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Abstract

The precise location of the fault in a series capacitive compensated transmission line (SC-

CTL) plays an integral part in limiting the maintenance time following its tripping due to the

occurrence of a permanent fault. Since, an SCCTL acts as a huge corridor of power, its outage

will result in huge monetary losses which are directly proportion to the time it remains out of

service. In worst case scenario, the tripping of an SCCTL might lead to the cascaded tripping

of the parallel transmission lines due to overloading. Therefore, the need for an accurate and

robust fault location algorithm for the SCCTLs becomes critical. Consequently, the focus of

this thesis is to develop new fault location algorithms for the SCCTLs.

First of all, the concept of fault location in conventional transmission lines and its appli-

cation to SCCTLs has been explained. The mathematical analysis of impedance-based fault

location algorithms for SCCTLs which are the most widely used fault location algorithms for

SCCTLs, is performed. The mathematical analysis enables a deeper look into the strengths and

deficiencies of the existing algorithms. After the identification of the innate limitations of the

existing fault location algorithms, three new impedance-based fault location algorithms have

been proposed with the aim of maximum utilization of the available measurements to improve

the accuracy of the fault location results in SCCTLs. The proposed impedance-based algo-

rithms are then tested for various fault scenarios using simulations carried out in Matlab, and

PSCAD. The comparative analysis of the proposed algorithms with the existing algorithms is

also performed.

The interest in traveling wave-based fault location algorithms has been renewed lately due

to the availability of commercial relays capable of sampling in the range of 1MHz. Therefore,

the traveling wave theory which forms the basis of traveling wave-based fault location algo-

rithms is discussed. The mathematical analysis of reflection, and transmission of the traveling

waves from various points of discontinuity in an SCCTL has been performed which enables the

understanding of the shortcomings of the existing fault location algorithms. Thereafter, a new

single-ended traveling wave-based fault location algorithm has been proposed in this thesis.

The performance of the proposed algorithm has been verified through the simulations carried

out in PSCAD.

Keywords: Fault Location, MOV, Series Capacitor, Series Compensated Lines, Transmis-

sion Lines, Traveling wave.
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Chapter 1

Introduction

A robust transmission system is the backbone of a power system. Without the means of a secure

and dependable transmission system, the power generated at remote generating station cannot

be brought to the major urban load centers. With increasing demand of electrical power, the

capacity of the transmission system also needs to be increased along with the generation capac-

ity. There are two avenues to increase the capacity of the transmission system: 1-construction

of new transmission lines; 2-enhancing the capacity of the existing transmission lines. Since,

a transmission line is the biggest component of a power system which spans over hundreds of

kilometers, the construction of a new transmission line is very capital cost intensive due to the

vast amount of land (right of way) required, material costs and labor costs. The construction

of a transmission line is further complicated by the stringent environmental regulations.

The other way to increase the capacity of a transmission system is to enhance the trans-

mission capacity of the existing transmission lines. The transmission capacity of any 3-phase

transmission line is given by (1.1) [1],

P = 3
|VS | |VR|

|XL|
sinδ (1.1)

where VS and VR are the sending and receiving end phase voltages, respectively. XL is the

reactance of the transmission line, and δ is the power angle. Three avenues could be identified

from (1.1) for increasing the power transfer across an existing transmission line:

1. Increasing voltage level (VS and VR): In a transmission system as the voltage level is

increased the power transfer capacity of the transmission line also rises. The transmission

line voltages in North America have reached to 765kV [1]. Another benefit of higher

voltage levels is the transmission losses get reduced. However, the voltage level of any

transmission line is designed and set at the time of construction of a transmission line.

1



2 Chapter 1

Figure 1.1: Transient stability: (a) Case 1; (b) Case 2.

Once the transmission line is put into service the voltage level of a transmission line could

only be increased typically by 5%, increasing the power transmission capacity by 10%.

So, for an existing transmission line the power transfer capacity cannot be significantly

increased using the voltage levels.

2. Increasing the power angle (δ): The power transfer capacity of a transmission line

could alternatively be increased by increasing the power angle, i.e., δ. However, as δ

increases the incremental change in power transfer capacity keeps becoming smaller as

can be observed from (1.2). In other words, same incremental change in δ would have

more effect on increasing the power transfer capacity of the line when δ is small.

∂P
∂δ

= 3
|VS | |VR|

|XL|
cosδ (1.2)

Another very important aspect of increasing the power transmission capacity through

power angle is that as the power angle increases the transient stability of the system gets

decreased. Figures 1.1 (a) and (b) show the plots of transmitted electrical power (P) vs.

power angle (δ), and, the effect of using power angle for increasing power transfer across

transmission line on the transient stability of the system. A solid three-phase fault in

the transmission line is assumed to occur in the transmission line which produces the

shift of ∆δ in the power angle when: (a) power angle (δ1) and power transmission (P1)

are relatively smaller (Case 1); (b) power angle (δ2) and power transmission (P2) are

relatively large (Case 2).

For a system to be stable during transient state, area A1 should be less or equal to the

area A2. In Case 1, area under A2 is quite large in comparison to A1, signifying that the

system would recover from the disturbance with a comfortable safety margin. When the

power flow is increased to P2 by increasing power angle to δ2 (Case 2), the system would

keep running in steady state. However, when the same disturbance as in Case 1 is applied
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Figure 1.2: Schematic diagram of series compensated transmission line.

to the system, it will not recover as A2<A1. This fact highlights the key point that any

considerable increase in power transmission capacity by using power angle would come

at the cost of decreasing the transient stability of the system considerably.

3. Series capacitive compensation (decreasing XL): Another way to increase the power

transfer is to decrease the inductive reactance of the transmission line denoted by XL

in Figure (1.1). Inductive reactance of the line can be decreased by putting a capacitive

compensation (XC) in series with the transmission line as shown in Figure 1.2. The series

compensation devices could be a Fixed Series Capacitor (FSC), Thyristor Controlled

Series Capacitor (TCSC), or a combination of both [1]. FSC as the name suggested has

fixed capacitive reactance and is the simplest and least expensive series compensation

device. On the other hand, the compensation level of a TCSC can be greatly varied

within few milliseconds depending upon the requirements by changing the firing angle

of thyristors. A combination of FSC and TCSC can be utilized to obtain inexpensive yet

variable series compensation.

In steady state the power flow across a series compensated transmission line would be

given by (1.3) [1].

P = 3
|VS | |VR|

|XL − XC |
sinδ (1.3)

where XC is the steady state capacitive compensation of the compensating device. It

should be noted that from here onwards the elaboration of series compensated transmis-

sion lines is done using FSC as the standard series compensation device unless men-

tioned otherwise. The series compensated transmission lines are thus, referred to as

Series Capacitive Compensated Transmission Lines (SCCTLs). Figure 1.3 shows the

P-δ characteristics for a conventional line and a series compensated line with 50% series

compensation (XC = XL

2 ). It can be seen that for the same power angle (δ) the power
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Figure 1.3: Power transfer capacity of a conventional and an SCCTL with 50% series capacitive
compensation.

transferred through the SCCTL is double that of the power transferred through the con-

ventional line (i.e., P
′′

= 2P
′

). Another benefit of the series capacitive compensation

of the transmission line is that it increases the steady-state and transient stability of the

power system [2].

Consequently, the series compensation has become a very attractive avenue for increas-

ing power transfer capacity of the existing transmission lines [3] [4]. Figure 1.4 shows

the Hydro-Quebec 765kV transmission network [5]. Note the wide usage of series com-

pensation in the network. Another example of wide application of SCCTLs is from [8]

which shows the 500kV Third AC Intertie Project in the Pacific Northwest by Bonneville

Power Administration (BPA) and other utilities as shown in Figure 1.5. In Ontario, two

SCCTLs have been added to the Hydro One network between Hanmer at Sudbury and

Essa at Barrie [2].

