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Abstract 

 

A growing body of research suggests that increasing the accessibility to health-related 

environmental features and increasing exposure to and engagement in outdoor environments 

leads to positive benefits for the overall health and well-being of children. Additionally, 

research over the last twenty-five years has documented a decline in the time children spend 

outdoors. Outdoor activity in children is associated with increased levels of physical fitness, 

and cognitive well-being.  Despite acknowledging this connection, problems occur for 

researchers when attempting to identify the child’s location and to measure whether a child 

has made use of an accessible health-related facility, or where, when and for how long a child 

spends time outdoors. 

The purpose of this thesis is to measure children’s accessibility to, exposure to, and 

engagement with health-promoting features of their environment.  The research on the 

environment-health link aims to meet two objectives: 1) to quantify the magnitude of 

positional discrepancies and accessibility misclassification that result from using several 

commonly-used address proxies; and 2) to examine how individual-level , household-level, 

and neighbourhood-level factors are associated with quantity of time children spend 

outdoors. This will be achieved by employing the use of GPS tracking to objectively quantify 

the time spent outdoors using a novel machine learning algorithm, and by applying a 

hexagonal grid to extract built environment measures. 

The aim of this study is to identify the impact of positional discrepancies when measuring 

accessibility by examining misclassification of address proxies to several health-related 

facilities throughout the City of London and Middlesex County, Ontario, Canada. Positional 

errors are quantified by multiple neighbourhood types. Findings indicate that the shorter the 

threshold distance used to measure accessibility between subject population and health-

related facility, the higher the proportion of misclassified addresses. Using address proxies 

based on large aggregated units, such as centroids of census tracts or dissemination areas, can 

result in vast positional discrepancies, and therefore should be avoided in spatial 

epidemiologic research.  
i 

 



  

In an effort to reduce the misclassification, and positional errors, the use of individual 

portable passive GPS receivers were employed to objectively track the spatial patterns, and 

quantify the time spent outdoors of children (aged 7 to 13 years) in London, Ontario across 

multiple neighbourhood types. On the whole, children spent most of their outdoor time 

during school hours (recess time) and the non-school time outdoors in areas immediately 

surrounding their home.  

From these findings, policymakers, educators, and parents can support children’s health by 

making greater efforts to promote outdoor activities for improved health and quality of life in 

children. The aim of this thesis is to advance our understanding of the environment and 

health-link and suggests practical steps for more well-informed decision making by 

combining novel classification and mapping techniques. 

 

 

Keywords 

Built Environment; Geographic Information Systems; Global Positioning Systems; Children; 

Random Forest; Accessibility; Opportunity; Exposure. 

  

ii 



  

Co-Authorship Statement 

Each of the manuscripts contained within this dissertation has been published in or prepared 

for publication in peer-reviewed journals. Chapter 3 and Chapter 4 have been written by 

Martin Healy with Dr. Jason Gilliland as co-author. In each manuscript, Martin Healy was 

the principal author and performed all research and analysis, participated in the data 

collection and database design, and programmed all custom computer programming tools. 

Dr. Jason Gilliland was involved in the development of the methodological and analytical 

protocols utilized in each of the two studies. Below is a list of the journal destinations for 

each of the manuscripts. 

Chapter 3: Healy, M. and Gilliland, J. (2012). Quantifying the magnitude of environmental 

exposure misclassification when using imprecise address proxies in public health research. 

Spatial and Spatio-temporal Epidemiology 3: 55-67. 

Chapter 4: Healy, M. and Gilliland, J. Objectively measuring children’s accessibility, 

exposure, and engagement in time spent outdoors using passive GPS devices. Prepared for 

the International Journal of Health Geographics. 

iii 



  

Acknowledgments 

I want to thank my supervisor, Dr. Jason Gilliland for his steadfast belief in me and his 

endless encouragement throughout all the stages of my Ph.D. research. I would not have been 

able to complete this dissertation without his support. I would also like to thank the members 

of my committee including Dr. Jacek Malczewski, Dr. Micha Pazner, and Dr. Isaac Luginaah 

and to my examination committee for your careful consideration of this thesis and your 

constructive comments. 

Thanks go out to my second reader Dr. Jinfei Wang who offered me her time to read and 

make thoughtful comments during a hectic time at the beginning of the academic year.  

Additional thanks to Lori Johnson and Dr. Jeff Hopkins from the Dept. of Geography who 

encouraged me to persevere. 

A special thanks to Dr. Andrew Clark, with whom I have spent many hours discussing the 

complexities of the data from the STEAM project. I also wish to thank my colleagues whom 

I had the pleasure to work closely with over the years including Suzanne Tillman, Kate 

Schieman, Sandra Kulon, Dr. Janet Loebach, and Kathy Tang. 

I thank those HEAL Lab colleagues who have befriended me over the years and from whom 

I have been inspired to reach my educational goals including Dr. Donald Lafreniere, Dr. 

Mathew Novak, Dr. Claudia Rangel, Dr. Doug Rivet, and Dr. Richard Sadler. To all past and 

present members of the HEAL Lab especially Katherine Wilson, and Mohammad El-

Bagdady for making me feel part of the team every time I visited the lab. I thank you! 

I am grateful for the support of my employer Fanshawe College including my Chair Dr. Dana 

Morningstar of the School of Design along with my fellow faculty members and I thank my 

parents and my teachers for instilling in me a love of Geography. 

If it were not for Divine Providence, I would not have started my career in GIS which then 

led me back to Western to upgrade my BA, receive a Masters, and then to write this thesis. 

I finally would like to thank my wife Lisa for her love, patience, and encouragement through 

these many years. I am truly blessed. 

 
iv 



  

Table of Contents 

Abstract ................................................................................................................................ i 

Co-Authorship Statement................................................................................................... iii 

Acknowledgments.............................................................................................................. iv 

Table of Contents ................................................................................................................ v 

List of Tables ..................................................................................................................... ix 

List of Figures ..................................................................................................................... x 

List of Appendices ............................................................................................................ xii 

Chapter 1 ............................................................................................................................. 1 

 Introduction .................................................................................................................... 1 

1.1 Research Context .................................................................................................... 1 

1.2 Geographic Context ................................................................................................ 3 

1.3 Dissertation Organization ....................................................................................... 4 

1.4 Conceptual and Methodological Framework .......................................................... 6 

1.5 References ............................................................................................................. 10 

Chapter 2 ........................................................................................................................... 13 

 Literature Review ......................................................................................................... 13 

2.1 Benefits of Outdoor Accessibility, Exposure and Engagement for Children ....... 13 

2.2 Geographic Data and Uncertainty ......................................................................... 14 

 Uncertainty with Spatial Data ................................................................... 15 

 Uncertainty with GPS Data ....................................................................... 18 

2.2.1 Indoor and Outdoor GPS Data Classification ........................................... 20 

 Uncertainty with the GIS Methods ........................................................... 23 

2.2.4 Modifiable Areal Unit Problem ................................................................... 24 

2.2.5 Uncertain Geographic Context Problem ...................................................... 27 

v 



  

2.2.6 Mitigating UGCoP with GIS and GPS ........................................................ 28 

2.3 Conclusion ............................................................................................................ 29 

2.4 References ............................................................................................................. 30 

Chapter 3 ........................................................................................................................... 43 

 Quantifying the magnitude of environmental accessibility misclassification when 
using imprecise address proxies in public health research .......................................... 43 

3.1 Introduction ........................................................................................................... 43 

3.2 Methods................................................................................................................. 46 

 Study area and data ................................................................................... 46 

 GIS methods.............................................................................................. 51 

 Misclassified address proxies .................................................................... 51 

 Statistical methods .................................................................................... 54 

3.3 Results ................................................................................................................... 54 

 Magnitude of positional discrepancies ...................................................... 54 

 Positional discrepancy by facility type ..................................................... 56 

 How positional discrepancy impacts accessibility measures .................... 62 

3.4 Discussion ............................................................................................................. 65 

3.5 Conclusion ............................................................................................................ 68 

3.6 Bridge to Chapter 4 ............................................................................................... 70 

3.7 References ............................................................................................................. 71 

Chapter 4 ........................................................................................................................... 76 

 Objectively measuring children’s time spent outdoors exposure to, and engagement in 
green space while using passive GPS devices ............................................................. 76 

4.1 Introduction ........................................................................................................... 76 

4.2 Methods................................................................................................................. 78 

 Spatio-Temporal Environment and Activity Monitoring (STEAM) 
Protocol ..................................................................................................... 79 

vi 



  

 Data filtering and classification ................................................................ 87 

 Random forest model ................................................................................ 95 

 Out-of-bag (OOB) error estimate .............................................................. 98 

 Processing the GPS points ...................................................................... 105 

 Measuring exposure and engagement ..................................................... 107 

4.3 Results ................................................................................................................. 108 

 GPS Accuracy and Precision .................................................................. 108 

 Random forest outdoor classification model .......................................... 110 

 Exposure outdoors .................................................................................. 111 

 Engagement outdoors.............................................................................. 112 

 Outdoor engagement vs exposure ........................................................... 114 

4.4 Discussion ........................................................................................................... 115 

 Comparison with previous participant surveys studies ........................... 116 

 Comparison with previous GPS studies .................................................. 117 

4.5 Conclusion .......................................................................................................... 117 

4.6 References ........................................................................................................... 118 

Chapter 5 ......................................................................................................................... 122 

 Discussion and Conclusions ....................................................................................... 122 

5.1 Summary of study findings and contributions .................................................... 122 

5.2 Synthesis of findings ........................................................................................... 125 

 Limitations .............................................................................................. 125 

 Future directions ..................................................................................... 126 

5.3 Policy implications .............................................................................................. 127 

5.4 Conclusion .......................................................................................................... 129 

5.5 References ........................................................................................................... 130 

Appendices ...................................................................................................................... 132 

vii 



  

Appendix A: Research Ethics Approval Form - Human Participants STEAM I ....... 132 

Appendix B: Research Ethics Approval Form - Human Participants STEAM II ...... 133 

Appendix C: Copyright Release from Publication .................................................... 134 

Appendix D: Pre-Processing Scripts for Random Forest ........................................... 135 

Appendix E: R Script of Random Forest Classifier ................................................... 150 

Appendix F: Post-Processing Script for Random Forest ........................................... 155 

Curriculum Vitae ............................................................................................................ 156 

viii 



  

List of Tables 

Table 3.1 Median positional discrepancy (metres) by facility type and neighbourhood type. 55 

Table 3.2 Positional discrepancies (m) from address proxy to closest junk food retailer. ..... 58 

Table 3.3 Positional discrepancies (m) from address proxy to closest public recreation place.

................................................................................................................................................. 59 

Table 3.4 Positional discrepancies (m) from address proxy to closest grocery store. ............ 60 

Table 3.5 Positional discrepancies (m) from address proxy to closest school. ....................... 61 

Table 3.6 Positional discrepancies (m) from address proxy to closest hospital ..................... 62 

Table 3.7 Accessibility thresholds: percentage of misclassified observations by address 

proxy. ...................................................................................................................................... 64 

Table 4.1: GPS classification ................................................................................................ 111 

Table 4.2: Total outdoor activity space by individual-level variables .................................. 112 

 

ix 



  

List of Figures 

Figure 1.1: Bronfenbrenner's (1977) ecological model ............................................................ 7 

Figure 1.2: Spatio-temporal model of child’s local environmental accessibility, exposure, and 

engagement (Bronfenbrenner, 1979) ........................................................................................ 9 

Figure 2.1 Same migration routes with two zoning systems (Rogerson 2001) ...................... 25 

Figure 3.1 Study area: London and Middlesex County, Ontario. ........................................... 46 

Figure 3.2 Spatial relationships between various geographic aggregation levels and their 

corresponding centroid within a census tract. ......................................................................... 47 

Figure 3.3 Illustration of threshold distance miscoding errors. .............................................. 53 

Figure 4.1: VGPS-900 GPS receiver with lanyard ................................................................. 80 

Figure 4.2: Example of a child wearing VGPS-900 GPS receiver (niece of the Author – not a 

STEAM participant) ................................................................................................................ 81 

Figure 4.3:  GPS accuracy vs precision .................................................................................. 83 

Figure 4.4: Horizontal Survey Monument .............................................................................. 84 

Figure 4.5: Author aligning surveyor tripod over horizontal survey monument .................... 85 

Figure 4.6: 20m hexagon tessellation ..................................................................................... 89 

Figure 4.7: 20m hexagon tessellation ..................................................................................... 90 

Figure 4.8: Built environment variable map (Land Use) ........................................................ 91 

Figure 4.9: Hex-bin environment variables (Land Use) ......................................................... 92 

Figure 4.10: Raw GPS tracks .................................................................................................. 93 

Figure 4.11: Exposure to Land Uses by hex-bin (GPS point in hex) ..................................... 93 

x 



  

Figure 4.12: Engagement as time spent in hex-bin by land-use (3D view) ............................ 94 

Figure 4.13: Exposure - time spent in each hex-bin (hotspot) ................................................ 94 

Figure 4.14: Example random forest decision trees ................................................................ 96 

Figure 4.15: Random forest algorithm flow chart .................................................................. 97 

Figure 4.16: Example variable importance plot .................................................................... 103 

Figure 4.17: Misclassification of GPS points ....................................................................... 104 

Figure 4.18: Process to code and classify GPS points .......................................................... 106 

Figure 4.19: Map of GPS test at the survey monument ........................................................ 110 

Figure 4.20: Engagement vs exposure proportions by land use ........................................... 114 

Figure 4.21: Engagement vs exposure proportions by green space ...................................... 115 

 

  

xi 



  

List of Appendices 

Appendix A: Research Ethics Approval Form - Human Participants STEAM I ........... 132 

Appendix B: Research Ethics Approval Form - Human Participants STEAM II .......... 133 

Appendix C: Copyright Release from Publication ......................................................... 134 

Appendix D: Pre-Processing Scripts for Random Forest ............................................... 135 

Appendix E: R Script of Random Forest Classifier ........................................................ 150 

Appendix F: Post-Processing Script for Random Forest ................................................ 155 

Curriculum Vitae ............................................................................................................ 156 

 

xii 



1 

 

Chapter 1  

 Introduction 

1.1 Research Context 
The rise of certain chronic health issues over the past half-century have led researchers 

and policymakers to place greater emphasis on exploring and identifying potential 

environmental influences on human population health (Lopez, 2011).  Indeed, concerns 

for the rise in children’s health issues, particularly the profound increases in sedentary 

behaviour, obesity, and mental health problems has recently promoted community 

planning, and it’s product, the built environment, at the forefront of these types of 

academic studies (Lopez, 2011).  Researchers from several academic disciplines, 

including geography, planning, epidemiology, health promotion, and psychology, have 

been investigating the role that the built environment has in promoting healthy outdoor 

behavior (Gilliland, 2010).   

Canadian children today, on average, spend less than one hour per day outside (Zorzi & 

Gagne, 2012) and children between the ages of 8 and 18 years spend an average of six 

and a half hours a day with electronic media (Roberts et al., 2005). The less time spent 

outdoors in natural environments has been linked to decreased physical activity (Schaefer 

et al., 2014; Wheeler et al., 2010), increased rates of obesity (Ansari et al., 2015; Schaefer 

et al., 2014), and increased rates of myopia (French et al., 2013; Guggenheim et al., 2012; 

Guo et al., 2013; Rose et al., 2008), sleep disorders, mental health issues (Tillmann et al., 

2018), cognitive health issues (Wells, 2000) and nature deficit disorder (Driessnack, 

2009; Louv, 2008) in children. Later in life, the accumulation of inactivity raises the odds 

of a person developing chronic diseases, such as Type-2 diabetes, cancers, and depression 

(Gilliland, 2010). 

Methodological problems abound in the existing built environment and health literature, 

particularly with respect to how the measurement of accessibility to, exposure to, and 

engagement with, health-related environmental features (e.g. parks, grocery stores, and 

recreation centres) are mapped and analyzed in a geographic information system (GIS). 
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The spatial data used in geographic research are always intrinsically uncertain (Zhang & 

Goodchild, 2002) and care is required so that the uncertainty does not affect the statistical 

associations being evaluated.  It is often the case that researchers accept that their 

methods need to include some analysis on the accuracy of the data, but few researchers 

endeavour to do so.  It is commonplace in studies of accessibility and exposure for 

researchers to use geographic proxies to represent a subject’s actual location (e.g. census 

tracts, dissemination areas, or postal codes). These proxies do not, indeed cannot, 

accurately represent the physical location of their subjects at all times, and therefore the 

use of proxies leads to ‘distance errors’(Zandbergen, 2007).   It is also commonplace that 

large administrative areal units (e.g., census tracts or county boundaries) are used to 

assign neighbourhood-level attributes, which may introduce additional errors into the 

research, such as ‘accessibility or exposure misclassification’, the ‘modifiable area unit 

problem’ (MAUP) (Openshaw, 1984), and the ‘uncertain geographic context problem’ 

(UGCoP) (Kwan, 2012b). These types of errors can, to some degree, be mitigated by the 

use of GPS tracking (Cooper et al., 2010; Ellis et al., 2014; Rainham et al., 2008), but 

other confounders lurk when classifying or binning the GPS data.  In particular, errors 

arise when researchers try to measure time spent outdoors (Cooper et al., 2010; Ellis et 

al., 2014) due to common weaknesses in how GPS signals are processed.  The 

aforementioned methodological problems will be discussed in further detail in Chapter 2. 

Based on the large and growing body of research evidence, the overarching assumption 

behind this thesis research is that the built environment provides a child with the 

opportunity to facilitate outdoor activity that will lead to better health and quality of life.  

It is argued here, however, that serious problems may exist in previous studies which link 

environment and health based on the mapping of home locations using inappropriate 

spatial reference data.  Additionally, significant exposure misclassification exists when 

using overly simplistic methods of accessibility (e.g. proximity), which are atemporal, to 

represent one’s interactions with or engagement within an environment, such as time 

spent outdoors. The studies in this dissertation are woven together through the common 

goal of improving methodological rigor in the measurement of children’s accessibility to, 

exposure to, and engagement with health-related features of their environment to 
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ultimately better our understanding of the links between environment and children’s 

health.   

It is imperative that researchers identify the extent to which these methodological 

problems can affect statistical outcomes and to present solutions to these problems 

through the use of more rigorous methodologies and empirically generated data.  In light 

of the dramatic increase in the time children are spending indoors in sedentary lifestyles 

and the purported impacts this behavior has on their health, an essential contribution to 

science and public health would be to develop, test, and validate improved methods for 

understanding how built environment factors influence childhood health. The primary 

goal of this thesis, therefore, is to establish more rigourous methods to measure children’s 

accessibility to, exposure to, and engagement in, their outdoor environment. 

 

1.2 Geographic Context 
The geographic context of this research is identified in this chapter while a more detailed 

rationale for choosing the particular study areas will be outlined in Chapters 3 and 4. 

Chapter 3 is situated in both the City of London (population 350,200) and neighbouring 

Middlesex County (population 69,024) in Southwestern Ontario, Canada. These two 

municipalities are ideal study areas for examining the geocoding errors in accessibility 

studies as they encompass a mix of urban, suburban, small town, and rural agricultural 

areas (Statistics Canada, 2011). Chapter 4 is set within the city of London, Ontario. 

London includes an array of built environments ranging from older (pre-WWII), dense 

urban environments with mixed land uses and grid-like street patterns, as well as newer 

suburban areas, which are primarily lower density with predominantly residential land 

uses and curvilinear street patterns. Given London’s development patterns and overall 

built form, the methods and findings in this dissertation are broadly relevant to other mid-

sized and smaller Canadian cities. 
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1.3 Dissertation Organization 
This thesis uses a multi-scalar approach to analyze the built environment and the 

accessibility to, exposure to, and engagement in health-promoting and health-damaging 

features for children.  Although all the research components share a common theme of 

understanding the role of the built environment, the themes are sufficiently different to 

merit an integrated-article format for this dissertation.  

Chapter 2 reviews some of the mounting body of evidence on how children’s interactions 

with the outdoors can influence their physical, mental, and cognitive health.  The review 

illustrates the growing consensus of children’s health researchers on the benefits of 

‘being outdoors’. This review shows that there is strong evidence to support the 

hypothesized relationship between children’s interactions with the outdoors and their 

health, and thereby justifies the need for the quantitative methods and research presented 

here. The first part of the chapter will give a brief overview of the literature on 

environmental influences on children’s health and well-being, with a specific focus on 

the benefits of being outdoors.  The second part will focus on the issue of ‘uncertainty’ in 

geographic analyses, with particular consideration of the implications of uncertainty in 

spatial data, GPS tracks, data classification and spatial analyses when mapping human 

subjects and the built environment. 

The purpose of the neighbourhood-level study in Chapter 3 is primarily to examine the 

misclassification of accessibility when associating a sample unit with a proxy location for 

a child’s home address (address proxy). The study quantifies the magnitude of positional 

discrepancies and accessibility misclassification that result from using several 

commonly-used address proxies in public health research. The impact of these positional 

discrepancies on spatial epidemiology is illustrated by examining misclassification of 

accessibility to several health-related facilities throughout the City of London and 

Middlesex County, Ontario, Canada.  

The home location proxies will be examined to identify the misclassification of 

accessibility to several health-related facilities, as well as to quantify the shortest path 

positional errors of the proxies across multiple neighborhood types (rural, small town, 

 



5 

 

suburban, and urban), in order to reveal the utility of each address proxy for each 

neighbourhood type and inform future geographic health studies. The research objectives 

for this study include answering the following questions: 

1. When choosing an address proxy what should a researcher expect 

regarding positional errors when measuring shortest path distance from that proxy 

to health-related facilities (Junk Food, Grocery Stores, Schools, Recreational 

Facilities, and Hospitals) by neighbourhood type (rural, small town, suburban, and 

urban)? 

2. When creating network distance buffers originating from the centroid of 

each commonly used address proxy (e.g. Census Tracts, Dissemination Areas, 

Geocoded Address) what is the percentage that the health-related facilities 

contained within the buffer are misclassified by neighbourhood type? 

Chapter 4, is divided into two separate but complimentary studies to ultimately measure 

children’s exposure to, and engagement in their outdoor environment.  The study 

addresses the insufficient methods of identifying outdoor activity in children who wear 

passive GPS receivers, by proposing a novel protocol using a combination of 1 second 

epochs of GPS data collection, a proven GIS kernel based method of identifying routes 

and stops, distance measurements to buildings, a random forest model, and the use of a 

hexagon tessellated surface. The first part of Chapter 4 will focus on the methodology to 

verify and classify GPS coordinates as occurring indoors or outdoors. The methodology 

can be employed in future studies where subjects are tracked with GPS receivers without 

the need to use a particular brand of receiver. The study suggests combining three 

methods to catalogue, classify, and bin GPS tracks and then tests the methodology on a 

large GPS dataset generated from a sample of children. Once classified and binned, the 

GPS data will be used to measure the time children spend outdoors. The second part of 

the study will make use of the outdoor GPS tracks to measure the exposure to and 

engagement of the child participants in the built environment. The GPS tracks, coinciding 

with a hexagonal tessellation surface of built environment features, are used to measure 
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exposure to those features, while the elapsed time spent in each hex bin acts as a proxy 

for engagement with those same features. 

The research objectives and questions for this study in Chapter 4 include: 

1. Can machine learning algorithms be used to identify whether the GPS was indoors 

or outdoors during its operation?  

 

2. Does seasonality, the neighbourhood-level built environment, household-level socio-

economic status, and individual-level age and sex influence the amount of time 

children spend outdoors on weekdays and weekends? How do the findings contrast 

with previous research of children’s time spent outdoors? 

 

3. Where do children spend time the outdoors? For those outdoor spaces children use, 

how long are they being used? How do the measurements of exposure contrast to the 

measurements of engagement?  

Chapter 5 summarizes and discusses the key research findings, outlines the limitations of 

the work, offers conclusions, and proposes next steps for future research. 

1.4 Conceptual and Methodological Framework 
The factors that influence an individual’s health are complex and cannot be fully 

explained using the biomedical approach (Engel, 1977; Hill, 1965). Engel (1977) 

challenged the status quo to suggest that biological factors act in combination with an 

individual’s experiences, and their social and psychological factors to determine an 

individual’s susceptibility or resiliency to disease. Bronfenbrenner’s (1977) ecological 

model describes the context in which children develop. He imagined spheres of influence 

beginning with the individual child as the centre, surrounded by and interacting with the 

immediate influences of home, school, and neighbourhood in a sphere called the 

microsystem (See Figure 1.1). He argued that children’s development could not be 

thought of as being independent from the multi-leveled social, material and cultural 

context (Mesosystem, Exosystem, and Macrosystems) in which a child’s development 
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takes place. Bronfenbrenner’s model was developed within his own discipline of psychiatry, 

and he did not focus on the role that geographic phenomena have on the individual in terms 

of accessibility to, exposure of, and engagement at health-promoting and health-demoting 

built environment locations.   The socio-ecological model of health behaviour 

conceptualizes that individual health outcomes are not only a result from individual 

behaviour but, moreover, from a series of relationships between individuals and their 

environments (e.g., neighbourhood, work, school) which then informs that child’s 

behaviour (Sallis et al., 2006). The socio-ecological influences on individuals can then 

lead to modifications in their health behaviour and status, both positively and negatively. 

The socio-ecological model is well suited to help describe why an individual’s 

geographical, environmental and social context can act as a hindrance to, and a facilitator 

of, health-related behaviours (Sallis et al., 2006; Stokols, 1992). The model was further 

refined by Sallis and colleagues (2006) to include perception of environmental factors 

such as safety and accessibility. Ecological models are widely used and seem well 

equipped to conceptualize the complex relationship between children, their health-related 

Figure 1.1: Bronfenbrenner's (1977) ecological model 
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behaviours, and their environment. Therefore, this thesis will employ the socio-ecological 

model of human behaviour approach to understand the multi-layered factors that 

influence children’s health. 

The modified Bronfenbrenner (1979) socio-ecological model (see Figure 1.2) includes 

his idea of a time sphere called the chronosystem. Additional modifications were 

imposed on the model in terms of the concrete ways in which this thesis will 

operationalize the individual, microsystem, mesosystem, and chronosystem interactions 

to measure children’s accessibility to, exposure to, and engagement with health-

promoting and health-demoting features of their environment. Firstly, the microsystem 

and mesosystem spheres will be referred to in this thesis as the household-level and 

neighbourhood-level environments, while chronosystem is referered to a the temporal-

level. Secondly, the model in Figure 1.2, indicates the types of variables used in this thsis 

that are theorized to play some role in the environmental determinants of children’s 

health.  

The purpose of this thesis is to measure children’s accessibility to, exposure to, and 

engagement with health-promoting features of their environment.  The research on the 

environment-health link aims to meet two objectives: 1) to quantify the magnitude of 

positional discrepancies and accessibility misclassification that result from using several 

commonly-used address proxies; and 2) to examine how individual-level , household-

level, and neighbourhood-level factors are associated with quantity of time children spend 

outdoors. This will be achieved by employing the use of GPS tracking to objectively 

quantify the time spent outdoors using a novel machine learning algorithm, and by 

applying a hexagonal grid to extract built environment measures. 

 

A geographic study that employs the socio-ecological approach is logical in that an 

individual child experiences and engages with their environment at specific times, 

locations and places. The socio-ecological model in combination with geographic 

analysis, therefore, is particularly well-suited for a studying children’s accessibility to, 

exposure to, and engagement in their environment which in turn plays a crucial role in 
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their healthy development. This study, therefore uses a positivist spatial quantitative 

approach to practically measure, classify, categorize and map children and their 

neighbourhoods. 

 

 

 

 

 

. 

  

Figure 1.2: Spatio-temporal model of child’s local environmental accessibility, 

exposure, and engagement (Bronfenbrenner, 1979) 
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Chapter 2  

 Literature Review 
The literature review is divided into two parts. The first part will give a brief overview of 

the literature on environmental influences on children’s health and well-being, with a 

specific focus on the benefits of ‘being outdoors’.  The second part will focus on the issue 

of ‘uncertainty’ in geographic analyses, with particular consideration of the implications 

of uncertainty in spatial data, data classification and spatial analyses when mapping 

human subjects and the built environment. 

2.1 Benefits of Outdoor Accessibility, Exposure and 
Engagement for Children 

Recently, there has been widespread public attention and a surge in academic literature 

published on the health benefits of spending time outdoors, especially on the child 

population (Tremblay et al., 2015). Research shows that spending time outdoors can 

positively impact children’s physical activity (Cleland et al., 2008), mental health, well-

being, social health, and cognitive development. Dramatic increases in sedentary 

behaviour and time spent using electronic devices is a concern of many parents, 

practitioners, and researchers, which helps support further investigation into the 

relationship between time spent outdoors and a variety of children’s health outcomes.  

