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Abstract 

Fluid CokingTM is a process that upgrades Alberta’s heavy oil. The recycle stream in the 

process contains unwanted fines which could affect the interaction between the liquid feed 

and the bed particles and the tendency to form agglomerates. Agglomeration leads to lower 

product yields and vessel damage. 

The impacts of slurry solids on spray stability and angle were measured in open air while the 

impacts on agglomerate stability and liquid distribution were studied in a fluidized bed. 

Particle properties were varied to understand the impact of the solids on agglomerates.  

In open air, it was observed that the presence of solids had a negligible impact on 

spray behavior. Within the fluidized bed, changing the concentration of injected solids 

produced significant effect on agglomerate stability and liquid distribution. 

By changing the properties of the slurry fines, it was determined that the injection of solids 

resulted in a filler effect within the agglomerates: the fines strengthened the agglomerates. 
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Chapter 1 

1 Introduction 

In a Fluid CokingTM system, a fraction of the product is recycled back into the reactor to 

improve the yield of valuable liquid products. Because the recycle stream comes from a 

scrubber located downstream of the coker reactor, it contains fine coke and clay particles. 

The work and research presented in this thesis investigates the effects of these fines on 

open-air spray characteristics and liquid distribution within a fluidized bed.  

1.1 Fluid CokingTM 

1.1.1  General Description and Background  

According to Alberta Energy, Alberta`s oil sands have the third largest oil reserves in the 

world and as of 2016, production of bitumen was at least 2.5 million barrels per day 

(Alberta Energy Regulator 2018). According to Natural Resources Canada, the oil and 

gas industry produces up to 77% of Canada`s total energy production (NRCan 2016). 

This oil and gas industry have been a huge investor in the Canadian economy 

contributing over $13 billion to the country`s revenue with over 228,000 jobs supported/ 

created by the oil sands industry in Alberta (Canadian Association of Petroleum 

Producers (CAPP) 2017). The oil sands are thus a proven source of economic growth for 

Canada. The oil sands reserve available in Alberta produces heavy grade oil which is 

much more viscous and heavier than conventional crude oil. Due to these characteristics, 

heavy oil is difficult to transport by conventional methods and cannot be processed in 

regular refineries (Nares et al. 2007) 
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Heavy oil from the oil sands can, however, be upgraded to synthetic crude oil. The first 

stage of the upgrading process separates the heavy oil to different fractions of lighter oil 

and residue that are easier to convert to useful end products. This is done using both 

vacuum and atmospheric distillation processes. The upgrading process will then have two 

more stages; primary upgrading and secondary upgrading. Primary upgrading involves 

the conversion of residue from the vacuum distillation process to produce lighter oil 

fractions. Fluid CokingTM is one of the several methods of primary upgrading which is 

currently being employed by ExxonMobil and Syncrude Canada. Other systems for 

primary upgrading include delayed coking, flexi-coking, thermal and catalytic cracking, 

and other hydroconversion processes (Gray 2015). The products then go through 

secondary upgrading processes such as hydrotreating or hydrocracking before being sent 

to the refineries (Gray 2015). 

Fluid CokingTM is a continuous process that is used to convert vacuum residue by 

thermally cracking the hydrocarbons to produce lighter products such as naphtha, gas oil 

and reactor gas with coke as a by-product (Paul Kamienski 2009, Gray 2015). A 

schematic diagram of the Fluid CokingTM process is shown in Figure 1.1. The reactor 

unit consists of three main sections: the scrubber, the reactor and the burner. The vacuum 

residue (feed) stream is split and fed into both the scrubber and the reactor. The feed 

injection is done using gas-liquid spray nozzles. In the reactor, the vacuum residue is 

thermally cracked to produce coke and product vapors; coking occurs on the surface of 

the particles at 510 to 550 °C (Gray 2015). The vacuum residue introduced into the 

scrubber contacts the product vapors and gets heated up. In the scrubber, the lighter feed 

components vaporize and the heavier components in the product vapors condense. In 
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addition, particles escaping from the reactor cyclones with the product vapors are 

captured by the liquid. Stream 1 in the Figure 1.1 is the recycle stream that contains the 

solid particles. The reactor vessel also has a stripping section, at the bottom, where the 

coke flowing from the reactor zone is stripped using steam to remove hydrocarbon 

vapors. The resulting cold coke is conveyed to a burner where it is burnt and heated up to 

630 degrees Celsius (Gray 2015), and a fraction is then returned to the reactor to provide 

heat for the continuous coking process.  

 

Figure 1.1: Schematic diagram of a Fluid CokerTM (Adapted from (House 2008)) 
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As a continuous system, Fluid CokingTM is very useful in heavy oil upgrading, however, 

the biggest problems encountered with this technology is the agglomeration of coke 

particles and production of sulfur and metallic oxides which are environmentally 

undesirable (Bi et al. 2007, Nares et al. 2007). 

1.1.2  Sources of recycled solid particles 

In the Fluid CokerTM, product vapors flow from the reactor to the scrubber through 

parallel cyclones as shown in Figure 1.1. Particles escaping the cyclones, enter the 

scrubber and contaminate the recycle stream that is fed to the reactor spray nozzles 

(McDonald and Rhys 1959). 

There are different sources for these solid particles. The products from the cyclone 

consist mostly of vapor products, with some liquid and fine coke particles (Jankovic 

2005). Another important note is that, over time, cyclone fouling leads to lower cyclone 

efficiency, resulting in more and possibly larger particles entering the scrubber. Also, the 

liquid fed to the scrubber could react prematurely, resulting in coke formation in the 

scrubber (Subudhi 2006). There could also be other types of fine particles being injected 

into the reactor based on the feed composition. Some of these solids could include, but 

are not limited to, clay particles, silica sand, and trace metals with an average particle size 

of about 10 µm (Wangen et al. 2007). It is important for this work to establish the effect 

of injecting fine particles on liquid distribution in the reactor bed and agglomeration of 

bed coke particles. 
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1.2 Spray Behavior 

1.2.1  Spray Performance and Characterization 

A good understanding of the spray behavior is necessary to optimize the mixing process 

in a fluidized bed. The spray behavior affects the formation and breakage of agglomerates 

by impacting the heat and mass transfer processes in the bed (House 2008). The liquid 

distribution in the bed depends on the spray performance, i.e. the size of the liquid 

droplets, the liquid-solid contact in the bed and the flowrate of particles entrained within 

the spray region. Any impact of particles present in the liquid on spray performance in 

the reactor bed can be detected indirectly by characterizing the spray properties such as 

the spray stability, angle and length.  

The spray stability depends on the amplitude and frequency of spray fluctuations. Many 

studies have been conducted to understand the effects of pulsations on the spray nozzle 

performance. Ariyapadi (2004) compared stable and unstable sprays and found that stable 

sprays produce a stream of fine droplets due to uniform atomization while the droplets in 

pulsating sprays were likely to coalesce with each other producing larger final droplets. 

Hulet et al. (2003) observed that more stable sprays are likely to increase the amount of 

fluidized bed particles entrained in the spray. In most cases, a non-pulsating spray is 

considered optimal for reactor operations as it reduces the production of liquid-solid 

agglomerates (Briens et al. 2011). However, Leach et al. (2013) have shown that 

imposing spray pulsations with specific frequencies could lead to better liquid spreading 

in the fluidized bed, minimizing the formation of agglomerates. Important factors that 

affect the spray stability include but are not limited to nozzle internal configuration, 

atomization flowrate and pre-mixer configuration. However, current industrial practice is 
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to minimize spray fluctuations that occur “naturally” as they are usually associated with 

poor spray performance.  

The spray angle affects the efficiency of fluidized bed processes as it provides 

information on the solid’s entrainment in the spray jet. Ariyapadi (2004) showed that the 

flowrate of entrained solids in the spray jet is proportional to the spray angle. Prior work 

has shown that the spray angle is mainly affected by the nozzle configuration, the 

atomization gas flowrate and liquid properties (Portoghese 2007). 

The spray penetration into the bed determines where the liquid-solids contact occurs in 

the bed. Also, understanding the jet penetration in a system is useful in identifying the 

boundaries to avoid erosion of the vessel internals (Berruti et al. 2009). Bruhns and 

Werther (2005) found out that doubling the atomization gas flowrate resulted in a longer 

spray jet cavity but the mean droplet size was halved. The authors also noticed that when 

the spray angle increased, the jet length was reduced as there was a wider distribution of 

the liquid feed (Bruhns and Werther 2005). The jet length has also been observed to be 

affected by the nozzle geometry, the injection velocity and the density of the atomization 

gas (Ariyapadi 2004). 

1.2.2  Impact of sprays in FCC 

An FCC (Fluid Catalytic Cracking) unit converts heavy oil through catalytic and thermal 

cracking processes. The gas oil feed is cracked to lighter products such as distillate, 

gasoline and olefins while producing coke as by-product. Unlike Fluid CokingTM, FCC 

makes use of a porous catalyst which must be constantly regenerated by burning off the 

coke residue forming on the catalysts. Studies have shown that the injection parameters: 

injection velocity, injection angle, jet length and droplet size significantly affect the 
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mixing hydrodynamics, heat transfer, feed vaporization and reaction product yields in the 

FCC risers (Chang et al. 2001). In the FCC riser, the temperature of the reactivated 

catalyst is usually higher than the boiling point of the feed, hence the vaporization rate is 

usually dependent on the heat transfer rate into the feed droplets. Quick vaporization of 

the feed is important because, direct contact between fed liquid and catalyst particles 

leads to coke formation and growth of agglomerates (Mirgain et al. 2000). Hence being 

able to control the droplet size and vaporization time is essential to limiting the formation 

and growth of agglomerates in the reactor. Also, the produced coke could damage the 

catalyst active sites, block the pores and hence reduce yield (Chen 2006).  

1.2.3  Impact of sprays in a Fluid CokerTM 

Fluid CokingTM, as explained earlier, converts bitumen vacuum residue to lighter and 

more useful hydrocarbons via thermal cracking. The feed is introduced into the system 

using a manifold of fluid spray injectors. The droplets introduced from the sprays interact 

with the fluidized bed of coke particles and affect the hydrodynamic properties (Tafreshi 

et al. 2002). This interaction of the droplets with bed particles is essential for the thermal 

cracking reactions, as the hot coke particles heat the bitumen, but it also leads to 

agglomeration formation within the fluidized bed. The presence of agglomerates results 

in reduced heat transfer with the hot bed, consequently lowering product yields (Darabi et 

al. 2010) and increasing fouling of the vessel and its internals (Sanchez Careaga 2013). 

The efficiency of the Fluid CokerTM is thus dependent on the nozzle configuration and the 

spray properties. A smaller liquid droplet size distribution enhances heat and mass 

transfer and increases solids entrainment in the spray jet leading to better liquid 

distribution and mass transfer, improving product yields (House 2008). 
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1.3  Agglomeration 

Agglomeration is a process where individual particles collide and stick together to form 

larger agglomerates, usually in the presence of a binding agent. Agglomeration is 

common in industries with particulate operations such as pharmaceutical industries, food 

industries, biomedicine, biomass combustion and coking processes. Depending on the 

process and objective, agglomeration could be useful. It can be used to enhance the 

quality of products in food and pharmaceutical industries (Iveson et al 2001)  however it 

reduces overall product yields in coking processes (Gray 2002). 

1.3.1 Formation and Breakage of Agglomerates 

This thesis focuses on the mechanism of agglomeration growth with a liquid binder. This 

type of agglomeration usually comprises of three major stages: wetting and nucleation, 

coalescence and consolidation, and finally attrition and breakage (Iveson et al. 2001). 

Figure 1.2 shows a schematic representation of the steps involved during wet 

agglomeration with a liquid binder. 
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Figure 1.2: Schematic of the agglomeration process. (Adapted from (Iveson et al. 

2001)) 

a) Wetting and Nucleation 

This is a process where the liquid binder is introduced to the surface of the solid 

particles leading to the initial nuclei formation. This process can occur in two 

ways: distribution mechanism and immersion mechanism (Schæfer 2001). In the 

distribution method, the liquid binder sticks to and coats the surface of the smaller 

particles and essentially acts like a bridge that joins different particles together. In 

the immersion mechanism, the solid particles are immersed in the binder which 

Coalescence and Consolidation 

Wetting and Nucleation 

Attrition and Breakage 
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holds the particles together. The size distribution of the resulting agglomerates is 

usually dependent on the wetting kinetics and thermodynamics, which are 

affected by the binder and powder properties (Iveson et al. 2001). Figure 1.3 

shows the different mechanisms during wetting and nucleation. 

