sampling of the venous effluent.  

Finally, a microcirculation flow probe (Transonic; 0.5/0.7 PS) was placed on the femoral 

artery to monitor muscle perfusion.   

Following completion of the surgical preparation and 30 minutes of self-perfused rest, 

the muscle was stimulated via the sciatic nerve to contract for 3 minutes at either 3 or 5 Hz 

isometric twitch contractions, separated by 15 minutes of self-perfused rest.  Muscle tension 

development and blood flow were monitored continuously, and arterial and venous blood 

aliquots were taken within the final 30 seconds for the determination of blood gas content. 

Upon completion of the contraction protocols, the gastrocnemius muscle was allowed 

at least 20 minutes of rest for full recovery.  At this point, 20 l of 125I-albumin (10 Ci; 

Perkin-Elmer, Shelton, CT) was injected as a spike bolus (injection time <0.5 s) into the 

arterial angiocatheter and venous effluent samples were collected at a rate of 1/s for the 

subsequent 35 seconds. Venous effluent samples were then immediately transferred into 

silicate tubes and placed into a gamma counter for activity determination.  In order to assess 

the potential for leakage of the labeled albumin from the intravascular space as a source 

for error, the gastrocnemius muscle was cleared by perfusion with PSS following 

euthanasia.  Subsequent to a determination of mass, the muscle was placed in the counter 

for determination of residual activity.  Residual activity within the gastrocnemius muscle 

did not exceed 200 cpm/animal, a level that was far lower than those determined in the 

venous blood aliquots.     
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Mathematical Analyses of Results:  Arteriolar perfusion in both parent and daughter vessels 

within in situ cremaster muscle of LZR and OZR was calculated as:  

)001.0)()(6.1( 21 rVQ −=     Equation 1 

where Q represents arteriolar perfusion (nl•s-1), V represents the measured red cell 

velocity from the optical Doppler velocimeter (mm•s-1; with V/1.6 representing an 

estimated average velocity assuming a parabolic flow profile; Ref. 10), and r represents 

arteriolar radius (m; Ref. 3).    

The total volume perfusion in the daughter arterioles was determined as the sum of 

the individual perfusion rates, and the proportion of flow within each was determined as the 

quotient of the individual branch divided by the total.   is defined as the ratio of the greater 

of the two flows in the daughter vessel to the total flow in the parent vessel.  As an example, 

if flow distribution was homogeneous between daughters,  for that bifurcation would be 0.5 

in both daughter arterioles, while if the proportion of flow in one daughter arteriole was 60%, 

 for that bifurcation would be 0.6, with flow distribution being 0.6 in the ‘high perfusion’ 

arteriole and 0.4 in the ‘low perfusion’ arteriole (13).  For the present study, following the 

initial determination of  (described above) we determined the changes in  every 20 seconds 

over the subsequent 5-minute period.   

The dilator or constrictor responses of ex vivo microvessels or aortic rings following 

agonist challenge were fit with the three-parameter logistic equation: 
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where y  represents the change in arteriolar diameter, “min” and “max” represent the 

lower and upper bounds, respectively, of the change in diameter or tension with increasing 

agonist concentration, x  is the logarithm of the agonist concentration, and 50log ED  

represents the logarithm of the agonist concentration ( x ) at which the response ( y ) is 

halfway between the lower and upper bounds.     



 

101 

 

Vascular NO bioavailability measurements were fit with a linear regression equation: 

xy 10  +=       Equation 3 

where y  represents the NO concentration, ∝0 represents an intercept term, 𝛽1 

represents the slope of the relationship, and 𝑥 represents the log molar concentration of 

methacholine.  

The determination of passive arteriolar wall mechanics (used as indicators of 

structural alterations to the individual microvessel) are based on those used previously (5), 

with minor modification.  For the calculation of circumferential stress, intraluminal 

pressure was converted from mmHg to N/m2, where 1 mmHg=1.334102 N/m2.   

Circumferential stress () was then calculated as: 

     Equation 4 

where ID represents arteriolar inner diameter (m), and WT represents wall thickness (m) 

at that intraluminal pressure (PIL).  Circumferential strain () was calculated as: 

     Equation 5 

where ID5 represents the internal arteriolar diameter at the lowest intraluminal pressure 

(i.e., 5 mmHg). 

The stress versus strain relationship from each vessel was fit (ordinary least squares 

analyses, r2>0.85) with the following exponential equation: 

      Equation 6 

where 5 represents circumferential stress at ID5 and  is the slope coefficient describing 

arterial stiffness. Higher levels of  are indicative of increasing arterial stiffness (i.e., 

requiring a greater degree of distending pressure to achieve a given level of wall 
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deformation). 

In specific experiments, 200 l blood samples were drawn from the carotid artery 

cannula and femoral vein angiocatheter immediately prior to and following completion of, the 

muscle contraction periods.  Samples were stored on ice until they were processed for blood 

gas pressures, percent oxygen saturation and hemoglobin concentration using a Corning 

Rapidlab 248 blood gas analyzer.  Muscle perfusion, arterial pressure, and bulk blood flow 

through the femoral artery were monitored for one minute prior to muscle contractions and 

throughout the contraction period using a Biopac MP150 with Acqknowledge data acquisition 

software at a 50Hz sampling frequency.  Muscle perfusion and performance data after three 

minutes of contraction were normalized to gastrocnemius mass, which was not different 

between LZR (2.180.09 g) and OZR (2.060.10 g).  Oxygen content within the blood 

samples was determined using the following standard equation:  

  )003.0()%][39.1( 222 OPSatOHbOC xx +=   Equation 7 

Where CxO2 and PxO2 represent the total content (ml/dL) or partial pressure of oxygen 

(mmHg), respectively, of arterial or venous blood (denoted simply as ‘x’). [Hb] represents 

hemoglobin concentration within the blood sample (g/dL); %O2Sat represents the percentage 

oxygen saturation of the hemoglobin and 1.39 and 0.003 represent constants describing the 

amounts of bound and dissolved oxygen in blood.  Oxygen uptake across the gastrocnemius 

muscle was calculated using the Fick equation:  

  ( )222 CvOCaOQVO −=      Equation 8 

where VO2 represents oxygen uptake by the gastrocnemius muscle, Q represents femoral 

artery blood flow (ml/g/min), and CaO2 and CvO2 represent arterial and venous oxygen 

content, respectively. 

