
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-23-2018 9:00 AM 

Validity and Reliability of the Clinician Rated Drop Vertical Jump Validity and Reliability of the Clinician Rated Drop Vertical Jump 

Scale in Patients Following Anterior Cruciate Ligament Scale in Patients Following Anterior Cruciate Ligament 

Reconstruction Reconstruction 

Morgan Jennings, The University of Western Ontario 

Supervisor: Bryant, Dianne, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Health and Rehabilitation Sciences 

© Morgan Jennings 2018 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Physical Therapy Commons 

Recommended Citation Recommended Citation 
Jennings, Morgan, "Validity and Reliability of the Clinician Rated Drop Vertical Jump Scale in Patients 
Following Anterior Cruciate Ligament Reconstruction" (2018). Electronic Thesis and Dissertation 
Repository. 5633. 
https://ir.lib.uwo.ca/etd/5633 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/754?utm_source=ir.lib.uwo.ca%2Fetd%2F5633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5633?utm_source=ir.lib.uwo.ca%2Fetd%2F5633&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

 

Abstract 

The purpose of this study was to evaluate the validity and reliability of the Clinician Rated 

Drop Vertical Jump Scale (CR-DVJS) in a population of patients following anterior cruciate 

ligament reconstruction (ACLR). Patients completed two drop vertical jump tasks at 6 and/or 

12-months post-operative. One task was recorded using a motion capture system. Four 

individuals of varying clinical experience served as raters for the CR-DVJS. Rater scores of 

valgus collapse did not correlate strongly with motion capture measures of knee abduction 

moment or angle. However, CR-DVJS scores of trunk and knee flexion did demonstrate an 

association with 3D measures of trunk (rho=0.4-0.5) and knee (rho>0.5) flexion angle. 

Intraclass correlation coefficients suggested poor to good (0.4-0.9) inter-rater reliability of 

overall score, moderate (0.5-0.75) or good (0.75-0.9) intra-rater reliability, and good to 

excellent (0.75->0.9) within session test-retest reliability. Further studies are required to draw 

definitive conclusions prior to clinical implementation. 
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Chapter 1  

1 Introduction 

Anterior cruciate ligament (ACL) injury is among the most common injuries of the knee 

joint.1 It is a debilitating injury for most athletes and results in compromised function 

requiring extensive rehabilitation following repair. Reconstructive surgery is a standard 

treatment option to restore the structural integrity of the joint, although functional deficits 

can remain.2 Despite extensive rehabilitation efforts, a portion of patients are not able to 

return to sport participation after injury3 and the rate of re-injury is high.4 New 

advancements in standard rehabilitation strategies, specifically those in the end stage of 

rehabilitation, may offer another method to track and provide feedback on progress, 

ultimately improving patient outcomes. 

Nearly 75% of ACL injuries are non-contact in nature.5 Research has focused on 

understanding this mechanism of injury to reduce overall rates of injury. Literature 

suggests deficits in neuromuscular and biomechanical control of the lower limb are a 

primary cause for injury.2  Functional testing is becoming an increasingly popular tool in 

ACL research to assess movement patterns and has been used to identify several 

modifiable risk factors for ACL injury.2,6 Specifically, landing mechanics of the knee, hip 

and trunk have proven to be important factors contributing to injury.5,7 Furthermore, 

dynamic knee valgus during a drop vertical jump task is a predictive risk factor for ACL 

injury.8  

The drop vertical jump (DVJ) is a functional task used to assess landing mechanics, 

arguably measured most accurately using three-dimensional (3D) motion analysis.9 

Unfortunately, this type of specialized equipment is not often accessible to clinicians and 

is not time or cost effective as part of standard rehabilitation.10 The Clinician-Rated Drop 

Vertical Jump Scale (CR-DVJS) was developed as an alternative means to quantify 

landing mechanics within a clinical setting to identify risk factors for re-injury that 

therapists may elect to target prior to encouraging return to high-risk sports. 11 This study 



2 

 

is the first to evaluate the validity and reliability of the CR-DVJS in a population of 

patients following ACL reconstruction. 
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Chapter 2  

2 Literature Review 

2.1 The Knee Joint Anatomy 

The knee joint is comprised of three main bones in the lower extremity which form three 

articulating surfaces. These articulations divide the knee joint into two parts. The 

patellofemoral joint is the articulation between the patella and the trochlea of the femur, 

and the tibiofemoral joint describes the articulation of the femoral and tibial condyles. 12 

The knee is classified as a hinge joint because its principal movements are flexion and 

extension. However, when the knee is in a flexed position rotation of the joint is also 

possible.13 The stability of the joint during these fundamental movements is dependent on 

the surrounding structures. The quadriceps femoris muscle group, including the vastus 

lateralis, vastus medialis, vastus intermedius and rectus femoris, are the main extensors of 

the knee. The hamstrings (semitendinosus, semimembranosus, bicep femoris) are the 

primary flexors of the knee, although they are assisted by the gracilis, gastrocnemius and 

sartorius. The popliteus is responsible for medial rotation which initiates flexion from a 

fully extended position.13 

The knee joint is also comprised of several passive stabilizers. The joint capsule is a 

fibrous layer which is attached to the margins of the articular surfaces and internally lined 

by a synovial membrane.14 It connects superiorly with the suprapatellar bursa and 

posteriorly with the bursa under the medial head of the gastrocnemius. The joint is 

strengthened on either side by the lateral collateral ligament (LCL) and the medial 

collateral ligament (MCL). The patellar ligament and the medial and lateral patellar 

retinacula contribute to stabilization on the anterior surface. Posterior support is provided 

by the oblique popliteal ligament.13,14 

Within the joint capsule are additional passive stabilizers. The semilunar cartilages 

(medial and lateral menisci) are located on the superior articular surface of the tibia.14 

Due to the difference in shape of the medial and lateral condyles of the tibia, the medial 

meniscus is larger and less curved than the lateral.13 Together they act as a buffer to 
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forces placed through the knee and help stabilize the tibiofemoral joint by increasing the 

concavity of the tibia.12 Finally, the two cruciate ligaments are an essential component of 

the joint stability. They are located in the center of the joint and provide a strong 

connection between the tibia and femur.13 They cross each other obliquely and act to 

resist both anterior and posterior translation of the tibia.12,13 

2.2 The Anterior Cruciate Ligament 

The anterior cruciate ligament (ACL) originates from the lateral condyle within the 

intercondylar notch of the distal femur and passes obliquely to attach to the anterior 

intercondylar area of the proximaltibia.13 Various literature sources report that the ACL is 

comprised of separate bundles. It is divided into two bundles (anteromedial and 

posterolateral) which are anatomically and functionally different. The anteromedial 

bundle is tight in flexion while the posterolateral bundle is tight in extension.15 The ACL 

functions to prevent the anterior translation of the tibia relative to the femur and controls 

rotational movement of the tibia.12 It provides 86% of the total resisting force to 

anteriorly directed forces on the tibia.16 Additionally, it assists in preventing excessive 

knee extension, knee varus, and knee valgus movements.17 The function of the ACL 

makes it essential for stability and control of the knee during dynamic tasks such as 

deceleration or an abrupt stop, pivoting, and landing.12 

2.3 Mechanism of Injury 

The ACL may be injured through means of contact or noncontact. Contact injuries occur 

far less frequently and are often unavoidable collisions during sporting activities. This 

contact places large external forces on the lower limb, either directly or indirectly, and 

often results in a valgus collapse of the knee.18 

It has been reported that 70% of ACL injuries are the result of sport participation.19 The 

highest incidence of ACL injury occurs during sports with pivoting and cutting 

maneuvers.20,21 Most ACL injuries are noncontact in nature and occur during sudden 

deceleration such as when cutting, pivoting, or landing in sporting activity.5,20,21  
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Since noncontact injuries account for nearly 75% of ACL injuries,5,18,22 several theories 

and risk factors surrounding noncontact mechanism of injury have been developed. 

Griffin et al20 proposed four distinct categories of risk factors: environmental, anatomic, 

hormonal, and biomechanical. Within these categories, risk factors contributing to the 

mechanism of injury may be extrinsic or intrinsic. Extrinsic factors are external and are 

therefore modifiable by the athlete to reduce the risk of injury. These factors are 

classified as environmental and include equipment, bracing, playing surface, footwear, 

and type and level of sport. Intrinsic factors are internal and may or may not be 

modifiable. Nonmodifiable intrinsic factors include anatomical variables such as lower 

extremity alignment (knee angle and hip angle), joint laxity, and femoral notch size, as 

well as hormonal influence, sex and age. Modifiable intrinsic factors include body mass 

index, muscular strength, movement biomechanics, skill level, fatigue, and 

neuromuscular control.5,17,23,24 

Modifiable intrinsic risk factors have been the predominant focus of recent research 

attempting to better understand the noncontact mechanism of injury. This is largely 

because it is hypothesized that deficits in neuromuscular control and biomechanical 

adaptations are the principal mechanism of both primary and secondary injury.2 The most 

prevalent deficit observed involves a combination of knee valgus and internal tibial 

rotation.25–27 This mechanism of valgus collapse, hip adduction and internal rotation has 

been referred to as the ligament dominant theory.24 Other proposed theories include trunk 

dominance (poor trunk control during maneuvers), quadriceps dominance (increased 

quadriceps forces or reduced hamstring recruitment during maneuvers), and leg 

dominance (leg-to-leg asymmetries).24 

2.4 Epidemiology 

Anterior cruciate ligament injuries are among the most common and devastating 

musculoskeletal injuries sustained during sport and activity.2 Of all musculoskeletal 

injuries, the knee is estimated to account for 19-23%28 and of all knee injuries, up to 50% 

or more are injuries to the ACL.1 Approximately 100,000 to 250,000 Canadians and 

Americans are annually effected by ACL injury.29,30 
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In a 10-year study conducted by Majewski et al31, looking specifically at frequency of 

athletic knee injuries, 37% (6,434/17,397) of patients had sport injuries related to the 

knee joint. A total of 19,530 sport injuries were documented of which 39.8% were knee 

injuries. Of all knee injuries documented, ACL injuries had the highest incidence rate of 

internal knee injuries (20.3%), followed by medial meniscus injury (10.8%), MCL injury 

(7.9%), lateral meniscus injury (3.7%), LCL injury (1.1%), and PCL injury (0.65%). In 

total, internal knee injuries accounted for 44.8% of all knee joint injuries and the ACL 

was injured in 45.4% of cases.31 

In a population-based study of 535,000 adults aged 13-90 years, knee injuries were found 

to be the most frequent musculoskeletal soft tissue injury, occurring in 37.2% 

(1040/2794). Data was collected for a 5-year period from January 1996 to December 

2000 by the Edinburgh Orthopaedic Trauma Unit. Of the 1040 knee injuries, 212 (7.6%) 

were classified as ACL injuries second only to meniscal tear (22.4%). Overall, the 

incidence of ACL rupture was found to be 8.1/100,000 per year.32  

Several national registries have used the number of surgical reconstructions to estimate 

the incidence of ACL injury. Although a good resource, it should be noted that not all 

ACL injuries are treated surgically so part of the patient population is not captured. Based 

on United States registries, it was estimated 100,000 to 150,000 ACL injured patients 

undergo reconstruction surgery annually.33 

In 2014, Mall et al34 published updated incidence and trends of ACL reconstruction in the 

United States. This study examined data collected between 1994 and 2006 using the 

National Hospital Discharge Survey and the National Survey of Ambulatory Surgery. 

