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Abstract

A mathematical treatment of the general problem of electrical contacts and 
heating related to MEMS switch contacts is developed. The spatial distri­
bution of the potential, the current and the temperature in a special case 
of electrical contact between two gold bodies whose thermal and electrical 
conductivities vary with temperature is analyzed, and an explanation for the 
collapse of gold contact system before reaching the melting point is given. For 
this purpose three different methods are applied. First, we develop an exact 
solution, which involves with solving a dual integral equation leading to a Fred­
holm integral equation, that is solved numerically. Secondly, a simple model 
to obtain an approximate resistance of an a-spot system is presented. Finally, 
another approximate solution is developed, where the variational method is 
implemented to reduce the complicated computations of the exact method. 
Excellent agreement is demonstrated between the results of the exact and the 
variational methods for all sizes of a-spots in contact systems.
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Chapter 1

Introduction

In view of the increasing number of Micro-Electro-Mechanical systems (MEMS) 

involving surface contact, an understanding of the behaviour of MEMS con­

tact interfaces is imperative. Touch-mode MEMS devices are advantageous 

in many applications, such as electrostatic actuators, microswitches, and mi­

crorelays. The performance and lifetime of such microdevices depend on the 

behaviour of their contact surfaces [1].

A Micro-Electro-Mechanical system (MEMS) is a batch-fabricated (micro- 

fabricated) system that contains both electrical and mechanical components 

with characteristics sizes ranging from nanometers to millimeters. Initially 

MEMS techniques were borrowed directly from integrated circuit (IC) fabri­

cation technologies. A few of advantages include very low cost contributed to 

batch fabrication, tremendous size, weight and power reduction, and simulta­

neous great performance improvement [2, 3].

The development and application of MEMS and NEMS (Nano-Electro- 

Mechanical System) are critical to the current world as they will lead to major 

breakthrough in information technology, computers, medicine, health, manu­

1



C h apter  1. Introduction 2

facturing, transportation, energy, avionics, security, etc. Nowadays developing 

tendencies in engineering science have increased the importance on integrated 

synthesis, analysis, design and control of advanced MEMS and NEMS [4],

MEMS applications and markets begin where traditional IC applications 

and markets end. Commercially successful devices and systems that apply 

MEM technologies include many micro- or nano-scale sensors (e.g., inertial sen­

sors, pressure sensors, chemical sensors, etc.), actuators (e.g., micro-mirrors, 

micro-relays, micro-valves, etc.), and other Microsystems [2], Today, MEMS 

are mostly found in automotive industry, but the devices have already ex­

tended to biomedical, computer, wireless and optical communication systems, 

military and other industrial areas.

With the recent progress of MEMS technology, the development of MEMS 

devices for radio frequency (RF) applications has been growing rapidly. RF 

MEMS devices have a broad range of potential applications in wireless commu­

nication, space, military, instrumentation, etc. RF MEMS switches are one of 

the most promising surface-micro-machined devices that have attracted many 

research efforts in recent years. Compared with conventional switches such 

as PIN diode or FET switches, RF MEMS switches show many advantages 

in terms of near-zero power consumption, very high isolation and linearity, 

low insertion loss, etc [5, 6]. Also, RF MEMS switches can be applied in 

broad areas because of their frequencies from RF to millimetre-wave (0.1 to 

100 GHz), such as Radar Systems for Defence Applications (5-94 GHz), Au­

tomotive Radars: 24, 60, and 77 GHz, Satellite Commucation Systems (12-35 

GHz), and wireless Communication Systems (0.8-6 GHz) [6].

For their actuation mechanism RF MEMS switches can be divided into 

electrostatic, magnetic, thermal, and piezoelectric types. Currently most of re­

searches focus on electrostatic types because of its spectacular RF performance
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[6]. From their contact mechanisms two types of RF MEMS switches can be 

divided: metal contacting and capacitive coupling. MEMS metal contact­

ing switches has broader frequency coverage than capacitive coupling switches 

which are not suitable for low frequency applications because of the capaci­

tance nature. However, the contact lifetime of capacitive coupling switches is 

obviously longer than of the metal contacting switches [3]. In addition, RF 

MEMS switches can be catalogued into series and shunt switches in terms of 

applications. Most metal contacting switches are often used as serial switches 

while the capacitive coupling switches are used for shunt switches. In this 

thesis we mainly focus on a metal contacting RF MEMS switch.

Even though RF MEMS switches have many advantages over traditional 

switches, there are still some problems need to be solved in the future, such 

as relatively low speed and power handling (lower than lOOmW), high-voltage 

drive (reliable operation at 20-80V), reliability (lower than 10 billions cycle), 

packaging, cost, and etc. [6].

Currently, the main failure analysis issue for RF MEMS metal contacting 

switches focuses on contact metallurgy. Some of the failure mechanisms in­

clude adhesion, thermal softening, melting, micro-welding, material transfer, 

and increased contact resistance, etc. [7, 8, 9]. In addition, the surface in­

teraction due to deformation, current flow, heat generation affect the failure 

mechanisms significantly.

1.1 Temperature-voltage relation

All metal surfaces are rough on microscale although they are prepared care­

fully. The nature of the contact between two metals is markedly influenced by
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the roughness of the two contact surfaces. When two metals are bought into 

contact, only highest asperities of the surfaces would have mechanical contact. 

The true contact area is just a small fraction of the nominal contact area (10-4 

to 1(T2) [10].

Upon passage of an electrical current through the contacting metals, the 

current flow must pass the contact area through the highest asperities. The 

electrical current lines converge when approaching to the contact interface and 

then diverge. The constriction resistance causes the Joule heating in the con­

tact region, therefore the temperature in the contact patch is much higher than 

the surrounding bulk metal [10, 11, 12]. The heat generation in the contact 

interface may cause thermal softening, melting, micro-welding, etc., decreas­

ing the reliability and life of devices. Figure 1.1 shows the molten gold has 

splashed from micro-contact interfaces onto the surrounding cold metal, where 

it has frozen.

The conventional method to determine the temperature of electrically heated 

contacts is based on using the theoretical temperature-voltage relation [10, 13], 

which indicates the relation between the applied voltage across the contact and 

maximum temperature in the contact interface. By utilizing this relation, we 

can calculate the maximum temperature in contact interface from the applied 

contact voltage. Because this relationship involves only with material prop­

erties (electrical and thermal conductivities), it is true for electrical contacts 

of any shape and dimensions. Further, Greenwood developed a mathematical 

treatment of the general problem of electrically heated bodies [11, 13]. The 

researchers in [11] studied a contact system between two gold solids and inves­

tigated the contact temperature and heat generated in the constricted region 

due to the passage of an electric current from a high impedance source. They 

observed the collapse of the contact system occurred at the temperature of
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Figure 1.1: Photomicrograph of a gold surface showing the damage caused 
in region of contact by the passage of a high current. The area of contact is 
about 10-6 cm2. Magnification x l20 [11].

950° C which is lower than the melting point of gold (1064°C). This temper­

ature can be calculated from the temperature-voltage relation. Further, the 

metallographic evidence showed clearly that some of the gold had reached the 

melting point, 1064°C. Later on, the researchers in [13] suggested that at high 

temperatures the behavior of the contact region can not be precisely described 

by the accepted theory. They developed a theoretical treatment of the general 

problem of the electrical contact and heating. In this thesis we developed their 

theories and clearly explain the phenomena occured in study [11].
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Material properties of metals such as thermal conductivity and electrical 

resistivity are temperature dependent. With increasing temperature, the ther­

mal conductivity of gold decreases [15]. However, there would be a rise in the 

value of the electrical resistivity of gold when temperature increases [16]. The 

variations with temperature of the thermal conductivity and electrical resis­

tivity of metals can be expressed by the Wiedemann-Franz Law [10].

