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Abstract

A growing body of research suggests that increasing the accessibility to health-related
environmental features and increasing exposure to and engagement in outdoor environments
leads to positive benefits for the overall health and well-being of children. Additionally,
research over the last twenty-five years has documented a decline in the time children spend
outdoors. Outdoor activity in children is associated with increased levels of physical fitness,
and cognitive well-being. Despite acknowledging this connection, problems occur for
researchers when attempting to identify the child’s location and to measure whether a child
has made use of an accessible health-related facility, or where, when and for how long a child
spends time outdoors.

The purpose of this thesis is to measure children’s accessibility to, exposure to, and
engagement with health-promoting features of their environment. The research on the
environment-health link aims to meet two objectives: 1) to quantify the magnitude of
positional discrepancies and accessibility misclassification that result from using several
commonly-used address proxies; and 2) to examine how individual-level , household-level,
and neighbourhood-level factors are associated with quantity of time children spend
outdoors. This will be achieved by employing the use of GPS tracking to objectively quantify
the time spent outdoors using a novel machine learning algorithm, and by applying a

hexagonal grid to extract built environment measures.

The aim of this study is to identify the impact of positional discrepancies when measuring
accessibility by examining misclassification of address proxies to several health-related
facilities throughout the City of London and Middlesex County, Ontario, Canada. Positional
errors are quantified by multiple neighbourhood types. Findings indicate that the shorter the
threshold distance used to measure accessibility between subject population and health-
related facility, the higher the proportion of misclassified addresses. Using address proxies
based on large aggregated units, such as centroids of census tracts or dissemination areas, can
result in vast positional discrepancies, and therefore should be avoided in spatial

epidemiologic research.



In an effort to reduce the misclassification, and positional errors, the use of individual
portable passive GPS receivers were employed to objectively track the spatial patterns, and
quantify the time spent outdoors of children (aged 7 to 13 years) in London, Ontario across
multiple neighbourhood types. On the whole, children spent most of their outdoor time
during school hours (recess time) and the non-school time outdoors in areas immediately

surrounding their home.

From these findings, policymakers, educators, and parents can support children’s health by
making greater efforts to promote outdoor activities for improved health and quality of life in
children. The aim of this thesis is to advance our understanding of the environment and
health-link and suggests practical steps for more well-informed decision making by

combining novel classification and mapping techniques.
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Chapter 1
1 Introduction

1.1 Research Context

The rise of certain chronic health issues over the past half-century have led researchers
and policymakers to place greater emphasis on exploring and identifying potential
environmental influences on human population health (Lopez, 2011). Indeed, concerns
for the rise in children’s health issues, particularly the profound increases in sedentary
behaviour, obesity, and mental health problems has recently promoted community
planning, and it’s product, the built environment, at the forefront of these types of
academic studies (Lopez, 2011). Researchers from several academic disciplines,
including geography, planning, epidemiology, health promotion, and psychology, have
been investigating the role that the built environment has in promoting healthy outdoor
behavior (Gilliland, 2010).

Canadian children today, on average, spend less than one hour per day outside (Zorzi &
Gagne, 2012) and children between the ages of 8 and 18 years spend an average of six
and a half hours a day with electronic media (Roberts et al., 2005). The less time spent
outdoors in natural environments has been linked to decreased physical activity (Schaefer
et al., 2014; Wheeler et al., 2010), increased rates of obesity (Ansari et al., 2015; Schaefer
et al., 2014), and increased rates of myopia (French et al., 2013; Guggenheim et al., 2012;
Guo et al., 2013; Rose et al., 2008), sleep disorders, mental health issues (Tillmann et al.,
2018), cognitive health issues (Wells, 2000) and nature deficit disorder (Driessnack,
2009; Louv, 2008) in children. Later in life, the accumulation of inactivity raises the odds
of a person developing chronic diseases, such as Type-2 diabetes, cancers, and depression
(Gilliland, 2010).

Methodological problems abound in the existing built environment and health literature,
particularly with respect to how the measurement of accessibility to, exposure to, and
engagement with, health-related environmental features (e.g. parks, grocery stores, and

recreation centres) are mapped and analyzed in a geographic information system (GIS).



The spatial data used in geographic research are always intrinsically uncertain (Zhang &
Goodchild, 2002) and care is required so that the uncertainty does not affect the statistical
associations being evaluated. It is often the case that researchers accept that their
methods need to include some analysis on the accuracy of the data, but few researchers
endeavour to do so. Itis commonplace in studies of accessibility and exposure for
researchers to use geographic proxies to represent a subject’s actual location (e.g. census
tracts, dissemination areas, or postal codes). These proxies do not, indeed cannot,
accurately represent the physical location of their subjects at all times, and therefore the
use of proxies leads to “distance errors’(Zandbergen, 2007). It is also commonplace that
large administrative areal units (e.g., census tracts or county boundaries) are used to
assign neighbourhood-level attributes, which may introduce additional errors into the
research, such as “accessibility or exposure misclassification’, the “‘modifiable area unit
problem’ (MAUP) (Openshaw, 1984), and the “uncertain geographic context problem’
(UGCoP) (Kwan, 2012b). These types of errors can, to some degree, be mitigated by the
use of GPS tracking (Cooper et al., 2010; Ellis et al., 2014; Rainham et al., 2008), but
other confounders lurk when classifying or binning the GPS data. In particular, errors
arise when researchers try to measure time spent outdoors (Cooper et al., 2010; Ellis et
al., 2014) due to common weaknesses in how GPS signals are processed. The
aforementioned methodological problems will be discussed in further detail in Chapter 2.

Based on the large and growing body of research evidence, the overarching assumption
behind this thesis research is that the built environment provides a child with the
opportunity to facilitate outdoor activity that will lead to better health and quality of life.
It is argued here, however, that serious problems may exist in previous studies which link
environment and health based on the mapping of home locations using inappropriate
spatial reference data. Additionally, significant exposure misclassification exists when
using overly simplistic methods of accessibility (e.g. proximity), which are atemporal, to
represent one’s interactions with or engagement within an environment, such as time
spent outdoors. The studies in this dissertation are woven together through the common
goal of improving methodological rigor in the measurement of children’s accessibility to,

exposure to, and engagement with health-related features of their environment to



ultimately better our understanding of the links between environment and children’s
health.

It is imperative that researchers identify the extent to which these methodological
problems can affect statistical outcomes and to present solutions to these problems
through the use of more rigorous methodologies and empirically generated data. In light
of the dramatic increase in the time children are spending indoors in sedentary lifestyles
and the purported impacts this behavior has on their health, an essential contribution to
science and public health would be to develop, test, and validate improved methods for
understanding how built environment factors influence childhood health. The primary
goal of this thesis, therefore, is to establish more rigourous methods to measure children’s

accessibility to, exposure to, and engagement in, their outdoor environment.

1.2 Geographic Context

The geographic context of this research is identified in this chapter while a more detailed
rationale for choosing the particular study areas will be outlined in Chapters 3 and 4.
Chapter 3 is situated in both the City of London (population 350,200) and neighbouring
Middlesex County (population 69,024) in Southwestern Ontario, Canada. These two
municipalities are ideal study areas for examining the geocoding errors in accessibility
studies as they encompass a mix of urban, suburban, small town, and rural agricultural
areas (Statistics Canada, 2011). Chapter 4 is set within the city of London, Ontario.
London includes an array of built environments ranging from older (pre-WWI1), dense
urban environments with mixed land uses and grid-like street patterns, as well as newer
suburban areas, which are primarily lower density with predominantly residential land
uses and curvilinear street patterns. Given London’s development patterns and overall
built form, the methods and findings in this dissertation are broadly relevant to other mid-

sized and smaller Canadian cities.



1.3 Dissertation Organization

This thesis uses a multi-scalar approach to analyze the built environment and the
accessibility to, exposure to, and engagement in health-promoting and health-damaging
features for children. Although all the research components share a common theme of
understanding the role of the built environment, the themes are sufficiently different to

merit an integrated-article format for this dissertation.

Chapter 2 reviews some of the mounting body of evidence on how children’s interactions
with the outdoors can influence their physical, mental, and cognitive health. The review
illustrates the growing consensus of children’s health researchers on the benefits of
‘being outdoors’. This review shows that there is strong evidence to support the
hypothesized relationship between children’s interactions with the outdoors and their
health, and thereby justifies the need for the quantitative methods and research presented
here. The first part of the chapter will give a brief overview of the literature on
environmental influences on children’s health and well-being, with a specific focus on
the benefits of being outdoors. The second part will focus on the issue of ‘uncertainty’ in
geographic analyses, with particular consideration of the implications of uncertainty in
spatial data, GPS tracks, data classification and spatial analyses when mapping human

subjects and the built environment.

The purpose of the neighbourhood-level study in Chapter 3 is primarily to examine the
misclassification of accessibility when associating a sample unit with a proxy location for
a child’s home address (address proxy). The study quantifies the magnitude of positional
discrepancies and accessibility misclassification that result from using several
commonly-used address proxies in public health research. The impact of these positional
discrepancies on spatial epidemiology is illustrated by examining misclassification of
accessibility to several health-related facilities throughout the City of London and

Middlesex County, Ontario, Canada.

The home location proxies will be examined to identify the misclassification of
accessibility to several health-related facilities, as well as to quantify the shortest path
positional errors of the proxies across multiple neighborhood types (rural, small town,



suburban, and urban), in order to reveal the utility of each address proxy for each
neighbourhood type and inform future geographic health studies. The research objectives

for this study include answering the following questions:

1. When choosing an address proxy what should a researcher expect
regarding positional errors when measuring shortest path distance from that proxy
to health-related facilities (Junk Food, Grocery Stores, Schools, Recreational
Facilities, and Hospitals) by neighbourhood type (rural, small town, suburban, and

urban)?

2. When creating network distance buffers originating from the centroid of
each commonly used address proxy (e.g. Census Tracts, Dissemination Areas,
Geocoded Address) what is the percentage that the health-related facilities

contained within the buffer are misclassified by neighbourhood type?

Chapter 4, is divided into two separate but complimentary studies to ultimately measure
children’s exposure to, and engagement in their outdoor environment. The study
addresses the insufficient methods of identifying outdoor activity in children who wear
passive GPS receivers, by proposing a novel protocol using a combination of 1 second
epochs of GPS data collection, a proven GIS kernel based method of identifying routes
and stops, distance measurements to buildings, a random forest model, and the use of a
hexagon tessellated surface. The first part of Chapter 4 will focus on the methodology to
verify and classify GPS coordinates as occurring indoors or outdoors. The methodology
can be employed in future studies where subjects are tracked with GPS receivers without
the need to use a particular brand of receiver. The study suggests combining three
methods to catalogue, classify, and bin GPS tracks and then tests the methodology on a
large GPS dataset generated from a sample of children. Once classified and binned, the
GPS data will be used to measure the time children spend outdoors. The second part of
the study will make use of the outdoor GPS tracks to measure the exposure to and
engagement of the child participants in the built environment. The GPS tracks, coinciding

with a hexagonal tessellation surface of built environment features, are used to measure



exposure to those features, while the elapsed time spent in each hex bin acts as a proxy
for engagement with those same features.

The research objectives and questions for this study in Chapter 4 include:

1. Can machine learning algorithms be used to identify whether the GPS was indoors

or outdoors during its operation?

2. Does seasonality, the neighbourhood-level built environment, household-level socio-
economic status, and individual-level age and sex influence the amount of time
children spend outdoors on weekdays and weekends? How do the findings contrast

with previous research of children’s time spent outdoors?

3. Where do children spend time the outdoors? For those outdoor spaces children use,
how long are they being used? How do the measurements of exposure contrast to the

measurements of engagement?

Chapter 5 summarizes and discusses the key research findings, outlines the limitations of
the work, offers conclusions, and proposes next steps for future research.

1.4 Conceptual and Methodological Framework

The factors that influence an individual’s health are complex and cannot be fully
explained using the biomedical approach (Engel, 1977; Hill, 1965). Engel (1977)
challenged the status quo to suggest that biological factors act in combination with an
individual’s experiences, and their social and psychological factors to determine an
individual’s susceptibility or resiliency to disease. Bronfenbrenner’s (1977) ecological
model describes the context in which children develop. He imagined spheres of influence
beginning with the individual child as the centre, surrounded by and interacting with the
immediate influences of home, school, and neighbourhood in a sphere called the
microsystem (See Figure 1.1). He argued that children’s development could not be
thought of as being independent from the multi-leveled social, material and cultural

context (Mesosystem, Exosystem, and Macrosystems) in which a child’s development



takes place. Bronfenbrenner’s model was developed within his own discipline of psychiatry,
and he did not focus on the role that geographic phenomena have on the individual in terms

of accessibility to, exposure of, and engagement at health-promoting and health-demoting

y\eSOSYste,,
=t :

Microsystem

Figure 1.1: Bronfenbrenner's (1977) ecological model
built environment locations. The socio-ecological model of health behaviour
conceptualizes that individual health outcomes are not only a result from individual
behaviour but, moreover, from a series of relationships between individuals and their
environments (e.g., neighbourhood, work, school) which then informs that child’s
behaviour (Sallis et al., 2006). The socio-ecological influences on individuals can then
lead to modifications in their health behaviour and status, both positively and negatively.
The socio-ecological model is well suited to help describe why an individual’s
geographical, environmental and social context can act as a hindrance to, and a facilitator
of, health-related behaviours (Sallis et al., 2006; Stokols, 1992). The model was further
refined by Sallis and colleagues (2006) to include perception of environmental factors
such as safety and accessibility. Ecological models are widely used and seem well
equipped to conceptualize the complex relationship between children, their health-related



behaviours, and their environment. Therefore, this thesis will employ the socio-ecological
model of human behaviour approach to understand the multi-layered factors that

influence children’s health.

The modified Bronfenbrenner (1979) socio-ecological model (see Figure 1.2) includes
his idea of a time sphere called the chronosystem. Additional modifications were
imposed on the model in terms of the concrete ways in which this thesis will
operationalize the individual, microsystem, mesosystem, and chronosystem interactions
to measure children’s accessibility to, exposure to, and engagement with health-
promoting and health-demoting features of their environment. Firstly, the microsystem
and mesosystem spheres will be referred to in this thesis as the household-level and
neighbourhood-level environments, while chronosystem is referered to a the temporal-
level. Secondly, the model in Figure 1.2, indicates the types of variables used in this thsis
that are theorized to play some role in the environmental determinants of children’s
health.

The purpose of this thesis is to measure children’s accessibility to, exposure to, and
engagement with health-promoting features of their environment. The research on the
environment-health link aims to meet two objectives: 1) to quantify the magnitude of
positional discrepancies and accessibility misclassification that result from using several
commonly-used address proxies; and 2) to examine how individual-level , household-
level, and neighbourhood-level factors are associated with quantity of time children spend
outdoors. This will be achieved by employing the use of GPS tracking to objectively
quantify the time spent outdoors using a novel machine learning algorithm, and by
applying a hexagonal grid to extract built environment measures.

A geographic study that employs the socio-ecological approach is logical in that an
individual child experiences and engages with their environment at specific times,
locations and places. The socio-ecological model in combination with geographic
analysis, therefore, is particularly well-suited for a studying children’s accessibility to,

exposure to, and engagement in their environment which in turn plays a crucial role in



their healthy development. This study, therefore uses a positivist spatial quantitative
approach to practically measure, classify, categorize and map children and their

neighbourhoods.
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Figure 1.2: Spatio-temporal model of child’s local environmental accessibility,

exposure, and engagement (Bronfenbrenner, 1979)
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Chapter 2

2 Literature Review

The literature review is divided into two parts. The first part will give a brief overview of
the literature on environmental influences on children’s health and well-being, with a
specific focus on the benefits of ‘being outdoors’. The second part will focus on the issue
of ‘uncertainty’ in geographic analyses, with particular consideration of the implications
of uncertainty in spatial data, data classification and spatial analyses when mapping

human subjects and the built environment.

2.1 Benefits of Outdoor Accessibility, Exposure and
Engagement for Children

Recently, there has been widespread public attention and a surge in academic literature
published on the health benefits of spending time outdoors, especially on the child
population (Tremblay et al., 2015). Research shows that spending time outdoors can
positively impact children’s physical activity (Cleland et al., 2008), mental health, well-
being, social health, and cognitive development. Dramatic increases in sedentary
behaviour and time spent using electronic devices is a concern of many parents,
practitioners, and researchers, which helps support further investigation into the

relationship between time spent outdoors and a variety of children’s health outcomes.

A body of the literature identified in a recent systematic review assessed the effect of
outdoor time on children’s physical activity, sedentary behaviour, and physical fitness
(Gray et al., 2015). Some studies included in this systematic review agreed that there
were overall positive effects of outdoor time on physical activity, sedentary behaviour,
and cardiorespiratory fitness (Gray et al., 2015). Each study assessing physical activity
found higher levels outdoors compared with indoors. Distinguishing activities based on
whether it is happening indoors or outdoors is vital as studies have shown that children

are more active in outdoor environments (Raustorp et al., 2012).

Previous research has identified the mental health benefits of interactions with nature

outdoors into three types: accessibility, exposure, and engagement, as documented by
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Tillmann et al. (2018). Total outdoor exposure is defined as direct contact with outdoor
environmental features and engagement outdoors is defined by the total time spent
outdoors. Tillmann and colleagues (2018) state that some of these studies using measures
of accessibility such as residential proximity to outdoor greenspace have critical
weaknesses when assessing children’s interaction with their natural environments. The
most fundamental problem is that there is no proof that children are making use of these
spaces. Research should therefore be accounting for the individual choices made by
children when discussing interactions with particular environments. Exposure to and
engagement with the outdoors, therefore, might give us more accurate representation of
the actual time children spend at particular locations.

One of the significant barriers of assessing children’s time spent in outdoor environments
is the inability to precisely determine whether a child’s GPS tracks are indoors or
outdoors. Previous research has used time blocks (e.g., a school schedule) to determine
whether a child is most likely indoors or outdoors (Loebach & Gilliland, 2014). However,
this has limitations in that it assumes that all participants are in the same environment
based on a school schedule. Some studies have supplemented time blocks with self- or
parent-reported activity diaries detailing where children are; however, this again makes
some assumptions based on time blocks included in the diary and creates an opportunity
for inaccurate reporting by children (Loebach & Gilliland, 2014). Self or parent reports
have also been used to classify use or time spent in specific spaces which again leaves
room for inaccurate reporting as well as not being an accurate representation of every
space a child interacts with on a daily basis (Amoly et al., 2014; Faber Taylor & Kuo,
2011; Flouri et al., 2014; McCracken et al., 2016). Being able to accurately determine
whether a single GPS point is indoors or outdoors is crucial for more accurately

accounting for a child’s activity choices.

2.2 Geographic Data and Uncertainty

Uncertainty is a form of ignorance that Thrift (1985) argues has five forms which
include; a lack understanding; not knowing the unknown; issues left undiscussed or

deliberately hidden; and that which is distorted. Uncertainty abounds in every research
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study, especially when including geographic information systems as a tool for analysis.
Geographic information is a digital representation of an abstract view of reality (David et
al., 1996). Therefore, it is impossible to perform error-free spatial analysis, and it is each
researcher’s responsibility to identify and mitigate these errors to such a degree that they
do not interfere with the conclusions derived from that analysis (S. A. Fotheringham,
1989). Over the succeeding years, considerable effort has been spent by researchers
trying to remove uncertainty from GIS analysis. Couclelis (2003) contends that there will
always be uncertainty in any scientific study, not just those studies using GIS, and she
argues for the acceptance that some error and uncertainty will never entirely be removed

and should be considered part of the process of the exploration in science.

It is understood that the data and the methods used in this thesis will be imperfect and
will, in turn, generate results that will be somewhat uncertain. One of the purposes of
this research is to identify where this uncertainty lays, regarding the GIS data used and in
the GIS methods proposed, and suggest ways to mitigate some of these uncertainties.
There are two main discussions presented in this part of the literature review. The first
discussion will focus on the types and magnitude of spatial data errors inherent in GIS
and GPS data. It is from the spatial data errors that some uncertainty will always be
introduced; furthermore, a plan to identify and mitigate these errors needs to be explored.
The second discussion found later in this section includes a short critique of the
commonly used GIS methods used to associate neighbourhood built environment
variables with children’s health outcomes and the implications of the modifiable areal

unit problem and uncertain geographic context problem on this research.

2.2.1  Uncertainty with Spatial Data

All spatial data are intrinsically uncertain in a world that is infinitely complex (Zhang &
Goodchild, 2002). Measurements of weather conditions, air and water pressure,
prevailing winds, pollution levels in the air and water, population densities, income
levels, accessibility, and the movement of people all vary continuously. A large part of
the uncertainty generated with GIS spatial analysis originates from the quality of the data
itself. The quality of GIS datasets can divide into two separate aspects, precision and

accuracy. Precision refers to the resolution, or amount of detail in the GIS data regarding
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positional, thematic, and temporal dimensions. Accuracy is defined as the ‘inverse of
error’. Researchers must be aware of the difference between what is spatially and
thematically encoded in a data set and what should be encoded in that data set (Albrecht,
2007); in other words, researchers must realize that there will always be something
missing in a data set. Accuracy, therefore, is a relative term rather than an absolute one.
Depending on the purpose of a data set, a researcher might have higher or lower
expectations of accuracy depending on the purpose. The precision of the data plays a part
in this as well; if a data set is of low spatial precision, then the researcher would, in turn,
have lower expectations of accuracy whenever using this data. Temporal accuracy
describes the difference in the recorded time of an event to the actual time of the event,
while thematic accuracy describes the concurrence of what is encoded in an attribute

table and what should be encoded.

When modelling the ‘real-world’ in a GIS, the complexities of geographic phenomenon
will be lessened through map generalization. The goal of digital map generalization is to
maintain the graphic detail of the map features while at the same time simplifying them
so that geographic features of shape, size, and position are faithful to what they represent
at the map scale for which they will be used (Buttenfield, 1991). The act of map
generalization reduces the precision of the real-world feature modelled, thus affecting the
expectations of accuracy. The absolute positional accuracy of a spatial feature is
calculated by measuring the difference between the recorded location in a GIS dataset,
and the feature’s true location. Relative positional accuracy of a spatial feature is
calculated by measuring the difference between the recorded location in a GIS dataset,
and a location of a corresponding feature in another GIS data set. Positional (absolute or
relative) errors are the differences between these matching features and their coordinate
locations. For point features, the error can be defined in X, y, and z dimensions and the
metrics describing the error can use simple descriptive statistics. For lines and areas,
more complex methods for generating the accuracy metrics including using buffers
(Goodchild & Hunter, 1997; Tviete & Langaas, 1999) and stochastic simulation
techniques (Leung & Yan, 1998; Shi & Liu, 2000; Zhang & Kirby, 2000) are required.
Other terms for positional error are “‘displacement’ and “distortion’ (Zhang & Kirby,
2000). So it could be stated that the presence of absolute or relative spatial distortions
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will affect distance, and density measurements in any GIS study, and will, therefore,

introduce spatial uncertainty.

In a GIS there is both the spatial features and tabular data. The tabular data stores the
quantitative and qualitative information about each of the geographic features. The
tabular data can and often does suffer errors which can occur at the database design or
data modelling stages, and at the data entry phase. The concept of thematic accuracy,
therefore, is the accuracy of the attribute values encoded in a GIS database. The metrics
used to describe accuracy depend on the measurement scale of the data. Quantitative data
accuracy can be measured and errors identified by using simple descriptive statistics such
as standard deviation, minimum, maximum, and mean. The qualitative data can be
assessed with a classification error matrix by using cross-tabulation, at a series of sample
locations, to match what feature is present against the feature that was encoded. If the
entire data set were assessed using the cross tabulation method, it would be possible to

attach an accuracy attribute on individual features.

There is some disagreement in the literature regarding temporal accuracy. Some consider
temporal accuracy to be a function of the latency period between a change of a spatial
feature in the ‘real-world’ and seeing that change reflected in a GIS database (Aalders,
2002; Goldberg, 2008). The other approach to modelling temporal accuracy concerns
whether or not the GIS data set has a time dimension connected to the spatial information
resulting in the fourth dimension being stored (x,y,z,t) (Aalders, 2002; Thierry et al.,
2013). When assessing temporal accuracy, it is necessary to investigate the temporal
coordinate in relation to the other three coordinates to then identify correlations between

space and time to identify anomalies in the time that was encoded.

Before performing any spatial analysis, an assessment of the quality of the data to be used
in the analysis must be undertaken. Data quality represents, for the researcher, the
suitability for the use of the data for any particular application. There is no ‘one
approach’ to assess the suitability of GIS data. The researcher must apply a strategy that
takes into account the type of analysis to be performed, the nature of the results, and in

what manner the results will be transformed from data into knowledge (Albrecht, 2007;
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Couclelis, 2003). For the last idea, a distinction should be made between measurements
of internal and external data quality. Internal data quality measures the specifications of
how the data were collected and processed. External data quality suggests to researchers

on how well any particular data will fit their particular application (Aalders, 2002).

2.2.2  Uncertainty with GPS Data

All GPS units execute a three-dimensional trilateration calculation in the generation of a
single coordinate. In order for a precise coordinate to be calculated, the GPS unit requires
4+ GPS satellite radio signals to calculate the distance ranges from the satellite to the unit
itself. Furthermore, it is critical that the satellites utilized in the distance range calculation
should be well distributed in the sky to reduce dilution errors which manifest as
positional errors in the creation of the GPS point coordinate. It is expected that positional
errors will occur when a participant wearing a GPS unit enters/exits or remains inside a
blocking structure such as a building or dense tree canopy, thus blocking, in whole or in
part, the sky. When part of the sky is blocked from view, a GPS unit will use the
available satellites (space vehicles) from the GPS constellation that are in its line-of-sight
to generate a coordinate. If the GPS unit has line of sight to only a portion of the sky
then the accuracy of the GPS coordinate will be compromised. Additionally, for a short
time, while the unit is initially started there will be coordinates with larger spatial errors

as the GPS unit begins acquiring the GPS satellite signals.

The GPS unit, if programmed to do so, will store a series of quality metrics for each
coordinate generated. These metrics follow the coding standard developed by the
National Marine Electronics Association (NMEA). Each coordinate has a corresponding
NMEA quality sentence data structure. The quality metrics can include, the PDOP
(Positional Dilution of Precision), HDOP (Horizontal Dilution of Precision), SNR (Signal
to Noise Ratio), NSAT (Number of satellites used to calculate the coordinate), and two
qualitative accuracy values ‘2DGPS’ (2-dimensional bias remedied) and ‘3DGPS’ (3-
dimensional bias remedied) differential accuracy. The differential accuracy refers to the
successful inclusion of the Wide Area Augmentation System Satellite signal in the

removal atmospheric interference bias found with the GPS satellite radio signal.
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For most applications using GPS technology, the wearer or operator of the GPS device
decides when and where to capture a coordinate. Depending on the accuracy available at
the location, the operator might choose not to generate a coordinate due to the large error.
In passive GPS data acquisition, the GPS is preset to capture GPS coordinates at a set
epoch which leads to an enormous number of points that need to be post-processed in

some way so that those points with larger errors can be remedied or filtered.