A body of the literature identified in a recent systematic review assessed the effect of 

outdoor time on children’s physical activity, sedentary behaviour, and physical fitness 

(Gray et al., 2015). Some studies included in this systematic review agreed that there 

were overall positive effects of outdoor time on physical activity, sedentary behaviour, 

and cardiorespiratory fitness (Gray et al., 2015). Each study assessing physical activity 

found higher levels outdoors compared with indoors. Distinguishing activities based on 

whether it is happening indoors or outdoors is vital as studies have shown that children 

are more active in outdoor environments (Raustorp et al., 2012). 

Previous research has identified the mental health benefits of interactions with nature 

outdoors into three types: accessibility, exposure, and engagement, as documented by 
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Tillmann et al. (2018). Total outdoor exposure is defined as direct contact with outdoor 

environmental features and engagement outdoors is defined by the total time spent 

outdoors. Tillmann and colleagues (2018) state that some of these studies using measures 

of accessibility such as residential proximity to outdoor greenspace have critical 

weaknesses when assessing children’s interaction with their natural environments. The 

most fundamental problem is that there is no proof that children are making use of these 

spaces. Research should therefore be accounting for the individual choices made by 

children when discussing interactions with particular environments. Exposure to and 

engagement with the outdoors, therefore, might give us more accurate representation of 

the actual time children spend at particular locations.  

One of the significant barriers of assessing children’s time spent in outdoor environments 

is the inability to precisely determine whether a child’s GPS tracks are indoors or 

outdoors. Previous research has used time blocks (e.g., a school schedule) to determine 

whether a child is most likely indoors or outdoors (Loebach & Gilliland, 2014). However, 

this has limitations in that it assumes that all participants are in the same environment 

based on a school schedule. Some studies have supplemented time blocks with self- or 

parent-reported activity diaries detailing where children are; however, this again makes 

some assumptions based on time blocks included in the diary and creates an opportunity 

for inaccurate reporting by children (Loebach & Gilliland, 2014). Self or parent reports 

have also been used to classify use or time spent in specific spaces which again leaves 

room for inaccurate reporting as well as not being an accurate representation of every 

space a child interacts with on a daily basis (Amoly et al., 2014; Faber Taylor & Kuo, 

2011; Flouri et al., 2014; McCracken et al., 2016). Being able to accurately determine 

whether a single GPS point is indoors or outdoors is crucial for more accurately 

accounting for a child’s activity choices.  

 

2.2 Geographic Data and Uncertainty 
Uncertainty is a form of ignorance that Thrift (1985) argues has five forms which 

include; a lack understanding; not knowing the unknown; issues left undiscussed or 

deliberately hidden; and that which is distorted. Uncertainty abounds in every research 
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study, especially when including geographic information systems as a tool for analysis. 

Geographic information is a digital representation of an abstract view of reality (David et 

al., 1996). Therefore, it is impossible to perform error-free spatial analysis, and it is each 

researcher’s responsibility to identify and mitigate these errors to such a degree that they 

do not interfere with the conclusions derived from that analysis (S. A. Fotheringham, 

1989). Over the succeeding years, considerable effort has been spent by researchers 

trying to remove uncertainty from GIS analysis. Couclelis (2003) contends that there will 

always be uncertainty in any scientific study, not just those studies using GIS, and she 

argues for the acceptance that some error and uncertainty will never entirely be removed 

and should be considered part of the process of the exploration in science. 

It is understood that the data and the methods used in this thesis will be imperfect and 

will, in turn, generate results that will be somewhat uncertain.  One of the purposes of 

this research is to identify where this uncertainty lays, regarding the GIS data used and in 

the GIS methods proposed, and suggest ways to mitigate some of these uncertainties. 

There are two main discussions presented in this part of the literature review.  The first 

discussion will focus on the types and magnitude of spatial data errors inherent in GIS 

and GPS data. It is from the spatial data errors that some uncertainty will always be 

introduced; furthermore, a plan to identify and mitigate these errors needs to be explored. 

The second discussion found later in this section includes a short critique of the 

commonly used GIS methods used to associate neighbourhood built environment 

variables with children’s health outcomes and the implications of the modifiable areal 

unit problem and uncertain geographic context problem on this research. 

 Uncertainty with Spatial Data 

All spatial data are intrinsically uncertain in a world that is infinitely complex (Zhang & 

Goodchild, 2002). Measurements of weather conditions, air and water pressure, 

prevailing winds, pollution levels in the air and water, population densities, income 

levels, accessibility, and the movement of people all vary continuously.  A large part of 

the uncertainty generated with GIS spatial analysis originates from the quality of the data 

itself. The quality of GIS datasets can divide into two separate aspects, precision and 

accuracy. Precision refers to the resolution, or amount of detail in the GIS data regarding 

 



16 

 

positional, thematic, and temporal dimensions. Accuracy is defined as the ‘inverse of 

error’. Researchers must be aware of the difference between what is spatially and 

thematically encoded in a data set and what should be encoded in that data set (Albrecht, 

2007); in other words, researchers must realize that there will always be something 

missing in a data set. Accuracy, therefore, is a relative term rather than an absolute one. 

Depending on the purpose of a data set, a researcher might have higher or lower 

expectations of accuracy depending on the purpose. The precision of the data plays a part 

in this as well; if a data set is of low spatial precision, then the researcher would, in turn, 

have lower expectations of accuracy whenever using this data. Temporal accuracy 

describes the difference in the recorded time of an event to the actual time of the event, 

while thematic accuracy describes the concurrence of what is encoded in an attribute 

table and what should be encoded.  

When modelling the ‘real-world’ in a GIS, the complexities of geographic phenomenon 

will be lessened through map generalization. The goal of digital map generalization is to 

maintain the graphic detail of the map features while at the same time simplifying them 

so that geographic features of shape, size, and position are faithful to what they represent 

at the map scale for which they will be used (Buttenfield, 1991). The act of map 

generalization reduces the precision of the real-world feature modelled, thus affecting the 

expectations of accuracy. The absolute positional accuracy of a spatial feature is 

calculated by measuring the difference between the recorded location in a GIS dataset, 

and the feature’s true location.  Relative positional accuracy of a spatial feature is 

calculated by measuring the difference between the recorded location in a GIS dataset, 

and a location of a corresponding feature in another GIS data set. Positional (absolute or 

relative) errors are the differences between these matching features and their coordinate 

locations. For point features, the error can be defined in x, y, and z dimensions and the 

metrics describing the error can use simple descriptive statistics. For lines and areas, 

more complex methods for generating the accuracy metrics including using buffers 

(Goodchild & Hunter, 1997; Tviete & Langaas, 1999) and stochastic simulation 

techniques (Leung & Yan, 1998; Shi & Liu, 2000; Zhang & Kirby, 2000) are required. 

Other terms for positional error are ‘displacement’ and ‘distortion’ (Zhang & Kirby, 

2000). So it could be stated that the presence of absolute or relative spatial distortions 
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will affect distance, and density measurements in any GIS study, and will, therefore, 

introduce spatial uncertainty. 

In a GIS there is both the spatial features and tabular data. The tabular data stores the 

quantitative and qualitative information about each of the geographic features. The 

tabular data can and often does suffer errors which can occur at the database design or 

data modelling stages, and at the data entry phase. The concept of thematic accuracy, 

therefore, is the accuracy of the attribute values encoded in a GIS database. The metrics 

used to describe accuracy depend on the measurement scale of the data. Quantitative data 

accuracy can be measured and errors identified by using simple descriptive statistics such 

as standard deviation, minimum, maximum, and mean. The qualitative data can be 

assessed with a classification error matrix by using cross-tabulation, at a series of sample 

locations, to match what feature is present against the feature that was encoded. If the 

entire data set were assessed using the cross tabulation method, it would be possible to 

attach an accuracy attribute on individual features.  

There is some disagreement in the literature regarding temporal accuracy. Some consider 

temporal accuracy to be a function of the latency period between a change of a spatial 

feature in the ‘real-world’ and seeing that change reflected in a GIS database (Aalders, 

2002; Goldberg, 2008). The other approach to modelling temporal accuracy concerns 

whether or not the GIS data set has a time dimension connected to the spatial information 

resulting in the fourth dimension being stored (x,y,z,t) (Aalders, 2002; Thierry et al., 

2013). When assessing temporal accuracy, it is necessary to investigate the temporal 

coordinate in relation to the other three coordinates to then identify correlations between 

space and time to identify anomalies in the time that was encoded.  

Before performing any spatial analysis, an assessment of the quality of the data to be used 

in the analysis must be undertaken.  Data quality represents, for the researcher, the 

suitability for the use of the data for any particular application.  There is no ‘one 

approach’ to assess the suitability of GIS data. The researcher must apply a strategy that 

takes into account the type of analysis to be performed, the nature of the results, and in 

what manner the results will be transformed from data into knowledge (Albrecht, 2007; 
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Couclelis, 2003).  For the last idea, a distinction should be made between measurements 

of internal and external data quality.  Internal data quality measures the specifications of 

how the data were collected and processed. External data quality suggests to researchers 

on how well any particular data will fit their particular application (Aalders, 2002).   

 Uncertainty with GPS Data 

All GPS units execute a three-dimensional trilateration calculation in the generation of a 

single coordinate. In order for a precise coordinate to be calculated, the GPS unit requires 

4+ GPS satellite radio signals to calculate the distance ranges from the satellite to the unit 

itself. Furthermore, it is critical that the satellites utilized in the distance range calculation 

should be well distributed in the sky to reduce dilution errors which manifest as 

positional errors in the creation of the GPS point coordinate. It is expected that positional 

errors will occur when a participant wearing a GPS unit enters/exits or remains inside a 

blocking structure such as a building or dense tree canopy, thus blocking, in whole or in 

part, the sky. When part of the sky is blocked from view, a GPS unit will use the 

available satellites (space vehicles) from the GPS constellation that are in its line-of-sight 

to generate a coordinate.  If the GPS unit has line of sight to only a portion of the sky 

then the accuracy of the GPS coordinate will be compromised. Additionally, for a short 

time, while the unit is initially started there will be coordinates with larger spatial errors 

as the GPS unit begins acquiring the GPS satellite signals. 

The GPS unit, if programmed to do so, will store a series of quality metrics for each 

coordinate generated. These metrics follow the coding standard developed by the 

National Marine Electronics Association (NMEA). Each coordinate has a corresponding 

NMEA quality sentence data structure. The quality metrics can include, the PDOP 

(Positional Dilution of Precision), HDOP (Horizontal Dilution of Precision), SNR (Signal 

to Noise Ratio), NSAT (Number of satellites used to calculate the coordinate), and two 

qualitative accuracy values ‘2DGPS’ (2-dimensional bias remedied) and ‘3DGPS’ (3-

dimensional bias remedied) differential accuracy. The differential accuracy refers to the 

successful inclusion of the Wide Area Augmentation System Satellite signal in the 

removal atmospheric interference bias found with the GPS satellite radio signal.  
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For most applications using GPS technology, the wearer or operator of the GPS device 

decides when and where to capture a coordinate. Depending on the accuracy available at 

the location, the operator might choose not to generate a coordinate due to the large error. 

In passive GPS data acquisition, the GPS is preset to capture GPS coordinates at a set 

epoch which leads to an enormous number of points that need to be post-processed in 

some way so that those points with larger errors can be remedied or filtered.  

Several researchers in spatial health studies have developed methods to filter, categorize 

and remedy the erroneous points generated with passive GPS data collection (Patrick et 

al., 2008; Rainham et al., 2012; Rainham et al., 2008; Thierry et al., 2013). Included in 

this effort is the Personal Activity and Location Measurement System (PALMS) (Patrick 

et al., 2008) which filters and smooths the GPS data points by removing invalid 

coordinates and reducing data volume. PALMS filters data by removing GPS points that 

indicate excessive speed; that have large changes in elevation or with very small changes 

in distance between consecutive points; and PALMS reduces the scatter caused by 

interference from buildings (Kerr, Norman, et al., 2012; Patrick et al., 2008) by 

employing the NMEA GSV sentence SNR (Signal to Noise Ratio) metric, by doing so 

the PALMS is limited to only the Qstarz brand of GPS devices.  Rainham et al. (2012) 

created a GIS software tool called the GeoActivity Processor which uses a predefined set 

of decision rules including known times when the participant was at a geographic anchor 

area (e.g. home, school, work) and leveraged an assortment of spatial data layers and self-

reported diary entries in the decision rules. The GPS points are then grouped into these 

anchor areas. Thierry et al. (2013), developed a tool called the “Activity place detection 

algorithm for GPS data” (SphereLab Tool) which uses a kernel density approach to filter 

the GPS points to identify places where the participant stopped for some defined 

duration. Other spatial health researchers have also employed a variety of classification 

methods to help filter the raw GPS points while others outside the discipline have made 

progress with the use of ‘big-data analytic approaches’ (Brusilovskiy et al., 2016; Kim et 

al., 2012; Meijles et al., 2014; Wan & Lin, 2013).  
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2.2.1 Indoor and Outdoor GPS Data Classification 

It is unfortunate that some researchers have not classified or filtered their GPS generated 

points entirely to identify whether a GPS point was generated in the precise locations, 

while others just visually inspected the spatial errors, and manually removed the apparent 

errors proceeded with their analysis (Burgi et al., 2016; Elgethun et al., 2002; Elgethun et 

al., 2007; Maddison et al., 2010; Quigg et al., 2010). Cooper et al. (2010) , Wheeler et al. 

(2010), and Pearce et al. (2014) while measuring the time children spend outdoors using 

the Personal and Environmental Determinants of Children's Health (PEACH) project 

protocol, chose not to classify the GPS points as being generated indoors or outdoors, but 

instead simply relied on the GPS to ‘cut-out’ when a child entered a building indicating 

indoors. They categorized all GPS points recorded as being outdoor time and matched 

that time (10-second epochs) with a continually running accelerometer (10-second 

epochs) as ‘physical activity outdoors’ and any unmatched accelerometer data (no GPS 

record) as ‘physical activity indoors’. These researchers justified their reasoning by using 

a GPS receiver that did not record positional data when inside a building. By contrast, 

Kim et al. (2012) tested a GPS receiver that continually generated points regardless of the 

unit being indoors and outdoors. They employed the use of the GPS point quality metrics 

of speed and number of satellites (NSAT) and distance from home. They employed a 

field technician to follow a highly scripted set of indoor and outdoor activities and the 

locations of these activities while keeping a record of all movements by the second in a 

diary. They classified their GPS data into four microenvironments (residential indoors, 

other indoors, transit, and walking outdoors). GPS points were classified as ‘indoors’ of 

the time when the NSAT metric was less than 9 and coded as ‘residential indoors’ 97% of 

the time when these ‘indoor’ GPS points were within 40m of home, while the remaining 

GPS points were classified as outdoor locations.  

Researchers who employ a GPS receiver that supports the NMEA GSV protocol have 

employed the personal activity and location measurement system (PALMS) data filter 

which classifies GPS points as occurring indoor or outdoor using the signal to noise ratio 

(SNR) metric (J. Carlson et al., 2015; Ellis et al., 2014; Gell et al., 2015; Kerr et al., 

2011; Kerr, Marshall, et al., 2012; Klinker, Schipperijn, Christian, et al., 2014; Klinker, 
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Schipperijn, Kerr, et al., 2014; Klinker et al., 2015; Lam et al., 2013; Tandon et al., 

2013). Specifically, any GPS points with an SNR < 250 on a 0-450 scale are classified as 

being generated indoors. A strong signal (>=250) suggests the wearer of the GPS is likely 

to be outdoors where there is less interference from buildings and natural canopies. 

Presently the PALMS is limited only to the Qstarz brand GPS device to classify tracks as 

indoor vs. outdoor ("Personal Activity Location Measurement System User Guide," 

2011). There have been few studies measuring the validity of the Signal to Noise ratio 

cut-off method used by PALMS to classify outdoor time, except for Lam et al. (2013) 

who employed a self-activating camera in combination with a passive GPS monitor to 

measure time spent outdoors by adults. They found while using 15-second epochs for 

each GPS point that 81% of the GPS points classified as indoors by PALMS were 

correct. Tandon et al. (2013), while studying the outdoor activities of pre-school aged 

children found an 82% match between PALMS coded outdoor activity and an objectively 

generated measurement of outdoor activity. Klinker, Schipperijn, Kerr, et al. (2014) 

found while studying the outdoor weekday patterns among school children in Denmark 

that PALMS overestimated the time that children spent outdoors. J. Carlson et al. (2015) 

found an 88% predictive value when using PALMS to classify modes of travel at the 

minute epochs. Most recently, Pearce et al. (2018) while using the Qstarz brand of GPS at 

epochs of 10 seconds performed their own signal-to-noise classification and identified 

SLR>=212 as the low cut-off for outdoors, less by 38 points than the PALMS threshold. 

They suggested the lower cutoff was related to the built form of the neighbourhood 

setting from their study. If  Pearce et al. (2018) are correct and the neighbourhood setting 

plays such a large effect on the signal-to-noise ratio cutoff then this throws some shadow 

on the efficacy of studies relying on the standard cutoff (SLR>=250) of the PALMS 

protocol. 

The methods employed by researchers to classify the spatial context of GPS points 

outside the of the PALMS data filter and a single branded GPS are varied. Increasingly, 

researchers have been employing spatiotemporal data mining algorithms (Brusilovskiy et 

al., 2016), Classification and Regression Tree models (Meijles et al., 2014), and kernel 

density calculations (Han et al., 2013; Kestens et al., 2016; Thierry et al., 2013) to group, 

filter, and classify their GPS point clouds. Ellis et al. (2014) tested a small set of GPS 
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point with a naive Bayesian classifier and the random forest model to identify active 

travel trips.  They found that the random forest model classification achieved the best 

results with an 89.8% cross-validation accuracy while the naive Bayesian classifier had 

an overall accuracy of 74.2%. 

The study by Wu et al. (2011), where the inspiration originated for the use of the random 

forest model classifier in Chapter 4 of this thesis, suggests that the random forest model 

for classification could be used effectively if an accurate and large enough training 

sample could be secured. These researchers compared two automated approaches to 

classify the GPS points in four ways; as indoor, in-vehicle travel, outdoor static and 

outdoor walking. They used GPS data from two separate participant studies and found 

that a rules based approach performed slightly better than the Random Forest for GPS 

point classification. They suggested that the random forest results suffered from a small 

and compromised training sample stemming from the flaws in the way the GPS data was 

post-processed which used a combination of areal imagery of the study area, daily 

activity diaries and memory recall. 

In a recent systematic review of measurement of time spent outdoors in child myopia 

research, J. Wang et al. (2018) highlighted on the research to date using GPS to 

differentiate between indoor and outdoor location. The research studies mentioned in 

their systematic review are the same as in this literature review, except for the most 

recent of studies, and in their review they report only on the accuracy of the PALMS 

protocol. They discussed that some studies compromised their ability to differentiate 

indoor and outdoor because of the use of larger epochs of data collection (e.g. 15 second) 

which do not capture subtle movements. They, also identified the role that a combination 

of geographical information system (GIS), diary/questionnaire, and accelerometers have 

had to improve the accuracy, but they also suggest that the accuracy of GPS devices in 

general requires improvement. They report that more research is required to improve 

methods classifying the GPS points (indoor/outdoor) so to increase the validity and 

accuracy of this type of data. 
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In Chapter 4 an improved method of differentiating between indoor and outdoor using 

GPS will be proposed in response to the uncertainty detailed in this section of the 

literature review.  The dependence on a single brand of GPS receiver will be overcome, a 

commonly used NMEA sentence will be employed, and the issues inherent with small 

unreliable training samples will be remedied. 

 Uncertainty with the GIS Methods 

Recalling the five forms of not knowing (Thrift, 1985) and that the GIS is a tool used for 

the combination of geographic information, and consequently, for the production of 

applied geographic knowledge (Couclelis, 2003), it is imperative that GIS practitioners 

do not impart additional uncertainty by using GIS methods without careful consideration 

beforehand. In this part of the literature review, the commonly used methods of 

geocoding and of spatial aggregation used to associate built environment variables with 

children’s health outcomes are discussed.  

Geocoding is the process of converting pseudo-spatial tabular data of street addresses to 

map coordinates.  The process is widely used in environmental and health studies to 

locate subjects and built environment indicators (Brownson et al., 2009). Anselin (2006) 

contends that the results from the geocoding are rife with uncertainties. Much research 

has been conducted with problems with the match rate due to inaccurate address 

information (Gilboa et al., 2006; Goldberg et al., 2008; Henry & Boscoe, 2008; Lovasi et 

al., 2007; Mazumdar et al., 2008; Rutt & Coleman, 2005; Whitsel et al., 2006; Zhan et 

al., 2006; Zimmerman, 2008; Zimmerman et al., 2008; Zimmerman & Li, 2010) and with 

the defects in the spatial database containing street locations (Hay et al., 2009; Hong & 

Vonderohe, 2014; Jacquez & Rommel, 2009; Lovasi et al., 2007; Schootman et al., 2007; 

Strickland et al., 2007; Whitsel et al., 2006; Zandbergen, 2007; Zandbergen & Green, 

2007; Zimmerman & Li, 2010; Zinszer et al., 2010). Best geocoding practices are 

outlined by Goldberg (2008), and many studies account for these types of errors, but in a 

way that might not be ideal. Anselin (2006) notes that geocoding errors, both the match 

rates and positional errors tend to be found in newly developed suburban areas with these 

errors causing biased health outcome metrics in these areas.  
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There are various ways to identify a subject’s neighbourhood so that built environment 

variables can be assigned and some association reached regarding health outcomes of the 

population in these neighbourhoods. Some researchers have used census boundaries to 

delineate the neighbourhood (Chuang et al., 2005; Goovaerts, 2009; Larsen & Gilliland, 

2008; J. Pearce et al., 2006; M. C. Wang et al., 2007) and some have used municipal 

planning districts (J. Gilliland et al., 2006), while other use neighbourhoods as a function 

of walking distances from the home or school (Ball et al., 2007; C. Carlson et al., 2012; 

Frank et al., 2004; J. A. Gilliland et al., 2012; Kelly et al., 2007; Lee et al., 2009; Leslie 

et al., 2005; Li et al., 2005; L. N. Oliver et al., 2007; Panter et al., 2010; Robitaille & 

Herjean, 2008). Other studies use the ‘nearest neighbour’ and kernel-based approaches 

such as Geographic Weighted Regression to generate natural neighbourhoods (Bjork et 

al., 2008; Clark & Scott, 2014; A. Fotheringham & Wong, 1991; Goovaerts, 2009; Li et 

al., 2005; Maroko et al., 2009; Swift et al., 2013; Tandon et al., 2015; Webster et al., 

2006). All of these methods of neighbourhood delineation impose uncertainty and are 

prone to the ecological fallacy. Each method aggregates geographic features, and set 

boundaries or limits which, in turn, impose the modifiable areal unit problem (MUAP) 

with both effects; zonal and scale (Openshaw, 1984) and impose the boundary problem 

with its two effects; edge and shape (Andresen, 2009; A. Fotheringham & Wong, 1991; 

Maroko et al., 2009; Ord & Getis, 1995; Sadler et al., 2011; Swift et al., 2013; Webster et 

al., 2006).  When subjects of study are sited in larger aggregated geographic units there 

exists spatial uncertainty and temporal uncertainty, as introduced by Kwan (2012b) as the 

uncertain geographic context problem (UGCoP). This problem helps researchers know 

that there are unknowns in the actual areas that exert influences of human behaviour 

under study and in the time and duration in which individuals are exposed to these 

neighbourhood influences.  

2.2.4 Modifiable Areal Unit Problem 

The modifiable areal unit problem (MAUP) coined by Openshaw (1984) refers to the 

sensitivity of statistical analysis in both the scale used to aggregate spatial observations 

and the zoning system imposed to contain these observations. It is a pervasive problem 

when analyzing the relationships between the built environment and health. In this 
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section, the modifiable area unit problem and the implications of the problem when 

analyzing the relationship between the built environment and health will be examined. It 

is argued that both the scale and zonal aspects of MAUP are always ‘in-force’ when 

analyzing the relationship between aggregated built environment variables and health. 

Rogerson (2001) reports that Gehlke and Biehl (1934) found that when analyzing census 

data, the correlation coefficients increase with increasing levels of geographic 

aggregation. Therefore, larger numbers of small sized census areas reveal smaller 

correlation coefficients than small numbers of large census areas. As the size of the 

aggregations increase it is possible that interesting local variations in relationships are 

'averaged away' and become unobservable. Openshaw (1984) says that the results of any 

aggregation of points into areal units might be a function of the size, shape and 

orientation of the areal units, and thus have more of an influence on the results than the 

distribution of the points themselves. It is understood that the smaller and more compact 

the areal unit, the less of a risk of accidentally imposing the modifiable areal unit problem 

on one’s analysis. Many spatial data sets are made up of zones, and the configuration of 

the zones can affect the outcome of the statistical and interpretive analysis.  Figure 2.1, 

shows two different zoning patterns aggregating the same set of observations. The arrows 

show migration paths of some populations north to south. In example A, there is a 

Example A Example B 

Migration Routes Figure 2.1 Same migration routes with two zoning systems (Rogerson 2001) 
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southward migration by crossing several zone boundaries. Example B shows that there 

was no migration out of the zones, though the migration pattern are the same. 

Much of the research of environmental exposure and the influence of the built 

environment on health is lacking in that much of the previous research often merely 

counted the number of health-promoting or demoting opportunities within a distance of 

the individual’s perceived location. These opportunity counts were often then used to 

generate a density metric of accessibility or exposure. These researchers would identify a 

dependent variable measuring some health status of the individuals which, in turn, was 

used to generate a statistic identifying some association between the health status of the 

population and the surrounding environment.  Some BE and health researchers have 

taken on the challenge to minimize and quantify the MAUP in health-related studies 

(Andresen, 2009; Clark & Scott, 2014; Grady & Enander, 2009; Rainham et al., 2008; 

Spielman & Yoo, 2009; Swift et al., 2013), while most research only mention that MAUP 

might be a concern and do not test for its influence.  

When the modifiable areal unit is ‘in-force’ so too is an ecological fallacy (bias).  

Ecological fallacy is the correlation between individual variables (e.g. health status) 

generated from a set of deduced variables collected for the group, in this case, the 

neighbourhood built environment variables to which the individual belongs. The 

correlation might be false in that it was generated from a larger aggregation but then 

corresponded to the individual. Ecological fallacy, like the MAUP, is introduced when 

spatial data is aggregated. It causes significant variation in correlation statistics between 

exposures and health-related outcomes (Swift et al., 2013). A modifiable areal unit 

problem sensitivity analysis can be used to investigate the impact of spatial aggregation 

on the ecological fallacy. Malczewski (1999), suggests a way to disaggregate spatial data 

into a rectangular grid-based set of isotropic tessellations and experiment by then re-

aggregate these tessellations to test for the effect of the MAUP. It is with this effort that 

researchers can identify the aggregations that keep the interesting local variations from 

being averaged out. Some researchers, particularly in environmental sciences and ecology 

have been experimenting with the use of hexagonal tessellations as a way to model, 

monitor, and sample across the earth’s surface at multiple scales (Birch et al., 2007; J. 
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Gilliland & Olson, 2013; J. Gilliland et al., 2011; Gregory et al., 2008; Sahr, 2008; Zhou 

et al., 2013)  

The implications are clear for researchers investigating the relationships between the built 

environment and health. Firstly, researchers should not assume arbitrary boundaries and 

large aggregations of spatial phenomena will not impose MAUP and by consequence the 

ecological fallacy. Secondly, a sensitivity analysis should be performed by disaggregating 

and re-aggregating isotropic spatial units to test for bias. Thirdly, researchers should 

consider an approach that maps the movement of an individual across the landscape so 

that exposure can match more closely to that individual. 

2.2.5 Uncertain Geographic Context Problem  

In the ecological approach to health research, it is well understood that environmental 

exposure has an association to health effects, but the associations can be multi-causal and 

probabilistic (Krieger, 1994; Lalonde, 1974; Ozonoff, 1994). The ecological model is 

best suited to help take into account the complex social and spatial contexts (structure) 

within which every individual exists and how individual behaviour (agency) is influenced 

by these structures, and in return how individuals can exert influence on these structures 

through individual choice, education and policy interventions (Egger & Swinburn, 1997).  