Analyses of Tracer Washout Curves:  For the 125I-albumin washout, four standard 

parameters describing characteristics of tracer washout curves, including mean transit time 

( t ), relative dispersion (RD), skewness ( 1 ), and kurtosis ( 2 ), were computed as 

functions of the transport function h(t) (4). As described in our recent study (17), the tails 
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of the tracer washout curves were extrapolated in the form of single exponential time course 

to allow for computing the four parameters by the integration for sufficiently long time for 

convergence (21). In this study, experimentally-measured time courses are extrapolated to 

100 seconds, at which C(t) is estimated to be less than 10-9 of the maximum washout tracer 

activity.  The transport function h(t) is estimated from 

0
h( ) C( ) C( )t t t dt



=        Equation 9 

where C(t) is the time course of activity of intravascular tracer in outlet flow exiting the 

collecting tube.  The mean transit time t  is calculated from experimentally measured 

washout curves according to: 

0
h( )t t t dt



=        Equation 10 

The RD of h(t) is a measure of the relative temporal spread of h(t) and computed as the 

ratio of standard deviation of h(t) to the mean transit time from: 

( )
1/ 2

2

0
h( )d /RD t t t t t

 
= −  

 
     Equation 11 

The skewness ( 1 ) is a measure of asymmetry of h(t) and computed from: 

( ) ( )
3/ 2

3 2

1
0 0

h( )d h( )dt t t t t t t t
  

= −  −  
 

                   Equation 12  

Skewness is a measure of the asymmetry of the perfusion distribution.  In other words, it 

is a measure of the extent to which the perfusion distribution is skewed (as opposed to 

simply being shifted) to higher or lower values of perfusion.  The kurtosis ( 2 ) is a measure 

of deviation of h(t) from a normal distribution and computed from: 

( ) ( )
4 / 2

4 2

2
0 0

h( )d h( )d 3t t t t t t t t
  

= −  −  − 
 

       Equation 13   
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Kurtosis is a measure of the “sharpness of the peak” of the perfusion distribution. The 

familiar Gaussian bell-shaped curve has 2 = 0; positive values of 2 indicate a sharper 

peak than a Gaussian.  The four parameters are estimated based on the above equations for 

each animal in each experimental group.  

Determining the Effectiveness of Interventions:  The effectiveness of the chronic 

interventions at improving specific biological outcomes (e.g., biomarkers, vascular function, 

behavioral scores, etc.) were calculated as: 

100
)(

)(





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−

−

ControlControl

ControlonInterventi

LZROZRABS

OZROZRABS
    Equation 14 

where LZRControl and OZRControl represent the values of the measured parameter under 

untreated control conditions and OZRIntervention represents the values of the measured 

parameter as a result of chronic imposition of a given intervention under age-matched 

conditions.  This determines the % recovery in a parameter from the control condition in 

OZR, back to that in control LZR, as a result of the specific intervention. 

Statistical Analyses of Results: All data are presented as mean±SE.  Statistically 

significant differences in measured physiological parameters (e.g., arterial pressure, blood 

flow, microvessel density), calculated physiological parameters (e.g., slope coefficients, 

upper or lower bounds), measurements of plasma biomarkers, were determined using 

analysis of variance (ANOVA).  In all cases, Student-Newman-Keuls post hoc test was used 

when appropriate and p<0.05 was taken to reflect statistical significance.   
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4.4 Results 

 Table 1 presents data describing the baseline and systemic characteristics of the 

animal groups used in the present study.  By 13 weeks of age, OZR were already 

manifesting multiple elements of the metabolic syndrome as compared to LZR, including 

significant elevations in body mass, plasma insulin and glucose levels, dyslipidemia and 

markers of oxidant stress and inflammation.  These differences between LZR and OZR 

were exacerbated by 20 weeks of age, with a significant elevation in blood pressure as well.  

While single treatment with either atorvastatin or exercise was able to improve specific 

markers of the metabolic syndrome over the duration of the treatment, simultaneous 

imposition of both treatments was of greater effectiveness in terms of restoring the 

metabolic profile to that presented in control LZR.   

Table 1. Data (mean±SE) describing the baseline conditions of the animals under the conditions of the present study.  

The data in the parentheses represents the extent to which the relevant intervention restored the normal level of the 

parameter.  Please see text for details. * p<0.05 vs. LZR at that age; † p<0.05 vs. OZR at that age. 
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(Table 1 continued) 

 

 Figure 1 summarizes the data describing the dilator reactivity of ex vivo gracilis 

muscle resistance arterioles in response to increasing concentrations of acetylcholine in the 

present study.  As compared to responses in LZR, dilator reactivity in arterioles of OZR at 

13 weeks to acetylcholine was significantly reduced (Panel A).  Acute treatment of the 

vessels with TEMPOL had minimal impact on responses in LZR, but improved reactivity 

in OZR arterioles.  By 20 weeks of age, the difference in acetylcholine-induced reactivity 

was pronounced between LZR and OZR (Panel B).  While chronic treatment with ATOR 

or EXER improved responses to acetylcholine in OZR; the combination of the two 

treatments resulted in the greatest restoration of dilator responses.    Panel C presents data 

describing the impact of acute treatment with TEMPOL on the acetylcholine-induced 

gracilis arteriolar dilation in all groups of rats at 20 weeks.  While TEMPOL had negligible 

impact on responses in vessels from LZR, and the greatest impact on dilator responses in 

vessels from OZR, the impact on responses in arterioles from OZR that had been treated 

with ATOR, EXER or both were blunted as compared to that in untreated OZR.  The ability 

of the chronic interventions to restore normal dilator reactivity (determined in LZR) from 

the maximum impairment (determined in OZR) are presented in Panel D.  While both 

ATOR and EXER resulted in a significant restoration of normal function in OZR, with a 

significant additive benefit of acute TEMPOL treatment, the combination of both 

interventions resulted in the greatest degree of recovery in acetylcholine-induced responses 

with the smallest additional benefit from an acute treatment with the antioxidant.   



 

107 

 

 

Figure 1. Data (mean±SE) describing the dilator reactivity of ex vivo gracilis muscle resistance arterioles in response to 

increasing concentrations of acetylcholine.  Panel A:  data from LZR and OZR at 13 weeks of age under untreated 

conditions and following acute treatment with the antioxidant TEMPOL.  Panel B: data from LZR and OZR at 20 weeks 

of age under control conditions and following 7 weeks of intervention with atorvastatin (ATOR), exercise (EXER) or 

both concurrently.  Panel C: the change in the upper bound of the logistic equation fit to the curves in Panel B following 

acute treatment with the antioxidant TEMPOL.  Panel D: the extent to which the different interventions restored normal 

function, and the additive benefit of acute treatment with TEMPOL.  n=6 for all groups.  For Panels A-C: * p<0.05 vs. 

