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Abstract 

The field of low-coordinate main group chemistry has seen huge development in the 

last 30 years, with novel compounds that demonstrate unique structures and reactivity. 

Isolation of these species has relied on thoughtfully designed ligands normally containing 

substructure steric bulk. The area of phosphinidene chalcogenide isolation and transfer 

remains poorly understood by comparison. In this context, the major focus of thesis was on 

the development of a room-temperature method for the transfer of RP=S moieties with and 

without sterically demanding substituents. The preparation and complete characterization of 

new asymmetric phosphines with m-terphenyl substituents was also reported. In Chapter 2, 

the characterization of secondary and tertiary phosphines which have the general formula 

TerPhPR1R2 (TerPh = 2,6-Mes2C6H3, Mes = 2,4,6-(CH3)3C6H2) is reported. In Chapter 3, the 

utility of the condensation method developed by the Ragogna group for the generation of 

RP=S in situ for compounds with and without steric bulk was demonstrated and included the 

characterization of a number of [1+2], [2+2], [1+4], and [2+4] P,S-heterocycles. The 

stoichiometric generation and subsequent transfer of RP=S without bulky ligands or 

norbornadiene scaffolds was unprecedented in literature and two different mechanistic 

pathways were hypothesized.  
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Chapter 1  

1 Introduction 

1.1 Fundamental Main Group Chemistry 

 

The underlying theme of modern fundamental main group chemistry has focused on 

developing an understanding of the influence of structure and bonding on reactivity. This 

has been achieved through comprehensive analysis of the structure and bonding between 

main group elements. The chemistry of most main group elements found in the s- and p-

blocks of the Periodic Table, has been explored and have displayed a wide variety of 

bonding motifs. Despite the fundamental nature of this research, numerous high impact 

discoveries have paved the way for new and innovative applications, including flame-

retardent polyphosphazanes and the wide-spread utility of siloxane polymers.1,2 Main 

group researchers have also been awarded Nobel prizes for their contributions to the 

scientific community.  

One of the first Nobel prizes was awarded to Victor Grignard in 1912 to for the 

development of “Grignard reagents”, which have had a lasting impact in organic 

synthesis.3 Another Nobel prize was awarded to Fritz Haber in 1918 for the production of 

ammonia (NH3) from the combination of its gaseous constituents, N2 and H2.
4 In 1963, 

the work of Karl Ziegler and Giulio Natta was recognized and received a Nobel prize for 

organotitanium/aluminum catalysts which facilitated the polymerization of terminal 

alkenes.5 Directly incorporating p-block elements, the work of Herbert C. Brown and 

Georg Wittig was recognized for its contribution to organic synthesis in 1979 with a 

Nobel prize for new phosphorus and boron reagents.6 More recently, in 2005, Yves 

Chauvin, Robert H. Grubbs, and Richard R. Schrock were awarded the Nobel prize for 

the development of metathesis methods in organic synthesis using carbenes as ligands on 

transition metal catalysts.7 

Industrially and academically relevant knowledge has been gained from high impact 

discoveries focused on main group elements. The development of easily prepared 

siloxane polymers, which consist of repeating Si-O linkages, have been used as 
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hydrophobic coatings, elastomers, and biocompatible materials, amongst many other 

applications.1,8 Polyphosphazanes contain repeating Cl2PN units and these materials are 

used as high temperature elastomers, polyelectrolytes and in biomedical implants.2,9,10  

This brief overview of significant main group discoveries only scratches the surface 

of the impact that main group research has had on other fields of research. Without 

fundamental main group research, many key industrial and academic developments 

would not have been possible. It is critical to understand that main group chemistry has 

undergone significant changes in the past fifty years and its research outcomes will 

continue to have a lasting impact on fundamental and applied research in the years to 

come. 

1.2 Asymmetric Phosphines 

 

 Phosphines have been used as ligands for transition metals for decades because 

they are excellent  donors. The tunable steric and electronic properties of phosphine 

ligands are important to their widespread use in catalysis. In the early-to-mid 20th 

century, triphenylphosphine was a common ligand of choice for transition metal 

catalysis. In modern catalysis, phosphine ligands with increasingly elaborate functionality 

have been reported and used. For example, chiral phosphine ligands have seen increased 

use in asymmetric catalysis in the last twenty years. Monodentate chiral phosphine 

ligands are rarer than their bi- or tridentate counterparts and often possess a chiral 

substituent as opposed to central chirality (Figure 1-1, 1.1-1.5).11–15 DuPhos (1.5) has had 

a significant impact on the field of asymmetric catalysis, allowing for enantio- and 

regioselective hydrogenation of olefins, among many other functional groups. Compound 

1.3 has also been used as an organocatalyst for the cycloaddition of allenoates with 

imines and electron deficient olefins.16  
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In cases where multidentate phosphines do not perform well, monophosphine ligands 

possessing aryl and alkyl groups have been reported as excellent ligands for a wide 

variety of Pd-catalyzed C-C, C-N, and C-O bond forming reactions under mild 

conditions.17 The development of new phosphine ligands has since been centered around 

ease of preparation, a functional handle for derivitization, and those that contain central 

and/or axial chirality. A recent study by the Yang group demonstrated the potential utility 

of compounds 1.7 and 1.8 to catalyze C-H amination and cyclization in the absence of a 

transition metal catalyst (Figure 1-2).18  

Ph

O P
tBu

tBu

O

P

O

Ph

Ph

NH2
P

CF3N

Cl
P

N

Cl

1.7                                   1.8                              1.9                     1.10

Figure 1-2. Examples of phosphines used as ligands, organocatalysts, and 

stoichiometric reagents. Compounds 1.8-1.10 possess chirality. 

P tBuP

O

P
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P

P

PPh2

PPh2

1.1 1.2 1.3                                       1.4

1.5                                                           1.6

O

O

P O

Ph2P

Figure 1-1. Select examples of asymmetric phosphines used in transition metal and 

organo-catalysis 
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Phosphines are not only excellent ligands in the area of catalysis, but also play an 

important role in many stoichiometric transformations. Normally this reactivity stems 

from a reactive single bond to phosphorus, where P–Cl and P–H bonds have proven to be 

relatively simple to manipulate under mild, anaerobic conditions due to relatively low 

bond dissociation energy (P-Cl = 326 kJ mol-1, P-H = 322 kJ mol-1-). Compounds 1.9 and 

1.10 possess central chirality, which lends itself not only to a unique ligand for transition 

metal catalysis but also for selective stoichiometric reactivity with a number of other 

compounds (Figure 1-2).19–21 A number of different methods are reported for preparing 

these asymmetric phosphines possessing smaller aryl substituents; however, those with 

m-terphenyl ligands are less prevalent in literature.  

1.3 Bulky Ligands & Low Coordinate Main Group 
Chemistry 

The use of bulky aryl ligands has greatly aided in the establishment of main group 

centers with low coordination numbers. Over the last 30 years, there has been significant 

development in the variety and number of compounds containing main group elements 

that defy the double bond rule, a hallmark application for bulky ligands. The double bond 

rule states that atoms with a principle quantum number greater than or equal to 3 will not 

be able to form multiple bonds because their diffuse p-orbitals would result in poor 

orbital overlap and thus have much lower -bond energies.22 Despite this, many 

compounds have been prepared that exhibit double or triple bonds between main group 

elements (eg. disilene (1.11); digermyne (1.12); diphosphene (1.13); and phosphaalkyne 

(1.14); Figure 1-3).23–26 Most of these compounds rely on bulky aryl ligands positioned at 

the main group element in order to stabilize the reactive main group center from 

reactions.27 While these are not the only examples of low-coordinate main group 

compounds, their discovery has certainly shifted the focus towards isolating unique 

structures that challenge traditional rules of structure and bonding. 
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The chemistry of main group multiple bonds has been of interest because of 

differences in bonding between the light and heavy elements. West’s disilene (1.11) 

displayed reactivity reminiscent to that of olefins, reacting readily at room temperature 

with hydrogen halides, alcohols, aldehydes, ketones, azides, oxygen, sulfur, and olefins.26 

The heightened reactivity observed can be attributed to the weaker -bonding between Si 

atoms in comparison to their carbon counterparts.23 An exciting discovery made by 

Power group found that digermyne compounds were able to activate dihydrogen in the 

absence of a transition metal – the first reported example of a non-transition metal species 

activating H2.
24 Similar reactivity has been observed by N-heterocyclic carbenes (NHCs, 

Figure 1-4, 1.15) with H2 and NH3 to afford addition products.28 It has since been proven 

that digermyne and distannyne (1.16, E = Sn) compounds are also promising candidates 

for C–H bond activation with cyclic olefins at room temperature (Figure 1-4).29 The 

ability of main group compounds to mimic the reactivity of transition metal complexes 

has been a continued driving force in this research area.  

Neutral bulky ligands have been used to stabilize many main group elements in 

their zero oxidation state, resulting in main group analogs of common homodiatomic 

compounds (1.16).30 The preparation of these main group analogs has been a popular area 

Si Si Ge Ge P P

C P

   1.11                                              1.12                                          1.13                          1.14

Figure 1-3. Early examples which feature multiple bonding between main group 

elements, with the majority featuring bulky aryl substituents 
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of research since the realization that an acceptable Lewis structure for 

carbodiphosphoranes could be drawn as containing a central carbon atom doubly bound 

to two phosphorus atoms, leaving the central carbon with a formal oxidation state of zero 

(Figure 1-4).31 Main group analogs of naturally occurring diatomic species (ie. H2, N2, 

O2) differ in that they possess lone pairs which serve as a handle for harnessing further 

reactivity. They have been demonstrated to act as donor atoms in Lewis type interactions, 

and see potential as synthetic building blocks for increasingly complex structures. The 

use of strong donors (ie. NHCs) to stabilize these allotropes has been expanded to a 

number of other p-block elements (Figure 1-4, 1.17).  

 

Although NHC donors have aided in research surrounding the development of 

low-coordinate main group compounds with good solubility properties, they are not the 

only examples of synthetically useful low-coordinate compounds. The phosphorus 

anologue of the cyanate ion, 2-phosphaethynolate anion (1.18), has been used for the 

installation of [P]- or [PCO]- functionality, a precursor for P-heterocycles, and a synthon 

for phosphorus-containing small molecules.32,33 Difficulty in this area was previously 

limited by the challenges associated with the preparation of 1.18; however, improvements 

by a number of researchers enabled scalable synthesis that facilitated the above reactivity 

studies.34–36 This example highlights that a fundamental main group species can have a 

dramatic impact in development of new reagents.  

C PR3R3P C

PR3R3P

C
R3P PR3

N N

1.15                                           1.16                                  1.17                      1.18

E E

Dipp

Dipp

Dipp

E = Al, Ga, Ge, In, Sn, Pb     E = Si, P, Ge, As

E E

N

N

N

N

Ar

Ar

Ar

Ar
P C O

-2

Figure 1-4. Significant discoveries in the area of main group chemistry. Top: 

carbodiphosphorane resonance forms. 
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The high degree of success with compounds containing low-coordinate main group 

centers has bolstered efforts in the field to continue to push the boundaries of known 

structure and bonding motifs. Beyond the unusual structures they can display, these 

compounds often offer unique reactivity and are hypothesized to be useful outside their 

traditional role as ligands for catalysts. Potential applications include reactive synthons 

for more complex molecules and metal-free alternatives to activate a wide variety of 

different bonds.  

1.4 Phosphinidenes – The Phosphorus Analogue of 
Carbenes 

 Phosphinidenes (phosphanylidenes) are elusive six electron species featuring a 

P(I) center. Their existence has been established by utilizing base stabilization, trapping 

reactions, or oligomerization and isolating the resulting products.33,37 These formally 

mono-coordinate species are exceedingly reactive in comparison to their carbene and 

nitrene counterparts (Figure 1-4, 1.15; Figure 1-5, 1.19-1.20). Like nitrenes and carbenes, 

phosphinidenes adopt either a singlet or triplet ground electronic state. In the singlet state 

there are two lone pairs of electrons on phosphorus and a low energy empty p-orbital. In 

the triplet state, one electron pair resides on phosphorus and two electrons with parallel 

spins occupy the other p-orbitals (Figure 1-5).38 

 

The area of phosphinidene research has seen an explosion since their detection by 

Gaspar et al., who used electron paramagnetic resonance (EPR) spectroscopy to detect 

trapped triplet mesitylphosphinidene at 77 K after the photoloysis of trans-2,3-dimethyl-

1-mesitylphosphirane. The generated phosphinidene was subsequently trapped with 3-

hexyne.39 Experimental efforts since have resulted in phosphinidene fragments generated 

N N

1.19                 1.20

R P R P R P

Singlet Triplet

Figure 1-5. Left: cyanonitrene (1.19) and generic phosphinidene structure (1.20). Right: 

singlet and triplet phosphinidene ground electronic spin states 
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in situ by retro-cycloadditions of phosphorus heterocycles, and the reduction of 

halophosphines under generally harsh conditions with triplet reactivity patterns observed 

as a result.40–44 The retrocyclization of 7-phosphanorbornenes driven by aromatization of 

the scaffold has proven to be a reliable method for the generation of numerous 

phosphinidene fragments, including those supported by metals, and −donor atoms (ie. 

N, O, S, P).40,41,45–49 Most recently, an elegant study by the Cummins group demonstrated 

that aminophosphinidenes could be generated by thermally induced anthracene 

elimination from dibenzo-7-phosphanorbornadiene (1.22, Figure 1-6).47 Their work 

covered an impressive range of R2N-P- transfer reactions and document first order 

kinetics consistent with a singlet ground state mechanism being operaative.50 The thermal 

decomposition of norbornadiene scaffolds to release reactive phosphinidene fragments in 

situ has been an attractive strategy for many research groups to harness phosphinidene 

reactivity.32,43,51–53 

 Carbenes in metal complexes are understood to possess either electrophilic 

(Fischer) or nucleophilic (Schrock) character, and phosphinidene-metal complexes 

demonstrate similar bonding profiles (1.21-1.23, Figure 1-6).54 Nucleophilic 

phosphinidene complexes consist of a P=M double bond and studies have indicated that 

their reactivity resulted from triplet radical character at both the phosphorus and metal 

centers.41 These complexes were first discovered over 30 years ago, but new examples 

now cover a range of both early and late transition metals. Reactivity studies in all cases 

of nucleophilic phosphinidene complexes have demonstrated the reactivity stems from 

the P=M double bond.45   

Figure 1-6. Examples of a nucleophilic phosphinidene complex (1.21), an electrophilic 

phosphinidene source (1.22) and an amino-subsituted electrophilic phosphinidene source 

(1.23) 

Zr
P

PMe3

Mes*

1.21                        1.22                              1.23

P
R1

R1

Me

Me

(OC)5M
R

M = W, Mo, Cr
R = aryl, alkyl, amino

P
Ph

Ph

R2N M(CO)n

M = W, Co, Mo, Fe
R = alkyl
n = 3-5
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 Alternatively, electrophilic phosphinidene-metal complex reactivity stems from 

the phosphorus center in a carbenic fashion, or in combination with a donor atom in an 

olefinic fashion, to yield [1+x] or [2+x] cycloadducts, respectively (x = 1 or 2). The bond 

between the phosphorus and metal center was identified as a singlet dative interaction, 

which allowed for the phosphinidene transfer as identified by its products upon trapping 

with various reagents.55 Electrophilic phosphinidene complexes ([RP-M(CO)5], M = Cr, 

Mo, W; 1.22)  were first discovered by Mathey in the 1980s. [1+2] cycloaddition 

chemistry was observed with alkenes and alkynes to yield phosphiranes and 

phosphirenes, respectively (Scheme 1-1, a).44,56–58 Most of these metal phosphinidene 

complexes are generated in situ by the aromatization of the norbornadiene scaffolds 

which release the reactive fragment and the metal carbonyl acts as a Lewis acid to 

stabilize the phosphinidene prior to trapping. Although the majority of electrophilic 

phosphinidene complexes are identified by reactions with various trapping agents, amino-

subsituted phosphinidene-metal complexes have been successfully isolated and 

characterized (1.23, Figure 1-6).59 These isolable derivatives possessed analogous 

reactivity to their transient counterparts, which indicated that the presence of the donor 

P
CO2Me

CO2Me

Me

Me

(OC)5W
Ph

Ph CO2Et

xylene, 120 oC

5h

P

Ph

CO2Et

Ph

W(CO)5Ph
Ph

xylene, 100 oC

o/n

P

Ph W(CO)5

Ph

Ph

a)

b) CoOC

PPh3

CO

COP

NiPr2

+ PhPh

CoOC

PPh3

CO

CO

P

NiPr2

Ph

Ph

Scheme 1-1. Rearomatization of norbornene releasing electrophilic phosphinidene 

complex. a) Left: reaction with 1,2-diphenylethylene to form a phosphirane-tungsten 

metal complex with retention of stereochemistry. Right:  reaction with an 

asymmetrically substituted alkyne to yield a phosphirene-tungsten metal complex. b) 

Reaction of aminophosphinidene complex to yield a phosphirene-cobalt metal complex 

upon reaction with diphenylacetylene 
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atom did not impede the desired reaction from occurring (ie. [1+2] cycloaddition 

occurring at phosphorus, Scheme 1.1, b).42 

 Research in this area has seen a substantial increase in the last three decades, and 

as a result, alternative routes to access phosphinidenes which do not require electronic 

stabilization by a metal center have been developed. The most successful donor atoms 

used to obtain singlet phosphinidene compounds with reactivity that can be harnessed are 

bulky NHCs60–63 and phosphine ligands.48,64,65 Most recently, the first “bottle-able” 

phosphinidene was prepared by Bertrand et al. by the photolysis of a phosphaketene 

protected by extremely bulky groups on the nitrogen atoms of the compound.48,65 This 

unique compound was found to have a terminal P-P double bond, where the terminal 

phosphorus possessed phosphinidene character. Versatile reactivity with CO, strong 

donors, or trapping agents stemming from the phosphorus center was observed (Scheme 

1-2).48,65  

 

 

A recurring theme for phosphinidene chemistry is unique ligand design, normally 

featuring large aryl substituents at the phosphorus center. The goal of this research is to 

develop reliable and reproducible synthetic methodologies for the preparation and 
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utilization of phosphinidenes as synthetic building blocks or ligands for transition metals 

and other potential applications (eg. polymerization). 

1.5 Phosphinidene Chalcogenides 

Phosphinochalcogoylidenes, known more commonly as phosphinidene 

chalcogenides, consist of a two-coordinate phosphorus center with a formal double bond 

between the phosphorus and chalcogen atom.26 The isolation of these species as a “free” 

unit has been an ongoing struggle for main group synthetic chemists. The understanding 

of these compounds has been developed through their identification in the gas phase by 

mass spectrometry and infrared spectroscopy, as well as through their reactions with 

various trapping reagents.66–69 The development of RP=Ch transfer chemistry would be 

greatly aided by a method which would allow for RP=Ch to be accessed 

stoichiometrically under mild conditions.  

Phosphinidene chalcogenides have been targets of synthetic chemists for a number of 

decades and differ from parent phosphinidenes in that they possess a singlet electronic 

ground state. Parent phosphinidenes (RP:) are known to possess triplet ground states 

through computational studies as well as EPR spectroscopy.70 A level of ambiguity in the 

area of phosphinidene chalcogenide research still exists because a thorough 

understanding of their chemistry is lacking; however, calculations have aided in 

predicting the reactivity of these compounds. Phosphinidenes can be stabilized by the 

presence of a donor atom (ie. E = N, O, S, P) through the formation of a formal E=P 

double bond.71,72 The presence of this double bond was verified computationally to bias 

reactivity towards a singlet ground state at phosphorus and have rendered RP=S as 

isolobal with singlet carbenes and silylenes.71,73 An influential report by Niecke and 

Schoeller in 1982 played a large role in the early stages of this field, where they used 

theoretical chemistry to predict the reactivity of RP=E systems with alkynes.73 They 

found that weaker (p-p) -bonds tend to undergo [2+2] dimerization reactions to yield 4-

membered heterocycles (olefinic reactivity). Conversely, those with more polar (p-p) -

bonds tend to react via [1+2] cycloaddition pathways (carbenic reactivity). The tendency 

of RP=E to undergo [1+2] versus [2+2] cycloaddition reactions depended on the identity 
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of E. Phosphaalkenes (RP=C), with a small electronegativity difference between C and P, 

tend towards cycloaddition mechanistic pathways, where oxaphosphanes (RP=O) and 

iminophosphanes (RP=N) prefer chelotropic reactivity pathways based on differences in 

their HOMO-LUMO energy gaps (Figure 1-7).73 

The observation of this phenomenon is explained by orbital crossing of 2 HOMOs, 

where the HOMO in less electronegative RP=E systems (E = C) consists of a P=C -

orbital, and in more polarized systems (E = N, O) the HOMO is an orbital of  symmetry 

corresponding to the lone pair on phosphorus. The LUMO for both cases is the *-orbital 

of the P=E double bond.73 Tuning the R group on phosphorus to be -donating or -

accepting can also inverse the energy of  and , and when E = S this could result in the 

observation of both olefinic and carbenic behaviour. In comparison to HP=O, theoretical 

findings predicted that reactivity should be analogous to singlet carbenes ( HOMO, 1,1-
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Figure 1-7. Sequence of energies of the , , and * orbitals obtained from ab 

initio STO/3G calculations for phosphaalkene, iminophosphane and 

oxaphopsphane73 
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dipole). This prediction has since been confirmed experimentally by a number of 

different studies on the reactivity of phosphinidene oxides and sulfides.71,74–76 

 Despite the sound theoretical and experimental evidence surrounding the 

chemistry of RP=O, the understanding of heavier Group 16 elements (RP=E, E = S, Se, 

Te) is far less developed from both computational and experimental standpoints. Based 

on Niecke and Schoeller’s report, the decrease in electronegativity when using heavier 

chalcogens should cause a decrease in the dominant carbenic character to result in 

prominently olefinic reactivity.73 Theoretical studies performed by the Mathey group on 

sulfur systems indicated a P=S bond order of 1.93, indicative of a double bond between P 

and S atoms.77 The HOMO was an in-plane orbital comprised of the (P-C) orbital, the 

lone pair on phosphorus, and the in-plane p-orbital of sulfur. The HOMO-1 consists of 

the P=S -orbital, which is a strong indication that both carbenic and olefinic reactivity 

could be observed when E = S (Figure 1-8).77  
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butadiene to give the previously unknown trivalent [4 + 2]
cycloadducts. Oneof these(R= Ph) hasbeen characterized asits
P-W(CO)5 complex by X-ray crystal structure analysis. With
cyclopentadiene, the subsequent insertion of a second molecule
of [RP S] leads to a new type of bicyclic product containing
a thiadiphospholane ring.