Several researchers in spatial health studies have developed methods to filter, categorize
and remedy the erroneous points generated with passive GPS data collection (Patrick et
al., 2008; Rainham et al., 2012; Rainham et al., 2008; Thierry et al., 2013). Included in
this effort is the Personal Activity and Location Measurement System (PALMS) (Patrick
et al., 2008) which filters and smooths the GPS data points by removing invalid
coordinates and reducing data volume. PALMS filters data by removing GPS points that
indicate excessive speed; that have large changes in elevation or with very small changes
in distance between consecutive points; and PALMS reduces the scatter caused by
interference from buildings (Kerr, Norman, et al., 2012; Patrick et al., 2008) by
employing the NMEA GSV sentence SNR (Signal to Noise Ratio) metric, by doing so
the PALMS is limited to only the Qstarz brand of GPS devices. Rainham et al. (2012)
created a GIS software tool called the GeoActivity Processor which uses a predefined set
of decision rules including known times when the participant was at a geographic anchor
area (e.g. home, school, work) and leveraged an assortment of spatial data layers and self-
reported diary entries in the decision rules. The GPS points are then grouped into these
anchor areas. Thierry et al. (2013), developed a tool called the “Activity place detection
algorithm for GPS data” (SphereLab Tool) which uses a kernel density approach to filter
the GPS points to identify places where the participant stopped for some defined
duration. Other spatial health researchers have also employed a variety of classification
methods to help filter the raw GPS points while others outside the discipline have made
progress with the use of ‘big-data analytic approaches’ (Brusilovskiy et al., 2016; Kim et
al., 2012; Meijles et al., 2014; Wan & Lin, 2013).
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2.2.1 Indoor and Outdoor GPS Data Classification

It is unfortunate that some researchers have not classified or filtered their GPS generated
points entirely to identify whether a GPS point was generated in the precise locations,
while others just visually inspected the spatial errors, and manually removed the apparent
errors proceeded with their analysis (Burgi et al., 2016; Elgethun et al., 2002; Elgethun et
al., 2007; Maddison et al., 2010; Quigg et al., 2010). Cooper et al. (2010) , Wheeler et al.
(2010), and Pearce et al. (2014) while measuring the time children spend outdoors using
the Personal and Environmental Determinants of Children's Health (PEACH) project
protocol, chose not to classify the GPS points as being generated indoors or outdoors, but
instead simply relied on the GPS to “cut-out’ when a child entered a building indicating
indoors. They categorized all GPS points recorded as being outdoor time and matched
that time (10-second epochs) with a continually running accelerometer (10-second
epochs) as ‘physical activity outdoors’ and any unmatched accelerometer data (no GPS
record) as ‘physical activity indoors’. These researchers justified their reasoning by using
a GPS receiver that did not record positional data when inside a building. By contrast,
Kim et al. (2012) tested a GPS receiver that continually generated points regardless of the
unit being indoors and outdoors. They employed the use of the GPS point quality metrics
of speed and number of satellites (NSAT) and distance from home. They employed a
field technician to follow a highly scripted set of indoor and outdoor activities and the
locations of these activities while keeping a record of all movements by the second in a
diary. They classified their GPS data into four microenvironments (residential indoors,
other indoors, transit, and walking outdoors). GPS points were classified as ‘indoors’ of
the time when the NSAT metric was less than 9 and coded as ‘residential indoors’ 97% of
the time when these ‘indoor’ GPS points were within 40m of home, while the remaining

GPS points were classified as outdoor locations.

Researchers who employ a GPS receiver that supports the NMEA GSV protocol have
employed the personal activity and location measurement system (PALMS) data filter
which classifies GPS points as occurring indoor or outdoor using the signal to noise ratio
(SNR) metric (J. Carlson et al., 2015; Ellis et al., 2014; Gell et al., 2015; Kerr et al.,
2011; Kerr, Marshall, et al., 2012; Klinker, Schipperijn, Christian, et al., 2014; Klinker,
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Schipperijn, Kerr, et al., 2014; Klinker et al., 2015; Lam et al., 2013; Tandon et al.,
2013). Specifically, any GPS points with an SNR < 250 on a 0-450 scale are classified as
being generated indoors. A strong signal (>=250) suggests the wearer of the GPS is likely
to be outdoors where there is less interference from buildings and natural canopies.
Presently the PALMS is limited only to the Qstarz brand GPS device to classify tracks as
indoor vs. outdoor ("Personal Activity Location Measurement System User Guide,"”
2011). There have been few studies measuring the validity of the Signal to Noise ratio
cut-off method used by PALMS to classify outdoor time, except for Lam et al. (2013)
who employed a self-activating camera in combination with a passive GPS monitor to
measure time spent outdoors by adults. They found while using 15-second epochs for
each GPS point that 81% of the GPS points classified as indoors by PALMS were
correct. Tandon et al. (2013), while studying the outdoor activities of pre-school aged
children found an 82% match between PALMS coded outdoor activity and an objectively
generated measurement of outdoor activity. Klinker, Schipperijn, Kerr, et al. (2014)
found while studying the outdoor weekday patterns among school children in Denmark
that PALMS overestimated the time that children spent outdoors. J. Carlson et al. (2015)
found an 88% predictive value when using PALMS to classify modes of travel at the
minute epochs. Most recently, Pearce et al. (2018) while using the Qstarz brand of GPS at
epochs of 10 seconds performed their own signal-to-noise classification and identified
SLR>=212 as the low cut-off for outdoors, less by 38 points than the PALMS threshold.
They suggested the lower cutoff was related to the built form of the neighbourhood
setting from their study. If Pearce et al. (2018) are correct and the neighbourhood setting
plays such a large effect on the signal-to-noise ratio cutoff then this throws some shadow
on the efficacy of studies relying on the standard cutoff (SLR>=250) of the PALMS

protocol.

The methods employed by researchers to classify the spatial context of GPS points
outside the of the PALMS data filter and a single branded GPS are varied. Increasingly,
researchers have been employing spatiotemporal data mining algorithms (Brusilovskiy et
al., 2016), Classification and Regression Tree models (Meijles et al., 2014), and kernel
density calculations (Han et al., 2013; Kestens et al., 2016; Thierry et al., 2013) to group,
filter, and classify their GPS point clouds. Ellis et al. (2014) tested a small set of GPS
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point with a naive Bayesian classifier and the random forest model to identify active
travel trips. They found that the random forest model classification achieved the best
results with an 89.8% cross-validation accuracy while the naive Bayesian classifier had

an overall accuracy of 74.2%.

The study by Wu et al. (2011), where the inspiration originated for the use of the random
forest model classifier in Chapter 4 of this thesis, suggests that the random forest model
for classification could be used effectively if an accurate and large enough training
sample could be secured. These researchers compared two automated approaches to
classify the GPS points in four ways; as indoor, in-vehicle travel, outdoor static and
outdoor walking. They used GPS data from two separate participant studies and found
that a rules based approach performed slightly better than the Random Forest for GPS
point classification. They suggested that the random forest results suffered from a small
and compromised training sample stemming from the flaws in the way the GPS data was
post-processed which used a combination of areal imagery of the study area, daily

activity diaries and memory recall.

In a recent systematic review of measurement of time spent outdoors in child myopia
research, J. Wang et al. (2018) highlighted on the research to date using GPS to
differentiate between indoor and outdoor location. The research studies mentioned in
their systematic review are the same as in this literature review, except for the most
recent of studies, and in their review they report only on the accuracy of the PALMS
protocol. They discussed that some studies compromised their ability to differentiate
indoor and outdoor because of the use of larger epochs of data collection (e.g. 15 second)
which do not capture subtle movements. They, also identified the role that a combination
of geographical information system (GIS), diary/questionnaire, and accelerometers have
had to improve the accuracy, but they also suggest that the accuracy of GPS devices in
general requires improvement. They report that more research is required to improve
methods classifying the GPS points (indoor/outdoor) so to increase the validity and

accuracy of this type of data.
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In Chapter 4 an improved method of differentiating between indoor and outdoor using
GPS will be proposed in response to the uncertainty detailed in this section of the
literature review. The dependence on a single brand of GPS receiver will be overcome, a
commonly used NMEA sentence will be employed, and the issues inherent with small

unreliable training samples will be remedied.

2.2.3  Uncertainty with the GIS Methods

Recalling the five forms of not knowing (Thrift, 1985) and that the GIS is a tool used for
the combination of geographic information, and consequently, for the production of
applied geographic knowledge (Couclelis, 2003), it is imperative that GIS practitioners
do not impart additional uncertainty by using GIS methods without careful consideration
beforehand. In this part of the literature review, the commonly used methods of
geocoding and of spatial aggregation used to associate built environment variables with

children’s health outcomes are discussed.

Geocoding is the process of converting pseudo-spatial tabular data of street addresses to
map coordinates. The process is widely used in environmental and health studies to
locate subjects and built environment indicators (Brownson et al., 2009). Anselin (2006)
contends that the results from the geocoding are rife with uncertainties. Much research
has been conducted with problems with the match rate due to inaccurate address
information (Gilboa et al., 2006; Goldberg et al., 2008; Henry & Boscoe, 2008; Lovasi et
al., 2007; Mazumdar et al., 2008; Rutt & Coleman, 2005; Whitsel et al., 2006; Zhan et
al., 2006; Zimmerman, 2008; Zimmerman et al., 2008; Zimmerman & Li, 2010) and with
the defects in the spatial database containing street locations (Hay et al., 2009; Hong &
Vonderohe, 2014; Jacquez & Rommel, 2009; Lovasi et al., 2007; Schootman et al., 2007,
Strickland et al., 2007; Whitsel et al., 2006; Zandbergen, 2007; Zandbergen & Green,
2007; Zimmerman & Li, 2010; Zinszer et al., 2010). Best geocoding practices are
outlined by Goldberg (2008), and many studies account for these types of errors, but in a
way that might not be ideal. Anselin (2006) notes that geocoding errors, both the match
rates and positional errors tend to be found in newly developed suburban areas with these

errors causing biased health outcome metrics in these areas.
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There are various ways to identify a subject’s neighbourhood so that built environment
variables can be assigned and some association reached regarding health outcomes of the
population in these neighbourhoods. Some researchers have used census boundaries to
delineate the neighbourhood (Chuang et al., 2005; Goovaerts, 2009; Larsen & Gilliland,
2008; J. Pearce et al., 2006; M. C. Wang et al., 2007) and some have used municipal
planning districts (J. Gilliland et al., 2006), while other use neighbourhoods as a function
of walking distances from the home or school (Ball et al., 2007; C. Carlson et al., 2012;
Frank et al., 2004; J. A. Gilliland et al., 2012; Kelly et al., 2007; Lee et al., 2009; Leslie
et al., 2005; Li et al., 2005; L. N. Oliver et al., 2007; Panter et al., 2010; Robitaille &
Herjean, 2008). Other studies use the ‘nearest neighbour’ and kernel-based approaches
such as Geographic Weighted Regression to generate natural neighbourhoods (Bjork et
al., 2008; Clark & Scott, 2014; A. Fotheringham & Wong, 1991; Goovaerts, 2009; Li et
al., 2005; Maroko et al., 2009; Swift et al., 2013; Tandon et al., 2015; Webster et al.,
2006). All of these methods of neighbourhood delineation impose uncertainty and are
prone to the ecological fallacy. Each method aggregates geographic features, and set
boundaries or limits which, in turn, impose the modifiable areal unit problem (MUAP)
with both effects; zonal and scale (Openshaw, 1984) and impose the boundary problem
with its two effects; edge and shape (Andresen, 2009; A. Fotheringham & Wong, 1991;
Maroko et al., 2009; Ord & Getis, 1995; Sadler et al., 2011; Swift et al., 2013; Webster et
al., 2006). When subjects of study are sited in larger aggregated geographic units there
exists spatial uncertainty and temporal uncertainty, as introduced by Kwan (2012b) as the
uncertain geographic context problem (UGCoP). This problem helps researchers know
that there are unknowns in the actual areas that exert influences of human behaviour
under study and in the time and duration in which individuals are exposed to these

neighbourhood influences.

2.2.4 Modifiable Areal Unit Problem

The modifiable areal unit problem (MAUP) coined by Openshaw (1984) refers to the
sensitivity of statistical analysis in both the scale used to aggregate spatial observations
and the zoning system imposed to contain these observations. It is a pervasive problem

when analyzing the relationships between the built environment and health. In this
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section, the modifiable area unit problem and the implications of the problem when
analyzing the relationship between the built environment and health will be examined. It
is argued that both the scale and zonal aspects of MAUP are always ‘in-force’ when

analyzing the relationship between aggregated built environment variables and health.

Rogerson (2001) reports that Gehlke and Biehl (1934) found that when analyzing census
data, the correlation coefficients increase with increasing levels of geographic
aggregation. Therefore, larger numbers of small sized census areas reveal smaller
correlation coefficients than small numbers of large census areas. As the size of the
aggregations increase it is possible that interesting local variations in relationships are
‘averaged away' and become unobservable. Openshaw (1984) says that the results of any
aggregation of points into areal units might be a function of the size, shape and
orientation of the areal units, and thus have more of an influence on the results than the
distribution of the points themselves. It is understood that the smaller and more compact
the areal unit, the less of a risk of accidentally imposing the modifiable areal unit problem
on one’s analysis. Many spatial data sets are made up of zones, and the configuration of
the zones can affect the outcome of the statistical and interpretive analysis. Figure 2.1,
shows two different zoning patterns aggregating the same set of observations. The arrows
show migration paths of some populations north to south. In example A, there is a

Example A Example B

SREN

Figure 2.1 Same migration routes with two zoning systems (Rogerson 2001)
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southward migration by crossing several zone boundaries. Example B shows that there
was no migration out of the zones, though the migration pattern are the same.

Much of the research of environmental exposure and the influence of the built
environment on health is lacking in that much of the previous research often merely
counted the number of health-promoting or demoting opportunities within a distance of
the individual’s perceived location. These opportunity counts were often then used to
generate a density metric of accessibility or exposure. These researchers would identify a
dependent variable measuring some health status of the individuals which, in turn, was
used to generate a statistic identifying some association between the health status of the
population and the surrounding environment. Some BE and health researchers have
taken on the challenge to minimize and quantify the MAUP in health-related studies
(Andresen, 2009; Clark & Scott, 2014; Grady & Enander, 2009; Rainham et al., 2008;
Spielman & Yoo, 2009; Swift et al., 2013), while most research only mention that MAUP
might be a concern and do not test for its influence.

When the modifiable areal unit is “in-force’ so too is an ecological fallacy (bias).
Ecological fallacy is the correlation between individual variables (e.g. health status)
generated from a set of deduced variables collected for the group, in this case, the
neighbourhood built environment variables to which the individual belongs. The
correlation might be false in that it was generated from a larger aggregation but then
corresponded to the individual. Ecological fallacy, like the MAUP, is introduced when
spatial data is aggregated. It causes significant variation in correlation statistics between
exposures and health-related outcomes (Swift et al., 2013). A modifiable areal unit
problem sensitivity analysis can be used to investigate the impact of spatial aggregation
on the ecological fallacy. Malczewski (1999), suggests a way to disaggregate spatial data
into a rectangular grid-based set of isotropic tessellations and experiment by then re-
aggregate these tessellations to test for the effect of the MAUP. It is with this effort that
researchers can identify the aggregations that keep the interesting local variations from
being averaged out. Some researchers, particularly in environmental sciences and ecology
have been experimenting with the use of hexagonal tessellations as a way to model,

monitor, and sample across the earth’s surface at multiple scales (Birch et al., 2007; J.
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Gilliland & Olson, 2013; J. Gilliland et al., 2011; Gregory et al., 2008; Sahr, 2008; Zhou
etal., 2013)

The implications are clear for researchers investigating the relationships between the built
environment and health. Firstly, researchers should not assume arbitrary boundaries and
large aggregations of spatial phenomena will not impose MAUP and by consequence the
ecological fallacy. Secondly, a sensitivity analysis should be performed by disaggregating
and re-aggregating isotropic spatial units to test for bias. Thirdly, researchers should
consider an approach that maps the movement of an individual across the landscape so

that exposure can match more closely to that individual.

2.2.5 Uncertain Geographic Context Problem

In the ecological approach to health research, it is well understood that environmental
exposure has an association to health effects, but the associations can be multi-causal and
probabilistic (Krieger, 1994; Lalonde, 1974; Ozonoff, 1994). The ecological model is
best suited to help take into account the complex social and spatial contexts (structure)
within which every individual exists and how individual behaviour (agency) is influenced
by these structures, and in return how individuals can exert influence on these structures

through individual choice, education and policy interventions (Egger & Swinburn, 1997).

It is common, in spatial epidemiological research, that contextual spatial units
(neighbourhoods) are used as the method to assign area-based attributes to populations to
examine the effects of the area-based attributes on individual health behaviours and
health outcomes (Brownson et al., 2009). Each spatial context is an aggregation, in some
way, of the attributes of the geographic features representing health promoting or health

damaging opportunity structures.

In these studies (Apparicio et al., 2008; J. Gilliland et al., 2006; J. Gilliland & Ross,
2005; J. A. Gilliland et al., 2012; Macintyre et al., 2002; Miles et al., 2008; J. Pearce et
al., 2006; Thierry et al., 2013; Tucker et al., 2009), opportunity structures are defined as
those places in, and the socio-economic factors of, a neighbourhood that are theorized to

be associated to the individual health outcomes of the sample population within that
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neighbourhood. By setting boundaries or spatial extent limits to both the opportunity
structures and to the sample population the modifiable areal unit problem (MAUP) is
imposed with both zonal and scalar effects (Openshaw, 1984), while also imposing the
boundary problem with its shape and edge effects (Andresen, 2009; A. Fotheringham &
Wong, 1991; Maroko et al., 2009; Ord & Getis, 1995; Sadler et al., 2011; Swift et al.,
2013; Webster et al., 2006). Therefore, all of the various methods of neighbourhood
delineation impose uncertainty and ecological fallacy (Kwan, 2012b). These additional
problems must be identified and repaired in what was coined by Kwan (2012b) as the
uncertain geographic context problem (UGCoP). The methodological issues that the
UGCoP could impose on spatial epidemiological research are vital and could lead to

inferential errors about the associations observed.

2.2.6 Mitigating UGCoP with GIS and GPS

The challenge of using GIS alone to meet the spatial complexity and temporal issues
arising from uncertain geographic context problem is daunting. Recent research, has
combined the use GIS and GPS technologies to address like problems (Duncan et al.,
2013; Elgethun et al., 2007; Han et al., 2013; Jones et al., 2009; Kim et al., 2012;
Loebach & Gilliland, 2014; Mavoa et al., 2011; M. Oliver et al., 2010; Rainham et al.,
2008). A wearable GPS device tracks and records where and when individuals travel
through space and time. In this way, the path and temporal nature of the GPS tracks are
known. The spatial resolution provided by the GPS is the best way to generate the correct
geographic context of a subject thus saving researchers the futility of trying to
conceptualize boundaries of the real spatial context. However, the coordinate point
clouds generated by the GPS can be difficult to interpret. As a response to the complexity
of the mass of data generated by GPS, studies have been conducted to generate area-
based features from the GPS points by using standard deviational ellipses as a way to
generate boundaries (Boruff et al., 2012; Loebach, 2013; Rainham et al., 2010).

Studies have employed GIS analysis techniques to associate the structures in the spatial
context to the individual-level GPS tracks. The combination of GIS spatial layers and the
GPS tracks have opened the door for further research in associating exposure to health-

promoting structures and the duration of exposure (engagement) at those structures.
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There are some limits to this approach in that there is no direct information about how the

individual is using these structures and if exposure is occurring at all.

The information gaps when using GIS and GPS could be filled using a mixed method
approach of both quantitative and qualitative analyses to understand the social
interactions of the subjects (Kwan, 2012a, 2012b). Loebach and Gilliland (2014) included
diaries in combination with individual neighbourhood mapping exercises as a way to help
bridge the gap.

When a GPS based research design or participatory study is not realistic due to time or
resource constraints then areal interpolation (Cai et al., 2006; Flowerdew & Green, 1992;
Goodchild et al., 1993; Haining, 2009; Henry & Boscoe, 2008; Malczewski, 1999;
Ratcliffe, 2004; Reibel, 2007; Rushton et al., 2006; Swift et al., 2013) and dasymetric
mapping (Holt et al., 2004; Mennis, 2003) techniques have been employed to reduce the
problem with the spatial structural complexity of the problem. Areal interpolation
techniques and dasymetric mapping techniques can be used to reshape, resize, and re-
proportion variables within spatial boundaries. The area-based variables would be either
be removed, reorganized, or re-proportioned into their corresponding smaller spatial
context areas, in a way disaggregating the spatial context to make a better model of
reality. It is expected with this approach that the MAUP and UGCoP (but not in the
temporal context) could be mitigated in some way.

2.3 Conclusion

The literature review was divided into two parts. The primary purpose of part one was to
show the existing evidence that demonstrates that there is an association between
children’s health and environmental influencers, with a specific focus on the benefits of
‘being outdoors’. The stage was then set to identify the relevancy of the two
methodological studies within the dissertation. The second part focused on the issue of
‘uncertainty’ in geographic analyses, with particular consideration of the implications of
uncertainty in spatial data, data classification and spatial analyses when mapping human
subjects and the built environment. We saw that it is common practice in recent GIS
studies of accessibility and exposure that home location (i.e., home address) proxies (e.g.,
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census tracts, dissemination areas, postal codes) used to represent a subject’s location. It
was also shown that the use of large areal units to represent neighbourhoods is common.
In the first study, presented in Chapter 3 of this thesis, we will see how choosing an
inappropriate address proxy and large areal units can bias spatial measurements and skew

both distance and classification statistics.
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Chapter 3

3  Quantifying the magnitude of environmental
accessibility misclassification when using imprecise
address proxies in public health research

3.1 Introduction

Recent advances in the analytical capacity of desktop geographic information system
(GIS) software, combined with the increasing availability of spatially-referenced health
and environmental data in digital format, have created new opportunities for making
breakthroughs in spatial epidemiology (Zandbergen, 2008). As digital mapping is an
abstraction of reality, the spatial data used for visualizing and analyzing geographic
phenomena will always be inaccurate to some degree. Such inaccuracies can be
compounded when spatially aggregated units are used as locational proxies for mapping
and analyzing spatial relationships, rather than more precise geographic locations. In
environmental and public health research, it is common to use proxies for sample unit
locations, such as centroids of postal/zip codes, census tracts, dissemination areas, blocks,
or lots; however, it is very uncommon for studies to address, or even mention, the
potential problems ensuing from the positional discrepancies associated with using
imprecise address proxies. It is the responsibility of the researcher to identify, quantify,
interpret, and attempt to reduce any errors associated with using particular spatial data
and locational proxies, so that they do not interfere with any conclusions and

recommendations to be made from the findings (Anselin, 2006; Fotheringham, 1989).

Researchers in spatial epidemiology have long been concerned about the absolute or
relative spatial accuracy of the address points used to map sample populations or
phenomena within a GIS (Goldberg, 2008). Numerous researchers have examined the
‘positional errors’ which occur when the address from a database is located on a digital
map, but the point is not located at the true position of the address (Cayo & Talbot, 2003;
Jacquez & Rommel, 2009; Schootman et al., 2007; Strickland et al., 2007; Ward et al.,
2005; Zandbergen & Green, 2007). In many previous studies, positional errors are
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reported as Euclidian distance errors or errors in the X and Y dimension using the root
mean square error (RMSE). While much has been said about positional errors, much less
has been said about how study results might be affected when researchers use spatially
aggregated units (which themselves might be positionally accurate) as address proxies.
Very few studies measure and compare the positional discrepancies between address
proxies and the exact address they are used to represent (Bow et al., 2004). A major area
of investigation in the fields of spatial epidemiology, health geography, and public health
attempts to assess the levels of accessibility or ‘exposure’ of subject populations to
elements in their local environments that are believed to be health-promoting or health-
damaging, and are related to certain health-related behaviours or outcomes. Accessibility
is typically measured in relation to the distance between subject populations and selected
environmental features, and is often operationalized as a binary variable (i.e.,
accessible/inaccessible, exposed/not exposed) or a density variable (i.e., number of sites
within, volume of contaminant within) in relation to an areal unit or ‘buffer’ of a certain
threshold distance (radius) around the subject’s address. There is much variability, but
unfortunately not much debate, regarding the particular threshold distances to be used in
accessibility studies; however, most authors do attempt to justify their choice of threshold
distances based on human behavior (e.g. ‘walking distance’) or perhaps some
characteristic of contaminant source (e.g. 150 m from roadway). The chosen accessibility
thresholds also typically vary by study population (e.g. children vs. adults), setting (e.g.
urban vs. rural), and by health-related outcome (e.g. physical activity vs. asthma). In their
study of the environmental influences on whether or not a child will walk or bike to
school, for example, Larsen and colleagues (2009) justify the choice of a 1600 m
neighborhood buffer based on the local school board cut-off distance for providing school
bus service (see also Brownson et al., 2009; Muller et al., 2008; Panter et al., 2010;
Schlossberg et al., 2006). Studies which have focussed on access to neighborhood
resources such as public parks and recreation spaces have utilized a variety of threshold
distances, typically between 400 and 1600 m (compare Bjork et al., 2008; Lee et al.,
2007; Maroko et al., 2009; Tucker et al., 2009); however, a threshold distance of 500 m is
ideal, as it represents a short 5-7 min walk, therefore easily accessible for populations of
all ages (see Sarmiento et al., 2010; Tucker et al., 2009; Wolch et al., 2011). The 5-7 min
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walk zone, as represented by the 500 m buffer around a home or public school, is also a
common distance used in studies exploring the relationship between access to junk food
and obesity (see Austin et al., 2005; Gilliland, 2010; Morland & Evenson, 2009). Studies
of “food deserts’ (disadvantaged areas with poor access to retailers of healthy and
affordable food) and the potential impact of poor access to grocery stores on dietary
habits and obesity have tended to focus on longer distances (800 m or greater), and vary
according to urban vs. rural setting (see Larsen & Gilliland, 2008; Pearce et al., 2008;
Sadler et al., 2011; Sharkey, 2009; Wang et al., 2007). This analysis focuses on the 10-15
min walk zone (1000m) around a grocery store identified in previous studies of food
deserts in Canadian cities (Philippe Apparicio et al., 2007; Larsen & Gilliland, 2008).
Research on the role that distance plays from home to emergency services at hospitals
shows association with increased risk of mortality with much larger threshold distances
than standard ‘walk zones’ (e.g. greater than 5 km) (see Acharya et al., 2011; Cudnik et
al., 2010; Jones & Bentham, 1997; Nicholl et al., 2007). Nicholl and colleagues (2007),
for example, discovered that a 10 km increase in straight-line distance to a hospital is
associated with a 1% increase in mortality. As hospitals tend to be a regional, rather than

a neighbourhood facility, the threshold distance of 10 km will be used for this analysis.