 

Figure 1.3: Wetting and Nucleation mechanisms. (a) Distribution mechanism, (b) 

Immersion mechanism. (Adapted from (Schæfer 2001)) 

b) Coalescence and Consolidation: 

The coalescence stage leads to agglomerate growth as two or more 

nuclei/granules collide with each other and stick to form a larger agglomerate. 

This process continues with more agglomerates until a critical mass is reach 

beyond which the agglomerates break or deform (Ennis et al. 1991). This suggests 

that the final agglomerate size is determined during the coalescence and breakage 

stages. Agglomerate size is affected by the amount and viscosity of the liquid 

binder. As more liquid binder is involved in coalescence, more bridges are 

formed, resulting in larger and stronger agglomerates. Figure 1.4 shows the 
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changes in the liquid bridging process caused by the addition of a liquid binder.

 

Figure 1.4: Changes in the state of liquid bridging caused by the addition of a liquid 

binder. (Adapted from (Schæfer 2001)) 

c) Attrition and Breakage: 

Wet or dried agglomerates or granules break due to impact, wear or compaction 

(Iveson et al. 2001). As the agglomerates continue to grow and collide with each 

other, part of the agglomerates begins to break-off and separate. Breakage usually 

occurs with wet agglomerates and could determine the size of the agglomerates 

while attrition is more common with dried agglomerates (Weber 2009) . There are 

several causes of breakage or attrition such as voidage (Ennis et al. 1991), vessel 

walls, fluidization velocity (Li 2016), or the loading rate or unpacking system in 

granulation processes (Aman et al. 2010). However, the most important factors 

are the particles properties and the micro-bonding mechanism between the 

particles that make up the agglomerate (Antonyuk et al. 2005). 

 



12 

 

1.3.2 Agglomeration in food industries 

Despite the various methods, the main goal of agglomeration in food industries is to 

improve the physical properties of food powders such as flowability, bulk density, 

dispersibility, shelf-life, stability and preventing dust formation (Dhanalakshmi et al. 

2011). It also avoids de-mixing during transport processes (Palzer 2011). The 

agglomeration process here could be achieved via pressure, drying or growth with a 

liquid binder (Schuchmann 1995). 

Agglomeration is also useful in spraying food additives to achieve a desired flavor. In 

food processing, smaller particles are intentionally collided and joined together to achieve 

a desired result. Sometimes a drying step is included to prolong the product shelf-life. 

This could be done by freezing or spray drying the final agglomerates. The liquid binder 

for growth agglomeration process improves powder properties, making it easier to 

transport. Examples of liquid binders include water, lecithin solution or gum solution 

(B.J. et al. 2009). Free flowing powders make further processing, such as tableting, much 

easier (Ghosal, Indira, and Bhattacharya 2010). 

Agglomeration can also be used to create granulated and compacted items for cereal 

production, snacks coating with sugar and sweeteners, and for controlling consistency 

during production of cocoa powder, soymilk, soup mix, instant powder and artificial 

sweeteners (Dhanalakshmi et al. 2011). According to Dewettinck and Huyghebaert 

(1999), coating food powders enhances handling, taste masking, controlled production 

and product life span.  
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1.3.3  Agglomeration in Pharmaceutical Industries  

The purpose of agglomeration in pharmaceutical industries is like that of food industries: 

to improve dispersibility, compressibility, homogeneity and flowability of the final 

product. Unlike the food industry, drug production in pharmaceuticals has been limited to 

mainly batch processes. New continuous technologies have nonetheless been emerging 

that utilize continuous agglomeration in the manufacturing process (Vervaet and Remon 

2005). Pharmaceutical manufacturing industries have continued to evolve and utilize 

science and engineering principles, such as fluidization, to improve process efficiency 

and product quality (Parikh 2005). Some continuous wet agglomeration systems in the 

pharmaceutical industry include high shear granulation, fluid bed agglomeration, 

extrusion/spheronization and spray drying (Agrawal and Naveen 2011). Continuous wet 

agglomeration is useful in drug dosage and in optimizing the production process by 

reducing costs and making transport easier (Vervaet and Remon 2005). The use of co-

agglomerated drug components could prevent segregation during transportation and 

ensures that the drugs are properly tableted (Pietsch 2008). However, unlike the food 

industry, segregation is harder to avoid because some drugs are hydrophobic, making it 

more difficult to achieve proper granulation. 

1.3.4 Agglomeration in Fluid Coking 

Unlike food and pharmaceutical processes, agglomeration is undesirable in the Fluid 

CokingTM process. With this process, the formation of agglomerates leads to heat and 

mass transfer limitations (House 2008). Injected liquid that is trapped within the 

agglomerate cannot react unless the agglomerates are broken up to free the liquid. The 

amount of liquid that gets to react and process efficiency is thus dependent on the rate of 
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formation or breakage of the agglomerates. Some liquid could remain trapped in the 

agglomerates when the coke is sent to the burner to be reheated (Sanchez Careaga 2013), 

resulting in lower product yields. Agglomerates could also lead to fouling and possible 

damage of the vessel and its internals. Hence, it is essential to understand the 

agglomeration behavior during the coking process. 

The formation and breakage of agglomerates is affected by different factors, including 

the quality of the injected spray, spray stability, viscosity and surface tension of the liquid 

(bitumen) and fluidized bed (coke) properties like density, size distribution and contact 

angle. Gray (2002) explained that agglomeration occurs mainly because the feed acts as a 

liquid binder. According to  Dunlop et al. (1958), agglomerates are formed by granulation 

when the particle size is greater than 70 µm in the Fluid CokerTM, but if the particle in 

contact with the liquid is less than 70 µm, the liquid just coats the particle. This suggests 

that the spray droplets size relative to the size of the bed particles is important in 

determining the agglomeration mechanism that takes place in the fluidized bed.  

1.3.5 Agglomeration in slurry pipe flow 

With the introduction of solids in the flow stream, there is a tendency for agglomeration 

to occur in the nozzle conduit before the slurry is sprayed. The agglomeration of the 

particles in slurry flow is usually affected Van der Waals forces, capillary and solid 

bridge forces, electrostatic, collision, net gravity and shear forces (Wang et al. 2015). 

Wang et al. (2015) showed that the capillary bridging forces were the dominant in 

forming liquid bridges and hence agglomerate formation within slurry flow while the 

shear-rate was the dominant separation force. As the shear rate approaches zero, more 
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agglomeration occurs but increasing the shear-rate reduces the maximum critical 

agglomeration size within the flow. Anoop et al. (2009) has also shown that 

deagglomeration occurs at high shear rates. This means that as velocity increases, the 

tendency for agglomeration to occur within the slurry flow drops. As slurry velocity 

increased, more particles are suspended leading to homogeneous flow (Albion et al. 

2011). For homogenous flows, the solids are uniformly distributed within the pipe, 

particle-particle collisions are less likely, the shear forces are more dominant the 

agglomerating forces, thereby minimizing the tendency to form agglomerates within the 

slurry flow. However, for a hetergenous flow, some solids are deposited at the bottom of 

the pipe and the distance between the particles is less than the minimum separation 

distance required for collisions to occur. As a result agglomeration is more likely to occur 

in heterogeneous slurry flow than homogeneous flow. Therefore, to properly simulate the 

industrial system, it essential to obtain a homogenous flow where the solids are properly 

suspended. 

1.3.6 Stability of Agglomerates 

Agglomerate stability is important in processes that vary the strength of the product 

material, for example increasing the strength of concrete mix or with fillers for 

composites (Boyle et al. 2005). There are four groups of properties that greatly affect the 

stability and outcome of the final agglomerates. These include properties of the solid 

particles, properties of the liquid binders (e.g., viscosity and surface tension), external 

factors (e.g., fluidization velocity), and the interaction between the capillary/interfacial 

forces in the agglomerates (Benali et al. 2009). Important solid properties include average 

particle size, size distribution, presence of fines, particle shape, density, and wettability 
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with the liquid binder. According to Iveson and Page (2001), the binder viscosity and 

wettability are the most significant physiochemical properties that affect agglomeration. 

Wettability is dependent on the contact angle formed when the particle contacts the 

liquid. The higher the contact angle, the lower the chance of forming agglomerates 

(Rondeau et al. 2003). McDougall et al. (2005) has shown that with low contact angles, 

agglomerates will form with increasing viscosity; however, the viscosity does not affect 

the agglomerate formation at high contact angles. 

The agglomerate stability is also affected by a balance between the hydrodynamic forces 

acting on an agglomerate and the individual particle-particle bonds/capillary forces 

within the agglomerates (Boyle et al. 2005). When particles are closely packed, a greater 

tensile force is required to fragment the agglomerate as the cohesive forces holding the 

particles are stronger. The strength of agglomerates is thus highly dependent on the 

properties of the particles in contact with the liquid binder during formation (Weber 

2009). 

1.3.7 Previous Studies on Agglomerate formation from sprayed 
liquid  

Previous studies have examined the relationship between the agglomeration process and 

the liquid distribution in the fluidized bed. Liquid trapped within the final agglomerates 

in the Fluid CokerTM does not get the chance to react, leading to lower overall product 

yields. McDougall et al. (2004) have shown that a water-sand system properly simulates 

the bitumen coke system as there is nearly perfect wettability for the solids by the liquids 

in both cases. 
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House (2007) developed a cold simulation model where sugar was used as the binder for 

the experiments. The amount of glucose in the agglomerates was determined using 

gravimetric analysis. Using this model, he studied the effect of nozzle design on the 

formation of agglomerates. The author found out that improved feed dispersion nozzles 

would produce fewer macro-agglomerates and hence less probability for fouling in the 

coker. This model however only provided information about the initial agglomerates and 

did not consider potential formation or breakage of agglomerates after injection. 

Pardo Reyes (2015) developed a cold-model to simulate and analyze the agglomeration 

process. A solution made up of Gum Arabic, food dye and water, was injected at a 

temperature of 130°C. The Gum Arabic served as the liquid binder while the food dye 

was the tracer. The agglomerates formed were analyzed to obtain the amount of liquid 

trapped based on the amount of trapped dye using a spectrometer. The author discovered 

that increasing the binder concentration resulted in more agglomerates as the increased 

viscosity led to more stable agglomerates. It was also observed that increasing viscosity 

led to an increased amount of liquid trapped within the agglomerates. Work was also 

done on pulse injection and it was concluded that one full spray produced fewer 

agglomerates rather than four sprays with the same total amount of injected liquid. 

Li (2016) studied the effects of high gas velocity on agglomerates and liquid distribution. 

It was observed that increasing the fluidization velocity during injection reduced the 

amount of agglomerates. This phenomenon was however only significant in the bubble 

flow regime of the fluidized bed. Once the fluidized bed entered the turbulent regime, a 

further increase in fluidization velocity had a minimal effect on the amount of 

agglomerates produced. Higher gas velocities also led to better liquid distribution. This is 
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because the higher drying velocity causes breakage of the agglomerates, releasing 

previously trapped liquid. The effect of spray stability and liquid distribution at low gas 

velocities were also studied (both during injection and drying), and bed hydrodynamics 

were dominant while spray stability had a negligible effect. At higher superficial gas 

velocities (during both injection and drying), the spray stability was more significant. 

1.3.8 Previous Studies on Agglomerate Stability in Fluidized Beds 

Weber (2009) investigated the effect of particle and bed properties on the agglomerate 

stability. The agglomerates used were custom made in the laboratory and inserted into the 

fluidized bed and then re-examined after the experiment. Agglomerates formed from 

larger particles were more porous and trapped less moisture than agglomerates made 

from smaller particles. Agglomerates were more stable when they included particles from 

a wide range of particle sizes. It was also observed that different types of particles led to 

different rates of formation or breakage of agglomerates. Particle properties such as size, 

shape, porosity and abrasiveness significantly affected the outcome of the final 

agglomerates. The wettability of the injected agglomerates also appeared to affect the 

breakage rate of the agglomerates. It was also shown that increasing the fluidization 

velocity led to a lower mass of agglomerates. 

Parveen (2011) continued the work of Weber (2009) by studying the effects of 

agglomerate properties, bed particle properties and fluidization velocity on agglomerate 

breakage. Wet agglomerates were simulated using polyurethane foam, epoxy glue and an 

RFID (Radio-frequency identification) tag. The RFID tag was used to detect agglomerate 

breakup within the bed. It was found that agglomerate stability depended not just on 

particle size, but also on the number of fines. Increasing the Sauter-mean diameter of the 
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particles also reduced agglomerate stability. Increasing the fluidization velocity led to 

faster breakage of the agglomerates and denser agglomerates broke up more slowly than 

less dense ones. 