1.2 Temperature-dependent properties of gold

Thermal conductivity

The magnitude of thermal conductivity of metals depends on the microscopic 

structure and tends to vary with temperature. The Thermal conductivity, k, 

of gold decreases very slowly with increasing temperature (Fig. 1.2) [15].

The thermal conductivity of gold at room temperature (To =  298 K) is 

317 W /m K . The following relation shows that how the thermal conductivity 

varies with temperature,

k =  k0(l -  (30), (1.1)

where 0 — T  — T0 is the supertemperature, T  is absolute temperature and ¡3 is 

the temperature coefficient of the thermal conductivity and ¡3 =  2 x 10-4 K “ 1 

for gold [15].
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Figure 1.2: Dépendance of thermal conductivity of gold on temperature. 

Electrical Resistivity

The electrical resistivity of a metal is a function of temperature and increases 

with increasing temperature. The variation of the electrical resistivity with 

temperature is linear and can be expressed by [16]

p =  po(l +  a9), (1.2)

where po is the resistivity at room temperature and a  is the temperature coeffi­

cient of the electrical resistivity. The magnitude of a  for gold is approximately 

4 x 10-3 K-1 , which is much larger than the temperature coefficient of thermal 

conductivity, ¡3 =  2 x 10-4 K-1 . Figure 1.3 shows the vaxiaton in electrical 

resistivity of gold with temperature.



C h apter  1. Introduction 8

Figure 1.3: Dependance of electrical resistivity of gold on temperature. 

The Wiedemann-Franz Law

The Wiedemann-Franz Law [10] states the variations with temperature of the 

thermal conductivity, k, and the electrical resistivity, p, of metals

kp =  LCT, (1.3)

where Lc is the Lorenz constant (2.45 x 10 8 (V /K )2). This relation holds when

thermal conduction and electrical resistivity arise from electronic transport in
T

metals. From this relation we can obtain kp =  A:0po^r, then using 9 =  T — T0,
To

it follows that

kp =  k0po 1 +
Tn

(1.4)

The above relation which will be used in the following analysis, states the
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relation among the thermal conductivity, the electrical reistivity and the tem­

perature in another form.

1.3 Thesis outline

The approach of this study aims at analysing the interface of a switch or 

a relay upon passing electrical current through the contact. During pssage 

of current through the contact, some portions of the interface will melt and 

weld due to high temperature and a molten metal might be splashed from the 

surfaces. When the molten metal solidifies, the two surfaces may bond and 

the device will damage and fail. Even though there is no melting or splashing, 

high temperature may change mechanical properties of the relay, soften the 

asperities of the surfaces and make the real contact area larger leading to larger 

adhesion, which also will cause the failure of the device. The objective of this 

thesis is to determine the temperature field across contacting surfaces of a 

MEMS switch contact system which is subject to electric current flow. The 

objective of this thesis is to determine the maximum possible current and the 

temperature field across contacting surfaces of a MEMS switch contact system 

which is subject to electric current flow.



Chapter 2

Current across an a-spot

2.1 Problem configuration

Figure 2.1 shows a model for the problem of electrical flow between two con­

ductors that contact each other over a circular spot, called a-spot [23]. The 

radius of the spot is a and the thickness of each conductors is L. The poten­

tials at the upper and lower surfaces, which are held at room temperature, are 

Vo and —Vo, respectively. All electrical currents pass through the a-spot which 

means the rest of the interface surface is insulated. It is obvious that due to 

symmetry, the voltage at the a-spot is zero. It is required to determine the 

values of the potential V, the current / ,  and the temperature T  at all points 

of the system. The boundary conditions for this problem are

II z =  L,

II 1 z =  - £ ,

v = o, z =  0, r < a,

o'II

co 1̂ z =  0, r > a.

10
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/= / T=TV  V q , 1—I q

z=L

dV
dz

=  0 I____
/  Iv=o ^ 7^-

z=0

z=-L
V̂ -Vq, T=T0

Figure 2.1: Two charged conductors contacting over an a-spot,

2.2 Exact solution

In this section, it is convenient to scale the spatial variables with respect to 

the contact radius a so that, instead of a, the spot size has unit radius and 

the thickness is L* =  L/a. Proceeding with this in mind, the current density 

vector is

j =  -cr grad V, (2.2)

where a is the electrical conductivity. From Kirchhoff’s law we may write

div j =  —div (a grad V) =  0. (2.3)

The above equation indicates that the net electric outflow per unit volume 

passing through any point within the a-spot system is zero and it holds ev­

erywhere inside the system. The equation is nonlinear due to temperature 

dependence of a. The temperature rise depends on the voltage and the non­

linearity can be removed if we regard the conductivity as being a function of 

V  instead of T.
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Following Carslaw and Jaeger [17], we define a function called ip as

f v
ip — crdrj. 

Jo
(2.4)

The gradient of the function ip will be,

grad ip =  a grad V =  —j

then it is easy to show that ip satisfies Laplace’s equation,

div j  =  —div (grad ip) — —V 2ip =  0, (2.5)

so, we have
2 d2ip 1 dip d2ip 

V 2iP =  —Ar +  =  0.
dr2 r dr dz2

The boundary conditions changes to

( 2.6)

ip =  Cl,

ip =  —Cl,

ip =  0, 
dip
dz

=  0,

z =  L*, 

z =  —L*, 

z — 0, r <  1,

z =  0, r > 1,

(2.7)

f V 0
where a dr]. The solution to this problem has the following form

Jo

ip =  n \ i  - J  a { a) 

ip = —Cl i 1 -  J°° A(X)

00 . . sinhA(L* — z)
A cosh XL*

Jo(Xr)d\ ] z > 0,

(2.8)

sinli A(i* + .:) . \
A cosh XL" M X r)d X ) Z < °'
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where A(A) is an unknown function and Jo (A) is Bessel’s function. Applying 

the boundary conditions on z =  0 leads to the following dual integral equations:

POO

h  =  /  A- 1A(A) tanh XL* J0(Xr)dX =  1,
Jo

h  =
roo

/  A{\) J0(Ar)JA =  0, 
Jo

r <  1,

r > 1.

(2.9)

We represent .4(A) in terms of a new function <p(t) by the equation

a w  =  a f 1 m
Jo

cos At dt. (2.10)

Substituting the equation (2.10) into the second of the set (2.9) and using the 

method of integral by parts, there is

r o c  r 1 POO

72 =  0(1) /  Jo(Ar) sin AJA — /  4>{t)dt /  Jo(Ar)
Jo Jt=o J A=0

sin Ai =  0, r > 1,

(2.11)

where ' indicates the differentiation with respect to t. Using the result of the 

following relation [18]

■°o | (t2 — r 2) 1/2,
sin xt dx =

0,

roo
/  Jo (air) si: 
Jo

0 < r  < t, 

r > t,
(2.12)

it can be shown that I2 — 0 is automatically satisfied.