Among the various dicoordinate phosphorus species,
phosphinidene sulfides (also called thioxophosphines)

arecertainly, together with phosphinideneoxides, the least investi-
gated members of the P(II) family. Several precursors for the
generation of phosphinidene sulfides and a few of their trapping
reactionshavebeen described in the literature.1−8 However, some
discrepancies can benoticed in the published data. If weconsider
the reaction between [PhP S] and 2,3-dimethyl-1,3-butadiene, it
isstated that it yields either the phospholene sulfide1,8 the tetra-
hydrothiaphosphinine sulfide 2, or the corresponding oxide 3.2−4

The expected trivalent tetrahydrothiaphosphinine 4a has never
been detected.

When lookingat theother fundamental dicoordinatephosphorus
species, it must be stressed that they can behave either as alkenes
(e.g., the phosphaalkenes) or as carbenes (e.g., in some cases, the
iminophosphines9). Apparently, the behavior of phosphinidene
sulfides is erratic since they behave either as carbenes, leading
to products like 1, or as alkenes, leading to degradation products
like2 or 3. Willing to shed somelight on thisquestion, wedecided
to build new precursors of phosphinidene sulfides working under
very mild conditions and to reinvestigate their chemistry.

■RESULTS AND DISCUSSION

In order to have an idea of what could be expected, we first
decided to investigate the electronic structure of Me-P S by

DFT at theB3LYP/ 6-311+G(d,p) level.10 Thecomputed bond
order of P S is 1.93, thus showing a genuine double bond

character. Thefrontier orbitalsof MeP Sareshown in Figure1.

It is immediately clear that theelectronic structureof MeP Sis
different from the structure of a typical phosphaalkene that is
characterized by aπHOMO and aπ* LUMO. Here, theHOMO
isan in-planeorbital combining theσ(P-C), theP lonepair, and
an in-plane p orbital of sulfur. The situation is somewhat similar
to that of iminophosphine in which a σ HOMO is intercalated
between aπ (HOMO-1) and aπ* orbital (LUMO). A carbene-
likebehavior isnot excluded in somecasesfor MeP Ssincethe
HOMO contains the P-lone pair and the LUMO the pz empty
orbital at P, and thus, the species can be considered as isolobal
with a singlet carbene as discussed by Gaspar et al.4

Wewished to devise aprecursor of phosphinidene sulfides that
could work at room temperature in order to avoid thepossiblede-
gradation of their reaction products. Sometimeago, Kashman et al.
observed that the reaction of 1-phenyl-3,4-dimethylphosphole
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Figure 1. Frontier orbitals (Kohn−Sham) of MeP S.
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Figure 1-8. Molecular orbitals calculated for MeP=S.77 Bottom left: olefinic 

reactivity mode for RP=S. Bottom right: Carbenic reactivity mode for RP=S. 
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1.5.1 Generating RP=S in situ in the presence of trapping 
reagents 

Since the early experiments which focused on phosphinidene sulfide transfer, 

there have been numerous methods developed which aim to generate RP=S as a transient 

intermediate. In situ generation of RP=S in the presence of a trapping reagent has 

inhibited self-reaction and polymerization to result in the formation of products which 

indicate RP=S acted as a stoichiometric reactive unit. In most of these cases, “free” RP=S 

cannot be isolated and characterized, so its existence is owed to the cycloadducts that are 

formed as a result of its reactivity. Other mechanisms which do not involve the 

production of RP=S as a free reactive unit should be entertained. There have been 

ongoing efforts across the field working to ascertain the true nature of these 

transformations. 

 Similar to phosphinidene chemistry, the degradation of bicycles with a bridgehead 

RP=S unit (bound through phosphorus) has been a reliable strategy for accessing 

phosphinidene sulfides in situ.58 Most commonly, 7-phosphanorboradiene precursors 

have been used and exposing the scaffolds to thermal or photolytic conditions in the 

presence of a trapping reagent lead to extrusion and subsequent trapping of the RP=S 

bridgehead fragment (Scheme 1-3).43,50,52,78  

The earliest examples which showcase the transfer of RP=S from norbornadiene 

precursors have displayed dominant 1,1-dipole reactivity for insertion reactions with 

various alcohols (1.24) and disulfides (1.25). For cycloaddition reactions with benzil 

(1.26) and 2,3-dimethylbutadiene (dmbd, 1.27), [1+4] cycloadducts are common products 

(Figure 1-9).51,52,57,79,80 These results were indicative of carbene-like reactivity, analogous 

to what was observed for RP=O derivatives. Many of these early transformations used 

P

R1

R1

RS
D or hn

[R-P=S]   +

R1

R1

Scheme 1-3. Chelotropic elimination of RP=S from 7-phosphanorbornadiene upon 

addition of heat or light  
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harsh reaction conditions (ie. high temperature) to drive conversion to the desired 

products; however, the Mathey group recently demonstrated the room temperature 

reaction of RP=S with dmbd yielded a [2+4] cycloadduct and no carbenic reactivity was 

observed (1.28, Figure 1-9).77 RP=S in this example was released by the 

dehydrobromination of a 7-phosphanorbornadiene scaffold, which left the rearomatized 

aryl group and an ammonium bromide salt as byproducts of the room temperature 

process. Although compound 1.28 could not be directly isolated and structurally 

characterized due to oily nature of the low molecular weight material, its W(CO)5 

derivative was successfully isolated and subsequently characterized. The types of 

reactions which can be performed using this method are versatile; however, triplet 

phosphinidene sulfide reactivity patterns which are not as straightforward as their 

oxaphosphane counterparts have been observed.  

 Other early methods for in situ production of RP=S were developed by Harwood 

and Crofts in the 1960s and improved upon later by Inamoto, involving the 

dehalogenation of thiophosphonoic dihalides in the presence of trapping agents.81–85 The 

[R-P=S]

O

O

Ph
Ph

EtS SEt

R1-OH

P

PhPh

O O

R
S

P

S

REtS

SEt

P

S

RH

OR1

S

P
R

P

R S

1.24

1.25

1.261.27

1.28

Figure 1-9. Reactivity of RP=S generated in situ with alcohols (1.24), diethylsulfide 

(1.25), benzil (1.26), and dmbd (1.27, 1.28). R = alkyl, aryl. 
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results obtained by this method were consistent with those observed for norbornadiene 

scaffolds, where products featured RP=S insertion. When dmbd was added during the 

dechlorination step, [2+4] cycloaddition products were observed with structures 

analogous to those isolated by Mathey (1.28).86,87 Within the same reaction, they noted 

the formation of [1+4] adducts (1.27) which were also isolated and characterized. This 

result demonstrated that both olefinic and carbenic reactivity pathways are energetically 

accessible by this methodology (Scheme 1-4). In this case, the authors proposed that 

decomposition or oxidation of the [2+4] adduct occurred during the workup of the 

reaction and precluded its isolation; however, although no concrete evidence either way 

has been presented to date. Others have questioned the true nature of this mechanism 

with respect to the formation of free phosphinidene sulfide due to inconsistencies in 

results from Inaomoto.86 Nevertheless, the dehalogenation of thiophosphanoic dihalides 

has become one standard method for accessing RP=S in situ and has been used to 

generate new compounds in a variety of instances which are similar to those produced by 

7-phosphanorbornadiene aromatization.84–88 

Strained heterocyclic compounds containing P and S functionality are also 

amenable to the liberation of RP=S, although there are fewer examples in literature. 

Primarily, phoshirane and phospholene sulfides have been subjected to heat (thermolysis) 

or light (photolysis) in the presence of alcohols, diethylsulfide and dmbd to result in 

products similar to those discussed previously (1.24-1.27, Figure 1-10; Figure 1-9).71,89,90 

Gaspar and coworkers have shown that extrustion of RP=S from 2,6-

dimethoxyphosphirane sulfide was accomplished both thermolytically and photolytically 

by a first order process. This was confirmed by the lack of change observed with 

substoichiometric or excess diethylsulfide.71 This was strong evidence for the formation 

P

S

Cl

Cl

Mg

- MgCl2

P

S

dmbd S

P
Ph

1.28

S

P
Ph

X

X = O,S
1.29

Scheme 1-4. Dehalogenation of phenylthiophosphanoic dichloride to yield [2+4] 

cycloadduct analogous to Mathey, and corresponding crystalline oxidation product 
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of “free” RP=S using this methodology. Performing the thermolysis or photolysis of the 

phosphirane sulfide in the presence of dmbd resulted in both olefinic and carbenic 

products from in situ generated RP=S. The observation of both cycloaddition products 

likely arose from competing mechanistic pathways under the specified reaction 

conditions. Thiaphosphetenes and phosphirene sulfides have proven to be amenable to 

RP=S liberation under photolytic conditions – resulting in the dimerization of RP=S 

fragments to yield a P2S2 ring which has been previously reported by the Ragogna group 

(Figure 1-10).37,91 

1.5.2 Stabilizing RP=S through Ligand Design 

Despite the successes demonstrated by the RP=S transfer reactions described 

above, formation of these products assumes the generation of a “free” phosphinidene 

sulfide in solution. It has been of interest over the last 30 years to obtain RP=S as an 

isolable compound for further structural and electronic investigation to better understand 

this highly reactive species. Yoshifuji and coworkers demonstrate the first successful 

attempt at isolating a phosphinidene sulfide using an octamethylxylidene ligand (1.31).92–

94 In comparison to the bulky, aryl auxiliary ligands that have been traditionally used to 

isolate low-coordinate main group compounds, the octamethylxylidene ligand is 

[R-P=S]

P
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P S
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P Ph
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Figure 1-10. Thermolysis or photolysis of strained P,S-heterocycles for RP=S 

generation in situ 
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reminiscent of the supermesityl functional group, where one of the tert-butyl groups is 

replaced with a dimethylamino substituent. As a consequence, the ligand not only offers 

stabilization by way of steric protection but also through donor participation from the 

nitrogen center. This strategy has been quite effective for the isolation of a number of 

phosphinidene chalcogenides, including a rare example of an RP=Se (R = 

octamethylxylidene) (Figure 1-11, 1.30).95 The selenium derivative was observed to be 

unstable despite the amino group (Figure 1-11). This has precluded the authors’ ability to 

structurally characterize this compound, although NMR data supports their proposed 

structure with characteristic downfield shifts in the 31P{1H} NMR spectrum (P = 

399.0).92 The sulfide derivative (1.31) was found to be more stable, allowing for the 

collection of mass spectrometric and elemental analysis data, which in combination with 

a downfield shift in the 31P{1H} NMR spectrum (P = 382.0) confirms their hypothesized 

structure.96 Crystallographic data were not obtained for compound 1.31 so structural 

confirmation of the ligand-stabilized phosphinidene sulfide and the nature of the 

interaction between the P=S double bond and the NMe2 moiety is still unknown. No 

further work on this ligand framework has been reported since.   

P

NMe2

Se

P P

NMe2

Me2N

+   2
P

NMe2

Se

Se4

1.30

P

NMe2

S

1.31

Figure 1-11. Octamethylxylidene ligand stabilization of RP=Ch (Ch = Se, 1.30; Ch = S, 

1.31). Top: decomposition products of 1.30 
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 Ylidic stabilization of a terminal P=S unit has also been an attractive strategy to 

isolate “free” RP=S. Schmidpeter et al. reported the first examples of this method with a 

terminal P=S unit (Figure 1-12).97 Because of the increased conjugation present in the 

ylidic molecule, the question remained as to whether a formal double bond was present 

between phosphorus and sulfur atoms (1.32) or if the charge-separated resonance form 

was dominant (1.33). Crystallographic analysis of these compounds indicate a P=S bond 

which is slightly elongated in comparison to the Pyykko and Atsumi bond length (1.96 

Å), evidence that the charge-separated form is a better representation of the electronic 

nature of this compound.98,99 As further evidence for the charge separated species, 

reactivity of the ylid-stabilized P=S stems from the chalcogen atom (1.34, Figure 1-

12).97,100 The ylidic stabilization does not allow for the observation of P=S double bond 

reactivity. 

 

1.5.3 Developments in Transition Metal Stabilization of RP=S 

 

Phosphinidene-metal chemistry has been the subject of many 

reviews.26,41,42,44,49,59,61,86,101,102 The development of phosphinidene chalcogenide 

chemistry has been aided substantially by research on metal-phosphinidene complexes. 

The two main methods to prepare transition metal stabilized phosphinidene sulfides are: 

to generate naked RP=S fragments via transfer reactions, or by building the RP=S unit 

through direct bonding with metal centers.  

The first successful example of transition metal stabilized RP=S was by Fawzi 

and coworkers in the 1980s. Their group reduced a phosphathioic dichloride in the 
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Ch
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Figure 1-12. Resonance forms that represent ylidic stabilization of P=Ch (right) and an 

example of its reactivity (left) 
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presence of Mn2(CO)10 to yield a metallacycle containing a Mn–P–Mn- bond where the 

anionic Mn is stabilized by a bond to a positively charged sulfur atom (1.35, Figure 1-

13).88 Attempts with 7-phosphanorbornadienes and (5-C5H5)2Mo2(CO)6 lead to the 

formation of multiple products. Two products with contrasting structures were isolated 

from the mixture: a binuclear complex with a Mo-Mo bond (1.36) and a binuclear 

complex where RP=S has inserted into the Mo-Mo bond (1.37).103 Performing the 

analogous reaction with Lawesson’s reagent generated identical products.104  

 

In the 1980s, Seyferth and Withers reported the first generation of a “free” 

phosphinidene sulfide by a similar route involving the dehalogenation of phosphathioic 

dichlorides in the presence of Fe3(CO)12.
105 While this did not yield the elusive metal-

stabilized phosphinidene chalcogenides, a number of new products were formed that 

highlighted the breaking of the P=S double bond to form trinuclear iron complexes 

containing phosphorus, sulfur, or a mixture of both elements as ligands (1.38-1.40, Figure 
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1-13). The Ruiz group have also demonstrated the ability to generate RP=S units in the 

coordination sphere of a transition metal on a number of different occasions.106–109 While 

this strategy may not result in the formation of “free” RP=S in solution, it has not 

inhibited the ability to use this method to generate stoichiometric RP=S transfer reagents. 

Complexes developed by the Ruiz group display nucleophilic character stemming from 

phosphorus when exposed to elemental sulfur. This caused the RP=S framework to be 

associated to transition metal coordination sphere (1.41-1.42, Figure 1-13).102,106,108–110 

 

1.6 Preparation of Small (c-RPCh)n Heterocycles 

Interesting P,S-heterocycles have been prepared by increasing steric demand at 

phosphorus and in the absence of trapping reagents,. The formation of cyclic oligomers 

are typically favoured, where rings with P3S3 or P4S4 cores are common for the 

condensation reaction of dichlorophosphines with reagents such as Na2S, Li2S, and 

S(TMS)2 (1.43-1.44, Figure 1-14).111–113 The formation of the 6- and 8-membered rings 

has been previously reported for a number of different reactions and is postulated to stem 

from the self-reaction of in situ generated RP=S to form the trimer or tetramer, 

respectively.94,95,114–116 Derivatives of these rings containing other chalcogen atoms do 

exist; however, they were not completely characterized until recently.95,115 

Increasing the steric bulk substantially to a m-terphenyl ligand at phosphorus leads to 

the formation of RP=Ch dimers (1.45-1.46, Figure 1-14).37 The steric demand of the m-

terphenyl ligand coupled with the strained 4-membered ring has allowed for solution-

accessible monomeric RP=Ch by thermal or photolytic methods. Interesting chemistry 

that resulted from the thermolysis of 1.45 has been reported, including the generation of a 

novel phosphirene sulfide and the first structurally characterized thiaphosphetene.91 Ring 

expansion has been observed in the presence of bases and Lewis acidic metals (ie. Cu, 

Ag) to yield compounds similar to 1.43.117 The steric protection offered by the m-

terphenyl ligand in combination with donation from a strong base (ie. NHCs) have also 

allowed for the isolation and structural characterization of the first base stabilized 

phosphinidene sulfide.37  
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1.7 Scope of Thesis 

This thesis has two main components: 1) the gram-scale synthesis of novel 

asymmetric phosphines possessing sterically demanding ligands and 2) the development 

of methods to access RP=S under mild conditions for a variety of R groups on the 

phosphorus center. Novel P,S-heterocycles were reported resulting from reactions of in 

situ generated RP=S with a variety of trapping reagents (Section 1-6). Many of the 

described methods for phosphinidene or RP=S transfer rely on the degradation of 

heterocycles or the presence of transition metals to stabilize the reactive fragment. While 

these have proven to be successful routes for accessing phosphinidene sulfides, the 

development of a synthetic protocol to access RP=S, where removal of the metal and 

scaffold from the resulting products is not necessary, is certainly desirable. In order to use 

RP=S transfer in synthetic applications, the method of production must be tolerant of a 

wide variety of R groups bound to phosphorus. The development of a simple synthetic 

protocol will allow for researchers to access a variety of novel heterocycles upon 

reactions with a number of trapping reagents.  

The generation of transient RP=S in this thesis was accomplished by thermolysis, or 

by condensation. The starting material required for the thermolysis method (1.45) was 

prepared by the condensation of m-terphenyl dichlorophosphine and S(TMS)2 at room 

temperature on a gram scale. From here, RP=S can be accessed by gently heating a 

solution of 1.45 in the presence of trapping agents to yield novel P,S-heterocycles 

(Scheme 1-5). Interestingly, RP=S can also be generated and trapped in situ from the 
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condensation of a number of dichlorophosphines (with and without sterically demanding 

ligands) and S(TMS)2, and was thus coined the condensation method.  

Chapter 2 focuses on the development of synthetic procedures for the preparation of 

various P-stereogenic phosphines possessing m-terphenyl ligands. The development of 

asymmetric phosphines possessing different reactivity handles for use as stoichiometric 

reagents or ligands for transition metals has been an ongoing area of research. The 

reported compounds represent an addition to the library of known asymmetric 

phosphines.  

Chapter 3 focuses on further developing the transfer chemistry of phosphinidene 

sulfides and building a library of cycloaddition products to gain an understanding of 

phosphinidene sulfide reactivity patterns. Thermolysis of 1.45 in the presence of various 

substituted alkynes resulted in the formation of new P,S-heterocycles which represented 

products of both olefinic and carbenic reactivity pathways, in one pot. The ratio of 

resulting products was tunable based on the temperature and concentration that the 

thermolysis is performed under. Alternatively, the condensation method offers a room 

temperature protocol to access RP=S in solution to generate structures analogous to those 

by the thermolysis method, but with greater selectivity. This selectivity stems from the 

operation of only one of carbenic or olefinic mechanistic pathways, dependent on the 

electron density of the trapping reagent used. The condensation method also allows for 

RP=S to be generated and trapped when R was not sterically demanding, a first for the 

field. Electron-donating, electron-withdrawing and aryl R groups on dichlorophosphines 

have proven to be suitable reagents for the generation RP=S in situ and have resulted in 

novel P,S-heterocycles when the reaction is performed in the presence of dmbd. In cases 

where R is not sterically demanding, it is possible to access products of both olefinic and 

carbenic reactivity pathways within the same reaction mixture and again, the ratio of 

these products is heavily dependent on reaction concentration. 

As a general note, lone pairs have been included in Figures where bonding and/or 

singlet-triplet electronic ground states is the main focus for the compound being shown. 

Lone pairs have not been included for all P(III) species. Another note is the use of 

“RP=Ch”, which is in place of phosphinidene chalcogenides (Ch = S, Se).  
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Chapter 2 

2 Synthesis & Characterization of Asymmetric 
Phosphines 

2.1 Introduction 

The importance of asymmetric phosphine ligands in transition metal chemistry, 

catalysis, and organic synthesis cannot be overstated.1–11 The ability to modify the steric 

and electronic properties of both mono- and diphosphines has facilitated the development 

of metal phosphine-based catalysis across a wide range of applications.12–14 Asymmetric 

phosphines have been used as ligands for transition metals to perform catalytic reactions 

with high enantioselectivity for various C–X (X= H, C, N, B) bond forming reactions.15,16 

While there have been extensive studies on asymmetric phosphines in the literature, 

many examples utilize smaller aryl substituents as one of the ligands. 

Dialkylaminochlorophosphines (A-D, Figure 2-1), for example, present an opportunity to 

bias reactivity at the phosphorus center towards the P-N or P-Cl bond. This strategy has 

been widely used for the synthesis of unique cage complexes,17 new organophosphorus 

compounds,18 and also in the development of ligands for transition metal 

complexes.15,16,19 Secondary phosphines (E, Figure 2-1) are obtained from the 

deprotonation and subsequent quenching of the phosphide anion of their parent primary 

phosphines with TMSCl.20 Amphiphilic phosphines  have been useful synthetic tools 

since the late 1990s, particularly for the synthesis of bis[phosphine-ethyl] ethers for use 

as multi-dentate ligands for a variety of different transition metal complexes (F, Figure 2-

1).21 Many compounds featuring the bonding environments shown in Figure 2-1 have 

been prepared featuring large aryl groups as well, with examples from the literature that 

include Mes (Mes = 2,4,6-trimethylphenyl), Mes*(Mes* = 2,4,6-tri-tertbutylphenyl), and 

dipp (dipp = diisopropylphenylphosphine) substituents. 
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Although phosphines of this nature have proven to be valuable reagents for the 

synthesis of bioactive compounds and as ligands in catalysis, there are fewer examples of 

asymmetric phosphines which possess m-terphenyl substituents.22 The incorporation of 

these bulky groups proved on numerous occasions to suppress reactivity of main group 

centres, and can offer kinetic stabilization for otherwise reactive units.23 Incorporating 

bulky groups into asymmetrically substituted phosphorus compounds will add to the 

chemically diverse library of phosphine ligands. 

