
Western University Western University 

Scholarship@Western Scholarship@Western 

Digitized Theses Digitized Special Collections 

2009 

Dynamic Resource Management in Virtualized Environments Dynamic Resource Management in Virtualized Environments 

Gaston Keller 

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses 

Recommended Citation Recommended Citation 
Keller, Gaston, "Dynamic Resource Management in Virtualized Environments" (2009). Digitized Theses. 
3945. 
https://ir.lib.uwo.ca/digitizedtheses/3945 

This Thesis is brought to you for free and open access by the Digitized Special Collections at 
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3945?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Dynam ic Resource M anagement in Virtualized
Environments

(Spine Title: Dynamic Resource Management in Virtualized Environments)

(Thesis Format: Monograph)

by

Gaston Keller

\

Graduate Program in Computer Science

Submitted in Partial Fulfillment of the Requirements 

for the Degree of 

Master of Science

The School of Graduate and Postdoctoral Studies 

The University of Western Ontario 

London, Ontario, Canada 

August 21, 2009

©  Gaston Keller 2009



Abstract

System Virtualization has become in the last few years an essential technology in 

the data center. Among other benefits, virtualization improves resource utilization 

through server consolidation, and provides for highly customizable computing envi­

ronments. However, virtualization also makes resource management more complex.

Golondrina, an autonomic resource management system, was built to use virtual 

machine migration and replication to handle resource stress situations (when resource 

demand is greater than resource availability).

Preliminary experiments show that replication offers improvements over migra­

tion, and both mechanisms offer improvements over taking no action upon a resource 

stress situation.

This work is one of the first ones in proposing a resource management system 

for operating system-level virtualized environments. Moreover, this is the first study 

that uses replication as an alternative to migration and compares both mechanisms.

Keywords: virtualization, resource management, replication, migration, autonomic 

computing.

m



For those who came before and 

those who will come after.

IV



Acknowledgements

First and foremost I would like to thank my advisor, Prof. Hanan Lutfiyya, for 

her guidance and dedication. She encouraged me to pursue research that I really 

care about, and had patience while I did many, many things beyond research. She 

provided support for every project or idea I came up with (again, many times not 

directly related to research), and had time for frequent meetings and for reading once 

and again this manuscript.

I would also like to thank Magi and Jim, from the Systems Group, for helping 

with the infrastructure.

My friend Lisandro D. N. Pérez Meyer back in Argentina, with whom I had 

many discussions about GNU/Linux, virtualization and networking, also deserves my 

gratitude.

I should not forget my fellow DiGS members, who discussed with me about my 

project, provided me with feedback and sometimes even directions. Thanks to them.

A very special thank goes to my unofficial mentor, Nadine LeGros. I would 

probably have not achieved all I have done without her encouragement and support.

And last but not least, many thanks to my friends here in London, who beared 

with me (and my shrinking patience) during my hibernation mode (period in which 

I wrote the thesis), and mi gente (my people) back in Argentina, who have always 

been there.

“All the theses are ethereal... until materialized by deadlines.” —Me

v



Contents

Certificate o f Exam ination ii

A bstract iii

Acknowledgem ents v

1 Introduction 1

1.1 M otivation...................................................................................................... 1

1.1.1 Pre-virtualization Data C e n te rs ....................................................  1

1.1.2 Post-virtualization Data Centers...................................................  2

1.2 Problem S ta te m e n t...................................................................................... 3

1.3 Thesis Focus..................................................................................................  4

1.4 O utline............................................................................................................ 5

2 Background 6

2.1 V irtua liza tion ...............................................................................................  6

2.1.1 System Virtualization ..............................................................  6

2.1.2 Types of Virtualization S o lu tio n s .................................................  7

2.2 O p en V Z .........................................................................................................  9

2.3 Summary ...................................................................................................... 13

3 R elated Work 14

3.1 Resource M on ito rin g ................................................................................... 14

3.2 Algorithms and Policies ............................................................................  15

3.3 Managing Multiple Virtual Machines within Multiple Physical Servers 16

vi



3.4 Characterizing Migration Process B ehavior..............................................  19

3.5 Decision Support In fras tru c tu re ...............................................................  20

3.6 Management Tools for Virtual M ach in es ..................................................  21

3.7 Summary ............................................................................................... ... • 22

4 Architecture 24

4.1 In fras tru c tu re ...............................................................................................  24

4.2 Bird’s-eye V ie w ............................................................................................  25

4.3 In te rac tio n s ..................................................................................................  26

4.4 Client ............................................................................................................  28

4.4.1 D esig n ...............................................................................................  28

4.4.2 In terface ............................................................................................  29

4.4.3 Required C a lcu la tio n s ................................................................... 30

4.5 S e r v e r ............................................................................................................  31

4.5.1 D esig n ...............................................................................................  31

4.5.2 In terface ............................................................................................  33

4.5.3 Required C a lcu la tio n s ................................................................... 34

4.6 G a t e ...............................................................................................................  35

4.6.1 D esig n ...............................................................................................  36

4.6.2 In terface ............................................................................................ 37

4.7 S u m m a ry .....................................................................................................  37

5 Im plem entation 38

5.1 General Information ................................................................................  38

5.2 Client ............................................................................................................  38

5.2.1 Gathering CPU Utilization S ta tis t ic s .........................................  39

5.2.2 Collecting Miscellaneous In fo rm ation .........................................  41

5.2.3 Executing R e lo ca tio n s ................................................................... 42

5.3 S e r v e r ............................................................................................................  43

5.3.1 Data Storage M o d u le s ....................................................................  43

5.3.1.1 C o n ta in e r.........................................................................  43

vii



5.3.1.2 H ardw areN ode.....................................................................  46

5.3.2 Processing Statistics Reports .......................................................  49

5.3.3 Searching for Resource Stress S itu a t io n s ....................................  50

5.3.4 Finding Relocations.........................................................................  50

5.4 G a t e ...............................................................................................................  51

5.4.1 Updating the Load Balancer’s Configuration............................. 51

5.5 S u m m a ry ...................................................................................................... 52

6 Experim ents 53

6.1 Evaluation...................................................................................................... 53

6.2 Experiments and Configurations.................................................................  55

6.2.1 Experiment 1 ..................................................................................  56

6.2.2 Experiment 2 ..................................................................................  56

6.2.3 Experiment 3 ..................................................................................  57

6.2.4 Policies ............................................................................................  57

6.3 R esu lts ............................................................................................................  57

6.3.1 Experiment 1 ..................................................................................  58

6.3.2 Experiment 2 ..................................................................................  63

6.3.3 Experiment 3 ..................................................................................  69

6.4 Summary .....................................................................................................  77

7 Conclusion 78

7.1 C onclusions..................................................................................................  78

7.2 D iscussion...................................................................................................... 79

7.3 Future W ork ..................................................................................................  82

7.4 Summary ...................................................................................................... 83

A Code Snippets 84

Bibliography 100

viii

V ita 104



List o f Tables

5.1 Configurable System C o n s ta n ts .............................................................. 43

5.2 Container module a ttrib u te s ....................................................................  44

5.3 Container module methods .........................................................................  44

5.4 HardwareNode module a ttr ib u te s ..........................................................  46

5.5 HardwareNode module m ethods.............................................................. 47

6.1 Experiment 1 - Percentage of successful requests..................................  62

6.2 Experiment 1 - Web servers’ average connection time in milliseconds. . 63

6.3 Experiment 2 - Percentage of successful requests..................................  68

6.4 Experiment 2 - Web servers’ average connection time in milliseconds. . 69

6.5 Experiment 3 - Percentage of successful requests..................................  76

6.6 Experiment 3 - Web servers’ average connection time in milliseconds. . 76

IX



List of Figures

4.1 Golondrina’s architecture ............................................................................  25

4.2 M o n ito rin g ...................................................................................................... 26

4.3 M ig ra tio n ......................................................................................................... 27

4.4 R ep lica tio n ...................................................................................................... 27

4.5 Client component’s d e s ig n ............................................................................  29

4.6 Server component’s desig n ............................................................................  32

4.7 Gate component’s design...............................................................................  36

5.1 Sample /proc/vz/vestat f i l e .........................................................................  40

6.1 Experiment 1 - No A c tio n ............................................................................  58

6.2 Experiment 1 - Replicate, bravo02 ............................................................  59

6.3 Experiment 1 - Replicate, bravo03 ............................................................  60

6.4 Experiment 1 - Migrate, b ra v o 0 2 ...............................................................  61

6.5 Experiment 1 - Migrate, b ra v o 0 3 ...............................................................  62

6.6 Experiment 2 - No A c tio n ............................................................................  64

6.7 Experiment 2 - Replicate, bravo02 ............................................................  65

6.8 Experiment 2 - Replicate, bravo03 ............................................................  66

6.9 Experiment 2 - Migrate, b ra v o 0 2 ...............................................................  67

6.10 Experiment 2 - Migrate, b ra v o 0 3 ................................................................ 68

6.11 Experiment 3 - No A c tio n ............................................................................  70

6.12 Experiment 3 - Replicate, bravo02 ............................................................  71

6.13 Experiment 3 - Replicate, bravo03 ............................................................  72

6.14 Experiment 3 - Migrate, b ra v o 0 2 ...............................................................  74

x



6.15 Experiment 3 - Migrate, bravo03 74

xi



Listings

2.1 Sample Container configuration f i l e .........................................................  12

5.1 Sample /p roc/sta t file ...............................................................................  41

5.2 Replication procedure..................................................................................  42

5.3 Sample Pound configuration f i l e ...............................................................  52

6.1 PHP file molinosQuijote.php...................................................................... 54

A.l gatherCtCpuStats m e th o d .........................................................................  84

A.2 calculateCtCpuUsage m e th o d ................................................................... 85

A.3 calculateHostCpuUsage m e th o d ...............................................................  85

A.4 getHostlnfo m ethod .....................................................................................  86

A.5 getCtsInfo m e th o d ...................................................................................... 87

A.6 migrateCt method .....................................................................................  87

A.7 replicateCt m e th o d .....................................................................................  88

A.8 (Container) init m e th o d ............................................................................  88

A.9 update m e th o d ............................................................................................  89

A. 10 updateCpuModel method .........................................................................  89

A. 11 cpu m e th o d ..................................................................................................  90

A. 12 profileCpu m e th o d .....................................................................................  90

A. 13 (HardwareNode) init m ethod...................................................................... 90

A. 14 overloaded m e th o d ...................................................................................... 91

A.15 willFitRep m e th o d ...................................................................................... 91

A. 16 recordMigration m e th o d ............................................................................  91

A. 17 recordReplication m e th o d .........................................................................  92

A. 18 migCompleted m e th o d ...............................................................................  92

xii



A. 19 repCompleted m e th o d ...............................................................................  92

A.20 addNewObservation m e th o d ......................................................................  93

A.21 monitor m eth o d ............................................................................................  94

A.22 migrations m e th o d ......................................................................................  95

A.23 decreasingLoadPolicy m e th o d ................................................................... 96

A.24 twoReplicasInHnPolicy m e th o d ................................................................ 97

A.25 replications m e th o d ...............................................    97

A.26 addToProxy m e th o d ..................................................................................  98

xiii



1

Chapter 1 

Introduction

Autonomic resource stress release in virtualized data centers through migration and 

replication is possible and results in better resource utilization and improved service 

for the client.

System Virtualization is a software technique that enables the simultaneous exe­

cution of multiple computer systems in one physical machine. Virtualization is highly 

supported by industry, which sees virtualization as an opportunity to make better use 

of computing resources. It is now possible to buy a single physical machine and use 

it to run many computer systems.

Section 1.1 introduces the motivation for this research. Section 1.2 describes the 

research problem. Section 1.3 introduces the proposed solution.

1.1 M otivation

Today data centers tend to over-provision in order to cope with demand. Virtualiza­

tion can potentially benefit data centers reducing the need for over-provisioning and 

hence the costs.

1.1.1 Pre-virtualization D ata Centers

A data center is a collection of computers connected through a high-speed network. 

The number of computers in a data center can vary from several dozen machines 

(very modest) to hundreds of thousands of machines. Data centers are often used



2

to provide services to clients through the Internet. Different clients often require a 

varying amount of resources.

A challenge with data centers is resource provisioning. The demand for resources 

varies over time. The challenge faced by data centers is the tradeoff between resource 

utilization and being able to cope with demand. There are two resource provisioning 

approaches. The first one is under-provisioning (or provisioning for less than the 

peak demand). The resource investment is low to moderate, at the expense of not 

being able to support peaks in demand. The failure to satisfy those peaks in demand 

translates into poor service provided to the client, and hence this approach is rarely 

taken.

The second approach to provisioning is to provide resources for the peak demand 

(or over-provisioning). It guarantees (under the assumption that the peak demand 

is known beforehand) that all workloads will be successfully handled. However, this 

solution is expensive since huge numbers of resources might be needed to support 

peaks in demand that seldom occur (which also results in low resource utilization 

levels). This is usually the approach taken by companies.

Thus, the scenario in most data centers (if not all) is that a large number of 

resources is idle while waiting for those rare and brief moments when a peak in 

demand makes use of the resources.

1.1.2 Post-virtualization  D ata Centers

Data centers tend to run a large number of physical servers with a low resource 

utilization level [12, 26]. Virtualization could enable server consolidation, increasing 

the resource utilization level and decreasing the necessary investment in equipment.

Server consolidation could result in effectively reducing over-provisioning, but at 

the expense of increasing resource management complexity. Now there is not only 

one computer system running on the physical server, but several. It is necessary to 

monitor each virtual machine’s workload and dynamically adjust resource allocation 

on-demand. Different virtual machines may run applications that have competing



3

Quality of Service requirements that may not be satisfiable at a given point in time.

Thus, for server consolidation to be effective, improved resource management 

mechanisms need to be devised. Mechanisms are needed that can automatically 

respond in a timely fashion to the unpredictable, time-varying demand experienced 

by the virtual machines running in a physical server and for the hundreds of servers 

that could be running together in a data center.

1.2 Problem  Statem ent

The use of virtual machines in data centers for consolidation purposes is based on 

an assumption about the behaviour of the virtual machines (or more precisely, of the 

hosted applications). The assumption is that it is not likely that two or more virtual 

machines hosted in the same physical server will experience a peak in demand at the 

same time. However, if that situation were to happen, it would only be acceptable 

provided that the sum of the virtual machines’ resource needs did not exceed the 

amount of available resources. Otherwise, the virtual machines would receive less 

resources than required. We call this scenario a resource stress situation.

When the combined resource needs of the virtual machines exceeds the total avail­

able resources, two approaches can be taken. The first one reallocates resources among 

the virtual machines based on a given priority. This method would be similar to the 

concept of differentiated services in networks.

Although an acceptable approach when available resources in the data center 

are limited or completely exhausted, priority-based resource allocation transfers the 

problem from one virtual machine to another, enabling privileged virtual machines to 

keep working at the expense of unprivileged virtual machines that cannot do so due 

to a lack of resources. This approach contradicts the philosophy of the pay-as-you-go 

model.

The second approach that can be taken is to rely on another physical server with 

enough spare resources to instantiate one or more virtual machines, so as to cope with 

the local resource needs. This approach is called relocation. There are two variants to



4

this method: migration and replication. Migration consists of transferring a virtual 

machine running in the local physical server to the target physical server (the one 

with spare resources). An effect of this variant is that the resources allocated to the 

virtual machine in the local physical server are freed.

Replication entails the creation of a local virtual machine’s replica in the target 

physical server. The load would be shared between the two instances, diminishing 

the stress on the local physical server.

For this model to work, i.e., for a physical server to run several virtual machines 

and react to a resource stress situation by relocating virtual machines, several mecha­

nisms are needed. First, a mechanism is needed to monitor the resource usage of each 

virtual machine and physical server. Second, the monitored data needs to be pro­

cessed and analyzed. Third, upon discovery of a resource stress situation on a physical 

server, a decision making process has to be invoked to determine the migrations or 

replications (if any) that could dissipate the resource stress situation.

Little work has been done to develop mechanisms for decision making support. 

Mechanisms tha t provide information upon which to make decisions and mecha­

nisms that implement actions to be taken in response to resource stress situations 

are needed. Of special interest is support for replication. Most work in dynamic re­

source provisioning in data centers does not use replication. Without having decision 

making support mechanisms in place, effective strategies for resource management 

cannot be studied.

1.3 Thesis Focus

There is a need for a resource management system for virtualized environments that 

incorporates decision making support mechanisms and strategies to automatically 

deal with resource stress situations.

The system supports three tasks. The first task is the gathering and processing of 

resource usage statistics from every virtual machine and physical server. The second 

task is the analysis of the collected statistics searching for potential resource stress



5

situations. The third task is used upon detection of a resource stress situation: finding 

a sequence of relocations (migrations or replications) that could dissipate the stress 

situation.

This functionality is implemented in Golondrina, a resource management system 

based on a client-server architecture [30]. A client instance runs in a virtual machine 

in each physical node and periodically gathers resource usage statistics, that are sent 

to the server. In addition, the client executes migrations and replications, based on 

instructions from the server.

The server runs in a non-virtualized physical server and continually receives and 

processes clients’ statistics. Periodically, it analyzes the collected data, looking for 

potential resource stress situations. If such a situation is detected, the server tries 

to find a sequence of relocations that could solve the problem, and then contacts the 

corresponding clients for them to execute the relocations.

This thesis is one of the first works in proposing a resource management system 

for operating system-level virtualized environments. Moreover, this is the first study 

that uses replication as an alternative to migration and compares both mechanisms.

1.4 Outline

This chapter provided the motivation for doing research in the area of resource man­

agement in virtualized environments (data centers specifically). The rest of the thesis 

is organized as follows: Chapter 2 provides the background for this research, Chapter 

3 present the literature review, Chapter 4 describes the architecture of the resource 

management system Golondrina, Chapter 5 describes how the system was imple­

mented, Chapter 6 presents the results of the system’s evaluation, and Chapter 7 

concludes with a discussion and future work. An appendix is included at the end of 

the thesis with code snippets (from Golondrina) that are referenced in Chapter 5.

*



Chapter 2 

Background

This chapter presents basic information required to provide a context for the chapters 

to come. Section 2.1 deals with the concept of virtualization and the architectural 

approaches tha t can be taken to provide virtualization. Section 2.2 provides details 

on the virtualization solution used in this research.

2.1 V irtualization

Resource virtualization consists of creating abstractions of physical resources. This 

technique enables the multiplexing of physical resources. In this context, the virtu­

alization mechanism’s role is to map virtual resources into physical resources. It is 

possible to build multiple abstractions of a physical machine so that different com­

puting systems can execute simultaneously in the same physical machine.

Subsection 2.1.1 briefly discusses the basic concepts related to virtualization and 

Subsection 2.1.2 presents two different ways in which virtualization can be provided.

2.1.1 System  V irtualization

There are two different kinds of virtualization1: process virtualization and system vir­

tualization. Process virtualization exists in the form of an application whose purpose 

is to support a process’s execution. The second one entails the creation of a proper

1For more information on the different types of virtualization see the paper from Smith and Nair
[29]-



7

environment for the execution of an operating system (and its processes). Our focus 

is on system virtualization.

System virtualization2 is a software technique that enables the simultaneous ex­

ecution of multiple operating systems in one physical machine. This technique was 

created in the mid 1960s, when a team at IBM’s Cambridge Scientific Center in 

Massachusetts designed CP-40/CMS. The objective of the system was to provide for 

each user a virtual machine that was indistinguishable from a physical one by a user 

program [19]. This idea was then abandoned, but it was brought up again in recent 

years. In 1998, the company VMware presented its first virtualization solution [1], 

It was followed by Xen, an Open Source Software solution [13], and later on by the 

Linux kernel with its KVM (Kernel-based, Virtual Machine) virtualization solution 

[2]-

The principal motivations for this virtualization renaissance are cost-cutting (in 

the areas of hardware infrastructure, power consumption and cooling systems), busi­

ness continuity and server manageability. Other motivations are the possibility of 

doing development and testing on virtual environments, having a faster deployment 

process using virtual appliances, running legacy systems, improving security through 

isolated environments, and running existing operating systems on multiprocessor ar­

chitectures.