LZR; † p<0.05 vs. OZR, For Panel D: * p<0.05 vs. no change; † p<0.05 vs. OZR ATOR; ‡ p<0.05 vs. OZR EXER.  

Please see text for details. 

 Dilator responses of gracilis arterioles in response to hypoxia from LZR and OZR 

at 13 weeks are summarized in Figure 2, Panel A.  Hypoxic dilation in vessels from OZR 

was significantly reduced as compared to that in LZR, although acute treatment of the 

vessel with TEMPOL improved responses in vessels from OZR only.  By 20 weeks, the 

impaired hypoxic dilation in arterioles from OZR was exacerbated, and chronic treatments 

with EXER or ATOR+EXER resulted in significant improvements (ATOR alone did not 

significantly improve responses; Panel B).  Acute treatment of gracilis arterioles from the 

groups of rats at 20 weeks of age with TEMPOL had a significant impact on hypoxic 

dilation in untreated OZR and in OZR treated with chronic ATOR or EXER only (Panel 

C), while the effectiveness of the interventions on restoring normal function was similar 

between ATOR and EXER, with the combination of both being most effective, the 
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additional benefit of acute TEMPOL treatment was lowest in the ATOR+EXER group 

(Panel D).   

 

Figure 2. Data (mean±SE) describing the dilator reactivity of ex vivo gracilis muscle resistance arterioles in response to 

reduced PO2 in the chamber (hypoxia).  Panel A:  data from LZR and OZR at 13 weeks of age under untreated conditions 

and following acute treatment with the antioxidant TEMPOL.  Panel B: data from LZR and OZR at 20 weeks of age 

under control conditions and following 7 weeks of intervention with atorvastatin (ATOR), exercise (EXER) or both 

concurrently.  Panel C: the change in the dilator response in Panel B following acute treatment with the antioxidant 

TEMPOL.  Panel D: the extent to which the different interventions restored normal function, and the additive benefit of 

acute treatment with TEMPOL.  n=6 for all groups. For Panels A-C: * p<0.05 vs. LZR; † p<0.05 vs. OZR, For Panel D: 

* p<0.05 vs. no change; † p<0.05 vs. OZR ATOR; ‡ p<0.05 vs. OZR EXER.  Please see text for details. 

 The constriction of ex vivo skeletal muscle resistance arterioles in 13-week old LZR 

and OZR following in response to increasing concentrations of norepinephrine is presented 

in Figure 3, Panel A.  At this age, there was no difference in vasoconstriction to increasing 

concentrations of the adrenergic agonist between groups.  However, by 20 weeks of age 

(Panel B), constrictor responses to norepinephrine were significantly greater in OZR vs. 

LZR, and this difference in reactivity was nearly abolished by chronic treatment with 

ATOR, EXER or both.  Acute treatment of these groups with TEMPOL improved 

responses in untreated OZR but had minimal impact on constrictor reactivity of gracilis 

arterioles from all other groups (Panel C).  The extent to which chronic ATOR, EXER or 



 

109 

 

both interventions restored normal norepinephrine-induced reactivity is summarized in 

Panel D.  As compared to OZR at 20 weeks, chronic imposition of all three interventions 

resulted in an excellent recovery to normal constriction to norepinephrine, with minimal 

added benefit from acute treatment with TEMPOL.  

 

Figure 3. Data (mean±SE) describing the constrictor reactivity of ex vivo gracilis muscle resistance arterioles in response 

to increasing concentrations of norepinephrine.  Panel A:  data from LZR and OZR at 13 weeks of age under untreated 

conditions and following acute treatment with the antioxidant TEMPOL.  Panel B: data from LZR and OZR at 20 weeks 

of age under control conditions and following 7 weeks of intervention with atorvastatin (ATOR), exercise (EXER) or 

both concurrently.  Panel C: the change in the lower bound of the logistic equation fit to the curves in Panel B following 

acute treatment with the antioxidant TEMPOL.  Panel D: the extent to which the different interventions restored normal 

function, and the additive benefit of acute treatment with TEMPOL.  n=6 for all groups.  For Panels A-C: * p<0.05 vs. 

LZR; † p<0.05 vs. OZR, For Panel D: * p<0.05 vs. no change; † p<0.05 vs. OZR ATOR; ‡ p<0.05 vs. OZR EXER.  

Please see text for details. 

 The dilator response of proximal in situ cremasteric arterioles to increasing 

concentrations of acetylcholine in LZR and OZR at 13 weeks of age are presented in Figure 

4, Panel A, where responses were significantly reduced in vessels in OZR, and this 

difference was largely abolished following treatment of the cremaster muscle with 

TEMPOL.  In OZR at 20 weeks, while the differences in acetylcholine-induced dilation 

with LZR were increased, chronic imposition of ATOR, EXER or both significantly 
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improved responses (Panel B) and reduced the beneficial impact of acute TEMPOL 

treatment on dilator reactivity (Panel C).  Additionally, chronic imposition of ATOR, 

EXER or both from 13 weeks of age (with ‘both’ being most effective), significantly 

restored normal vascular reactivity to increasing concentrations of acetylcholine (Panel D).  

For distal arterioles of in situ cremaster muscle, the patterns in the data were extremely 

similar to those for proximal arterioles (data not shown). 

 

Figure 4.  Data (mean±SE) describing the dilator reactivity of in situ cremaster muscle resistance arterioles in response 

to increasing concentrations of acetylcholine.  Panel A:  data from LZR and OZR at 13 weeks of age under untreated 

conditions and following acute treatment with the antioxidant TEMPOL.  Panel B: data from LZR and OZR at 20 weeks 

of age under control conditions and following 7 weeks of intervention with atorvastatin (ATOR), exercise (EXER) or 

both concurrently.  Panel C: the change in the upper bound of the logistic equation fit to the curves in Panel B following 

acute treatment with the antioxidant TEMPOL.  Panel D: the extent to which the different interventions restored normal 

function, and the additive benefit of acute treatment with TEMPOL.  n=6 for all groups.  For Panels A-C: * p<0.05 vs. 

LZR; † p<0.05 vs. OZR, For Panel D: * p<0.05 vs. no change; † p<0.05 vs. OZR ATOR; ‡ p<0.05 vs. OZR EXER.  

Please see text for details. 