Furthermore, the preparation of compounds with bonds to phosphorus have often 

relied heavily on the use of sterically encumbered substituents to aide in the prevention of 

undesirable side reactions and decomposition.24 For example, the use of m-terphenyl 

ligands –  which consist of a meta-substituted central benzene ring bound to two Mes or 

Mes* groups, for example – was instrumental in Yoshifuji et al.’s isolation of 

diphosphenes (H, Figure 2-2).25,26 The corresponding diphosphanes (I, Figure 2-2) have 

since been prepared through a number of different routes; however, they were first 

isolated as a byproduct of diphosphene synthesis.27,28 We have been exploiting the steric 

bulk of terphenyl ligands (TerPh = 2,6-MesC6H3) as kinetic stabilization for some time to 

prepare 4-membered phosphorus-chalcogen rings  amenable to the liberation of 

phosphinidene chalcogenides. This achievement has not been demonstrated with smaller 

aryl substituents on phosphorus (J, Figure 2-2).29,30 

 

P
N Cl

A

P
Si H

B

P

CF3

N Cl

C

P
N Cl

D

N

P
Ph Cl

E

P
N TMS

F

Figure 2-1. Select examples of secondary and tertiary asymmetric phosphines 
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 In this context we report on the synthesis and comprehensive characterization of 

various asymmetric phosphines with a TerPh ligand. We have been able to prepare 

phosphines possessing –Cl, -H, -NEt2, and -Si(CH3)3 functionality in good yield on a 

gram scale. All prepared derivatives possess a bias for selective reactivity at a single 

bond to phosphorus, so a number of homocoupling reactions were carried out with the 

prepared asymmetric phosphines in attempts to generate a P-P single bond 

stoichiometrically via dehydrohalogenative coupling and salt metathesis. Diphosphane, 

2.6 (R= Mes), has been previously been reported by the cleavage of Zr-P bonds of the 

complex Cp*
2Zr(PMesPMes) in the presence of phenylacetylene; however, it has yet to 

be structurally characterized or prepared without the use of metals.29 Our synthetic 

strategy involved the reduction of terphenyldiphosphene to terphenyldiphosphane, which 

proceeded in near quantitative yield and its complete structural characterization is 

detailed within. The kinetic stability offered by the steric bulk of the TerPh ligand may 

allow for novel reactivity; however, attempted reactions with sulfur monochloride and 

2.6 resulted in inconsistent reactivity. Diphosphanylchalcogenanes (K) were targeted not 

only as interesting asymmetric phosphines derivatives, but as precursors for the synthesis 

of novel asymmetric P,Ch-heterocycles.  

Figure 2-2. Examples of compounds prepared using bulky aryl ligands (H-J) and targeted 

diphosphanylchalcogenane structure (K) 
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2.2 Results & Discussion 

2.2.1 Preparation of Asymmetric Phosphines 

 Dichloroterphenylphosphine (2.1) was prepared using literature procedures and 

acted as the initial precursor for the prepared asymmetric phosphines.29,31,32 The addition 

of two stoichiometric equivalents of diethylamine to 2.1 resulted in the appearance of a 

new singlet in the 31P{1H} NMR spectrum after two hours (P = 139.0; Scheme 2-1, 

Figure 2-3).  After removal of the resulting ammonium chloride salt via vacuum filtration 

through a glass frit, volatiles were removed in vacuo to give a white powder. Single 

crystals of X-ray diffraction quality were obtained by placing a concentrated solution of 

the resulting powder in n-pentane at -35 oC overnight. Subsequent structural analysis 

confirmed the structure of 2.2 (81% total yield). Redissolving single crystals of 2.2 in 

benzene-d6 displayed the same singlet as the reaction mixture, along with a single set of 

TerPh resonances in the 1H NMR spectrum. In the solid state, 2.2 was discovered to be 

quite sensitive to hydrolysis upon short exposure to the ambient environment.  

 

 Compound 2.2 was an ideal precursor for other asymmetric phosphines because it 

possessed one reactive P-Cl bond. This allowed for a high degree of control over 

reactivity at the phosphorus center. The corresponding secondary phosphine was obtained 

1) LiAlH4, Et2O

2) nBuLi, Pentane

3) TMSCl

LiAlH4

Et2O

MesMes

P
H N

MesMes

P
H TMS

MesMes

P
Cl Cl

MesMes

P
Cl N

2.12.2

2.3 2.4

2 eq. HNEt2
Et2O

Scheme 2-1. Synthesis of asymmetric phosphines from dichloroterphenylphosphine 
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from 2.2 by reduction with excess LiAlH4 to yield compound 2.3. Compound 2.2 was 

dissolved in THF and added to a suspension of 3 stoichiometric equivalents LiAlH4 in 

THF. Excess LiAlH4 was quenched with degassed water and the supernatant was filtered 

through Celite/MgSO4 (3:1 v/v) on a glass frit before removal of solvent in vacuo to give 

a white powder (65% yield; Scheme 2-1). Compound 2.3 appeared as a doublet in the 31P 

spectrum at P = 1.86 with a coupling constant of 236.8 Hz (Figure 2-3). A single set of 

TerPh peaks and a doublet corresponding to P-H coupling (1JHP = 236.8 Hz) were present 

in the 1H NMR spectrum confirmed the composition of 2.3. Attempts to generate a P-P 

single bond by dehydrogenative coupling with 2.2, 2.3 and a variety of bases (DBU, 

DMAP, NEt3) were unsuccessful. The resultant 31P NMR spectra showed that either no 

reaction had occurred or multiple products were formed which could not be isolated. 

 Following reduction of 2.1 to terphenylphosphine with LiAlH4, the corresponding 

phosphide anion was generated using 5 equivalents of n-BuLi in coordinating solvent 

(Et2O or THF) and removing volatiles in vacuo left a bright orange powder.25 When 

redissolved in benzene-d6, a 31P signal at -136.4 ppm was observed, this was shifted 

Figure 2-3. Stacked 31P{1H} NMR spectra of purified 2.2 (top), 2.3 (middle), and 2.4 

(bottom) with inset 31P NMR spectra expansions included where splitting was observed 
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upfield from Ar*PH2 (P = -146.7, 1JPH = 209.9 Hz), with a coupling constant of 176.0 

Hz, consistent with 1JPH coupling reported in literature for phosphide anions.25 Excess n-

BuLi was removed by washing the crude reaction mixture with hexanes, then the pink 

powder was dissolved in Et2O and excess TMSCl was added at 0 oC (Scheme 2-1). A 

drastic colour change from a dark pink solution to colourless occured almost 

instantaneously. Compound 2.4 was isolated as a white powder in 26% yield after 

removal of solvent in vacuo. The doublet in the 31P NMR spectrum persisted at -136.4 

ppm with a P-H coupling constant of 220.0 Hz (Figure 2-3). The 1H NMR spectrum 

contained diagnostic signals which supported the formation of 2.4, with a doublet at 3.10 

ppm (1JHP = 220.0 Hz) and the presence of a doublet at H = -0.20, corresponding to 9 

TMS protons coupled to phosphorus (2JHP = 4.8 Hz). The formation of a P-P single bond 

was targeted again by dehydrohalogenative coupling with 2.4 and 2.2 using a variety of 

bases, but due to the complexity of the resulting NMR spectra, this route was not 

pursued. We hypothesized that the steric bulk of the terphenyl ligand inhibited the 

reactive components from being accessible to each other. A summary of the 

stoichiometric reaction attempts to form single P-P bonds are shown in Figure 2-4 (not 

shown are solvent, temperature and concentration variations).  

  A method reported by Protasiewicz et al. for the synthesis of P=P double bonds 

was used to prepare terphenyldiphosphene (2.5).26,33,34 Following recrystallization from a 

Figure 2-4. Targeted P-P single bond formation strategies, salt metathesis and 

dehydrohalogenative coupling, using 2.1-2.4 
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concentrated solution of pentane at -35 oC, compound 2.5 corresponded to a singlet at P 

= 493.2, consistent with previous literature reports.33 Compound 2.5 was only obtained 

when Mg turnings were activated with naphthalene (Riecke Mg), other attempts when 

Mg turnings were activated with I2 or dibromoethane did not yield the desired product. 

Compound 2.5 was redissolved in THF and added to a suspension of 5 stoichiometric 

equivalents of LiAlH4 in THF which had been cooled to 0 oC. The solution became a 

deep red colour within 5 minutes and was allowed to warm to room temperature over the 

course of 4 hours. Using a five-fold excess of LiAlH4, only an 8% of terphenylphosphine 

was generated by integration of the 31P NMR spectrum (TerPhPH2, P = -146.7). The 

31P{1H} NMR spectrum also contained signals corresponding to the diphosphane product 

(2.6) observed at  chemical shifts of -100.9 and -110.2 ppm in a 9:1 ratio, respectively 

(Scheme 2-2).    

 

Both TerPhPH2 and 2.6 were highly soluble in ethereal and hydrocarbon solvents, 

but were readily separated by crystallization at -35 oC overnight from a solution of 

pentane:hexamethyldisiloxane (1:2), in which 2.6 was highly insoluble. Washing crude 

reaction mixtures 3-5 times with 2 mL of HMDSO also yielded sufficiently pure bulk 

material. The coupled 31P NMR spectrum displayed an AA’XX’ spin system for P = -

100.9 and what initially appeared to be a doublet of doublets for P = -110.2, but was in 

fact a second unresolved AA’XX’ spin system (Figure 2-5). Other diphosphanes reported 

by Clegg et al. show the formation of 2 products with a similar coupling pattern to 2.6.35 

Using this information, the two different peaks could be assigned as the rac and meso 

+    xs Mg
THF, RT
45 min

MesMes

P
P

Mes
Mes

2.1

2.5

MesMes

PH
HP

Mes
Mes

5 eq LiAlH4,

Et2O, 0oC, 4h

2.6

Scheme 2-2. Preparation of terphenyldiphosphane (2.6) from 2.1 
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diastereomers of 2.6, where the meso isomer is favoured (P = -100.9) due to the steric 

bulk imposed by the TerPh ligand. The rac isomer also possesses an AA’XX’ spin 

system which cannot be deduced due to a lack of peak intensity. Attempts to separate the 

rac and meso isomers were not successful.  In the 1H NMR spectrum, complex multiplets 

which corresponded to P-H coupling from both diastereomers were overlapping in 

several instances. There were also two sets of peaks corresponding to mesityl methyl 

protons in the aliphatic region in a 9:1 ratio, which was indicative of the presence of both 

diastereomers. Having obtained a P-P single bond, dehydrohalogenative coupling with 

S2Cl2 and base was targetted. Attempts with DBU and DMAP generally lead to a 

complex mixture of products in the 31P{1H} NMR spectrum with poor reproducibility. 

The steric bulk imposed by the TerPh ligands likely inhibited the desired reaction from 

occurring cleanly. 

The synthesis of diphosphanylchalcogenanes (Ch = S, Se) were also targeted as 

precursors for asymmetric phosphorus chalcogen rings. Upon addition of excess S(TMS)2 

to a solution of 2.2, the appearance of two signals was observed by 31P{1H} NMR 

spectroscopy (P = 34.0, 83.0). The exclusive formation of monophosphanylsulfane (2.7, 

Figure 2-5. 31P{1H} NMR spectrum of purified 2.6 with inset 31P expansion highlighting half 

of a well-resolved AA'XX' spin system for the meso isomer and an unresolved AA’XX’ spin 

system for the rac isomer. 
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P =  83.0) was favoured by allowing the reaction to proceed at 100 oC for 48 hours. After 

removal of all solvent in vacuo, the yellow residue was purified by crystallization at the 

interface of a pentane and MeCN solution overnight at -35 oC (Scheme 2-3).  The 1H 

NMR spectrum of the yellow powder contained one set of TerPh peaks, as well as a 

singlet corresponding to the -SiMe3 protons at H = 0.20. Even when the reaction was 

performed with a substoichiometric amount of S(TMS)2, only monophosphanylsulfane 

(2.7) was obtained. Despite difficulties in achieving the diphosphanylsulfane, the 

diphosphanylselane (2.8) was readily prepared via a similar procedure with one 

stoichiometric equivalent of Se(TMS)2 (P = 99.1, Scheme 2-3). The 31P{1H} NMR 

spectrum confirmed the presence of the P-Se bond, with 77Se–31P coupling at a magnitude 

of 221.2 Hz. The corresponding 1H NMR spectrum contained one set of Ar* resonances 

as well as two sets of complex multiplets corresponding to the  –NEt2 groups.  

 

2.2.2 X-Ray Crystallography 

Images of the solid-state structures for the prepared asymmetric phosphines are shown in 

Figure 2-6.  

S(TMS)2, Toluene

100 oC, 2 daysMesMes

P
S N

Si
Se(TMS)2, Toluene

100 oC, 2 days
P

Se
P

NN

Mes

Mes Mes

Mes

2.2

2.7 2.8

Scheme 2-3. Synthesis of 2.7 and 2.8 from the condensation reaction of 2.2 with 

Ch(TMS)2 (Ch = S, Se) 
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2.3 

 
 

2.4  

2.6 

 

 
 

2.7 
 

2.8 
Figure 2-6. Solid-state structures for compounds confirmed by X-ray crystallography. Thermal 

ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity unless directly 

bound to phosphorus. Pertinent bond lengths [Å] and angles [o] are as follows: 2.2: P(1)-C(1)  

1.861(3), P(1)-N(1) 1.693(3), P(1)-Cl(1) 2.2165(11), N(1)-P(1)-C(1) 101.67(3), N(1)-P(1)-Cl(1) 

103.16(12). 2.3: P(1)-C(1) 1.854(3), P(1)-H(1) 1.29(3), P(1)-N(1) 1.684(3), N(1)-P(1)-C(1) 
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106.46(14), N(1)-P(1)-H(1) 100.7(14). 2.4: P(1)-C(1) 1.845(2), P(1)-H(1) 1.38(3), P(1)-Si(1) 

2.2696(14), C(1)-P(1)-H(1) 96.5(12), Si(1)-P(1)-H(1) 94.2(12). 2.6: P(1)-C(1) 1.8409(17), P(1)-

H(1) 1.35(3), P(1)-P(1)1 2.2392(12), P(1)-P(1)1-H(1) 91.4(11), C(1)-P(1)-H(1) 97.5(11) o. 2.7: 

P(1)-S(1) 2.1412(8), P(1)-C(1) 1.865(2), S(1)-Si(1) 2.1456(10), P-Navg 1.6949(18), P(1)-S(1)-

Si(1) 99.18(3), C(1)-P(1)-S(1) 105.75(6). 2.8: P-Seavg 2.3073(14), P(1)-C(1) 1.862(5), P-Navg 

1.669(4), P(1)-Se(1)-P(2) 88.17(5), C(1)-P(1)-Se(1) 105.27(16).  

Single crystals of compound 2.2 were obtained at -35 oC from a concentrated 

solution of pentane overnight (Figure 2-6). Normal P-N, P-Cl and P-C bond lengths were 

observed.36 Crystals of 2.3 suitable for X-ray crystallography were grown by placing a 

concentrated solution of 2.3 in pentane at -35 oC for two days, and confirmed the 

proposed structure (Figure 2-6). A shorter P-N bond length was observed (P-N = 1.684(3) 

Å) in comparison to compounds 2.2. This was a manifestation of the fact that Cl and N 

have lone pairs of electrons that are capable of donating electron density to the 

phosphorus center. For compound 2.2, competition exists between the N and Cl atoms for 

donation into the phosphorus centre. Compound 2.3 does not have this competition 

because the H atom does not possess lone pairs and resulted in the contraction of the P-N 

bond. In fact, the P-N bond in compound 2.3 is approaching multiple bond character in 

comparison to P=N double bond containing compounds (P=N ~ 1.6 Å).37 Normal P-H 

(1.29(3) Å) and P-C (1.854(3) Å) bond lengths were also observed.36 For compound 2.4, 

crystals suitable for X-ray crystallography were obtained from a concentrated solution of 

pentane left at -35 oC overnight (Figure 2-6). Normal P-H (1.38(3) Å) and P-C (1.845(2) 

Å) bonds are observed for 2.4.36at The P-Si bond length is 2.2696(14) Å, which was in 

alignment with other known P-Si single bonds.38 Comparing the P-C bond lengths across 

compounds 2.2-2.4, there was a significant decrease in bond length as the electron 

donating properties of the substituents on phosphorus increases. This was because of the 

same effect discussed for the contraction of the P-N bond, where the P-C bond in 2.4 is 

shortest because the Si atom has no lone pairs of electrons and 2.2 has the longest P-C 

bond as a result of both N and Cl atom lone pair donation into the phosphorus center.  

Crystals of 2.6 suitable for X-ray diffraction were grown from a mixture of rac and 

meso isomers by placing a concentrated crude reaction mixture of 2.6 in pentane at -35 oC 

overnight. Compound 2.6 possessed a center of inversion in the center of the P-P bond, as 

expected for the meso isomer. The P-P bond had a length of 2.2392(12) Å, which fell 
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within the expected range for P-P single bonds.36 The P-C (1.8409(17) Å) and P-H 

(1.35(3) Å) bonds also fall within the normal range. The solid state structure illustrated 

how the TerPh ligands formed a cage around the P-P bond with a pocket for further 

reactivity to potentially take place. The P-H bonds in 2.6 were longer than that seen for 

2.3, but were slightly shorter than the P-H bond in 2.4. A bond angle of 91.4(11)o was 

measured for the P-P-H bond angle in 2.6, with a smaller C-P-H bond angle (97.5(11)o) 

than seen for 2.2-2.4 for the analogous bond angle, likely caused by the imposed steric 

bulk of two terphenyl ligands. 

In the case of compound 2.7, a P-S single bond of 2.1412(8) Å and a P-S-Si bond 

angle of 99.18(3)o were measured and corresponded well with the only other known P-S-

Si linkage in literature.39 Typical P-C and P-N bond lengths (~1.84 Å and ~1.65 Å, 

respectively) were observed for 2.7, although longer than those seen for compounds 2.2-

2.4. X-ray crystallographic analysis of compound 2.8 indicated a tight P-Se-P bond angle 

of 88.17(5)o, while P-Se bond lengths (P-Seavg = 2.3073(14) Å) were in typical range for 

P-Se single bonds and are similar to values reported by Weigand and colleagues for 

tetramesityldiphosphanylselane derivatives.40  

2.3 Conclusion 

The synthesis and characterization of asymmetric phosphines, diphosphane and 

phosphanylchalcogenanes bearing a m-terphenyl funcational group have been described. 

Dichloroterphenylphosphine (2.1) was the precursor for three new phosphines with 2 

unique substituents, which were isolated and characterized in good yield. Reactivity was 

biased towards one substituent on the phosphorus center and a number of homocoupling 

reactions were attempted with compounds 2.2-2.4. The reactions targeted 

dehydrohalogenative coupling and salt metathesis as a means to generate a P-P single 

bond stoichiometrically; however, no conclusive reactivity was observed between any of 

the prepared asymmetric phosphines. Terphenyldiphosphane, 2.6, was prepared and 

completely structurally characterized. The kinetic stability provided by the steric bulk of 

the m-terphenyl ligands may allow for novel reactivity to be observed. Unfortunately, no 

reproducible results were obtained from reactions with 2.6 and S2Cl2. Overall, the 

development of asymmetric phosphorus compounds such as the ones reported are 
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promising candidates in catalysis as mono- or multi-dentate ligands for transition metals, 

and also the development of unique small molecules. 

2.4 Experimental Section 

For general experimental and crystallographic details, please see Chapter 5. 

2.4.1 Synthesis of 2.2 

Two equivalents of diethylamine (1.59 mL, 15.4 mmol) were added 

dropwise to a solution of 2.1 (3.20 g, 7.70 mmol) in 180 mL of ether 

at room temperature. The slurry was filtered through a glass frit after 

stirring for 2 hours and then solvent was removed in vacuo. The 

crude white powder was redissolved in pentane and allowed to crystallize at -30 oC 

overnight, yielding crystals suitable for X-ray crystallography. Yield was increased by 

performing consecutive crystallizations by concentrating the pentane soluble portion in 

vacuo. Yield 5.65 g (81%).  

31P NMR (Benzene-d6, 161.8 MHz) : 139.0 (s).  

1H NMR (Benzene-d6, 400 MHz) : 0.84 (t, 3JHH = 7.2 Hz, 6H, NCH2CH3), 1.98 (s, 6H, 

Mes CH3), 2.12 (s, 6H, Mes CH3), 2.32 (s, 6H, Mes CH3), 2.66 (dq, 3JHP =  15.1 Hz,  3JHH 

= 7.6 Hz, 2H, NCH2CH3), 2.85 (dq, 3JHH = 7.2 Hz, 3JHP = 14.4 Hz, 2H, NCH2CH3), 6.86-

6.90 (s, 4H, Mes CH), 7.00 (dd, 3JHH = 7.2 Hz, 4JHP = 2.8 Hz, 2H, Ph CH), 7.44 (t, 3JHH = 

7.2 Hz, 1H, Ph CH). 

13C{1H} NMR (CDCl3, 150.8 MHz) : 13.6 (d, 3JCP = 7.4 Hz), 21.1 (s), 21.2 (s), 21.6 

(s), 44.5 (d, 2JCP = 14.9 Hz), 128.0 (d, 1JCP = 20.7 Hz), 130.0 (s), 130.9 (s), 135.4 (d, 3JCP 

= 2 Hz), 136.0 (s), 136.4 (s), 136.7 (s), 137.2 (s), 138.2 (d, 2JCP = 4.5 Hz). 