It is common, in spatial epidemiological research, that contextual spatial units 

(neighbourhoods) are used as the method to assign area-based attributes to populations to 

examine the effects of the area-based attributes on individual health behaviours and 

health outcomes (Brownson et al., 2009). Each spatial context is an aggregation, in some 

way, of the attributes of the geographic features representing health promoting or health 

damaging opportunity structures.  

In these studies (Apparicio et al., 2008; J. Gilliland et al., 2006; J. Gilliland & Ross, 

2005; J. A. Gilliland et al., 2012; Macintyre et al., 2002; Miles et al., 2008; J. Pearce et 

al., 2006; Thierry et al., 2013; Tucker et al., 2009), opportunity structures are defined as 

those places in, and the socio-economic factors of, a neighbourhood that are theorized to 

be associated to the individual health outcomes of the sample population within that 
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neighbourhood. By setting boundaries or spatial extent limits to both the opportunity 

structures and to the sample population the modifiable areal unit problem (MAUP) is 

imposed with both zonal and scalar effects (Openshaw, 1984), while also imposing the 

boundary problem with its shape and edge effects (Andresen, 2009; A. Fotheringham & 

Wong, 1991; Maroko et al., 2009; Ord & Getis, 1995; Sadler et al., 2011; Swift et al., 

2013; Webster et al., 2006).  Therefore, all of the various methods of neighbourhood 

delineation impose uncertainty and ecological fallacy (Kwan, 2012b). These additional 

problems must be identified and repaired in what was coined by Kwan (2012b) as the 

uncertain geographic context problem (UGCoP). The methodological issues that the 

UGCoP could impose on spatial epidemiological research are vital and could lead to 

inferential errors about the associations observed. 

2.2.6 Mitigating UGCoP with GIS and GPS 

The challenge of using GIS alone to meet the spatial complexity and temporal issues 

arising from uncertain geographic context problem is daunting. Recent research, has 

combined the use GIS and GPS technologies to address like problems (Duncan et al., 

2013; Elgethun et al., 2007; Han et al., 2013; Jones et al., 2009; Kim et al., 2012; 

Loebach & Gilliland, 2014; Mavoa et al., 2011; M. Oliver et al., 2010; Rainham et al., 

2008). A wearable GPS device tracks and records where and when individuals travel 

through space and time. In this way, the path and temporal nature of the GPS tracks are 

known. The spatial resolution provided by the GPS is the best way to generate the correct 

geographic context of a subject thus saving researchers the futility of trying to 

conceptualize boundaries of the real spatial context. However, the coordinate point 

clouds generated by the GPS can be difficult to interpret. As a response to the complexity 

of the mass of data generated by GPS, studies have been conducted to generate area-

based features from the GPS points by using standard deviational ellipses as a way to 

generate boundaries (Boruff et al., 2012; Loebach, 2013; Rainham et al., 2010). 

Studies have employed GIS analysis techniques to associate the structures in the spatial 

context to the individual-level GPS tracks. The combination of GIS spatial layers and the 

GPS tracks have opened the door for further research in associating exposure to health-

promoting structures and the duration of exposure (engagement) at those structures. 
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There are some limits to this approach in that there is no direct information about how the 

individual is using these structures and if exposure is occurring at all.  

The information gaps when using GIS and GPS could be filled using a mixed method 

approach of both quantitative and qualitative analyses to understand the social 

interactions of the subjects (Kwan, 2012a, 2012b). Loebach and Gilliland (2014) included 

diaries in combination with individual neighbourhood mapping exercises as a way to help 

bridge the gap. 

When a GPS based research design or participatory study is not realistic due to time or 

resource constraints then areal interpolation (Cai et al., 2006; Flowerdew & Green, 1992; 

Goodchild et al., 1993; Haining, 2009; Henry & Boscoe, 2008; Malczewski, 1999; 

Ratcliffe, 2004; Reibel, 2007; Rushton et al., 2006; Swift et al., 2013) and dasymetric 

mapping (Holt et al., 2004; Mennis, 2003) techniques have been employed to reduce the 

problem with the spatial structural complexity of the problem. Areal interpolation 

techniques and dasymetric mapping techniques can be used to reshape, resize, and re-

proportion variables within spatial boundaries. The area-based variables would be either 

be removed, reorganized, or re-proportioned into their corresponding smaller spatial 

context areas, in a way disaggregating the spatial context to make a better model of 

reality. It is expected with this approach that the MAUP and UGCoP (but not in the 

temporal context) could be mitigated in some way.  

2.3 Conclusion 
The literature review was divided into two parts. The primary purpose of part one was to 

show the existing evidence that demonstrates that there is an association between 

children’s health and environmental influencers, with a specific focus on the benefits of 

‘being outdoors’. The stage was then set to identify the relevancy of the two 

methodological studies within the dissertation.  The second part focused on the issue of 

‘uncertainty’ in geographic analyses, with particular consideration of the implications of 

uncertainty in spatial data, data classification and spatial analyses when mapping human 

subjects and the built environment. We saw that it is common practice in recent GIS 

studies of accessibility and exposure that home location (i.e., home address) proxies (e.g., 
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census tracts, dissemination areas, postal codes) used to represent a subject’s location. It 

was also shown that the use of large areal units to represent neighbourhoods is common. 

In the first study, presented in Chapter 3 of this thesis, we will see how choosing an 

inappropriate address proxy and large areal units can bias spatial measurements and skew 

both distance and classification statistics. 
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Chapter 3  
 

 Quantifying the magnitude of environmental 
accessibility misclassification when using imprecise 
address proxies in public health research  

3.1 Introduction 
Recent advances in the analytical capacity of desktop geographic information system 

(GIS) software, combined with the increasing availability of spatially-referenced health 

and environmental data in digital format, have created new opportunities for making 

breakthroughs in spatial epidemiology (Zandbergen, 2008). As digital mapping is an 

abstraction of reality, the spatial data used for visualizing and analyzing geographic 

phenomena will always be inaccurate to some degree. Such inaccuracies can be 

compounded when spatially aggregated units are used as locational proxies for mapping 

and analyzing spatial relationships, rather than more precise geographic locations. In 

environmental and public health research, it is common to use proxies for sample unit 

locations, such as centroids of postal/zip codes, census tracts, dissemination areas, blocks, 

or lots; however, it is very uncommon for studies to address, or even mention, the 

potential problems ensuing from the positional discrepancies associated with using 

imprecise address proxies. It is the responsibility of the researcher to identify, quantify, 

interpret, and attempt to reduce any errors associated with using particular spatial data 

and locational proxies, so that they do not interfere with any conclusions and 

recommendations to be made from the findings (Anselin, 2006; Fotheringham, 1989). 

Researchers in spatial epidemiology have long been concerned about the absolute or 

relative spatial accuracy of the address points used to map sample populations or 

phenomena within a GIS (Goldberg, 2008).  Numerous researchers have examined the 

‘positional errors’ which occur when the address from a database is located on a digital 

map, but the point is not located at the true position of the address (Cayo & Talbot, 2003; 

Jacquez & Rommel, 2009; Schootman et al., 2007; Strickland et al., 2007; Ward et al., 

2005; Zandbergen & Green, 2007). In many previous studies, positional errors are 
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reported as Euclidian distance errors or errors in the X and Y dimension using the root 

mean square error (RMSE). While much has been said about positional errors, much less 

has been said about how study results might be affected when researchers use spatially 

aggregated units (which themselves might be positionally accurate) as address proxies. 

Very few studies measure and compare the positional discrepancies between address 

proxies and the exact address they are used to represent (Bow et al., 2004). A major area 

of investigation in the fields of spatial epidemiology, health geography, and public health 

attempts to assess the levels of accessibility or ‘exposure’ of subject populations to 

elements in their local environments that are believed to be health-promoting or health-

damaging, and are related to certain health-related behaviours or outcomes. Accessibility 

is typically measured in relation to the distance between subject populations and selected 

environmental features, and is often operationalized as a binary variable (i.e., 

accessible/inaccessible, exposed/not exposed) or a density variable (i.e., number of sites 

within, volume of contaminant within) in relation to an areal unit or ‘buffer’ of a certain 

threshold distance (radius) around the subject’s address. There is much variability, but 

unfortunately not much debate, regarding the particular threshold distances to be used in 

accessibility studies; however, most authors do attempt to justify their choice of threshold 

distances based on human behavior (e.g. ‘walking distance’) or perhaps some 

characteristic of contaminant source (e.g. 150 m from roadway). The chosen accessibility 

thresholds also typically vary by study population (e.g. children vs. adults), setting (e.g. 

urban vs. rural), and by health-related outcome (e.g. physical activity vs. asthma). In their 

study of the environmental influences on whether or not a child will walk or bike to 

school, for example, Larsen and colleagues (2009) justify the choice of a 1600 m 

neighborhood buffer based on the local school board cut-off distance for providing school 

bus service (see also Brownson et al., 2009; Müller et al., 2008; Panter et al., 2010; 

Schlossberg et al., 2006). Studies which have focussed on access to neighborhood 

resources such as public parks and recreation spaces have utilized a variety of threshold 

distances, typically between 400 and 1600 m (compare Bjork et al., 2008; Lee et al., 

2007; Maroko et al., 2009; Tucker et al., 2009); however, a threshold distance of 500 m is 

ideal, as it represents a short 5–7 min walk, therefore easily accessible for populations of 

all ages (see Sarmiento et al., 2010; Tucker et al., 2009; Wolch et al., 2011). The 5–7 min 
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walk zone, as represented by the 500 m buffer around a home or public school, is also a 

common distance used in studies exploring the relationship between access to junk food 

and obesity (see Austin et al., 2005; Gilliland, 2010; Morland & Evenson, 2009). Studies 

of ‘food deserts’ (disadvantaged areas with poor access to retailers of healthy and 

affordable food) and the potential impact of poor access to grocery stores on dietary 

habits and obesity have tended to focus on longer distances (800 m or greater), and vary 

according to urban vs. rural setting (see Larsen & Gilliland, 2008; Pearce et al., 2008; 

Sadler et al., 2011; Sharkey, 2009; Wang et al., 2007). This analysis focuses on the 10–15 

min walk zone (1000m) around a grocery store identified in previous studies of food 

deserts in Canadian cities (Philippe Apparicio et al., 2007; Larsen & Gilliland, 2008). 

Research on the role that distance plays from home to emergency services at hospitals 

shows association with increased risk of mortality with much larger threshold distances 

than standard ‘walk zones’ (e.g. greater than 5 km) (see Acharya et al., 2011; Cudnik et 

al., 2010; Jones & Bentham, 1997; Nicholl et al., 2007). Nicholl and colleagues (2007), 

for example, discovered that a 10 km increase in straight-line distance to a hospital is 

associated with a 1% increase in mortality. As hospitals tend to be a regional, rather than 

a neighbourhood facility, the threshold distance of 10 km will be used for this analysis. 

The purpose of this study is to quantify the magnitude of the positional discrepancies and 

accessibility misclassification that result from using several commonly-used address 

proxies in public health research. Rushton and colleagues (2006)  have argued that when 

short distances between subject population and environmental features are associated 

with health effects in epidemiologic studies, the geocoding result must have a positional 

accuracy that is sufficient to resolve whether such effects are indeed present. Positional 

errors have been shown to vary significantly by setting (Bonner et al., 2003; Cayo & 

Talbot, 2003; Ward et al., 2005); therefore, errors are quantified by multiple 

neighbourhood types: urban, suburban, small town, and rural. ‘Meaning’ is ascribed to 

these errors for spatial epidemiologic studies by examining errors in distance and 

accessibility misclassification concerning several health-related features, including 

hospitals, public recreation facilities, schools, grocery stores, and junk food retailers. 
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3.2 Methods 

 Study area and data 

The City of London (population 350,200) and Middlesex County (population 69,024) in 

Southwestern Ontario, Canada are ideal study areas for examining the geocoding errors 

in accessibility studies as they encompass a mix of urban, suburban, small town, and rural 

agricultural areas (Statistics Canada, 2011) (see Figure 3.1). The study area is categorized 

into four neighborhood types as follows: (1) urban areas correspond to neighborhoods in 

the City of London built primarily before World War II; (2) suburban neighborhoods are 

areas built following WWII that fall within London’s contemporary urban growth 

boundary; (3) small towns are settlements outside London within Middlesex County, 

these settlements have fewer than 20,000 inhabitants; and (4) rural areas are defined as all 

areas of Middlesex County not identified as small town, as well as areas within the city 

limits of London which are outside its urban growth boundary. All of the areas combine 

for a total of 104,025 residential addresses, as well as 94 census tracts, 665 dissemination 

areas and population-weighted dissemination areas, 1410 dissemination blocks, 14,256 

postal codes, and 19,365 street segment center points. The spatial relationship between 

Figure 3.1 Study area: London and Middlesex County, Ontario. 
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geographically aggregated units and a sample dwelling centroid illustrated in Figure 3.2. 

The dwelling centroid is located within a hierarchical spatial structure starting with the 

census tract, moving down to dissemination area, and  

 

Figure 3.2 Spatial relationships between various geographic aggregation levels and 

their corresponding centroid within a census tract. 

then to the dissemination block and finally the individual parcel of land or lot. The 

dwelling unit is also located within a postal code region and on a street segment. Each of 

these larger geographic units can be operationalized as point locations according to their 

centroids, as seen in Figure 3.2. The hierarchical spatial structure of census data is 

organized in such a way that each census tract is made up of multiple contiguous 
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dissemination areas, which in turn are made up from multiple blocks, which are made 

from street segments (for the most part, but sometimes divided by rail and natural 

features). Each street segement is divided as “left” or “right” and is an aggregation of the 

individual addresses/dwellings on that side of the street.  

Digital spatial layers to be used as the address proxies were prepared in ArcMap-

ArcInfo10.0 (ESRI, 2011). The census tract, dissemination area, and dissemination block 

boundary files, supplied by Statistics Canada (2006), were converted to centroids using 

the ‘Feature to Point’ tool. These three spatially aggregated units are commonly used in 

geographic analyses of population data in Canada, and each has tradeoffs for researchers 

based on the size of the aggregated unit vs. the richness of data available.  Dissemination 

blocks are the smallest of the three geographic units in terms of area; therefore their 

centroids provide a more spatially accurate proxy for exact address.  However, most 

Canadian census data, except population and dwelling counts, is suppressed at this level, 

and for this reason, the utility of dissemination blocks in studies of accessibility among 

population sub-groups is more limited. Dissemination areas are made up of a small group 

of dissemination blocks. They are commonly-used in population health studies as they 

are the smallest aggregated geographic unit available for which Statistics Canada releases 

some key demographic variables (e.g. median household income, population by age, 

population by ethnicity); nevertheless, a considerable amount of data suppression still 

occurs at this scale. While census tracts are the most commonly-used proxy for 

‘neighbourhoods’ in sociological, geographical, and population health research in 

Canada, and they offer the most comprehensive census data for spatial epidemiologic 

analyses, they are also the largest geographic unit examined in this study. For this reason, 

they are hypothesized to result in the greatest positional discrepancy when used as 

address proxies. Additionally, census tracts are only available in metropolitan areas and 

therefore do not cover most rural areas. The weighted dissemination areas centroids were 

created using the ‘Median Center’ tool by leveraging the population distribution data 

stored within dissemination block centroids which were nested within the dissemination 

areas. The weighted dissemination areas centroid has been used in previous research (e.g. 

P. Apparicio et al., 2008; Henry & Boscoe, 2008) and was included in this study as a 

more representative measure for the probable location of the population within the area. It 
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is therefore expected to produce a closer approximation for an address proxy than the 

dissemination area centroid. The postal code boundaries and points were drawn from the 

Platinum Postal Code Suite (DMTI Spatial Inc., 2009). The typical postal code in a 

Canadian city is a much smaller geographic unit than the typical US zip code and is 

commonly used as a proxy for a residential address by Canadian researchers when full 

civic address is unavailable, or suppressed to maintain subject privacy (e.g. Larsen et al., 

2009). The street segment centers were created using the tool ‘Feature Vertices to Points’ 

with the CanMap street files (DMTI Spatial Inc., 2009). The geometric center of every 

street segment was generated as an aggregate address proxy for all the dwellings on that 

segment. The average street length for rural neighbourhoods was 711 m, 187 m for small 

towns, 142 m for suburban neighbourhoods, and only 127 m for urban neighbourhoods. 

All 147,000 addresses points in the study area were supplied by the City and County for 

every parcel of land, dwelling, business, and institution (City of London, 2010-2013; 

Middlesex County, 2011). A total of 104,025 address points were identified as residential, 

and each point was located within the centroid of the dwelling polygons provided by the 

City and County. A tabular list of each of the residential addresses was generated, and 

these addresses were used to geocode against the CanMap street files (DMTI Spatial Inc., 

2009) using the ‘US Address – Dual Ranges’ address locator, thus generating 

interpolated address points with the default 10 m offset from the street centreline. These 

interpolated addresses, referred to as ‘geocoded points’ in this paper, are undeniably the 

most commonly-used address proxies when full address information is available to the 

researcher. While most researchers use such geocoded points without question, it is 

argued that even these address proxies could have positional discrepancies which might 

cause accessibility misclassification and therefore they must also be subjected to further 

scrutiny. Dwelling centroids are the ‘gold standard’ of address proxies in this study, to 

which all other address proxies will be measured. It is the best choice, as all journeys 

from home begin somewhere within the home building. In this paper, the issues of 

address validity and match rates for dwelling and lot centroid are controlled for, in that 

every one of the 104,025 residential addresses were matched at 100%. To calculate 

accessibility measures, the centroids for dwelling centroids and all the address proxies 

(except those located on the street segment or a fixed distance from the street segment) 
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were linked with a connecting lateral line from the proxy address point to the nearest 

corresponding street segment using a custom algorithm. These lateral lines were included 

in the network distances reported in the study. The street segment center points already 

located on the street centerline did not require a lateral line to connect them to the 

network, while the geocoded points were all standardized to be 10 m from the street 

centerline and thus the 10 metres were added to the individual distances post process. 

GIS layers including the locations of all 6 hospitals, 138 elementary schools, and 512 

public recreation spaces within the study area were provided by the geomatics divisions 

of the City and County (City of London, 2010-2013; Middlesex County, 2011). 

Addresses for the 52 grocery stores and 1213 junk food retailers (including fast food 

restaurants and convenience stores) in the study area were provided by the Middlesex-

London Health Unit (2010) and geocoded using the master address files provided by the 

City and County. All data was verified and corrected using orthorectified air photos of 

London and Middlesex (15 and 30 cm resolution, respectively) (City of London, 2010-

2013; Middlesex County, 2011). For built structures, the centroid of the building polygon 

was used as the address ‘gold standard’; however, for recreational places without a 

defined built structure, such as parks, the access points were manually created using the 

air photos. The City, County, DMTI Spatial Inc., and Statistics Canada publish no metric 

regarding the absolute or relative spatial accuracy of their data sets. In this study, the City 

and County spatial data were accepted as the most spatially accurate of all the data 

sources. The City and County spatial data were used to create the building centroids for 

facilities, dwellings, and the centroid for dwelling lots. Spatial features found in the 

Statistics Canada and DMTI Spatial Inc. data are within 15 m of the same corresponding 

features in the City and County data for most of the study area. The Statistics Canada and 

DMTI Spatial Inc. data were used to generate the census tract, dissemination area, 

weighted dissemination area, dissemination block, postal code centroids, the street 

segment center, and the geocoded point address proxies, and to generate the shortest path 

network routes and polygons. 
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 GIS methods 

Shortest path routes (by distance) along the street network from the address proxies to the 

health-related destination facilities were created using the ArcMap 10.0 Network Analyst 

‘Closest Facility’ function (ESRI, 2011). Starting from each dwelling centroid a network 

route was created to the nearest health-related facility (i.e., the nearest hospital, school, 

grocery store, junk food outlet, and public recreation facility). This procedure was 

repeated for every type of health facility until all 104,024 dwelling centroids were 

assigned a separate shortest path route to one of each of the facility types. The process 

was then repeated for each of the eight address proxies. The distance measures were 

stratified into rural, small town, suburban, and urban neighbourhood types and exported 

from ArcMap 10.0 for analysis in Excel 2010 (Microsoft, 2011) and PASW (SPSS) 18 

(IBM Corp., 2011). A recent study of accessibility to multiple food retailer types in rural 

Middlesex County illustrated how accessibility could be misclassified if facilities outside 

the county boundary are not considered in distance calculations (Sadler et al., 2011). 

Sadler and colleagues (2011) demonstrated that when facilities in neighbouring counties 

were included in the spatial analyses, distance to the nearest grocery store decreased for 

nearly one-third of households, and distance to nearest fast food outlet decreased for over 

one-half of households. The edge effect was taken into account in the present study by 

compiling the datasets for selected health-related facilities in neighbouring counties 

(within 10 km from the border of Middlesex County) and then including these facilities in 

the distance calculations. 

 Misclassified address proxies 

When spatial aggregations of the subject populations or geographic features are used as 

proxies in a study of accessibility, the researcher risks misrepresenting the accessibility 

metric used in that study. Figure 3.3 illustrates several potential problems of 

misclassification and miscounting of grocery stores by identifying three accessibility 

areas; the census tract boundary; a 1000 m network service area buffer originating from 

the centroid of that same census tract; and a 1000 m network service area buffer 

originating from a dwelling centroid from within the same census tract. The figure shows 

that the census tract boundary and the 1000 m network service area buffer around the 
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census tract centroid does not contain a grocery store, and thus would be coded as 

inaccessible; however, the dwelling centroid buffer does ‘contain’ at least one grocery 

store and would be coded as accessible. Figure 3.3 also illustrates that the count and 

density metrics will be affected by the positional discrepancy of using imprecise address 

proxies. We see that the census tract boundary and the buffer around the census tract 

centroid do not contain any grocery stores, while the dwelling centroid buffer contains 

two grocery stores. A further look at Figure 3.3 reveals that the distance between the 

census tract centroid and the dwelling centroid is biased in the direction of the positional 

discrepancy. In this example, if the census tract centroid were used as the address proxy, 

the researcher would have coded all sample unit locations within the census tract as not 

having a grocery store within 1000 m, when in fact, there are two grocery stores within 

1000 m for some of the sample units. Moreover, the researcher would have over-

estimated the distance to the closest grocery store for many dwelling units, such as the 

one in the example. 
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Following some commonly-used distances found in previous health-related studies of 

accessibility (as noted above), the thresholds distances used in this study were: 500 m for 

junk food and public recreation spaces, 1000 m for grocery stores, 1600 m for schools, 

and 10 km for hospitals. Shortest path route buffers had been created for each address 

proxy, and each address proxy point was binary encoded, either the address proxy was 

inside the threshold (coded as 1) or outside the threshold (coded as 0). The binary 

variable in matched to every dwelling centroid from every corresponding address proxy 

and then reported the percentages of improperly coded addresses. 

Figure 3.3 Illustration of threshold distance miscoding errors. 
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 Statistical methods 

The distance discrepancies were generated by taking the shortest path distance from a 

dwelling centroid to a health-related facility and then subtracting the corresponding 

shortest distance from each corresponding address proxy to that same health facility type.  

𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑠𝑠𝑠𝑠 − 𝑝𝑝𝑔𝑔𝑠𝑠     (3.1) 

Where the positional discrepancy (pd) is the difference between proxy address network 

shortest path distance (psp) to the closest corresponding health related facility in metres 

and the “gold standard” centroid of the dwelling shortest path distance to the closest 

corresponding health related facility (dgs). 

The Phi correlation coefficient was generated in PASW (SPSS) 18 (IBM Corp., 2011) 

and was used to measure the association between the binary threshold values (i.e., 

accessible/inaccessible) between the dwelling centroid threshold value (0,1) to each of its 

corresponding address proxy threshold values (0,1). Phi will return an association 

coefficient (∅) between -1 and +1.  A positive value of +1 occurs when all the dwelling 

threshold values and all the address proxy threshold values are in concordance with one 

another. Conversely, if there is total discordance between all the dwelling threshold 

values and all the address proxy thresholds the Phi coefficient will be -1. If some 

dwelling centroid threshold values differ from those of the corresponding address proxy, 

the coefficient will begin to move toward 0, thus suggesting a weaker association 

regarding accessibility encoding for that address proxy. The significantly positive 

associations (sig. < 0.01) are between 0.7 and 1.0. 

3.3 Results 

 Magnitude of positional discrepancies 

In almost every case, urban neighbourhoods show the smallest median distance 

discrepancies for all address proxies, followed successively by suburban, small town, and 

rural areas (see Table 3.1). As expected, lot centroids were the most accurate proxy for 

precise residential dwelling location that were examined in relation to nearest distance to 

health-related facilities, with the median positional discrepancy (50th percentile) between 
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lot centroids and dwelling centroids equal to 6–9 m for locations in urban and suburban 

neighborhoods, 25–43 m for locations in small towns, and 43–50 m for locations in rural  

Table 3.1 Median positional discrepancy (metres) by facility type and 

neighbourhood type. 
Neighbourhood type Rural 

(m) 
Small 
town (m) 

Suburban 
(m) 

Urban 
(m) 

Junk food 
Lot centroids 

 
49 

 
29 

 
9 

 
8 

Geocoded point 85 48 51 38 
Street segment center 175 65 75 52 
Postal code 762 373 78 54 
Dissemination block 680 147 127 78 
Weighted dissemination area 897 279 168 100 
Dissemination area 1054 509 176 113 
Census tract 930 1414 243 160 

Public recreation places 
Lot centroids 

 
43 

 
43 

 
8 

 
8 

Geocoded point 77 34 75 84 
Street segment center 185 52 106 102 
Postal code 896 1177 114 109 
Dissemination block 677 156 176 145 
Weighted dissemination area 988 296 228 185 
Dissemination area 1070 599 241 207 
Census tract 1347 1723 352 247 

Grocery stores 
Lot centroids 

 
43 

 
25 

 
6 

 
9 

Geocoded point 100 82 80 59 
Street segment center 197 95 100 76 
Postal code 1196 494 98 79 
Dissemination block 810 169 141 112 
Weighted dissemination area 1193 335 198 145 
Dissemination area 1263 559 201 158 
Census tract 1704 1870 373 343 

Schools 
Lot centroids 

 
50 

 
32 

 
6 

 
9 

Geocoded point 94 51 60 55 
Street segment center 173 66 80 66 
Postal code 913 711 82 68 
Dissemination block 665 148 133 101 
Weighted dissemination area 1017 361 187 132 
Dissemination area 1140 573 194 140 
Census tract 1268 1679 363 251 

Hospitals 
Lot centroids 

 
46 

 
27 

 
5 

 
8 

Geocoded point 85 65 37 75 
Street segment center 187 100 67 93 
Postal code 1363 537 78 101 
Dissemination block 769 349 176 160 
Weighted dissemination area 1350 415 203 166 
Dissemination area 1255 538 204 171 

      Census tract 2088 2166 445 343 

areas. The second most accurate proxy for residential location was the geocoded point, 

with median positional discrepancies between geocoded points and dwelling centroids 

between 38 and 84 m for residential locations in urban neighborhoods, 37–80 m for 

locations in suburban neighborhoods, 34–82 m for small-town locations, and 77–100 m 
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in rural locations. The third most accurate address proxy examined was the street segment 

centroid, with median positional discrepancies in relation to dwelling centroids between 

52 and 102 m for residential locations in urban neighborhoods, 75–106 m for locations in 

suburban neighborhoods, 52–100 m for small-town locations, and 173–197 metres in 

rural locations. In urban and suburban areas, the positional discrepancies between postal 

code centroids and dwelling centroids are very similar to the positional discrepancies 

between street segment centroids and dwelling centroids; however, the positional 

discrepancies are drastically worse when using postal codes in small towns (median 

positional discrepancies between 373 and 1177 m) and rural areas (positional 

discrepancies between 762 and 1363 m). In rural areas and small towns, the positional 

errors are always higher when using postal code centroids as address proxies compared to 

centroids of dissemination blocks, weighted dissemination areas, and dissemination areas. 

Conversely, postal codes show smaller positional errors than these same address proxies 

in urban and suburban areas. Census tract centroids are always the address proxy with the 

most considerable positional error for all neighborhoods and facility types, with median 

positional discrepancies ranging from the lowest distance error of 160 m (when 

calculating distance to junk food locations in urban areas) to a high of 2088 m (when 

calculating distance to hospital in rural areas). Tables 3.2 – 3.6 provide additional 

information on the positional discrepancies (including mean positional discrepancies, as 

well as errors at 75th, 90th, 95th, and 99th percentiles) between the address proxies and 

the dwelling centroids they are meant to represent. The general pattern observable for the 

median (i.e., 50th percentile) positional discrepancies (reported in Table 3.1) tends to be 

similar in relative terms, but much less dramatic in terms of absolute positional 

discrepancies, compared to the mean positional discrepancies, as well as the 75th, 90th, 

95th, and 99th percentile of discrepancies. 