By defining /(A ) =  1 — tanh AL*, 7i (Eq. 2.9) converts to

7i =
POO

/  A-1 [1 — /(A )] A(A) J0(Ar)JA 
Jo

roo roo
/  A -XA(A)J0(Ar)JA -  /  \ - 1f(X)A(X)  J0(Ar)JA =  1. (2.13)

Jo Jo
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Calling the first term of I\ as ( (r ), and substituting A (A) from the equation 

(2.10), we have

PO O

C(r) =  /  X -1A(X)J0(Xr)d\
JO

=  [  A-1 (x f  <p(t) cos Xtdt] Jo(Xr)d\
J A=0 V Jt=0 /

/*1 PO O

=  / 4>{t)dt / cosAf J0(Xr)dX

■  f j C  » - I

in which the following result is used [18]

P O O

/  Jo(xr) cos xt dx =  < 
Jo

0,

(r2 - i 2) “ i/2,

0 <  r < t, 

r > t.
(2.15)

Introducing the Erdelyi-Kober operator IViQt as following

n r -2oc-2r) fX

Iv,<* 9{x) =  - p/ \ /  (z2 -  u2)a_1u2,,+10(u)du, (2.16)1 (a) Jor(a)

C(r) can be written as

C(r) =  fJo
(f)(t)dt

0 2 2>2 (2.17)

From the equation (2.13), we have

/*00 /*1
_ i  i {0 ( i ) ;  r }  =  1 +  /  f(X)J0(Xr)dX <j>(t) cos Xtdt. (2.18) 

2’2 Ja=o ./t=o

It can be proven that I  =  Iv+a- a [20]. Multiplying both sides of the above
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equation by —j=I_\ 1, yields
7T 2 ’ 2

(ß(t) / 0 _i j l  +  J  f(X)Jo(Xr)d\J <f>(t) cos A idij . (2.19)

Using the definition of IVt0t, we have

{a(ty,r} — ^ . j ‘ (t2 _ r r m rg(r)dr

21 U rg(r)dr 
7T /o (f2 — r2)3/2 

2 d r* rg{r)dr 
7T dt do (i2 — r2)1/2'

(2.20)

Thus, the function 0(i) in the equation (2.19) becomes

. 2 d /•* rdr
« t)= -7T di do (i2 — r2)1/2

2 z-00 ........../ d r *  rJo(Xr)dr \+ cos Xxdx.

(2.21)

Utilizing the well-known relation of [20]

d C rJo(Xr)dr 
dt do ^/i2 — r2 cos Ai, (2.22)

the equation (2.21) simplifies to

2 /  z*00 /*i
0(i) =  — ( 1 +  /  /(A ) cos AidA /

7T \ J\=o Jx=o
(2.23)
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which can be rewritten as

4>(t)
7T

2
(2.24)

where
’OO

k(t,x) =  / /(A ) cos XtcosXxdX, (2.25)
o

and /(A ) =  1 — tanh AL*.

Equation (2.24) is a Fredholm integral equation of the second kind with 

the kernel k(t, x). In Appendix B, the kernel is evaluated and is given by the

equation (B.9).

Approximation of the Fredholm integral equation

Before examining the Fredholm integral equation, we present some basic ideas

To find an approximate solution of F  we divide the interval [a, 6] into n — 1 

equally-spaced subintervals. The points of division are called X\,X2 ,.... xn, so 

that the points x\ and x n are identified with the end points x  =  a and x =  b. 

The length of each subinterval is h =  xn — x n-i-

Rectangle Rule

connected with numerical integration. Consider a definite integral of the form

F  =  f(x)dx.

The simplest method to approximate F  is the rectangle rule, which assumes 

that f ( x )  is piecewise constant in each subinterval and finds an approximation 

of F  by computing the area of a collection of rectangles whose heights are
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determined by the values of f (x ) .  According to this rule, we have

Fr — h[fi +  /2 +  ... +  /n -2 +  fn-i] Type I

— h[f2 +  fz +  ■■■ +  fn-1 +  fn\ Type II

where / ,  is the value of f ( x )  at x — Xi. The error of the rectangular approxi­

mation Fr is in the form [28]

Er =  ^  2a ĥ f'{p), a < p < b. (2.26)

Depending on using Type I or Type II, two different answers will be obtained, 

which the error of both is proportional to h.

Trapezoidal Rule

The Trapezoidal rule is another method to approximately evaluate F, in which 

the integrand f ( x )  is assumed to be linear in each segment. Ft is sum of the 

areas of all trapezoids.

Ft =  h fl  +  h  Í2 +  h  /n-2 +  / n—1 fn—1 T  fr

~  7T [/i +  2/2 +  ... +  2/ n_i +  f T (2.27)

It is obvious that this result can be found by averaging Type I and Type II of 

the rectangle rule. The error of this formula can be expressed as [28]

Et —
(ib — a)h2

n p ) ,12 a < p < b. (2.28)



C h apter  2. C urrent  across an o- spot 18

The error of the trapezoidal’s rule is proportional to fv\ which means that for 

a given number of subintervals, it is more accurate than the rectangle rule.

Simpson’s Rule

The third method that we shall develop is called Simpson’s Rule. In this 

method we approximate f(x)  with a collection of arcs from quadratic func­

tions and integrate across each of them. The following quadratic function 

interpolates the three points of (aq, / i ) ,  (x2, / 2), and (a;2, / 2):

f  =  /iQr -  x2)(x -  x3) +  f2{x -  x3){x -  xx) +  f 3(x -  x i ) (x  -  x2)
{xi -  x2){xx -  x3) (x2 -  x3)(x2 -  Xi) {x3 -  Xi){x3 -  x2)

If the three interpolating points all lie on the same line, then this function 

reduces to a linear function. Since h — xn — xn_i, there is

rx 3 
Jx 1 f (x )dx

1 f xS
■/ f i ( x  — x 2)(x — x 3) +  f 3(x
Jx l2 h 2 j Xi

h
( / i  +  4/2 +  fz)-

X 2 ) -  2f 2(x x 3){x — X\)dx

Summing the definite integrals over each interval [aq_2, aq], for % =  2,4, ...,n, 

provides the approximation

/  f { x )dx
J a

2 ( / l  +  4/2 +  fz) 4- — ( f3 +  4/4 +  / 5) +  ... +  —(f n- 2  +  4 /„_ i +  /„)•

(2.29)
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By simplifying this sum we obtain the Simpson’s approximation scheme as

Fs — ^ ( / i  +  4/2 +  2/3 +  4 / 4... +  2fn-2 +  4 /n_i +  f n)• (2.30)

In Simpson’s rule it is require that the number of subintervals be an even 

number. The error of Simpson’s rule for integration over [a, 6] which has been 

subdivided into 2 (n — 1) subintervals of length h is given by [28]

Es =  - b̂ 18q̂  / (4)(p) a < p < b. (2.31)

Although in Simpson’s rule the number of subintervals must be even, the error 

of this method is quite remarkable (in order of 0 (h 4) ), which is the reason of 

the popularity of it for numerical integration.

Fredholm integral equation

A Fredholm integral equation can be approximated by a set of algebraic equa­

tions [19]. To solve the integral equation (2.24) numerically, we divide the

interval [0, 1] into n — 1 equally-spaced subintervals with length of h =  — -— .
n — 1

Using rectangle rule, we can write

2 / " -1
0(0  ~  -  I 1 +  h 0 (^ ')^ (i - xi) I > TyPe I,7r 3=1

(2.32)

0 (0  ~  ~  i '1 +  h S  Xj) ], Type II.

The equation (2.24) can also be approximated in the form
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Dj<t>{xj)k{t,Xj)j (i =  l ,2 ,..,n ) ,

where the constants Dj are corresponding weighting coefficients with the ap­

points. However, approximations are generally obtained by choosing these 

coefficients in accordance with a formula such as the trapezoidal rule or Simp­

son’s rule. The trapezoidal rule gives

{ D \, D 2, D 3, D 4, ..., D n- 2 , Dn^i ,D n}  — h 1,1 ,1,..., 1,1, -  j (2.34)

According to Simpson’s rule, which is applicable only if n is odd, the weighting 

coefficients are

{ D 1,D 2, D 3, D 4, ..., £>n- 2, Dn- U Dn}  =  ^ {1 ,4 ,2 ,4 ,..., 2 ,4 ,1 } . (2.35)

If we now require that the two members of (2.33) be equal at each of the n 

points, we obtain n linear equations

^  ^1 +  X j Dj<f>(xj)k(xi, ap)j (i =  1, 2,.., n), (2.36)

in which the n unknowns </>(aq),..., <f>(xn) specify approximate values of the 

unknown function <f>(x) at n points.