 Figure 5 presents the data describing the changes in constrictor responses to 

increasing concentrations of norepinephrine for in situ cremasteric arterioles.  While there 

were minimal differences in responses at 13 weeks of age between strains (Panel A), the 

differences at 20 weeks of age were somewhat more extensive, there were no differences 
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in reactivity that were demonstrated to be consistently statistically significant (Panel B).  

As above, for distal arterioles of in situ cremaster muscle, the norepinephrine-induced 

constriction, while potent, did not demonstrate statistically significant differences between 

LZR and OZR at either age range as such, have not been formally presented (data not 

shown). 

 

Figure 5. Data (mean±SE) describing the constrictor reactivity of in situ cremaster muscle resistance arterioles in 

response to increasing concentrations of norepinephrine.  Panel A:  data from LZR and OZR at 13 weeks of age under 

untreated conditions and following acute treatment with the antioxidant TEMPOL.  Panel B: data from LZR and OZR at 

20 weeks of age under control conditions and following 7 weeks of intervention with atorvastatin (ATOR), exercise 

(EXER) or both concurrently.   n=6 for all groups. 

 The impact of chronic interventions on the reversibility of altered wall mechanics 

in LZR and OZR gracilis arterioles are summarized in Figure 6.  At 13 weeks of age, there 

were no significant differences in the inner diameter of gracilis arterioles (Panel A), their 

incremental distensibility (Panel C) or the slope () coefficient from their stress versus 

strain relationship (Panel E).  By 20 weeks of age, arterioles from OZR exhibited a reduced 

passive inner diameter as compared to those from LZR (Panel B), with a reduced 

incremental distensibility (Panel D) and a significant left-shifting of the stress versus strain 

relationship (Panel F).  Chronic interventions with ATOR and EXER, alone or in 

combination, were largely ineffective at blunting this effect (Panel G). 
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Figure 6.  The mechanics of the wall of ex vivo gracilis muscle resistance arterioles under Ca2+-free conditions with 

increasing intralumenal pressure.  Data are presented as mean±SE.  Panel A: inner diameter of gracilis muscle resistance 

arterioles from LZR and OZR at 13 weeks.  Panel B: inner diameter of gracilis muscle resistance arterioles from LZR 

and OZR at 20 weeks under control conditions and in response to 7 weeks of intervention with atorvastatin (ATOR), 

exercise (EXER) or both concurrently.  Panel C: incremental distensibility of gracilis arterioles from LZR and OZR at 

13 weeks.  Panel D: incremental distensibility of gracilis arterioles from LZR and OZR at 20 weeks under control 

conditions and in response to 7 weeks of intervention with ATOR, EXER or both. Panel E: circumferential stress versus 

strain relationship between gracilis arterioles from LZR and OZR at 13 weeks with the determination of the slope ( ) 

coefficient. Panel F: stress versus strain relationship between gracilis arterioles from LZR and OZR at 20 weeks under 

control conditions and in response to 7 weeks of intervention with ATOR, EXER or both with the determination of the 

slope ( ) coefficient.  n=6 for all groups.  * p<0.05 vs. LZR; † p<0.05 vs. OZR.  Please see text for details. 
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 Figure 7 presents data describing the gastrocnemius muscle microvessel density 

(Panel A) and the extent of recovery in MVD as a result of the chronic interventions (Panel 

B) in LZR and OZR.   At 13 weeks of age, there was a reduction in MVD between LZR 

and OZR, which became much more pronounced by 20 weeks of age.  This difference was 

largely unaffected by chronic treatment with ATOR and only marginally affected by 

chronic EXER from 13 weeks of age in OZR.  However, combined imposition of both 

interventions resulted in a significant improvement in skeletal muscle MVD in OZR.   

 

 

Figure 7.  Microvessel density within gastrocnemius muscle of LZR and OZR under the conditions of the present study.  

Data (mean±SE) are presented for animals at 13 weeks of age and at 20 weeks of age under control (untreated) conditions 

and in response to 7 weeks of ATOR, EXER or both interventions imposed concurrently (Panel A).  Panel B presents the 

extent to which the different chronic interventions restored normal levels of microvessel density in OZR.  n=6 for all 

groups.  Panel A: * p<0.05 vs. LZR; † p<0.05 vs. OZR.  Panel B: * p<0.05 vs. no change; † p<0.05 vs. OZR ATOR; ‡ 

p<0.05 vs. OZR EXER.  Please see text for details. 

Data describing the perfusion distribution coefficient (), in both the proximal 

(Panel A) and distal (Panel B) cremasteric microcirculation are summarized in Figure 8.  

These data suggest that there were minimal differences in the average magnitude of  

between LZR and OZR at 13 weeks of age, although the temporal variability in  over the 

data collection window was reduced in OZR.  In contrast,  was increased, and its 

variability reduced, in OZR at 20 weeks of age versus LZR, and chronic imposition of 

ATOR, EXER or both from 13 weeks of age resulted in improvements to  and a greater 

degree of variability as compared to responses in untreated OZR.  These results were 

consistent in both proximal (Panel A) and distal (Panel B) arteriolar bifurcations within the 

cremasteric microcirculation. 
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Figure 8. Perfusion heterogeneity () at proximal (~70 m diameter; Panel A) and distal (~30 m diameter; Panel B) 

arteriolar bifurcations within in situ cremaster muscle of LZR and OZR under the conditions of the present study.  Data 

(mean±SE) are presented for animals at 13 weeks of age and at 20 weeks of age under control (untreated) conditions and 

in response to 7 weeks of ATOR, EXER or both interventions imposed concurrently (Panel A).  n=6 for all groups.  * 

p<0.05 between variability in group vs. LZR variability; † p<0.05 between variability in this group vs. OZR variability.  

Please see text for details. 

 Figure 9 summarizes the bioavailability of vasoactive metabolites that have been 

previously demonstrated to play a contributing role in the vascular phenotypes discussed 

above.  Vascular nitric oxide bioavailability (Panel A) was reduced in arteries of OZR as 

compared to that in LZR at 13 weeks, and this was exacerbated by 20 weeks.  Chronic 

intervention with ATOR, EXER or both resulted in a significant improvement in levels of 

NO bioavailability at 20 weeks of age in OZR.  Vascular hydrogen peroxide levels, 

elevated in arteries of OZR versus LZR at 20 weeks of age (Panel B), demonstrated a higher 

degree of variability and, although presenting a mirrored trend as compared to NO, did not 

produce a consistently significant outcome subsequent to the interventions.  A similar 

pattern to that for NO was determined for PGI2 bioavailability (Panel C), although the 

ability of the interventions to restore normal levels was less robust.  Conversely, TxA2 

bioavailability (Panel D) was significantly increased by 13 weeks of age in arteries of OZR 

as compared to that in LZR, and this elevation was only reduced at 20 weeks following 

combined imposition of ATOR and EXER from 13 weeks of age in OZR.   
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Figure 9.  Data describing the bioavailability of signaling molecules associated with healthy and impaired vascular 

function.  Data (mean±SE) are presented for the bioavailability of nitric oxide (NO, Panel A), hydrogen peroxide (H2O2, 

Panel B), prostacyclin (PGI2, Panel C) and thromboxane A2 (TxA2, Panel D).  n=6 for all groups. * p<0.05 vs. LZR; † 

p<0.05 vs. OZR.  Please see text for details. 