 Positional discrepancy by facility type 
The positional discrepancies between the address proxy locations and the dwelling 

centroids they are to represent not only vary considerably by neighbourhood type but 

they also vary by health facility type. When lot centroids are used as address proxies, 

there is a minimal variability between positional discrepancies for all facility types, 
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regardless of neighbourhood type (rural = ±7 m; urban = ±1 m) (see Table 3.1). Of the 32 

unique combinations of address proxies, neighbourhood types, and facility types, it is the 

junk food outlets (N = 1213) that have the minimum median positional discrepancies 

68.8% of the time (22/32), while public recreation facilities (N = 512), singularly, 

account for almost 50% (15/32) of the facilities with maximum median positional 

discrepancies. The junk food outlets have small median positional discrepancies for all 

the address proxies in the urban neighbourhood type. Junk food outlets, also, account for 

all the minimum median positional discrepancies in suburban and small-town 

neighbourhood types for postal codes, dissemination block, weighted dissemination area, 

dissemination area, and census tract proxies. For rural neighbourhoods, the minimum 

median positional discrepancies for junk food outlets are found when the postal code, 

weighted dissemination area, and census tract proxies are used. For the most part, public 

recreation facilities (N = 512) display more considerable median positional discrepancies 

than all other health-related facilities in urban and suburban areas, while hospitals (N = 6) 

and grocery stores (N = 52) show the greatest positional discrepancies compared to the 

other health-related facilities in rural and small towns. The postal code median distance 

error of 1177 m for a small-town and public recreation facilities is a larger error than 

rural neighbourhood types and public recreation facilities (896). 
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Table 3.2 Positional discrepancies (m) from address proxy to closest junk food 

retailer. 
Neighbourhood 
type 

% 
(N = 104,024) 

Lot 
(np = 104,024) 

Geocoded 
point 

Street 
segment 

Postal code 
(np  = 14,265) 

DB 
(np  = 4210) 

Weighted 
DA 

DA 
(np = 665) 

Census 
tract*

 

   (np = 104,024) (np = 19,365)   (np = 665)  (np = 94) 

Rural Mean 69 163 274 1344 984 1325 1415 1427 
(n = 16,686) Median 49 85 175 762 678 897 1054 930 

 75th 74 168 370 2040 1431 1930 2033 2159 

 90th 166 337 597 3742 2312 3219 3261 3473 

 95th 182 471 772 4436 2835 4097 4060 4136 

 99th 364 1683 1683 5832 4053 5536 5690 5383 

Small town Mean 38 69 89 1241 455 562 979 1883 
(n = 14,139) Median 29 48 65 373 146 279 509 1414 

 75th 35 78 111 1786 458 623 1227 3280 

 90th 56 148 181 4467 1231 1207 2528 4190 

 95th 99 196 245 5099 2515 2774 3765 4791 

 99th 187 351 475 6483 3418 3729 5926 5448 

Suburban Mean 12 83 111 107 186 226 250 297 
(n = 54,579) Median 9 51 75 78 126 168 176 243 

 75th 11 76 125 133 255 312 334 423 

 90th 17 147 238 224 430 501 564 626 

 95th 35 331 380 331 558 637 730 767 

 99th 167 551 625 547 881 975 1216 1037 

Urban Mean 13 51 66 71 108 126 139 195 
(n = 18620) Median 8 38 52 54 77 100 113 160 

 75th 12 51 81 90 146 176 194 281 

 90th 17 77 120 139 230 260 284 405 

 95th 30 137 166 187 309 322 351 492 

 99th 61 366 377 413 530 527 550 651 
np – number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and 
therefore coverage is biased toward more densely populated rural areas. 
Abbreviations: DB – dissemination block; DA – dissemination area; N – number of dwelling centroids; n – number of 
dwelling centroids by neighborhood type 
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Table 3.3 Positional discrepancies (m) from address proxy to closest public 

recreation place. 
Neighbourhood 
type 

% 
(N = 104,024) 

Lot 
(np = 104,024) 

Geocoded 
point 

Street 
segment 

Postal code 
(np  = 14,265) 

DB 
(np  = 4210) 

Weighted 
DA 

DA 
(np = 665) 

Census 
tract*

 

   (np = 104,024) (np = 19,365)   (np = 665)  (np = 94) 

Rural Mean 63 156 270 1645 972 1491 1520 1961 
(n = 16,686) Median 43 77 185 896 677 988 1070 1347 

 75th 72 161 401 2393 1427 2177 2180 2749 

 90th 158 386 608 4206 2324 3612 3561 4629 

 95th 185 606 781 5458 2879 4570 4401 6017 

 99th 346 1069 1118 8931 4024 6495 6097 8579 

Small town Mean 41 56 77 1779 503 645 1105 2020 
(n = 14,139) Median 38 34 52 1177 156 296 599 1723 

 75th 43 60 92 3109 482 712 1513 3172 

 90th 55 109 155 4076 1590 1699 2882 3768 

 95th 99 175 235 5095 2770 2971 4010 6521 

 99th 195 464 517 9996 3327 4521 6495 7828 

Suburban Mean 11 191 214 211 266 319 347 525 
(n = 54,579) Median 8 75 106 114 176 228 241 352 

 75th 9 238 265 257 367 443 473 645 

 90th 16 557 586 558 632 732 772 1031 

 95th 33 745 766 761 822 920 985 1420 
 99th 161 1207 1243 1231 1242 1383 1674 4993 

Urban Mean 11 182 193 195 208 242 265 293 
(n = 18,620) Median 8 84 102 109 145 185 207 247 

 75th 12 257 275 279 290 347 377 419 

 90th 18 513 527 518 483 523 567 593 

 95th 24 632 639 639 608 638 690 714 

 99th 60 937 921 953 938 1055 1084 943 

np – number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and 
therefore coverage is biased toward more densely populated rural areas. 
Abbreviations: DB – dissemination block; DA – dissemination area; N – number of dwelling centroids; n – number of 
dwelling centroids by neighborhood type 
  

 



60 

 

Table 3.4 Positional discrepancies (m) from address proxy to closest grocery store. 
Neighbourhood 
type 

% 
(N = 104024) 

Lot 
(np = 104,024) 

Geocoded 
point 

Street 
segment 

Postal code 
(np  = 14,265) 

DB 
(np  = 4210) 

Weighted 
DA 

DA 
(np = 665) 

Census 
tract*

 

   (np = 104,024) (np = 19,365)   (np = 665)  (np = 94) 

Rural Mean 64 281 377 2000 1095 1707 1721 2581 
(n = 16,686) Median 43 100 197 1196 810 1193 1263 1704 

 75th 74 212 450 2793 1599 2476 2463 3707 

 90th 168 568 805 4798 2531 4029 3877 6123 

 95th 191 1420 1361 6736 2976 5102 4773 7361 

 99th 380 2740 2762 11412 4122 7154 6604 9584 

Small town Mean 3 115 135 2000 471 651 1102 2730 
(n = 14139) Median 25 82 95 494 169 335 559 1870 

 75th 31 121 152 3532 493 765 1501 3653 

 90th 53 211 288 5529 1465 1623 2963 6821 

 95th 95 454 482 8523 2234 2367 3683 9253 

 99th 184 567 647 10709 3027 4722 6662 10225 

Suburban Mean 12 168 197 190 271 327 345 573 
(n = 54579) Median 6 80 100 98 141 198 201 373 

 75th 9 116 157 162 294 394 404 697 

 90th 16 171 258 257 614 727 762 1136 

 95th 34 609 736 629 994 1147 1354 1817 

 99th 164 2212 2405 2237 2190 2094 2358 3819 

Urban Mean 11 115 129 132 177 203 217 381 
(n = 18620) Median 9 59 76 79 112 145 158 343 

 75th 14 88 118 129 209 262 281 553 

 90th 19 232 247 274 423 442 476 752 

 95th 23 587 594 580 671 656 686 871 

 99th 61 854 892 902 924 935 951 1089 

np – number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and 
therefore coverage is biased toward more densely populated rural areas. 
Abbreviations: DB – dissemination block; DA – dissemination area; N – number of dwelling centroids; n – number of 
dwelling centroids by neighborhood type 
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Table 3.5 Positional discrepancies (m) from address proxy to closest school. 
Neighbourhood 
type 

% 
(N = 104,024) 

Lot 
(np = 104,024) 

Geocoded 
point 

Street 
segment 

Postal code 
(np  = 14265) 

DB 
(np  = 4210) 

Weighted 
DA 

DA 
(np = 665) 

Census 
tract*

 

   (np = 104,024) (np = 19,365)   (np = 665)  (np = 94) 

Rural Mean 68 147 254 1547 974 1564 1595 1850 
(n = 16,686) Median 50 94 173 913 665 1017 1140 1268 

 75th 76 159 367 2339 1388 2300 2299 2616 

 90th 163 294 590 3957 2284 3852 3784 4441 

 95th 187 413 743 5021 2929 4795 4752 5550 

 99th 378 1074 1071 7693 4060 6308 6303 7493 

Small town Mean 34 65 87 1522 445 666 1087 2155 
(n = 14,139) Median 32 51 66 711 148 361 573 1679 

 75th 38 79 108 2465 477 806 1423 2954 

 90th 61 115 170 4048 1311 1517 2604 5926 

 95th 100 163 228 5922 2271 2723 4322 6875 

 99th 189 358 483 6990 3047 4187 6560 7758 

Suburban Mean 13 82 108 109 215 272 300 510 
(n = 54,579) Median 6 60 80 82 133 187 194 363 

 75th 10 84 125 136 273 357 379 667 

 90th 15 126 191 206 513 609 671 1057 

 95th 34 180 286 277 716 838 976 1567 

 99th 166 687 713 698 1200 1341 1597 2830 

Urban Mean 13 68 81 84 139 162 171 296 
(n = 18,620) Median 9 55 66 68 101 132 140 251 

 75th 14 74 100 110 186 227 241 442 

 90th 19 111 147 164 295 331 349 624 

 95th 23 170 190 210 387 405 426 724 

 99th 61 381 417 409 654 641 651 869 

np – number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and 
therefore coverage is biased toward more densely populated rural areas. 
Abbreviations: DB – dissemination block; DA – dissemination area; N – number of dwelling centroids; n – number of 
dwelling centroids by neighborhood type 
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Table 3.6 Positional discrepancies (m) from address proxy to closest hospital 
Neighbourhood 
type 

% 
(N = 104,024) 

Lot 
(np = 104,024) 

Geocoded 
point 

Street 
segment 

Postal code 
(np  = 14,265) 

DB 
(np  = 4210) 

Weighted 
DA 

DA 
(np = 665) 

Census 
tract*

 

   (np = 104,024) (np = 19,365)   (np = 665)  (np = 94) 

Rural Mean 66 176 278 2382 1082 1903 1854 3285 
(n = 16,686) Median 46 85 187 1363 769 1350 1255 2088 

 75th 72 284 426 3683 1561 2732 2700 5223 

 90th 156 458 655 6150 2508 4496 4400 7815 

 95th 180 553 817 8116 3052 5708 5535 9735 

 99th 359 859 1148 11812 4375 8419 8292 13483 

Small town Mean 34 178 192 1296 546 674 998 2413 
(n = 14,139) Median 27 65 100 537 349 415 538 2166 

 75th 33 335 341 1589 645 832 1273 3266 

 90th 56 443 450 3664 1355 1580 2373 5281 

 95th 96 511 516 4320 2203 2319 3766 6095 

 99th 185 821 828 8095 3060 3690 6689 9435 

Suburban Mean 12 68 93 102 255 287 301 651 
(n = 54,579) Median 5 37 67 78 176 203 204 445 

 75th 9 75 127 143 326 384 390 797 

 90th 16 178 189 214 556 640 647 1256 

 95th 33 188 231 267 777 848 885 1689 

 99th 164 367 503 441 1358 1389 1620 5312 

Urban Mean 11 101 104 114 190 207 214 414 
(n = 18,620) Median 8 75 93 101 160 166 171 343 

 75th 12 181 170 175 262 292 301 580 

 90th 17 193 204 225 380 434 445 835 

 95th 22 200 226 263 464 538 555 1078 

 99th 58 312 319 362 738 774 814 1668 

np – number of address proxies. * Census tracts only exist for rural areas within Census Metropolitan Areas and 
therefore coverage is biased toward more densely populated rural areas. 
Abbreviations: DB – dissemination block; DA – dissemination area; N – number of dwelling centroids; n – number of 
dwelling centroids by neighborhood type 
 

 How positional discrepancy impacts accessibility measures 

In addition to reporting the positional discrepancy errors, it is instructive to look at how 

much of an effect these errors have on the classification of the population aggregated in 

each of the address proxies. In some health-related accessibility studies continuous 

variables are used to measure the proximity of health-related facilities to an address 

proxy. Some studies use binary variables to identify whether or not a health-related 

facility exists within a set threshold distance (or buffer radius) around a proxy (P. 

Apparicio et al., 2008; Talen, 2003); still more studies use density and counts, however, 

as indicated in Figure 3.3, this approach can also lead to severe errors caused by 

misclassification. Table 3.7 considers the impact of positional discrepancy on 

accessibility, by reporting the percentage of cases that are incorrectly classified as 

accessible or not, by address proxy, neighbourhood type and health-related facility type. 

The general trend is that the smaller the distance threshold, the higher the percentage of 
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addresses misclassified; also, the larger the geographic area of the unit of aggregation, the 

higher the percentage of addresses which are misclassified. For example, using the 

centroid of a large aggregated unit such as a census tract as a proxy instead of a set of 

residential addresses when calculating containment of a park within 500 m from 

residential addresses in urban neighbourhoods will result in nearly half (49.5) of all 

observations being misclassified. On the other hand, using a high threshold distance of 10 

km to determine accessibility to hospitals results in no misclassification in urban areas, no 

matter what the address proxy used (as the threshold practically covers the entire urban 

area). The Phi coefficient shows a positive association between each of the dwelling 

centroids and every corresponding address proxy of the coding threshold (inside/ outside) 

across all the health-related facility thresholds, except for one. There is a weak negative 

(∅ = -0.6, p < 0.01) association for the urban census tract proxy coding thresholds for 

public recreation facilities. For example, census tract centroids coded as ‘outside’ (those 

that do not have a public recreation facility within 500 m) will have many corresponding 

dwelling centroids coded as ‘inside’ (those that do have a public recreation facility within 

500 m) resulting in this negative association. There is a strong positive association 

between dwelling centroid and lot centroid for threshold distances of 1 km to grocery 

stores. If a suburban dwelling centroid is coded as being within 1 km from a grocery store 

(code = 1), there is a strong probability (∅ = 0.996, p < 0.01) that the corresponding lot 

centroid will also be within 1 km of a grocery store and coded in the same way. 

Conversely, if a dwelling centroid is coded as being farther away than 1 km from a 

grocery store (code = 0), then there is the same probability (∅ = 0.996, p < 0.01) that the 

corresponding lot centroid will also be coded in the same way. The range of Phi values 

for dwellings and corresponding census tracts, dissemination areas, and weighted 

dissemination area proxies for junk food and recreation places (500 m thresholds) are 

weakly associated (-0.6 < ∅ < 0.47, p < 0.01). The fewest misclassification errors and 

strongest associations for the 500 m thresholds exist for lot centroids (∅ > 0.93, p < 0.01) 

followed by geocoded points (0.6 < ∅ < 0.87,  p < 0.01).  Postal code centroids showed 

very high errors in coding for small town (29.9%) and weak association (rural ∅ = 0.26, 

small town ∅ = 0.29, suburban ∅ = 0.59, and urban ∅ = 0.58, p < 0.01). 

 



64 

 

Table 3.7 Accessibility thresholds: percentage of misclassified observations by 

address proxy. 
Address proxy Neighbourhood type Junk food 

(500 m) 
Recreation places 
(500 m) 

Grocery 
(1 km) 

Schools 
(1.6 km) 

Hospitals 
(10 km) 

Census tracts (N = 94) Rural*  (n = 17) 13.5 8.0 4.7 18.3 26.4 

 Small town (n = 3) 36.7 33.7 21.0 35.7 10.2 

 Suburban (n = 54) 31.2 47.4 16.8 15.9 5.1+
 

 Urban (n = 20) 16.9 49.5 37.1 0.1+
 0.0+

 

DA(N-665) Rural (n = 125) 7.6 3.7 3.8 11.9 8.6 

 Small town (n = 43) 35.4 37.1 22.8 29.3 2.7 

 Suburban (n = 367) 23.9 28.2 11.4 7.6 0.7+
 

 Urban (n = 130) 15.5 33.5 15.3+
 0.1+

 0.0+
 

Weighted DA (N = 665) Rural (n = 110) 9.6 4.7 3.9 11.9 8.5 

 Small town (n = 53) 31.5 33.5 15.2 19.2 1.2+
 

 Suburban (n = 372) 23.0 29.2 11.5 6.7 0.7+
 

 Urban (n = 130) 10.7 29.7 15.5+
 0.1+

 0.0+
 

DB (N = 4210) Rural (n = 1499) 6.9 2.9 2.5 8.5+
 5.2+

 

 Small town (n = 593) 18.2 22.2 11.2+
 15.3+

 1.0+
 

 Suburban (n = 1409) 18.4 25.6 9.1 5.9+
 0.9+

 

 Urban (n = 709) 12.0 24.5 13.1+
 1.1+

 0.0+
 

Postal code (N = 14,256) Rural (n = 2539) 9.2 6.8 3.0+
 8.1+

 6.9+
 

 Small town 29.9 33.2 27.8 37.0 3.5+
 

 (n = 1003) 
Suburban (n = 7792) 

 
11.3+

 

 
21.0 

 
6.4+

 

 
2.4+

 

 
0.3+

 

 Urban (n = 2922) 6.5 22.8 10.5+
 0.1+

 0.0+
 

Street segment Rural (n = 6310) 4.3+
 2.3+

 1.0+
 3.6+

 1.2+
 

(N = 19,365) Small town 9.0+
 8.7+

 4.3+
 2.7+

 0.6+
 

 (n = 2227) 
Suburban (n = 8364) 

 
12.4+

 

 
21.6 

 
6.8+

 

 
2.3+

 

 
0.3+

 

 Urban (n = 2464) 6.2 23.1 10.1+
 0.1+

 0.0+
 

Geocoded (N = 104,024) Rural (n = 16,686) 2.9+
 1.9+

 1.1+
 2.5+

 0.5+
 

 Small town 7.1+
 6.7+

 4.0+
 2.2+

 0.4+
 

 (n = 14,139) 
Suburban 

 
8.9+

 

 
18.3 

 
5.3+

 

 
1.5+

 

 
0.2+

 

 (n = 54,579) 
Urban (n = 18,620) 

 
5.6+

 

 
21.1 

 
9.4+

 

 
0.1+

 

 
0.0+

 

Lot (N = 104,024) Rural (n = 16,686) 0.8+
 0.4+

 0.2+
 0.6+

 0.5+
 

 Small town 2.0+
 1.8+

 0.8+
 0.6+

 0.1+
 

 (n = 14,139) 
Suburban 

 
1.7+

 

 
1.5+

 

 
0.6+

 

 
0.4+

 

 
0.1+

 

 (n = 54,579) 
Urban (n = 18,620) 

 
1.5+

 

 
1.7+

 

 
1.3+

 

 
0.0+

 

 
0.0+

 

Abbreviations: DB – dissemination block; DA – dissemination area; N – number of address proxies; n – number of address proxies by 
neighbourhood type. 
*   Census tracts only exist for rural areas within Census Metropolitan Areas and therefore coverage is biased toward more densely populated 
rural areas. 
+   Phi coefficient ∅ strong positive association (+0.7 to +1.0) sig. < 0.01. 
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3.4 Discussion 
It is common in public health research to use spatially aggregated units as address proxies 

for the locations of subjects and facilities when more precise address information is 

unavailable. It is rare, however, for public health researchers to examine, or even 

mention, the possible distance and misclassification errors resulting from the positional 

discrepancies between the locations of imprecise address proxies and precise subject 

locations. It is inappropriate for researchers to ignore these inaccuracies or to merely 

accept them as an inevitable component of doing spatial research. It is essential to 

identify and quantify any spatial errors so that we can critically examine research findings 

and adequately advise those to whom policy recommendations are made regarding the 

potential correlations between subject populations and accessibility to health 

promoting/demoting environmental features. 

One of the contributions of this study is to quantitatively describe the magnitude of 

positional discrepancies that result when several of the most commonly-used address 

proxies are implemented in several different neighbourhood types, including rural, 

suburban, small town, and urban areas. It is recognized that accessibility thresholds will 

vary by setting, as well as health outcome or health-related behaviour. Therefore, by 

demonstrating how the magnitude of the positional discrepancies can affect measures of 

accessibility (or exposure) to a variety of health-related spaces in different environments 

and at different distance thresholds, this study also makes a methodological contribution 

to the environmental and public health literature. 

The dwelling as represented by the centroid of the building in which the study participant 

resides is considered the gold standard for residential address location. If dwelling 

centroids are not available to the researcher, then the second most accurate address proxy 

is the centroid of the parcel of land (i.e., the lot) on which the dwelling unit is located; 

this finding is true regardless of neighbourhood type. When the lot centroid is used as an 

address proxy, accessibility misclassification errors are virtually nonexistent in urban and 

suburban neighbourhoods, and are minor in rural areas and small towns. 
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Where digital files for all residential buildings or residential lots are not available for a 

study region, but the researcher has access to the complete civic address (i.e., street name 

and number) for each subject, it is widespread for researchers to geocode their tables of 

subject addresses using ‘address locator’ tools to interpolate residential addresses. While 

the median distance error for this address proxy is too high for researchers to just ignore 

(ranging from a low of 34 m to a high of 100 m depending on facility and neighborhood 

types), for the most part, there are few instances of miscoded accessibility when this 

commonly used address proxy is used: fewer than one-tenth (8.9%) of all observations 

are misclassified, except for recreation spaces within 500 metres in  suburban and urban 

neighborhoods, where approximately one-fifth of observations are misclassified (18.3% 

and 21.1%, respectively). 

A variation on the interpolated address technique is to use the centroid of the closest 

street segment as address proxy. This method is useful for environmental equity studies, 

where researchers may want to map and visualize how access to specific environmental 

features varies at a fine scale across a study area, but they do not have (or cannot show 

for privacy reasons) individual address data for subject populations. The street segment 

centreline address proxy appeared to have fewer distance and misclassification errors 

than the more commonly-used postal code centroids, particularly for small-town and rural 

areas. 

Postal codes are undoubtedly the most commonly-used proxy for residential addresses of 

research subjects in Canadian public health studies. In Canada, the postal code centroid is 

often the best solution when exact addresses are unavailable, or inaccessible due to 

research ethics board policies and privacy concerns. The results indicate that postal code 

centroids are reasonably accurate proxies for residential addresses in urban and suburban 

areas (median positional discrepancies between 54 and 109 m depending on facility 

type); however, it is recommended that postal codes should be used only with extreme 

caution for studies based in small town and rural areas of Canada. Positional 

discrepancies between postal code centroid and dwelling centroid can be very high in 

rural areas: depending on facility type, median positional discrepancies in rural areas 

ranged between 762 and 1363 m. Furthermore,  postal codes are found to be reasonably 
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accurate for accessibility studies when distance thresholds are 1000 m or higher; 

however, it is advised that postal codes should not be used as proxies for residential 

addresses in accessibility studies where the threshold distances or density buffers are as 

short as 500 m. Postal code centroids are particularly prone to misrepresenting 

accessibility in small towns and rural Canada, and therefore should only be used with 

more caution in spatial epidemiologic research in Canada. 

Urban areas show the smallest distance error for all address proxies followed by 

suburban, small town, and rural neighbourhoods. As expected, the magnitude of 

positional discrepancies and threshold misclassification errors are more substantial, or 

most problematic, when the address proxy is the centroid of a large geographic 

aggregation such as the census tract. In general, the census tract performed poorly as an 

address proxy except in urban areas where threshold distances are 1600 m or higher. 

Similarly, it is recommended that centroids of dissemination areas and weighted 

dissemination areas should only be used as residential address proxies in urban areas 

when threshold distances are set at greater than 1000 m and in suburban areas when 

threshold distances are set at greater than 1600 m. As for small Canadian towns, 

researchers should also avoid all spatially aggregated address proxies for threshold 

distances less than 1.6 km as the misclassification errors are consistently large, as are the 

positional discrepancies. While these recommendations are based on the empirical 

findings related to the specific health-related facilities examined in this study, it is 

recognized that the positional accuracy required for spatial epidemiology research also 

depends on the specific acessibility related health outcome under examination (e.g. 

spatial accuracy is more critical for studies of exposure to air pollution than distance to 

nearest hospital). 

This study examined errors in the shortest path distances from each address proxy to the 

closest public recreation space, junk food outlet, grocery store, school, and hospital in a 

full range of neighbourhood types. One way in which this study differs from previous 

studies of positional error is that street network distances were used in the error 

calculation, rather than Euclidean distances. Since a subject must use the existing street 

network (or pathway network) to travel from their dwelling to access the nearest park, 
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junk food outlet, grocery store, school, or hospital, it would be inaccurate to calculate 

positional errors and therefore accessibility misclassification as Euclidean or ‘crow fly’ 

distances between address proxies and dwelling centroids (except where distances are too 

small to require use of the network). As a necessary methodological step to create 

baseline distance measures for comparative purposes, this study assigned health-related 

accessibility scores to every residential address in the study area. These individual values 

are at the finest scale so that, in future, they can be aggregated in any geographic frame a 

researcher would see fit to use. By creating accessibility measures to individual dwelling 

centroids, researchers are no longer constrained by the (often arbitrary) boundaries of 

blocks, postal codes, dissemination areas, census tracts, or even counties. 

In the last several years, researchers have access to more high resolution address point 

locations than ever before.  In the event that a researcher has a combination of health 

data, only available at the census tract level, and high resolution address point locations 

where a distance measure is required, the census tract centroid would not be used. 

Individual distance measures for individual address point locations within the CT would 

be calculated, and then those distances would be aggregated to generate an integrated 

measure for that census tract, in lieu of the CT centroid. All the address proxies identified 

in this thesis with high positional discrepancies (e.g. census tract, dissemination area, 

rural postal codes) could have these centroid errors mitigated by combining distances 

from individual higher resolution address points located within them. 

3.5 Conclusion 
In spatial epidemiologic and public health research it is common to use spatially 

aggregated units such as centroids of postal/zip codes, census tracts, dissemination areas, 

blocks or block groups as proxies for sample unit locations. Few studies, however, have 

addressed the potential problems associated with using these units as address proxies. 

Chapter 3 quantifies the magnitude of positional discrepancies and accessibility 

misclassification that result from using several commonly-used address proxies in public 

health research. The impact of these positional discrepancies for spatial epidemiology 

was illustrated by examining the misclassification of accessibility to several health-

related facilities, including hospitals, public recreation spaces, schools, grocery stores, 
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and junk food retailers throughout the City of London and Middlesex County, Ontario, 

Canada. Positional discrepancies were quantified by multiple neighborhood types, 

revealing that address proxies are most problematic when used to represent residential 

locations in small towns and rural areas compared to suburban and urban areas. Findings 

indicate that the shorter the threshold distance used to measure accessibility between 

subject population and a health-related facility, the greater the proportion of misclassified 

addresses. Using address proxies based on large aggregated units such as centroids of 

census tracts or dissemination areas can result in very large positional discrepancies 

(median errors up to 343 and 2088 m in urban and rural areas, respectively), and 

therefore should be avoided in spatial epidemiologic research. Even smaller, commonly-

used, proxies for residential address, such as postal code centroids, can have large 

positional discrepancies (median errors up to 109 and 1363 m in urban and rural areas, 

respectively) and are prone to misrepresenting accessibility in small towns and rural 

Canada; therefore, postal codes should only be used with caution in spatial epidemiologic 

research. 

