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ABSTRACT 
 
 

Purpose: Tracheal occlusion (TO) reverses pulmonary hypoplasia (PH) in congenital 

diaphragmatic hernia (CDH), but its effect on epithelial-mesenchymal transition (EMT) in lung 

development remains poorly understood. The purpose of this study was to a) confirm the CDH 

rabbit model produced PH which was reversed by TO and b) determine the effects of CDH +/- TO 

on EMT pathways.  

Methods: CDH was created at 23 days, TO at 28 days and lung collection at 31 days gestation in 

fetal rabbits. Lung body weight ratio (LBWR), mean terminal bronchiole density (MTBD), and 

expression of mRNA and micro-RNA was determined.  

Results: Fifteen CDH, 15 CDH+TO, 6 sham CDH, and 15 controls were included in the study. 

LBWR was low in CDH while CDH+TO was similar to controls. MTBD was higher in CDH 

fetuses and restored to control levels in CDH+TO. miR-33 and MKI67 were increased following 

TO, while Lgl1 was decreased in CDH+TO.  

Conclusion: TO reversed PH and stimulated early Wnt signaling in CDH fetal rabbits. 

 

KEYWORDS: Congenital diaphragmatic hernia (CDH), tracheal occlusion (TO), epithelial-

mesenchymal transition (EMT), lung development, Wnt signaling, TGF- signaling, retinoic acid 

(RA) signaling, micro-RNA (miRNA) 
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CHAPTER 1: INTRODUCTION 
 

Congenital diaphragmatic hernia (CDH) is a birth defect that occurs in every 2000-4000 live 

births [1,2]. CDH occurs when a failure in the fusion of the diaphragm results in a diaphragmatic 

defect (DD) that allows intra-abdominal contents to herniate into the chest cavity, compressing the 

lung and inhibiting normal lung development [3]. Several theories exist to explain the 

pathophysiology of CDH including: abnormal phrenic nerve innervation, improper myotube 

formation, failure of pleuroperitoneal canal closure, and improper pleuroperitoneal fold 

development [3]. The dual-hit hypothesis suggests that CDH causes lung hypoplasia with two 

insults – the first affects both lungs prior to the completion of diaphragm development, and the 

second results from compression of the ipsilateral lung by intra-abdominal organs herniating into 

the chest [4]. CDH is detrimental to key components of lung development, including retinoic acid 

(RA), transforming growth factor-β (TGF-), and wingless-type MMTV integration site (Wnt) 

signaling pathways, which normally stimulate epithelial-mesenchymal transition (EMT) and lead 

to branching morphogenesis [3]. Clinically, CDH results in lung hypoplasia and pulmonary 

hypertension [3]. Lung hypoplasia results in decreased alveolar surface and vasculature causing 

hypoxia and hypercarbia, leading to pulmonary vasoconstriction, worsening pulmonary 

hypertension, right to left shunting, and a cycle of respiratory compromise  [1,3]. Although CDH 

is also associated with various anomalies such as trisomy 13 and 18, congenital syndromes, and 

cardiac malformations, most fetuses that survive to term have isolated CDH [1]. The majority of 

CDH in humans, around 70%, are posterolateral Bochdalek hernias. Approximately 27% of CDH 

cases are anterior Morgagni hernias, and 2-3% are central hernias.  
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Over the past 25 years, the overall survival of all CDH babies in Canada has risen from 50% 

to 80% [5].  There have been great advances in the medical management of patients with CDH 

that account for this 30% increase in survival. These medical advances include extracorporeal 

membrane oxygenation (ECMO), high frequency oscillating ventilation (HFOV), inhaled nitric 

oxide (iNO), and gentle ventilation with permissive hypercapnia [1]. These management options 

treat the sequelae of CDH rather than the condition itself [6]. This has led to improved survival of 

more severe cases of CDH and therefore results in more long-term complications in these patients 

including failure to thrive, gastroesophageal reflux, deafness, and neurological complications 

[1,7]. However, over the last decade, the mortality rate has remained stagnant at 20% [1,7].  

 

The significant morbidity and mortality associated with CDH due to respiratory compromise 

led to the recognition of a need for fetal treatment that would allow lung growth and minimize 

lung hypoplasia [1].  In the 1980s, Harrison et al were the first to successfully repair CDH in utero 

and began a nonrandomized prospective trial comparing fetal CDH repair to medical management.  

The trial revealed that CDH repair was associated with premature rupture of membranes, 

premature delivery, and fetal death while showing no advantage in survival or length of stay 

compared to medical management [1,8–11]. The trial was therefore stopped early. 

 

The concept of fetal tracheal occlusion (TO) came from the observation that fetuses with 

laryngeal atresia were born with hyperplastic lungs [1]. The mechanism of lung hyperplasia was 

thought to be due to mechanical distention from increased lung fluid pressure as a result of tracheal 

obstruction [1,12–14]. TO was first applied in the context of CDH in the early 1990s in the lamb 

CDH model, where significant lung growth and reversal of pulmonary hypoplasia was noted 
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following TO [1,15,16]. TO in humans has evolved from an open Ex-utero Intrapartum Treatment 

(EXIT) technique to a minimally invasive procedure referred to as Fetal Endoluminal Tracheal 

Occlusion (FETO) [1,17]. Despite these advances, FETO is still associated with risks of premature 

rupture of membranes and premature delivery [17,18]. However, FETO does improve survival in 

fetuses with severe CDH by 25%, and is therefore utilized in this high risk population of CDH 

fetuses in a handful of centres across the world [17,18].  

 

FETO also targets lung development on a molecular level. Human fetuses undergoing FETO 

were found to have increased levels of miR-200b in their tracheal fluid following release of the 

TO by balloon removal [19]. On the other hand, overexpression of miR-200b in hypoplastic CDH 

lungs resulted in decreased TGF- signaling which normally stimulates EMT and branching 

morphogenesis during fetal lung development [19]. Overall, research in human CDH fetuses is 

uncommon due to the rarity of the condition, difficulty with obtaining samples, and also ethical 

concerns. Animal models have therefore played a major role in CDH research and continue to be 

utilized to this day.  

 

Although advances have been made in both post-natal medical management and fetal 

intervention for fetuses with CDH, morbidity and mortality risks secondary to lung complications 

remain a significant concern for this population.  Decades of research have been dedicated to the 

study of CDH and TO in order to broaden our understanding of this birth defect and the mechanism 

of a promising treatment. More recently, animal models have been utilized to explore potential 

prenatal therapies that may be used to stimulate lung growth in CDH. The goal of such prenatal 

therapy is to augment and ultimately replace an invasive procedure such as FETO to treat lung 
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hypoplasia in CDH. The aim of this study was to replicate the rabbit model of CDH and to study 

the effects of TO on anatomic, morphologic, and molecular markers of fetal lung development. 

Identifying cell signaling markers that stimulate lung growth following TO could lead to potential 

non-invasive prenatal molecular therapies that promote lung growth and prevent the respiratory 

complications which are caused by CDH.  
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CHAPTER 2: REVIEW OF LITERATURE 

A. Fetal Lung Development 

In humans, lung development begins at 4 weeks gestation as the anterior foregut separates into 

the trachea, two lung buds, and the esophagus [20]. Lung development occurs in 5 stages: 

embryonic, pseudoglandular, canalicular, saccular, and alveolar [21]. The pseudoglandular stage 

occurs from 5-16 weeks of gestation and during this stage airway branching morphogenesis takes 

place [20]. The canalicular stage occurs from 16-26 weeks of gestation, during which time terminal 

bronchioles divide into respiratory bronchioles and alveolar ducts, and pulmonary vasculature 

forms [20]. Epithelial sacs are formed during the saccular stage which occurs from 26-38 weeks 

of gestation [20]. The final alveolar stage begins at 38 weeks of gestation and continues until 

approximately 7 years of age in children. During the alveolar stage, the epithelial sacs form alveoli 

through secondary septation [20].  

 

The gestational period in rabbits is approximately 32 days [21–23]. The pseudoglandular stage 

of lung development occupies 75% of the gestational period and lasts until day 24 of gestation 

[21]. The canalicular phase occurs from 24-28 days gestation and the saccular stage from 27-30 

days [21–23]. Similar to humans, the alveolar stage in rabbits begins in utero prior to delivery and 

continues in the post-natal period [22–24]. It is important to note that in fetal rabbits there is some 

overlap in gestational days for lung development as one stage transitions into the next.  

 

B. Fetal Diaphragm Development 

The diaphragm is the most essential skeletal muscle in mammals because it is required for 

respiration [25]. In humans, diaphragm development begins at 4 weeks of gestation, approximately 
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at the same time as lung development [20]. The diaphragm is composed of the dorsomedial crural 

muscle, the ventrolateral costal muscle, and an amuscular central tendon [20]. The costal 

diaphragm is thin and composed of myofibers that extend from the ribs to the central tendon [25]. 

The crural diaphragm is thicker, attaches posteriorly to the vertebrae and surrounds the esophagus 

and aorta [25]. The central tendon is composed of connective tissue which holds the diaphragm 

muscles together and also attaches to the liver via the falciform and coronary ligaments [25]. 

During fetal development, the diaphragm originates from three embryologic sources – the septum 

transversum, pleuroperitoneal folds, and somites [25]. The septum transversum is a mesodermal 

sheet that forms a barrier between the chest and abdominal cavities and forms a scaffold for further 

diaphragm development [20,25]. The diaphragm muscle cells originate from somites which 

migrate as pleuroperitoneal folds [20]. The pleuroperitoneal folds, also known as the posthepatic 

mesenchymal plate, is a transient embryonic structure that lies on either side of the esophagus [25]. 

The diaphragm is innervated by the phrenic nerves which migrate from the neural tube originating 

from cervical nerves 3, 4 and 5 [25].  

 

Diaphragm development in rabbits occurs throughout the gestational period with a rapid 

progression during the last third of gestation and is fully complete one week post-partum [26]. At 

20 days of gestation, early myogenesis of the diaphragm occurs with fusion of myoblasts to form 

myotubes [26]. Developing motor plates are observed at 22 days gestation, while connective tissue 

sheaths and differentiation of muscle fibres occurs at 25 days gestation [26]. Diaphragmatic muscle 

fibres form myotendinous junctions at 30 days gestation, and by one week post-partum the muscle 

fibres of the diaphragm are fully differentiated and development of the diaphragm is complete 

[26].  
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C. Pathophysiology of CDH 

The dual-hit hypothesis explains the pathophysiology of lung hypoplasia in CDH based on 

research performed using the nitrofen-induced CDH rodent model, which showed that both 

ipsilateral and contralateral lungs are hypoplastic and lung development is impaired before the 

closure of the diaphragm [4]. In the dual-hit hypothesis, the first hit, or insult, affects both lungs 

and occurs prior to diaphragm formation as a result of environmental and genetic factors [4]. The 

second insult occurs following diaphragm development as a result of herniated intra-abdominal 

contents in the chest which compresses the ipsilateral lung and inhibits fetal breathing [4]. 

According to this hypothesis, lung growth into the pleuroperitoneal canal is disturbed and inhibits 

the growth of the posthepatic mesenchymal plate, which is the main origin of the diaphragm [4]. 

This theory therefore suggests that the diaphragmatic defect occurs because of abnormal 

development of the adjacent lung [3,4].  