Virtualization presents some disadvantages as well. For example, system man­

agement becomes more complex (there is currently a lack of assistance tools for this 

task) and the I/O  system becomes a bottleneck when the hosted virtual machines are 

under an intensive I/O  workload.

2.1.2 Types o f V irtualization Solutions

There are two different ways to provide virtualization: hypervisor-based virtualization 

and operating system-level virtualization. The first type uses a hypervisor (or vir­

2From now on, when talking about virtualization, system virtualization should be understood, 
unless otherwise noted.



8

tual machine monitor), which is a layer of software that runs directly on hardware3. 

The hypervisor creates virtual machines on top of which operating systems can be 

installed. The hypervisor manages the allocation of hardware resources to the guest 

operating systems.

The hypervisor runs in the most privileged mode and the guest operating systems 

run in a less privileged mode (although not the least privileged one). Every attempt 

from the guest operating systems to access shared resources is intercepted by the 

hypervisor, which verifies the validity of the operation and performs it on behalf of 

the guest operating systems.

One of the operating systems running on top of the hypervisor has higher privileges 

than the guest operating systems and it is used for management purposes, that is, to 

run management software that can interact with the hypervisor. This distinguished 

operating system is known as the host operating system.

The guest operating systems can be fully-virtualized or paravirtualized. In the first 

case, the guest operating systems are unmodified operating systems, designed to be 

run on top of bare hardware. In this scenario, guest operating systems are unaware 

that they are running on top of virtual machines, and the process of intercepting 

system calls and executing them on behalf of the guests remains unknown to the 

guests themselves.

Guest operating systems that are paravirtualized have had the source code mod­

ified to replace system calls with hypercalls (that is, calls to the hypervisor). This 

results in no interception and verification of system calls, thus improving performance.

The second form of providing virtualization is through operating system-level 

virtualization. In this case, an operating system with virtualization capabilities runs 

on top of the hardware, doing essentially what an operating system would do in a 

non-virtualized environment.

These operating systems have features for enabling the simultaneous existence 

of multiple user-space environments called containers (also known as Virtual Private

3There is an additional type of hypervisor that runs on top of an operating system (hosted 
virtualization). It is known as type 2 hypervisor.



9

Servers or Virtual Environments). The containers share the operating system’s kernel 

(as it does not happen in hypervisor-based virtualization), but everything that runs 

on top of the kernel is independent (that is, each container has its own copy).

In the following section, an operating system that uses containers is presented.

2.2 OpenVZ

OpenVZ is an operating system kernel that provides operating system-level virtual­

ization [3, 22]. It is essentially a Linux kernel modified4 to run multiple, isolated 

containers (i.e. virtual user-space environments) on a single physical server. It pro­

vides close to native performance [27], scalability and dynamic resource management. 

However, due to its nature, this virtualization solution can only run containers based 

on GNU/Linux distributions.

The purpose of OpenVZ is to support the execution of multiple containers. The 

host system itself runs inside a privileged container. The containers are isolated 

program execution environments, which appear as stand-alone physical servers to 

their users. Each container has its own set of processes starting with the init process, 

file system, users (including root account), applications, memory, network interfaces 

with IP addresses, routing tables, firewall rules, etc.

OpenVZ adds three new functionalities to the Linux kernel: virtualization and 

isolation (of various subsystems), checkpointing, and resource management. The 

virtualization and isolation of resources enables the simultaneous execution of multiple 

containers. For example, each container requires its init process to have process 

identifier (PID) equal to 1. Prom the point of view of an operating system, it is 

not possible to have two (or more) processes with the same PID. However, since 

the containers are isolated from each other, it is possible to repeat PIDs between 

containers.

Container checkpointing is the ability to suspend an executing container, save its 

state to a file and restart it again later. Container migration is a natural extension

4Some of these modifications have even made its way into mainstream Linux.



10

of checkpointing: the container is first suspended, its state file is transferred to a 

new location and the container is restarted there. All the network connections are 

migrated with the container, so the user perceives no downtime, but does perceive a 

delay in processing. This process is also known as live migration.

OpenVZ implements a dynamic resource management subsystem that enables the 

definition of limits (and guarantees) for the resources assigned to each container. The 

subsystem is organized into these four components:

• Two-level disk quota: The host administrator can define per-container disk 

quotas in terms of disk blocks and number of inodes. In the second level, each 

container administrator can use standard UNIX quota tools to define per-user 

and per-group disk quotas;

• ’Fair’ CPU scheduler: A two-level implementation of the fair-share scheduling 

strategy. OpenVZ’s CPU scheduler first picks a container to allocate the next 

time slice based on CPU priorities and CPU limits of the containers. The 

standard Linux scheduler then chooses a process from the selected container 

based on standard process priorities;

•  Two-level I /O  scheduler: In the first level, the host’s I/O  scheduler distributes 

the available I/O  bandwidth among containers based on I/O  priorities of the 

containers. In the second level, the processes inside each container are scheduled 

with the Completely Fair Queuing I/O  scheduler [4, 5];

• User Beancounters: Each container has a set of about 20 parameters [17] (coun­

ters, limits and guarantees) to regulate the allocation and measure the utiliza­

tion of memory and in-kernel objects, such as IPC (Inter-Process Communi­

cation) shared memory segments or network buffers. Each parameter has five 

values associated with it: current usage, maximum usage (over the container’s 

lifetime), barrier, limit and fail counter. The meaning of barrier and limit is 

parameter-dependant, although they can be considered some kind of soft and



11

hard limit, respectively. The fail counter is increased each time the resource 

hits its limit.

For management purposes, each container has a configuration file. This file pro­

vides details on the resource allocation for the container. The configuration file also 

has additional information, such as the container’s identification number (CTID), its 

IP, hostname, etc. The privileged container, identified with CTID 0, does not have a 

configuration file. Listing 2.1 shows a sample configuration file.

OpenVZ relies on two utilities for the management of containers: v z c tl  and 

vzpkg. These utilities run on the privileged container, v z c tl  implements a high- 

level command line interface for managing the containers (creation, modification, 

destruction) and vzpkg is a set of tools for the creation of template caches. The 

template caches are compressed archives of chrooted environments with selected 

software packages installed on them. The selection of software packages to be installed 

in a template cache is called template. When a container is created, a template cache 

needs to be specified, for it to be decompressed. The decompressed environment is 

the container.

The live migration process in OpenVZ consists of two phases. First, the container’s 

filesystem is copied to the destination machine while the container is still running. 

In the second phase, the container is checkpointed, its state file is transferred to the 

destination machine and a second copy of the container’s filesystem is started. This 

second copy is incremental, in the sense that it only affects those files that were 

modified after the first copy. When the second copy finishes, the container is restored 

from the state file at the destination machine.

OpenVZ does not provide container replication, but it can be implemented. The 

first step is to stop the container that is to be replicated. The container’s filesystem 

and configuration file are then copied. (Once the filesystem is copied, the original 

container can be restarted.) The third step is to modify the configuration file with 

the CTID to be used for the replica. After this last step, the replica can be started.



12

Listing 2.1: Sample Container configuration file
ONBOOr=” yes”

#  UBC par ame t e r s  ( i n  form of  b a r r i e r : l i m i t )
KMEM3ZE=” 1 1 0 5 5 9 2 3 : 1 1 3 7 7 0 4 9 ”
LOCKEDPAGES=” 2 5 6 : 2 5 6 ”
PRIWMPAGES=” 6 5 5 3 6 : 6 9 6 3 2 ”
SHMPAGES=” 2 1 5 0 4 : 2 1 5 0 4 ”
NUMPROC=” 2 4 0 : 2 4 0 ”
PHYSPAGES=” 0 : 2 1 4 7 4 8 3 6 4 7 ”
VMGUARPAGES=” 3 3 7 9 2 : 2 1 4 7 4 8 3 6 4 7 ”
OOMGUARPAGES=” 2 6 1 1 2 : 2 1 4 7 4 8 3 6 4 7 ”
NUMKPSOCK=” 3 6 0 : 3 6 0 ”
MJMFLOCK=” 1 8 8 : 2 0 6 ”
NUMPIY=” 1 6 : 1 6 ”
NUMSIGINFO=” 2 5 6 : 2 5 6 ”
TCPSNDBUF=” 1 7 2 0 3 2 0 : 2 7 0 3 3 6 0 ”
TCPRCVBUF=” 1 7 2 0 3 2 0 : 2 7 0 3 3 6 0 ”
OTHERSOCKBlJF=” 1 1 2 6 0 8 0 : 2 0 9 7 1 5 2 ”
DGRAMRCVBUF=” 2 6 2 1 4 4 : 2 6 2 1 4 4 ”
NUMOTHERSOCK=” 3 6 0:3 6 0 ”
DC ACHESIZE=” 3 4 0 9 9 2 0:3 6 2 4 9 6 0 ”
NUMFILE=” 9 3 1 2 : 9 3 1 2 ”
AVNUMPROG=” 1 8 0 : 1 8 0 ”
NtJMIPTENT—’ 1 2 8 : 1 2 8 ”

#  Disk quota par amet er s  ( in form of s o f t l i m i t : h a r d l i m i t )  
DISKSPACE=” 1 0 4 8 5 7 6 : 1 1 5 3 0 2 4 ”
DISKINODES=” 2 0 0 0 0 0 : 2 2 0 0 0 0 ”
QUOTATIME=” 0”

#  CPU f a i r  s hedul e r  paramet er  
CPUUNITS=” 1000”

VEJIOOT=” /v z  / r o o t  /SVEID”
VE_PRIVATE=” /  v z / p r i v a t e  /SVEID”
OSTEMPLATE=” c e n t o s - 5 - 1 3 8 6 - d e f a u l t  - 5 . 2 - 2 0 0 9 0 1 1 7 ” 
ORIGIN_SAMPLE=” v p s . b a s i c ”
IPJVDDRESS=” 1 2 9 . 1 0 0 . 1 8 . 9 1 ”
HOSTNAME=” o n e . com”
NAMESERVEft=” 1 2 9 . 1 0 0 . 1 6 . 2 5 2  1 2 9 . 1 0 0 . 1 6 . 2 4 6  1 2 9 . 1 0 0 . 2 . 1 2 ” 
NAME=” c l 8 9 1 ”



2.3 Summary
13

This chapter covered basic information necessary to build a context for the following 

chapters. The concept of virtualization was presented with a focus on system virtual­

ization. Two types of virtualization solutions were described as well: hypervisor-based 

virtualization and operating system-level virtualization.

OpenVZ, an operating system with virtualization capabilities, was presented. Its 

distinctive features were described, as well as its migration mechanism. It was also 

explained how replication can be implemented.



14

Chapter 3 

Related Work

This chapter reviews the research pursued by other groups in the same or related 

areas. Section 3.1 discusses resource monitoring. Section 3.2 deals with algorithms 

and policies. Section 3.3 features diverse resource management systems for virtualized 

environments. Section 3.4 presents studies on the virtual machine migration process. 

Section 3.5 deals with decision-making support tools. Section 3.6 has a discussion of 

systems management.

3.1 Resource M onitoring

Resource monitoring is an essential building part for a dynamic resource management 

system. Resource utilization statistics are essential to making management decisions.

Wood et al. developed for their resource management system, Sandpiper [33], two 

monitoring mechanisms: black-box and grey-box. Black-box monitoring consisted of 

collecting statistics from the virtual machines (CPU, network and memory utilization) 

without directly contacting the virtual machines. Only the information available from 

the host operating system was used. On the other hand, grey-box monitoring required 

the use of an additional software module running inside each virtual machine. This 

module (or daemon) would collect operating system statistics (also CPU, network 

and memory utilization) and process application logs.

In Golondrina, only black-box monitoring is used. Although grey-box monitoring 

provides for a better understanding of the virtual machines’ resource utilization (and



15

hence better prediction of future demand), it is also a more invasive mechanism. 

A software module needs to run inside the virtual machines for statistics collection 

purposes and virtual machines owners may not agree to that.

3.2 Algorithm s and Policies

In order to automate resource management, algorithms and policies for determining 

suitable migrations and consolidation patterns are required. In addition, system 

administrators should be able to define policies to customize the system’s behavior.

Hyser et al. presented a dynamic virtual machine placement system [20], The pro­

posed architecture consisted of a virtualization management service and a virtual ma­

chine placement service. The virtualization management service provided information 

about the organization of the physical nodes and virtual machines, and performance 

data to the virtual machine placement service. The virtual machine placement service 

used the provided information in conjunction with user-defined policies to determine 

migrations for the virtualization management service to execute.

The system had a clear separation between virtual machine management and 

decision-making, but there was no in depth study of policies. The following work 

filled that gap.

Gmach et al. developed a resource management system for workload consolida­

tion through migration [18]. The system was designed to optimize resource utiliza­

tion (power included) and to provide Quality of Service. The system consisted of 

a workload placement controller and a workload migration controller. The work­

load placement controller used trace-based techniques1 to study workload behavior 

in order to determine the best workload consolidation. The controller was used to 

determine the original workload placement and it was periodically called to redo the 

placement. The workload migration controller (fuzzy-logic based) was responsible for 

periodically checking the physical hosts for overload situations (requiring workload

1 Trace-based techniques use sequences of observations collected during a system’s run to study 
the behaviour of the system.



16

migration) and underload situations (requiring workload eviction and host turn off).

Different overload and underload thresholds for the migration controller were eval­

uated. The threshold values that offered the best balance between resource utilization 

and quality of service were selected. This work defined policies for the workload place­

ment controller and studied the effectiveness of each policy. They found that using 

a historical policy (for studying the traces) in combination with the migration con­

troller provided the closest results to an ideal situation (i.e. perfect knowledge of 

future workload behavior).

Currently, Golondrina implements the equivalent to the workload migration con­

troller. However, a placement controller could be implemented as well with a historical 

policy. The experiments to determine the thresholds for the workload migration con­

troller could be replicated as well, so as to determine the most suitable thresholds for 

Golondrina.

3.3 M anaging M ultiple Virtual Machines within  

M ultiple Physical Servers

A data center can be composed of dozens to thousands of physical servers. Each 

physical server can run multiple virtual machines. Thus, a resource management 

system for a data center needs to be able to manage such a crowded environment.

Bhatia and Vetter worked on the development of a Virtual Cluster Manager [15]. 

The objective was for the system to manage a cluster of physical servers, each of them 

hosting virtual machines, while hiding from the system administrator virtualization 

platform details. The system provided features such as automatic load balancing 

and eviction of all the virtual machines hosted in a physical server in preparation for 

maintenance tasks. The system would also enable the definition of policies for load 

balancing and node failure handling.

The system was based on a client-server architecture. XCM Daemons ran in the 

physical servers gathering performance metrics which were sent to the XCM Client.



17

The XCM Client, running in a remote node, combined the collected data with cluster­

wide information. The XCM Client could display performance information from 

the virtual machines running in each physical server and provided three features for 

system administration: manual live migration of virtual machines, automatic load 

balancing, and preemptive node maintenance (eviction of all the virtual machines 

hosted in the node).

The authors did not build an autonomic system, but rather a set of system man­

agement tools for an administrator to use. In addition, the system worked with the 

granularity of virtual machines. In other words, the system used virtual machine 

migration to do load balancing, but did not consider doing resource reallocation.

Wood et al. developed Sandpiper, a resource management system that used vir­

tual machine migration to deal with resource stress situations [33]. The system would 

automatically monitor resource utilization, detect hotspots (or resource stress situa­

tions), and trigger migrations. They studied two approaches to monitoring: black-box 

and grey-box (see Section 3.1 for more information).

Sandpiper was based on a client-server architecture. A component called Nucleus 

ran in each physical server. It monitored resource utilization and sent resource utiliza­

tion statistics to the central system. The central system ran in an individual physical 

node and it was composed of three parts: Profiling Engine, Hotspot Detector, and 

Migration Manager. The Profiling Engine received the resource utilization statistics 

collected at each physical server. This was used to build resource utilization profiles 

for each virtual server and aggregate profiles for each physical server.

The Hotspot Detector constantly monitored the resource utilization profiles in 

order to detect hotspots (situations where the resource utilization exceeds certain 

threshold or a Service Level Agreement is violated during a certain amount of time). 

The Migration Manager was invoked upon a hotspot detection to decide which virtual 

servers had to be migrated, where they had to be moved, and how much resources 

had to be allocated in the new host.

Golondrina is based on some of the ideas implemented in Sandpiper, but adds 

replication as a mechanism to deal with resource stress situations. In addition, Golon-



18

drina only implements black-box monitoring. Grey-box monitoring can be considered 

an invasive mechanism that clients might find undesirable.

Zhu et al. developed an automated resource management system that consisted 

of three controllers that worked at different hierarchichal levels and intervals in time 

[36]. The purpose of the system was to enable clients and system administrators to 

focus on policy settings.

The system’s design combined three controllers: node controller, pod controller 

and pod set controller. The node controller did resource reallocation among the 

workloads hosted in a physical node. It was a two-level control system, composed of 

utilization controllers and an arbiter controller. The utilization controllers measured 

the average resource consumption and requested the next resource allocation based 

on resource utilization objectives. The arbiter allocated resources based on resource 

requests, resource availability and workload priorities.

The physical nodes were organized in pods (groups). The pod controller received 

information from each node controller and triggered migrations with the objective 

of achieving Quality of Service goals (e.g. avoid resource stress situations) while 

maximizing resource utilization. The pod set controller was responsible for studying 

the overall performance of various pods and migrating workloads between pods to 

improve performance.

The authors reported that the integrated work of the three controllers offered good 

results in terms of resource utilization and Quality of Service. This work was built 

upon previous studies [27, 20, 18].

Marinescu and Kroeger proposed an autonomic framework for resource manage­

ment [24], The objective was to design a modularized framework with a clear sepa­

ration between control and management modules. This characteristic would enable 

different intelligent controllers to be plugged into the system, allowing for manage­

ment strategies (developed by different research groups) to be compared over different 

infrastructures with a common evaluation mechanism.

The framework was composed of VM Managers (one per virtual machine), Physical 

Managers (one per physical server) and one Cluster Manager. The VM Manager



19

would monitor the virtual machine’s resource utilization and the hosted application 

(inside the virtual machine) performance regarding Service Level Objectives (e.g. 

keep a web server’s response time below a certain threshold). If the Service Level 

Objectives were not satisfied, the controller would request more resources from the 

Cluster Manager.

The Physical Manager was responsible for monitoring the physical server’s re­

source utilization and for executing instructions from the Cluster Manager. The Clus­

ter Manager (an intelligent controller) would use the data provided by the Physical 

Managers to determine how to satisfy the resource requests from the VM Managers.

Finally, Zhang et al. took a very different approach in the matter of resource 

management. They developed a control model for virtual machines self-adaptation 

[34]. The objective was for virtual machines to adapt their resource demand based 

on feedback from the system regarding resource availability.

For this purpose, they developed a mechanism to provide the virtual machines 

with feedback concerning the state of their bottleneck resource. They also developed 

a mechanism for virtual machines to scale up/down the resource demand. Finally, 

they came up with an adaptation strategy that would combine the work of the two 

previous mechanisms. This strategy would determine how to modify the resource 

demand based on the system’s feedback.

3.4 Characterizing Migration Process Behavior

Virtual Machine Migration is a useful mechanism for resource management in data 

centers. However, the migration process needs to be well understood in order to make 

an efficient use of it.

Zhao and Figueiredo presented an experimental study on characterizing the virtual 

machine migration process and predicting its performance [35]. The experiments 

included parallel and in sequence migrations, and the use of CPU- and memory­

intensive applications inside the virtual machines. The migration process time length 

was measured and the effect the migration process had on the hosted applications’



20

performance (measured as the increase of the applications’ runtime) was measured as 

well. The authors concluded that the migration process time and performance could 

be predicted for a number of virtual machines based on measurements from a single 

virtual machine.

Kochut and Beaty developed an analytical model for virtual machine migration to 

help in estimating the improvement in response time due to a migration decision [21]. 