1.4 Research Objectives 

Based on the previous studies, it is necessary to understand the bed hydrodynamics, 

liquid distribution, and the agglomerate stability within the fluidized bed. Several liquid 

properties were studied, such as viscosity, density and contact angle. However, the 

injection of a liquid-solid slurry into the fluidized bed has not been studied. This thesis 

focuses on the impact of injecting a slurry on the liquid distribution within the fluidized 

bed and the agglomerate stability. The research was conducted in three main stages, 

which have been separated as chapters.  

Chapter 3: The impact of injected particles on spray properties in open-air. Experiments 

were conducted in open-air to understand the effect of the solids on spray stability and 

angle. Particles with varying properties were also tested to see how the open-air spray 

characteristics varied with particle properties. 

Chapter 4: The impact of injected slurry on agglomerate formation and break-up. This 

chapter uses the cold simulation model developed by Pardo Reyes (Pardo Reyes 2015) to 

investigate the impact of the slurry injection on initial agglomerate formation and 

breakage. Fine silica sand particles were used as the solids for the results in this chapter 

at different concentrations: 0 wt.%, 10 wt.% and 20 wt.%. The impact on liquid 

distribution and agglomerate stability were also studied by varying the fluidization 

velocity during injection. 
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Chapter 5: Impact of different particle properties on the liquid distribution. In this 

chapter, particles with varying properties were tested to better understand the impact on 

agglomeration behavior when injecting a slurry. Particle size, shape, density and 

wettability were varied. The effect of these properties provided insight into the physical 

mechanisms responsible for the impact of slurry particles on liquid distribution and 

agglomerate stability in a fluidized bed. 
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Chapter 2 

2 Experimental Set-up and Methodology 

2.1 Open Air Experiments 

2.1.1  Experimental Set-up 

Figure 2.1 shows a schematic diagram of the open-air experimental process which starts 

at the mixing tank where the slurry mixture is first formed using a compressed air motor 

and impeller. Atomization gas was provided from the nitrogen tanks to produce a spray at 

the end of the TEB spray nozzle (Base et al., 1999). The desired atomization gas pressure 

was set using a pressure regulator which is measured by the pressure transducer at PATO.  

A calibrated sonic orifice was used to adjust the gas flow to the required gas mass flux. 

The conduit diameter of the fittings and line for the gas flow is 6.4 mm (1/4").  Nitrogen 

gas was also sent through the mixing tank and the pressure is measured at PBTK. The 

flowrate of the slurry leaving the mixing tank was dependent on the pressure recorded at 

PBTK and the size of the flow restrictor. The slurry from the mixing tank was sent through 

the flow restrictor and is mixed with the atomization gas at the pre-mixer. The resulting 

mixture was produced at the tip of the TEB spray nozzle. The TEB nozzle was specially 

designed to ensure proper gas-liquid mixing within the conduit. The system was able to 

achieve sonic flow in the sonic orifice for the experiments which were done at different 

atomization gas-to-liquid, (GLR) ratios: 1, 2 and 3 wt.%. 
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Figure 2.1: Schematic diagram of open-air injection system 

Figure 2.2 shows a TEB spray nozzle which is a scaled down version of an industrial 

nozzle and is suitable  and efficient for simulating the industrial conditions 

(Farkhondehkavaki 2012). In this study, the tip of the TEB spray nozzle was either 1 or 2 

mm in diameter. 

 

 

 

 
2mm1 or 2 mm 

Figure 2.2: Diagram of TEB nozzle 
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2.1.2 Mixing tank and Solids Suspension Quality 

Table 2.1 gives details about the results from the solids suspension quality test. To 

properly simulate the industrial slurry-recycle stream, the mixing tank was tested to 

ensure that the solids were properly suspended in the mixing tank. Good mixing of the 

slurry would prevent particle agglomeration during pipe flow as the solids should be well 

dispersed and properly suspended. The motor in the mixing tank was run using 

compressed air at 90 psig which corresponds to a maximum speed of 25 rpm.  

Sand particles (dpsm =12.8 µm, ρ = 2650 kg/m3) were used as the solid particles for the 

test because they had the highest density compared to other solids tested and should 

therefore be the hardest to suspend. The solid particles and liquid were introduced into 

mixing tank with the motor set at 25 rpm where the mixing occurs. Half of the resulting 

mixture was sprayed in open-air and collected in a bucket. The sprayed slurry was 

collected, weighed and its solids concentration obtained by letting its liquid dry off and 

measuring the mass of the dry particles. From Table 2.1, the concentration of the solids 

in the sprayed liquid increased relative to the initial concentration of the slurry. This 

shows that the mixing unit is more efficient at lower concentrations of solids which is 

expected. 
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Table 2.1: Testing suspension quality of sand particles in sand-water slurry 

wt.% of slurry solids in 

original mix 

wt.% of solids in sprayed 

liquid 

wt.% of solids in 

liquid remaining in 

tank 

5 5.05 4.95 

10 11.29 8.71 

20 23.5 16.5 

2.1.3 Slurry mixtures and solutions  

Table 2.2 shows the different injected solids and their particle properties. Most of the 

open-air experiments were done with a slurry mixture of sand (Sauter-mean diameter, 

dpsm = 12.8 µm) and water. However, for spray stability experiments, other solids such as 

hollow glass beads (dpsm = 9.8 µm), solid glass beads (dpsm = 10.2 µm) and crushed coke 

(dpsm = 9.0 µm) were used. Figure 2.3 shows the cumulative size distribution of the solids 

which were measured using a Sympatec Helos particle size analyzer. Appendix A 

contains more details on cumulative size distribution of all the solids. Also, to simulate 

the industrial viscosity conditions, different base fluids were tested such as 0.05 wt.% 

CMC-water solutions and 30 wt.% sugar-water solutions with sand as the solid particles. 

The concentrations of solids tested was from 0 to 20 wt.%. The system experienced 
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plugging above 20 wt.% concentration of solids with dpsm= 12.8 µm, specifically at 30 

wt.% and 40 wt.%. 

Salt-water solutions were used to examine the effect of changing density on the spray 

properties. The concentration of salt in the solution was adjusted to achieve the desired 

density for each case. For example, 22.5 % salt solution would have the same density 

(1400 kg/m3) as a 20 wt.% sand-water slurry.  

Table 2.2: Properties of the injected solids tested. From Weber (2009) and 

Thermtest Inc. (2018). 

 

Solids 

Properties 

Particle 

density (kg/m3) 

Sauter-mean 

diameter (µm) 
Particle shape 

Wettable with 

water 

Sand 2650 12.8 angular yes 

Hollow Glass 

(H.G.) beads 
1000 

9.8 

61.0 

round yes 

Solid Glass 

(S.G.) beads 
2450 10.2 round yes 
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Coke 1450 9 angular no 

 

Figure 2.3: Cumulative size distribution of particles for all injected solids 

2.1.4  Determining the effective viscosity of suspensions and 
solutions 

▪ Einstein`s viscosity equation (for 𝜑 < 5%) (Mooney 1951) 

 𝜇𝑒𝑓𝑓 =  𝜇𝑓(1 + 2.5𝜑) 2-1 

 

Where: 𝜑 is the volumetric fraction of the solids in the slurry.  

This equation was only useful when the volume fraction was less than 5% (10 wt.%), 

hence it was not used for higher concentrations up to 20 wt.%. More robust equations 

were required to estimate the effective viscosity of the slurry. 

▪ Batchelor`s correlation (Batchelor 2000),  
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 𝜇𝑒𝑓𝑓 =  𝜇𝑓(1 + 2.5𝜑 + 6.5𝜑2)  2-2 

 

▪ Thomas` correlation for viscosity of mixtures, (Thomas 1965) 

 𝜇𝑒𝑓𝑓 =  𝜇𝑓(1 + 2.5𝜑 + 𝑘𝜑2) 2-3 

Where k ranges from 10.5 to 14.1 

Equation 2-2 is like equation 2-3 but with a k value of 6.5. Equation 2-3 was used to 

estimate the viscosity with k = 14.1 as this would be the worst-case scenario. However, 

changing the value of k from 6.5 to 14.1 led to a difference of 4 % in effective viscosity, 

at 20 wt.% solids which is a negligible difference. 

The viscosity of the CMC and salt solutions were measured using a Cannon-Fenske 

viscometer tube(D75). 

2.1.5  Average Spray Angle 

Figure 2.4 shows how the angle of the spray is measured. The average spray angle gives 

information about the liquid dispersion in the spray and the liquid droplet size.  The video 

of the spray is taken using a high -speed camera (Casio Exilim EX-ZR1700SR) at 420 

frames per second and analyzed using Matlab to obtain the spray angle with respect to 

picture frames and is then used to obtain the average spray angle for each run. The 

average spray angles are then plotted against concentration of solids.  
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Figure 2.4: Measuring spray angle 

 𝑆𝑝𝑟𝑎𝑦 𝑎𝑛𝑔𝑙𝑒, 𝜃 = 2 ∗  tan−1(
𝑦

2 ∗ 𝑥⁄ ) 2-4 

Where 𝑥 = 9 cm 

2.1.6 Spray Stability 

Spray stability was examined visually using a high speed camera, but it is related to the 

flow pattern within the conduit which is more difficult to examine physically (Li 2016). 

The flow pattern is affected by the effectiveness of gas-liquid mixing at the pre-mixer and 

within the nozzle conduit and the gas and liquid flowrates. This means that better mixing 

will lead to less fluctuations in the spray and a more uniform spray droplet size 

distribution. To obtain a stable spray, it is preferred that the flow pattern within the 

conduit be in dispersed bubble phase as shown in Figure 2.5. In this regime, there is 
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better gas-liquid mixing as the velocity of the flow is high enough to the counteract 

buoyant forces acting on the bubbles.   

 

Figure 2.5: Flow regime for water-air flow at room conditions. Adapted from (Taitel 

and Dukler 1976) 

The stability of the spray can be measured in two different ways: using the coefficient of 

variation (COV) based on the video properties and the change in pre-mixer pressure 

readings with time. Spray videos (at 420 frames per second) are taken using a high-speed 

camera and used to obtain the coefficient of variation based on video properties. The pre-

mixer pressure readings are obtained by converting voltage readings from the pressure 

transducer at the pre-mixer. Joness (2018) looked at different ways of measuring stability 

using the coefficient of variation from spray videos obtained using a high-speed camera. 

The author looked at coefficient of variation of the proportion of gray-scale pixels, 

Stable spray region 
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average pixel intensity values and the sum of pixel intensity relative to the spray area. 

Figure 2.6 shows a picture frame from a spray video. Everything within the box can be 

considered as the picture frame area, PA, while the darker region is the spray area, SA.  

Lower values for coefficient of variation indicate a more stable spray while higher values 

represent a more pulsating spray. 

▪ Proportion of gray-scale pixels: Every frame from the color video was 

converted first to gray-scale and then to a binary picture with the background 

as 0 and the pixels of the spray as 1. The ratio of the spray area to the picture 

area, (SA/PA), was obtained as the proportion of the spray for each picture 

frame. This was repeated for every frame and used to obtain the coefficient of 

variation. 

▪ Average pixel intensity values: This method measures the time-averaged pixel 

intensity values of the spray. It shows how the spray region, SA contracts or 

expands with time. 

▪ Sum of intensity/area: Here, the sum of the pixel intensity values in the spray 

area of a picture frame is obtained first and then divided by the spray area SA. 

This calculation is then repeated for every picture frame in the spray video. 

The coefficient of variation of the obtained values for every frame in the 

video, were then used to qualify the spray stability. In this study, a value less 

than 0.06 indicated a non-pulsating spray. This method also takes into 

consideration both stability and liquid dispersion of the spray. It was 
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concluded that this method was most accurate compared to the other video 

methods. 

Picture area, PA

Spray Area, SA

Spray nozzle
 

Figure 2.6: Picture frame of spray for stability analysis 

2.1.7  Determining spray flowrate 

Figure 2.7 andFigure 2.8 show the change in the proportion of gray-scale pixels and pre-

mixer pressure with time respectively. The video of the spray taken during each run is 

analyzed in Matlab to produce a figure showing how the proportion of gray-scale pixels 

varies with time, from which the spray time can be estimated. The spray time was then 

used get the average flowrate for each run. Similarly, the flowrate could also be estimated 

from the plot of pre-mixer pressure readings with time. 
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Figure 2.7: Proportion of gray-scale pixels with time 

 

Figure 2.8: Pre-mixer pressure readings with time 

From Figure 2.9, clearly the values of the flowrates obtained from the pressure reading 

and proportion of gray-scale pixels agreed with each other, with the pressure readings 
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resulting in slightly lower flowrate values. The average value from both cases were used 

as the final value for each wt.% run. 