 

Several other theories also exist with regards to the pathophysiology of the diaphragmatic 

hernia itself. One theory is that the diaphragm does not fully develop properly due to abnormalities 

of phrenic nerve innervation [3,27]. Another theory suggests that a diaphragmatic defect occurs 

due to improper myotube formation which causes a weakness in the diaphragmatic muscle and 

results in rupture due to pressure from intra-abdominal organs [3]. Yet another theory proposes 

that CDH develops from the failure of pleuroperitoneal canal closure during the 10th week of 

gestation in humans when intestines return to the abdominal cavity and enter the pleuroperitoneal 

canal thus blocking the closure of the canal and forming a diaphragmatic hernia [3,28]. Lastly, 

there is also a theory that suggests that CDH occurs as a result of abnormal pleuroperitoneal fold 
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formation which then does not properly differentiate into the diaphragm as it would under normal 

conditions [3,27]. 

 

D. Animal Models of CDH 

Three types of CDH animal models exist – genetic, pharmacologic, and surgical. Genetic 

models of CDH are primarily in rodent models with knockout genes [6,7]. This model is perhaps 

the least popular because the majority of CDH cases in humans are not associated with genetic 

defects and so the genetic model of CDH is the least applicable to the human condition [6,7]. The 

pharmacologic model involves the use of herbicide 2,4-dichloro-phenyl-p-nitrophenylether 

(nitrofen) in rodents and has been primarily used to study the pathophysiology of CDH. The 

surgical model on the other hand, has been used in sheep and rabbits, and has proven to be more 

useful in the study of CDH treatments and interventions.  

 

Nitrofen is a teratogenic herbicide that was first used to explore its diaphragmatic defect 

inducing effects in fetal rodents in the 1980s by Iritani [3,29]. Typically, 100 mg of nitrofen is 

dissolved in 1 mL olive oil and administered on day 9 of gestation to induce CDH in rodents [4]. 

Nitrofen administration induces a right or left-sided diaphragmatic defect in 70-80% of fetuses and 

causes lung hypoplasia in 100% of fetuses [3,6,30,31]. Advantages of the nitrofen-induced CDH 

rodent model include inexpensive cost and ease of use [3,6]. However, although nitrofen induces 

a diaphragmatic defect during early stages of lung development similar to humans, the use of a 

teratogen to induce this defect is concerning since there is no known teratogen associated CDH in 

humans [3]. Nitrofen targets the retinoic acid (RA) signaling pathway and inhibits retinal 
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dehydrogenase [3,6]. Infants with CDH were found to have 50% less plasma retinol and retinol 

binding protein. Therefore, the RA signaling pathway may be involved in the origin of CDH [3].  

 

The surgical model of CDH has been utilized in exploring treatments and innovative therapies 

in CDH [3,6]. This model has been utilized in sheep and rabbits [3,6]. The first surgical model of 

CDH was developed using fetal lambs by Delorimier in the 1960s [3,6,32]. The diaphragmatic 

defect was created surgically at 72-75 days of gestation, which corresponds with the canalicular 

phase of lung development, with term being 145-149 days of gestation. In the early 1990s, the 

surgical model of CDH was developed in fetal rabbits by Fauza et al [33]. There were many 

advantages identified in using rabbits instead of sheep – lower cost, shorter gestational period of 

32 days, and similar lung physiology to humans. In the rabbit model, the diaphragmatic defect is 

created on gestational day 23, which is also during the pseudoglandular phase of lung development 

[6]. The lung physiology is more similar to humans compared to other models because in rabbits 

alveolarization begins prior to birth and completes in the post-natal period, whereas in sheep, 

alveolarization is nearly complete at birth, and in rodents alveolarization begins in the post-natal 

period [24].  

 

The surgical model of CDH has been used to study the effects of TO on lung development. 

Standard measures of lung growth and development include lung body weight ratio (LBWR) and 

mean terminal bronchiole density (MTBD). LBWR, the ratio of fetal lung weight over fetal body 

weight, is a gross anatomic measurement of lung growth and is commonly used to identify lung 

hypoplasia in CDH research [22,24]. MTBD is a morphologic measure of the number of mean 

terminal bronchioles per non-overlapping high powered field on microscopy [22]. MTBD is 
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inversely proportional to the number of alveoli and is therefore used as a marker of lung hypoplasia 

in CDH [22]. Increased MTBD means that there are few alveoli and that the lung is 

underdeveloped and hypoplastic. On the other hand, decreased MTBD means increased number 

of alveoli in a normally developed lung. Animal studies have confirmed that TO increases LBWR 

and decreases MTBD in CDH fetuses, thus reversing lung hypoplasia. However, the molecular 

mechanism of TO and its effect on lung development pathways are not fully understood.  

 

E. EMT in Lung Development and the Wnt Signaling Pathway 

EMT is a fundamental developmental process where epithelial cells transform into 

mesenchymal-like cells [34]. This process occurs during embryologic development, gastrulation, 

and tissue repair [34]. During fetal lung development, several cell signaling pathways stimulate 

EMT including RA, TGF-, and Wnt signaling (Figure 1). Wnt signaling is essential in lung 

development and stimulates EMT which leads to lung-branching morphogenesis [34]. Wnt 

signaling activates several intracellular pathways that regulate maintenance, self-renewal and 

differentiation of mammalian stem cells [35,36]. Wnt signaling is essential during early 

development to regulate body axis formation, organogenesis, and cell migration in vertebrates 

[36].  
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Figure 1: Epithelial-Mesenchymal Transition (EMT) in Lung Development. EMT is targeted by several cell 

signaling pathways including Wnt, TGF-, and RA. 

 
Wnt is a large family of cysteine-rich signaling molecules that are vertebrate homologues of 

Drosophila wingless [35]. The Wnt pathway was first discovered 30 years ago with the discovery 

of a proto-oncogene named Int-1, a homolog of Drosophila wingless that controls segment polarity 

in larvae [36]. Int-1 led to malignant transformation of mouse mammary tissue when inserted in 

the Mouse Mammary Tumor Virus (MMTV) [36]. The gene was therefore named Wnt1, wingless-

type MMTV integration site family member 1 [36].  

 

Nineteen Wnt ligands have been identified in vertebrates [35–37]. Their classification is based 

on amino acid sequence and not their functional properties [36]. Common structural features of 

Wnt proteins include a signal sequence for secretion, several highly charged amino acid residues, 

and multiple glycosylation sites [36]. Receptors of Wnt ligands include members of seven-pass 

transmembrane proteins Frizzleds (FZDs), low density lipoprotein receptor-related protein (LRP) 
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co-receptors, and retinoic acid receptor related orphan receptor (ROR) and receptor-like tyrosine 

kinase (RYK) families [35,36].  

 

Wnt pathways can be categorized as canonical and non-canonical, defined by their requirement 

or independence of intracellular -catenin, respectively [35,36,38]. Wnt ligands elicit canonical or 

noncanonical response dependent on cell type, environment, and receptor type [36]. The Wnt 

signaling pathway is complex and dynamic [36]. When Wnt ligands bind to receptors and co-

receptors on the cell surface, both -catenin dependent and independent cascades are set in motion 

which can reinforce or oppose each other [36].  

 

Canonical Wnt signaling controls cell proliferation, differentiation, migration, cell fate 

specification and stem cell renewal (Figure 2) [35,38]. The canonical Wnt pathway is mediated by 

stabilization of -catenin [35,38]. In the absence of Wnt ligands, -catenin is phosphorylated, 

ubiquinated, and degraded [35]. When Wnt ligands bind to receptors, the seven transmembrane 

FZD receptor and LRP co-receptor 5/6, they trigger intracellular responses that lead to inhibition 

of -catenin phosphorylation [35,36]. The stabilized -catenin accumulates and translocates to the 

nucleus where it interacts with the lymphoid enhancer binding factor 1 (LEF)/ transcription factor 

family (TCF) complex to regulate target gene expression [35]. Wnt1, Wnt2, Wnt3, Wnt10b are 

canonical Wnt ligands [36,39]. 
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Figure 2: The Role of Wnt Signaling in Lung Development. Wnt signaling stimulates cellular proliferation, 

differentiation, lineage specification, and branching morphogenesis during fetal lung development. 

 

Non-canonical Wnt signaling plays a role in cell migration, cell polarity and stem cell 

maintenance [35]. Non-canonical Wnt signaling regulates and represses canonical Wnt activity 

[35]. Non-canonical signaling cascades are subdivided into several Wnt/Ca2+, 

Wnt/Prolylcarboxypeptidase (PCP) and Dishevelled (DVL)-c-Jun N-terminal kinase (JNK) 

pathways [35,36]. Wnt4, Wnt5a, Wnt5b, Wnt7a, Wnt 11, and Wnt16 are -catenin-independent 

non-canonical Wnts [35,36]. 

 

Both canonical and non-canonical Wnt pathways are present in the lung. Wnt2, Wnt2b, Wnt3a, 

Wnt5a, Wnt5b, Wnt7b, Wnt9a, and Wnt11 are expressed in lung tissue [36,37]. Airway structure 

and function, including branching morphogenesis, are governed by epithelial mesenchymal 

interactions that involve the Wnt/-catenin pathway (Figure 2) [37,38]. Deletion of Wnt/-catenin 

results in abnormal epithelial, mesenchymal, and vascular development [38]. It also decreases 

secondary and tertiary branching, leading to elongated bronchiolar tubules with poorly branched 

and enlarged tips [38]. Wnt7b, for example, has been demonstrated to act on lung vascular smooth 
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muscle cells (SMCs) through FZD1 and LRP5 [38]. Wnt7b is required for normal lung 

mesenchymal proliferation in a narrow window of development before embryonic day 15 in mice 

[37]. Wnt7b inactivation decreased airway branching, caused pulmonary hypoplasia, and 

decreased lung muscular smooth muscle [37].  

 

Wnt2 signaling occurs through the canonical Wnt/-catenin pathway [39]. Wnt2 and Wnt2b 

specify lung progenitors within the anterior foregut during fetal development [39]. Wnt2/2b is 

expressed in the lung mesenchyme and is essential in fetal lung development and specification 

[39]. In the knockout mouse model, loss of Wnt2 leads to lung hypoplasia [39]. 

 

Wnt5a is the major Wnt ligand that activates the non-canonical Wnt pathway in the lung [35]. 

Wnt5a regulates branching morphogenesis during the pseudoglandular stage, promotes onset of 

the saccular stage, and cell differentiation during lung maturation [35]. Non-canonical Wnt 

signaling is important in pulmonary capillary patterning [35]. Deletion of Wnt5a results in 

truncation of the trachea, overexpansion of the distal airways, and abnormal capillary formation 

[35,40,41]. Non-canonical Wnt signaling is also critical for SMC function, extracellular matrix 

(ECM) expression, and lung fibroblast formation [35,38]. 

 

The Wnt signaling pathway has been studied in the context of pulmonary hypoplasia in CDH. 

Messenger RNA (mRNA) levels of Wnt7b and Wnt2 were significantly decreased during early 

lung development in the nitrofen-induced congenital diaphragmatic hernia rat model [37]. Bone 

morphogenetic protein 4 (BMP4), a downstream target of Wnt2 was downregulated in the ovine 

model of CDH [42]. Furthermore, in a large pulmonary transcriptome analysis of fetal rabbits, Wnt 
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inhibitor factor 1 (WIF1) was upregulated in CDH and downregulated following TO, while marker 

of proliferation Ki-67 (MKI67) was upregulated in CDH+TO fetuses [43].  