The model accounted for virtual machine resource demand prediction, the time it took 

to migrate a virtual machine between two physical servers, and the migration process’s 

overhead. Given the current system’s load and considering the virtual machines’ 

future demand, the model could help decide if a migration process should be started 

and which virtual machines should be migrated.

Both studies represent a step forward in the development of decision-making sup­

port mechanisms and could be replicated in Golondrina for that purpose.

3.5 Decision Support Infrastructure

If the resource management system is to be autonomic, mechanisms for decision­

making support are required. Once there is a resource management system available, 

it is possible to move on with research in this area.

Munasinghe and Anderson worked on the development of a data center architec­

ture (hardware and software configuration) that could provide guaranteed Quality 

of Service to its clients [25]. They built the system’s infrastructure (that is, virtu­

alization solution, shared storage, and control infrastructure) and worked on adding 

autonomic capabilities to the system so it could reconfigure itself based on monitoring 

data and Quality of Service objectives.

For the automatic resource scaling feature, they designed two alternatives: verti­

cal scaling and horizontal scaling. For vertical scaling, the system would reallocate 

resources among the virtual machines hosted in a physical server, or the system would 

trigger virtual machine migrations. For horizontal scaling, the system would clone 

virtual machines and start the copies in different physical servers. A load balancer



21

would distribute the load between the cloned virtual machines.

The current prototype of the system only implements horizontal scaling, which 

Golondrina can achieve as well. In addition, Golondrina is already able to do vertical 

scaling through virtual machine migration.

Begnum et al. worked on decision support mechanisms for virtual machine place­

ment [14]. They proposed three technology-independent metrics for evaluating the 

state of virtualized infrastructures: redundancy level, resource conflict matrix and 

location conflict table. These metrics would help in defining administration policies 

and evaluating policy compliance.

The first metric had the form R/S, where R was the total number of physical 

servers available and S  was the number of servers that could be taken down without 

impeding a virtual machine from keeping running. The resource conflict matrix metric 

was a per-resource tool that showed which virtual machines were using the same 

resource and hence could be in conflict. The location conflict table metric ordered the 

physical servers based on the overall number of conflicts that resulted from considering 

the different resources. This metric would help in evaluating which server would have 

the least number of conflicts when placing an additional virtual machine there.

3.6 M anagem ent Tools for Virtual Machines

System Management involves the deployment and overall management of a cluster 

of physical servers. A resource management system could be integrated into system 

management software or could work side by side with such software.

Vallée et al. developed OSCAR-V, a set of tools for the deployment and manage­

ment of host operating systems and virtual machines in a cluster [31]. These tools 

were extensions to OSCAR, a toolkit for cluster installation, configuration and man­

agement. OSCAR-V consisted of the tool V3M (Virtual Machine Management and 

Monitoring tool). However, the monitoring features were not implemented.

Krsul et al. worked on a framework for virtual machine management in the Grid 

[23], They developed the Grid service VMPlant, which enabled the automatic config­



22

uration and instantiation of virtual machines, and also provided monitoring capabili­

ties. The client interacted with a VMShop, a front-end for the Grid service, to create, 

query and destroy virtual machines. In order to create a virtual machine, the client 

provided VMShop with a series of specifications and VMShop would find a VMPlant 

(physical server) to instantiate the virtual machine. The VMPlant selection process 

consisted of a bidding process where each VMPlant provided a creation cost for the 

requested virtual machine and the VMPlant with the lowest cost was selected.

Ramakrishnan et al. advocated for enabling live virtual machine migration be­

tween data centers across WANs (Wide Area Networks) [28]. This feature would help 

in dealing with scheduled data center maintenance and unexpected failures (outages). 

They proposed a Migration Management System that would coordinate the migra­

tion process with these three subsystems involved: virtualization platform, network 

management system, and storage subsystem. However, some of the necessary ca­

pabilities they pointed out are not yet available. New network features are needed 

for promptly redirecting network traffic to the virtual machines’ new location and 

storage replication technologies need to incorporate a different approach to remote 

replication.

3.7 Summary

This chapter presents the work done by other researchers in areas related to the topic 

of this research. Resource monitoring techniques are discussed, as well as studies on 

algorithms and policies for virtual machine placement. Different resource manage­

ment systems developed as research projects are presented. Decision-making support 

tools are described, jointly with studies on the virtual machine migration process. 

System management is also presented at the end for completeness.

This survey shows that research is being conducted to develop mechanisms for 

decision making support. Once effective mechanisms are developed, it will be possible 

to study resource management strategies that make use of those mechanisms. Our 

contribution in this direction consists of studying virtual machine replication as a



mechanism to deal with resource stress situations. Most work in dynamic resource 

provisioning in data centers focus only on virtual machine migration.

23



24

Chapter 4 

Architecture

This chapter presents the architecture of Golondrina, an autonomic resource manage­

ment system. Section 4.1 describes the infrastructure in which the system operates. 

Section 4.2 provides a bird’s-eye view of the whole system. Section 4.3 describes the 

interaction between the system’s components. The remaining Sections focus each on 

a different component of the system, detailing its functionality, design and interface.

4.1 Infrastructure

The infrastructure where the system runs is a cluster of homogeneous physical servers. 

A physical server can have one of three roles. One role that a physical server may 

have is that of an OpenVZ hardware node, that is, a host of containers.

Another role is that of the manager server. All communications relative to the 

management of the cluster take place between the manager server and any other 

physical server.

The last role is that of the gate of the cluster. All service requests (external 

communications) come in through this physical server, which redirects the requests 

to the appropriate hardware node using a load balancing software.



25
/ — 7

Manaqer Server

Server |

S

>

s ------ 7

Gate of the Cluster

Gate

Figure 4.1: Golondrina’s architecture

4.2 B ird’s-eye View

Golondrina is organized as a client-server architecture [30] (see Figure 4.1). A Client 

component runs in every hardware node and the Server component runs in a non- 

virtualized physical server. An additional component, the Gate, runs also in a non- 

virtualized physical server, which is used as the gate of the cluster.

The Client component has two responsibilities. The first responsibility is to gather 

resource utilization statistics1 from the containers and the hardware node and to 

communicate these statistics to the Server. The second is to execute relocations 

based on instructions from the Server.

The Server component has three responsibilities. The first responsibility is to 

receive and process the clients’ statistics. The second responsibility is to analyze the 

collected data to detect potential resource stress situations. The third responsibility 

is, upon detection of a resource stress situation, to find a sequence of relocations that 

could dissipate the problem.

Currently, the system only manages CPU, so the Client gathers CPU utilization statistics. 
However, collecting other resources utilization statistics is feasible and it is part of our future work.



26

Figure 4.2: Monitoring

Finally, the gate updates the load balancer’s configuration based on instructions 

from the Server.

4.3 Interactions

The components of the system interact in three situations. The most basic interaction 

is when a Client sends CPU utilization statistics to the Server (see Figure 4.2). This 

situation happens periodically.

The second form of interaction occurs when a resource stress situation is detected 

and the Server contacts a Client for it to migrate a container away from its current 

hardware node (see Figure 4.3). Once the migration is completed, the Client contacts 

the Server to inform of the operation’s completion.

The third form of interaction takes place upon detection of a resource stress sit­

uation (see Figure 4.4). In this case, the Server requests that a Client replicate a 

container. The Client contacts the Server once the replication has been completed 

and the Server then contacts the Gate to inform it about the replication.



Client

Gate

Figure 4.3: Migration

3: replication

Figure 4.4: Replication



4.4 Client

The Client component was designed to run in a hardware node, implementing the 

monitoring and relocating mechanisms of the system. Running from the privileged 

container of the hardware node, the Client has access to the operating system’s con­

figuration and accounting files.

One function of the Client component is to periodically gather CPU utilization 

statistics about the containers and the hardware node, and send these statistics to 

the Server. The monitoring treats the containers as black boxes, that is, only using 

information that can be obtained without directly contacting the containers. The 

Client obtains the CPU utilization statistics from the hardware node’s operating 

system accounting files.

Another function of the Client is to execute relocations based on instructions from 

the Server. When a resource stress situation is discovered, the Server may instruct a 

Client that a container has to be migrated out of the hardware node or that a new 

container (a replica) has to be started in the hardware node. To carry out these tasks, 

the Client contacts the underlying operating system to use the OpenVZ management 

tools (see Section 2.2).

There are complementary tasks that the Client has to do. For example, collecting 

miscellaneous information from the hardware node, such as its host name and the 

number of cores of the CPU, and from the containers, such as their host names and 

IP addresses.

4.4.1 D esign

The Client component’s design consists of six modules: Client, Sensor, Actuator, 

ContainerData, ClientProtocol and ClientFactory (see Figure 4.5). The Client module 

implements the logic of the component. It periodically calls the Sensor to gather CPU 

utilization statistics and calls the ClientProtocol to send messages to the Server. It 

contacts the Actuator when a relocation has to be done and parses the messages sent 

by the Server and carries on the appropriate actions.

28



29

r

i _

Communication
Framework

Figure 4.5: Client component’s design

The Sensor encloses all the functionality related to obtaining information from 

the operating system. It reads accounting files to gather CPU utilization statistics, 

and reads configuration files to obtain hostnames and IP addresses.

The Actuator handles all the tasks that entail a change of state in the hardware 

node. It modifies configuration files and issues commands to the underlying operating 

system to trigger container migrations or start replicas.

The ContainerData module is a data storage entity. There is an instance for 

each container currently running in the hardware node, which stores the container’s 

identification (ctid), hostname, IP address, and last CPU utilization statistics.

The ClientProtocol and ClientFactory modules handle the communication with 

the Server. The ClientFactory creates a ClientProtocol to establish a connection 

with the Server and reestablishes the connection when the latter gets lost. The 

ClientProtocol sends and receives messages to and from the Server.

4.4.2 Interface

The Client component uses message passing to communicate with the Server. Two 

kind of messages can be received:



30

•  migration(CTID, DESTJD)

The first message indicates to the Client (source of the relocation) that the con­

tainer with identification CTID has to be migrated to the hardware node with iden­

tification DEST-ID. The Actuator module starts the migration process.

•  replication(CTID, IP)

The second message indicates to the Client (target of the relocation) that the 

container with identification CTID has to be replicated with IP address IP in the 

hardware node where the Client is running. The Actuator module starts the replica­

tion process.

4.4.3 Required Calculations

The Client has to periodically gather CPU utilization statistics from the contain­

ers and the hardware node. These statistics are not directly available, but can be 

calculated based on information from the operating system’s accounting files.

At time t, two values can be obtained for each non-privileged container: uptimet 

and usedt . The first value is the elapsed time since the container was started and the 

second value indicates the amount of CPU time that the container has actually used. 

Based on those two values, it is possible to calculate the proportion of used CPU time 

over the total available CPU time in the time interval (t — l,t] . The following is the 

equation used for that purpose:

_  usedt ~  usedt- 1 , .
uptimet — uptimet- \

The same equation is applied to calculate the proportion of CPU time used by 

the hardware node in the time interval (t — l,t].



4.5 Server

The Server component runs in a non-virtualized physical server and implements deci­

sion making support mechanisms, such as data processing and analysis, and decision 

making processes.

The Server receives and processes the statistics that are periodically sent by the 

Clients. The statistics are stored in a registry, organized by hardware node and 

container.

The second function of the Server is to periodically analyze the collected data to 

search for potential resource stress situations. Mathematical models are built for each 

hardware node and container and updated with every new observation. These models 

are used to predict the next CPU utilization value, in an attempt to be proactive in 

dealing with resource stress situations.

In order to define a resource stress situation, a threshold for hardware nodes’ 

CPU utilization is defined. Every time the predicted CPU utilization of a hardware 

node exceeds that threshold, a flag is raised as a warning for that hardware node. 

A hardware node is considered to be under a resource stress situation if the current 

resource stress check and k out of the previous n checks resulted in flags being raised.

Finally, the third function of the Server is to find a sequence of relocations that 

could dissipate a resource stress situation. The system attempts to find a container 

that could be relocated and a hardware node that could be used as target for the 

relocation.

4.5.1 D esign

The Server component’s design consists of seven modules: Server, Registry, Hard- 

wareNode, Container, Relocator, ServerProtocol and ServerFactory (see Figure 4.6). 

The Server module implements the logic of the component. It periodically runs 

resource stress checks and calls the Relocator upon detection of a resource stress situ­

ation. It contacts the Clients to trigger relocations and contacts the Gate component 

to inform of successful replications. Finally, it parses the messages from the Clients

31



32

r

i _

Figure 4.6: Server component’s design 

and carries the appropriate actions.

The Registry stores the collected data gathered from the hardware nodes and 

containers. It processes the statistics reports sent by the Clients and maintains a list 

of HardwareNode modules.

The HardwareNode module is a data storage entity that represents a physical 

hardware node in the system. It stores static information, such as the hardware 

node’s hostname and the number of cores of the CPU, and dynamic information, 

such as the number of relocations in which the hardware node is currently involved 

and the resource stress flags. It is associated with a list of Container modules.

The Container module is a data storage entity that represents a container in the 

system. It is used to store the collected CPU utilization observations and to build and 

maintain the mathematical model used to predict the next CPU utilization value.

The Relocator implements the decision making processes of the system. It uses 

policies to determine which container to relocate and where that relocation should 

take place.

The ServerProtocol and ServerFactory modules handle the communications with 

the Client instances and the Gate component. The ServerFactory creates a ServerPro­

tocol to handle an incoming connection and the ServerProtocol exchanges messages



33

with the ClientProtocol or GateProtocol that started the connection.

4.5.2 Interface

The Server component communicates with the Client instances and the Gate through 

message passing. Four kind of messages can be received:

•  statistics(HNID, CORES, CTID, CPUJJSAGE)

The first message is a CPU utilization statistics report. It provides the last 

C P U JJS A G E  observation of the container with identification C TID , which is 

hosted in the hardware node with identification H N ID . The message also provides 

the hardware node’s number of CO RES. The Registry module processes the report 

and stores the information.

•  hello ()

The second message is a salutation from the Gate component. Its objective is to 

register a communication channel with the Server. No additional input information 

is transmitted. The Server module registers the communication channel.

•  migration(SRC_ID, DESTJD, CTID)

The third message indicates that the container with identification C T ID  has 

been successfully migrated from the hardware node with identification SRC J D  to 

the hardware node with identification D E S T JD . No actions are triggered by this 

message.

•  replication(HNID, CTID, HOSTNAME, IP)

The fourth message indicates that the container with identification C T ID  has 

been successfully replicated in the hardware node with identification H N ID . The 

message also provides the replica’s H O S T N A M E  and IP  address. The Server mod­

ule forwards the information to the Gate. Clients cannot send the information directly 

to the Gate because they do not know about the existance of the Gate (i.e. there is 

no need for the Clients to know how load balancing is achieved in the cluster).



34

4.5.3 Required Calculations

One of the tasks carried on by the Server is the creation and update of mathematical 

models for the containers and hardware nodes. These models are used to predict the 

CPU utilization of a container or hardware node in the next time interval based on 

a sequence of previous observations (see Subsection 4.4.3 for an explanation on how 

the Client obtains the observations).

The mathematical model used is the Auto-regressive Model of Order 1 AR(1) [16], 

which relies on the last observation in the sequence and two parameters: fi, the mean 

of the values in the sequence, and 6, which accounts for the variations of the values 

in the sequence.

Given a sliding window of CPU utilization statistics W  — [ux,...,u t\ with maxi­

mum size w and where x  = max(0, t — w + 1). The parameters fi and 9 at time t are 

calculated as follows:

Ht =
Î >
i—x

t — x  +  1
(4.2)

t-i
] T ( u j  -  fit ) *  (u i+ 1 -  fit)
^ -------- ¡Zi----------------  (4.3)

m a x ( l , Y , { u i  -  f i t ) 2 )
i=x

Having the values ut, fit and 9t, it is possible to predict the CPU utilization at 

time t +  1:

ût+i = fit +  6t * (ut -  fit) (4.4)

The predicted CPU utilization of a hardware node is used during the periodic 

resource stress check that the Server does for every hardware node. A hardware 

node is considered to be under a resource stress situation if k out of the previous n 

resource stress checks exceeded the CPU utilization threshold and the next predicted 

CPU utilization also exceeds the CPU utilization threshold:



35

overloaded «— ( ^ ( ¿ j  > threshold) > k) A (ui+i > threshold) (4.5)
¿=1

The predicted CPU utilization of a container comes into play when there is a 

resource stress situation in the hardware node that hosts the container. The system 

might attem pt to relocate the container and for that purpose it queries the container’s 

profiled CPU utilization. This value represents the amount of CPU that should be 

allocated to the container at the target hardware node.

The profiling method uses a historical policy to calculate the container’s profiled 

CPU utilization. This value has to satisfy a given percentile of the resource needs 

registered in the last window of time W  = [ux, in addition to the container’s

current resource needs. The method sorts in increasing order the collected statistics 

in W  and takes the value corresponding to the 90th percentile. The profiled CPU 

utilization at time t +  1 is the maximum of the 90th percentile and the container’s 

next predicted CPU utilization plus an additional A:

ut+l =  max(90thpercentile, ut+\ +  A) (4.6)

During the relocation process, the Server checks with non-resource-stressed hard­

ware nodes whether they can host (accept) an additional container without exceeding 

the CPU utilization threshold:

accept <— ht+i +  ut+1 < threshold (4.7)

where /¿i+1 and ut+i stand for the predicted CPU utilization of the non-stressed 

hardware node and the profiled CPU utilization of the container, respectively.

4.6 Gate

The Gate component runs in a non-virtualized physical server. This physical server 

acts as the gate of the cluster, forwarding the service requests to the appropriate



36r

L ____________ I
Communication

Framework

Figure 4.7: Gate component’s design

containers. The only function of this component is to update the load balancer’s 

configuration based on instructions from the Server component.

4.6.1 D esign

The Gate component’s design consists of four modules: Gate, Actuator, GateProtocol 

and GateFactory (see Figure 4.7). The Gate module implements the logic of the 

component. It parses the messages sent by the Server and contacts the actuator to 

carry the appropriate actions.

The Actuator is responsible for dealing with the underlying system. It modifies 

the load balancer’s configuration and contacts the operating system to restart the 

load balancer.

The GateProtocol and GateFactory modules handle the communication with the 

Server. The GateFactory creates a GateProtocol to establish a connection with the 

Server and reestablishes the connection when the latter gets lost. The GateProtocol 

sends and receives messages to and from the Server.



37

4.6.2 Interface

The Gate component communicates only with the Server. It sends a message once 

to establish a connection and then limits itself to receive messages. Only one kind of 

message can be received:

•  replication(HOSTNAME, IP)

This message indicates that a new container for the service H O S T N A M E  has 

been created and its IP address is IP . The Actuator module updates the load bal­

ancer’s configuration with this information.

4.7 Summary

This chapter presented the architecture of the autonomic resource management sys­

tem Golondrina. The infrastructure in which the system operates was presented as 

well. The system’s design was discussed first at the component level, defining each 

component’s functionality and the interactions between the components. Later on, 

each component was analyzed. The responsibilities of the components were discussed 

and the design in modules was described. The interface of each component was also 

presented and details were provided on the calculations performed by each compo­

nent.



38

Chapter 5

Im plem entation

This chapter provides details about the implementation of the system. Section 5.1 

provides general information about the software that was used to build the system and 

the infrastructure. The remaining Sections present each the methods that implement 

the functionality of the different components of the system.

5.1 General Information

The system was implemented in the scripting language Python, version 2.4.3. The 

communications between system’s components were handled through the event-driven 

networking engine Twisted [6], version 8.2.0, which also enabled the definition of 

periodically triggered tasks.

The physical servers run the operating system CentOS [7], release 5.2, with kernel 

OpenVZ [3], release 2.6.18-92.1.18.el5.028stab060.2. The gate of the cluster runs 

Pound [8], version 2.4.3, as a load balancer.

5.2 Client

As explained in Section 4.4, the Client component’s responsibilities include gathering 

CPU utilization statistics from the containers and the hardware node, and executing 

relocations based on instructions from the Server. This Section presents the imple­

mentation details needed to support the functionality described in Section 4.4 and



39

explains the reasoning behind each method.