The purpose of this study is to quantify the magnitude of the positional discrepancies and
accessibility misclassification that result from using several commonly-used address
proxies in public health research. Rushton and colleagues (2006) have argued that when
short distances between subject population and environmental features are associated
with health effects in epidemiologic studies, the geocoding result must have a positional
accuracy that is sufficient to resolve whether such effects are indeed present. Positional
errors have been shown to vary significantly by setting (Bonner et al., 2003; Cayo &
Talbot, 2003; Ward et al., 2005); therefore, errors are quantified by multiple
neighbourhood types: urban, suburban, small town, and rural. “Meaning’ is ascribed to
these errors for spatial epidemiologic studies by examining errors in distance and
accessibility misclassification concerning several health-related features, including

hospitals, public recreation facilities, schools, grocery stores, and junk food retailers.
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3.2 Methods
3.2.1 Study area and data

The City of London (population 350,200) and Middlesex County (population 69,024) in
Southwestern Ontario, Canada are ideal study areas for examining the geocoding errors
in accessibility studies as they encompass a mix of urban, suburban, small town, and rural

agricultural areas (Statistics Canada, 2011) (see Figure 3.1). The study area is categorized
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Figure 3.1 Study area: London and Middlesex County, Ontario.
into four neighborhood types as follows: (1) urban areas correspond to neighborhoods in
the City of London built primarily before World War I1; (2) suburban neighborhoods are
areas built following WWII that fall within London’s contemporary urban growth
boundary; (3) small towns are settlements outside London within Middlesex County,
these settlements have fewer than 20,000 inhabitants; and (4) rural areas are defined as all
areas of Middlesex County not identified as small town, as well as areas within the city
limits of London which are outside its urban growth boundary. All of the areas combine
for a total of 104,025 residential addresses, as well as 94 census tracts, 665 dissemination
areas and population-weighted dissemination areas, 1410 dissemination blocks, 14,256

postal codes, and 19,365 street segment center points. The spatial relationship between
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geographically aggregated units and a sample dwelling centroid illustrated in Figure 3.2.

The dwelling centroid is located within a hierarchical spatial structure starting with the

census tract, moving down to dissemination area, and

@®
L]
®
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Dissemination Area Centroid A Street Segment Centroid
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Dwelling Centroid :I Block Boundary

Geocoded Address Point |:| Parcel Boundary

Lot Centroid

Figure 3.2 Spatial relationships between various geographic aggregation levels and

their corresponding centroid within a census tract.

then to the dissemination block and finally the individual parcel of land or lot. The

dwelling unit is also located within a postal code region and on a street segment. Each of

these larger geographic units can be operationalized as point locations according to their

centroids, as seen in Figure 3.2. The hierarchical spatial structure of census data is

organized in such a way that each census tract is made up of multiple contiguous
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dissemination areas, which in turn are made up from multiple blocks, which are made
from street segments (for the most part, but sometimes divided by rail and natural
features). Each street segement is divided as “left” or “right” and is an aggregation of the

individual addresses/dwellings on that side of the street.

Digital spatial layers to be used as the address proxies were prepared in ArcMap-
ArcInfo10.0 (ESRI, 2011). The census tract, dissemination area, and dissemination block
boundary files, supplied by Statistics Canada (2006), were converted to centroids using
the ‘Feature to Point’ tool. These three spatially aggregated units are commonly used in
geographic analyses of population data in Canada, and each has tradeoffs for researchers
based on the size of the aggregated unit vs. the richness of data available. Dissemination
blocks are the smallest of the three geographic units in terms of area; therefore their
centroids provide a more spatially accurate proxy for exact address. However, most
Canadian census data, except population and dwelling counts, is suppressed at this level,
and for this reason, the utility of dissemination blocks in studies of accessibility among
population sub-groups is more limited. Dissemination areas are made up of a small group
of dissemination blocks. They are commonly-used in population health studies as they
are the smallest aggregated geographic unit available for which Statistics Canada releases
some key demographic variables (e.g. median household income, population by age,
population by ethnicity); nevertheless, a considerable amount of data suppression still
occurs at this scale. While census tracts are the most commonly-used proxy for
‘neighbourhoods’ in sociological, geographical, and population health research in
Canada, and they offer the most comprehensive census data for spatial epidemiologic
analyses, they are also the largest geographic unit examined in this study. For this reason,
they are hypothesized to result in the greatest positional discrepancy when used as
address proxies. Additionally, census tracts are only available in metropolitan areas and
therefore do not cover most rural areas. The weighted dissemination areas centroids were
created using the *‘Median Center’ tool by leveraging the population distribution data
stored within dissemination block centroids which were nested within the dissemination
areas. The weighted dissemination areas centroid has been used in previous research (e.g.
P. Apparicio et al., 2008; Henry & Boscoe, 2008) and was included in this study as a
more representative measure for the probable location of the population within the area. It
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is therefore expected to produce a closer approximation for an address proxy than the
dissemination area centroid. The postal code boundaries and points were drawn from the
Platinum Postal Code Suite (DMTI Spatial Inc., 2009). The typical postal code in a
Canadian city is a much smaller geographic unit than the typical US zip code and is
commonly used as a proxy for a residential address by Canadian researchers when full
civic address is unavailable, or suppressed to maintain subject privacy (e.g. Larsen et al.,
2009). The street segment centers were created using the tool ‘Feature Vertices to Points’
with the CanMap street files (DMTI Spatial Inc., 2009). The geometric center of every
street segment was generated as an aggregate address proxy for all the dwellings on that
segment. The average street length for rural neighbourhoods was 711 m, 187 m for small
towns, 142 m for suburban neighbourhoods, and only 127 m for urban neighbourhoods.
All 147,000 addresses points in the study area were supplied by the City and County for
every parcel of land, dwelling, business, and institution (City of London, 2010-2013;
Middlesex County, 2011). A total of 104,025 address points were identified as residential,
and each point was located within the centroid of the dwelling polygons provided by the
City and County. A tabular list of each of the residential addresses was generated, and
these addresses were used to geocode against the CanMap street files (DMTI Spatial Inc.,
2009) using the *“US Address — Dual Ranges’ address locator, thus generating
interpolated address points with the default 10 m offset from the street centreline. These
interpolated addresses, referred to as ‘geocoded points’ in this paper, are undeniably the
most commonly-used address proxies when full address information is available to the
researcher. While most researchers use such geocoded points without question, it is
argued that even these address proxies could have positional discrepancies which might
cause accessibility misclassification and therefore they must also be subjected to further
scrutiny. Dwelling centroids are the ‘gold standard’ of address proxies in this study, to
which all other address proxies will be measured. It is the best choice, as all journeys
from home begin somewhere within the home building. In this paper, the issues of
address validity and match rates for dwelling and lot centroid are controlled for, in that
every one of the 104,025 residential addresses were matched at 100%. To calculate
accessibility measures, the centroids for dwelling centroids and all the address proxies
(except those located on the street segment or a fixed distance from the street segment)
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were linked with a connecting lateral line from the proxy address point to the nearest
corresponding street segment using a custom algorithm. These lateral lines were included
in the network distances reported in the study. The street segment center points already
located on the street centerline did not require a lateral line to connect them to the
network, while the geocoded points were all standardized to be 10 m from the street

centerline and thus the 10 metres were added to the individual distances post process.

GIS layers including the locations of all 6 hospitals, 138 elementary schools, and 512
public recreation spaces within the study area were provided by the geomatics divisions
of the City and County (City of London, 2010-2013; Middlesex County, 2011).
Addresses for the 52 grocery stores and 1213 junk food retailers (including fast food
restaurants and convenience stores) in the study area were provided by the Middlesex-
London Health Unit (2010) and geocoded using the master address files provided by the
City and County. All data was verified and corrected using orthorectified air photos of
London and Middlesex (15 and 30 cm resolution, respectively) (City of London, 2010-
2013; Middlesex County, 2011). For built structures, the centroid of the building polygon
was used as the address ‘gold standard’; however, for recreational places without a
defined built structure, such as parks, the access points were manually created using the
air photos. The City, County, DMTI Spatial Inc., and Statistics Canada publish no metric
regarding the absolute or relative spatial accuracy of their data sets. In this study, the City
and County spatial data were accepted as the most spatially accurate of all the data
sources. The City and County spatial data were used to create the building centroids for
facilities, dwellings, and the centroid for dwelling lots. Spatial features found in the
Statistics Canada and DMTI Spatial Inc. data are within 15 m of the same corresponding
features in the City and County data for most of the study area. The Statistics Canada and
DMTI Spatial Inc. data were used to generate the census tract, dissemination area,
weighted dissemination area, dissemination block, postal code centroids, the street
segment center, and the geocoded point address proxies, and to generate the shortest path

network routes and polygons.
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3.2.2 GIS methods

Shortest path routes (by distance) along the street network from the address proxies to the
health-related destination facilities were created using the ArcMap 10.0 Network Analyst
‘Closest Facility’ function (ESRI, 2011). Starting from each dwelling centroid a network
route was created to the nearest health-related facility (i.e., the nearest hospital, school,
grocery store, junk food outlet, and public recreation facility). This procedure was
repeated for every type of health facility until all 104,024 dwelling centroids were
assigned a separate shortest path route to one of each of the facility types. The process
was then repeated for each of the eight address proxies. The distance measures were
stratified into rural, small town, suburban, and urban neighbourhood types and exported
from ArcMap 10.0 for analysis in Excel 2010 (Microsoft, 2011) and PASW (SPSS) 18
(IBM Corp., 2011). A recent study of accessibility to multiple food retailer types in rural
Middlesex County illustrated how accessibility could be misclassified if facilities outside
the county boundary are not considered in distance calculations (Sadler et al., 2011).
Sadler and colleagues (2011) demonstrated that when facilities in neighbouring counties
were included in the spatial analyses, distance to the nearest grocery store decreased for
nearly one-third of households, and distance to nearest fast food outlet decreased for over
one-half of households. The edge effect was taken into account in the present study by
compiling the datasets for selected health-related facilities in neighbouring counties
(within 10 km from the border of Middlesex County) and then including these facilities in

the distance calculations.

3.2.3 Misclassified address proxies

When spatial aggregations of the subject populations or geographic features are used as
proxies in a study of accessibility, the researcher risks misrepresenting the accessibility
metric used in that study. Figure 3.3 illustrates several potential problems of
misclassification and miscounting of grocery stores by identifying three accessibility
areas; the census tract boundary; a 1000 m network service area buffer originating from
the centroid of that same census tract; and a 1000 m network service area buffer
originating from a dwelling centroid from within the same census tract. The figure shows

that the census tract boundary and the 1000 m network service area buffer around the
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census tract centroid does not contain a grocery store, and thus would be coded as
inaccessible; however, the dwelling centroid buffer does ‘contain’ at least one grocery
store and would be coded as accessible. Figure 3.3 also illustrates that the count and
density metrics will be affected by the positional discrepancy of using imprecise address
proxies. We see that the census tract boundary and the buffer around the census tract
centroid do not contain any grocery stores, while the dwelling centroid buffer contains
two grocery stores. A further look at Figure 3.3 reveals that the distance between the
census tract centroid and the dwelling centroid is biased in the direction of the positional
discrepancy. In this example, if the census tract centroid were used as the address proxy,
the researcher would have coded all sample unit locations within the census tract as not
having a grocery store within 2000 m, when in fact, there are two grocery stores within
1000 m for some of the sample units. Moreover, the researcher would have over-
estimated the distance to the closest grocery store for many dwelling units, such as the

one in the example.



Grocery

*  _Store B e e
. .- CTCentroid

1000m Network Buffer (Building Centroid)

o - 280 500 1,000
' Meters : '

Figure 3.3 Hlustration of threshold distance miscoding errors.

Following some commonly-used distances found in previous health-related studies of
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accessibility (as noted above), the thresholds distances used in this study were: 500 m for

junk food and public recreation spaces, 1000 m for grocery stores, 1600 m for schools,
and 10 km for hospitals. Shortest path route buffers had been created for each address

proxy, and each address proxy point was binary encoded, either the address proxy was
inside the threshold (coded as 1) or outside the threshold (coded as 0). The binary

variable in matched to every dwelling centroid from every corresponding address proxy

and then reported the percentages of improperly coded addresses.
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3.2.4  Statistical methods

The distance discrepancies were generated by taking the shortest path distance from a
dwelling centroid to a health-related facility and then subtracting the corresponding

shortest distance from each corresponding address proxy to that same health facility type.

pd = By — dys (3.1)

Where the positional discrepancy (pd) is the difference between proxy address network
shortest path distance (psp) to the closest corresponding health related facility in metres
and the “gold standard” centroid of the dwelling shortest path distance to the closest

corresponding health related facility (dgs).

The Phi correlation coefficient was generated in PASW (SPSS) 18 (IBM Corp., 2011)
and was used to measure the association between the binary threshold values (i.e.,
accessible/inaccessible) between the dwelling centroid threshold value (0,1) to each of its
corresponding address proxy threshold values (0,1). Phi will return an association
coefficient (@) between -1 and +1. A positive value of +1 occurs when all the dwelling
threshold values and all the address proxy threshold values are in concordance with one
another. Conversely, if there is total discordance between all the dwelling threshold
values and all the address proxy thresholds the Phi coefficient will be -1. If some
dwelling centroid threshold values differ from those of the corresponding address proxy,
the coefficient will begin to move toward 0, thus suggesting a weaker association
regarding accessibility encoding for that address proxy. The significantly positive
associations (sig. < 0.01) are between 0.7 and 1.0.

3.3 Results

3.3.1 Magnitude of positional discrepancies

In almost every case, urban neighbourhoods show the smallest median distance
discrepancies for all address proxies, followed successively by suburban, small town, and
rural areas (see Table 3.1). As expected, lot centroids were the most accurate proxy for
precise residential dwelling location that were examined in relation to nearest distance to

health-related facilities, with the median positional discrepancy (50th percentile) between
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lot centroids and dwelling centroids equal to 6-9 m for locations in urban and suburban
neighborhoods, 25-43 m for locations in small towns, and 43-50 m for locations in rural

Table 3.1 Median positional discrepancy (metres) by facility type and

neighbourhood type.

Neighbourhood type Rural  Small Suburban  Urban

(m)  town (m) (m) (m)
Junk food
Lot centroids 49 29 9 8
Geocoded point 85 48 51 38
Street segment center 175 65 75 52
Postal code 762 373 78 54
Dissemination block 680 147 127 78
Weighted dissemination area 897 279 168 100
Dissemination area 1054 509 176 113
Census tract 930 1414 243 160
Public recreation places
Lot centroids 43 43 8 8
Geocoded point 77 34 75 84
Street segment center 185 52 106 102
Postal code 896 1177 114 109
Dissemination block 677 156 176 145
Weighted dissemination area 988 296 228 185
Dissemination area 1070 599 241 207
Census tract 1347 1723 352 247
Grocery stores
Lot centroids 43 25 6 9
Geocoded point 100 82 80 59
Street segment center 197 95 100 76
Postal code 1196 494 98 79
Dissemination block 810 169 141 112
Weighted dissemination area 1193 335 198 145
Dissemination area 1263 559 201 158
Census tract 1704 1870 373 343
Schools
Lot centroids 50 32 6 9
Geocoded point 94 51 60 55
Street segment center 173 66 80 66
Postal code 913 711 82 68
Dissemination block 665 148 133 101
Weighted dissemination area 1017 361 187 132
Dissemination area 1140 573 194 140
Census tract 1268 1679 363 251
Hospitals
Lot centroids 46 27 5 8
Geocoded point 85 65 37 75
Street segment center 187 100 67 93
Postal code 1363 537 78 101
Dissemination block 769 349 176 160
Weighted dissemination area 1350 415 203 166
Dissemination area 1255 538 204 171
Census tract 2088 2166 445 343

areas. The second most accurate proxy for residential location was the geocoded point,
with median positional discrepancies between geocoded points and dwelling centroids
between 38 and 84 m for residential locations in urban neighborhoods, 37-80 m for

locations in suburban neighborhoods, 34-82 m for small-town locations, and 77-100 m
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in rural locations. The third most accurate address proxy examined was the street segment
centroid, with median positional discrepancies in relation to dwelling centroids between
52 and 102 m for residential locations in urban neighborhoods, 75-106 m for locations in
suburban neighborhoods, 52-100 m for small-town locations, and 173-197 metres in
rural locations. In urban and suburban areas, the positional discrepancies between postal
code centroids and dwelling centroids are very similar to the positional discrepancies
between street segment centroids and dwelling centroids; however, the positional
discrepancies are drastically worse when using postal codes in small towns (median
positional discrepancies between 373 and 1177 m) and rural areas (positional
discrepancies between 762 and 1363 m). In rural areas and small towns, the positional
errors are always higher when using postal code centroids as address proxies compared to
centroids of dissemination blocks, weighted dissemination areas, and dissemination areas.
Conversely, postal codes show smaller positional errors than these same address proxies
in urban and suburban areas. Census tract centroids are always the address proxy with the
most considerable positional error for all neighborhoods and facility types, with median
positional discrepancies ranging from the lowest distance error of 160 m (when
calculating distance to junk food locations in urban areas) to a high of 2088 m (when
calculating distance to hospital in rural areas). Tables 3.2 — 3.6 provide additional
information on the positional discrepancies (including mean positional discrepancies, as
well as errors at 75th, 90th, 95th, and 99th percentiles) between the address proxies and
the dwelling centroids they are meant to represent. The general pattern observable for the
median (i.e., 50th percentile) positional discrepancies (reported in Table 3.1) tends to be
similar in relative terms, but much less dramatic in terms of absolute positional
discrepancies, compared to the mean positional discrepancies, as well as the 75th, 90th,

95th, and 99th percentile of discrepancies.

3.3.2 Positional discrepancy by facility type

The positional discrepancies between the address proxy locations and the dwelling
centroids they are to represent not only vary considerably by neighbourhood type but
they also vary by health facility type. When lot centroids are used as address proxies,

there is a minimal variability between positional discrepancies for all facility types,
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regardless of neighbourhood type (rural = £7 m; urban = £1 m) (see Table 3.1). Of the 32
unique combinations of address proxies, neighbourhood types, and facility types, it is the
junk food outlets (N = 1213) that have the minimum median positional discrepancies
68.8% of the time (22/32), while public recreation facilities (N = 512), singularly,
account for almost 50% (15/32) of the facilities with maximum median positional
discrepancies. The junk food outlets have small median positional discrepancies for all
the address proxies in the urban neighbourhood type. Junk food outlets, also, account for
all the minimum median positional discrepancies in suburban and small-town
neighbourhood types for postal codes, dissemination block, weighted dissemination area,
dissemination area, and census tract proxies. For rural neighbourhoods, the minimum
median positional discrepancies for junk food outlets are found when the postal code,
weighted dissemination area, and census tract proxies are used. For the most part, public
recreation facilities (N = 512) display more considerable median positional discrepancies
than all other health-related facilities in urban and suburban areas, while hospitals (N = 6)
and grocery stores (N = 52) show the greatest positional discrepancies compared to the
other health-related facilities in rural and small towns. The postal code median distance
error of 1177 m for a small-town and public recreation facilities is a larger error than
rural neighbourhood types and public recreation facilities (896).
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Table 3.2 Positional discrepancies (m) from address proxy to closest junk food

retailer.
Neighbourhood % Lot Geocoded Street Postal code DB Weighted DA Census
type (N = 104,024) (np =104,024) point segment (np = 14,265) (np, = 4210) DA (np=665) tract”
(np = 104,024)  (np = 19,365) (np = 665) (np = 94)
Rural Mean 69 163 274 1344 984 1325 1415 1427
(n=16,686) Median 49 85 175 762 678 897 1054 930
75th 74 168 370 2040 1431 1930 2033 2159
90th 166 337 597 3742 2312 3219 3261 3473
95th 182 471 772 4436 2835 4097 4060 4136
99th 364 1683 1683 5832 4053 5536 5690 5383
Small town Mean 38 69 89 1241 455 562 979 1883
(n=14,139) Median 29 48 65 373 146 279 509 1414
75th 35 78 111 1786 458 623 1227 3280
90th 56 148 181 4467 1231 1207 2528 4190
95th 99 196 245 5099 2515 2774 3765 4791
99th 187 351 475 6483 3418 3729 5926 5448
Suburban Mean 12 83 111 107 186 226 250 297
(n=54,579) Median 9 51 75 78 126 168 176 243
75th 11 76 125 133 255 312 334 423
90th 17 147 238 224 430 501 564 626
95th 35 331 380 331 558 637 730 767
99th 167 551 625 547 881 975 1216 1037
Urban Mean 13 51 66 71 108 126 139 195
(n = 18620)  Median 8 38 52 54 77 100 113 160
75th 12 51 81 90 146 176 194 281
90th 17 77 120 139 230 260 284 405
95th 30 137 166 187 309 322 351 492
99th 61 366 377 413 530 527 550 651

np — number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and
therefore coverage is biased toward more densely populated rural areas.
Abbreviations: DB — dissemination block; DA — dissemination area; N — number of dwelling centroids; n — number of
dwelling centroids by neighborhood type
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recreation place.
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Neighbourhood % Lot Geocoded Street Postal code DB Weighted DA Census
type (N =104,024) (np=104,024) point segment (np = 14,265)  (np = 4210) DA (np = 665)  tract”
(np =104,024) (1, = 19,365) (np = 665) (np=94)
Rural Mean 63 156 270 1645 972 1491 1520 1961
(n=16,686) Median 43 77 185 896 677 988 1070 1347
75th 72 161 401 2393 1427 2177 2180 2749
90th 158 386 608 4206 2324 3612 3561 4629
95th 185 606 781 5458 2879 4570 4401 6017
99th 346 1069 1118 8931 4024 6495 6097 8579
Small town Mean 41 56 77 1779 503 645 1105 2020
(n=14,139) Median 38 34 52 1177 156 296 599 1723
75th 43 60 92 3109 482 712 1513 3172
90th 55 109 155 4076 1590 1699 2882 3768
95th 929 175 235 5095 2770 2971 4010 6521
99th 195 464 517 9996 3327 4521 6495 7828
Suburban Mean 11 191 214 211 266 319 347 525
(n =54,579) Median 8 75 106 114 176 228 241 352
75th 9 238 265 257 367 443 473 645
90th 16 557 586 558 632 732 772 1031
95th 33 745 766 761 822 920 985 1420
99th 161 1207 1243 1231 1242 1383 1674 4993
Urban Mean 11 182 193 195 208 242 265 293
(n=18,620) Median 8 84 102 109 145 185 207 247
75th 12 257 275 279 290 347 377 419
90th 18 513 527 518 483 523 567 593
95th 24 632 639 639 608 638 690 714
99th 60 937 921 953 938 1055 1084 943

np — number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and
therefore coverage is biased toward more densely populated rural areas.
Abbreviations: DB — dissemination block; DA — dissemination area; N — number of dwelling centroids; n — number of

dwelling centroids by neighborhood type
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Table 3.4 Positional discrepancies (m) from address proxy to closest grocery store.

Neighbourhood % Lot Geocoded Street Postal code DB Weighted DA Census
type (N =104024) (np =104,024) point segment (np = 14,265)  (np = 4210) DA (np = 665)  tract”
(np =104,024)  (np = 19,365) (np = 665) (1p=94)
Rural Mean 64 281 377 2000 1095 1707 1721 2581
(n=16,686) Median 43 100 197 1196 810 1193 1263 1704
75th 74 212 450 2793 1599 2476 2463 3707
90th 168 568 805 4798 2531 4029 3877 6123
95th 191 1420 1361 6736 2976 5102 4773 7361
99th 380 2740 2762 11412 4122 7154 6604 9584
Small town Mean 3 115 135 2000 471 651 1102 2730
(n =14139)  Median 25 82 95 494 169 335 559 1870
75th 31 121 152 3532 493 765 1501 3653
90th 53 211 288 5529 1465 1623 2963 6821
95th 95 454 482 8523 2234 2367 3683 9253
99th 184 567 647 10709 3027 4722 6662 10225
Suburban Mean 12 168 197 190 271 327 345 573
(n = 54579)  Median 6 80 100 98 141 198 201 373
75th 9 116 157 162 294 394 404 697
90th 16 171 258 257 614 727 762 1136
95th 34 609 736 629 994 1147 1354 1817
99th 164 2212 2405 2237 2190 2094 2358 3819
Urban Mean 11 115 129 132 177 203 217 381
(n =18620) Median 9 59 76 79 112 145 158 343
75th 14 88 118 129 209 262 281 553
90th 19 232 247 274 423 442 476 752
95th 23 587 594 580 671 656 686 871
99th 61 854 892 902 924 935 951 1089

np — number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and
therefore coverage is biased toward more densely populated rural areas.

Abbreviations: DB — dissemination block; DA — dissemination area; N — number of dwelling centroids; n — number of

dwelling centroids by neighborhood type



Table 3.5 Positional discrepancies (m) from address proxy to closest school.

61

Neighbourhood % Lot Geocoded Street Postal code DB Weighted ~ DA Census
type (N =104,024) (np=104,024) point segment (np = 14265)  (np = 4210) DA (np = 665)  tract”
(np = 104,024)  (np = 19,365) (1p = 665) (np=94)
Rural Mean 68 147 254 1547 974 1564 1595 1850
(n=16,686) Median 50 94 173 913 665 1017 1140 1268
75th 76 159 367 2339 1388 2300 2299 2616
90th 163 294 590 3957 2284 3852 3784 4441
95th 187 413 743 5021 2929 4795 4752 5550
99th 378 1074 1071 7693 4060 6308 6303 7493
Small town Mean 34 65 87 1522 445 666 1087 2155
(n=14,139) Median 32 51 66 711 148 361 573 1679
75th 38 79 108 2465 477 806 1423 2954
90th 61 115 170 4048 1311 1517 2604 5926
95th 100 163 228 5922 2271 2723 4322 6875
99th 189 358 483 6990 3047 4187 6560 7758
Suburban Mean 13 82 108 109 215 272 300 510
(n=54,579) Median 6 60 80 82 133 187 194 363
75th 10 84 125 136 273 357 379 667
90th 15 126 191 206 513 609 671 1057
95th 34 180 286 277 716 838 976 1567
99th 166 687 713 698 1200 1341 1597 2830
Urban Mean 13 68 81 84 139 162 171 296
(n=18,620) Median 9 55 66 68 101 132 140 251
75th 14 74 100 110 186 227 241 442
90th 19 111 147 164 295 331 349 624
95th 23 170 190 210 387 405 426 724
99th 61 381 417 409 654 641 651 869

np — number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and
therefore coverage is biased toward more densely populated rural areas.