There is a growing trend in public health studies, particularly within the burgeoning field 

of ‘active living research’, toward the use of ‘ego-centric’ units (typically defined by 

buffers around a study participant’s residence) to characterize a participant’s 

neighborhood in order to examine the effect that local environmental factors (e.g. the mix 

of land uses and coverage of sidewalks) may have on health-related behaviors such as 

walking (e.g. Larsen et al., 2009) and outcomes such as physical activity levels (Tucker et 

al., 2009). The findings of this study have revealed that if commonly-used proxies such as 

centroids of census tracts, dissemination areas, and even postal codes, are used instead of 

exact addresses, positional discrepancies can be significantly large. If positional 

discrepancies are large, such ‘ego-centric’ neighbourhood units will be significantly ‘off 

center’, and local environments can be mischaracterized. For example, the chances of 

misclassifying a health-promoting feature of the neighborhood, such as a park, or a 

health-damaging feature, such as a junk food outlet, as accessible (or not) can be 

unacceptably high, particularly when threshold distances are short, such as the 

commonly-used 500 m buffer (or 5-min walk zone). If positional discrepancies are too 

large, it will be impossible for the researcher to resolve whether any health effects of an 
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environment are truly present. Improving the accuracy of the distance calculations 

increases the utility of the findings so that making decisions and enacting policies aimed 

at improving a population’s spatial accessibility to environmental features will potentially 

contribute to the overall health and well-being of the population. 

3.6 Bridge to Chapter 4 
As demonstrated, many researchers have attempted to define accessibility of their 

subjects to the built environment through the use of address proxies and common 

geospatial methods. However, despite the wide range of scholarship on the topic, many of 

these studies suffer from serious methodological weaknesses and inadequate spatial data 

which, in turn, limit their usefulness. Chapter 3 outlined that the spatial inaccuracies and 

accessibility misclassifications, when employing some of these common spatial data at 

the neighbourhood scale, are severe enough to be avoided in future studies. This study 

was originally published with the title “Quantifying the magnitude of environmental 

exposure misclassification when using imprecise address proxies in public health 

research” at a time when those engaged in this type of research were conflating the terms 

accessibility and exposure. For the purpose of this thesis the word exposure has been 

replaced with accessibility to more closely match the terminology in this thesis and the 

terminology in the present state of the science.  

If researchers are going to suggest and develop appropriate interventions for the design of 

the built environment, to improve the health of children and the rest of the population, 

then they must make use of spatially accurate and scale appropriate data. The methods 

outlined in this chapter apply to other regions in Canada and can be useful for any study 

documenting geographic accessibility to health-promoting/ health-damaging 

environmental features. With the foundation of a precise, accurate spatial data and sound 

geospatial methods, planners and stakeholders can better plan for future interventions. 

In Chapter 4, the limits of the ego-centric geospatial methods of distance and network 

buffers around address proxies are challenged with the incorporation of the GPS tracking 

of survey participants. By employing GPS, the researcher can measure accessibility as a 

function of the actual geographic domain rather than arbitrary ‘distance from’ measures. 
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The actual places visited and time elapsed at each place presents the opportunity to 

measure the exposure to and engagement at these places respectively and, therefore, 

reduces the confounding nature of the modifiable area unit and uncertain geographic 

context problems, in terms of statistical analysis. 
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Chapter 4  

 Objectively measuring children’s time spent outdoors 
exposure to, and engagement in green space while 
using passive GPS devices 

4.1 Introduction 
Recently, there has been significant amounts of literature published on the health benefits 

of spending time outdoors, especially for children. Research shows that spending time 

outdoors can positively impact children’s physical activity, mental health and well-being, 

and social, and cognitive development (Gilliland, 2018). Dramatic increases in sedentary 

behaviour and time spent using electronic devices is a concern of many parents, 

practitioners, and researchers, which supports further investigation into the relationship 

between time spent outdoors and a variety of children’s health outcomes.  

A body of the literature identified in a recent systematic review assessed the effect of 

outdoor time on children’s physical activity, sedentary behaviour, and physical fitness 

(Gray et al., 2015). Several studies included in this review confirmed that there were 

overall positive effects of outdoor time on physical activity, sedentary behaviour, and 

cardiorespiratory fitness (Gray et al., 2015). Each of the studies assessing physical 

activity also found higher rates of physical activity outdoors as compared with rates 

indoors. Distinguishing the amount of time that children spend outdoors is important 

since studies have shown that children are more physically active in outdoor 

environments (Raustorp et al., 2012). 

Previous research has conceptualized interactions with nature outdoors into three types: 

accessibility, exposure, and engagement (Tillmann et al., 2018). In their review of the 

impacts of nature interactions on children’s mental health, they describe how some of 

these studies using measures of accessibility, such as residential proximity to outdoor 

greenspace, are limited in their assessment of children’s interaction with their natural 

environments, as accessibility studies do not establish that children are making use of 

these spaces. Research therefore should be accounting for the individual choices made by 
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children when discussing interactions with particular environments. Exposure to, and 

engagement with outdoor environments give us more accurate representations of the 

actual time children spend at particular locations.  

One of the significant barriers to assessing children’s time spent in outdoor environments 

is the inability to precisely determine whether a child’s GPS tracks are indoors or 

outdoors. Previous research has used time blocks, such as a school schedule, to determine 

whether a child is most likely indoors or outdoors (Loebach & Gilliland, 2014). However, 

this has limitations in that it assumes that all participants are in similar environments 

indoors (in the school building) and outdoor (school yard) based on a school schedule and 

does not take into account trips away from school, or absences. Some studies have 

supplemented time blocks with self or parent-reported activity diaries detailing where 

children’s activities are taking place; however, this again makes some assumptions based 

on time blocks included in the diary and creates an opportunity for inaccurate reporting 

by children due to recall bias (Loebach & Gilliland, 2014). Studies that rely on self-

reporting alone or on parents reporting on behalf of the child have also been used to 

classify use or time spent in specific spaces which again leaves room for inaccurate 

reporting, as well as not being an accurate representation of every space a child interacts 

with on a daily basis (Amoly et al., 2014; Faber Taylor & Kuo, 2011; Flouri et al., 2014; 

McCracken et al., 2016). Being able to accurately determine whether a single GPS point 

is indoors or outdoors is of crucial importance for understanding children’s activities, and 

ultimately, for understanding the link between environments and health. 

Ellis et al. (2014) identified 89.9% accuracy when using the random forest model with 

150 hours of GPS tracks when predicting active travel behaviours for two of their adult 

research assistants after filtering the data through the PALMS tool. Meanwhile, Wu et al. 

(2011) found the random forest less useful for identifying outdoor travel times when 

using only the raw GPS tracks using derived acceleration rate, speed, distance difference 

between subsequent readings, and distance ratio rather than any National Marine 

Electronic Association (NMEA) quality metrics. 
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The purpose of the analysis in this chapter is to code, with some certainty, any discrete 

coordinate computed by a wearable GPS as to whether the subject wearing the GPS unit 

was indoors or outdoors at the time of coordinate generation. 

Presently, there are lack of tools to accurately quantify time spent in indoors or outdoors 

for children (Wang et al., 2018) and unreliable tools to assign those activities meaning in 

terms of exposure to and engagement in those spaces. This study is carried out within a 

socio-ecological framework that recognizes that there are many types of influence on 

children’s behaviours and health outcomes (Sallis et al., 2006; Stokols, 1992). It is the 

purpose of this study to (1) develop a tool that accurately designates whether an individual 

GPS point is generated as indoors or outdoors and (2) assess the accuracy of this tool 

through evaluating a random sample of GPS points, (3) assign environmental and 

neighbourhood variables to the outdoor activities, and (4) identify statistically significant 

metrics against a set of socioeconomic indicators to answer: where and for how long do 

children engage outdoors, and what neighbourhood and socioeconomic environment 

might be aiding or hindering this behaviour?  

4.2 Methods 
The methods section is divided into three parts. The first part will describe the study 

design, instruments, and GPS data collection from the multi-year research study entitled 

the Spatio-Temporal Environment and Activity Monitoring (STEAM) Project. The 

second part of the methods section will describe (a) the classification algorithm used in 

predicting, with certainty, all coordinates generated by a wearable GPS as to whether the 

subject wearing the GPS was indoors or outdoors at the time of coordinate generation, 

and (b) the binning method used to combine the outdoor GPS tracks with the built 

environment variables as a step to reduce both the modifiable areal unit problem (MAUP) 

(Openshaw, 1984) and the uncertain geographic context problem (Kwan, 2012b) effects. 

The third part of this section describes the statistical methods used to report on the 

STEAM participants’ exposure to and engagement in different outdoor environments.  
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 Spatio-Temporal Environment and Activity Monitoring 
(STEAM) Protocol 

4.2.1.1 Study design 

The Spatio-Temporal Environment and Activity Monitoring (STEAM) protocol has been 

employed three times since 2010 by the Human Environments Laboratory in the 

Department of Geography and Western University. The larger STEAM study utilizes a 

mixed-methods approach to understand how children aged 9-14 years engage with 

different health-promoting or health-damaging environmental features in their 

neighbourhoods. The study presented in this chapter utilizes data gathered during the first 

two phases of the larger study (i.e. STEAM I and STEAM II). The age of the participants 

in the STEAM project corresponds to critical life stage when children are independently 

mobile and have a growing sense of their own environments (Rissotto & Tonucci, 2002). 

STEAM I and II were designed to examine the potential causal effects of the built 

environment on children’s health-related behaviours in the Southwestern Ontario region of 

Canada. Before launching both studies, approvals were obtained from the Non-medical 

Research Ethics Board of the University of Western Ontario (see Appendix A and B); 

approval was also obtained from the regional school boards to approach schools for 

participation. Seven elementary schools in the City of London, four urban and three 

suburban, participated during the first two years of the study (STEAM I), while 30 schools 

participated in the second study (STEAM II), representing populations from London, and 

local municipalities. In this Chapter, only STEAM I participants were used to study 

exposure and engagement. 

Children in grades 5 to 8 (approximately 8 to 14 years of age) in each school were considered 

eligible to participate. All children who received permission to participate from a parent or 

guardian, and who signed their own Child Assent Form, were allowed to participate in the 

study.  

4.2.1.2 GPS data collection 

For STEAM I, participants at seven elementary schools completed a 7-day multi-tool 

protocol to document their neighbourhood activities, movements and experiences. 
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Participating children (n=220) wore portable GPS monitors (VGPS-900 by Visiontac) 

shown in Figure 4.1, during all waking hours for up to 7 days during the winter-spring 

season (February-March) and again in the spring-summer season (April to June); GPS 

units marked a spatial coordinate for each second the unit was in use. Participants also 

completed detailed daily activity and travel diaries, and both children and parents 

completed comprehensive surveys on children’s neighbourhood activities, environmental 

perceptions and mobility behaviours. In STEAM II, during the study period (2011-2013), 

participants (n=946) at the thirty elementary schools also completed a 7-day multi-tool 

protocol similar to STEAM I, but with the two seasons being fall (October-November) 

followed by spring (March-April). In both studies, the GPS devices were attached to a 

lanyard and the children were instructed to wear the device around their neck from the 

time they rose in the morning until bed-time (see Figure 4.2). 

 

 

Figure 4.1: VGPS-900 GPS receiver with lanyard 

 



81 

 

 

Figure 4.2: Example of a child wearing VGPS-900 GPS receiver 

(niece of the Author – not a STEAM participant) 
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The protocol of all the STEAM projects required that researchers enter the schools every 

day that the children were present (outside of weekends) so that each GPS device could 

have the data downloaded and checked for malfunctions. Each GPS device was 

programmed by the researchers to generate a coordinate every second and to include a set 

of signal quality metrics on each coordinate. The Visiontac VGPS-900 GPS receiver 

devices were used in both studies.  The accuracy and precision of the VGPS-900 GPS 

receiver was reported by the manufacturer using the Circular Error Probability (CEP) 

metric. The CEP reports distances from a true position on a horizontal plane (accuracy). 

It includes a probability statistic (percentage) of the actual GPS measurements falling 

within a distance to the true position. The middle of the cross-hairs in Figure 4.3 

represent the true position. The distance value in the CEP metric is illustrated as the 

radius of a circle (precision). When the radius is small and centred on the cross-hairs the 

GPS will report with higher accuracy and higher precision.  The reported precision and 

accuracy of the VGPS-900 GPS receiver during optimal conditions (full unobstructed sky 

view) and wide augmentation assisted system (WAAS) enabled (Differential GPS -

DGPS) is 1.5m CEP (30%-50%) p=0.05, 2.5m CEP (95%) p=0.05, and when WAAS 

correction not in effect (Non-Differential GPS – Non-DGPS) the expected accuracy is 3m 

CEP (30%-50%) p=0.05, 5m CEP (30%-50%) p=0.05. In other words, in optimal 

conditions the VGPS-900 GPS receiver will measure within 1.5 metres of its true position 

30 to 50% of the time, and will measure within 2.5 metres of its true position 95% of the 

time (19 times out of 20). The precision of the GPS measurements shown as circles in 

Figure 4.3 are a function of 3-D trilateration calculations computed by the receiver from 

the satellite radio signals downrange that are being received (pseudorange). If the sky 

view is clear, and there are no blocking structures and there are 4-plus satellites well-

spaced above the horizon, then the positional dilution of precision (PDOP) would be 

small. A small dilution of precision will likely generate a truer measurement. The VGPS-

900 was evaluated against other GPS units including the Qstarz brand GPS and was 

chosen due to the accuracy of the recorded positions during testing and its larger storage 

capacity so that 1 second epochs could be employed.   
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Figure 4.3:  GPS accuracy vs precision 
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The accuracy and precision of the GPS was objectively measured by placing the GPS 

receiver at a City of London Engineering Survey Monument - Horizontal Control 

Monument number 028941099 as shown in Figure 4.4.  

 

The monument used was bronze cap type encased in concrete and had a known horizontal 

locational accuracy to the millimeter using the North American Datum 1983 (NAD83) 

Zone 17 coordinate system and a non-geodetic accuracy of a decimeter in the vertical.  

The monument is situated on a bridge with a full view of the sky in all directions which is 

considered the best case for measuring the accuracy of the device. The VGPS-900 GPS 

receiver was placed on a surveyor’s tripod at a height of 1.2 m above the monument as 

shown in Figure 4.5. 

Figure 4.4: Horizontal Survey Monument 
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The GPS was configured to measure coordinates at 1 second epochs for 30 minutes (1800 

coordinates). For accuracy, the difference between the GPS measured coordinates and 

Horizontal Control Monument coordinate was calculated in ArcGIS and used to generate 

the Root Mean Square Error (RMSE) for the GPS device: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
    (4.1) 

Figure 4.5: Author aligning surveyor tripod over 

horizontal survey monument 
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where the square root of the sum of the square mean difference between each of the 

predicted values (P) of Horizontal Control Monument location (X and Y) and the 

observed values (O) – Vision Tac GPS device (X and Y) of the set of values (n = 1800).  

Precision is expressed as the degree of spread in the GPS points. It is measured by first 

identifying the mean centre of the 1800 GPS points in ArcGIS Pro 2.x (ESRI, 2018). The 

Mean Center tool creates a single point location where the sum of squared Euclidean 

distances between that mean centre point and each GPS point in the sample are 

minimized. The distance from each GPS point to the mean centre point was calculated 

and used to generate the precision (spread) reported as a standard deviation. 

The GPS receiver used in STEAM I and II supports a combination on National Marine 

Electronic Association (NMEA) version 3.01 (NMEA, 2018) data sentences including the 

GGA (Global Positioning System Fix Data), GLL (Geographic Position, Latitude / 

Longitude and time), GSA (GPS DOP and active satellites), and HDT (heading in 

degrees North). These include, for each timestamp, the PDOP (Positional Dilution of 

Precision, HDOP (Horizontal Dilution of Precision), VDOP (Vertical Dilution of 

Precision), Speed, Height, and qualitative accuracy values (‘2DGPS’ and ‘3DGPS’). The 

GPS quality metrics including PDOP, HDOP, and VDOP, along with the Height and 

Speed were stored during the STEAM study and, as we shall see later in this chapter, 

were imperative in the classification of indoors/outdoors. 

Throughout each study the STEAM researcher team copied daily sets of GPS tracks from 

each GPS device. At the end of each week in the study, researchers combined the full 

week of GPS data into a digital spreadsheet by participant and imported the data into 

ArcGIS 10.x (ESRI, 2018) for visual inspection, data quality metrics, data formatting and 

cleaning. The data was then exported to the GIS and stored as tables in a relational 

database management system.  

4.2.1.3 Past research using STEAM I and STEAM II 

Several other graduate students have used STEAM data to investigate how children’s 

environments influence their health-related behaviours. Topics included healthy eating 
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(Rangel, 2013), sleep (McIntosh, 2014), active transportation (Hill, 2012; Fitzpatrick, 

2013; Richard, 2014; Rivet 2016), neighbourhood mobility and activities (Loebach, 

2013), physical activity (Richard, 2014; Mitchell, 2016) and health-related quality of life 

(Tillmann, 2018). Previous STEAM researchers used GPS tracking and built environment 

variables to identify children’s activity spaces and/or routes between home and school, 

and then associated them with a health-related behavior such as active travel (e.g. Rivet, 

2016). To identify outdoor activity, these previous projects either visually inspected the 

GPS tracks against aerial photography and vector-based ancillary GIS data, or used a 

combination of visual inspection matched against activity diaries. This study differs from 

previous outdoor researchers using STEAM in that the outdoor data filtering and 

classification uses a rigorous method combining the use of kernel based algorithm 

identifying routes and stops with a random forest classifier to identify outdoor generated 

GPS points. 

 Data filtering and classification 

4.2.2.1 SphereLab Tool: Activity place detection algorithm for GPS 
data 

Thierry et al. (2013), developed a tool called the “Activity place detection algorithm for 

GPS data”, hereby called the SphereLab Tool. This tool uses a kernel density approach to 

filter the GPS points to identify places where the participant stopped for some defined 

duration and to generate routes to and from these locations. The tool was validated on a 

study by Kestens et al. (2016) to build individual mobility histories with 95.8% of the 

GPS points correctly classified as an activity location of a trip route. Empirically, it was 

found that for the STEAM GPS data, a kernel distance of 75 m was optimal for 

identifying the stops from a cluster of routes. It was found that 100% of the stops 

generated during school hours landed on school property, with all of them within 20m of 

the school building.  

There were three drawbacks with using the tool. The first was that the code had not been 

updated since the year 2013 and was only written to work in ArcGIS 10.1(ESRI, 2011). 

The tool was unsupported and failed to process fully using more recent versions of 
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ArcGIS. This author was then required to edit the published open source python 

programming code to upgrade the software to work in more recent versions of ArcGIS 

10.4-10.6. The second drawback was that the format requirements for the tool dictated 

that the archived STEAM I and II GPS data needed to be further processing. Additional 

coding was necessary to prepare the STEAM GPS points to meet the tool requirements 

(UTC Time field, WGS84 Projection, and a removal of the most grievously erroneous 

GPS points). Additionally, the output thematic data (routes and stops) generated by the 

tool did not match the needs of this project which was remedied through the creation of a 

custom “wrapper” tool the modified SphereLab Tool’s programming code in the middle. 

The custom tool pre-processed the STEAM GPS data for input into the modified 

SphereLab Tool and post-processed the output of the SphereLab Tool to suit the needs of 

this study. 

The SphereLab Tool creates both route (vector polylines) and stops (points) GIS data. In 

this study, the custom tool was run for each participant by season, and by day so that 

daily routes and stops could be recorded for each participant. The routes polylines were 

post-processed to assign the route with the STEAM participant ID, the duration of the 

route, the start/end point IDs, and the start and end times on the routes. The thematic data 

of the stop points were similarly post-processed to include the STEAM participant ID, 

duration, and stop ID (corresponding to the route start/end point IDs). The key goal for 

the output was to maintain the link to and from the original GPS points with the routes 

and stops prior to indoor/outdoor classification steps discussed in Section 4.2.5 of this 

Chapter. 

4.2.2.2 Hexagon tessellated surface 

An isotropic hexagonal tessellation of the City of London was built in ArcGIS to provide 

an avenue for overcoming the potential effects of the modifiable areal unit problem 

(MAUP) (Openshaw, 1984) and the uncertain geographic context problem (UGCoP) 

(Kwan, 2012b) and with their corresponding potential ecological fallacies. An array of 

equal sized hexagons, as seen in Figure 4.6, made of six 10m sides (60m perimeter) and a 

20m wide diameter, with an area of 259.8m2, was created over the entire city (see Figure 

4.7). The zonal effect after attribution, with any rotation or re-orientation of the surface 
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would be slight because the hexagon orientation reverts to its original form when rotated 

at 60o increments. The hexagon orientation looks the same after every 60o rotation, in 

comparison to the standard square (e.g. raster cell), which looks the same when rotated at 

90o increments. The compactness ratio of a hexagon, as compared to the geometry of a  

 

 

20m Diameter: 20m 

Perimeter: 60m 

Area: 259.8m
2
 

Compactness: 0.91 

Diameter: 20m 

Perimeter: 80m 

Area: 400m
2
 

Compactness: 0.79 

Circle Compactness = 1.0  

Figure 4.6: 20m hexagon tessellation 
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circle, is (0.91) which is a more compact shape than that of a standard square (0.79), and 

is therefore the most compact shape which can be used for a 2D surface tessellation. 

Spence and White (1992), as reported in Davis and Robinson (2012) produced a 

hexagonal tessellation of the landscape for the U.S. Environmental Protection Agency’s 

Environmental Monitoring and Assessment Program (EPA-EMAP) of the United States. 

They reported that an array of hexagons provides contiguous spatial coverage that is 

isotropic, and less likely to be coincident with features such as jurisdictional boundaries, 

buildings or roads (see Figure 4.7). 

The area-based environmental variables were disaggregated, reorganized, and re-

proportioned into their corresponding hexagon context areas to make a better model of 

reality (see Figures 4.8 and 4.9). The use of 20 metre diameter hexagons to store the 

important built environment variables related to children’s activity outdoors is theorized 

to be small enough to represent a spatial extent to which a child, who finds themselves 

located inside the hex location, would perceive and be exposed to that environment. It is 

Figure 4.7: 20m hexagon tessellation 
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theorized that this approach of using a hexagon tessellated surface could help mitigate the 

MAUP and UGCoP. Each hex making up the surface is coded with environment 

variables and will act as bins to store the combined GPS points, by child, resulting in the 

time spent in each hex area (a proxy for engagement). If a hex is visited by a child’s GPS 

track then that hex is coded as one in which the child has been exposed to and is included 

in the child’s activity space. Separately, the time elapsed in each hex will act as a proxy 

for engagement in the environment stored as a hexagon variable. Therefore, combining 

GPS tracks and hex-bins introduces a novel approach in response to the uncertainties and 

ecological fallacies posed by MAUP and  UGCoP (Gilliland & Olson, 2013; Gilliland et 

al., 2011). 

 

 

Figure 4.8: Built environment variable map (Land Use) 
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The calculation of time spent in a hexagon was performed in ArcGIS 10.x where the GPS 

coordinates were overlaid with the hexagon surface (Point-in-Polygon) and the 

corresponding unique hexagon identifiers were transferred to each GPS coordinate in a 

one-to-many table join (hex-to-points) as shown in Figures 4.10 and 4.11. The hexagons 

visited by each child participant is now available as a proxy for exposure (Figure 4.11) 

while the duration of time spent in each hexagon will be the proxy for engagement 

(Figures 4.12 to 4.14). Both the exposure and the engagement metrics will act as the 

outcome variables in the statistical analysis.  

 

Figure 4.9: Hex-bin environment variables (Land Use) 
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Figure 4.11: Exposure to Land Uses by hex-bin (GPS point in hex) 

Figure 4.10: Raw GPS tracks 

 



94 

 

 

Figure 4.13: Exposure - time spent in each hex-bin (hotspot) 

Figure 4.12: Engagement as time spent in hex-bin by land-use (3D view) 
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 Random forest model 

The random forest model (Breiman, 2001) is an ensemble method of classification which 

constructs a number of decision trees from a set of random observations from a training 

dataset.  A training dataset is one where the variables are attributed and the final class 

label has been identified as discussed later in this chapter.  As the name suggests, many 

decision trees are generated creating a ‘forest’ of decision trees. A decision tree is a type 

of data classifier as shown in Figure 4.14. Each decision tree is represented by 

‘branches’, connected at ‘split nodes’, terminating at ‘leaves’. An individual leaf of a 

decision tree represents a class label that is assigned to a data point. To arrive at a class 

label, the data point ‘travels’ through the branches going from one branch to another at 

splits nodes. At the split nodes the data point variable is examined and will move to one 

branch if the variable value is less than that of the split value, or to the other branch if the 

data point variable value is greater than the split value. The branches represents the 

combination of variables/steps that lead to the correct classification of that data point. 

Many decision trees are created (a forest of them) and the algorithm learns as the forest is 

being grown so that the misclassification errors are kept to a minimum. The trained 

model can then us used on the entire data set (see Figure 4.15).  

Once the random forest model is built (grown), the entire dataset, one observation at a 

time can be passed through each decision tree in the forest. An individual observation 

will pass through every tree in the forest, its corresponding variable checked at each node 

until the leaf is reached. The class label generated at the leaf is called a vote (i.e. in a 

forest of 500 trees there will be 500 class label votes per observation). The votes are then 

tallied and the majority class label is assigned to that observation. The process is repeated 

for the n count of observations (see Figure 4.14) 
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Figure 4.14: Example random forest decision trees 
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new tree (i) 
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subset (n)  

of GPS Points 

For each chosen 
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Randomly choose variable subset to be used 
at a split (e.g. PDOP, Speed, and 

DistFromBuild) 

   

Choose best split value  
(Gini Index) 

End 

n = 2 3�  of training sample used in the 
creation for each tree, while 1 3�  is held back 
out-of-bag (OOB) so that classification bias 
can be tested while the forest is grown 
resulting in OOB Prediction Error Estimate. 
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model’s overall variance.

Yes 

No 

i = 500 

Figure 4.15: Random forest algorithm flow chart 
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 Out-of-bag (OOB) error estimate 
 

The Out-of-Bag (OOB) error estimate is generated using a random one third of the 

training sample that is not used in the creation of the forest. In random forests, there is no 

need for cross-validation tests or any additional tests to get an unbiased estimate of a test 

set error. Each separate tree is constructed using a different bootstrap sample taken from 

two thirds of the original data. An entire one-third of the observations are left out of the 

bootstrap sampling and not used in the construction of any tree. These observations are 

passed through the completed model to see how well the model was made. The lower the 

OOB error the more accurate the model. The confusion matrix, shown in Figure 4.16 

illustrates how the overall model accuracy and OOB accuracy rates are calculated. The 

OOB error rate is equal to the FP+FN/Total OOB sample size while the model accuracy 

is calculated by (TN+TP)/ Total OOB Sample size. A Confusion Matrix is a method of 

appraising binary classification procedures, in this case the binary classification of indoor 

or outdoor. 

  Actual (Reference) 

  False True 

Pr
ed

ic
te

d 

 

False 

True Negative (TN): Predicted 

No, and Reference was No. 

False Negative (FN): Prediction 

was No, and Reference was Yes. 

 

True 

False Positive (FP): Predicted 

Yes, and Reference was No. 

True Positive (TP): Prediction 

was Yes, and the Reference was 

Yes. 

(OOB Sample 

Accuracy) 

TN / (TN + FP)  

% model correctly predicts No. 

TP / (FN + TP)  

% model correctly predicts Yes. 

Figure 4.16: Training data confusion matrix 
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Generally, the greater number of trees that make up the random forest offer better 

classification results and hence, more reliable estimates from the out-of-bag (OOB) 

predictions. You can use OOB error rate to determine the size of the forest (number of 

trees) as shown in the random forest error vs forest size plot in Figure 4.17.  The plot 

shows that as you increase the size of the forest the improvement rate of the model 

decreases, as the number of trees increases to a point where in the benefit in prediction 

performance of adding additional trees levels off, in the example in Figure 4.17 at 

approximately 280 trees. 

All random forest modelling was performed in R (R Core Team, 2018) within RStudio 

(RStudio Team, 2015). The R ‘arcgisbinding’ bridge was used to control the reading and 

writing of spatial data to and from R and the ArcGIS (ESRI, 2018) GIS geodatabases. 

Additionally, the R Caret package (Kuhn, 2008) used in the creation of the test data 

sample confusion matrices. 

 



100 

 

 

4.2.4.1 Split nodes and Variables 

In this study the tree splits nodes will use a set of variables created by the GPS receiver 

and a set of variables created specifically to improve the model’s performance. The GPS 

signal quality variables, speed, and height from the NMEA GPS sentence will be used. In 

addition two custom variables; 1) distance between successive GPS points. And 2) 

distance from blocking structures (buildings).  