If we introduce the abbreviations

(pi 0(xi), kij — A^(xi,Xj),

where kij is hence the value of k(xi: ap) when x =  ap and t — Xj, the required 

set of equations would be of the form
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Dj(j>jkij j  (i =  1,2, ..,n). (2.

After solving this set of algebraic equations and finding the values of (pi, we 

proceed to obtain the current passing across the contact spot. Although this 

set of equations is solved by all the numerical methods mentioned, the results 

in chapter 5 is given by using Simpson’s rule for its small error comparing with 

the other methods. Tranter has examined the dual integral equation (2.9) by a 

different method for large values of L* [21]. The results from this study agree 

satisfactorily with the Tranter’s results when L* is large.

ài =

Current through contact interface

In fact the radius of the spot is a which we took it as unity in the previous 

calculations. Taking this into account, to find the total current passing through 

the a-spot, we may write

I  =  27ra
r1 dtp

Jo dz
rdr.

2 = 0
(2.38)

According to the set of (2.8), on plane z =  0, we have

| p  =  fi n  A(X)J0(Xr)d\. 
oz  Jo

(2.39)

Substituting the above equation in the equation (2.38) and exchanging the 

order of integration, we get

/  =  2n afl
p  CO

/  ^ (AW(A)Jo
dX
T (2.40)
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Substituting A (A) — X Mt) cos At dt in the above equation, results
Jo

I  — 27caQ
P O O  p i

J cos(Ax)Ji(X)d\J 4>{x)dx. (2.41)

Using the following result [18]

PO O

/  cos{Xx)Ji(X)dX =  1, 
Jo

0 < x <  1, (2.42)

the equation (2.41) simplifies to

I  — 2na(j)o î, (2.43)

Jr 1 pVq
1 4>{x)dx and 0  =  / adrj, which is evaluated in Appendix A. 
o Jo

Utilizing the equation (A. 18), we find the current passing across the a-spot as

I  =  4aaotfa(L*)V0, (2.44)

where f a(L*) is
l

f a(L*) =  | j <t>{x)dx, (2.45)
o

and £ is given in equation (A. 19). The a-spot resistance is defined as

U0 _  1 Rc
I  4 a a o M L * )  f a(L*)

(2.46)

where Rc — 1 /(4acr0£) represents the constriction resistance when L* becomes 

infinitely large [13].



Chapter 3

Parallel circuit approximation

Solving the main problem by utilizing the method described in the previous 

chapter is very complicated and difficult. In this chapter, we present a simple 

approximate model to obtain the resistance of an a-spot system. To obtain this 

simple approximation we consider two problems corresponding to the limiting 

cases when and f  » a .

3.1 Current through a metal bar (L a)

When L a the heat flow between the upper and lower surfaces will be almost 

completely one-dimensional. So, in this section we examine the problem of 

current through a straight metal bar shown in Fig. 3.1. The length of bar is 

2L with cross-sectional area A — na2; the bar shown in the figure is not drawn 

to scale. A potential difference of 2Vo is applied between the two ends which 

are held at room temperature (To — 298 K), so that 0 =  0 at both ends. The 

material properties of the bar are assumed to be temperature-dependent.

23
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W 0
0=0

x=0

t
Current Flow /

W 0
9=0

*1

Figure 3.1: Model of an electrified straight metal bar.

The boundary conditions are

V  =  Vo, 9 — 0, x =  L,

V  =  —V0, 9 — 0, x =  —L.
(3.1)

It is assumed that the current flows solely in ^-direction which means that the 

bar is thermally insulated along the lateral surface. According Ohm’s law, the 

current density is

jx  =  _i7 t e '  (3 '2)

where a is the electrical conductivity. Applying Kirchhoff’s law

djx d
a dV

dx dx [ dx
=  0, (3.3)

which states that the net electric outflow per unit volume passing through any 

point within the bar is zero. Similar to the method mentioned in the previous 

chapter, we define function ip as

(3.4)

So, we have
d$ dV
—  =  c  — =  —j x — constant.
dx dx

(3.5)
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Therefore, ip satisfies the Laplace’s equation, V 2,0 =  0, so that ip =  c\x +  C2, 

where C\ and c-i are constants. Noting that due to symmetry, at x  =  0 the 

potential is zero, we have C2 =  0. By applying the boundary conditions at 

x — ± L  the function ip is found as

(3.6)

Then, the total current passing through the bar can be obtained by using the 

following relation

I  =  j xA =  A = y [  odr\. (3.7)
ax L Jo

The evaluation of the integral involved in the above equation is presented in 

Appendix A and the expression for the current I  can be written as

I  =  y°oV o  (3.8)

where £ is given in equation (A. 19). The resistance of the bar Rb is then 

expressed as

R L 
b A<T0£ '

When V* is small, the Joule heating is negligible and £ =  

to the standard form found in elementary textbooks.

(3.9)

1 so that Rb reduces

3.2 Current across micro-contact spot (L P$> a)

A micro-contact system is formed of two large blocks of metal which contact 

each other over a very small area (Fig. 3.2). The pieces of metal can be 

modeled as semi-infinite solids (z >  0, z <  0). The applied voltage on the far
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surfaces SI and S2 are Vo and —Vo, respectively, and the current passes only 

through the spot since the surface SSSS  is assumed to be electrically insulated. 

At the contact spot, due to the configuration symmetry, it is obvious that the 

voltage is equal to zero (V  =  0). we take a as the radius of the contact area. 

The results in this section have previously been deduced by Greenwood and 

Williams [13] and are reproduced here for the sake of completeness.

5, / V= K

/  —  = ° 
/  dzz

/
V=0

t
r=a

\z=0

V=-V„

Figure 3.2: Micro-contact system.

The boundary conditions can be summarized as follows

II r2 +  z1 —> oo, z >  0,

1II r2 +  z2 —> oo, z <  0,

P  =  0, r < a, z — 0,
dv n
dz ~  ° ’

r > a, z =  0.

(3.10)
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It is required to obtain the relation between the current, the potential, and the 

temperature at the contact region. Applying Ohm’s and Kirchhoff’s laws and
rvmaking use of the definition ip — 17dr) , it is easy to show that ip satisfies

Jo
the Laplace’s equation,

V 2ip =  0. (3.11)

By introducing ip, the boundary conditions converts to

ip =  n,

ip =  — n,

ip =  0, 
dip
dz

=  0,

r2 +  z2 —> oo, 

r2 +  z2 —> oo,

r < a, 

r > a,

z >  0, 

z < 0, 

z =  0, 

* =  0.

(3.12)

The solution of the above problem is in the form of [17]

/  9 r°° dX\
ip =  Q 1 ----- /  exp (—Xz) Jo(Xr) sin Xa—  ]

y  71 J O  A  J

ip =  —Q [  1 — — /  exp (Xz) Jo(Ar) s in A a ^  ) 
y  7T J O  A J

z >  0,

z < 0 .