Abbreviations: DB — dissemination block; DA — dissemination area; N — number of dwelling centroids; n — number of

dwelling centroids by neighborhood type
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Neighbourhood % Lot Geocoded Street Postal code DB Weighted DA Census
type (N =104,024) (np=104,024) point segment (np = 14,265)  (np = 4210) DA (np = 665)  tract”
(np =104,024)  (np = 19,365) (np = 665) (np=94)
Rural Mean 66 176 278 2382 1082 1903 1854 3285
(n=16,686) Median 46 85 187 1363 769 1350 1255 2088
75th 72 284 426 3683 1561 2732 2700 5223
90th 156 458 655 6150 2508 4496 4400 7815
95th 180 553 817 8116 3052 5708 5535 9735
99th 359 859 1148 11812 4375 8419 8292 13483
Small town Mean 34 178 192 1296 546 674 998 2413
(n=14,139) Median 27 65 100 537 349 415 538 2166
75th 33 335 341 1589 645 832 1273 3266
90th 56 443 450 3664 1355 1580 2373 5281
95th 96 511 516 4320 2203 2319 3766 6095
99th 185 821 828 8095 3060 3690 6689 9435
Suburban Mean 12 68 93 102 255 287 301 651
(n=54,579) Median 5 37 67 78 176 203 204 445
75th 9 75 127 143 326 384 390 797
90th 16 178 189 214 556 640 647 1256
95th 33 188 231 267 777 848 885 1689
99th 164 367 503 441 1358 1389 1620 5312
Urban Mean 11 101 104 114 190 207 214 414
(n=18,620) Median 8 75 93 101 160 166 171 343
75th 12 181 170 175 262 292 301 580
90th 17 193 204 225 380 434 445 835
95th 22 200 226 263 464 538 555 1078
99th 58 312 319 362 738 774 814 1668

np — number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and
therefore coverage is biased toward more densely populated rural areas.

Abbreviations: DB — dissemination block; DA — dissemination area; N — number of dwelling centroids; n — number of
dwelling centroids by neighborhood type

3.3.3  How positional discrepancy impacts accessibility measures

In addition to reporting the positional discrepancy errors, it is instructive to look at how
much of an effect these errors have on the classification of the population aggregated in
each of the address proxies. In some health-related accessibility studies continuous
variables are used to measure the proximity of health-related facilities to an address
proxy. Some studies use binary variables to identify whether or not a health-related
facility exists within a set threshold distance (or buffer radius) around a proxy (P.
Apparicio et al., 2008; Talen, 2003); still more studies use density and counts, however,
as indicated in Figure 3.3, this approach can also lead to severe errors caused by
misclassification. Table 3.7 considers the impact of positional discrepancy on
accessibility, by reporting the percentage of cases that are incorrectly classified as
accessible or not, by address proxy, neighbourhood type and health-related facility type.
The general trend is that the smaller the distance threshold, the higher the percentage of
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addresses misclassified; also, the larger the geographic area of the unit of aggregation, the
higher the percentage of addresses which are misclassified. For example, using the
centroid of a large aggregated unit such as a census tract as a proxy instead of a set of
residential addresses when calculating containment of a park within 500 m from
residential addresses in urban neighbourhoods will result in nearly half (49.5) of all
observations being misclassified. On the other hand, using a high threshold distance of 10
km to determine accessibility to hospitals results in no misclassification in urban areas, no
matter what the address proxy used (as the threshold practically covers the entire urban
area). The Phi coefficient shows a positive association between each of the dwelling
centroids and every corresponding address proxy of the coding threshold (inside/ outside)
across all the health-related facility thresholds, except for one. There is a weak negative
(@ =-0.6, p < 0.01) association for the urban census tract proxy coding thresholds for
public recreation facilities. For example, census tract centroids coded as ‘outside’ (those
that do not have a public recreation facility within 500 m) will have many corresponding
dwelling centroids coded as “inside’ (those that do have a public recreation facility within
500 m) resulting in this negative association. There is a strong positive association
between dwelling centroid and lot centroid for threshold distances of 1 km to grocery
stores. If a suburban dwelling centroid is coded as being within 1 km from a grocery store
(code = 1), there is a strong probability (¢ = 0.996, p < 0.01) that the corresponding lot
centroid will also be within 1 km of a grocery store and coded in the same way.
Conversely, if a dwelling centroid is coded as being farther away than 1 km from a
grocery store (code = 0), then there is the same probability (@ = 0.996, p < 0.01) that the
corresponding lot centroid will also be coded in the same way. The range of Phi values
for dwellings and corresponding census tracts, dissemination areas, and weighted
dissemination area proxies for junk food and recreation places (500 m thresholds) are
weakly associated (-0.6 < @ < 0.47, p < 0.01). The fewest misclassification errors and
strongest associations for the 500 m thresholds exist for lot centroids (@ > 0.93, p < 0.01)
followed by geocoded points (0.6 < @ < 0.87, p <0.01). Postal code centroids showed
very high errors in coding for small town (29.9%) and weak association (rural @ = 0.26,
small town @ = 0.29, suburban @ = 0.59, and urban @ = 0.58, p <0.01).



Table 3.7 Accessibility thresholds: percentage of misclassified observations by

address proxy.

64

Address proxy Neighbourhood type Junk food Recreation places Grocery Schools Hospitals
(500 m) (500 m) (1 km) (1.6 km) (10 km)
Census tracts (N = 94) Rural” (n = 17) 13.5 8.0 4.7 18.3 26.4
Small town (n =3) 36.7 33.7 21.0 35.7 10.2
Suburban (n = 54) 31.2 47.4 16.8 15.9 5.1*
Urban (n = 20) 16.9 49.5 37.1 0.1" 0.0*
DA(N-665) Rural (n=125) 7.6 37 3.8 11.9 8.6
Small town (n = 43) 354 37.1 22.8 29.3 2.7
Suburban (n = 367) 23.9 28.2 11.4 7.6 0.7"
Urban (n = 130) 15.5 335 15.3* 0.1" 0.0*
Weighted DA (N = 665) Rural (n=110) 9.6 4.7 3.9 11.9 8.5
Small town (n = 53) 315 335 15.2 19.2 1.2*
Suburban (n =372) 23.0 29.2 11.5 6.7 0.7"
Urban (n = 130) 10.7 29.7 15.5" 0.1* 0.0"
DB (N = 4210) Rural (n = 1499) 6.9 2.9 25 8.5" 5.2°
Small town (n = 593) 18.2 22.2 11.2* 15.3" 1.0*
Suburban (n = 1409) 18.4 25.6 9.1 5.9 0.9"
Urban (n = 709) 12.0 24.5 13.1° 1.1° 0.0"
Postal code (N = 14,256) Rural (n = 2539) 9.2 6.8 3.0" 8.1" 6.9"
Small town 29.9 33.2 27.8 37.0 3.5%
(n = 1003)
Suburban (n = 7792) 11.3* 21.0 6.4" 24" 0.3"
Urban (n = 2922) 6.5 22.8 10.5* 0.1" 0.0*
Street segment Rural (n=6310) 4.3" 2.3% 1.0* 3.6" 1.2"
(N = 19,365) Small town 9.0" 8.7" 4.3" 2.7 0.6"
(n = 2227)
Suburban (n = 8364) 12.4* 21.6 6.8" 2.3" 0.3*
Urban (n = 2464) 6.2 23.1 10.1" 0.1* 0.0*
Geocoded (N = 104,024) Rural (n = 16,686) 2.9* 1.9* 1.1* 25" 0.5*
Small town 7.1" 6.7" 4.0" 22" 0.4*
(n=14,139)
Suburban 8.9" 18.3 5.3" 15" 0.2*
(n = 54,579)
Urban (n = 18,620) 5.6" 21.1 9.4* 0.1" 0.0
Lot (N = 104,024) Rural (n = 16,686) 0.8" 0.4" 0.2" 0.6" 0.5"
Small town 2.0" 1.8* 0.8* 0.6" 0.1*
(n=14,139)
Suburban 17" 15" 0.6 0.4* 0.1*
(n = 54,579)
Urban (n = 18,620) 1.5* 1.7* 1.3* 0.0* 0.0*

Abbreviations: DB — dissemination block; DA — dissemination area; N — number of address proxies; n — number of address proxies by

neighbourhood type.

" Census tracts only exist for rural areas within Census Metropolitan Areas and therefore coverage is biased toward more densely populated

rural areas.

* Phi coefficient @ strong positive association (+0.7 to +1.0) sig. < 0.01.
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3.4 Discussion

It is common in public health research to use spatially aggregated units as address proxies
for the locations of subjects and facilities when more precise address information is
unavailable. It is rare, however, for public health researchers to examine, or even
mention, the possible distance and misclassification errors resulting from the positional
discrepancies between the locations of imprecise address proxies and precise subject
locations. It is inappropriate for researchers to ignore these inaccuracies or to merely
accept them as an inevitable component of doing spatial research. It is essential to
identify and quantify any spatial errors so that we can critically examine research findings
and adequately advise those to whom policy recommendations are made regarding the
potential correlations between subject populations and accessibility to health

promoting/demoting environmental features.

One of the contributions of this study is to quantitatively describe the magnitude of
positional discrepancies that result when several of the most commonly-used address
proxies are implemented in several different neighbourhood types, including rural,
suburban, small town, and urban areas. It is recognized that accessibility thresholds will
vary by setting, as well as health outcome or health-related behaviour. Therefore, by
demonstrating how the magnitude of the positional discrepancies can affect measures of
accessibility (or exposure) to a variety of health-related spaces in different environments
and at different distance thresholds, this study also makes a methodological contribution
to the environmental and public health literature.

The dwelling as represented by the centroid of the building in which the study participant
resides is considered the gold standard for residential address location. If dwelling
centroids are not available to the researcher, then the second most accurate address proxy
is the centroid of the parcel of land (i.e., the lot) on which the dwelling unit is located:;
this finding is true regardless of neighbourhood type. When the lot centroid is used as an
address proxy, accessibility misclassification errors are virtually nonexistent in urban and

suburban neighbourhoods, and are minor in rural areas and small towns.
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Where digital files for all residential buildings or residential lots are not available for a
study region, but the researcher has access to the complete civic address (i.e., street name
and number) for each subject, it is widespread for researchers to geocode their tables of
subject addresses using ‘address locator’ tools to interpolate residential addresses. While
the median distance error for this address proxy is too high for researchers to just ignore
(ranging from a low of 34 m to a high of 100 m depending on facility and neighborhood
types), for the most part, there are few instances of miscoded accessibility when this
commonly used address proxy is used: fewer than one-tenth (8.9%) of all observations
are misclassified, except for recreation spaces within 500 metres in suburban and urban
neighborhoods, where approximately one-fifth of observations are misclassified (18.3%
and 21.1%, respectively).

A variation on the interpolated address technique is to use the centroid of the closest
street segment as address proxy. This method is useful for environmental equity studies,
where researchers may want to map and visualize how access to specific environmental
features varies at a fine scale across a study area, but they do not have (or cannot show
for privacy reasons) individual address data for subject populations. The street segment
centreline address proxy appeared to have fewer distance and misclassification errors
than the more commonly-used postal code centroids, particularly for small-town and rural

areas.

Postal codes are undoubtedly the most commonly-used proxy for residential addresses of
research subjects in Canadian public health studies. In Canada, the postal code centroid is
often the best solution when exact addresses are unavailable, or inaccessible due to
research ethics board policies and privacy concerns. The results indicate that postal code
centroids are reasonably accurate proxies for residential addresses in urban and suburban
areas (median positional discrepancies between 54 and 109 m depending on facility
type); however, it is recommended that postal codes should be used only with extreme
caution for studies based in small town and rural areas of Canada. Positional
discrepancies between postal code centroid and dwelling centroid can be very high in
rural areas: depending on facility type, median positional discrepancies in rural areas

ranged between 762 and 1363 m. Furthermore, postal codes are found to be reasonably
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accurate for accessibility studies when distance thresholds are 1000 m or higher;
however, it is advised that postal codes should not be used as proxies for residential
addresses in accessibility studies where the threshold distances or density buffers are as
short as 500 m. Postal code centroids are particularly prone to misrepresenting
accessibility in small towns and rural Canada, and therefore should only be used with
more caution in spatial epidemiologic research in Canada.

Urban areas show the smallest distance error for all address proxies followed by
suburban, small town, and rural neighbourhoods. As expected, the magnitude of
positional discrepancies and threshold misclassification errors are more substantial, or
most problematic, when the address proxy is the centroid of a large geographic
aggregation such as the census tract. In general, the census tract performed poorly as an
address proxy except in urban areas where threshold distances are 1600 m or higher.
Similarly, it is recommended that centroids of dissemination areas and weighted
dissemination areas should only be used as residential address proxies in urban areas
when threshold distances are set at greater than 1000 m and in suburban areas when
threshold distances are set at greater than 1600 m. As for small Canadian towns,
researchers should also avoid all spatially aggregated address proxies for threshold
distances less than 1.6 km as the misclassification errors are consistently large, as are the
positional discrepancies. While these recommendations are based on the empirical
findings related to the specific health-related facilities examined in this study, it is
recognized that the positional accuracy required for spatial epidemiology research also
depends on the specific acessibility related health outcome under examination (e.g.
spatial accuracy is more critical for studies of exposure to air pollution than distance to

nearest hospital).

This study examined errors in the shortest path distances from each address proxy to the
closest public recreation space, junk food outlet, grocery store, school, and hospital in a
full range of neighbourhood types. One way in which this study differs from previous
studies of positional error is that street network distances were used in the error
calculation, rather than Euclidean distances. Since a subject must use the existing street

network (or pathway network) to travel from their dwelling to access the nearest park,
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junk food outlet, grocery store, school, or hospital, it would be inaccurate to calculate
positional errors and therefore accessibility misclassification as Euclidean or ‘crow fly’
distances between address proxies and dwelling centroids (except where distances are too
small to require use of the network). As a necessary methodological step to create
baseline distance measures for comparative purposes, this study assigned health-related
accessibility scores to every residential address in the study area. These individual values
are at the finest scale so that, in future, they can be aggregated in any geographic frame a
researcher would see fit to use. By creating accessibility measures to individual dwelling
centroids, researchers are no longer constrained by the (often arbitrary) boundaries of

blocks, postal codes, dissemination areas, census tracts, or even counties.

In the last several years, researchers have access to more high resolution address point
locations than ever before. In the event that a researcher has a combination of health
data, only available at the census tract level, and high resolution address point locations
where a distance measure is required, the census tract centroid would not be used.
Individual distance measures for individual address point locations within the CT would
be calculated, and then those distances would be aggregated to generate an integrated
measure for that census tract, in lieu of the CT centroid. All the address proxies identified
in this thesis with high positional discrepancies (e.g. census tract, dissemination area,
rural postal codes) could have these centroid errors mitigated by combining distances

from individual higher resolution address points located within them.

3.5 Conclusion

In spatial epidemiologic and public health research it is common to use spatially
aggregated units such as centroids of postal/zip codes, census tracts, dissemination areas,
blocks or block groups as proxies for sample unit locations. Few studies, however, have
addressed the potential problems associated with using these units as address proxies.
Chapter 3 quantifies the magnitude of positional discrepancies and accessibility
misclassification that result from using several commonly-used address proxies in public
health research. The impact of these positional discrepancies for spatial epidemiology
was illustrated by examining the misclassification of accessibility to several health-

related facilities, including hospitals, public recreation spaces, schools, grocery stores,
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and junk food retailers throughout the City of London and Middlesex County, Ontario,
Canada. Positional discrepancies were quantified by multiple neighborhood types,
revealing that address proxies are most problematic when used to represent residential
locations in small towns and rural areas compared to suburban and urban areas. Findings
indicate that the shorter the threshold distance used to measure accessibility between
subject population and a health-related facility, the greater the proportion of misclassified
addresses. Using address proxies based on large aggregated units such as centroids of
census tracts or dissemination areas can result in very large positional discrepancies
(median errors up to 343 and 2088 m in urban and rural areas, respectively), and
therefore should be avoided in spatial epidemiologic research. Even smaller, commonly-
used, proxies for residential address, such as postal code centroids, can have large
positional discrepancies (median errors up to 109 and 1363 m in urban and rural areas,
respectively) and are prone to misrepresenting accessibility in small towns and rural
Canada; therefore, postal codes should only be used with caution in spatial epidemiologic

research.

There is a growing trend in public health studies, particularly within the burgeoning field
of “active living research’, toward the use of ‘ego-centric’ units (typically defined by
buffers around a study participant’s residence) to characterize a participant’s
neighborhood in order to examine the effect that local environmental factors (e.g. the mix
of land uses and coverage of sidewalks) may have on health-related behaviors such as
walking (e.g. Larsen et al., 2009) and outcomes such as physical activity levels (Tucker et
al., 2009). The findings of this study have revealed that if commonly-used proxies such as
centroids of census tracts, dissemination areas, and even postal codes, are used instead of
exact addresses, positional discrepancies can be significantly large. If positional
discrepancies are large, such ‘ego-centric’ neighbourhood units will be significantly ‘off
center’, and local environments can be mischaracterized. For example, the chances of
misclassifying a health-promoting feature of the neighborhood, such as a park, or a
health-damaging feature, such as a junk food outlet, as accessible (or not) can be
unacceptably high, particularly when threshold distances are short, such as the
commonly-used 500 m buffer (or 5-min walk zone). If positional discrepancies are too
large, it will be impossible for the researcher to resolve whether any health effects of an
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environment are truly present. Improving the accuracy of the distance calculations
increases the utility of the findings so that making decisions and enacting policies aimed
at improving a population’s spatial accessibility to environmental features will potentially

contribute to the overall health and well-being of the population.

3.6 Bridge to Chapter 4

As demonstrated, many researchers have attempted to define accessibility of their
subjects to the built environment through the use of address proxies and common
geospatial methods. However, despite the wide range of scholarship on the topic, many of
these studies suffer from serious methodological weaknesses and inadequate spatial data
which, in turn, limit their usefulness. Chapter 3 outlined that the spatial inaccuracies and
accessibility misclassifications, when employing some of these common spatial data at
the neighbourhood scale, are severe enough to be avoided in future studies. This study
was originally published with the title “Quantifying the magnitude of environmental
exposure misclassification when using imprecise address proxies in public health
research” at a time when those engaged in this type of research were conflating the terms
accessibility and exposure. For the purpose of this thesis the word exposure has been
replaced with accessibility to more closely match the terminology in this thesis and the

terminology in the present state of the science.

If researchers are going to suggest and develop appropriate interventions for the design of
the built environment, to improve the health of children and the rest of the population,
then they must make use of spatially accurate and scale appropriate data. The methods
outlined in this chapter apply to other regions in Canada and can be useful for any study
documenting geographic accessibility to health-promoting/ health-damaging
environmental features. With the foundation of a precise, accurate spatial data and sound
geospatial methods, planners and stakeholders can better plan for future interventions.

In Chapter 4, the limits of the ego-centric geospatial methods of distance and network
buffers around address proxies are challenged with the incorporation of the GPS tracking
of survey participants. By employing GPS, the researcher can measure accessibility as a
function of the actual geographic domain rather than arbitrary ‘distance from” measures.
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The actual places visited and time elapsed at each place presents the opportunity to
measure the exposure to and engagement at these places respectively and, therefore,
reduces the confounding nature of the modifiable area unit and uncertain geographic

context problems, in terms of statistical analysis.
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Chapter 4

4  Objectively measuring children’s time spent outdoors
exposure to, and engagement in green space while
using passive GPS devices

4.1 Introduction

Recently, there has been significant amounts of literature published on the health benefits
of spending time outdoors, especially for children. Research shows that spending time
outdoors can positively impact children’s physical activity, mental health and well-being,
and social, and cognitive development (Gilliland, 2018). Dramatic increases in sedentary
behaviour and time spent using electronic devices is a concern of many parents,
practitioners, and researchers, which supports further investigation into the relationship

between time spent outdoors and a variety of children’s health outcomes.

A body of the literature identified in a recent systematic review assessed the effect of
outdoor time on children’s physical activity, sedentary behaviour, and physical fitness
(Gray et al., 2015). Several studies included in this review confirmed that there were
overall positive effects of outdoor time on physical activity, sedentary behaviour, and
cardiorespiratory fitness (Gray et al., 2015). Each of the studies assessing physical
activity also found higher rates of physical activity outdoors as compared with rates
indoors. Distinguishing the amount of time that children spend outdoors is important
since studies have shown that children are more physically active in outdoor

environments (Raustorp et al., 2012).

Previous research has conceptualized interactions with nature outdoors into three types:
accessibility, exposure, and engagement (Tillmann et al., 2018). In their review of the
impacts of nature interactions on children’s mental health, they describe how some of
these studies using measures of accessibility, such as residential proximity to outdoor
greenspace, are limited in their assessment of children’s interaction with their natural
environments, as accessibility studies do not establish that children are making use of

these spaces. Research therefore should be accounting for the individual choices made by



77

children when discussing interactions with particular environments. Exposure to, and
engagement with outdoor environments give us more accurate representations of the

actual time children spend at particular locations.

One of the significant barriers to assessing children’s time spent in outdoor environments
is the inability to precisely determine whether a child’s GPS tracks are indoors or
outdoors. Previous research has used time blocks, such as a school schedule, to determine
whether a child is most likely indoors or outdoors (Loebach & Gilliland, 2014). However,
this has limitations in that it assumes that all participants are in similar environments
indoors (in the school building) and outdoor (school yard) based on a school schedule and
does not take into account trips away from school, or absences. Some studies have
supplemented time blocks with self or parent-reported activity diaries detailing where
children’s activities are taking place; however, this again makes some assumptions based
on time blocks included in the diary and creates an opportunity for inaccurate reporting
by children due to recall bias (Loebach & Gilliland, 2014). Studies that rely on self-
reporting alone or on parents reporting on behalf of the child have also been used to
classify use or time spent in specific spaces which again leaves room for inaccurate
reporting, as well as not being an accurate representation of every space a child interacts
with on a daily basis (Amoly et al., 2014; Faber Taylor & Kuo, 2011; Flouri et al., 2014;
McCracken et al., 2016). Being able to accurately determine whether a single GPS point
is indoors or outdoors is of crucial importance for understanding children’s activities, and

ultimately, for understanding the link between environments and health.

Ellis et al. (2014) identified 89.9% accuracy when using the random forest model with
150 hours of GPS tracks when predicting active travel behaviours for two of their adult
research assistants after filtering the data through the PALMS tool. Meanwhile, Wu et al.
(2011) found the random forest less useful for identifying outdoor travel times when
using only the raw GPS tracks using derived acceleration rate, speed, distance difference
between subsequent readings, and distance ratio rather than any National Marine

Electronic Association (NMEA) quality metrics.
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The purpose of the analysis in this chapter is to code, with some certainty, any discrete
coordinate computed by a wearable GPS as to whether the subject wearing the GPS unit

was indoors or outdoors at the time of coordinate generation.

Presently, there are lack of tools to accurately quantify time spent in indoors or outdoors
for children (Wang et al., 2018) and unreliable tools to assign those activities meaning in
terms of exposure to and engagement in those spaces. This study is carried out within a
socio-ecological framework that recognizes that there are many types of influence on
children’s behaviours and health outcomes (Sallis et al., 2006; Stokols, 1992). It is the
purpose of this study to (1) develop a tool that accurately designates whether an individual
GPS point is generated as indoors or outdoors and (2) assess the accuracy of this tool
through evaluating a random sample of GPS points, (3) assign environmental and
neighbourhood variables to the outdoor activities, and (4) identify statistically significant
metrics against a set of socioeconomic indicators to answer: where and for how long do
children engage outdoors, and what neighbourhood and socioeconomic environment

might be aiding or hindering this behaviour?

4.2 Methods

The methods section is divided into three parts. The first part will describe the study
design, instruments, and GPS data collection from the multi-year research study entitled
the Spatio-Temporal Environment and Activity Monitoring (STEAM) Project. The
second part of the methods section will describe () the classification algorithm used in
predicting, with certainty, all coordinates generated by a wearable GPS as to whether the
subject wearing the GPS was indoors or outdoors at the time of coordinate generation,
and (b) the binning method used to combine the outdoor GPS tracks with the built
environment variables as a step to reduce both the modifiable areal unit problem (MAUP)
(Openshaw, 1984) and the uncertain geographic context problem (Kwan, 2012b) effects.
The third part of this section describes the statistical methods used to report on the
STEAM participants’ exposure to and engagement in different outdoor environments.
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421  Spatio-Temporal Environment and Activity Monitoring
(STEAM) Protocol

4.2.1.1 Study design

The Spatio-Temporal Environment and Activity Monitoring (STEAM) protocol has been
employed three times since 2010 by the Human Environments Laboratory in the
Department of Geography and Western University. The larger STEAM study utilizes a
mixed-methods approach to understand how children aged 9-14 years engage with
different health-promoting or health-damaging environmental features in their
neighbourhoods. The study presented in this chapter utilizes data gathered during the first
two phases of the larger study (i.e. STEAM | and STEAM II). The age of the participants
in the STEAM project corresponds to critical life stage when children are independently
mobile and have a growing sense of their own environments (Rissotto & Tonucci, 2002).

STEAM I and Il were designed to examine the potential causal effects of the built
environment on children’s health-related behaviours in the Southwestern Ontario region of
Canada. Before launching both studies, approvals were obtained from the Non-medical
Research Ethics Board of the University of Western Ontario (see Appendix A and B);
approval was also obtained from the regional school boards to approach schools for
participation. Seven elementary schools in the City of London, four urban and three
suburban, participated during the first two years of the study (STEAM I), while 30 schools
participated in the second study (STEAM I1), representing populations from London, and
local municipalities. In this Chapter, only STEAM I participants were used to study

exposure and engagement.

Children in grades 5 to 8 (approximately 8 to 14 years of age) in each school were considered
eligible to participate. All children who received permission to participate from a parent or
guardian, and who signed their own Child Assent Form, were allowed to participate in the

study.

4.2.1.2 GPS data collection

For STEAM I, participants at seven elementary schools completed a 7-day multi-tool

protocol to document their neighbourhood activities, movements and experiences.
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Participating children (n=220) wore portable GPS monitors (VGPS-900 by Visiontac)
shown in Figure 4.1, during all waking hours for up to 7 days during the winter-spring
season (February-March) and again in the spring-summer season (April to June); GPS
units marked a spatial coordinate for each second the unit was in use. Participants also
completed detailed daily activity and travel diaries, and both children and parents
completed comprehensive surveys on children’s neighbourhood activities, environmental
perceptions and mobility behaviours. In STEAM I1, during the study period (2011-2013),
participants (n=946) at the thirty elementary schools also completed a 7-day multi-tool
protocol similar to STEAM 1, but with the two seasons being fall (October-November)
followed by spring (March-April). In both studies, the GPS devices were attached to a
lanyard and the children were instructed to wear the device around their neck from the

time they rose in the morning until bed-time (see Figure 4.2).

