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ABSTRACT

The purpose of this research was twofold. The first objective was to assess the quality 

of modern cross-sectional ecological studies with a bibliometric review. The second 

objective was to investigate via simulation study the reliability of common ecological 

regression models for analysing count data.

The bibliometric review found that the quality and areas of application of the 

ecological literature is quite diverse. However, a large proportion of studies exhibited poor 

statistical practice and provided insufficient amounts of justification and information.

Linear, weighted linear, Poisson, and negative binomial regression were included in 

the simulation study based on their prevalence in the bibliometric review. The Poisson 

and negative binomial models had overly-liberal Type I error rates when faced with 

overdispersion or small samples respectively. Linear and weighted linear regression had 

highly robust Type I error rates. For all models, power decreased primarily as a function 

of overdispersion.

K ey Words: ecological, cross-sectional, bibliometric review, simulation, Poisson, negative 

binomial, linear regression, epidemiology
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Chapter 1 

Introduction

1.1 Introduction

The modern epidemiologist is well acquainted with a growing number of clinical and 

observational study designs, all of which have unique strengths and limitations that must be 

considered when undertaking etiologic research. One of the oldest and yet most troubling 

in terms of its limitations is the ecological design, which has been employed by statisticians 

and sociologists since the 19th century (Dogan and Rokkan, 1969). The ecological design is 

the only design to be solely concerned with analyzing the exposures and health outcomes 

of groups of individuals, as opposed to individuals themselves. It seemingly presents an 

intuitive and convenient way of exploring social, political, environmental, and epidemiological 

hypotheses when aggregate data are available, and especially when individual data axe not. 

As Wakefield (2008) points out, this appeal is particularly relevant in the modern era, where 

medical, governmental, and research institutions frequently amass large amounts of electronic 

information on the health risks and outcomes of various populations. For these reasons, 

ecological designs are frequently used by epidemiologists and social scientists.

In spite of the long history of the design and the allure of its simplicity, it is a method 

that has inspired a considerable amount of debate and discussion in the literature. Ever since 

Robinson (1950) popularized what is now referred to as the ecological fallacy in his seminal 

article published in the American Sociological Review, the research community has been aware
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of and has been contending with this potential bias, which is unique to ecological analysis. 

The ecological fallacy, perhaps more aptly referred to as cross level bias, is committed when 

causal associations noted at the group level are incorrectly assumed to apply to the individuals 

within those groups. For example, Hemenway et al. (2001) conducted a study in which they 

investigated the association between prevalence of social trust and the prevalence of firearm 

ownership. They noted a positive association between levels of mistrust in a community and 

the prevalence of firearm ownership. Based on this analysis, it would be tempting to naively 

conclude that individuals less trusting of others are likelier to own a gun. While that may be 

true, it does not immediately follow from the association noted at the group level. In fact, it is 

entirely possible to observe a positive group-level association even though individuals who are 

more trusting are the owners of the firearms in the communities. That is, precisely the opposite 

relation may be observed at the individual level.

Ever since the ecological fallacy was famously described by Robinson (1950), much attention 

has been devoted to investigating the causes of the fallacy and to finding potential remedies 

for it. Essentially, the ecological fallacy is possible because the marginal nature of the data 

that exists at the aggregate level for each group is not uniquely determined by the internal 

frequencies on which the individual associations are based (Robinson, 1950). This means that 

analyses conducted at the group level are typically unable to capture or utilize information 

on the distributions of the exposures, effect modifiers, and confounders within each group 

(Wakefield, 2008). Although not immediately obvious, the face value of this concept is not 

especially difficult to grasp once it has been pointed out. It is perhaps surprising, then, that 

the causes and conditions for a lack of correspondence between group- and individual-level 

analyses are complex and often quite contrary to the reasons for bias at the individual level. 

Indeed, many causes of ecological bias could even be described as counter-intuitive. Conditions 

resulting in the ecological fallacy will be introduced in Section 1.2 and described in detail in 

Chapter 3.
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1.2 Challenges of Ecological Studies

The efforts to reveal and understand the limitations of ecological studies primarily began 

with Robinson (1950), although the phenomenon was discussed by Thorndike (1939). Knapp 

(1977) reviews earlier statistical contributions to differences between analyses of individual and 

grouped observations dating back to the 19th century.

In addition to popularizing the term ‘ecological fallacy’, Robinson was also the first to 

attempt the construction of a formal association between individual-level and group-level 

correlations. Using ANOVA, he was able to show that the ecological correlation is a function of 

the overall individual-level correlation and the individual-level correlations calculated within 

each separate group, thus quantifying the potential discrepancy between the two levels of 

analysis.

Robinson (1950) also claimed that there is a positive relationship between the magnitude of 

the ecological correlation coefficient and the average size of the groups in the study. However, 

Knapp (1977) provided a more mathematically rigorous discussion and showed that this 

relationship does not hold in general. Nevertheless, it serves as an example of just how dubious 

ecological regression can be. Duncan et al (1961) extended Robinson’s work using a similar 

approach, and were able to demonstrate the relationship between individual-level and ecological 

estimates of slope in a linear regression analysis. They show that the ecological regression 

coefficient is a weighted difference. In its case, however, the difference is between the average 

within-groups regression coefficient and the overall individual-level regression coefficient, the 

latter often being the étiologie relation of interest. It is important to note that even if the 

individual and grouped regression coefficients are in agreement, the correlation coefficients can 

still differ, a result that is surely not intuitive yet typical of ecological analysis. Such results 

make it clear that ecological analyses conducted with Pearson correlation coefficients alone are 

often on insufficient grounds for making strong étiologie claims.

More fundamental insights into the underlying reasons that give rise to the ecological fallacy 

when conducting linear regression are provided by Greenland and Morgenstern (1989). The
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two main sources of bias unique to aggregate studies are confounding by group and effect 

modification by group, which are present in addition to the sources of confounding that can 

exist at the individual level.

Confounding by group may occur when there is an ecological correlation across groups 

between the disease rates in the unexposed and the average exposure level. Determining whether 

or not this is the case likely requires individual-level data, which is often unavailable to the 

researcher. Effect modification by group, when estimated using linear regression models (i.e. 

on an additive scale), can occur if the rate difference between the exposed and unexposed groups 

varies across groups at the individual level.

Either of these may come to pass if confounders or effect measure modifiers are unequally 

distributed across groups; if there is a contextual (ecological-level) effect of exposure that exists 

in addition to the individual-level exposure; or if the probability of the outcome for an individual 

depends on the occurrence of that outcome in other members of the same group, which may be 

the case for social phenomenon or infectious diseases.

Unfortunately, the complications extend beyond linear models. Richardson et al (1987) 

argue that while there is no mathematical bias resulting from aggregation when calculating 

relative risks based on simple linear risk models without confounders or effect modifiers, convex 

risk models such as the exponential model will have a multiplicative bias coefficient. Greenland 

(1992) highlights another issue: when dealing with ecologie log-linear models that have a main 

effect of interest and a set of confounders, their effects are implicitly assumed to be multiplicative 

with respect to the rate ratio. However, this is a biased estimate of the individual-level rate 

ratio, even if there is no unaccounted bias and the individual-level effects are also multiplicative. 

In addition, Wakefield (2008) points out that when a nonlinear risk model is aggregated over 

individuals, the resulting ecological risk model deals only with contextual effects and not 

individual effects, since the risk in this aggregate model depends solely on the proportion of 

exposed persons in the group. This is referred to as pure specification bias. Unless there is 

homogeneity of exposure within the group, this contextual effect can only correspond to the
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individual association if average group exposure is the true causal factor.

The absence of individual-level data may also compromise attempts to adjust for confound­

ing. That is, some conditions that allow for confounding in an ecological study do not present 

any opportunities for bias in an individual-level study. Specifically, a factor may cause ecological 

confounding even if it is unassociated with exposure in each group, so long as it is associated 

with the exposure at the aggregate level (Greenland and Morgenstern, 1989). This is in stark 

contrast to the individual-level condition for confounding, where a factor must be associated 

with the exposure in order to introduce any bias. Fortunately, this feature may also allow 

ecological studies to be safe from some individual-level bias: a within-group confounder may 

not produce ecological bias if it is unassociated with the exposure at the aggregate level.

Compounding the problem is the fact that control for confounders is more difficult in 

ecological analyses (Greenland and Robins, 1994). It is possible to perfectly measure and 

adjust for confounders, and yet have the ecological bias be increased, not attenuated. In a 

similar fashion, a lack of additivity at the individual level within groups may be a source of 

ecological bias (Richardson and Hemon, 1990). Unlike individual-level analyses, however, an 

ecological analysis cannot adjust for this by including a multiplicative interaction term in the 

model unless certain strict assumptions axe met. Since verification of these assumptions requires 

knowledge about the joint distributions within groups, they axe often untenable.

1.3 A Defense of Ecological Studies

Faced with challenges such as these, it might appeax that ecological studies should be 

avoided. Indeed, this is what Robinson (1950) asserted when he discussed the ecological fallacy. 

Thankfully, this is not the case for several reasons. Chief among them is a philosophical shift in 

the concept of causation and the scope of epidemiology. While it was once believed that health 

outcomes could be explained solely by the causal processes at the level of the individual, it has
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come to be understood that human health is more likely the result of coinciding factors that 

interact on multiple levels (Schwartz, 1994). March and Susser (2006) note that this multilevel 

conceptual approach to epidemiology can originally be traced as fax back as Morris (1957), and 

is implicitly evident in the works of epidemiologists like John Snow. This view of causation was 

superseded by the individualistic risk-factor paradigm, which followed in the wake of medical 

advances achieved in the mid twentieth century. The undeniable impact of vaccines, antibiotics, 

and pharmaceuticals made ecological factors appear largely obsolete. The 1990s saw a return 

to the multilevel viewpoint as the reductionist approach proved to be inadequate in the face of 

modern infectious disease epidemics and for new branches of epidemiology. For example, the 

importance of contextual effects such as economic disparity, which exists solely at the group 

level, are central to some hypotheses of social epidemiology (Oakes and Kaufman, 2006).

Ecological studies need not be rough approximations to individual-level studies. Rather, 

they can instead be concerned with analyzing contextual effects at the group level, and since 

these processes are legitimate from a causal point of view, they are etiologic studies in their own 

right (Schwartz, 1994). Whether or not this group-level approach truly answers the question 

of interest is a matter of construct validity. It is the duty of the researcher to ensure that the 

level of measurement is suitable for the hypothesis at hand.

Ecological studies have the added benefit of being an inexpensive way to describe spatial 

variation in exposures and disease. This can be useful for directing policy and health 

interventions, often by quite literally mapping the associations between the health outcomes, 

social burdens, risks, and infrastructures in a given society. Szwarcwald et al (2000) adopted 

this very approach to determine clusters of mortality and to provide descriptive geographical 

relationships between health and socioeconomic conditions in Rio de Janeiro.

Another attractive feature of ecological studies is that they may allow the researcher to 

capture a sufficient amount of variation in the exposure variable if individuals in a given 

population are largely homogeneous (Morgenstern et al, 2008). This may be the case for 

social exposures that encompass large groups of people, such as laws or policies enacted at the
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provincial level, or environmental exposures that do not vary greatly from region to region, 

such as the average annual hours of sunlight.

As previously mentioned, ecological analyses may be immune to individual-level confounders 

so long as they are unassociated with the exposure at the group level. This may be a crucially 

advantageous feature for certain etiologic questions, particularly those that might otherwise be 

susceptible to confounding by indication. Johnston (2000) tested the efficacy of this approach 

by comparing an ecological analysis of hospital treatment and mortality to an individual-level 

one, and found that the ecological approach reversed the direction of the association. Johnston 

concludes that the ecological analysis was able to counteract the effects of confounding by 

indication, and recommends the inclusion of group-level data in studies that may be vulnerable 

to this bias. Similarly, since ecological models rely on aggregate data that often comes from 

records and not from interviews or surveys, they may be relatively untouched by some issues 

that plague individual-level studies, such as recall bias or response bias (Schwartz, 1994).

Ecological studies present unique challenges. This design should be treated with utmost 

caution and used only when the researcher is fully informed of their limitations and either seeks 

to minimize the opportunities for bias or tempers the results with appropriate warnings. That 

being said, they are a class of study that remains useful and should be kept in the toolbelt 

of the epidemiologist. In addition to supplementing and motivating more common individual- 

level analysis, they provide a means of investigating many of the etiologic hypotheses that are 

continually becoming more relevant to the health concerns of contemporary researchers.
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1.4 Types of Ecological Studies

The discussion has thus far referred to an over-arching ecological design without making 

reference to any possible subtleties or variations on it. However, ecological studies may be 

further classified by their type of design. Borrowing from the terminology of Koepsell and 

Weiss (2003) and Morgenstern (1995), we have the following main sub-designs:

•  Spatial ecological studies. These compare the health outcomes and exposures of several 

groups for a given point in time or time period. Here, the designs do not statistically 

take into account any formal temporal considerations, and may be case-control, cross- 

sectional, etc. It is the simplest and most common class of ecological designs, with the 

cross-sectional sub-design being the simplest.

•  Longitudinal ecological studies. These often employ time-series analysis to compare the 

change in outcome rates within a study group over periods of time. For example, Analitis 

et al. (2006) compared cardiovascular mortality rates in a pooled analysis of different 

cities by looking at the air pollution concentrations at different time lags.

• Mixed ecological studies. Also referred to as spatiotemporal designs, these combine 

temporal and spatial aspects into one model and investigate them simultaneously.

It can be easily seen that the ecological design encompasses all of the main approaches that 

are present in individual-level designs. In fact, when one considers that a set of ecological units 

are no different than a set of individuals as far as most study designs are considered, then it 

becomes apparent that the ecological class mirrors most of the individual-level designs.
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1.5 Objectives

The objectives of this thesis are twofold:

(1) To describe and critically analyze the quality of ecological studies in the current epidemio­

logical literature. This will be accomplished by conducting a bibliometric review of ecological 

studies published in select epidemiology journals. By so doing, we aim to provide an informed 

report of the strengths and shortcomings of the literature so that future researchers engaging 

in ecological analyses may improve upon their predecessors.

(2) To empirically investigate the statistical performances of the analytic methods most 

prevalent in the ecological studies that were identified in the bibliometric review. This will 

be achieved via simulation study, in which a computer code shall generate group-level data. By 

running a simulation study, we can iterate this process thousands of times and therefore make 

valid inferences regarding the average performances of these methods. Ultimately, we wish to 

provide researchers with a set of recommendations that they may consult when embarking on 

ecological studies of an etiologic nature.

However, this thesis shall not focus its attention on all types of ecological design. Since the 

cross-sectional design is the most widespread, and faced with the sheer volume and complexity 

of the analytic approaches available to the mixed and longitudinal designs, this thesis will only 

consider the studies and methods relevant to the cross-sectional design. This approach allows 

us to provide a more concentrated discussion.
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1.6 Rationale

It is felt that the bibliometric review contained in this thesis shall fulfill a present need 

in the literature that has remained essentially unsatisfied. Insofar as we are aware, there is 

no published bibliometric review concerning the quality of recent epidemiological papers that 

rely on the ecological design. The only review comparable to the one we have proposed was 

conducted by Riva et al. (2007), in which the authors compile an analysis of all multilevel 

studies of small-area effects that were conducted between July 1998 and December 2005. Even 

though they considered topics of contextual (ecological) effects in addition to individual ones, 

and even though they presented a discussion regarding some of the more common conceptual 

and methodological issues surrounding multilevel studies and the ecological aspects thereof, 

the scope of their paper is considerably different from what this thesis proposes. Whereas 

the paper by Riva et al. focuses strictly on multilevel analyses and places more emphasis 

on the health outcomes studied rather than the methodological approaches, the bibliometric 

analysis contained herein will be tailored to ecological studies and will more critically analyze 

thè statistical aspects performed and reported in each paper.

A thorough systematic review on this topic will be important for the epidemiological 

community. Since it is a diverse group comprised mainly of health researchers that lack vigorous 

training in statistics, it is occasionally necessary for the technical aspects of the literature to 

be scrutinized. For example, Weitzen et al. (2004) found that many medical research papers 

employing propensity score matching used the technique poorly and even more reported it 

inadequately. We will perform the same service for ecological studies.

The proposed simulation study will provide novel insight into the performance of key 

ecological regression models. While purely analytic work is more rigorous and has all the 

advantages of precise mathematics, it is often limited to asymptotic inferences for many 

modeling techniques. This prevents us from investigating small-sample behaviour and restricts 

us to generalities. A simulation, on the other hand, would allow us to simultaneously explore 

the effects of multiple parameters in a more realistic setting.



11

Previous bodies of work examining the ecological performances of statistical methods have 

had one of three general approaches:

• The first approach is to run the chosen statistical methods on real datasets and then 

compare their results to individual-level and multilevel associations, which are held as the 

gold standard. This was precisely the tactic adopted by Lancaster et al. (2006) when they 

analyzed such exotics as the stratified ecological model, the aggregated compound model, 

and the aggregated individual model. No inferences regarding the average performances 

of the studied methods Eire possible with this approach.

•  The second general approach seen in the literature is to exploit computer simulation in 

order to evaluate new techniques that supplement ecological analysis with individual- 

level information or within-group distributional Eissumptions. For example, Guthrie and 

Sheppard (2001), as well as Wakefield and Haneuse (2008), used simulation studies to 

analyze novel methods that either aggregate individual-level data in such a way as to 

retain covariate information or combine the ecological information with case-control data.

•  The final major approach compares advanced methods that have been adapted from the 

geostatistical literature, via real or simulated data. These methods are mainly suitable 

for the mapping of disease rates or the identification of spatial clustering. The papers 

by Green and Richardson (2002) and Kelsall and Wakefield (2002) typify this type of 

research, and are perhaps the papers most explicitly related to ecological studies. Their 

works investigate methods such as Gaussian random fields, spatially correlated Potts 

models, and spatial Markov models.
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None of the approaches mentioned above focus on the common methods of analysis most 

relied on by epidemiologists while at the same time providing summary measures of performance 

gleaned from large-sample inferences. The simulation study we propose is oriented to serve 

the pragmatic needs of the research community and will present a unique contribution to the 

literature.

Since the ecological study is a design that has been well established in the literature, it 

is certainly worthwhile to evaluate how it has been applied and conducted, and to offer some 

empirically derived guidelines for proper statistical analysis. The objectives contained in this 

thesis seek to address these needs and to further investigate a research tool that has made 

significant contributions to human health, public policy, and social epidemiology.



Chapter 2

Bibliometric Review

2.1 Introduction

The objective of this bibliometric review is to evaluate how well modern ecological studies 

are designed, analysed, and reported. Sections 2.2.1 through 2.2.4 outline the methods and 

approaches by which we set out to achieve this, including: a rationale for the chosen journals 

and the selected time period; the inclusion and evaluation criteria for each study; and a rationale 

for the search method used to find publications. Results are presented in section 2.3, and axe, 

followed by a discussion and summary of recommendations for future research in section 2.4.

2.2 M ethods
2.2.1 Journals Studied

As Altman (1994) has noted, the technical quality and statistical legitimacy of medical 

research can often be lacking. Although he was referring mainly to publications found in 

clinical journals such as the British Medical Journal, his statement unfortunately holds a certain 

degree of truth for many research topics that pertain to human health, including epidemiology. 

Exactly how relevant is Altman’s claim to the cross-sectional ecological studies undertaken by 

the epidemiological community? To answer this question, we concern our bibliometric review 

with a carefully chosen, specific set of journals. Although epidemiologists consult and publish 

in a wide variety of journals, it is not practical for one review to be simultaneously thorough

13
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and comprehensive; the literature is simply too vast. Thus, we have selected The American 

Journal of Epidemiology, Annals of Epidemiology, Epidemiology, International Journal 

of Epidemiology, Journal of Clinical Epidemiology, and the Journal of Epidemiology 

and Community Health as the journals to be included in our study. We feel that these 

most explicitly and singularly serve the needs of epidemiologists and represent their works. 

Moreover, each of these journals has a significant impact factor and a high ranking within 

either epidemiology or public health. Thus, the significance of these journals as general, non- 

specialized forums for the research of epidemiologists makes them natural representatives of the 

discipline.

Any bibliometric review requires a second parameter in addition to its set of journals: a time 

period of interest. Unfortunately, there is no ecological equivalent to the Strength of Reporting 

of Observational Studies in Epidemiology (STROBE) guidelines whose date of publication we 

could use as a meaningful marker (von Elm et ai, 2007). We were therefore forced to base our 

choice on different grounds. The choice of our time period was motivated by the need to capture 

a significant amount of studies for the review, offset by the need to obtain a manageable amount 

of information. These considerations were coupled with the desire to make inferences regarding 

only the more recent publications. Thus, we have chosen to analyze all papers published between 

the years 2000 and 2008 inclusively, allowing us to focus on the works of the new millennium.

2.2.2 Search Method

All of the papers contained in this bibliometric review were found by searching through 

each issue of all selected journals for the time period January 1, 2000 through December 31, 

2008. An alternative approach is to conduct computer searches of databases such as MEDLINE 

with the use of strategic keywords or MESH groups. While this may be an adequate means 

of obtaining many types of studies, we felt that the ecological design was so varied in its 

applications that some epidemiologists may use it unknowingly or without including the kinds 

of proper keywords that would be picked up by search engines or database categorization.
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Our exhaustive search method allowed us to circumvent this potential problem and provide a 

definitive review containing all of the cross-sectional ecological papers in the selected journals.