The incidence of ACLR rose from 32.9 per 100,000 person-years in 1994 to a rate of 43.8 

per 100,000 person-years in 2006.34 More recently, Sanders et al35 reported a 21-year 

population based study including 1841 individuals who were diagnosed with new-onset, 

isolated ACL injuries from January 1990 to December 2010. The overall age- and sex-

adjusted annual incidence of ACL tears was reported as 68.6 per 100,000 person-years 

with significantly higher rates in males than females (81.7 vs 55.3 per 100,000, P < 
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0.001). Peak incidence in male patients was between 19 and 25 years, whereas in females 

the peak incidence was between 14 and 18 years.35  

Incidence rates around the world vary slightly. Reports from the New Zealand’s national 

registry collected between July 2000 and June 2005 state an incidence rate of 36.9 per 

100,000 person-years for ACL surgeries. This study also reported the mean treatment 

costs of ACL surgeries to be $11,157.36 Brazil reports from 2008 – 2014 indicate an 

overall incidence of 3.49 per 100,000 persons/year with a mean of $1,145 (US) per 

ACLR.37 Finland and Sweden report somewhat higher incidence with 60.938 and 7839 per 

100,000 person-years respectively. 

Incidence rates have also been found to vary by sex, sport and competition.40–42 Beynnon 

et al40 collected first-time noncontact ACL  injury data between 2008 and 2012 from 

various college and high school sports teams. Incidence rates per 1000 athlete exposures 

were 0.112 for females and 0.063 for males, with females being twice as likely to injure 

after adjustment for sport and level of play (RR, 2.10; 95% CI, 1.34-3.27). Athletes at the 

college level were also at significantly higher risk of injury compared to the high school 

level (Adjusted RR, 2.38; 95% CI. 1.55-3.54).40 Similarly, a meta-analysis reported 

females in basketball and soccer had a three times greater incidence than male players.41 

Although reports of sex incidence varies, it is generally accepted that females sustain a 

two to eight fold greater rate of injury than do males.5 Female athletes have also been 

reported to be four times more likely to sustain a second ACL injury and six times more 

likely to sustain a contralateral injury following reconstruction than male athletes.4  

Furthermore, the incidence rate of a second ACL injury after ACL reconstruction is 

consistently reported as higher in both the ipsilateral and contralateral knee.4,43–45 Paterno 

et al4 reported incidence rate as 15 times greater within 12 months following ALCR when 

compared to control subjects.4 Another study tracked patients for 24 months after ACLR 

and return to sport and found the incidence rate of second ACL injury to be nearly six 

times greater than healthy controls (IRR, 5.71; 95% CI, 2..0-22.7; P=0.0003). Of the 

ACLR patients in this study, 20.5% sustained a contralateral injury and 9.0% sustained a 

re-tear of the original graft.43  
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2.5 Treatment 

The optimal treatment plan following ACL injury is patient specific. The method of 

treatment depends on factors such as age, occupation, desired activity and level, and 

concomitant injuries.17,46 The current standard of care for those hoping to return to 

athletic activity is surgical reconstruction followed by extensive rehabilitation.2,46,47 

Studies have reported operative management as the treatment option for 76% - 90% of 

ACL injuries.42,48 Over time, the rate of ACLR has increased.34,35  

Functional outcomes and the ability to return to pre-injury level of activity following 

ACLR vary across the literature.2 Within the first year following surgery, reports are as 

low as half returning to sport,49 although reports generally range from 60-80%.49–51 Arden 

et al52 completed a systematic review with meta-analysis of return to sport rates following 

ACLR. They reviewed sixty-nine articles reporting on 7556 participants. Findings 

suggest an average of 81% return to any sport, 65% return to pre-injury level of sport, 

and 55% returned to competitive level of sport.52  

In 2018, Van Yperen et al53 reported results of 50 patients who suffered ACL rupture 

between 1992-1996 and compared the 10 and 20 year outcomes of non-operative 

treatment and ACL reconstruction. This retrospective study matched 25 operative and 25 

non-operative patients by age, sex, and Tegner activity score prior to injury. Those who 

were selected to receive operative treatment were those who demonstrated persistent 

instability after three months of non-operative treatment. Results from this 20-year 

follow-up conclude no significant difference in the prevalence of knee osteoarthritis 

between groups upon radiological assessment indicating future disease risk may not be 

influenced by treatment option. Functional outcomes including the Lysholm score, the 

International Knee Documentation Committee (IKDC) subjective and objective form, the 

Knee injury and Osteoarthritis Outcome Score (KOOS), and the one-legged hop test were 

also not statistically different. However, they did report significant differences in knee 

stability as demonstrated by the pivot-shift (P<0.001) and Lachman (P=0.002) test. Those 

who had received reconstruction surgery had greater joint stability.53 These findings are 

consistent with the objective of ACL reconstruction to provide mechanical stability by 

repairing the damaged ligament. Thus, part of the rationale for operative management 
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includes increased mechanical stability which may be important for physical activity by 

supporting specific maneuvers that are known risk factors of injury.2,47,54,55  

Non-operative management involves a direct course of rehabilitation and has also shown 

good short and long-term outcomes in select patients.46,53,56 In 2017, Paterno57 completed 

a review of non-operative patient care and determined a sub-set of the population may 

benefit from non-operative care based on reports of athletes successfully returning to 

pivoting and cutting sport without an intact ACL. This work suggests a screening process 

be developed to identify those likely to be successful non-operative patients. Fitzgerald et 

al58 proposed a screening examination involving the single legged hop test, incidence of 

giving way, a self-reported global knee function rating, and the Knee outcome survey-

Activity of Daily Living Scale (KOS-ADLS). A total of 93 patients were screened and 39 

were identified as candidates for non-operative treatment. Of the 28 patients who 

underwent non-operative treatment, 22 returned to pre-injury level of activity without 

further instability or reported functional deficit. Snyder-Mackler et al59  also suggest 

ACLR may not be the proper treatment option for all patients due to the lack of evidence 

demonstrating superiority of operative management.59 Regardless of treatment option, 

risk of re-injury is high. Successful recovery and return to sport requires appropriate 

rehabilitation over a sufficient period of time.55,60  

2.5.1 Rehabilitation 

Rehabilitation is an essential part of the treatment process. The main goals are to regain 

the joint stability and muscle strength, assist patients in reaching optimal functional level, 

and reduce the risk of re-injury. Over time, the rehabilitation protocol for ACL injuries 

has been adapted to account for research advancements and to ensure the application of 

evidence-based practice. Specific examples of adaptations include the shift from post-

operative casting, delayed weight bearing and limiting range of motion, to the current 

practice of earlier intervention, immediate range of motion and weight bearing. 61 

Original criterion-based ACL rehabilitation guidelines were published by the University 

of Delaware in 1996. In 2012, Adams et al62 revised these guidelines to reflect the most 

current evidence on patient management for isolated ACL reconstruction. These 



10 

 

guidelines include milestone progressions and treatment protocols for each phase of the 

rehabilitation process. The immediate postoperative phase (week 1) focuses on active and 

passive range of motion (ROM) and active quadriceps contraction. The early 

postoperative phase (week 2) continues to increase flexion/extension and begins to 

incorporate weight-bearing activities. In the intermediate postoperative phase (week 3-5), 

muscular strength is improved, and balance and neuromuscular re-education exercises are 

introduced. The late postoperative phase (week 6-8) focuses on remaining impairments 

and restores full ROM, strength and a normal gait pattern. The transitional phase (week 

9-12) continues to progress flexibility, strength and neuromuscular control, as well as 

focuses on cardiovascular fitness and unilateral strengthening through running 

progressions. Lastly, agility, plyometric, and sport-specific activities are added and 

functional testing is used at 4, 5, 6 and 12 months postoperative to determine a patient’s 

readiness for return to sport activity.62 These guidelines have been generally accepted, 

although slight variations across the literature do exist.63 For instance, there is evidence 

suggesting earlier introduction of neuromuscular and proprioceptive re-education, which 

more recent protocols have incorporated.64 Additionally, exact criteria for return to sport 

is still relatively inconclusive. Most resources suggest an evaluation of performance on a 

battery of clinical tests since there is currently no singular test to capture all essential 

component.62 

Functional testing is a valuable tool for proper assessment of limb impairments during 

dynamic tasks and provides outcome measures to both the therapist and patient.62 There 

is no evidence-based consensus however, as to which functional tests should be used.65 

Furthermore, there is an absence of standardized, objective criteria to accurately assess an 

athlete's ability to progress through end stage rehabilitation.66 In a systematic review of 

264 studies, Barber-Westin and Noyes67 found only 13% noted objective criteria required 

for return to sport.67 

In 2017, Gokeler et al68 suggested a specific test battery to support decision making in the 

end stages of rehabilitation. The test battery included isokinetic strength tests, the single-

leg hop tests, and a jump-landing task assessed with the Landing Error Scoring System 

(LESS). The LESS is a tool designed to identify potentially high-risk movement patterns 
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during a jump-landing task. It involves scoring the presence or absence of 17 items 

including specific trunk, hip, knee, ankle, and foot positioning. This tool has shown good 

interrater and intrarater reliability and there is evidence of its concurrent validity with 

three-dimensional (3D) motion analysis.69 The test battery has not been assessed for 

predictive validity of re-injury but highlights the need for multifactorial framework to 

properly assess injury risk and readiness to return to sport 68  

The standardized series of single-leg hop tests is one of the most frequently reported 

functional tests.62,65 This includes the single hop for distance, the triple hop for distance, 

the crossover hop for distance, and the 6-meter timed hop. Measures are averaged, and 

the limbs are compared using the limb symmetry index which is the performance of the 

involved limb as a percentage of the uninvolved limb. This test has shown to be a reliable 

and valid performance based outcome measure for ACL rehabilitation.70  

Significant advancement in research over the last decade has suggested the importance of 

identifying deficits to the neuromuscular system and to movement mechanics during late 

stage rehabilitation. Incorporation of standardized and objective criteria may improve the 

ability to identify abnormal biomechanics associated with re-injury, which can then be 

targeted during rehabilitation.71 

2.6 Biomechanical Assessment 

Three-dimensional motion capture analysis is considered the gold standard to assess joint 

kinetics and kinematics during dynamic taks.9,10,72 The primary movement patterns 

responsible for non-contact ACL injury during sport are landing and/or cutting 

maneuvers.73,74 Poor biomechanical control of the lower limb due to neuromuscular 

deficiencies may predispose athletes to injury when performing these sporting 

movements.8,75 3D motion capture analysis has the ability to measure and identify 

potential mechanisms and risk factors associated with ACL injury during functional 

tasks.76 However, there are several disadvantages and barriers to this resource such as the 

high cost and space required for the equipment, time consuming data collection and 

analysis, and technical skill/personnel required for the software.10,77 
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2.6.1 Landing Mechanics 

Patient landing mechanics during dynamic tasks are regularly assessed as a means of 

quantifying dynamic knee control and identifying risk factors for potential injury. The 

drop landing and the drop vertical jump (DVJ) are among the most documented methods 

of assessing landing mechanics.76,78 The DVJ is a functional test designed to replicate 

common sporting movements such as a basketball rebound or a volleyball block. Patients 

drop off a box ~31cm in height, land and immediately perform a maximum vertical 

jump.79,80 This test has demonstrated high within-session reliability (ICC < 0.93)80 as 

well as fair to excellent within-session and between-session reliability for the majority of 

kinetic and kinematic variables.9,81 Test-retest reliability has also proven to be strong for 

several variables including knee abduction angle at initial contact, peak knee abduction 

angle at the deepest point of landing, and peak knee abduction moment.82 Several other 

motion capture variables have correlated with abnormalities in landing mechanics which 

are associated with known modifiable neuromuscular risk factors for both initial and 

second ACL injury. Specific risk factors of focus have been dynamic knee valgus 

collapse, lateral trunk lean, trunk flexion, knee flexion and limb asymmetries. 