EA: calculated: 74.40 % C, 7.80 % H, 3.10 % N; found: 73.18 % C, 8.63 % H, 2.84 % N.  

ESI-MS: 452.2 m/z C28H35PNCl [M]+  

 mp: 126 – 130 oC. 

 

2.4.2 Synthesis of 2.3 

MesMes

P
Cl N
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A solution of 2.2 (1.80 g, 3.98 mmol) in 15 mL of THF was added to 

a suspension of LiAlH4 (0.151 g, 3.98 mmol) at 0 oC. The reaction 

was allowed to stir overnight and warm to room temperature. 

Unreacted LiAlH4 was quenched with 3 mL degassed water at 0 oC. 

The supernatant was decanted and filtered through a frit with a 1:1 ratio of celite and 

MgSO4 and washed twice with 10 mL THF. Solvent was then removed in vacuo. Crytals 

suitable for X-ray crystallography were obtained from a concentrated pentane solution 

kept at -30 oC for two nights. Yield 1.1 g (65%).  

31P NMR (Benzene-d6, 161.8 MHz) : 1.86 (d, 1JPH = 236.8 Hz).  

1H NMR (CDCl3, 400 MHz) : 0.69 (t, 3JHH = 4.8 Hz, 6 H, NCH2CH3), 2.00 (s, 6H, 

Mes CH3), 2.15 (s, 6H, Mes CH3), 2.22 (dq, 3JHH = 4.8 Hz, 2JHH = 9.2 Hz, 2H, 

NCH2CH3), 2.35 (s, 6H, Mes CH3), 2.46 (dq, 3JHH = 4.8 Hz, 2JHH = 9.2 Hz, 2H, 

NCH2CH3), 5.46 (d, 1JPH = 237.0 Hz), 6.94 (s, 2H, Mes CH), 6.98 (s, 2H, Mes CH), 7.04-

7.06 (dd, 4JPH = 1.2 Hz, 3JHH = 5.2 Hz, 2H, Ph CH), 7.38 (t, 3JHH = 5.2 Hz, 1H, Ph para-

CH). 

13C{1H} NMR (CDCl3, 150.8 MHz) : 14.5 (d, 3JCP = 6.0 Hz), 20.7 (s), 20.8 (s), 20.9 (d, 

3JCP = 4.4 Hz), 21.1 (s), 48.4 (d, 2JCP = 20.2 Hz ), 127.9 (s), 128.3 (s), 128.8 (s), 134.8 (s), 

136.3 (s), 137.0 (s), 137.5 (d, 1JCP = 26 Hz), 139.1 (d, 3JCP = 2.4 Hz), 145.1 (d, 2JCP = 

18.2 Hz). 

EA: calculated: 80.54 % C, 8.69 % H, 3.35 % N; found: 80.51 % C, 8.52 % H, 3.35 % N.  

ESI-MS: 402.22 m/z [C27H33PN]+ M-CH3.  

ATR-IR (ranked intensity, cm-1): 651 (11), 744.25 (3), 784.25 (8), 806.75 (7), 848 (4), 

849 (2), 923.5 (9), 982 (6), 1035.25 (5), 1192.75 (1), 1447.25 (10), 2288.25 (12), 2958.5 

(13), 2912.25 (14), 2851 (15). 

mp: 118 – 120 oC 

2.4.3 Synthesis of 2.4 

To a solution of terphenylphosphine (1.00 g, 2.89 mmol), 5 

stoichiometric equivalents of n-BuLi (9.00 mL, 1.45 mmol) was 

added at 0 oC in 7 mL of ether. The resulting vibrant pink solution 

was allowed to come to room temperature (4 h) before solvent was 

MesMes

P
H N

MesMes

P
H TMS
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removed in vacuo. The orange-pink powder was washed twice with 3 mL of hexanes in 

the glovebox and any residual hexanes was removed in vacuo. The powder was 

redissolved in 5 mL ether and neat TMSCl was added dropwise until the bright pink 

solution changed to pale yellow (< 1 mL). At this point, all solvents were removed in 

vacuo and the white powder was washed with hexanes (3 x 3 mL). Crystals suitable for 

X-ray diffraction were grown by placing a concentrated solution of 2.4 in pentane at -30 

oC for two days. Yield 190 mg (16 %).  

31P NMR (Benzene-d6, 161.8 MHz) : -136.4 (d, 1JPH = 220.0 Hz).  

1H NMR (Benzene-d6, 400 MHz) : -0.20 (d, 3JHP = 4.8 Hz, 9H, SiCH3), 2.07-2.30 (s, 

18H, Mes CH3), 3.18 (d, 1JHP = 220.0 Hz, 1H, PH), 6.88-6.94 (6H, 4 Mes CH, 2 Ph CH), 

7.08 (t, 3JHH = 7.6 Hz). 

13C{1H} NMR (Benzene-d6, 150.8 MHz) : 144.9 (d, 2JCP = 15.5 Hz), 139.7 (d, 3JCP = 

3.8 Hz), 136.7 (s), 136.2 (s), 135.6 (s), 134.4 (s), 134.2 (s), 128.8 (s), 128.7 (s), 128.5 (s), 

128.3 (s), 126.4 (s), 21.0 (d, 2JCP = 22.4 Hz), 1.1 (d, 2JCP = 17.6 Hz).  

EA: calculated: 77.47 % C, 8.43 % H, 0.00 % N; found: 78.17 % C, 8.54 % H, 0.05 % N.  

ESI-MS: 331.09 m/z [M-Si(CH3)3-CH3+H]. M = C27H35PSi 

ATR-IR (ranked intensity, cm-1): 731.25 (3), 799 (2), 835.3 (13), 850 (1), 1068.75 (10), 

1376 (6), 1098.25 (12), 1447.75 (4), 1612.75 (11), 2315 (7), 2850 (9), 2916.25 (5), 2957 

(8). 

m.p.: 89 – 91 oC.  

2.4.4 Synthesis of 2.6 

A solution of 2.5 (250 mg, 0.363 mmol) in 10 mL THF was added 

to a suspension of LiAlH4 (42.0 mg, 1.10 mmol) at 0 oC. Over the 

course of 4 h, the reaction was allowed to warm to room 

temperature. The bright red solution became colourless when 

quenched with excess degassed water. The supernatant was then 

removed and filtered through a frit with a 2:1 ratio of celite and 

MgSO4, and finally washed twice with 5 mL THF. All solvents were removed in vacuo 

and the resulting crude material was purified by washing three times with 2 mL of 

MesMes

P
P

Mes
Mes

H
H
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HMDSO. Crystals suitable for X-ray crystallography were obtained from a concentrated 

solution in ether at -30 oC for two nights. Yield 240 mg (95 %). 

 31P NMR (Benzene-d6, 161.8 MHz) : -100.9 (dddd, 1JPH = 226.8 Hz, 1JPH = 215.1 Hz, 

3JPH = 22.2 Hz, 3JPH = 29.0 Hz), -110.2 (m).  

1H NMR (Benzene-d6, 400 MHz) : 1.83-2.23 (s, 18 H, Mes CH3), 2.65-3.22 (m, 2H, P-

H), 6.67-6.69 (s, 2H, Ph CH), 6.74-6.76 (s, 4H, Mes CH), 6.91 (t, 3JHH = 8.0 Hz). 

13C NMR (CDCl3, 150.8 MHz) : 20.7 (d, 2JCP = 14.6 Hz), 20.8 (d, 3JCP = 7.2 Hz), 21.0 

(s), 25.4 (s), 67.48 (s), 127.6 (s), 127.8 (s), 128.0 (s), 128.2 (s), 128.4 (d, 2JCP = 18.4 Hz), 

128.6 (s), 133.65 (dd, 1JCP = 15.4 Hz), 135.6 (s), 135.9 (s), 136.0 (s), 139.2 (s), 146.1 (dd, 

2JCP = 10.0 Hz). 

EA: calculated: 83.45 % C, 7.59 % H, 0.00 % N; found: 81.91 % C, 7.38 % H, 0.04 % N. 

ESI-MS: 345.16 m/z [C24H26P]+. 

FT-IR (ranked instensity, cm-1): 742 (4), 802 (3), 849 (1), 1034 (6), 1180 (11), 1261 

(13), 1373 (7), 1446 (2), 1564 (9), 1610 (5), 1724 (15), 1930 (16), 2328 (12), 2729 (14), 

2852 (8), 2912 (3), 3033 (10).   

mp: 122 – 123 oC. 

 

2.4.5 Synthesis of 2.7 

S(TMS)2 (0.112 mL, 0.531 mmol) was added to a solution of 2.2 

(0.160 g, 0.354 mmol) in 2.5 mL toluene. The reaction was then 

heated to 100 oC for 48 h and all volatiles were removed in vacuo, 

giving rise to a yellow residue. The crude reaction mixture was 

purified by recrystallization in a solution of pentane and MeCN, 

yielding crystals suitable for X-ray crystallography. Yield 85 mg (47 %). 

m.p. (nitrogen sealed capillary): 101-104 oC 

31P NMR (Benzene-d6, 161.8 MHz) : 83.0 (s)   

1H NMR (Benzene-d6, 400 MHz) : 0.20 (s, 9H, SiCH3), 0.85 (t, 3JHH = 7.2 Hz, 6H, 

NCH2CH3), 2.20 (s, 6H, Mes CH3), 2.25-2.26 (m, 12H, Mes CH3), 2.53-2.59 (m, 2H, 

NCH2CH3), 2.76-2.83 (m, 2H, NCH2CH3), 6.86-6.89 (m, 6H, Mes CH), 7.11 (t, 3JHH 7.2 

Hz, 1H, Ph CH). 

MesMes

P
S N

Si
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13C NMR (CDCl3, 150.8 MHz) : 2.4 (d, 1JCSi = 7.1 Hz), 21.2, 21.4 (d, 2JCP = 4.8 Hz), 

21.9 (d, 3JCP = 1.7 Hz), 44.5 (d, 1JCP = 17.2 Hz), 127.9 (s), 128.0 (s), 128.9 (s), 130.5 (s), 

135.9 (s), 136.3 (s), 137.1 (s), 139.1 (s), 139.3 (s), 139.6 (d, 2JCP = 4.2 Hz), 145.2 (d, 1JCP 

= 19.4 Hz). 

2.4.6 Synthesis of 2.8 

Se(TMS)2 (0.256 mL, 1.02 mmol) was added to a solution of 

2.2 (0.519 g, 1.14 mmol) in 7 mL MeCN and allowed to reflux 

for 8 hours. The supernatant was removed in vacuo and the 

product was washed 3 times with MeCN to give yield an 

orange powder. X-ray quality crystals were obtained by dissolving the powder in a 

minimum amount of MeCN layered with pentane overnight at -35 oC. Yield: 240 mg (46 

%) 

m.p. (nitrogen sealed capillary): 82-86 oC 

31P NMR (Benzene-d6, 161.8 MHz, ): 99.1 (s, 1JPSe = 546.8 Hz) 

1H NMR (Benzene-d6, 400 MHz, ): 0.86 (t, 3JHH = 7.2 Hz, 12H, NCH2CH3), 2.10 (s, 

12H, Mes CH3), 2.18 (s, 12H, Mes CH3), 2.23 (s, 12H, Mes CH3), 2.50-2.58 (m, 4H, 

NCH2CH3), 2.72-2.80 (m, 4H, NCH2CH3), 6.79-6.82 (m, 12H, Mes CH), 7.04 (t, 3JHH = 

7.6 Hz, 2H, Ph CH) 

13C NMR (CDCl3, 150.8 MHz, ):  13.7 (m), 21.2 (d, 2JCP = 2.4 Hz), 21.3 (s), 22.0 (s), 

45.7 (m), 128.1 (d, 2JCP = 5.9 Hz), 128.5 (s), 130.5 (s), 135.7 (s), 135.9 (s), 137.3 (s), 

139.8 (s), 145.5 (d, 1JCP = 17.0 Hz).  

2.4.7 Considerations for X-ray Crystallography 
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Table 2-1. Summary of X-ray diffraction collection and refinement details for the 

compounds reported in Chapter 2 

 2.2 2.3 2.4 2.6 2.7 2.8 

Formula C28H35ClNP C28H36NP C27H35PSi C48H52P2 C31H44NPSSi C56H70N2P2Se 

Formula 

weight 

 (g mol-1) 

451.99 417.55 418.61 690.83 521.79 912.04 

Crystal 

system 

Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic Triclinic 

Space 

group 

P 2l/n P2l/n C 2/c P 2l/n P 2l/n P -1 

T (K) 110 110 110 110 110 110 

a (Å) 8.7970(18) 8.156(5) 30.809(18) 8.377(3) 10.503(4) 11.475(2) 

b (Å) 20.126(5) 24.494(16) 10.796(7) 21.380(8) 20.442(6) 12.731(2) 

c (Å) 14.093(3) 12.123(7) 17.103(8) 11.642(5) 13.799(5) 18.611(3) 

 (deg) 90 90 90 90 90 97.302(8) 

 (deg) 90.189(6) 93.456(16) 120.930(12) 111.031(9) 92.241(15) 93.068(8) 

 (deg) 90 90 90 90 90 113.583(6) 

V (Å3) 2469.7(10) 2418(2) 4880(5) 1942.6(13) 2960.4(17) 2455.3(7) 

Z 4 4 8 2 4 2 

F (000) 968 904 1808 740 1128 968 

 (g cm-1) 1.216 1.147 1.140 1.181 1.171 1.234 

 (Å) 1.54178 0.71073 0.71073 0.71073 0.71073 1.54178 

 (cm-1) 2.078 0.128 0.173 0.145 0.224 1.929 

Measured 

fraction 

of data 

0.994 0.999 0.998 0.999 0.999 0.991 

Rmerge 0.0369 0.0909 0.0555 0.0538 0.0512 0.0393 

R1, wR2 0.0577, 

0.1525 

0.0684, 

0.1677 

0.0554, 

0.1498 

0.0584, 

0.1669 

0.0477, 

0.1294 

0.0576, 0.1440 

R1, wR2 

(all data) 

0.610, 

0.1555 

0.1150, 

0.1914 

0.0759, 

0.1640 

0.0869, 

0.1861 

0.0624, 

0.1392 

0.0729, 0.1750 

GOF 1.019 1.038 1.037 1.057 1.037 1.100 
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Chapter 3 

3 Probing the Reactivity of RP=S via Thermolysis & 
Condensation Pathways 

3.1 Introduction 

There has been a long-standing interest among synthetic chemists in the synthesis 

and characterization of novel, unique heterocycles which incorporate heavier main group 

elements.1,2 This has lead to a wealth of new compounds that have pushed the boundaries 

of known structural and bonding motifs in the main group. In particular, the synthetic and 

theoretical investigation of low-coordinate species, and their subsequent reactivity with 

unsaturated organic compounds, has become a remarkable and rapidly expanding field of 

main group chemistry over the last number of decades.3–11  

In contrast to the well established chemistry of carbenes, much less is known 

about the chemistry of the phosphorus analogue – phosphinidenes (R-P:). Phosphinidenes 

have two lone pairs of electrons which can adopt one of two ground spin states – singlet 

or triplet. Analogous to singlet carbenes, singlet phosphinidenes react via a concerted 

reaction mechanism, and thus, result in cleaner reactivity in comparison to their triplet 

counterparts, which participate via step-wise radical additions. Free phosphinidenes (R-

P:) themselves are highly reactive and have only been isolated recently by Bertrand.14 A 

“free” phosphinidene refers to the existence of RP:, either transient or stable, without 

additional stabilizing groups. The more synthetically viable singlet ground state has been 

favoured in compounds which possess an adjacent donor atom (ie. N, P, S)3,9,10,12–17, 

coordinating Lewis acid (ie. W(CO)5)
5–8,18–22 and/or a phosphanorbornadiene 

precursor4,15,23,24 (Figure 3-1, a). A number of new heterocycles were previously prepared 

through the cycloaddition chemistry of phosphinidene moities generated in situ with 

unsaturated organic substrates – such as alkenes, dienes, and acetylenes. This strategy, 

along with the use of very bulky aryl ligands (ie. TerPh), has lead to new classes of 

phosphorus containing heterocycles.  

Reactivity from these two-coordinate phosphorus species has stemmed from one 

of two reactivity pathways – carbenic or olefinic. Carbenic reactivity is observed when 
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the reactivity originates from a HOMO on the phosphorus atom, generally yielding [1+4] 

and [1+2] cycloaddition products 

 upon exposure to dmbd or acetylenes.3,18,25,26 These have an exocyclic double bond from 

phosphorus to a second heteroatom, or the phosphorus is coordinated to a metal carbonyl. 

Olefinic type reactivity stems from the R-P=E double bond, where both heteroatoms 

contribute to the HOMO (R = aryl, alkyl; E = NR, S, P, W(CO)5). These heterocyclic 

products tend to contain an even number of atoms. The majority of previously  reported 

heterocycles have been prepared from the reaction of the two-coordinate RP=E 

intermediate with C-C multiple bonds, only olefinic or carbenic behaviour is observed to 

result in the formation of just one cycloadduct.5,24,27–35 These methods rely on the 

thermolysis or base-induced degradation of a norbornadiene scaffold to produce the R-
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Figure 3-1. Various known strategies for phosphinidene transfer. a) Visual 

representation of donor atom effect when adjacent to a phosphinidene center. b) RP=N 

transfer from norbornene scaffold, where RP=N exhibits carbenic reactivity. c) RP=S 

transfer from 7-phosphanorbornadiene, where RP=S exhibits olefnic reactivity. d) 

(CO)5W-PR transfer from norbornadiene, where (CO)5W-PR exhibits carbenic 

reactivity. 
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P=E intermediate, which was determined to undergo a rapid cycloaddition with the 

trapping agent (Figure 3-1, b-d).3,18,26 While these methods have allowed for the 

cycloaddition to take place to result in the formation of novel heterocycles, the conditions 

often require heating at temperatures above 80 oC and extra purification steps to remove 

the rearomatized scaffold.  

The Ragogna group has focused on developing an understanding of 

phosphinidene chalcogenide chemistry through the synthesis of strained heterocycles 

which exhibit novel bonding motifs. The added steric bulk provided by the TerPh ligand 

allowed for the identification of the P(III) derivative of a [2+4] cycloadduct with dmbd 

(A), previously only known for P(V)27 or P-W(CO)5
36,37 adducts (Figure 3-2). Structural 

characterization of A required quaternization with MeI.38 The steric bulk of the TerPh 

ligand also played a key role in the isolation of a rare NHC-stabilized phosphinidene 

sulfide (Figure 3-2, B),39 although the isolation of a free phosphinidene sulfide remains 

an unsolved challenge. Compound 3.2 has served as an excellent precursor for 

investigating phosphinidene sulfide reactivity, relying only on heat to access monomeric 

R-P=S. When generated in situ, R-P=S undergoes relatively clean reactions with both 
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Figure 3-2. Recent developments in the Ragogna Group surrounding P,S-heterocycles and 

phosphinidene sulfide transfer. a) Synthesis of 3.2 by the condensation of 3.1 with S(TMS)-

2. b) [2+4] adduct A prepared by thermolysis of 3.2 in dmbd. Upon the addition of NHC to 

3.2, base-stabilized phosphinidene sulfide B was isolated. c) Thermolysis of 3.2 in the 

presence of substituted acetylenes resulted in the formation of novel thiaphosphetene (C) 

and phosphirene sulfides (D1, D2). 
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terminal and internal alkynes (Figure 3-2, c). Computational work has shown this 

reaction likely passed through a phosphenium intermediate via stepwise elimination of 

TMSCl, although free RP=S was energetically accessible under the same conditions. 

These two methods have lead to novel phosphirene sulfides (D1, D2) and a 

thiaphosphetene (C), which boasts a P(III) center, a structural motif absent in the 

literature.36 

Small inorganic ring systems containing a blend of main group elements and 

carbon have also remained key synthetic targets because, aside from addressing 

fundamental questions about structure and bonding, they play key roles as reaction 

intermediates and provide a means to solidify our understanding of important chemical 

transformations, particularly in organic synthesis. The most notable example of this is 

likely the 1,2-oxaphosphetane intermediate observed in the Wittig olefination of 

carbonyls (Figure 3-3).40 Oxaphosphetanes have been studied since their isolation as 

pentavalent phosphorus species (F)41–43 or as P(III) compounds decorated with transition 

metals (E).31,44,45 Phosphetane rings containing heavier chalcogen atoms are scarce, likely 

due to the difficulty in controlling their transfer; however, examples of thiaphosphetanes 

containing P(V) centers (G-H) do exist in the literature.24,46–48 Prior to the synthesis of C, 

thiaphosphetenes were unknown except for a single report of a ring system containing a 

P(V) center stabilized by the Martin ligand (I).49 
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This chapter highlights the preparation of a number of new cycloadducts – namely 

thiaphosphetenes, phosphirene sulfides and [4+2] cycloadducts – from R-P=S fragments 

that were generated in situ by one of two methods, without the harsh conditions or 

supportive bulky ligands as required previously. The thermolysis method relied on the 

gentle heating of 3.2 in the presence of excess alkyne, resulting in the formation of novel 

thiaphosphetenes and phosphirene sulfides. The condensation method involves the 

condensation reaction of dichlorophosphines and S(TMS)2 in the presence of a large 

excess of trapping agent. The cycloaddition of R-P=S with the trapping agent occurred 

via a free R-P=S unit (i) or through a phosphenium intermediate (ii, Figure 3-4). Previous 

experiments utilizing the condensation methodology lead to a decreased number of 

products identified in the crude 31P{1H} NMR spectra. Only the phosphirene sulfide 

derivatives were formed when the reaction was conducted in phenylacetylene which 

suggested that the phosphenium pathway was likely operative, and any R-P=S generated 

exhibited carbenic reactivity at phosphorus.36   

 

After demonstrating the success of the condensation method in our previous report, it 

was proposed that in situ generation of phosphinidene sulfide may not require the steric 

bulk offered by the TerPh ligand. To successfully prepare compound 3.2 – the starting 

material required for the thermolysis method – the steric bulk of TerPh ligands was 

necessary; however, if R-P=S could be generated without the need for bulky aryl ligands 

Figure 3-4. Mechanism of RP=S transfer by the condensation method. i) Elimination of 

2 TMSCl to yield free RP=S as the reactive intermediate. ii) Stepwise elimination of 

TMSCl, where cyclization occurs from the phosphenium intermediate. 
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it would immensely widen the scope of cycloaddition reactions that could be successfully 

performed. This chapter includes details that indicate phosphinidene sulfides can be 

generated from dichlorophosphines which do not possess steric bulk to generate [1+4] 

and [2+4] cycloadducts in neat or very concentrated dmbd solutions at room temperature.  