2.2.3 Inclusion and Exclusion Criteria

Each potential study had to satisfy a number of inclusion criteria before it was admitted into 

the review. The research paper in question had to use a cross-sectional ecological design. This 

meant that ecological studies using temporal or spatiotemporal designs were excluded from the 

review, as were case-control, case-crossover, or cohort designs. For example, Lewis et al (2001) 

analyzed workplaces to determine risk characteristics for homicide. Workplaces were selected 

based on whether or not they had experienced the outcome of interest, namely homicide, which 

makes their study design case-control and not cross-sectional.

In addition, each study needed to present an original work with an etiologic research 

hypothesis. Consequently, descriptive studies of spatial trends were excluded from the analysis. 

Another consequence of this criterion was to exclude studies that introduced, discussed, or 

evaluated ecological methods with examples using real data, since the aim of such a study is 

not to establish causal associations. Likewise, ecological simulation studies were not included in 

our review. A study did not need to be entirely ecological in order to be included, so long as its 

ecological aspects met our inclusion criteria. That is, some ecological analyses were performed 

within papers that also employed multilevel techniques or conducted individual-level analyses, 

. and we included these as well.

For certain papers, often those employing geospatial techniques, it was unclear whether they 

were testing etiologic hypotheses or if they were simply mapping the occurrences of diseases 

and risk factors for the purposes of public health policy. We reviewed these studies until a 

consensus could be reached. If a paper was deemed etiologic after such a series of reviews, it 

was included and then marked as once-tentative for the sake of our analysis.

We did not discriminate with regards to the length of the paper so long as it met the 

inclusion criteria mentioned above. Thus, papers that were deliberately brief and relegated to a
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segment such as the “Short Report” section of the Journal of Epidemiology and Community 

Health were also included. These were noted as short reports for the bibliometric analyses.

2.2.4 Evaluation Criteria

The complexities and concerns of the ecological design are such that any good ecological 

paper will be especially cautious and premeditated. It should justify the choice of design and 

present its results in a careful, transparent fashion. The discussion should be written such that 

even readers unfamiliar with the ecological fallacy are mindful of its potential when making 

individual-level inferences. In other words, a proper ecological study needs to tread carefully and 

should not be undertaken lightly. When conducting this bibliometric review, it was therefore 

necessary to analyze the quality of the writing and reporting in addition to the statistical 

methodology. Thus, we designed each criterion to focus on one of the three major fundamentals 

that comprise any etiologic epidemiological publication. Specifically, we critiqued each paper 

according to a set of a priori criteria that collectively analyzed the following characteristics 

given below. Table 2.1 provides a summary of the criterion used in this bibliometric review.

1 .Aspects of Study Design

Aspects of study design which were examined include: the sample size of each analysis, 

given by the number of ecological units; the level of aggregation at which the ecological units 

exist, recorded as, from smallest to largest: census tracts and neighbourhoods, municipalities, 

municipal areas or counties, states/provinces, or nations; whether the etiologic inference was 

at the group- or individual-level; and whether the ecological units were explicitly chosen (or 

constructed) to suit the etiologic hypothesis, or if they were seemingly motivated by convenience 

or necessity. By their nature, the two latter criteria had to occasionally be decided subjectively.

To see which areas of health and social epidemiology are presently the focuses of the cross- 

sectional ecological design, we also recorded the health outcomes according to consistent themes. 

We first grouped the outcomes into one of six broad classifications: mortality rates, incidence
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rates, count data (number of events), prevalences, health services outcomes, or life expectancy. 

When possible, the outcomes in each classification were then further refined and given one 

of the following sub-classifications, which were motivated by the literature itself: cancer; 

cardiovascular disease; respiratory disease; other noninfectious diseases; infectious diseases; 

suicide or self harm; and criminal activity. Often, a given study had more than one outcome 

and thus more than one set of classifications. In this case, all were recorded.

2 .Statistical Methods and Practices

The primary interest here was the analytic methodology employed by the authors. There­

fore, we recorded any formal, statistical ecological analyses that were motivated by the etiologic 

hypothesis of the paper. To facilitate comparisons across studies, we tried to use consistent 

terminology whenever possible. For example, if it was appropriate, the regression techniques 

were often recorded as one of: Ordinary Least Squares (OLS) regression, Weighted OLS 

regression, Poisson regression, or Negative Binomial regression. Noting the statistical methods 

was intended to provide a measure of the analytical sophistication, diversity, and propriety of 

current ecological studies.

To more closely scrutinize the regression methods, we also included a measure of statistical 

validity. For each regression analysis, we recorded whether there were fewer than ten ecological 

units per covariate, more than ten ecological units per covariate, or more than twenty ecological 

units per covariate. Although ten is merely a rough guide, Vittinghoff and McCulloch (2007) 

have argued that fewer than ten observations per covariate may lead to invalid statistical 

inferences. Since the level of aggregation in any given study will be a limiting factor for sample 

size, and since the level of aggregation is expected to be highly variable across studies, we felt 

that this criterion would be especially relevant for the ecological design.

We also recorded the use or non-use of ecological covariates in the analyses. Although more 

complex, confounding still occurs at the ecological level and under the right conditions may still 

be accounted for by the inclusion of covariates. Since covariate use is one of the foundational
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premises of epidemiological analysis, we felt that our statistical critique should include this 

criterion. For the same reason, we also recorded whether or not the authors performed sample 

size calculations before beginning their study; an often-neglected consideration.

Spatial autocorrelation is a potential concern for many ecological analyses, since most of 

them use aggregated areal data. Whether researchers should adjust for spatial autocorrelation 

or include spatial dependence terms in their ecological models is presently debated. The concern 

is that the omission of spatial effects may cause a loss of information that could otherwise 

improve the estimation of model parameters. However, if the exposure has spatial structure, 

adjustment for spatial effects may ‘adjust away’ the causal association being studied (Wakefield, 

2003). Although this is a controversial topic, we nonetheless recorded the number of studies 

accounting for spatial effects.

Our final statistical criterion determines whether or not appropriate regression covariates 

have been adjusted for age, gender, or both, if the outcome has been similarly adjusted. 

Rosenbaum and Rubin (1984) point out that area-based studies commonly regress age-adjusted 

outcomes on unadjusted predictors, and go on to state that this method often produces biased 

effect estimates for risk models that are linear at the individual level. They recommend 

that regression analyses with aggregate data incorporate either adjusted covariates, or crude 

covariates along with moments of the population distribution for the adjusted variable. We 

report how often this is done in practice.

3 .Reporting

The sensitive nature of ecological studies requires that they be held to guidelines additional 

to those presently found in the STROBE statement. In this section, our objective was therefore 

to evaluate how well each paper presented and discussed the ecological aspects of its design 

and conclusions. We first searched the paper to see whether the authors mentioned one of 

the keywords ’ecologie’, ’ecological’, or ’aggregate’ at any point in their article (excluding 

references). This criterion sought to test the proportion of authors that clearly inform the
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reader of the study design. The next criterion analyzed whether or not the authors explicitly 

justified an ecological analysis, since it should be made evident to the reader that the design was 

not chosen lightly. A justification allows the reader to be informed as to the rationale, and also 

to decide for themselves whether or not the study design is truly warranted. It was not deemed 

essential for the justification to mention either of the above keywords, so long as it presented a 

clear explanation as to why an ecological analysis was either necessary or preferable.

Our last criterion recorded whether or not the authors sufficiently cautioned the interpreta­

tion of their results against undue individual-level inferences, preferably with the use of terms 

such as ’ecological fallacy’ or ’cross-level bias’. The authors’ statement did not need to be 

elaborate or include an in-depth explanation of the fallacy itself. It merely needed to point 

out that the results were not necessarily applicable at different levels of aggregation. We feel 

that it is the responsibility of every ecological researcher to address this concern, whether their 

stated inferences are fallible or not. It cannot be taken for granted that the reader is aware of 

the ecological fallacy, or that they have deduced the study design if it has not been stated by 

the authors.
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Table 2.1: Summary of the Evaluation Criteria Used in the Bibliometric Review
E v alua tion  C rite rio n D escrip tion

Study Design
Sample Size How many ecological units are used in the statistical 

analysis?
Level of Aggregation At which level of aggregation do the ecological units 

exist? (e.g., census tracts or nations.)
Level of Inference Are étiologie inferences made at the ecological level 

or the individual level?
Pre-specified Ecological Units Are the ecological units selected or constructed a 

priori, or are they seemingly selected by convenience 
or necessity?

Health Classification of Primary 
Study Outcome(s)

To which one of our health classifications does the 
primary study outcome(s) belong? (e.g. cancer, 
infectious disease, cardiovascular diease, etc.)

Statistical Methods and Practices
Analytic Methodology What statistical methods are employed by the 

authors in the analysis of their data?
Statistical Validity of Regression What is the ratio of the number of ecological units to 

the number of covariates in the regression analysis?
Use of Covariates Do the authors use covariates in their ecological 

analysis?
Sample Size Calculations Do the authors clearly state that they used sample 

size calculations to determine the necessary number 
of ecological units for their analysis?

Spatial Analysis Do the authors investigate or adjust for spatial 
effects?

Covariate Adjustment for Age 
and Sex

If the outcome is sex- and/or age-adjusted, are the 
proper regression covariates similarly adjusted? 

Reporting
Statement of Study Design Do the authors clearly and relevantly mention 

one of the terms ’ecological’, ’aggregate’, or some 
reasonable approximation in their article?

Justification of Study Design Do the authors adequately justify a group-level 
analysis?

Discussion of Cross-level Bias Are the results appropriately cautioned with some 
mention of the ecological fallacy or cross-level bias?



21

2.3 R esults

Our search yielded a total of 117 cross-sectional ecological papers that met the inclusion 

criteria. Table 2.2 describes their distribution by journal and year of publication. Prom Table 

2.2, it can be seen that the number of published cross-sectional ecological studies has remained 

relatively stable over the past nine years, and that journals more oriented to general or clinical 

epidemiology tend to publish far fewer of them than journals specializing in community health.

An additional twenty five papers were considered tentatively, but ultimately did not meet 

the inclusion criteria for one reason or another. Of the 117 papers that were included in the 

bibliometric review, sixteen of them had been subjected to repeated scrutiny after initially 

being deemed tentative. The once-tentative papers that were included in our review have been 

marked for the sake of our analyses, which will take their potential effects into account by 

calculating results with and without them as a sensitivity analysis.

Broadly speaking, the quality of the reviewed studies could best be described as bi-modal. It 

was found that many papers performed elementary analyses coupled with unclear, insufficient 

reporting. At the same time, however, we discovered that a significant number of studies 

employed analyses appropriately suited to the data and presented their results in a model 

fashion. In between these extremes, many papers would be adequate with respect to one or 

two of the three fundamentals only to perform unsatisfactorily in another. Overall, we feel 

that the ecological literature has demonstrated a clear and immediate need for improvement. 

To justify and elucidate this claim before we discuss implications and recommendations, the 

results of the bibliometric review are presented below in the same groups that comprise the 

three fundamentals of the evaluation criterion. Namely, we present in turn the results for the 

aspects of study design, the statistical methods and practices, and the quality of reporting.
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Table 2.2: Number of Ecological Papers by Journal and T iree-year 5eriod
Jo u rn a l 2000-

2002
2003-
2005

2006-
2008

T otal

American Journal of Epidemiology 4 3 5 12
Annals of Epidemiology 2 4 6 12
Epidemiology 5 0 3 8
International Journal of Epidemiology 12 9 6 27
Journal of Clinical Epidemiology 1 1 2 4
Journal of Epidemiology and Community 
Health

14 19 21 54

T o ta l 38(32%) 36(32%) 43(36%) 117(100%)

2.3.1 Aspects of Study Design

We observed that cross-sectional ecological studies have been applied to a diverse set of 

etiologic hypotheses, and therefore have study outcomes touching on many areas of epidemi­

ology. In spite of this, there were notable trends in the literature: mortality rates were found 

to be the most common class of outcome in our bibliometric review, comprising thirty-four 

percent of all outcomes, and numbering forty-one in total. Incidence rates were the next most 

prevalent, representing thirty-two percent of all outcomes. The remaining classifications were 

by far less populous among the analyses, with seventeen prevalence outcomes, seven count-data 

outcomes, seven life expectancy outcomes, and two health services outcomes. An additional 

seven analyses, with measures such as social inequality or community access to certain resources, 

were not classifiable as one of the above.

Certain types of the aforementioned sub-classifications appeared most often. The most 

common etiologic research area was cancer, which was the focus of twenty-two analyses (17% 

of total). Noninfectious diseases, all-cause mortality, and cardiovascular disease followed 

behind, representing fourteen percent, thirteen percent, and nine percent of the total analyses 

respectively. Infectious diseases, including HIV and AIDS, surprisingly received the attention
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of a mere eleven analyses (9%). Respiratory disease outcomes comprised eight percent of all 

analyses; suicide and self harm comprised another seven percent; and criminal activity such as 

homicide accounted for five percent. Twenty-five analyses did not fall into one of the above 

broad sub-classifications, which perhaps serves to demonstrate the variety of cross-sectional 

ecological research.

The ecological units themselves seemed to be less diverse in their origins than the outcomes 

were in their applications. It appears that the vast majority of cross-sectional ecological research 

has its data dictated either by convenience or necessity. While we cannot be definitive about 

such a claim, we have been led to suspect that it is the case after observing that only eighteen 

studies out of the one-hundred seventeen (15%) had their ecological units explicitly motivated 

a priori by the etiologic hypothesis at hand.

With regards to the levels of aggregation of the ecological units, we noted that the 

literature had a pronounced reliance on, or preference for, small-area analysis. Units aggregated 

approximately at the level of census tracts or subsections of a city (“neighbourhoods”) were 

by far the most numerous, being the observational units for forty-five studies (38% of total). 

Large-area studies occupying the other end of the extreme were the second most prevalent; 

international comparisons of the disease rates and risk factors of entire nations motivated 

twenty-four studies (21% of total).

All other levels of aggregation present in the literature occupied a middle ground between 

these two in terms of their size. These were, from smallest to largest: municipalities such as 

towns or cities; municipal regions and counties, which include not only major urban centers 

but also the contiguous areas around them; and states or provinces, which in this bibliometric 

review refer to the largest divisional units of nations. Approximately, these accounted for nine 

percent, sixteen percent, and nine percent of all studies respectively. Only four studies could 

not have their ecological units classified as one of the above, either because the units were 

disparate areas specially constructed by the authors for their study, or because the units were 

non-spatial, e.g. physician practices.
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Insofar as we were able to tell, it appeared that a slight majority of studies intended their 

inferences to be applied at the individual level. Of the one-hundred seventeen in the review, 

forty-two (37%) were clearly oriented towards the individual. Conversely, twenty-seven studies 

(23%) either explicitly made inferences at the group level or otherwise tailored their discussions 

to group-level effects and outcomes. However, these results should be taken lightly, since a lack 

of clarity on the part of forty-eight studies (40%) prevented us from determining with any 

confidence their intended levels of inference.

The literature revealed that cross-sectional ecological studies employ sample sizes ranging 

from very small to extremely large, which was anticipated. The minimum sample size was 2 

ecological units, and the maximum observed sample size was approximately 200,000 units. The 

median sample size was 62.5 ecological units. Due to the tremendous standard deviation of the 

sample sizes and their skewed distribution, the average value is not a meaningful measure to 

report.

We expected such a broad range chiefly due to the fact that ecological studies can often have 

their potential samples limited by their level of inference, or by the level of aggregation selected 

for their study. For example, Moulton and Benini (2003) were interested in community-level 

risk factors for the number of landmine victims in Chad and Thailand. The number of potential 

ecological units in their study is far fewer than if it had been possible (or desirable) to obtain 

units at smaller levels of aggregation, such as neighbourhoods. Perhaps one result of this is 

a high prevalence of ecological analyses predicated on sample sizes that would be considered 

small by the standards of individual-level studies: sixty-four papers (55%) relied on analyses 

with fewer than one-hundred observational units. Although these particular studies may have 

had adequate power to investigate their hypotheses, smaller sample sizes in general may be a 

statistical limiting factor that the ecological study design is forced to contend with.



Table 2.3: Results from Bibliometric Review for Study Design Criteria
Evaluation Criterion R esults

(n = 117)
Sample Size

Median 62.5
Maximum 200,000
Minimum 2

Level of Aggregation 1
Census tract or subsection of city 45 (38%)
Municipality 11 (9%)
Municipal regions /  counties 19 (16%)
Province or state 15 (13%)
National or nation-cluster 24 (21%)
Other 4 (3%)

Level of Inference 1
Individual 43 (37%)
Ecological 27 (23%)
Unclear 48 (40%)

Pre-specifled Ecological Units
Yes 18 (15%)
No 99 (85%)

Health Classification of Primary Outcome(s) 1
Violent crime 6 (5%)
Suicide and self-harm 8 (7%)
Respiratory disease 9 (8%)
Infectious disease 10 (9%)
Cardiovascular disease 10 (9%)

. All-cause mortality 15 (13%)
Other non-infectious disease 16 (14%)
Cancer 20 (17%)
Other 25 (21%)
1 Does not add up to 117
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2.3.2 Quality of Statistical Methods and Practices

The first criterion of this section investigated analytic methodology. We discovered 

a great deal of diversity regarding the analytic methods employed in the cross-sectional 

ecological studies, with techniques ranging from the simplest possible to highly complex. In 

spite of this, there were also marked trends and preferences in the literature. There were 

several general types of analyses, especially regression techniques, which were by far the most 

prevalent. In particular, we noted that the following numbers of analyses were performed by 

each of the following: Ordinary Least Squares (OLS) regression (n=45); Poisson regression 

(n=19); Weighted OLS regression (n=18); the nonparametric methods of Chi-square tests for 

trend, Chi-square tests for homogeneity, Mann-Whitney Tests, nonparametric Spearman’s rank 

correlation, and Wilcoxon’s rank sum test (n=12); simple Pearson or Spearman correlations 

(n= ll); logistic regression (n=7); negative binomial regression (n=6); and Bayesian analysis 

(n=6). An additional seventeen analyses did not fall into any of these categories, employing 

disparate techniques such as sophisticated geospatial methods, Monte Carlo approaches, spatial 

autoregressive models, and the simple model-free calculation of relative risks and standardized 

mortality ratios. There was also a wide range of approaches within any given analytic technique. 

For example, the Poisson regressions ranged from simple and univariate (Mezei et al. 2006), 

to hierarchical (Rezaeian et al. 2006), to complex Generalized Linear Mixed Model forms 

(Kleinschmidt et al. 2001). Thus, most techniques could be found in studies at both ends of 

the quality spectrum.

Note that the counts given above do not refer to the number of studies per se, but rather 

to the number of analyses. Since many studies performed more than one analysis and may 

have used more than one method, the distinction is important to bear in mind throughout the 

presentation of the results.

In spite of the preponderance of warnings in the literature about the limitations of OLS 

regression as an etiologic tool for ecological studies, it was nevertheless the single most prevalent 

analytic technique. In fact, it alone accounted for almost forty percent of the analyses. When
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one includes weighted OLS regression in this figure, the number swells to fifty-three percent, 

implicating over half of the analyses. Even worse from a statistical perspective, eleven analyses 

(9% of the total) were conducted with nothing more than Pearson or Spearman correlation 

coefficients, thus neglecting to investigate even provisionally the effect measure estimates 

provided by regression coefficients. While the validity of simple regression must be decided 

on a case-by-case basis, the fact that over half of the analyses relied on at least one of its 

variations suggests that ecological researchers too often rely on unsophisticated techniques of 

dubious reliability.

In spite of this, there were a certain number of studies employing sophisticated techniques 

that appeared to be carefully considered and well suited for the etiologic hypothesis. These 

studies tended to use Poisson regression, negative binomial regression, Bayesian methods, and 

geospatial techniques while avoiding OLS regression and simple descriptive statistics.

The second criterion evaluated how many studies performed a priori sample-size estimates. 

The proper use of sample size formulae has been a neglected consideration in many epidemiolog­

ical areas, and we observed that cross-sectional ecological studies are no exception; precisely one 

study claimed to have investigated the effects of sample size, rigorously or otherwise (Shakhtarin 

et al. 2003). The other studies may have provided an in-depth discussion of their sampling 

frame and techniques, as well as the population that was sampled, but would otherwise keep 

the reader uninformed as to how the number was arrived at. However, the use of a priori 

sample size calculations may be moot when one is confined by the availability of data or when 

the research is being used to motivate further studies, as may often be the case for ecological 

analyses.

We found the situation to be much improved with respect to the use of covariates in 

statistical analysis. Eighty-six studies (74% of the total) either stratified their analysis or 

employed covariates in addition to the main etiologic variable of interest. It remains surprising, 

however, that only three-quarters of ecological studies use covariate adjustment for their results 

when one considers that this procedure is a foundational principle of epidemiologic analysis, as
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well as the fact that, under certain conditions, ecological studies may be able to employ covaxiate 

adjustment with the same efficacy as individual-level studies. The necessity of covariates must 

be decided on a case-by-case basis, however, and may depend on issues such as availability of 

data, consistency and quality of data across groups, etc.

Similarly, the reviewed studies also performed better with regards to the statistical validity 

of their regression. Although we were unable to determine the ratio of ecological units to 

predictor variables for five studies due to a lack of clear information, we calculated the ratios 

for the remaining one-hundred twelve studies. For nine of them this criterion did not apply, since 

no regression analyses were performed. Twenty-four regression analyses, approximately twenty- 

one percent of those remaining, had fewer than ten units per covariate, bringing their validity 

into question. It is interesting to note, though perhaps not surprising, that a disproportionately 

high number of these (66.7%) relied on either OLS or weighted OLS regression. Forty-eight 

analyses had more than ten units per covaxiate but fewer than twenty units per covariate, 

and forty regression analyses had more than twenty units per covariate. Naturally, those with 

more units per covariate tended to have far greater sample sizes. Sample size and regression 

techniques notwithstanding, however, there were no significant differences between those with 

fewer than ten ecological units per covariate and those with more than ten.