2.6.1.1 Dynamic Knee Valgus 

The concept of dynamic knee valgus collapse (combined valgus (or a knee abduction 

moment) and internal rotation) and its association to ACL injury has gained momentum 

within the last decade. Although the contribution of valgus forces to ACL injury is still 

controversial, growing evidence suggests valgus collapse plays a significant role in injury 

risk and prevention.2,5 

Dynamic valgus collapse is a manifestation of poor frontal plane knee control during 

functional movement tasks.83 The collapse mechanism involves specific movements in 

the lower limb including hip adduction and internal rotation, knee abduction, internal 

tibial rotation and ankle eversion.4,6 These valgus loading movement patterns, when 

examined in cadaveric and computational model knee studies, have shown to collectively 

contribute to increased strain on the ACL thereby putting it at greater risk.84–89 When the 

knee is in greater abduction, ligaments on the medial side of the knee are under more 
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strain than those on the lateral side. This imbalance may increase strain on the ACL by 

contributing to an anterior tibial shift with internal rotation.84  

In a cadaveric study designed to simulate a single limb jump landing, 10 knees were 

tested for peak relative strain on the ACL under compressive loading with and without 

valgus moment. Results show strain was 30% larger when under compressive load in 

valgus and flexion compared to isolated flexion.90  Furthermore, valgus loading has been 

shown to reach strain values high enough to rupture the ACL whereas sagittal plane joint 

forces alone did not.88 An in vivo simulation of the drop vertical jump task found isolated 

abduction and combined abduction with internal tibial rotation produced the greatest 

change in ACL and MCL strain from the neutral position. The peak ACL strain was 

larger than the peak MCL strain when the rotational stimuli was applied.89 

Similar reports of ACL strain resulting from valgus torque have also been assessed in 

vivo. During dynamic valgus collapse, a high external knee abduction moment about the 

knee has been reported. It has been established that knee abduction moment directly 

contributes to dynamic valgus and joint loading in the lower limb.91 The valgus collapse 

landing pattern has been suggested to be ligament dominant technique as opposed to a 

muscle dominant technique which therefore places a larger load on the ACL.92,93 

Muscular strength, specifically co-contraction ability of the hamstrings and quadriceps, 

has been shown to contribute to the dynamic stability of the knee against valgus forces.94 

In a comparison of 81 male and female athletes, female athletes landed a drop vertical 

jump with significantly greater total knee valgus as well as greater maximum knee valgus 

angles. The female athletes also demonstrated increased valgus angles in their non-

dominant limb. Results suggest knee valgus is increased with lack of dynamic stability, 

which in turn may be responsible for the increased injury rates observed in females.79 

In 2005, Hewett et al95 discovered knee abduction moment predicted anterior cruciate 

ligament injury status with 73% specificity and 78% sensitivity. In this prospective 

cohort study, 205 female athletes were screened pre-season using a drop vertical jump 

task and 9 went on to sustain an ACL injury. Injured athletes had a 2.5 times greater knee 

abduction moment (p<0.001) than uninjured athletes. There was also a significant 



14 

 

difference in knee abduction angle (p<0.05) of injured athletes at both initial contact (8.4° 

greater; p<0.01) and maximum displacement (7.6° greater; p<0.01).95 These findings 

were supported by another study conducted by Hewett et al96 in 2009 that analyzed  still 

video captures of landing and cutting tasks. During these tasks, athletes either sustained 

ACL injury or did not. Knee abduction angles were found to be the highest in ACL 

injured females. This difference was significantly greater than male ACL injured athletes 

and approached significance when compared to the uninjured female controls.96 

2.6.1.2 Lateral Trunk Lean 

Deficits in neuromuscular control of the trunk may lead to uncontrolled lateral trunk 

movements which influence the biomechanical positioning of the lower limb.97 This is 

especially evident during dynamic tasks such as cutting and landing. In a prospective 

study assessing the correlation between trunk control and knee ligament injuries, twenty-

five male and female athletes were positioned in a multidirectional, sudden force release 

apparatus. Findings determined that lateral trunk displacement was the strongest predictor 

of ligament injury.98 

Poor lateral control of the trunk may increase strain on the ACL through mechanical and 

neuromuscular mechanisms.97,99 During lateral trunk lean, the body’s center of mass is 

transferred to the respective side which shifts the ground reaction force vector (GRFv) 

lateral to the knee joint center thereby creating a larger knee abduction moment. 97,99 In 

an analysis of still captures observed from video footage, it was determined that female 

athletes sustaining ACL injury demonstrate greater lateral trunk lean over one leg as well 

as greater knee abduction than male athletes and control females.96 Additionally, a 

significant relationship between lateral trunk lean and knee abduction moment has been 

shown in a sample of 24 male and female athletes performing lateral reactive jumps.100 

Furthermore, excessive lateral trunk lean may help to identify modifiable risk factors 

associated with ACL injury risk, including altered  core proprioception as well as hip 

abductor weakness.95 Increased core strength and proprioception improve the body’s 

ability to prevent lateral lean and keep neutral trunk alignment.101 Recent findings also 

suggest a trend towards negative correlation between dynamic knee valgus and trunk 
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endurance measured through plank and side plank tasks.102 A common compensation for 

hip abductor weakness is contralateral pelvis elevation and ipsilateral lateral lean.99 

Studies have reported an association between hip muscle weakness and greater knee 

abduction moment and valgus angle during single leg tasks. This is likely due to the 

resultant compensatory trunk lateral lean.103,104  The internal response to lateral trunk lean 

includes a larger hip adduction torque which then requires increased strength and 

recruitment of hip abductors to resist hip adduction and resultant dynamic valgus 

collapse.105 

2.6.1.3 Trunk Flexion 

Trunk positioning in the sagittal plane can influence the demands of the lower extremity 

and alter biomechanical risk factors commonly associated with ACL injury. 99,106 Trunk 

flexion causes the center of mass of the trunk to move forward which alters the moment 

about the hip and knee joints.106 The resultant GRFv is shifted anteriorly which increases 

the extensor moment at the hip, but decreases the extensor moment at the knee which 

places less demand on the knee joint.99  

Greater strain on the knee joint has been suggested when the center of mass is more 

posterior indicating a more erect landing posture. In an evaluation of 20 athletes 

performing a single legged landing, subjects who had sustained an ACL injury were 

found to have a more posterior center of mass relative to the base of support when 

compared to uninjured controls.107 An overall decrease in the vertical ground reaction 

force, and thus force transmitted to the knee joint, has also been found in subjects 

completing a double leg drop landing with trunk flexion compared to no trunk flexion.108 

In 2010, Pollard, Sigward, and Powers examined kinematics and ground reaction forces 

in 58 female subjects performing a drop landing task. Subjects were divided into two 

groups, high flexion and low flexion, based on combined sagittal plane knee and hip 

flexion angles. Subjects classified as low flexion demonstrated increased knee valgus 

angles (p=0.02) and decreased energy absorption at the hip (p<0.001).109 
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More recently, a 2016 study found similar results in a sample of 50 female athletes 

performing a drop vertical jump task. This study assessed the association between sagittal 

plane landing kinematics and neuromuscular activation patterns in the lower limb. These 

Findings suggested that landing with less hip flexion was associated with higher external 

knee abduction moment thereby putting the ACL at increased risk of injury.110 

Additionally, hip and knee flexion have been shown to increase with trunk flexion during 

landing which promotes a less erect landing posture.108 During a flexed posture, hip 

extensor and knee flexor (gluteus maximus and hamstring) muscle groups are able to 

produce greater force due to an anterior pelvic tilt.106 The increased force may result in 

reduced ACL loading by decreasing knee extension and valgus moment as well as 

increasing hip extension moment.106 Furthermore, trunk flexion may protect against ACL 

strain as a result of quadricep induced anterior shear force acting on the tibia99,106  since 

evidence suggests quadricep activation is reduced when there is increased trunk flexion 

during a drop landing. 108,109  

2.6.1.4 Knee Flexion 

ACL injury has been frequently reported when the knee is in a position close to full 

extension5,18 which suggests sagittal plane knee movements are important risk factors 

associated with ACL injury.  

Findings from several studies on cadaveric and model knee joints have suggested strain 

on the ACL is greatly increased when loads are applied with the knee in a relatively 

extended position (0-45°) compared to a more flexed position.111–113 The increased ACL 

strain in this position is a result of quadriceps contraction106,112 as well as the inability of 

the hamstrings to adequately activate in their outer range to protect against anterior tibial 

translation.106,114 Anterior shear force is the most direct loading mechanism of the ACL. 