 

The RA signaling pathway also targets EMT during lung development [44]. Late gestation 

lung protein 1 (Lgl1) is a downstream target of this pathway and remains prominent during 

alveolarization of the lung [44]. Nitrofen inhibits retinal dehydrogenase of the RA signaling 

pathway and downregulates Lgl1 expression in CDH fetuses. Lgl1 was found to downregulated in 

the sheep model of CDH [42]. In the nitrofen-induced CDH rat model, Lgl1 was found to be 

upregulated in CDH fetal rat lungs following RA prenatal therapy [45]. 

 

EMT in lung development is likewise regulated by the TGF- signaling pathway.  This 

pathway includes phosphodiesterases (PDEs) such as PDE4, that are altered in TGF- induced 

EMT [46]. PDE5 is prominent during lung development and plays an important role in 

angiogenesis, alveolarization, and maintaining normal fetal pulmonary hypertension [47]. 

Phosphodiesterase 5A (PDE5A) was previously reported to be increased in CDH fetal rabbit lungs, 

and decreased following TO [43]. 

 

F. The role of microRNAs in Lung Development Pathways 

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression through 

post-transcriptional silencing of mRNAs [19,48,49]. miRNAs work by accelerating the 

degradation of mRNAs or repressing translation, thereby negatively regulating the expression of 

target genes (Figure 3) [50]. miRNAs are therefore important in signal transduction and function 

as epigenetic regulators of cell signaling pathways [31,51]. miRNAs are essential for normal 
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organogenesis during embryonic development [19,48,50]. To date, 1800 miRNAs have been 

identified in humans [48].   

 

 

Figure 3: The Role of MicroRNAs in Gene Expression. MicroRNAs are non-coding RNAs that negatively regulate 

gene expression through the degradation of mRNA and the inhibition of translation to protein.  

 

The study of miRNAs and their effect on cell signaling is a growing field, and several miRNAs 

have been linked to lung development pathways. miR-17~92 cluster is involved in epithelial bud 

morphogenesis and branching during early lung development by negatively regulating fibroblast 

growth factor (FGF) signaling [52]. miR-124 regulates lung epithelial maturation and has been 

linked to the Wnt/ catenin signaling pathway [53]. miR-142, which is highly expressed in 

mesenchyme during early lung development, has also been found to interact with the Wnt/ 

catenin signaling pathway [54–56]. The overexpression of miR-375 was found to inhibit alveolar 

epithelial differentiation by targeting the Wnt/ catenin signaling pathway [57,58].  
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miRNAs have also been studied in CDH. There was increased expression of miR-375, an 

inhibitor of Wnt/-catenin, in hypoplastic CDH lungs [50,58]. miR-18a, which promotes cell 

proliferation and suppresses apoptosis, was found to be decreased in CDH [50,59]. Human fetus 

CDH lungs had miR-200b and miR-10a overexpression compared to control lungs of human 

fetuses from terminated pregnancies [19]. There was yet higher miR-200b expression in tracheal 

fluid of fetuses that survived FETO at time of balloon removal compared to time of balloon 

insertion [19]. miR-200b plays an important role in normal lung development by closely regulating 

TGF- signaling [19]. TGF-2 expression was found to be decreased in CDH lungs [19]. This is 

because miR-200b inhibits TGF-/SMAD signaling [19]. Therefore, TGF- activity enhances 

miR-200 family expression as part of a negative feedback loop [19]. miR-200 expression increased 

in CDH lungs and tracheal fluid samples of CDH patients responding to FETO, suggesting that 

increases in miR-200 might result from an inherent increased TGF- expression in hypoplastic 

lungs [19]. In a recent study, miR-200b knockout mice had abnormal lungs due to dysfunctional 

surfactant, increased fibroblast-like cells, thicker mesenchyme between alveolar walls, disturbed 

distal airway branching, and downregulation of epithelial cell differentiation [48]. miR-200b was 

highly expressed during different stages of lung development and found to regulate distal airway 

development by maintaining an epithelial cell phenotype [48].  

 

Furthermore, the expression of several miRNAs were found to be altered in the nitrofen-

induced CDH rodent model [50]. One study showed increased expression of 11 miRNAs and 

decreased expression of 14 miRNAs in the CDH group [50]. Most notably, there was a marked 

decrease in miR-33 in CDH rodent lungs [50]. miR-33 is a target of genes that regulate epithelial-

mesenchymal interactions, including PDGF and Wnt signaling pathways [50,60]. 
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G. Prenatal Therapy for CDH 

CDH is a birth defect that continues to be associated with significant morbidity and risk of 

death due to respiratory failure secondary to lung hypoplasia and pulmonary hypertension. 

Currently FETO is the only treatment that reverses lung hypoplasia associated with CDH. The idea 

of TO as a prenatal intervention for CDH came from an observation of lung hyperplasia in patients 

born with laryngeal atresia [1]. The theory of TO was that by blocking the airway, fluid would 

build up in the lung and cause it to grow [1,12–14]. Currently, FETO is being evaluated as a 

therapy for left-sided severe and moderate CDH as part of a global randomized clinical trial [18]. 

The procedure can be offered outside the trial in cases of severe right-sided CDH [18]. In the most 

recent literature, the FETO procedure takes a median amount of time of 10 minutes with a range 

of 3 to 93 minutes. The procedure is typically performed under local anesthesia and optional 

conscious sedation at 27-29 weeks gestation or at 30-32 weeks for moderate CDH cases [18]. 

Mothers are given tocolytics and antibiotics for 24 hours pre-procedure [18]. The mother is 

positioned in supine position and external manipulation of the fetus is performed if necessary in 

order to achieve an optimal fetal position with easy access to the fetal mouth [18]. The fetus is then 

injected with analgesics and neuromuscular blockers intramuscularly [18]. A skin incision is made 

in the mother’s abdomen and a 10 Fr trocar is inserted into the amniotic cavity under ultrasound 

guidance and guided to be perpendicular to the fetal nose [18]. The fetoscope, a 1.3 mm fiber optic 

endoscope, is then inserted into the fetus’ mouth and guided past the vocal cords and into the 

trachea to the level of the carina [18]. A detachable latex balloon is then inflated and released 

between the carina and vocal cords [18]. Following the procedure, patients are reassessed with 

ultrasound every 1-2 weeks [18]. The balloon is scheduled to be removed at 34 weeks gestation or 
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earlier if birth is impending [18]. The balloon is punctured with a needle under ultrasound guidance 

and is expelled by the fetus spontaneously [18]. The reversal of TO before delivery is a key 

maneuver because persistent TO until birth has been found to decrease the number of type II 

pneumocytes resulting in decreased surfactant production and poorer outcomes [18].  

 

Although prenatal TO for CDH was first established in the 1990s and is now performed using 

a minimally invasive technique, FETO remains classified as an experimental procedure and is 

performed in only a few centres in the world. Furthermore, this prenatal therapy is a surgical 

procedure and is associated with risks including premature rupture of membranes and premature 

delivery. For this reason, research efforts are focused on identifying less invasive prenatal therapy 

options for the treatment of CDH associated pulmonary hypoplasia. Recent literature is promising 

in showing that lung development signaling pathways may be potential targets for prenatal therapy 

in CDH.  

 

Both the RA and TGF- signaling pathways have been targets of prenatal therapies in CDH 

animal models. RA and vitamin A prenatal therapy reduced the incidence of CDH and severity of 

lung hypoplasia in fetuses of nitrofen treated pregnant rats [28]. Interestingly, plasma retinol levels 

have been found to be decreased in humans with CDH [3]. Therefore, although nitrofen is not 

associated with CDH in humans, the link between the nitrofen-induced CDH rodent model and 

human CDH may be the RA signaling pathway itself. Furthermore, prenatal miR-200b therapy in 

nitrofen treated pregnant rodents reversed moderate lung hypoplasia and decreased the incidence 

of CDH in fetuses [31]. Thus, miR-200b may be a promising new fetal therapy for lung hypoplasia 

in CDH.  
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In summary, EMT is a critical process during lung development that is regulated by signaling 

pathways including RA, TGF-, and Wnt. Previous studies have primarily utilized rodent and 

sheep models of CDH. The surgical rabbit model of CDH remains underutilized and is a promising 

model for CDH research because rabbit lung development most closely parallels human 

physiology.  

 

Purpose: 

The purpose of this research is to confirm that our rabbit model of CDH produces pulmonary 

hypoplasia which is reversed by TO, and to determine the effects of CDH and TO on lung 

development pathways that stimulate EMT, including RA, TGF- and Wnt signaling. 

 

Hypothesis: 

We hypothesized that: a) CDH fetuses will have hypoplastic lungs demonstrating low LBWR and 

high MTBD; b) CDH fetuses will have decreased expression of lung development genes c) TO 

will reverse the effects of CDH pulmonary hypoplasia thereby demonstrating increased LBWR 

and decreased MTBD similar to control fetuses; d) CDH+TO fetuses will have similar levels of 

lung development markers to control fetuses (Figure 4).  
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Figure 4: Proposed Effects of TO on Lung Development. CDH causes lung hypoplasia demonstrated by decreased 

LBWR, increased MTBD, and decreased EMT signaling pathway markers. TO reverses the effects of CDH by causing 

lung hyperplasia demonstrated by increased LBWR, decreased MTBD, and increased EMT markers, similar to control 

lungs.   
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CHAPTER 3: MATERIALS AND METHODS 

A. Animal Handling and Surgeries 

All animal procedures were carried out in strict accordance with the guidelines of the Canadian 

Council of Animal Care (CCAC) as approved by the Western University Animal Care Committee 

(AUP 2016-041). All efforts were made to minimize suffering as per the approved protocol and 

with veterinary oversight. Time dated pregnant New Zealand White rabbits (Charles River, 

Sherbrooke) arrived at 13 days gestation. Each month, a group of 5 does arrived at our facility and 

were individually housed with free access to water, food, and environmental enrichment (Figure 

5) . Each doe underwent two surgeries, a CDH creation at 23 days gestation and a second surgery, 

the TO surgery 5 days later at 28 days gestation as previously described [23]. 

 

 

Figure 5: Housing for Pregnant New Zealand White Rabbits. Groups of five time-dated New Zealand White 

rabbits were received at 13 days gestation and housed individually with free access to food, water, and environmental 

enrichment.  
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Pre-operatively, each doe received 0.12 mg/kg Buprenorphine SR SQ (conc. 3 mg/mL, Sigma-

Aldrich Corporation, St. Louis, MO, USA) for analgesia, Penicillin G 300 000 IU IM (Pfizer Inc., 

New York, NY, USA) for the prevention of infection, and Depo-Provera 4.5 mg IM (Pfizer Inc.) 

to reduce the risk of spontaneous abortion. Anesthesia was induced with 5 mg/kg IM Ketamine 

(conc. 100 mg/mL), 0.15 mg/kg Dexmedetomidine IM (conc. 1 mg/mL, Clearsynth Labs Pvt. Ltd., 

Mumbai, India), 0.01 mg/kg Glycopyrrolate SQ (conc. 0.2 mg/mL, Omega Laboratories Ltd., 

Montréal, QC, Canada), and maintained with 5% Isoflurane (Baxter Healthcare Corporation, 

Deerfield, IL, USA) via facemask. Each doe received a 4 cc/kg bolus of 0.9% NaCl SQ, followed 

by a maintenance rate of 5 mL/kg/hr. Lacrilube was applied to the eyes and a water circulating pad 

was used to maintain normothermia intra-operatively. Soft restraints were used on all 4 limbs to 

secure the doe. Vital signs were monitored and maintained within normal limits including heart 

rate 180-250, respiratory rate 30-60, and temperature 38-40C.  