Figure 4.1: VGPS-900 GPS receiver with lanyard



Figure 4.2: Example of a child wearing VGPS-900 GPS receiver
(niece of the Author — not a STEAM participant)
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The protocol of all the STEAM projects required that researchers enter the schools every
day that the children were present (outside of weekends) so that each GPS device could
have the data downloaded and checked for malfunctions. Each GPS device was
programmed by the researchers to generate a coordinate every second and to include a set
of signal quality metrics on each coordinate. The Visiontac VGPS-900 GPS receiver
devices were used in both studies. The accuracy and precision of the VGPS-900 GPS
receiver was reported by the manufacturer using the Circular Error Probability (CEP)
metric. The CEP reports distances from a true position on a horizontal plane (accuracy).
It includes a probability statistic (percentage) of the actual GPS measurements falling
within a distance to the true position. The middle of the cross-hairs in Figure 4.3
represent the true position. The distance value in the CEP metric is illustrated as the
radius of a circle (precision). When the radius is small and centred on the cross-hairs the
GPS will report with higher accuracy and higher precision. The reported precision and
accuracy of the VGPS-900 GPS receiver during optimal conditions (full unobstructed sky
view) and wide augmentation assisted system (WAAS) enabled (Differential GPS -
DGPS) is 1.5m CEP (30%-50%) p=0.05, 2.5m CEP (95%) p=0.05, and when WAAS
correction not in effect (Non-Differential GPS — Non-DGPS) the expected accuracy is 3m
CEP (30%-50%) p=0.05, 5m CEP (30%-50%) p=0.05. In other words, in optimal
conditions the VGPS-900 GPS receiver will measure within 1.5 metres of its true position
30 to 50% of the time, and will measure within 2.5 metres of its true position 95% of the
time (19 times out of 20). The precision of the GPS measurements shown as circles in
Figure 4.3 are a function of 3-D trilateration calculations computed by the receiver from
the satellite radio signals downrange that are being received (pseudorange). If the sky
view is clear, and there are no blocking structures and there are 4-plus satellites well-
spaced above the horizon, then the positional dilution of precision (PDOP) would be
small. A small dilution of precision will likely generate a truer measurement. The VGPS-
900 was evaluated against other GPS units including the Qstarz brand GPS and was
chosen due to the accuracy of the recorded positions during testing and its larger storage

capacity so that 1 second epochs could be employed.
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Figure 4.3: GPS accuracy vs precision
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The accuracy and precision of the GPS was objectively measured by placing the GPS
receiver at a City of London Engineering Survey Monument - Horizontal Control
Monument number 028941099 as shown in Figure 4.4.

Figure 4.4: Horizontal Survey Monument

The monument used was bronze cap type encased in concrete and had a known horizontal
locational accuracy to the millimeter using the North American Datum 1983 (NAD83)
Zone 17 coordinate system and a non-geodetic accuracy of a decimeter in the vertical.
The monument is situated on a bridge with a full view of the sky in all directions which is
considered the best case for measuring the accuracy of the device. The VGPS-900 GPS
receiver was placed on a surveyor’s tripod at a height of 1.2 m above the monument as

shown in Figure 4.5.
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Figure 4.5: Author aligning surveyor tripod over

horizontal survey monument

The GPS was configured to measure coordinates at 1 second epochs for 30 minutes (1800
coordinates). For accuracy, the difference between the GPS measured coordinates and

Horizontal Control Monument coordinate was calculated in ArcGIS and used to generate
the Root Mean Square Error (RMSE) for the GPS device:

n .—N\2
RMSE = [F=f=0) (4.2)



86

where the square root of the sum of the square mean difference between each of the
predicted values (P) of Horizontal Control Monument location (X and Y) and the
observed values (O) — Vision Tac GPS device (X and Y) of the set of values (n = 1800).

Precision is expressed as the degree of spread in the GPS points. It is measured by first
identifying the mean centre of the 1800 GPS points in ArcGIS Pro 2.x (ESRI, 2018). The
Mean Center tool creates a single point location where the sum of squared Euclidean
distances between that mean centre point and each GPS point in the sample are
minimized. The distance from each GPS point to the mean centre point was calculated

and used to generate the precision (spread) reported as a standard deviation.

The GPS receiver used in STEAM I and 11 supports a combination on National Marine
Electronic Association (NMEA) version 3.01 (NMEA, 2018) data sentences including the
GGA (Global Positioning System Fix Data), GLL (Geographic Position, Latitude /
Longitude and time), GSA (GPS DOP and active satellites), and HDT (heading in
degrees North). These include, for each timestamp, the PDOP (Positional Dilution of
Precision, HDOP (Horizontal Dilution of Precision), VDOP (Vertical Dilution of
Precision), Speed, Height, and qualitative accuracy values (‘2DGPS’ and ‘3DGPS’). The
GPS quality metrics including PDOP, HDOP, and VDOP, along with the Height and
Speed were stored during the STEAM study and, as we shall see later in this chapter,

were imperative in the classification of indoors/outdoors.

Throughout each study the STEAM researcher team copied daily sets of GPS tracks from
each GPS device. At the end of each week in the study, researchers combined the full
week of GPS data into a digital spreadsheet by participant and imported the data into
ArcGIS 10.x (ESRI, 2018) for visual inspection, data quality metrics, data formatting and
cleaning. The data was then exported to the GIS and stored as tables in a relational

database management system.

4.2.1.3 Pastresearch using STEAM | and STEAM Il

Several other graduate students have used STEAM data to investigate how children’s

environments influence their health-related behaviours. Topics included healthy eating
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(Rangel, 2013), sleep (Mclntosh, 2014), active transportation (Hill, 2012; Fitzpatrick,
2013; Richard, 2014; Rivet 2016), neighbourhood mobility and activities (Loebach,
2013), physical activity (Richard, 2014; Mitchell, 2016) and health-related quality of life
(Tillmann, 2018). Previous STEAM researchers used GPS tracking and built environment
variables to identify children’s activity spaces and/or routes between home and school,
and then associated them with a health-related behavior such as active travel (e.g. Rivet,
2016). To identify outdoor activity, these previous projects either visually inspected the
GPS tracks against aerial photography and vector-based ancillary GIS data, or used a
combination of visual inspection matched against activity diaries. This study differs from
previous outdoor researchers using STEAM in that the outdoor data filtering and
classification uses a rigorous method combining the use of kernel based algorithm
identifying routes and stops with a random forest classifier to identify outdoor generated
GPS points.

4.2.2 Data filtering and classification

4.2.2.1 SphereLab Tool: Activity place detection algorithm for GPS
data
Thierry et al. (2013), developed a tool called the “Activity place detection algorithm for
GPS data”, hereby called the SphereLab Tool. This tool uses a kernel density approach to
filter the GPS points to identify places where the participant stopped for some defined
duration and to generate routes to and from these locations. The tool was validated on a
study by Kestens et al. (2016) to build individual mobility histories with 95.8% of the
GPS points correctly classified as an activity location of a trip route. Empirically, it was
found that for the STEAM GPS data, a kernel distance of 75 m was optimal for
identifying the stops from a cluster of routes. It was found that 100% of the stops
generated during school hours landed on school property, with all of them within 20m of

the school building.

There were three drawbacks with using the tool. The first was that the code had not been
updated since the year 2013 and was only written to work in ArcGIS 10.1(ESRI, 2011).

The tool was unsupported and failed to process fully using more recent versions of
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ArcGIS. This author was then required to edit the published open source python
programming code to upgrade the software to work in more recent versions of ArcGIS
10.4-10.6. The second drawback was that the format requirements for the tool dictated
that the archived STEAM | and Il GPS data needed to be further processing. Additional
coding was necessary to prepare the STEAM GPS points to meet the tool requirements
(UTC Time field, WGS84 Projection, and a removal of the most grievously erroneous
GPS points). Additionally, the output thematic data (routes and stops) generated by the
tool did not match the needs of this project which was remedied through the creation of a
custom “wrapper” tool the modified SphereLab Tool’s programming code in the middle.
The custom tool pre-processed the STEAM GPS data for input into the modified
SphereLab Tool and post-processed the output of the SphereLab Tool to suit the needs of
this study.

The SphereLab Tool creates both route (vector polylines) and stops (points) GIS data. In
this study, the custom tool was run for each participant by season, and by day so that
daily routes and stops could be recorded for each participant. The routes polylines were
post-processed to assign the route with the STEAM participant ID, the duration of the
route, the start/end point IDs, and the start and end times on the routes. The thematic data
of the stop points were similarly post-processed to include the STEAM participant ID,
duration, and stop 1D (corresponding to the route start/end point IDs). The key goal for
the output was to maintain the link to and from the original GPS points with the routes
and stops prior to indoor/outdoor classification steps discussed in Section 4.2.5 of this

Chapter.

4.2.2.2 Hexagon tessellated surface

An isotropic hexagonal tessellation of the City of London was built in ArcGIS to provide
an avenue for overcoming the potential effects of the modifiable areal unit problem
(MAUP) (Openshaw, 1984) and the uncertain geographic context problem (UGCoP)
(Kwan, 2012b) and with their corresponding potential ecological fallacies. An array of
equal sized hexagons, as seen in Figure 4.6, made of six 10m sides (60m perimeter) and a
20m wide diameter, with an area of 259.8m?, was created over the entire city (see Figure

4.7). The zonal effect after attribution, with any rotation or re-orientation of the surface
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would be slight because the hexagon orientation reverts to its original form when rotated

at 60° increments. The hexagon orientation looks the same after every 60° rotation, in

comparison to the standard square (e.g. raster cell), which looks the same when rotated at

90° increments. The compactness ratio of a hexagon, as compared to the geometry of a

Diameter: 20m

Perimeter: 80m

Area: 4OOm2

Compactness: 0.79

Circle Compactness = 1.0

Figure 4.6: 20m hexagon tessellation

Diameter: 20m

Perimeter: 60m

Area: 259.8m2

Compactness: 0.91
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circle, is (0.91) which is a more compact shape than that of a standard square (0.79), and

is therefore the most compact shape which can be used for a 2D surface tessellation.

Spence and White (1992), as reported in Davis and Robinson (2012) produced a
hexagonal tessellation of the landscape for the U.S. Environmental Protection Agency’s
Environmental Monitoring and Assessment Program (EPA-EMAP) of the United States.
They reported that an array of hexagons provides contiguous spatial coverage that is
isotropic, and less likely to be coincident with features such as jurisdictional boundaries,

buildings or roads (see Figure 4.7).

Figure 4.7: 20m hexagon tessellation

The area-based environmental variables were disaggregated, reorganized, and re-
proportioned into their corresponding hexagon context areas to make a better model of
reality (see Figures 4.8 and 4.9). The use of 20 metre diameter hexagons to store the
important built environment variables related to children’s activity outdoors is theorized
to be small enough to represent a spatial extent to which a child, who finds themselves

located inside the hex location, would perceive and be exposed to that environment. It is
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theorized that this approach of using a hexagon tessellated surface could help mitigate the
MAUP and UGCoP. Each hex making up the surface is coded with environment
variables and will act as bins to store the combined GPS points, by child, resulting in the
time spent in each hex area (a proxy for engagement). If a hex is visited by a child’s GPS
track then that hex is coded as one in which the child has been exposed to and is included
in the child’s activity space. Separately, the time elapsed in each hex will act as a proxy
for engagement in the environment stored as a hexagon variable. Therefore, combining
GPS tracks and hex-bins introduces a novel approach in response to the uncertainties and
ecological fallacies posed by MAUP and UGCoP (Gilliland & Olson, 2013; Gilliland et
al., 2011).

Legend
Land Use
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Figure 4.8: Built environment variable map (Land Use)
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Figure 4.9: Hex-bin environment variables (Land Use)

The calculation of time spent in a hexagon was performed in ArcGIS 10.x where the GPS
coordinates were overlaid with the hexagon surface (Point-in-Polygon) and the
corresponding unique hexagon identifiers were transferred to each GPS coordinate in a
one-to-many table join (hex-to-points) as shown in Figures 4.10 and 4.11. The hexagons
visited by each child participant is now available as a proxy for exposure (Figure 4.11)
while the duration of time spent in each hexagon will be the proxy for engagement
(Figures 4.12 to 4.14). Both the exposure and the engagement metrics will act as the

outcome variables in the statistical analysis.
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Figure 4.11: Exposure to Land Uses by hex-bin (GPS point in hex)
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Figure 4.13: Exposure - time spent in each hex-bin (hotspot)
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Figure 4.12: Engagement as time spent in hex-bin by land-use (3D view)
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423 Random forest model

The random forest model (Breiman, 2001) is an ensemble method of classification which
constructs a number of decision trees from a set of random observations from a training
dataset. A training dataset is one where the variables are attributed and the final class
label has been identified as discussed later in this chapter. As the name suggests, many
decision trees are generated creating a ‘forest’” of decision trees. A decision tree is a type
of data classifier as shown in Figure 4.14. Each decision tree is represented by
‘branches’, connected at ‘split nodes’, terminating at ‘leaves’. An individual leaf of a
decision tree represents a class label that is assigned to a data point. To arrive at a class
label, the data point ‘travels’ through the branches going from one branch to another at
splits nodes. At the split nodes the data point variable is examined and will move to one
branch if the variable value is less than that of the split value, or to the other branch if the
data point variable value is greater than the split value. The branches represents the
combination of variables/steps that lead to the correct classification of that data point.
Many decision trees are created (a forest of them) and the algorithm learns as the forest is
being grown so that the misclassification errors are kept to a minimum. The trained
model can then us used on the entire data set (see Figure 4.15).

Once the random forest model is built (grown), the entire dataset, one observation at a
time can be passed through each decision tree in the forest. An individual observation
will pass through every tree in the forest, its corresponding variable checked at each node
until the leaf is reached. The class label generated at the leaf is called a vote (i.e. in a
forest of 500 trees there will be 500 class label votes per observation). The votes are then
tallied and the majority class label is assigned to that observation. The process is repeated

for the n count of observations (see Figure 4.14)
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DistFromLastPoint

Tree 1 —one class label chosen Tree n — one class label chosen per Tree

Majority Voting

Each Tree will generate one class label (Indoor/Outdoor). All

Tree class labels are counted...majority class label wins (500
Trees = 500 votes)

Figure 4.14: Example random forest decision trees



For each
new tree (/)

Randomly choose (Bootstrap) training
subset (n)
of GPS Points

Randomly choose variable subset to be used
at a split (e.g. PDOP, Speed, and
DistFromBuild)

For each chosen
variable

Choose best split value
(Gini Index)

If at terminal
node

Calculate OOB Prediction Error
Estimate

Figure 4.15: Random forest algorithm flow chart

n= 2/3 of training sample used in the

creation for each tree, while 1/3 is held back
out-of-bag (OOB) so that classification bias
can be tested while the forest is grown
resulting in OOB Prediction Error Estimate.

Gini impurity Index used to select the best
variable to use at a split — minimizing the
model’s overall variance.

The will always be only two branches at each
split.
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4.2.4  Out-of-bag (OOB) error estimate

The Out-of-Bag (OOB) error estimate is generated using a random one third of the
training sample that is not used in the creation of the forest. In random forests, there is no
need for cross-validation tests or any additional tests to get an unbiased estimate of a test
set error. Each separate tree is constructed using a different bootstrap sample taken from
two thirds of the original data. An entire one-third of the observations are left out of the
bootstrap sampling and not used in the construction of any tree. These observations are
passed through the completed model to see how well the model was made. The lower the
OOB error the more accurate the model. The confusion matrix, shown in Figure 4.16
illustrates how the overall model accuracy and OOB accuracy rates are calculated. The
OOB error rate is equal to the FP+FN/Total OOB sample size while the model accuracy
is calculated by (TN+TP)/ Total OOB Sample size. A Confusion Matrix is a method of

appraising binary classification procedures, in this case the binary classification of indoor

or outdoor.
Actual (Reference)
False True
True Negative (TN): Predicted
No, and Reference was No.
2 | False
3]
§
s True Positive (TP): Prediction
was Yes, and the Reference was
True
Yes.
(OOB Sample | TN/ (TN + FP) TP/(FN +TP)
Accuracy) % model correctly predicts No. % model correctly predicts Yes.

Figure 4.16: Training data confusion matrix
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Generally, the greater number of trees that make up the random forest offer better
classification results and hence, more reliable estimates from the out-of-bag (OOB)
predictions. You can use OOB error rate to determine the size of the forest (number of
trees) as shown in the random forest error vs forest size plot in Figure 4.17. The plot
shows that as you increase the size of the forest the improvement rate of the model
decreases, as the number of trees increases to a point where in the benefit in prediction
performance of adding additional trees levels off, in the example in Figure 4.17 at

approximately 280 trees.

All random forest modelling was performed in R (R Core Team, 2018) within RStudio
(RStudio Team, 2015). The R *arcgisbinding’ bridge was used to control the reading and
writing of spatial data to and from R and the ArcGIS (ESRI, 2018) GIS geodatabases.
Additionally, the R Caret package (Kuhn, 2008) used in the creation of the test data

sample confusion matrices.
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Figure 4.17: Random forest error vs forest size plot

4.2.4.1 Split nodes and Variables

In this study the tree splits nodes will use a set of variables created by the GPS receiver
and a set of variables created specifically to improve the model’s performance. The GPS
signal quality variables, speed, and height from the NMEA GPS sentence will be used. In
addition two custom variables; 1) distance between successive GPS points. And 2)

distance from blocking structures (buildings).
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Standard GPS technology generates an absolute position, based on pseudorange
measurements. Each pseudorange corresponds to the distance between the receiver and
each GPS space vehicle (SV). The coordinate position (X,Y,Z,T) of the receiver is
determined by more than four pairs of pseudorange measurements and their
corresponding GPS SV positions. Embedded in the pseudorange signal is information on
ionospheric and tropospheric signal delays, clock errors, position and health of the SV in

space (Kojima et al., 2012).

The GPS variables used in this study are PDOP (Positional Dilution of Precision), HDOP
(Horizontal Dilution of Precision), VDOP (Vertical Dilution of Precision), speed, and
height.

Positional Dilution of Precision is given as:
/02+02 +0?
PDOP = *—— (4.2)

Where 6%, 6, and o} are the variances of the east, north, and vertical parts of the
receivers position estimate, o is the standard deviation of the pseudorange measurement
error (sent by the space vehicle) and model error which is assumed to be constant for the

epoch that the GPS receiver is being used (Langley, 1999).

The Horizontal Dilution of Precision is similar to the PDOP, except for the exclusion of

the vertical part of the receiver’s position estimate and is written as:

(4.3)

The Vertical Dilution of Precision uses only the vertical part of the receiver’s position

estimate and is given as:

VDOP == T (44)
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Vertical dilution will always be larger than HDOP because, in order to get a more
accurate measurement of height, the receiver would need to use pseudorange
measurement from all directions, not just those directions above the receiver, but below
the receiver as well (Langley, 1999). The NMEA GPS sentence used in random forest

model also includes speed (distance/time) and height.

The Gini Impurity (for classification purposes) is tested throughout the random forest
model’s growth (as the model learns) and measures the variance of how often a randomly
chosen observation from a set of random observations would be incorrectly classed if it

were given a random class value and is expresses as:

G = Zgzl ﬁmk(l - ﬁmk) (4-5)

where P, is the probability of observations in the m™ sample from the k™ class (variable)
being correct. In our case, the full set of observations comes from 66% of the total GPS

training sample per participant/season. Random forest creates the m™ bootstrapped
sample from g of the 66% chosen at random, keeping in mind that a full éof the

observations are “held back” for the out-of-bag (OOB) error estimate. Each tree is built in
a way to keep the G low. At the heart of it, the Gini Impurity is a measure of variance.
Throughout the creation of the decision tree forest, the variance is summed with each
tree’s new split. If the addition of a variable for a new split increases the variance in the
random forest model, the algorithm will swap out that variable at that split for another
variable until the overall variance is reduced. The higher the variance, the more
misclassification will exist. Therefore lower values of the Gini Impurity will yield a
better classification result which can be tracked using a variable importance plot (see
example in Figure 4.18). The plot shows the variables that play a larger role than others
in a Random forest classification model. The model will rely more on those variables that
increase classification accuracy than those that do not. In this example the DistFromBuild
and HEIGHT variables play a larger role in accurately classifying (reducing Gini
Impurity), than do the DistFromLastPoint and PDOP variables..
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Figure 4.16: Example variable importance plot
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4.2.4.2 Creating the training sample

There are set epochs of time during each day of the study where the location of the
participants in the project is known. These times are primarily when the children are
attending school. Each school schedule was logged and joined to each GPS coordinate so
that during school hours it is known whether the participant is inside the school (in the
classroom) or outside during recess time and other breaks. Each participant activity diary
was then used to verify whether the child was inside or outside for recess. The GPS units
meanwhile continue to log data points which, for the most part, fall spatially within the
school building during class time, while some are generated outside of the building
footprint. The opposite is true when the children are spending time outdoors. Most logged
GPS points appear outside of the building while some appear inside, see illustration in
Figure 4.19. These scheduled times, and their GPS coordinates, by participant by school
day will act as the training dataset for the random forest model. To make the argument
that the participants’ GPS school-time dataset, typically about 7 hours per day,
represented a valid snapshot of their indoor/outdoor activity, it was determined that only
days that children spent at the school were included in the training sample. During the
school day, only four scheduled time blocks were used for training: AM In School, AM

Recess, PM in School, and PM Recess). A proximity measure was applied to each of the

[
x . . L Building (Inside)
GPS Point
8 . “ Generc:tned while
Child Indoors
2

GPS Point
. Generated while
Child Outdoors

Figure 4.17: Misclassification of GPS points
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participant GPS tracks during each day and those tracks whose mean distance from the
school building was greater than 500m were not included in the scheduled school time
block of the training sample. The participant’s daily activity diary were examined to
validate the child as being indoors or outdoors during recess. The training sample was
bolstered by the inclusion of GPS points identified as non-active (vehicular) travel from
routes created by the SphereLab Tool (Thierry et al., 2013) . A route was flagged as non-
active travel when the speed cut-off matched the mean speed children (13 years and
under) ride a bicycle (13.3 km/hr.). The vehicle trips were coded as indoors and all other
trips as outdoors. The addition of the children’s travel behaviour GPS points was critical
to include in the training sample because: 1) the totality of a child’s activity during the
day does not always match with what children experience during school time on school
property; and 2) some training samples sizes were too small (too small a sample in
outdoor time, or indoor time, or both), thus weakening the random forest model. The
distance between successive GPS points was also created as an additional custom
variable to address, in part, the errors in the GPS calculated Speed variable. Occasionally,
a GPS coordinate showed a speed of zero, which would indicate no movement, but the
proceeding and successive points were shown to be not spatially coincident. Upon further
examination this behaviour seemingly occurred while the GPS was under the influence of
a blocking structure (building).

All the pre-preprocessing was performed using a custom stand-alone python application

(Python Software Foundation, 2018) given in Appendix D.

4.2.5 Processing the GPS points

The processing of the GPS points in R (R Core Team, 2018) is straightforward. In this
study the GPS data were stored in a ArcGIS (ESRI, 2018) Geodatabase which was
connected to R using the R-ArcGIS Bridge ‘arcgisbinding’ Package (ESRI, 2018).
RStudio (RStudio Team, 2015) was used as the development environment. The R script
which trains, builds, and implements the random forest model is given in Appendix E. As
the final step, the outdoor GPS points were spatially overlaid with the hex surface so that
a link be made between GPS point and the environment (stored per hex-bin). Where

exposure is represented by number and aggregated spatial extent of the hexes visited and
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engagement is represented by the time spent in each hex. The overall processes is shown

Figure 4.20.

Figure 4.18: Process to code and classify GPS points
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4.2.6 Measuring exposure and engagement

All descriptive and inferential statistics were generated using SPSS 25 (IBM Corp., 2017)
to examine where and for how long children engage outdoors and how individual-level,
and neighbourhood-level socioeconomic and environmental factors, as per the socio-
ecological framework, could aid or hinder this behavior. Both the measures of exposure
to, and engagement at, these outdoor locations are used as dependent variables in this
study.

The total outdoor exposure is defined as direct contact with outdoor environmental
features. It is operationalized by the sum of all the corresponding hex-bins coincident to
the child’s outdoor GPS points (i.e. hex-bins in direct contact with the GPS tracks) to
represent the child’s total outdoor “activity space”. The Total Outdoor Exposure by

environmental feature is measured as a proportion of the child’s total “activity space”:
Exp = ThEnv/ Th (4.6)

where Exp is equal to the proportion of total hex-bins by specific environmental feature
(ThEnv) divided by the total outdoor “activity space’ (Th).

In this study, engagement outdoors (i.e. total time spent outside per day at parks) will be
operationalized by summing the outdoor time spent by the child in each hex-bin. The

total engagement at specific environmental features outdoors is measured by:
Eng = TtEnv / Tt 4.7)

where Eng is the proportion of outdoor activity time and TtEnv is the total time a child
spends at particular environmental feature type, and Tt is the total time the child spends

outdoors.

As outlined in Chapter 1 (Figure 1.2), the socio-ecological framework (Bronfenbrenner,
1979; Sallis et al., 2006; Stokols, 1992) was used to guide our understanding of the multi-
level influences that recognizes that there are many types of influence on children’s
behaviours and health outcomes (Sallis et al., 2006; Stokols, 1992). In this analysis, the

Individual-level factors, related most directly to the individual, and those which are theorized
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to influence outdoor exposure and engagement are: age (9-14 years), gender (females /
males), and visible minority classification. The individual-level factors were taken from the
STEAM survey instrument. The Household-level factors under examination include: the
household structure (dual-parent/ lone-parent household) from the STEAM survey
instrument, and socio-economic status (as represented by the median household income of
the census dissemination area in which the child’s home is located). The Neighbourhood-
level factors measured at the hex-bin level, are: land use types, parks, street tree counts
derived from spatial data published by the City of London (2010-2013) and green space (City
of London, 2008). The green space was generated using a Normalized Difference Vegetation
Index (NDVI1) which commonly used as a means of classifying greenness from infrared aerial
imagery. The City of London (2008) infrared aerial photography taken in August 2008 at 30
cm resolution was used to generate the NDVI layer which was then classified to derive two

green attributes: heavily forested areas and areas of vegetation and turf.

The Shapiro-Wilk test of normality was used on all variables to test if they come from a
normally distributed sample. The Wilcoxon-Mann-Whitney Test was used to calculate the
bivariate relationships between the dependent variable (exposure or engagement) and the
categorical independent variables. ANOVA and T-Tests were used to compare the mean

exposure and engagement by the individual, household, and neighbourhood-level variables.