A prediction model examining biomechanical and electromyographic analysis of subjects 

performing a vertical stop-jump task suggested that knee flexion moment had the greatest 

influence on proximal tibia anterior shear force. This model also indicated that knee 

flexion angle and vastus lateralis activity would significantly predict anterior shear 

force.115  
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This aligns with results of in vivo studies examining drop vertical jump performance in 

female athletes. These studies suggest landing in a more erect position with low knee 

flexion increases activation of the vastus lateralis which may place increased load on the 

ACL placing it at higher risk of injury.109,110  

This is further supported by a 2016 study conducted by Leppanen et al to investigate the 

biomechanical characteristics of a vertical drop jump task. This study prospectively 

followed 171 female athletes after completing baseline testing to analyze six 

biomechanical variables. During the three year study period, 15 new ACL injuries were 

recorded. Findings suggest low peak knee flexion angle and high peak vertical ground-

reaction force (vGRF) were associated with increased risk of ACL injury.116  

2.6.1.5 Limb Asymmetry 

Limb-to-limb asymmetries have been reported in unilateral and bilateral movement 

patterns within patients following ACLR. Limb asymmetry has been suggested to 

increase risk of ACL injury in both the re-constructed and contralateral side and may be 

predictive of ACL injuries.2,95,117–119  

Biomechanical differences between limbs have been identified during drop vertical 

landing tasks up to four years post ACLR.2 In 2007, Paterno et al118 examined the landing 

and jumping kinetics of female athletes at least two years post reconstruction who had 

been released for full return to play. In this case control study, 14 females a mean of 27 

months post-operative were compared to 18 female controls. Participants completed three 

DVJ trials to collect kinetic data. Results in female ACLR patients demonstrate increased 

loading rate (p<0.001) and vGRF (p=0.001) at landing on the uninvolved limb when 

compared to both the involved limb and control group limb. The involved limb also 

demonstrated a significantly lower ability to generate force during takeoff (p=0.03).118  

A similar unloading pattern has been shown in recent (2018) work completed by Meyer 

et al comparing knee kinematics of 17 ACLR individuals to 28 healthy controls during a 

drop vertical jump. This study found a significant difference in knee sagittal plane energy 

absorption during a drop vertical jump task. ACLR patients had 25% lower values in 
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their involved limb compared to their uninvolved limb (p=0.010) and 18% lower values 

in their involved limb compared to controls (p=0.018).120 Findings suggest limb 

asymmetry in vGRF and loading within ACLR patients may be a result of a 

compensation strategy during bilateral landing to unload the involved limb as well as 

avoid high vertical impact forces.118,120,121 Another possibility for limb loading 

asymmetry may be a deficit in quadriceps strength of the involved limb, which would 

further explain the decreased force production observed at takeoff.118,120 

In 2015, Schmitt et al122 investigated the effect of asymmetry of quadricep femoris 

strength on knee landing mechanics during a drop vertical jump task in patients following 

ACLR. Seventy-seven ACLR patients were sub-divided into either a high quadriceps or 

low quadriceps strength symmetry group. The low quadricep group demonstrated worse 

asymmetry in all variables compared to the high quadricep and control group; whereas 

there were no differences observed between the high quadricep group and the control 

group. Following ACLR, quadricep strength asymmetry, defined by the involved limb as 

<85% strength of the uninvolved limb, resulted in reduced peak knee external flexion 

moments and vGRF in the involved limb, as well as increased vGRF and higher peak 

loading rates in the uninvolved limb. In this study, quadriceps strength in the ACLR 

group predicted limb symmetry during landing after controlling for factors including 

graft type, meniscus injury, knee pain and patient symptoms.122 However, slightly 

different results were observed in a study of similar design consisting of similar patients 

who performed a single-leg drop landing. This study also divided ACLR patients (n=103) 

into high and low-quadriceps subgroups using a calculated quadriceps index for isometric 

quadriceps strength. Motion capture data was collected to compare differences in landing 

mechanics with 47 control participants, as well as between limbs of ACLR patients. 

When performing the single-leg drop landing, both high- and low-quadricep groups 

demonstrated greater limb asymmetry in knee flexion excursion (p<0.001; p=0.02), peak 

trunk flexion angle (p<.001; p=0.03), and peak knee extension moment (p<0.001; 

p=0.005) when compared to the control group. The low quadricep group demonstrated 

greater asymmetry compared to the high quadricep group for these three measures.123 

Thus, both studies identify greater asymmetrical patterns in the presence of lower 

quadricep strength symmetry. When a difference in limb strength exists, the stronger limb 
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may land more posterior to the other which is evident through foot placement. 

Additionally, one limb may take off or land prior to the other.93 

2.7 The Clinician-Rated Drop Vertical Jump Scale 

The Clinician-Rated Drop Vertical Jump Scale (CR-DVJS) is a Beta version tool 

designed to evaluate biomechanical parameters observed during a drop vertical jump 

task. It is intended for clinical use during rehabilitation of patients following ACL 

reconstruction. It was developed to allow clinicians to formulate an objective 

measurement of the drop jump performance thereby facilitating rehabilitation aimed at 

improving landing mechanics and tracking patient progress. 

The CR-DVJS was developed through expert consensus using a modified Delphi 

approach. Agreement was ≥ 92.9% for both the scale and the accompanying booklet 

which includes instructions with visual examples, a rationale, and possible interpretation 

for each scale component.11 The scale includes brief instructions (Appendix A). The full 

instruction booklet is included in Appendix B.  

The CR-DVJS records whether each limb is affected or unaffected and provides an 

overall score for each side. It uses a 10-point scale ranging from 0 – 9 according to the 

DVJ performance with zero indicating perfect completion of the task. It includes two 

main components to identify joint positioning and compensatory movement patterns 

associated with ACL injury risk. The first being the level of knee valgus collapse (none, 

some, moderate, extreme), which denotes the greatest indication of performance, and the 

second being the presence of other undesirable movements (lateral trunk lean, insufficient 

trunk flexion, insufficient knee flexion, asymmetry). As described in the instruction 

booklet, the clinician observes at least three repeated DVJ tasks and should check the 

appropriate corresponding boxes on the scale to complete a final score. It is advised to 

assess the jump from varying positions to observe the movement in different planes.11  

2.8 Summary 

The ACL is one of the most frequently injured structures in the knee, often requiring 

surgical reconstruction and extensive rehabilitation. Despite current surgical procedures 
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and rehabilitation techniques, rates of re-injury in both the ipsilateral and contralateral 

knee remain quite high. Additionally, many athletes are unable to return to their previous 

level of physical activity/sport and the optimal return to sport guidelines have yet to be 

determined. 

Researchers have identified neuromuscular imbalances and biomechanical deficits 

present after ACL injury and reconstruction that are associated with re-injury risk. 

Biomechanical assessment to evaluate the kinetics and kinematics of a functional task, 

such as the drop vertical jump, have been shown to be an effective way to identify high 

risk patients. 3D motion analysis is the current gold standard for biomechanical 

assessment but is not accessible or feasible for standard clinical use. 

Current rehabilitation protocols are lacking standardized and objective criteria to evaluate 

functional tasks and the risk of re-injury in the end stage of rehabilitation. Patients would 

benefit from clinicians’ ability to identify and target high risk movement patterns. The 

CR-DVJS was developed as a more accessible and feasible tool for clinicians to evaluate 

patient biomechanics during a drop vertical jump task. However, the scale has yet to be 

assessed for evidence of validity and reliability. 
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Chapter 3  

3 Objectives 

The objective of this study was to evaluate the measurement properties of the Clinician 

Rated Drop Vertical Jump Scale in patients following anterior cruciate ligament 

reconstruction. Specifically, we evaluated concurrent validity, inter-rater reliability, intra-

rater reliability, and test-retest reliability. We hypothesized a strong association (rho > 

0.5) between observer scores of scale components and 3D measures of performance as 

well as good scale reliability (ICC ≥ 0.7). 
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Chapter 4  

4 Methodology 

The following study was a sub-study of an ongoing randomized control trial 

(NCT02018354) conducted by researchers at the Fowler Kennedy Sport Medicine Clinic. 

This study included only patients recruited from this center following institutional 

approval by the Health Sciences Research Ethics Board (HSREB) at Western University 

(Appendix C). Patients were presented with an updated Letter of Information (Appendix 

D) and gave informed consent to participate in the sub-study.  

4.1 Eligibility 

Participant eligibility was determined by eligibility criteria in accordance with 

recruitment for the ongoing randomized trial. Specifically, patients were eligible if they 

(1) were between age 15-25 years; (2) had an ACL deficient knee with instability defined 

by at least two of the following – grade 2 pivot shift or higher, participation in a pivoting 

sport at a competitive level, and/or generalized ligamentous laxity; (3) were willing to 

undergo ACL reconstructive surgery. 

Patients were ineligible if they had (1) a previous ACL reconstruction on either knee; (2) 

bilateral ACL insufficiency; (3) asymmetric varus knee alignment greater than three 

degrees; (4) a multi-ligament injury where two or more ligaments required surgical repair 

or reconstruction; (5) an articular cartilage defect that required treatment other than 

debridement; (6) were unable to speak, understand, or read English; (7) a psychiatric 

illness or cognitive impairment that precluded informed consent; (8) were unwilling to 

participate. 

4.2 Study Design 

Patients completed study testing during their 6 and/or 12-month post-operative follow-up 

visit. During each visit the patient completed two drop vertical jump (DVJ) tasks; the first 

in the Wolf Orthopaedic Biomechanics Laboratory (WOBL) using the motion capture 

analysis system and standard video recording, and the second in the Fowler Kennedy 
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Sport Medicine Clinic (FKSMC) physiotherapy gym. Sessions took place approximately 

30 minutes apart, during which time they completed additional testing. A total of four 

examiners of varying experience evaluated knee landing biomechanics and served as 

raters for the Clinician Rated Drop Vertical Jump Scale (CR-DVJS). Figure 1 displays 

the study design. 

Figure 1: Study Design 

 

4.3 New Test: Clinician Rated Drop Vertical Jump Scale 

The CR-DVJS is a Beta version tool developed through expert consensus using a 

modified Delphi approach. This study was the first to examine the measurement 

properties of the tool and to use it in a clinical setting to assess drop vertical jumps 

completed by patients following ACL reconstruction. 

When using this tool, the standardized protocol outlined in the Instruction Booklet for the 

CR-DVJS was followed. The rater observed five repeated drop vertical jumps on a verbal 

“go” signal – three from the front and then two from each side to observe the movements 

in varying planes. The scale was completed by checking off the appropriate boxes based 

on the observed joint positioning and compensatory movements during the initial contact 
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through to the deepest point of the first landing. All movements were recorded, even if 

they were only observed once. 

Prior to data collection, the Researcher and Clinician 1 reviewed the instruction booklet 

to verify definitions of each of the scale components. They independently evaluated at 

least three practice DVJ tasks to become familiar with the tool. The Researcher received 

additional training with two FKSMC physiotherapists uninvolved in the study to ensure 

proper identification of joint positioning and compensatory movements. The designated 

expert clinicians (Clinician 2 and 3) did not receive training aside from individually 

reading the Instruction Booklet. 

Paper CR-DVJS evaluations were kept in a secure location until the end of data collection 

when results could be inputted by the author electronically. Electronic CR-DVJS 

evaluations were stored in a secure web-based data management system (EmPower 

Health Research, Inc, www.empowerhealthresearch.ca). Observations were not discussed 

or shared between evaluators to control for experimenter bias. 

4.3.1 Drop Vertical Jump 

 The drop vertical jump protocol defined in the Instruction Booklet for the CR-DVJS was 

followed. Patients were instructed to start by standing on a 30cm box, feet shoulder-width 

apart (~35 cm) with the toes overhanging the edge. Patients were then instructed to drop 

off the box with both feet at the same time, land on both feet, and perform a maximum 

vertical jump landing within the designated area. This area was defined in WOBL by the 

two force plates. In the FKSMC physiotherapy clinic, this area was defined by a taped 

square pattern on the floor identical in size to the WOBL force plate measurements. 