1.1 Significance of fault location in transmission lines

The fault is an abnormal operation of the power system which might be caused by natural

causes, equipment failure, or operator error [6]. The short-circuit is the most serious type of

fault in the electrical power system [7]. The transmission lines are the largest parts of a power

system that span across hundreds of kilometers, pass through variety of geographical features,

and are exposed to various elements of nature such as wind, rain, snow, lightning etc. As such,
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Figure 1.4: Series compensation in 765kV transmission network of Hydro-Quebec [5].
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Figure 1.5: Series Capacitors in the Third AC Intertie Project in the Pacific Northwest [8].

the probability of occurrence of a fault and consequent tripping of the faulted transmission lines

becomes relatively high. Though the tripping of any transmission line is a very serious event,

but due to large amount of power that an SCCTL transfers, the tripping of an SCCTL becomes

a very significant event. The tripping of an SCCTL in a best case scenario would result in large

monetary losses to the utility, or in a worst case scenario may lead to widespread black-out. The

amount of monetary losses due to the tripping of a transmission line are directly proportional

to the time that transmission line remains out of service. Moreover, the other transmission

lines will now have to carry the extra-load in the absence of the tripped transmission line. In

order to minimize the financial losses and to avoid the possible cascaded tripping of parallel

transmission lines, it is very important to rapidly locate the fault, complete the required repairs

and put the transmission line back in to the service.

Locating the fault in a transmission line through visual inspection is impractical due to the

shear length of the SCCTLs. Thus, arises a critical need to have a fault location algorithm

for SCCTLs which could pin-point the location of the fault by using the voltage and current

measurements. The maintenance crew could then be dispatched directly to that location. The

importance of fault location algorithm for transmission lines can be gauged from the fact that a

feature called ‘fault locator’ is available in almost all of the commercial protective relays used

for the protection of transmission lines.

For a conventional transmission line, a direct relationship can be established between the
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measurements (current and voltage) made at the line terminals and the distance of the fault from

the transmission line terminals, as the conventional transmission lines have uniform character-

istics along their length. Various fault location algorithms for conventional lines could be found

in literature [9]-[12]. However, the presence of series capacitor protection system (SCPS) in

an SCCTL introduces the non-uniformity to the properties of the SCCTL which makes the

process of fault location in SCCTL complicated as discussed in detail in the following section.

1.2 SCPS and fault location in SCCTLs

As we know, the voltage drop across the series capacitor is directly proportional to the current

flowing through the transmission line. Under fault conditions, the current flowing through se-

ries capacitor becomes excessively large (ranging from 2-10 times of the rated current), which

leads to dangerously high voltage drop across the series capacitor which may damage the series

capacitor [13]. Therefore, the protection system, i.e, SCPS is integrated to the series capacitor

to protect it from the over-voltages resulting from the fault current. The series capacitor along

with its protection system has been referred to as Series Capacitor Bank (SCB) in this thesis.

The schematic diagram of the most general configuration of SCB is shown in Figure 1.6.

To observe the effect of SCPS operation on the process of fault location it is important to

understand its principle. SCPS broadly consists of Metal-oxide Varistor (MOV), bypass gap,

bypass switch along with a protection and control system [13], [14]. The functionality of each

component of SCPS is as given below.

1. MOV: An MOV is a non-linear element which provides immediate over-voltage protec-

tion to the SCB. When the voltage across SCB reaches the protection level of MOV, the

fault current immediately gets bypassed from series capacitor to MOV. Thus, clamping

the voltage across SCB to the protection level of the MOV. The current is re-routed back

to the series capacitor only after the voltage has dropped below the protection level of

the MOV. This phenomenon could be observed from the waveform shown in Figure 1.7.

It can be observed that MOV and series capacitor conduct intermittently in each funda-

mental cycle after the occurrence of a fault. The period for which an MOV conducts

in each cycle depends upon the magnitude of the fault current. Thus, the behavior of

parallel combination of an MOV and series capacitor is highly non-linear and fault cur-

rent dependent. It should be noted that when MOV conducts the fault current it keeps

on absorbing the energy, which leads to the rise of temperature of the MOV. So, energy

accumulation capacity of an MOV is one of the design criteria that is taken into account

while selecting the MOV for an SCB. To protect MOV against overheating or thermal
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Figure 1.6: Schematic of a series capacitor bank in an SCCTL.
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rundown due to excessive fault current or due to elongated conduction period, the energy

accumulated in an MOV is continuously monitored. The accumulated energy is esti-

mated by measuring the current flowing through MOV branch of the SCB through CT in

the MOV branch as shown in Figure 1.6. If the accumulated energy in an MOV reaches

its threshold value, the MOV is bypassed by local protection and control system through

bypass gap and bypass switch.

2. Bypass gap: A bypass gap is incorporated in SCPS to immediately bypass the MOV by

striking a spark across its air-gap until the bypass switch has closed its contacts. Bypass

gap is triggered: 1-to avoid unnecessary heating of MOV if the fault current is too high

and will likely result in MOV reaching its energy accumulation limit [13], [15]; 2-if the

heated MOV is re-closed on to a fault [15]. However, with the increase in the energy

absorption capacity of MOV and reduction in the closure time of the bypass switch, the

newer installation of SCBs are increasingly implemented without using the bypass gap.

In this thesis, the configuration of SCB with a bypass gap is called as bypass gap config-

uration of SCB while the configuration without a bypass gap is called gapless configura-

tion of SCB. The configuration of SCB shown in Figure 1.6 is bypass gap configuration

of SCB.

3. Bypass switch: Bypass switch protects MOV in gapless configuration, while protects

MOV and bypass gap in bypass gap configuration of SCB, respectively; against the elon-

gated conduction period if the protection system of the transmission line fails to operate

[13], [14]. In newer installations, bypass switches are replacing the bypass gaps alto-

gether.

It is clear from the above discussion that the behavior of SCPS is highly non-linear and fault

current dependent. The non-linearity so introduced hinders the analytical estimation of the

voltage drop across an SCB during the fault period which in turn makes the fault location

in SCCTLs a cumbersome process. As a matter of fact, the location of SCB relative to the

capacitor voltage transformer (CVT) is a determining factor in deciding that if a specialized

fault location algorithm for SCCTLs is needed, or a fault location algorithm for conventional

lines would suffice. An SCB can be located anywhere in a transmission line, ranging from

one of the transmission line ends to the middle of the transmission line. When an SCB is

located at a line end and the corresponding CVT is located on the line side of SCB as shown

in Figure 1.8 (a), the SCB lies outside the zone between CVTs located at the transmission line

ends. The only power system component that lies between the two CVTs is a transmission

line which has uniform characteristics along its length. In such cases, the conventional fault
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Figure 1.8: Location of SCB with respect to CVTs in an SCCTL with SCB lying: (a) outside
the zone between CVTs, (b) inside the zone between CVTs.

location algorithms such as [9]-[12] can be applied to SCCTLs [26]. However, in all other

configurations, the SCB will always lie in the zone between two CVTs as shown in Figure 1.8

(b). Now, due to the existence of a non-linear device between the two CVTs, the fault location

algorithms for conventional transmission lines cannot be applied to such cases. Therefore, the

dedicated fault location algorithms for SCCTLs are needed.

1.3 Existing types of fault location algorithms for SCCTLs

Dierent types of fault location algorithms for SCCTLs have been proposed in the exiting litera-

ture which can be classified into three different categories based upon the domain in which the

fault location algorithm works:

1. Instantaneous time-based fault location algorithm:
The instantaneous time-based fault location algorithms utilize the instantaneous values

of the measured voltage and current signals to solve the differential equations represent-

ing transmission line, and compute the location of fault in an SCCTL [16]-[19]. How-

ever, the instantaneous time-based algorithms are susceptible to the noise and harmonics

present in the measured signals. Moreover, instrument transformers are unable to exactly
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replicate the rapidly changing instantaneous measurements required for the implemen-

tation of instantaneous time-based fault location algorithms. Consequently, the practical

application of such algorithms has been highly limited and not much research has been

reported in this area.