(3.13)

So, we have

dip 
dz z= 0

2 too
—  /  Jo{Xr) sin XadX =
7T J O

2 tt
7r\/a2 — r2 ’
0,

The current passing through the micro-contact spot is

0 < r  < a, 

r >  a.
(3.14)

I J j  dA — J grad ip dA =  2n J
A  A  °

dip
dz

rdr.
2 = 0

(3.15)
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Hence, from equations (3.15) and (3.14), one can obtain the current passing 

through a micro-contact spot as

I 4ii / °
Jo

4 afi. (3.16)

Applying the equation (A. 18), it is found that

/  =  4aa0Vo£, (3.17)

where £ is given in equation (A. 19). The constriction resistance is then

Rc =
1

4 acr0£ (3.18)

For small values of V*, the expression for Rc reduces to the well-known form 

for the constriction resistance of a half-space as given, for example, by Carslaw 

and Jaeger [17].

3.3 Equivalent resistance

Intuitively it is expected that when L* <C 1 the resistance of an a-spot system 

will approach Rb while at the other extreme, i.e. when L* 1, the resistance 

tends to Rc. Here, it is assumed that for intermediate values of L* the heat 

flow be some combination of these two modes. So, with this dual-mode heat 

flow assumption, the approximate resistance is found using a parallel circuit 

model:
J _  _
Rd Rb Rc

(3.19)
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Substituting the values of Rb and Rc in the above equation, we get

„  Rc 
d ~  fd(L*y

where Rc is given in equation (3.18) and

=  1 +  i F '

gives the influence of L* upon the resistance. 

Hence, the current can be expressed as

I
Rd
4aa0tfd{L*)V0.

(3.20)

(3.21)

(3.22)



Chapter 4

Variational calculus

In this chapter we develop a treatment to find a more accurate approximate 

solution of the main problem (current across an a-spot). For this purpose, we 

consider the problem as a combination of the cases when the thickness of the 

contacting conductors, L*, is very small (a bar) and when L* is very large (a 

micro-contact system).

To begin we split flux across the contact into two parts: 1) a fraction /  of 

the total current is due to uniform flow, and 2) the remaining fraction, (1 — / ) ,  

is due to the constriction mode of heat flow. To represent this situation we 

write

dip
dz z=0

\

0 <  r < a,
(4.1)

r >  a,

where I  and /  are found below by minimizing the system energy.

We have shown that the solution ip which satisfies Laplace’s equation and 

the boundary conditions at z — ± L  has the form given in the equation (2.8),

30
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so that

ip =  Q [ 1

0 - Q  1

poo

L  B{X)

poo
-  /  B(X)Jo

sinh A (L — z)
A cosh XL

sinh A (L +  z)

J0(Xr)d\ z >  0,

(4.2)

A cosh XL

These expressions along with (4.1) yields

J0(Xr)dX ) z <  0.

dip
dz z= 0

r ° °  I  I 1 — f
=  n j o B(X)J0(Xr)dX =  —  { f +  J

nœ 2\J\ — r2¡a2 j
r < a. (4.3)

Using the results of the relation (2.12) and the following well-known integral

[17]

Jpoo
1 Jo(Xr)Ji(Xa)dX 
o

0, r > a,

1/(2a), r — a, (4.4)

I /o , r < a,

we find an expression for B (A) as

/
B(\) =

nafl
fJ i  (A a) +  ^  ^  sin A a (4.5)

Then, we set up an integral J that represents the power dissipation of the 

system

* r j L K + OJ = rdrdz +  2ir [  tpipz rdr, 
Jo 0

(4.6)

where ipr and ipz indicate derivative of ip with respect to r and z, respectively. 

It is not difficult to show that the conditions under which J attains its absolute 

minimum represents the exact solution to the problem. Here, the flux across 

the contact plane is prescribed and a local minimum for J is to be found.
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Integrating by parts, it is easy to prove the followings:

J ip2zdz =  ipi>z -  J ipipzzdz,

J ip2rdr =  ipÿrr — J dr,

(4.7)

where ' denotes derivative with respect to r. Making use of the above relations 

and noting that V 2̂  =  0, the equation (4.6) reduces to

J =  7T

poo pa
/  ipipz rdr +  7r /  'ip'ip. 

Jo L Jo
rdr. (4.8)

The first term on the right hand side of the above equation can be found on 

the plane z — L as follows

7T [  ÿ'4’z\rdr =  ^ f  
Jo L cr Jo f  +

1 - /
2-y/l — r2/a 2

rdr
in
~2~’

(4.9)

and also the second term in the equation (4.8) on plane z =  0 simplifies to

poo
7T /  1p1pz

Jo
, in  in  r °°

rdr = ------ 1-----
o 2 a

[  B (  A) tanh XL (  f  J\ (A a) +  -— —JJ sin A a ^  
Jo \ 2 A2 ’ 

(4.10)

where B (A) is given in the equation (4.5). So, the equation (4.8) converts to

J =  IQ -
12

7T œ
poo poo

J /  Ji2(Aa) tanh AL—  +  /  Ji(Aa) sin Xa tanh XL 
Jo A2 Jo

(4.11)

dX
Â 2

+ (1 -  f ) :
L

* 9 \  i \  7- ^Asin AatanhAL—  
A2
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Defining Y, U and W  as

Y =  ^ ” ji« ) t a n h iL -p ,

roo dp
u  =  Jo J\(0 sin£ tanh£L*-^, (4.12)

W  =  [  sin2 £ tanh £L* ,
Jo

the J-integral simplifies to

f Y +  (f ~ f ) U +

Then we minimize the energy of the a-spot system. So, 

must be zero with respect to both /  and I.

j  =  m
i 2
7TCL

W (4.13)

the derivative of J

dJ_
d f

=  0
P_
i\a

2f Y +  ( 1 - 2 f )U  -  ^ - J - W =  0, (4.14)

thus, the current flow fraction, / ,  can be found as following

/  =
W - 2 U  

4Y — 4U +  W
(4.15)

dJ
Making use of —  =  0, we can obtain the current passing through the spot 

o l

I  =
2na£l

4f2Y  +  4 ( / -  P)U +  ( 1 -  f)2W (4.16)

Utilizing equations (A. 18) and (A. 19), the above relation converts to

/  =  4aa0Ue(L*)Vo, (4.17)
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where f e{L*) is defined as

f  ( L * )  — _____________ 71 ̂ ______________
Jey ’  A f2Y  +  4 ( /  -  P )U  +  ( 1 -  f ) 2W '

Now we introduce an approximate resistance Re as following

R -  Vo -  1 _  Rc
I  4a<70£ /e(L*) fe(L*)'

As L* becomes large f e(L*) ~  1 and the resistance tends to Rc

Figure 4.1 shows the variation of the current flow fraction /  with the di­

mensionless thickness. When L* is very small, a significant value of current 

which is dominantly uniform passes through the spot. In this case, from the 

equation (4.15), it can be found that /  ~  1 and also equation (4.16) gives 

/  ~  naQ/L*, which is the same as the result of the analysis of a metal bar. As 

L* gets larger, the constriction mode of current flow increases, so the values 

of /  decreases. When (L* —> oo), the current flow fraction approaches zero 

and I  ~  4aQ which matches with the analysis of micro-contact system. This 

figure gives a useful scheme to approximate an a-spot system with either a bar 

or a micro-contact system, depending on the required accuracy, to avoid the 

complicated computations described in chapter 2.

(4.18)

(4.19)
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Figure 4.1: Effect of dimensionless thickness on current flow fraction.