4.3 Results
4.3.1  GPS Accuracy and Precision

Accuracy refers to the closeness of a measured value to a standard or known value and
can be measured using the Root Mean Square Error (RMSE). In this study a VGPS-900
GPS device was carefully placed above a horizontal survey monument with a confirmed
positional accuracy of 1 millimetre. The Root Mean Square Error of the VisionTac
VGPS-900 GPS device is over 1/2 hour of operation is 0.373m in the X (UTM Easting)
and 2.310m in the Y (UTM Northing). The mean PDOP was 1.586 and the HDOP was
0.862. The test is considered the best case scenario for GPS data collection where there is

a cloudless clear sky view with no obstructions above 20° from the horizon.
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At the 10 second point into the test, the GPS started generating GPS measures using the
WAAS differential signal. Positional errors in the Y were corrected as the test progressed
and at the five minute mark of the test the Root Mean Square Error was lower for both X
(RMSE = 0.314m ) and Y(RMSE = 1.574m). The mean PDOP was slightly higher at
1.610 and the HDOP was lower at 0.852. The PDOP includes elevation in its calculation

so a higher value for this metric was not unexpected.

Precision refers to the closeness of all the measured values to each other. It was
calculated by measuring how far the GPS coordinates deviate from their total mean
centre point. The precision of the sample of GPS points is 0.857 m, meaning that the
majority of the GPS points measured are within less than a metre of the mean centre. The

mean centre is 1.966m from the survey monument.

The manufacturer’s reported Circular Error Probability (CEP) of the VGPS-900 GPS
receiver during optimal conditions with full sky view, and wide augmentation assisted
system (WAAS) enabled (Differential GPS -DGPS), is 1.5m CEP (30%-50%) p=0.05,
and 2.5m CEP (95%) p=0.05. In this study, the test revealed that the GPS receiver had an
accuracy at 1.5m CEP (43%) p=0.05 which is within the manufacturer’s published
accuracy claims. However, when testing at 2.5 metres it was found that in our 2.5m CEP
(79%) p=0.05 results fell well short of the expected 95%. Therefore, the results show that
VisionTac GPS, in optimal conditions, generate 43% of the coordinates within 1.5 m of
the true location, and only 79% of the coordinates within 2.5 m of the true location, 19

times out of 20.

In the STEAM study, on average, 34.9% of the GPS points were generated with
differential GPS quality of PDOP < 2.5, so that with optimal conditions, on average,
34.9% of the points were within 5m of the true location 19 times out of 20. It is expected
that the accuracy of the units will degrade when in close proximity to blocking structures,

making these numbers are unrealistic.

The map in Figure 4.19 illustrates the actual cluster of GPS points generated around the
survey monument. The points in red indicate the most displacement and occurred in the

first 5 minutes of the test.
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Figure 4.19: Map of GPS test at the survey monument

4.3.2 Random forest outdoor classification model

In this study only STEAM 1 participants were used in this study, and a separate random
forest model was created, for the most part, for each participant by season. The mean
training sample size by season (reported in Table 4.1) tends to be similar, as do the errors
rates. The mean weekly training sample size equaled 16,544 GPS coordinates for the
spring season representing a mean of 4.6 hours of training data per week, while for winter
the training sample size was 16,702 GPS coordinates representing a similar amount of
time in the week. The mean OOB Error rate of 0.01 was the same for both seasons and
the test data accuracy was similarly high with values for spring at 98.9% and 99.9% for
winter. Written another way, on average the random forest models identified GPS points

as indoor or outdoor correctly 98.9% and 99.9% of the time on average. The variable
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importance plots, an example plot of a single model shown earlier in Figure 4.16, show
how much the model would decrease in accuracy if any variable listed were excluded
from the model. A separate variable importance plot was created for each model. In the
example (in Figure 4.16) and for a vast majority of the models the splits at variables
distance to building, Height and Speed were the most important in the classifications.
Somewhat surprisingly the dilution of precision measures, for the most part, were less
important in categorizing indoor/outdoor. It was also found early in the research that if
the training sample only was created using scheduled school times and not including the
travel modes there was a 10% average drop in the overall accuracy of the classes from the
random forest model. The reason for this was identified by the travel behaviour of
participants while not at school. The vehicle travel was not modelled in the training data
and therefore resulted in obvious vehicular travel being classified as outdoor activity. The
remedy was to include GPS points identified as travel routes by the SphereLab Tool
(Thierry et al., 2013) and coded as vehicle travel (indoor) beforehand in the training

samples.

Table 4.1: GPS classification

GPS Observations T"’“"'“f‘ OOB Error Test S.ample L
Sample Size Size Accuracy
n n X sd X sd X sd X sd X sd

Winter 72 11,768,265 154,845 46,807 16,702 9873 0.01 0.009 7405 4377 0.999 0.009
Spring 62 10,357,609 143,855 60,922 16,544 9671 0.01 0.005 7335 4287 0.989  0.004

4.3.3 Exposure outdoors

As discussed earlier in this chapter, the GPS tracks for the children were spatially
overlaid with a hex-bin surface which encoded the neighbourhood-level environment
variables (e.g. green space, and built environment). The result of the overlay is a spatial
cluster of all the hex-bins visited by the child which is considered the child’s activity

space.
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Using hex-bins to estimate exposure allows for a closer approximation of activity space
than most traditional methods and is expressed as an encounter with the outdoors and an
encounter with any natural and built environment features visited outdoors. It is
operationalized as a proportion of the total activity space (area). As seen in Table 4.2, the
mean activity space for all participants in the study is 37.6 hectares and varied widely
among participants (sd =29.9). Furthermore, the findings suggest that children are much
less mobile on weekends compared to weekdays as the weekend activity space (28.48 ha,
sd=25.72) is just under half of what it is on weekdays. The activity space is just under

half of what it is on weekdays as seen in Table 4.3

Table 4.2: Total outdoor activity space by individual-level variables

Total Outdoor Activity Space
(area per ha)

X sd
All 37.62 29.94
Boys 32.36 30.63
Girls 39.61 29.53
Age
10 or under 44.73 34.74
11 38.01 29.02
12 34.92 24.66
13 42.32 35.38
14 41.19 33.58
Weekday 46.20 30.74
Weekend 28.48 25.72

*Only full days during each study included (First and final days removed)

4.3.4 Engagement outdoors

On average, children in this study, spent 18.5% of their recorded time outdoors which
translates to an average of 81 minutes (1 hour and 21) of time spent outdoors per day
(Table 4.3). For total outdoor engagement, children are outside for a larger portion of the
day in winter than in spring on average, both for weekend and weekdays, however the

results were not significant (p=0.158).
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Table 4.3: Engagement outdoors by day type and season (proportion of time)

N X sd
Winter 64 21.2585 25.56077
Weekend
Winter 72 21.1090 21.57640
Weekday
Spring 51 16.8013 19.23718
Weekend
Spring 62  14.1375 15.61773
Weekday
Total 249 18.5292 21.05109

The results using the variables from the Individual-level analysis indicate that there are
no significant differences between genders or ages in the amount of time children spend
outdoors. This study showed that Children who are visible minorities spend more time
outdoors in spring than Caucasian children, but not significantly so. Additionally, it
appears that children, regardless of age or gender spent similar amounts of time across
the various land uses. On weekdays there is no significant difference between the
amounts of time children are spend outdoors at different land uses; in other words,
children are spending their time outside similarly when it comes to the proportion of time

spent at each land use.

The Household-level analysis shows that only socio-economic status (median household
income) showed as a statistically significant factor when predicting outdoor activity with
children living in wealthier neighbourhoods being more likely to spend more time

outdoors.

The findings for the Neighbourhood-level analysis indicate that on average, children
living in the suburbs are more likely to spend more time outdoors than children living in
more urban settings. Additionally, those children who only spent time outdoors in less
varied land uses (such as residential and institutional areas) than those children who spent

time in a wider array of land uses spent overall less time outdoors than their counterparts.
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The results indicate that children spend more time outdoors when they are engaged in
varied land uses. In spring, not surprisingly, children are most likely to spend time
outdoors in parks than in the wintertime. During winter, though children spent more time

outside in residential areas than they do in the springtime.

4.3.5 Outdoor engagement vs exposure

Identifying how long children spend at a geographic setting within the activity space
cannot be measured by exposure. A more realistic measure is the based on the amount of
time children spend engaging in an environment, rather than being simply exposed to it.
When comparing the proportion of time spent outdoors (engagement) and the proportion
of activity space traversed outdoors (exposure) we see, in Figure 4.20, that children
engage in land uses in a way not reported with exposure. Case in point, commercial areas

are the second largest exposure proportion for children on weekdays, but when looking at

Engagement vs Exposure (Land Uses )

Proportion

Engagment Exposure Engagment Exposure
(% outdoor time) (% activity space) (% outdoor time) (% activity space)
Weekday Weekend
M Residential Commercial Parks/Rec  mInstitutional m Industrial

Figure 4.20: Engagement vs exposure proportions by land use
time spent (i.e. exposure), it is marginal activity. The residential exposure is similar on
both weekdays and weekends where just over half the activity space outdoors being spent

there, but the exposure tells a more complete story. The children are almost spending
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their entire outdoor time in residential areas on weekends the magnitude of which is not
represented with exposure. The same can be said for institutional (schools included), on

weekdays the engagement is high, while the exposure is relatively low.

When comparing children’s engagement at green space versus exposure to green space,
as seen in Figure 4.21, children are heavily exposed to more areas with street trees, but
spend proportionally less time in these areas (engagement). Conversely, the proportion of
time spent engaged in green vegetation and turfed areas is higher than the exposure
metric. One weekends and weekdays, the children are similarly engaged in and exposed

to green areas, and less than one tenth of 1% of time/activity space is spent in forested

areas.
Engagement vs Exposure (Green Space)

c

2

G

Q.

°

[a W

Engagment Exposure Engagment Exposure
(% outdoor time) (% activity space) (% outdoor time) (% activity space)
Weekday Weekend

Street Trees Green/Turf W Heavily Wooded

Figure 4.21: Engagement vs exposure proportions by green space

4.4 Discussion

Dramatic increases in children’s sedentary behaviour indoors is a growing concern for
health researchers. An objective way to identify and quantify outdoor activity has yet to
be fully realized (Wang et al., 2018); and therefore, it was the intention of this study to
describe and test a methodological breakthrough for overcoming this problem. This study
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was divided into two parts: 1) it described a method made up of a combination of three
novel approaches that in sequence practically measure, classify, categorize, and map
children’s spatial behaviours outdoors and links the environmental features in their
neighbourhoods to measure exposure to and engagement in the outdoors; and 2) it
identified statistically significant metrics at the neighbourhood-level (e.g. green space,
land use types), and at the household-level (e.g. income), and identified interesting trends
at the individual-level all in an effort to identify factors from multiple levels of the socio-
ecological model that are associated with and can be used to predict outdoor exposure

and engagement.

The inclusion of stops generated from SphereLab Tool (Thierry et al., 2013) were critical
to establish the most important variable in the random forest models: distance from
buildings. The stops were employed to identify buildings located in proximity to the stops
and treated as potential blocking structures or destinations so that a distance from
buildings variable could be used in the random forest classification. The distance from
building variable was consistently the most important variable for correctly classifying
indoor and outdoor GPS points. It was, also found that relying on only the school
scheduled times for the training sample resulted in a 10% average drop in the overall
accuracy of the classes from the random forest model without the routes identified by the

SphereLab Tool beforehand.

441  Comparison with previous participant surveys studies

Our GPS-based methods revealed that on average children in this study spent 18.5% of
their recorded time outdoors translating to 81 minutes (1 hour and 21) per day outdoors.
In comparison, a previous study (Matz et al., 2014) used parental report data to estimate
that children across urban and rural Canada, aged 5-11 years (n=428), spent 1 hour and
48 minutes outdoors per day. In this Chapter, the results show that participants in this
study spent considerably less time outdoors than reported in most other research studies
who have relied on participant surveys alone. Milne et al. (2007) found that in a study of
Australian children, aged 6-12 years (n=1614), spent between 2 and 3 hours outdoors
during daylight hours. Fifty percent of U.S children (n=1822) spent just over 2 hours a
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day outside in a study by Kimbro et al. (2011), while Chinese children (n=681) spent 97
minutes a day outside (Guo et al., 2013).

Most of the questionnaires in these studies were completed by parents which inevitably
cause recall errors. Apart from recall bias, the estimation of time outdoors was likely to
be more difficult for a parent to answer. Compounding the recall bias and errors, these
surveys were designed differently and the qualitative descriptions could be imprecise, so
it might be unsuitable to compare the empirical results from this study with those from

recall based studies.

4.4.2 Comparison with previous GPS studies

The majority of research studies employing GPS to identify outdoor activity use the
PALMS protocol. In terms of children’s activity outdoors, Klinker et al. (2014) found
that 11 to 13 (x = 12.4) year old children (n=129) in Copenhagen, Denmark spent a
median of 226.5 minutes (3hr 4 m 36s , IQR (175 - 284.5) outdoors. In contrast, Tandon
et al. (2013), in a study of pre-school aged children, reported that children spent on
average 63 minutes a day outdoors. The participants were younger than in our study and
Tandon included a wearable sunlight sensor on the participants to identify time outdoors.
A study by Cooper et al. (2010), as part of the PEACH project, indicated that British
school aged children (n=1010) spent only 41.7 minutes outdoors. A recent study of
British children (n=70) by Pearce et al. (2018) found a median total outdoor time of 80.3
minutes, which most closely matches our results. In their post-processing of the GPS,
Pearce filtered the signal-to-noise cut-off at (SNR<=212) which is lower than the
standard PALMS tool cutoff (SNR<=250) used by Klinker and colleagues (2014),

suggesting that Klinker’s study in Denmark over-estimated time spent outdoors.

4.5 Conclusion

Rising public concerns over children’s health has led to a growing public and academic
interest in gaining a better understanding of the role that the physical environment (built
and natural) plays in mitigating or exacerbating health issues (Tillmann et al., 2018).
There is a realization in public and academic circles that children are spending less time
outdoors than ever before, (Gilliland, 2018; Zorzi & Gagne, 2012) which has led to an
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increase in studies exploring the association between time spent outdoors and some
physical and mental health outcomes. Yet, much of this research is difficult to decipher
due to incomparable, imprecise, or inaccurate methods for assessing environmental
exposure (Tillmann et al., 2018). Ultimately, it is anticipated that this study offers a
methodological breakthrough for overcoming the problems inherent in GPS indoor and
outdoor classification, and in the linking of exposure and engagement variables in a

meaningful way.
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Chapter 5

5 Discussion and Conclusions

Chapters 2 to 4 comprise the substantive portion of this dissertation. The underlying
theoretical basis for the substantive chapters was the ecological model of health with the
built environment as an important influencer in shaping health outcomes in children.
This theory, presented in Chapter 1, informed the study design and discussion for each
subsequent chapter. Quantitative methods were used to measure the efficacy (and key
problems) of using common address proxies, as well as to identify, classify, and bin GPS
tracks to better evaluate the role that the built environment has on outdoor activity.
Included in this final chapter is a summary of the contributions of the two empirical
studies found in Chapters 3 and 4. Further discussion focuses on a review of the
limitations of the two studies, suggestions for future research, and moving forward with

policy interventions.

5.1 Summary of study findings and contributions

The contributions of the first study (Chapter 3) are twofold: first, it quantitatively
describes the magnitude of positional discrepancies that result when a set of the most
commonly-used home location proxies are implemented across several different
neighbourhood types; and, secondly, it measures the misclassifications of the quantity of
health-related facilities within local environments. The findings of this study have
revealed that if commonly-used proxies such as centroids of census tracts, dissemination
areas, and even postal codes, are used instead of exact addresses, positional discrepancies
can be significantly large. If positional discrepancies are high, such ‘ego-centric’
neighbourhood units will be significantly ‘off centre’, and local environments can be
mischaracterized and therefore lead to inaccurate assumptions. For example, the chances
of misclassifying a health-promoting feature of the neighborhood, such as a recreation
area, or a health-damaging feature such as a junk food outlet, as accessible (or not) can be
unacceptably high, particularly when threshold distances are short, such as the
commonly-used 5-min walk zone (500 m buffer). In urban neighbourhoods, when census

tracts are used as home location proxies, instead of the gold-standard rooftop residential
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address points, the containment misclassification of recreation areas within 500 m of the
proxies is nearly half (49.5%). In rural areas the use of postal codes as an address proxy

results in mean positional discrepancies to the closest recreation area of 1610 metres.

If positional discrepancies are too large, it will be impossible for the researcher to resolve
whether any health effects of an environment are truly present. Even more troubling is
the fact that faulty public policies may be formed and critical decisions made based on
faulty environment-health research which does not take into consideration critical
positional discrepancies. Improving the accuracy of the distance calculations increases
the utility of the findings for making decisions and enacting policies aimed at improving a
population’s spatial accessibility to environmental features that contribute to their overall
health and well-being. The data used is this study is ubiquitous across Canada, Spatial
data is widely available including census boundary files, road networks, postal codes, lot
centroids, and increasingly roof-top address points making this study relevant to all

Canadian cities, small towns, and rural areas.

The key strengths of the second study (Chapter 4) emanate from the multiple strengths of
the STEAM protocol, such as the large number of child participants, the use of one-
second epochs on the GPS units, the high-resolution of neighbourhood built environment
data, and the presence of detailed daily activity diaries. Few previous studies, except for
Cooper et al. (2010) (PEACH) and McMinn et al. (2014) (PALMS) have had such a large
sample of child participants. The use of the one-second epochs, in conjunction with
activity diaries, time-based known locations (school day) and thematically and
temporally accurate spatial reference data, in combination with the inclusion of a
tessellated hexagonal surface and classification using the random forest model, adds to

the feasibility and uniqueness of this study.

Studies have been conducted on the effect that seasonality plays on children’s outdoor
activity (Tucker & Gilliland, 2007), however, there are no known studies using GPS
tracking in the Canadian context; therefore, the second study (Chapter 4) filled this gap.
In addition to examining the effect of seasonality on the proportion of total time spent

outdoors (engagement), the study in Chapter 4 considered other independent variables
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from the household and individual-levels. Previous research has shown the utility of ‘big
data’ - machine learning data classifiers on GPS tracks, particularly for identifying modes
of travel and stops (Dwivedi & Dikshit, 2013; Ellis et al., 2014; Kestens et al., 2016;
Thierry et al., 2013). Very few studies, however, have employed these types of
algorithms to classify the wearer as being indoors or outdoors; exceptions are some
validation studies of the PALMS application (Ellis et al., 2014; Lam et al., 2013). As
mentioned in Chapter 2, the indoor vs outdoor classification part of the PALMS was
limited to only the Qstarz brand of GPS receiver; however, this dissertation employed a
method which resulted in higher classification match rates so that future studies where
subjects are tracked with GPS receivers will not be limited to specific brand of receiver.

Following the implementation of the novel combination of methods to classify indoor vs
outdoor, the study mapped when, where (exposure), and for how long (engagement) that
children spent outdoors. Children in this study, on average spent 18.5% of their recorded
time outdoors which translates to an average of 81 minutes (1 hour and 21) of outdoor
time per day which is a similar result to a recent study of British children with a median

total outdoor time of 80.3 minutes (Pearce et al., 2018).

The studies in this dissertation are interconnected through the common goal of improving
methodological rigor in the measurement of children’s accessibility to, exposure to, and
engagement with health-related features of their environment to ultimately better our
understanding of the links between environment and children’s health. This dissertation
therefore makes methodological and practical contributions. The methodological
contribution is twofold: firstly, it informs future researchers on the best practices for
utilizing address proxy level data and, secondly, it proposes a novel approach for the
classification of point clouds of GPS coordinates for children’s environmental health
studies. The practical contribution is in the utilization of passive GPS collection in
combination with ancillary spatial data to identify environments that influence children’s
outdoor activity levels. The outcomes of this research add to the discourse of the
relationship between the built environment and children’s health. It adds to the mounting
evidence of the role that the design of urban and suburban environments play in the
health of the people who live in them. Ultimately, this research empowers municipal
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planners and policymakers with better evidence to make informed decisions regarding the

planning for and design of outdoor public spaces that foster children’s outdoor activity.

5.2 Synthesis of findings

521 Limitations

Despite the multiple contributions of this dissertation, there are also limitations. Firstly,
the GPS devices worn by the subjects generated a series of coordinates that had varying
levels of positional accuracy, both relative and absolute. These positional inaccuracies
were expected and are commonly the result of the noise, bias, and blunders that persist in
all studies using GPS technology. As mentioned earlier in this dissertation, positional
errors occur from noise and bias when a participant wearing a GPS unit enters, exits, or
remains within a blocking structure such as a building or dense tree canopy, or during the
time while the unit is initially turned on. Regarding blunders, it was found that
periodically the GPS units did not record for spans of time due to battery drain, and user

errors.

Secondly, it is expected that spatial bias occurs while using secondary GIS data sets
which are generated by agencies for their specific purposes and never meant for this
study. For example, the building footprints used from the City of London data were
generated for cartographic purposes rather than for engineering purposes (City of
London, 2010-2013). The building polygons are product of orthographic
photogrammetric digitizing methods at a large map scale, not constructed from
coordinate geometry using high-resolution survey tools. What this points to is that the
‘edge’ of each polygon feature in the GIS building layer may not be entirely positionally
accurate, nor is that positional error homogeneous. Therefore, the secondary datasets used
in the creation of the hexagonal surface variables, and used in the proximity and
classification methods suffer from some spatial inaccuracies. Although thematic and
temporal inaccuracies are kept to a minimum in the two studies due to the use of
contemporary GIS data, there will be some cases where misclassification and changes in
the secondary data map features are not reflected in the data set used.
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Thirdly, even though efforts are made in the methodology to reduce the modifiable area
unit problem (MAUP), and uncertain geographic context problem (UGCoP), through
GPS tracking and the tessellated hexagon surface, these errors still might persist in some
minimal way. The two effects are expected whenever the GPS points are aggregated
spatially and through that aggregation, the spatial and temporal quality of the GPS points
are lost.

Lastly, this dissertation does not take into account the qualitative aspects of the ecological
model, in particular, the transactional relationship between the child and their
environment. For instance, the intentions and meaning a child assigns to their
experiences in the physical and built environments are not addressed and are outside the

scope of this dissertation.

522 Future directions

The results of this dissertation show that the quality of the spatial data used is of the
upmost importance to a successful study. Therefore, it is imperative that future studies
source high resolution spatial data that is thematically and temporally accurate. In
Canada, researchers primarily rely on secondary data provided from government agencies
at the various levels. In this dissertation, data was used from two local municipalities
(City of London and County of Middlesex) in conjunction with federally published data
(Statistics Canada), and data provided from a private company (DMTI Spatial Inc.).
Recent advances in artificial intelligence pattern identification using remotely sensed
imagery is an exciting development where researchers using these new algorithms can
identify and derive a wide set of natural and built environment features with a high
degree of accuracy (Lary, 2010; Zeng et al., 2013; Zeng et al., 2014). Supporting this new
and exciting development is that the cost of space-borne, multi-spectral digital imagery
has decreased greatly over the last decade. Perhaps even more exciting for future
research applications in environment and health is the potential use of drones which carry
multi-spectral scanners to provide mapping data of even higher resolution and the ability
to map the landscape at the time a study is being performed. The hexagon tessellated
surface does provide a more accurate measure of exposure and engagement than the most

common measures which typically only measure how accessible a health
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promoting/demoting feature is in the built environment, not whether that feature was
seen, visited, or engaged with by a person or population of interest. This dissertation
describes the methodological framework where hexagonal tessellations can be used in

other urban and suburban environments in North America.

Regarding children’s health studies, further data collection, both quantitative and
qualitative, on the genuine actions of the children could be used to complement the
findings presented in this dissertation. It would be helpful to have a form of ‘member
checking’, using map-based interviews for example, to confirm whether or not children
were actually indoors/outdoors and the reasons behind their environmental activities and
decisions to be indoors/outdoors. Additionally, a natural next step in this research would
be to link children’s time spent outdoors, and time spent engaging in different outdoor
environments, with a series of health-related behaviours, such as objective measures of
vigorous physical activity, stress, or mood. Future research could compare the results
using traditional methods versus the methodology forwarded in this dissertation. Finally,
further research is also required to confirm our findings within different age groups,
seasons, weather conditions, urban settings, and from different geographic areas within

and beyond Canada.

5.3 Policy implications

There is a growing trend in public health studies, particularly within the burgeoning field
of “active living research’, toward the use of ‘ego-centric’ units (typically defined by
buffers around a study participant’s residence) to characterize a participant’s
neighborhood and to examine the effect that local environmental factors (e.g., the mix of
land uses and coverage of sidewalks) may have on health-related behaviors such as
walking (Larsen et al., 2009) and outcomes such as physical activity levels (Tucker et al.,
2009). The findings in Chapter 3 reveal that if commonly-used proxies such as centroids
of census tracts, dissemination areas, and even postal codes, are used instead of exact
addresses, positional discrepancies can be significantly large. If positional discrepancies
are large, such “‘ego-centric’ neighbourhood units will be significantly ‘off center’, and
local environments can be mischaracterized, leading to misclassification of

‘accessibility’. For example, the chances of misclassifying a health-damaging feature
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such as a junk food outlet as accessible (or not) can be unacceptably high, particularly
when threshold distances are short, such as the commonly-used 500 m buffer (or 5-min
walk zone). If positional discrepancies are too large, it will be impossible for a researcher
to determine if any true link exists between environmental features and health-related
behaviours or outcomes. The practical impact of these discrepancies not properly
identified is that they could lead to important policies and/or decisions being made with
poor or even erroneous evidence. Improving the accuracy of the distance calculations
increases the utility of the findings for making decisions and enacting policies aimed at
improving a population’s spatial accessibility to features of the environment that
contribute to their health and quality of life.

There is an awareness in public policy sphere that children are spending less time
outdoors than ever before (Gilliland, 2018; Zorzi & Gagne, 2012) further suggested by
the findings in Chapter 4, which has led to an increase in studies exploring the association
between time spent outdoors and some physical and mental health outcomes. With an
increase in public concerns over children’s health, there is a general acceptance that the
physical environment (built and natural) plays in mitigating or exacerbating health issues
(Tillmann et al., 2018).