2. Impedance-based fault location algorithm:
Impedance-based fault location algorithms use the phasors of the voltage and current sig-

nals to obtain the seen impedance of the transmission line from its terminals. The seen

impedance of the transmission line is then compared to the impedance of the transmission

line to obtain the fault location result. The phasor estimation algorithms like the Discrete

Fourier Transform (DFT), and Cosine algorithm attenuate noise significantly and remove

the integer harmonics from estimated phasors, thus making impedance-based fault loca-

tion algorithms immune to the effects of noise and harmonics. Since, the phasors are

readily available from the numerical relays present at the line terminals, the impedance-

based algorithms can be easily implemented in the protective relays. Additionally, the

vast installed base of impedance-based relays in the power system makes the impedance-

based algorithms the most widely used fault location algorithms.

3. Traveling wave-based fault location algorithm:
The incidence of fault acts as an application of a step input at the point of fault, which

produces a traveling wave which propagates in the transmission line in both directions

with speed almost equal to the speed of the light. Since, the traveling wave consists

of high frequency components to which series capacitor offers very low impedance, the

traveling wave-based fault location algorithms can be applied to SCCTLs. The travel-

ing wave-based fault location algorithms compute the fault location by noting the time

difference between two successive traveling waves arriving at the terminal and relating

it to the distance covered by the traveling waves in that time period. However, in order

to obtain the exact arrival time of the traveling waves, the relays are required to have

very high sampling frequency. For example, a relay with 1MHz frequency would have

an accuracy limit of 300 meters. However, 1 MHz is very high sampling frequency with

respect to the ‘normal’ phasor-based digital relays which have sampling frequencies in

the range of about 1900-5600Hz. Consequently, limited application of such algorithms

is reported in industry. However, with the advent of relays with very high sampling fre-

quency in last two to three years such as T400L by Schweitzer Engineering Laboratories,

the traveling-wave based fault location algorithms are being explored actively.

The fault location algorithms for SCCTLs could also be classified as single-ended fault location

algorithm, or double-ended fault location algorithm depending upon the number of terminals
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of the transmission line from which the measurements are utilized for the purpose of fault

location:

1. Single-ended fault location algorithm:
If the fault location algorithm uses the voltage and current measurements from only one

terminal (or local measurements) of the SCCTL, it is called as a single-ended fault lo-

cation algorithm such as the algorithm given in [20]. The single-ended fault location

algorithm of [20] utilizes MOV model for computing the fault location results. The al-

gorithm of [20] has two subroutines, one for each faulted section of the transmission

line. Moreover, one of the subroutines is iterative. The correct fault location result is

thereafter identified using a special procedure also mentioned in [20]. Due to their de-

pendence on MOV-model and iterative nature, the single-ended fault location algorithms

are not usually used for fault location in SCCTLs.

2. Double-ended fault location algorithm:
The double-ended or sometimes called as PMU-based fault location algorithms [22]-

[25], utilize measurements from both (local and remote) ends of the transmission lines.

The double-ended fault location algorithms are usually based on the fault loop model and

do not use the MOV model. Fault loop-based algorithms estimate the fault voltage and

fault current in terms of the unknown fault location, and then solve for the fault location

under the constraints which vary from one publication to the other. For double-ended

fault location algorithms to yield accurate results, it is very important that the measure-

ments from each terminal of an SCCTL correspond to the exact same time instant. Thus,

the measurements from each terminal of an SCCTL are required to be synchronized. If

the protective devices present at each end of an SCCTL are synchronized using GPS or

other means, the measurements are already synchronized. If however the relays are not

synchronized, then the measurements from both ends of an SCCTL are needed to be

synchronized post-fault as shown in [22]. The double-ended fault location algorithms

are widely used for fault location in SCCTLs.

Due to the wide application of phasor-based relays in the field, and the ability of double-

ended fault location algorithms to yield fault location results without using MOV-model, the

attention is focused on double-ended impedance-based fault location algorithms in this thesis.

Also, with the recent advancement in the protective relay technology, the traveling wave-based

commercial relays are being introduced which rejuvenated the interest in the traveling-wave

based fault location algorithms. Therefore, the traveling-wave based algorithms are also the

subject of research in this thesis.
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1.4 Challenges and motivations

1.4.1 Impedance-based fault location algorithms

Challenges

As already discussed in Section 1.2, MOVs are present in an SCCTL as part of SCPS. After

the occurrence of a fault in an SCCTL the MOV in the faulted phase starts conducting the fault

current to limit the over-voltage across the SCB caused by the high fault currents encountered

in an SCCTL. However, due to the non-linear behavior of MOV, the impedance of the SCB in

the faulted phase cannot be estimated accurately. This is a major hurdle before any impedance-

based fault location algorithm for the SCCTLs. The existing impedance-based fault location

algorithms have taken one of the two routes to overcome this challenge: 1-use a linearized or

an EMTP-derived MOV model as given in [20] and [21]; 2-use fault loop based fault location

algorithms such as [22]-[25]. However, each type of fault location algorithms has its strengths

and shortcomings which have been explored later in this thesis.

Another challenge that impedance-based fault location algorithms for SCCTLs face is the

accuracy of the estimated phasors of the measured voltages and currents. It is due to the fact

that SCCTL is essentially an under-damped RLC circuit, and any disturbance such as fault in

the SCCTL leads to the injection of sub-synchronous frequency components in addition to the

decaying-DC components in the measured signals, which in turn make the estimated phasors

oscillatory and imperfect. The oscillatory and imperfect phasors further impact the accuracy

of the fault location results. A Prony analysis-based phasor estimation technique has been

proposed in [26] which yields consistent estimated phasors. However, it has been shown in

[27] that if the fault location results obtained from oscillatory phasors are averaged over the

entire period of the fault duration, its accuracy becomes comparable to the Prony analysis-

based phasor estimation technique. The details on the aspect of phasor estimation for fault

location in SCCTLs could be found in [27], which is also the previous work of the author.

The presence of a parallel transmission line is another factor that has to be taken into ac-

count by the impedance-based fault location algorithms for SCCTLs. It can be seen from Fig-

ure 1.4 that it is very common for an SCCTL to have parallel transmission lines which could

either be a series compensated or a conventional transmission line. If the proposed fault loca-

tion algorithm for the SCCTLs does not take into account the zero sequence mutual-coupling

between the parallel transmission lines, the accuracy of the fault location results obtained will

be compromised. Thus, factoring in the presence of parallel transmission lines is very impor-

tant while proposing a new impedance-based fault location algorithm for SCCTLs.
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Motivation

The fact that only the MOV located in the faulted phase conducts the fault current while the

series capacitor is exclusively responsible for the conduction of current in non-faulted phase,

has not been used in any of the existing impedance-based fault location algorithms. Thus, the

voltage drop across SCB in non-faulted phase can be analytically estimated. This extra piece

of information can be used toward proposing a new fault location algorithm for SCCTLs.

Another information that is available but has not been utilized by the existing algorithms

is the MOV current measurement. It has been mentioned in the Section 1.2 that in order to

estimate the accumulated energy in an MOV, the current through MOV is measured in each

phase and is used by the protection and control system of the SCB to decide if the MOV

needs to be bypassed or not. The total current that flows through an SCB is the summation

of the currents flowing through series capacitor, and MOV. The total current that goes into an

SCB could be easily estimated using the measurements from transmission line terminals, while

MOV current is known from the current measurement at SCB. Therefore, the current flowing

through the series capacitor, and hence, the voltage drop across SCB in the faulted phase could

be obtained by subtracting MOV-current from the total current flowing through SCB. The usage

of MOV current measurement would also result in new fault location algorithms that would not

use natural fault loop for the purpose of fault location.

All the existing impedance-based fault location algorithms found in literature are based

on the assumption that the series compensation is applied at only one location in an SCCTL.