Chapter 5

Results and discussion

In this chapter the following features of the analysis are discussed:

1. The approximate models for the resistance are compared with the exact 

results;

2. Results showing the current-volt age relationship axe presented;

3. An expression for the maximum possible current is given;

4. Relationship between voltage and super-temperature is derived;

5. The variation of super-temperature with current is illustrated;

6. The spatial distribution of the voltage and the temperature is depicted.

Validity of the approximations

It has been previously shown in equations (2.46), (3.20), and (4.19), that the 

form of the resistance is
Rc

f(L')
(5.1)

36
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where f(L*)  depends on the method of calculation. It is of interest to compare 

the two approximations, Rd and Re, with the exact result Ra. Figure 5.1 

shows a graph of R/Rc (— l/f(L*)) versus L*. For very small values of L* the 

resistance R/Rc ~  4L*/ir corresponding to current flow in a bar. In contrast, 

as L* becomes very large, R/Rc ~  1. Away from these two extreme cases, 

the resistance Rd <  Ra- However, it does give a reasonable approximation 

(within about a 10% error) and is a useful result because of its simplicity. The 

second approximation, Re, which is found by utilizing the variational method, 

is virtually indistinguishable from the exact solution. It is notable that this 

figure is also valid when the electrical conductivity of the medium is a constant.

Figure 5.1: Influence of L* on R/Rc.
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Current-voltage relationship

The theoretical relationship between the current passing across a contacting 

spot with the applied voltage is given in the equations (2.44, 3.22 and 4.17). 

Introducing dimensionless voltage Vq* — Vo/Uq, this relation can be expressed 

as

I  =  4aa0Uof(L*)x =  I0f(L * )X, (5.2)

where x  =  £KT and /o =  4aa0Uo. Now we define a dimensionless current I* as

J* =  ~hf(L*)  =  i1 +  T) arctan K  “  tVo • (5-3)

For small values of Vq the Joule heating is negligible and / 0 ~  Vq . At higher 

values of Vq the behaviour becomes non-linear. Figure 5.2 demonstrates the 

I* — Vq* curve for an a-spot system of gold. Increasing the applied voltage 

leads to an increase in the current value (Ohm’s law) and the medium’s tem­

perature increases due to Joule heating. The reason of rise in temperature 

is the interactions between the moving particles that form the current (elec­

trons) and the atomic ions that make up the body. At the beginning of the 

curve where the temperature is low, the current varies with the applied voltage 

almost linearly, which is because in that region, the changes in the value of 

electrical resistivity, p, is small, so that the case can be considered as a prob­

lem with the constant electrical resistivity. Since the electrical conductivity 

varies significantly in higher temperatures, the slope of the curve decreases 

when approaching to the peak (instability point). At the instability point, the 

maximum value of current passes through the spot. If the applied voltage is 

kept further increasing, the current reduces until reaching to the melting point
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D im e n s io n le s s  V o lta g e , v ’

Figure 5.2: Theoretical relation between dimensionless current and voltage for 
an a-spot system of gold.

where the maximum temperature occurs (1064°C for gold).

Maximum possible current for a given value of L*

The steady conditions are possible only when the current is below an critical 

value. If a current greater than this value is maintained the temperature will 

rise continously and the medium melts. Figure 1.1 shows a molten gold which 

has splashed from micro-contact interfaces onto the surrounding metal, due to 

passage of high current. So, it is important to know the maximum possible 

current passing through the contact spot.
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From the equation (5.3), we may write

dl* 1 -  tV,'f  
dV0* ~  1 +  Vq2 ’

Therefore, the maximum dimensionless current is found as

(5.4)

i: (1 +  r) arctan V r, (5.5)

It is obvious that I *nax, which is the dimensionless current corresponding to 

the instability point, is independent of the geometry of the contacting system 

and only depends on the properties of the medium. The value of I*nax for a 

contacting system of gold is I*nax =  1.17. Using the definition of I*, we may 

write

I0 (1 +  t ) arctan —7= — y/r 
v r

/ ( V ) , (5.6)

which shows the dependence of the maximum current on the properties of the 

medium and the geometry of the system.

The curve shown in figure 5.2 can be implemented by applying a voltage 

across an micro-contact system from a low impedance source and keeping in­

creasing the voltage [13]. A low impedance source, also called a voltage source, 

is a circuit component that supplies a fixed potential difference across its ter­

minals that is almost completely independent of the current it supplies. The 

internal impedance of such a device is very low. Conversely, a high impedance 

source, also called a current source, supplies constant current irrespective of 

the voltage needed by the load across its terminal. The voltage across an ideal 

current source is completely determined by the circuit connected to the source 

[14]. If a micro-contact system is connected to a high impedance circuit where 

the current is slowly increased and potential difference is observed, the curve
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would interrupt at instability point [13], i.e. the contact system collapses when 

the current keeps increasing after instability point even though the maximum 

temperature at the contact spot does not reach the melting point of gold. 

This can be used to explain the reason that, in study [11], the contact region 

collapsed when the temperature was still below the melting point of gold.

The instability point in figure 5.2 is similar to the necking point in a uniaxial 

tensile test. In a tensile test, the onset of non-uniform plastic deformation 

(necking) occurs at the necking point where the maximum or ultimate load 

is carried by the specimen. The relationship between the applied voltage and 

the current passing through an a-spot is analogous with stress-strain relation 

in a tensile test. Therefore, we call this point ’’ Instability point” where the 

current reaches its maximum value and instability occurs.

Figure 5.3 depicts the variation of current and voltage at different room 

temperatures. At the lower room temperatures, the greater values of applied 

voltage is required to reach the instability and melting points, and the values of 

maximum current passing through contact spot is greater than that in higher 

room temperatures.

Relationship between voltage and super-temperature

Using the Kohlrausch relation (Eq. A .5) and noting that due to the configu­

ration symmetry, the voltage at the contact spot is zero (V  =  0), it is deduced 

that the maximum super-temperature occurs exactly at the contact spot. The 

maximum super-temperature, 9m, depends on the applied voltage Vo and also 

electrical resistivity and thermal conductivity of the medium at room tem­

perature and it is independent of the size of spot. Defining dimensionless 

super-temperature, 9*ml as 6*n =  9m/To, the equation (A .11) becomes
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D im e n s io n le s s  V o lta g e , Vn

Figure 5.3: Theoretical relation between current and voltage at different room 
temperature.

Vo"2 =  +  2<C- (5.7)

The variation of dimensionless super-temperature with dimensionless voltage 

for an a-spot system of gold is shown in Figure 5.4. Since the maximum super­

temperature is independent of the size of the medium, this figure is also valid 

for the cases of gold bar and micro-contact system of gold. In real conditions, 

the process stops at the temperature corresponding to the melting point of 

gold (1064°C), since there is no steady value possible above this temperature.
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Figure 5.4: Theoretical relation between dimensionless super-temperature and 
dimensionless voltage in an a-spot system.

Relationship between current and super-temperature

As mentioned before, an increase in the value of the current gives a rise to 

the kinetic or vibrational energy of the medium’s ions, leading to increase in 

the temperature (Joule heating). Figure 5.5 demonstrates the variation of the 

temperature at the contact spot with the current passing through it. If the 

current is kept continuously increasing, the maximum super-temperature in­

creases until reaching the melting point. However, if the current is increased 

by a high impedance circuit, the instability point would be the last point of 

the process and any increase in the value of current beyond this point leads to 

failure of the system.
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Figure 5.5: Theoretical relation between dimentionless super-temperature and 
current for an a-spot system of gold.

Distribution of voltage and temperature

Figures 5.6 illustrates the distribution of the temperature along 2-axis in a 

contacting system of gold, when 0m =  1000°C. It is obvious from the figure 

that with increasing L*, the values of the temperature along 2-axis decreases.



e/e
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Figure 5.6: Distribution of temperature along z-axis within an a-spot system, 
for 0m =  1000°C.