3.2 Results & Discussion 

3.2.1 Cycloaddition by Thermolysis – Novel Phosphirene Sulfides 
& Thiaphosphetenes 

To develop an understanding of RP=S transfer to alkynes by the thermolysis 

method, a reactivity study was performed with a number of mono- and di-substituted 

alkynes. Experiments were generally carried out as follows: a vial was charged with 3.2 

and a five-fold stoichiometric excess of alkyne before dissolution in toluene. The 

resulting solution was transferred to a glass tube, at which point 1.2 stoichiometric 

equivalents of S(TMS)2 was added, the tube was sealed and heated at 50 oC until no 

spectroscopic signal from 3.2 remained as indicated by 31P{1H} NMR spectroscopy 

(Scheme 3-1). An excess of S(TMS)2 was required in order for the dichlorophosphine to 

be completely consumed during the reaction. This resulted in the formation of a number 

of phosphirene sulfides (3.3n) and thiaphosphetenes (3.4n), which were characterized 

structurally and spectroscopically.    

 

In the presence of neat mono- or bis-(trimethylsilyl)acetylene, the thermolysis of 

3.2 did not result in conversion from the starting material over multiple days. This was an 

Scheme 3-1. Thermolysis of 3.2 in the presence of substituted alkynes lead to the 

formation of novel phosphirene sulfides (3.3n) and thiaphosphetenes (3.4n). Ring 

expansion to compound 3.5 was observed as a minor product formed during the 

thermolysis reaction. 
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indication that both terminal and internal alkynes which TMS functional groups were not 

amenable to [2+2] and [1+2] cycloadduct formation using this method. Other alkynes, 

such as bromoprop-3-yne and (trimethylsilyl)prop-3-yne, resulted in the appearance of a 

number of unidentified signals in the 31P{1H} NMR spectra which did not represent 

thiaphosphetenes or phosphirene sulfides based on their expected chemical shifts. When 

an electron-rich alkyne was used (eg. bis(ferrocenyl)acetylene) a new peak was present at 

-77.6 ppm in the 31P{1H} NMR spectrum. This was a similar chemical shift to those 

previously observed for phosphirene sulfides, and as such, 3.32Fc has been the proposed 

structure (Figure 3-5). Compound 3.32Fc was exceptionally sensitive and readily 

decomposed to compound 3.41Fc and other 31P-containing products in solution and the 

solid state. Crystallization was inhibited by the oily consistency of this product and 

difficulty associated with removing excess bis(ferrocenyl)acetylene in conjunction with 

decomposition issues. The steric strain imparted by two Fc ligands and the TerPh 

functional group likely contributed to the decomposition of the cycloadduct. 
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 When ethynylferrocene was used as a trapping agent, three new signals were 

observed in the 31P{1H} NMR spectrum (P = 96.0, 47.8, -86.0). The product at P = 96 

was previously identified as the ring expansion product (3.5), consisting of a P3S3 core 

and flanking terphenyl ligands - formed by the insertion of one monomeric R-P=S unit 

into the P2S2 core of compound 3.2.38,50 The formation of thiaphosphetene (P = 47.8, 

3.41Fc, Figure 3-5) was favoured when the alkyne was ethynylferrocene and the 

phosphirene sulfide (P = -86.0, 3.31Fc) was formed as a minor product in a maximum 
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Figure 3-5. Stacked 31P{1H} NMR spectra of prepared phosphirene sulfides and 

thiaphosphetenes. Structures for each derivative are included for clarity. 
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yield of 18 % (by integration). The reaction was concentration dependent, where at 5-15 

mg/mL of 3.2 in toluene only 3.41Fc was observed by 31P{1H} NMR spectroscopy and at 

20-30 mg/mL a mixture of 3.31Fc, 3.41Fc, and 3.5 was observed. Compound 3.41Fc was 

isolated as a bright orange, MeCN-insoluble powder which was as a doublet in the 31P 

NMR spectrum (2JPH = 21.7 Hz; yield: 82 %). A corresponding doublet in the 1H NMR 

spectrum was observed at 4.60 ppm with a coupling constant of 21.7 Hz. A single set of 

peaks was noted for ortho- and para- environments of the TerPh -CH3 protons, evidence 

of a symmetrical structure (Figure 3-6). Washing the MeCN-soluble portion with pentane 

afforded compound 3.31Fc (P = -86.0), which was highly soluble in common organic 

solvents and persisted as a dark red oil upon isolation. Because of this, structural 

confirmation of 3.31Fc using X-ray diffraction was not possible. By comparison to a 

phosphirene sulfide recently characterized by the Ragogna group (D1, P = -83.6),36  this 

product was identified as the corresponding [1+2] cycloadduct 3.31Fc. The 31P NMR 

spectrum of 3.31Fc contained a poorly resolved multiplet, but P-H coupling was observed 

in the 1H NMR spectrum (H = 4.60, 2JPH = 54.4 Hz) along with a single set of TerPh and 

ferrocene resonances (Figure 3-6). The coupling constant between phosphorus and the 

olefinic ring hydrogen is much larger for compound 3.31Fc in comparison to 3.41Fc. The 

composition of 3.31Fc was confirmed by ESI-MS, which contained the molecular ion peak 

(586.2 m/z, [C36H35FePS]+). Compounds 3.31Fc and 3.41Fc were also found to be stable to 

decomposition upon short exposure to the ambient environment.  
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Interested in obtaining a compound functionalized with two thiaphosphetenes or 

phosphirene sulfides, attention was turned to performing the thermolysis reaction with di-

ynes. Experiments consisted of heating a mixture of 3.2 and a stoichiometric excess of di-

yne in toluene for a minimum of 16 h, which resulted in the formation of both [2+2] and 

[1+2] cycloaddition products (3.4bisOct, 3.3bisPh, 3.4bisPh). Compound 3.4bisOct was the 

hypothesized [2+2] cycloadduct obtained when 1,7-dioctyne is the trapping reagent 

because of the proximity of its chemical shift by 31P{1H} NMR spectroscopy in 

comparison to our other prepared derivatives (p = 50.0, JPH = 17, 49.5 Hz, Section 5.4, 

Figure 5-2). It was likely that butyl chain contributed to the oily nature of 3.4bisOct, which 

Figure 3-6. Stacked 1H NMR spectra of 3.31Fc (top) and 3.41Fc (bottom) with inset 31P 

NMR spectrum expansions. Coupling between the olefinic proton and phosphorus is 

indicated by a star 
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inhibited analysis by X-ray crystallography. In an effort to obtain crystalline powder, 

quaternization of the P(III) center was targeted with three stoichiometric equivalents of 

MeI. The resulting product was an oil, but a new peak at 72.3 ppm in the 31P NMR 

spectrum which featured complex splitting was observed (Section 5.4, Figure 5-2). The 

1H NMR spectrum contained a number of peaks which could not be confidently assigned 

to the proposed structure (Section 5.4, Figure 5-3).  

1,4-ethynylbenzene was used as the trapping agent to impart greater rigidity to the 

resulting cycloadducts. Compounds 3.5, 3.3bisPh and 3.4bisPh were isolated (P = 96.0, 

38.2, and -84.1, respectively). The product ratio is largely concentration dependent. High 

dilution (100 mg/50 mL toluene) favoured the formation of 3.4bisPh as the major product 

(60-80 % by integration) and minimized production of 3.5. At higher concentrations (60 

mg/5 mL toluene), there were 5 signals in the crude 31P{1H} NMR spectrum where 

compound 3.3bisPh was the major product (40-60 % by integration). 31P NMR 

spectroscopic data obtained from crystals of 3.3bisPh redissolved in benzene-d6 indicated 

that 3.3bisPh corresponded to the most upfield peak in the spectrum as a broad multiplet 

(P = -84.1, Figure 3-5). The 1H NMR spectrum displayed long-range P-H coupling from 

the proton at the para- position of phenyl ring bound to phosphorus (Figure 3-7).35 The 

1H NMR spectrum also contained 3 separate environments in the aliphatic region 

corresponding to the -CH3 groups of the TerPh ligand. Coupling between the olefinic 

proton and phosphorus was observed siginificantly downfield in comparison to 3.31Fc, at 

7.43 ppm in the 1H NMR spectrum (2JHP = 10.4 Hz, Figure 3-7). Compound 3.3bisPh was 

also found to be stable to decomposition upon short exposure to the ambient 

environment. 
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  Obtaining analytically pure sample of 3.4bisPh proved to be quite challenging 

because of the close structural similarity between 3.3bisPh and 3.4bisPh. The manipulation 

of the P(III) center in 3.4bisPh offered a potential remedy to this issue. Unfortunately, 

while crude 31P{1H} NMR spectra obtained 1-8 h after exposure of a mixture of 3.3bisPh 

and 3.4bisPh to a variety of reaction partners (eg. W(CO)5, Mo(CO)5, AuCl(THT) and 

CuCl) indicated that a reaction had occurred (P(avg) = 42 ppm), the resulting adducts 

were quite unstable and decomposed rapidly in the solid state and solution to multiple 

unidentified products. Quaternization of the P(III) center of 3.4bisPh with MeI was also 

unsuccessful. Sulfurization of 3.4 was also attempted, but conversion was slow and lead 

to multiple, inseparable products. Nevertheless, after 12 consecutive crystallizations 

relying on the fact that 3.4bisPh is only slightly less pentane soluble, compound 3.4bisPh 

Figure 3-7. Stacked 1H NMR spectra of 3.4bisPh (top) and 3.3bisPh (bottom) with 

respective expansions of the 31P NMR spectrum inset. Coupling between the olefinic 

proton of the 3- or 4-membered ring and phosphorus is denoted with a star. 
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was successfully isolated from 3.3bisPh, albeit in poor yield and purity (5.9 %). Compound 

3.4bisPh persisted as a sticky oil, which has precluded single crystal growth thus far. The 

1H NMR spectrum of 3.4bisPh indicated an asymmetric structure, with 3 separate 

resonances corresponding to the –CH3 groups of the TerPh ligand (Figure 3-7). Coupling 

to phosphorus was observed at higher field in comparison to 3.3bisPh (H = 4.64, 2JHP = 

32.0 Hz) and matched the coupling constant calculated from the doublet present in the 31P 

NMR spectrum of 3.4bisPh. The signal corresponding to the proton of the terminal alkyne 

in both 3.3bisPh and 3.4bisPh was obscured by –CH3 signals in the aliphatic region; 

however, a diagnostic chemical shift in the 13C{1H} NMR spectrum confirmed the alkyne 

was present (3.3bisPh, C = 79.1; 3.4bisPh, C = 77.2). 

3.2.2 Cycloaddition via Condensation – A More Selective Route 

 An alternative synthesis for compounds 3.41Fc and 3.3bisPh is the condensation 

reaction of 3.1 and S(TMS)2 in the presence of excess ethynylferrocene and 1,4-

ethynylbenzene, respectively (Scheme 3-2). Stirring a toluene solution of 3.1, 

ethynylferrocene (8 stoich. eq.), and 1.2 stoichiometric equivalents of S(TMS)2 at room 

temperature overnight lead to the formation of 3.41Fc as the sole product, indicated by a 

single doublet in the 31P NMR spectrum. The prominent olefinic reactivity observed in 

this case was contradictory to the experimental results previously obtained by the 

Ragogna Group.36 The analogous reaction performed in a solution of 8 stoichiometric 

equivalents of 1,4-ethynylbenzene resulted in solely carbenic reactivity and the formation 

of 3.3bisPh, as previously reported. Conversion to each of 3.41Fc and 3.3bisPh as the sole 

products was observed by 31P{1H} NMR spectroscopy. Isolated yields for both cases 

were improved from the thermolysis method described above (3.41Fc yield: 82 %, 3.3bisPh 

yield: 49 %). Loss of yield in both cases was attributed to loss of product when removing 

excess trapping reagent and S(TMS)2. 
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 The increase in selectivity in product formation observed when using the 

condensation method was an indication that a different mechanism from the thermolysis 

method was operative. Previous computational studies have indicated that the lysis of the 

P2S2 ring present in 3.2 is enabled by association of the trapping agent to the dimer prior 

to the cycloaddition.50 Conversely, the condensation method can proceed through a 

phosphenium intermediate or a “free” RP=S intermediate, as previously discussed. While 

both mechanistic pathways were energetically accessible under our conditions, the 

phosphenium intermediate was slightly favoured energetically.38, 50 These mechanistic 

differences were attributed to the change in product distribution observed between the 

two protocols for accessing phosphinidene sulfides in situ.  

3.2.3 Cycloaddition via Condensation – RP=S Transfer Without 
Steric Bulk 

 The in situ generation of phosphinidene sulfide may mitigate the need for m-

terphenyl substituents required for the preparation of the P2S2 ring (3.2). To test this 

hypothesis, 1.2 stoichiometric equivalents of S(TMS)2 were added to a prepared solution 

of various dichlorophosphines in neat dmbd at room temperature and was stirred until the 

Scheme 3-3. The condensation of various dichlorophosphines with S(TMS)2 in neat dmbd 

to yield RP=S transfer products (3.6R and 3.7) 

P
Cl

R

Cl
+ 1.2  S(TMS)2

RT, 1-3 d

S

P
R

P S

R
+

3.6R                      3.7

R = FPh, Ph, Fc, Cl R = Ph

Scheme 3-2. The nature of the alkyne affects observed reactivity. With ethynylferrocene 

(top) olefinic reactivity is observed by the formation of 3.41Fc. When 1,4-ethynylbenzene 

was used, carbenic reactivity reuslted in the formation of 3.3bisPh. % yield is shown on the 

right for each case. 

+ 2  S(TMS)2

+  3
Toluene
RT, 5 d Isolated: 82 %Fe

3.1

+  5

Toluene
RT, 15 d

3.41Fc

3.3bisPh Isolated: 49 %
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signal corresponding to the starting material was not observed by 31P{1H} NMR 

spectroscopy. Alkyldichlorophosphines (t-BuPCl2 and s-BuPCl2) did not react. Electron-

donating, electron-withdrawing and aryl- dichlorphosphines were all amenable to the 

formation of [2+4] cycloadducts (3.6R) and, in one case, a [1+4] cycloadduct (3.7, 

Scheme 3-3). Performing these transformations with a different source of sulfide (ie. 

Na2S, Li2S) did not result in the transfer of the RP=S moiety.  

When the reaction was performed with an electron-rich dichlorophosphine 

(FcPCl2) resulted in the formation of a single product by 31P{1H} NMR spectroscopy 

(3.6Fc, P = -4.9). The chemical shift suggested the formation of the [2+4] cycloadduct 

when compared to our previous results.37 Removal of volatiles in vacuo left an orange, 

oily residue in the vial which could be extracted to give an orange powder. Upon removal 

of residual pentane in vacuo, the powder took on an oily consistency. The 31P NMR 

spectrum revealed a broad triplet at P = -4.9. The corresponding 1H NMR spectrum 

contained two resonances for each of the CH3 groups from the diene portion of the 

cycloadduct and 4 different resonances for each of the methylene protons of the ring 

(Figure 3-8). The protons of the –CH2 group adjacent to the chiral P(III) center were 

diastereotopic, and the protons of the –CH2 group adjacent to sulfur were inequivalent 

because of their diastereotopicity. ESI-MS data confirmed the composition of 3.6Fc with a 

base peak corresponding to free gaseous phosphinidene sulfide, [C10H9FePS]+, dmbd, 

[C6H10]
+, and a molecular ion peak at 330.05 m/z. Attempts thus far to obtain single 

crystals suitable for X-ray diffraction have not been successful at room temperature or -

30 oC by vapor diffusion, reverse vapor diffusion, slow evaporation, and saturated 

solutions of 3.6Fc. Compound 3.6Fc was discovered to be quite unstable, and decomposed 

to a large number of unidentifiable signals in the 31P{1H} NMR spectrum over the course 

of one week. 
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The analogous reaction performed with FPhPCl2 resulted in the appearance of one 

major signal in the 31P{1H} NMR spectrum at -4.7 ppm, assigned to compound 3.6FPh. 

The phosphorus chemical shifts of 3.6Fc and 3.6FPh are nearly identical despite a large 

difference in the electronic nature of the ligands bound to the phosphorus center (ie. Fc 

versus FPh). Interestingly, coupling to fluorine is not observed in the 31P{1H} NMR 

spectrum of 3.6FPh. The 31P NMR spectrum displayed coupling from phosphorus to the 

allylic proton with a magnitude of 29.9 Hz. The 19F{1H} NMR spectrum contained three 

different resonances corresponding to ortho-, meta-, and para- positions of the phenyl 

ring (F = -133.6, -153.4, -162.2). The 1H NMR spectrum contained signals corresponding 

to the two CH3 groups on the diene portion of the [2+4] cycloadduct and 4 different 

31
P 

31
P{

1
H} 

S

P
Fc

3.6Fc

H H

H H

Figure 3-8. 1H NMR spectrum of 3.6Fc with expansion of 31P{1H} and 31P NMR spectra 

included. Ring protons have been assigned with star labels. 
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resonances corresponding to the methylene protons (Figure 3-9). The three different 

resonances resulted from the the diastereotopic protons adjacent to the chiral P(III) 

center, whereas the protons of the –CH2 group adjacent to sulfur were overlapped. 

Compound 3.6FPh possessed higher symmetry than 3.6Fc based on the 1H NMR spectra 

because each of the 3.6Fc methylene protons possessed a distinct signal. The multiplet at 

H = 3.27 contains a doublet corresponding to 29.9 Hz and coupling (2JHH = 16 Hz) to the 

proton on the same carbon, which had an upfield shift in comparison to the same proton 

on 3.6Fc. The ESI-MS spectrum of 3.6FPh contained a similar fragmentation pattern to 

3.6Fc, with a base peak of 82.07 m/z corresponding to a dmbd fragment ([C6H10]
+) and a 

peak at 229.91 m/z corresponding to the phosphinidene sulfide fragment ([C6F5PS]+). A 

molecular ion peak was also present at 311.99 m/z.  

 

Figure 3-9. 1H NMR spectrum of 3.6FPh with inset 19F{1H} and 31P{1H} NMR spectra 

expansions included. Proton assignments are denoted by coloured stars, whereas fluorine 

atom assignments are indicated by coloured circles. The unlabeled peak near 0 ppm 

corresponds to unreacted S(TMS)2. 
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The atom connectivity of compound 3.6FPh was confirmed by X-ray diffraction 

data obtained from single crystals grown from an impure oily sample allowed to rest at 

room temperature for a week. The high boiling point of S(TMS)2 (163 oC) lead to 

difficulty in removal of S(TMS)2 from compound 3.6FPh. Heating of the crude oil at 

temperatures greater than 40 oC in an effort to remove excess S(TMS)2 lead to the 

decomposition of 3.6FPh, likely via a retro-Diels Alder mechanism. In the hopes of 

obtaining a crystalline substance to facilitate the removal of excess S(TMS)2, 

modification of the P(III) center was targeted with a variety of different reaction partners 

with no success (eg. BCF, W(CO)5THF, Mo(CO)5THF, MeI, AuCl(THT)). The high 

solubility of compound 3.6FPh in common organic solvents made purification by 

solubility slow and challenging, and resulted in the poor isolated yield of 3.6FPh despite 

100 % conversion to 3.6FPh by integration of the 31P{1H} NMR spectrum (yield: 19%). 

 In contrast to the reactivity observed with FcPCl2 and FPhPCl2, 

dichlorophenylphosphine resulted in both olefinic and carbenic reactivity to yield [2+4] 

and [1+4] cycloadducts, respectively. This reaction proceeded at a slower rate in 

comparison to FcPCl2 and FPhPCl2, and required 3 days to reach full conversion from the 

PhPCl2 signal to two new major signals in the 31P{1H} NMR spectrum (3.7, P = 45.5, ; 

3.6Ph, P = -0.1). The chemical shift of 3.6Ph corresponded well with those observed for 

3.6Fc and 3.6FPh, although the shift is slightly downfield by comparison (P(avg) =  + 4.7). 

As such, the proposed structure was the [2+4] cycloadduct (3.6Ph). Phospholene sulfide 

(3.7) was previously isolated and characterized.51 Dilution of the reaction mixture with 

toluene (5:1 toluene:dmbd) was found to favour the formation of 3.6Ph and allowed 3.6Ph 

to be isolated from 3.7 as a pentane-soluble oil (Figure 3-10). Previous attempts to 

separate an equal mixture of the two structural isomers on the basis of solubility proved 

to be unsuccessful. Column chromatography on silica gel under inert conditions resulted 

in the elution of only compound 3.7. The 31P NMR spectrum of 3.7 displayed a broad 

triplet at 45.5 ppm with a coupling constant of 11.3 Hz, which corresponded well to the 

existing literature for this compound.51 The 1H NMR spectrum obtained from a sample of 

isolated 3.6Ph contained a similar distribution of peaks corresponding to the dmbd portion 

of the [2+4] cycloadduct was noted in comparison to 3.6FPh. Peaks in the aromatic region 

which corresponded to the phenyl ring were also observed (Chapter 5.4, Figure 5-4). 
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Multiple attempts to remove residual S(TMS)2 by freeze-drying from benzene did not 

result in its complete removal from the oil, and the high solubility of 3.6Ph in common 

organic substances has hindered further purification. Compound 3.6Ph was found to be 

prone to decomposition within a week of its preparation and often resulted in a major 

peak with a chemical shift corresponding to 3.7 by 31P{1H} NMR spectroscopy. This 

posed an interesting mechanistic question which has not been addressed.  