Therefore, at the time of fault there will be one terminal of the SCCTL which would see the

fault directly, without SCB being in between the fault and the SCCTL terminal. Thus, the fault

voltage equation can be written from this particular end of the SCCTL. However, in practice

there are transmission lines in which series compensation is applied at more than one location.

None of the existing impedance-based fault algorithms can be applied to such SCCTLs. It

is due to the fact that the fault voltage equation cannot be written from any of the SCCTL

terminals if the fault lies in the zone between any of the two SCBs. An SCCTL with two SCBs

is shown in Figure 1.9 with fault lying in the zone between the two SCBs. Now, the equation

for fault voltage cannot be written from any of the terminals of the SCCTL, i.e., Bus S and

Bus R, as the unknown voltage drop across SCB1 would be encountered if the attempt is made

from Bus S, while the unknown voltage drop across SCB2 would prevent compiling the fault

voltage equation from Bus R. Thus, rendering the fault loop-based fault location algorithms

useless for the configurations of SCCTLs in which series compensation is applied at multiple

locations. Therefore, opportunity arises to present the first ever impedance-based fault location

algorithm applicable to SCCTLs with SCBs located at multiple locations in the SCCTL.
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Figure 1.9: Diagram depicting series compensation applied at multiple locations in an SCCTL.

1.4.2 Traveling wave-based fault location algorithms

Challenges

As explained earlier, in order to limit the the uncertainty in the fault location results to 300

meters, the digital relays with sampling frequency close to 1 MHz are required. Though with

higher sampling frequencies the the uncertainty in the fault location results, however due to

technological limits the usage of1 MHz sampling frequency has been reported in the commer-

cial products. The traveling wave-based fault location algorithms like impedance-based algo-

rithms could be double-ended or single-ended algorithm. For the implementation of double-

ended traveling wave-based fault location algorithms, the time instances of the arrival of the

first traveling wave at each terminal of the SCCTL are required. In order to obtain accurate re-

sults from double-ended traveling wave-based fault location algorithms the measurements from

both terminals of the SCCTL have to be synchronized. However, the synchronization of the

relays operating at 1 MHz is a very tedious task to accomplish. On the other hand single-ended

traveling wave-based fault location algorithms do not require the time synchronization. How-

ever, single-ended traveling wave-based fault location algorithms require the time instances

of the arrival of the first and second traveling waves arriving at the same terminal of the SC-

CTL, along with the origination point of the second traveling wave. It is given in [28] that the

point of origin of the second traveling wave cannot be determined in all the configurations of

the SCCTL, therefore, limiting the applicability of the single-ended traveling wave-based fault

location algorithms.

Motivation

The methodology to identify the point of discontinuity in the SCCTL from which the second

traveling wave arriving at the terminal of the SCCTL originated, as presented in existing single-

ended traveling wave-based fault location algorithms such as [28], [29], [30], and [31] is based

on the empirical observations from the EMTP simulations. No mathematical analysis has been
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carried out regarding the reflection of the traveling waves in an SCCTL. The mathematical

analysis of the phenomenon of reflection and transmission of the traveling waves at various

points of discontinuity in an SCCTL would enable the identification of point of discontinuity

responsible for the origination of the second traveling wave arriving at a terminal of the SCCTL

for all configurations of the SCCTLs.

1.5 Research objectives

1.5.1 Proposition of new impedance-based fault location algorithms for
SCCTLs

1. In this thesis, it is aimed to present three new impedance-based fault location algorithms

for SCCTLs which are as follows:

(a) The first impedance-based fault location algorithm would be based on the fact that

in the non-faulted phase(s) the current is conducted by the series capacitor only.

(b) The second impedance-based fault location algorithm would utilize the phasor of

the MOV current which is measured at SCB to estimate the energy accumulated in

the MOV.

(c) The third impedance-based fault location algorithm would utilize only magnitude

of the phasor of the MOV current.

2. To extend the application of the first proposed algorithm to the SCCTLs with series

compensation applied at multiple locations, making it the first and the only impedance-

based algorithm to be able to locate faults in SCCTLs with series compensation applied

at multiple locations.

3. To present the derivation, advantages, and limitations of the proposed algorithms through

detailed mathematical analysis.

4. To study the impact of CT and CVT errors, phasor estimation error, and magnitude of

fault resistance on the accuracy of the proposed algorithms using the fault scenarios

simulated in PSCAD and Matlab covering various fault locations, fault types, and fault

resistance.
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1.5.2 Proposition of a new single-ended traveling wave-based fault loca-
tion algorithm applicable to all configurations of the SCCTL

1. To derive the equations governing the reflection and transmission of the traveling waves

from any point of discontinuity in the SCCTL such as fault point, SCB, presence of an

inductive source, or another transmission line at the terminals of an SCCTL.

2. To identify the limitations of the single-ended fault location algorithms.

3. To derive and propose a new single-ended traveling wave-based fault location algorithm

which does not suffer from the deficiencies of the existing fault location algorithms.

4. To validate the derived mathematical equations and proposed single-ended traveling

wave-based fault location algorithm through simulations carried out in PSCAD.

1.6 Contributions

The main contributions of the research presented in this thesis are given as below:

1. The proposition of three new impedance-based fault location algorithms.

(a) The first algorithm will only utilize the phasors of voltages and currents from both

terminals of the SCCTL. The methodology of this algorithm will be applied to

SCCTLs with series compensation applied at multiple locations.

(b) The second algorithm will utilize the phasors of the currents in the MOV branches

of the SCB, in addition to the phasors of voltages and currents from both terminals

of the SCCTL.

(c) The third algorithm will utilize the phasor magnitudes of the currents in the MOV

branches of the SCB, in addition to the phasors of voltages and currents from both

terminals of the SCCTL.

2. Derivation of the equations governing the reflection and transmission of the traveling

waves from different points of discontinuity in an SCCTL.

3. The proposition of a new single-ended traveling wave-based fault location algorithm

based on the derived equations.



Chapter 1 19

1.7 Thesis outline

This thesis has been organized into eight chapters as described below.

In Chapter 1, an introduction is provided regarding the significance of series compensation

of the transmission lines, the technique of fault location in conventional transmission lines

as well as SCCTLs, and the types of fault location algorithms. The working of protection

system of the series capacitor, and the need for having specialized fault location algorithms for

SCCTLs is explained in Chapter 1. The areas in which the research is carried out in this thesis

are also identified in Chapter 1.

The existing impedance-based fault location algorithms for SCCTLs are discussed in Chap-

ter 2. It is presented in Chapter 2 that the earlier impedance-based fault location algorithms

for SCCTLs attempted to utilize the MOV model. However, the modeling of MOV tends to

be imprecise due to the variety of reasons which include highly non-linear nature of the MOV,

aging of MOV, ambient temperature, and other environmental conditions. It is presented in

Chapter 2 that the focus in later years shifted towards the fault loop-based impedance-based

algorithms, which found wide application. It is shown in Chapter 2 through mathematical anal-

ysis that all of the impedance-based algorithms that utilize natural fault loop are conceptually

equivalent to each other, and entail similar advantage and disadvantages. Chapter 2 shows that

under specific fault conditions in an SCCTL, all the fault loop-based impedance-based fault

location algorithms will lose accuracy. The findings reported in Chapter 2 are verified through

the simulations results which are also incorporated in Chapter 2.

Chapter 3 presents the first impedance-based fault location algorithm which yields accurate

results without using the natural fault loop or the model of MOV for single-phase to ground,

and double-phase to ground faults which form majority of the faults in a transmission lines

(75%-90%) [32]. The proposed algorithm uses synchronized measurements from both ends

of the SCCTL. The fault location algorithm presented in Chapter 3 is proposed using the dis-

tributed model of the transmission line, which is one of the most accurate models of the trans-

mission line that could be used for analysis in phasor domain. The derivation, advantages, and

limitations of the proposed algorithm have been elaborated through mathematical analysis, and

simulations carried out in PSCAD, and Matlab.