5.2.1 G athering C P U  U tilization  Statistics

For gathering CPU utilization statistics from the containers, the Sensor module uses 

two methods: gatherCtCpuStats (see Listing A.l) and calculateCtCpuUsage (see 

Listing A.2). The first method reads the file /proc/vz/vestat (see Figure 5.1 for a 

sample file), which is generated by OpenVZ, and creates a ContainerData instance 

for each container whose information is available in the file. For each container, the 

values in the columns uptime (column 8) and used (column 9) are read and stored 

in the corresponding ContainerData instance. Those two values are expressed in CPU 

cycles.

The second method, calculateCtCpuUsage, implements the procedure described 

in Subsection 4.4.3. It first calls gatherCtCpuStats to obtain current observations 

of CPU utilization. Those values are used in conjunction with the values gathered 

in the previous iteration of the method and a ratio is calculated with the differences 

between current and previous observations. The ratio is stored in the corresponding 

ContainerData instance and the set of ContainerData instances created in the current 

iteration are stored so that the uptime and used values can be used as previous 

observations in the next iteration.

The method calculateHostCpuUsage (see Listing A.3) is used to obtain the hard­

ware node’s CPU utilization. It follows the same approach that was used for the 

containers. It reads the file /proc/stat (see Listing 5.1 for a sample file), which is 

generated by the Linux kernel, to obtain the values in the first row (the one that 

begins with the word cpu), each of which correspond to the time spent by the system 

in a given state since the start of the system. The values are expressed in jiffies, that 

is, l/100i/ls of a second.

Two sums are calculated from the current observation: nonJdle^time and to- 

taLtime. The same sums are calculated from the previous observation. With those 

values, a ratio is calculated with the differences between current and previous obser-



Figure 5.1: Sam
ple /proc/vz/vestat file

VEID user nice system uptime idle strv uptime used maxlat totlat numsched

1894 2882 0 3316 660633861 4478263411430844 0 2240511291361515 79062399851 0 0 0

1893 2771 0 3368 660660990 4481046656491778 0 2240603297978835 80525407764 0 0 0

1892 2902 0 3281 660684309 4395767584110638 0 2240682382830654 79591168718 0 0 0

1891 2814 0 3322 660714346 4385662089836350 0 2240784248773261 79998000614 0 0 0

4̂O



41

Listing 5.1: Sample /p roc/sta t file
#  cpu user  nice sys t em i d l e  i o w a i t  i rq s o f t i r q  s t e a l  
cpu 1260299 250411 138414 322144736 49790 19907 16054 0 
cpuO 639009 125893 61055 161088842 23544 6 1330 0 
cp u l  621289 124518 77358 161055894 26245 19901 14724 0 
in t r  1647568313 1619569739 117 0 0 4 0 0 0 3 0 0 0  3287 0 14523922 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
809769 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  10957728 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0  1703744 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

swap 0 0 
c t x t  400189460  
btim e 1243456181  
p r o c e s s e s  581830  
p r o c s .r u n n in g  1 
p r o c s_ b lo c k e d  0

vations. The set of values obtained in the current iteration are stored to be used as 

the previous observation in the next iteration.

5.2.2 C ollecting M iscellaneous Inform ation

The Sensor module also collects miscellaneous information that includes the hardware 

node’s hostname and number of cores of the CPU. This is achieved through the 

method getHostlnfo (see Listing A.4). The hostname is obtained issuing a call to 

the underlying operating system and the number of cores is obtained parsing the file 

/proc/stat (there is an entry for each core at the beginning of the file). The reader 

can refer to Listing 5.1 for a sample file.

In order to obtain the hostnames and IP addresses of the containers, the method 

getCtsInfo (see Listing A.5) is used. It parses the file /etc/vz/conf/xyz.conf 
(where xyz is the CTID of a container) and reads the relevant entries. The reader 

can refer to Listing 2.1 for a sample configuration file.



42

Listing 5.2: Replication procedure
1. G enerate  r e p l i c a ’ s CTID
2. O btain CT’ s image s to r e d  in  c e n t r a l  r e p o s i t o r y
3. P r o c e s s  image
4. E d it  im a g e ’s c o n f ig u r a t io n  f i l e
5. S ta r t  r e p l i c a

5.2.3 E xecuting R elocations

The Actuator module in the Client possesses two methods for executing relocations: 

m igrateC t (see Listing A.6) and re p lic a te C t (see Listing A.7). The first method, 

executed in the node source of the relocation, issues a call to the underlying operating 

system (in fact, to the OpenVZ management tools) indicating which container to 

migrate and to which hardware node. The reader can refer to Section 2.2 for a 

description of the live migration process in OpenVZ.

The re p lic a te C t method, executed in the node target of the relocation, imple­

ments a sequence of actions that provides replication (see Listing 5.2). First, the 

C T ID  for the replica has to be created. For that purpose, the following principle is 

followed: “The C T ID  of a replica will be the C T ID  of the original container pre­

ceded by a 9. ” If the C T ID  of the original container is xyz, the C T ID  of the replica 

will be 9xyz. If the container to replicate is itself a replica, its C T ID  will already be 

9xyz. The C T ID  of the replica of a replica will also be 9xyz.

After determining the new C TID , a call to the underlying operating system is 

issued for the operating system to request from a central repository an image for 

the given container. Once the image is brought from the remote server, the image 

is decompressed and moved to its proper place in the hardware node’s file system. 

The configuration file that comes with the image of the container is moved also to 

its proper destination and later on updated with the new C T ID  and IP . Finally, 

another call is issued to the operating system to start the replica.



43

Configurable System Constants
Constant Purpose
window Number of statistics to store for each container
k Number of positive resource stress checks required to 

flag a resource stress situation
n Total number of resource stress checks to remember

Table 5.1: Configurable System Constants

5.3 Server

The Server component has three responsibilities: receive and process Clients’ statistics 

reports, search for resource stress situations, and find sequences of relocations upon 

detection of resource stress situations (see Section 4.5 for a detailed description of 

the component). This Section details how these tasks are achieved. Subsection 5.3.1 

describes the data storage modules HardwareNode and Container, and the remaining 

Subsections focus each on one of the functionalities of the Server component.

5.3.1 D ata  Storage M odules

The Server component uses the Container and HardwareNode modules to maintain 

system status information. Each of the following Subsections focus on a module.

5.3.1.1 Container

The Container module stores information about an actual container running in the 

system - or a privileged container (see Section 2.2 for a distinction between contain­

ers and privileged containers). The Container module stores each container’s CPU 

utilization statistics, and builds the mathematical model for predicting the next CPU 

utilization value (method updateCpuModel). When the Container module represents 

a privileged container, the CPU statistics that are stored belong to the host system, 

that is, the hosting hardware node. (Tables 5.2 and 5.3 summarize respectively the 

attributes and methods of a Container module. Table 5.1 summarizes the system 

constants used by the Container and HardwareNode modules.)



44

Container Module
Attribute Purpose
ctid Identification number
hn Reference to the hosting hardware node
replicas Set of replicas of this container
m igrating Status flag
cpu List of CPU utilization statistics
tim estam p Timestamp of the last statistics report
recCnt Number of statistics reports received
C P U th eta Parameter for the mathematical model
C PU m u Parameter for the mathematical model

Table 5.2: Container module attributes

Container Module
Method Purpose
i n i t Initialization of the Container module
update Stores new CPU utilization statistic
updateCpuModel Updates the parameters of the mathematical model
cpu Calculates the predicted CPU utilization
profileC pu Calculates the profiled CPU utilization

Table 5.3: Container module methods



45

The i n i t  method (see Listing A.8) initializes the attributes of a Container module 

during creation. In addition to the identification key ctid, the Container module has 

the reference h n  to the HardwareNode module that represents the physical hardware 

node where the actual container is hosted. The Container module also maintains a set 

of references to all existing replicas of itself (every container is considered a replica 

of itself, so the set is never empty), so all the replicas have knowledge of all the 

other replicas. The attribute cpu is a window-sized list of CPU utilization statistics 

received in a period of time and tim estam p serves to indicate when the last statistic 

was received.

Every time a new CPU utilization statistic needs to be stored, the method update 

(see Listing A.9) is called. This method implements the concept of a sliding window. 

Thus, this method drops the oldest statistic when a new one is available. When 

the method is called on a Container module that stores statistics for a hardware 

node (that is, a Container module representing a privileged container), the statistics 

are multiplied by the number of cores in that hardware node. The result of this 

procedure is that when a hardware node with two cores reports using 50% of its 

computing power, the statistic that gets stored is 100%, effectively registering that 

the computing power of a whole CPU is being used (two times 50%).

The CPU utilization prediction, as described in Subsection 4.5.3, involves two 

methods from the Container module: updateCpuModel (see Listing A. 10) and cpu 

(see Listing A. 11). The first method updates the parameters of the mathematical 

model, // and 0, with the statistics received since the last update. The values of the 

parameters are stored in the Container module attributes C PU theta and CPUmu. 

The method cpu calculates the predicted CPU utilization.

The Container module also provides a method to calculate the profiled CPU uti­

lization of a container. As explained in Subsection 4.5.3, the method profileC pu 

(see Listing A.12) sorts the collected CPU utilization statistics of the container and 

takes the value corresponding to the 90i/l percentile. Then, the method returns the 

maximum between the latter value and the container’s next predicted CPU utilization 

plus a A equal to 5%.



46

HardwareNode Module
Attribute Purpose
hnid Identification name
cores Number of CPU cores in the physical hardware node
pipe Communication endpoint with Client component in the 

physical hardware node
ctO Privileged container of the hardware node
containers Set of containers hosted in the hardware node
m axCpu Total CPU capacity of the hardware node
m igCpu Amount of CPU that the hardware node is freeing or 

allocating through ongoing relocations
overChecks Set of n flags used for the resource stress check
overCnt Last position used in the circular queue overChecks
m igrating Number of ongoing relocations

Table 5.4: HardwareNode module attributes 

5.3.1.2 H ardwareNode

The HardwareNode module represents a physical hardware node. It maintains a list 

of Container modules that represents the containers hosted by the physical hardware 

node. The module also provides methods for determining potential resource stress sit­

uations, for evaluating the feasibility of relocations (checking if there are enough spare 

resources to host an additional container), and for updating the system status during 

and after relocations. (Tables 5.4 and 5.5 summarize respectively the attributes and 

methods of a HardwareNode module.)

The i n i t  method (see Listing A. 13) shows the initialization of a HardwareNode 

module during creation. The HardwareNode module receives by parameter its iden­

tification hnid, the number of CPU cores in the physical hardware node, and the 

communication endpoint (pipe) with the Client component running in the physical 

hardware node. The HardwareNode module uses a Container module (ctO) to repre­

sent the privileged container of the physical hardware node. This Container module 

stores the hardware node’s CPU utilization statistics and provides the methods to 

predict the hardware node’s next CPU utilization, m igrating indicates the number 

of ongoing relocations (that is, relocations that have not been completed) in which



47

HardwareNode Module
Method Purpose
init Initialization of the HardwareNode module
overloaded Executes the resource stress check
willFitRep Determines whether the HardwareNode can be target of a 

given replication
willFitMig Determines whether the HardwareNode can be target of a 

given migration
recordMigration Registers a new migration and starts the migration process
re cordRepli cat ion Registers a new replication and starts the replication process
migCompleted Completes the migration process
repCompleted Completes the replication process

Table 5.5: HardwareNode module methods

the hardware node is involved and migCpu records the total amount of CPU that 

the hardware node is freeing or allocating as a consequence of the ongoing relocations. 

overChecks is a set of n flags used during the resource stress check.

The method overloaded (see Listing A. 14) implements the resource stress check 

that the Server component runs periodically for every hardware node. As explained 

in Section 4.5, this method checks if the predicted CPU utilization of the hardware 

node exceeds a given threshold and if k out of the n flags in overChecks have been 

set during previous iterations of the method. overChecks is updated in every call 

to overloaded and works as a circular queue in order to always account for the last 

n checks.

Another method provided by the HardwareNode module is the check done on 

non-stressed hardware nodes to determine whether the hardware node can host an 

additional container. This check is done during the relocation process and it is im­

plemented using the w illF itR ep  method (see Listing A. 15). For a hardware node to 

be chosen to host a container, the sum of the hardware node’s next predicted CPU 

utilization, the value m igC pu  and the container’s profiled CPU utilization has to 

remain below the CPU utilization threshold.

The value m igCpu accounts for the amount of CPU that has already been 

promised to other containers that have been selected to be relocated to the hard­



48

ware node. The container’s profiled CPU utilization is modified by the factor share 

(0 < share <— 1), which reduces the value to a certain percentage of its original 

value. For replications, share equals .6 since the system assumes that doing load 

balancing between the original container and the replica will result in each container 

requiring at most 60% of the profiled CPU utilization. (A perfect load balancing be­

tween two containers would distribute the load in 50% for each container. Golondrina 

allocates 60% instead of 50% to account for potential overheads.)

The HardwareNode module also provides the method w illF itM ig. This method 

is used when the container is to be migrated and the difference with w illF itR ep  is 

that share is equal to 1.

In order to keep track of the ongoing relocations, the HardwareNode module 

provides the methods recordMigration (see Listing A.16), recordReplication (see 

Listing A. 17), migCompleted (see Listing A. 18) and repCompleted (see Listing A. 19). 

The method recordMigration is called on a hardware node that has been selected as 

source or target for a migration. It first increases the counter m igrating to indicate 

that the hardware node is involved in one additional relocation and it records in 

m igCpu the amount of CPU that will be freed (if the hardware node is source of 

the migration) or allocated (if the hardware node is target of the migration). The 

method also modifies the status of the container to be migrated to indicate that it is 

going to be migrated, and the method adds the container to the list of containers in 

the target hardware node.

The method recordReplication accomplishes a similar task to that of the method 

recordMigration. The difference is that the status of the container to replicate is 

not modified and the amount of CPU recorded in m igCpu is modified by the factor 

share.
The methods migCompleted and repCompleted are the counterparts of the meth­

ods recordMigration and recordReplication, respectively. migCompleted is called 

after the completion of a migration. It first decreases the counter m igrating to in­

dicate that a relocation in which the hardware node was involved has finished and to 

reinitialize m igCpu to zero (only if that was the last relocation to be completed).



49

The method also removes the migrated container from the list of containers associated 

with the source hardware node, sets the over Checks set of flags to k-1, and updates 

the container’s status to indicate that the migration has been completed.

The method repCompleted is called after a replication has been completed. The 

difference with the method migCompleted is that repCompleted does not remove the 

container to be replicated from the source hardware node’s list of containers, nor does 

it modify the container’s status.

5.3.2 Processing Statistics R eports

As explained in Subsection 4.5.1, the Register module is responsible for processing 

the Clients’ statistics reports. The method addNewObservation (see Listing A.20) 

is invoked with every new report to store the latest CPU utilization observation 

from a container or hardware node. If the container or hardware node to which the 

observation belongs is not yet registered in the system, the corresponding module 

(Container or HardwareNode) is created and inserted in its proper place in the list of 

hardware nodes hns.

If the statistics report belongs to a container with ctid equal to 0, that means that 

the report actually belongs to the hardware node and the CPU utilization observation 

has to be stored in ctO.

If the container’s ctid is not 0, the method tries to find the container in the list 

of containers of the hardware node with hnid. If the container is found, the method 

checks if the container had been relocated (migration or replication of a replica) and 

the current observation is the first one done at the target hardware node. If the latter 

is correct, the relocation process is completed.

If the container was not found in the hardware node’s list of containers, the method 

checks again if the statistics report belongs to a replica (replication of an original 

container). If the latter is correct, the replication process is completed. If it is not 

the case, then the report belongs to a new container and the corresponding Container 

module is created.



50

5.3.3 Searching for R esource Stress Situations

For this purpose, the method m onitor (see Listing A.21) is used, which calls the 

method overloaded on every hardware node that is not currently involved in a re­

location. The method also looks for containers or hardware nodes from which no 

statistics reports have been received lately1.

If a hardware node is already involved in a relocation (be it as source or target), 

no resource stress check is done on it. The reason is that if the hardware node is 

source of a relocation, it is because it was found under a resource stress situation in 

a previous iteration of m onitor and measures were taken to control the situation. If 

the hardware node is a target for a relocation, its load (understood as the amount 

of CPU used by the hosted containers) is likely to increase soon, so no additional 

relocations are to be considered until all current relocations are completed.

The hardware nodes that are not involved in relocations are checked for resource 

stress and categorized as stressed or non-stressed hardware nodes. Sequences of relo­

cations are only searched for if there are stressed hardware nodes and also non-stressed 

hardware nodes that could serve as relocation targets.

5.3.4 Finding R elocations

Every time a resource stress situation is detected in a hardware node and there 

are hardware nodes available to host additional containers, the Relocator module 

is invoked. Its responsibility is to determine which containers hosted in stressed 

hardware nodes will be relocated and which non-stressed hardware nodes will serve 

as target for those relocations.

When the mechanism to apply is migration, the method m igrations (see List­

ing A.22) is called. The method first sorts the resource stressed hardware nodes in 

decreasing order of their load (that is, the proportion of CPU that is being used) 

and the non-stressed hardware nodes in increasing order of their load. The method 

then analyzes each stressed hardware node at a time, starting with the most stressed

Currently, no action is taken against containers or hardware nodes that have reached their 
timeout.



51

one. It sorts the hosted containers with the decreasingLoadPolicy method (see 

Listing A.23) and tries to relocate each container until the resource stress situation 

is dissipated. For each container, the method cycles through the list of non-stressed 

hardware nodes trying to find a target for the relocation.

The method migrations calls the method decreasingLoadPolicy on the list of 

containers of every resource stressed hardware node that it analyzes. The invoked 

process removes from the list those containers whose CPU utilization is below a 

certain threshold and returns the remaining containers sorted in decreasing order of 

their load. Essentially, the policy is relocate the most loaded containers first and 

never relocate the lightly loaded containers.

When the mechanism to apply is replication, the method replications (see List­

ing A.25) is called by the Relocator module. The only difference with the migrations 
method is that when it queries a non-stressed hardware node to see if it can accept 

an additional container, the method also checks that the hardware node does not 

already host a replica of that same container. This additional check is done invoking 

the method twoReplicasInHnPolicy (see Listing A.24).

5.4 Gate

As explained in Section 4.6, the Gate component has the responsibility of updating the 

load balancer’s configuration when the Server component instructs so. This Section 

provides details on how that task is achieved.

5.4.1 U pdating the Load Balancer’s Configuration

The Actuator module is called by the Gate module when a message is received from 

the Server component requesting that the load balancer’s configuration be updated. 

The Server component always calls after a replication has been completed, in order 

for the load balancer to know that incoming requests for a certain hostnam e can 

now be sent to an additional ip. Since migrations do not involve new or additional 

IPs, they do not require an update of the load balancer.



52

Listing 5.3: Sample Pound configuration file
ListenHTTP

Address 1 2 9 .1 0 0 .1 8 .6 7
Port 80
S e r v ic e

HeadRequire ” Host : .*  one . com . * ” 
BackEnd

Address 1 2 9 .1 0 0 .1 8 .9 1  
Port 80

End
End
S e r v ic e

HeadRequire "Host t w o .c o m .* ” 
BackEnd

Address 1 2 9 .1 0 0 .1 8 .9 2  
Port 80

End
BackEnd

Address 1 2 9 .1 0 0 .1 8 .9 5  
Port 80

End
End

End

The method addToProxy (see Listing A.26) reads the file /etc/pound.cfg (see 

Listing 5.3 for a sample configuration file) and searches for the Service entry of the 

given hostname. Once found, the method adds a new BackEnd (the given ip) to 

the Service entry and it restarts the load balancer.

5.5 Summary

In this chapter, details about Golondrina’s implementation were presented. The 

methods that implement the system’s functionality were explained and references to 

the corresponding Listings in Appendix A added. Chapter 4 was cross-referenced at 

several points to make clear how different parts of the architecture were implemented.



53

Chapter 6 

Experim ents

This chapter presents the evaluation of the resource management 

Section 6.1 defines the objectives, strategies and metrics of the 

Section 6.2 briefly describes the configurations used. Section 6.3 

of the experiments.