 Compound 3.7 was isolated via column chromatography; however, 3.6Ph did not 

elute. Modification of the P(III) center present in 3.6Ph was targeted through the addition 

of various reactive partners in an aim to significantly alter the solubility of the [2+4] 

adduct such that crystals suitable for X-ray crystallography could be obtained. 

Quaternization and metallation of the P(III) center were attempted; however, neither of 

a) 

b) 

3.7 

3.6
Ph

 

Figure 3-10. Stacked 31P{1H} NMR spectra. a) Crude reaction mixture in neat dmbd at 

30 mg/mL. b) Crude reaction mixture in a 5:1 toluene:dmbd ratio, resulting in primarily 

olefinic reactivity. 31P{1H} NMR spectra of purified 3.6FPh and 3.7 have also been 

included. 
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these strategies resulted in the disappearance of the signal corresponding to 3.6Ph by 

31P{1H} NMR spectroscopy.  

The metallation of 3.6Ph by AuCl(THT) was successful. A change in chemical 

shift from P = -0.1 to P = 39.4 was observed upon stirring a mixture of 3.6Ph and 3.7 

with one stoichiometric equivalent of AuCl(THT) for 15 minutes in DCM. The signal 

originating from 3.7 remained at P = 45.5 as the P(V) center could not accommodate a 

Lewis acidic metal. Upon removal of volatiles in vacuo and washing the sticky white 

powder with pentane, compound 3.8Au was isolated as an insoluble white powder (yield: 

82 %). The 1H NMR spectrum obtained in CDCl3 displayed characteristic broad peaks 

that resulted from the coordination between phosphorus and Au. Similar to 3.6fPh, three 

distinct signals corresponding to the methylene protons and 2 signals were present for the 

CH3 groups on the dmbd portion of the [2+4] cycloadduct were present in the 1H NMR 

spectrum (Figure 3-11). While the isolation of 3.8Au greatly aided in the characterization 

of 3.6Ph, the complex was exceptionally light and solution sensitive. After one day the 

formation of Au(0) was indicated by the deposition of a purple layer on the vial walls and 

the solution was turbid and dark red/brown. This inhibited the growth of single crystals 

and the collection of elemental analysis data to confirm the bulk composition, although 

sufficient NMR spectroscopic data were obtained to support the predicted structure.  
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Sulfurization of 3.6Ph was targeted as further evidence to support the formation of 

the [2+4] cycloadduct. One stoichiometric equivalent of elemental sulfur was added to a 

mixture of 3.6Ph and 3.7 in toluene at room temperature (Scheme 3-4). Over the course of 

1 h, a new peak was observed in the 31P{1H} NMR spectrum  (P = 66.2) and concurrent 

disappearance of the signal corresponding to 3.6Ph was also noted. Again, the peak 

corresponding to 3.7 remained at the same chemical shift as the phosphorus center was 

fully oxidized. Compound 3.8S was previously reported by the Mathey group as a result 

of similar cycloaddition chemistry with their 7-phosphanorbornadiene scaffolds, and 

31P{1H} and 1H NMR spectroscopic data obtained matched that of this initial report.27 

Separation of 3.7 and 3.8S was accomplished by column chromatography on silica gel 

with a 6:1 THF:Pentane eluent under inert conditions. Multinuclear NMR spectroscopic 

31
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ClAu

H H

H H

3.8Au

Figure 3-11. 1H NMR spectrum of 3.8Au, where ring protons have been assigned with 

coloured star labels. An expansion of the 31P{1H} NMR spectrum has also been 

included. 
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data obtained for each fraction confirmed the hypothesized structures with respect to 

earlier reports (3.7, yield: 23 %. 3.8S, yield: 42 %).27  

The reaction of freshly distilled PCl3 and S(TMS)2 lead to the appearance of one 

major product in the 31P{1H} NMR spectrum (P = 96.5), along with other unidentified 

minor products  (Figure 3-12). Washing the crude, colourless oil with pentane and Et2O 

after removal of solvent in vacuo left P = 96.5 as the major product with two smaller 

flanking peaks (P = 97.9 and 95.3) integrating to 20 % each with respect to the main 

signal by 31P{1H} NMR spectroscopy. The differences in chemical shift from the central 

peak indicate that these are not the result of coupling to phosphorus, and are speculated to 

be structural variations of the parent peak in the spectrum at this time. 31P NMR spectra 

indicated coupling to hydrogen for P = 96.5 as a broad multiplet similar to what was 

observed for 3.6Fc, and both flanking peaks are unique, complex multiplets. The 1H NMR 

spectrum of the oil contained residual impurities, but had diagnostic chemical shifts and 

coupling constants corresponding to 3 different environments for the 4 methylene protons 

on a [2+4] cycloaddition product, hence the tentatively proposed structure of 3.6Cl 

(Section 5.4, Figure 5-5). 
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Scheme 3-4. Preparation of 3.8S by the addition of elemental sulfur to a mixture of 3.6Ph 

and 3.7 
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Difficulties pertaining to the purification of 3.6Cl caused us to pursue modification of  

the hypothesized P(III) center; however, multiple attempts with MeI, BCF, W(CO)5, 

Mo(CO)5, AuCl(THT) and CuCl offered no promising results. Halide abstraction (with 

TMSOTf) and hydrolysis (with de-oxygenated H2O and H2O2) of the hypothesized P-Cl 

bond in compound 3.6Cl was targeted. In both cases, the appearance of multiple new 

signals in the 31P{1H} NMR spectra were observed and could not be isolated. Performing 

the reaction in the presence of 1.1 stoichiometric equivalents of DMAP, to neutralize the 

HCl generated as a byproduct of the the hydrolysis, did not decrease the number of 

signals by 31P{1H} NMR spectroscopy. At this time, the composition of 3.6Cl has not 

been verified by bulk analysis or X-ray diffraction as a result of difficulty obtaining 

analytically pure sample, and derivitization attempts have so far been unsuccessful.  

 The preparation of 3.6R and 3.7 followed the same room temperature synthetic 

protocol, with the cycloaddition remarkably occurring at room temperature. Two 

alternative mechanisms were observed by 31P{1H} NMR spectroscopy for the syntheses 

Figure 3-12. Stacked 31P{1H} NMR spectra for the reaction of PCl3 and S(TMS)2 in 

neat dmbd to yield 3.6Cl at four hours (top), three days (middle) and after washing the 

crude oil with n-pentane (bottom) 
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in this section. Aliquots of reaction mixtures were taken at various time intervals 

indicated that the reactions which lead to the formation of 3.6Cl, 3.6Fc, 3.6Ph and 3.7 

proceeded without the appearance of any spectroscopic signals that could be assigned to a 

reaction intermediate. Computational studies have predicted that although the mechanism 

of their formation likely favoured the phosphenium intermediate, free RP=S was also an 

energetically viable reaction intermediate.50 The formation of 3.6FPh proceeded through 

an alternate mechanism which has not been previously observed. 

 When the dichlorophosphine is FPhPCl2, an aliquot of the reaction mixture taken 

after 1 h at room temperature displayed nearly full conversion to 2 peaks in the 31P{1H} 

NMR spectrum (P = 66.5 and -4.7, Figure 3-13). The broad triplet observed at P = 66.5 

(3JPF = 35.9 Hz) decreased in relative intensity with respect to P = -4.7, which saw an 

increase in peak intensity after 4 hours. After stirring 16 hours, only the product at P = -

4.7 remained and there was no longer a signal at P = 66.5. Interested in the nature of the 

intermediate formed prior to 3.6FPh, the reaction was halted at the point when all FPhPCl2 

was consumed – approximately 1 hour – when the product ratio was 5 % 3.6FPh and 95 % 

intermediate (3.9) by integration. An alternative synthesis to  3.9 was found to be the 

condensation of FPhPCl2 and S(TMS)2 in toluene at 60 oC, where complete conversion to 

a single peak with an identical chemical shift was observed in the 31P{1H} NMR 

spectrum (P = 66.5). Removal of solvent in vacuo left product of suitable purity to 

obtain crystals (yield: 53 %). X-ray diffraction studies on single crystals grown from a 

concentrated pentane solution kept at -30 oC for a week confirm the core connectivity of 

3.9; however, the poor diffraction present across all submitted crystal samples past 0.9 Å 

precludes the ability to assess fine structural details with precision. Nevertheless, it 

revealed the core structure of 3.9, which consisted of a P4S4 ring. The ESI-MS data 

obtained from crystals of 3.9 contained a base peak at 722.04 m/z corresponding to 

[C18F15P3S4]
+ and a molecular ion peak at 920.3 m/z corresponding to [C24F20P4S4]

+.    
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This represented the first reported example of an 8-membered ring breaking into 

its constituent monomeric components to release phosphinidene sulfide in the presence of 

trapping agent, in this case dmbd. Remarkably the proposed breakdown of the 8-

membered ring into its 4 constituent FPhP=S components took place at room temperature, 

particularly because ring strain in this case is not a driving force. The lysis of P,S-

heterocycles has only been observed for our previously reported 4-membered P2S2 ring 

(3.2) upon the addition of heat, and has not been observed for PxSx heterocycles (x = 3 or 

t0 

1 h 

16 h 

Figure 3-13. Stacked 31P{1H} NMR spectra taken from the reaction of FPhPCl2 with 

S(TMS)2 in neat dmbd. Conversion from the signal corresponding to 3.9 to a chemical 

shift of -4.7 ppm (3.6FPh) was observed. The formation of compound 3.9 was quite 

rapid, in contrast to the slower formation of 3.6FPh. 
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4). It is clear from 31P{1H} NMR spectra of aliquots taken over the course of the reaction 

to form 3.6FPh that there is a definite relationship between 3.9 and the resultant [2+4] 

cycloadduct. It is particularly remarkable that this transformation occurs at room 

temperature and without bulky aryl ligands, but with an electron withdrawing group on 

the phosphorus center. 

 

3.2.4 Structural Confirmation of Cycloadducts by X-ray Diffraction 

 

The solid state structure of 3.41Fc (Figure 3-14) represented the second known 

thiaphosphetene to be structurally characterized. It features a nearly planar PSC2 ring 

with a C=C double bond of 1.350(12) Å and a P-S single bond of 2.176(3) Å. A slight 

elongation of the P-S single bond and compression of internal ring bond angles was noted 

with respect to our previously prepared derivative.37 Typical P-C bond lengths were 

observed (P(1)-C(1) 1.851(9) Å and P(1)-C(25) 1.818(9) Å) with a distorted trigonal 

pyramidal geometry (sum of angles at phosphorus = 258.7(12) o).  

Compound 3.3bisPh was found to contain a strained 3-membered PC2 ring with P-

C(avg) bond distances of 1.749(2) Å with an exocyclic P=S double bond of 1.9371(8) Å 

(Figure 3-14). The length of the P=S double bond present in 3.3bisPh is comparable to 

other phosphirene sulfide derivatives prepared by our group.50 Normal P-C, C=C double 

and triple bond lengths were observed based on their Pykko & Atsumi bond radii (Figure 

3.-12).52 The sum of angles at phosphorus, excluding the P=S double bond was 272.3(8) 

o, where the internal C(1)-P(1)-C(2) bond angle was 44.36(10) o.  



77 

 

 

3.4
1Fc

 3.3
bisPh

 

3.6
fPh

 3.9  

Figure 3-14. Solid state structures of 3.41Fc (top left), 3.3bisPh (top right), 3.6fPh (bottom 

left) and 3.9 (bottom right) with thermal ellipsoids drawn at 50 % probability. Hydrogen 

atoms have been omitted for clarity. Selected bond lengths [Å] and angles [o]: 3.41Fc: 

P(1)-S(1) 2.1729(11), P(1)-C(1) 1.823(2), P(1)-C(13) 1.850(2), S(1)-C(2) 1.781(2), C(1)-

C(2) 1.350(3), C(1)-H(1) 0.9500, C(1)-P(1)-C(13) 105.37(10), C(1)-P(1)-S(1) 77.69(8), 

C(13)-P(1)-S(1) 102.41(8), C(2)-C(1)-P(1) 100.02(17), C(2)-S(1)-P(1) 75.84(8), C(2)-

C(1)-H(1) 130.0, P(1)-C(1)-H(1) 130.0, C(1)-C(2)-S(1) 106.39(17). 3.3bisPh:  P(1)-S(1) 

1.9371(8), P(1)-C(1) 1.746(2), P(1)-C(2) 1.752(2), P(1)-C(11) 1.809(2), C(1)-C(2) 

1.320(3), C(1)-H(1) 0.99(3), C(2)-C(3) 1.460(3), C(1)-P(1)-C(2) 44.36(10), C(1)-P(1)-

C(11) 112.26(10), C(2)-P(1)-C(11) 115.68(10), C(1)-P(1)-S(1) 126.68(8), C(2)-P(1)-S(1) 

123.69(8), C(11)-P(1)-S(1) 115.52(7), C(2)-C(1)-P(1) 68.06(14), C(2)-C(1)-H(1) 

141.0(14), P(1)-C(1)-H(1) 149.2(14). 3.6fPh: P(1)-S(1) 2.0879(7), P(1)-C(1) 1.8705(18), 

P(1)-C(7) 1.8693(17), S(1)-C(10) 1.8613(18), C(7)-P(1)-C(1) 97.83(8), C(7)-P(1)-S(1) 

98.26(5), C(10)-S(1)-P(1) 103.09(5), C(2)-C(1)-P(1) 114.39(12).  



78 

 

Although compound 3.6fPh was oily at room temperature, single crystals were 

obtained from a sample left to sit at room temperature for a week. Generally, compounds 

of this nature have required modification of the P(III) center in order to obtain crystals 

suitable for analysis by X-ray diffraction and this represents the first example where this 

was not required. The solid-state structure, shown in Figure 3-14, confirmed the 

hypothesized [2+4] cycloaddition product. A P-S bond length of 2.0879(7) Å was 

measured, which corresponded to a single bond between the two heteroatoms. Again, a 

distorted tetrahedral geometry is observed at the P(III) center (sum of angles at 

phosphorus = 310.5 o) with typical P-C and C=C bond lengths.52 

The data collected from multiple crystalline samples of compound 3.9 were 

sufficient to confirm the nature of the P4S4 core; however, the data in all cases was 

severely disordered. This disorder could be modeled such that the core P4S4 ring was 

confirmed, but disorder present in the ancillary FPh ligands could not be modeled (Figure 

3-14). Growing single crystals of 3.9 across a variety of different conditions did not lead 

to an improvement in the quality of diffraction data. As such, the isotropic structure 

shown does not contain the ancillary FPh ligands and only serves as confirmation of the 

core ring structure. Bond lengths and angles have not been included for this reason. The 

composition of 3.9 was confirmed by ESI-MS, where the data also supported the 

proposed structure as previously discussed.  

3.3 Conclusions 

We have detailed the synthesis of a number of new thiaphosphetenes (3.4n), 

phosphirene sulfides (3.3n), and [2+4] cycloadducts (3.6R, R = Fc, FPh, Ph, Cl) which 

have been characterized by multinuclear NMR spectroscopy, mass spectrometry, and X-

ray crystallography (where possible). The condensation reaction of 3.1 and S(TMS)2 

generated R-P=S fragments in situ from a number of dichlorophosphines to yield 3.6R 

and 3.7, which confirmed that both olefinic and carbenic reactivity pathways were 

accessible. We have shown the first example of an 8-membered P4S4 heterocycle (3.9) 

breaking into its constituent monomeric units to form a [2+4] cycloadduct with dmbd 

(3.6FPh). The use of the condensation method instead of the thermolysis method resulted 

in improved NMR spectroscopic and isolated yields of cycloadducts 3.41Fc ([2+2]) and 



79 

 

3.3bisPh ([1+2]). Structural characterization data was not obtained for many of the P(III) 

derivatives as they exist at oils at room temperature and were prone to decomposition 

shortly after their preparation. Characterization of the parent heterocycles was targeted 

through manipulation of the P(III) center with other organic substrates or metals (ie.  S8, 

3.8S; AuCl(THT), 3.8Au). Further development of purification methods for the resulting 

cycloadducts has been ongoing in order to obtain analytically pure material for bulk 

compositional analysis. Should aryldichlorophosphines generally be amenable to in situ 

phosphinidene sulfide generation by condensation and transfer with S(TMS)2, a large 

number of [1+4] and [2+4] P,S-containing heterocycles could be prepared, characterized 

and contrasted to deepen fundamental understanding of RP=S transfer and its potential 

application in synthesis.  

3.4 Experimental Section 

Please see Chapter 5 for general experimental and crystallographic details. 

3.4.1 Synthesis of 3.31Fc 

A vial was charged with 3.2 (120 mg, 0.159 mmol) and ethynyl 

ferrocene (67 mg, 0.319 mmol) in the glovebox. 10 mL of toluene was 

added and this solution was transferred to a glass tube, which was sealed with grease. The 

mixture was heated for 16 h at 50 oC. At this time, all volatiles were removed in vacuo 

and the residual oil was washed three times with 3 mL of acetonitrile. Volatiles were 

removed from the soluble fraction under vacuum, leaving a dark red oil which was 

washed with pentane (3 x 5 mL) and then redissolved in a minimal amount of DCM. 

Pentane (1 mL) and ether (0.5 mL) were layered on top and the vial was placed at -30 oC 

for five days, resulting in a dark red oil, 3.7. Yield 8 mg (9.9 %).  

ESI-MS: 313.2 m/z, [C24H25]
+, 587.2 m/z [C36H35FePS + H]+.  

1H NMR (C6D6, 400 MHz, ): 2.02-2.03 (s, 12H, Mes CH3), 2.27 (s, 6H, Mes CH3), 3.96 

(s, 5H, Fc CH), 3.97-4.07 (m, 4H, Fc CH), 4.60 (d, 2JHP = 54.4 Hz, 1H, Csp2H), 6.86-6.88 

(s, 4H, TerPh CH), 6.96 (dd, 3JHH = 7.6 Hz, 4JHP = 2.4 Hz, 2H, Ph CH), 7.35 (t, 3JHH = 7.6 

Hz, para CH). 
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13C{1H} NMR (CDCl3, 150.8 MHz, ): 20.3, 20.8, 21.3, 21.4, 22.4, 34.2, 63.9, 68.7, 69.9 

(d, 2JCP = 5.7 Hz), 70.1, 70.6, 70.9, 71.5, 72.0, 112.5, 128.0, 129.0, 129.2 (d, 1JCP = 25.2 

Hz), 129.3 (d, 2JCP = 18.1 Hz), 131.2 (d, 3JCP = 3.9 Hz), 132.0, 135.4 (d, 2JCP = 20.9 Hz), 

136.7, 137.1, 137.2 (d, 2JCP = 8.3 Hz), 137.5, 142.7 (d, 2JCP = 18.1 Hz), 156.1 (d, 2JCP = 

7.2 Hz). 

31P NMR (C6D6, 161.8 Hz, ): -86.0 (m). 

3.4.2 Synthesis of 3.3bisPh 

A vial was charged with 3.2 (90 mg, 0.120 mmol) and 1,4-

ethnylbenzene (100 mg, 0.793 mmol). 10 mL of toluene was 

added and this solution was transferred to a glass tube, and 

sealed with grease. The mixture was heated at 40 oC for 12 h. At this time, all volatiles 

were removed in vacuo and the residual yellow sticky powder was washed with 3 mL of 

pentane. The pentane soluble portion of the reaction mixture was concentrated and 

yielded crystals suitable for X-ray diffraction after one night at -30 oC. Yield: 20 mg (33 

%). Alternatively, 3.3bisPh was obtained by charging a vial with 3.1 (60 mg, 0.144 mmol) 

and 1,4-ethynylbenzene (280 mg, 2.220 mmol). Neat S(TMS)2 (0.064 mL, 0.311 mmol) 

was added after the addition of 5 mL of toluene. This solution was kept at room 

temperature for 15 days, yielding 3.3bisPh as the sole product. Yield: 30 mg (49 %).  

mp (nitrogen sealed capillary): 72.5-74 oC 

ESI-MS: 313.2 m/z [C24H25]
+, 525.2 m/z [C34H32PS + Na –H]+, 1027.4 m/z [2(C34H32PS) 

– Na]+. 

1H NMR (C6D6, 400 MHz, ): 2.00 (s, 1H, CCH), 2.22 (s, 12H, Mes CH3), 2.74 (s, 6H, 

Mes CH3), 6.64-6.66 (s, 2H, Mes CH), 6.82 (d, 3JHH = 7.6 Hz, 2H, Ph CH), 6.91 (s, 2H, 

Mes CH), 7.11 (t, 3JHH = 7.6 Hz, 1H, Ph para-CH), 7.18 (s, 2H, Mes CH), 7.24 (d, 3JHH = 

8.0 Hz, 2H, Ph CH), 7.43 (d, 3JHP = 10.4 Hz, Ph CH) 

13C{1H} NMR (CDCl3, 150.8 MHz, ):  21.2 (d, 2JCP = 11.3 Hz), 21.3, 29.4, 29.7, 31.2, 

31.9, 79.1, 122.5, 124.2, 128.2, 128.3 (d, 2JCP = 12.2 Hz), 128.9, 129.3 (d, 1JCP = 18.5 

Hz), 131.5 (d, 3JCP = 4.4 Hz), 131.8, 132.0, 136.6, 136.7, 136.8, 136.9 (d, 1JCP = 29.5 Hz), 

137.7, 142.8 (d, 2JCP = 18.4 Hz), 144.6 (d, 3JCP = 3.5 Hz). 