Figure 4.17: Random forest error vs forest size plot 
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Standard GPS technology generates an absolute position, based on pseudorange 

measurements. Each pseudorange corresponds to the distance between the receiver and 

each GPS space vehicle (SV). The coordinate position (X,Y,Z,T) of the receiver is 

determined by more than four pairs of pseudorange measurements and their 

corresponding GPS SV positions. Embedded in the pseudorange signal is information on 

ionospheric and tropospheric signal delays, clock errors, position and health of the SV in 

space (Kojima et al., 2012). 

The GPS variables used in this study are PDOP (Positional Dilution of Precision), HDOP 

(Horizontal Dilution of Precision), VDOP (Vertical Dilution of Precision), speed, and 

height. 

Positional Dilution of Precision is given as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
�𝜎𝜎𝐸𝐸

2+𝜎𝜎𝑁𝑁
2+𝜎𝜎𝑈𝑈

2

𝜎𝜎
     (4.2) 

Where 𝜎𝜎𝐸𝐸2,𝜎𝜎𝑁𝑁2, and 𝜎𝜎𝑈𝑈2 are the variances of the east, north, and vertical parts of the 

receivers position estimate,  𝜎𝜎 is the standard deviation of the pseudorange measurement 

error (sent by the space vehicle) and model error which is assumed to be constant for the 

epoch that the GPS receiver is being used (Langley, 1999). 

The Horizontal Dilution of Precision is similar to the PDOP, except for the exclusion of 

the vertical part of the receiver’s position estimate and is written as: 

𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃 =  
�𝜎𝜎𝐸𝐸

2+𝜎𝜎𝑁𝑁
2

𝜎𝜎
     (4.3) 

The Vertical Dilution of Precision uses only the vertical part of the receiver’s position 

estimate and is given as: 

𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 =  
�𝜎𝜎𝑈𝑈

2

𝜎𝜎
      (4.4) 
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Vertical dilution will always be larger than HDOP because, in order to get a more 

accurate measurement of height, the receiver would need to use pseudorange 

measurement from all directions, not just those directions above the receiver, but below 

the receiver as well (Langley, 1999). The NMEA GPS sentence used in random forest 

model also includes speed (distance/time) and height. 

The Gini Impurity (for classification purposes) is tested throughout the random forest 

model’s growth (as the model learns) and measures the variance of how often a randomly 

chosen observation from a set of random observations would be incorrectly classed if it 

were given a random class value and is expresses as: 

𝐺𝐺 =  ∑ �̂�𝑝𝑚𝑚𝑚𝑚(1 − �̂�𝑝𝑚𝑚𝑚𝑚)𝐾𝐾
𝑚𝑚=1     (4.5) 

where �̂�𝑝𝑚𝑚𝑚𝑚is the probability of observations in the mth sample from the kth class (variable) 

being correct. In our case, the full set of observations comes from 66% of the total GPS 

training sample per participant/season. Random forest creates the mth bootstrapped 

sample from 2
3
  of the 66% chosen at random, keeping in mind that a full  1

3
 of the 

observations are “held back” for the out-of-bag (OOB) error estimate. Each tree is built in 

a way to keep the G low. At the heart of it, the Gini Impurity is a measure of variance. 

Throughout the creation of the decision tree forest, the variance is summed with each 

tree’s new split. If the addition of a variable for a new split increases the variance in the 

random forest model, the algorithm will swap out that variable at that split for another 

variable until the overall variance is reduced. The higher the variance, the more 

misclassification will exist. Therefore lower values of the Gini Impurity will yield a 

better classification result which can be tracked using a variable importance plot (see 

example in Figure 4.18). The plot shows the variables that play a larger role than others 

in a Random forest classification model. The model will rely more on those variables that 

increase classification accuracy than those that do not. In this example the DistFromBuild 

and HEIGHT variables play a larger role in accurately classifying (reducing Gini 

Impurity), than do the DistFromLastPoint and PDOP variables.. 
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Figure 4.16: Example variable importance plot 
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4.2.4.2 Creating the training sample 

There are set epochs of time during each day of the study where the location of the 

participants in the project is known. These times are primarily when the children are 

attending school. Each school schedule was logged and joined to each GPS coordinate so 

that during school hours it is known whether the participant is inside the school (in the 

classroom) or outside during recess time and other breaks. Each participant activity diary 

was then used to verify whether the child was inside or outside for recess. The GPS units 

meanwhile continue to log data points which, for the most part, fall spatially within the 

school building during class time, while some are generated outside of the building 

footprint. The opposite is true when the children are spending time outdoors. Most logged 

GPS points appear outside of the building while some appear inside, see illustration in 

Figure 4.19.  These scheduled times, and their GPS coordinates, by participant by school 

day will act as the training dataset for the random forest model. To make the argument 

that the participants’ GPS school-time dataset, typically about 7 hours per day, 

represented a valid snapshot of their indoor/outdoor activity, it was determined that only 

days that children spent at the school were included in the training sample. During the 

school day, only four scheduled time blocks were used for training: AM In School, AM 

Recess, PM in School, and PM Recess). A proximity measure was applied to each of the 

Building (Inside) 

GPS Point 
Generated while 
Child Indoors 

GPS Point 
Generated while 
Child Outdoors 

Figure 4.17: Misclassification of GPS points 
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participant GPS tracks during each day and those tracks whose mean distance from the 

school building was greater than 500m were not included in the scheduled school time 

block of the training sample. The participant’s daily activity diary were examined to 

validate the child as being indoors or outdoors during recess. The training sample was 

bolstered by the inclusion of GPS points identified as non-active (vehicular) travel from 

routes created by the SphereLab Tool (Thierry et al., 2013) . A route was flagged as non-

active travel when the speed cut-off matched the mean speed children (13 years and 

under) ride a bicycle (13.3 km/hr.). The vehicle trips were coded as indoors and all other 

trips as outdoors. The addition of the children’s travel behaviour GPS points was critical 

to include in the training sample because: 1) the totality of a child’s activity during the 

day does not always match with what children experience during school time on school 

property; and 2) some training samples sizes were too small (too small a sample in 

outdoor time, or indoor time, or both), thus weakening the random forest model. The 

distance between successive GPS points was also created as an additional custom 

variable to address, in part, the errors in the GPS calculated Speed variable. Occasionally, 

a GPS coordinate showed a speed of zero, which would indicate no movement, but the 

proceeding and successive points were shown to be not spatially coincident. Upon further 

examination this behaviour seemingly occurred while the GPS was under the influence of 

a blocking structure (building).   

All the pre-preprocessing was performed using a custom stand-alone python application 

(Python Software Foundation, 2018) given in Appendix D. 

 Processing the GPS points 

The processing of the GPS points in R (R Core Team, 2018) is straightforward. In this 

study the GPS data were stored in a ArcGIS (ESRI, 2018) Geodatabase which was 

connected to R using the R-ArcGIS Bridge ‘arcgisbinding’ Package (ESRI, 2018). 

RStudio (RStudio Team, 2015) was used as the development environment. The R script 

which trains, builds, and implements the random forest model is given in Appendix E. As 

the final step, the outdoor GPS points were spatially overlaid with the hex surface so that 

a link be made between GPS point and the environment (stored per hex-bin). Where 

exposure is represented by number and aggregated spatial extent of the hexes visited and 
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engagement is represented by the time spent in each hex. The overall processes is shown 

Figure 4.20. 

CREATE TRAVEL ROUTES and STOPS.  
Process GPS data with Activity Place 
Detection Algorithm – SphereLab Tool 
(Thierry et al., 2013) by participant, by day. 

Spatial Overlay Stops with Building 
Envelopes identifying buildings in close 
proximity to identified stops (includes 

school and home) by participant, by day. 
 

Code the Training Sample of GPS Points as 
Indoor/Outdoor based on the Participants 
School Schedule/Diary (e.g. inside during 

class-time (1), outside at recess (0), mode of 
travel from SphereLab Tool) 

 

Generate separate random forest models 
from individual Training Samples for each 

participant, by season. 

Import GPS data directly in R by participant 
by season 

Generate the OOB Error and Training 
Sample error rates of each of random forest 

model by participant, by season. 

Apply an individual random forest model to 
each participant GPS Points to predict 

binary INDOOR variable (1 = indoors, 0 = 
outdoors) 

Overlay outdoor GPS points to Hex surface 
with environment variables, and sum the 
time each participant spends “in the” hex, 

by participant, by season, by day. 

Figure 4.18: Process to code and classify GPS points 
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 Measuring exposure and engagement 

All descriptive and inferential statistics were generated using SPSS 25 (IBM Corp., 2017) 

to examine where and for how long children engage outdoors and how individual-level, 

and neighbourhood-level socioeconomic and environmental factors, as per the socio-

ecological framework, could aid or hinder this behavior. Both the measures of exposure 

to, and engagement at, these outdoor locations are used as dependent variables in this 

study.   

The total outdoor exposure is defined as direct contact with outdoor environmental 

features. It is operationalized by the sum of all the corresponding hex-bins coincident to 

the child’s outdoor GPS points (i.e. hex-bins in direct contact with the GPS tracks) to 

represent the child’s total outdoor “activity space”. The Total Outdoor Exposure by 

environmental feature is measured as a proportion of the child’s total “activity space”: 

Exp = ThEnv / Th     (4.6) 

where Exp is equal to the proportion of total hex-bins by specific environmental feature 

(ThEnv) divided by the total outdoor ‘activity space’ (Th).  

In this study, engagement outdoors (i.e. total time spent outside per day at parks) will be 

operationalized by summing the outdoor time spent by the child in each hex-bin. The 

total engagement at specific environmental features outdoors is measured by: 

Eng = TtEnv / Tt     (4.7) 

where Eng is the proportion of outdoor activity time and TtEnv is the total time a child 

spends at particular environmental feature type, and Tt is the total time the child spends 

outdoors. 

As outlined in Chapter 1 (Figure 1.2), the socio-ecological framework (Bronfenbrenner, 

1979; Sallis et al., 2006; Stokols, 1992) was used to guide our understanding of the multi-

level influences that recognizes that there are many types of influence on children’s 

behaviours and health outcomes (Sallis et al., 2006; Stokols, 1992).  In this analysis, the 

Individual-level factors, related most directly to the individual, and those which are theorized 
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to influence outdoor exposure and engagement are: age (9-14 years), gender (females / 

males), and visible minority classification.  The individual-level factors were taken from the 

STEAM survey instrument. The Household-level factors under examination include: the 

household structure (dual-parent/ lone-parent household) from the STEAM survey 

instrument, and socio-economic status (as represented by the median household income of 

the census dissemination area in which the child’s home is located). The Neighbourhood-

level factors measured at the hex-bin level, are: land use types, parks, street tree counts 

derived from spatial data published by the City of London (2010-2013) and green space (City 

of London, 2008). The green space was generated using a Normalized Difference Vegetation 

Index (NDVI) which commonly used as a means of classifying greenness from infrared aerial 

imagery. The City of London (2008) infrared aerial photography taken in August 2008 at 30 

cm resolution was used to generate the NDVI layer which was then classified to derive two 

green attributes: heavily forested areas and areas of vegetation and turf. 

The Shapiro-Wilk test of normality was used on all variables to test if they come from a 

normally distributed sample. The Wilcoxon-Mann-Whitney Test was used to calculate the 

bivariate relationships between the dependent variable (exposure or engagement) and the 

categorical independent variables. ANOVA and T-Tests were used to compare the mean 

exposure and engagement by the individual, household, and neighbourhood-level variables. 

4.3 Results 

 GPS Accuracy and Precision 

Accuracy refers to the closeness of a measured value to a standard or known value and 

can be measured using the Root Mean Square Error (RMSE). In this study a VGPS-900 

GPS device was carefully placed above a horizontal survey monument with a confirmed 

positional accuracy of 1 millimetre. The Root Mean Square Error of the VisionTac 

VGPS-900 GPS device is over 1/2 hour of operation is 0.373m in the X (UTM Easting) 

and 2.310m in the Y (UTM Northing). The mean PDOP was 1.586 and the HDOP was 

0.862. The test is considered the best case scenario for GPS data collection where there is 

a cloudless clear sky view with no obstructions above 20o from the horizon. 
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At the 10 second point into the test, the GPS started generating GPS measures using the 

WAAS differential signal. Positional errors in the Y were corrected as the test progressed 

and at the five minute mark of the test the Root Mean Square Error was lower for both X 

(RMSE = 0.314m ) and Y(RMSE = 1.574m). The mean PDOP was slightly higher at 

1.610 and the HDOP was lower at 0.852. The PDOP includes elevation in its calculation 

so a higher value for this metric was not unexpected.  

Precision refers to the closeness of all the measured values to each other. It was 

calculated by measuring how far the GPS coordinates deviate from their total mean 

centre point. The precision of the sample of GPS points is 0.857 m, meaning that the 

majority of the GPS points measured are within less than a metre of the mean centre. The 

mean centre is 1.966m from the survey monument. 

The manufacturer’s reported Circular Error Probability (CEP) of the VGPS-900 GPS 

receiver during optimal conditions with full sky view, and wide augmentation assisted 

system (WAAS) enabled (Differential GPS -DGPS), is 1.5m CEP (30%-50%) p=0.05, 

and 2.5m CEP (95%) p=0.05. In this study, the test revealed that the GPS receiver had an 

accuracy at 1.5m CEP (43%) p=0.05 which is within the manufacturer’s published 

accuracy claims. However, when testing at 2.5 metres it was found that in our 2.5m CEP 

(79%) p=0.05 results fell well short of the expected 95%. Therefore, the results show that 

VisionTac GPS, in optimal conditions, generate 43% of the coordinates within 1.5 m of 

the true location, and only 79% of the coordinates within 2.5 m of the true location, 19 

times out of 20. 

In the STEAM study, on average, 34.9% of the GPS points were generated with 

differential GPS quality of PDOP < 2.5, so that with optimal conditions, on average, 

34.9% of the points were within 5m of the true location 19 times out of 20. It is expected 

that the accuracy of the units will degrade when in close proximity to blocking structures, 

making these numbers are unrealistic. 

The map in Figure 4.19 illustrates the actual cluster of GPS points generated around the 

survey monument. The points in red indicate the most displacement and occurred in the 

first 5 minutes of the test.  
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 Random forest outdoor classification model 

In this study only STEAM 1 participants were used in this study, and a separate random 

forest model was created, for the most part, for each participant by season. The mean 

training sample size by season (reported in Table 4.1) tends to be similar, as do the errors 

rates.  The mean weekly training sample size equaled 16,544 GPS coordinates for the 

spring season representing a mean of 4.6 hours of training data per week, while for winter 

the training sample size was 16,702 GPS coordinates representing a similar amount of 

time in the week. The mean OOB Error rate of 0.01 was the same for both seasons and 

the test data accuracy was similarly high with values for spring at 98.9% and 99.9% for 

winter. Written another way, on average the random forest models identified GPS points 

as indoor or outdoor correctly 98.9% and 99.9% of the time on average. The variable 

Start time 

End Time 

Figure 4.19: Map of GPS test at the survey monument 
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importance plots, an example plot of a single model shown earlier in Figure 4.16, show 

how much the model would decrease in accuracy if any variable listed were excluded 

from the model. A separate variable importance plot was created for each model. In the 

example (in Figure 4.16) and for a vast majority of the models the splits at variables 

distance to building, Height and Speed were the most important in the classifications. 

Somewhat surprisingly the dilution of precision measures, for the most part, were less 

important in categorizing indoor/outdoor. It was also found early in the research that if 

the training sample only was created using scheduled school times and not including the 

travel modes there was a 10% average drop in the overall accuracy of the classes from the 

random forest model. The reason for this was identified by the travel behaviour of 

participants while not at school. The vehicle travel was not modelled in the training data 

and therefore resulted in obvious vehicular travel being classified as outdoor activity. The 

remedy was to include GPS points identified as travel routes by the SphereLab Tool 

(Thierry et al., 2013) and coded as vehicle travel (indoor) beforehand in the training 

samples. 

Table 4.1: GPS classification 

    GPS Observations Training 
Sample Size OOB Error Test Sample 

Size 
Test 

Accuracy 

  n n   sd   sd   sd   sd   sd 

                     

Winter 72 11,768,265 154,845 46,807 16,702 9873 0.01 0.009 7405 4377 0.999 0.009 

Spring 62 10,357,609 143,855 60,922 16,544 9671 0.01 0.005 7335 4287 0.989 0.004 

                          

 

 Exposure outdoors 
  

As discussed earlier in this chapter, the GPS tracks for the children were spatially 

overlaid with a hex-bin surface which encoded the neighbourhood-level environment 

variables (e.g. green space, and built environment). The result of the overlay is a spatial 

cluster of all the hex-bins visited by the child which is considered the child’s activity 

space.  
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Using hex-bins to estimate exposure allows for a closer approximation of activity space 

than most traditional methods and is expressed as an encounter with the outdoors and an 

encounter with any natural and built environment features visited outdoors. It is 

operationalized as a proportion of the total activity space (area). As seen in Table 4.2, the 

mean activity space for all participants in the study is 37.6 hectares and varied widely 

among participants (sd =29.9). Furthermore, the findings suggest that children are much 

less mobile on weekends compared to weekdays as the weekend activity space (28.48 ha, 

sd=25.72) is just under half of what it is on weekdays.  The activity space is just under 

half of what it is on weekdays as seen in Table 4.3 

 

Table 4.2: Total outdoor activity space by individual-level variables 

  

Total Outdoor Activity Space  
(area per ha) 

    sd 

All 37.62 29.94 

Boys 32.36 30.63 

Girls 39.61 29.53 

Age   
10 or under 44.73 34.74 

11 38.01 29.02 

12 34.92 24.66 

13 42.32 35.38 

14 41.19 33.58 

Weekday  46.20 30.74 

Weekend 28.48 25.72 

*Only full days during each study included (First and final days removed)  
 
 
 
 

 Engagement outdoors 

On average, children in this study, spent 18.5% of their recorded time outdoors which 

translates to an average of 81 minutes (1 hour and 21) of time spent outdoors per day 

(Table 4.3). For total outdoor engagement, children are outside for a larger portion of the 

day in winter than in spring on average, both for weekend and weekdays, however the 

results were not significant (p=0.158).  
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Table 4.3: Engagement outdoors by day type and season (proportion of time) 

 N   sd 

Winter 

Weekend 

64 21.2585 25.56077 

Winter 

Weekday 

72 21.1090 21.57640 

Spring 

Weekend 

51 16.8013 19.23718 

Spring 

Weekday 

62 14.1375 15.61773 

Total 249 18.5292 21.05109 

 

 

The results using the variables from the Individual-level analysis indicate that there are 

no significant differences between genders or ages in the amount of time children spend 

outdoors. This study showed that Children who are visible minorities spend more time 

outdoors in spring than Caucasian children, but not significantly so. Additionally, it 

appears that children, regardless of age or gender spent similar amounts of time across 

the various land uses. On weekdays there is no significant difference between the 

amounts of time children are spend outdoors at different land uses; in other words, 

children are spending their time outside similarly when it comes to the proportion of time 

spent at each land use.  

The Household-level analysis shows that only socio-economic status (median household 

income) showed as a statistically significant factor when predicting outdoor activity with 

children living in wealthier neighbourhoods being more likely to spend more time 

outdoors.   

The findings for the Neighbourhood-level analysis indicate that on average, children 

living in the suburbs are more likely to spend more time outdoors than children living in 

more urban settings. Additionally, those children who only spent time outdoors in less 

varied land uses (such as residential and institutional areas) than those children who spent 

time in a wider array of land uses spent overall less time outdoors than their counterparts. 
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The results indicate that children spend more time outdoors when they are engaged in 

varied land uses. In spring, not surprisingly, children are most likely to spend time 

outdoors in parks than in the wintertime. During winter, though children spent more time 

outside in residential areas than they do in the springtime. 

 

 Outdoor engagement vs exposure 

           

Identifying how long children spend at a geographic setting within the activity space 

cannot be measured by exposure. A more realistic measure is the based on the amount of 

time children spend engaging in an environment, rather than being simply exposed to it. 

When comparing the proportion of time spent outdoors (engagement) and the proportion 

of activity space traversed outdoors (exposure) we see, in Figure 4.20, that children 

engage in land uses in a way not reported with exposure. Case in point, commercial areas 

are the second largest exposure proportion for children on weekdays, but when looking at 

time spent (i.e. exposure), it is marginal activity. The residential exposure is similar on 

both weekdays and weekends where just over half the activity space outdoors being spent 

there, but the exposure tells a more complete story. The children are almost spending 

Engagment
(% outdoor time)

Exposure
(% activity space)

Engagment
(% outdoor time)

Exposure
(% activity space)

Weekday Weekend

Pr
op

or
tio

n

Engagement vs Exposure (Land Uses )

Residential Commercial Parks/Rec Institutional Industrial

Figure 4.20: Engagement vs exposure proportions by land use 
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their entire outdoor time in residential areas on weekends the magnitude of which is not 

represented with exposure. The same can be said for institutional (schools included), on 

weekdays the engagement is high, while the exposure is relatively low. 

When comparing children’s engagement at green space versus exposure to green space, 

as seen in Figure 4.21, children are heavily exposed to more areas with street trees, but 

spend proportionally less time in these areas (engagement). Conversely, the proportion of 

time spent engaged in green vegetation and turfed areas is higher than the exposure 

metric. One weekends and weekdays, the children are similarly engaged in and exposed 

to green areas, and less than one tenth of 1% of time/activity space is spent in forested 

areas. 

 

Figure 4.21: Engagement vs exposure proportions by green space 

 

4.4 Discussion 

Dramatic increases in children’s sedentary behaviour indoors is a growing concern for 

health researchers. An objective way to identify and quantify outdoor activity has yet to 

be fully realized (Wang et al., 2018); and therefore, it was the intention of this study to 

describe and test a methodological breakthrough for overcoming this problem. This study 
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(% outdoor time)
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(% activity space)

Engagment
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was divided into two parts: 1) it described a method made up of a combination of three 

novel approaches that in sequence practically measure, classify, categorize, and map 

children’s spatial behaviours outdoors and links the environmental features in their 

neighbourhoods to measure exposure to and engagement in the outdoors; and 2) it 

identified statistically significant metrics at the neighbourhood-level (e.g. green space, 

land use types), and at the household-level (e.g. income), and identified interesting trends 

at the individual-level all in an effort to identify factors from multiple levels of the socio-

ecological model that are associated with and can be used to predict outdoor exposure 

and engagement. 

The inclusion of stops generated from SphereLab Tool (Thierry et al., 2013) were critical 

to establish the most important variable in the random forest models: distance from 

buildings. The stops were employed to identify buildings located in proximity to the stops 

and treated as potential blocking structures or destinations so that a distance from 

buildings variable could be used in the random forest classification. The distance from 

building variable was consistently the most important variable for correctly classifying 

indoor and outdoor GPS points.  It was, also found that relying on only the school 

scheduled times for the training sample resulted in a 10% average drop in the overall 

accuracy of the classes from the random forest model without the routes identified by the 

SphereLab Tool beforehand. 

 Comparison with previous participant surveys studies 

Our GPS-based methods revealed that on average children in this study spent 18.5% of 

their recorded time outdoors translating to 81 minutes (1 hour and 21) per day outdoors. 

In comparison, a previous study (Matz et al., 2014) used parental report data to estimate 

that children across urban and rural Canada, aged 5-11 years (n=428), spent 1 hour and 

48 minutes outdoors per day. In this Chapter, the results show that participants in this 

study spent considerably less time outdoors than reported in most other research studies 

who have relied on participant surveys alone.  Milne et al. (2007) found that in a study of 

Australian children, aged 6-12 years (n=1614), spent between 2 and 3 hours outdoors 

during daylight hours. Fifty percent of U.S children  (n=1822) spent just over 2 hours a 
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day outside in a study by Kimbro et al. (2011), while Chinese children (n=681) spent 97 

minutes a day outside (Guo et al., 2013).  

Most of the questionnaires in these studies were completed by parents which inevitably 

cause recall errors. Apart from recall bias, the estimation of time outdoors was likely to 

be more difficult for a parent to answer. Compounding the recall bias and errors, these 

surveys were designed differently and the qualitative descriptions could be imprecise, so 

it might be unsuitable to compare the empirical results from this study with those from 

recall based studies.  

 Comparison with previous GPS studies 

The majority of research studies employing GPS to identify outdoor activity use the 

PALMS protocol. In terms of children’s activity outdoors, Klinker et al. (2014) found 

that 11 to 13 ( = 12.4) year old children (n=129) in Copenhagen, Denmark spent a 

median of 226.5 minutes (3hr 4 m 36s , IQR (175 - 284.5) outdoors. In contrast, Tandon 

et al. (2013), in a study of pre-school aged children, reported that children spent on 

average 63 minutes a day outdoors. The participants were younger than in our study and 

Tandon included a wearable sunlight sensor on the participants to identify time outdoors. 

A study by Cooper et al. (2010), as part of the PEACH project, indicated that British 

school aged children (n=1010) spent only 41.7 minutes outdoors. A recent study of 

British children (n=70) by Pearce et al. (2018) found a median total outdoor time of 80.3 

minutes, which most closely matches our results. In their post-processing of the GPS, 

Pearce filtered the signal-to-noise cut-off at (SNR<=212) which is lower than the 

standard PALMS tool cutoff (SNR<=250) used by Klinker and colleagues (2014), 

suggesting that Klinker’s study in Denmark over-estimated time spent outdoors.  

4.5 Conclusion 
Rising public concerns over children’s health has led to a growing public and academic 

interest in gaining a better understanding of the role that the physical environment (built 

and natural) plays in mitigating or exacerbating health issues (Tillmann et al., 2018).  

There is a realization in public and academic circles that children are spending less time 

outdoors than ever before, (Gilliland, 2018; Zorzi & Gagne, 2012) which has led to an 
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increase in studies exploring the association between time spent outdoors and some 

physical and mental health outcomes. Yet, much of this research is difficult to decipher 

due to incomparable, imprecise, or inaccurate methods for assessing environmental 

exposure (Tillmann et al., 2018).  Ultimately, it is anticipated that this study offers a 

methodological breakthrough for overcoming the problems inherent in GPS indoor and 

outdoor classification, and in the linking of exposure and engagement variables in a 

meaningful way. 
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Chapter 5  

 Discussion and Conclusions 
Chapters 2 to 4 comprise the substantive portion of this dissertation. The underlying 

theoretical basis for the substantive chapters was the ecological model of health with the 

built environment as an important influencer in shaping health outcomes in children.  

This theory, presented in Chapter 1, informed the study design and discussion for each 

subsequent chapter. Quantitative methods were used to measure the efficacy (and key 

problems) of using common address proxies, as well as to identify, classify, and bin GPS 

tracks to better evaluate the role that the built environment has on outdoor activity.  

Included in this final chapter is a summary of the contributions of the two empirical 

studies found in Chapters 3 and 4. Further discussion focuses on a review of the 

limitations of the two studies, suggestions for future research, and moving forward with 

policy interventions. 

5.1 Summary of study findings and contributions 
The contributions of the first study (Chapter 3) are twofold: first, it quantitatively 

describes the magnitude of positional discrepancies that result when a set of the most 

commonly-used home location proxies are implemented across several different 

neighbourhood types; and, secondly, it measures the misclassifications of the quantity of 

health-related facilities within local environments. The findings of this study have 

revealed that if commonly-used proxies such as centroids of census tracts, dissemination 

areas, and even postal codes, are used instead of exact addresses, positional discrepancies 

can be significantly large.  If positional discrepancies are high, such ‘ego-centric’ 

neighbourhood units will be significantly ‘off centre’, and local environments can be 

mischaracterized and therefore lead to inaccurate assumptions.  For example, the chances 

of misclassifying a health-promoting feature of the neighborhood, such as a recreation 

area, or a health-damaging feature such as a junk food outlet, as accessible (or not) can be 

unacceptably high, particularly when threshold distances are short, such as the 

commonly-used 5-min walk zone (500 m buffer). In urban neighbourhoods, when census 

tracts are used as home location proxies, instead of the gold-standard rooftop residential 
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address points, the containment misclassification of recreation areas within 500 m of the 

proxies is nearly half (49.5%). In rural areas the use of postal codes as an address proxy 

results in mean positional discrepancies to the closest recreation area of 1610 metres. 

If positional discrepancies are too large, it will be impossible for the researcher to resolve 

whether any health effects of an environment are truly present. Even more troubling is 

the fact that faulty public policies may be formed and critical decisions made based on 

faulty environment-health research which does not take into consideration critical 

positional discrepancies.  Improving the accuracy of the distance calculations increases 

the utility of the findings for making decisions and enacting policies aimed at improving a 

population’s spatial accessibility to environmental features that contribute to their overall 

health and well-being. The data used is this study is ubiquitous across Canada, Spatial 

data is widely available including census boundary files, road networks, postal codes, lot 

centroids, and increasingly roof-top address points making this study relevant to all 

Canadian cities, small towns, and rural areas. 