6.1 Evaluation

As it was explained in Section 4.1, the environment in which Golondrina runs consists 

of a cluster where one physical server is the gate of the cluster, another physical server 

is a manager server and the rest of the physical servers are Open VZ hardware nodes.

Each physical server is an Intel Pentium D 3.40GHz (dual-core) with two GBytes 

of RAM. The containers were built with the default resource allocation provided by 

OpenVZ (see Listing 2.1 for a sample configuration file).

The objective of the experiments was to study the reaction of the system to 

resource stress situations in one or more hardware nodes. For that purpose, each 

container executed an Apache web server [9]. Load was generated by running httperf 

[10] on several physical servers in the cluster that were not part of the managed 

system, httperf was used to generate HTTP requests.

The HTTP requests requested dynamic content. The file m olinosQ uijote.php 

(see Listing 6.1) was executed with each request in order to count the number of 

words in the two MBytes text file donQuijote [11]. The execution returned a HTML

system Golondrina. 

evaluation process, 

presents the results



54

Listing 6.1: PHP file molinosQuijote.php
< ht m l>
<head>
< t i t l e > W o r d  _mol inos_  in  Don Q u i j o t e c / t i t l e  >
< / h e a d >
<body>
<?php
S f i l e n a m e  =  ” d o n Q u i j o t e ” ;
Sword =  ’’ m o l i n o s ” ;
i f  ( $ f h  =  fopen ( Sf i le nam e , ” r” ) )  {

S t o t a l  =  0;
Scount  =  0;
w h i l e  ( ! f e o f ( $ f h ) )  {

S i i n e  =  f g e t s ( S f h );
S t o t a l  + =  s t r_w ord_ cou nt  ( S i in e  , 0 ) ;
Sarray =  e x p l o d e ( ” ” , S i i n e ) ;
f o r  ( Si =  0; Si < count ( Sarray ) ; $ i + + )  {

i f  ( s t rcase cm p ( Sarray [ Si ] , Sword) =  0 ) { 
$c oun t+ +;

}
e l s e  {

}
?>

}
}

}
f c l o s e ( S f h );
echo ’’The word ’Sword’ appears Scount  t im es  in the  t e x t  

S f i l e n a m e  . \ n ” ;
echo ’’The t o t a l  number of  words in the  t e x t  i s  S t o t a l . \ n ” ;

echo ’’Could not open f i l e  : Sf i l en a m e

</b o d y >
< / h t m l >

file with the results of the counting. The reason for requesting dynamic content was 

to increase CPU utilization.

The frequency with which requests were sent determined the weight of the gener­

ated load. The weight of the load is the percentage of CPU cycles that are required 

from one CPU core to handle that load. For example, sending 1 request per second 

(1 req/sec) resulted in a CPU core being used at 70% capacity.

The metrics used to evaluate the system included lost requests and performance 

of the web servers. A baseline was established where the performance of each web 

server and the number of lost requests were monitored for varying loads, including 

loads that caused resource stress. The same loads were applied with Golondrina in



55

place for each different set of policies.

The requests were classified into three categories: lost, failed and successful. Lost 

requests were those not processed before a client timeout (client-tim o). Failed re­

quests were those where the server refused a connection (connrefused), sent a RE­

SET (connreset) or replied with a Server Error 5xx status code (reply-status-5xx). 

A server’s effectiveness was defined as the ratio of the number of successful requests 

to the total requests generated.

The web servers’ performance was measured as the minimum (min), average 

(avg) and maximum (max) values corresponding to the duration of the established 

connections (for sending a request, a connection is established between the client and 

the server, and once the reply is received, the connection is terminated), measured in 

milliseconds.

6.2 Experim ents and Configurations

Three different experiments were designed to evaluate Golondrina. Each experiment 

used the same number of hardware nodes, but the number of containers and the 

weight of the loads varied.

Each experiment was run three times. For the first run, Golondrina was con­

figured to monitor the resource utilization and check for resource stress situations. 

The relocation mechanisms were disabled. This run provided a baseline, enabling ob­

servations on how the environment performed without Golondrina taking corrective 

actions.

In the second and third runs, Golondrina was configured to use replications and 

migrations, respectively. The results of these runs were compared with each other 

and against the baseline.

Golondrina’s resource stress detection mechanism was configured in all cases with 

a CPU utilization threshold of 0.75. Given that the physical servers possessed two 

cores, the threshold was equivalent to 150% of the total CPU capacity. (The total 

CPU capacity of a physical server with x  cores is equal to x  * 100%. In this case,



56

the total CPU capacity of the hardware nodes was 200%.) The mechanism was also 

configured to trigger the resource stress check every 10 seconds.

The HTTP requests sent to the web servers had an associated timeout of 10 

seconds. The time span between the start of two different loads was 60 seconds.

6.2.1 Experim ent 1

In the first experiment, the managed system consisted of two hardware nodes, bravo02 

and bravo03, and two containers, 1891 and 1892, hosted in bravo02. At a given 

point in time, the container 1891 received a load of around 70% (450 requests at a rate 

of 1 req/sec). After 60 seconds, the container 1892 received a load of around 105% 

(450 requests at a rate of 1.5 req/sec). At this point in time, the hardware node 

bravo02 experienced a load of around 175%, which exceeded the CPU utilization 

threshold of 150%. Thus, bravo02 was under a resource stress situation.

In this scenario, no request would be lost since the CPU needs of both containers 

could be satisfied. However, Golondrina would determine that bravo02 was under a 

resource stress situation and would try to address this situation through a relocation. 

Golondrina should have tried first to relocate to bravo03 the container with the 

highest load, that is, 1892.

6.2.2 Experim ent 2

The second experiment was similar to the previous one with the exception that both 

containers received a load of around 105% (450 requests at a rate of 1.5 req/sec) each. 

As a consequence, the hardware node bravo02 was resource stressed with a load of 

200% (total CPU capacity).

In this scenario, the web servers running in 1891 and 1892 would have lost 

requests, due to the lack of spare CPU cycles to allocate to the containers. Golondrina 

would detect the resource stress situation experienced by bravo02 and would respond 

by triggering a relocation for the container with the highest load.



57

6.2.3 Experim ent 3

In the third experiment, the managed system consisted of two hardware nodes, 

bravo02 and bravo03, and four containers, 1891, 1892, 1893 and 1894, hosted 

in bravo02. One after another, with a 60-second separation in time, the containers 

received a load of around 51% (300 requests at a rate of 0.72 req/sec). Thus, bravo02 

experienced a load of 200%.

In this scenario, the web servers hosted in the four containers would have lost 

requests. Golondrina would detect the resource stress situation and determine relo­

cations in order to dissipate it. Three replications or two migrations should have been 

enough to terminate the resource stress situation.

6.2.4 Policies

As explained in Subsection 5.3.4, the relocation process uses several policies during 

its search for a sequence of relocations. The policy to select source hardware nodes 

for the relocations is “solve the resource stress situation of the highest loaded hardware 

node first. ” The policy to find target hardware nodes for the relocations is “consider 

the least loaded hardware nodes first. I f  the relocation would cause a resource stress 

situation in the target hardware node, do not do the relocation. ”

The policy used for choosing a container to be relocated is “choose the most loaded 

container first. Do not relocate lightly loaded containers. ”

To find target hardware nodes for replications, an additional policy is used: “no 

hardware node can host two replicas of the same container. ”

6.3 R esults

This section presents the results of the experiments described in Section 6.2.

System statistics were printed by Golondrina immediately after each resource 

stress check (that is, every 10 seconds).



58

Test Case 1 - No Action

200
bravo02  ---------

b rav o 0 2 F o re ca s t ---------
1891 ---------
1892 ---------

0  1 2 3 4 5  6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  21 22 23 24 25  26  27 28  29  30 31 32 33 34 35  36  37 38 39 40  41 42  4 3 44 45  46  47 48 49  50  51  52

Tim e (10  sec  .)

6 .3 .1  Experim ent 1

R u n  1: In the first run of the experiment, Golondrina was monitoring the resource 

utilization, but no action was taken in response to a resource stress situation. Figure

6.1 shows the resource utilization of the containers 1891 and 1892, and the resource 

utilization and predicted CPU utilization (as explained in Subsection 4.5.3) of the 

hardware node bravo()2.

The first time the resource utilization of bravo02 went over the 150% threshold 

was at t = 11. Golondrina’s resource stress detection mechanism signaled the problem 

at t = 15. Since no action was taken, the resource stress situation persisted and was 

signaled every single time until t = 39 (included).

Since there were enough resources to satisfy the demand of the containers, no 

request was lost or failed.

The web server one.com , hosted in 1891, had connection times m in = 687.5, 

avg — 701.9 and max =  979.9 milliseconds. The web server tw o.com , hosted in 

1892, had connection times m in — 724.0, avg = 904.5 and max — 7160.2 millisec-

Figure 6.1: Experiment 1 - No Action



59

T«st Cas« 1 • R«plicata

Figure 6.2: Experiment 1 - Replicate, bravo02

onds.

R u n  2: In the second run of the experiment, Golondrina was to search for pos­

sible replications if a resource stress situation was detected. Figure 6.2 shows the 

resource utilization of the containers 1891 and 1892, and the resource utilization 

and predicted CPU utilization of the hardware node bravo02. Figure 6.3 shows the 

resource utilization of the replicas 91891 and 91892, and the resource utilization 

and predicted CPU utilization of bravo03.

The first resource stress situation in bravo02 was signaled at t = 15. At that time, 

Golondrina determined that the container 1892 had to be replicated in bravo()3. By 

t = 16 the replica 91892 had been created and the load balancer at the gate of the 

cluster was updated. At t = 17, 91892 had CPU load, but then it did not process 

any request for three consecutive periods. As a consequence of container 91892 not 

receiving any load, the resource stress situation persisted in bravo02 and a second 

resource stress situation was signaled at t = 19. This time container 1891 was 

replicated in bravo()3. It could be said then that the creation of container 91891 

took place due to an improper balancing of the load for the web server two.com ,



60

Test Case 1 - Replicate

Time (10 sec .)

Figure 6.3: Experiment, 1 - Replicate, bravo03 

hosted in 1892 and 91892.

At t = 17 and t = 22 it can be seen in Figure 6.2 and Figure 6.3 that the curves 

sloped down. During the periods (16,17) and (21,22) the load balancer was being 

updated, that required it to be restarted. As a consequence, some connections were 

refused or reset, and hence there was a slight decrease in the reported load.

The web server one.com , hosted in 1891 and 91891, had 4 failed requests out 

of 450 (connrefused 3 connreset 1), which resulted in an effectiveness of 99.11%. The 

web server two.com , hosted in 1892 and 91892, had 7 failed requests out of 450 

(connrefused 5 connreset 2), which resulted in an effectiveness of 98.44%.

Compared with the 100% effectiveness of both web servers in the first run (when 

Golondrina would take no action against a resource stress situation), triggering repli­

cations does not seem convenient since some requests were lost. However, if the load 

balancer could be updated without requiring a restart, no requests would be lost (this 

issue is further discussed in Section 7.2).

The web server one.com  had connection times min = 695.2, avg = 749.1 and 

m ax = 3655.0 milliseconds. The web server tw o.com  had connection times m in =



61

T#st Case 1 - Migrate

Tim# (10 s#c .)

Figure 6.4: Experiment 1 - Migrate, bravo02

692.0, avg = 853.0 and m ax = 8185.6 milliseconds.

In comparison with the web server’s performance in the first run, one.com  in­

creased the average connection time by about 6.72% and tw o.com  decreased the 

average connection time by about 5.69%.

R u n  3: In the third run of the experiment, Golondrina was to look for migrations 

upon detection of a resource stress situation. Figure 6.4 shows the resource utilization 

of the containers 1891 and 1892, and the resource utilization and predicted CPU 

utilization of the hardware node bravo02. Figure 6.5 shows the resource utilization 

of 1892, and the resource utilization and predicted CPU utilization of bravo03.

A resource stress situation was signaled at t = 15 in bravo02. Golondrina deter­

mined that the container 1892 was to be migrated to bravo03. At that point, the 

CPU utilization of both hardware nodes increased, due to the start of the migration 

process. Since there was spare CPU capacity in both hardware nodes, the containers 

saw their CPU needs unaffected.

In the period (26,27), the migration process was completed, but it was not until 

t = 28 that a CPU utilization report from the container 1892 was sent to the Server



62

Test Case 1 - Migrate

Time (10 sec )

Figure 6.5: Experiment 1 - Migrate, bravo03

component (running in the manager server) by the Client component running in 

bravo03. That report showed a peak of around 140% in CPU utilization, which 

could be attributed to the hosted web server processing the requests that could not 

be handled during the suspension period of the migration process.

None of the web servers hosted in 1891 and 1892 had lost or failed requests. 

That means that the web servers had an effectiveness of 100%. Therefore, it cannot 

be stated that migration results in ail improvement over taking no actions, but at 

least it does not perform worse. When compared with replication, migration provides 

better results. However, this only happens due to the load balancer requiring a restart 

when updating its configuration after a relocation.

Web Servers’ Effectiveness
Servers Run 1 Run 2 Run 3
one.coni 100% 99.11% 100%
tw o.coni 100% 98.44% 100%

Table 6.1: Experiment 1 - Percentage of successful requests.



63

Web Servers’ Performance
Servers Run 1 Run 2 Run 3
one.com 701.9 749.1 715.2
two.com 904.5 853.0 991.1

Table 6.2: Experiment 1 - Web servers’ average connection time in milliseconds.

The web server one.com, hosted in 1891, had connection times m in  =  698.6, 

avg =  715.2 and max — 875.4 milliseconds. The web server two.com, hosted in 

1892, had connection times m in  =  686.7, avg = 991.1 and max =  9700.8 millisec­

onds.

In comparison with the web server’s performance in the first run, one.com  in­

creased the average connection time by about 1.89% and two.com  increased the 

average connection time by about 9.57%.

The comparison with the web server’s performance in the second run does not 

offer conclusive results.

In conclusion, when a hardware node experiences a resource stress situation, but 

the CPU is not exhausted, no requests are lost. Thus, no action is necessary from 

the management system. However, migration and replication cause no (serious) per­

formance degradation, so they could be used as preventive actions in case the load 

was expected to increase.

6.3.2 Experim ent 2

R un 1: In the first run of the experiment, Golondrina was monitoring the resource 

utilization, but no action was taken in response to a resource stress situation. Figure 

6.6 shows the resource utilization of the containers 1891 and 1892, and the resource 

utilization and predicted CPU utilization (as explained in Subsection 4.5.3) of the 

hardware node bravo02.

The first time the resource utilization of bravo02 went over the 150% threshold 

was at t = 11. Golondrina’s resource stress detection mechanism signaled the problem 

at t = 14. Since no action was taken, the resource stress situation persisted and was



64

Test Cas* 2 * No Action

T»mo (10  *#<.)

Figure 6.6: Experiment 2 - No Action

signaled every single time until t = 38 (included).

Starting at t = 11 the CPU was equally shared between the two containers, using 

almost 100% each. However, the number of CPU cycles allocated to each container 

was not enough for the hosted web servers to process all requests. The web server 

one.com , hosted in 1891, had 101 lost requests out of 450 (client-timo 101), resulting 

in an effectiveness of 77.55%. The web server two.com , hosted in 1892, had 169 lost 

requests out of 450 (client-timo 169), resulting in an effectiveness of 62.44%.

It can be seen in Figure 6.6 that during the interval [36,38] the container 1892 al­

most doubled its CPU utilization, taking advantage of container 1891 not requesting 

CPU cycles. This behaviour could be attributed to web server tw o.com  processing 

all the requests that it had not been able to satisfy before due to a lack of CPU cycles.

The web server one.com  had connection times m in  =  695.1, avg =  2816.3 and 

max = 9995.3 milliseconds. The web server tw o.com  had connection times m in = 

700.1, avg =  3371.6 and max  =  9961.4 milliseconds.

R u n  2: In the second run of the experiment, Golondrina was to search for pos­

sible replications if a resource stress situation was detected. Figure 6.7 shows the



65

b rav o 0 2  ---------
b r# v o02F or#cast ---------

18ft 1 ---------
1692  ---------  -

0 1 2 3 4 5 6 7 8 ft 10 11 12 13 14 15 16 17 18 1ft 20  21 22 23  24 25  26  27  28  2ft 30 3 1 32 3 3 34 35 36 37 38 3ft 40  41 42

Tim# (10  s#c  .)

resource utilization of the containers 1891 and 1892, and the resource utilization 

and predicted CPU utilization of the hardware node bravo02. Figure 6.8 shows the 

resource utilization of the replicas 91891 and 91892, and the resource utilization 

and predicted CPU utilization of bravo()3.

The first resource stress situation in bravo02 was signaled at t = 14. Golondrina 

determined that both containers had to be replicated in bravo03. By t = 16 the 

replicas 91892 and 91891 had been created and the load balancer at the gate of the 

cluster was updated. The load balancer was first updated (and restarted) for 91892 in 

the period (15,16) and updated again in the period (16,17) for the container 91891. 

During those two periods, it can be seen in Figure 6.7 that the CPU utilization of 

1891 and 1892 decreased, due to connections that were refused or reset.

At t = 17, the containers 91891 and 91892 had a low CPU utilization and 

remained with minimal CPU utilization until t = 2Ü (included). During those periods, 

the requests were handled by 1891 and 1892. As a consequence, the resource stress 

situation continued in bravo02 and was signaled at t — 18,19,20,21,22. At every 

one of those five points in time, Golondrina could not find suitable replications since

Figure 6.7: Experiment 2 - Replicate, bravo()2



66

T#*t Cas« 2 • Replícala

Tim# (10 *♦<.)

Figure 6.8: Experiment 2 - Replicate, bravo03

1891 and 1892 had already been replicated in bravo03 and the system does not 

allow two replicas of the same container to reside in the same hardware node.

The web server one.com , hosted in 1891 and 91891. had 21 failed requests 

(connrefused 4 connreset 17) and 35 lost requests (client-timo 35) out of 450, which 

resulted in an effectiveness of 87.55%. The web server tw o.com , hosted in 1892 

and 91892, had 25 failed requests (connrefused 4 connreset 21) and 29 lost requests 

(client-timo 29) out of 450, which resulted in an effectiveness of 88%.

Compared with the first run of the experiment, where Golondrina took no action 

upon a resource stress situation being detected, the replications helped improve the 

effectiveness of web server one.com  by 10% and of web server tw o.com  by 25.56%.

The web server one.com  had connection times m in = 699.6, avg = 1408.1 and 

m ax — 9933.0 milliseconds. The web server tw o.com  had connection times min = 

695.4, avg = 1781.4 and max = 9558.6 milliseconds.

In comparison with the web server’s performance in the first run, one.com  de­

creased the average connection time by about 50% and tw o.com  decreased the av­

erage connection time by about 47.16%.



67

O 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20  21  22  23 24 25  26  27 28 29  30 31 32  33  34 35 36 37 38 39 40  41  42

Tim# (10  s#c  .)

Figure 6.9: Experiment 2 - Migrate, bravo02

R u n  3: In the third run of the experiment, Golondrina was to look for migrations 

upon detection of a resource stress situation. Figure 6.9 shows the resource utilization 

of the containers 1891 and 1892, and the resource utilization and predicted CPU 

utilization of the hardware node bravo02. Figure 6.10 shows the resource utilization 

of 1891, and the resource utilization and predicted CPU utilization of bravo03.

A resource stress situation was signaled at t =  14 in bravo02. Golondrina deter­

mined that the container 1891 was to be migrated to bravo03. The migration process 

was started, increasing the CPU utilization in bravo03. The CPU in bravo02 was 

already exhausted, so the migration process competed for the CPU with the contain­

ers. 1891 and 1892 saw a reduction in their CPU allocation in the interval (14,20] 

until the migration process ended in the period (20,21).

In the period [21,22], the container 1892 increased its CPU utilization around 

180%, and in the period [24,25] 1891 increased its CPU utilization around 195%. The 

behaviour of both containers could be attributed to the hosted web servers processing 

the requests that could not be handled during the migration process.