Chapter 6

Conclusion and contribution

MEMS switch contacts are examined in this study by using the theory of 

electrically heated bodies. The followings are concluded from this study

1. Stable conditions are possible only when the current is below Imax, which 

is the current corresponding to the instability point. If a current greater 

than this critical value is maintained the temperature will rise continu­

ously and the medium explodes. An expression for the maximum possible 

current is been found, equation (5.6), which shows the influence of plate 

thickness L upon the maximum current.

2. The relation between maximum temperature, 6m, and applied voltage, 

Vo, is given by equation (A .11); there is no geometric dependence.

3. It is demonstrated that the a-spot resistance Ra approaches Rb for small 

values of L* and tends to Rc when L* is large. Rd, which is obtained by 

using a parallel resistance circuit model, underestimates the resistance 

of the system, leading to obtain a current greater than the actual one. 

Rd gives an error within almost 10% but it is useful for its simplicity.
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4. The use of variational calculus provides an accurate approximate solu­

tion and when L* >  2 the electric flow pattern is almost in the pure 

constriction mode.



Appendix A

Temperature-dependent

conductivities

When an electrical current passes through a resistor, the Joule heating leads 

to the temperature change. In three-dimentional condition, heat flux vector is

q =  —k grad 9, (A .l)

where k is the thermal conductivity, grad indicates the gradient, and 9 is the 

super-temperature. The heat outflow from volume dv is

divq . dv =  dP, (A.2)

where P  is electrical power and div represents the divergence. The electrial 

power generated in volume dxdydz is

dP d'xR x + l y R y  + d ^ R ;

(jx Ax)
dx

A t<7
dy

(jy^y)2~ Z  +  0*A Z)2AyO
dz

Ar(T
(A.3)
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where Ax =  dydz, A y =  dzdx and A z — dxdy. Making use of the Ohm’s law 

j =  — a grad V, the equation (A.2) becomes

div (k grad 9) =  —a (grad V )2, (A.4)

which states that in steady conditions, heat generation rate inside any volume 

is equal to heat rate passing through the surface.

Kohlrausch’s relation

The relation between the temperature and the potential at any point of a 

conductor can be provided by Kohlrausch’s relation [13]:

V 2 =  2 (A.5)

where 6m is maximum super-temperature and p is electrical resistivity. To 

verify the Kohlrausch’s relation, we take gradient of it

2Vgrad V  =  —2pk grad 9. (A .6)

Multiply both side by a — 1/p, gives

uKgrad V =  —k grad 9. (A .7)

If we take divergence of both side of the above equation, we obtain

Kdiv(crgrad V) +  <r(grad V )2 =  —div (k grad 9) , (A.8)
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Using the Ohm’s law (j =  —a grad V) and then the Kirchhoff’s law (div j =  0), 

the above equation simplifies to

div (k grad 9) =  —a (grad V )2. (A.9)

Therefore, the governing differential equation (A.4) is satisfied.

a as a function of V

To solve a general problem of finding the values of current and the potential 

in a medium with temperature-dependent conductivities we need to find the 

electrical conductivity as a function of potential. For this purpose, first we 

substitute kp =  hopo(l +  0/Tq) in the equation (A .5),

V 2 2koPo [  Je 1 +  Tb^dV

2kopo rj + n
2T0

"I Or

J0
{A. 10)

Applying boundary condition from equation (3.1) leads to get the relation 

between applied voltage and maximum super-temperature,

Vq — 2fcoA) 2T0 5

and the equation (A. 10) can be written as

9 +
92 ' 

2T0

(A .ll)

V 2 =  v;2 -  2 hyp„ 5 (A.12)
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which by using 9 =
kp

koPo
converts to

V 2 — Vq +  2TokoPo 1 (A-13)

Let Uq =  TokoPo, this gives the result

kP J u s  +  U  -  v 2
koPo Uq

(A.14)

Applying the relations of k =  k0(l — (39) and p — 1/a, we find an expression 

for a as following
Uq<jq(1 -  ß9 )

J u s  +  v s - v *
(A.15)

Substituting 9 from the following relation

9 =
T0JU§ + Vf -  V'2

U0
-  T„ , (A. 16)

into the equation (A.15) and defining r  =  (3Tq, we obtain the relationship 

between electrical conductivity and potential

a —
Uq(Tq{1 +  r)

J u s  +  v g - v *
(A-17)

Q-Integral

fV0
Integral ^  — adp is used several times in this study and it is given by 

Jo

Q a0U0(l +  T )  [  
Jo

Vo dp

JUS +  V,? -  K*
-  CTq t V o

Vb (A.18)



where £ is defined as
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and Vq =

i = (l +  r)axctanVi- r  (A.19)

= Vo/Uo is the dimensionless voltage. It is clear that when <C 1

the function £ tends to unity.
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The kernel of the Fredholm 

integral equation

To solve the Fredholm integral equation (2.24) we first need to evaluate the 

kernel integral k(t, x), which is given by

roc
k(t,x ) — /  (1 — tanh XL*) cos Xt cos \xd\. (B .l)

Jo

By changing variable asu  =  XL* and making use of the following relation

cos Xt cos Xx =  -  [cos X(t +  x) +  cos X(t — x ) ] ,
Z

(B.2)

k(t,x)  converts to

1 f ° °  f
k(t,x) =  —  /  (1 — tanh u) cos u

2L Jo l
1 f f°° ft^rX

=  —  |y (1 — tanhw) cosu I — — ) du

t +  x\ f t  — X
+  cos u ,

L*
du

f°° i t  — X
J (1 — tanh u) cos u I — —  ) du

L*

H
t — x

(B.
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where function H  is of the type

POO

H(c) =  /  (1 — tanh x) cos cx dx, (B.4)
Jo

and c =  (t ±  x)/L*. It is clear that H (c) — H (—c) so that the kernel is 

symmetric. Using the method of integration by parts, yields

POO

H (c ) =  In 2 — c /  sincxln(l +  e~2x)dx, 
Jo

(B.5)

The second term on the right is evaluated as [18]

POO

/  sin cx ln (l +  e~2x)dx 
Jo

1
4c

41n2 — ip [1 +  i - ^11 - 4I)+  ̂G+iI)+  ̂(I ~
where the function ip(z) is defined as

p)(z) = r ( z )
r(*)’

and T(z) is Gamma function. Therefore, H(c) simplifies to

H ( c ) 1 +  i (B.6)

By defining a function (3(z) as

(3{z) z +  1 
2

(B.7)
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the equation (B.6) reduces to

H(c) (B.8)

Using the above expression along with the equation (B.3), we find k(t, x) as

k (t ,x ) =  0 ( 1 + i

+  [3 ( 1 +  i

AL 
t — x
AL* +  P 1

4L* 
t — x
AL* (B.9)

Considering the following relations [18]

3  ip{l +  ix) — 

Q U(~ +  ix) —

1 7T
-------- 1---- COth 7TX,

2x 2
7T .— tanh nx,
2

(B.10)

it is easy to prove that the imaginary part of k(t, x) is zero.



Appendix C

Numerical analysis (Maple)

# Solving the Fredholm integral equation by the rectangular rule 

(Type I)

with(LinearAlgebra):

L:=2: # L is the dimensionless thickness

n:=20: # n is the number of points. The fist point is x ( l ) .