The key strengths of the second study (Chapter 4) emanate from the multiple strengths of 

the STEAM protocol, such as the large number of child participants, the use of one-

second epochs on the GPS units, the high-resolution of neighbourhood built environment 

data, and the presence of detailed daily activity diaries.  Few previous studies, except for 

Cooper et al. (2010) (PEACH) and McMinn et al. (2014) (PALMS) have had such a large 

sample of child participants.  The use of the one-second epochs, in conjunction with 

activity diaries, time-based known locations (school day) and thematically and 

temporally accurate spatial reference data, in combination with the inclusion of a 

tessellated hexagonal surface and classification using the random forest model, adds to 

the feasibility and uniqueness of this study. 

Studies have been conducted on the effect that seasonality plays on children’s outdoor 

activity (Tucker & Gilliland, 2007), however, there are no known studies using GPS 

tracking in the Canadian context; therefore, the second study (Chapter 4) filled this gap. 

In addition to examining the effect of seasonality on the proportion of total time spent 

outdoors (engagement), the study in Chapter 4 considered other independent variables 
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from the household and individual-levels.  Previous research has shown the utility of ‘big 

data’ - machine learning data classifiers on GPS tracks, particularly for identifying modes 

of travel and stops (Dwivedi & Dikshit, 2013; Ellis et al., 2014; Kestens et al., 2016; 

Thierry et al., 2013). Very few studies, however, have employed these types of 

algorithms to classify the wearer as being indoors or outdoors; exceptions are some 

validation studies of the PALMS application (Ellis et al., 2014; Lam et al., 2013). As 

mentioned in Chapter 2, the indoor vs outdoor classification part of the PALMS was 

limited to only the Qstarz brand of GPS receiver; however, this dissertation employed a 

method which resulted in higher classification match rates so that future studies where 

subjects are tracked with GPS receivers will not be limited to specific brand of receiver. 

Following the implementation of the novel combination of methods to classify indoor vs 

outdoor, the study mapped when, where (exposure), and for how long (engagement) that 

children spent outdoors. Children in this study, on average spent 18.5% of their recorded 

time outdoors which translates to an average of 81 minutes (1 hour and 21) of outdoor 

time per day which is a similar result to a recent study of British children with a median 

total outdoor time of 80.3 minutes (Pearce et al., 2018). 

The studies in this dissertation are interconnected through the common goal of improving 

methodological rigor in the measurement of children’s accessibility to, exposure to, and 

engagement with health-related features of their environment to ultimately better our 

understanding of the links between environment and children’s health.  This dissertation 

therefore makes methodological and practical contributions. The methodological 

contribution is twofold: firstly, it informs future researchers on the best practices for 

utilizing address proxy level data and, secondly, it proposes a novel approach for the 

classification of point clouds of GPS coordinates for children’s environmental health 

studies. The practical contribution is in the utilization of passive GPS collection in 

combination with ancillary spatial data to identify environments that influence children’s 

outdoor activity levels. The outcomes of this research add to the discourse of the 

relationship between the built environment and children’s health. It adds to the mounting 

evidence of the role that the design of urban and suburban environments play in the 

health of the people who live in them. Ultimately, this research empowers municipal 
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planners and policymakers with better evidence to make informed decisions regarding the 

planning for and design of outdoor public spaces that foster children’s outdoor activity. 

5.2 Synthesis of findings 

 Limitations 

Despite the multiple contributions of this dissertation, there are also limitations.  Firstly, 

the GPS devices worn by the subjects generated a series of coordinates that had varying 

levels of positional accuracy, both relative and absolute. These positional inaccuracies 

were expected and are commonly the result of the noise, bias, and blunders that persist in 

all studies using GPS technology. As mentioned earlier in this dissertation, positional 

errors occur from noise and bias when a participant wearing a GPS unit enters, exits, or 

remains within a blocking structure such as a building or dense tree canopy, or during the 

time while the unit is initially turned on.  Regarding blunders, it was found that 

periodically the GPS units did not record for spans of time due to battery drain, and user 

errors.  

Secondly, it is expected that spatial bias occurs while using secondary GIS data sets 

which are generated by agencies for their specific purposes and never meant for this 

study. For example, the building footprints used from the City of London data were 

generated for cartographic purposes rather than for engineering purposes (City of 

London, 2010-2013). The building polygons are product of orthographic 

photogrammetric digitizing methods at a large map scale, not constructed from 

coordinate geometry using high-resolution survey tools. What this points to is that the 

‘edge’ of each polygon feature in the GIS building layer may not be entirely positionally 

accurate, nor is that positional error homogeneous. Therefore, the secondary datasets used 

in the creation of the hexagonal surface variables, and used in the proximity and 

classification methods suffer from some spatial inaccuracies. Although thematic and 

temporal inaccuracies are kept to a minimum in the two studies due to the use of 

contemporary GIS data, there will be some cases where misclassification and changes in 

the secondary data map features are not reflected in the data set used.    
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Thirdly, even though efforts are made in the methodology to reduce the modifiable area 

unit problem (MAUP), and uncertain geographic context problem (UGCoP), through 

GPS tracking and the tessellated hexagon surface, these errors still might persist in some 

minimal way. The two effects are expected whenever the GPS points are aggregated 

spatially and through that aggregation, the spatial and temporal quality of the GPS points 

are lost.  

Lastly, this dissertation does not take into account the qualitative aspects of the ecological 

model, in particular, the transactional relationship between the child and their 

environment.  For instance, the intentions and meaning a child assigns to their 

experiences in the physical and built environments are not addressed and are outside the 

scope of this dissertation.  

 Future directions 

The results of this dissertation show that the quality of the spatial data used is of the 

upmost importance to a successful study. Therefore, it is imperative that future studies 

source high resolution spatial data that is thematically and temporally accurate. In 

Canada, researchers primarily rely on secondary data provided from government agencies 

at the various levels. In this dissertation, data was used from two local municipalities 

(City of London and County of Middlesex) in conjunction with federally published data 

(Statistics Canada), and data provided from a private company (DMTI Spatial Inc.). 

Recent advances in artificial intelligence pattern identification using remotely sensed 

imagery is an exciting development where researchers using these new algorithms can 

identify and derive a wide set of natural and built environment features with a high 

degree of accuracy (Lary, 2010; Zeng et al., 2013; Zeng et al., 2014). Supporting this new 

and exciting development is that the cost of space-borne, multi-spectral digital imagery 

has decreased greatly over the last decade.  Perhaps even more exciting for future 

research applications in environment and health is the potential use of drones which carry 

multi-spectral scanners to provide mapping data of even higher resolution and the ability 

to map the landscape at the time a study is being performed. The hexagon tessellated 

surface does provide a more accurate measure of exposure and engagement than the most 

common measures which typically only measure how accessible a health 
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promoting/demoting feature is in the built environment, not whether that feature was 

seen, visited, or engaged with by a person or population of interest.  This dissertation 

describes the methodological framework where hexagonal tessellations can be used in 

other urban and suburban environments in North America.   

Regarding children’s health studies, further data collection, both quantitative and 

qualitative, on the genuine actions of the children could be used to complement the 

findings presented in this dissertation. It would be helpful to have a form of ‘member 

checking’, using map-based interviews for example, to confirm whether or not children 

were actually indoors/outdoors and the reasons behind their environmental activities and 

decisions to be indoors/outdoors.  Additionally, a natural next step in this research would 

be to link children’s time spent outdoors, and time spent engaging in different outdoor 

environments, with a series of health-related behaviours, such as objective measures of 

vigorous physical activity, stress, or mood.  Future research could compare the results 

using traditional methods versus the methodology forwarded in this dissertation.  Finally, 

further research is also required to confirm our findings within different age groups, 

seasons, weather conditions, urban settings, and from different geographic areas within 

and beyond Canada. 

5.3 Policy implications 
There is a growing trend in public health studies, particularly within the burgeoning field 

of ‘active living research’, toward the use of ‘ego-centric’ units (typically defined by 

buffers around a study participant’s residence) to characterize a participant’s 

neighborhood and to examine the effect that local environmental factors (e.g., the mix of 

land uses and coverage of sidewalks) may have on health-related behaviors such as 

walking (Larsen et al., 2009) and outcomes such as physical activity levels (Tucker et al., 

2009). The findings in Chapter 3 reveal that if commonly-used proxies such as centroids 

of census tracts, dissemination areas, and even postal codes, are used instead of exact 

addresses, positional discrepancies can be significantly large. If positional discrepancies 

are large, such ‘ego-centric’ neighbourhood units will be significantly ‘off center’, and 

local environments can be mischaracterized, leading to misclassification of 

‘accessibility’. For example, the chances of misclassifying a health-damaging feature 
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such as a junk food outlet as accessible (or not) can be unacceptably high, particularly 

when threshold distances are short, such as the commonly-used 500 m buffer (or 5-min 

walk zone). If positional discrepancies are too large, it will be impossible for a researcher 

to determine if any true link exists between environmental features and health-related 

behaviours or outcomes. The practical impact of these discrepancies not properly 

identified is that they could lead to important policies and/or decisions being made with 

poor or even erroneous evidence. Improving the accuracy of the distance calculations 

increases the utility of the findings for making decisions and enacting policies aimed at 

improving a population’s spatial accessibility to features of the environment that 

contribute to their health and quality of life. 

There is an awareness in public policy sphere that children are spending less time 

outdoors than ever before (Gilliland, 2018; Zorzi & Gagne, 2012) further suggested by 

the findings in Chapter 4, which has led to an increase in studies exploring the association 

between time spent outdoors and some physical and mental health outcomes. With an 

increase in public concerns over children’s health, there is a general acceptance that the 

physical environment (built and natural) plays in mitigating or exacerbating health issues 

(Tillmann et al., 2018).  

Further research is required before the results of this study are applied in any way 

towards policy interventions. The geographic relationships refined and studied in this 

thesis that correspond to the socio-ecological model’s individual, household, and 

neighbourhood levels offered a clearer path to understanding the complex interactions 

between the built environment and children’s health. The complexity of the problem, 

however will always be more complicated than it might seem. The problem of children 

spending less time outdoors is more complex than factors of seasonality, quantity of 

green space and varied land use types. When policy interventions occur, they should 

begin with a small scale intervention so that the results can be measured.  The design of 

more appealing parks, planting more street trees, or locating health promoting facilities 

closer to residential areas, and the removal of health demoting facilities away from where 

children spend time (e.g. schools) all sound as if they might positively address part of the 

problem. The intervention might work, or might not work or worse be counter to what the 

 



129 

 

policy was hoped to achieve. Additional multi-disciplinary approaches in studying why 

children are spending less time outdoor is warranted. This thesis offers a way forward 

with a methodological breakthrough for overcoming the problems inherent in GPS indoor 

and outdoor classification, and in the linking of exposure and engagement environment 

variables in a meaningful way.  

  

5.4 Conclusion 
Rising public concerns over certain children’s health issues, such as obesity, physical 

(in)activity and mental health concrens has led to a growing public and academic interest 

in gaining a better understanding of the role of the physical environment (built and 

natural) (Tillmann et al., 2018).  Additionally, the public and academic realization that 

children are spending less time outdoors and in nature than ever before, has led to a rapid 

increase in studies exploring the link between time spent outdoors and/or in nature and 

certain physical and mental health outcomes.  Nevertheless, as previous research has 

indicated (Tillmann et al., 2018), much of this research is difficult to decipher due to 

incomparable, imprecise, or inaccurate methods for assessing environmental exposure.  

This dissertation presents several methodological breakthroughs for overcoming the 

problems inherent in the literature, which should be of considerable interest to 

researchers and policymakers.   

A quantitative socio-ecological geographic study was employed to identify data and 

methods to best associate children’s accessibility to, exposure to, and engagement in their 

environment, which in turn, plays a crucial role in healthy development. This study used 

a spatial quantitative approach to practically measure, classify, categorize, and map 

children’s spatial behaviours and the environmental features in their neighbourhoods. 

Ultimately, this dissertation offers a warning for future researchers of the folly of using 

some widely available spatial data for accessibility and exposure studies and also offers 

an improved methodology for understanding children’s environmental exposures and 

how environmental factors might influence children’s health-related behaviours and 

outcomes. 
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Appendix D: Pre-Processing Scripts for Random Forest 
 
###============================ 
### Program: Get Buildings using SphereLab Stops 
### Author: Martin Healy 
### Date: March 18, 2018 
### Description: This program processes the output points of the  
### Thierry et al. (2013) Activity place detection algorithm  
### for GPS data : 
###      1. Codes all stops inside study area (city boundary)  
###         and uses only stops with a duration > 2 min 
###      2. Selects the buildings close to each valid stop  
###      3. Identifies and stores the valid buildings by Participant ID 
### 
### Dependencies: arcpy, sys, os, SteamModules 
### -------------------------------------- 
### 1. Successful processing of Routes and Stops from GPS Data SphereLab 
###    Activity place detection algorithm for GPS data (Thierry et al.,2013) 
###    using the custom HEAL Lab STEAM ArcToolBox Toolset. 
### 2. Programmed to run from an ArcToolBox Script Tool 
###============================ 
 
import arcpy, sys, os, SteamModules 
 
# Read in Variables from ArcGIS Pro 
InStopBldgs = arcpy.GetParameterAsText(0) 
InCity = arcpy.GetParameterAsText(1) 
InStops = arcpy.GetParameterAsText(2) 
OutputBldgwithStops = arcpy.GetParameterAsText(3) 
arcpy.env.workspace = arcpy.GetParameterAsText(4) 
 
arcpy.env.overwriteOutput = True 
 
#Local Variables 
 
CityStops = "in_memory\\InCityStops" 
CityStopsGT2min = "in_memory\\InCityStopsGT2min" 
NearStopsTab= "in_memory\\NearStopsTable" 
 
# Start Processing 
arcpy.AddMessage("Processing CLIP in City and Stops > 2 mins") 
# Create the output Buildings for stops empty Feature Class and add fields 
arcpy.CreateFeatureclass_management(SteamModules.GetPath(OutputBldgwithStops), 
SteamModules.GetFCNamefromPath(OutputBldgwithStops),"POLYGON",InStopBldgs) 
arcpy.AddFields_management(OutputBldgwithStops,[["SID", "TEXT", "", 10],  
                                      ["DayType", "TEXT", "", 10], 
                                      ["STOPID", "TEXT", "", 20], 
                                      ["BLDGID", "LONG"]]) 
# clip only stops within London and keep only the stops with duration over 2 
mins 
arcpy.Clip_analysis(InStops, InCity, CityStops) 
arcpy.Select_analysis(CityStops, CityStopsGT2min, 'NbTicks > 120') 
 
arcpy.AddMessage("Processing NEAR Stops to Buildings") 
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# find the closest building to each stop 
arcpy.GenerateNearTable_analysis(CityStopsGT2min,InStopBldgs,NearStopsTab,"","
","","CLOSEST") 
arcpy.JoinField_management(CityStopsGT2min,"OBJECTID",NearStopsTab,"IN_FID") 
arcpy.AddField_management(CityStopsGT2min, "BLDGID", "LONG") 
arcpy.CalculateField_management(CityStopsGT2min, "BLDGID","!NEAR_FID!" ) 
 
arcpy.AddMessage("Looping through buildings and Stops to Generate " + 
OutputBldgwithStops +" File") 
StopsCursor = arcpy.da.SearchCursor(CityStopsGT2min,["SID", "STOPID", 
"DayType","BLDGID","NEAR_DIST"]) 
BuildingCursor = arcpy.da.SearchCursor(InStopBldgs,["SHAPE@","OBJECTID"]) 
InsCursor = arcpy.da.InsertCursor(OutputBldgwithStops, 

["SHAPE@","SID","DayType","STOPID","BLDGID"]) 
 
# Use the stops with building OBJECTID on outside loop and buildings on inside 
# when the NEAR_FID = Building ObjID then write the  
arcpy.MakeTableView_management(CityStopsGT2min, "myTableView") 
count = int(arcpy.GetCount_management("myTableView").getOutput(0)) 
cnt = 0 
for rec in StopsCursor: 
 
    for blg in BuildingCursor: 
        if rec[3] == blg[1]: 
            InsCursor.insertRow((blg[0],rec[0],rec[2],rec[1],rec[3])) 
            break 
    BuildingCursor.reset() 
    cnt += 1 
 
    arcpy.AddMessage(str(float(cnt/count) * 100) + "% complete") 
     
del InsCursor 
del BuildingCursor 
del StopsCursor  
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###============================ 
### Program:  STEAM GPS Pre-Processer for R 
### Author: Martin Healy 
### Date: April 11, 2018 
### Description: This program formats and prepares the STEAM GPS data stored  
### in a File Geodatabase for processing random forest in R: The program does  
### the following: 
###      1. Flags only GPS points inside study area (within city boundary)  
###      2. Creates a custom variable (DistFromBuild) by measures distance  
###         from all GPS points to blocking structures (buildings) and  
###         isolated the only the School Building(s) distance to be used  
###         during validated school times 
###      3. Sets Training Flag and Indoor/Outdoor classes, but validates them  
###         with tests for Indoor recesses (from diary), or for times the  
###         child is off school grounds during scheduled school times. 
###      4. Identifies SphereLab Routes as active and vehicular travel. The  
###         GPS points used to create the routes are flagged as training data  
###         and coded as Indoors (vehicular travel), or Outdoors (active  
###         travel).  
###      5. Creates a custom variable (DisttoLastPoint) by measuring the  
###         distance between successive points.  
### Can be run standalone or using an ArcTool Script Tool 
### Dependencies: arcpy, sys, os, gc, SteamModules 
###------------------------------- 
### Only to run following the: 
### 1. Successful processing of Routes and Stops from GPS Data SphereLab 
###    Activity place detection algorithm for GPS data (Thierry et al.,2013) 
###    using the custom HEAL Lab STEAM ArcToolBox Toolset. 
### 2. Identification/creation of the school building polygons and successful 
###    processing of the building identification/coding from the Spherelab 
###    stops using script Get Buildings using SphereLab Stops accessed from  
###    the HEAL Lab STEAM ArcToolBox Toolset. 
###============================ 
import arcpy, sys, os, gc 
import SteamModules 
 
arcpy.env.overwriteOutput = True 
 
arcpy.env.workspace = arcpy.GetParameterAsText(0) 
InStopBldgs = arcpy.GetParameterAsText(1) 
InSchBldgs = arcpy.GetParameterAsText(2) 
InBoundary = arcpy.GetParameterAsText(3) 
InDiaryTab = arcpy.GetParameterAsText(4) 
InActiveRoutesFC = arcpy.GetParameterAsText(5) 
InVehicleRoutesFC = arcpy.GetParameterAsText(6) 
OutCSVFile = arcpy.GetParameterAsText(7) 
Season = arcpy.GetParameterAsText(8) 
outputWorkspace = arcpy.GetParameterAsText(9) 
OutputStatsFolder = arcpy.GetParameterAsText(10) 
outDataPathTable = arcpy.GetParameterAsText(12) 
 
## Set Environment Variables 
ws = arcpy.env.workspace 
Scratch_workspace = "in_memory\\" 
test_workspace = "C:\\w\PhDSTEAMProcessing\\RProcessing\\Scratchy.gdb" 
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try: 
 
# Get the list of Feature Datasets from a Workspace 
    datasets = arcpy.ListDatasets(feature_type="Feature") 
    datasets = [''] + datasets if datasets is not None else [] 
 
# Loop through a list of feature classes in the workspace 
    FC_Count = 1 
    for ds in datasets: 
        for fc in arcpy.ListFeatureClasses("*", "Point", ds): 
            print("Processing: " + fc) 
            InputGPSpath = os.path.join(arcpy.env.workspace, ds, fc) 
 
        #  Set the output name VARIABLE to be the same as the input name, and  
        #    locate in the 'temp_workspace' workspace 
            OutputGPSFCpath = os.path.join(outputWorkspace, fc)  
            outputFC_mem = os.path.join("in_memory", fc) 
 
        #  Get SID value 
            SidID = fc.upper() 
            SchoolID = SteamModules.GetSchoolID(SidID,Season) 
            inSchBldg = "in_memory\\SchBldg" 
            anExpression = "SchoolID = '" + SchoolID + "'" 
            arcpy.Select_analysis(InSchBldgs, inSchBldg, anExpression ) 
            NumRecords = int(arcpy.GetCount_management 

(inSchBldg).getOutput(0)) 
            if NumRecords == 0: 
                print("No School Buildings were selected for "  

+ SchoolID + " INVESTIGATE") 
                break 
            GPSLayer = "lyr_" + str(SidID) 
 
            # Make a Copy of the FC and save in_memory.  Add the four fields 

      # (Indoors,DistFromBuild,INDOORS,TrainingFlag) 
            outputFC_InCity = SteamModules.SetInCityFlag(fc,InBoundary,SidID, 

GPSLayer,Season,outputFC_mem) 
 
            ### Get all the nearest buildings identified from SphereLab Stops  
            ### for all GPS points 
            outputFC_InCity_AllBldgs = SteamModules.GetNearestBuilding 

(outputFC_InCity,InStopBldgs,SidID,"ALL") 
            if outputFC_InCity_AllBldgs == "Error"  

or outputFC_InCity_AllBldgs == False: 
                break 
            ### Set TrainingFlag for all scheduled times 
            outputFC_Training = SteamModules.SetTrainingFlag 

(outputFC_InCity_AllBldgs,SidID) 
            if outputFC_Training == False: 
                break 
            ### Add Field to hold if the GPS tracks are Travelling during  
            ### school time, if so the distance to school building will not 
            ### override the general distance to buildings 
            arcpy.management.AddField(outputFC_Training,"offcampus","SHORT") 
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            ### Refine the Training Data TrainingFlag remove when children 
      ### off-campus 

            inTrainStatsTable = "in_memory\\TrainStatsTable" 
            outputFC_Training_no_OC = SteamModules.RemoveOffCampus 

(outputFC_Training, inTrainStatsTable, Season) 
            if outputFC_Training_no_OC == False: 
                break 
            ### Refine the Training Data toggle INSIDE, if children was Indoor  

      ### for Recess 
            outputFC_Training_OKRecess = SteamModules.RefineIndoorRecess 

(outputFC_Training_no_OC ,SidID,InDiaryTab ,Season) 
            if outputFC_Training_OKRecess == False: 
                break 
 
            ### Refine the Training Data TrainingFlag for Active-non-active  

     ### travel Routes to, remove children off-campus, not  
     ### outside for recess 

            outputFC_Training_travel = SteamModules.RefineTravel 
(outputFC_Training_OKRecess, InActiveRoutesFC,  
SidID, Season, "ACTIVE") 

            if outputFC_Training_travel == False: 
                break  
            outputFC_Training_travelall = SteamModules.RefineTravel 

(outputFC_Training_travel, InVehicleRoutesFC,  
SidID, Season, "VEHICLE") 

            if outputFC_Training_travelall == False: 
                break              
            ### Get the school Building(s) as nearest buildings for all in  

      ### school Training GPS points 
            outputFC_Training_mem = SteamModules.GetNearestBuilding 

(outputFC_Training_travelall,inSchBldg, 
SidID,"TRAINING") 

            if outputFC_Training_mem == False: 
                break  
 
            ### Add Distance to previous point 
            outputFC_withDistFromLast = SteamModules.CalcDistToLastPoint 

(outputFC_Training_mem) 
            if outputFC_withDistFromLast == False: 
                break  
# Make a copy of the GPS Points ready for use in R 
            arcpy.Select_analysis(outputFC_Training_mem, OutputGPSFCpath) 
 
            SteamModules.CreatePathTableForR(outDataPathTable, 

OutputGPSFCpath,SidID, Season,outputWorkspace) 
             
            FC_Count = FC_Count + 1 
# Clear variable memory 
            inSchBldg = None 
            GPSLayer = None 
            outputFC_InCity = None 
            outputFC_InCity_AllBldgs = None 
            outputFC_Training_no_OC = None 
            outputFC_Training_travel = None 
            outputFC_Training_OKRecess = None 
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            outputFC_Training_mem = None 
            inTrainStatsTable = None 
            gc.collect() 
except (RuntimeError, TypeError, NameError, IOError) as err: 
    print("Oops! Error in the PrepSTEAMGPSDataForR module: " + err) 
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###============================ 
### Program: SteamModules 
### Author: Martin Healy 
### Date: March 29, 2018 
### Description: This program contains the modules for all STEAM Python  
###              Scripts 
### 
### Dependencies: arcpy, os, csv  
###============================ 
 
import arcpy, os, csv, math 
 
# Get Number of GPS records 
def GetFeatureCount(inSID, inFCLayer): 
    NumRecords = int(arcpy.GetCount_management(inFCLayer.getOutput(0))) 
    if NumRecords == 0: 
        print("No GPS Points were selected for " + inSID + " INVESTIGATE") 
    return "" 
 
# Get School ID from name of participant ID (SID) 
def GetSchoolID(inSID, Season): 
    if len(inSID) == 5: 
        if Season == "S2010" or Season == "W2010": 
            outschool = inSID[0] + inSID[1] 
        else: 
            outschool = inSID[0] 
    elif len(inSID) == 6: 
        outschool = inSID[0] + inSID[1] 
    else: 
        outschool = "Error in name of School From SID" 
    return outschool 
 
# Some GPS Feature Class tables do not include standard names 
# make them standard. 
def HasDayTypeField(inFC): 
    try: 
        boolVar = False 
        fList = arcpy.ListFields(inFC) 
        for f in fList: 
            if f.name == "DayType" or f.name == "DAYTYPE": 
                boolVar = True 
        return boolVar 
    except (RuntimeError, TypeError, NameError, IOError) as err: 
        print("Oops! Error in the HasDayTypeField module: " + err) 
 
# Flag only GPS records within a boundary 
def SetInCityFlag(fc, inCityBnd, SIDID,GPSLayer,Season,outputFC): 
    try: 
        arcpy.Select_analysis(fc, outputFC) 
        if HasDayTypeField(outputFC): 
            arcpy.management.AddFields(outputFC,  [["DistFromBuild",  

"DOUBLE"],["DistFromLastPoint","DOUBLE"], 
["TrainingFlag","SHORT"],["INDOOR","SHORT"], 
["InCity","SHORT"],["INOUT","SHORT"]]) 

        else: 
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            if Season == "S2010" or Season == "W2010": 
                arcpy.management.AddFields(outputFC,  [ 

["DayType","TEXT","",10],["DistFromBuild", "DOUBLE"], 
["DistFromLastPoint","DOUBLE"],["TrainingFlag","SHORT"], 
["INDOOR","SHORT"],["InCity","SHORT"],["INOUT","SHORT"]]) 

                if Season == "W2010":  
                    
arcpy.CalculateField_management(outputFC,"DayType",'!DAY!'
, "PYTHON3") 

                else: 
                    
arcpy.CalculateField_management(outputFC,"DayType",'!Day_T
ype!', "PYTHON3") 

            else: 
                print("No DAYTYPE Field in GPS Data: " + err) 
        arcpy.CalculateField_management(outputFC,"TrainingFlag",0, "PYTHON3") 
        arcpy.CalculateField_management(outputFC,"InCity",0, "PYTHON3") 
        arcpy.MakeFeatureLayer_management(outputFC,GPSLayer) 
        arcpy.SelectLayerByLocation_management(GPSLayer, 

 "INTERSECT",inCityBnd) 
        arcpy.CalculateField_management(GPSLayer,"InCity",1, "PYTHON3") 
        arcpy.SelectLayerByAttribute_management(GPSLayer,"CLEAR_SELECTION") 
 
        return outputFC 
    except (RuntimeError, TypeError, NameError, IOError) as err: 
        print("Oops! Error in the SetInCityFlag module: " + err) 
 
# Get the distance to the closest buildings identified as stops 
def GetNearestBuilding(inGPSFC, inBuildings, SidID, Type): 
    try: 
        if Type == "ALL": 
            allSIDBlg = "in_memory\\allSIDBlg" 
            #Calc dist to all buildings and set the Training Flag = 0 
            anExpression = "SID = '()'".format(SidID) 
            arcpy.Select_analysis(inBuildings,allSIDBlg, anExpression) 
            NumRecords =int(arcpy.GetCount_management(allSIDBlg).getOutput(0)) 
            if NumRecords == 0: 
                print("No Buildings were selected for " + SidID + "  