Almost one fifth of the reviewed studies included some investigation of spatial effects. 

Techniques such as spatially autocorrelated regression models, Moran’s I statistic, kriging, 

and spatial scan statistics appeared to be the most common. The majority of these methods 

originate from the geostatistical literature. Some of them merely detect and describe spatial 

autocorrelation and clustering, while others seek to incorporate spatial processes into the effect 

measure estimation. Although the latter methods are controversial, the presence of spatial 

analyses nonetheless bodes well for the analytic complexity and sophistication of these particular 

ecological studies.

In terms of covariate adjustment, it was found that a small majority of papers do not adjust 

their covariates for age or sex when the study outcomes have been adjusted for these potential



confounders, as is recommended by Rosenbaum and Rubin (1984). Although most papers did 

not adjust their outcomes with respect to age or sex, of those that did only eleven studies 

properly adjusted their suitable (non-integral) covariates, while twenty-three did not. Thus, it 

would appear that over fifty percent of papers adjusting their outcomes in this manner are at 

significant risk of publishing conclusions based on biased effect measures.
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Table 2.4: Results from Bibliometric Review for Statistical Methodology Criteria
Evaluation Criterion R esults

(n =117)
Analytic Methodology *

N u m b e r  o f  a n a ly s e s  e m p lo y in g :  

OLS regression 
Poisson regression 
Weighted OLS regression 
Nonparametric methods 
Pearson or Spearman correlations 
Logistic regression 
Negative binomial regression 
Bayesian analysis

45 (36%) 
19 (15%) 
18 (14%) 
12 (10%) 
11 (9%) 
7 (6%) 
6 (5%) 
6 (5%)

Statistical Validity of Regression 1
Fewer than 10 units per covariate 
10 to 20 units per covariate 
More than 20 units per covariate 
Unclear 
Not applicable

24 (19%) 
48 (38%) 
40 (32%) 

5 (4%) 
9 (7%)

Use of Covariates
Yes
No

86 (74%) 
31 (26%)

Sample Size Calculations
Yes
No

1
116

Spatial Analysis
Yes
No

22 (19%) 
95 (81%)

Covariate Adjustment for Age and Sex 1
Did not properly adjust covariates 23 (68%)

1 Does not add up to 117
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2.3.3 Quality of Reporting

From the bibliometric review it was discovered that the majority of authors clearly state 

their chosen study design. Eighty-one papers (69%) mentioned at least one of ’ecologic’, 

’ecological’, or ’aggregate’ at some point in the main body of their work, and did so in a 

clear and relevant fashion. The importance of doing so has been emphasized previously. In 

light of this, then, it is felt that the proportion of studies making unequivocal declarations 

regarding the ecological nature of their research is too low.

Overall, this level of quality extended to the other reporting criteria as well: Only forty- 

eight studies (41%) adequately and explicitly justified an ecological analysis, while the other 

59% did not provide any rationale whatsoever as to why the design was either necessary or 

desirable. Most significantly, however, we found that the majority of studies do not sufficiently 

warn the reader about the possibility that their results may not be applicable to levels of 

aggregation different than those of the analysis. That is, most studies do not discuss in any 

terms the possibility that their results may be susceptible to cross-level bias. Of the one-hundred 

seventeen papers reviewed, fifty-two (44%) tempered their results appropriately, whereas sixty 

(51%) did not.

For five studies we felt that this criterion did not apply, either because their ecological 

investigations were performed alongside multilevel analyses or because the predictors were 

entirely group-level in nature, therefore precluding individual-level interpretations.

All of the above results underwent two sensitivity analyses. The first sought to explore any 

effects that the inclusion of ’short reports’ might have had on the results. Since such reports 

are, by definition, limited in their length, it was decided that they would be likely to omit 

from their discussions some of the necessary information scrutinized in this review, and might 

therefore artificially reduce the overall quality of the literature. Six short reports were thus 

removed from the analysis, and the results were recalculated. While it is true that the short
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Table 2.5: Results from Bibliometric Review for Quality of Reporting Criteria
Evaluation Criterion R esults

(n=117)
Clearly State Study Design

Yes 81 (69%)
No 36 (31%)

Justification of Study Design
Yes 48 (41%)
No 69 (59%)

Discussion of Cross-level Bias
Yes 51 (44%)
No 60 (51%)
Not applicable 6 (5%)

reports were likelier to neglect certain aspects of reporting, their omission had no appreciable 

effect on the results of the bibliometric review.

The second sensitivity analysis explored the effects of the included studies that had once 

been deemed tentative. There were sixteen such papers. As with the short reports, their 

removal did not appreciably affect the results or conclusions.

2.4 D iscussion

The bibliometric review has revealed many weaknesses that appear to be prevalent for 

cross-sectional ecological studies published in journals of epidemiology. The combination of 

methodological errors, small sample sizes, dependence on extant aggregate data, and incomplete 

reporting has caused an overall reduction of quality and clarity that may limit otherwise 

important research. Our results demonstrate that all of the three aforementioned research 

fundamentals need to be significantly improved in order for the situation to be remedied.

In terms of the statistical aspects, it is evident that researchers must better heed many of
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the important analytic results published in the biostatistical and epidemiologic literature. In 

particular, more attention needs to be paid to a priori sample size calculations, proper covaxiate 

adjustment, and the statistical validity of regression. It is also apparent that Ordinary Least 

Squares regression and simple approaches such as Pearson correlations have become the default 

techniques for many ecological analyses, which may hinder the potential of the research. In 

general, those seeking to publish with the use of this study design need to become better 

informed about the intricacies of statistical analysis at the ecological level and to adapt their 

methods as recommended.

Specifically, the discovery that, according to the results of Vittinghoff and McCulloch 

(2007), approximately twenty-percent of cross-sectional ecological analyses are likely not being 

performed within the bounds of statistical validity means that ecological researchers should 

become more aware of the impacts of their sample sizes and plan their analyses accordingly. 

We recommend that ecological researchers consult Vittinghoff and McCulloch (2007) as well 

as Rosenbaum and Rubin (1984) for guidance concerning the appropriate number of regression 

covariates and advice regarding any necessary covariate adjustment.

However, the area of greatest concern was not the quality of the statistical analysis. Our 

results have shown a severe paucity of important information when it comes to reporting the 

origins of the data, the intended level of inference, the nature of the design, and the study 

limitations. The sensitive nature of the ecological design makes it absolutely essential that 

all readers are sufficiently informed and thus able to decide for themselves whether or not the 

analysis and inferences are both valid and warranted. Too often, the authors seemingly assumed 

that their choice of study design was self-evident, did not require justification, and provided 

unambiguous results.

For the selection of ecological groups, the ideal is that every study chooses its observational 

units according to the specific needs of its research. This would optimize the inferences in terms 

of construct validity. However, as stated by Morgenstern (1995), ecological studies can at times 

be made possible or viable by extant aggregated data. While such data is surely a boon to
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ecological research if used strategically, it can nevertheless be a harmful crutch if it is used 

blindly or without consideration as to the underlying inferences intended by the authors. Since 

less than one-sixth of the studies contained in this review make it explicit that their ecological 

units were not selected simply because they were the default option, there is reason to wonder 

why or how the data were chosen. The high prevalence of studies conducted at the census- 

tract/neighbourhood and national levels may be a result of the fact that easily available census 

data tends to exist at these scales of aggregation. In either case, the uncertainty surrounding 

the matter is due to a lack of clarity on the part of the literature.

Similarly, the aforementioned ambiguity regarding the intended levels of inference in many 

of the reviewed papers might at times make it difficult for the scientific community to properly 

apply the results. We found that many authors would merely state the scope of their analysis, 

but would not clarify the particular causal association of interest. Since many ecological analyses 

can have their causal associations interpreted in several ways, i.e. on several levels, it becomes 

necessary for all authors to clarify their discussions appropriately.

Also, authors need to exercise more care when cautioning the results of their investigations. 

This aspect was sorely neglected for many of the reviewed articles. The responsibility of 

presenting candid, clear interpretations of one’s own research is perhaps greater for authors 

of ecological analyses than for those employing designs less prone to bias, It is necessary to 

provide a frank discussion that either makes reference to the perils of the ecological fallacy or 

explains why it cannot apply to the results. A commentary regarding not only the uses but 

also the limitations of the research is an indispensable part of any discussion, and is doubly so 

for ecological analyses.

In accordance with recommendations made by von Elm et al. (2007), we submit that there 

is presently a strong need for a set of guidelines that standardize the reporting of ecological 

studies, as well as their design and analysis. Many of the flaws identified in the literature 

by our review could be attenuated or prevented altogether if such a document were properly 

constructed and disseminated. Providing a set of guidelines that not only lists detailed criteria
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but also explains their importance and the consequences of their neglect may serve to emphasize 

their need to the research community.

The lack of counsel in the STROBE document for the reporting of ecological analysis has 

proven to be a gap in the literature that should be filled sooner rather than later. From 

the results of our review, it is clear that the cross-sectional ecological design continues to be 

an approach relied upon by epidemiologists, and we therefore suggest that it is a worthwhile 

endeavour to augment the STROBE document with guidelines that standardizes its reporting. 

As stated by von Elm et al. (2007), recommendations on the reporting of research can improve 

reporting quality. While the STROBE document has surely been motivated by this sentiment, 

we feel that it must continue to improve in its role by working towards the inclusion of study 

designs that are presently excluded. The current standard of reporting for the cross-sectional 

ecological design makes it an ideal candidate.

In particular, the results of our review have pointed out that the following items, listed below 

in Table 2.6, need to supplement the STROBE document. For ease of reference, we present 

Table 2.6 with the same headings, titles, and numberings that are present in the STROBE 

document itself.
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Table 2.6: Recommended Additions to the STROBE Document for the Reporting of Ecological Studies

S T R O B E  Section R ecom m endations
1.TITLE and ABSTRACT

Indicate the study’s design with a commonly 
used term in the title or abstract 
E c o lo g ic a l S tu d y  - u s e  o n e  o f  th e  fo l lo w in g  te r m s  

in  y o u r  d e s c r ip t io n :  ’e c o lo g ic a l’, ’e c o lo g ie ’, o r  

'a g g re g a te  ’

INTRODUCTION
3. O b je c t iv e s State specific objectives, including any prespeci­

fied hypotheses.
E c o lo g ic a l  S tu d y  - d e c la re  to  w h ic h  le v e l ( s )  o f  

in fe r e n c e  y o u r  in v e s t ig a t io n  i s  in te n d e d  to  a p p ly

METHODS
4. S tu d y  D e s ig n Present key elements of the study design early on 

in the paper.
E c o lo g ic a l s tu d y  - p r o v id e  a r a t io n a le  o r  ju s t i f ic a t io n  

f o r  th e  d e s ig n ,  ta k in g  y o u r  s tu d y  o b je c t iv e s  in to

a c c o u n t.

6. P a r t ic ip a n t s E c o lo g ic a l S tu d y  - G iv e  th e  e l ig ib i l i ty  c r i t e r ia  f o r  th e  

e co lo g ic a l u n i ts ,  a s  w e l l  a s  t h e i r  so u r c e s  a n d  a n y  

s a m p l in g  m e th o d s  u se d . P r o v id e  a  r a t io n a le  f o r  th e ir  

s e le c tio n .  I f  th e  u n i ts  w e re  a g g re g a te d  f o r  th e  s tu d y ,  

e x p la in  h o w  th is  w a s  d o n e  a n d  th e  c r i t e r ia  b y  w h ic h  

th e y  w e re  c o n s tr u c te d .

DISCUSSION
19 .L i m i t a t io n s Discuss limitations of the study, taking into 

account sources of potential bias or imprecision. 
E c o lo g ic a l S tu d y  - p r o v id e  a  d i s c u s s io n  th a t  e i th e r  

in f o r m s  th e  r e a d e r  o f  th e  p o t e n t ia l  f o r  c r o s s - le v e l  b ia s  

o r  e x p la in s  w h y  i t  i s  n o t  a  p o s s ib i l i t y  f o r  y o u r  r e s u lts  

a n d  in fe re n c e s .



Chapter 3

Discussion of Select Models and 
Biostatistical Results

3.1 Introduction

The preceding chapters have served as an introduction to ecological analysis. As we move 

forward, there axe statistical details that need to be brought to light. The purpose of this 

chapter is to provide two things: a mathematical overview of the analytic models that will be 

investigated in the simulation study, and a discussion of the key biostatistical results introduced 

in Chapter 1.

In this chapter, we primarily focus on ecological count data as the outcome of interest. 

As evidenced by the bibliometric review, count and rate responses in their various forms are 

the most common class of outcome for ecological analysis. Mortality rates, general incidence 

rates, prevalences, and raw counts comprised nearly 88% of the outcomes analysed by these 

studies. Thus, given the ability of generalized linear count-data models to handle rates as simple 

extensions of counts, we lose little by focusing our scope.

The statistical models themselves have been chosen for inclusion by the results of the 

bibliometric review. We selected the models that appeared most frequently and thus appear 

to be most relevant to cross-sectional ecological research. The analytic models included in 

this chapter are as follows: Ordinary Least Squares (OLS) regression, weighted LS regression, 

Poisson regression, and negative binomial regression.

37
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OLS regression and the mathematical properties of its ecological regression coefficient will 

be presented in Section 3.2.1. Weighted OLS regression shall be discussed within an ecological 

context in Section 3.2.2. Poisson and negative binomial regression will be presented in Sections 

3.3.1 and 3.3.2 respectively. Section 3.4.1 shall follow with a discussion of the ecological fallacy 

for linear regression models. The phenomena of pure specification bias, confounding by group, 

and effect modification by group will be discussed here. Mathematical descriptions of the 

covariate-adjustment insights provided by Rosenbaum and Rubin (1984) will also be presented 

in Section 3.4.1. Similarly, commentaries on the sources of the ecological fallacy and the results 

for covariate adjustment pertinent to generalized linear models will be given in Section 3.4.2.

N otation

Throughout this chapter, we will rely on a common set of notation to present the 

mathematics. For ease of reference, we summarize that notation here.

Borrowing from the work of Duncan et al (1961), assume that each ecological group has 

rij individuals for a total of N individuals across groups, and that (Xy , Yy) is an observation 

pair on the ith individual in the j th group, j  — I...k. Let Xy denote the exposure to an effect 

of interest or a covariate, and let Yy denote the study outcome. Then define the following:

i) Expected number of events within group j : E[Yj], where Yj  = ^2 Yy

ii) The within-group average exposure for group j: X j  =  Xy /  rij

iii) Grand mean over groups: X  =  J2j X i j /N

iv) Total sum of squares of X: Sxxt =  Yhj — X ) 2

v) Within-group sum of squares of X: SIXU) =  X)j(Xy ~ X j ) 2

vi) Between-group sum of squares of X: Sxx6 =  Wj(Xj — X ) 2
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vii) Total sum of products: Sxyt = ~  X)(Yij ~ Y)

viii) Within-group sum of products: SIV1U =  E j  £ , ( * «  -  X i W a  -  Yi)

ix) Between-group sum of products: Sxyb =  nj ( ^ j  — X)(V} — Y)

An identical set of relationships exist for the outcome variable Y. Note that we use shall 

essentially use rij interchangeably with t j , which represents the person-time for group j. 

Population size is often taken as a proxy measure for person-time when length of exposure 

is considered to be equal between groups.

Furthermore, we have that:

The correlation ratios of the two variables are:

X) CYA = Syyb/Syyt =  1 ~  Syyw/Syyt

X*) ^XA  =  Sxxb/Sxxl =  1 SXxw/ Sxxt 

Lastly, we have:

xii) Total regression coefficient: =  Sxytf  Sxxt

xiii) Average within-group regression coefficient: =  Sxyw/ S xxw

xiv) Between-group or ecological regression coefficient: 0b = Sxyb/Sxxb
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3.2 Linear Regression M odels
3.2.1 OLS Regression

For the modeling of ecological rates with a single predictor, the OLS regression equation 

can be expressed as

— =  Po +  P iX j  +  tj ej ~  7V(0, (T2) (3.1)
T l j

where the error terms tj are independent and identically distributed.

This simple statistical method was the single most prevalent form of analysis for the cross- 

sectional ecological studies contained in the bibliometric review. Unlike simple Pearson correla­

tions, OLS regression provides parameter estimates that are not sensitive to the variability of the 

exposure within groups and allows for simultaneous covariate adjustment. Here, the outcome 

of interest is a continuous variable assumed to be approximately normally distributed but the 

predictors are not, and therefore this approach can be used for a wide range of applications. 

In cross-sectional ecological analysis, it is most commonly applied to measures of incidence and 

mortality rates across groups. For example, Zhang et al. (2000) fit models of international 

lung cancer mortality rates with dietary habits after adjusting for the prevalence of smoking 

and other potential confounders.

The relative ease of regressing ecological rates or group-prevalences on a set of exposures and 

confounders has likely been a driving force behind the popularity of ecological OLS regression. 

While it can certainly be an important tool in ecological analysis, it has potential limitations 

as well. As mentioned in Chapter 1, linear regression at the group level produces regression 

coefficients - and therefore effect measures - that are not simple functions of the group-level data. 

Analogous to the results for ecological correlation coefficients, ecological regression coefficients 

are functions of the average within-group regression coefficient and the overall (individual-level)
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regression coefficient. This relationship is given below for the simple case of one predictor.

regression coefficient cannot be expressed independently of non-ecological data.

3.2.2 Weighted Linear Regression

Weighted regression is an extension of ordinary linear regression. It is used when certain 

assumptions of OLS regression are violated. Weighted regression places different emphasis on 

each observation to correct for issues of heteroskedasticity, or, as is more common in ecological 

analysis, to obtain standard errors that account for differential population sizes or possible 

clustering effects. The model can be written as

Note that the variance of the error terms for each observation are weighted by the 

corresponding group population. If the ecological groups do in fact differ in size, an unweighted 

regression may be inappropriate (Pocock et al., 1981). The concern is that larger groups provide 

more reliable measures of prevalence, incidence rates, effect measures, etc, and should therefore 

receive more weight in the analysis.

One simple method for weighting the ecological observations is to assign as weights the 

population sizes or some function thereof. This was a common approach for the cross-sectional 

ecological papers in our bibliometric review. An alternative method is to use weights inversely

Â  =  Pw +  C x A0b — Pw)

This is proven in Appendix B. As with correlation coefficients, this implies that the ecological

'3
N(  0, cr2/rij) (3.2)
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proportional to binomial sampling variance, but this can be too extreme. Pocock et al. 

(1981) claim that this approach tends to overweight larger areas, and they instead propose 

a weighting scheme based on a variance model that simultaneously incorporates sampling 

variation, unexplained variation, and variation accounted for by the predictors. The estimation 

of the variance components - and therefore the weights - relies on the combination of maximum 

likelihood and an iteratively reweighted least-squares approach. Interestingly, this is roughly 

the same estimation technique used by generalized linear models, which shall be discussed in 

section 3.3. The weighting method of Pocock et al (1981) is applicable to several forms of 

group-level mortality rates, such as standardized mortality ratios, but is likely to apply to 

group-level rates in general.

Insofar as we are aware, there are no large-sample inferences investigating the efficacy of 

these weighted regression approaches under varying ecological circumstances.

3.3 Generalized Linear Regression M odels

The linear regression models of section 3.2 are all predicated on the assumption that the 

outcomes of interest are continuous and approximately Normal. Many forms of ecological data, 

however, cannot meet these assumptions. For example, the number of incident cancer cases in 

a given group and time period cannot be said to follow a continuous distribution of any sort; 

the data is confined to the set of nonnegative integers. Linear regression may then produce 

meaningless effect measures and incorrect standard errors (Gardner et al, 1995). In general, 

discrete outcomes belong to classes known as count data and binary data. Logistic regression 

is ideal for modeling binary data, whereas Poisson regression and negative binomial regression 

handle the modeling of counts. While they are different models with different assumptions and 

capabilities, they are nevertheless heavily interrelated. To best demonstrate their relationships 

with one another, we begin with Poisson regression.
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3.3.1 Poisson Regression

Poisson regression models count data by assuming that the number of events from each 

ecological group follows a Poisson distribution. In ecological analysis, the number of occurrences 

of the outcome are counted by group. That is, the frequencies of the study outcome are known 

by group only. The expected number of events for a given group can be ecologically modeled 

as a function of the regional exposures and covariates. Poisson regression is not restricted to 

pure counts, however. If we know the amount of exposed person-time in a given group, we may 

transform the count into a rate and model that instead. If rij represents the total amount of 

person time in group j ,  then entering the natural log of rij into the Poisson equation provides 

an offset that accounts for any differential distribution of exposure time between groups. The 

inclusion of an offset term results in the following model:

E\Yj\ = exp(fio +  log(rij) + faXj) (3.3)

Population incidence rates and mortality rates can then be ecologically modeled, therefore 

providing estimates of incidence rate ratios. This greatly increases the efficacy of Poisson 

regression. For example, Rezaeian et al (2006) adopted this approach in order to model suicide 

rates as function of regional deprivation. Recall that a similar offset for population size could 

be included instead of person-time. If exposure time is considered to be equal between groups, 

then entering the natural log of the group sizes would have the same effect as including the 

natural log of the person-time. These two approaches are relatively common. In either case, 

Poisson regression is ultimately nonlinear in form; a contrast to the models of section 3.2.