 The results of the in-situ gastrocnemius muscle performance experiments are 

summarized in Figure 10.   At 13 weeks of age OZR demonstrated an accelerated muscle 

fatigue rate as compared to LZR after 3 minutes of contraction at both 3Hz an 5Hz 

(isometric twitches), with the difference being exacerbated at 5Hz (Panel A).  This 

impaired muscle performance was increased at 20 weeks of age, and was not significantly 

impacted by ATOR or EXER, but only in response to the combination intervention.   The 

functional hyperemic response to muscle contraction was similar between LZR and OZR 

at 13 weeks but was attenuated by 20 weeks for both 3Hz and 5Hz contractions (Panel B).  

All three interventions were successful at significantly improving the bulk hyperemic 

response to both levels of increased metabolic demand following chronic intervention from 

13 weeks.  Oxygen extraction (Panel C) and VO2 (Panel D) across the muscle, while 

comparable in LZR and OZR at 13 weeks, were reduced by 20 weeks of age.  While ATOR 

and EXER alone resulted in mild improvements that were not statistically significant for 
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extraction of VO2, the combination of the two interventions restored both parameters to 

levels that were not significantly different from that in LZR (at 3Hz only). 

 

 

Figure 10.  Vascular responses and contractile performance of in situ skeletal muscle of LZR and OZR at 13 weeks of age 

and at 20 weeks of age under control (untreated) conditions and in response to 7 weeks of intervention with atorvastatin 

(ATOR), treadmill exercise (EXER) or both concurrently.  Data (mean±SE) are presented from the animal groups in response 

to three minutes of muscle contraction at 3 or 5Hz (isometric twitch).  Data are presented for the percentage of the peak force 

development after three minutes of the contraction bout (Panel A), the hyperemic responses to muscle contraction (Panel B), 

oxygen extraction across the gastrocnemius muscle (Panel C), and oxygen consumption across the gastrocnemius muscle 

(Panel D).  n=6 for all groups.  * p<0.05 vs. LZR; † p<0.05 vs. OZR.  Please see text for details. 

 Figure 11 presents data describing the average tracer washout from the in situ 

gastrocnemius preparation under rest conditions across the different experiment groups of 

the present study.  The appearance of 125I-albumin in the venous effluent draining the 

gastrocnemius muscle in all groups in the present study is represented in Panel A.  Figure 

12 summarizes data describing the aggregate washout curves.  Mean transit time of the 

tracer across the gastrocnemius was very similar across all groups, suggesting that the 

relationship between bulk blood flow to the gastrocnemius muscle and vascular volume in 
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the different groups was not significantly different in the present study (Panel A).  The 

relative dispersion of tracer across the muscle (RD; Panel B) was elevated in untreated 

OZR at 20 weeks of age as compared to all other groups, suggestive of an increased 

perfusion heterogeneity throughout the microcirculation of the gastrocnemius muscle.  

While treatment with ATOR was ineffective at restoring RD, chronic exercise, alone or in 

combination with ATOR, was superior at restoring RD toward levels determined in age-

matched LZR.  Both the skewness (Panel C) and the kurtosis (Panel D) of the tracer 

washout curves were reduced in OZR as compared to age-matched LZR, and these shifts 

in the washout patterns were improved toward that determined in LZR as a result of either 

ATOR, EXER or both interventions imposed concurrently.   

 

Figure 11.  Data describing the tracer washout of 125I-albumin from the in situ gastrocnemius muscle of LZR and OZR 

under the conditions of the present study.  Data (mean±SE) are presented for LZR and OZR at 13 weeks of age and at 20 

weeks of age under control (untreated) conditions and in response to 7 weeks of intervention with atorvastatin (ATOR), 

treadmill exercise (EXER) or both concurrently.  Please see text for details; n=5 for each group. 
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Figure 12.  Data (presented as mean±SE) describing the four moments of the washout of 125I-albumin from the in situ 

gastrocnemius muscle for LZR and OZR at 13 weeks of age and at 20 weeks of age under control (untreated) conditions and 

in response to 7 weeks of intervention with atorvastatin (ATOR), treadmill exercise (EXER) or both concurrently.    Data are 

shown for the mean transit time of the washout (Panel A), the relative dispersion of the washout (RD; Panel B), the distribution 

skewness (Panel C) and kurtosis (Panel D).  Please see text for details; n=5 for each.  * p<0.05 vs. LZR; † p<0.05 vs. OZR. 
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4.5 Discussion 

 The powerful association between chronic metabolic disease and the increased risk 

for the development of PVD has been well known for many years.  While there have been 

many studies seeking to understand the mechanisms underlying the compromised vascular 

function under these conditions, or how interventional strategies could serve to blunt the 

development of the poor vascular outcomes (please see Ref. 33 for a recent review), an 

understanding of the outright reversibility of established vasculopathy in translationally 

relevant models has been more elusive.  This is particularly troubling, as it is this challenge 

which is most clinically relevant, where patients present themselves in a clinical setting 

only once they have already experienced the manifestations of PVD (e.g., rapid muscle 

fatigue, pain upon exertion, etc.).  The purpose of this study was to use the OZR model of 

the metabolic syndrome, at an age where impairments to skeletal muscle microvascular 

structure and function have already been established, and where impairments to hyperemic 

responses and muscle performance are still mild, to determine the extent to which 

clinically-relevant interventions could improve not only microvascular reactivity and 

structure, but also muscle fatigue and hyperemia with increased metabolic demand. 