In Chapter 4, the concept that was derived in Chapter 3 is used to propose a fault location

algorithm for the SCCTL with series compensation applied at multiple locations in an SCCTL.

The applicability of the proposed algorithm is shown for N number of SCB locations in an

SCCTL using the simpler model of the transmission line, i.e., lumped model of transmission

line. The usage of lumped model of transmission line avoids the resulting complexity from

the application of a detailed transmission line model to N + 1 segments of the transmission
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line. However, the distributed-model of transmission line is utilized to elaborate the proposed

algorithm of Chapter 4 when applied to an SCCTL with SCBs present at two locations. The

performance of the proposed method has been tested on variety of metrics through simulations

run in PSCAD and Matlab.

Two new impedance-based fault location algorithms for SCCTLs are presented in Chapter

5. The fault location algorithms proposed in Chapter 5 are based on the utilization of the MOV

current measured at SCB for the purpose of fault location in the SCCTL. One of the fault

location algorithms proposed in Chapter 5 uses the complete phasor of the MOV current while

the other algorithm uses only magnitude of the phasor of the MOV current (‘second’ and ‘third’

algorithms mentioned in Section 1.5 point 1. (b) and (c), respectively). Both algorithms are

derived using the distributed model of the transmission line. The comparative analysis of the

results obtained from both algorithms is also performed using the simulations in PSCAD and

Matlab.

In Chapter 6 introduction to traveling wave theory, the modeling of transmission line based

on traveling wave theory, methodology to detect the arrival of traveling wave, i.e. discrete

wavelet transform (DWT), and the working of existing single-ended traveling wave-based fault

location algorithms is presented. The factors limiting the application of single-ended traveling

wave-based fault location algorithms to SCCTLs have also been identified in Chapter 6. In

Chapter 7, the equations for the traveling waves reflected and transmitted from various points

of discontinuity in an SCCTL are derived. Thereafter, the applicability of existing single-ended

traveling wave-based fault location algorithms to various configurations of the SCCTL is in-

vestigated using the derived equations. A new single-ended traveling wave-based fault location

algorithm which is applicable to all the configurations of the SCCTL is presented in Chapter 7.

The basis of the proposed algorithm is explained analytically using derived expressions, and it

is verified using the simulations carried out in PSCAD. The summary, conclusions, and future

work for the research carried out in this thesis is given in Chapter 8.

1.8 Summary

In this chapter various avenues of increasing the power transmission capacity of the transmis-

sion network have been discussed including the series capacitive compensation of the transmis-

sion lines. The importance of fault location algorithms for locating faults in transmission lines

has also been highlighted. Thereafter, the need for fault location algorithm designed specif-

ically for SCCTLs is explained along with the various challenges faced by such algorithms.

Then the broad classification of the existing fault location algorithms for SCCTLs is presented

in this chapter. Thereafter, the area of research i.e., the impedance-based and traveling wave-
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based fault location algorithms have been identified. The research opportunities and research

objectives in the field associated with the fault location in SCCTL have also been presented in

this chapter. Then the outline of the presented thesis is given in this chapter.



Chapter 2

Fundamentals and analysis of
Impedance-based algorithms and analysis
of existing fault location algorithms

2.1 Introduction

The impedance-based fault location algorithms compute the fault location by comparing the

seen impedance at the transmission line terminal to the transmission line impedance. The seen

impedance at the terminal of the transmission line is calculated using the phasors of the mea-

sured current and voltage. Due to the easy availability of phasors from the numerical relays

installed in the field, the impedance-based algorithms are the most widely used fault location

algorithms. Moreover, the process of phasor estimation attenuates noise and harmonics present

in the measured signals, significantly. Thus, making the fault location results obtained from

impedance-based algorithms immune to the adverse effects of noise and harmonics [34]. A

brief discussion on the most popular phasor estimation techniques DFT, and the Cosine algo-

rithm has been provided in Appendix A.

In this chapter, Section 2.2 discusses the impedance-based fault location algorithms for

conventional lines, and the factors preventing their application to the SCCTLs. The fault loca-

tion algorithm for SCCTLs that utilize the MOV-model for yielding fault location results are

discussed in Section 2.3. A detailed analysis of the fault location algorithms based on natural

fault loops is presented in Section 2.4. Key features and limitations of the fault loop-based fault

location algorithms have been identified in Sections 2.5 and 2.6, respectively. The discussion

of the simulations carried out in PSCAD and Matlab are given in Section 2.7.

22
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Figure 2.1: Occurrence of a fault in (a) a conventional transmission line, (b) an SCCTL.

2.2 Conventional fault location algorithms and their appli-
cation to SCCTLs

For the fault scenario in a conventional transmission line as shown in Figure 2.1 (a), the equa-

tions for the ith sequence fault voltage (VF
i ) as estimated from Bus S and Bus R could be written

as Equations (2.1) and (2.2), respectively.

VF
i = VS

i cosh(γild) − ZCi I
S
i sinh(γild) (2.1)

VF
i = VR

i cosh(γil(1 − d)) − ZCi I
R
i sinh(γil(1 − d)) (2.2)

where i attains the value of 0, 1 and 2 for zero, positive, and negative sequence, respectively;

VS
i and IS

i are the ith sequence sending end voltage and current, respectively; VR
i and IR

i are the

ith sequence receiving end voltage and current, respectively; Zci is the characteristic impedance

of the line for ith sequence; γi is the propagation constant of the line for ith sequence; l is the

length of the transmission line; d is the p.u. distance of the fault from Bus S.

There are two unknowns in Equations (2.1) and (2.2) which are VF
i and d. By combining

Equations (2.1) and (2.2), VF
i could be eliminated. Thus, yielding the fault location equation
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Figure 2.2: SCB: Schematic diagram.

for calculating d as shown in (2.3).

d =
1
γil

tanh−1
(

VR
i cosh(γil) − ZCi I

R
i sinh(γil) − VS

i

VR
i sinh(γil) − ZCi I

R
i cosh(γil) − ZCi I

S
i

)
(2.3)

Moving on similar lines the fault location equation for a fault lying in an SCCTL could be

written as (2.4) for the fault scenario shown in Figure 2.1 (b).

d =
1

γi (1 − m) l
tanh−1

(
VR

i cosh((1 − m) γil) − ZCi I
R
i sinh((1 − m) γil) − V M

i + ∆V MN
i

VR
i sinh((1 − m) γil) − ZCi I

R
i cosh((1 − m) γil) − ZCi I

M
i

)
(2.4)

where

V M
i = VS

i cosh (mγil) − IS
i ZCisinh (mγil) (2.5)

IM
i = IS

i cosh (mγil) −
VS

i

ZCi

sinh (mγil) (2.6)

V M
i and IM

i represent the ith sequence component voltage and current phasors at Node M cal-

culated from Bus S measurements using (2.5) and (2.6), respectively; ∆V MN
i is ith sequence

component of the voltage drop across series capacitor bank (SCB) from Node M to Node N;

m is the p.u. distance of SCB from Bus S; d is the p.u. distance of the fault as measured from

SCB.

Note that d cannot be obtained from (2.4) since the term ∆V MN
i is unknown. The term

∆V MN
i cannot be calculated analytically due to the conduction of the fault current by the metal-

oxide varistor (MOV) in the faulted phase which is present as part of the protection system of

the SCB as shown in Figure 2.2. An MOV is a non-linear device which starts conducting fault

current when the voltage drop across SCB exceeds its threshold value. When MOV conducts,
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Figure 2.3: Protective action of MOV at fault occurrence: (a) voltage across SCB, (b) current
flowing through various series capacitor and MOV in phase A SCB for an AG fault.

the fault current is bypassed from the series capacitor to the MOV as shown in Figure 2.3,

therefore, providing the over-voltage protection to series capacitor. However, the action of

MOV causes the impedance of SCB in the faulted phase to become non-linear and dependent

on the level of fault current, as already discussed in Section 1.2. Hence, the fault location

cannot be calculated from Equation (2.4) for an SCCTL. So there arises the need to have fault

location algorithms applicable to SCCTL.