 

Figure 2.9: Comparing the two methods used to obtain the liquid flowrate 

2.2 Fluidized Bed Experiments 

2.2.1 Experimental Set-up 

Figure 2.10 shows the experimental set-up for the fluidized bed experiments.  The 

injection system is identical to that of the open-air experiments but with the spray being 

injected in a fluidized bed. For all fluidized bed experiments, the bed which had an 

approximate height of 0.45 m, was made up of 45 kg of silica sand with a Sauter-mean 

diameter of 190 µm and a particle density of 2650 kg/m3. The cumulative size 

distribution of the bed particles is given in Figure 2.11. Figure 2.12 shows a photo of the 

fluidized bed system. An induction heater is attached to the outside wall to heat up the 
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bed to 135 °C for Gum Arabic model experiments. As a result, the heating system does 

not interfere with the fluidization process. The spray injections were carried out with a 

TEB nozzle with a 1 mm throat diameter at 2 wt.% GLR as shown in Figure 2.2. The 

spray nozzle was located 0.21 m above the windbox. The temperature of the bed was 

measured using a thermocouple located on the opposite end of wall from the injection 

nozzle. 
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Figure 2.10: Schematic diagram of the experimental set-up for fluidized bed 

experiments. 
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Figure 2.11: Cumulative size distribution of the bed sand particles 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

120

0 200 400 600 800 1000

C
u
m

 w
t%

 o
f 

p
ar

ti
cl

es

Particle size, µm

Figure 2.12: Photo of fluidized bed system 
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2.2.2 Low temperature (Gum Arabic) experimental model 

Pardo Reyes`s cold simulation model  (Pardo Reyes 2015) was adopted for the fluidized 

bed experiments. The model has been proven to effectively simulate formation and 

breakage of agglomerates in a Fluid CokerTM from bitumen injection using pilot plant-

scale equipment (Pardo Reyes 2015).  

The injected mixture is made of solid particles and Gum Arabic solution. The solution is 

made up of 92 wt.% water, 6 wt.% Gum Arabic powder which acts as the binder and 2 

wt.% blue dye which was used as the tracer. The pH of the solution was adjusted to a pH 

of 3.0 using a few drops of hydrochloric acid. Pardo Reyes (2015) has proven that at a pH 

of 3, the solution has a viscosity of 3 cP which is near the viscosity of injected bitumen in 

the industrial Fluid CokerTM. The total mass of injected mixture was 200 g of slurry for 

all runs with an atomization gas flux of 0.463 g/s/mm2 which corresponded to a GLR of 

2 wt.% for 0 wt.% of solids. 

2.2.3 Experimental procedure for fluidized bed experiments 

 

• Preheat bed at low fluidization velocity (Vg1) 

• Increase to desired injection fluidization velocity, Vgi  

• Inject 200 g of gum Arabic solution (injection time: 11 s without solids) 

• Reduce Vg to desired fluidization velocity, Vgd during drying 

• Switch off the heater and allow bed to cool to below 50° C (which took 

approximately 55 minutes for all cases, with or without injected solids).  
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• Collect bed solids with vacuum system and screen to recover the agglomerates. 

The agglomerates are then collected, weighed, sized and analyzed for trapped 

liquid content, using the method described by (Pardo Reyes 2015). 

 To properly investigate the effect of the slurry on agglomerate formation and 

breakage, a variety of fluidization velocities were tested, and a summary is given in 

Table 2.3. 

Table 2.3: Summary of fluidization velocities tested during injection and drying of 

agglomerates 

                    

                 Vgd (m/s) 

            Vgi (m/s) 

0 0.12 0.44 

0.35 N/A measured N/A 

0.44 measured measured measured 

0.75 N/A measured N/A 

 

2.2.4 Characterization of Agglomerates  

2.2.4.1 Size Distribution of Agglomerates 

After the experiment, the bed of sand constitutes of a mixture of macro- agglomerates, 

micro-agglomerates and the initial bed particles. The macro-agglomerates are the 
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agglomerates with a size greater than 600 µm while the micro-agglomerates range from 

355 µm and 600 µm. Due to their size, the macro-agglomerates can be easily sieved into 

different size cuts that are weighed directly. The macro-agglomerates were divided into 

the following size cuts: 

𝑑𝑎𝑔𝑔𝑙 ≥ 9500 𝜇𝑚 

9500 𝜇𝑚 ≤ 𝑑𝑎𝑔𝑔𝑙 ≥ 4000 𝜇𝑚 

4000 𝜇𝑚 ≤ 𝑑𝑎𝑔𝑔𝑙 ≥ 2000 𝜇𝑚 

2000 𝜇𝑚 ≤ 𝑑𝑎𝑔𝑔𝑙 ≥ 1400 𝜇𝑚 

1400 𝜇𝑚 ≤ 𝑑𝑎𝑔𝑔𝑙 ≥ 850 𝜇𝑚 

850 𝜇𝑚 ≤ 𝑑𝑎𝑔𝑔𝑙 ≥ 600 𝜇𝑚 

The remaining mass, mass of micro-agglomerates and bed particles is therefore given as  

 𝑚<600 𝜇𝑚 = 𝑚𝑏𝑒𝑑 − 𝑚𝑚𝑎𝑐𝑟𝑜 2-5 

The size cut for the micro-agglomerates are divided as follow: 

600 𝜇𝑚 ≤ 𝑑𝑎𝑔𝑔𝑙 ≥ 500 𝜇𝑚 

500 𝜇𝑚 ≤ 𝑑𝑎𝑔𝑔𝑙 ≥ 425 𝜇𝑚 

425 𝜇𝑚 ≤ 𝑑𝑎𝑔𝑔𝑙 ≥ 355 𝜇𝑚 
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Since the size range of the micro-agglomerates overlaps with the size range of the initial 

bed particles, the size cuts obtained by sieving would include bed particles, making it 

difficult to obtain the actual mass of the micro-agglomerates. As a result, only a 5 kg 

sample was taken from the bed (after the macro-agglomerates have been removed) and 

the trapped fines were used as a tracer to estimate the mass of the micro-agglomerates in 

the bed. The mass of the micro-agglomerates in the sample (𝑚𝑚𝑖𝑐𝑟𝑜,𝑅𝑖
), was calculated 

as: 

 𝑚𝑚𝑖𝑐𝑟𝑜,𝑅𝑖
=  𝑚𝑑 +  𝑚𝐺𝐴 + 𝑚𝑝 2-6 

Where; 𝑚𝑑 = mass of dye;  𝑚𝐺𝐴 = mass of gum Arabic, and 𝑚𝑝= mass of trapped fine 

particles. 

The mass of the dye and gum Arabic in the sample was obtained from spectral analysis 

for liquid trapped in the agglomerates (see section 2.2.4.2 below). Assuming the size 

distribution of the trapped bed fines was the same as the initial size distribution of the 

bed, the mass of the trapped particles (mp) was calculated as follows (Pardo Reyes 2015): 

 𝑚𝑝  =  𝑚𝑠𝑎𝑛𝑑 (
𝑥𝑓

𝑥𝑏𝑒𝑑
)  2-7 

Once the mass of the agglomerates in the sample was known, the total amount of the 

micro-agglomerates for each size cut in the bed was calculated as follows (Pardo Reyes 

2015): 

 
𝑚𝑚𝑖𝑐𝑟𝑜,𝑖  =  𝑚𝑚𝑖𝑐𝑟𝑜,𝑅𝑖 (

𝑥𝑓

𝑥𝑏𝑒𝑑
) 

 

2-8 
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2.2.4.2 Determination of liquid trapped (Pardo Reyes 2015) 

The amount of liquid trapped in the agglomerates was estimated based on the mass of the 

blue dye in the injected solution. After the agglomerates were weighed, they were 

dissolved in water to extract the dye. The mass ratio of water to agglomerates is 3:1. A 

magnetic stirrer helps dissolve the gum Arabic and the dye and a centrifuge was used to 

separate the sand from the resulting dyed liquid. A sample of this final liquid was 

analyzed in a spectrometer to measure the absorbance at the characteristic wavelength, λc 

of blue light (630 nm). The concentration and mass of the blue dye was obtained using 

the absorbance and calibration shown in the Figure 2.13 below. 

Since the blue dye acts as a tracer, and the initial ratio of dye to liquid is known, the mass 

of the liquid trapped in the agglomerates was then obtained using the mass of the dye. For 

each case studied, the average of the replicates was taken to produce a line graph to show 

the effects produced for each case. 
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Figure 2.13: Calibration curve for absorbance of blue dye, λc = 630 nm. (Pardo 

Reyes 2015) 

2.2.5 Jet Penetration  

A method developed by Li (2017) was used to measure the length of a spray jet in the 

fluidized bed. The set-up (described in 2.2.1), comprised of a movable spray nozzle at 

one end of the fluidized bed with a thermocouple on the other end, directly opposite the 

spray nozzle. The thermocouple was used to measure the temperature drop caused by the 

sprayed liquid. For each run, the nozzle is placed at a reasonable distance away from the 

thermocouple and the liquid is sprayed into the bed at a temperature of 130 °C. To obtain 

the exact spray length, each time a run was made, the nozzle was moved closer to the 

thermocouple until a significant change in the temperature drop was observed. The 

resulting distance from the spray tip to the thermocouple is measured as the jet length. 
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Chapter 3 

3 Effect of slurry concentration on open-air spray 
properties 

3.1  Introduction 

Many fluidized bed processes, including Fluid CokingTM make use of a horizontal spray 

system. The behavior of the spray jet into the Fluid CokerTM is important as it 

significantly affects the agglomeration process and hence the overall efficiency of the 

process. Agglomeration of the fluidized bed particles with the sprayed liquid can lead to 

yield losses and fouling in the bed (Stanlick 2014, Sanchez Careaga 2013). Changes to 

spray behavior due to the solids present in the injected liquid could enhance or adversely 

affect the liquid distribution within the Fluid CokerTM. As mentioned in chapter 1, 

relevant spray characteristics that could affect the agglomeration include the spray 

stability, angle and length. Open-air experiments can measure the effect of the recycled 

solids on these spray properties. Past studies have shown that spray stability in open-air 

and in a fluidized bed are directly related (Ariyapadi 2004). Although the spray angle is 

quite different in open-air than in the fluidized bed (Berruti et al. 2009), if the slurry 

solids affect the spray angle in open-air, they will also affect it in the fluidized bed. 

This work analyzes the spray stability, and spray angle to investigate the effect of the 

injected solid particles. Experiments were also carried out to examine how the liquid 

flowrate might be affected by changing the concentration of injected solids. Because the 

mass flowrate of atomization gas was kept constant in the experiments, any change in 

liquid flowrate would result in a change in the gas-to-liquid mass ratio (GLR). 
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Improving the spray stability usually enhances the efficiency of the process as it 

improves liquid distribution in the bed. However, Leach et. al (2008) has shown that 

introducing specific pulsations could enhance jet-bed interactions. There have been a lot 

of studies on the effects spray stability and pulsations on agglomeration in a fluidized 

bed. Ariyapadi (2003) observed that unstable sprays tend to reduce the amount of solids 

entrained in the spray jet and affect solids mixing. House (2008) also suggested that 

improving spray stability enhances the liquid-solid contact, thus increasing liquid 

distribution within the fluidized bed. Since the concentration of the solids affect the 

effective viscosity and density, it is relevant to examine how these factors affect the spray 

stability. Change in the viscosity can affect the stability of the spray. Ariyapadi (2004) 

conducted experiments to show that increasing viscosity would results in a less stable 

spray.  

The spray angle can be used to obtain information on stability and liquid dispersion. 

Measuring the change in spray angle with time can be used as a measure of stability. 

Increasing spray angle would also lead to an increase in solids entrainment in the spray 

jet and further enhance product yield (House 2008). The average spray angle could be 

used to estimate the average droplet size. With respect to gas-liquid ratio (GLR), House 

(2008) concluded that increasing GLR from 1.5 wt.% to 2.75 wt.% should increase the 

spray angle as there is a higher gas flow. 