31P NMR (C6D6, 161.8 Hz, ): -84.1 (br m). 
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3.4.3 Synthesis of 3.41Fc 

A vial was charged with 3.2 (120 mg, 0.159 mmol) and ethynyl 

ferrocene (67 mg, 0.319 mmol) in the glovebox. To this, 10 mL of 

toluene was added and this solution was transferred to a glass tube, 

which was sealed with grease. The mixture was heated for 16 h at 50 oC. After this time, 

all volatiles were removed in vacuo and the residual oil was washed three times with 3 

mL of acetonitrile. 3.41Fc was isolated as an MeCN insoluble orange powder. Crystals 

suitable for X-ray crystallographic analysis were grown from a concentrated solution of 

3.41Fc in pentane kept at -30 oC for two nights. Yield 50 mg (62 %). Alternatively, 3.6 

was obtained by charging a vial with 3.1 (70 mg, 0.169 mmol) and ethynyl ferrocene 

(106 mg, 0.505 mmol) and dissolving in 5 mL of toluene. Neat S(TMS)2 (0.053 mL, 

0.252 mmol) was added and the mixture was heated for 16 h at 50 oC to yield 3.6 as the 

only product when solvent was removed in vacuo. Yield 70 mg (82 %). 

m.p. (nitrogen sealed capillary): 189.4 – 191.1 oC 

ESI-MS: 586.29 m/z [C36H49FePS]+, 339.21 m/z [C24H25 + Na + H]+ 

1H NMR (C6D6, 400 MHz, ): 2.20 (s, 6H, Mes CH3), 2.26-2.28 (s, 12H, Mes CH3), 3.85 

(s, 2H, Fc CH), 3.94 (s, 5H, Fc CH), 4.f16 (d, 2JHP = 21.7 Hz, 1H, olefinic CH), 4.18 (s, 

1H, Fc CH), 6.88-6.94 (m, 6H, Mes CH), 7.18 (t, 3JHH = 5.2 Hz, 1H, para CH). 

13C{1H} NMR (CDCl3, 150.8 MHz, ): 20.8, 20.86, 20.9, 21.0, 22.4, 65.6, 66.0, 68.8,  

68.9, 69.7, 71.4, 81.9, 114.8 (d, 1JCP = 11.3 Hz), 127.6, 127.8, 128.4, 128.7 (d, 2JCP = 6.6 

Hz), 129.3, 136.1, 136.3, 137.1, 138.1, 138.2 (d, 2JCP = 2.6 Hz), 138.6, 143.7 (d, 1JCP = 

18.4 Hz), 146.9 (d, 1JCP = 32.0 Hz). 

31P NMR (C6D6, 161.8 Hz, ): 47.8 (d, 2JPH = 21.7 Hz) 

3.4.4 Synthesis of 3.4bisPh 

A vial was charged with 3.2 (90 mg, 0.120 mmol) and 1,4-

ethnylbenzene (100 mg, 0.793 mmol). 10 mL of toluene was 

added and this solution was transferred to a glass tube, and 

sealed with grease. The mixture was heated at 40 oC for 12 h. 

At this time, all volatiles were removed in vacuo and the residual yellow sticky powder 
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was washed with 3 mL of pentane. From there, 12 consectutive crystallizations were 

required to isolate modestly pure material as follows: (1-3) From 10 mg/mL and 2 x 20 

mg/mL pentane at -30 oC to remove excess 1,4-ethynylbenzene and some 3.5. (4-6) 

Reverse vapor diffusion of 5 and 15 mg/mL pentane solutions into toluene at room 

temperature, removing 3.3bisPh. (8-11) Reverse vapor diffusion of 5-15 mg/mL pentane 

solutions into MeCN at -30 oC, removing 3.3bisPh (12) Concentrated pentane solution at -

30 oC overnight. Yield: 5 mg (5.9 %). 

ESI-MS: 525.2 m/z [C34H31PS + Na]+, 343.2 m/z [C24H25]
+  

1H NMR (C6D6, 400 MHz, ): 1.82 (s, 1H, CspfH), 2.05-2.10 (2 s, 12 H, Mes CH3), 2.37 

(s, 6H, Mes CH3), 4.64 (d, 2JHP = 32.0 Hz), 6.93-7.09 (9 H, Mes/Ph CH), 7.24 (3H, Ph 

CH), 7.47 (t, 3JHH = 8 Hz, Ph para-CH).  

13C{1H} NMR (CDCl3, 150.8 MHz, ): 20.8 (d, 2JCP
 = 7.5 Hz), 21.0 (d, 2JCP = 3.0 Hz), 

21.2 (s), 29.7 (s), 31.2 (s), 31.9 (s), 38.2 (s), 77.2 (s), 117.4 (d, 2JCP  = 12.0 Hz), 123.4 (s), 

128.1 (d, 1JCP = 13.6 Hz), 128.4 (s), 128.7 (s), 129.7 (s), 135.4 (s), 136.4 (s), 136.7 (s), 

137.5 (s), 138.0 (d, 2JCP = 4.5 Hz), 143.9 (d, 1JCP = 19.6 Hz). 

31P NMR (C6D6, 161.8 Hz, ): 38.2 (d, 2JPH = 32.0 Hz). 

3.4.5 Synthesis of 3.6Fc 

 

Dichloroferrocenylphosphine (FcPCl2) was prepared according to a 

known literature procedure.55 FcPCl2 (140 mg, 0.606 mmol) was then 

dissolved in a minimum amount of toluene (~0.8 mL) and 2.0 mL of 2,3-dimethyl-1,3-

butadiene was added. To this solution, neat S(TMS)2 (0.128 mL, 0.616 mmol) was added 

dropwise and the solution was allowed to stir for two days at room temperature. All 

volatiles were removed in vacuo, followed by 3 x 5 mL washes with pentane, keeping the 

sample under vacuum for 2 h between washes to remove excess liquid reagents.  The 

orange oil was redissolved in benzene and placed in the freezer until the solution was 

frozen, then placed under vacuum until an orange powder remained. NMR spectroscopic 

data obtained from samples of this powder confirmed the predicted structure of 3.6Fc. 

Yield: 160 mg (80 %).  
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m.p. (nitrogen sealed capillary): 124.0 – 125.3 oC 

ESI-MS: 330.05 m/z [C16H19FePS]+, 247.95 m/z [C10H9FePS]+, 82.08 m/z [C6H10]
+ . 

1H NMR (C6D6, 400 MHz, ): 1.51 (s, 3H,  CH3), 1.85 (s, 3H, CH3), 2.21 (br m, 1H, 

CH2), 2.53 (dd, 2JHH = 12.0 Hz, 2JHP = 15.2 Hz, 1H, CH2), 2.72 (d, 2JHH = 13.6 Hz, 1H, 

CH2), 3.18 (d, 2JHH = 13.6 Hz, 1H, CH2), 4.07 (s, 1H, Fc CH), 4.18-4.24 (s, 5H, Fc CH), 

4.26 (m, 1H, Fc CH), 4.27 (m, 2H, Fc CH). 

13C{1H} NMR (CDCl3, 150.8 MHz, ): 20.6 (s), 21.8 (s), 30.9 (s), 34.0 (s), 68.9 (s), 69.5 

(d, 1JCP = 24.9 Hz), 69.7 (d, 2JCP = 3.5 Hz), 70.6 (s), 71.5 (d, 1JCP = 11.8 Hz), 71.8 (s), 

72.0 (s), 126.2 (d, 2JCP = 8.7 Hz), 126.9 (s). 

31P NMR (C6D6, 161.8 Hz, ): -4.9 (br m). 

3.4.6 Synthesis of 3.6fPh 

Dichloro(pentafluorophenyl)phosphine (90.0 mg, 0.335 mmol) was 

dissolved in 0.8 mL of 2,3-dimethyl-1,3-butadiene. To this solution, 

neat S(TMS)2 (0.105 mL, 0.503 mmol) was added at room 

temperature. After being allowed to sit at room temperature for 18 

h, a single product was observed in the 31P{1H} NMR spectrum. At this point, all 

volatiles were removed in vacuo, yielding a pale yellow oil, which was dissolved in 3 mL 

of pentane and then subjected to high vacuum until no traces of dmbd or S(TMS)2 

remained in the 1H NMR spectrum. Crystals suitable for X-ray crystallography were 

obtained by allowing the crude oil to sit at room temperature for 7 days. Yield: 20 mg (19 

%).  

ESI-MS: 311.99 m/z C12H10F5PS [M]+, 229.91 [C6F5PS]+, 82.07 [M – C6F5PS]+. 

1H NMR (C6D6, 400 MHz, ): 1.68 (s, 3H, CH3), 1.79 (s, 3H, CH3), 2.55 (dd, 1H, 2JHH = 

16.0 Hz, 2JHP = 29.9 Hz, 1H, CH2), 2.88-2.95 (2H, S-CH2), 3.27 (dd, 2JHH = 16.0 Hz, 2JHP 

= 29.9 Hz, 1H, P-CH2). 

13C{1H} NMR (CDCl3, 150.8 MHz, ): 21.6 (s), 31.2 (d, 2JCP = 6.0 Hz), 33.7 (s), 33.9 (s), 

126.2 (d, 2JCP = 9.0 Hz), 128.4 (s), 129.1 (s), 131.0 (s), 138.1 (d, 1JCP = 57.3 Hz). 

19F NMR (C6D6, 376.3 MHz, ): 162.2 (m, ortho- F), -153.4 (t, 3JFF = 20.7 Hz, para- F), 

-133.6 (m, meta- F) 

31P NMR (C6D6, 161.8 Hz, ): -4.7 (t, 3JPF = 29.9 Hz). 
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3.4.7 Synthesis of 3.6Ph 

Dichlorophenylphosphine (90.0 mg, 0.502 mmol) was dissolved in 2 

mL of neat dmbd and transferred to a glass tube. To this, 8 mL of 

toluene and 1.2 stoichiometric equivalents of S(TMS)2 (0.158 mL, 

0.753 mmol) were added and the solution was allowed to stir at room temperature for 3 

days. All volatiles were removed in vacuo and the resulting thick white oil was washed 

with 2 mL of pentane (3-5 times) and lyophilized from 2 mL of benzene to remove 

excess S(TMS)2. Compound 3.6Ph readily decomposed to 3.7 and other 31P-containing 

products in 24 h, which inhibited further characterization. Mixture yield: 45 mg (42 %). 

1H NMR (C6D6, 400 MHz, ): 1.28 (s, 3H, CH3), 1.85 (s, 3H, CH3), 2.25 (dd, 2JHP = 24.1 

Hz, 2JHH = 8 Hz, 1H, P–CH2 ), 2.76 (m, 2H, S–CH2), 3.30 (d, 2JHH = 8 Hz, 1H, P–CH2), 

7.23-7.36 (3H, Ph CH), 7.46 (m, 2H, Ph CH). 

13C{1H} NMR (CDCl3, 150.8 MHz, ): 21.6, 22.4, 31.2 (d, 2JCP = 4.0 Hz), 33.7 (d, 1JCP = 

27.0 Hz), 125.4, 126.2 (d, 2JCP = 9.0 Hz), 126.8 (d, 3JCP = 1.5 Hz), 127.9 (d, 2JCP = 7.5 

Hz), 128.4, 130.8, 131.0, 138.1 (d, 1JCP =  40.0 Hz). 

31P NMR (C6D6, 161.8 MHz, ): -1.0 (m).  

3.4.8 Synthesis of 3.7 

Dichlorophenylphosphine (90 mg, 0.502 mmol) was dissolved in 2 mL of 

neat 2,3-dimethyl-1,3-butadiene and transferred to a glass tube. To this, 1.2 

stoichiometric equivalents of S(TMS)2 (0.158 mL, 0.753 mmol) were added and the 

solution was allowed to stir at room temperature for 3 days. All volatiles were removed in 

vacuo and the resulting thick white oil was washed with 2 mL of pentane (3-5 times) and 

the pentane insoluble portion was found to contain 3.7, based on the 1H and 31P NMR 

spectroscopic data in comparison to previous literature.53 Yield: 25 mg (23 %). 

1H NMR (C6D6, 400 MHz, ): 1.84 (s, 6H, CH3), 3.25 (d, 2JHP = 12 Hz, 4H, CH2),  7.56 

(m, 4H, Ph CH), 7.87 (dd, 5JHP = 4 Hz, 3JHH = 12 Hz, 1H, Ph para-CH).  

31P NMR (C6D6, 161.8 MHz, ): 45.5 (br m, 2JPH = 11.7 Hz). 
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3.4.9 Synthesis of 3.6Cl 

Freshly distilled trichlorophosphine (50 mg, 0.364 mmol) was dissolved in 

5 mL of neat dmbd and transferred to a glass tube. To this, 1.2 

stoichiometric equivalents of S(TMS)2 (0.091 mL, 0.437 mmol) were added and the tube 

was sealed with grease. This was allowed to stir at room temperature for three days, at 

which point volatiles were removed in vacuo. The resulting cloudy oil was lyophilized 

from 3 mL of benzene six times to remove excess S(TMS)2, although this strategy did not 

remove 100 % of the impurity. Further development of the purification method for this 

compound is necessary.  

1H NMR (C6D6, 400 MHz, ): 0.32 (s, resid. S(TMS)2), 1.67 (s, 3H, CH3), 1.79 (s, 3H, 

CH3), 2.54 (m, 1H, P–CH2), 2.91 (m, 2H, S–CH2), 3.26 (dd, 2JHH = 6.4 Hz, 2JHP = 16 Hz). 

31P NMR (C6D6, 161.8 Hz, ): 100.5 (br m). 

3.4.10 Synthesis of 3.8Au 

A mixture of 3.6Ph/3.7 (30 mg, 0.135 mmol wrt 3.6Ph) was dissolved 

in 2 mL of DCM. To this, a solution of AuCl(THT) (43 mg, 0.135 

mmol) in 0.5 mL of DCM was added with stirring. An immediate 

colour change was observed from colourless to yellow, and after 15 min of stirring, all 

volatiles were removed in vacuo to yield a yellow oil. This powder was washed with 

pentane and the pentane soluble portion was discarded, leaving a yellow powder after 

residual pentane was removed in vacuo. Yield: 50 mg (82 %).  

m.p. (nitrogen sealed capillary): 151 oC (pale yellow to dark orange), 189-190 oC (melt) 

1H NMR (C6D6, 400 MHz, ): 0.90 (s, 3H, CH3), 1.29 (d, 4JHH = 8 Hz, 3H, CH3), 2.36 (br 

s, 2H, CH2), 1.13 (dd, 2JHP = 16 Hz, 1H, CH2), 2.77 (dd, 2JHP = 12 Hz, 1H, CH2), 6.96 (m, 

3H, Ph CH), 7.44 (dd, 5JHP = 12 Hz, 4JHH = 8 Hz, 2H, Ph CH). 

13C{1H} NMR (CDCl3, 150.8 MHz, ): 21.2 (d, 2JCP = 4.5 Hz), 22.3, 33.2 (d, 2JCP = 9.0 

Hz), 36.2, 125.5 (d, 2JCP = 6.6 Hz), 128.9 (d, 1JCP = 18.1 Hz), 130.5, 130.9, 131.0, 132.2, 

132.4, 135.3 (d, 1JCP =  39.2 Hz). 

31P NMR (C6D6, 161.8 Hz, ): 39.4 (br). 
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3.4.11 Synthesis of 3.8S 

To a mixture of 3.6Ph/3.7 (100 mg, 0.450 mmol wrt 3.6Ph) in 7.5 mL of toluene, one 

stoichiometric equivalent of elemental sulfur was added. The solution was allowed to stir 

vigorously overnight, at which point volatiles were removed in vacuo and left an off-

white oil in the vial. Compound 3.8 was the first compound to elute from a 6:1 

THF:pentane silica gel columne performed under inert conditions. This compound has 

been previously isolated and characterized.51 Yield 30 mg (31 %). 

1H NMR (C6D6, 400 MHz, ): 0.32 (s, resid. S(TMS)2), 1.67 (s, 3H, CH3), 1.79 (s, 3H, 

CH3), 2.54 (m, 1H, P–CH2), 2.91 (m, 2H, S–CH2), 3.26 (dd, 2JHH = 6.4 Hz, 2JHP = 16 Hz). 

31P NMR (C6D6, 161.8 Hz, ): 66.2 (br m) 

3.4.12 Synthesis of 3.9 

Dichloro(pentafluorophenyl)phosphine (50 mg, 0.186 

mmol) was dissolved in 1 mL toluene and added to an 

NMR tube. Neat S(TMS)2 was added to this and the 

solution was allowed to sit at 60 oC for half an hour. 

Upon complete consumption of starting phosphine, 

volatiles were removed in vacuo to yield a colourless 

oil. Crystals suitable for X-ray diffraction were grown 

from a concentrated pentane solution kept at -30 oC for 

a week. Yield: 90 mg (53 %). 

m.p. (nitrogen sealed capillary): 126.2 – 128.0 oC 

ESI-MS: 920.28 m/z [C24F20P4S4]
+, 722.04 m/z [C18F15P3S4]

+ 

19F NMR (C6D6, 376 Hz, ): -124.5 (m, ortho- F), -145.7 (tt, 3JFF = 6.0 Hz, 4JFF = 2.0 Hz, 

para-F),- 158.1 (tdd, 3JFF = 6.0 Hz, 4JFF = 2.0 Hz, 4JFP = 1.5 Hz, meta-F). 

13C{1H} NMR (CDCl3, 150.8 MHz, ): 111.2 (m), 127.8 (m), 136.5 (m), 139.0 (m), 

145.0 (br s), 147.5 (br s). 

31P NMR (C6D6, 161.8 Hz, ): 66.5 (t, 3JPF = 35.9 Hz). 
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3.4.13 Special Considersations for X-ray Crystallography 

For compound 3.9, severe disorder was present among the -C6F5 ligands bound to 

phosphorus. Several attempts were made to model this disorder; however, no chemically 

sensible solution could be obtained. For this reason, the structure was only solved 

isotropically and only serves as complimentary information to mass spectrometric data 

towards the confirmation of the P4S4 core. 

Table 3-1. Summary of X-ray diffraction collection and refinement details for the 

compounds reported in Chapter 3 

 3.3bisPh 3.41Fc 3.6fPh 

CCDC Ref #    

Formula  C34H31PS C36H35FePS C12H10F5PS 

MW 502.62 586.52 312.23 

Crystal 

system 

monoclinic orthorhombic monoclinic 

Space Group P 21/c P 2l 2l 2l P 21/c 

T (K) 110 110 110 

a (A) 18.142(3) 7.684(3) 13.417(5) 

b (A) 9.1441(20) 18.479(6) 7.549(3) 

c (A) 16.666(2) 20.797(7) 12.544(3) 

 90 90 90 

 91.998(8) 90 101.246(8) 

 90 90 90 

V (A3) 2763.1(9) 2953.1(17) 1246.0(7) 

Z 4 4 4 

F (000) 1064 1232 632 

 (g cm-1) 1.208 1.319 1.664 

Wavelength 

(A) 

0.71073 0.71073 0.71073 

Miu (cm-1) 0.196 0.659 0.431 

Measured 

fraction of 

data 

0.998 0.998 1.000 

Rmerge 0.0841 0.0726 0.0680 

R1, wR2 0.0435, 

0.1093 

0.0342, 

0.0705 

0.0401, 

0.0856 

R1 (all data) 0.0586 0.0487 0.0599 

wR2 (all data) 0.1167 0.0769 0.0922 

GOF 1.084 1.014 1.077 
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Chapter 4 

4 Conclusions and Future Outlook 

4.1 Conclusions 

This thesis encompasses the synthesis and characterization of a number of novel 

P,S-heterocycles and asymmetric phosphines. Despite the high interest in Groups 15 and 

16, phosphinidene chalcogenides have remained elusive species and their reactivity is 

poorly understood. Literature examples do exist for oxygen and sulfur derivatives of this 

system, with recent achievements highlighting the transfer of RP=S from the thermolysis 

of P2S2 heterocycles and transfer from 7-phosphanorbornadienes to unsaturated organic 

moieties.1–4 Particularly exciting about this work is the successful transfer of RP=S by 

simple salt metathesis at room temperature without the need for metal stabilization or 

bulky ligand design, and often without requiring solvent to yield novel [2+4] 

cycloadducts.1 Two mechanisms have been proposed for these transformations, most 

notable being the transfer of RP=S from an 8-membered ring discussed in Chapter 3. 

Asymmetric phosphines (2.2-2.4) were prepared by metathesis reactions 

performed utilizing compound 2.1 as a precursor. These phosphines contained a bulky m-

terphenyl substituent in addition to two unique functional groups (eg. N(Et)2, Cl, H, 

TMS). The potential to use these asymmetric phosphines as stoichiometric reagents for 

the generation of P-P single bonds was probed, although no promising results were 

obtained which indicated the successful formation of a P-P single bond.  Nevertheless, 

compounds 2.2-2.4 were characterized to the fullest extent and can be envisioned to act 

as monodentate ligands for transition metals or as reagents in various other chemical 

transformations. The formation of a single P-P bond was achieved without the need for 

transition metals by the reduction of diphosphene (2.5) to diphosphane (2.6). 

Terphenyldiphosphane was structurally characterized for the first time. The utility of 

compound 2.6 as a reagent was probed by targeting dehydrohalogenation with S2Cl2 and 

base, with no reproducible results. Monophosphanylsulfane (2.7) and diphosphanylselane 

(2.8) were obtained by the condensation reaction of 2.2 with S(TMS)2 and Se(TMS)2, 
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respectively, and belong to a class of underrepresented compounds in literature. They see 

potential use as precursors for the synthesis of phosphorus chalcogen heterocycles as 

well. 