However, a significant observation that can be made from Figure 2.3 which is that the

total fault current remains sinusoidal while the voltage across SCU though not a perfect si-

nusoid, still contains great amount of fundamental frequency component. Therefore, it led

to the proposition that equivalent impedance for fundamental component can be defined for

the parallel combination of series capacitor and MOV [35]. This led to the proposition of the

MOV-model based fault location algorithms which aim at providing fault location results by

using the equivalent model of the MOV as discussed in the following section.
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Figure 2.4: Fault Location in SCCTLs: MOV model based.

2.3 MOV-model based fault location algorithms for SCCTLs

An empirical formula for the current dependent equivalent impedance of the parallel combina-

tion of series capacitor and MOV has been derived in [35] as represented by (2.7) and (2.8).

RC
′

=XC
(
0.0745 + 0.49 e−0.243 Ipu − 35.0 e−5.0 Ipu − 0.6 e−1.4 Ipu

)
(2.7)

XC
′

=XC
(
0.1010 − 0.005749 Ipu + 2.088 e−0.8566 Ipu

)
(2.8)

where XC is the reactance of the series capacitor; XC
′

and RC
′

are the equivalent reactance and

resistance, respectively, of the parallel combination of MOV and series capacitor; Ipu is the per

unit current flowing through SCB.

On the similar lines, an attempt has been made in [20] and [21], to predetermine V-I char-

acteristics of MOV for fundamental frequency using ATP-EMTP simulations. It essentially

implies the modeling of an MOV as a current dependent impedance which is then used for

fault location in SCCTLs using measurements from only one end of the transmission line as

shown in Figure 2.4.

However, apart from the challenge of predicting the behavior of MOV for variety of fault

scenarios, the algorithms of [20] and [21] are also unable to account for the effects of aging

of MOV, ambient temperature and different manufacturer of MOVs on the behavior of MOV.

In order to avoid the limitations of using the MOV-model for fault location, the algorithms

proposed in [22]-[25] utilized natural fault loops to obtain the fault location results for faults

in SCCTLs. As a matter of the fact, most of the commercial relays of today intended for

protection of SCCTLs are utilizing the fault loop-based algorithms.
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Figure 2.5: Schematic diagram showing the fault scenario in an SCCTL.

2.4 Non-MOV-model or Fault loop-based fault location al-
gorithms for SCCTLs

In fault loop-based fault location algorithms, the equations are written to find the actual phase

voltage and current at the fault point in terms of the unknown fault location, instead of com-

puting the fault location from sequence components of voltages and currents [22]. Thereafter,

the equations for fault voltage and fault current are solved for the unknown fault location using

different constraints mentioned in each publication [22]-[25].

Another point to be noted is that the presence of SCB in an SCCTL divides the transmission

line into two sections. For example, in Figure 2.5 SCB divides the transmission line to two

sections: section between Bus S and SCB, and section between SCB and Bus R. Any fault

occurring in a transmission line could be lying in either of the sections. So, the fault loop-

based algorithms use two subroutines for locating the fault with each subroutine yielding one

fault location result assuming that fault is lying in ‘their’ section. The appropriate subroutine

is then selected using the procedure given in each publication. It should be noted that the

existing fault location algorithms are elaborated using faults lying between SCB and Bus R in

this chapter as shown in Figure 2.5. The equations for the faults lying between Bus S and SCB

can be derived analogously.

2.4.1 Yu Algorithm

The fault location algorithm of [23] is referred to as “Yu Algorithm” based on the author’s

name for our reference.

The analytical expressions for obtaining the sequence components of fault voltage and
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current in the terms of unknown fault location (d) have been derived in [23] as shown in (2.9)

and (2.10), respectively. It can be observed from (2.9) that the expression for the sequence

components of fault voltage uses the measured current and voltage only from one end of the

transmission line, i.e., Bus R. Equation (2.9) essentially represents the analytical estimation

of sequence fault voltage using the distributed transmission line model from measurements at

Bus R only. Similarly, the expression for estimating the sequence components of the total fault

current is derived as shown in (2.10) using the distributed model of transmission line. It could

be observed from (2.10) that the measurements from both ends of the transmission lines, i.e.,

Bus R, and Bus S, are utilized for estimating sequence components of the total fault.

VF
i (d) =FV(VR

i , I
R
i , γi,ZCi , d)

=
VR

i + IR
i ZCi

2
eγi l (1−m)(1−d) +

VR
i − IR

i ZCi

2
e−γi l (1−m)(1−d) (2.9)

IF
i (d) = fI(VS

i , I
S
i ,V

R
i , I

R
i , γi,ZCi , d)

=
1

ZCi

[
VR

i + IR
i ZCi

2
eγi l (1−m)(1−d) −

VR
i − IR

i ZCi

2
e−γi l (1−m)(1−d)

]
+

1
ZCi

[
VS

i + IS
i ZCi

2eγi l eγi l (1−m)(1−d) −
VS

i − IS
i ZCi

2eγi l e−γi l (1−m)(1−d)
]

(2.10)

Now the expressions for fault voltage (VF) and fault current (IF) are obtained by combining

the sequence components of fault voltage and current from (2.9), and (2.10), respectively, as

per the type of the fault that has occurred in the SCCTL. The expressions so obtained for VF

and IF are then solved for d under the assumption that the argument of the current and voltage

will be same at the fault point as depicted in (2.11).

∠VF(d) = ∠IF(d) (2.11)

Since, VF and IF can be separated into real and imaginary parts:

VF(d) =<
(
VF(d)

)
+ j =

(
VF(d)

)
IF(d) =<

(
IF(d)

)
+ j =

(
IF(d)

)
and the Equation (2.11) could be rewritten as:

=
(
VF(d)

)
< (VF(d))

=
=

(
IF(d)

)
< (IF(d))

=⇒ =
(
VF(d)

)
×<

(
IF(d)

)
==

(
IF(d)

)
×<

(
VF(d)

)
(2.12)
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Now, d could be calculated from the Equation (2.12).

Selection of the subroutine

Two subroutines i.e. Subroutine1 and Subroutine2 of Yu Algorithm are run for any partic-

ular fault scenario, therefore, yielding two fault location results for each fault scenario. It

necessitates a criterion to select the appropriate subroutine which would yield the actual fault

location. In [23], it is claimed that for some of the fault scenarios, the fault location results

obtained through the incorrect subroutine will be highly oscillatory and may not converge. For

obtaining a definite solution to this problem, it is presented in [23] to calculate the equiva-

lent impedance of the faulted phase SCB by using the fault location results yielded by both

subroutines. The equivalent impedance of the faulted phase SCB for Subroutine 1 (ZSUB1) is

calculated by estimating the voltage drop across SCB corresponding to fault location result

yielded by Subroutine 1 (∆VSUB1) and dividing it by sending end current (IS ) as shown in

(2.13).

ZSUB1 =
∆VSUB1

IS (2.13)

Similarly, the impedance of the faulted phase SCB for the Subroutine 2 (ZSUB2) is calculated

by dividing voltage drop across SCB corresponding to the Subroutine 2 with the receiving end

current (IR).

ZSUB2 =
∆VSUB2

IR (2.14)

It is claimed in [23] that the resistive part of the impedance yielded by the correct subroutine

would be positive while the incorrect subroutine would yield a negative resistive part for the

equivalent impedance of the faulted phase SCB. In other words, for the faults lying in the region

between SCB and Bus R the following would hold true:

< (ZSUB1) : + ve

< (ZSUB2) : − ve

while for the faults lying in the region between Bus S and SCB following would hold true:

< (ZSUB1) : − ve

< (ZSUB2) : + ve.
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Table 2.1: Coefficients for finding total fault current for Izykowski Algorithm.