 

CDH creation was performed at 23 days of gestation in a total of 75 fetuses. The does were 

pre-medicated as described above. The abdominal fur was trimmed, and the abdomen was prepared 

with 2% chlorhexidine (Laboratoire Atlas Inc., Montréal, QC, Canada) and draped. A lower 

midline laparotomy incision was made and the uterus was exposed. The number of fetuses in each 

uterine horn was counted. Two fetuses were chosen from the most ovarian end of each uterine 

horn, for a total of 4 fetuses per doe (Figure 6). Fetal position was determined by gentle palpation. 

A 1 cm hysterotomy was made on the anti-mesometrial side of the uterus with a #15-blade scalpel 

(Aspen Surgical Products Inc., Caledonia, MI, USA) (Figure 7). A purse string suture was placed 

using a 6-0 Prolene (Ethicon Inc., Somerville, NJ, USA). The left upper limb of the fetus was 

identified, exposed and retracted cephalad. A left-sided thoracotomy was made at the landmark 
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between the lateral thoracic vessels using a 25-gauge needle (Becton, Dickinson and Company, 

Franklin Lakes, NJ, USA) and mosquito forceps (Figure 7). The lung was retracted, exposing the 

fetal diaphragm. The diaphragm was grasped with mosquito forceps and a piece was cut with fine 

scissors, creating the diaphragmatic defect (Figure 7). The chest wall was sutured with a 6-0 

Prolene (Ethicon Inc., Somerville, NJ, USA). The fetus was repositioned into the uterus and the 

purse string was tied, thus closing the hysterotomy. The laparotomy incision was closed with a 3-

0 Vicryl (Ethicon Inc., Somerville, NJ, USA) in a running fashion. The skin was closed in a 

running subcuticular fashion with a 4-0 Monocryl (Ethicon Inc., Somerville, NJ, USA). Post-

operatively, the does were placed under a red warming light and transferred to their housing cage 

once mobile. Meloxicam 0.2 mg/kg SQ (conc. 5 mg/mL, Boehringer Ingelheim Vetmedica Inc., 

St. Joseph, MO, USA) was administered every 24 hours for 2 days for post-operative analgesia. 

 

 

Figure 6: Bicornuate Rabbit Uterus. The pregnant New Zealand rabbit uterus is bicornuate with a right and left 

uterine horn containing multiple fetuses. Fetuses located at the ovarian end were used for surgical experimentation.  
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Figure 7: CDH Creation in the Rabbit Fetus. A: Hysterotomy with bulging membranes. B: The fetus is minimally 

exposed with the left upper limb retracted cephalad and a 25-gauge needle is used to make a skin incision at the 

thoracotomy site. C: The diaphragmatic defect is created by grasping a piece of diaphragm and cutting it off with fine 

scissors.  

 

TO was performed at 28 days gestation in a total of 17 fetuses. The does were pre-medicated 

as described above. Once anesthesia was induced, the abdomen was prepped and draped in a sterile 

fashion. The lower laparotomy incision was opened and fetuses were counted. Viability was noted. 

Half of the potentially viable CDH fetuses were chosen for TO. A hysterotomy was made and the 

fetal head was exposed. The snout was immediately covered with a saline soaked non-woven 

sponge to ensure no fetal breathing. A horizontal incision was made at the superior border of the 

thyroid gland. A fine snap was used to bluntly dissect down to the trachea. Once isolated, the 

trachea was double ligated with a 4-0 Vicryl suture (Ethicon Inc., Somerville, NJ, USA) (Figure 

8). Fetal skin was sutured with 6-0 Prolene (Ethicon Inc., Somerville, NJ, USA). The hysterotomy 

was closed with 6-0 Prolene (Ethicon Inc., Somerville, NJ, USA) in a running locking fashion. 

The doe’s fascia was sutured with 3-0 Vicryl (Ethicon Inc., Somerville, NJ, USA) and the skin 

was sutured with 4-0 Monocryl (Ethicon Inc., Somerville, NJ, USA). Post-operative treatment 

was as described above. 
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Figure 8: Tracheal Occlusion in the Rabbit Fetus. A hysterotomy has been made, the head exposed and neck 

extended. A small neck incision was used to isolate the trachea which was double ligated with sutures in order to 

perform the TO.  

 

In the last set of 5 does, 10 sham CDH fetuses were generated. Surgical protocol was followed 

as previously described. Following CDH creation, two additional fetuses were chosen at the most 

ovarian end. A sham CDH was created by performing a left-sided thoracotomy without the creation 

of a diaphragmatic defect. 

 

Fetal weights and lung tissue collection was performed at 31 days gestation. Each doe was 

euthanized individually in a room away from the remaining does. Each doe was sedated with 10-

50 mg/kg Ketamine IM (conc. 100 mg/mL) and 2.5-10 mg/kg Xylazine IM (conc. 100 mg/mL, 

Bayer Healthcare LLC, Shawnee, KS, USA), and euthanized with 100 mg/kg Pentobarbital 

Sodium IV (conc. 50 mg/mL, Oak Pharmaceuticals Inc., Lake Forest, IL, USA) administered 

through the ear vein. A midline laparotomy was made and the doe’s heart was palpated to confirm 

the absence of cardiac activity. All fetuses were delivered (Figure 9). The snouts were immediately 

covered with a saline soaked non-woven sponge and each fetus was decapitated to ensure no fetal 

breathing. All fetuses were weighed. A sternotomy and midline laparotomy were performed and 
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the diaphragm was assessed for the presence or absence of diaphragmatic defect (Figure 10). The 

neck was also incised in CDH+TO fetuses and the trachea was assessed for presence of ligation. 

One control unoperated fetus was chosen from each doe containing other surgical specimens and 

was selected based on its weight being the average of the litter. Total lung weight and right lung 

weight were measured for each fetus and left lung weight was calculated by subtraction (Figure 

9). Upper lung lobes were collected and stored in 4% paraformaldehyde (Electron Microscopy 

Sciences, Hatfield, PA, USA) and lower lung lobes were flash frozen in liquid nitrogen and stored 

in -80C.  

 

 

Figure 9: Autopsy Specimens. A: CDH+TO fetus as indicated by the sutures noted in the neck and left chest. The 

fetus has been positioned next to small forceps for size comparison. B: Magnified en bloc section of lungs, heart and 

trachea. The right and left lungs were further dissected and used in the study whereas the trachea and heart were 

discarded.  
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Figure 10: Autopsy Confirmation of Diaphragmatic Defect. A: Tip of scissors placed within the diaphragmatic 

defect to emphasize presence and size of defect. B and C: Intra-abdominal organs herniating into the chest through 

the diaphragmatic defect.  

 

B. Lung Morphology 

Right and left upper lobes were immediately stored in 4% paraformaldehyde (Electron 

Microscopy Sciences, Hatfield, PA, USA), for 24 hours and then washed three times in PBS and 

stored in 70% Ethanol for 1-3 months. The tissue samples were processed, embedded in paraffin 

blocks, and 3-5 m sections were cut. Two slides were made per block of tissue. The slides were 

treated with Hematoxylin and Eosin (H&E) staining and stored at room temperature. A compound 

light microscope was used and slides were viewed at 100 x magnification. The mean terminal 

bronchiole density (MTBD) is inversely proportional to number of alveoli, and is therefore used 

as a histologic marker of lung development [22]. The MTBD was calculated by counting the 

number of terminal bronchioles in non-overlapping high-power fields per slide [22]. Slides were 

de-identified and numbered so that the study group was not known at the time of MTBD 

calculation. An Aperio ScanScope slide scanner was used to take representative pictures of control, 

sham CDH, CDH, and CDH+TO lung slides (Figure 11).  
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Figure 11: H&E Stained Fetal Rabbit Lung Sections. H&E stained lung sections showed more dense tissue with 

increased number of mean terminal bronchioles in hypoplastic CDH lungs compared to control and sham CDH. The 

histologic appearance of CDH+TO sections was less dense with fewer mean terminal bronchioles. A representative 

picture is shown from each group: A. Control; B. Sham CDH; C. CDH; D. CDH+TO. The yellow arrows point to 

terminal bronchioles. 

 

C. RT-qPCR Studies  

i. mRNA 

Right and left lower lobes were flash frozen in liquid nitrogen and stored at -80C. The left 

lower lobe lung tissue was ground with a mortar and pestle in liquid nitrogen. Total cellular RNA 

was extracted using TRIzolTM Reagent (Thermo Fisher Scientific, Waltham, MA, USA) according 

to the manufacturer’s protocol. RNA concentration and purity were determined using the 

NanoDrop Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). RNA integrity 
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was evaluated with 1.5% agarose gel-electrophoresis and Agilent 2100 Bioanalyzer (Agilent, 

Santa Clara, CA, USA). RNA samples with an RNA integrity number (RIN) greater than 8 were 

included in the study. RNA was converted to single strand complementary DNA (cDNA) with a 

High-Capacity RNA-to-cDNATM Kit (Thermo Fisher Scientific, Waltham, MA, USA) as per 

manufacturer’s protocol using a BioRad C1000 thermal cycler (BioRad, Hercules, CA, USA). 

cDNA was diluted 1:40 with RNase-free water and stored at -20C. Primer optimization was 

performed for reference genes (SDHA, ATCB, TOP1) and genes of interest (Wnt2, BMP4, Lgl1, 

PDE5A, MKI67, WIF1). Primers were tested by performing a temperature gradient protocol and 

calculating primer efficiencies using a 4-fold dilution series. Primers with efficiencies ranging 

between 90-110% were considered acceptable and used in the study (Table 1). Real time 

quantitative polymerase chain reaction (RT-qPCR) was performed in triplicate on a BioRad 

CFX384 (BioRad, Hercules, CA, USA), with the following cycling conditions: 95C for 10 

minutes, followed by 43 cycles of 95C for 10 seconds, 60C for 10 seconds and 72C for 15 

seconds. RT-qPCR reactions consisted of 1x final concentration of SensiFast SYBR No-ROX mix 

(FroggaBio, Toronto, Canada) primer at 200 nM final concentration, and 3 L 1:40 cDNA 

template, in a total 8 L reaction volume. RT-qPCR results were analyzed using the BioRad 

CFX384 software (2-Ct method). 

 

ii. MicroRNA 

RNA was converted to cDNA using the miScript II RT Kit (Qiagen, Hilden, Germany) and 

cDNA was diluted with 200 L RNase-free water according to the manufacturer’s protocol. 

miRNA assays were reconstituted in 550 L TE Buffer (pH 8.0). Endogenous control (U6, miR-

103, miR-191) and target (miR-33, miR-200b, miR-375) assay (Qiagen, Hilden, Germany) 
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efficiencies were determined using a 2-fold dilution series. miRNA assays with efficiencies 

ranging between 90-110% were considered acceptable and used in the study (Table 2). RT-qPCR 

reactions were conducted using the miScript SYBR Green PCR Kit (Qiagen, Hilden, Germany). 

The 10 L volume reactions consisted of 5 L 2x QuantiTect SYBR Green PCR Master Mix, 1 

L 10x miScript Primer Assay, 1 L 10 x miScript Universal Primer (Qiagen, Hilden Germany), 

2 L RNase-free water, and 1 L Template cDNA. RT-qPCR was performed in triplicate on a 

BioRad CFX384 with the following cycling conditions: 95C for 15 minutes, followed by 40 

cycles of 94C for 15 seconds, 55C for 30 seconds, and 70C for 30 seconds. RT-qPCR results 

were analyzed using the BioRad CFX384 software (2-Ct method). 