The web server one.com , hosted in 1891, had 10 failed requests (reply-status-5xx



68

T*st Case 2 • Migrate

Time (10 sec .)

Figure 6.10: Experiment 2 - Migrate, bravo03

10) and 89 lost requests (client-timo 89) out of 450, which resulted in an effectiveness 

of 78%. The web server tw o.com , hosted in 1892, had 70 lost requests (client-timo 

70) out of 450, which resulted in an effectiveness of 84.44%.

Compared with the first run of the experiment, where Golondrina took no action 

upon a resource stress situation being detected, the migration helped improved the 

effectiveness of web server one.com  by 0.45% and of web server tw o.com  by 22%.

In comparison with the second run of the experiment, where Golondrina used the 

replication mechanism, migration fell short in the effectiveness improvement by 9.55% 

in the case of the web server one.com  and by 3.56% in the case of the web server 

tw o.com .

Web Servers’ Effectiveness
Servers Run 1 Run 2 Run 3
one.com 77.55% 87.55% 78%
tw o.com 62.44% 88% 84.44%

Table 6.3: Experiment 2 - Percentage of successful requests.



69

Web Servers’ Performance
Servers Run 1 Run 2 Run 3
one.com 2816.3 1408.1 1723.6
two.com 3371.6 1781.4 1661.6

Table 6.4: Experiment 2 - Web servers’ average connection time in milliseconds.

Migration showed that it offered an improvement over taking no action upon 

detection of a resource stress situation. However, the migration mechanism did not 

provide the same benefit as the replication mechanism.

The web server one.com  had connection times m in  =  0.4, avg — 1723.6 and 

m ax  =  9950.2 milliseconds. The web server tw o.com  had connection times m in = 

687.6, avg =  1661.6 and m ax  =  9963.3 milliseconds.

In comparison with the web server’s performance in the first run, one.com  de­

creased the average connection time by about 38.79% and tw o.com  decreased the 

average connection time by about 50.71%.

The comparison with the web server’s performance in the second run does not 

offer conclusive results.

In conclusion, when a hardware node is under a resource stress situation and the 

CPU is exhausted, some requests will not be satisfied. Both migration and replica­

tion represent a convenient solution, since they help to reduce the losses. However, 

the migration process competes with the containers for CPU cycles, diminishing the 

benefit it could provide.

6.3.3 Experim ent 3

R un 1: In the first run of the experiment, Golondrina was monitoring the resource 

utilization, but no action was taken in response to a resource stress situation. Figure 

6.11 shows the resource utilization of the containers 1891, 1892, 1893 and 1894, 

and the resource utilization and predicted CPU utilization (as explained in Subsection 

4.5.3) of the hardware node bravo02.

The first time the resource utilization of bravo02 went over the 150% threshold



70

Test Case 3 • No Action

Tim e (10  se c .)

Figure 6.11: Experiment 3 - No Action

was at t =  17. Golondrina’s resource stress detection mechanism signaled the problem 

at t = 22. Since no action was taken, the resource stress situation persisted and was 

signaled every single time until t = 51 (included).

Starting at t — 23 the CPU was equally shared between the four containers, using 

almost 50% each. However, the number of CPU cycles allocated to each container 

was not enough for the hosted web servers to process all requests. The web server 

one.com , hosted in 1891, had 36 lost requests out of 300 (client-timo 36), resulting 

in an effectiveness of 88%. The web server tw o.com , hosted in 1892, had 24 lost 

requests out of 300 (client-timo 24), resulting in an effectiveness of 92%. The web 

server th ree.com , hosted in 1893, had 39 lost requests out of 300 (client-timo 39), 

resulting in an effectiveness of 87%. The web server four.com , hosted in 1894, had 

6 lost requests out of 300 (client-timo 6), resulting in an effectiveness of 98%.

It can be seen in Figure 6.11 that at t = 47, when 1891 saw a decrease in its 

CPU utilization, the remaining containers had a peak in their CPU utilization. This 

behaviour could be attributed to the hosted web server processing all the requests 

that could not be satisfied before due to a lack of CPU cycles.



71

T«*t Cas« 3 * RaplicaU

Tim« (10  s * < )

Figure 6.12: Experiment 3 - Replicate, bravo02

The web server one.com  had connection times m in = 729.2, avg = 2916.9 and 

m ax = 9815.9 milliseconds. The web server tw o.com  had connection times m in  — 

702.4, avg — 2462.3 and max — 9737.5 milliseconds. The web server th ree .com  

had connection times m in — 690.4, avg — 2537.6 and max = 9998.2 milliseconds. 

The web server four.com  had connection times m in = 688.5, avg = 2268.5 and 

m ax = 9375.6 milliseconds.

R u n  2: In the second run of the experiment, Golondrina was to search for possible 

replications if a resource stress situation was detected. Figure 6.12 shows the resource 

utilization of the containers 1891, 1892, 1893 and 1894, and the resource utilization 

and predicted CPU utilization of the hardware node bravo02. Figure 6.13 shows the 

resource utilization of the replicas 91891, 91892, 91893 and 91894, and the resource 

utilization and predicted CPU utilization of bravo03.

The first resource stress situation in bravo02 was signaled at t = 23. Golond­

rina determined that the containers 1891, 1892 and 1893 had to be replicated in 

bravo03. By t = 27 the containers 91891, 91892 and 91893 had been created 

and the load balancer at the gate of the cluster was updated. The load balancer was



72

Test Case 3 • Replicate

Time (10 sec.)

Figure 6.13: Experiment 3 - Replicate, bravo03

updated (and restarted) three times (one for each replication) in the period (27,28). 

During that period and the following one, it can he seen in Figure 6.12 that the CPU 

utilization of 1891, 1892, 1893 and 1894 decreased, due to connections that were 

refused or reset.

At t =  28, the containers 91891, 91892 and 91893 had a low CPU utilization 

and remained with minimal CPU utilization until t = 31 (included). During those 

periods, the requests were handled by 1891, 1892 and 1893. As a consequence, an 

additional resource stress situation was signaled in bravo02 at t = 30. Golondrina 

determined that 1894 had to be replicated in bravo03, indicating also that the action 

would not be enough to dissipate the resource stress situation in bravo02.

The web server one.com , hosted in 1891 and 91891, had 7 failed requests (con- 

nrefused 4 connreset 3) and 2 lost requests (client-timo 2) out of 300, which resulted 

in an effectiveness of 97%. The web server tw o.com , hosted in 1892 and 91892, had 

6 failed requests (connrefused 5 connreset 1) and 5 lost requests (client-timo 5) out of 

300, which resulted in an effectiveness of 96.33%. The web server three.com , hosted 

in 1893 and 91893, had 10 failed requests (connrefused 5 connreset 5) and 1 lost



73

requests (client-timo 1) out of 300, which resulted in an effectiveness of 96.33%. The 

web server four.com , hosted in 1894 and 91894, had 9 failed requests (connrefused 

5 connreset 4) and 2 lost requests (client-timo 2) out of 300, which resulted in an 

effectiveness of 96.33%.

Compared with the first run of the experiment, where Golondrina took no action 

upon detection of a resource stress situation, the replications helped improved the 

effectiveness of web server one.com  by 9%, of web server two.com  by 4.33% and of 

web server three.com  by 9.33%. The effectiveness of web server four.com suffered 

a degradation of 1.67%.

The web server one.com  had connection times m in  =  702.0, avg — 1151.3 and 

m ax = 6530.0 milliseconds. The web server two.com  had connection times m in = 

694.0, avg — 1130.8 and max =  9882.7 milliseconds. The web server three.com  

had connection times m in  — 708.4, avg =  1281.0 and max = 9858.3 milliseconds. 

The web server four.com had connection times m in = 689.7, avg = 1275.9 and 

m ax  =  8468.4 milliseconds.

In comparison with the web server’s performance in the first run, one.com  de­

creased the average connection time by about 60.53%, two.com  decreased the average 

connection time by about 54.07%, three.com  decreased the average connection time 

by about 49.51%, and four.com decreased the average connection time by about 

43.75%.

R un  3: In the third run of the experiment, Golondrina was to look for migrations 

upon detection of a resource stress situation. Figure 6.14 shows the resource uti­

lization of the containers 1891, 1892, 1893 and 1894, and the resource utilization 

and predicted CPU utilization of the hardware node bravo02. Figure 6.15 shows 

the resource utilization of 1891 and 1892, and the resource utilization and predicted 

CPU utilization of bravo03.

A resource stress situation was signaled at t =  24 in bravo02. Golondrina deter­

mined that the container 1891 was to be migrated to bravo03. The migration process 

was started, increasing the CPU utilization in bravo03. The CPU in bravo02 was 

already exhausted, so the migration process competed for the CPU with the con-



74

Test C a i«  3 • M igrale

Time (10 »ec.)

Figure 6.14: Experiment 3 - Migrate, bravo02

Te»t Case 3 • Migrate

Time (10 sec .)

Figure 6.15: Experiment 3 - Migrate, bravo03



75

tainers. The four containers saw a reduction in their CPU allocation in the interval 

[26,28] until the migration process ended in the period (28,29).

At t — 29, 1891 had a peak of around 170% in CPU utilization. Taking advantage 

of the resource availability, the containers 1892, 1893 and 1894 increased their CPU 

utilization during the interval [29,33], what caused a resource stress situation to be 

signaled at t — 30. At that time, Golondrina decided to migrate 1892 to bravo03. 

The migration process ended in the period (35,36) and 1892 reached a peak of around 

85% in CPU utilization after being migrated.

A final resource stress situation was signaled at t — 37 with the CPU utilization 

of bravo02 being 150.48% and becoming 100.5% at the following point in time. 

Golondrina found no solution to the situation.

The web servers one.com  and two.com, hosted in 1891 and 1892 respectively, 

had 18 lost requests out of 300 (client-timo 18), which resulted in an effectiveness 

of 94%. The web server three.com , hosted in 1893, had 14 lost requests out of 

300 (client-timo 14), which resulted in an effectiveness of 95.33%. The web server 

four.com, hosted in 1894, had 19 lost requests out of 300 (client-timo 19), which 

resulted in an effectiveness of 93.66%.

Compared with the first run of the experiment, where Golondrina took no action 

upon detection of a resource stress situation, migrations helped improved the effec­

tiveness of web server one.com  by 6%, of web server two.com  by 2% and of web 

server three.com  by 8.33%. The effectiveness of web server four.com suffered a 

degradation of 4.34%.

In comparison with the second run of the experiment, where Golondrina used 

the replication mechanism, migrations fell short in the effectiveness improvement by 

3% in the case of the web server one.com, by 2.33% in the case of the web server 

two.com , by 1% in the case of the web server three.com  and by 2.67% in the case 

of the web server four.com.

The web server one.com  had connection times m in — 706.3, avg =  1051.0 and 

m ax — 9719.9.4 milliseconds. The web server two.com  had connection times m in = 

691.3, avg = 1412.8 and max  =  9966.3 milliseconds. The web server three.com



76

Web Servers’ Effectiveness
Servers Run 1 Run 2 Run 3
one.com 88% 97% 94%
two.com 92% 96.33% 94%
three.com 87% 96.33% 95.33%
four.com 98% 96.33% 93.66%

Table 6.5: Experiment 3 - Percentage of successful requests.

had connection times m in  =  690.6, avg = 1343.0 and max =  9997.6 milliseconds. 

The web server four.com had connection times m in  =  698.0, avg — 1248.8 and 

m ax — 9589.1 milliseconds.

In comparison with the web server’s performance in the first run, one.com  de­

creased the average connection time by about 63.96%, two.com  decreased the average 

connection time by about 42.62%, three.com  decreased the average connection time 

by about 47.07%, and four.com decreased the average connection time by about 

44.95%.

The comparison with the web server’s performance in the second run does not 

offer conclusive results.

Web Servers’ Performance
Servers Run 1 Run 2 Run 3
one.com 2916.9 1151.3 1051.0
two.com 2462.3 1130.8 1412.8
three.com 2537.6 1281.0 1343.0
four.com 2268.5 1275.9 1248.8

Table 6.6: Experiment 3 - Web servers’ average connection time in milliseconds.

As in the second experiment, container migration was an improvement over taking 

no action upon detection of a resource stress situation. Again, the benefits offered by 

the replication mechanism exceeded the benefits obtained through migration.



6.4 Summary
77

In this chapter, three experiments were studied. In all cases, two hardware nodes 

were managed by Golondrina. The number of hosted containers ranged from two 

to eight. The containers hosted an Apache web server and received HTTP requests 

for dynamic content. Each experiment was run three times, with Golondrina’s con­

figuration changed each time to react differently upon detection of a resource stress 

situation. The first time, Golondrina would take no action. The second time, Golon­

drina would search for replications. The third time, Golondrina would search for 

migrations. The results of the three runs of each experiment were compared with 

each other, based on the number of lost and failed requests and the performance of 

the web servers.



78

Chapter 7 

Conclusion

This thesis presents a review of the research done in the area of resource manage­

ment in virtualized environments. Golondrina, a resource management system, was 

designed and implemented to work with operating system-level virtualization. The 

system implements monitoring and resource stress detection mechanisms and uses 

mathematical models to predict resource utilization trends. The system relies on 

migration and replication mechanisms to deal with resource stress situations.

This work is one of the very few (if any at all) that proposes a resource management 

system for operating system-level virtualized environments. In addition, this is the 

first study that uses replication as an alternative to migration and compares both 

mechanisms. Others have proposed to do replication, but have not done it [33]. 

Others have implemented replication, but not migration [25].

Section 7.1 presents the conclusions that can be drawn from the experiments 

reported in Chapter 6. Section 7.2 discusses issues that were discovered during the 

implementation and evaluation of the system. Section 7.3 suggests directions for 

future work.

7.1 Conclusions

The experiments presented in Chapter 6 show that both relocation mechanisms offer 

an improvement over taking no action upon detection of a resource stress situation. 

Even if there are spare resources to allocate in the stressed hardware node, the mech­



79

anisms do not have a negative impact, which supports the use of the relocation 

mechanisms as preventive actions in case the resource utilization were to continue 

increasing in the stressed hardware node.

The replication mechanism offers a better improvement over the migration mech­

anism. One exception is the scenario where enough spare resources are available at 

the resource stressed hardware node for the migration process to use. In this case, the 

hosted containers see no performance degradation, so migration has the same benefits 

as replication. In other words, a policy could be defined to use replications whenever 

resources are exhausted and use migrations whenever there are spare resources.1

It is intentionally dismissed in this analysis a small performance hit that happens 

with replications due to the update of the load balancer. This problem does not 

belong to the replication process per se, but to the load balancing software used in 

the experiments. Pound does not allow for dynamic updates of its configuration, so 

a restart of the software is necessary. During the time that the restart process lasts, 

any request that arrives to the load balancer gets lost.

7.2 Discussion

As it was mentioned in the previous section, the selection of Pound as the load bal­

ancing software was not ideal. First, Pound does not allow for dynamic update of its 

configuration. This forces a restart of the software (and consequently an interruption 

in the service). Second, it uses a random algorithm for load balancing, selecting ran­

domly the server to which forward each incoming request. This seems to contribute 

to an unstable balance of the load sent to the replicas.

It was stated in Section 4.1 that the system runs in a cluster of homogeneous 

physical servers. However, a certain degree of flexibility is possible. From the oper-

*This policy would be an oversimplification, since replication could still be used in scenarios where 
there are spare resources. However, replication would imply paying for two containers instead of one, 
which would suggest that the client would prefer doing migrations whenever possible. However, if 
the resource utilization of the container were to continue increasing, a replication could end up being 
the only solution if no hardware node had enough spare resources to host the migrated container. 
All this belongs to the problem domain of effective strategies for resource management, which can 
only be addressed once decision making support mechanisms are in place.



80

ating system perspective, OpenVZ is a modified Linux kernel that could work with 

different (GNU/Linux) distributions. CentOS was the distribution of choice for the 

hardware node’s operating system, but Red Hat, Ubuntu or Debian could have been 

used. As for the containers, there is even more flexibility there and several templates 

from different distributions are available to use in the container creation process.

Golondrina was also designed to manage hardware nodes with different number of 

cores. As it is explained in Subsection 4.5.2, the Client component informs the Server 

component of the number of cores available in the hardware node. This information 

is used by the Server to determine the total computing power of the hardware node. 

However, for this feature to be fully functional, a mean has to be devised to express 

the load of a hardware node without losing perspective of its total computing power 

(50% spare computing power in a hardware node with one core is not the same as 

having 50% spare computing power in a hardware node with four cores). Also the 

CPU utilization threshold used by the resource stress detection mechanism would 

have to be tuned for each hardware node (a threshold of .75 for a single core is very 

different from the same threshold for four cores).

Section 4.2 states that the Server component runs in a non-virtualized physical 

server. However, it would be feasible for the Server to be hosted in a container. 

Precautions should be taken for the container not to run out of resources, since it 

would be hosting the software that manages the system and running out of resources 

would prevent the fulfillment of this responsibility. The container could be configured 

to have higher resource priority than the rest of the containers. This would mean that 

a dedicated server is not needed and would allow to take advantage of the migration 

mechanism for maintenance purposes. In any case, a careful study of the resource 

requirements of the Server component would be required.

Golondrina uses a black-box approach to resource monitoring. A grey-box ap­

proach would offer better benefits, but it requires additional software running inside 

the containers. There are two disadvantages: (i) Clients may not agree to have soft­

ware that they neither need nor control installed in their container; (ii) Clients could 

potentially interfere with the operation of the software module and report unreal



81

statistics. This would increase the difficulty in managing the data center.

The resource utilization prediction model implemented in Golondrina was the 

Auto-regressive Model of Order 1 AR(1) (as explained in Subsection 4.5.3). The 

experiments showed that the prediction model ran behind the actual utilization level 

most of the time. Thus, it did not provide the expected benefit. Other prediction 

models could be implemented.

A profiling component with a historical policy was also used during the relocation 

process to predict container’s future resource utilization. One argument against using 

a historical policy during the relocation process is that it could prevent a relocation 

from becoming effective at the moment (solving a current resource stress situation) 

based on events tha t took place in the past and might not be likely to happen again 

(and if they were to happen again, another relocation could be done later on).

A final issue to take into account with prediction models is what would happen 

with containers or hardware nodes that do not report statistics for a period of time 

or do it inconsistently. The absence of continuity in the reported statistics could 

handicap the prediction model effectiveness.

Regarding consolidation, Golondrina does not currently work towards that goal. 

However, some research groups have been working on the subject and have studied 

different policies and algorithms (see Section 3.2). Adding a consolidation mechanism 

with a historical policy to Golondrina would be interesting. Our current historical 

policy is rather primitive and limited. It considers the last hour of statistics and as 

a consequence any periodic increase in demand that happens in periods greater than 

an hour are ignored.

Golondrina’s current relocation algorithm uses a greedy approach to the prob­

lem of finding a sequence of relocations. It is an effective approach, but it does not 

guarantee the best solution. The problem the relocation algorithms (as well as the 

consolidation algorithms) have to solve is complex, since it involves several dimen­

sions. To begin with several resources have to be considered (CPU, memory, network). 

Moreover, multiple bins (the hardware nodes) are available to be filled. As it is noted 

in [20], the problem is similar to the NP-hard problem N-dimensional bin packing,



82

but with the additional restriction that the bins are loaded right from the beginning. 

It is also noted that each relocation entails CPU and network overhead, making the 

problem more complex.

Another issue is that the current relocation algorithm bases its decisions on the 

load of the containers, that is, the containers’ resource demand. Another possibility 

to explore is considering the growing factor of the containers’ demand. Instead of 

relocating the container with greater resource demand, relocate the container whose 

demand is growing.

Focusing on replication, the current process assumes that when a container is 

replicated, the load will be distributed equally between the two replicas. This would 

result in the predicted CPU utilization of the container being divided by 50% for 

each replica. Thus, allocating to each replica 60% of the resources indicated by the 

predicted CPU utilization would be enough for the replicas to handle their load. Not 

only is this assumption arbitrary, but it does not hold for the cases where one of the 

two replicas is replicated as well (that is, there are three replicas of the container). 

When the third replica is created, the load of the replicas does not decrease by a half, 

but by a third.