 Monomeric RP=S was accessed from the parent dimer 3.2 with gentle heat to 

result in the formation of novel phosphirene sulfides (3.3n) and thiaphosphetenes (3.4n) in 

the presence of alkynes. The thermolysis of the parent ring successfully transferred RP=S 

to electron-rich and aryl-substituted alkynes; however, alkynes which possessed TMS 

functional groups did not result in the formation of heterocyclic compounds. When the 

thermolysis was performed with an electron-rich alkyne (ie. ethynylferrocene), olefinic 

reactivity was dominant and resulted in the formation of 3.41Fc as the major product. This 

was a contrast to the formation of 3.3bisPh as the major product as result of carbenic 

reactivity when 1,4-ethynylbenzene was used as the trapping agent during the thermolysis 

reaction. Allowing 3.1 and S(TMS)2 to stir in a saturated solution of ethynylferrocene or 

1,4-ethynylbenzene resulted in the successful transfer of RP=S to yield 3.41Fc and 3.3bisPh 

as the sole products, respectively. At this time the reason as to why one reactivity 

pathway was favoured over the other is not fully understood, but was largely dependent 

on the trapping agent used. 

 Monomeric RP=S was generated from the condensation reaction of various 

dichlorophosphines which did not possess steric bulk and S(TMS)2. Performing these 

reactions in neat dmbd lead to the formation of [2+4] and [1+4] cycloadducts (3.6R and 

3.7, respectively). This marked the first successful transfer of a phosphinidene sulfide to a 

diene without a norbornadiene scaffold, Lewis acidic metal, or bulky aryl substituent. 

Performing the condensation reaction with FcPCl2, 
FPhPCl2, and PCl3 resulted in only 

olefinic reactivity and yielded [2+4] cycloadducts with dmbd. Interestingly, when PhPCl2 

was used both olefinic (3.6Ph) and carbenic (3.7) products were isolated. The synthesis of 

these P(III) heterocycles is an exciting feat for this field, as derivitization has been 

required to isolate these compounds in most cases.5–8 That being said, the resultant 

cycloadducts were prone to decomposition in a short time period and their oily nature has 

largely inhibited structural analysis by X-ray diffraction. Attempts to derivitize the P(III) 

center of these compounds to obtain crystalline sample have not resulted in the successful 

formation of product across many reaction partners, perhaps because of intrinsic 
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instability of the cycloaddition products. No 31P-containing spectroscopic signal which 

could be assigned as an intermediate was observed for most of these reactions; however, 

in the case where FPhPCl2 was used, a different reaction mechanism was observed. The 

intermediate in this case was an 8-membered P4S4 ring, which was proposed to degrade 

into monomeric RP=S fragments at room temperature that subsequently underwent a 

[2+4] cycloaddition in the presence of dmbd. The lysis of an 8-membered PxSx (x =3, 4) 

ring into its phosphinidene sulfide monomeric units is unprecedented in the literature.  

 The work detailed in this thesis described not only the synthesis and 

characterization of novel asymmetric phosphines and cycloaddition products, but 

development of a method whereby various dichlorophosphines were utilized as reliable 

sources of RP=S when used in reactions with S(TMS)2 and dmbd. This exciting finding 

demonstrated that intricate ligand design and transition metals are not a requirement for 

the transfer of low-coordinate phosphorus species to organic units of unsaturation, and 

the reaction remarkably takes place at room temperature. Although further development 

pertaining to the purification of these compounds for bulk compositional analysis is 

required, this finding was an exciting addition to the known methods for RP=S transfer. 

These results contribute to the vast understanding of phosphorus-sulfur chemistry and are 

aimed to motivate discussion regarding the true electronic nature of phosphinidene 

sulfides and what factors govern their preference to react in either an olefinic or carbenic 

fashion. It would be particularly exciting if the condensation method described here could 

be performed with other heteroatoms as well, potentially broadening the scope of RP=E 

transfer reactions (E = N, Se, Te). 

 

4.2 Future Work 

4.2.1 Additional Work Pertaining to Chapter 3 

Although many of the compounds described in Chapter 3 have been successfully 

isolated, difficulty has persisted in obtaining analytically pure bulk samples of [2+4] 

cycloadducts for elemental analysis prior to their decomposition. To confirm the 

composition of these oily compounds, for which analysis by X-ray diffraction has not 

been possible, elemental analysis data are required. For this reason, further development 
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of purification methods for these cycloadducts is necessary – especially as it pertains to 

residual S(TMS)2 removal from the oils. Modification of the P(III) center was attempted 

with a variety of reaction partners, although no promising results have been obtained thus 

far. In an attempt to circumvent the high boiling point of S(TMS)2, Na2S and Li2S were 

employed as the source of sulfide but did not result in the formation of the desired 

products.  

Throughout the optimization of the condensation method across the differing 

dichlorophosphines, it was found that olefinic reactivity was favoured by performing the 

reaction at low concentrations. Increasing the dilution of the reaction mixture lead to 

increased formation of olefinic reactivity products and decreased formation of other 

minor products. The formation of 3.6Ph was favoured over 3.7 (< 5 % by integration) 

when the reaction mixture was diluted 1:4 with toluene. Performing this same reaction at 

higher concentrations (50 mg/ mL in neat dmbd) lead to an almost equal distribution of 

3.6Ph and 3.7 by integration of the 31P{1H} NMR spectrum. A similar dependence on 

concentration was observed for the thermolysis method, whereby increased dilution 

favoured the formation of olefinic products. Further studies to assess the nature of this 

concentration dependence are encouraged, as the ability to bias the formation of [2+2] 

over [1+2] cycloadducts would circumvent the need for the time-consuming purification 

methods described above. 

A mechanistic study focusing on the lysis of the 8-membered ring (3.9) to release 

reactive RP=S in solution at room temperature is also warranted. This mechanism has not 

been observed by researchers in the field previously for 6- and 8-membered P,S-

heterocycles. Our early work has defined a definite relationship between 3.9 and the 

resultant [2+4] cycloadduct, 3.6FPh. In order to better understand what occurred here, 

kinetic studies are imperative. In doing so, the role of the various reaction partners can be 

ascertained such that the role of the trapping agent and R group on phosphorus are better 

understood.  
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4.2.2 Bulky Ligands to Stabilize RP=S 

We have previously demonstrated that the bulk of the m-terphenyl ligand is 

sufficient to stabilize the P(III) center in RP=S dimer 3.2 from degradation, but not bulky 

enough to inhibit dimerization of monomer RP=S. Increasing the steric bulk at 

phosphorus has enabled us to observe a free phosphinidene sulfide by 31P{1H} NMR 

spectroscopy through the condensation reaction of TripPCl2 and S(TMS)2 (Trip = 2,6-

Mes*2C6H3, Mes* = 2,4,6-triisopropylphenyl). Dimerization did still occur and 

compound 4.1 has been isolated and structurally characterized as a product of this 

reaction (Figure 4-1).  
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Figure 4-1. Reaction of TripPCl2 with S(TMS)2 to form RP=S dimer 4.1. Stacked 31P{1H} 

NMR spectra taken at various time points are included to show the hypothesized formation 

of free RP=S (denoted with a star) at 438 ppm. Dimer 4.1 has a phosphorus chemical shift 

of 143 ppm. 
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When the reaction was performed in toluene, compound 4.1 readily crystallized 

from the reaction mixture and crystals were submitted for analysis by X-ray diffraction 

which confirmed the structure of the dimer (Figure 4-2). Compound 4.1 crystallized with 

2 molecules in the asymmetric unit and a single toluene molecule. In comparison to 

compound 3.2 which was previously characterized by our group, there was an increase in 

bond lengths and angles which was attributed to the added strain imparted by the bulkier 

Trip ligand.2 The 1H NMR spectrum contained a single set of Trip resonances, where 

each of the Me groups corresponding to the iPr portion of the ligand have distinct 

chemical shifts – another indication of ring strain given that the compound contains high 

P1A 

P1A 

S1A 

S1A 

C1A 

C1A 

Figure 4-2. Solid state structure of 4.1 as determined by X-ray diffraction. The crystal 

contains two molecules in the asymmetric unit, although only one has been shown here 

for clarity. Pertinent bond lengths (A) and angles (o) are as follows: S(1A)-P(1A) 

2.1388(14), S(1A)-P(1A)1 2.1460(12), P(1A)-C(1A) 1.845(3), P(1A)-S(1A)-P(1A)1 

90.58(5), C(1A)-P(1A)-S(1A)1 103.72(10), C(1A)-P(1A)-S(1A) 107.23(11), S(1A)-

P(1A)-S(1A)1 89.42(5), C(2A)-C(1A)-P(1A) 119.0(3), C(6A)-C(1A)-P(1A) 123.7(2). 
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symmetry. Interestingly, despite 3 separate environments for the methyl groups, only two 

multiplets were observed corresponding to the central C-H bond of the iPr group (3JHH = 

8 Hz).  

A further increase in the steric bulk at phosphorus could allow for the isolation of 

a phosphinidene sulfide. Bulky amido ligands developed by Jones and coworkers offer a 

similar reactivity profile in comparison to the terphenyl ligands used by Power, but have 

not yet resulted in the formation of phosphinidene sulfides.9,10 Through collaboration 

with the Rivard group a potential remedy to this issue has been offered by using the bulky 

ligand shown in Scheme 4-2. 

 

Early experiments performing the condensation reaction with this 

dichlorophosphine have resulted in the formation of a product with a chemical shift of P 

= 488. This downfield chemical shift was indicative of RP=S formation although further 

work is required to ascertain the true structure of the product. Should the 

dichlorophosphine provided by the Rivard group allow to the isolation of RP=S, it would 

be quite interesting to explore this chemistry with heavier main group elements as well 

(eg. As, Sb, Se, Te).  

4.2.3 Cycloaddition Chemistry: Expanding the scope of trapping 
reagents 

Both thermolysis and condensation methods have proven to be successful for the 

in situ generation of RP=S and its subsequent transfer to trapping reagents, such as 

alkynes and dmbd. It would be of both fundamental and synthetic interest to expand this 

reactivity beyond unsaturated C-C bonds to those which include other heteroatoms (eg. 

C=O, C=N). Early experiments have been performed which have used the thermolysis 

S

P
N

N N DippDipp

P
N

N N DippDipp

Cl

Cl + S(TMS)2
THF
RT

Scheme 4-1. Hypothesized reaction between an NHC-based dichlorophosphine and 

S(TMS)2 to yield an isolable phosphinidene sulfide 
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method to assess RP=S transfer to a number of various trapping reagents with mixed 

results. 

Heating a sample of 3.2 in a saturated solution of ferrocenecarboxaldehyde 

resulted in the formation of one new peak in the 31P{1H} NMR spectrum at -5 ppm 

(Figure 4-3). Unreacted ferrocenecarboxaldhyde proved to be exceptionally difficult to 

remove from the crude dark red oil – with both solubility and sublimation being 

unsuccessful. The tentatively proposed structure is compound 4.2, where a [2+2] 

cycloaddition occurred between the RP=S double bond and the C=O double bond of the 

aldehyde. The peak assigned to 4.2 was a broad multiplet in the 31P NMR spectrum. 

While further characterization of this compound is required, the formation of one major 

isolable product was encouraging. It would be of interest to perform the analogous 

reaction by the condensation method to see if the selectivity for the product at -5 ppm is 

maintained. At this time, further work is necessitated to fully understand this 

transformation.  

S

O

P
Mes

Mes

Fc

4.2

Crude Reaction Mixture 

Pentane insoluble portion 

Figure 4-3. Stacked 31P{1H} NMR spectra which show the crude reaction mixture following the 

thermolysis of 3.2 in a saturated toluene solution of ferrocenecarboxaldehyde (top) and the 

pentane insoluble portion (bottom) 
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A number of other trapping agents were used as reaction partners by the 

thermolysis methodology. Generally, these reactions consisted of gently heating a toluene 

solution of 3.2 in a solution of 5 stoichiometric equivalents of trapping reagent. It was 

observed that performing the reaction without a great excess of trapping agent leads to 

poor conversion and decreased selectivity by 31P{1H} NMR spectroscopy. While the 

aldehydes tested indicated that a reaction with RP=S readily occurred, benzophenone and 

acetone did not result in the formation of product. When azobenzene or diphosphene 

(2.5) were used as reaction partners, a large number of unidentifiable peaks were 

observed in the 31P{1H} NMR spectra. Performing the reaction with MeCN lead to the 

appearance of 5 new signals in the crude 31P{1H} NMR spectrum; however, the 

analogous reaction with phenylnitrile did not result in the disappearance of 3.2 by 

31P{1H} NMR spectroscopy. The thermolysis of 3.2 in the presence of various diaza-

esters, provided in collaboration with the Workentin Group, also resulted in the formation 

of 1 or 2 major products by 31P{1H} NMR spectroscopy, although major difficulty in the 

separation of the resulting products was an issue. 

Performing this reactivity assay has indicated to us that RP=S transfer can be 

accomplished with unsaturated functional groups outside of C-C double and triple bonds 

using the thermolysis methodology. These reactions have often resulted in the formation 

of numerous products in contrast to the more selective reactivity observed with alkynes 

and dmbd. It remains a question as to whether the number of products formed would 

decrease should the condensation method be employed for these transformations. 

Expanding the reactivity assay study to include 1,3-dipoles (eg. isocyanates) offers an 

interesting opportunity to expand on the cycloaddition chemistry we have observed thus 

far. 

4.2.4 Cycloaddition Chemistry: Alkynes with -Hydrogens 

As part of the reactivity assay performed to asses the versatility of the thermolysis 

method, a number of alkynes with -hydrogens (eg. 2-butyne) were employed as trapping 

reagents. The resultant crude 31P{1H} NMR spectra contained new signals which did not 

correspond to what we had previously observed for thiaphosphetenes or phosphirene 

sulfides. Instead, the major products were found to contain P-H coupling constants which 
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would typically be assigned as 1JPH. We have not yet fully characterized the products of 

these reactions; however, similar product distributions were observed when bromo-3-

propyne and (trimethylsilyl)-3-propyne were used as the trapping reagent. It was 

hypothesized that a rearrangement could take place because of the presence of -

hydrogen atoms. Complete characterization of these products would give insight into the 

nature of this transformation. 

4.2.5 The Condensation Method: Can we transfer other RP=E?  

This work has demonstrated the versatility of both the thermolysis and 

condensation methods of in situ RP=S transfer with gentle heat and at room temperature, 

respectively. With these results in mind, it is reasonable to entertain that other Ch(TMS)2 

reagents may also be amenable to subsequent RP=Ch transfer in a similar fashion. Test 

reactions performed with Se(TMS)2 lead to the appearance of spectroscopic signals 

which had similar chemical shifts to their respective [1+2], [2+2], and [2+4] derivatives. 

While this was promising, the inherent instability of the heavier chalcogen congener 

resulted in uncontrolled reactivity and many signals in the 31P{1H} NMR spectrum This 

had not been pursued further, but presents an opportunity to transfer RP=Ch with heavier 

chalcogen atoms, an area absent in current literature. Others working in the area of 

phosphinidene transfer have shown the successful transfer of RP=E fragments by 

extrusion from 7-phosphanorbornadiene scaffolds (E = B, N, P, S, W(CO)5).
5,7,8,11–14 It 

would be interesting to explore whether RE(TMS)2 reagents would result in similar 

reactivity as S(TMS)2 and result in the formation of cycladducts such as the ones 

proposed in Figure 4-4 (R = alkyl, aryl). This would offer a superior method to what is 

currently available in literature for RP=NR transfer to trapping reagents such as dmbd 

and akynes. Ideally, a library of 3-6-membered rings could be synthesized as the result of 

reactivity of a variety of two-coordiante phosphidenes with alkenes, dienes and alkynes. 

These could then be characterized to develop a firm understanding of the structure and 

bonding in products formed as a result of the condensation method of in situ phosphinide 

generation. 
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4.3 Synthesis of 4.1 

TripPCl2 was prepared according to a method developed by the Ragogna Group for the 

synthesis of bulky dichlorophosphines.2 TripPCl2 (60 mg, ___ mmol) was dissolved in 1 

mL toluene and added to an NMR tube. Neat S(TMS)2 was added to this and the solution 

was allowed to sit at room temperature overnight. The colourless solution becomes a 

peach colour over this time, although the powder if off-white upon removal of volatiles in 

vacuo. Crystals suitable for X-ray diffraction grew from the reaction mixture at room 

temperature over the course of the reaction. Yield: 50 mg (__ %). 

m.p. (nitrogen sealed capillary): 126.2 – 128.0 oC 

ESI-MS: 577.3 m/z [C36H49PS2]
+, 1089.6 [C72H98P2S2]

+. 

1H NMR (CDCl3, 400 MHz, ): 1.09 (d, 3JHH = 8.0 Hz, 12H, Mes* ortho-CH3), 1.22 (d, 

3JHH = 8.0 Hz, 12H, Mes* ortho-CH3), 1.32 (d, 3JHH = 8.0 Hz, 12H, Mes* para-CH3), 

2.53 (sept, 3JHH = 8.0 Hz, 4H, Mes* ortho-CH), 2.96 (sept, 3JHH = 8.0 Hz, 2H, Mes* 

para-CH), 7.06 (s, 4H, Mes* Csp2H), 7.14-7.16 (s, 2H, Ph CH), 7.39 (t, 3JHH = 7.2 Hz, 

1H, Ph CH)  

13C{1H} NMR (CDCl3, 150.8 MHz, ): 14.1 (s), 22.3 (s), 23.0 (s), 24.0 (s), 25.6 (s), 30.9 

(s), 33.9 (s), 34.1 (s), 67.9 (s), 120.6 (s), 127.7 (s), 131.4 (s), 134.9 (s), 143.2 (s), 146.3 

(s), 147.8 (s). 

31P NMR (C6D6, 161.8 Hz, ): 143.0 (s) 

N

P
R

Ph
N

P
R

R1

R1

RPCl2   +  R1N(TMS)2

Ph

Scheme 4-2. Proposed RP=NR1 to phenylacetylene or dmbd upon the condensation of a 

dichlorophosphine with R1N(TMS)2 to yield 4- and 6-membered rings respectively. R is 

an alkyl or aryl group for each case. 
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Chapter 5 

5 Appendices 

5.1 Experimental Methods 

5.1.1 General Experimental Details 

 

All manipulations were performed under inert atmosphere either in a nitrogen-

filled MBraun Labmaster 130 Glovebox or on a Schlenk line. Solvents were obtained 

from Caledon and dried using an MBraun Solvent Purification System or by distillation 

from CaH2 (HMDSO, CDCl3). Dried solvents were collected under vacuum in a flame 

dried Straus flask and stored over 4 Å molecular sieves. Solvents for NMR spectroscopy 

(CDCl3, C6D6) were stored in the drybox over 4 Å molecular sieves. Solvent used for CV 

(MeCN) was freshly distilled from CaH2.  

 

5.1.2 General Instrumentation 

 

Solution 1H, 13C{1H}, 19F{1H}, and 31P{1H} Nuclear Magnetic Resonance (NMR) 

spectra was recorded on a Varian INOVA 400 MHz spectrometer (1H 400.09 MHz, 31P 

161.8 MHz, 19F 377 MHz, 13C{1H} 100.5 MHz) unless otherwise noted. Some 13C{1H} 

spectra were recorded on a Varian INOVA 600 MHz spectrometer (13C 150.8 MHz) and 

referenced to the 13C signal of the solvent relative to tetramethylsilane (CDCl3; δC = 77.1, 

C6D6; δC = 128.06). All samples for 1H NMR spectroscopy were referenced to the 

residual protons in the deuterated solvent relative to tetramethylsilane (CDCl3; 
1H δ = 

7.26, C6D6; 
1H δ = 7.16). The chemical shifts for 31P{1H} (85% H3PO4; δP = 0.0) and 

19F{1H} (CF3COOH; δ = -63.9) NMR spectroscopy were referenced using an external 

standard. FT-IR spectroscopy was performed on samples as KBr pellets using a Bruker 

Tensor 27 FT-IR spectrometer, with a 4 cm-1 resolution. Mass spectrometry was recorded 

in house in positive- and negative-ion modes using electrospray ionization Micromass 

LCT spectrometer. Melting or decomposition points were determined by flame-sealing 

the sample in nitrogen-filled capillaries and heating using a Gallenkamp Variable Heater. 
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Elemental analysis was performed at the University of Montreal and is reported as an 

average of two samples weighed under air and combusted immediately thereafter. 

 

5.1.3 General Crystallographic Methods 

 

Single crystal X-ray diffraction studies were performed at the Western University 

X-ray Facility. Crystals were selected under Paratone(N) oil, mounted on a MiTeGen 

polyimide micromount, and immediately put under a cold stream of nitrogen for data to 

be collected on a Bruker and Nonius Apex II detectors using Mo-Kα radiation (λ = 

0.71073 Å) or Cu-Kα radiation (λ = 1.54178 Å). The Bruker and Nonius instruments 

operate Bruker’s Apex2 software. The data collection strategy was a number of ϕ and ω 

scans which collected data up to 2q. The frame integration was performed using SAINT. 

The resulting raw data was scaled and absorption corrected using a multi-scan averaging 

of symmetry equivalent data using SADABS. The structure was solved by using a dual 

space methodology using the SHELXT program. All non-hydrogen atoms were obtained 

from the initial solution. The hydrogen atoms were introduced at idealized positions and 

were allowed to ride on the parent atom. The structural model was fit to the data using 

full matrix least-squares based on F2. The calculated structure factors included 

corrections for anomalous dispersion from the usual tabulation. The structures were 

refined using the SHELXL program from the SHELXTL suite of crystallographic 

software. The majority of solid-state structures reported were well refined and converged 

to one single solution, where restraints were not necessary. In the situations where special 

refinement cycles were necessary, these details have been included in the experimental 

section in their corresponding chapter. 

 

5.2 Supplementary Information for Chapter 2 
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5.3 Supplementary Information for Chapter 3 

 

2.2 

2.3 

2.4 

Figure 5-1. Stacked 1H NMR spectra of asymmetric phosphines in CDCl3 
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Figure 5-2. 1H NMR spectrum of 3.6Ph in CDCl3 

Figure 5-3. 1H NMR spectrum of 3.6Cl in CDCl3. Residual S(TMS)2 and pentane were 

present in the sample. 
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