 

D. Statistical Analysis 

The Shapiro-Wilk test of normality was performed for all data sets. Non-parametric data was 

analyzed with the Kruskal-Wallis test. Parametric data was analyzed using the one-way ANOVA 

with Tukey’s post hoc analysis. Statistical significance was considered to be p < 0.05. Body 

weight, lung weight, and surgical times were presented as mean + SEM. Lung body weight ratio 

(LBWR) and mean terminal bronchiole density (MTBD) were presented as box and whisker plots 

with the box showing the range of values from the 25th to 75th percentile, the line within the box 

representing the mean, and the whiskers showing the maximum and minimum values. RT-qPCR 

data was presented as relative quantification (RQ) and error bars (RQ max, RQ min) were derived 

from the standard deviation (SD) using BioRad CFX384 software (2-Ct method). Correlation 

graphs were created to explore the relationship between mRNA/miRNA targets and degree of lung 

hypoplasia (LBWR and MTBD). Linear regression analysis was performed for the correlation 

graphs and the squared Pearson correlation coefficient (R2) and p-values were reported.  
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Table 1: Reference and GOI Primer Sequences, Efficiencies, R2, and Literature Resources Used for RT-

qPCR 

 
Reference 

Gene 

Target Sequence (5’-3’) E (%) R2 Reference Paper 

ATCB F: GATCTGGCACCACACCTTCT 

R: TGATCTGGGTCATCTTCTCG 

107.0 0.95 Vuckovic et al 2013 [23] 

SDHA F: ATCTATCAGCGTGCGTTCG 

R: ATCAGCCACACAGCAGCAT 

96.6 0.99 Vuckovic et al 2013 [23] 

TOP1 F: GCAGGCAATGAGAAGGAAGA 

R: CACGTACTCCTGACCATCCA 

99.0 0.99 Vuckovic et al 2013 [23] 

Gene of 

Interest 

Target Sequence (5’-3’) E (%) R2 Reference Paper 

Wnt2 F: GGATGACCAAGTGCGAGTGT 

R: GTCCAGTCAGCACTCTTGGG 

100.0 0.97 Emmerton-Coughlin et al 2014 

[42] 

BMP4 F: ACAATGTGACACGGTGGGAA 

R: CCTGATGGGTCCGTGTATGG 

97.0 0.98 Emmerton-Coughlin et al 2014 

[42] 

Lgl1 F: GCCAAGATCCTCATCGGCTA 

R: AGGAAGAGGTGGTCCACACA 

102.0 0.97 Emmerton-Coughlin et al 2014 

[42] 

PDE5A F: CTTGGGCTACACCAACAACC 

R: CCTCGGTTCAATGCAGAAGT 

105.5 0.99 Engels et al 2016 [43] 

MKI67 F: AGGCAGGTGAACAAAAGACC 

R: ATGAGCCCTCCCTATGACAA 

96.6 0.98 Engels et al 2016 [43] 

WIF1 F: GTATGAACGGCGGACTTTGT 

R: GTCCTGGTGGGCAAATACAT 

100.7 0.99 Engels et al 2016 [43] 

 

 

 
Table 2: Endogenous Control and micro-RNA miScript Primer Assays, Efficiencies, R2, and Literature 

Resources Used for RT-qPCR 

 
Endogenous 

Control 

Target Sequence (5’-3’) E (%) R2 Reference Paper 

RNU6-2 GTGCTCGCTTCGGCAGCACATATACTAAA

ATTGGAACGATACAGAGAAGATTAGCATG

GCCCCTGCGCAAGGATGACACGCAAATTC

GTGAAGCGTTCCATATTTTT 

98.4 0.95 Pereira-Terra et al 

2015 [19] 

Rn-miR-103 AGCAGCAUUGUACAGGGCUAUGA 95.4 0.98 Peltier et al 2008 [61] 

Mm-miR-191 GCUGCACUUGGAUUUCGUUCCC 99.8 0.85 Peltier et al 2008 [61] 

Micro-RNA Target Sequence (5’-3’) E (%) R2 Reference Paper 

Rn-miR-33 GUGCAUUGUAGUUGCAUUGCA 101.3 0.89 Zhu et al 2016 

 [50] 

Rn-miR-200b UAAUACUGCCUGGUAAUGAUGAC 95.6 0.88 Pereira-Terra et al 

2015 [19] 

Rn-miR-375 UUUGUUCGUUCGGCUCGCGUGA 98.0 0.94 Song et al 2015 [62] 
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CHAPTER 4: RESULTS 
 

A. Fetal Surgery 

Fetal surgeries were performed from the period of September to December 2017 and are 

summarised in Figure 12. Briefly, four groups of five pregnant does per group were operated on 

in total. There was a total of nineteen pregnant does as one doe was not pregnant at the time of 

operation and was immediately euthanized. Collectively the does produced a total of 222 fetuses. 

Overall, 137 of the 222 fetuses survived from the time of first surgery to the time of euthanasia, 

while 85 were dead at the time of organ retrieval. Fifty-eight diaphragmatic defects were created 

for the CDH group. Sixteen of the CDH fetuses survived. One CDH fetus was excluded on autopsy 

due to the absence of a diaphragmatic defect. As a result, a total of 15 CDH fetuses were included 

in the study. A total of 17 CDH+TO operations were performed, of which 16 survived. One 

CDH+TO fetus was excluded on autopsy due to the absence of diaphragmatic defect, which 

resulted in a total of 15 CDH+TO specimens in the study. Ten left thoracotomies were performed 

to create a sham CDH group. Six of these sham CDH fetuses survived and were included in the 

study. In addition to our surgical specimens, one average sized unoperated fetus was chosen from 

every doe that also contained other surgical specimens, resulting in a total of 15 control fetuses. 

Therefore, 51 total fetuses were included in the study – 15 control, 15 CDH, 15 CDH+TO, and 6 

sham CDH. The mean total operative time for CDH creation was 1 hour and 8 minutes + 2 minutes 

per doe while the mean cut time, which excluded anesthesia time, was 46 + 2 minutes.  TO mean 

total operative time was 43 + 2 minutes per doe and mean cut time was 18 + 2 minutes (Table 3). 
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Figure 12: Fetal Rabbit Surgery Flowchart. Four biological groups were created – control, sham CDH, CDH, and 

CDH+TO.  58 CDH fetuses were created, 16 survived, and 1 was excluded on autopsy due to absence of diaphragmatic 

defect (DD). 17 CDH+TO were created, 16 survived, and 1 was excluded on autopsy due to absence of DD. 10 sham 

CDH were created and 6 survived. 15 average sized fetuses were chosen from 98 viable unoperated control specimens. 

There were 51 total specimens included in the study – 15 control, 6 sham CDH, 15 CDH, and 15 CDH+TO.  

 

Table 3: Pregnant Rabbit Doe Weights and Surgical Times. Weight of pregnant does at each surgery timepoint 

and surgical times presented as mean + SEM. The mean total OR time includes the anesthesia and operative time. 

Mean cut time refers to the time during which surgery was performed, from initial incision to final skin closure. 

 Mean Doe Weight 

(kg) 

Mean Total OR Time 

(hr:min) 

Mean Cut Time 

(hr:min) 

CDH Creation 4.01+ 0.6 1:08 + 0.02 0:46 + 0.02 

TO Creation 3.89 + 0.6 0:43 + 0.02 0:18 + 0.02 

Delivery 3.92 + 0.15 ⎯ ⎯ 
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B. Anatomic Features 

The size of diaphragmatic defect was noted on autopsy and subjectively measured as small 

(+), moderate (++) or large (+++) (Table 4). Each sham CDH fetus had a left-sided thoracotomy 

and was confirmed to have an intact diaphragm with no defect. Within the CDH group, 8 fetuses 

had a large CDH with liver herniating into the left chest, and occasionally the spleen and stomach. 

The CDH group also contained 6 moderate diaphragmatic defects which were large but did not 

have intra-abdominal contents herniating into the chest at the time of autopsy. One fetus had a 

small diaphragmatic defect. The CDH+TO group had 10 large and 5 moderate diaphragmatic 

hernias. The initial mean doe weight at time of CDH creation was 4.01 + 0.06 kg, 3.88 + 0.06 kg 

at TO, and 3.92 + 0.15 kg at time of euthanasia and organ retrieval (Table 3).  

 

The mean fetal body weight was similar in control, sham CDH, CDH, and CDH+TO 

fetuses (Table 5). Total lung weight was significantly decreased in CDH fetuses compared to 

control fetuses and significantly increased in CDH+TO fetuses compared to CDH fetuses (Table 

5). Similarly, right and left lung weights were lower in CDH compared to control and higher in 

CDH+TO compared to CDH fetuses (Table 5). Right and left lung weights were similar within 

each group except in the CDH+TO fetuses, where right lungs were larger than left (p=0.04). The 

LBWR was significantly lower in the CDH group compared to control fetuses (p=0.01, Figure 13). 

The LBWR significantly increased in CDH fetuses following TO (p=0.005, Figure 13).  
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Table 4: Size of Diaphragmatic Defects on Fetal Rabbit Autopsy. The size of diaphragmatic defect was 

subjectively measured. Large defects involved solid organs such as the liver herniating into the chest cavity. The 

number of fetuses are categorized by the size of diaphragmatic defect.   

 Small 

(+) 

Moderate 

(++) 

Large 

(+++) 

Control 

(n=15) 

⎯ ⎯ ⎯ 

Sham CDH 

(n=6) 

0 0 0 

CDH 

(n=15) 

1 6 8 

CDH+TO 

(n=15) 

0 5 10 
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Table 5: Rabbit Fetal Body and Lung Weight Measurements. CDH fetuses had smaller total lung weight, right 

lung weight, left lung weight, and LBWR compared to control (p=0.008, p=0.03, p=0.002 respectively). CDH+TO 

total lung weight, right lung weight, left lung weight, and LBWR were increased compared to CDH fetuses (p=0.001, 

p=0.0009, p=0.02 respectively). Fetal body weights were similar in all groups. Weights and LBWR  presented as mean 

+ SEM. Statistics calculated with one-way ANOVA and Tukey’s post-hoc analysis. 

 

 

 Fetal Body 

Weight (g) 

Total Lung 

Weight (g) 

Right Lung 

Weight (g) 

Left Lung Weight (g) Lung Body Weight Ratio (LBWR) 

(Lung weight /body weight (g)) 

Control 

(n=15) 

37.49 + 2.16 0.92 + 0.05 0.48 + 0.03 0.43 + 0.03 0.025 + 0.0015 

Sham CDH 

(n=6) 

41.88 + 5.38 0.81 + 0.14 0.47 + 0.08 0.32 + 0.07 0.020 + 0.0024 

CDH 

(n=15) 

34.19 + 2.17 0.52 + 0.06* 0.30 + 0.03* 0.22 + 0.03* 0.016 + 0.0016* 

CDH+TO 

(n=15) 

36.47 + 1.87 0.94 + 0.10* 0.56 + 0.06* 0.39 + 0.07* 0.026 + 0.0030* 
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Figure 13: Lung Body Weight Ratio (LBWR) in Fetal Rabbits. LBWR was significantly decreased in CDH fetuses 

compared to control (p=0.01) and CDH+TO (p=0.005) fetuses. LBWR was similar in CDH+TO and control fetuses. 