As mentioned before, migrations and replications impose a temporary overhead 

on the hardware nodes involved and the network. Both relocation processes could be 

studied in detail (as shown in [35]), so as to quantify the overhead and learn how to 

estimate it. This knowledge could be used to improve the resource stress detection 

mechanism (ignoring temporary overheads) and the relocation algorithm (selecting 

target hardware nodes that can handle the overhead). In addition, Golondrina cur­

rently triggers all relocations at the same time, resulting in a great overhead. It could 

be worthy to study triggering relocations in sequence.

7.3 Future Work

There are many directions in which Golondrina can be extended. One is to add 

memory as one of the managed resources. Work has already started in this direction.



83

Another extension is to add remote storage capabilities to OpenVZ. This would 

allow for a faster migration mechanism (and less overhead), since no filesystem would 

have to be copied between hardware nodes.

Regarding replications, the system should be extended to monitor the activity of 

replicas and determine when one or more of them are not necessary anymore. At that 

point, those unnecessary replicas should be stopped and removed.

Another interesting extension would be a resource under-stress detection mecha­

nism. This would allow for the system to detect lightly loaded hardware nodes whose 

load could be moved somewhere else and the hardware node then suspended. This 

would result in improved server consolidation and reduced energy consumption.

The current CPU management model could be extended to integrate CPU real- 

location [32], The CPU reallocation mechanism could be useful in those cases where 

the whole managed system is resource stressed and no relocation is possible.

Another interesting possibility would be to redesign Golondrina, which is a central­

ized system. The Server component receives resource utilization statistics, analyzes 

data and makes relocation decisions. The Server component has the potential to 

become a bottleneck and represents a single point of failure. Golondrina could be re­

designed with a distributed or hybrid approach in mind. The management could take 

place completely in the hardware nodes or be distributed between hardware nodes 

and a minimal central server.

Finally, other topics that could be studied include managing resources with the 

goal of minimizing energy consumption and the effect of relocations on containers with 

shared dependencies (that is, containers that host different tiers of an application).

7.4 Summary

This chapter presented the conclusions drawn from the system’s evaluation. It also 

discussed issues discovered during the design, implementation and evaluation of the 

system, and possible improvements based on the research conducted by other groups 

and presented in Chapter 3. Finally, it suggested possible directions for future work.



Appendix A 

Code Snippets

84

Listing A.l: gatherCtCpuStats method 

d e f  g a t h e r C t C p u S t a t s ( s e l f ):  

newSet =  {}  

s t a t s  =  f i  1 e ( c t S t a t s )

#  read the f i r s t  l ine  ( v e r s i o n  number) and the second one

names )

s t a t s . r e a d l i n e  () 

s t a t s . r e a d l i n e  ()

#  now, f o r  each l i ne  c r ea t e  a ContainerData i ns t ance  

w h i l e  T r u e :

l i n e  =  s t a t s  . r e a d l i n e  () 

i f  l en ( l i n e  ) =  0: 

b reak

elems =  l i n e  . s p l i t  ()

#  ( par amet er  names)  — second l ine — al ready  read

#  VEID user  nice system upt ime i d l e  s t r v

used maxlat  t o t l a t  numsched 

ct =  C o n ta in erD a ta  ( e lems [0] )  

ct . s e tU p t im e  ( i n t  ( e lems [7] )  ) 

ct . s e t U s e d t i m e ( i n t  ( e le m s [8] )  ) 

newSet [ ct  . g e t C t i d  () ] =  ct  

s t a t s . c l o s e  ()

(paramet er

uptime



85

r e t u r n  newSet

__________________ Listing A.2: calculateCtCpuUsage method_________________

d e f  c a l c u l a t e C t C p u U s a g e  ( s e l  f ) :

newCts =  s e l f  . g at h erC tC p u S tat s  () 

f o r  c t id  , newCt in newCts . i t e r i t e m s  () : 

i f  not  c t i d  in s e l f . c o n t a i n e r s  :

s e l f  . c o n t a i n e r s  [ c t i d  ] =  C o n t a i n e r D a t a ( c t i d  ) 

ct =  s e l f  . c o n t a i n e r s [ c t i d ]

#  CPU-USAGE-% = (NEW-USED -  LAST-USED) /  (NEW.UPTIME -  

LAST-UPTIME)

cpuUsage =  f l o a t  (n ew Ct. ge tU se d t im e  () -  ct  . ge tU se d t im e  () ) /  f l o a t  

(n ew Ct. ge tU pt im e  () — ct . getUpt ime ( ) )

ne wCt. se tCpuUsage  ( int  (cpuUsage  * 1000 0))  

newCt. se tHostname ( c t  . getHostname ( ) ) 

newCt. s e t l p  ( c t  . g e t l p  () ) 

s e l f  . c o n t a i n e r s . c l e a r () 

for  c t i d ,  newCt in  n e w C ts . i t e r i t e m s  () : 

s e l f . c o n t a i n e r s [ c t i d ] =  newCt

_________________ Listing A.3: calculateHostCpuUsage method________

d e f  c a l c u l a t e H o s t C p u U s a g e  ( s e l  f ) : 

s t a t  =  fi 1 e ( h n S t a t s  ) 

w h i l e  True:

l i n e  =  s t a t  . r e a d l i n e  () 

i f  l en  ( l i n e  ) =  0: 

break

elems =  l i n e  . s p l i t  ()

i f  l en  ( e l e m s )  < 9 :  #  number of columns in ent ry  -cpu-  s ince

Linux 2 . 6 . 11  

c o n t i n u e

i f  e lems [0] =  ’c p u ’ :

#  columns in ent ry  -cpu-  of / p r o c / s t a t  — f i r s t  l ine



#  cpu user  nice sys tem i d l e  i owa i t  i rq s o f t i r q

s t e a l

newVals =  ( long  ( e lems [ 1 ] ) , long  ( e lems [ 2] ) , long  ( e lems [3] ) , 

l o n g ( e l e m s  [4] ) , long  ( e lems [5] ) , long  ( e le m s [6] ) , lo n g (  

e l e m s [ 7 ] ) ,  long ( e lems [8] ) ) 

newNonldle  =  sum(newVals)  — newVals [3] 

o l d N o n l d l e  =  sum( s e l f  . o l d V a l s )  — s e l f  . o ld V a ls  [3]

#  CPUJJSAGEM = (NEWJVONJDLE -  OLD-NONJDLE) /  (

ALLJVEW-VALS -  ALLJ)LD_VALS) 

cpuUsage =  in t  (10000 * (newNonldle  — o l d N o n l d l e )  /  (sum(  

newVals)  — sum( s e l f  . o ld V a ls  ) )  )

s e l f .  o l d V a l s  =  newVals  

break

s t a t . c l o s e () 

r e t u r n  cpuUsage

86

______________________ Listing A .4: getHostlnfo method______
d e f  g e t H o s t l n f o  ( s e l f  ) : 

i n f o  =  {}

i n f o [ ’h n i d ’ ] =  o s . u n a m e ( ) [1] 

i n f o [ ’ c o r e s ’ ] =  0 

s t a t  =  fi 1 e ( h n S t a t s ) 

w h i l e  True :

l i n e  =  s t a t  . r e a d l i n e  () 

i f  l en ( l i n e  ) =  0: 

break

elems =  l i n e ,  s p l i t  ()

i f  e lems [0] [0 : 3] =  ’c p u ’ and len ( e lems [0] )  =  4: 

i n f o [ ’ c o r e s  ’ ] + =  1 

s t a t . c l o s e  () 

i f  in fo  [ ’ co res  ’ ] =  0: 

i n f o [ ’ c o res  ’ ] =  1 

r e t u r n  in fo



87

_______________________ Listing A.5: getCtsInfo method___________________
d e f  g e t C t s I n f o  ( s e l f  , newCts) : 

fo r  c t i d  in  newCts:

f i l e n a m e  =  c t C o n f i g  % c t i d  

c o n f i g  =  fi 1 e ( f i l e n a m e ) 

w h i l e  True:

l i n e  =  c o n f i g  . r e a d l i n e  () 

i f  l en ( l i n e  ) =  0: 

break

l i n e  =  l i n e  . s t r i p  ()

i f  l i n e  [0 :1 0]  =  TP.ADDRESS’ :

s e l f  . c o n t a i n e r s [ c t i d  ] . s e t l p ( l i n e  [12: len ( l i n e  ) -  1])  

e l i f  l i n e  [0:8]  =  ’HOSTNAME’ :

s e l f  . c o n t a i n e r s  [ c t i d  ].  se tHostname ( l i n e [ 1 0 : l e n ( l i n e )  — 

1])
c o n f i g  . c l o s e  ()

_______________________ Listing A.6: migrateCt method______________________
d e f  migra teCt  ( s e l f  , c t i d ,  d e s t l d ) :

w r i t e  ( ’ACTUATOR: M igr at ing  CT %s to HN %s . ’ % ( c t i d  , d e s t l d ) )  

s u c c e s s  =  F a ls e

cmd =  [ ’ vz m ig r a te  ’ , ’— —o n l i n e ’ , ’—v ’ , d e s t l d ,  c t i d ]  

t r y :

r e t c o d e  =  s u b p r o c e s s  . c a l l  (cmd) 

e x c e p t  OSError , e :

msg =  ’ACTUATOR: E xecu t io n  f a i l e d :  ’ +  s t r ( e )

w r i t e  (msg)

r a i s e  E xcept ion  , msg 

i f  r e t c o d e  =  0:

w r i t e  ( ’ACTUATOR: S u c c e s s f u l  m i g r a t i o n  of  CT %d to HN %s . ’ % ( 

ct id  , d e s t l d  ) )

s u c c e s s  =  True 

e l i f  r e t c o d e  <  0:

w r i t e  ( ’ACTUATOR: Chi ld was t e r m i n a t e d  by s i g n a l  %d . ’ % —r e tc o d e

)
e l s e  :



88

w r i t e  ( ’ACTUATOR: Problem with cmd %s? Child return ed %d . ’ % ( 

cmd, r e t c o d e ) )

r e t u r n  ( s u c c e s s ,  c t id  , d e s t l d )

Listing A. 7: replicateCt method

d e f  r e p l i c a t e C t  ( s e l f  , c t i d ,  i p ) :

w r i t e  ( ’ACTUATOR: R e p l i c a t i n g  CT %s . ’ % c t i d )  

s u c c e s s  =  F a ls e  

t r y  :

i f  c t i d  [0] =  ’9 ’ : 

newCtid =  c t i d  

c t i d  =  c t i d  [ 1:] 

e l s e  :

newCtid =  ’9 ’ +  c t i d  

path =  s e l f  . re qu estEn v ir onm ent  ( c t i d  ) 

s e l f  . unpackEnvironment  (pa th )

s e l f  . r en am eF i l e  ( p r i v a t e  +  c t i d ,  p r i v a t e  +  newCtid)  

s e l f  . r en am eF i l e  ( p r i v a t e  +  newCtid +  ’/ ’ +  c t i d  +  ’ . c onf  ’ , 

c t C o n f i g  % newCtid)

hostname =  s e l f  . u p da te C tC on f ig (n ew C tid  , ip)  

s e l f . s t a r t C t  (newCtid)  

s u c c e s s  =  True 

e x c e p t  E xcept io n  , e :

w r i t e  ( ’ACTUATOR: R e p l i c a t i o n  f a i l e d :  ’ +  s t r ( e ) )  

newCtid =  None 

hostname =  None

r e t u r n  ( s u c c e s s ,  newCtid ,  hostname,  ip)

___ Listing A.8: (Container) init method

d e f  _ _ i n i t _ _ ( s e l f  , c t i d ,  h n ) : 

s e l f [ ’ c t i d  ’ ] =  c t i d  

s e 1f [ ’hn ’ ] =  hn 

s e l  f [ ’ r e p l i c a s  ’ ] =  [ s e l f ]  

s e l f  [ ’ m i g r a t i n g  ’ ] =  F a ls e  

s e l f [ ’c p u ’ ] =  [0] * window



s e l f  [ ’t imestamp ’ ] =  0 

s e l f  [ ’recCnt ’ ] =  0 

s e l f  . CPUtheta =  ( 1 , )  

s e l f  .CPUmu =  0

89

Listing A.9: update method 

d e f  u p d a t e ( s e l f  , c p u U s a g e ) : 

s e  If [ ’c p u ’ ] . p o p ( )  

i f  s e l f [ ’ c t i d  ’ ] =  ’0 ’ :

s e l f [ ’c p u ’ ]. i n s e r t (0,  cpuUsage * s e l f [ ’h n ’ ] . c o r e s ) 

e l s e  :

s e l f [ ’c p u ’ ] . i n s e r t  (0 , cpuUsage)  

s e l f  [ ’t imes tamp ’ ] =  t i m e ,  t ime () 

s e  1 f [ ’ recCnt  ’ ] + =  1

____________________Listing A. 10: updateCpuModel method
d e f  updateCpuModel ( s e i f ) :

i f  s e l f  [ ’recCnt  ’ ] <  len ( s e l f  [ ’cpu ’ ] ) : #  - c p u .  has not  been

comple t ed  once ye t

tmpCpu =  s e i  f [ ’c p u ’ ] [0 : s e l f  [ ’ r e c C n t ’ ] ] #  d u p l i c a t e  useful  par t

of array

e l s e  :

tmpCpu =  s e l f  [ ’c p u ’ ] [ :  ] #  d u p l i c a t e  complete

array

fo r  i in  r a n g e ( l e n ( tm p C p u ) ):

tmpCpu[ i ]  = t m p C p u [ i ]  /  100.0

mu =  0.0

fo r  i in  r a n g e ( le n ( t m p C p u ) ): 

mu + =  tmpCpu [ i ] 

mu =  mu /  l en  (tmpCpu) 

s e l f .  CPUmu =  in t  (mu * 100)

the ta -nu m =  0.0  

t h e t a - d e n  =  0.0



90

f o r  i in  r a n g e ( 0 ,  len( tmpCpu)  — 1):

theta_num + =  ( tmpCpu[ i ]  — mu) * (tmpCpu [ i + 1 ]  — mu) 

th e t a _ d e n  + =  pow( tmpCpu [ i ] -  mu, 2) 

t h e t a - d e n  =  m a x ( l ,  t h e t a - d e n )

CPUtheta =  th e ta .n um  /  t h e t a - d e n  

s e l f  . CPUtheta =  ( in t  (CPUtheta * 100),)

__________________________Listing A. 11: cpu method_____________________

d e f  c p u ( s e l f ):

cpu =  se l f .CPUmu /  100 .0

fo r  i i n  range  ( len  ( s e l f  . C P U th e ta ) ) :

cpu + =  ( s e l f  . C P U th e ta [ i ] /  1 0 0 .0 )  * ((  s e l f  [ ’c p u ’ ][ i ] -  s e l f .  

CPUmu) /  1 0 0 .0 )

r e t u r n  m in (cpu ,  s e 1f [ ’h n ’ ]. maxCpu /  100 .0 )

Listing A. 12: profileCpu method

d e f  p r o f i l e C p u  ( s e l f  , p e r c e n t i l e  =  0 .9 )  :

i f  s e l f ) ’recCnt ] <  10:

r e t u r n  s e l f . cp u ( )

i f  s e l f  [ ’recCnt  ’ ] <  l e n ( s e l f [ ’c p u ’ ] ) : # _cpu- has not  been

completed once ye t

tmpCpu =  s e l f  [ ’cpu ’ ] [0 : s e l f  [ ’ recCnt  ’ ] ] # d u p l i c a t e useful  par t

of array

e l s e  :

tmpCpu =  s e l f ) ’cpu ’ ] [ :] # d u p l i c a t e complete

array

tmpCpu. s o r t  () 

p =  p e r c e n t i l e  * len (tmpCpu)

r e t u r n  m a x ( s e l f  . c p u ( )  +  5 ,  tmpCpu[ in t  (p —1)] / 1 0 0 .0 )

__________________ Listing A. 13: (HardwareNode) init method

d e f  _ _ i n i t _ _ ( s e l f  , h n i d , c o r e s ,  p i p e ) :  

s e l f  . hnid =  hnid 

s e l f . c o res  — co res  

s e l f . p ipe  =  p ipe



91

s e l f . ctO =  None

s e 1f . c o n t a i n e r s  =  {}

s e l f .m axC pu  =  10000 * s e l f . c o r e s

s e l f  .migCpu =  0

s e 1f . overChecks  =  [0] * n

s e l f . o v e r C n t  =  —1

s e l f  . m i g r a t i n g  =  0

_______________________Listing A. 14: overloaded method_____________
d e f  o v e r lo a d e d  ( s e l f  ) : 

o v e r l o a d e d  =  F a l s e

s e l f . o v e r C n t  =  ( s e l f . o v e r C n t  +  1) % n

i f  s e l  f . ctO . cpu () /  ( s e l f . m a x C p u  /  1 0 0 .0 )  > OVERLOAD [ ’cpu ’ ]: 

i f  sum( s e l f  . ove rC he ck s)  > =  k: 

o v e r l o a d e d  =  True 

s e l f  . o v e r C h e c k s [ s e l f . overCnt] =  1 

e l s e  :

s e l f . o v e r C h e c k s [ s e l f . overCnt ] =  0 

r e t u r n  o v e r lo a d e d

______________________ Listing A. 15: willFitRep method_________________
d e f  w i l l F i t R e p  ( s e l f  , c t ) : 

share  =  0.6

cpu =  ( s e l f  . ctO . cpu () +  s e l f . m i g C p u  /  100.0  +  c t . p r o f i l e C p u  () * 

s h a r e )  /  ( s e l f . m a x C p u  /  100 .0 )  

i f  cpu >  OVERLOAD!’c p u ’ ] : 

r e t u r n  F a ls e  

e l s e  :

r e t u r n  True

____________________ Listing A. 16: recordMigration method
d e f  r e c o r d M i g r a t i o n  ( s e l f  , ct , srcHN) : 

s e l f  . m i g r a t i n g  + =  1 

s e l f  . migCpu + =  i n t ( 1 0 0  * c t . c p u Q )  

i f  srcHN :



92

ct [ ’ m i g r a t i n g  ’ ] =  True 

e l s e  :

s e l f  . c o n t a i n e r s  [ c t . g e t C t i d  () ] =  ct

___________________ Listing A.17: recordReplication method

d e f  r e c o r d R e p l i c a t i o n  ( s e l f  , ct , srcHN):  

s e l f  . m i g r a t i n g  + =  1 

share  =  0 .6  

i f  srcHN:

#  srcHN wi l l  lose  40% of the C T ’s load 

s e l f . m i g C p u  + =  i n t ( 1 0 0  * c t . c p u Q  * (1 — s h a r e ) )

e l s e  :

#  destHN wi l l  r e c e i v e  60% of the C T ’s load 

s e l f . m i g C p u  + =  i n t ( 1 0 0  * c t . c p u Q  * s h a r e )  

s e l f  . c o n t a i n e r s  [ ct . g e t C t i d  () ] =  ct

_____________________Listing A. 18: migCompleted method

d e f  migCompleted ( s e l f  , ct , srcHN):  

s e l f  . m i g r a t i n g  —=  1 

i f  s e l f  . m i g r a t i n g  =  0: 

s e l f .  migCpu =  0 

i f  srcHN:

s e l f . overChecks  =  [1] * ( k — 1) 

s e l f  . overChecks  . ex tend ( [0]  * min(n—k +  1, n ) )  

s e l f . o v e r C n t  =  k—2 

d e l  s e l f  . c o n t a i n e r s  [c t  . g e t C t i d  () ] 

e l s e  :

ct [ ’ m i g r a t i n g  ’ ] =  Fal se

_____________________ Listing A. 19: repCompleted method

d e f  repCompleted  ( s e l f  , ct , srcHN):  

s e l f  . m i g r a t i n g  —=  1 

i f  s e l f  . m i g r a t i n g  =  0: 

s e l f  .migCpu =  0 

i f  srcHN:



s e l f  . overChecks  =  [1] * (k — 1)

s e l f  . overChecks  . ex tend  ( [0 ]  * min(n—k +  1, n ) )

s e l f  . overCnt  =  k—2

93

__________________ Listing A.20: addNewObservation method_________________
d e f  addNewObservat ion ( s e l f  , hnid , c o r e s ,  c t id  , cpuTJsage , - t i m e ,  p i p e ) :  

i f  hnid i n  s e l f . h n s :  

hn =  s e l f . h n s [ h n i d ]  

e l s e  :

hn =  HardwareNode(hnid , cores  , p ip e )  

s e l f . h n s [ h n i d ] =  hn

w r i t e  ( ’REGISTER: Added %s to  l i s t  o f  HNs. ’ %(hnid) )  

i f  c t i d  =  ’O’ :

i f  hn.  ctO =  None:

hn .c tO  =  Con ta in er  ( c t id  , hn)

w r i t e  ( ’REGISTER: Added d i s t i n g u i s h e d  CT ( CTO ) to %s. ’ % ( 

h n i d ) )

h n . c t O . u p d a te (cp u U sa g e )  

e l s e  :

i f  c t i d  in  h n . c o n t a i n e r s  :

ct  =  h n . c o n t a i n e r s [ c t i d  ]