Trials were excluded and repeated if the patient did not land in the designated area during 

either landing phase of the task. The same box was used in both locations to standardize 

the testing protocol. All patients received the same set of verbal instructions prior to 

completing each DVJ task. They were allowed one practice jump without evaluation or 

recording to ensure they understood the instructions and could perform the task.  
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4.3.2 Standard Video Recorded Footage 

A Nixon Coolpix B500 camera was used to video record patient testing in the lab 

(WOBL). To comply with the scale instructions, a total of five drop vertical jumps were 

recorded – three from the front and one from each side. Videos were reviewed by raters 

once in real time to best simulate an in-person visit and complete the CR-DVJS 

evaluation. Clinician 2 and 3 independently reviewed the video footage in a designated 

location on two separate occasions at least two weeks apart to avoid recall. The 

Researcher reviewed video footage once at least one month following the original in 

person evaluation. The CR-DVJS evaluation was directly inputted by each rater into the 

online form on Empower while observing the video footage. Each of these raters were 

provided a unique username and password to access each patient’s form by searching the 

anonymous patient ID number. Video footage was stored in OWL – a secure online 

system which was only accessible by the raters involved in the research project. Each 

rater had a password protected account set up through OWL to access videos within files 

listed by patient ID number. 

 

4.4 Gold Standard Assessment 

4.4.1 Motion Capture System 

The gold standard assessment was collected using an 11-camera three-dimensional 

motion analysis system (Cortex, Motion Analysis Corporation, Santa Rosa, CA, USA) 

and three floor-mounted force plates (Advanced Mechanical Technology, Watertown, 

MA, USA). The system was calibrated each morning by WOBL research students to 

ensure synchronization of the cameras with each other and with the force plates. Patients 

were fitted with twenty-nine adhesive reflective markers placed on anatomical 

landmarks. Markers were placed by the author and consistent WOBL research students. 

Static trials were collected to determine relative marker orientation, body mass, and 

virtual joint centers. After performing three static trials of patients standing for three 

seconds on the drop jump box, four markers were removed from the patient. These 

markers were used to determine the virtual joint centers and were located on the medial 
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knee joint lines and the medial malleoli. A total of five drop vertical jumps were then 

performed by the patient. Kinematic and kinetic data were recorded at 120 Hz and 1200 

Hz respectively. Trials were repeated if the patient landed with their feet off the force 

plate on either landing phase of the task. 

4.4.2 Motion Capture Post Processing 

Research students and volunteers working in WOBL as part of the on-going larger RCT 

tracked all patient trials. The three static trials were used to determine virtual hip, knee 

and ankle joint centers as well as relative marker orientation and body mass. Specific 

software was used to create body segments between markers (Skeleton Builder engine 

within Cortex) and to scale body segment masses according to each individual (Mass 

Model Editor). Variables of interest were then calculated within Cortex and graph data 

was exported. Exported data was processed using a Butterworth filter with an input 

frequency of 12 Hz while force plate data was filtered at 100 Hz. The data was then 

supplied to the author to be sorted for variables of interest to be used in the current 

project. 

4.5 Sample Size 

The sample size was calculated a priori for reliability using an ICC of at least 0.75, an 

alpha of 0.05, beta of 0.2, and a confidence interval width of 0.2. It was determined that 

75 patients were necessary if there were two raters. Our aim was to recruit 75 patients.  

4.6 Statistical Analysis 

All statistical analyses were performed using IBM SPSS Statistics version 25 (IBM 

Corp., Armonk NY). The weighted kappa extension was added to the software to 

complete our analyses. 

4.6.1 CR-DVJS Variables 

From the DVJ’s completed in WOBL, there were a total of four CR-DVJS scores 

generated for each patient (two in-person and two via standard video recording). From 

the DVJ’s completed in the physiotherapy clinic, there were two CR-DVJS scores 
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generated per patient. We used intraclass correlation coefficients (ICC) to estimate 

absolute agreement between scores. An ICC of <0.5 was classified as poor reliability, 

0.5-0.75 as moderate, 0.75-0.9 as good, and >0.9 as excellent.124 

We also evaluated the validity of the individual scale components of knee valgus 

collapse, trunk flexion, and knee flexion, compared with observations made using the 

motion capture system. We used Spearman’s rank order correlation to estimate 

magnitude of association. A correlation coefficient of 0.1 was classified as weak, 0.3 as 

moderate, and >0.5 was considered a strong correlation.125,126 

4.6.2 Motion Capture Variables 

We generated the following variables from the motion capture: peak knee abduction 

moment (KAM) produced during the initial landing phase of the DVJ task (normalized to 

patient body weight and height), knee abduction angle, knee flexion angle, and trunk 

flexion angle. 

4.6.3 Concurrent Validity 

To investigate concurrent validity, we compared CR-DVJS observations from the in-

person assessment in the biomechanics laboratory (Researcher and Clinician 1) with the 

motion capture measurements. We estimated the magnitude of the association between 

the CR-DVJS component and the corresponding variable generated by the motion capture 

system. Specifically, we estimated the magnitude of the association between the CR-

DVJS rating of “dynamic knee valgus” and the peak knee abduction moment (KAM) and 

knee abduction angle (KAA); the CR-DVJS component of “insufficient trunk flexion” 

and trunk flexion angle (TFA); the CR-DVJS component “insufficient knee flexion” and 

the knee flexion angle (KFA). We hypothesized that if the CR-DVJS was valid, then the 

rating on the CR-DVJS and the corresponding variable generated by the motion capture 

system should be highly correlated (rho>0.5). 

In addition, the data for each motion capture variable was sorted according to the scoring 

on the corresponding CR-DVJS component to observe differences between groups. KAM 

and KAA data were grouped by scored level of dynamic knee valgus (none, some, 
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moderate, extreme). TFA and KFA data were sorted into two groups 

(sufficient/insufficient) determined by scoring of trunk and knee flexion respectively. We 

hypothesized that mean values from motion capture data would differ between groups 

indicting the ability of the scale to accurately discriminate between each level of valgus 

and the presence or absence of flexion motions.  Specifically, the mean of KAM and 

KAA should increase with each level of dynamic valgus, and the mean of KFA and TFA 

should be lower when classified as insufficient. 

4.6.4 Inter-rater Reliability 

To investigate inter-rater reliability, we calculated ICC for absolute agreement between 

overall scores on the CR-DVJS for the affected and unaffected limb at 6 and 12 months 

post-operative. A two-way mixed effects model was used to examine the two in-person 

raters in the lab (Researcher and Clinician 1), and between each of the experts 

assessments and the researcher’s video assessment. The video assessment was used to 

maintain consistency with the expert analysis. A two-way random effects model was used 

to examine agreement between the two expert raters’ (Clinician 2 and 3) first video 

assessment.  

The largest component of the scale, dynamic knee valgus, was also analyzed between 

each pair of raters (Researcher and Clinician 1; Clinician 2 and 3; Researcher and 

Clinician 2; Researcher and Clinician 3). The agreement between scoring the level of 

knee valgus as none, some, moderate, or extreme, was calculated for the affected and 

unaffected limb using a weighted Kappa. This analysis was completed using a 4x4 

crosstabulation between each pair of raters.  

4.6.5 Intra-rater Reliability 

To investigate intra-rater reliability of the expert clinicians, we calculated two-way mixed 

effects ICC for absolute agreement between the two overall scores per 

affected/unaffected limb at 6 and 12 months. These two scores were completed by the 

rater (Clinician 2 and 3) on separate occasions at least two weeks apart but were an 

evaluation of the same DVJ task. This was accomplished using the standard video 

recorded footage from the lab and the online platform OWL. 
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For the research student, agreement was analyzed between the original in-person lab 

evaluation and the evaluation of the video footage using ICC. This type of intra-rater 

reliability assessed agreement between each method of observation to determine if there 

was a difference in the researcher’s in-person and video scores.  

4.6.6 Within Session Test-retest Reliability 

To investigate within session test-retest reliability, we calculated two-way mixed effects 

ICC for absolute agreement between the overall scores per affected/unaffected limb of 

the lab and clinic evaluations. This was analyzed at 6months and 12 months for both the 

Researcher and Clinician 1. 

Chapter 5 

5 Results 

5.1 Participant Demographics 

A total of 20 patients completed testing at six months follow-up and an additional 17 

patients completed testing at twelve months only for a total of 37 patients at twelve 

months follow-up. Demographic characteristics are displayed below (Table 1). 

Table 1. Baseline demographics of anterior cruciate ligament (ACL) reconstructed 

patients completing drop vertical jump testing 

Characteristics 6 month Participants 

(n = 20) 

12 month Participants 

(n = 37) 

Sex, n (%)  

Male 9 (42.9) 15 (40.5) 

Mean Age ± SD (yrs) 19.8 ± 2.5 19.1 ± 2.5 

Mean Height ± SD (cm) 172.8 ± 8.6 171.8 ± 8.8 

Mean Weight ± SD (kg) 74.1 ± 10.6 73.2 ± 13 

BMI ± SD (kg/m2) 24.8 ± 3.1 24.7 ± 3.5 

Operative Limb, n (%) Left 8 (38.1) 21 (56.8) 
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5.2 Concurrent Validity 

All 20 patients at six months were included in analysis. Clinician 1 scored 34 patients at 

12 months to include in analysis while all 37 patients were included for the researcher 

analysis.   

5.2.1 Dynamic Knee Valgus 

There was a generally weak to moderate correlation between scored level of valgus 

collapse and the motion capture measurements (Table 2 and 3). Knee abduction angle 

demonstrated a statistically significant moderate and strong correlation in the affected 

limb at the six-month time point for the Researcher and Clinician 1 respectively. 

Results did not demonstrate the expected stepwise increase of mean values per scoring 

group of none to extreme level of dynamic valgus collapse. Both peak knee abduction 

moment (Table 4) and knee abduction angle (Table 5) had similar means across all scores 

for the researcher and clinician 1 at 6 and 12-month follow-up. Although no significant 

differences between groups were observed, the mean of the extreme valgus group was 

generally higher than the mean of the no valgus group. 