 At 13 weeks of age, the presence of the metabolic disease in OZR was associated 

with impaired endothelial function, reduced microvessel density and initial evidence of 

impaired muscle performance and active hyperemic responses.  As severity of the 

metabolic syndrome progressed, impairments to microvascular structure and function 

increased to include an increased stiffening of the arteriolar wall, an increasing (and 

increasingly stable) heterogeneity of perfusion at arteriolar bifurcations and a worsening 

of skeletal muscle perfusion and oxygen exchange.  While this is not novel information 

and has been described previously, it does set the appropriate context for the present study:  

the vasculopathy associated with the metabolic syndrome at 13 weeks of age was present, 

was sufficient to impact skeletal muscle performance, and continued to evolve naturally 

over the subsequent 7 weeks to further compromise muscle blood flow and performance. 

 Chronic ingestion of atorvastatin from 13 weeks of age or chronic imposition of 

treadmill exercise demonstrated some effectiveness at improving vascular, and by 

extension muscle blood flow and performance, outcomes in OZR as compared to no 
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intervention, but even the combination of the two had clear limits on effectiveness.  Under 

all three interventions, with the combination of both atorvastatin and exercise being most 

effective, the improvement to the vasoactive metabolite profile – associated with the 

improvement in oxidant stress and inflammation levels – was critical for improving 

vascular reactivity to acetylcholine, hypoxia and norepinephrine.  In addition, there were 

some improvements to microvessel density, although the extent of the rarefaction even 

with the combined interventions remained considerable in the OZR despite 7 weeks of 

aggressive treatment.  Further, there was very little change in the progression of altered 

wall mechanics in the arterioles of OZR, regardless of intervention.   

 While the structure of the microvascular networks was resistant to improvement 

following intervention, there was an improvement in both the magnitude and in the 

variability of  throughout the microcirculation of OZR with chronic atorvastatin, exercise 

or both.  This was evident in both the direct observations of the microvascular networks in 

the cremaster or using the tracer washout curve analyses for the labeled albumin.  These 

results suggest that the increased heterogeneity of perfusion distribution that accompanies 

progressive metabolic disease in OZR can be partially reversed with aggressive 

intervention, even with established dysfunction.  The combination of these improvements 

to reactivity, and especially to perfusion distribution, was associated with improvements to 

muscle performance, hyperemic responses and oxygen exchange for skeletal muscle in 

OZR.  However, as recovery was most clearly evident at 3Hz contraction, as it seemed that 

5Hz contraction frequency have been too severe a challenge for any significant recovery 

to have been evident. 

 A study of this scope and focus immediately lends itself to a wide array of 

provocative questions, some of which we will attempt to address or clarify in the 

succeeding paragraphs.  Obviously, one question that immediately comes to mind is the 

timing of the intervention and its duration.  We elected to use 13 weeks of age for two 

major reasons.  First, the vasculopathy was established at this age and was beginning to 

impact muscle blood flow and performance, so this was considered to be the earliest time 

point that was relevant for “reversing” rather than for “blunting development” of vascular 

dysfunction.  Secondly, in preliminary studies, 15 weeks of age was also considered as an 
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option for the initiation of intervention due to the greater establishment of vasculopathy.  

However, it was rapidly determined that the exercise intervention was not feasible as OZR 

at that age were not able to consistently exercise without invoking a level of attrition that 

made the experiments unrealistic.   

The use of the 7 weeks of intervention was selected for two reasons as well.  First, 

using a 4-week intervention, which would bring animals to the ~17-week age range we 

have employed historically, was not considered to of sufficient duration to determine any 

meaningful outcome.  Second, using a 7-week intervention duration brings us to a 20-week 

old OZR, which we have determined is the maximum age we have been able to employ 

before changes to skeletal muscle function (e.g., Ca2+ handling, half relaxation time, 

maximal twitch tension, fiber type distribution) become too great to allow for an accurate 

interpretation of the data.   

The failure of arteriolar wall mechanics to demonstrate any significant 

improvement with intervention or, given its lack of presence at 13 weeks of age in OZR, 

could actually be considered as an appearance of the dysfunction despite the interventions, 

was a particularly striking observation of the present study.  While the mechanisms 

underlying the progressive reduction in vascular wall distensibility with metabolic disease 

(in OZR and in other models) are a continuing area of active investigation, it may be that 

the combination of atorvastatin and exercise are simply “off target” for preventing vascular 

wall remodeling.  In our previous studies, the increased stiffness of the arteriolar wall in 

OZR was associated more with the development of hypertension rather than with impaired 

glycemic control or dyslipidemia (18), and previous studies using interventions specifically 

targeted at reducing blood pressure have been more effective at moderating the changes to 

vascular wall structure and mechanics (30). 

The relatively modest responses at improving microvessel density are also 

intriguing, as previous studies have clearly demonstrated that chronic atorvastatin 

treatment and/or exercise from a relatively young age and severity of the metabolic 

syndrome was effective at blunting rarefaction severity in skeletal muscle of OZR (14).  

However, it seems plausible that the use of the 13 week age for the start of intervention, 
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while justifiable from the perspective of translational relevance, may have missed the 

window when the extent of rarefaction is most modifiable.  In a recent study examining the 

temporal nature and mechanistic bases of rarefaction in skeletal muscle of OZR, it was 

evident that the initial phase of rarefaction occurs prior to 10-12 weeks of age in OZR and 

was most closely predicted by the severity of both inflammation and vascular production 

of TxA2 (14).   For maximal effectiveness, it was proposed that interventions against 

rarefaction should be initiated prior to 10 weeks of age in OZR, although this is somewhat 

problematic as there is no functional phenotype associated with these early changes to 

microvessel density that has been identified.  Regardless, it seems likely that the optimal 

window for intervening against microvessel loss in skeletal muscle rarefaction in OZR may 

have been missed with interventions starting only after 13 weeks of age.  However, it must 

be emphasized that we have only used a 7-week intervention duration.  Whether a longer 

duration of atorvastatin treatment, exercise regimen or both (or some other intervention), 

would result in a greater degree of reversibility of the skeletal muscle microvascular 

impairments will require dedicated study. 

An additional issue that requires some comment is the observation that, while there 

were significant improvements to the reactivity of arterioles from the gracilis muscle, 

muted improvements to the microvessel density of the gastrocnemius muscle, and 

improvements to the performance, blood flow, oxygen handling and tracer washout 

kinetics indicative of a less heterogeneous perfusion distribution within the in situ 

gastrocnemius muscle of OZR, this study also presents data describing the improvement to 

the hemodynamic control of perfusion distribution in the in situ cremaster muscle – a tissue 

that is not involved in the exercise training regimen and that does not directly benefit from 

the effects of the chronic exercise (with or without concurrent atorvastatin therapy).  This 

provides strong support that the improved systemic effects of chronic exercise therapy in 

OZR, which can include an improved endocrine, oxidant stress and pro-inflammation 

status, can be highly effective in terms of improving vascular function and may work in 

combination with direct effects in the exercising muscles of interest to produce a system-

wide improvement to vascular health under conditions of the metabolic syndrome.  