Control n=15, Sham CDH n=6, CDH n=15, and CDH+TO n=15. Box and whisker plot shows the range of values 

from the 25th to 75th percentile, the line within the box depicts the mean, and the whiskers show the maximum and 

minimum values. Statistical analysis performed using one-way ANOVA and Tukey’s post hoc analysis. 

 

C. Lung Morphology 

The right upper lobe (RUL) and left upper lobe (LUL) was processed from each biological 

specimen: control n=15, sham CDH n=6, CDH n=15, CDH+TO n=15 (Figure 14). Each lung lobe 

was processed, and two representative slides were made per block of tissue: control – RUL n= 30, 

LUL n = 30; sham CDH – RUL n = 12, LUL n=12; CDH – RUL n=30, LUL n=30; CDH+TO – 

RUL n =30, LUL n=30 (Figure 14). Therefore, 204 fetal rabbit lung slides were analyzed in total. 

There was no difference in MTBD between right and left upper lobes within each group – control 

6.05 vs 6.03 (p=0.43), sham CDH 5.42 vs 4.96 (p=0.47), CDH 10.34 vs. 9.79 (p=0.49), and 

CDH+TO 5.33 vs. 6.98 (p=0.09) (Figure 14). The MTBD was significantly higher in CDH fetuses 
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compared to control and sham CDH fetuses (p<0.0001 and p=0.0001 respectively, Figure 14). 

MTBD was significantly decreased in CDH fetuses following TO (p<0.0001, Figure 14). MTBD 

in CDH+TO fetuses was similar to control and sham CDH fetuses. The histologic appearance of 

lung specimens showed more dense-appearing tissue with increased number of terminal 

bronchioles in CDH compared to control and sham CDH, and less dense tissue with fewer mean 

terminal bronchioles in CDH+TO specimens (Figure 11). 

 

 

Figure 14: Mean Terminal Bronchiole Density (MTBD) in Fetal Rabbit Lungs. MTBD was significantly 

increased in CDH fetuses compared to control, sham CDH, and CDH+TO fetuses (p<0.0001, p=0.0001, and p<0.0001, 

respectively). CDH+TO had decreased MTBD that was similar to control and sham CDH. MTBD was similar in RUL 

and LUL within each group. Biological groups: control n=15, sham CDH n=6, CDH n=15, and CDH+TO n=15. 

Slides: control – RUL n= 30, LUL n = 30; sham CDH – RUL n = 12, LUL n=12; CDH – RUL n=30, LUL n=30; 

CDH+TO – RUL n =30, LUL n=30. Box and whisker plot shows the range of values from the 25th to 75th percentile, 

the line within the box depicts the mean, and the whiskers show the maximum and minimum values. Statistical analysis 

performed using one-way ANOVA and Tukey’s post hoc analysis.  
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D. RNA Results 

RNA was extracted from 51 left lower lobe (LLL) lung tissue samples (Figure 15). Following 

RNA integrity testing, 6 samples were excluded due to poor quality RNA containing an RNA 

integrity number (RIN) < 8 (Figure 15). These samples were ultimately excluded because there 

was no remaining lung tissue left for these samples and further RNA extraction could not be 

performed. Therefore, a total of 46 RNA samples were included in the study – 14 control, 6 sham 

CDH, 12 CDH, and 14 CDH+TO RNA samples (Figure 15).   

 

 

Figure 15: Fetal Rabbit RNA Sample Flowchart. RNA was extracted from 51 left lower lobe (LLL) lung tissue 

samples. The samples were tested for RNA integrity and 5 were excluded due to poor quality RNA and inadequate 

tissue. There were 46 total RNA samples included in the study: 14 control, 6 sham CDH, 12 CDH, and 14 

CDH+TO.  
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E. RT-qPCR Results 

The relative expression of Wnt2 was similar in all groups: control=1.00 (1.29, 0.78), sham 

CDH=1.24 (1.61, 0.96), CDH=1.31 (1.73, 1.00), CDH+TO=1.14 (1.65, 0.79) (p=0.1, Figure 16). 

BMP4 expression was also unchanged: control=1.00 (1.29, 0.77), sham CDH=1.11 (1.29, 0.96), 

CDH=1.05 (1.3, 0.85), CDH+TO=1.05 (1.37, 0.8) (p=0.8, Figure 16). Lgl1 was significantly lower 

in CDH+TO fetuses compared to CDH and sham CDH fetuses (p=0.03 and p=0.006, respectively): 

control=1.00 (1.31, 0.76), sham CDH=1.17 (1.65, 0.83), CDH=1.16 (1.55, 0.87), CDH+TO=0.82 

(1.02, 0.65) (Figure 16).  

 

PDE5A expression was similar in all groups: control=1.00 (1.42, 0.70), sham CDH=1.15 (1.48, 

0.90), CDH=1.12 (1.41, 0.89), CDH+TO=0.89 (1.20, 0.66) (p=0.09, Figure 17). WIF1 expression 

was also unchanged: control=1.00 (1.58, 0.63), sham CDH=0.61 (1.38, 0.27), CDH=0.8 (1.39, 

0.46), CDH+TO=1.02 (1.98, 0.52) (p=0.3, Figure 17). MKI67 expression was significantly 

increased in CDH+TO compared to control fetuses: control=1.00 (1.68, 0.60), sham CDH=1.02 

(1.83, 0.57), CDH=1.14 (1.67, 0.78), CDH+TO=1.9 (3.46, 1.04) (p=0.01, Figure 17).  

 

miR-33 expression was significantly higher in CDH+TO fetuses compared to sham CDH 

fetuses: control=1.00 (2.29, 0.44); sham CDH=0.46 (1.21, 0.17); CDH=0.66 (1.19, 0.37); 

CDH+TO=1.24 (2.19, 0.71) (p=0.03, Figure 18). The relative expression of miR-200b was similar 

in all groups: control=1.00 (1.24, 0.80); sham CDH=0.88 (1.01, 0.76); CDH=1.07 (1.35, 0.84); 

CDH+TO=1.02 (1.30, 0.80) (p=0.39, Figure 18). There were also no changes in the expression of 

miR-375: control=1.00 (1.36, 0.74); sham CDH=0.99 (1.41, 0.70); CDH=1.25 (1.90, 0.83); 

CDH+TO=1.16 (1.59, 0.84) (p=0.32, Figure 18).  
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Figure 16: Relative Expression of Wnt2, 

BMP4, and Lgl1 in Fetal Rabbit Lungs. 

Expression of Wnt2 and BMP4 was similar in 

control, sham CDH, CDH and CDH+TO fetuses 

(p=0.1 and p=0.8, respectively). Lgl1 was 

decreased in CDH+TO compared to CDH and 

sham CDH fetuses (p=0.03 and p=0.006, 

respectively). Control n=14, Sham CDH n=6, 

CDH n=12, and CDH+TO n=14. Statistical 

analysis performed using one-way ANOVA and 

Tukey’s post hoc analysis. 
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Figure 17: Relative Expression of PDE5A, 

MKI67, and WIF1 in Fetal Rabbit Lungs. 

MKI67 expression was increased in CDH+TO 

compared to control fetuses (p=0.01). PDE5A 

and WIF1 expression was similar in all groups 

(p=0.09 and p=0.3, respectively). Control n=14, 

Sham CDH n=6, CDH n=12, and CDH+TO 

n=14. Statistical analysis performed using one-

way ANOVA and Tukey’s post hoc analysis for 

PDE5A and MKI67. Kruskal-Wallis test used 

for WIF1 expression. 
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Figure 18: Relative Expression of miR-33, 

miR-200b, and miR-375 in Fetal Rabbit 

Lungs. miR-33 expression was increased in 

CDH+TO compared to sham CDH fetuses 

(p=0.03). miR-200b and miR-375 expression 

was similar in all groups (p=0.39 and p=0.32, 

respectively). Control n=14, Sham CDH n=6, 

CDH n=12, and CDH+TO n=14. Statistical 

analysis performed using one-way ANOVA 

and Tukey’s post hoc analysis. 
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Correlation graphs showed that there were weak correlations with no significant relationship 

between most target mRNAs and miRNAs versus LBWR and MTBD (Supplementary Material). 

Interestingly, there was a pattern observed in the CDH+TO group that showed a positive 

relationship between Wnt2 vs MTBD (R2=0.13, p=0.20), BMP4 vs MTBD (R2=0.25, p=0.07), 

Lgl1 vs MTBD (R2=0.22, p=0.09), and a significant positive relationship between PDE5A vs 

MTBD (R2=0.31, p=0.04) (Figure 19).  

 

 

Figure 19: The Relationship of Wnt2, BMP4, Lgl1, and PDE5A Expression vs MTBD in CDH+TO Fetal Rabbit 

Lungs. There is a positive relationship between Wnt2 vs MTBD (R2=0.13, p=0.20), BMP4 vs MTBD (R2=0.25, 

p=0.07), Lgl1 vs MTBD (R2=0.22, p=0.09), and PDE5A vs MTBD (R2=0.31, p=0.04). Control n=14, Sham CDH 

n=6, CDH n=12, and CDH+TO n=14. 
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CHAPTER 5: DISCUSSION & CONCLUSION 
 

Fetal lung development is controlled by several intricate cellular pathways including RA, TGF-

 , and Wnt signaling. These pathways all contribute to epithelial-mesenchymal transition (EMT), 

a critical component of early lung development. Wnt signaling is highlighted in the current study 

because this essential signaling pathway has not been thoroughly explored in the context of lung 

development in CDH. However, in addition to Wnt signaling, components of other critical EMT 

pathways were also explored. The Wnt signaling pathway involves miR-33, miR-375, Wnt2, 

BMP4, and WIF1. miR-200b targets TGF- signaling, which may be linked to PDE5 expression.  

Lgl1 is a downstream member of the RA pathway and stimulates alveolarization. MKI67 is a 

marker of cell growth and can be used as an indicator of lung development. The purpose of this 

study was to establish a rabbit model of CDH and determine the effects of TO on EMT pathways 

of lung development. In the current study, TO increased miR-33 and MKI67 expression, while 

Lgl1 mRNA expression was decreased in CDH+TO fetuses. miR-200b, miR-375, Wnt2, BMP4, 

PDE5A, and WIF1 levels were unchanged (Figure 20).  
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Figure 20: Proposed EMT Pathways of Fetal Lung Development. This pathway includes Wnt, TGF-, and RA 

signaling. miRNAs and mRNAs investigated in the current study are bolded: Wnt signaling pathway – miR-33, miR-

375, Wnt2, BMP4, WIF1; RA signaling pathway – Lgl1; TGF- signaling pathway – miR-200b, PDE5A; and cell 

proliferation marker, MKI67. 

 

The surgical rabbit model is useful for CDH research because the diaphragmatic defect is 

created during the pseudoglandular stage, similarly to humans, and thus most closely reflects the 

effects of CDH in human lung development [24]. In addition, the rabbit has a short gestation and 

produces large litters. Unlike nitrofen induced CDH rodent models, surgical models are ideal in 

the study of TO and other interventions for CDH since there is no concern about the effect of 

nitrofen on the developing lung or other organs [6]. The surgical sheep model has also been used 

in CDH research, however, CDH is created later in gestation during the canalicular stage which 

does not reflect the human condition [42,63]. Sheep also have a much longer gestational period of 

145-149 days,  produce fewer fetuses and is a much more costly model [6]. Despite the benefits of 
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the rabbit model of CDH, it has been under-utilized and remains outnumbered by nitrofen-induced 

rodent models of CDH due to increased cost and technical difficulty. Of the published rabbit CDH 

papers, only a few have studied the effects of TO, and to the best of our knowledge, none have 

studied the impact of CDH and potential rescue effects of TO on the Wnt signaling pathway 

[43,64,65] (Figure 20).  