INVESTIGATE") 
                return "Error" 
 
            arcpy.Near_analysis(inGPSFC,allSIDBlg)                        
            arcpy.CalculateField_management(inGPSFC,"DistFromBuild","!NEAR_DI  

ST!", "PYTHON3") 
            arcpy.DeleteField_management(inGPSFC,["NEAR_DIST", "NEAR_FID"]) 
            arcpy.CalculateField_management(inGPSFC, "INDOOR", 0, "PYTHON3") 
            arcpy.CalculateField_management(inGPSFC,"TrainingFlag", 0,  

"PYTHON3") 
 
        elif Type == "TRAINING": 
 
        #Calc dist to school building(s) 
 
            inGPSLayer = "lyrschool_inGPSFC" 
            arcpy.MakeFeatureLayer_management(inGPSFC,inGPSLayer) 
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            arcpy.Near_analysis(inGPSLayer,inBuildings) 
            Trainingwclause1 = "TrainingFlag = 1" 
            Trainingwclause2 = "TIME_BLOCK_NAME = 'AM_School1' OR 

 TIME_BLOCK_NAME = 'PM_School1' OR TIME_BLOCK_NAME = 
'AM_School2' OR TIME_BLOCK_NAME = 'PM_School2'" 

            Trainingwclause3 = "TIME_BLOCK_NAME = 'AM_Recess' OR  
TIME_BLOCK_NAME = 'PM_Recess'" 

 
            # Not on campus for the day or part of day (travelling) 
            Trainingwclause4 = "offcampus = 1" 

      arcpy.SelectLayerByAttribute_management(inGPSLayer, 
"NEW_SELECTION",Trainingwclause1) 

      arcpy.SelectLayerByAttribute_management(inGPSLayer, 
"ADD_TO_SELECTION", Trainingwclause2) 

      arcpy.SelectLayerByAttribute_management(inGPSLayer, 
"ADD_TO_SELECTION",Trainingwclause3) 

      arcpy.SelectLayerByAttribute_management(inGPSLayer, 
"REMOVE_FROM_SELECTION",Trainingwclause4) 

 
# if the DistFromBuild is much less than the distance to school     
# (<800m), then keep old DistFromBuild value. The child is off  
# campus, not shown as a route, but close to school 
            
Trainingwclause5 = "DistFromBuild < (NEAR_DIST - 800)" 

           arcpy.SelectLayerByAttribute_management(inGPSLayer, 
"REMOVE_FROM_SELECTION",Trainingwclause5) 

           arcpy.CalculateField_management(inGPSLayer, 
"DistFromBuild","!NEAR_DIST!", "PYTHON3") 

           arcpy.DeleteField_management(inGPSLayer,["NEAR_DIST", "NEAR_FID"]) 
           arcpy.SelectLayerByAttribute_management(inGPSLayer, 

"CLEAR_SELECTION")             
        return inGPSFC 
    except (RuntimeError, TypeError, NameError, IOError) as err: 
        print("Oops! Error in the GetNearestBuilding module: " + err) 
 
# Set the Training Flag for R Random Forest Creation 
def SetTrainingFlag(inGPSFC, SidID): 
    try: 
        inGPSLayer = "lyr_inGPSFC" 
        arcpy.MakeFeatureLayer_management(inGPSFC,inGPSLayer) 
        Trainingwclause1 = "TIME_BLOCK_NAME = 'AM_School1'  

OR TIME_BLOCK_NAME = 'PM_School1' OR  
TIME_BLOCK_NAME = 'AM_School2' OR TIME_BLOCK_NAME = 'PM_School2'" 

        Trainingwclause2 = "TIME_BLOCK_NAME = 'AM_Recess'  
OR TIME_BLOCK_NAME = 'PM_Recess'" 

        # set the Training Flag = 1 when regimented school times 
        arcpy.SelectLayerByAttribute_management(inGPSLayer, 

"NEW_SELECTION",Trainingwclause1) 
        arcpy.CalculateField_management(inGPSLayer, "INDOOR", 1) 
        arcpy.CalculateField_management(inGPSLayer, 

"TrainingFlag", 1, "PYTHON3") 
        arcpy.SelectLayerByAttribute_management(inGPSLayer, 

"NEW_SELECTION",Trainingwclause2) 
        arcpy.CalculateField_management(inGPSLayer, "INDOOR", 0, "PYTHON3") 
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arcpy.CalculateField_management(inGPSLayer, 

"TrainingFlag", 1, "PYTHON3") 
        arcpy.SelectLayerByAttribute_management(inGPSLayer,"CLEAR_SELECTION") 
 
        return inGPSFC 
    except (RuntimeError, TypeError, NameError) as err: 
        print("Oops! Error in the RemoveIndoorRecess Function: " + err) 
        return False 
 
# Remove any non-conforming GPS Training points (i.e. stay indoors at Recess) 
def RefineIndoorRecess(inGPSFC,SID, DiaryTable, Season): 
    try: 
        # Choose the Diary records for the participant and Season 
        sqlexpress = "SID = '()' AND S = '()'".format(SID,Season) 
 
        #Get the Diary records for this participant for this season 
        with arcpy.da.SearchCursor(DiaryTable,["SID","DayType", 

 "TimeBlock","TB_IO1"],sqlexpress ) as SCursor: 
            DictList = [] 
            for row in SCursor: 
                diaryDaytype = row[1] 
                diaryTimeBlock = row[2] 
                diaryRecessInout = row[3] 
                recessDayDict = dict(daytype = diaryDaytype,  

timeB = diaryTimeBlock,RecessInout = diaryRecessInout) 
                DictList.append(recessDayDict) 
 

#Do for only all the indoor recesses -> set INDOOR = 1...keep as  
# training data 

        cnt = 0 
        gpscnt = 0 
        for aDict in DictList: 
             
            if aDict['RecessInout'] == 2: 
                 
                if Season == "S2010" or Season == "W2010": 
                    sqlexpress2 = "DayType = '()' AND  

TIME_BLOCK_NAME = '()'" 
.format(aDict['daytype'],aDict['timeB'])                 

                else: 
                    sqlexpress2 = "DAYTYPE = '()' AND  

TIME_BLOCK_NAME = '()'" 
.format(aDict['daytype'],aDict['timeB']) 

 
                UCursor = arcpy.da.UpdateCursor(inGPSFC,["INDOOR"],sqlexpress2 
) 
                for uRow in UCursor: 
                    uRow[0] = 1 
                    UCursor.updateRow(uRow) 
                    gpscnt += 1 
                cnt += 1 
        print("() in () had () recess inside for a total  

of () GPS points".format(SID,Season,cnt,gpscnt)) 
        return inGPSFC 
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    except (RuntimeError, TypeError, NameError) as err: 
        print("Oops! Error in the RefineIndoorRecess Function: " + err) 
        return False 
 
# Remove any non-conforming GPS Training points (i.e. leave school Property 
#during school day, stays at home) 
def RemoveOffCampus(inGPSFC,TrainStatsTemp,Season): 
    try: 
        # Select the Training Data 
        inTrainGPSLayer = "lyrtrain_inGPSFC" 
        BadDayList = [] 
        ValidDayList =["WD1","WD2","WD3","WD4","WD5","WD6","WD7"] 
        if Season == "S2010" or Season == "W2010": 
            arcpy.Statistics_analysis(inGPSFC,  

TrainStatsTemp,[["DistFromBuild","MEAN"], 
["DistFromBuild","RANGE"]],["DayType","TrainingFlag"]) 

        else: 
            arcpy.Statistics_analysis(inGPSFC,  

TrainStatsTemp,[["DistFromBuild","MEAN"], 
["DistFromBuild","RANGE"]],["DAYTYPE","TrainingFlag"]) 

        TrainTabCursor = arcpy.da.SearchCursor(TrainStatsTemp,["*"]) 
 
        # By Day, find the mean distance, if > 500m, then student is off 
        # campus for part of the day, and that day will not be included in the 

 # training #dataset - set TrainingFlag = 0  
 
        # Create a list of daytypes for this participant where they are not on  
        # school property during school days     
        for TRec in TrainTabCursor: 
            if TRec[2] == 1: 
                for daytype in ValidDayList: 
                    if TRec[4] > 500 and TRec[1] == daytype or  

TRec[5] > 500 and TRec[1] == daytype: 
                  BadDayList.append(TRec[1]) 
 
        # select and calculate TrainingFlag = 0 for that DayType 
        if len(BadDayList) > 0: 
            arcpy.MakeFeatureLayer_management(inGPSFC,inTrainGPSLayer) 
            for bDay in BadDayList: 
                if Season == "S2010" or Season == "W2010": 
                    arcpy.SelectLayerByAttribute_management(inTrainGPSLayer, 

"NEW_SELECTION","DayType = '" + bDay + "'") 
                else: 
                    arcpy.SelectLayerByAttribute_management(inTrainGPSLayer, 

"NEW_SELECTION","DAYTYPE = '" + bDay + "'") 
                arcpy.CalculateField_management(inTrainGPSLayer, 

"TrainingFlag",0, "PYTHON3") 
                arcpy.CalculateField_management(inTrainGPSLayer,  

"INDOOR", 0, "PYTHON3") 
                arcpy.CalculateField_management(inTrainGPSLayer,  

"offcampus", 1, "PYTHON3") 
                arcpy.SelectLayerByAttribute_management(inTrainGPSLayer, 

"CLEAR_SELECTION") 
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        return inGPSFC 
 
    except (RuntimeError, TypeError, NameError) as err: 
        print("Oops! Error in the RemoveOffCampus Function: " + err) 
        return False 
 
# Set Vehicle travel as INDOOR and non-vehicle as OUTDOOR 
def RefineTravel(inGPSFC, inRouteFC, SID, Season,Type): 
    try: 
        # Use every Route - the FC has been preprocessed to remove 
        # erroneous routes 
        sqlexpress = "SID = '()'".format(SID) 
        with arcpy.da.SearchCursor(inRouteFC,["SID", 

"DayType", "UTCStartTime_Date",  
"UTCStopTime_Date"], sqlexpress) as SCursor: 

            DictList = [] 
            for row in SCursor: 
                routeDaytype = row[1] 
                routeStartTime = row[2] 
                routeStopTime = row[3] 
                routeDayDict = dict(daytype = routeDaytype,  

starttime = routeStartTime, stoptime = routeStopTime) 
                DictList.append(routeDayDict) 
 
 
        # Do for only all the indoor recesses -> set INDOOR = 1 and set 
        # training flag 
        for aDict in DictList: 
 
            if Season == "S2010" or Season == "W2010": 
                sqlexpressa = "DayType = '" + aDict['daytype'] + "'"  
                sqlexpressb = sqlexpressa + " AND FULLTIME >= timestamp " + 
    "'" + aDict['starttime'].strftime('%Y-%m-%d %H:%M:%S') 

 + "'"  
                sqlexpress2 = sqlexpressb + " AND FULLTIME <= timestamp " + 
    "'" + aDict['stoptime'].strftime('%Y-%m-%d %H:%M:%S')  

+ "'"                 
            else:      
                sqlexpressa = "DAYTYPE = '" + aDict['daytype'] + "'"  
                sqlexpressb = sqlexpressa + " AND FULLTIME >= timestamp " + 

 "'" + aDict['starttime'] 
.strftime('%Y-%m-%d %H:%M:%S') + "'"  

                sqlexpress2 = sqlexpressb + " AND FULLTIME <= timestamp " + 
 "'" + aDict['stoptime'] 
.strftime('%Y-%m-%d %H:%M:%S') + "'"                 

 
            UCursor = arcpy.da.UpdateCursor(inGPSFC, 

["SPEED","INDOOR","TrainingFlag","offcampus"],sqlexpress2) 
 
            # Set as Outdoor and TrainingFlag = 1 
            if Type == "ACTIVE": 
                 
                # Check if route misidentified as Active i.e. when 4 or more  

   # GPS points making the route contain excessive speeds 
                overspeedcnt = 0 
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                for uRow in UCursor: 
                    if uRow[0] > 18: 
                        overspeedcnt += 1 
                UCursor.reset() 
                # Set Active Travel as Outdoors and TrainingFlag = 1 
                if overspeedcnt < 4: 
                        for uRow in UCursor: 
                            uRow[1] = 0 
                            uRow[2] = 1 
                            uRow[3] = 1 
                            UCursor.updateRow(uRow) 
 
            # Set as Indoor and TrainingFlag = 1 
            elif Type == "VEHICLE": 
 
                for uRow in UCursor: 
                    uRow[1] = 1 
                    uRow[2] = 1 
                    uRow[3] = 1 
                    UCursor.updateRow(uRow) 
 
        return inGPSFC 
    except (RuntimeError, TypeError, NameError) as err: 
        print("Oops! Error in the RefineTravel Function: " + err) 
        return False 
 
# Create the <STEAMSeason>_FCPaths Table for R 
def CreatePathTableForR(tablePath,FcPath,SID,Season,outputWorkspace): 
 
    TableCur = arcpy.da.InsertCursor(tablePath, 

["SID","Season","dPath","ErrorCSVPath","ForestSizeInfluencePlotPath", 
"VariableImportancePlotPath","ConfusionMatrixCSVPath","tPath"]) 

    aPath = GetPathtoFolder(FcPath) 
    ErrorCSVPath = aPath + "\\RandomForestErrors\\" + Season + "_RFError.csv" 
    ForestSizePlotsPath = aPath +  

"\\OutputPlots\\ForestSizeInfluencePlotPath\\"  
+ Season + "\\" + SID + "_FSIP.pdf" 

    ImportancePlotsPath = aPath +  
"\\OutputPlots\\VariableImportancePlotPath\\" +  
Season + "\\" + SID + "_VIP.pdf" 

    ConfuseMatrixPath = aPath +  
"\\OutputPlots\\ConfusionMatrixCSVPath\\" +  
Season + "\\" + SID + "_CM.csv" 

    outTable = outputWorkspace + "\\" + SID + "inout" 
     
    TableCur.insertRow([SID,Season,FcPath,ErrorCSVPath, 

ForestSizePlotsPath,ImportancePlotsPath,ConfuseMatrixPath,outTable]) 
 
    del TableCur 
 
# Get the Feature Class Name from a full path to the file 
def GetFCNamefromPath(inPath): 
    listPath = inPath.split(os.sep) 
    strFCName = listPath[len(listPath) - 1] 
    return strFCName 
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# Get the File path to a dataset 
def GetPath(inPath): 
    listPath = inPath.split(os.sep) 
    for index in range(0,len(listPath)-1): 
        if index == 0: 
            strOutputPath = listPath[index] 
        else: 
            strOutputPath = strOutputPath + os.sep + listPath[index] 
    return strOutputPath 
 
# Get the File path to a workspace folder 
def GetPathtoFolder(inPath): 
    listPath = inPath.split(os.sep) 
    for index in range(0,len(listPath)-1): 
        if ".gdb" in listPath[index]: 
            break 
        elif index == 0: 
            strDirPath = listPath[index] 
        else: 
            strDirPath = strDirPath + os.sep + listPath[index] 
    return strDirPath 
 
# Generates distance between two points - pass in 2 successive points 
def PointDist(pt1, pt2): 
    # Input: two tuples (x,y) that defined a pair of successive points 
    # sqrt((x1-x2)**2 + (y1-y2)**2 
    if ((pt2[0] - pt1[0]) != 0) and ((pt2[1] - pt1[1]) != 0): 
        ptDist = math.sqrt(math.pow(pt2[0] - pt1[0], 2) + math.pow(pt2[1] - 
pt1[1], 2)) 
    else: 
        ptDist = 0 
    return ptDist 
 
# Calculate distance between two GPS points 
def CalcDistToLastPoint(inGPSFC): 
    try: 
        # Create a list of coordinate tuples from Search Cursor 
        pointList =[] 
 
 
        # Get the points  
        with arcpy.da.SearchCursor(inGPSFC,["SHAPE@XY"]) as SCursor: 
            for row in SCursor: 
                ptcoord = (row[0][0],row[0][1]) 
                pointList.append(ptcoord) 
 
        ptCount = len(pointList) 
        cnt = 0 
        pDistList = [] 
        for firstpt in pointList: 
            if  cnt == 0: 
                pDistList.append(0) 
            else: 
                if cnt < ptCount: 
                    pDistList.append(PointDist(firstpt,(pointList[cnt - 1]))) 
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            cnt += 1 
 
        cnt = 0 
        with arcpy.da.UpdateCursor(inGPSFC,["DistFromLastPoint"]) as UCursor: 
            cnt = 0 
            for uRow in UCursor: 
                uRow[0] = pDistList[cnt] 
                UCursor.updateRow(uRow) 
                cnt += 1 
        return inGPSFC 
    except (RuntimeError, TypeError, NameError) as err: 
        print("Oops! Error in the RefineTravel Function: " + err) 
        return False 
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Appendix E: R Script of Random Forest Classifier  
 
### Step 1: Load and initialize the arcgisbinding, random forest, and caret 
### packages 
 
library(arcgisbinding) 
arc.check_product() 
#install.packages('randomForest') 
library(randomForest) 
#install.packages('caret') 
library(caret) 
 
 
### Step 2: Load all FGDB Table (that drives the loop) containing the paths 
### and naming structure into R.  
### The <STEAMSeason>_FCPaths Table contains the list of all the GPS Feature 
### Classes to process in R and the paths and names of output data from R 
 
# Open the table 
FCpaths <- arc.open(path = 
'C:\\w\\PhDSTEAMProcessing\\Indoor_Outdoor\\DataPathsForR.gdb\\S2010_FCPaths') 
 
# Select all the records 
d_path <- arc.select(FCpaths, c('SID', 
'Season','dPath','ErrorCSVPath','ForestSizeInfluencePlotPath','VariableImporta
ncePlotPath','ConfusionMatrixCSVPath','tPath')) 
 
# Create an empty data frame with column names 
edf <- data.frame( "SID" = character(0), "Season" = character(0), 
"TrainingSample" = numeric(0), "OOB" = numeric(0), "TrainAccuracy" = 
numeric(0),stringsAsFactors = FALSE) 
 
 
# Loop over rows of the <STEAMSeason>_FCPaths dataframe, using the pathnames 
# to Feature Classes to drive the loop. 
# Each GPS FGDB Feature Class is processed in the loop 
 
for (row in 1:nrow(d_path)) { 
  aSID <- d_path[row, "SID"] 
  theSeason <- d_path[row, "Season"] 
  dpath  <- d_path[row, "dPath"] 
  errorpath  <- d_path[row, "ErrorCSVPath"] 
  FSIPpath  <- d_path[row, "ForestSizeInfluencePlotPath"] 
  VIPpath  <- d_path[row, "VariableImportancePlotPath"] 
  CMcsvPath  <- d_path[row, "ConfusionMatrixCSVPath"] 
  tpath  <- d_path[row, "tPath"] 
   
  print(paste("The SID is", aSID)) 
  print(paste("The path is", dpath)) 
  print(paste("The Season is", theSeason)) 
  print(paste("The Forest Size Influence Plot Path is ", FSIPpath)) 
  print(paste("The Variable Importance Plot Path is ", VIPpath)) 
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  print(paste("The path to output table is", tpath)) 
   
  ### Step 3: Loads the GPS Feature Class as an R dataframe  
  d <- arc.open(path = dpath) 
  d_all <- arc.select(d, c('CKEY', 'HEIGHT','SPEED', 'PDOP','HDOP','VDOP', 
'INDOOR', 'DistFromLastPoint', 'DistFromBuild'), where_clause = "InCity = 1") 
  d_CKey <- arc.select(d, c('CKEY'), where_clause = "InCity = 1") 
   
  ### Step 4: Select the subset of known indoor/outdoor data to be used as the 
  ### training and test dataset 
  df <- arc.select(d, c('HEIGHT','SPEED','PDOP','HDOP','VDOP','INDOOR', 
'DistFromLastPoint', 'DistFromBuild'), where_clause = "TrainingFlag = 1 AND 
InCity = 1") 
   
  # GET COUNT FROM TRAINING AND GENERATE SAMPLE SIZE 
  indsample <- sample(2, nrow(df), replace = TRUE, prob = c(0.66,0.33)) 
   
  # 66% of the data flagged as “Training” will be used to TRAIN the random  
  # forest model 
  train_data <- df[indsample==1,] 
 
  # 33% of the data flagged as “Training” will be used to TEST the random  
  # forest model 
  test_data <- df[indsample==2,] 
   
  print(paste("Training Data Size:")) 
  TrainSize <- nrow(train_data) 
  print(TrainSize) 
   
  print(paste("Test Data Size:")) 
  print(nrow(test_data)) 
 
  outdoorTrainCnt <- nrow(subset(train_data, INDOOR < 1)) 
  print(paste("Number of Outdoor Pts in Training Data:", outdoorTrainCnt))  
  outdoorTestCnt <- nrow(subset(test_data, INDOOR < 1)) 
  print(paste("Number of Outdoor Pts in Test Data:",outdoorTestCnt))   
   
  # Only create an individual Random Forest Model for those participants with  
  # at least 50 minute of a Training Sample and outdoors for 10 minutes    
  # (Training Sample) and 5 minutes (Test Sample) 
  # Else use the previous Random Forest Model from the last participant who     
  # met these thresholds. 
  if ((TrainSize > 3000) & (outdoorTrainCnt > 600) & (outdoorTestCnt > 300)) { 
    print(paste("Running Random Forest Model Generator - Normal Mode")) 
 
    ### Create the Random Forest Model 
    rf_model <- 
      randomForest(as.factor(INDOOR) ~ ., 
                   train_data, 
                   ntree = 500, 
                   importance = TRUE) 
    print(paste("Random Forest Model created using training data")) 
    print(paste("Random Forest model - Confusion Matrix of Out-of-Bag and    
          remaining Training observations:")) 
    print(rf_model$confusion) 
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    print(paste("Random Forest model: Num var at each split")) 
    print(rf_model$mtry) 
     
    # Plot the model to see the influence of Forest Size 
    # Open a pdf file 
    pdf(FSIPpath) 
    layout(matrix(c(1, 2), nrow = 1), 
           width = c(4, 1)) 
    par(mar = c(5, 4, 4, 0)) # No margin on the right side 
    plot(rf_model, log = "y") 
    par(mar = c(5, 0, 4, 2)) # No margin on the left side 
    plot( 
      c(0, 1), 
      type = "n", 
      axes = F, 
      xlab = "", 
      ylab = "" 
    ) 
    legend( 
      "top", 
      colnames(rf_model$err.rate), 
      col = 1:4, 
      cex = 0.8, 
      fill = 1:4 
    ) 
    dev.off() 
       
    # Gather the Model OOB Error 
    oobError <- 
      mean(predict(rf_model) != as.factor(train_data$INDOOR)) 
    print(paste("Random Forest Model: Training OOB Error")) 
    print(oobError) 
     
    # Run Training Data through the Random Forest Model 
    train_predict <- predict(rf_model, train_data) 
     
    # Step 5: Run Test Dataset through the Random Forest Model, create    
    # Confusion Matrix (.csv file), Model Accuracy and generate the variable   
    # importance plot to illustrate the variables were most important for 
    # training the model 
    
    print(paste("Step 5 train predict")) 
    test_data_p_model <- predict(rf_model, test_data, type = 'response') 
     
    print(paste("Confusion Matrix of Prediction and Test data sample:")) 
    cm <- 
      confusionMatrix(test_data_p_model, 
                      as.factor(test_data$INDOOR), positive = 
                        "1") 
    trainAccuracy <- cm$overall['Accuracy'] 
    tocsv <- cm$table 
    write.csv(tocsv, file = CMcsvPath) 
     
    # Create Variable Importance Plot 
    pdf(VIPpath) 
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    varImpPlot(rf_model) 
    dev.off() 
     
    ### Step 6-option 1: Run Entire Data Test Dataset through its own 
    ### Random Forest Model 
    print(paste("Prediction on full set of observations")) 
    outin_predicted <- predict(rf_model, d_all, type = 'response') 
     
    ### Step 8-option 1: Join the predicted Indoors/Outdoors class to the  
    ### original GPS dataframe and output as a File Geodatabase Table in Arc  
 
    print(paste("Cbind of prediction and full set of observations")) 
    dc <- cbind(d_CKey, outin_predicted, deparse.level = 1) 
    
    print(paste("Output Table to Arc")) 
    arc.write(tpath, dc) 
   
    ### STEP 7-option 1: Store the OOB Error Rate, training size, accuracy 
    ### of the model 
    edf[nrow(edf) + 1, ] = list( 
      SID = aSID, 
      Season = theSeason, 
      TrainingSample = TrainSize, 
      OOB = oobError, 
      TrainAccuracy = trainAccuracy 
    ) 
    lastSID = aSID 
     
  } else { 
    print(paste("SKIPPING Random Forest Model for DATASET ", sid, " using 
Random Forest from : " ,lastSID)) 
 
    ### Step 6-option 2: Run Entire Data Test Dataset through the last  
    ### valid Random Forest Model (the last one that contained a large enough  
    ### training and test sample size 
 
    print(paste("Prediction on full set of observations")) 
    outin_predicted <- predict(rf_model, d_all, type = 'response') 
     
    ### Step 8-option 2: Join the predicted Indoors/outdoors to the  
    ### original GPS dataframe and output as a File Geodatabase Table in Arc  
    print(paste("Cbind of prediction and full set of observations")) 
    dc <- cbind(d_CKey, outin_predicted, deparse.level = 1) 
 
    print(paste("Output Table to Arc")) 
    arc.write(tpath, dc) 
     
    ### STEP 7-option 2: Store the OOB Error Rate, training size, accuracy 
    ### of the previous valid model 
 
    print(paste("Appending to the GPS RF Stats Data Frame")) 
    edf[nrow(edf) + 1, ] = list( 
      SID = aSID, 
      Season = theSeason, 
      TrainingSample = TrainSize, 
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      OOB = oobError, 
      TrainAccuracy = trainAccuracy 
    ) 
  } 
} 
#} 
 
 
### STEP 8 – write out random Forest error and classification accuracy Stats 
for the entire ### Run 
print(paste("Completed Loop - now witing out GPS RF Stats")) 
write.csv(edf,file=errorpath) 
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Appendix F: Post-Processing Script for Random Forest 
###============================ 
### Program: Post-Process STEAM GPS Data from Random Forest model in R 
### Author: Martin Healy 
### Date: July 18, 2018 
### Description: This program is designed to run from an ArcGIS Pro Script  
###              Tool and prepares the data for use in SPSS: 
###      1. Joins the Prediction Table from Random Forest to STEAM Feature 
###    Classes 
###      2. SID HID DayType FULLTIME Predicted exported to a csv suitable for  
###     SPSS 
###      3. Merge into one CSV 
### 
### Dependencies: arcpy, sys, os, gc, SteamModules 
###============================ 
import arcpy, csv, sys, os, gc 
 
#FGDB = arcpy.GetParameterAsText(0) 
FGDB = "C:\\w\\PhDSTEAMProcessing\\Indoor_Outdoor\\W2010.gdb" 
 
#arcpy.env.workspace = arcpy.GetParameterAsText(1) 
arcpy.env.workspace = 
"C:\\w\\PhDSTEAMProcessing\\Indoor_Outdoor\\W2010.gdb"#"C:\\w\\PhDSTEAMProcess
ing\\Indoor_Outdoor\\S2010.gdb" 
 
# Create and Open the output CSV file to contain the GPS records to Import to 
# SPSS 
output=open(r'C:\w\PhDSTEAMProcessing\Indoor_Outdoor\DataAnalysis\CSVFilesForS
PSS\W2010.csv','w',newline='')   
linewriter=csv.writer(output,delimiter=',') 
linewriter.writerow(["SID", "SEASON","HID", "DayType", "FULLTIME", 
"outin_predicted"])  
name_field = "InCity" 
 
for tabl in arcpy.ListTables("*inout"): 
    strLeng = len(tabl) 
    FC = tabl[0:(strLeng - 5)] 
    print("Processing: " + FC) 
    arcpy.JoinField_management(FC,"CKEY",tabl,"CKEY",["outin_predicted"]) 
    expression = arcpy.AddFieldDelimiters(FC, name_field) + ' = 1' 
    Scursor = arcpy.da.SearchCursor(FC,["SID", "Season","HID", "DayType", 

"FULLTIME", "outin_predicted"], where_clause=expression) 
    for aRow in Scursor: 
        sid = aRow[0] 
        season = aRow[1] 
        hid = aRow[2] 
        daytype = aRow[3] 
        ft = aRow[4] 
        strFTime = ft.strftime("%m/%d/%Y %H%M%S %p") 
        out_in = aRow[5] 

 linewriter.writerow([sid, season, hid, daytype, strFTime, out_in])  
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