However, caution must be employed when interpreting some of the results of the present 

study.  The measurement of vascular metabolites that can impact the regulation of tone 
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used larger arteries and not resistance arterioles.  While this allowed us to reduce animal 

number and provide insight into “within animal” comparisons, it must be remembered that 

vascular environments are different between larger arteries and resistance arterioles, with 

the potential for introducing inaccuracy in terms of assessing the importance of the 

metabolites to tone regulation. 

Given the results of the present study, it may be appropriate to speculate on not just 

the effect of the interventions on the potential for reversibility of established vasculopathy 

(or potential mechanisms), but also on whether the effects of these interventions can be 

additive or potentially synergistic.  It has been well established that both ATOR and EXER 

can improve anti-inflammatory and anti-oxidant capacity, thereby improving vascular 

function and health outcomes through those mechanistic pathways.  However, results from 

the present study suggest that this effect is more diverse than a single issue, such as 

improved nitric oxide bioavailability and may also include a partial restoration of vascular 

arachidonic acid metabolism.  This beneficial effect appears to be localized primarily to 

the endothelial cell as responses vascular smooth muscle-dependent stimuli were largely 

unaffected.  Further, over the time course of the present study, the impacts of the 

interventions did not significantly reverse vascular structure, either at the individual vessel 

or whole network levels of resolution.  While it is possible that a longer duration 

intervention might improve the structural characteristics of the vasculature, we may simply 

have intervened outside of the most appropriate window of time to elicit a beneficial 

outcome (14).    Regardless, although the design of the current study does not allow for a 

rigorous assessment of whether the interventions were additive or synergistic at this time, 

it is clear that the combination therapy is sufficiently robust that it helps to restore not just 

hyperemic responses and muscle fatigue rates, but also perfusion distribution, and thus O2 

delivery, patterns within the skeletal muscle. 

 In summary, the results of the present study provide compelling evidence that the 

imposition of two clinically-relevant interventions (atorvastatin and chronic exercise), 

alone or in combination to an OZR with a pre-existing established vasculopathy can result 

in improvements to specific indices of vascular reactivity, hemodynamics, blood flow, 

oxygen handling and muscle performance.  Further, these improvements appear to be 
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clearly tied to the effects of both interventions on enhancing oxidant stress and pro-

inflammation severity system-wide.  The use of statins has been shown to result in 

improved patency and limb salvage rates in patients undergoing revascularization for limb 

ischemia (1). The specific mechanisms underlying this effect remain unclear. Perhaps these 

improvements in microvascular dysfunction observed in this animal model help to explain 

this clinical association in humans.   Indices of altered vascular structure, both at the 

individual vessel and whole network levels of resolution were more resistant to 

reversibility with the selected interventions and their duration, although determining if this 

represents specific procedural issues with the present study or simply processes that are 

more difficult to reverse will require further investigation.  Regardless, the results of the 

present study provide compelling insight and provocative direction for future study into 

the reversibility of established vasculopathies under condition of chronic metabolic disease 

and may have implications for primary and secondary prevention of PVD. 
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Chapter 5 

5 Thesis Conclusion 

 Approximately 20% of the adult population is afflicted with Metabolic Syndrome 

(METS; Riediger & Clara, 2011) which is the presentation of obesity, dyslipidemia, 

hypertension, and insulin resistance. METS increases the risk of cardiovascular disease 

(CVD) by 2.6-fold and type 2 diabetes mellitus (T2DB) by 5-fold (Lakka, 2002). 

Additionally, almost 40% of adults with METS over the age of 40 are afflicted with 

peripheral vascular disease (PVD), the presentation of poor skeletal muscle blood 

perfusion with increases in metabolic demand (Sumner et al., 2012). Thus, this perfusion-

demand mismatch typically gives rise to increases in muscle fatigue and pain during 

times of increased physical activity (Abdulhannan et al., 2012). The purpose of this 

dissertation is to generate novel insights for both venular and arteriolar micro-

vasculopathies using the translational animal model for METS, the obese Zucker rat 

(OZR), and to investigate the potential reversibility of established PVD using exercise 

and atorvastatin. 

Chapter 1: Altered Postcapillary and Collecting Venular Reactivity in Skeletal Muscle 

with Metabolic Syndrome 

 Retinal microcirculation studies have provided insight to alterations in venular 

function with METS and how the control of venular diameter and venular network 

structure can be significantly impacted (Lammert et al., 2012). While there are some 

studies dedicated to venular function in the context of leukocyte interactions within the 

venular walls in inflammation (Iba et al., 2012), there is limited information pertaining to 

these dysfunctions in relevant animal models for METS and PVD. These experiments 

sought to identify any alterations in postcapillary and collecting venule function in the 

OZR compared to healthy controls.  

 The OZR presented with impaired dilator reactivity in both postcapillary and 

collecting venules which was attributed to elevations in reactive oxygen species and its 

negative effects on venular nitric oxide and prostacyclin bioavailability. Further, 
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elevation in adrenergic and thromboxane A2 constrictor responses may contribute to the 

impaired dilator responses. Taken together, these disparities indicated an altered 

microvascular reactivity at the venular level of skeletal muscle, thereby providing insight 

to an area of METS vasculopathy which has received little investment. Where this fits in 

the context of METS microcirculatory research, as a whole, is a starting point for 

potential, compelling avenues of future research. Previous studies have shown some of 

the earlier, measurable changes to the microcirculation occur on the venular side (with 

respect to leukocyte rolling and adhesion) in METS. The current study shows apparent 

differences in vascular reactivities, with METS risk factors, which favor that of a more 

vasoconstrictive state. While it is known that venules and veins do not necessarily change 

resistance to restrict blood flow, but rather compliance to facilitate it (Rothe, 1983). 

Therefore, the speculation can be made that the observable differences may be either an 

adaptation to the existing microvasculapathies or a potential contributor to their severity. 

Nevertheless, the changes are apparent and additional, dedicated studies are required to 

further investigate these changes with respect to identifying the nature of their existence. 