Fault Type a1 a2 a0

AG 0 3 0

BCG α2 − α α − α2 0

BC 0 α − α2 0

ABC 1 − α2 0 0

α = 1∠120◦

2.4.2 Izykowski Algorithm

Another fault loop-based fault location algorithm for SCCTLs has been presented in [22] which

has also been patented in [36]. It has been referred to as “Izykowski Algorithm” using the

name of the first author for our reference. In [22] the authors have derived the expressions

for analytical estimation of fault current (IF) and fault voltage (VF) as the functions of fault

location. The analytically obtained expressions are then solved for fault location under the

assumption that faults in transmission lines are purely resistive in nature.

Equations (2.15) and (2.16) represent the fault current and voltage, respectively, for the

fault lying between SCB and Bus R at per unit distance of d from SCB, as shown in Figure 2.5.

IF(d) =

2∑
i=0

ai

IS
i cosh(γilm) − VS

i
ZCi

sinh(γilm) + IR
i cosh(γil(1 − m)) − VR

i
ZCi

sinh(γil(1 − m))

cosh(γil(1 − m)d)
(2.15)

VF(d) =

2∑
i=0

a fi

[
VR

i cosh(γil(1 − d)(1 − m)) − ZCi I
R
i sinh(γil(1 − d)(1 − m))

]
(2.16)

where ai and a fi are the coefficients for calculating total fault current and fault loop voltage,

respectively, and attain different values depending upon the fault type as represented in Tables

(2.1) and (2.2).

The expressions so obtained for IF and VF in (2.15) and (2.16) are substituted in the fault

loop model given in (2.17). The Equation (2.17) is then solved under the constraint that the

faults in a transmission lines are always resistive in nature i.e., RF is a pure real number.

VF(d) − RF IF(d) = 0 (2.17)
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Table 2.2: Coefficients for finding fault loop voltage for Izykowski Algorithm.

Fault Type a f1 a f2 a f0

AG 1 1 1

BCG α2 − α α − α2 0

BC α2 − α α − α2 0

ABC 1 − α2 0 0

α = 1∠120◦

Selection of the subroutine

Now, the other area where the authors have focused their attention is how to identify the faulted

section of the line as any fault event can be thought of lying in the region between Bus S and

SCB or between SCB and Bus R. It is proposed in [22] that for any particular fault scenario

both of the subroutines be run, therefore, yielding two fault location results. In order to find

the correct fault location, firstly, the subroutine yielding results lying outside the section range

or the negative value of fault location is rejected. Thereafter, the equivalent impedance of the

SCB in the faulted phase is calculated using the voltage drop across SCB and the fault current

through SCB for both the subroutines. The equivalent impedance of SCB corresponding to

the valid subroutine has to be resistive-capacitive in nature due to the presence of MOV and

series capacitor in the transmission line. Also, the capacitive part of the SCB impedance in the

faulted should be less than or equal to the reactance of the series capacitor at the steady state

[22].

2.4.3 Kang Algorithm

A fault loop-based fault location algorithm for double-circuited SCCTLs has been presented in

[24]. The expressions for the ith sequence of the fault voltage (VF
i ) and the total fault current

(IF
i ) are derived as functions of unknown fault location (d). Thereafter, d is solved using fault

location equations which are composed of different combinations of VF
i and IF

i depending upon

the fault type.

For the faults lying in the section between SCB and Bus R for a single-circuited SCCTL,
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the expressions for IF
i and VF

i become (2.18) and (2.19):

IF
i =

IS
i cosh(γilm) − VS

i
ZCi

sinh(γilm) + IR
i cosh(γil(1 − m)) − VR

i
ZCi

sinh(γil(1 − m))

cosh(γil(1 − m)d)
(2.18)

VF
i = VR

i cosh(γil(1 − d)(1 − m)) − ZCi I
R
i sinh(γil(1 − d)(1 − m)) (2.19)

It could be observed that the expressions for VF
i and IF

i derived in [24] are identical to the

ones derived in [22]. Once the expressions for VF
i and IF

i are obtained, fault location equations

comprising of different combination of sequence components are solved for d.

• AG Faults:

For AG faults, d is obtained by solving the equation:

=

(
VF

0 (d) + VF
1 (d) + VF

2 (d)
IF
1 (d)

)
= 0 (2.20)

• BCG Faults:

The fault location equation for BCG faults is:

=

(
VF

0 (d) − VF
1 (d)

IF
0 (d)

)
= 0 (2.21)

• BC Faults:

For BC faults, d is obtained by solving the following equation:

=

(
VF

1 (d) − VF
2 (d)

IF
1 (d)

)
= 0 (2.22)

• ABC Faults:

For ABC faults, d is obtained by solving the equation:

=

(
VF

1 (d)
IF
1 (d)

)
= 0 (2.23)

Selection of the subroutine

The authors of [24] have suggested using following metrics for selecting the correct subroutine:

1. The fault location estimate should lie within the assumed range.

2. The fault resistance takes a non-negative value.
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3. The equivalent impedances of the series compensation device for all three phases have a

non-negative real part and negative imaginary part.

2.4.4 Zhang Algorithm

The analytical expressions for sequence components of fault voltage (VF
i ) and fault current (IF

i )

in terms of d are derived in [25] for double-circuited series compensated line. A “six-sequence

component method” is utilized in [25], and a fault location applicable to all fault types is de-

rived and solved for d. It should be noted that for a single-circuited transmission line (which

is the case under consideration) the six-sequence component method becomes traditional se-

quence component method.

For the faults lying in the section between SCB and Bus R for a single-circuited SCCTL,

the expressions for IF
i and VF

i become (2.24) and (2.25):

IF
i =

IS
i cosh(γilm) − VS

i
ZCi

sinh(γilm) + IR
i cosh(γil(1 − m)) − VR

i
ZCi

sinh(γil(1 − m))

cosh(γil(1 − m)d)
(2.24)

VF
i = VR

i cosh(γil(1 − d)(1 − m)) − ZCi I
R
i sinh(γil(1 − d)(1 − m)) (2.25)

The fault location equation for Zhang algorithm which would yield d is:

=

(
VF

A (d)IF
A (d) + VF

B (d)IF
B (d) + VF

C (d)IF
C (d)

)
= 0 (2.26)

where, VF
i , represents the conjugate of the phasor quantity.

VF
A (d)

VF
B (d)

VF
C (d)

 =


1 1 1

1 α α2

1 α2 α



VF

0 (d)

VF
1 (d)

VF
2 (d)



IF

A (d)

IF
B (d)

IF
C (d)

 =


1 1 1

1 α2 α

1 α α2



IF
0 (d)

IF
1 (d)

IF
2 (d)


Selection of the subroutine

The authors of [25] infer that when one subroutine will have a solution, the other subroutine

would have no solution. There is no need to select the appropriate subroutine, since, only one

subroutine yields the fault location.
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2.5 Key Observation: Equivalence of the fault loop-based
fault location algorithms

It could be witnessed from the above discussion that the expressions for VF and IF in each algo-

rithm are very similar to each other. It should be noted that all the fault loop-based algorithms

discussed above except Yu algorithm, are proposed for double-circuited SCCTLs. The differ-

ence in the expressions of each algorithm lies in the fact that how each algorithm ‘handles’ the

mutual zero-sequence coupling between the parallel or double-circuited lines. However, when

we are considering a single circuit SCCTL, that difference goes away and we are left with the

identical expressions.

In this section, it is shown through brief mathematical analysis that the basic principle of

the algorithms presented in [22]-[25] is also equivalent to each other.

• Yu Algorithm: In Yu algorithm, after the expressions for VF and IF in terms of the

unknown d are obtained, they are solved for d using the fact that at the fault point the

angle of fault voltage and fault current would be same, i.e.,

∠VF(d) = ∠IF(d) (2.27)

• Izykowski Algorithm: In [22], the expressions for VF and IF are substituted in (2.28).

VF(d) − RF IF(d) = 0 (2.28)

The methodology for solving (2.28) as presented in [22] is to separate it into real and

imaginary parts (see (2.29)) and solve for fault resistance (RF) and fault location (d).