 

This rabbit model of CDH and TO was successfully replicated and physiologically consistent 

with previously published data. The learning curve and difficulty of performing fetal rabbit surgery 

accounted for non-survivors in this study. The survival rate of CDH fetuses was 27% in this study 

compared to 41% in previously reported data [66]. It is important to note that in previous studies 

fetuses were exposed to only one surgery, CDH creation, whereas in this study all fetuses also 

underwent a second operation. Therefore, the 10% increase in mortality in this study is likely due 

to increased stress to fetuses due to a second operation. In addition, sham CDH fetuses likely died 

due to operative stress and prolonged operative time because this surgery was added to each doe 

that was also already undergoing CDH creation and TO.  

 

Furthermore, the size of diaphragmatic defects on autopsy were subjectively measured with 

only one defect noted to be small with no intra-abdominal contents herniating into the thoracic 

cavity, whereas the remaining defects were either moderate or large with the liver and other intra-

abdominal organs herniating into the chest. These defects are analogous to the more severe cases 

of CDH in humans that would quality for FETO. Interestingly, the size of diaphragmatic defect 

has not been reported in other CDH animal studies.  
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In this study, CDH induced lung hypoplasia was confirmed with quantification of LBWR and 

MTBD (Figure 13 and 14). Decreased LBWR and increased MTBD are markers of lung 

hypoplasia and are commonly used to define lung hypoplasia in CDH literature [22–24,66]. Lung 

hypoplasia that was induced through CDH was subsequently reversed by TO as postulated [23,43]. 

Interestingly in this study, both right and left lungs were hypoplastic in CDH and hyperplastic 

following TO according to both weight and MTBD. On a mechanical level, TO is thought to work 

by fluid building up in the lung, thus causing stretch-induced lung growth and maturation 

[23,67,68]. Although it is well established that TO reverses pulmonary hypoplasia in human CDH 

babies and animal CDH models, the molecular mechanism and effect on lung development 

signaling pathways is not fully understood [1]. This continues to be an area requiring further 

exploration with the potential for determining molecular prenatal therapies for CDH associated 

lung hypoplasia that stimulate lung development. miR-200b and RA have recently been explored 

as prenatal therapies in CDH animal models, which poses an exciting area for future translational 

research [31,45]. 

 

Wnt signaling is critical in lung development and plays an important role in EMT during early 

stages, which ultimately regulates proximal-distal patterning, including branching morphogenesis, 

during later stages of lung development [37,69–71]. MKI67 is a cell proliferation marker that has 

been studied in the context of the canonical Wnt/-catenin signaling pathway in embryonic lung 

growth [72]. Similar to other reports, in the current rabbit CDH study, MKI67 was significantly 

upregulated by TO compared to control fetuses (Figure 17) [43].  
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Wnt2 is part of the canonical Wnt/ catenin signaling pathway and BMP4 is a downstream 

target of this pathway [69,73]. In a previously reported study of Wnt2 and BMP4 in the nitrofen-

induced CDH rodent model, fetuses were sacrificed at multiple time points during the gestational 

period, and gene expression was therefore analyzed during different stages of lung development 

[37]. The overall trend of Wnt expression was that Wnt2 was highly expressed during early lung 

development in normal control fetuses, decreased over time, and was low at term on E21 [37]. 

Wnt2 and BMP4 expression was decreased in CDH lungs compared to control on E15 during early 

stages of lung development [37]. In CDH fetuses, Wnt2 and BMP4 expression increased over the 

gestational period and was similar to control fetuses at term on E21 [37]. In the ovine surgical 

model of CDH, there was no significant difference in Wnt2 expression in CDH fetal sheep 

compared to control sheep at term gestation [42]. In the current study, Wnt2 and BMP4 expression 

was similar in control, sham CDH, CDH, and CDH+TO fetal rabbit lungs (Figure 16). All of these 

lung specimens were taken at term and gene expression was analyzed during late stages of lung 

development. These results may be explained by the dynamic expression of Wnt signaling pathway 

genes during different stages of lung development, and are consistent with the current literature. 

In future studies, to further confirm Wnt expression, gene analysis should be performed during 

each stage of lung development in order to capture the changes in expression that occur during 

fetal lung development.  

 

WIF1 is a Wnt inhibitor factor that inhibits Wnt proteins by targeting SMAD1 in epithelial 

cells during lung development [43,74]. WIF1 expression was similar in control, sham CDH, CDH, 

and CDH+TO fetuses (Figure 17). Although these WIF1 expression results are not consistent with 

the literature, previously reported WIF1 data in rabbit and rodent CDH models also presents 
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conflicting results [43,75]. WIF1 was upregulated in CDH fetal rabbits and downregulated 

following TO [43]. However, SMAD1 and WIF1 were downregulated in the nitrofen-induced 

rodent model of CDH during the saccular stage of lung development on E18 and E21 [43,75]. The 

variation in these findings could be due to differences in species-specific gene expression, the 

mode and timing of CDH induction, and the stage of lung development at which time the lung 

tissue was analyzed. For example, WIF1 expression in a sample of lung tissue collected during 

early lung development stages may be different than a sample collected at term during late stages 

of lung development. It is also important to note that earlier reports of gene expression in the rabbit 

model of CDH have been conducted with small animal numbers of 3-4 per group and in the current 

report animal groups consisted of 12-14 fetuses per group. These larger numbers were based on 

power calculations using pilot study data that compared MTBD results between CDH and control 

fetuses (Supplementary Material). 

 

EMT is regulated by the Wnt signaling pathway and this process is also complemented by the 

RA signaling pathway of lung development. Lgl1 is a downstream target of the RA signaling 

pathway and plays an important role during late stages of lung development as a regulator of 

branching morphogenesis and alveolarization [42,44,45,76–78]. Discrepancies in Lgl1 expression 

between the rabbit and other models were also identified. In the current study, Lgl1 expression in 

CDH rabbit fetuses was similar to control fetuses, but downregulated in CDH+TO fetuses 

compared to sham CDH fetuses (Figure 16). Lgl1 in the rat and sheep CDH models has been 

previously observed to be downregulated [42][45]. Possible explanations for these discordant 

findings are that different models (i.e. chemical vs surgical) involve different pathways or 

mechanisms, so prenatal interventions such as TO will have different effects [43]. Different species 
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have variable lengths of gestation and therefore different time frames for the stages of lung 

development [43]. At term gestation, fetal rabbits are in the process of alveolarization which begins 

in the prenatal period and continues in the post-natal period, similar to humans. In comparison, 

alveolarization is complete in fetal sheep at term gestation, and does not begin until the post-natal 

period in rodents [24]. Since Lgl1 is primarily involved in alveolarization, downregulation of Lgl1 

following TO could be due to negative feedback from the completion of alveolarization as a result 

of the compensatory effects of TO.  

 

In the current study, PDE5A expression was observed to be consistent across the animal groups 

(Figure 17). However, there was a significant positive correlation between PDE5A expression and 

degree of lung hypoplasia (Figure 19). This suggests that PDE5A expression is decreased in less 

hypoplastic lungs with decreasing MTBD in CDH+TO fetal rabbits. This is consistent with 

previous reports of increased PDE5A expression in CDH fetal rabbits and decreased expression in 

CDH+TO fetuses [43]. PDE5A is a member of the phosphodiesterase (PDE) family and functions 

as an enzyme that metabolizes cGMP in the lung [79]. Interestingly, some PDEs are altered in 

TGF- induced EMT, although this has mostly been shown in PDE4 [46]. Fetal pulmonary 

hypertension is mediated by PDEs, such as PDE5, which counteract cAMP and cGMP vasodilatory 

pathways in the lung [47]. PDE5 is prevalent in the lung and in normal lungs its expression 

increases to the end of gestation and then rapidly decreases after birth [47]. During normal fetal 

lung development, the formation of pulmonary vasculature parallels the development of the 

bronchial tree [47]. In utero, pulmonary hypertension is normal for fetuses [47]. Pulmonary 

pressures are equivalent to systemic pressures as the placenta, and not the lung, performs the 

majority of gas exchange for the fetus [47]. During the gestational period, rapid vascular growth 
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occurs in preparation for the shift to lung gas exchange after birth [47]. In CDH, abnormal vascular 

development results in pulmonary vascular hypoplasia, decreased pulmonary blood flow, and 

abnormal pulmonary vasoconstriction which exacerbates pulmonary hypertension and causes it to 

persist after birth [47]. Clinically, PDE5 inhibitors such as Sildenafil are used to treat pulmonary 

hypertension due to their smooth muscle relaxation properties [80]. The treatment of rats with 

Sildenafil induced alveolar and vascular growth, suggesting that PDE5 may play a role in both 

alveologenesis and angiogenesis [81].  

 

Recently it has become apparent that a complex interplay occurs between miRNAs and 

mRNAs. miRNAs are non-coding RNAs that function as post-transcriptional regulators of gene 

expression [56]. miR-33 is an upstream regulator of the Wnt signaling pathway and was found to 

be downregulated in CDH rat fetuses [50]. In the current study, miR-33 was upregulated in our 

CDH+TO fetuses compared to sham CDH fetal rabbit lungs (Figure 18). There was a decrease in 

miR-33 expression in CDH fetuses, however, this was not statistically significant (Figure 18). 

miR-33 targets high mobility group AT-hook 2 (HMGA2) in the canonical Wnt/-catenin 

signaling pathway [50,82].  HMGA2 is essential in cell proliferation and epithelial differentiation 

during embryogenesis [72]. HMGA2 knockout enhances Wnt signaling by decreasing Wnt 

antagonizing proteins, GATA binding protein 6 (GATA6) and FZD2 [72]. During early stages of 

lung development in the nitrofen-induced CDH rodent model, GATA6 was downregulated along 

with Wnt2 and its downstream target BMP4 [37]. The role of miR-33 in fetal lung development 

has not been thoroughly investigated. Interestingly, miR-33 appears to stimulate fetal lung 

development, rather than inhibit cell growth as previously reported for lung cancer cells. miR-33 

expression plays a inhibitory role in cellular development of lung cancers, and decreases lung 
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carcinogenesis and metastasis [83]. miR-33a upregulation inhibits EMT, growth, and metastasis 

of non-small cell lung cancer cells [84,85].  miR-33b suppresses tumor cell growth and EMT by 

inhibiting Wnt/-catenin signaling in lung adenocarcinoma cells [83]. miR-33b was also found to 

inhibit proliferation of lung squamous cell carcinoma [86]. miR-33 could be used as a potential 

therapeutic target in lung adenocarcinoma, and due to its tumor-suppressive properties, it has been 

proposed that miR-33 be used as a prognostic marker or a therapeutic target for lung cancers [83–

86]. In general, previous research has been heavily focused on miR-33 in the context of lung 

cancer, so the role of miR-33 in fetal lung development is a potentially exciting area for further 

study. 