 

Table 2. Spearman’s rho correlation of peak knee abduction moment and scored 

level of valgus collapse on the CR-DVJS at 6 and 12 months post-operative 

 

________6 months________ ________12 months______ 

Correlation 

coefficient 

p-value Correlation 

coefficient 

p-value 

Researcher 

     Affected Limb 

     Unaffected Limb 

 

0.26 

0.26 

 

0.28 

0.28 

 

0.36 

0.39 

 

0.03 

0.02 

Clinician 1 

     Affected Limb 

     Unaffected Limb 

 

0.09 

0.37 

 

0.70 

0.10 

 

0.18 

0.28 

 

0.30 

0.11 
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Table 3. Spearman’s rho correlation of knee abduction angle and scored level of 

valgus collapse on the CR-DVJS at 6 and 12 months post-operative 

 

________6 months________ ________12 months______ 

Correlation 

coefficient 

p-value Correlation 

coefficient 

p-value 

Researcher 

     Affected Limb 

     Unaffected Limb 

 

0.48 

0.32 

 

0.03 

0.17 

 

-0.02 

-0.15 

 

0.90 

0.93 

Clinician 1 

     Affected Limb 

     Unaffected Limb 

 

0.67 

0.36 

 

0.001 

0.11 

 

-0.13 

0.08 

 

0.45 

0.66 

 

Table 4. Peak knee abduction moment by scored level of valgus collapse on the CR-

DVJS at 6 and 12 months post-operative 

 
_________6 months_________  ________12 months______ _ 

n Mean (SD) Min  Max  n Mean (SD) Min  Max 

Researcher Scores 

     Affected Limb 

          None 

          Some 

          Moderate 

          Extreme 

     Unaffected Limb 

          None 

          Some 

          Moderate 

          Extreme 

 

 

1 

7 

7 

5 

 

1 

7 

8 

4 

 

 

20.3 (-) 

15.0 (12) 

18.4 (18) 

24.3 (9) 

 

0.7 (-) 

20.7 (18) 

17.4 (9) 

18.8 (8) 

 

 

20 

-0.2 

5  

13 

 

0.7 

5 

1 

6 

 

 

20 

34 

54 

36 

 

0.7 

60 

35 

27 

  

 

5 

14 

15 

3 

 

4 

14 

17 

2 

 

 

15.4 (7) 

24.1 (27) 

25.9 (13) 

28.6 (13.1) 

 

12.8 (8) 

9.7 (13) 

20.5 (17) 

46.8 (34) 

 

 

6 

-5 

0.7 

17 

 

5 

-3 

-7 

23 

 

 

23 

87 

59 

42 

 

21 

47 

60 

71 

Clinician 1 Scores 

     Affected Limb 

          None 

          Some 

          Moderate 

          Extreme 

     Unaffected Limb 

          None 

          Some 

          Moderate 

          Extreme 

 

 

1 

7 

8 

4 

 

1 

6 

6 

7 

 

 

20.3 (-) 

18.8 (19) 

17.6 (18) 

19.6 (20) 

 

0.7 (-) 

14.8 (7) 

22.5 (19) 

19.5 (8) 

 

 

20 

-0.2 

5 

9 

 

0.7 

5 

1 

6 

 

 

20 

54 

36 

32 

 

0.7 

24 

60 

27 

  

 

3 

10 

15 

6 

 

3 

10 

16 

5 

 

 

13.3 (8) 

24.5 (27) 

26.0 (15) 

21.5 (21) 

 

15.5 (7) 

6.7 (9) 

21.7 (16) 

26.5 (32) 

 

 

6 

7 

-5 

0.7 

 

7 

-3 

-2 

-7 

 

 

22 

87 

50 

59 

 

21 

24 

60 

71 

Note: A negative value indicates adduction moment rather than abduction.  
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Table 5. Knee abduction angle by scored level of valgus collapse on the CR-DVJS at 

6 and 12 months post-operative 

 
_________6 months_________  ________12 months______ _ 

n Mean (SD) Min  Max  n Mean (SD) Min  Max 

Researcher Scores 

     Affected Limb 

          None 

          Some 

          Moderate 

          Extreme 

     Unaffected Limb 

          None 

          Some 

          Moderate 

          Extreme 

 

 

1 

7 

7 

5 

 

1 

7 

8 

4 

 

 

4.0 (-) 

1.5 (8) 

10.6 (10) 

9.9 (3) 

 

1.6 (-) 

1.4 (4) 

3.8 (7) 

9.2 (10) 

 

 

4 

-7 

-5 

5 

 

2 

-3 

-6 

0.8 

 

 

4 

19 

26 

14 

 

2 

7 

16 

20 

  

 

5 

14 

15 

3 

 

4 

14 

17 

2 

 

 

-2.1 (4) 

7.2 (8) 

4.2 (8) 

-2.4 (3) 

 

6.9 (8) 

4.5 (9) 

4.9 (7) 

2.0 (3) 

 

 

-8 

-4 

-8 

-5 

 

-0.5 

-6 

-9 

-0.3 

 

 

2 

24 

20 

0.8 

 

16 

26 

23 

4 

Clinician 1 Scores 

     Affected Limb 

          None 

          Some 

          Moderate 

          Extreme 

     Unaffected Limb 

          None 

          Some 

          Moderate 

          Extreme 

 

 

1 

6 

6 

7 

 

1 

7 

7 

5 

 

 

4.0 (-) 

0.8 (7) 

5.2 (8) 

14.0 (6) 

 

1.6 (-) 

0.5 (5) 

5.0 (7) 

7.8 (9) 

 

 

4 

-7 

-5 

7 

 

2 

-6 

-0.6 

0.8 

 

 

4 

12 

19 

26 

 

2 

7.4 

16 

20 

  

 

3 

10 

15 

6 

 

3 

10 

16 

5 

 

 

-0.8 (2) 

7.2 (10) 

5.1 (8) 

-0.4 (4) 

 

5.7 (9) 

2.7 (6) 

5.5 (7) 

5.4 (13) 

 

 

-1 

-8 

-8 

-5 

 

-0.5 

-6 

-2 

-9 

 

 

2 

24 

20 

6 

 

16 

16 

23 

26 

Note: A negative value indicates adduction angle rather than abduction. 

 

5.2.2 Trunk Flexion 

There was a moderate correlation between trunk flexion angle and scoring of trunk 

flexion (Table 6). 

Results are consistent with the hypothesis of lower mean TFA for those with observed 

insufficient trunk flexion (Table 7). There was a difference in TFA between those scored 

as sufficient/insufficient by either rater at both time points. This difference was 

statistically significant at 12 months post-operative for the researcher (p=0.002) and 

clinician 1 (p=0.001). 
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Table 6. Spearman’s rho correlation of trunk flexion angle and scored trunk flexion 

sufficiency on the CR-DVJS at 6 and 12 months post-operative 

 

________6 months________ ________12 months______ 

Correlation 

coefficient 

p-value Correlation 

coefficient 

p-value 

Researcher 

     Affected Limb 

     Unaffected Limb 

 

0.45 

0.45 

 

0.05 

0.05 

 

0.49 

0.49 

 

0.002 

0.002 

Clinician 1 

     Affected Limb 

     Unaffected Limb 

 

0.20 

0.20 

 

0.39 

0.39 

 

0.39 

0.38 

 

0.03 

0.03 

 

Table 7. Trunk flexion angle by scored trunk flexion sufficiency on the CR-DVJS at 

6 and 12 months post-operative 

 
_________6 months_________  ________12 months______ _ 

n Mean (SD) Min  Max  n Mean (SD) Min  Max 

Researcher Scores 

     Affected Limb 

          Sufficient 

          Insufficient 

     Unaffected Limb 

          Sufficient 

          Insufficient 

 

 

3 

17 

 

3 

17 

 

 

85.0 (8) 

60.4 (21) 

 

85.0 (8) 

60.4 (21) 

 

 

76 

25 

 

76 

25 

 

 

91 

96 

 

91 

96 

  

 

16 

21 

 

16 

21 

 

 

81.8 (17) 

64.8 (14) 

 

81.8 (17) 

64.8 (14) 

 

 

45 

36 

 

45 

36 

 

 

103 

86 

 

103 

86 

Clinician 1 Scores 

     Affected Limb 

          Sufficient 

          Insufficient 

     Unaffected Limb 

          Sufficient 

          Insufficient 

 

 

2 

18 

 

2 

18 

 

 

77.0 (1) 

62.7 (22) 

 

77.0 (1) 

62.7 (22) 

 

 

76 

25 

 

76 

25 

 

 

78 

96 

 

78 

96 

  

 

9 

25 

 

9 

25 

 

 

82.8 (11) 

67.6 (18) 

 

82.8 (11) 

67.6 (18) 

 

 

64 

36 

 

64 

36 

 

 

97 

103 

 

97 

103 

 

5.2.3 Knee Flexion 

There was a strong correlation between knee flexion angle and scoring of knee flexion 

(Table 8).  

Results are consistent with the hypothesis of lower mean KFA for those with observed 

insufficient knee flexion (Table 9). There was a difference in KFA between those scored 
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as sufficient/insufficient by either rater at both time points. This difference was 

statistically significant at 12 months post-operative (p=0.0001). It was also significantly 

different between all but one 6-month comparison (R Aff: p=0.008; R Unaff: p=0.001; 

C1 Aff: p=0.087; C1 Unaff: p=0.027). 

 

Table 8. Spearman’s rho correlation of knee flexion angle and scored knee flexion 

sufficiency on the CR-DVJS at 6 and 12 months post-operative 

 

________6 months________ ________12 months______ 

Correlation 

coefficient 

p-value Correlation 

coefficient 

p-value 

Researcher 

     Affected Limb 

     Unaffected Limb 

 

0.55 

0.60 

 

0.01 

0.006 

 

0.65 

0.66 

 

<0.0001 

<0.0001 

Clinician 1 

     Affected Limb 

     Unaffected Limb 

 

0.47 

0.47 

 

0.04 

0.04 

 

0.64 

0.67 

 

<0.0001 

<0.0001 

 

Table 9. Knee flexion angle by scored knee flexion sufficiency on the CR-DVJS at 6 

and 12 months post-operative 

 
_________6 months_________  ________12 months______ _ 

n Mean (SD) Min  Max  n Mean (SD) Min  Max 

Researcher Scores 

     Affected Limb 

          Sufficient 

          Insufficient 

     Unaffected Limb 

          Sufficient 

          Insufficient 

 

 

3 

17 

 

3 

17 

 

 

92.7 (11) 

67.2 (14) 

 

97.7 (6) 

65.2 (14) 

 

 

84 

49 

 

91 

41 

 

 

105 

104 

 

103 

95 

  

 

10 

27 

 

10 

27 

 

 

101.6 (15) 

74.5 (13) 

 

102 (12) 

76.5 (12) 

 

 

77 

47 

 

84 

51 

 

 

122 

95 

 

115 

93 

Clinician 1 Scores 

     Affected Limb 

          Sufficient 

          Insufficient 

     Unaffected Limb 

          Sufficient 

          Insufficient 

 

 

3 

17 

 

3 

17 

 

 

85.6 (2) 

68.5 (16) 

 

90.1 (13) 

66.6 (15.9) 

 

 

84 

49 

 

76 

41 

 

 

88 

105 

 

103 

99 

  

 

12 

22 

 

12 

22 

 

 

98.6 (15) 

74.1 (13) 

 

99.3 (12) 

75.7 (12.4) 

 

 

77 

47 

 

84 

51 

 

 

122 

95 

 

115 

93 
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5.3 Reliability 

5.3.1 Inter-rater Reliability 

The scores of all 20 six-month patients were analyzed. Number of patients analyzed at 12 

months varied due to missing data from either clinician absence or video error. For the 

researcher – clinician 1 comparison, 34 patients were included in analysis. For all other 

comparison rater groups, 36 patients were analyzed. The overall score on the CR-DVJS 

demonstrated moderate (0.5-0.75) or good (0.75-0.9) reliability between raters at both six 

months and twelve months post-operative (Table 10). 

The agreement between raters scoring the level of dynamic knee valgus collapse (Table 

11) also demonstrated moderate to good (0.4-0.8) reliability between the Researcher and 

Clinician 1 and the two expert clinicians. Agreement between the researcher and expert 

clinicians was slightly lower demonstrating fair to moderate (0.2-0.6) reliability. 