The jet penetration was not considered in open-air experiments, because within the 

fluidized bed, it is bound to be different than it would be for open-air experiments as the 

bed solids will affect it.  
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The objective of this chapter is to examine, if any, the effect of the injected solid particles 

on spray properties such as stability and spray angle, liquid mass flowrate and gas-liquid 

ratio (GLR) and the significance of the effects. 

3.2 Experimental Set-up and methodology 

The experimental set-up, materials and methodology for the open-air experiments and 

data analysis is available in chapter 2 of this thesis. The experiments were done in open-

air using the set-up shown in Figure 2.1. A high-speed camera was used to take a video 

of the sprays at a frame rate of 420 frames per second while a data acquisition system 

was used to record the change in pre-mixer pressure with time. 

3.3  Results and Discussion 

3.3.1 Impact of slurry Concentration on flowrate 

Figure 3.1, Figure 3.2 and Figure 3.3 show the relationships between the concentration 

of the injected solids and liquid mass flux, total slurry mass flux and slurry volumetric 

flux of the spray, respectively. The pre-mixer pressure was kept constant for the duration 

of all the runs. From Figure 3.1, the liquid mass flow drops when there is a higher 

concentration of solids. Since, the total mass of the slurry was kept constant at 200 g, it is 

expected that the liquid flowrate drops with an increase in weight fraction (wt.%) of 

solids as the amount of liquid (water) in the slurry is reduced. The liquid flowrate 

corresponds to the amount of liquid available in the slurry. From Figure 3.2, the total 

slurry mass flowrate increases with an increase in concentration for all the different 

solids. Hence, the spray time is reduced when more solids are injected due to the reduced 

mass of liquid. From Figure 3.3, the slurry volumetric flux remains almost constant 

across the solids’ concentrations suggesting that the solids have no significant effect on 
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the volumetric flowrate of the slurry. This confirms that the effect produced on total 

slurry mass flux and liquid mass flux is just due to the change in the volume of liquid in 

the slurry. 

 

Figure 3.1: Impact of slurry concentration on liquid mass flux (water) at 2 wt.% 

GLR at 0 wt.% of solids. PATO: 558 psig; PBTK: 285 psig; PPM: 235 psig 
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Figure 3.2: Impact of slurry concentration on total slurry mass flux at 2 wt.% GLR 

at 0 wt.% of solids. PATO: 558 psig; PBTK: 285 psig; PPM: 235 psig 
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Figure 3.3: Impact of slurry concentration on total slurry mass flux at 2 wt.% GLR 

at 0 wt.% of solids. PATO: 558 psig; PBTK: 285 psig; PPM: 235 psig 

3.3.2 Impact of slurry concentration on liquid flux at different GLRs 

Figure 3.4 shows the impact of sand slurry concentration on liquid mass flux at different 

GLRs using a 2 mm nozzle. Across the different gas flowrates, the same trend is 

observed, the liquid flowrate drops with increasing concentration. Changing the GLR did 

not change the effect of the solids on the mass flowrates. Table 3.1 shows the pressure 

conditions set for each GLR. 
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Figure 3.4: Impact of slurry concentration on liquid mass flux (water) at different 

GLRs 

Table 3.1: The experimental pressure conditions for each GLR 

GLR 1 wt.% 2 wt.% 3 wt.% 

PATO (psig) 420 588 595 
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3.3.3 Relevance of effective density and viscosity of the slurry 

Since the concentration of the injected solids had some impact on the flowrate, the 

effective viscosity and effective density of the mixture were therefore examined to 

determine which had a more significant effect. Tests were done using solids free 

solutions: CMC solution (constant density and changing effective viscosity) and salt-

solution (changing density and constant viscosity). Table 3.2 shows the recorded 

conditions used for the experiments. The pressure conditions were kept constant for every 

run. The recorded values are similar and are essentially equal. The solids used for these 

experiments were sand particles (dpsm= 12.8 microns). 

Table 3.2: The pressure conditions used for the different runs with different solvents 

Solvent Sand-water slurry CMC solution Salt solution 

PATO (psig) 597 597 597 

PBTK (psig) 379 381 381 

Pre-mixer pressure 

(psig) 
283 281 284 

 

All experiments were done at 3 wt.% GLR at 0 wt. solids (based on previous results, it is 

expected that both 1 wt.% and 2 wt. % GLR would have the same trend with 3 wt.% 

GLR). The range of viscosities considered was from 1 cp to 1.12 cP (for 0 to 0.25 wt.% 

CMC solution) which corresponds to 0 wt.% and 10 wt.% sand slurry, respectively. The 

viscosity of the CMC and salt solutions were measured using a Cannon-Fenske 
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viscometer (D75) while the effective viscosity of the slurry was estimated using equation 

2-3 from chapter 2. The densities ranged from 1 g/cm3 to 1.07 g/cm3 which correspond to 

0 wt.% to 11.5 wt.% salt solution and 0 wt.% to 10 wt.% sand slurry. 

Figure 3.5 shows a comparison between the results obtained from sand-water slurry 

mixture and the CMC solution. The total slurry mass flow increases with increase in the 

concentration of the solids. If the viscosity had a strong effect on the flowrate, the CMC 

graph would produce a similar trend as the slurry graph which is not the case. Changing 

the effective viscosity from 1 to 1.17 cP resulted in a negligible change in the total mass 

flowrate of the solution.  

 

Figure 3.5: Effect of changing viscosity with changing concentration using 

equivalent CMC solution. (error bars show the estimate of the standard deviation of 

the replicates) 
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Figure 3.6 shows a comparison between the sand-water mixture and the salt solution 

results. An increased effective density resulted in higher mass flowrates for the solution. 

The values from the salt solution also agree with the slurry results, suggesting that the 

effective density affects the total slurry flowrate. The results show that the effective 

density has a stronger agreement with the slurry mass flowrate than the effective 

viscosity. This can be explained by recognizing that the fluid dynamics of the flow is 

more dependent on the inertial forces than the frictional viscous forces in the nozzle 

conduit. Hence for a homogenous flow in the turbulent regime, the effective viscosity of 

the flow at different concentrations is bound to be approximately the same as the 

viscosity of water (Vibeke and Steinar 2000). Therefore, it can be concluded, that the 

flowrate is most likely dependent on the effective density of the slurry than the effective 

viscosity. 
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Figure 3.6: Effect of changing density with changing slurry concentration using 

equivalent salt solution. (error bars show the estimate standard deviation) 

3.3.4 Effect of slurry concentration on the average spray angle  

Figure 3.7 shows the relationship between average spray angle (in degrees) with a 

change in concentration from 0 to 10 wt.% of sand slurry with a 2 mm spray nozzle. 

Figure 3.8 shows the effect of different injected solids on the spray angle for 0 to 20 

wt.% solids with a 1 mm TEB nozzle. From Figure 3.7, between 0 wt.% and 10 wt.%, at 
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there was still a negligible effect of the solids on the average spray angle. 
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Figure 3.7: Average spray angle vs wt.% of sand at different GLR 

 

Figure 3.8: Average spray Angle vs wt.% of solids 
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3.3.5 Effect of slurry concentration on the stability of the spray 

Figure 3.9 and Figure 3.10 show the stability of the spray based the video properties and 

the pre-mixer pressure readings. Both figures agree with each other as they both show 

that changing the concentration of the solids had a minimal effect on the stability of the 

spray. At 0 wt.%, the coefficient of variation is identical to the coefficient of variation at 

10 wt.% and 20 wt.% for all solids cases which means that there is a negligible change in 

stability. 

The coefficient of variation obtained from the video properties not only gives information 

about stability but also takes into consideration intensity of the pixels over the spray area 

which gives information about the liquid dispersion of the spray. Therefore, it can be 

deduced that the injected solids have a negligible impact on the stability and liquid 

dispersion of the spray. It is possible that since the mixture is well mixed, and flow is 

homogeneous, that the solids resulted in a negligible impact on the pre-mixer pressure 

readings. Also, from a physical point of view, the size of the particles is so small that in 

an open-air spray, the sand just follows the water and pixel fluctuations picked up by the 

camera is mostly caused by the liquid rather than by the solids. 
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Figure 3.9: Stability of spray based on video analysis 

 

Figure 3.10: Stability of spray based on pre-mixer pressure readings 
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3.4 Conclusion 

In this chapter, open-air experiments were conducted to investigate the effect of a slurry 

on the spray properties. The addition of solids results in a reduced mass flow rate of the 

liquid but an increase in the total slurry mass flowrate. Further experiments were carried 

out to explain these results and it was observed that the mass flowrate of the spray was 

dependent on the volume of sprayed liquid and the density of the slurry. The change in 

viscosity due to the addition of the solids had a negligible impact on the slurry flowrate. 

Also, the presence of the solids resulted in a negligible impact on the spray angle and 

stability. 
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Chapter 4 

4 Impact of Slurry on Agglomerate Formation and 
Breakup 

4.1 Introduction 

Fluidization technology is an effective unit configuration used in a variety of processes 

such as pharmaceutical granulation, coal gasification, polymerization, fluid catalytic 

cracking (FCC) and Fluid CokingTM (Hesketh et al. 2002). Agglomeration phenomenon 

is common to some of these systems. For some systems such as granulation, 

agglomeration is essential and useful; however, the formation of agglomerates is 

undesirable for Fluid Coking. The presence of agglomerates in Fluid CokersTM could lead 

to poor or reduced heat and mass transfer, resulting in lower yields of valuable products 

(Darabi et al. 2010), and increased fouling of reactor internals (Sanchez Careaga 2013), 

reducing operability. As mentioned in chapter 1, the Fluid CokerTM at Syncrude has a 

recycle stream which can contain fine solid particles. These fines are usually coke 

particles that have exited from the cyclone gas outlet tube into the bottom of the scrubber. 

Despite the extensive amount of research done on the Fluid CokerTM technology, the 

effects of these particles on agglomeration and liquid yield has never been studied. The 

objective of this chapter is to investigate the impact of the recycled solid particles on 

agglomerate formation and breakage. As some of the injected liquid gets trapped within 

agglomerates of different sizes (Knapper et al. 2003), this study focuses on the changes in 

trapped liquid, mass and size of agglomerates due to the presence of the injected solids. 
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4.2  Experimental Set-up and methodology 

Detailed information regarding the experimental set-up, materials and methodology for 

the fluidized bed experiments and data analysis is available in chapter 2 of this thesis. 

The maximum concentration of solids considered was 20 wt.%. Higher concentrations at 

30 wt.% and 40 wt.% of sand resulted in plugging of the 1 mm TEB spray nozzle.  

To test for initial agglomerate formation, the fluidization velocity during injection (Vgi) 

was 0.44 m/s. After the injection, the fluidization velocity was immediately reduced to a 

velocity below the minimum fluidization velocity to ensure that there is no break-up of 

the agglomerates and the drying velocity (Vgd) was well below the minimum fluidization 

velocity (it will be noted as 0 m/s in the rest of this chapter).  