Regardless of whether Poisson regression is used at the individual or ecological level, it is 

implicitly assumed that the expected number of events is equal to the variance of the counts. 

This is called equidispersion, and is a direct result of the underlying Poisson formulation. 

This assumption is often violated by what is known as overdispersion, which occurs when the 

variance of the counts is significantly greater than the mean. Overdispersion is caused by a
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positive within-group correlation or the absence of important explanatory covariates from the 

regression model(Hilbe, 2007). The effect of overdispersion is to provide false standard errors, 

and to therefore reduce the reliability of significance testing for parameter estimates. When 

this occurs, one is forced to adopt a model that does not make similar assumptions about the 

variance. There are several possible corrective models, all of which are extensions of Poisson 

regression itself.

One solution would be to adopt a method such as Generalized Estimating Equations 

(GEE) Poisson regression. GEE Poisson provides a regression equation and therefore effect 

measure estimates that are similar in form to those of ordinary Poisson regression. However, 

GEE Poisson allows for clustering within the data structure by estimating a nonparametric 

correlation matrix, and is therefore more capable of handling correlated count data. As a 

result, standard error estimates are likely to improve. A similar solution would be to adopt 

the variance estimation technique proposed by Moore and Tsiatis (1991), which directly builds 

from the GEE methods developed by Liang and Zeger (1986). Their method is also a less 

parametric version of ordinary Poisson regression since it does not specify the Poisson variance 

as being exactly equal to the mean. Instead, it defines the variance to be a general function of 

the mean with a random component that must be estimated from the data. This permits the 

variance component to accommodate overdispersion without introducing any further parametric 

assumptions. A more parametric but potentially more powerful approach is given by negative 

binomial regression, which we discuss in section 3.4.2.

It is worth noting that logistic and Poisson regression produce similar effect-measure 

estimates when outcomes are rare. This link between Poisson and logistic regression lies in 

the connection between counts, rates, and probabilities, as well as the fundamental connection 

between the Poisson and Binomial probability distributions. Under the Law of Rare Events, 

it can be shown that as the number of binomial trials approaches infinity while the number of 

successes remains constant the Poisson distribution with mean np comes to approximate the 

Binomial distribution (Kalbfleisch, 1985, page 125). In other words, rare events imply that the
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number of binomial successes np, where n is the number of trials and p is the probability of 

success, is approximately equal to the Poisson mean p. Since the underlying probability models 

converge in this special case, so do the regression models. Thus, we expect Poisson and logistic 

regression to be less and less distinguishable as outcomes become rarer. Rare outcomes are 

often the concern of ecological analysis, as demonstrated by the prevalence of such topics as 

regional cancer mortality or violent crime in the bibliometric review.

3.3.2 Negative Binomial Regression

Like Poisson regression, negative binomial regression is used to model count data. However, 

it is free from the equidispersion assumption and is therefore more capable of modeling 

correlated outcomes or data with excessive variance due to the inadequate explanatory power 

of the covariates or unmeasured intra-cluster correlation. Because of this, it is most frequently 

used to model Poisson data that is overdispersed, and is a direct extension of the Poisson 

model itself (Hilbe, 2007). As a result, the negative binomial regression model is the same 

as the Poisson model given by relation 3.3. However, the number of events Yj now follows a 

negative binomial distribution.

Though the negative binomial distribution has multiple parameterizations, it is easiest to 

understand its connection to the Poisson model when it is derived as a gamma-Poisson mixed 

distribution. It can be shown that if a given observation follows the Poisson distribution with 

variance Pj, and if the gamma distribution has variance pj /p ,  then the negative binomial 

distribution has variance Pj + p^/p.  This is clearly a direct combination of the two probability 

distributions. The variance can also be rewritten as pj + Kpj, which allows intuitive inferences 

regarding the dispersion parameter n and further illustrates that the negative binomial model 

is an extension of the Poisson. The value of k is empirically estimated from the data and can 

be subjected to hypothesis testing. Note that in the absence of overdispersion k — 0 and the 

negative binomial reduces to the Poisson.



46

There axe many extensions of the negative binomial model, but the simplest and most 

general version has a logarithmic link between E(jUj) and the covariates and predictors, and so 

is a nonlinear regression function as well. Note that the expected value of Poisson regression 

is the same as that of the negative binomial regression. Only the variances and underlying 

parameterizations differ. Note also that, like Poisson regression, negative binomial regression 

can accommodate incidence-rate outcomes with the inclusion of population or person-time 

offsets in the model.

Negative binomial regression is more restrictive than approaches such as GEE Poisson since 

it specifies the form of the variance. While this assumption may be untenable, it may increase 

efficiency of parameter estimation when the variance is approximately Gamma-Poisson in form 

(Gardner et al., 1995).
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3.4 Ecological Fallacy
3.4.1 Ecological Fallacy for Linear Models
P u re  Specification  B ias

The ecological regression, which is mainly limited to group means and prevalences, often 

does not follow the same functional form as the true individual-level risk model (Greenland, 

1992). Pure specification bias, also known as model specification bias, arises because of this 

phenomenon. Specifically, pure specification bias arises because nonlinear risk models change 

their functional form when aggregated over individuals (Wakefield, 2008).

As stated by Greenland (1992), most of the ecological literature employs linear models for 

their analyses. This observation is in agreement with the results of our bibliometric review. 

He posits that the reliance on this type of risk model may be due to misapplications of the 

Aggregation Theorem, which is as follows:
Suppose we have K ecological groups. Let X  denote the individual-level exposure and 

covariate vector. If the risk r follows a linear form at the individual level given by relationship 
(3.4)

r(x) =  p Q +  P X  (3.4)

where /? X  =  X\P\ + X 2P2 + • ••• +  X mf3m is a vector of exposures and covariates.
Then, the ecological regression of the corresponding group averages will also be linear and have 
the same coefficients:

f j  =  Po +  p X j  (3.5)

Unfortunately, the Aggregation Theorem does not necessarily hold; the assumptions of addi­

tivity and linearity at the individual level may simply not be true. In this case the estimation 

of nonlinear risks with linear ecological regression models may result in a poor fit for obvious 

reasons, especially when estimating rate ratios (Greenland, 1992). However, nonlinear ecological 

regressions employing simple group means for the estimation of nonlinear individual-level risks 

may also produce substantially biased effect measures. This is because the Aggregation Theorem
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does not extend to models that are, for example, exponential in form. Ignoring this fact often 

results in pure specification bias.
To illustrate, assume that event rates follow an exponential risk model at the individual 

level:
r(x) =  exp(/30 +  0 X )  (3.6)

This might suggest what has been referred to as the ’naive’ analogous ecological model:

f j  =  ezp(/?0* +  /3*Xy) (3.7)

which regresses the average rate in group j on the group averages of the exposure and covariates. 

However, this model does not follow from the individual-level model of (3.6) except under special 

circumstances. In fact, fitting model (3.7) and interpreting (3* will most often result in biased 

effect-measure estimates (Morgenstern, 1982). Only when there is complete homogeneity of 

exposure in each group will model (3.7) disallow pure specification bias, since then the average

value is equal to the individual value in every case (Wakefield, 2008).
Instead, the proper model for ecological estimation when the underlying risk follows the 

form of model (3.6) is given by
Lj =  Pq +  p X j  (3-8)

where Lj is the log-rate in ecological group j. This model will produce coefficients equal to 

those in model (3.6), thus guaranteeing accurate effect measures insofar as other possible biases 

have been accounted for. Unfortunately, Lj is an unlikely measure to exist in census data, and 

it rarely if ever is equal to the log of the group-average rates. Because of this, the ecological 

model most capable of estimating exponential risks is the one least likely to be used, and so 

pure specification bias may be a challenge for many ecological studies.
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Confounding and Effect M odification by Group

Confounding by group and effect modification by group are the two unique sources of 

ecological bias that may occur when performing simple linear regression of ecological data. 

The phenomenon of confounding by group is well known, but in spite of this it has often 

been misunderstood; many researchers seem to think that it can occur only when individual- 

level confounders axe differentially distributed between ecological groups (Greenland and 

Morgenstern, 1989). This is merely one source of confounding by group. In general, confounding 

by group arises when the background rates of disease, i.e. the rates in the unexposed 

populations, varies across groups. Such variation results from the differential distribution of 

extraneous risk factors, but these factors do not need to be confounders at the individual level 

within groups. More succinctly, it can be said that ecological bias results from confounding 

by group when there is a nonzero correlation between the background exposure rates and the 

average exposure levels within groups (Morgenstern, 1995).

Confounding by effect modification, on the other hand, occurs when the effect of the 

exposure is different across groups. This can occur when individual effect-modifiers are 

unequally distributed between groups, or when the average exposure has an effect that exerts 

itself independently of the individual-level exposure. The ecological regression, being confined 

to group prevalences and means, is unable to account for the within-group effect modification 

and as a result groups appear to be effect modifiers. Even in the absence of confounding by 

group, small amounts of effect modification by group can still result in largely biased ecological 

estimates (Greenland and Morgenstern, 1989).

It can be shown that linear ecological regression coefficients modeling rates can be decom­

posed into three terms: the average rate difference across groups, a bias term due to confounding 

by group, and a bias term due to effect modification by group (Greenland and Morgenstern, 

1989). For the case of binary exposures, with roj being defined as the rate in the unexposed 

(background rate) and r\j being the rate in the exposed in group j,
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the crude rate in group j is given by

R .j =  Pjr V +  i1 ~  Pj)roj =  r0j + PjDj = rojipjRj + [1 -  pj))

where pj is the proportion of the population exposed in group j, Dj = r\j - r0j = the rate 

difference, and Rj = Dj/hoj = the rate ratio. In the ecological linear regression of the crude 

rates on the exposure prevalences, the model is expressed as

R.j = a  +  b p j

From above, 1 +  (b/a) is the ecological rate-ratio estimator and b is the ecological rate 

difference. Furthermore, from linear regression theory we may state that

b =  cov(pi' R  _  cov(Pj > rQj) +  c°v (Pj, PjDj) 
var{pj) var(pj)

where the covariances and variances are between groups, not within. Let E(Dj) and E(p; ) be 

the weighted averages of Dj and pj over the groups. Then if we substitute

cov(PjiPjDj) = E(Dj) + cov{\pj -  E(pj)\pj, Dj) 
var(pj)

into the above, simplification and cancellation of terms reveals that

b =  E(D  ) + ctw^ r °j) +  C0V(\Pj~ E (Pj)]Pj>Dj) 
3 var(pj) var(pj) (3.9)
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The second term on the right-hand side of (3.9) can be seen as a term for confounding by 

group, since this source of bias will come to pass only if roj varies across groups, and therefore 

if cov(pj, r0;) > 0. The third term on the right-hand side can be seen as representing a bias 

component due to effect modification by group. This term is nonzero when Dj varies across 

groups, and therefore the covariance of ([pj - E(pj)]pj, Dj) is positive. Thus, the ecological rate 

difference, when estimated via simple linear regression, is equal to the average individual-level 

rate difference E(Dj) and two ecological bias terms.

Covariate A djustm ent for Linear M odels

A substantial number of ecological studies in the bibliometric review regressed age- or sex- 

adjusted outcomes on unadjusted predictors. The authors likely did this in an attempt to correct 

for the different distributions of age or sex between the ecological groups, and to therefore guard 

their estimates against confounding. However, Rosenbaum and Rubin (1984) have shown this 

approach to be erroneous and prone to bias. They base their argument on the supposition that 

the individual-level outcomes are modeled according to the following linear form:

E(Yaji) = a + J 2  0mam + rjXaji + 7tZj + ST (3.10)
m

with Y aji being the response of the \th person with age a in group j. Zj is a vector of 

characteristics of group j .  W aji is a vector of individual-level characteristics, and X aji is 

a binary exposure variable. Note that this model includes m  polynomial terms in age, though 

this may be replaced by other linear functions of age such as indicator variables.

One common method of attempting to adjust for age or sex in group-level analysis is to 

regress adjusted ecological outcomes on crude covariate averages. Another common approach 

is to regress age- or sex-specific group rates on crude covariate averages (e.g., separately regress 

the outcome rates of sexes or five-year age groups). Continuing with the notation of (3.10),
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these two models axe, respectively:

E(Yj.) =  a + VXj. +  7tZ, + i TW.j. (3.11)

E(Ya,) = a + r)Xj + 7TZ, + i TW j (3.12)

The above models have been shown to be biased when attempting to estimate the individual- 

level parameters of model (3.10). Models (3.11) and (3.12) produce biased estimates because 

they neglect to completely control for the confounding effects of age. That is, they account for 

the association between age and the outcome of interest by direct adjustment, but they do not 

remove the association between age and the exposure, which is then inserted into the model. 

Our bibliometric review found model (3.11) to be a relatively common method of adjusting for 

age and sex.

According to Rosenbaum and Rubin (1984), there are three main (though oft-ignored) 

approaches for properly dealing with age distributions that differ between groups. The first of 

these, described by equation (3.13) below, is a weighted regression of the age-specific outcome 

rates on age and the corresponding age-specific predictors, averaged for each group.

E{Yaj)  = a + ^ 2  Pmam + r}Xaj. -I- 7TZj -)- <5TW aj. (3.13)
m

Unbiased estimates for the individual-level parameters of model (3.10) may be obtained 

by the use of suitable weights for the group-average, age-specific outcome rates. For example, 

if the Yaji axe conditionally homoskedastic and uncorrelated, the appropriate weight for each 

observation is its group’s population size. In general, however, model (3.13) will produce 

unbiased estimates for the parameters of model (3.10) with any set of positive weights 

(Rosenbaum and Rubin, 1984).
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The second model regresses crude outcome rates on crude covariate averages and the 

moments of age for group j. That is, the outcome, exposure, and covariates axe unadjusted for 

age. See model (3.14) below.

EiYj.) =  a  + J^/3mMjk +  rjX.j. +  7TZj +  ¿TW.j. (3.14)
m

Note that is the kth moment of age in group j, which may be estimated from frequency 

tabulations if they exist. This may be possible with census data. If the necessary moments of age 

axe available for each group, then the parameters of model (3.10) can unbiasedly be estimated 

via weighted regression. As with model (3.13), the assumption of conditional homoskedasticity 

and independence entails that the appropriate weight for each observation is its corresponding 

group size.

The final model considered valid by Rosenbaum and Rubin (1984) regresses age-adjusted 

outcomes on age-adjusted predictors. This is an intuitive approach to solving the confounding 

problem and does not rely on rare data such as moments of age, as can be seen from relation 

(3.15). Here, both the outcome and the covariates are directly adjusted.

E(Y.i)  =  a  +  +  +  <315>
m a a a

= a' + rjX.j. + 7TZj + <5TW.j.

Under the conditional homoskedastic and independence assumptions mentioned above, this 

model will produce unbiased estimates of the individual-level parameters if groups are weighted 

by the proper coefficient.
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A G eostatistical Perspective

Most ecological studies rely on data that have been aggregated over spatial regions. 

Statistical geographers and spatial statisticians have shown that cross-level bias is related to 

the Modifiable Areal Unit Problem (MAUP) and the Change of Support Problem (COSP), two 

concepts rarely discussed in epidemiology.

The MAUP refers to the phenomenon by which the same data may lead to entirely different 

inferences depending on how they are aggregated. It may arise for two reasons. The first, 

referred to as an ‘aggregation effect’, is the tendency of larger scales of aggregation to be more 

and more dissimilar from their smaller constituent units. The second source of the MAUP 

is known as the ‘zoning effect’. It occurs when effect measure modifiers or confounders are 

differentially distributed over regions, and so alternative formations of the areal units at the 

same or similar scales result in different conclusions (Crawford and Young, 2004). In other 

words, the inferences may be sensitive to how the region of analysis is partitioned into subunits. 

These two issues are likelier to come to pass when adjacent spatial units are less similar than 

distal units, i.e. when there is negative spatial autocorrelation. This is because aggregating 

dissimilar units obscures the underlying information.

The Change of Support Problem, on the other hand, refers to the inherent difficulty of 

observing data processes of one form and inferring to another. For example, we may observe 

meteorological point data at weather stations and from this construct smooth temperature 

surfaces over a region. By so doing, we have gone from one form of support (point) to a 

completely different one (surface). In ecological analysis, data exist at the aggregate level 

and are used to infer to the support of the individual. The one form of support is related to 

the other, but has different statistical and spatial properties. Moreover, they may be entirely 

different causal constructs. The MAUP and the ecological inference problem can be seen as 

special cases of the COSP (Crawford and Young, 2004).
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3.4.2 Ecological Fallacy for Generalized Linear Models

Many of the mathematical results presented in section 3.4.1 have not been extended to 

nonlinear models or to generalized linear models. The wealth of formal insight for simple linear 

models appears to be lacking when it comes to more advanced analytic techniques. However, it is 

known that, as with ecological linear regression models, ecological generalized linear regression 

models are subject to the same sources of bias as individual-level analyses. They too are 

additionally susceptible to the sources of bias that are unique to ecological analysis.

It is worth noting that, in spite of this paucity, the results for pure specification bias 

mentioned in section 3.4.1 are particularly relevant for generalized linear models. This is due to 

the underlying connection between exponential functions and the logarithmic link functions used 

in the modeling of rates and probabilities. That is, since the most common form of generalized 

linear model is an exponential function, problems regarding the lack of correspondence between 

individual-level and group-level exponential regression coefficients are a threat. Most notably, 

Richardson et al (1987) have shown that exponential regression models develop a multiplicative 

bias term when aggregated over groups. More formally, if the mean level or prevalence of disease 

in group j  is denoted by Yj, then a convex risk model f ( x )  has the following property:

Yl =  £ [ /W ]  >  / ( * , )

This is a result of Jensen’s Inequality. For the specific case where the risk function is exponential 

and therefore of the form

f{x )  =  ce71

It follows that

Yj =  E[celx] =  c e ^ ^ 7’*)
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The bias coefficient 6 (7 , x) will depend on the exponential regression coefficient, the mean 

Xj,  and the parameters of /(x ) . The bias term will cause the relative risk to be biased unless 

it fortuitously cancels out from the numerator and denominator. This is rarely the case, and 

therefore the bias is likely to be nonzero for simple aggregate exponential models.

Covariate A djustm ent for N onlinear M odels

Note that the results for age-adjustment discussed in section 3.3.1 were limited to linear 

models with continuous outcomes. If instead the model is of a generalized linear form with a 

binary outcome, Rosenbaum and Rubin caution that the logit model does not lead to the types 

of straightforward conclusions that they discuss. They go on to add that, in spite of this, the 

logit model is not immune to the problems that result from improper adjustment of covariates 

and outcomes. Following this line of reasoning, we should expect this cautionary statement to 

apply to the other generalized linear models discussed in this chapter. While the specific results 

may vary between models, it is likely that regressing adjusted rates on unadjusted predictors 

will potentially lead to bias irrespective of whether linear or generalized linear models are used.
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3.5 Discussion

This chapter has presented some of the major mathematical complexities that are an 

inextricable challenge for any ecological analysis. We have formally elucidated the main points 

of the preceding chapters in order to justify the criterion used in the bibliometric review and 

to further motivate the simulation study. In particular, this chapter has illustrated some of the 

potential performance issues that may arise from: weighted ecological regression and the choice 

of weights; linear modeling versus generalized linear modeling for rate outcomes; the accuracy 

of effect-measure estimates and standard errors produced by the two interrelated generalized 

linear models when outcomes are rare; and the robustness of the various models to suboptimal 

ecological sample sizes.



Chapter 4

Simulation Study of Ecological 
Regression Models

4.1 Introduction

The purpose of this chapter is to present results of a simulation study comparing validity 

and power of several common statistical tests of association using ecological data, in which 

common ecological regression models were fit to group-level count data.

The objectives and selected tests of association axe presented in Section 4.2. A discussion 

and justification for the parameter combinations investigated in the simulation are given in 

Section 4.3.1. Evaluation criteria for the tests axe defined in Section 4.3.2. Simulation 

procedures axe presented in Section 4.3.3. Results follow in Section 4.4, and are discussed 

in Section 4.5.
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4.2 Study O bjectives

The primary objective of the simulation study is to evaluate the validity and power of tests 

for association in an ecological context. Attention is limited to a continuous covariate with 

count-data outcomes from a Poisson or negative binomial distribution. Data for the study 

are generated to be typical of incidence rates seen in the ecological studies of the bibliometric 

review. The continuous exposure variable was generated to simulate the proportion of people 

exposed within each ecological group - as would be the case, for example, if obtained as the 

average of binary individual-level outcomes.

The test statistics we evaluate come from four common regression models, each of which shall 

be fit to the simulated data:

1 . Ordinary Least Squares (OLS) regression

2. Weighted Least Squares regression, with weights proportional to population size

3. Poisson regression

4. Negative binomial regression

In this simulation, all test statistics shall test the null hypothesis of no association, Ho: j3\ =  0, 

versus the two-sided alternative Ha: f3\ ^  0.

Secondary objectives include estimating the bias and precision of estimated regression 

coefficients. These analyses serve primarily to inform interpretation of the results concerning 

validity and power of the investigated test statistics.
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4.2.1 Statistical Tests Investigated

The two linear models of interest mentioned previously both rely on the t-test for testing the 

significance of the regression coefficient. The two generalized linear models of interest, on the 

other hand, both use the Wald statistic and the Likelihood Ratio statistic. We briefly introduce 

these tests here.

Student’s t-test follows the t-distribution and is of the general form

t _  A ~ &Ho 
¿ 1

where d\ is the estimated standard error of (3\ and (5h0 is the value under the null hypothesis. 