#  check i f  CT was migrated and t h i s  is  the f i r s t

#  o b s e r v a t i o n  gat her  at t a r g e t  HN

i f  ct  . m i g l n P r o c e s s  () and c t f ’h n ’ ] != hn : 

ct [ ’hn ’ ].  migCompleted ( ct , True)  

h n . migCompleted ( ct , F a l s e ) 

ct [ ’h n ’ ] =  hn

#  check i f  CT was r e p l i c a t e d  and t h i s  is the

#  f i r s t  ob s e r v a t i o n  gat her  at  t a r g e t  HN

i f  c t i d [0] =  ’9 ’ and c t f ’h n ’ ] != hn: #  r e p l i c a  of  r e p l i c a

h n . removeCt ( c t i d  ) 

ct =  ct  . getCopy () 

ct [ ’hn ’ ]. repCompleted (c t  , True)  

h n . repCompleted ( ct , F a l s e )



c t [ ’hn ’ ] =  hn

c t [ ’ r e p l i c a s ’ ],  append ( c t )

h n . addCt ( c t )

else :

#  check i f  CT was r e p l i c a t e d  and t h i s  is the

#  f i r s t  o bs e r v a t i on  ga t her  at  t a r g e t  HN

i f  c t i d  [0] =  ’9 ’ : #  r e p l i c a  of  o r i g i n a l  CT

ct =  h n . c o n t a i n e r s [ c t i d  [ 1 : l e n ( c t i d ) ] ]  

h n . removeCt ( c t i d [ l : l e n ( c t i d ) ] )  

ct =  c t . getCopy () 

ct [ ’hn ’ ]. repCompleted (c t  , True)  

h n . re p C om p le ted ( ct , F a l s e )  

c t [ ’hn ’ ] =  hn 

c t [ ’ r e p l i c a s ’ ] . a p p e n d ( c t ) 

ct [ ’ c t i d  ’ ] =  c t i d  

else :

ct =  C o n t a i n e r ( ct id  , hn) 

h n . addCt ( c t )

w r i t e  ( ’REGISTER: Added CT %s to l i s t  of  CTs on %s. ’ % ( c t i d  , 

h n i d ))

ct . update  ( c pu U sa ge )

94

________________________Listing A.21: monitor method____________________

def monitor  ( s e l f ) :

w r i t e  ( ’MONITOR: S t a r t i n g  . . . ’ ) 

s e l f . r e g i s t e r  . p r o c e s s S t a t s  () 

o v e r lo a d e d  =  [] 

underloa ded =  []

for hn in s e l f . r e g i s t e r . g e t H n s () : 

for ct in h n . g e t C t s Q :

i f  t i m e ,  t ime () -  c t  [ ’t imestamp ’ ] >  TIMEOUT and not c t . 

m i g l n P r o c e s s  () :

w r i t e  ( ’MONITOR: CT %s has reached i t s  t i m e o u t .  ’ % c t . 

g e t C t i d  ( ) )

i f  ( t i m e . t i m e Q  — h n . ctO [ ’ t imestamp ’ ] > TIMEOUT) :



95

w r i t e  ( ’MONITOR: HN %s has reached i t s  t i m e o u t .  ’ % h n .g e t H n id

0 )

e l s e  :

i f  h n . m i g l n P r o c e s s  () :

w r i t e  ( ’MONITOR: HN %s is  a lr e a d y  i n v o l v e d  in a 

r e l o c a t i o n .  ’ % hn . getHnid  ( ) )

e l s e  :

i f  h n . ov er lo a d ed  () :

o v e r l o a d e d . append(hn)

w r i t e  ( ’MONITOR: HN %s is  o v e r l o a d e d :  %s ’ % (hn.  

getHnid ( ) ,  h n . r e s o u r c e U s a g e  ( ) ) )

e l s e  :

und erloaded  . append (hn)

w r i t e  ( ’MONITOR: HN %s i s  un de r lo ade d:  %s ’ % (hn.  

getHnid () , h n . r e s o u r c e U s a g e  ( ) ) )  

i f  l en  ( o v e r l o a d e d  ) >  0 and len ( und erloaded  ) >  0: 

w r i t e  ( ’MONITOR: C a l l i n g  R e l o c a t o r . . .  ’ )

r e l s  =  s e l f  . r e l o c a t o r  . r e l o c a t i o n s  ( over loaded , un de r lo ade d)  

i f  l en ( r e l s  ) =  0:

w r i t e  ( ’MONITOR: No r e l o c a t i o n s  could  be f o u n d . ’ ) 

e l s e  :

w r i t e  ( ’MONITOR: L is t  of  r e l o c a t i o n s : ’ ) 

fo r  re l  in  r e l s  :

i f  r e l  [0] =  ’mig ’ :

w r i t e ( s t r ( ( r e l  [ 1 ] [ 0 ].  getHnid () , re l  [1] [1 ] .  g e t C t i d Q  , 

re l  [ 1 ] [2] . getHnid ( ) ) ) )

e l s e  :

w r i t e ( s t r  (( re l  [1] [0] . g e t C t i d  ( ) ,  re l  [ 1 ] [ 1 ].  getHnid  ( ) )

))
s e l f  . e x e c R e l o c a t i o n s  ( r e l s  ) 

w r i t e  ( ’MONITOR: Check f i n i s h e d . ’ )

_______________________Listing A.22: migrations method____________
d e f  m i g r a t i o n s  ( s e l f  , o v e r l o a d e d ,  u n d e r lo a d e d ) :

w r i t e  ( ’RELOCATOR: Overloaded HNs: %d’ % l en ( o v e r l o a d e d ))  

w r i t e  ( ’RELOCATOR: Underloaded HNs: %d ’ % len ( underloaded ) )



migs =  []

o v e r l o a d e d  . s o r t  (key =  lam bda hn : h n . l o a d ( ) )  

o v e r l o a d e d . r e v e r s e ()

un de rloade d . s o r t  ( key =  lam bda hn: h n . l o a d Q )  

f o r  hn in  o v e r l o a d e d :

c o n t a i n e r s  =  h n . g e t C t s Q

s e l f  . d e c r e a s i n g L o a d P o l i c y  ( c o n t a i n e r s  ) #  modi f i e s  l i s t

f o l l o w i n g  p o l i c y  

for  ct in  c o n t a i n e r s  : 

t a r g e t  =  None 

fo r  hnode in  u n d e r l o a d e d :

i f  hnode . w i l l F i t M i g  ( c t ) : 

t a r g e t  =  hnode 

break  

i f  t a r g e t :

m i g s . a p p e n d ( ( ’m i g ’ , (hn,  c t , t a r g e t ) ) )  

h n . r e c o r d M i g r a t i o n  ( ct , True)  

t a r g e t  . r e c o r d M ig ra t io n  ( ct , F a l s e ) 

i f  no t  h n . s t i l l O v e r l o a d e d  () : 

break

i f  h n . s t i l l O v e r l o a d e d Q :

w r i t e  ( ’RELOCATOR: Overload s i t u a t i o n  u ns o lv ed in HN %s . ’ % 

hn . getHnid  ( ) )

e l s e  :

w r i t e  ( ’RELOCATOR: Overload s i t u a t i o n  s o l v e d  in HN %s . ’ % hn 

. getHnid  ( ) )

r e t u r n  migs

96

__________________Listing A.23: decreasingLoadPolicy method
d e f  d e c r e a s i n g L o a d P o l i c y  ( s e l f  , c t s ) :

t h r e s h o l d  = 2 0  #  t hr e s ho l d  se t  to 20%

i =  l e n ( c t s ) — 1 

w h i l e  i > =  0:

i f  c t s [ i ] . c p u ( )  < t h r e s h o l d :  

d e l  c t s  [ i ]

i 1



c t s  . s o r t  (key =  lam bda ct : ct . load ( ) )  

c t s . r e v e r s e  ()

97

_________________ Listing A.24: twoReplicasInHnPolicy method

d e f  t w o R e p l i c a s I n H n P o l i c y  ( s e l f  , ct , hn) : 

for  rep in  c t  . g e t R e p l i c a s  () : 

i f  rep [ ’hn ’ ] =  hn : 

r e t u r n  True 

r e t u r n  F a ls e

Listing A.25: replications method

d e f  r e p l i c a t i o n s  ( s e l f  , o v e r l o a d e d ,  u n d e r lo a d e d ) :

w r i t e  ( ’RELOCATOR: Overloaded HNs: %d ’ % len ( o v e r l o a d e d ))  

w r i t e  ( ’RELOCATOR: Underloaded HNs: %d ’ % len ( underloaded ) )  

o v e r lo a d e d  . s o r t  (key =  lam bda hn: h n . l o a d Q )  

o v e r l o a d e d  . r e v e r s e  ()

und er loa ded . s o r t  ( key =  lam bda hn: h n . l o a d ( ) )  

fo r  hn in  o v e r l o a d e d :

c o n t a i n e r s  =  h n . g e t C t s Q  

s e l f .  d e c r e a s i n g L o a d P o l i c y (  c o n t a i n e r s )  

for  c t  in  c o n t a i n e r s :  

t a r g e t  =  None 

fo r  hnode in  u n d e r l o a d e d :

i f  hnode . w i l l F i t R e p  ( c t ) and not  s e l f .  

t w o R e p l i c a s I n H n P o l i c y  (c t  , hnode) : 

t a r g e t  =  hnode 

break

i f  t a r g e t :

r e p s . a pp end ( ( ’rep ’ , (c t  , t a r g e t ) ) )  

h n . r e c o r d R e p l i c a t i o n  ( ct , True)  

t a r g e t  . r e c o r d R e p l i c a t i o n  (c t  , F a l s e )  

i f  not  hn. s t i l l O v e r l o a d e d  () : 

break

i f  h n . s t i l l O v e r l o a d e d  () :



98

w r it e  ( ’RELOCATOR: Overload s i t u a t i o n  un so lv ed in 

HN %s . ’ % h n . getHnid ( ) )

e l s e  :

w r i t e  ( ’RELOCATOR: Overload s i t u a t i o n  s o l v e d  in 

HN %s . ’ % hn. getHnid ( ) )

r e tu r n  reps

______________________Listing A.26: addToProxy method_____________________
d e f  addToProxy ( s e l f  , hostname,  i p ) :

w r i t e  ( ’ACTUATOR: Adding BackEnd %s for S e r v i c e  %s in load b a la n cer  \ ’ 

s c o n f i g u r a t i o n  f i l e . ’ % ( i p ,  ho stna me) )  

hostnameLine  =  ’ \ t \ t H e a d R e q u i r e  ” H o s t : . * ’+  hostnam e + ’ . * ” \ n ’ 

newBackEnd =  ’ \ t \ t B a c k E n d \ n  ’+ ’ \ t \ t \ t A d d r e s s  ’+  ip + ’\ n ’+ ’\ t \ t \ t P o r t  

8 0 \ n  ’+  ’ \  t \ t E n d \ n  ’ 

t r y  :

t r y  :

c o n f i g  =  f i l e  ( p r o x y C o n f ig )  

l i n e s  =  c o n f i g  . r e a d l i n e s  () 

c o n f i g  . c l o s e  ()

pos =  l i n e s  . i n d e x ( ho st n am eL in e ) 

l i n e s  [pos]  =  l i n e s  [pos]  +  newBackEnd

c o n f i g  =  f i l e  (pr oxyConf ig  , ’w ’ ) 

c o n f i g  . w r i t e l i n e s  ( l i n e s )  

c o n f i g  . c l o s e  () 

e x c e p t  ValueError  , e :

w r i t e  ( ’ACTUATOR: F a i l u r e  during  load b a l a n c e r a s

c o n f i g u r a t i o n  up da te .  S e r v i c e  %s not found.  ’ % hostname)  

e x c e p t  E x c e p t io n  , e :

w r i t e  ( ’ACTUATOR: E xecut io n  f a i l e d :  ’ +  s t r ( e ) )  

e x c e p t  :

w r i t e  ( ’ACTUATOR: E xe c u t io n  f a i l e d :  ’ +  sys  . e x c . i n f o  () [0] ) 

e l s e  :

s e l f  . r e s t a r t P r o x y  ()

f i n a l l y  :



c o n f i g  . c l o s e  ()



100

Bibliography

[1] VMware site - About Us. http://www.vmware.com/company/. Accessed August 

2009.

[2] KVM site, http://www.linux-kvm.org/. Accessed August 2009.

[3] OpenVZ Project, http://openvz.org/. Accessed August 2009.

[4] CFQ - Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/CFQ. Ac­

cessed August 2009.

[5] Linux: Fair Queuing Disk Schedulers - KernelTrap.

http://kerneltrap.org/node/580. Accessed August 2009.

[6] Twisted, http://tw istedm atrix.com /. Accessed August 2009.

[7] The Community ENTerprise Operating System, http://www.centos.org/. Ac­

cessed August 2009.

[8] Pound - Reverse Proxy and Load Balancer, http://www.apsis.ch/pound/. Ac­

cessed August 2009.

[9] The Apache HTTP Server Project, h ttp://httpd.apache.org/. Accessed August 

2009.

[10] Httperf site, http://www.hpl.hp.com/research/linux/httperf/. Accessed August 

2009.

[11] Don Quijote by Miguel de Cervantes Saavedra - Project Gutenberg. 

http://www.gutenberg.org/etext/2000. Accessed August 2009.

http://www.vmware.com/company/
http://www.linux-kvm.org/
http://openvz.org/
http://en.wikipedia.org/wiki/CFQ
http://kerneltrap.org/node/580
http://twistedmatrix.com/
http://www.centos.org/
http://www.apsis.ch/pound/
http://httpd.apache.org/
http://www.hpl.hp.com/research/linux/httperf/
http://www.gutenberg.org/etext/2000


10 1

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, 

G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: 

A Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28, 

EECS Department, University of California, Berkeley, Feb 2009.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, 

I. P ratt, and A. Warfield. Xen and the art of virtualization. In SOSP '03: 

Proceedings of the nineteenth ACM symposium on Operating systems principles, 

pages 164-177, New York, NY, USA, 2003. ACM.

[14] K. Begnum, M. Disney, A. Frisch, and I. Meväg. Decision support for virtual 

machine re-provisioning in production environments. In LISA '07: Proceedings 

of the 21st conference on Large Installation System Administration Conference, 

pages 1-10, Berkeley, CA, USA, 2007. USENIX Association.

[15] N. Bhatia and J. S. Vetter. Virtual Cluster Management with Xen. In Euro-Par 

Workshops, pages 185-194, 2007.

[16] G. Box, G. M. Jenkins, and G. Reinsel. Time Series Analysis: Forecasting And 

Control, 3/E. Prentice Hall, 1994.

[17] P. Emelianov, D. Lunev, and K. Korotaev. Resource Management: Beancoun­

ters. In Proceedings o f the Linux Symposium, pages 285-292, June 2007.

[18] D. Gmach, J. Rolia, L. Cherkasova, G. Beirose, T. Turicchi, and A. Kemper. 

An Integrated Approach to Resource Pool Management: Policies, Efficiency and 

Quality Metrics. Technical Report HPL-2008-89, HP Laboratories Palo Alto, 

Palo Alto, CA, USA, 2008.

[19] N. Holmes. The Turning of the Wheel. Computer, 38(7):100-99, 2005.

[20] C. Hyser, B. McKee, R. Gardner, and B. J. Watson. Autonomic Virtual Machine 

Placement in the Data Center. Technical Report HPL-2007-189, HP Laboratories 

Palo Alto, Palo Alto, CA, USA, 2007.



102

[21] A. Kochut and K. Beaty. On Strategies for Dynamic Resource Management in 

Virtualized Server Environments. In MASCOTS ’07: Proceedings of the 2007 

15th International Symposium on Modeling, Analysis, and Simulation of Com­

puter and Telecommunication Systems, pages 193-200, Washington, DC, USA, 

2007. IEEE Computer Society.

[22] K. Kolyshkin. Virtualization in Linux, September 2006. Documentation on 

OpenVZ.

[23] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. Figueiredo. VM- 

Plants: Providing and Managing Virtual Machine Execution Environments for 

Grid Computing. In SC ’Of: Proceedings of the 2004 ACM /IEEE conference on 

Supercomputing, page 7, Washington, DC, USA, 2004. IEEE Computer Society.

[24] D. Marinescu and R. Kroeger. Towards a Framework for the Autonomic Man­

agement of Virtualization-Based Environments. 1. GI/ITG KuVS Fachgespraech 

Virtualisierung, Paderborn, February 2008.

[25] G. Munasinghe and P. Anderson. FlexiScale - Next Generation Data Centre 

Management. In UKUUG Spring Conference, 2008.

[26] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, 

and K. Salem. Adaptive control of virtualized resources in utility computing 

environments. SIGOPS Oper. Syst. Rev., 41(3):289 302, 2007.

[27] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin. Performance Evaluation 

of Virtualization Technologies for Server Consolidation. Technical Report HPL- 

2007-59, HP Laboratories Palo Alto, Palo Alto, CA, USA, 2007.

[28] K. K. Ramakrishnan, P. Shenoy, and J. Van der Merwe. Live data center migra­

tion across WANs: a robust cooperative context aware approach. In INM  ’07: 

Proceedings of the 2007 SIGCOMM workshop on Internet network management, 

pages 262-267, New York, NY, USA, 2007. ACM.



[29] J. E. Smith and R. Nair. The Architecture of Virtual Machines. Computer, 

38(5):32-38, 2005.

[30] A. S. Tanenbaum and M. V. Steen. Distributed Systems: Principles and 

Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[31] G. Vallee, T. Naughton, and S. L. Scott. System management software for 

virtual environments. In CF ’07: Proceedings of the 4th international conference 

on Computing frontiers, pages 153-160, New York, NY, USA, 2007. ACM.

[32] D. Weng, R. M. Bahati, and M. A. Bauer. Policy-Based Autonomic Management 

in Virtual Machine Systems. In Proceedings of the 2009 International Conference 

on Grid Computing and Applications, July 2009.

[33] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and Gray-box 

Strategies for Virtual Machine Migration. In Proceedings of the Fourth Sympo­

sium on Networked Systems Design and Implementation (NSDI), pages 229-242, 

2007.

[34] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, and R. West. Friendly virtual ma­

chines: leveraging a feedback-control model for application adaptation. In VEE 

’05: Proceedings of the 1st ACM /USENIX international conference on Virtual 

execution environments, pages 2-12, New York, NY, USA, 2005. ACM.

[35] M. Zhao and R. J. Figueiredo. Experimental study of virtual machine migration 

in support of reservation of cluster resources. In VTDC ’07: Proceedings of the 

3rd international workshop on Virtualization technology in distributed computing, 

pages 1-8, New York, NY, USA, 2007. ACM.

[36] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, 

C. Hyser, D. Gmach, R. Gardner, T. Christian, and L. Cherkasova. 1000 Islands: 

Integrated Capacity and Workload Management for the Next Generation Data 

Center. Autonomic Computing, International Conference on, 0:172-181, 2008.

103


	Dynamic Resource Management in Virtualized Environments
	Recommended Citation

	tmp.1683570274.pdf.CC6eW