Table 4.1 gives a summary of the combinations of fluidization velocities used to study 

the slurry effects of the injection. Different fluidization velocities during drying and 

injection were tested. For runs investigating the effect on both agglomerate formation and 

break-up, the Vgd was set to either 0.12 m/s or 0.44 m/s. Other tests were conducted to 

see the slurry impact with other values of Vgi. For each case, the average of the replicates 

was taken to produce a line graph to show the effects produced for each case. 
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Table 4.1:Summary of fluidization velocities tested during spray injection and 

drying of agglomerates 

                    

                 Vgd (m/s) 

            Vgi (m/s) 

0 0.12 0.44 

0.35 N/A measured N/A 

0.44 measured measured measured 

0.75 (m/s) N/A measured N/A 

 

4.3 Results and Discussion 

4.3.1 Impact of Injected solids on initial agglomerate formation 

Figure 4.1 shows the mass of the macro-agglomerates just after the initial agglomerate 

formation for sand slurry concentrations of 0 wt.%, 10 wt.% and 20 wt.%. Increasing the 

solids concentration in the slurry from 0 to 10 wt.% slightly reduced the mass of 

agglomerates, while increasing the solids concentration to 20 wt.% increased the mass of 

agglomerates. The size distribution of the agglomerates was not greatly affected by the 

solids’ concentration in the slurry.  
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Figure 4.1: Mass of agglomerates after initial agglomerate formation vs. sand slurry 

concentration: 0 wt.%, 10 wt.% and 20 wt.% 

Figure 4.2 shows how the average liquid-solid ratio (L/S) of the agglomerates was 

affected by the slurry concentration. Increasing the solids concentration in the slurry from 

0 wt.% to 10 wt.% sand increased the average L/S ratio by 11.7% while increasing the 

solids concentration in the slurry from 10 wt.% to 20 wt.% sand produces a difference of 

0.8%. This observation suggests that the presence of the particles makes the agglomerates 

wetter. As a result, it was important to study the fraction of the injected liquid that is 

trapped within the agglomerates. 
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Figure 4.2: Average L/S ratio vs concentration of sand 

Figure 4.3 shows the cumulative plot of the fraction of injected liquid that is trapped 

within the agglomerates against size cuts of the agglomerates at different solids 

concentrations in the slurry (0 wt.%, 10 wt.% and 20 wt.%). There is a small impact 

when going from 0 wt.% to 10 wt.%, but a more significant impact can be seen at 20 

wt.% sand. The increase occurs over the entire range of agglomerate particle sizes. Going 

from 0 wt.% to 20 wt.% resulted in a 43.6% increase in the fraction of injected liquid 

trapped. This proves that the agglomerates are wetter when the fraction of injected solids 

is increased. 
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Figure 4.3: liquid trapped after initial agglomerate formation vs. slurry 

concentration 0, 10, 20 wt.% 

Figure 4.4 shows the relationship between the Sauter-mean diameter of the agglomerates 

and the solids concentration in the slurry. The Sauter-mean diameter appears to have a 

non-linear increase at higher concentrations of sand suggesting that the sand slurry leads 

to the formation of larger agglomerates, primarily when the slurry concentration is 

increased from 10 to 20 wt.%. The increase in Sauter-mean diameter would suggest that 

the agglomerates are more stable at high solids concentrations in the slurry.  
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Figure 4.4: Sauter-mean diameter of macro- agglomerates vs. sand slurry 

concentration 0, 10, 20 wt.% 

4.3.2 Impact of Injected solids on agglomerate break-up 

After considering the effect of the solids on the initial agglomerate formation, more 

experiments were conducted to determine the impact after agglomerate break-up. This 

was achieved by increasing the fluidization velocity during drying, Vgd to 0.12 m/s and 

0.44 m/s.  

Figure 4.5 and Figure 4.6 show the impact of drying velocity at 0 wt.% solids and 20 

wt.% sand, respectively. For experiments done with a pure solution of gum Arabic, 
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from a drying velocity of 0.12 m/s to 0.44 m/s resulted in a drop of liquid trapped from 

37.1% to 31.7%. This is expected because the shear forces required to break the 

agglomerates are increased as the fluidization velocity, and hence gas bubble formation, 

is increased (Weber 2009). Also, Parveen (2013) observed that the breakage probability 

of agglomerates increases with fluidization velocity as more gas bubbles are formed 

which help break-up the agglomerates. However, when the injected slurry contained 20 

wt.% sand, the fraction of liquid trapped only drops by a factor 1.05 (from 56.02% to 

53.2%), much less than in the 0 wt.% case. 

 

Figure 4.5: Impact of drying velocity at 0 wt.% solids 
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Figure 4.6: Impact of drying velocity at 20 wt.% sand 

Figure 4.7 provides a summary of the total percentage of injected liquid trapped in the 

agglomerates for 0 wt.% and 20 wt.% sand slurry at the different drying velocities. The 

slope of the graph at 0 wt.% is higher than at 20 wt.%, suggesting that the drying velocity 

has a weaker effect when the fine particles are injected with the gum Arabic solution. The 

results suggest that the presence of the fine sand particles make the agglomerates wetter, 

stronger and more resistant to breakage. 
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Figure 4.7: Total liquid trapped vs. drying velocity for both 0 and 20 wt.% 

 

4.3.3 Combined impact of fluidization velocity and slurry solids on 
agglomerate formation and breakup 

Figure 4.8 and Figure 4.9 show the effect of fluidization velocity during injection at 0 

wt.% and 20 wt.% slurry concentrations, respectively. Figure 4.10 summarizes the data 

from Figure 4.8 and Figure 4.9 to show the total fraction of liquid trapped against 

superficial velocity during injection. With respect to both the 0 wt.% and 20 wt.% cases, 

increasing Vgi from 0.35 m/s to 0.44 m/s to 0.75 m/s continuously resulted in drop of the 

fraction of liquid trapped. This is expected, as increasing fluidization velocity during 

injection reduces the amount of agglomerates formed (Li 2016). Also, from a physical 

point of view, increasing fluidization velocity should lead to better contact between bed 

particles and injected liquid, leading to drier and weaker agglomerates, and hence a lower 

percentage of injected liquid trapped in the agglomerates.  
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Figure 4.8: Effect of velocity during injection at 0 wt.% 
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Figure 4.9: Effect of superficial velocity during injection at 20 wt.% sand slurry 

 

Figure 4.10: Total fraction of liquid trapped vs. superficial velocity during injection 
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To effectively compare the impact of the slurry the results from the two graphs were 

summarized into Table 4.2 which shows that the impact of the solids becomes more 

pronounced at higher velocities. The ratio of liquid trapped at 0 wt.% to liquid trapped at 

20 wt.% increases from 1.34 to 1.64 as the injection velocity increases.  

Table 4.2:Effect of slurry concentration with respect to Vgi 

Vgi (m/s) 

Total % of 

liquid trapped 

at 0 wt.% 

Total % of 

liquid trapped 

at 20 wt.% 

Total % of liquid trapped at 20 wt. %

Total % of liquid trapped at 0 wt. %
 

0.35 58.7 78.7 1.34 

0.44 37.1 57.5 1.55 

0.75 22.9 37.6 1.64 

 

Figure 4.11 and Figure 4.12 show the total mass of macro-agglomerates (600 µm to 

9500 µm) and average L/S ratio against Vgi, respectively. The total mass of the macro-

agglomerates drops with increasing superficial velocity which also accounts for less 

liquid trapped. The average L/S ratio drops slightly when increasing the superficial 

velocity. Since both mass of agglomerates and L/S ratio drop with superficial velocity, it 

can be concluded that the amount of liquid trapped with respect to superficial velocity is 

dependent on the mass of the agglomerates produced. The higher the velocity, the higher 

the amount of agglomerate breakage and hence less amount of liquid being trapped. The 
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results also suggest that the effect of the superficial velocity during injection is more 

dominant than the effect caused by the presence of solids in the slurry. 

 

Figure 4.11: Mass of agglomerates vs. Vgi for both 0 and 20 wt.% sand slurry 
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Figure 4.12: Average L/S ratio vs superficial velocity during injection, Vgi 

Figure 4.13 shows that the Sauter-mean diameter of the agglomerates changed with 

superficial velocity during injection. The Sauter-mean diameter drops with increasing 

velocity however the difference in Sauter-mean diameter also drops with velocity. This is 

physically reasonable, as an increase in the turbulence in the bed should result in smaller 

agglomerates. The difference between the two cases drops because at higher velocities, 

breakage of agglomerates occurs more rapidly, and the agglomeration process becomes 

more dependent on the bed hydrodynamics. 
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Figure 4.13: Sauter-mean diameter of agglomerates vs. Vgi for both 0 and 20 wt.% 

4.3.4 Discussion of slurry impact on agglomeration behavior 

From the results described, the introduction of the solid particles into the slurry has a 
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(Portoghese 2007) which results in a lower fraction of injected liquid trapped inside the 

agglomerates. However, (Sabouni et al. 2011) showed that sprays with very specific 

pulsation characteristics can result in better liquid-solid contact than stable sprays. The 

effect of solids on spray stability was investigated with the open-air results given in 

chapter 3. The presence of the solids had a negligible effect on the spray stability. 

Much like spray stability, the spray angle influences the number of fluidized particles 

entrained in the spray jet. Ariyapadi (2004) developed a model to calculate the flowrate 

of solids entrained in the liquid jet which considers the spray angle. According to this 

model, increasing the spray angle leads to an increase in entrained solids, improves 

mixing and reduces the L/S ratio in the agglomerates. In chapter 3, it was shown that the 

presence of the solids resulted in a negligible change in the spray angle, ruling out this 

option as a reason for the increase in injected liquid trapped. 

Figure 4.14 shows the spray jet penetration with and without solids. The method used to 

obtain the jet penetration in the fluidized bed is available in chapter 2. An increase in jet 

penetration could mean that the agglomerates develop in a slightly different region of the 

bed. Figure 4.14 shows, however, that the presence of the solids appears to have a 

negligible effect on the jet length and would therefore not have affected the amount of 

liquid that is trapped in the agglomerates. 
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Figure 4.14: Jet penetration vs temperature drop for both 0 wt.% and 20 wt.% 
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temperature from 120°C to 130°C to speed up heat transfer dropped the fraction of liquid 

trapped from 44 wt.% to 74 wt.%.  

 

 

Table 4.3 compares the thermal properties of sand and water. Sand has a higher thermal 

conductivity (k) than water, suggesting that replacing water with the 20 wt.% sand slurry 

case results in faster heat conduction within the agglomerates. The average specific heat 

capacity (Cp) for the 20 wt.% sand slurry would range between 3496-3545 J/kg·K for 

temperatures ranging from 25 °C to 99.59 °C. This represents a 16 % Cp reduction 

compared to the pure gum Arabic solution. Therefore, heating up the same mass of binder 

to the boiling point of water would take less energy with the 20 wt.% slurry. For the same 

mass of slurry, the mass of liquid to be evaporated will be less, hence the 20 wt.% slurry 

will require a lower heat of vaporization from 2257 J/(kg liquid) to 1806 J/(kg slurry). 

Clearly, the total amount of energy required to dry the liquid bridges for the slurry case is 

less than it is for the base case, which means the slurry agglomerates dry faster and are 

thus more likely to solidify before they break up.  The total amount of energy required to 

dry the agglomerates can be calculated using: 

 ∆H = C𝑝∆T +  ∆Hvaporisation 4-1 

Using the above equation gives ΔH = 257 × 104 J/ (kg liquid) and 206 × 104 J/ (kg 

slurry) for base case and slurry case, respectively. This means that the slurry case requires 

19.8% less energy for drying than the pure gum Arabic case. 
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Table 4.3: Thermal properties of sand slurry and water. From Domalski and 

Hearing (2005) and Thermtest Inc. (2018) 

Material Thermal 

conductivity, k 

(W/m·K) 

Specific Heat capacity, 

Cp (J/kg·K) (25 °C – 99°C) 

Required energy to 

evaporate water, ΔHvap. 

(J/g of injected mixture) 

Sand 6.49 740 - 850 Not Applicable 

Water (0 wt.% sand) 0.603 4180 - 4220 2257 

20 wt.% Sand slurry 1.78 3500 - 3550 1806 

 

With a higher thermal conductivity, heat transfer by conduction is faster in the slurry 

agglomerates. Also, the total amount of energy required to dry the agglomerates is 

reduced, resulting in faster drying and more liquid being trapped inside the agglomerates. 

Therefore, the change in drying kinetics brought about by the presence of the fines affects 

the agglomeration process and could result in a higher fraction of liquid trapped in the 

agglomerates. 
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4.3.4.3 Agglomerate Formation and Stability factors 

The formation and stability of the agglomerates could be affected by different factors 

such as slurry viscosity and density, as well as the particle properties within the 

agglomerates, such as size distribution, shape and wettability. For these results, the only 

factors affected by the presence of the slurry solids are the effective viscosity of the 

slurry, and the particle size distribution in the agglomerate (i.e., slurry particles and bed 

particles are sand, with the same wettability and shape, but different sizes) and the 

packing structure and density of the final agglomerate. Increasing the solids concentration 

increases the effective slurry viscosity and density from 3 cP to 3.96 cP and from 1000 

kg/m3 to 1140 kg/m3, respectively (refer to chapter 2). The size distribution of the 

particles within the agglomerates becomes a bi-modal size distribution, as it is a mixture 

of bed particles and slurry particles. Also, injecting the fines could result in a filler effect 

within the structure of the agglomerates. 

Prior work investigated the effects of liquid binder properties, especially viscosity, on 

agglomeration. Pardo Reyes (2015) showed that increasing viscosity from 2.2 cP to 2.6 

cP led to an increase in liquid trapped from 35 wt.% to 39 wt.%. Also, Schæfer (2001)  

performed experiments to understand the effect of binder properties on granulation. The 

author granulated different calcium carbonate particles using polyethylene glycol (PEG) 

as the binder and noticed that increasing viscosity led to an increase in the size of the 

agglomerates until reaching a growth optimum. Increasing viscosity leads to stronger 

liquid bridges, the agglomerates formed are thus stronger and are more resistant to 

breakage, leading to wetter and more stable agglomerates.  