 

Chapter 2: Altered Distribution of Adrenergic Constrictor Responses Contributes to 

Skeletal Muscle Perfusion Abnormalities in Metabolic Syndrome 

 Adrenergic traffic, signaling, and vascular responses may be elevated with METS 

risk factors (Carlson et al., 2000; Naik et al, 2006; Frisbee 2004). Treatment with α-

adrenoreceptor antagonists equalizes the elevated blood pressure of the OZR to levels 

comparable to healthy controls. However, it is unclear how general elevations in vascular 

adrenergic output, which produces significant elevations in resistance, functions in vivo 

to produce mild/moderate elevations in blood pressure observed in OZRs (Tofovic et al., 

1998; Frisbee, 2004). Therefore, these experiments sought to reveal potential contributors 

of this disconnect using a multi-scale/resolution approach, thus garnering a greater 

understanding of the impaired adrenergic control for PVD within METS. 

 The OZR experienced an increased α1 adrenoreceptor mediated, whole-animal 

pressor response compared to healthy controls, independent of reactive oxygen species or 

nitric oxide bioavailability. However, the blunted in situ hyperemic response in the OZR 
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was mediated, in part, by reactive oxygen species (ROS) as the combination of TEMPOL 

(ROS scavenger) and α1-adrenoreceptor inhibition elicited the greatest improvements in 

muscle performance and volume of oxygen consumption. With a minor adjustment of the 

classically used inclusion criteria for experiments of this nature, high resolution 

interrogations of the in-situ cremaster muscle arterioles and ex vivo gracilis muscle artery 

revealed an α1-adrenoreceptor mediated hyperresponsiveness with OZR vessels, 

contributed to by ROS and nitric oxide bioavailability. Lastly, OZR arteriolar responses 

to an α1 adrenoreceptor challenge revealed a more heterogeneous, constrictor response 

compared to healthy controls. While these results support α1 adrenoreceptor as a key 

contributor to the elevated pressor responses and vascular resistance in the OZR, the 

purpose of a more heterogeneous response is unclear. 

 

 In the context of METS microvasculopathy research, it is well established α-

adrenoreceptor stimulated vasoconstrictor responses are elevated for subjects with METS 

associated vascular dysfunction. Therefore, the current adrenergic literature emphasizes 

investigation on biochemical signaling pathways and secondary messengers that may 

contribute to the differences in response for the OZR versus healthy controls. While the 

pathways are essential to understanding the underlying pathologies, it is critical we 

continue to interrogate the functional outcomes of these pathologies as there are 

important questions which remain unanswered. The current study, in part, provides 

insight for the discrepancies of in vivo blood pressure responses and ex vivo vascular 

responses observed with the OZR model. In doing so, changes in variance and frequency 

distributions were coupled to these apparent differences in vascular response giving rise 

to further questions. A speculative purpose for this phenomenon may include that of a 

shift in initial tangential stresses due to changes in pressure and wall thickness in the 

OZR vessels, thereby influencing vascular responses (described by Gore et al., 1972). 

However, additional studies are necessary to explore this potential phenomenon.   

Chapter 3: Chronic Atorvastatin and Exercise can Partially Reverse Established Skeletal 

Muscle Microvasculopathy in Metabolic Syndrome 
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 The final set of experiments are dedicated to reversing established METS 

associated vasculopathies of the skeletal muscle. Previous studies demonstrate a loss in 

microvascular density (rarefaction) and function in parallel to the development of 

metabolic syndrome (Machado et al., 2016). While there are interventional strategies to 

decrease the severity of these vasculopathies, there is limited research on the restoration 

or reversibility of vascular health following the onset of these vasculopathies. 

Consequently, these experiments sought to determine the potential for reversibility or 

restoration of established PVD using the chronic ingestion of an HMG-CoA inhibitor, 

atorvastatin (ATOR), and/or the implementation of regular exercise (EXER). 

 

 In the current study, following the establishment of PVD at 13 weeks of age, a 7-

week intervention was implemented in which the ATOR group and EXER group 

experienced significant improvements compared to time control OZRs while the 

combination group of ATOR and EXER elicited the greatest degree of reversibility, in 

certain criteria. There were favorable changes to vasoactive metabolite bioavailability, 

reactivity, and perfusion distributions, thereby resulting in better muscle performance and 

oxygen transport during stimulated muscle contractions compared to the time control 

OZR group. With respect to the stated definition of reversibility, these improvements 

were more comparable to the measured values of the healthy controls, indicating a 

potential for reversibility of established PVD, within specific parameters. 

  

 While improvements to microvascular density were modest and there were no 

significant improvements in wall mechanics, microvascular densities of the intervention 

OZR groups did improve compared to the 20-week OZR time control.  Those 

improvements were comparable to the 13-week OZR time controls. This may be 

interpreted as a blunting effect rather than restorable indicating a low potential for 

reversibility. A lack of significant structural improvements may have resulted from 

missing the appropriate interventional window (Frisbee et al., 2014) or potentially the 

short duration of the intervention as Orr et al. reported improvements in the vessel 

mechanics in humans following a 12-week ATOR intervention. However, the current 

study using the OZR model is restricted to a narrow interventional window for an 
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accurate assessment of established PVD (details in chapter 4 discussion; Orr et al., 2009). 

Nevertheless, ATOR and EXER can significantly reverse specific indices of 

microvascular function following established vasculopathy in the OZR thus representing 

an effective avenue for interventions aimed at reversing microvasculopathies.  

 

 It is well established both forms of intervention possess anti-inflammatory and 

anti-oxidant properties which can improve vascular health. Previous literature utilizing 

both ATOR and EXER as primary and secondary (respectively) forms of treatment have 

been shown to improve blood flow in health and with cardiovascular disease in humans. 

Exercise has been shown to improve blood flow via mechanisms including increases in 

eNOS expression, improved anti-oxidant systems, and decreases in NADPH oxidase 

generated reactive oxygen species (Machado et al., 2016; Rush et al., 2003). Although the 

mechanisms are unclear, ATOR has been shown to improve vascular outcomes for 

inflammation related diseases by means of decreasing the expression of IL-6 and TNF-α, 

decreasing CRP production, and upregulation of anti-oxidant systems (Rabkin et al., 

2013; Sodha et al., 2015). While speculation that a combination of these two treatment 

methods elicit the greatest potential for PVD reversibility can be made, it is not known if 

the improvements are synergistic or additive in a model for METS. Although the 

existence of synergy between the two treatment methods has been shown in 

atherosclerotic mice (Moustardas et al, 2014), the current study’s design does not allow 

for such an assessment. Due to this, additional studies are required to garner a greater 

understanding of the synergistic capacities for EXER and ATOR. 
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