 

Table 10. Inter-rater reliability of overall CR-DVJS score per limb at 6 and 12 

months post-operative 

Rater Group 
________6 months________ ________12 months______ 

ICC (95% CI) p-value ICC (95% CI) p-value 

Researcher – Clinician 1 

     Affected Limb 

     Unaffected Limb 

 

0.79 (0.55 – 0.91) 

0.90 (0.75 – 0.96) 

 

<0.0001 

<0.0001 

 

0.78 (0.53 – 0.89) 

0.85 (0.64 – 0.93) 

 

<0.0001 

<0.0001 

Clinician 2 – Clinician 3 

     Affected Limb 

     Unaffected Limb 

 

0.64 (0.27 – 0.84) 

0.41 (-0.02 – 0.71) 

 

0.001 

0.031 

 

0.64 (0.41 – 0.80) 

0.52 (0.20 – 0.73) 

 

<0.0001 

<0.0001 

Researcher – Clinician 2 

     Affected Limb 

     Unaffected Limb 

 

0.77 (0.51 – 0.90) 

0.78 (0.53 – 0.91) 

 

<0.0001 

<0.0001 

 

0.52 (0.24 – 0.72) 

0.46 (0.17 – 0.68) 

 

<0.0001 

0.002 

Researcher – Clinician 3 

     Affected Limb 

     Unaffected Limb 

 

0.75 (0.46 – 0.89) 

0.58 (0.21 – 0.81) 

 

<0.0001 

0.001 

 

0.57 (0.30 – 0.76) 

0.64 (0.40 – 0.80) 

 

<0.0001 

<0.0001 
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Table 11. Inter-rater reliability of CR-DVJS valgus collapse score per limb at 6 and 

12 months post-operative 

Rater Group 

________6 months________ ________12 months______ 

Weighted Kappa 

(95% CI) 

p-value Weighted Kappa 

(95% CI) 

p-value 

Researcher – Clinician 1 

     Affected Limb 

     Unaffected Limb 

 

0.65 (0.41 – 0.89) 

0.84 (0.66 – 1.02) 

 

< 0.0001 

< 0.0001 

 

0.61 (0.41 – 0.82) 

0.71 (0.52 – 0.91) 

 

< 0.0001 

< 0.0001 

Clinician 2 – Clinician 3 

     Affected Limb 

     Unaffected Limb 

 

0.52 (0.26 – 0.78) 

0.22 (-0.05 – 0.48) 

 

< 0.0001 

0.125 

 

0.56 (0.36 – 0.75) 

0.43 (0.23 – 0.64) 

 

< 0.0001 

< 0.0001 

Researcher – Clinician 2 

     Affected Limb 

     Unaffected Limb 

 

0.56 (0.34 – 0.79) 

0.59 (0.39 – 0.80) 

 

< 0.0001 

< 0.0001 

 

0.36 (0.15 – 0.58) 

0.32 (0.07 – 0.56) 

 

0.001 

0.005 

Researcher – Clinician 3 

     Affected Limb 

     Unaffected Limb 

 

0.50 (0.23 – 0.79) 

0.25 (0.02 – 0.48) 

 

0.001 

0.055 

 

0.43 (0.21 – 0.65) 

0.38 (0.16 – 0.59) 

 

< 0.0001 

0.001 

 

 

5.3.2 Intra-rater Reliability 

The overall scores of 20 patients at 6 months and 36 patients at 12 months were analyzed 

to determine intra-rater reliability of each expert clinician. One patient at the 12-month 

visit was missing because there was no video recording for the experts to evaluate. 

Results of intra-rater reliability for both time points are reported (Table 12). Clinician 2 

demonstrated good (0.75-0.9) reliability while Clinician 3 demonstrated moderate (0.5-

0.75) reliability. There was moderate agreement (0.5-0.75) between the researcher’s in-

person lab evaluation and video footage evaluation. 
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Table 12. Intra-rater reliability of overall CR-DVJS score per limb at 6 and 12 

months post-operative 

Rater 
________6 months________ ________12 months______ 

ICC (95% CI) p-value ICC (95% CI) p-value 

Clinician 2 

     Affected Limb 

     Unaffected Limb 

 

0.85 (0.67 – 0.94) 

0.85 (0.66 – 0.94) 

 

< 0.0001 

< 0.0001 

 

0.84 (0.70 – 0.91) 

0.79 (0.64 – 0.89)   

 

< 0.0001 

< 0.0001 

Clinician 3 

     Affected Limb 

     Unaffected Limb 

 

0.72 (0.41 – 0.88) 

0.50 (0.11 – 0.77) 

 

< 0.0001 

0.005 

 

0.71 (0.50 – 0.84) 

0.59 (0.33 – 0.77) 

 

< 0.0001 

< 0.0001 

Researcher 

     Affected Limb 

     Unaffected Limb 

 

0.58 (0.12 – 0.82) 

0.53 (0.15 – 0.78) 

 

< 0.0001 

0.004 

 

0.70 (0.50 – 0.84) 

0.76 (0.58 – 0.87) 

 

< 0.0001 

< 0.0001 

 

5.3.3 Within Session Test-retest Reliability 

Twenty patients at 6 months and 36 patients at 12 months completed testing in both the 

lab and gym area for the analysis of test-retest reliability of the overall scores on the CR-

DVJS. One patient refused to complete a second jump in the physiotherapy gym. 

Clinician 1 was absent from four 12-month patient visits so only 32 patients were 

included in that analysis. The overall score per limb on the CR-DVJS demonstrated good 

(0.75-0.9) to excellent (>0.9) within session test-retest reliability (Table 13). 

 

Table 13. Within session test-retest reliability of overall CR-DVJS score per limb at 

6 and 12 months post-operative 

Rater 
________6 months________ ________12 months______ 

ICC (95% CI) p-value ICC (95% CI) p-value 

Researcher 

     Affected Limb 

     Unaffected Limb 

 

0.84 (0.64 – 0.94) 

0.84 (0.64 – 0.94) 

 

< 0.0001 

< 0.0001 

 

0.89 (0.73 – 0.94) 

0.87 (0.74 – 0.93) 

 

< 0.0001 

< 0.0001 

Clinician 1 

     Affected Limb 

     Unaffected Limb 

 

0.95 (0.86 – 0.98) 

0.96 (0.91 – 0.99) 

 

< 0.0001 

< 0.0001 

 

0.81 (0.65 – 0.91) 

0.90 (0.80 – 0.95) 

 

< 0.0001 

< 0.0001 
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Chapter 6 

6 Discussion 

This study is the first to evaluate the measurement properties of the CR-DVJS. As such, it 

is the first to provide evidence of the scale’s validity and reliability. The results are 

generally consistent with the study’s hypotheses, although slightly lower than anticipated. 

6.1 Concurrent Validity 

6.1.1 Dynamic Knee Valgus 

Since knee abduction is a known factor contributing to knee valgus, knee abduction 

moment and knee abduction angle were used as the gold standard for measuring frontal 

plane knee movements. The measured knee abduction moment and angle were expected 

to be associated with the scoring of dynamic knee valgus. Previous literature has reported 

high abduction moment and angle with increased valgus collapse. Therefore, patients 

demonstrating the most extreme level of knee valgus during the drop vertical jump task 

should have the highest reported measures of knee abduction moment and angle. 

Similarly, if raters can accurately observe and report level of knee valgus, scores should 

reflect motion capture measures. We would expect to see a difference in mean knee 

abduction moment and angle which increases with each level of valgus scoring (none < 

some < moderate < extreme).  

Results were generally not statistically significant and did not demonstrate a strong (rho > 

0.5) correlation between measures as expected. The relationship between scored level of 

valgus collapse and both motion capture measures was very weak to moderate. The only 

exception was the strong correlation observed between KAA and the affected limb scores 

at the six-month follow-up for both raters (rho=0.48, p=0.03; rho=0.67, p=0,001). 

Surprisingly, a negative relationship was observed at the 12-month follow-up for KAA 

measures. This may be a result of the greater than expected number of patients 

demonstrating varus rather than valgus motion, which may be attributed to rehabilitation 

strategies to correct jumping mechanics. In addition, there was no difference or pattern in 

mean knee abduction moment and angle per scoring group. Standard deviation of mean 
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values was generally high, indicating a wide spread of measures in each category. 

Furthermore, there is large overlap of max and min values between groups. Extreme max 

and min values suggest there may be outliers in the group – if a patient was scored 

incorrectly this would drastically affect the mean and standard deviation. Outliers were 

detected in some scoring groups; however, these values are more likely a result of low 

sample size. Increasing overall sample size would decrease this random sampling error. 

Increasing the number of patients demonstrating each level of valgus collapse would 

allow for better comparisons between levels. 

This suggests the scale could not accurately identify level of valgus. However, when 

comparing the lowest (none) and highest (extreme) scored groups the mean abduction 

moment was higher in the extreme group. Although these differences did not reach 

significance, the trend suggests it may be easier for raters to distinguish between none 

and extreme levels rather than four levels; especially when distinguishing between 

‘some’ and ‘moderate’ levels. 

6.1.2 Trunk Flexion 

Trunk flexion angle (TFA) was used as the gold standard measurement of trunk flexion. 

TFA was expected to be strongly associated with the scoring of the trunk flexion 

component of the CR-DVJS. Furthermore, patients demonstrating insufficient trunk 

flexion as scored on the CR-DVJS were expected to have decreased TFA.  

Results agree with hypotheses and demonstrate lower mean TFA for those scored as 

insufficient at both time points. There is no difference between limbs because trunk 

flexion is independent of injury status. The difference between those scored as sufficient 

and insufficient was statistically significant at the 12-month time point for both the 

researcher and clinician. The lack of statistical significance at the 6-month time point is 

likely a result of sample size since only 2-3 patients were recorded as having sufficient 

trunk flexion compared to 17-18 as insufficient. Furthermore, the high max value of 

insufficient flexion suggests incorrectly categorized patients may be affecting the mean 

and SD thereby contributing to the lack of significance. However, true outliers were not 

detected in this group. It should also be noted the insufficient max value is higher for the 
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clinician at 12-month follow-up, so not all patients were identified as expected despite the 

statistical significance. The relationship between TFA and the Researcher’s scores 

produced a moderate correlation (rho>0.5) at both time points (rho=0.45, p=0.05; 

rho=0.49, p=0.002). The correlation was not as strong when TFA was compared to 

Clinician 1 scores. Although less susceptible to outliers, it seems incorrect identification 

of the highest TFA reduced the strength of this relationship. Overall, results suggest 

clinicians can use the CR-DVJS to accurately distinguish between sufficient and 

insufficient trunk flexion. 

6.1.3 Knee Flexion 

Knee flexion angle (KFA) was used as the gold standard measurement of knee flexion. 

KFA was expected to be strongly associated with the scoring of the knee flexion 

component of the CR-DVJS. Furthermore, patients demonstrating insufficient knee 

flexion as scored on the CR-DVJS were expected to have decreased KFA. 