78 

 

Table 4.4 shows the different viscosities at different wt.% of sand and their respective 

fraction of trapped liquid after the initial agglomeration. The effective viscosity was 

estimated using equation 2-3 from chapter 2. The viscosity does not increase linearly 

with respect to the sand weight fraction. This is similar to the behavior of the liquid 

trapped in the agglomerates, which has a non-linear increase from 0 wt.% to 20 wt.% of 

sand. This behavior suggests that the change in the fraction of liquid trapped was affected 

by the increase in the effective slurry viscosity and could explain why the agglomerates 

are stronger and wetter. 

Table 4.4: Change in effective viscosity and liquid trapped with respect to solids 

concentration in the slurry 

wt.% of sand Effective viscosity (cP) % of injected liquid 

trapped 

0 3 40 

10 3.36 43 

20 3.96 56 

 

The introduction of small particles in the injection stream results in a bi-modal 

distribution of sand within the agglomerates. It has also been found that a wide size 

distribution of particles in an agglomerate increases its strength (Iveson et al. 2001). 

According to Rondeau et al (2003), the presence of the fines in the agglomerates makes 
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them stronger and more stable as the fines fill up interstitial spaces within the 

agglomerates. Previous research has shown a correlation between bi-modal distribution 

and an increase in agglomerate size. Lin et al. (2011) have shown that a bimodal size 

distribution of bed particles resulted in more agglomerates than a narrow size 

distribution.  

In the polymer and construction industry, small particles known as fillers are used to 

strengthen epoxy composites and cement, respectively. In the design of epoxy 

composites, Ahmad et al. (2008) showed that addition of silica particulate fillers 

increased the tensile and flexural strength of polymer composites. Ahmad et al. (2008) 

also found that increasing the concentration of silica fillers resulted in stronger 

composites. He et al. (2012), noted that the presence of fillers improves the packing 

density of concrete as denser micro-structures enhance the mechanical properties and 

durability of the concrete. Dittanet and Pearson (2012) also showed that increasing the 

concentration of silica nano-particle fillers significantly improved the toughness of the 

final composites. In relation to this study, the injected sand particles could act as fillers in 

the agglomerates making it more stable and resistant to breakage. This means that the 

agglomerates formed would have a more stable packing structure and higher packing 

density at 20 wt.% solids than at 0 wt.%. Also, Chen et al. (2003) have shown that the 

presence and increase in concentration of silica sand  as fillers in composites increase the 

amount of water that the composite can absorb. This is because sand is hydrophilic, and 

the presence of fillers creates small pores that the water can seep into. This could 

probably explain the significant difference obtained for liquid trapped produced by the 

introduction of sand particles as part of the injected slurry. The result from this study 
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show a consistent increase in the fraction of liquid trapped (from 40% to 56%) with 

increased concentration of sand in slurry (0 wt.% to 20 wt.%). 
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Chapter 5 

5 Impact of Particle Properties on Liquid distribution in the 
fluidized bed 

5.1 Introduction 

In chapter 4, it was observed that the presence of solid particles in the injected mixture 

led to more liquid trapped and more stable agglomerates. The previous was attributed to 

the increase in effective viscosity, presence of the fines, and/or a change in drying 

kinetics. The objective of this chapter is to explore how the slurry impact changes with 

the properties of the injected slurry solids and to understand which mechanism is 

responsible for the impact produced by the injected solids. The particle properties studied 

in this chapter were size, density, shape and wettability. In the industrial case, it is 

possible to have not only coke but other particles, such as clay, being recycled to the 

coker. It is thus useful to understand how the change in the injected particle properties 

could affect the agglomerate stability and liquid distribution within the agglomerates. 

Changing the particle properties also helps to understand which mechanisms are 

responsible for the solids’ impact on agglomerates and liquid distribution. 

5.2 Experimental set-up and methodology 

Table 5.1 shows the properties of the slurry solids used for the runs in this chapter. The 

concentration of the slurry for each experiment was kept constant at 20 wt.% solids. The 

fluidization velocities during injection and drying were kept constant at Vgi = 0.44 m/s 

and Vgd = 0.12 m/s respectively. The method for analysis of agglomerates and calculation 



82 

 

of liquid trapped is described in chapter 2. For each case, the average of duplicates was 

taken to produce a line graph to compare the observed effects for each case. 

Table 5.1: Injected solids and their individual properties. From Weber (2009) and 

Thermtest Inc. (2018)  

Solid material 

Properties 

Particle Density 

(kg/m3) 
Particle shape 

Wettable with 

water  

Sauter-mean 

diameter (µm) 

Sand 2650 angular Yes 12.8 

Hollow glass 

(H.G.) beads 
1000 

 

round 

 

Yes 

9.8 

61 

Solid glass (S.G.) 

beads 
2450 round Yes 10.2 

Coke 1450 angular No 9 

 

5.3 Results  

5.3.1 Impact of particle size of injected solids 

Figure 5.1 and Figure 5.2 show the impact of particle size on the amount of liquid 

trapped and the mass of macro-agglomerates (600 µm to 9500 µm), respectively. Figure 
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5.3 shows the change in L/S ratio with agglomerate size for the different cases. Hollow 

glass beads (H.G. beads) of different particle sizes were used as slurry solids to study the 

effect of particle size. Increasing the Sauter-mean diameter of the injected solids from 9.8 

microns to 61 microns led to a slight increase in the fraction of liquid trapped from 38.3% 

to 39.7% while the total mass of the macro-agglomerates dropped from 572 g to 464 g. 

Also, there appears to be differences in the size distribution as the runs with smaller 

hollow glass beads appear to have formed more of the larger agglomerates, giving a 

Sauter-mean diameter of 1623 microns than the agglomerates obtained with the larger 

slurry particles which had a Sauter-mean diameter of 1550 microns. Given that the mass 

of the macro-agglomerates drops when particle size is increased but the liquid trapped 

slightly increased, it is likely that the larger particles formed wetter but less stable 

agglomerates.  

Comparing the two hollow glass beads cases to the pure gum Arabic shows an increase in 

liquid trapped especially for the larger agglomerates. This indicates that the presence of 

the solid does affect agglomerate formation and break-up. From the L/S ratio graph, there 

appears to be a slight increase in liquid trapped between the two cases. This is because 

the agglomerates are weaker when the particle size is increased resulting more breakage 

and hence a lesser amount of agglomerates.  

The results are in accordance with previous research on particle size and agglomeration. 

In granulation processes, larger particle sizes could result in larger pores within the 

agglomerates (Weber 2009), leading to larger a separation distance between particles, 

weaker liquid bridges and hence weaker agglomerates (Simons 1996). Weber (2009) 

found out that agglomerates made from smaller particle sizes took longer to completely 
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fragment than agglomerates made from larger particle sizes. Finally, Zhou and Li (1999) 

explain that the inter-particle cohesion in the agglomerate increases with decreasing size 

of particles. Hence, it is reasonable that the agglomerates become less stable with 

increasing particle size. 

 

 

Figure 5.1: Effect of changing particle size on slurry impact on liquid trapped 
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Figure 5.2: The effect of different injected solids particle size on the mass of 

agglomerates 

 

 

Figure 5.3: L/S ratio vs agglomerate size 
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5.3.2  Impact of particle density of injected solids 

Figure 5.4 and Figure 5.5 show the impact of the injected particles density on the 

fraction of liquid trapped and the mass of macro-agglomerates respectively. Figure 5.6 

shows the change in L/S ratio with agglomerate size cut. The effect of the particle density 

of the injected solids was examined using hollow glass (H.G.) beads and spherical glass 

(S.G.) beads as they were both spherical but had different particle densities.  When the 

density of the injected particle is increased from 1000 kg/m3 to 2450 kg/m3, there was a 

significant increase in the fraction of liquid trapped, the mass of the macro-agglomerates, 

and the L/S ratio. The fraction of injected liquid trapped goes up by a factor of 1.34, from 

38.3% to 51.2% and the mass of macro-agglomerates goes up from 572 g to 599 g. This 

suggests that the heavier beads produce more stable agglomerates and results in an 

increase in liquid trapped. The size distribution for the two appear to be similar, with the 

Sauter-mean diameter increasing from 1623 microns to 1691 microns, a difference of 4%, 

when going from hollow beads to regular beads.  

When both runs are compared with the no solids case, there is a significant effect of the 

solids. It is interesting to note that the density of the gum Arabic solution (at 0 wt.%) and 

the density of the mixture with 20 wt.% H.G. beads are both 1000 kg/m3. The 0 wt.% 

case and the H.G. beads case produce almost the same mass of agglomerates (564 g vs. 

572 g), however, the size distribution is different as the H.G. beads produces more of the 

larger agglomerates. This is probably because the presence of the solids makes the larger 

agglomerates more stable than they would have been without it. 
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There has not been any research done to evaluate the effect of changing effective density 

in agglomeration or filler density in the polymer industry. By increasing the density of 

the slurry, the density of the resulting agglomerates is likely to be higher resulting in 

stronger agglomerates. Parveen (2013) has shown that agglomerates with lower densities 

break faster than denser agglomerates. The author also observed that the lighter 

agglomerates spend more time in the upper region of the bed where the gas bubbles are 

larger and are hence more prone to breakage. This suggests that agglomerates formed 

from the heavier particles (S.G. beads) are less likely to be broken up because they will 

be located closer to the bottom of the bed than agglomerates formed from the lighter 

particles (H.G. beads). This was probably the case, as the increase in injected solids` 

density led to an increase in the mass of agglomerates by 4.7%. Also, it is important to 

note that despite the volume concentration of the H.G. beads being higher than the 

volume concentration of the S.G. beads, the S.G. beads are more stable and have a higher 

amount of liquid trapped.  
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Figure 5.4: Effect of changing slurry particles density on slurry impact on 

agglomerate formation and breakup 
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Figure 5.5: Effect of slurry particles density on the mass of macro-agglomerates 

 

Figure 5.6: L/S ratio vs agglomerate size 
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5.3.3 Impact of particle shape of injected solids 

Figure 5.7 and Figure 5.8 show the impact of the particle shape of the injected solids on 

the fraction of liquid trapped and the mass of macro-agglomerates, respectively. Figure 

5.9 shows the change in L/S ratio with agglomerate size cut. For this study on particle 

shape, fine sand particles were used as the angular injected particles while the S.G. beads 

were the round particles. Changing the shape from round to angular resulted in a small 

increase in the percentage of injected liquid trapped by a factor of 1.12, from 51.3% to 

57.5%. There was a small drop in the mass of agglomerates from 628 g to 599 g. There 

was no significant change in the mass of agglomerates produced or L/S ratio. However, 

when compared to the base case, both the S.G. beads and sand cases produced 

significantly more agglomerates, a larger amount of liquid trapped and higher L/S ratios 

showing again that the presence of the solids does produce a significant effect on 

agglomerates. 

In comparison to previous research, the results obtained from changing particle shape is 

reasonable as agglomerates made from spherical particles are less stable than 

agglomerates from angular particles, as a lower compressive force is required to crush the 

former (Weber 2009). Hemati et al. (2003) showed that sand particles resulted in faster 

agglomerate growth than spherical glass beads. Also, spherical particles tend to form 

weaker liquid bridges as there is less surface area compared to angular particles, reducing 

the fraction of liquid trapped. 
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Figure 5.7: Effect of particle shape on the slurry impact on agglomerate formation 

and break-up 

 

Figure 5.8: Effect of sphericity on slurry impact on the mass of agglomerates 
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Figure 5.9: L/S ratio showing the effect of sphericity on slurry impact on 

agglomerate formation and break-up 
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Figure 5.11 shows that the amount of agglomerates formed with the coke particles is less 

than the amount of agglomerates from the base case and the sand case. The Sauter-mean 

diameter of the coke macro-agglomerates and sand agglomerates were 1497 microns and 

1681, microns respectively. As expected, the coke experiments produced smaller 

agglomerates than the sand case. These results correspond with previous research 

showing that agglomerates for non-wettable particles are less stable than agglomerates of 

wettable particles (Weber 2009). The L/S ratio also shows a trend with the coke having 

the lowest L/S ratio and the sand case with the highest ratio. It is believed that the water 

with the injected sand is readily trapped on contact with the fluidized particles; however, 

with the coke particles, some of the liquid is repelled, causing it spread further into the 

bed resulting in a lower amount of trapped liquid. 