N:=n-1: # N is the number of intervals

h:=l/N: # h is the length of each interval

# x is the vector of the points between 0 and 1

for i from 1 to N do # x(i) starts from x(l)=0 to x(N)=l-h 

x(i):=h*(i-l) : 

end d o :
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K:=Matrix(n-l): # K matrix is the matrix of kernel integral

for i from 1 to N do 

for j from 1 to N do

cl:=(x(i)+x(j))/L: 

c2:=(x(i)-x(j))/L:

J 1 :=-1/4*(Psi(l/2+cl*I/4)+Psi(l/2-cl*I/4)-Psi(l+cl*I/4)

-Psi(l-cl*I/4)):

J2:=-l/4*(Psi(l/2+c2*I/4)+Psi(l/2-c2*I/4)-Psi(l+c2*I/4)

-Psi(l-c2*I/4)):

K [ i ,j] :=evalf(2*h/Pi*(J1+J2)/(2*L));

# we know that K d o e s n ’t have imaginary part.

end d o : 

end do:

II:=IdentityMatrix(N):

A:=II-K: # A*Phi=B, A is the coefficient Matrix 

B:=Matrix(N,1):

for i from 1 to N do
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B[i,l]:=2/Pi: 

end do:

phi :=LinearSolve(A,B) : # function phi

# here we assume that phi is piecewise constant in each segments 

w:=0:
for i from 1 to N do 

w:=w+phi[i,1]: 

end d o :

g:=h*w: # g is the integral of phi over x from 0 to 1

I_R1:=evalf(2*Pi*g)*a *0mega;

# I_R1 is the current passing through the spot
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# Solving the Fredholm integral equation by the rectangular rule 

(Type II)

with(LinearAlgebra):

L:=2: # L is the dimensionless thickness

n:=20: # n is the number of points. The fist point is x ( l ) .

N:=n-1: # N is the number of intervals

h:=l/N: # h is the length of each interval

# x is the vector of the points between 0 and 1

for i from 1 to N do # x(i) starts from x(l)=h to x(N)=l 

x ( i ) := h * i : 

end d o :

K:=Matrix(n-l): # K matrix is the matrix of the kernel integral

for i from 1 to N do 

for j from 1 to N do

cl:=(x(i)+x(j))/L:

c2:=(x(i)-x(j))/L:

J1:=-l/4*(Psi(1/2+c1*1/4)+Psi(l/2-cl*I/4)-Psi(1+c1*1/4)

-Psi(l-cl*I/4)):

J2:=-l/4*(Psi(l/2+c2*I/4)+Psi(l/2-c2*I/4)-Psi(l+c2*I/4)

-Psi(l-c2*I/4)):
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K[i,j]:=evalf(2*h/Pi*(Jl+J2)/(2*L));

# we know that K d o e s n ’t have imaginary part.

end d o : 

end d o :

I I :=IdentityMatrix(N):

A:=II-K: # A*Phi=B, A is the coefficient Matrix 

B:=Matrix(N,1):

for i from 1 to N do 

B [ i ,1]:= 2 /Pi: 

end d o :

phi:=LinearSolve(A,B): # function phi

# here we assume that phi is piecewise constant in each segments 

w:=0:
for i from 1 to N do 

w:=w+phi[i,1]: 

end d o :

g:=h*w: # g is the integral of phi over x from 0 to 1

I_R2:=evalf(2*Pi*g)*a *Qmega;

# I_R2 is the current passing through the spot
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# Solving the Fredholm integral equation by trapezoidal rule 

with(LinearAlgebra):

L:=2: # L is the dimensionless thickness

n:=21: # n is the number of points. The fist point is x ( l ) .

N:=n-1: # N is the number of intervals

h:=l/N: # h is the length of each interval

# x is the vector of the points between 0 and 1

for i from 1 to n do # x(i) starts from x(l)=0 to x(n)=l 

x (i):=h*(i-l): 

end d o :

K:=Matrix(n): # K matrix is the matrix of the kernel integral

for i from 1 to n do 

for j from 1 to n do

cl:=(x(i)+x(j))/L:

c2:=(x(i)-x(j))/L:

J 1 :=-1/4*(Psi(1/2+c1*1/4)+Psi(l/2-cl*I/4)-Psi(1+c1*1/4)

-Psi(l-cl*I/4)):

J 2 :=-1/4*(Psi(l/2+c2*I/4)+Psi(l/2-c2*I/4)-Psi(l+c2*I/4) 

-Psi(l-c2*I/4)):

K [ i ,j ] :=evalf(2/Pi*(J1+J2)/ (2*L)):
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# we know that K d o e s n ’t have imaginary part.

end d o : 

end d o :

# The following is to consider the trapezoidal rule 

for i from 1 to n do 

K [ i , 1] :=l/2*K[i,l] :

K[i,n] :=l/2*K[i,n] : 

end d o :

A:=Matrix(n,1): 

for i from 1 to n do 

A[i,l] : = 2 /Pi: 

end do:

I I :=IdentityMatrix(n):

T:=II-h*K: # T*Phi=A, T is coefficient Matrix

p h i :=LinearSolve(T,A): # function phi

# we assume that phi is linear in each interval

w:=0: # Trapezoidal Rule

for i from 1 to n do
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w :=w+h*phi[i,1]: 

end d o :

ww:=w-h/2*(phi[1,1]+phi[n,1] ):

I_T:=evalf(2*Pi*ww)*a *0mega;

#I_T is the current passing through the spot
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# Solving the Fredholm integral equation by Simpson's rule 

with(LinearAlgebra):

L:=2: # L is the dimensionless thickness

n:=21: # n is the number of points. The fist point is x ( l ) .

N:=n-1: # N is the number of intervals

h:=l/N: # h is the length of each interval

# x is the points between 0 and 1

for i from 1 to n do # x(i) starts from x(l)=0 to x(n)=l 

x(i):=h*(i-1): 

end d o :

K:=Matrix(n): # K matrix is the matrix of the kernel integral

for i from 1 to n do 

for j from 1 to n do

cl:=(x(i)+x(j))/L:

c2:=(x(i)-x(j))/L:

J 1 :=-1/4*(Psi(l/2+cl*I/4)+Psi(1/2-c1*1/4)-Psi(l+cl*I/4) 

-Psi(l-cl*I/4)):

J 2 :=-1/4*(Psi(l/2+c2*I/4)+Psi(l/2-c2*I/4)-Psi(l+c2*I/4)

-Psi(l-c2*I/4)):

K [ i ,j]:=evalf(2/Pi*(Jl+J2)/(2*L)):
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# we know that K d o e s n ’t have imaginary part.

end d o : 

end d o :

DD:=Matrix(n,1):

# DD is the coefficient matrix for Simpson’s rule 

for i from 2 by 2 to n-1 do

DD [i,1]:=4*h/3: 

end do:

for i from 3 by 2 to n-2 do 

DD [i,1]:=2*h/3: 

end d o :

DD[1,1]:=h/3:

DD[n,1 ] :=h/3:

M:=Matrix(n):

# M is a n*n matrix which its diagonal arrays are the same as 

A matrix arrays and the other arrays of M are z e r o .

for i from 1 to n do 

M[i,i] : =DD[i, 1] : 

end d o :

I I :=IdentityMatrix(n):
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T:=II-K.M:

# T*Phi=A, T is the coefficient Matrix.

# A Matrix is defined as:

A:=Matrix(n,1):

for ii from 1 to n do 

A [ i i ,1]:=2/Pi: 

end do :

phi:=LinearSolve(T,A): # function phi

# we assume that phi is parabolic in each interval

z:=0: # Simpson’s Rule (n must be odd)

for i from 2 by 2 to n-1 do 

z :=z+4*h/3*phi[i, 1] : 

end d o :

for i from 3 by 2 to n-2 do 

z :=z+2*h/3*phi[i,1]: 

end d o :

z z : = z+ h /3* (p h i[1 ,1 ]+ph i[n ,1 ] ) :

I_S:=evalf(2*Pi*zz)*a *0mega;

#I_S is the current passing through the spot
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