Further research is required before the results of this study are applied in any way
towards policy interventions. The geographic relationships refined and studied in this
thesis that correspond to the socio-ecological model’s individual, household, and
neighbourhood levels offered a clearer path to understanding the complex interactions
between the built environment and children’s health. The complexity of the problem,
however will always be more complicated than it might seem. The problem of children
spending less time outdoors is more complex than factors of seasonality, quantity of
green space and varied land use types. When policy interventions occur, they should
begin with a small scale intervention so that the results can be measured. The design of
more appealing parks, planting more street trees, or locating health promoting facilities
closer to residential areas, and the removal of health demoting facilities away from where
children spend time (e.g. schools) all sound as if they might positively address part of the

problem. The intervention might work, or might not work or worse be counter to what the



129

policy was hoped to achieve. Additional multi-disciplinary approaches in studying why
children are spending less time outdoor is warranted. This thesis offers a way forward
with a methodological breakthrough for overcoming the problems inherent in GPS indoor
and outdoor classification, and in the linking of exposure and engagement environment

variables in a meaningful way.

5.4 Conclusion

Rising public concerns over certain children’s health issues, such as obesity, physical
(in)activity and mental health concrens has led to a growing public and academic interest
in gaining a better understanding of the role of the physical environment (built and
natural) (Tillmann et al., 2018). Additionally, the public and academic realization that
children are spending less time outdoors and in nature than ever before, has led to a rapid
increase in studies exploring the link between time spent outdoors and/or in nature and
certain physical and mental health outcomes. Nevertheless, as previous research has
indicated (Tillmann et al., 2018), much of this research is difficult to decipher due to
incomparable, imprecise, or inaccurate methods for assessing environmental exposure.
This dissertation presents several methodological breakthroughs for overcoming the
problems inherent in the literature, which should be of considerable interest to

researchers and policymakers.

A quantitative socio-ecological geographic study was employed to identify data and
methods to best associate children’s accessibility to, exposure to, and engagement in their
environment, which in turn, plays a crucial role in healthy development. This study used
a spatial quantitative approach to practically measure, classify, categorize, and map
children’s spatial behaviours and the environmental features in their neighbourhoods.
Ultimately, this dissertation offers a warning for future researchers of the folly of using
some widely available spatial data for accessibility and exposure studies and also offers
an improved methodology for understanding children’s environmental exposures and
how environmental factors might influence children’s health-related behaviours and

outcomes.



130

5.5 References

City of London. (2010-2013). Parcels, buildings, address points, and health facilities GIS
files [DVD].

Cooper, A. R., Page, A. S., Wheeler, B. W., Hillsdon, M., Griew, P., & Jago, R. (2010).
Patterns of GPS measured time outdoors after school and objective physical
activity in English children: the PEACH project. Int J Behav Nutr Phys Act, 7, 31.
doi:10.1186/1479-5868-7-31

Dwivedi, R., & Dikshit, O. (2013). A comparison of particle swarm optimization (PSO)
and genetic algorithm (GA) in second order design (SOD) of GPS networks.
Journal of Applied Geodesy, 7(2). doi:10.1515/jag-2013-0045

Ellis, K., Godbole, S., Marshall, S., Lanckriet, G., Staudenmayer, J., & Kerr, J. (2014).
Identifying Active Travel Behaviors in Challenging Environments Using GPS,
Accelerometers, and Machine Learning Algorithms. Front Public Health, 2, 36.
doi:10.3389/fpubh.2014.00036

Gilliland, J. (2018). Lawson Foundation Systematic Review.

Kestens, Y., Thierry, B., & Chaix, B. (2016). Re-creating daily mobility histories for
health research from raw GPS tracks: Validation of a kernel-based algorithm
using real-life data. Health Place, 40, 29-33.
doi:10.1016/j.healthplace.2016.04.004

Lam, M., Godbole, S., Chen, J., Oliver, M., Badland, H., Marshall, S. J., . . . Kerr, J.
(2013). Measuring Time Spent Outdoors Using a Wearable Camera and GPS.
Paper presented at the SenseCam '13 Proceedings of the 4th International
SenseCam & Pervasive Imaging Conference, New York.

Larsen, K., Gilliland, J., Hess, P., Tucker, P., Irwin, J., & He, M. (2009). The influence of
the physical environment and sociodemographic characteristics on children’s
mode of travel to and from school. . American Journal of Public Health, 99(3),
520-526. doi:10.2105/AJPH.2008

Lary, D. (2010). Artificial intelligence in geoscience and remote sensing. Artificial
Intelligence in Geoscience and Remote Sensing, Geoscience and Remote Sensing.

McMinn, D., Oreskovic, N. M., Aitkenhead, M. J., Johnston, D. W., Murtagh, S., &
Rowe, D. A. (2014). The physical environment and health-enhancing activity
during the school commute: Global positioning system, geographical information
systems and accelerometry. Geospatial Health, 8, 569-572.
d0i:10.4081/gh.2014.46



131

Pearce, Saunders, D., Allison, P., & Turner, A. (2018). Indoor and Outdoor Context-
Specific Contributions to Early Adolescent Moderate to Vigorous Physical
Activity as Measured by Combined Diary, Accelerometer, and GPS. Journal of
Physical Activity and Health, 15, 40-45. doi:10.1123/jpah.2016-0638

Thierry, B., Chaix, B., & Kestens, Y. (2013). Detecting activity locations from raw GPS
data: a novel kernel-based algorithm. Int J Health Geogr, 12(14).

Tucker, P., & Gilliland, J. (2007). The effect of season and weather on physical activity:
a systematic review. Public Health, 121(12), 909-922.
doi:10.1016/j.puhe.2007.04.009

Tucker, P., Irwin, J. D., Gilliland, J., He, M., Larsen, K., & Hess, P. (2009).
Environmental influences on physical activity levels in youth. Health Place,
15(1), 357-363. doi:10.1016/j.healthplace.2008.07.001

Zeng, C., Wang, J., & Lehrbass, B. (2013). An Evaluation System for Building Footprint
Extraction From Remotely Sensed Data. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 6(3), 1640-1652.
doi:10.1109/jstars.2013.2256882

Zeng, C., Wang, J., Zhan, W., Shi, P., & Gambles, A. (2014). An elevation difference
model for building height extraction from stereo-image-derived DSMs.
International Journal of Remote Sensing, 35(22), 7614-7630.
doi:10.1080/01431161.2014.975375

Zorzi, R., & Gagne, M. (2012). Youth Engagement with Nature and the Outdoors: A
Summary of Survey Findings. Retrieved from https://davidsuzuki.org/wp-
content/uploads/2012/09/youth-engagement-nature-outdoors.pdf



https://davidsuzuki.org/wp-content/uploads/2012/09/youth-engagement-nature-outdoors.pdf
https://davidsuzuki.org/wp-content/uploads/2012/09/youth-engagement-nature-outdoors.pdf

132

Appendices

Appendix A: Research Ethics Approval Form - Human
Participants STEAM |

Office of Ressarch Ethics COPY

Tae Urhiersty o Wacatsm Ofn2ia
Fooom 4130 Suppart Zervices Boding, London, O, Canade sia gl

W of Human Subjects - Ethic2 Approval Noties

! e
Piliielpal Imvesdigates; D J. Eland

Rarwiiaty B bema: 104895 Parwbany Lawul: FuliEgeng
Rvirey Qutss Angud 11, 700
Py I TIE 22 Ei “al ool ogiat o Esaiining B rerarodal il uaress an Chicnems
Execdiie b A Pl
Dap ] i bt s 43 e . Umiezmely of Weriom Ot
S o
Lihice fpproval Date: Dacsmber o, 2005 Faphey Dybs: Augea 34, 2010

Dumsncs Revieysd and Approvad: L0 Promes, Lang of nkeomkn and Do, s aan.
Dacumants Recaboad for Inks aslen:

“his e b= modify vom (Pel The Universiy of Ristzm Dnlino B dh Bz Bownd fer Vo 02 See) Rasenrdd IReeing Fuom
by { RN T which dn e gpniee end mperabes necerdimg by the Te-Cowniell Pallsy et e Tikdos Condoar of Bagos g4
Ineokeing Fimuoss wd (s spplcable boam and coguinbiara o€ Cnioric e grmied sppioval by the cbaes nemel roconch sedy o
sl pppuoeal dale noted pioes,

Tiia wzqrmveal slaTl mrah walid umill dicepiny dae ooted ebave sseuzing iimely and accepiaile mopozses o the MOy
e o g s 1w Tanee ol insoTieering indenesom. 11 o resuiee o wncaded appooeal 0uive mior b |l Tome e
et o suesk it ke Y Dot Appne ] Beqizs Fem

Turingthe con e of the cevsuch i dewiations mom, or Cisegem, e shudy oo oomenk fonm me be initised it fu® misr
i et | o tle RYEER excepn when nemesmar i slnmmste an— ok hevad= s sadgect or whan e clanpsis
firvoheanly leginia! o pdiminkmslive spedy o i 5ok (8,8 chanscef mewitnr, eelzplione manbier). Fapedicdioessy of
mdun diangalnyin rgring aodios il be ewmidoml. Sabivs i el asogy of De sigosd nfuasmssoeen

e umrnislam,

Bveestlgators mr 5 promptly sleoneuact s ds WAL

W b e inurlog dis 5is b M participae: e as i wifecting asgrife smily G towcdoet e the akad

T @ mdvonse sod o pes bl eaperivnces on svemE wal ams ket arrious ol usraoecizd.

£ waw Irdemeron Sy odemsely e the gafy of e eubpoes o the oonfust of e sy
H ibera clirgeiorbenie coemis mayoire o chenag e NForsedon | non s dooum soion, maor scneanerr abvoikenens, he
peraty revead e ewi e vl docsmonio G, ntdNer A2V TR NETT, TTEL B Shmited e nifioe <o ool

Taniirs e the M-BER who ame named o vsipriars = reasndh susioe. ar dovhae coanllil uf slzne, doou plapdc o
s rebyeal o, nor o on, soch dudies when Hay e gregenbed fo 55c BAIRER.

G a! KUCD: DF Jomy FRpuene

Thiktd oo il docomnet Roase o P oignet s vew fes, = o fls



133

Appendix B: Research Ethics Approval Form - Human
Participants STEAM I

I -15Sueel

Use of Human Participants - Ethics Approval Notice

Research

Western

Principal Investigator: Or. Jason Gillland

Review Number: 179185

Raview Level: Delegated

Approved Local Adult Participants: 1200

Approved Local Miner Participants: 1200

Protocol Title: Identifying casual efiects on the built enviranment on physical activity, diet, and obesity amang
children.

Department & Institution: Social Science\Geography, University of Western Ontario

Sponsor: Canadian Institutes of Haalth Research

Heart and Stroke Foundation of Canada

Ethics Approval Date: June 08, 2011 Expiry Date: August 31, 2014

Documents Reviewed & Approved & Documents Received for Information:

Document | ot | Version ‘
[Name ) - | Date

Other | Revised Healthy Neighbourhood Survey for Parents.

Other ! | Revised Hea !-&I"N_eig_l_]_bULLrhOOdS Survey for Youth

' Revised Activity and Travel Diary for School Days and

(Other

| Weekend Days.

This is to notify you that The University of Western Ontario Research Fthics Board for Non-Medical Research
Involving Human Subjects (NMREB) which is organized and operates according to the Tri-Council Policy
Statement: Ethical Conduct of Research Involving Humans and the applicable laws and regulations of Ontario has
granted approval to the above referenced revision(s) or d s) on the app | date moted above.

This approval shall remain valid until the expiry date noted above assuming timely and acceplable responses to the
NMREB's periodic requests for surveillance and monitoring information.

ho are named as investigators in research studies, or declare a confiict of
in discussions related to, nor vote on, such studies when they are presented to

the NMREE.

; js Dr. Riley Hinson, The i i i .S. Department of
under the IRB registratiol

Ethies Olficer to Contact for Further Information

‘ | Grmee Kelty J therland

T v afffcien alocriment, Placere ey the ariginef in powr files

The University of Western Ontario
Office of Research Ethics
Support Services Building Rioom 5150 + London, Ontario » CANADA - NaG 169



134

Appendix C: Copyright Release from Publication

Chapter 3:

Healy, M. A., & Gilliland, J. A. (2012). Quantifying the magnitude of environmental
exposure misclassification when using imprecise address proxies in public health
research. Spat Spatiotemporal Epidemiol, 3(1), 55-67. doi:10.1016/j.sste.2012.02.006

Glenn, Louise (ELS)
11:59 AM (10 minutes ago)
to XXX

Dear Mr Healy,

Thanks for your query. This is completely fine, we would just ask that you also include a
link to the final published paper on ScienceDirect in all publication formats of the thesis.

https://doi.org/10.1016/j.sste.2012.02.006
All the best,

Louise

From: xxxx

Sent: 21 August 2018 23:37

To: XXXX

Subject: Enquiry: Permission to include published article in my Dissertation

I request your permission so that | may include my paper titled "Quantifying the
magnitude of environmental exposure misclassification when using imprecise address
proxies in public health research.” published in Spatial and Spatio-temporal
Epidemiology 3(1) 55-67 in my PhD thesis.

Best regards,

Martin Healy

PhD Candidate

University of Western Ontario
London, Ont.

Canada



135

Appendix D: Pre-Processing Scripts for Random Forest

### Program: Get Buildings using SpherelLab Stops

### Author: Martin Healy

### Date: March 18, 2018

### Description: This program processes the output points of the
#i#t# Thierry et al. (2013) Activity place detection algorithm
### for GPS data :

Hit# 1. Codes all stops inside study area (city boundary)

H#itH and uses only stops with a duration > 2 min

H#it# 2. Selects the buildings close to each valid stop

it 3. Identifies and stores the valid buildings by Participant ID
HH#

### Dependencies: arcpy, sys, os, SteamModules

HHH# - - - - mmm e o

### 1. Successful processing of Routes and Stops from GPS Data SpherelLab
it Activity place detection algorithm for GPS data (Thierry et al.,2013)
THHE using the custom HEAL Lab STEAM ArcToolBox Toolset.

### 2. Programmed to run from an ArcToolBox Script Tool

import arcpy, sys, os, SteamModules

# Read in Variables from ArcGIS Pro

InStopBldgs = arcpy.GetParameterAsText(9)

InCity = arcpy.GetParameterAsText(1)

InStops = arcpy.GetParameterAsText(2)
OutputBldgwithStops = arcpy.GetParameterAsText(3)
arcpy.env.workspace = arcpy.GetParameterAsText(4)

arcpy.env.overwriteOutput = True
#Local Variables

CityStops = "in_memory\\InCityStops"
CityStopsGT2min = "in_memory\\InCityStopsGT2min"
NearStopsTab= "in_memory\\NearStopsTable"

# Start Processing
arcpy.AddMessage("Processing CLIP in City and Stops > 2 mins")
# Create the output Buildings for stops empty Feature Class and add fields
arcpy.CreateFeatureclass_management(SteamModules.GetPath(OutputBldgwithStops),
SteamModules.GetFCNamefromPath(OutputBldgwithStops), "POLYGON",InStopBldgs)
arcpy.AddFields_management (OutputBldgwithStops,[["SID", "TEXT", "", 1@0],
["DayType", "TEXT", "", 10],
["STOPID", "TEXT", "", 20],
["BLDGID", "LONG"]])
# clip only stops within London and keep only the stops with duration over 2
mins
arcpy.Clip_analysis(InStops, InCity, CityStops)
arcpy.Select_analysis(CityStops, CityStopsGT2min, 'NbTicks > 120")

arcpy.AddMessage("Processing NEAR Stops to Buildings™)
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# find the closest building to each stop
arcpy.GenerateNearTable_analysis(CityStopsGT2min,InStopBldgs,NearStopsTab,"","
""" "CLOSEST™)
arcpy.JoinField _management(CityStopsGT2min, "OBJECTID",NearStopsTab, "IN _FID")
arcpy.AddField_management(CityStopsGT2min, "BLDGID", "LONG")
arcpy.CalculateField_management(CityStopsGT2min, "BLDGID","!NEAR_FID!" )
arcpy.AddMessage("Looping through buildings and Stops to Generate " +
OutputBldgwithStops +" File")
StopsCursor = arcpy.da.SearchCursor(CityStopsGT2min,["SID", "STOPID",
"DayType", "BLDGID", "NEAR_DIST"])
BuildingCursor = arcpy.da.SearchCursor(InStopBldgs,["SHAPE@","OBJECTID"])
InsCursor = arcpy.da.InsertCursor(OutputBldgwithStops,

["SHAPE@","SID", "DayType","STOPID", "BLDGID"])

# Use the stops with building OBJECTID on outside loop and buildings on inside
# when the NEAR_FID = Building ObjID then write the
arcpy.MakeTableView_management (CityStopsGT2min, "myTableView")

count = int(arcpy.GetCount_management("myTableView").getOutput(0))

cnt = 0

for rec in StopsCursor:

for blg in BuildingCursor:
if rec[3] == blg[1]:
InsCursor.insertRow((blg[@],rec[@],rec[2],rec[1],rec[3]))
break
BuildingCursor.reset()
cnt += 1

arcpy.AddMessage(str(float(cnt/count) * 100) + "% complete")
del InsCursor

del BuildingCursor
del StopsCursor
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### Program: STEAM GPS Pre-Processer for R

### Author: Martin Healy

### Date: April 11, 2018

### Description: This program formats and prepares the STEAM GPS data stored
### in a File Geodatabase for processing random forest in R: The program does
### the following:

H#itH 1. Flags only GPS points inside study area (within city boundary)
it 2. Creates a custom variable (DistFromBuild) by measures distance
Hit# from all GPS points to blocking structures (buildings) and

it isolated the only the School Building(s) distance to be used

H#itH during validated school times

H#itH 3. Sets Training Flag and Indoor/Outdoor classes, but validates them
it with tests for Indoor recesses (from diary), or for times the

Hit# child is off school grounds during scheduled school times.

H#itH 4. Identifies SpherelLab Routes as active and vehicular travel. The
H#it# GPS points used to create the routes are flagged as training data
ittt and coded as Indoors (vehicular travel), or Outdoors (active

it travel).

it 5. Creates a custom variable (DisttoLastPoint) by measuring the

H#itH distance between successive points.

### Can be run standalone or using an ArcTool Script Tool

### Dependencies: arcpy, sys, os, gc, SteamModules

HHf- - - - - m oo

### Only to run following the:

### 1. Successful processing of Routes and Stops from GPS Data SpherelLab

H#it# Activity place detection algorithm for GPS data (Thierry et al.,2013)
Hit#H using the custom HEAL Lab STEAM ArcToolBox Toolset.

### 2. Identification/creation of the school building polygons and successful
H#itH processing of the building identification/coding from the Spherelab

H#it# stops using script Get Buildings using SpherelLab Stops accessed from
Hit#H the HEAL Lab STEAM ArcToolBox Toolset.

import arcpy, sys, os, gc
import SteamModules

arcpy.env.overwriteOutput = True

arcpy.env.workspace = arcpy.GetParameterAsText(9)
InStopBldgs = arcpy.GetParameterAsText(1)
InSchBldgs = arcpy.GetParameterAsText(2)
InBoundary = arcpy.GetParameterAsText(3)
InDiaryTab = arcpy.GetParameterAsText(4)
InActiveRoutesFC = arcpy.GetParameterAsText(5)
InVehicleRoutesFC = arcpy.GetParameterAsText(6)
OutCSVFile = arcpy.GetParameterAsText(7)

Season = arcpy.GetParameterAsText(8)
outputWorkspace = arcpy.GetParameterAsText(9)
OutputStatsFolder = arcpy.GetParameterAsText(10)
outDataPathTable = arcpy.GetParameterAsText(12)

## Set Environment Variables

Wws = arcpy.env.workspace

Scratch_workspace = "in_memory\\"

test_workspace = "C:\\w\PhDSTEAMProcessing\\RProcessing\\Scratchy.gdb"
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try:

# Get the list of Feature Datasets from a Workspace
datasets = arcpy.ListDatasets(feature_type="Feature")
datasets = [''] + datasets if datasets is not None else []

# Loop through a list of feature classes in the workspace
FC_Count =1
for ds in datasets:
for fc in arcpy.ListFeatureClasses("*", "Point", ds):
print("Processing: " + fc)
InputGPSpath = os.path.join(arcpy.env.workspace, ds, fc)

# Set the output name VARIABLE to be the same as the input name, and
# locate in the 'temp_workspace' workspace

OutputGPSFCpath = os.path.join(outputWorkspace, fc)

outputFC_mem = os.path.join("in_memory", fc)

# Get SID value
SidID = fc.upper()
SchoolID = SteamModules.GetSchoolID(SidID,Season)
inSchBldg = "in_memory\\SchBldg"
anExpression = "SchoolID = '" + SchoolID + "'"
arcpy.Select_analysis(InSchBldgs, inSchBldg, anExpression )
NumRecords = int(arcpy.GetCount_management
(inSchBldg) .getOutput(0))
if NumRecords == @:
print("No School Buildings were selected for
+ SchoolID + " INVESTIGATE")
break
GPSLayer = "lyr " + str(SidID)

# Make a Copy of the FC and save in_memory. Add the four fields

# (Indoors,DistFromBuild,INDOORS,TrainingFlag)

outputFC_InCity = SteamModules.SetInCityFlag(fc,InBoundary,SidID,
GPSLayer,Season,outputFC_mem)

### Get all the nearest buildings identified from SphereLab Stops

### for all GPS points

outputFC_InCity_AllBldgs = SteamModules.GetNearestBuilding
(outputFC_InCity,InStopBldgs,SidID, "ALL")

if outputFC_InCity_AllBldgs == "Error"
or outputFC_InCity_AllBldgs == False:
break

### Set TrainingFlag for all scheduled times
outputFC_Training = SteamModules.SetTrainingFlag
(outputFC_InCity_Al1Bldgs,SidID)

if outputFC_Training == False:

break
### Add Field to hold if the GPS tracks are Travelling during
### school time, if so the distance to school building will not
### override the general distance to buildings
arcpy.management.AddField(outputFC_Training, "offcampus", "SHORT")
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### Refine the Training Data TrainingFlag remove when children
### off-campus
inTrainStatsTable = "in_memory\\TrainStatsTable"
outputFC_Training_no_OC = SteamModules.RemoveOffCampus
(outputFC_Training, inTrainStatsTable, Season)
if outputFC_Training no_OC == False:
break
### Refine the Training Data toggle INSIDE, if children was Indoor
### for Recess
outputFC_Training_OKRecess = SteamModules.RefineIndoorRecess
(outputFC_Training_no_OC ,SidID,InDiaryTab ,Season)
if outputFC_Training_ OKRecess == False:
break

### Refine the Training Data TrainingFlag for Active-non-active
### travel Routes to, remove children off-campus, not
### outside for recess
outputFC_Training_travel = SteamModules.RefineTravel
(outputFC_Training_OKRecess, InActiveRoutesFC,
SidID, Season, "ACTIVE")
if outputFC_Training_travel == False:
break
outputFC_Training_travelall = SteamModules.RefineTravel
(outputFC_Training_travel, InVehicleRoutesFC,
SidID, Season, "VEHICLE")
if outputFC_Training_travelall == False:
break
### Get the school Building(s) as nearest buildings for all in
### school Training GPS points
outputFC_Training_mem = SteamModules.GetNearestBuilding
(outputFC_Training_travelall,inSchBldg,
SidID, "TRAINING")
if outputFC_Training mem == False:
break

### Add Distance to previous point
outputFC_withDistFromLast = SteamModules.CalcDistTolLastPoint
(outputFC_Training_mem)
if outputFC_withDistFromLast == False:
break
# Make a copy of the GPS Points ready for use in R
arcpy.Select_analysis(outputFC_Training_mem, OutputGPSFCpath)

SteamModules.CreatePathTableForR(outDataPathTable,
OutputGPSFCpath,SidID, Season,outputWorkspace)

FC_Count = FC_Count + 1

# Clear variable memory
inSchBldg = None
GPSLayer = None
outputFC_InCity = None
outputFC_InCity_AllBldgs = None
outputFC_Training_no_OC = None
outputFC_Training_travel = None
outputFC_Training_OKRecess = None
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outputFC_Training_mem = None
inTrainStatsTable = None
gc.collect()
except (RuntimeError, TypeError, NameError, IOError) as err:
print("Oops! Error in the PrepSTEAMGPSDataForR module: " + err)



141

### Program: SteamModules
### Author: Martin Healy
### Date: March 29, 2018
### Description: This program contains the modules for all STEAM Python

H#itH Scripts

bidi

### Dependencies: arcpy, 0S, CSV
#Hff============================

import arcpy, os, csv, math

# Get Number of GPS records
def GetFeatureCount(inSID, inFCLayer):
NumRecords = int(arcpy.GetCount_management(inFCLayer.getOutput(0)))
if NumRecords ==
print("No GPS Points were selected for " + inSID + " INVESTIGATE")
return ""

# Get School ID from name of participant ID (SID)
def GetSchoolID(inSID, Season):
if len(inSID) == 5:
if Season == "S2010" or Season == "W2010":
outschool = inSID[@] + inSID[1]
else:
outschool = inSID[@]
elif len(inSID) == 6:
outschool = inSID[@] + inSID[1]
else:
outschool = "Error in name of School From SID"
return outschool

# Some GPS Feature Class tables do not include standard names
# make them standard.
def HasDayTypeField(inFC):
try:
boolvVar = False
fList = arcpy.ListFields(inFC)
for f in flList:
if f.name == "DayType" or f.name == "DAYTYPE":
boolVar = True
return boolvar
except (RuntimeError, TypeError, NameError, IOError) as err:
print("Oops! Error in the HasDayTypeField module: " + err)

# Flag only GPS records within a boundary
def SetInCityFlag(fc, inCityBnd, SIDID,GPSLayer,Season,outputFC):
try:
arcpy.Select_analysis(fc, outputFC)
if HasDayTypeField(outputFC):
arcpy.management.AddFields(outputFC, [["DistFromBuild",
"DOUBLE"],["DistFromLastPoint", "DOUBLE"],
["TrainingFlag","SHORT"], [ "INDOOR","SHORT"],
["InCity","SHORT"],["INOUT","SHORT"]])
else:
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if Season == "S2010" or Season == "W2010":
arcpy.management.AddFields(outputFC, [
["DayType","TEXT","",10],["DistFromBuild"”, "DOUBLE"],
["DistFromLastPoint","DOUBLE"],["TrainingFlag", "SHORT"],
["INDOOR","SHORT"],["InCity","SHORT"],["INOUT","SHORT"]])
if Season == "W2010":

arcpy.CalculateField_management(outputFC, "DayType", ' IDAY!"
» "PYTHON3")
else:

arcpy.CalculateField_management (outputFC, "DayType", '!Day_T
ype!"', "PYTHON3")
else:
print("No DAYTYPE Field in GPS Data: " + err)
arcpy.CalculateField_management(outputFC,"TrainingFlag",@, "PYTHON3")
arcpy.CalculateField_management(outputFC,"InCity",@, "PYTHON3")
arcpy.MakeFeatureLayer_management (outputFC,GPSLayer)
arcpy.SelectlLayerByLocation_management(GPSLayer,
"INTERSECT",inCityBnd)

arcpy.CalculateField_management(GPSLayer,"InCity",1, "PYTHON3")
arcpy.SelectLayerByAttribute_management(GPSLayer, "CLEAR_SELECTION")

return outputFC
except (RuntimeError, TypeError, NameError, IOError) as err:
print("Oops! Error in the SetInCityFlag module: " + err)