The test is similar for OLS and weighted LS models, except the weighted model incorporates 

the weights into the standard error and the parameter estimate. Thus, the two models will 

differ when groups have different values for the weighting variable.

The Wald test is similar in form to the t-test, and can be written as:

v 2 [A -  W
W Var(fa)

Depending on how it is formulated, the Wald test is either asymptotically Normal or asymp­

totically chi-squared, with 1 degree of freedom. Both formulations are equivalent.

The Likelihood Ratio test is given by twice the difference between the maximized log 

likelihood under the alternative model and the maximized log likelihood under the null:

xIr =  2[1(h) -  W ]

where /3* is the maximum likelihood estimate of the regression parameter under the respective 

models. The Likelihood Ratio statistic asymptotically follows a chi-square distribution with 

1 degree of freedom. Although the Poisson and negative binomial models employ the same 

tests, their performances may nonetheless differ since estimated standard errors and likelihood 

functions will not be identical.



4.3 M ethods
4.3.1 Investigated Scenarios

We wish to tailor our simulation so that the scenarios of investigation reflect realistic 

circumstances often encountered by ecological researchers. To this end, we select the parameters 

and their specific values based on the characteristics of the literature noted in the bibliometric 

review. We list below the five parameters whose values shall determine the identity of each 

scenario:

61

• G roup Size: number of individuals within an ecological group.

•  Ecological Sample Size: the number of ecological units in a given scenario. It is equal 

to the number of counts that form the dependent variable in each regression analysis.

•  Overdispersion: the degree to which the variance of the counts exceeds that expected 

under a Poisson assumption.

•  Exposure: mean exposure prevalence of all groups, as well as the variability of exposure 

prevalences across groups.

•  Event R ate: whether outcomes are rare or common, relative to group size.

Our simulation is particularly interested in the behaviour of the chosen regression models 

when faced with small numbers of ecological groups, overdispersion, and rare outcomes. A 

total of 240 scenarios were examined to evaluate test validity while a total of 48 scenarios were 

evaluated to test power. The remainder of Section 4.3.1 includes detailed descriptions of and 

justification for the selected parameter combinations.

A summary of the parameter values of interest is given in Table 4.1.
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G roup Sizes

Motivated by the literature, we choose three group sizes to reflect census tracts, counties, 

and municipalities. These levels of aggregation are commonly used and are therefore relevant.

According to Statistics Canada, census tracts have anywhere between 2,500 to 8,000 people. 

To represent this scale of aggregation, we take as our average group-size parameter value 2,500. 

To represent counties and municipalities, we will use the average group sizes of 20,000 and 

250,000 respectively.

To model low variability between cluster sizes, we take the extreme case of equal group 

sizes and generate one of the above values for all ecological units. To model high variability, 

we include random variation by generating group sizes from a Uniform(o, b) distribution with 

a coefficient of variation of 0 .2 0 , where the coefficient of variation is defined as the ratio of the 

standard deviation to the mean. The Uniform mean is set to one of the above average values. 

This entails that variability increases with mean group size when variation is present, which is 

true in practice. See Table 4.1 for the mean, minimum, and maximum group sizes used in the 

simulation.

Ecological Sam ple Sizes

As noted in Chapter 2, studies using data at higher levels of aggregation often include 

fewer ecological units. For example, Treggiari and Weiss (2004) used data from nine geographic 

regions in the United States as part of their study comparing the incidence of mesothelioma 

to that of non-Hodgkins lymphoma. Sample sizes such as these represent an extremity whose 

effects axe presently unknown. We therefore include the sample sizes of 10, 20, 30, 40, and 50 

as the values for exploring small-sample circumstances. It is felt that beyond these values the 

models will begin to exhibit asymptotic properties, which we are not attempting to investigate.
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O verdispersion

One objective of this simulation is to determine the effects of excess variance between 

ecological units. Study outcomes will be generated from both Poisson and over-dispersed 

Poisson data. Over-dispersed Poisson outcomes will be generated using the negative binomial 

distribution. The overdispersion parameter for the negative binomial distribution is denoted k . 

When k =  0 the negative binomial distribution reduces to the Poisson distribution. We set k 

to 0, 0.05, 0.2 and 0.5.

In Chapter 5 we report results of an ecological analysis of international rates of homicide 

using data provided by Killias (1993). Killias (1993) was interested in the association between 

household gun ownership and homicide rates using data from 13 countries. Using a negative 

binomial regression model, we found that this association was highly statistically significant 

and that k  =  0.14 (95% confidence interval (0.03, 0.25)). These results were used to inform 

our selection of values for k in the simulation study.

Exposure

The nature of the exposure may entail that large amounts of the population are exposed, 

as is the case for common medical practices like prostate screening (Shaw et al, 2004), or, 

conversely, that exposure is rare. Attention is limited to a binary individual-level exposure, 

which is modeled as a proportion at the ecological level. Ecological-level exposure is generated 

using a beta random variable. A beta random variable with parameters a  =  2, 7  =  18 was used 

to generate data where exposure is likely to be uncommon (e.g. 1 0  percent exposed overall) 

and with little variability, while a Beta random variable with parameters a = 0.09,7 =  0.09 

generated data where exposure is common (e.g. 50 percent exposed) but highly variable. The 

latter will simulate scenarios in which most clusters are either entirely exposed or unexposed. 

The presence or absence of a group-level law would be an extreme example of this scenario. 

Plots of the two selected beta distributions are provided in Figure 4.1.
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Event R ates

We limit our attention to rare outcomes. This is because linear regression models are at a 

known disadvantage when events are common, since a linear approximation of a nonlinear model 

fares best when the exponent is small in value. This can be seen from the Taylor expansion of 

an exponential regression function under that assumption:

f* 1 + PX
Moreover, it was found that few studies transformed their outcomes to achieve linearity, 

and therefore an investigation of linear models attempting to circumvent the above problem 

with this technique would not seem relevant. Additionally, most of the literature tended to 

have primary outcomes for rare events such as cancer, infectious disease, self-harm, and violent 

crime. The majority of studies would therefore be best served by a simulation that gives its 

attention to exploring the effects of these circumstances. As such, we shall investigate event 

rates that occur for either 1% or 5% of the population on average.

Strength  o f A ssociation

In our simulation, the regression coefficient denoted by (3\ is the parameter of interest. 

This is because j3\ measures the strength of the ecological association between exposure and 

incidence rate. To assess validity we set (3\ =  0, and to assess power we set (3\ =  2.0. An 

exponential regression coefficient of 2 .0  is of realistic magnitude and prevents power from being 

too low or high for the parameter values investigated here.
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4.3.2 Evaluation Criteria

We have selected bias, power, and validity to be our evaluation criteria. Validity and power 

are calculated using empirical rejection rates for two-tailed tests assuming a 5% type I error rate 

using the six test statistics defined in Section 4.3.2. An exploration of bias may help understand 

any differences between the four models, and we therefore include it in the simulation as well. 

We define each criterion below:

1. Power: the ability of a given statistical test to correctly reject the null hypothesis 

of no association when a nonzero association truly exists. The inability to discover a 

statistically significant association is referred to as Type II error. Power is expressed as 

a value between 0  and 1 , which in our case denotes the proportion of simulated runs in 

which the model did not commit a Type II error.

2. Validity: the converse of the above. A Type I error is committed when the null 

hypothesis of no association is incorrectly rejected and a nonexistent causal link is then 

believed to be real. In our simulation, ‘validity’ shall refer to the proportion of runs in 

which the model did not commit a Type I error.

3. Bias: a measure of any systematic difference that may exist between the average 

parameter estimate and the true value of that parameter. There are many measures 

of bias, but we have chosen to use Relative Bias as our means of assessment. Relative 

Bias indicates the difference between the average point estimate of the parameter and its 

true value, standardized to the scale of the true parameter. It is calculated as follows:

Relative Bias — P~P
P
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Table 4.1: The Parameter Values Used in the Simulation Study

P aram eter Values Investigated

Ecological Sample Size 10, 20, 30, 40, 50

Group Size mean (min, max) coefficient of variation

2,500 (2500, 2500) 0.0
2,500 (1634, 3366) 0.2
2 0 ,0 0 0 (2 0 0 0 0 , 2 0 0 0 0 ) 0 .0

2 0 ,0 0 0 (13072, 26928) 0.2
250,000 (250000, 250000) 0.0
250,000 (163397, 336602) 0.2

Exposure Rate Low levels of exposure with little variability generated from
a Beta(2,18) distribution, and highly variable exposures from
a Beta(0.09, 0.09) distribution

Event Rate 1% of cluster population size and 5% of cluster population
size. This corresponds to the intercept values of /30 = -3 and
0o = -4-6 respectively

Overdispersion None (k = 0.0), small (k = 0.05), moderate (k =0.20), and
large (k = 0.50)

Strength of Association No association (0\ — 0), or moderate causal association
(Pi = 2 )
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4.3.3 Simulation Procedures

This simulation has been designed to generate overdispersed count data according to the 

following model:

E[Yi\ =  me0o+0lXi

where V* refers to the number of events for ecological group i\ n l denotes the population size 

for group i ; X i is the proportion of the population experiencing the binary exposure; 0q is a 

known constant; and 0\ is a known regression coefficient.

To achieve this, we use version 9.1 of the SAS Macro language. Each covariate in the 

above relation is created using the random-distribution generators provided by SAS. Exposure 

prevalence X* is generated to follow a beta(a, 7 ) distribution, which is bound between [0 ,1]. 

Group size is generated according to a Uniform distribution, either with or without variation 

between groups. The known values and 0\ determine the event rates and are pre-specified. 

The resulting expected number of events E[Y,] is then passed as the mean to either a negative 

binomial or Poisson random generator. The overdispersion parameter k is determined by the 

scenario being investigated. Thus, for each scenario, group-level count data is generated as a 

nonlinear function of random covariates, whose means and variances we control.

The counts are then passed to the four ecological regression models as the dependent 

variable. We set the linear regression model given by relation 3.1 to fit the count data solely 

as a function of exposure prevalence X*. The weighted regression model given by relation 3.2 

does the same, except that it weights each observation by group size. Both the Poisson and 

negative binomial regression employ models with exposure prevalence as the only predictor and 

group size as an offset variable, and so are of the form presented by relation 3.3. From each 

regression, we store the following information: the parameter estimate j3\, whether a Type I 

error was committed, and whether a Type II error was committed. The stored data are then 

used to calculate large-sample estimates of validity, power, and relative bias.

For each scenario we randomly generated 1000 data sets. This number of data sets was
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chosen to assure that a deviation of 0.014 (= 1.96-\/0.05 x (1 — 0.05)/1000) from a nominal 

level of 0.05 is found to be statistically significant (see, e.g. Bradley (1978), Klar and Darlington 

(2004)). Consequently, Type I error rates exceeding 7% are printed in boldface as being overly 

liberal.

The values of the seeds, which initialize and determine the pseudo-random numbers used 

in the simulation, have been selected to maximize the likelihood of independence between the 

random number generators, runs, and scenarios. Independence is important for making valid 

inferences from simulated data (Burton et al, 2006). We use the default seed in SAS, which 

is a function of the time and date. Although this does not allow the simulation results to be 

exactly replicated by other researchers, the alternative option of selecting fixed seeds is not 

recommended when using SAS Macro language.

For the two generalized linear regression models, we created additional variables that 

informed us if a given model did not achieve convergence. This was intended to act as a 

diagnostic for our simulation and to prevent us from unknowingly generalizing our results to 

paxameter combinations that did not produce reliable estimates.

A factorial design was used when investigating validity. Therefore, all possible parameter 

combinations were simulated, with the following exceptions: the regression coefficient was 

always set to zero, and the exposure level for each group was arbitrarily generated from a 

beta(2,18) distribution. The exposure level is not important for validity, since the value of j3\ 

cancels its effects regardless.

Fewer scenarios were investigated for power. Attention was limited to sample sizes of 50, 

since the negative binomial model has unstable Type I error rates with fewer ecological units. 

Unlike validity, however, both exposure distributions were simulated. Only moderate event rates 

of 5% were generated. This is because the highly-variable exposures generated here increase 

the variability of event rates across groups, making the distinction between 1% and 5 % less 

meaningful. All other parameter combinations were investigated, with f3\ = 2.

See Appendix C for the complete simulation code.
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4.4 R esults

The results of the simulation are tabulated and presented below. Tables 4.2 through 4.13 

give Type I error rates for the linear models as well as the Wald and Likelihood Ratio test 

statistics of the generalized linear models. Convergence rates that are less than one-hundred 

percent for the simulations investigating Type I error are shown in Table 4.14. Results for 

power follow in Tables 4.15 and 4.16.

A notable discovery from these results is that the Wald statistic of the negative binomial 

model has large Type I error rates when sample sizes are small. Since its distributional 

properties are asymptotic, it would be expected that its validity improves with sample size. 

Although this was indeed the case, it was found that the Wald statistic did not consistently 

achieve nominal Type I error rates when the number of ecological units was less than 30 or 

40. Even when the data originated from a negative binomial process, the Wald statistic exhibit 

inadequate small-sample behaviour.

The Likelihood Ratio test of the negative binomial model had better Type I error rates 

than its Wald counterpart. This result is in agreement with statistical theory, and also with 

previous empirical investigations. In spite of its superior performance, however, we found that 

it was unreliable for sample sizes smaller than 20 or 30.

Another important finding is the high validity of the two linear models. The results show 

that linear and weighted linear regression models axe remarkably robust to the discrete nature 

of count data, overdispersion, cluster size, sample size, and event rates. The linear models 

maintained nominal Type I error rates for all of the parameter combinations we investigated. 

This may be a result of the fact that the negative binomial distribution begins to appear 

approximately Gaussian when the expected number of events and the number of trials are 

large. Thus, the underlying Normality assumption of linear regression was perhaps preserved, 

even though the data were log-linear and discrete. Figures 4.2 and 4.3 graph two of the negative 

binomial distributions used in this simulation. Figure 4.2 shows the distribution of counts when 

the overdispersion parameter k = 0.05, the probability of success p = 0.15, and the expected
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number of events is approximately 125. Note the strong resemblance to a Gaussian curve. 

Figure 4.3 shows the distribution of counts with the same number of expected events when 

k = 0.50 and p = 0.016. Although Figure 4.3 is more skewed, it nonetheless bears a resemblance 

to a Gaussian curve as well.

It is important to note a potential limitation of the linear models. While they may have 

ideal Type I error rates and can therefore be used for hypothesis testing, their estimates of the 

strength of the association may be biased. This is because the true regression coefficient is in 

the exponent, and so is linear only on the natural-log scale. Our simulation found that when 

we set (3 = 2, both of the linear models consistently had relative biases between -0.93 and -0.98. 

Another limitation of linear models is that their intercepts and regression coefficients may lead 

to negative and therefore meaningless estimates of the rate ratio. However, these issues did 

not arise in our simulation under the null hypothesis, i.e, when the true value of the regression 

coefficient was zero. Regardless of the parameter combinations of the scenario, the relative bias 

of the linear models was often zero to the third or fourth decimal place, with the maximum 

relative bias being zero at two decimals.

The Poisson model proved to have overly liberal Type I error rates when the data were 

overdispersed. This is because overdispersion violates the inflexible variance structure of the 

Poisson model and causes the standard errors of the parameter estimates to be too small, and 

to therefore reject the null hypothesis too often. This is why its Type I error rates increased 

with the amount of overdispersion. Both the Wald and Likelihood Ratio test statistics proved 

to be highly susceptible. Less obvious was the finding that Type I error rates for the Poisson 

model were more sensitive to overdispersion when group sizes were larger.

It is interesting to note that, when exposure prevalence is low, the power of the four models 

are mainly dependent on the amount of overdispersion, with increasing overdispersion leading to 

lower power. This is likely due to the causal effect of exposure being obscured by the “noise” of 

the excess random variation. Although the impacts of group size and group variability were less 

notable, they produced an effect nonetheless. Specifically, for small amounts of overdispersion,



72

larger amounts of group variability reduce the power of the linear models. Also, we found that, 

for smaller levels of overdispersion, group size had a positive association with power.

The Wald and Likelihood Ratio statistics of the negative binomial model were far more 

comparable with respect to power. Although the Likelihood Ratio statistic seemed to have 

higher power overall, its superiority was marginal and did not manifest for small amounts of 

overdispersion. Effectively, the two methods demonstrated similar power. In fact, all of the 

regression models had very similar power. Negative binomial regression performed slightly 

better than OLS and Weighted LS regression only when there was variation between cluster 

sizes and overdispersion was small. However, at larger amounts of overdispersion the linear 

models tended to perform slightly better.

When exposure prevalence was highly variable, power was absolute for all models (results 

not shown). This is likely due to the fact that regression models have optimal power when the 

variability in the predictor is highest. This suggests that the models investigated here need not 

have power levels which are fatally susceptible to overdispersion. Note that the Poisson model 

has been excluded from the discussion of power since its large Type I error rates give it an 

unrealistic advantage.

Non-convergence was only an issue for the negative binomial model and only when the 

null hypothesis was true. Even then, it was relatively uncommon (see Table 4.14). Non­

convergence appeared to be caused by negative estimates of the overdispersion parameter k, 

which may have prevented the Hessian matrix from converging. Thus, non-convergence was 

likeliest when the data came from an equidispersed Poisson distribution. Small sample sizes 

were also a contributing factor. The lowest convergence rate was 93.1%. For every other model 

and parameter combination, convergence rates were 100%. When necessary, extra simulations 

were performed so that each scenario had 1 0 0 0  runs.



Frequency Negative Binomial Distribution

Number of Trials

Figure 4.2: Negative Binomial Distribution when Overdispersion is Low

Frequency Negative Binomial Distribution

Number of Trials

Figure 4.3: Negative Binomial Distribution when Overdispersion is High
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Table 4.2: Type I error rates for testing Ho : ¡3\ = 0 (nominal leve^O.05)1, with event rate
of 5% and group size of 2500 (coefficient of variation =  0). The overdispersion parameter
is denoted by k .

Ecological Sample Size
K M o d el 1 0 2 0 30 40 50

0 Simple Linear 0.054 0.050 0.060 0.040 0.046
Weighted Linear 0.054 0.050 0.060 0.040 0.046
Poisson Wald 0.050 0.051 0.055 0.042 0.047
Poisson LR 0.049 0.053 0.055 0.042 0.047
Negative Binomial Wald 0.114 0.079 0.075 0.058 0.061
Negative Binomial LR 0.085 0.063 0.067 0.049 0.057

0.05 Simple Linear 0.044 0.037 0.050 0.052 0.063
Weighted Linear 0.044 0.037 0.050 0.052 0.063
Poisson Wald 0.448 0.457 0.466 0.481 0.458
Poisson LR 0.448 0.457 0.469 0.482 0.458
Negative Binomial Wald 0.112 0.066 0.064 0.060 0.068
Negative Binomial LR 0.080 0.050 0.059 0.057 0.066

0 . 2 0 Simple Linear 0.051 0.049 0.050 0.058 0.054
Weighted Linear 0.051 0.049 0.050 0.058 0.054
Poisson Wald 0.689 0.724 0.687 0.695 0.705
Poisson LR 0.689 0.724 0.687 0.695 0.706
Negative Binomial Wald 0 . 1 1 1 0.074 0.072 0.072 0.066
Negative Binomial LR 0.082 0.066 0.061 0.061 0.060

0.50 Simple Linear 0.048 0.054 0.041 0.053 0.051
Weighted Linear 0.048 0.054 0.041 0.053 0.051
Poisson Wald 0.804 0.835 0.818 0.786 0.790
Poisson LR 0.803 0.837 0.818 0.786 0.790
Negative Binomial Wald 0.117 0.089 0.074 0.068 0.054
Negative Binomial LR 0.083 0.073 0.062 0.059 0.052

1 Overly liberal Type I error rates are in bold



Table 4.3: Type I error rates for testing Ho : =  0 (nominal leve^O.05)1, with event rate
of 5% and group size of 2500 (coefficient of variation = 0.2). The overdispersion parameter
is denoted by k .