 

In the current study, miR-375 expression was similar in all animal groups and was unaltered 

by CDH and TO (Figure 18). miR-375 has not yet been studied in the context of CDH. During 

lung development, miR-375 inhibits the Wnt/-catenin signaling pathway by targeting FZD8 

[57,58]. Overexpression of miR-375 inhibited alveolar epithelial trans-differentiation in fetal rat 

lungs at term gestation [58]. miR-375 expression increased throughout development as was 

significantly elevated at term during the saccular stage compared to the earlier canalicular stage 

[58]. This is consistent with previously reported data that shows a decreasing trend in Wnt2 

expression throughout lung development stages in fetal rats [37]. Although miR-375 appeared to 

be elevated in CDH rabbit fetuses in the current study, this was not significantly different compared 

to the other animal groups (Figure 18). The literature suggests that miR-375 expression varies with 

developmental stage. Therefore, differences in the current study’s results and previously reported 

data may be due to the inability to capture changes in gene expression during the different stages 

of lung development in the current study since all specimens were collected at term gestation. This 



  

 

55 

multi-stage tissue collection approach is important in determining the role of miR-375 and crucial 

in order to adequately compare expression to previously reported data in other animal models.  

 

EMT in fetal lung development is also regulated by the TGF- signaling pathway [31,87]. 

miR-200b regulates TGF- signaling in a negative feedback loop by targeting transcription factors 

zinc finger e-box binding homeobox 1 (ZEB1) and ZEB2 [19,31]. miR-200b has been specifically 

identified in the peripheral lung of mice, where it regulates epithelial and fibroblast cell 

differentiation in distal lung airway development [48]. miR-200b was upregulated in human 

fetuses with CDH, and even further upregulated in the tracheal fluid of FETO responders [19]. 

miR-200b was also upregulated in the rabbit model of CDH, however, variable changes in miR-

200b expression were identified following TO [64]. In the rodent model of CDH, miR-200b 

expression was dependent on both the region of lung tissue and stage of lung development. miR-

200b expression was decreased in the mesenchyme and epithelium of rat CDH lungs in early lung 

development, during pseudoglandular and canalicular stages, compared to control lungs [31]. 

However, miR-200b expression was similar to control fetuses at term during the saccular stage of 

lung development [31]. In addition, miR-200b became localized in the proximal epithelium of 

large airways compared to distal terminal saccules [31]. Furthermore, miR-200b prenatal therapy 

in nitrofen rats reduced the incidence of CDH fetuses [31]. In our current study, there was no 

difference in miR-200b expression in control, sham CDH, CDH, and CDH+TO fetal rabbit lungs 

(Figure 18). These findings were similar to the previously reported rodent data that showed similar 

levels of miR-200b at term gestation. The disadvantage of our rabbit study was that we were not 

able to capture the distribution pattern of miR-200b in the lung or analyze miR-200b expression 

levels during different stages of lung development. 
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Figure 21: Effect of TO on Proposed EMT Pathway Markers in the Rabbit Model of CDH. TO increased 

expression of miR-33 and MKI67, and decreased expression of Lgl1 in fetal CDH+TO rabbits. The expression of 

other Wnt and TGF- signaling markers miR-375, WIF1, Wnt2, BMP4, miR-200b, and PDE5A, were unchanged.   

 

There are several possible explanations for the differences in gene expression results reported 

in our study compared to previously reported literature. Firstly, some previously reported studies 

include low specimen numbers of 3-4 CDH or CDH+TO fetuses. Small sample sizes could 

potentially skew results, while larger samples are likely more realistic in reflecting biological 

variance. The Engels paper was also at risk of possible selection bias: 6 CDH+TO RNA samples 

were analyzed, but 3 were excluded. Results for two of the samples clustered with the CDH group 

and were therefore considered non-responsive to the TO treatment, and one sample was excluded 

because it was considered an outlier. Secondly, chemical and surgical models are very different 

with respect to CDH creation. Nitrofen induces a diaphragmatic defect early in gestation in 

addition to its teratogenic effect on the RA pathway. Conversely, a surgical defect in rabbits is 
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created at a similar gestational age and lung development stage to humans. Thus,  CDH induction 

and prenatal interventions such as TO will have different effects on gene expression [43]. Thirdly, 

different species have variable lengths of fetal gestation and stages of lung development [43]. 

Comparing changes in gene expression at term gestation in multiple species may not coincide with 

the same stage of lung development. This could be explored in the future by analyzing gene 

expression from lungs at different stages of development in the fetal rabbit and not just at term 

gestation. Lastly, gene expression may also vary from species to species, so comparing the same 

gene in different species may result in discordant data [43]. There were also several limitations in 

our study. The gene expression results were based on mRNA in whole lung tissue. Unfortunately, 

the distribution and localization of gene expression within the lung was not analyzed. Differences 

have been described in proximal – distal airways, which our study was not able to examine. This 

could be explored in the future with techniques such as immunohistochemistry and in situ 

hybridization, although it remains difficult to find rabbit primers and antibodies [43,64]. 

Furthermore, mRNA levels may not correspond to functional protein levels in tissue [88,89]. 

Therefore, to fully understand the genotype to phenotype expression relationship, protein analysis 

should be performed in addition to RT-qPCR assessment of RNA transcripts [88,89].  
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Figure 22: The Effects of CDH and TO on Fetal Rabbit Lung Development. CDH caused lung hypoplasia 

demonstrated by low LBWR and high MTBD with no significant difference in lung development markers. TO 

reversed lung hypoplasia in CDH fetuses resulting in high LBWR and low MTBD. TO increased expression of miR-

33 and MKI67 and decreased Lgl1 expression. 

 

In conclusion, the rabbit model of CDH caused pulmonary hypoplasia which was reversed by 

TO (Figure 22). TO stimulated early Wnt/-catenin signaling by upregulating miR-33. This 

mechanism stimulated lung development as reflected by the upregulation of cell proliferation 

marker MKI67. TO likely downregulated Lgl1 expression through a negative feedback loop 

following alveolarization at term gestation in CDH fetal rabbits (Figure 21). This research has 

deepened our understanding of the effects of CDH and TO on lung development pathways 

involved in EMT, and specifically multiple components of the Wnt signaling pathway. We have 

established the groundwork for future research that may include exploring gene expression during 

different stages of lung development, analyzing the distribution of mRNA within the lung tissue, 

determining protein distribution to gain more information on gene expression at the functional 

level, and developing prenatal therapy using molecular lung development targets such as miR-33.  
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B. Sample Size Calculation 

 
Resource: www.stat.ubc.ca 

 
Based on pilot study data: 

 mu1: Control MTBD = 5.33  

 mu2: CDH MTBD = 7.87 

Sigma = 2 

2-sided test 

Alpha = 0.05 

Desired power = 0.80 

Result: Sample size = 10 

 

Screen Shot of Website Sample Size Calculator: 
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C. Correlation Graphs: Supplementary Figures 1 - 9 

 
Supplementary Figure 1: Correlation Graphs of Wnt2 vs. LBWR and Wnt2 vs. MTBD. Wnt 2 expression data 

presented as -Ct. Wnt2 vs LBWR – control R2=0.03, p =0.57; sham CDH R2=0.34, p=0.22; CDH R2=0.19, p=0.16; 

CDH+TO R2=0.04, p=0.5. Wnt2 vs MTBD – control R2=0.000005, p=0.99; sham CDH R2=0.47, p=0.13; CDH 

R2=0.25, p=0.10; CDH+TO R2=0.13, p=0.20.  
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Supplementary Figure 2: Correlation Graphs of BMP4 vs LBWR and BMP4 vs MTBD. BMP4 expression data 

presented as -Ct. BMP4 vs LBWR – control R2=0.08, p=0.33; sham CDH R2=0.59, p=0.07; CDH R2=0.02, 

p=0.64; CDH+TO R2=0.40, p=0.02. BMP4 vs MTBD – control R2=0.02, p=0.60; sham CDH R2=0.85, p=0.01; 

CDH R2=0.03, p=0.57; CDH+TO R2=0.25, p=0.07.  
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Supplementary Figure 3: Correlation Graphs of Lgl1 vs LBWR and Lgl1 vs MTBD. Lgl1 expression data 

presented as -Ct. Lgl1 vs LBWR – control R2=0.02, p=0.63; sham CDH R2=0.41, p=0.17; CDH R2=0.01, p=0.79; 

CDH+TO R2=0.28, p=0.05. Lgl1 vs MTBD – control R2=0.0013, p=0.90; sham CDH R2=0.47, p=0.14; CDH 

R2=0.02, p=0.64; CDH+TO R2=0.22, p=0.09.  
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Supplementary Figure 4: Correlation Graphs of PDE5A vs LBWR and PDE5A vs MTBD. PDE5A expression 

data presented as -Ct. PDE5A vs LBWR – control R2=0.02, p=0.61; sham CDH R2=0.38, p=0.20; CDH R2=0.11, 

p=0.29; CDH+TO R2=0.30, p=0.04. PDE5A vs MTBD – control R2=0.004, p=0.83; sham CDH R2=0.31, p=0.25; 

CDH R2=0.08, p=0.38; CDH+TO R2=0.31, p=0.04.  
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Supplementary Figure 5: Correlation Graphs of MKI67 vs LBWR and MKI67 vs MTBD. MKI67 expression 

data presented as -Ct. MKI67 vs LBWR – control R2=0.15, p=0.17; sham CDH R2=0.001, p=0.95; CDH R2=0.04, 

p=0.54; CDH+TO R2=0.26, p=0.06. MKI67 vs MTBD – control R2=0.06, p=0.40; sham CDH R2=0.004, p=0.91; 

CDH R2=0.17, p=0.19; CDH+TO R2=0.0007, p=0.93.  
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Supplementary Figure 6: Correlation Graphs of WIF1 vs LBWR and WIF1 vs MTBD. WIF1 expression data 

presented as -Ct. WIF1 vs LBWR – control R2=0.16, p=0.16; sham CDH R2=0.58, p=0.08; CDH R2=0.17, p=0.21; 

CDH+TO R2=0.18, p=0.13. WIF1 vs MTBD – control R2=0.05, p=0.45; sham CDH R2=0.28, p=0.28; CDH 

R2=0.04, p=0.57; CDH+TO R2=0.03, p=0.54.  
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Supplementary Figure 7: Correlation Graphs of miR-33 vs LBWR and miR-33 vs MTBD. miR-33 expression 

data presented as -Ct. miR-33 vs LBWR – control R2=0.090, p=0.3; sham CDH R2=0.19, p=0.38; CDH R2=0.08, 

p=0.37; CDH+TO R2=0.03, p=0.55. miR-33 vs MTBD – control R2=0.0008, p=0.92; sham CDH R2=0.24, p=0.33; 

CDH R2=0.08, p=0.38; CDH+TO R2=0.000002, p=0.99.  
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Supplementary Figure 8: Correlation Graphs of miR-200b vs LBWR and miR-200b vs MTBD. miR-200b 

expression data presented as -Ct. miR-200b vs LBWR – control R2=0.17, p=0.15; sham CDH R2=0.02, p=0.78; 

CDH R2=0.25, p=0.1; CDH+TO R2=0.04, p=0.49. miR-200b vs MTBD – control R2=0.00003, p=0.98; sham CDH 

R2=0.06, p=0.65; CDH R2=0.25, p=0.1; CDH+TO R2=0.01, p=0.8. 
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Supplementary Figure 9: Correlation Graphs of miR-375 vs LBWR and miR-375 vs MTBD. miR-375 

expression data presented as -Ct. miR-375 vs LBWR – control R2=0.12, p=0.22; sham CDH R2=0.005, p=0.9; 

CDH R2=0.002, p=0.89; CDH+TO R2=0.004, p=0.84. miR-375 vs MTBD – control R2=0.0000008, p=1.00; sham 

CDH R2=0.03, p=0.73; CDH R2=0.002, p=0.9; CDH+TO R2=0.001, p=0.9.  
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