# Get the distance to the closest buildings identified as stops
def GetNearestBuilding(inGPSFC, inBuildings, SidID, Type):
try:
if Type == "ALL":
allsibBlg = "in_memory\\allSIDBlg"
#Calc dist to all buildings and set the Training Flag = ©
anExpression = "SID = '()'".format(SidID)
arcpy.Select_analysis(inBuildings,allSIDBlg, anExpression)
NumRecords =int(arcpy.GetCount_management(allSIDBlg).getOutput(@))
if NumRecords ==
print("No Buildings were selected for " + SidID + "
INVESTIGATE")
return "Error"

arcpy.Near_analysis(inGPSFC,allSIDBlg)
arcpy.CalculateField_management (inGPSFC, "DistFromBuild"," !NEAR_DI
ST!", "PYTHON3")
arcpy.DeleteField_management(inGPSFC, ["NEAR_DIST", "NEAR_FID"])
arcpy.CalculateField_management(inGPSFC, "INDOOR", ©, "PYTHON3")
arcpy.CalculateField _management(inGPSFC,"TrainingFlag", @,
"PYTHON3")

elif Type == "TRAINING":
#Calc dist to school building(s)

inGPSLayer = "lyrschool_ inGPSFC"
arcpy.MakeFeatureLayer_management(inGPSFC, inGPSLayer)
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arcpy.Near_analysis(inGPSLayer,inBuildings)
Trainingwclausel = "TrainingFlag = 1"
Trainingwclause2 = "TIME_BLOCK_NAME = 'AM_Schooll' OR
TIME_BLOCK_NAME = 'PM_Schooll' OR TIME_BLOCK_NAME =
'AM_School2' OR TIME_BLOCK_NAME = 'PM_School2'"
Trainingwclause3 = "TIME_BLOCK_NAME = 'AM_Recess' OR
TIME_BLOCK_NAME = 'PM_Recess'"

# Not on campus for the day or part of day (travelling)
Trainingwclause4 = "offcampus = 1"
arcpy.SelectLayerByAttribute_management (inGPSLayer,
"NEW_SELECTION",Trainingwclausel)
arcpy.SelectLayerByAttribute_management(inGPSLayer,
"ADD_TO_SELECTION", Trainingwclause2)
arcpy.SelectLayerByAttribute_management (inGPSLayer,
"ADD_TO_SELECTION",Trainingwclause3)
arcpy.SelectLayerByAttribute_management(inGPSLayer,
"REMOVE_FROM_SELECTION",Trainingwclause4)

# if the DistFromBuild is much less than the distance to school
# (<800m), then keep old DistFromBuild value. The child is off
# campus, not shown as a route, but close to school

Trainingwclause5 = "DistFromBuild < (NEAR_DIST - 800)"
arcpy.SelectLayerByAttribute_management(inGPSLayer,
"REMOVE_FROM_SELECTION",Trainingwclause5)
arcpy.CalculateField_management(inGPSLayer,
"DistFromBuild", " INEAR_DIST!", "PYTHON3")
arcpy.DeleteField_management(inGPSLayer, [ "NEAR_DIST", "NEAR_FID"])
arcpy.SelectlLayerByAttribute_management(inGPSLayer,
"CLEAR_SELECTION")
return inGPSFC
except (RuntimeError, TypeError, NameError, IOError) as err:
print("Oops! Error in the GetNearestBuilding module: " + err)

# Set the Training Flag for R Random Forest Creation
def SetTrainingFlag(inGPSFC, SidID):
try:
inGPSLayer = "lyr_ inGPSFC"
arcpy.MakeFeaturelLayer_management (inGPSFC,inGPSLayer)
Trainingwclausel = "TIME_BLOCK_NAME = 'AM_Schooll'
OR TIME_BLOCK_NAME = 'PM_Schooll' OR
TIME_BLOCK_NAME = 'AM_School2' OR TIME_BLOCK_NAME = 'PM_School2'"
Trainingwclause2 = "TIME_BLOCK_NAME = 'AM_Recess'
OR TIME_BLOCK_NAME = 'PM_Recess'"
# set the Training Flag = 1 when regimented school times
arcpy.SelectLayerByAttribute_management(inGPSLayer,
"NEW_SELECTION",Trainingwclausel)
arcpy.CalculateField_management(inGPSLayer, "INDOOR", 1)
arcpy.CalculateField_management(inGPSLayer,
"TrainingFlag", 1, "PYTHON3")
arcpy.SelectLayerByAttribute_management(inGPSLayer,
"NEW_SELECTION",Trainingwclause2)
arcpy.CalculateField_management(inGPSLayer, "INDOOR", ©, "PYTHON3")
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arcpy.CalculateField_management(inGPSLayer,
"TrainingFlag", 1, "PYTHON3")
arcpy.SelectLayerByAttribute_management(inGPSLayer,"CLEAR_SELECTION")

return inGPSFC

except (RuntimeError, TypeError, NameError) as err:
print("Oops! Error in the RemovelIndoorRecess Function:
return False

+ err)

# Remove any non-conforming GPS Training points (i.e. stay indoors at Recess)
def RefinelIndoorRecess(inGPSFC,SID, DiaryTable, Season):
try:
# Choose the Diary records for the participant and Season
sqlexpress = "SID = '()' AND S = '()'".format(SID,Season)

#Get the Diary records for this participant for this season
with arcpy.da.SearchCursor(DiaryTable,["SID","DayType",
"TimeBlock","TB_IO01"],sqlexpress ) as SCursor:

DictList = []
for row in SCursor:

diaryDaytype = row[1]

diaryTimeBlock = row[2]

diaryRecessInout = row[3]

recessDayDict = dict(daytype = diaryDaytype,

timeB = diaryTimeBlock,RecessInout = diaryRecessInout)
DictList.append(recessDayDict)

#Do for only all the indoor recesses -> set INDOOR = 1...keep as
# training data

cnt = 0

gpscnt = 0

for aDict in Dictlist:

if aDict['RecessInout'] == 2:

if Season == "S2010" or Season == "W2010":
sqlexpress2 = "DayType = '()' AND
TIME_BLOCK_NAME = '()'"
.format(aDict[ 'daytype'],aDict[ 'timeB'])
else:
sqlexpress2 = "DAYTYPE = "()' AND
TIME_BLOCK_NAME = '()'"
.format(aDict[ 'daytype'],aDict[ 'timeB'])

UCursor = arcpy.da.UpdateCursor(inGPSFC, ["INDOOR"],sqlexpress2

for uRow in UCursor:
URow[@] =1
UCursor.updateRow(uRow)
gpscnt += 1
cnt += 1
print("() in () had () recess inside for a total
of () GPS points".format(SID,Season,cnt,gpscnt))
return inGPSFC
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except (RuntimeError, TypeError, NameError) as err:

print("Oops! Error in the RefinelIndoorRecess Function: " + err)
return False

# Remove any non-conforming GPS Training points (i.e. leave school Property
#during school day, stays at home)

def RemoveOffCampus(inGPSFC,TrainStatsTemp,Season):
try:
# Select the Training Data
inTrainGPSLayer = "lyrtrain_inGPSFC"
BadDayList = []
ValidDayList =["WD1","WD2","WD3","WD4","WD5","WD6","WD7"]
if Season == "S2010" or Season == "W2010":
arcpy.Statistics_analysis(inGPSFC,
TrainStatsTemp, [["DistFromBuild","MEAN"],

["DistFromBuild", "RANGE"]],["DayType","TrainingFlag"])
else:

arcpy.Statistics_analysis(inGPSFC,
TrainStatsTemp,[["DistFromBuild","MEAN"],

["DistFromBuild","RANGE"]], ["DAYTYPE","TrainingFlag"])
TrainTabCursor = arcpy.da.SearchCursor(TrainStatsTemp,["*"])

# By Day, find the mean distance, if > 500m, then student is off

# campus for part of the day, and that day will not be included in the
# training #dataset - set TrainingFlag = ©

# Create a list of daytypes for this participant where they are not on
# school property during school days
for TRec in TrainTabCursor:
if TRec[2] == 1:
for daytype in ValidDaylList:
if TRec[4] > 500 and TRec[1] == daytype or
TRec[5] > 500 and TRec[1] == daytype:
BadDaylList.append(TRec[1])

# select and calculate TrainingFlag = © for that DayType
if len(BadDaylList) > @:
arcpy.MakeFeatureLayer_management(inGPSFC,inTrainGPSLayer)
for bDay in BadDaylist:
if Season == "S2010" or Season == "W2010":
arcpy.SelectLayerByAttribute_management(inTrainGPSLayer,
"NEW_SELECTION","DayType = '" + bDay + "'")
else:
arcpy.SelectlLayerByAttribute_management(inTrainGPSLayer,
"NEW_SELECTION","DAYTYPE = "" + bDay + "'")
arcpy.CalculateField management(inTrainGPSLayer,
"TrainingFlag",@, "PYTHON3")
arcpy.CalculateField_management(inTrainGPSLayer,
"INDOOR", @, "PYTHON3")
arcpy.CalculateField _management(inTrainGPSLayer,
"offcampus"”, 1, "PYTHON3")

arcpy.SelectLayerByAttribute_management(inTrainGPSLayer,
"CLEAR_SELECTION")



146

return inGPSFC

except (RuntimeError, TypeError, NameError) as err:
print("Oops! Error in the RemoveOffCampus Function:
return False

+ err)

# Set Vehicle travel as INDOOR and non-vehicle as OUTDOOR
def RefineTravel(inGPSFC, inRouteFC, SID, Season,Type):
try:
# Use every Route - the FC has been preprocessed to remove
# erroneous routes
sqlexpress = "SID = "()'".format(SID)
with arcpy.da.SearchCursor(inRouteFC,["SID",
"DayType", "UTCStartTime_Date",
"UTCStopTime_Date"], sqlexpress) as SCursor:
DictList = []
for row in SCursor:

routeDaytype = row[1]

routeStartTime = row[2]

routeStopTime = row[3]

routeDayDict = dict(daytype = routeDaytype,

starttime = routeStartTime, stoptime =
DictList.append(routeDayDict)

routeStopTime)

# Do for only all the indoor recesses -> set INDOOR = 1 and set
# training flag
for aDict in Dictlist:

"S2010" or Season == "W2010":

if Season ==
sqlexpressa = "DayType = '" +
sqlexpressb = sqlexpressa + "

aDict[ 'daytype'] +
AND FULLTIME >= timestamp " +

"'+ aDict['starttime'].strftime('%Y-%m-%d %H:%M:%S")

+
sglexpress2 = sqlexpressb + " AND FULLTIME <= timestamp " +
"'" 4+ aDict['stoptime'].strftime('%Y-%m-%d %H:%M:%S")
4 o
else:
sqlexpressa = "DAYTYPE = '" + aDict['daytype'] + "'"
sglexpressb = sqlexpressa + " AND FULLTIME >= timestamp " +
"'" 4+ aDict['starttime']
.strftime('%Y-%m-%d %H:%M:%S"') + "'"
sqlexpress2 = sqlexpressb + " AND FULLTIME <= timestamp " +
"' 4+ aDict['stoptime']
strftime('%Y-%m-%d %H:%M:%S"') + """
UCursor = arcpy.da.UpdateCursor(inGPSFC,

["SPEED","INDOOR","TrainingFlag", "offcampus"],sqlexpress2)

# Set as Outdoor and TrainingFlag = 1
if Type == "ACTIVE":

# Check if route misidentified as Active i.e. when 4 or more
# GPS points making the route contain excessive speeds
overspeedcnt = ©
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for uRow in UCursor:
if uRow[@] > 18:
overspeedcnt += 1
UCursor.reset()
# Set Active Travel as Outdoors and TrainingFlag = 1
if overspeedcnt < 4:
for uRow in UCursor:

URow[1l] = ©
URow[2] =1
uRow[3] =1

UCursor.updateRow(uRow)

# Set as Indoor and TrainingFlag = 1
elif Type == "VEHICLE":

for uRow in UCursor:
URow[1] =1
URow[2] 1
uRow[ 3] 1
UCursor.updateRow(uRow)

return inGPSFC

except (RuntimeError, TypeError, NameError) as err:
print("Oops! Error in the RefineTravel Function:
return False

+ err)

# Create the <STEAMSeason>_FCPaths Table for R
def CreatePathTableForR(tablePath,FcPath,SID,Season,outputiWorkspace):

TableCur = arcpy.da.InsertCursor(tablePath,
["SID","Season","dPath","ErrorCSVPath", "ForestSizeInfluencePlotPath",
"VariableImportancePlotPath", "ConfusionMatrixCSVPath","tPath"])

aPath = GetPathtoFolder(FcPath)

ErrorCSVPath = aPath + "\\RandomForestErrors\\" + Season +

ForestSizePlotsPath = aPath +
"\\OutputPlots\\ForestSizeInfluencePlotPath\\"

+ Season + "\\" + SID + "_FSIP.pdf"

ImportancePlotsPath = aPath +
"\\OutputPlots\\VariableImportancePlotPath\\" +
Season + "\\" + SID + "_VIP.pdf"

ConfuseMatrixPath = aPath +
"\\OutputPlots\\ConfusionMatrixCSVPath\\" +
Season + "\\" + SID + "_CM.csv"

outTable = outputWorkspace + "\\" + SID + "inout"

_RFError.csv"

TableCur.insertRow([SID,Season,FcPath,ErrorCSVPath,
ForestSizePlotsPath,ImportancePlotsPath,ConfuseMatrixPath,outTable])

del TableCur

# Get the Feature Class Name from a full path to the file
def GetFCNamefromPath(inPath):

listPath = inPath.split(os.sep)

strFCName = listPath[len(listPath) - 1]

return strFCName
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# Get the File path to a dataset
def GetPath(inPath):
listPath = inPath.split(os.sep)
for index in range(@,len(listPath)-1):

if index ==
strOutputPath = listPath[index]
else:
strOutputPath = strOutputPath + os.sep + listPath[index]

return strOutputPath

# Get the File path to a workspace folder
def GetPathtoFolder(inPath):
listPath = inPath.split(os.sep)
for index in range(@,len(listPath)-1):
if ".gdb" in listPath[index]:

break
elif index ==
strDirPath = listPath[index]
else:
strDirPath = strDirPath + os.sep + listPath[index]

return strDirPath

# Generates distance between two points - pass in 2 successive points
def PointDist(ptl, pt2):
# Input: two tuples (x,y) that defined a pair of successive points
# sqrt((x1-x2)**2 + (yl-y2)**2
if ((ptz2[@] - pti[e]) !'= @) and ((pt2[1] - pti[1]) !'= @):
ptDist = math.sqrt(math.pow(pt2[@] - ptl[@], 2) + math.pow(pt2[1] -
pti[1], 2))
else:
ptDist = ©
return ptDist

# Calculate distance between two GPS points
def CalcDistToLastPoint(inGPSFC):
try:
# Create a list of coordinate tuples from Search Cursor
pointList =[]

# Get the points
with arcpy.da.SearchCursor(inGPSFC,["SHAPE@XY"]) as SCursor:
for row in SCursor:
ptcoord = (row[@][0],row[@][1])
pointList.append(ptcoord)

ptCount = len(pointList)
cnt = 0
pDistList = []
for firstpt in pointList:
if c¢nt ==
pDistList.append(0)
else:
if cnt < ptCount:
pDistList.append(PointDist(firstpt, (pointList[cnt - 1])))
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cnt += 1

cnt = 0

with arcpy.da.UpdateCursor(inGPSFC,["DistFromLastPoint"]) as UCursor:
cnt = 0

for uRow in UCursor:

URow[@] = pDistList[cnt]

UCursor.updateRow(uRow)

cnt += 1
return inGPSFC

except (RuntimeError, TypeError, NameError) as err:

print("Oops! Error in the RefineTravel Function: " + err)
return False
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Appendix E: R Script of Random Forest Classifier

### Step 1: Load and initialize the arcgisbinding, random forest, and caret
### packages

library(arcgisbinding)
arc.check_product()
#install.packages('randomForest')
library(randomForest)
#install.packages('caret")
library(caret)

### Step 2: Load all FGDB Table (that drives the loop) containing the paths
### and naming structure into R.

### The <STEAMSeason>_ FCPaths Table contains the list of all the GPS Feature
### Classes to process in R and the paths and names of output data from R

# Open the table
FCpaths <- arc.open(path =
"C:\\w\\PhDSTEAMProcessing\\Indoor_Outdoor\\DataPathsForR.gdb\\S2010_FCPaths")

# Select all the records

d_path <- arc.select(FCpaths, c('SID',

'Season', 'dPath’', '"ErrorCSVPath', 'ForestSizeInfluencePlotPath', 'VariableImporta
ncePlotPath', 'ConfusionMatrixCSVPath', 'tPath"))

# Create an empty data frame with column names

edf <- data.frame( "SID" = character(®), "Season" = character(9),
"TrainingSample" = numeric(@), "OOB" = numeric(®@), "TrainAccuracy" =
numeric(@),stringsAsFactors = FALSE)

# Loop over rows of the <STEAMSeason>_FCPaths dataframe, using the pathnames
# to Feature Classes to drive the loop.
# Each GPS FGDB Feature Class is processed in the loop

for (row in 1:nrow(d_path)) {
aSID <- d_path[row, "SID"]
theSeason <- d_path[row, "Season"]
dpath <- d_path[row, "dPath"]
errorpath <- d_path[row, "ErrorCSVPath"]
FSIPpath <- d_path[row, "ForestSizeInfluencePlotPath"]
VIPpath <- d_path[row, "VariableImportancePlotPath"]
CMcsvPath <- d_path[row, "ConfusionMatrixCSVPath"]
tpath <- d_path[row, "tPath"]

print(paste("The SID is", aSID))

print(paste("The path is", dpath))

print(paste("The Season is", theSeason))

print(paste("The Forest Size Influence Plot Path is ", FSIPpath))
print(paste("The Variable Importance Plot Path is ", VIPpath))
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print(paste("The path to output table is", tpath))

### Step 3: Loads the GPS Feature Class as an R dataframe

d <- arc.open(path = dpath)

d_all <- arc.select(d, c('CKEY', 'HEIGHT','SPEED', 'PDOP', 'HDOP','VDOP',
"INDOOR', 'DistFromLastPoint', 'DistFromBuild'), where_clause = "InCity = 1")

d_CKey <- arc.select(d, c('CKEY'), where_clause = "InCity = 1")

### Step 4: Select the subset of known indoor/outdoor data to be used as the

### training and test dataset

df <- arc.select(d, c('HEIGHT','SPEED','PDOP','HDOP','VDOP', 'INDOOR',
'DistFromLastPoint', 'DistFromBuild'), where_clause = "TrainingFlag = 1 AND
InCity = 1")

# GET COUNT FROM TRAINING AND GENERATE SAMPLE SIZE
indsample <- sample(2, nrow(df), replace = TRUE, prob = c(0.66,0.33))

# 66% of the data flagged as “Training” will be used to TRAIN the random
# forest model
train_data <- df[indsample==1, ]

# 33% of the data flagged as “Training” will be used to TEST the random
# forest model
test_data <- df[indsample==2,]

print(paste("Training Data Size:"))
TrainSize <- nrow(train_data)
print(TrainSize)

print(paste("Test Data Size:"))
print(nrow(test_data))

outdoorTrainCnt <- nrow(subset(train_data, INDOOR < 1))
print(paste("Number of Outdoor Pts in Training Data:", outdoorTrainCnt))
outdoorTestCnt <- nrow(subset(test _data, INDOOR < 1))
print(paste("Number of Outdoor Pts in Test Data:",outdoorTestCnt))

# Only create an individual Random Forest Model for those participants with

# at least 50 minute of a Training Sample and outdoors for 10 minutes

# (Training Sample) and 5 minutes (Test Sample)

# Else use the previous Random Forest Model from the last participant who

# met these thresholds.

if ((TrainSize > 3000) & (outdoorTrainCnt > 600) & (outdoorTestCnt > 300)) {
print(paste("Running Random Forest Model Generator - Normal Mode"))

### Create the Random Forest Model
rf_model <-
randomForest(as.factor(INDOOR) ~ .,
train_data,
ntree = 500,
importance = TRUE)
print(paste("Random Forest Model created using training data"))
print(paste("Random Forest model - Confusion Matrix of Out-of-Bag and
remaining Training observations:"))
print(rf_model$confusion)
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print(paste("Random Forest model: Num var at each split"))
print(rf_model$mtry)

# Plot the model to see the influence of Forest Size
# Open a pdf file
pdf (FSIPpath)
layout(matrix(c(1, 2), nrow = 1),
width = c(4, 1))

par(mar = c(5, 4, 4, ©)) # No margin on the right side
plot(rf_model, log = "y")
par(mar = c(5, @, 4, 2)) # No margin on the left side
plot(

c(o, 1),

type = "n",

axes = F,

xlab = "",

ylab = ""
)
legend(

"top",

colnames(rf_model$err.rate),

col = 1:4,

cex = 0.8,

fill = 1:4

)
dev.off()

# Gather the Model 00B Error
0oobError <-

mean(predict(rf_model) != as.factor(train_data$INDOOR))
print(paste("Random Forest Model: Training OOB Error"))
print(oobError)

# Run Training Data through the Random Forest Model
train_predict <- predict(rf_model, train_data)

# Step 5: Run Test Dataset through the Random Forest Model, create

# Confusion Matrix (.csv file), Model Accuracy and generate the variable
# importance plot to illustrate the variables were most important for

# training the model

print(paste("Step 5 train predict"))
test_data_p _model <- predict(rf_model, test_data, type = 'response’)

print(paste("Confusion Matrix of Prediction and Test data sample:"))
cm <-
confusionMatrix(test_data_p_model,
as.factor(test data$INDOOR), positive =
Illll)
trainAccuracy <- cm$overall[ 'Accuracy']
tocsv <- cm$table
write.csv(tocsv, file = CMcsvPath)

# Create Variable Importance Plot
pdf(VIPpath)
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varImpPlot(rf_model)
dev.off()

### Step 6-option 1: Run Entire Data Test Dataset through its own
### Random Forest Model

print(paste("Prediction on full set of observations"))
outin_predicted <- predict(rf_model, d_all, type = 'response')

### Step 8-option 1: Join the predicted Indoors/Outdoors class to the
### original GPS dataframe and output as a File Geodatabase Table in Arc

print(paste("Cbind of prediction and full set of observations"))
dc <- cbind(d_CKey, outin_predicted, deparse.level = 1)

print(paste("Output Table to Arc"))
arc.write(tpath, dc)

### STEP 7-option 1: Store the 00B Error Rate, training size, accuracy
### of the model
edf[nrow(edf) + 1, ] = list(

SID = aSID,

Season = theSeason,

TrainingSample = TrainSize,

00B = oobError,

TrainAccuracy = trainAccuracy

)
lastSID = aSID

} else {
print(paste("SKIPPING Random Forest Model for DATASET ", sid, " using
Random Forest from : " ,lastSID))

### Step 6-option 2: Run Entire Data Test Dataset through the last
### valid Random Forest Model (the last one that contained a large enough
### training and test sample size

print(paste("Prediction on full set of observations"))
outin_predicted <- predict(rf_model, d_all, type = 'response’)

### Step 8-option 2: Join the predicted Indoors/outdoors to the

### original GPS dataframe and output as a File Geodatabase Table in Arc
print(paste("Cbind of prediction and full set of observations"))

dc <- cbind(d_CKey, outin_predicted, deparse.level = 1)

print(paste("Output Table to Arc"))
arc.write(tpath, dc)

### STEP 7-option 2: Store the 00B Error Rate, training size, accuracy
### of the previous valid model

print(paste("Appending to the GPS RF Stats Data Frame"))
edf[nrow(edf) + 1, ] = list(

SID = aSID,

Season = theSeason,

TrainingSample = TrainSize,
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00B = oobError,
TrainAccuracy = trainAccuracy
)
}
}
#}

### STEP 8 - write out random Forest error and classification accuracy Stats
for the entire ### Run

print(paste("Completed Loop - now witing out GPS RF Stats"))
write.csv(edf,file=errorpath)
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Appendix F: Post-Processing Script for Random Forest

### Program: Post-Process STEAM GPS Data from Random Forest model in R
### Author: Martin Healy

### Date: July 18, 2018

### Description: This program is designed to run from an ArcGIS Pro Script

H#it# Tool and prepares the data for use in SPSS:

HitHE 1. Joins the Prediction Table from Random Forest to STEAM Feature
THHE Classes

H#itH 2. SID HID DayType FULLTIME Predicted exported to a csv suitable for
Hit# SPSS

HitHE 3. Merge into one CSV

HH#

### Dependencies: arcpy, sys, os, gc, SteamModules
##f============================

import arcpy, csv, sys, os, gc

#FGDB = arcpy.GetParameterAsText(0)
FGDB = "C:\\w\\PhDSTEAMProcessing\\Indoor_ Outdoor\\W2010.gdb"

#tarcpy.env.workspace = arcpy.GetParameterAsText(1)

arcpy.env.workspace =
"C:\\w\\PhDSTEAMProcessing\\Indoor_Outdoor\\W2010.gdb"#"C:\\w\\PhDSTEAMProcess
ing\\Indoor_Outdoor\\S2010.gdb"

# Create and Open the output CSV file to contain the GPS records to Import to
# SPSS
output=open(r'C:\w\PhDSTEAMProcessing\Indoor_Outdoor\DataAnalysis\CSVFilesForsS
PSS\W2010.csv', 'w',newline="")

linewriter=csv.writer(output,delimiter=",")

linewriter.writerow(["SID", "SEASON","HID", "DayType", "FULLTIME",
"outin_predicted"])

name_field = "InCity"

for tabl in arcpy.ListTables("*inout"):
strLeng = len(tabl)
FC = tabl[@:(strLeng - 5)]

print("Processing: " + FC)
arcpy.JoinField _management(FC,"CKEY",tabl, "CKEY",["outin_predicted"])
expression = arcpy.AddFieldDelimiters(FC, name_field) + ' = 1'

Scursor = arcpy.da.SearchCursor(FC,["SID", "Season","HID", "DayType",
"FULLTIME", "outin_predicted"], where_clause=expression)

for aRow in Scursor:

sid = aRow[0@]

season = aRow[1]

hid = aRow[2]

daytype = aRow[3]

ft = aRow[4]

strFTime = ft.strftime("%m/%d/%Y %H%M%S %p™)

out_in = aRow[5]

linewriter.writerow([sid, season, hid, daytype, strFTime, out_in])
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