 

Figure 5.10: Effect of injected solids wettability on the slurry impact on agglomerate 

formation and break-up 
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Figure 5.11: Mass of agglomerates vs particle size showing the effect of wettability 

 

Figure 5.12: Effect of wettability on L/S ratio 
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5.4 Discussion  

Table 5.2 shows a summary of the impact on agglomerates of the different particle 

properties that were investigated in this study. From chapter 4, the three most likely 

factors that could account for the impact of injected particles on agglomeration were the 

change in viscosity, drying kinetics and ability of the solids to provide a filler effect 

within the agglomerates. In this discussion, the results of chapter 5 are used to identify 

which of these factors likely dominate.  

Table 5.2: Summary of impact from different particle properties 

 

Change in 

particle 

properties of 

injected solids 

Percentage change when varying (%): 

total liquid 

trapped 

total mass of 

macro-

agglomerates 

Average L/S 

ratio 

Sauter-mean 

diameter (dpsm) 

of macro- 

agglomerates 

Changing particle 

size of from 9.8 

to 61 µm 

3.7 -18.8 24.7 - 4.5 

Changing density 

from 1000 to 

2450 kg/m3 

33.6 4.7 57.0 4.2 

Sphericity: 

angular to round 

particles 

-12.1 -3.4 -6.4 0.6 

Wettability: 

wettable (sand) 

to non-wettable 

(coke) with water 

-46.3 -23.1 -41.0 -10.9 
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5.4.1 Effective viscosity 

From chapter 4, increasing the effective viscosity may provide an explanation for the 

effect of the solids on the agglomerates. The effective viscosity of the slurry is dependent 

on the volume fraction of the solids. The hollow glass (H.G.) beads have a lower density 

than the solid glass (S.G.) beads, therefore the former would have a higher volume 

fraction for the same weight fraction of slurry. Going from S.G. beads to H.G. beads 

changes the solids volume fraction in the slurry from 8.62 vol.% to 20 vol.%, increasing 

the effective viscosity of the slurry from 3.96 cP to 5.94 cP. The effective viscosities 

were estimated using equation 2-3 from chapter 2. As previously discussed in chapter 

4.3.4.3, an increase effective viscosity is expected to result in an increase in both the 

fraction of liquid trapped and mass of agglomerates. However, that is not case here, from 

Table 5.2, the fraction of liquid trapped drops by 33.6% and the mass of agglomerates 

drops by 4.7% when going from S.G. beads to H.G. beads. Hence, the effective viscosity 

can be ruled out as a predominant factor for the effect of the injected particles on 

agglomerates. 

5.4.2 Drying kinetics 

As seen in chapter 4.3.4.2, the drying kinetics affect the amount of liquid trapped within 

the agglomerates may be affected by the solids’ thermal conductivity, heat capacity, and 

mass of water to be evaporated. There was no direct comparison to isolate the effect of 

drying kinetics however, the S.G. and H.G. beads can be used to determine whether the 

drying kinetics were accountable for the impact produced by the injected solids. Focusing 

again on the comparison of S.G. and H.G. beads, the effects produced are vastly different. 

The heat required for liquid vaporization is the same in both cases, since both slurries 
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contained the same mass of liquid. Both glass beads are expected to have comparable 

heat capacities, and thus similar drying kinetics. Since they not produce the same results 

but rather a 33.6% difference in the amount of liquid trapped, the drying kinetics cannot 

fully account for the impact produced by the solids on liquid trapped and agglomerate 

stability.  

5.4.3 The Filler Effect  

In the polymer and construction industry, the use of fillers is useful in making stronger 

composites and concrete respectively (Ahmad et al. 2008, Soroka and Setter 1977). To 

optimize the effect of the fillers on the eventual composite, a few factors must be 

considered such as: size, shape, wettability, and weight/volume fractions of the filler 

particles. These particle properties have been varied in the experiments to verify whether 

the injected solids provide a filler effect within the agglomerates. 

The effect of changing particle size was studied by using spherical hollow glass beads 

(H.G. beads) with Sauter-mean diameters of 9.8 µm and 61 µm. In polymer fillers 

research, studies have been done to understand the effect of filler particle size on the 

strength of composites and bed particle size on the strength of agglomerates. In making 

epoxy resins, particle sizes greater than 10 µm are usually avoided as fillers because 

increasing the particle size of fillers will begin to reduce the mechanical strength of the 

composite (Ahmad et al. 2008). Bray et al. (2013) used silica nanoparticles with particle 

sizes 23 nm, 74 nm and 170 nm and found no significant difference for filler particle size 

much smaller than in our study. However, Ahmad et al. (2008) showed that increasing 

the particle size of the fillers from 2.18 µm to 10.31 µm reduces tensile strength and the 
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durability of the composite. Larger particle sizes result in weaker packing structure, 

leading to weaker composites. From Table 5.2, while there is a negligible change in the 

amount of liquid trapped when the particle size is increased (3.7%), the mass of the 

macro-agglomerates drops by 18.8%, which is in line with the behavior of fillers in 

composites. 

A variety of research has been conducted on the effect of shape on the formation of 

agglomerates. The injected particles considered were either round (solid glass beads) or 

angular (sand). Iveson and Page (2005) showed that irregular-shaped could not be easily 

compressed to the same extent as spherical particles. Non-spherical powders also 

produced much stronger pellets as the inter-particle friction and interlocking is more 

prominent. Ahmad et al. (2008) found that addition of particulate fillers increased the 

tensile and flexural strength of polymer composites; however, the shape and aspect ratio 

of the fillers plays a role in determining the strength of the final composite. As reported 

by Ahmad et al. (2008), anisometric particles are more effective to be used as composite 

reinforcements, as they provide more contact area than isometric particles. Since 

spherical particles (S.G. beads) are isometric with an aspect ratio of 1, the literature 

studies suggest that they are more likely to produce fewer durable agglomerates than the 

angular sand particles. From Table 5.2, using spherical particles instead of angular sand 

particles resulted in slightly less liquid trapped (12.1%), and the amount of macro-

agglomerates reduced slightly (3.4%), but did not affect the L/S ratio of the agglomerates. 

Changing the particle shape thus mainly affected the strength of the agglomerates and the 

reduced amount of liquid trapped is due to the smaller amount of agglomerates. This is in 
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line with the observations made concerning the effect of particle shape on fillers in 

composites. 

From Table 5.2, changing the wettability of the injected solids results in a 46.3% change 

in the amount of liquid trapped and a 23% change in the mass of agglomerates. It appears 

that the coke particles inhibit the trapping of liquid in the agglomerates resulting in final 

agglomerates trapping less liquid. This is in line with research done on fillers that show 

that decreasing the wettability (i.e., increasing the contact angle) of a filler reduces the 

amount of water the composite can absorb (Gwon et al. 2010).  

For most studies, the density of the filler is usually kept constant, as a result, increasing 

the weight fraction results in a corresponding increasing volume fraction.  In this study, 

the effect of increasing weight fraction and volume fraction were separated and studied 

differently. Studies on increasing the concentration of fillers in concrete and composites 

have had varying results (Adams 1993, Urabe et al. 1999, Bleach et al. 2002). Further 

research shows that the tensile strength of composites actually increases initially with 

increasing filler concentration until a critical concentration is reached and then it begins 

to drop (Moosberg-Bustnes et al. 2004), (Fennis et al. 2013), (Fu et al. 2008). This study 

demonstrated that adding slurry solids generally resulted in bigger and stronger 

agglomerates. The presence of the solids leads to an increase in liquid trapped from 37% 

to 57.5%, which is in line with previous research that show a positive correlation with 

increasing the concentration of fillers in concrete (Moosberg-Bustnes et al. 2004) and 

composites (Tajvidi and Ebrahimi 2003), (Khalil et al. 2006). When the volume 

concentration is increased from 8.62 vol.% to 20 vol.%, the amount of liquid trapped 

drops by 33.6%. This is because for the same mass of injected particles, there are more 
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than twice the number of individual particles within an agglomerate. As a result, the 

particles fill in-between the pores that would have been filled with the trapped liquid. 

With the S.G. beads (8.62 vol.%), the agglomerate pore volume is bigger enabling it to 

trap more liquid than the less dense H.G. beads (20 vol.%). 

Based on the data analysis and discussion, the major mechanism that accounts for the 

impact of the slurry on the agglomerates is the filler effect of the particles on the 

agglomerate structure. The results obtained earlier in this chapter ruled out the effect of 

viscosity changes. The impact of drying kinetics was not able to provide a substantial 

explanation for the effect of the solids on agglomeration. The filler effect mechanism 

satisfied the results obtained justifying that the presence of the solids as a filler is 

responsible for the impact on agglomeration. Thus, the impact produced by the solids is a 

filler effect within the agglomerates as they not only strengthen the agglomerate but 

enable it to trap more of the injected liquid. 
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Chapter 6 

6 Conclusions and Recommendations 

6.1 Conclusions  

The addition of solids in a sprayed liquid from a TEB spray nozzle had no significant 

observable effect on the spray characteristics, such as length, angle and stability. For the 

same upstream pressure, the mass flowrate of injected liquid was reduced for a liquid-

solid slurry.  

When liquid was sprayed into a fluidized bed of sand particles, the addition of solids in 

the sprayed liquid modified the resulting liquid-particle agglomerate characteristics. It 

impacted the amount of liquid trapped in the agglomerates and agglomerate stability. 

Increasing the superficial velocity during injection led to a significant drop in the amount 

of liquid trapped in agglomerates for both pure gum Arabic and slurry cases. However, 

increasing the superficial velocity during drying, after the liquid injection, only had a 

significant effect on the pure case but a negligible impact on the slurry cases. This 

showed that with 20 wt.% of solids in the injected slurry, the agglomerates were more 

stable than the pure gum Arabic case. The addition of the solids resulted in wetter, bigger 

and stronger agglomerates. 

Different mechanisms were proposed to explain the change in agglomeration behavior 

when particles were added to the spray: increased viscosity, spray characteristics, drying 

kinetics and the solids filler effect. Since there was no effect of the solids on spray 

properties, a change in spray characteristics was removed as a possible explanation. 

Experiments that varied the injected solids properties also ruled out the effect of changing 
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viscosity and drying kinetics. The main contributor to the observed increased 

agglomeration when adding solids to the liquid spray was thus identified as the filler 

effect, where fines act as fillers within the agglomerate and increase the agglomerates 

strength and hence, the mass of liquid trapped.  

6.2 Recommendations 

- Given that most of the recycled coke particles come from the cyclones, it is 

essential that the cyclones be properly maintained to minimize the mass of the 

recycled solids in the injection feed. Also, it can be ensured that the bitumen feed 

from upstream processes contains a minimal amount of wettable solids to 

maintain the process efficiency. The introduction of non-wettable solids in the 

reactor feed should be considered as it could reduce the agglomerate stability. 

- Experiments can be conducted by intentionally creating agglomerates containing 

fines to test the stability of the agglomerates and their ability to trap liquid. 

- The fluidized bed experiments conducted in this research were done at 2 wt.% 

GLR and a liquid flux representative of current industrial practice. Further 

experiments could be done at different GLRs and spray fluxes to understand the 

effect of the injected fines over a wider range of conditions. 
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Appendix A: Cumulative size distribution of tested solids 

Table A. 1: Cumulative size distribution of solids tested in this research 

Size (µm) Percentage (%) 

 Sand Coke Solid Glass 

Beads 

Hollow Glass 

beads (dpsm = 9 µm) 

Hollow Glass beads 

(dpsm = 61 µm) 

4.5 9.7 8.3 0 9.6 1.00 

5.5 11.3 11.4 3.7 12.7 1.3 

6.5 12.6 15.0 9.7 16.0 1.7 

7.5 13.5 22.0 17.2 19.6 2.0 

9 14.7 35.8 30.0 25.1 2.6 

11 16.1 55.5 47.4 32.5 3.3 

13 17.7 73.2 63.7 39.6 4.0 

15.5 20.5 89.0 80.4 47.8 4.7 

18.5 25.3 97.1 93.8 56.6 5.3 

21.5 31.7 97.7 99.9 64.3 5.8 

25 40.8 97.7 100 72.2 6.1 

30 54.8 97.7 100 81.9 6.6 

37.5 74.5 97.7 100 93.0 7.7 

45 88.9 97.7 100 99.1 9.2 

52.5 96.8 97.7 100 100 11.3 

62.5 100 97.7 100 100 15.2 

75 100 98.3 100 100 21.6 

90 100 99.4 100 100 31.0 

105 100 99.9 100 100 41.0 

125 100 100 100 100 53.7 

150 100 100 100 100 67.5 

180 100 100 100 100 80.5 

215 100 100 100 100 91.0 

255 100 100 100 100 97.6 

305 100 100 100 100 100 
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