The strongest correlation (0.47-0.67) was observed between KFA and scoring of knee 

flexion. This suggests the knee flexion CR-DVJS component is most accurately identified 

by observers. Results agree with hypotheses and demonstrate lower mean KFA for those 

scored as insufficient at both time points. The difference between those scored as 

sufficient and insufficient was statistically significant at the 12-month time point for both 

the researcher and clinician. It was also statistically significant at all but one 6-month 

comparison of the affected limb for the clinician. This comparison has a much larger max 

value again suggesting incorrectly identified patients may have acted as outliers thereby 

skewing mean and SD. Few patients were recorded as sufficient but minimum values are 

still above mean values of those recorded as insufficient. There is a consistent difference 

in mean values between the affected and unaffected limb. The motion analysis can detect 

a more precise difference between limbs that may appear symmetrical to the observer. 

However, although less accurate, results suggest the CR-DVJS can be used to distinguish 

insufficient/sufficient knee flexion. 
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6.2 Reliability 

6.2.1 Inter-rater Reliability 

Inter-rater reliability was examined between four pairs of raters. Results indicate 

moderate to good (0.5 – 0.9) reliability between raters. These results were consistent 

within rater pairs between the two follow-up visits suggesting no difference in the inter-

rater reliability of observing patients at 6 months or 12 months post-operative. 

There was an exception indicating poor reliability (0.41) between Clinicians 2 and 3 for 

the unaffected limb at the six-month follow-up. Slightly lower reliability (0.46) was also 

observed between the Researcher and Clinician 2 at 12-month follow-up for the 

unaffected limb. Although most ICC values are within the moderate range, CI are wide 

which makes it difficult to draw exact conclusions. The lower boundary of the 95% CI 

indicates poor reliability (<0.5) for many comparisons, while the upper indicates good to 

excellent (>0.75). 

The strongest reliability was observed between the Researcher and Clinician 1. This may 

be a result of the initial training and mutual understanding of the tool. Clinician 2 and 3 

did not receive verbal instruction or discuss the use of the tool. Thus, it is possible the 

accompanying instruction manual was interpreted differently between clinicians resulting 

in lower agreement. These findings highlight the importance of instruction clarity despite 

the clinician’s level of experience. The difference in user interpretation may also account 

for the lower agreement observed between the researcher and expert clinicians. However, 

it is also possible there was a difference in the ability to identify movements due to level 

of clinical experience. Furthermore, raters were only allowed to review video footage 

once in real time to best simulate the clinical experience. Adjusting instructions to allow 

for multiple viewings would likely improve level of agreement. 

Since the level of dynamic knee valgus collapse has the strongest influence of the overall 

scale score, a weighted kappa was used to assess the agreement between raters on this 

component. The strongest reliability was again observed between the Researcher and 

Clinician 1 indicating good (0.61-0.84) results. There was moderate (0.43-0.56) 

reliability with one account of fair (0.22) reliability between Clinician 2 and 3 for the 
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unaffected limb at the six-month follow-up. Results comparing the researcher and expert 

clinicians demonstrate fair to moderate (0.25-0.59) reliability which is much lower than 

anticipated. These results may reflect a difference in the specific skill required to properly 

identify and categorize level of valgus collapse. 

Overall results provide evidence of inter-rater reliability of the CR-DVJS score although, 

the wide confidence intervals and lower agreement of the valgus component suggest 

results should be interpreted with caution. Individuals with varying level of clinical 

experience demonstrate moderate agreement when using the CR-DVJS. To improve 

agreement between clinicians, more clear instructions and a strong understanding of tool 

use may be required. 

6.2.2 Intra-rater Reliability 

Intra-rater reliability of the overall score per limb was examined for each expert clinician. 

Clinician 2 demonstrated good (0.79-0.85) reliability while Clinician 3 demonstrated 

moderate (0.5-0.72) reliability. 

However, confidence intervals were again wide and ranged from moderate (0.64) to 

excellent (0.94) for Clinician 2 and from poor (0.11) to good (0.88) for Clinician 3. 

Lower ICC values were observed in Clinician 3 scores of the unaffected limb. 

A version of intra-rater reliability was assessed for the researcher’s in-person lab 

evaluation and video footage evaluation. There was moderate agreement (0.53 – 0.76) of 

the overall scores but agreement was slightly stronger at the 12-month time point as a 

result of increased sample size.  

6.2.3 Within Session Test-retest Reliability 

The results from the Researcher overall scores indicate good (0.84 – 0.89) within session 

test-retest reliability. However, 95% confidence intervals are wide reflecting our low 

sample size. The lower boundary of the confidence intervals for the 6-month time point is 

slightly lower (0.64), but all upper boundaries indicate excellent (0.93 – 0.94) reliability. 
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Results from analysis of Clinician 1 overall scores indicate excellent (0.90 – 0.96) within 

session test-retest reliability except for the affected limb at the 12-month time point 

(0.81). This also demonstrated the widest CI with the lower boundary at 0.65 (moderate). 

All other CI support good to excellent reliability.  

6.3 Limitations 

A limitation of this study is the small sample size. Specifically, increasing sample size 

would reduce the likelihood of random sampling error, improving the probability of 

achieving a sample representative of the population. This would also serve to reduce the 

magnitude of the effect of extreme values on agreement statistics, like weighted Kappa, 

and improve our certainty of both the within and between subject variability, which 

would improve the precision of our ICCs. Finally, with such a small sample size, we were 

unable to precisely estimate the values from the motion capture system.  

Another limitation is the applicability since the study was conducted at a tertiary care 

centre located in Southwestern Ontario (FKSMC) with expert surgeons and clinicians. 

ACLR rehabilitation at this facility specifically addresses patient jumping and landing 

mechanics. Thus, it is possible those receiving this treatment protocol may have had 

improved movement patterns compared to those receiving treatment elsewhere. However, 

we did not specifically collect this data to address this issue. 

Evidence of the validity of the tool is also limited by the capabilities of the current gold 

standard. Although 3D motion capture analysis is considered the gold standard of 

measuring lower body biomechanics during dynamic tasks, it has several limitations 

which should be acknowledged. Factors including marker placement, estimations of joint 

center, and skin/soft tissue movement artifacts have been shown to reduce the accuracy 

and precision of calculated joint angles and moments.127,128 Furthermore, the system only 

allows for measuring specific kinematic and kinetic variables that act as surrogates of 

specific movement patterns. While these variables don’t exactly measure the motion of 

interest, they are the best possible measure available. In addition, there is not an exact 

measure corresponding to the overall score on the CR-DVJS, but several components 

accounting for the score could be analyzed. Two of the components, trunk lean and 
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asymmetry, could not be analyzed for the purposes of this study. Trunk lean was not 

frequently observed in patients nor could we determine the angle that created a visible 

trunk lean. Asymmetry, although more clearly defined in the CR-DVJS manual, could 

not be accurately defined in calculations since it is unknown what difference between 

limbs is visible to the human eye. Without providing evidence for all components of the 

CR-DVJS, it is difficult to draw conclusions surrounding the validity of the overall score.  

Although the CR-DVJS manual was provided to all raters involved in the study, it is 

evident some scale instructions could be defined more objectively by supplying 

measurement ranges or visual prompts. Raters’ interpretation of the instructions directly 

influences the tool use which is then reflected in outcome scores. For instance, it is left to 

the discretion and judgement of the rater to determine what “insufficient” flexion looks 

like. The check boxes on either side also leave some room for error in interpretation. For 

example, checking the side that the patient trunk is leaning toward, the side leading or 

landing during asymmetrical jumping patterns, or one side for trunk flexion. The 

difference in training and clarity of instructions between the raters make it difficult to 

determine if there is a difference in scoring ability based on level of experience. 

Furthermore, the expert clinicians scores were not compared to the gold standard due to 

the different method of assessment. Although the Researcher’s scores via video were 

used to estimate the level of inter-rater reliability between experts, we could not 

determine whether there was a difference in skill of using the tool between raters. 

Agreement could have been affected by raters’ inconsistent interpretation of instructions, 

differences in skill, method of observation, or truly low intra-rater reliability of the 

researcher. In addition, it is possible intra-rater reliability of the expert clinicians may 

have been improved by recall bias despite completing assessments a designated two 

weeks apart. Test-retest is limited to conclusions within session as opposed to a standard 

retest after a period of time without change. Although it was assumed there was no 

change in the jumping pattern within the same day, or it is possible fatigue may have 

altered mechanics for some patients. It is also possible patients experienced a learning 

effect and became more confident completing the drop vertical jump task. Thus, order 

bias may have influenced results of the within session test-retest since patients always 

completed the task in the lab first and the physiotherapy clinic second. 
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Chapter 7 

7 Conclusion 

This study provides moderate evidence of concurrent validity, inter-rater reliability, and 

intra-rater reliability as well as good evidence of test-retest reliability of the CR-DVJS. 

Raters were more accurate in ratings of trunk and knee flexion than level of knee valgus 

collapse. 

7.1 Future Direction 

Future studies are required to provide further evidence of the tool validity and reliability. 

A similar study should be conducted with an increased sample size to reduce the 

likelihood of random sampling error thereby improving the ability to precisely estimate 

the CR-DVJS’s association with motion capture variables. 

Furthermore, increasing sample size would improve the precision of agreement measures. 

Improving the ability to capture all movement patterns included on the CR-DVJS, would 

allow for more direct comparisons between components. A reliability study should be 

conducted to determine the agreement of each component of the tool, since more than 

one combination of components can result in the same final score. 

True test-retest reliability should also be examined. Rather than completing two test 

sessions in different locations during the same day, patients should return to complete the 

second testing session on a separate day. This would also reduce the potential effect of 

patient fatigue and learning compared to the within session design. Limiting physical 

exertion and monitoring fatigue prior to task completion may also be beneficial to 

improve study design and quality of the results. 

Each method of assessment (video vs in-person) should also be further investigated. 

Specifically, it may be determined if one method is more accurate and/or reliable, as well 

as how this may be affected by different viewing instructions. For instance, whether 

repetitive viewing in real-time, pausing and continuing viewing, or slow-motion viewing 

can improve agreement or association. 
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Additionally, an in-person assessment, rather than a video assessment, by an expert 

clinician would allow for better conclusions regarding the effect of skill on ability to use 

the tool. Without prior knowledge of whether a difference exists between in-person and 

video assessment we could not determine the accuracy of video assessment. An in-person 

lab assessment by a beginner, novice, and expert clinician would demonstrate whether 

increased skill can improve accuracy with the motion capture system. 

The accompanying instruction manual should be reviewed among clinicians in a 

qualitative manner to improve clarity and hence, effectiveness of tool use. Feedback from 

raters of this study, as well as others in the field should be incorporated into a revised 

instruction manual and tested. This includes simple visual and layout feedback as well as 

more clear definitions of components and instructions to increase consistency of ratings.  

Lastly, a large prospective study may be conducted to determine whether CR-DVJS score 

can predict ACL re-rupture. Once there is strong evidence of tool validity and reliability 

clinical implementation will assist with decision making and monitoring of progress 

during ACL rehabilitation. This will enhance ACL rehabilitation by providing an 

accessible and feasible option to quantify DVJ performance within a clinical setting. 
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Appendix B: Instruction Booklet for the Clinician Rated Drop Vertical Jump Scale 
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