K M odel 1 0

Ecological Sample Size 
20 30 40 50

0 Simple Linear 0.037 0.057 0.051 0.050 0.044
Weighted Linear 0.044 0.054 0.057 0.050 0.051
Poisson Wald 0.044 0.057 0.052 0.048 0.055
Poisson LR 0.045 0.056 0.052 0.047 0.056
Negative Binomial Wald 0.136 0.097 0.068 0.068 0.065
Negative Binomial LR 0.079 0.078 0.060 0.062 0.062

0.05 Simple Linear 0.055 0.067 0.054 0.050 0.044
Weighted Linear 0.058 0.068 0.064 0.056 0.045
Poisson Wald 0.464 0.463 0.469 0.479 0.455
Poisson LR 0.465 0.465 0.471 0.480 0.457
Negative Binomial Wald 0.134 0.080 0.064 0.056 0.065
Negative Binomial LR 0 . 1 1 1 0.064 0.054 0.055 0.058

0 . 2 0 Simple Linear 0.054 0.065 0.044 0.032 0.054
Weighted Linear 0.044 0.070 0.054 0.041 0.063
Poisson Wald 0.695 0.727 0.670 0.677 0.702
Poisson LR 0.695 0.727 0.670 0.679 0.702
Negative Binomial Wald 0.098 0.086 0.064 0.055 0.069
Negative Binomial LR 0.074 0.069 0.056 0.049 0.061

0.50 Simple Linear 0.057 0.046 0.050 0.046 0.043
Weighted Linear 0.060 0.053 0.061 0.060 0.055
Poisson Wald 0.786 0.794 0.788 0.790 0.780
Poisson LR 0.786 0.793 0.798 0.791 0.781
Negative Binomial Wald 0.113 0.067 0.077 0.046 0.057
Negative Binomial LR 0.088 0.053 0.066 0.043 0.049

1 Overly liberal Type I error rates are in bold



Table 4.4: Type I error rates for testing Ho : /?i = 0 (nominal level^O.05)1, with event rate
of 5% and group size of 20,000 (coefficient of variation = 0). The overdispersion parameter
is denoted by ft.

ft M odel 1 0

Ecological Sample Size 
20 30 40 50

0 Simple Linear 0.051 0.052 0.050 0.051 0.051
Weighted Linear 0.051 0.052 0.050 0.051 0.051
Poisson Wald 0.047 0.059 0.047 0.048 0.051
Poisson LR 0.046 0.059 0.047 0.048 0.051
Negative Binomial Wald 0.114 0.084 0.055 0.062 0.062
Negative Binomial LR 0.087 0.068 0.052 0.055 0.056

0.05 Simple Linear 0.044 0.058 0.048 0.045 0.043
Weighted Linear 0.044 0.058 0.048 0.045 0.043
Poisson Wald 0.775 0.767 0.781 0.752 0.765
Poisson LR 0.775 0.767 0.781 0.753 0.764
Negative Binomial Wald 0.114 0.081 0.072 0.059 0.052
Negative Binomial LR 0.086 0.069 0.065 0.055 0.051

0 . 2 0 Simple Linear 0.044 0.068 0.043 0.048 0.065
Weighted Linear 0.044 0.066 0.043 0.048 0.065
Poisson Wald 0.877 0.891 0.898 0.902 0.902
Poisson LR 0.878 0.891 0.898 0.902 0.902
Negative Binomial Wald 0.120 0.099 0.055 0.055 0.070
Negative Binomial LR 0.096 0.087 0.047 0.049 0.066

0.50 Simple Linear 0.040 0.059 0.044 0.053 0.049
Weighted Linear 0.040 0.059 0.044 0.053 0.049
Poisson Wald 0.944 0.924 0.919 0.924 0.921
Poisson LR 0.944 0.924 0.919 0.924 0.921
Negative Binomial Wald 0.117 0.084 0.065 0.059 0.061
Negative Binomial LR 0.088 0.069 0.055 0.055 0.056

1 Overly liberal Type I error rates are in bold
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Table 4.5: Type I error rates for testing Ho : /?i =  0 (nominal leve^O.05)1, with event rate
of 5% and group size of 20,000 (coefficient of variation = 0.2). The overdispersion parameter
is denoted by k .

Ecological Sample Size
K M o d el 1 0 2 0 30 40 50

0 Simple Linear 0.049 0.052 0.061 0.051 0.046
Weighted Linear 0.051 0.052 0.065 0.056 0.048
Poisson Wald 0.052 0.050 0.053 0.041 0.053
Poisson LR 0.052 0.050 0.054 0.041 0.053
Negative Binomial Wald 0 . 1 1 1 0.076 0.065 0.063 0.069
Negative Binomial LR 0.082 0.062 0.057 0.053 0.065

0.05 Simple Linear 0.046 0.053 0.047 0.047 0.057
Weighted Linear 0.059 0.058 0.053 0.060 0.055
Poisson Wald 0.773 0.781 0.775 0.788 0.788
Poisson LR 0.773 0.781 0.774 0.789 0.787
Negative Binomial Wald 0.126 0.092 0.064 0.067 0.064
Negative Binomial LR 0.098 0.081 0.061 0.062 0.059

0 . 2 0 Simple Linear 0.059 0.059 0.049 0.046 0.048
Weighted Linear 0.057 0.063 0.053 0.055 0.047
Poisson Wald 0.892 0.902 0.892 0.889 0.889
Poisson LR 0.892 0.902 0.892 0.889 0.889
Negative Binomial Wald 0.125 0.086 0.070 0.060 0.054
Negative Binomial LR 0.094 0.062 0.067 0.054 0.051

0.50 Simple Linear 0.049 0.052 0.048 0.048 0.047
Weighted Linear 0.055 0.055 0.057 0.056 0.058
Poisson Wald 0.928 0.922 0.915 0.920 0.925
Poisson LR 0.929 0.922 0.915 0.920 0.925
Negative Binomial Wald 0 . 1 1 1 0.076 0.064 0.054 0.054
Negative Binomial LR 0.076 0.053 0.058 0.049 0.044

1 Overly liberal Type I error rates are in bold



Table 4.6: Type I error rates for testing Ho: (3\ =  0 (nominal level=0.05)\ with event rate
of 5% and group size of 250,000 (coefficient of variation = 0). The overdispersion parameter
is denoted by k .

K M odel 1 0

Ecological Sample Size 
20 30 40 50

0 Simple Linear 0.046 0.057 0.044 0.057 0.052
Weighted Linear 0.046 0.057 0.044 0.057 0.052
Poisson Wald 0.041 0.053 0.046 0.055 0.046
Poisson LR 0.041 0.053 0.046 0.055 0.045
Negative Binomial Wald 0.101 0.092 0.064 0.081 0.059
Negative Binomial LR 0.075 0.075 0.056 0.070 0.060

0.05 Simple Linear 0.051 0.040 0.058 0.064 0.051
Weighted Linear 0.051 0.040 0.058 0.064 0.051
Poisson Wald 0.946 0.933 0.929 0.937 0.929
Poisson LR 0.946 0.933 0.929 0.937 0.929
Negative Binomial Wald 0.120 0.066 0.077 0.074 0.061
Negative Binomial LR 0.086 0.053 0.069 0.066 0.060

0 . 2 0 Simple Linear 0.052 0.044 0.053 0.043 0.062
Weighted Linear 0.052 0.044 0.053 0.043 0.062
Poisson Wald 0.984 0.977 0.961 0.949 0.963
Poisson LR 0.984 0.977 0.961 0.949 0.963
Negative Binomial Wald 0.128 0.080 0.066 0.049 0.070
Negative Binomial LR 0.099 0.061 0.056 0.048 0.066

0.50 Simple Linear 0.058 0.061 0.049 0.046 0.060
Weighted Linear 0.058 0.061 0.049 0.046 0.060
Poisson Wald 0.980 0.980 0.985 0.984 0.983
Poisson LR 0.980 0.980 0.985 0.984 0.983
Negative Binomial Wald 0 . 1 1 1 0.086 0.068 0.064 0.070
Negative Binomial LR 0.088 0.080 0.061 0.058 0.069

1 Overly liberal Type I error rates are in bold
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Table 4.7: Type I error rates for testing Ho: f3\ =  0 (nominal leve^O.05)1, with event
rate of 5% and group size of 250,000 (coefficient of variation =  0.2). The overdispersion
parameter is denoted by n.

Ecological Sample Size
K M o d el 1 0 2 0 30 40 50

0 Simple Linear 0.041 0.053 0.043 0.052 0.049
Weighted Linear 0.038 0.055 0.051 0.046 0.042
Poisson Wald 0.052 0.050 0.060 0.059 0.043
Poisson LR 0.052 0.050 0.061 0.059 0.043
Negative Binomial Wald 0.086 0.064 0.077 0.063 0.056
Negative Binomial LR 0.142 0.077 0.076 0.089 0.068

0.05 Simple Linear 0.055 0.049 0.046 0.039 0.049
Weighted Linear 0.055 0.052 0.055 0.044 0.054
Poisson Wald 0.945 0.926 0.926 0.920 0.935
Poisson LR 0.945 0.926 0.926 0.920 0.935
Negative Binomial Wald 0.112 0.072 0.071 0.060 0.065
Negative Binomial LR 0.082 0.059 0.060 0.050 0.057

0 . 2 0 Simple Linear 0.048 0.050 0.052 0.043 0.042
Weighted Linear 0.050 0.061 0.065 0.053 0.056
Poisson Wald 0.966 0.967 0.963 0.969 0.966
Poisson LR 0.966 0.967 0.963 0.969 0.966
Negative Binomial Wald 0.106 0.079 0.074 0.051 0.072
Negative Binomial LR 0.074 0.063 0.065 0.047 0.067

0.50 Simple Linear 0.045 0.045 0.058 0.058 0.048
Weighted Linear 0.053 0.055 0.056 0.063 0.057
Poisson Wald 0.983 0.973 0.978 0.976 0.979
Poisson LR 0.983 0.973 0.978 0.976 0.979
Negative Binomial Wald 0.113 0.067 0.067 0.073 0.056
Negative Binomial LR 0.082 0.058 0.054 0.064 0.053

1 Overly liberal Type 1 error rates are in bold
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Table 4.8: Type I error rates for testing H0: 0 \ = 0 (nominal level^O.05)1, with event rate
of 1% and group size of 2500 (coefficient of variation = 0). The overdispersion parameter
is denoted by k .

Ecological Sample Size
K M o d el 10 2 0 30 40 50

0 Simple Linear 0.043 0.048 0.045 0.053 0.041
Weighted Linear 0.043 0.048 0.045 0.053 0.041
Poisson Wald 0.047 0.049 0.044 0.055 0.040
Poisson LR 0.049 0.050 0.042 0.053 0.040
Negative Binomial Wald 0.106 0.085 0.062 0.068 0.047
Negative Binomial LR 0.082 0.068 0.053 0.064 0.044

0.05 Simple Linear 0.046 0.046 0.041 0.046 0.046
Weighted Linear 0.046 0.046 0.041 0.046 0.046
Poisson Wald 0.186 0.207 0.206 0.171 0.189
Poisson LR 0.185 0.210 0.207 0.168 0.188
Negative Binomial Wald 0.098 0.080 0.064 0.057 0.055
Negative Binomial LR 0.077 0.068 0.059 0.052 0.051

0 . 2 0 Simple Linear 0.056 0.054 0.052 0.053 0.036
Weighted Linear 0.056 0.054 0.052 0.053 0.036
Poisson Wald 0.450 0.418 0.441 0.459 0.400
Poisson LR 0.454 0.420 0.443 0.459 0.401
Negative Binomial Wald 0.103 0.087 0.062 0.068 0.037
Negative Binomial LR 0.088 0.073 0.054 0.062 0.038

0.50 Simple Linear 0.034 0.063 0.049 0.045 0.061
Weighted Linear 0.034 0.063 0.049 0.045 0.061
Poisson Wald 0.566 0.584 0.569 0.585 0.610
Poisson LR 0.566 0.585 0.569 0.588 0.609
Negative Binomial Wald 0.090 0.107 0.063 0.057 0.073
Negative Binomial LR 0.060 0.091 0.056 0.052 0.070

1 Overly liberal Type I error rates are in bold
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Table 4.9: Type I error rates for testing Ho : /3i =  0 (nominal leve^O.05)1, with event rate
of 1% and group size of 2500 (coefficient of variation = 0.2). The overdispersion parameter
is denoted by k .

Ecological Sample Size
K M odel 1 0 2 0 30 40 50

0 Simple Linear 0.065 0.044 0.043 0.049 0.044
Weighted Linear 0.062 0.044 0.047 0.057 0.055
Poisson Wald 0.049 0.046 0.047 0.056 0.054
Poisson LR 0.049 0.046 0.045 0.058 0.053
Negative Binomial Wald 0.107 0.069 0.060 0.072 0.063
Negative Binomial LR 0.082 0.061 0.052 0.063 0.060

0.05 Simple Linear 0.058 0.049 0.052 0.057 0.059
Weighted Linear 0.060 0.057 0.066 0.059 0.068
Poisson Wald 0.201 0.192 0.192 0.194 0.203
Poisson LR 0.206 0.190 0.194 0.194 0.202
Negative Binomial Wald 0.133 0.073 0.076 0.061 0.069
Negative Binomial LR 0.091 0.060 0.070 0.055 0.066

0 . 2 0 Simple Linear 0.047 0.050 0.040 0.066 0.051
Weighted Linear 0.054 0.062 0.050 0.077 0.067
Poisson Wald 0.420 0.408 0.413 0.434 0.450
Poisson LR 0.421 0.411 0.413 0.432 0.450
Negative Binomial Wald 0.118 0.078 0.058 0.085 0.052
Negative Binomial LR 0.088 0.063 0.053 0.070 0.049

0.50 Simple Linear 0.053 0.041 0.052 0.048 0.034
Weighted Linear 0.061 0.053 0.068 0.057 0.043
Poisson Wald 0.785 0.793 0.787 0.807 0.777
Poisson LR 0.784 0.793 0.787 0.808 0.778
Negative Binomial Wald 0.125 0.074 0.077 0.060 0.041
Negative Binomial LR 0.092 0.060 0.067 0.050 0.035

1 Overly liberal Type I error rates are in bold



Table 4.10: Type I error rates for testing H0 : = 0 (nominal leve^O.05)1, with event rate
of 1% and group size of 20,000 (coefficient of variation = 0). The overdispersion parameter 
is denoted by n.

K M odel 1 0

Ecological Sample Size 
20 30 40 50

0 Simple Linear 0.062 0.051 0.052 0.048 0.042
Weighted Linear 0.062 0.051 0.052 0.048 0.042
Poisson Wald 0.064 0.050 0.051 0.038 0.037
Poisson LR 0.065 0.050 0.051 0.037 0.040
Negative Binomial Wald 0.148 0.078 0.069 0.058 0.049
Negative Binomial LR 0.109 0.066 0.061 0.053 0.046

0.05 Simple Linear 0.060 0.056 0.043 0.043 0.050
Weighted Linear 0.060 0.056 0.043 0.043 0.050
Poisson Wald 0.544 0.551 0.546 0.529 0.584
Poisson LR 0.543 0.553 0.545 0.528 0.585
Negative Binomial Wald 0.121 0.080 0.055 0.063 0.061
Negative Binomial LR 0.090 0.070 0.050 0.054 0.056

0 . 2 0 Simple Linear 0.046 0.063 0.041 0.037 0.044
Weighted Linear 0.046 0.063 0.041 0.037 0.044
Poisson Wald 0.747 0.765 0.744 0.766 0.752
Poisson LR 0.747 0.765 0.743 0.766 0.752
Negative Binomial Wald 0.110 0.091 0.053 0.051 0.060
Negative Binomial LR 0.086 0.078 0.048 0.048 0.057

0.50 Simple Linear 0.045 0.038 0.056 0.050 0.052
Weighted Linear 0.045 0.038 0.056 0.050 0.052
Poisson Wald 0.848 0.860 0.852 0.850 0.836
Poisson LR 0.848 0.860 0.852 0.850 0.836
Negative Binomial Wald 0.110 0.065 0.074 0.067 0.074
Negative Binomial LR 0.080 0.054 0.062 0.062 0.068

1 Overly liberal Type I error rates are in bold
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Table 4.11: Type I error rates for testing H0: 0 \ = 0 (nominal leve^O.05)1, with event
rate of 1% and group size of 20,000 (coefficient of variation = 0.2). The overdispersion
parameter is denoted by k .

Ecological Sample Size
K M odel 1 0 2 0 30 40 50

0 Simple Linear 0.053 0.034 0.049 0.050 0.055
Weighted Linear 0.050 0.040 0.045 0.049 0.051
Poisson Wald 0.045 0.055 0.049 0.073 0.059
Poisson LR 0.044 0.055 0.047 0.072 0.059
Negative Binomial Wald 0.110 0.076 0.067 0.092 0.062
Negative Binomial LR 0.084 0.066 0.059 0.083 0.057

0.05 Simple Linear 0.057 0.053 0.044 0.062 0.055
Weighted Linear 0.058 0.062 0.050 0.069 0.066
Poisson Wald 0.564 0.554 0.558 0.566 0.563
Poisson LR 0.563 0.552 0.558 0.566 0.564
Negative Binomial Wald 0.123 0.075 0.067 0.073 0.068
Negative Binomial LR 0.098 0.065 0.061 0.070 0.066

0 . 2 0 Simple Linear 0.035 0.049 0.036 0.052 0.047
Weighted Linear 0.041 0.059 0.050 0.060 0.068
Poisson Wald 0.734 0.754 0.765 0.757 0.742
Poisson LR 0.735 0.754 0.766 0.755 0.743
Negative Binomial Wald 0.114 0.081 0.067 0.062 0.065
Negative Binomial LR 0.088 0.069 0.061 0.059 0.063

0.50 Simple Linear 0.061 0.046 0.042 0.041 0.046
Weighted Linear 0.065 0.060 0.052 0.049 0.059
Poisson Wald 0.833 0.840 0.857 0.844 0.845
Poisson LR 0.832 0.840 0.856 0.844 0.845
Negative Binomial Wald 0.132 0.078 0.064 0.050 0.063
Negative Binomial LR 0.106 0.066 0.050 0.046 0.056

1 Overly liberal Type I error rates are in bold



Table 4.12: Type I error rates for testing Ho: (3i =  0 (nominal level^O.05)1, with event rate
of 1% and group size of 250,000 (coefficient of variation = 0). The overdispersion parameter
is denoted by k .

K M odel 1 0

Ecological Sample Size 
20 30 40 50

0 Simple Linear 0.059 0.052 0.053 0.057 0.044
Weighted Linear 0.059 0.052 0.053 0.057 0.044
Poisson Wald 0.051 0.041 0.058 0.052 0.050
Poisson LR 0.051 0.042 0.058 0.052 0.050
Negative Binomial Wald 0.119 0.076 0.081 0.067 0.055
Negative Binomial LR 0.097 0.064 0.070 0.062 0.052

0.05 Simple Linear 0.042 0.042 0.053 0.058 0.055
Weighted Linear 0.042 0.042 0.053 0.058 0.055
Poisson Wald 0.858 0.848 0.858 0.868 0.859
Poisson LR 0.858 0.848 0.858 0.868 0.859
Negative Binomial Wald 0.119 0.071 0.068 0.077 0.061
Negative Binomial LR 0.094 0.063 0.060 0.070 0.059

0 . 2 0 Simple Linear 0.049 0.057 0.061 0.058 0.053
Weighted Linear 0.049 0.057 0.061 0.058 0.053
Poisson Wald 0.927 0.943 0.929 0.940 0.939
Poisson LR 0.927 0.943 0.929 0.940 0.939
Negative Binomial Wald 0.107 0.085 0.082 0.074 0.070
Negative Binomial LR 0.083 0.072 0.074 0.069 0.063

0.50 Simple Linear 0.052 0.045 0.052 0.045 0.050
Weighted Linear 0.052 0.045 0.052 0.045 0.050
Poisson Wald 0.956 0.949 0.960 0.950 0.952
Poisson LR 0.956 0.949 0.961 0.950 0.952
Negative Binomial Wald 0.125 0.082 0.070 0.063 0.062
Negative Binomial LR 0.098 0.072 0.064 0.059 0.055

1 Overly liberal Type I error rates are in bold
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Table 4.13: Type I error rates for testing Ho: Pi — 0 (nominal level^O.05)1, with event
rate of 1% and group size of 250,000 (coefficient of variation = 0.2). The overdispersion
parameter is denoted by k .

K M odel 1 0

Ecological Sample Size 
20 30 40 50

0 Simple Linear 0.050 0.027 0.045 0.052 0.050
Weighted Linear 0.041 0.034 0.042 0.051 0.046
Poisson Wald 0.054 0.042 0.047 0.044 0.042
Poisson LR 0.053 0.041 0.047 0.044 0.043
Negative Binomial Wald 0.102 0.073 0.067 0.065 0.064
Negative Binomial LR 0.092 0.059 0.062 0.064 0.061

0.05 Simple Linear 0.043 0.057 0.056 0.048 0.050
Weighted Linear 0.044 0.059 0.060 0.049 0.056
Poisson Wald 0.856 0.842 0.868 0.877 0.865
Poisson LR 0.856 0.842 0.868 0.877 0.865
Negative Binomial Wald 0.108 0.082 0.070 0.070 0.061
Negative Binomial LR 0.077 0.072 0.064 0.057 0.054

0 . 2 0 Simple Linear 0.055 0.053 0.047 0.057 0.064
Weighted Linear 0.058 0.063 0.056 0.068 0.070
Poisson Wald 0.932 0.935 0.939 0.954 0.941
Poisson LR 0.932 0.935 0.939 0.954 0.941
Negative Binomial Wald 0.112 0.086 0.058 0.082 0.063
Negative Binomial LR 0.089 0.074 0.049 0.072 0.060

0.50 Simple Linear 0.051 0.050 0.053 0.047 0.055
Weighted Linear 0.058 0.056 0.057 0.057 0.069
Poisson Wald 0.947 0.955 0.962 0.961 0.960
Poisson LR 0.947 0.955 0.962 0.961 0.960
Negative Binomial Wald 0.109 0.079 0.078 0.062 0.063
Negative Binomial LR 0.079 0.067 0.070 0.063 0.060

1 Overly liberal Type I error rates are in bold

V
V

 
i

l
l

 #1



86

Table 4.14: Convergence rates of the negative binomial model for testing Ho: /?i = 0. For all 
other models and. scenarios, convergence rates were one-hundred percent.

Sample Size G roup Size (c.v.)f Event R ate K * Convergence 
R ate (%)

10 2500 0.00 5% 0.00 99.6
10 2500 0.20 5% 0.00 92.7
10 2500 0.00 1% 0.00 99.0
10 2500 0.00 1% 0.05 99.7
10 2500 0.20 1% 0.00 92.6
10 2500 0.20 1% 0.05 98.6
10 20,000 0.20 5% 0.00 94.1
10 20,000 0.20 1% 0.00 93.1
10 250,000 0.20 5% 0.00 91.3
10 250,000 0.00 1% 0.00 99.9
10 250,000 0.20 1% 0.00 94.7
20 2500 0.20 5% 0.00 99.7
20 2500 0.20 1% 0.00 99.8
20 20,000 0.20 5% 0.00 99.9
20 20,000 0.20 1% 0.00 99.9
20 250,000 0.20 5% 0.00 97.5
20 250,000 0.20 1% 0.00 99.5
30 250,000 0.20 5% 0.00 99.3
40 250,000 0.20 5% 0.00 99.9

t c.v. = coefficient of variation 
* k  =  overdispersion parameter
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Table 4.15: Power for testing Ho: 0\ — 0 when (3\ = 2, ecological sample size =  50, coefficient 
of variation = 0 , event rates are 5%, and group-level exposure prevalence is low. Models with 
overly liberal Type I error rates have been omitted.___________________________________

Overdispersion Parameter
G roup Size Model 0 .0 0 0.05 0 .2 0 0.50

2500 Simple Linear 1 .0 0 0.945 0.532 0.268
Weighted Linear 1 .0 0 0.945 0.532 0.268
Negative Binomial Wald 1 .0 0 0.949 0.527 0.247
Negative Binomial LR 1 .0 0 0.947 0.526 0.252
Poisson Wald 1 .0 0 - - -

Poisson LR 1 .0 0 - - -

2 0 , 0 0 0 Simple Linear 1 .0 0 0.952 0.542 0.272
Weighted Linear 1 .0 0 0.952 0.542 0.272
Negative Binomial Wald 1 .0 0 0.955 0.535 0.258
Negative Binomial LR 1 .0 0 0.953 0.539 0.264
Poisson Wald 1 .0 0 - - _

Poisson LR 1 .0 0 - - -

250,000 Simple Linear 1 .0 0 0.963 0.536 0.260
Weighted Linear 1 .0 0 0.963 0.536 0.260
Negative Binomial Wald 1 .0 0 0.967 0.538 0.243
Negative Binomial LR 1 .0 0 0.964 0.536 0.253
Poisson Wald 1 .0 0 - - -

Poisson LR 1 .0 0 — _ —
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Table 4.16: Power for testing Ho: 0\ = 0 when f3\ = 2 , ecological sample size = 50, coefficient 
of variation = 0.20, event rates are 5%, and group-level exposure prevalence is low. Models 
with overly liberal Type I error rates have been omitted._______________________________

Qverdispersion Parameter
G roup Size Model 0 .0 0 0.05 0 .2 0 0.50

2500 Simple Linear 0.972 0.789 0.522 0.254
Weighted Linear 0.973 0.881 0.511 0.254
Negative Binomial Wald 1 .0 0 0.937 0.533 0.261
Negative Binomial LR 1 .0 0 0.937 0.536 0.267
Poisson Wald 1 .0 0 - - -

Poisson LR 1 .0 0 - - -

2 0 , 0 0 0 Simple Linear 1 .0 0 0.829 0.472 0.249
Weighted Linear 1 .0 0 0.836 0.482 0.263
Negative Binomial Wald 1 .0 0 0.963 0.512 0.239
Negative Binomial LR 1 .0 0 0.963 0.554 0.248
Poisson Wald 1 .0 0 - - -

Poisson LR 1 .0 0 - - -

250,000 Simple Linear 0.984 0.838 0.449 0.262
Weighted Linear 0.988 0.835 0.444 0.266
Negative Binomial Wald 1 .0 0 0.979 0.531 0.249
Negative Binomial LR 1 .0 0 0.977 0.533 0.252
Poisson Wald 1 .0 0 - - _
Poisson LR 1 .0 0 — — _
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4.5 Discussion

This simulation has revealed several key findings about the performance of linear and 

nonlinear regression models within the context of group-level count data. In particular, we 

have shown that the Wald estimator of the negative binomial regression model does not provide 

adequate Type I error rates with small sample sizes, even when the count data originates from 

a negative binomial process with known covariates and overdispersion values. Predictably, 

the Likelihood Ratio statistic provided better Type I error rates and so achieved nominal 

levels with fewer ecological units. Previous empirical investigations support this finding. For 

example, Lawless (1987) summarizes a simulation performed by Charmane Dean, who found 

that inferences regarding /? using Likelihood Ratio statistics are satisfactory except in very 

small samples. This is because the Likelihood Ratio statistic quickly approaches the Chi- 

square distribution. This is of particular importance to researchers using SAS as their analytic 

tool, since SAS provides the Wald statistic by default but will only provide Likelihood Ratio 

statistics when ordered to do so. Thus, users unaware of the limitations of the Wald statistic 

will automatically and unknowingly receive the p-values that are likeliest to cause false-positive 

conclusions.

We have also shown that OLS and Weighted LS regression models have Type I error 

rates that are surprisingly robust to small ecological sample sizes, overdispersion, rare events, 

and group size. Unlike Poisson and negative binomial regression, these two models were 

consistently reliable when the data were overdispersed and sample sizes were less than 30. While 

this is certainly a desirable property for researchers with small ecological datasets violating 

assumptions of equidispersion, it is worth emphasizing that issues of cross-level bias remain in 

spite of the robust performance. As discussed in Chapter 3, the ecological fallacy is a known 

potentiality for linear models. Our simulation focused on aggregated data, and therefore Type 

I error rates refer to the group-level regression coefficient, not the individual-level one. This is 

true for the generalized linear models as well.
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In light of these findings, it is recommended that researchers investigating group-level count 

data avoid the negative binomial model when faced with sample sizes less than 2 0 , or perhaps 30. 

We also recommend that the Likelihood Ratio statistic be used in lieu of the Wald statistic when 

the data are believed to follow a Poisson or negative binomial process. In the case of very small 

samples, a combination of modeling approaches would perhaps be most prudent. Specifically, 

linear models could be used to test the null hypothesis, and since the generalized linear models 

are unbiased even with small samples, they could be used for effect measure estimation if there 

is evidence of association. We also recommend that the researcher be cautious when the data 

show evidence of overdispersion, since this can drastically reduce power for even the most robust 

model. The negative binomial model, which should have optimal power, was no exception.



Chapter 5

Example: An International Ecologic 
Study of Gun Ownership and 
Homicide Rates

5.1 Introduction

The purpose of this chapter is to provide an example of ecological regression using data 

from Koepsell and Weiss (2003) and Killias (1993), We shall use OLS, weighted LS, Poisson, 

and negative binomial regression to analyze the association between national gun ownership 

prevalence and national homicide rates. These data come from Killias (1993), who found 

a positive association between levels of gun ownership and rates of homicide and suicide 

(Spearman correlation coefficient pa = 0.658). We will compare the results of the four regression 

methods to Killias’ findings and to each other.

Killias (1993) used national-level data from 13 countries in Western Europe and North 

America. We present some of these data in Table 5.1. National-level data were chosen because 

it was felt that state-level data would not provide enough variability in the prevalence of gun 

ownership. We fit the four aforementioned regression models to the data to see whether they 

would support Killias’ ecological correlation. For each model, we set the national homicide 

rate to be the outcome, with the percentage of households with firearms as the only predictor. 

Results are presented in Table 5.2. Fitted regression curves are shown in Figures 5.1 and 5.2.
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Table 5.1: Levels of Gun-ownership and Homicide Rates per million persons in 13 Countries

Country Overall
Homicide R ate

% of Households 
W ith  Guns

Population
(millions)

Australia 19.5 19.6 16.7
Belgium 18.5 16.6 9.9
Canada 26.0 29.1 27.1
England &; Wales 6.7 4.7 47.1
Finland 29.6 23.2 4.9
France 12.5 2 2 .6 55.4
Netherlands 1 1 .8 1.9 14.7
Norway 1 2 .1 32.0 4.2
Scotland 16.3 4.7 5.1
Spain 13.7 13.1 40.5
Switzerland 11.7 27.2 6 .2

United States 75.9 48.0 248.0
West Germany 1 2 .1 8.9 60.7

5.2 A spects of Study D ata

It is interesting to note that the homicide, gun ownership, and population data all come from 

different sources and time periods. The percentage of households with firearms was estimated 

for each country via the International Crime Survey, which collected data from the year 1989. 

Homicide data between 1983 and 1986 came from the World Health Organization. Koepsell 

and Weiss (2003) obtain population estimates from the 1990 World Almanac. Obviously, the 

use of multiple sources and different dates may be problematic. The reliance on survey data 

such as these is a potential limitation for many ecological studies.

Also, the large population size, gun ownership level, and homicide rate of the United States 

as compared to the other countries are quite striking. These are by far the largest in each of their 

respective categories. This means that the United States may drive much of the association 

between homicide rates and gun ownership. England & Wales appear to occupy the opposite 

end of the spectrum, with homicide rates and gun ownership percentages in the single digits.
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The average population size is 41.6 million, with a standard deviation of 65.2 million. 

Therefore, the estimated coefficient of variation is 1.57, which is much higher than the value 

used in the simulation. Based on the results of the simulation, however, we might expect the 

power of tests based on linear regression models to be reduced. If overdispersion is low, this 

may be at least partially offset by the considerable group sizes of these nations, which axe orders 

of magnitude larger than the group sizes we investigated. The Wald tests and Likelihood Ratio 

tests should remain unaffected by the high variability in group size. Power for all models may 

be increased by the relatively large variability in exposure, which ranges from 1.9% to 48%. 

The net effect of these characteristics in terms of power is difficult to predict.

5.3 R esults

From the results of Table 5.2, it can be seen that both the linear and generalized linear w
H

models found a highly significant positive association between national levels of gun ownership 3m
and homicide rates. At the ecological level at least, it would seem that these results support ¡j)

the findings of Killias. The weighted LS regression was better able to account for the disparate ■

population sizes of the countries, and so explained more of the variability in homicide rates than J

the OLS model (Adjusted R2: 0.91 vs 0.48 respectively). The negative binomial model detected f
J

overdispersion, and estimated its value to be 0.14. This is comparable to what was considered Sj

‘moderate’ overdispersion in the simulation. As a result, we should expect the Poisson model 

to be highly susceptible to Type I error rates, and should take its conclusions with caution.

Nevertheless, both of the generalized linear models should produce unbiased effect measure 

estimates, and we do find that their estimates are similar.



Table 5.2: Results of Four Regression Models Estimating the Effect of National Gun Ownership 
Prevalence on Homicide Rates for 13 Western Countries

Model Test h 95% Confidence 
Limits

P-value RR  *

Simple Linear T-test 0.987 (0.365, 1.608) 0.005 72
Weighted Linear T-test 1.678 (1.342, 2.017) < 0.001 Incalculable
Poisson Wald 0.052 (0.051, 0.053) < 0.0001 185
Poisson LR 0.052 (0.051, 0.053) < 0.0001 185
Negative Binomial Wald 0.036 (0.021, 0.051) < 0.0001 36
Negative Binomial LR 0.036 (0.020, 0.052) < 0.0001 36

t ¿3 =  estimated regression coefficient for proportion of households with firearms 
1 estimated rate ratio, comparing nations with firearms in every home to nations without firearms

5.4 D iscussion

Based on the results of any of these models, we might tentatively conclude that the number 

of homicides in a country is associated with number of households with firearms. But what are 

the limitations of these data? We know from the bibliometric review that they are not atypical 

of cross-sectional ecological studies. They come from pre-existing tabulations and surveys; are 

at a common level of aggregation; the outcome is a rate and the exposure is binary; there are 

few covariates and no confounders or effect modifiers; and the sample size is small. The last 

of these characteristics is perhaps the most important. With only 13 countries in the analysis, 

we have little information on which to base our conclusions. From the simulation, we know 

that the negative binomial model has unreliable Type I error rates with this sample size. Since 

we appear to be faced with overdispersion, so too does the Poisson model. In fact, since the 

simulation found that the Poisson model performs worst when the data are overdispersed and 

group sizes are large, we should expect the group sizes of this data to render the Poisson model 

completely ineffectual. For hypothesis testing of the regression coefficient, we are therefore 

forced to turn to the linear models.



But which linear model? Either of them will reject the null hypothesis. However, they 

provide us with very different effect measures. We may calculate a rough rate ratio by using 

the fitted regression equations to calculate the predicted homicide rates when all households 

own firearms and when no households own firearms. With this method, the simple linear model 

estimates the rate ratio to be 71.5, meaning that the expected rate of homicides is approximately 

72 times higher in a country where all homes own a firearm compared to a country that owns 

none. The weighted model, on the other hand, falls prey to one of the weaknesses of linear 

models; it provides a negative rate ratio, which is meaningless. Unfortunately, it is the weighted 

linear model that seems to explain more of the variability in the data, and so choosing the simple 

linear model may come at the expense of precision. On the other hand, the weighted model 

may be overly sensitive to the data from the US, which has an influentially large population. 

In all likelihood, the best approach would perhaps be to use a combination of the linear and 

generalized linear models, as suggested in Chapter 4.

Killias himself recognizes some of the limitations of the data. He remarks on the small 

sample size and the cross-sectional nature of the survey, which prevents any causal inferences. 

Unlike most of the papers in the bibliometric review, he justifies an ecological analysis by noting 

that the availability of firearms varies mostly with laws enacted at the state and national level, 

making individual-level study difficult. However, he does not acknowledge any of the ecological 

limitations of the data. The study is not stated to be ecological or aggregate, and the potential 

for the ecological fallacy is not mentioned. This is in spite of the fact that Killias concludes 

that the data suggest “the presence of a gun in the home increases the likelihood of homicide 

or suicide,” a statement implying cross-level inference. The lack of clear reporting combined 

with the methodological simplicity and small sample size of the analysis means that this paper 

is typical of those in need of the recommendations suggested in Chapter 2.
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5.5 Summary

This example demonstrates a few of the analytic complexities of ecological analysis when 

using small samples, some of which are known from the literature and some of which have been 

shown by the simulation. Highly variable, under-powered count data are not suitable for Poisson 

or negative binomial regression, and linear models can provide biased or even meaningless 

effect measures. These difficulties can complicate interpretation and make the proper modeling 

approach unclear. In this case, there is likely no single correct method. Instead, one should 

employ a battery of techniques. The ecological researcher should be aware of the capabilities 

of these models and the characteristics of their dataset before interpreting any results.
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Figure 5.1: Linear and Generalized Linear Models Fit to National Homicide and Gun Ownership Data



Chapter 6

Discussion

6.1 Introduction

The primary purpose of this thesis was to critically evaluate the quality of ecological study in 

modern epidemiology and to assess the performance of four common regression methods within 

this context. Attention was restricted to cross-sectional ecological studies with a particular focus 

on event-rate data. This final chapter presents a brief discussion of the research contained in this 

thesis. Key findings are summarized in Section 6.2. Limitations of the research are described 

in section 6.3, while areas for future work are outlined in Section 6.4.

6.2 K ey Findings

This research has found that the diversity of modern ecological studies in terms of 

quality, methodology, and areas of application is quite high. The reviewed papers collectively 

investigated social, environmental, economic, and medical data from all parts of the globe 

and used analytic tools ranging from the most rudimentary to the most complex. While this 

diversity implies the existence of high-quality papers, it also means that a great many studies 

methodologically unsound, unclear, and have little power. Unfortunately, we found that the 

latter seem to be the most prevalent. The largest problem is the poor quality of reporting and

98



99

the lack of clear justification. If epidemiologists are to continue using this study design, the 

recommendations presented in Table 2.6 should be heeded. Also, certain biostatistical results 

should be better incorporated into the analytic strategies used by ecological researchers. In 

particular, the covariate adjustment techniques discussed by Rosenbaum and Rubin (1984) as 

well as the validity issues for regression discussed by Vittinghoff and McCulloch (2007) must 

be addressed in future publications.

The simulation has demonstrated the fallibility of Poisson and negative binomial regression 

when faced with small sample sizes and overdispersion respectively. It has also discovered that 

Type I error rates of OLS and weighted LS models are robust to the parameter combinations 

used here. Implications for power seem to lie mostly with overdispersion, though extremity of 

group-level exposure prevalence appears to negate this. Thus, researchers investigating counts 

and rates should be wary of Type I error rates when using generalized linear models with small 

samples. As well, one must be equally concerned with power when the data are overdispersed 

and group-level exposure variability is not large.

6.3 Study Lim itations

The bibliometric review is primarily limited in its mandate. We chose to scrutinize only 

cross-sectional studies for reasons mentioned in Chapter 1 , and so all other forms of ecological 

design are beyond our scope. Comments regarding the prevalent characteristics and quality of 

the literature cannot be extended to temporal and spatiotemporal ecological analyses. In all 

likelihood, the overall quality and technical issues concerning these designs are significantly 

different than those facing the cross-sectional design. This is because the cross-sectional 

design is the simplest of the three, and will allow researchers with lower levels of expertise 

to participate. Another reason is that the temporal and spatiotemporal designs have unique 

statistical considerations, such as time-series autocorrelation.
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The bibliometric review is also limited in the sense that only certain evaluation criteria 

have been used. While we attempted to cover the most important and interesting aspects, not 

all points could be addressed. For example, we did not investigate whether the cross-sectional 

nature of the data was mentioned or whether improper causal inferences were made from it. 

While this is not a hindrance, it does allow a few minor aspects of quality to remain unmeasured.

The last and perhaps most obvious limitation of the review is that only six journals were 

included. These were selected to be representative of specialized epidemiology publications, and 

so inter-disciplinary journals such as the New England Journal of Medicine were omitted. 

These may hold their authors to different standards than the journals we used.

The principal limitation of the simulation study is that only two methods of count- 

data generation were employed: Poisson and negative binomial. As shown by Metcalfe and 

Thompson (2006), the results of a simulation can be quite sensitive to the methods of data 

generation. Thus, we cannot generalize our results or recommendations beyond datasets 

possessing the properties of these models. Researchers analysing count data with characteristics 

such as autoregression, time-dependent event rates, or variance structures different than those 

investigated here must not heed our results without caution.

Another limitation stems from the fact that only certain parameter combinations have been 

used. We attempted to investigate pragmatic scenarios and to therefore cover many plausible 

circumstances, but we could not analyse all of them. Scenarios with cluster sizes, cluster 

variation, regression coefficients, and population exposure rates different than those contained 

in this thesis are beyond the scope of our discussion. We have also limited our attention to 

the simple case of one predictor, and so issues such as adjustment for confounding and effect 

modification have not been included. Also, we have set the exposure to be binary at the 

individual level, thus leaving the effects of a continuous exposure uninvestigated. Again, these 

considerations potentially limit the generalizability of our findings.
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6.4 Future Research

There are many possible extensions of the simulation performed in this thesis. Subse­

quent research could investigate more complex regression models that explore the effects of 

confounding or interaction; multivariate outcomes; spatial dependence; continuous exposures; 

and count data with non negative-binomial properties. In the latter case, new methods of 

analysis such as zero-inflated or zero-truncated negative binomial regression models could be 

introduced. Extensions of the Poisson model with additive gamma or multiplicative Gaussian 

random-effects could also be investigated, as these are capable of handling overdispersed count 

data and may be more comparable to the negative binomial model (Gupta et al, 2004). The 

inclusion of spatial effects would be highly relevant, since this aspect of ecological study has 

become more prevalent in recent decades. An excellent discussion of ecological modeling with 

spatial clustering and overdispersion is provided by Clayton et al. (1993), and may serve as 

one motivation for future work.

Our simulation has been limited to group-level data. Other experiments may wish to assess 

the performance of linear and generalized linear models when individual-level relationships 

are known. This would require the generation and aggregation of individual outcomes and 

exposures, and so would be a more complicated task. However, such an analysis could address 

issues of cross-level bias. This would be an important insight into the modeling of ecological 

counts and rates. Issues such as pure specification bias, aggregation bias, spatial dependence, 

and contextual effects could potentially be explored with this approach. A discussion of the 

complexities facing cross-level inference with spatial and non-spatial regression techniques is 

provided by Wakefield (2007).

Finally, a bibliometric review of the temporal and spatiotemporal ecological designs would 

be a beneficial addition to the literature, This would allow a similar assessment of quality, 

and could identify further necessary additions to the STROBE document. This would also 

increase our understanding of current ecological practice in general, and may reveal common 

characteristics, strengths, and shortcomings between the three sub-designs.
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Append ix B: Ecological Regression Coefficient

This Appendix proves the relationship between the ecological regression coefficient A , 
the average within-group regression coefficient 0W, and the total regression coefficient ¡3t 
that was described in Section 3.2.1. To do so, we use the notation defined in Section 3 .1 .

Since ^xxt — Sxxw +  Sxxb and since the total sum of products can be expressed as the 
sum of Sxyw and Sxyb, this relationship can be demonstrated fairly easily:

Pw + C \ A0 b  — P w ) =
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J x x w J x x t J x x w

J x y w  ■

J x x w

J x y w  ^  S xxbSXyb S xXbSxyii)

J x x w SxxtSxxb SxxtSxxw

S Xyw (S XXt S xxb) S XXf)SXyb

SxxtSxxw SxxJ'Sxxf)

SxywSXxw SxxfrSxyb

SxxtSxxw S xxt S xxl)

+
5x y b

5x x t

Srinit “t” S Xyb

&xyw

Sxxt

) xyw

?xxt

=  Pt



118

Append ix  C: S im ulation Code
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'/ . le t  Sum PoissonB eta_E st = 0 ; '/ . le t  SumNBBeta_Est = 0;
’/ . l e t  S um D ispersion  = 0;

'/.do i= l  '/.to &nura_runs;

’/ . i f  & o v e rd is p e rs io n = l '/.then ’/,do; 
d a ta  N egB inom ial; 

do i = l  To & sam p le_ size ;
p ro p _ ex p o sed  = r a n d ( ’b e t a ’ , fe a lp h a l, & a lp h a 2 );
p o p _ s iz e  = &Lower_pop + (&Upper_pop -  & L o w er_ p o p )* ran u n i(0 );
L p o p _ s iz e = lo g (p o p _ s iz e ) ;
lam bda = e x p ( lo g (p o p _ s iz e )  + &Beta_0 + & B eta_ l*prop_exposed) 
p=& k/(lam bda + & k);
Y = ra n d C ’n e g b in o m ia l’ ,p ,& k ) ;
E v e n t . r a t e  * Y /p o p _ s iz e ; 
o u tp u t ;
keep  p o p .s i z e  p ro p _ ex p o sed  E v e n t_ ra te  Y L p o p .s iz e ;  

end;
’/.end;

'/ .if  & o v e rd isp e rs io n = 0  '/.then  '/.do; 
d a t a  N egB inom ial; 

do i= l  To & sam ple_size ;
p ro p _ ex p o sed  * r a n d ( ’b e t a ’ , f ta lp h a l ,  & a lp h a 2 );
p o p _ s iz e  = &Lower_pop + (&Upper_pop -  & L o w er_ p o p )* ran u n i(0 );
L p o p _ s iz e = lo g (p o p _ s iz e ) ;
lam bda = e x p ( lo g (p o p _ s iz e )  + &Beta_0 + & B eta_ l*prop_exposed)
Y = r a n d ( ’p o i s s o n ’ .la m b d a ) ;
E v e n t_ ra te  = Y /p o p _ s iz e ; 
o u tp u t ;
keep  p o p .s i z e  p ro p .e x p o s e d  E v e n t_ ra te  Y L p o p _ siz e ; 

end;
’/.end;

/*  R unning L in e a r  R e g re s s io n  * /  
p ro c  r e g  data= N egB inom ial; 

m odel E v e n t . r a t e  = p ro p _ ex p o sed ;
ods o u tp u t P a ra m e te rE s tim a te s  = p a r _ e s t ;  /*  g e t t i n g  in f o  * /
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ru n ;
d a t a  L inearR eg ; 

s e t  p a r _ e s t ;
i f  V a r ia b le  = "p rop_exposed" th e n  do; 

c a l l  sy m p u tx (’L in e a r B e ta _ E s t ', E s t im a te ) ;  
c a l l  sy m p u tx (’L in e a r P r o b t ’ , p u t ( p r o b t ,  7 . 5 ) ) ;  
c a l l  s y m p u tx i’L in e a r S td E r r ’ .S t d E r r ) ; 

end; 
ru n ;

/*  C a lc u la t in g  ty p e  I  E r r o r  f o r  l i n e a r  r e g r e s s io n  * /
% if & B eta_l = 0 AND & L in earP ro b t < 0 .0 5  ’/«then °/,do;

7,l e t  L inearR egA lpha = */,eval (& LinearRegA lpha + 1 ) ;
’/.e n d ;
/ *  C a lc u la t in g  ty p e  I I  E r r o r  f o r  l i n e a r  r e g r e s s io n  * /
7 .if & B eta_l ne 0 AND & L in earP ro b t > 0 .0 5  '/.then '/.do;

‘/ . l e t  L in earR eg B e ta  * */,eval (& L inearR egB eta + 1 );
’/.end;
/*  A dding up s ta n d a r d  e r r o r s .  * /
% le t S u m L inearS tdE rr = '/ .sy s e v a lf  (& Sum L inearS tdErr + & L in e a rS td E rr) ;
/*  A dding up e s t im a te s  o f B e t a . l  * /
'/ . le t  S u m L in ea rB e ta .E st = ’/ .s y s e v a lf  (& Sum LinearB eta_Est + & L in e a rB e ta _ E s t) ;

/ *  R unning W eighted  L in e a r  r e g r e s s io n  */  
p ro c  r e g  data= N egB inom ial; 

m odel E v e n t . r a t e  = p ro p .e x p o se d ; 
w e ig h t p o p _ s iz e ;
ods o u tp u t  P a ra m e te rE s t im a te s  = W e ig h te d _ p a r_ e s t; 

ru n ;
d a t a  W eightedR eg; 

s e t  W e ig h te d _ p a r_ e s t; 
i f  V a r ia b le  = "p ro p _ ex p o sed "  th e n  do; 

c a l l  sy m p u tx (’W e ig h te d B e ta _ E s t’ , E s t im a te ) ;  
c a l l  sy m p u tx (’W e ig h te d P ro b t’ , p u t ( p r o b t , 7 . 5 ) ) ;  
c a l l  sy m p u tx ( 'W e ig h te d S td E rr’ , S td E r r ) ;  

end ; 
ru n ;

/♦ C a lc u l a t i n g  ty p e  I  e r r o r  f o r  w e ig h ted  r e g r e s s io n  */  
’/ . i f  & B eta_l = 0 AND ftW eigh tedProb t < 0 .0 5  ’/.th e n  ’/.do;
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‘/ .le t  WeightedRegAlpha = 7.eval(&WeightedRegAlpha+l);
’/.end;
/♦ C a lc u l a t i n g  ty p e  I I  e r r o r  f o r  w e ig h te d  r e g r e s s io n  ♦ /
°/,if & Beta_l ne 0 AND ftW eigh tedProb t > 0 . 0 5  ‘/.th e n  '/.do;

’/.le t  WeightedRegBeta = 7,eval(&WeightedRegBeta+l);
'/.end;
/♦A dd ing  up s ta n d a r d  e r r o r s .  * /
’/ . l e t  Sum W eightedStdErr =

'/ .sy se v a lf  C&SumWeightedStdErr + & W eigh tedS tdE rr); 
/♦A dd ing  up B e ta _ l e s t im a te s  * /
7,l e t  SumWeightedBeta.Est =

’/.s y s e v a lf  (& SumW eightedBeta_Est + & W eigh tedB eta_E st);

/♦  P o is s o n  R e g re s s io n  * / 
p ro c  genmod data= N egB inom ial;

m odel Y = p ro p .e x p o se d  /  o f fs e t= L p o p _ s iz e  d is t= p o is s o n  l in k = lo g  ty p e 3 ; 
ods o u tp u t  P a ra m e te rE s t im a te s  = P o is s o n _ p a r_ e s t;  
ods o u tp u t  Type3 = Poisson_LR ;
ods o u tp u t  C o n v e rg e n c e S ta tu s  = P o is so n _ c o n v e rg e n c e ; 

ru n ;
d a t a  P o issonR eg ; 

s e t  P o is s o n _ p a r_ e s t ;
i f  p a ra m e te r  = " p ro p .e x p o se d "  th e n  do; 

c a l l  sy m p u tx (’P o is s o n B e ta _ E s t’ E s t im a te ) ;  
c a l l  sy m p u tx (’P o is so n C h iS q ’ , p u t(P ro b C h iS q , 7 . 5 ) ) ;  
c a l l  sy m p u tx (’P o is s o n S td E r r ’ , S td E r r ) ; 

end ; 
ru n ;
d a t a  PoissonL R ; 

s e t  Poisson_L R ;
c a l l  sy m p u tx (’P o isso n L R .C h iS q ’ , p u t(P ro b C h iS q , 7 . 5 ) ) ;  

ru n ;
d a t a  P o issonC onvrg ; 

s e t  P o is s o n .c o n v e rg e n c e ; 
c a l l  sy m p u tx (’P o i s s o n S ta tu s 1, S t a t u s ) ;  

ru n ;

/♦  C a lc u la t in g  ty p e  I  e r r o r  f o r  P o is s o n  r e g r e s s io n  * /
7.i f  & Beta_l = 0 AND & PoissonC hiSq < 0 .0 5  '/.th en  ’/.do;

’/ . l e t  P o issonR egA lpha = 7 ,ev a l(& P o isso n R eg A lp h a+ l);



’/.en d ;
/*  C a lc u la t in g  ty p e  I I  e r r o r  f o r  P o is s o n  r e g r e s s io n  * /
’/ . i f  & Beta_l ne 0 AND fePoissonC hiSq > 0 . 0 5  ’/.th e n  ’/.do;

’/ . l e t  P o issonR egB eta  = ’/,e v a l(& P o isso n R e g B e ta + l) ;
’/.end ;
/ *  C a lc u la t in g  ty p e  I  e r r o r  f o r  P o is s o n  LR t e s t  * /
'/.if  & Beta_l = 0 AND &PoissonLR_ChiSq < 0 . 0 5  ’/.th e n  ’/.do;

’/,l e t  PoissonLR _R egA lpha = °/,eval(& PoissonL R _R egA lpha+ l);
’/.end;
/*  C a lc u la t in g  ty p e  I I  e r r o r  f o r  P o is s o n  LR t e s t  * /
’/ . i f  & B eta_l ne 0 AND &PoissonLR_ChiSq > 0 . 0 5  ’/.th e n  ’/.do;

’/ . l e t  PoissonLR _R egB eta = ’/,eva l(& P o issonL R _R egB eta+ l);
’/.end ;
/*  A dding up s ta n d a rd  e r r o r s  * /
’/ . l e t  S um P oissonS tdE rr =

*/,s y s e v a lf  C&SumPoissonStdErr + f tP o is s o n S td E r r ) ;
/*  A dding up e s t im a te d  v a lu e s  o f  B e ta _ l * /
’/ . l e t  S u m P o isso n B e ta .E st =

’/.s y s e v a lf  (& Sum PoissonB eta_Est + & P oissonB eta_E st) 
/ *  C o u n tin g  number o f  t im e s  P o is s o n  r e g r e s s io n  d id  n o t  converge  */
’/ . i f  f tP o is s o n S ta tu s  ne 0 ’/.th e n  ‘/.do;

’/ . l e t  P o issonC nvrgC oun t = ’/,s y s e v a lf  (& PoissonC nvrgC ount + 1 );
’/.e n d ;

/*  N e g a tiv e  B inom ia l R e g re s s io n  * /  
p ro c  genmod data= N egB inom ial;

m odel Y = p ro p _ ex p o sed  /  o f fs e t= L p o p _ s iz e  d is t= N e g b in  link= L og  ty p e 3 ; 
ods o u tp u t  P a ra m e te rE s t im a te s  = N B _par_est; 
ods o u tp u t  Type3 = N B L ikelihood; 
ods o u tp u t  C o n v e rg e n c e S ta tu s  = N B_convergence; 

ru n ;
d a t a  NBReg; 

s e t  N B _par_est;
i f  p a ra m e te r  = "p rop_exposed"  th e n  do; 

c a l l  sy m p u tx (’N B B e ta .E s t’ , E s t im a te ) ;  
c a l l  sy m p u tx (’NBChiSq’ , p u t(P ro b C h iS q , 7 . 5 ) ) ;  
c a l l  sy m p u tx ( 'N B S td E rr’ , S td E r r ) ; 

end;
i f  p a ra m e te r  = " D is p e rs io n "  th e n  do; 

c a l l  sym putxC’D i s p e r s i o n .E s t ' , E s t im a te ) ;



end ;
ru n ;
d a t a  NBLR; 

s e t  N B L ikelihood;
c a l l  sy m p u tx (’NB_LR_ChiSq’ , p u t(P ro b C h iS q , 7 . 5 ) ) ;  

ru n ;
d a ta  NBConvrg; 

s e t  N B _convergence; 
c a l l  sy m p u tx (’N B S ta tu s’ , S t a t u s ) ;  

ru n ;

/*  D is c a rd in g  n o n -c o n v e rg e n t n e g a t iv e  b in o m ia l d a t a :  * /
'/ .if  &NBStatus=0 ’/.th e n  '/.do;

/ *  C a lc u la t in g  ty p e  I  e r r o r  f o r  n e g a t iv e  b in o m ia l r e g r e s s io n  * / 
’/ . i f  & B eta_l = 0 AND ftNBChiSq < 0 . 0 5  ’/.th e n  ’/.do;

% l e t  NBRegAlpha = 7,eval(&NBRegAlpha + 1 ) ;
'/.end;
/*  C a lc u la t in g  ty p e  I I  e r r o r  f o r  n e g a t iv e  b in o m ia l r e g r e s s io n  * /  
% if & B eta_l ne 0 AND ftNBChiSq > 0 .0 5  '/.th en  ’/.do;

'/ . le t  NBRegBeta = */,eval(&NBRegBeta + 1 );
'/.end;
/*  C a lc u la t in g  ty p e  I  e r r o r  f o r  n e g a t iv e  b in o m ia l LR t e s t  * /
'/ .if  & B eta_l = 0 AND &NB_LR_ChiSq < 0 . 0 5  '/.th en  '/.do;

’/ . l e t  NB_LR_RegAlpha = ’/,eval(& NB_LR_RegAlpha+l);
’/.end ;
/*  C a lc u la t in g  ty p e  I I  e r r o r  f o r  n e g a t iv e  b in o m ia l LR t e s t  */
’/ . i f  & B eta_l ne 0 AND &NB_LR_ChiSq > 0 . 0 5  '/.th en  ’/.do;

’/ . l e t  NB_LR_RegBeta = ’/,eval(& N B_LR_RegBeta+l);
’/.end ;
/*  A dding up s ta n d a r d  e r r o r s  */
'/ . le t  SumNBStdErr = ’/.s y s e v a lf  (&SumNBStdErr + fcN B StdErr);
/*  A dding up e s t im a te d  v a lu e s  o f B e ta _ l */
’/ . l e t  SumNBBeta.Est = ’/.s y s e v a lf  (&SumNBBeta_Est + & N BBeta_Est);

’/.end ;

/ *  A dding up d i s p e r s io n  p a ra m e te r  e s t im a te s  * /
7.l e t  S um D ispersion  = ’/.s y s e v a lf  C&SumDispersion + & D isp e rs io n _ E st)  
/ *  C o u n tin g  number o f t im e s  NB r e g r e s s io n  d id  n o t co n v erg e  */
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7 .if  feNBStatus ne 0 % then 7.do;
7.1et NBCnvrgCount = 7«sysevalf (feNBCnvrgCount + 1 );

'/.end;

p ro c  d a t a s e t s ;
d e l e t e  N egB inom ial L in earR eg  W eightedReg P o issonR eg  NBReg;

’/.end; /*  end o f  &num_runs lo o p  * /

/ *  C a l c u la t in g  summary s t a t i s t i c s  h e re  * /
7,l e t  L in e a rT y p e lR a te  = 7 .sy se v a lf  (& LinearR egA lpha/fenum _runs);
7 .1et L in e a rT y p e llR a te  = 7,s y s e v a l f  (& L inearR egB eta/fenum _runs);
7«let A v era g e L in e a rB e ta _ E s t = 7 .sy se v a lf  (& Sum L inearB eta_E st/fenum _runs);
7 .1et A v e ra g e L in e a rS td E rr  = 7 .sy se v a lf  (& Sum L inearS tdE rr/fenum _runs);
7 .1et W eigh tedT ypelR ate  = 7 .sy se v a lf (& W eightedRegA lpha/fenum _runs);
7«let W eig h ted T y p e llR a te  = 7*sysevalf (& W eightedR egB eta/fenum _runs);
7 .1et A verageW eigh tedB eta_E st = 7«sysevalf (& Sum W eightedB eta_est/fenum _runs);
7 .1et A v erageW eigh tedS tdE rr = 7«sysevalf (& Sum W eightedStdErr/fenum _runs);
7.1et P o isso n T y p e lR a te  = 7 .sy se v a lf  (& PoissonR egA lpha/fenum _runs);
7 .1et P o is s o n T y p e llR a te  = 7#sysevalf (& PoissonR egB eta/fenum _runs);
7«let PoissonL R _T ypeIR ate  = 7 .sy se v a lf  (& PoissonLR_RegA lpha/fenum _runs);
7 .1et P o issonL R _T ypeIIR ate  = 7 .sy se v a lf  (& PoissonLR_RegB eta/fenum _runs);
7 .1et A v erag eP o isso n B e ta _ E st = 7 .sy se v a lf  (& Sum PoissonB eta_E st/fenum _runs);
7«let A v e ra g e P o isso n S td E rr  = 7«sysevalf (& Sum PoissonS tdE rr/fenum _runs);
7 .1et NBTypelRate = 7 .sy se v a lf  (&NBRegAlpha/(fenum_runs -  feNBCnvrgCount));
7 .1et N B TypellR ate = 7oSysevalf (&NBRegBeta/(fenum_runs -  feNBCnvrgCount));
7 .1et NBLR_TypeI_Rate = 7 .sy se v a lf  (&NB_LR_RegAlpha/(fenum_runs -  feNBCnvrgCount)); 
7 .1et NBLR_TypeII_Rate = 7 .sy se v a lf  (&NB_LR_RegBeta/(fenum_runs -  feNBCnvrgCount)); 
7 .1et A verageN B B eta.E st = 7 .sy se v a lf  (&SumNBBeta_Est/(fenum_runs -  feNBCnvrgCount)) 
7 .1et A verageN B StdErr * 7«sysevalf(feSum NBStdErr/(& num _runs -  feNBCnvrgCount)); 
7 .1et A v g D isp e rs io n E s tim a te  * 7 .sy se v a lf  (& Sum D ispersion/fenum _runs);

7 .if & B eta_l ne 0 7 .then  7.do;
7.1et L in e a r_ R e lB ia s  =

7«sysevalf ( (& A verageL inearB eta_E st -  & B e ta _ l) /& B e ta _ l) ;
7.1et W e ig h te d .R e lB ia s  =

7 .sy se v a lf  ( (& A verageW eightedB eta_Est -  & B e ta _ l) /& B e ta _ l) ;
7.1et P o is so n _ R e lB ia s  =

7«sysevalf ( (& A verageP o issonB eta_E st -  & B e ta _ l) /& B e ta _ l) ;
7.1et NB_RelBias =

7 .sy se v a lf  ( (&AverageNBBeta_Est -  & B e ta _ l) /& B e ta _ l) ;
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'/.end ;

‘/ . i f  & Beta_l = 0 '/.th en  ’/.do;
#/ , l e t  L in e a r_ R e lB ia s  = & A v erag eL in ea rB e ta_ E st;
'/« le t W eigh ted_R elB ias *» & A verageW eigh tedB eta_E st; 
’/« le t P o is so n _ R e lB ia s  = & A v erag eP o isso n B eta_ E st; 
'/« let N B .R elB ias = & A verageNBBeta_Est;

’/.end;

'/.mend e c o l o g ic a l ;  /*  end o f  macro * /

/*  now p r i n t i n g  s im u la t io n  r e s u l t s :  * /

p ro c  p r i n t t o  p r i n t = ’ / d e v / n u l l ’ l o g ^ / d e v / n u l l ’ ;
'/ .e c o lo g ic a l (1000 , 0 , 20 , - 3 ,  0 , 2500, 2500, 10, 2 , 1 8 );

p ro c  p r i n t t o  p r i n t = ’ s im u la t io n _ o u tp u t . l s t l ’ lo g = ’ / d e v / n u l l ’ ; 
d a ta  s im u l a t i o n _ r e s u l t s ;

O v e rd is p e r s io n  = & 0 v e r_ d is p e rs io n ;
C lu s te r _ lo w e r _ l im i t  = ftLowerpop;
C lu s te r _ u p p e r _ l im i t  = ftUpperpop;
BetaO = ftBetaO;
B e ta l  = f tB e ta l;
N um ber_of_runs = &Number_runs;
S am pleS ize  = ftSam pleS ize;

L in e a r_ T y p e I_ R a te  = & L inearT ypeIR ate ;
L in e a r_ T y p e II_ R a te  = & L in earT y p eIIR ate ;
A v g L in ea r_ S td E rr = & A v erag e L in ea rS td E rr;
A vgL inear_E st = & A v erag eL in ea rB e ta_ E st;
L in e a r_ R e la t iv e _ B ia s  = & L inear_R elB ias;

W eighted_T ype_I_R ate  = & W eightedTypeIR ate; 
W eigh ted_T ype_II_R ate  = & W eightedT ypeIIR ate;
A vgW eighted_Est = & A verageW eigh tedB eta_E st; 
A vgW eighted_StdE rr = & A verageW eigh tedS tdE rr; 
W e ig h te d _ R e la tiv e _ B ia s  = & W eighted_R elB ias;



P o isso n _ T y p e_ I_ R ate  = & P oissonT ypeIR ate; 
P o isso n _ T y p e _ II_ R a te  = & P o isso n T y p eIIR a te ; 
PoissonL R _T ypeI_R ate = & PoissonLR _TypeIR ate; 
P o issonL R _T ypeII_R ate  = & PoissonLR _T ypeIIR ate 
A vgPoisson_E st = & A verageP o issonB eta_E st; 
A vgP o isso n _ S td E rr = & A v erag e P o isso n S td E rr; 
P o is s o n _ R e la t iv e _ B ia s  = & P o isson_R elB ias;

NB_Type_I_Rate = ftNBTypelRate;
N B _Type_II_R ate = &NBTypeIIRate; 
NBLR_TypeI_Rate = &NBLR_TypeI_Rate; 
NBLR_TypeII_Rate = &NBLR_TypeII_Rate; 
AvgNB_Est = & A verageN BBeta_Est;
AvgNB_StdErr = ftA verageN B StdE rr; 
N B _ R ela tiv e_ B ias  = &NB_RelBias;

A v g _ D isp e rsio n  = f tA v g D isp e rs io n E stim a te ; 
N um Tim esPoisson_no_cnvrg = & PoissonCnvrgCount 
NumTimesNB_no_cnvrg = &NBCnvrgCount;

p ro c  p r i n t  d a ta  = s i m u l a t i o n . r e s u l t s ;  
ru n ;  ru n ; q u i t ;
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