<
(
VF(d)

)
− RF<

(
IF(d)

)
= 0

=
(
VF(d)

)
− RF=

(
IF(d)

)
= 0 (2.29)

The set of equations in (2.29) when rearranged results in (2.30), which shows that the

way of solving the Equation (2.28) by separating it into real and imaginary parts es-

sentially makes the fault location algorithm presented in [22], an argument comparison

algorithm which compares the arguments of analytically obtained fault voltage (VF) and
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fault current (IF).

=
(
VF(d)

)
< (VF(d))

=
=

(
IF(d)

)
< (IF(d))

=⇒ tan−1

=
(
VF(d)

)
< (VF(d))

 = tan−1

=
(
IF(d)

)
< (IF(d))


=⇒ ∠VF(d) = ∠IF(d) (2.30)

• Kang Algorithm: Following given relations are known facts for their respective fault

types:

AG Fault: VF = VF
0 + VF

1 + VF
2

IF = 3IF
1

BCG Fault: VF = VF
0 − VF

1

IF = 3IF
0

BC Fault: VF =
(
α2 − α

) (
VF

1 − VF
2

)
IF =

(
α2 − α

)
IF
1

ABC Fault: VF = VF
1

IF = IF
1

When the fault Equations (2.20) to (2.23) are seen in lieu of the above facts one thing be-

comes clear that the Equations (2.20) to (2.23) depending upon the fault type are different

forms of the Equation (2.31).

=

(
VF(d)
IF(d)

)
= 0 (2.31)

Now multiplying denominator and numerator in the Equation (2.31) with the conjugate

of IF , i.e., IF we get:

=

VF(d)IF(d)

IF(d)IF(d)

 = 0

=⇒ =
(
VF(d)IF(d)

)
= 0
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Expanding the above equation:

=
(
VF(d)

)
<

(
IF(d)

)
−<

(
VF(d)

)
=

(
IF(d)

)
= 0

=⇒
=

(
VF(d)

)
< (VF(d))

=
=

(
IF(d)

)
< (IF(d))

=⇒ tan−1

=
(
VF(d)

)
< (VF(d))

 = tan−1

=
(
IF(d)

)
< (IF(d))


=⇒ ∠VF(d) = ∠IF(d) (2.32)

Thus, the fault location algorithm presented in [24], i.e., Kang algorithm is based on the

argument comparison of the analytically obtained fault voltage and fault current phasors.

• Zhang Algorithm: The fault location equation given in [25], i.e., Zhang algorithm is:

=

(
VF

A (d)IF
A (d) + VF

B (d)IF
B (d) + VF

C (d)IF
C (d)

)
= 0 (2.33)

The fault location Equation (2.33) takes following forms for different types of fault.

AG Fault: VF = VF
A IF = IF

A IF
B = IF

C = 0

Fault Location Eq: =
(
VF(d)IF(d)

)
= 0

BCG Fault: VF = VF
B = VF

C IF = IF
B + IF

C IF
A = 0

Fault Location Eq: =
(
VF(d)IF(d)

)
= 0

BC Fault: VF = VF
B − VF

C IF = IF
B = −IF

C IF
A = 0

Fault Location Eq: =
(
VF(d)IF(d)

)
= 0

ABC Fault: VF = VF
A = VF

B = VF
C IF = IF

A + IF
B + IF

C

Fault Location Eq: =
(
VF(d)IF(d)

)
= 0

It is seen from above discussion that for each fault type, the fault location equation be-

comes:

=
(
VF(d)IF(d)

)
= 0
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Now expanding the above equation:

<
(
VF(d)

)
=

(
IF(d)

)
− =

(
VF(d)

)
<

(
IF(d)

)
= 0

=⇒
=

(
VF(d)

)
< (VF(d))

=
=

(
IF(d)

)
< (IF(d))

=⇒ tan−1

=
(
VF(d)

)
< (VF(d))

 = tan−1

=
(
IF(d)

)
< (IF(d))


=⇒ ∠VF(d) = ∠IF(d) (2.34)

The Equations (2.27), (2.30), (2.32), and (2.34) show that underlying principle of algorithms

presented in [22]-[25] is same. The fault location algorithms proposed in [22]-[25] for SC-

CTLs, estimate the arguments of fault voltage (VF) and fault current (IF) as the function of

fault location (d). Thereafter, the value of d for which the arguments of both the analytically

estimated quantities (VF and IF) match, is considered as fault location result. Therefore, only

the algorithm presented in [22] which is one of the most widely cited algorithm is used here-

after to elaborate further on the fault loop-based fault location algorithms.

2.6 Limitation of the fault loop-based algorithms for SCCTLs

For the fault scenario shown in Figure 2.5, the expressions for IF and VF as per [22] are given

in (2.35) and (2.36), respectively.

IF(d) =

2∑
i=0

ai

IS
i cosh(γilm) − VS

i
ZCi

sinh(γilm) + IR
i cosh(γil(1 − m)) − VR

i
ZCi

sinh(γil(1 − m))

cosh(γil(1 − m)d)
(2.35)

VF(d) =

2∑
i=0

a fi

[
VR

i cosh(γil(1 − d)(1 − m)) − ZCi I
R
i sinh(γil(1 − d)(1 − m))

]
(2.36)

It is worth noting that the only term that contains d in (2.35) is the denominator, which

is cosh(γil(1 − m)d), where γi represents the propagation constant of the line for ith sequence

and is a complex number with relatively a large imaginary part as compared to its real part.

Therefore, γi can be represented as j ki, where ki is a real number and j =
√
−1. Consequently,
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the denominator of (2.35) becomes:

Dn = cosh( j kil(1 − m)d)

=
e j kil(1−m)d + e− j kil(1−m)d

2
=⇒ Dn = cos(kil(1 − m)d) (2.37)

which shows that Dn is a real number. As we know that the argument of real number is zero,

therefore, ∠Dn = 0. The fact that ∠Dn = 0 implies that the argument of IF(d) will be equal

to the argument of the numerator of (2.35), which is independent of d. In other words, for

any value of d between 0 and 1 ‘plugged’ in (2.35), the argument of IF(d) would not change

and remain constant. It is so because the argument of the IF(d) will be the argument of the

numerator of (2.35). The value of denominator and, consequently, the value of d only acts as a

scaling factor for the magnitude of IF .

So, now only VF remains a function of d as seen from (2.36). The process of fault location,

thus, gets reduced to the following: The Equation (2.36) ‘scans’ the transmission line from Bus

R to SCB and the value of d where the argument of VF(d) matches the constant argument of

IF is yielded as the location of fault. This process would yield high error in the fault location

results if the argument of VR is very close to the argument of IF (and consequently, VF). It

is due to the fact that if the argument of VR and VF are close then a very narrow band of the

argument variation stretches over the section between Bus R and the fault point; and any error

in the measurements or phasor estimation will result in an amplified error in the fault location

result d. Hence, under some circumstances even Equation (2.36) becomes insensitive to the

value of d. This source of error is intrinsic to the fault location algorithms that are based on the

comparison of arguments of current and voltage.

2.7 Evaluation of the fault loop-based fault location algo-
rithms

In order to evaluate the performance of the fault loop-based algorithms, a test power system

is simulated in PSCAD while fault location algorithm is implemented in Matlab. The Cosine

algorithm is the phasor estimation technique utilized for obtaining phasors in the presented

analysis to take care of decaying DC.
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Figure 2.6: Single-line diagram of simulated system in PSCAD; (a) System A, (b) System B.

2.7.1 Test System

A 500 kV, 350 km SCCTL simulated in PSCAD is considered as a test case in this thesis. To

simulate the transmission line, a frequency-dependent model of transmission line available in

PSCAD is utilized. As shown in Figure 2.6, 70% series compensation which corresponds to an

equivalent capacitance of 29.11µF (91.1Ω) is assumed at the sending end of the line for System

A and in the middle of the line for System B. The line positive and zero-sequence impedances

are ZL1 = (0.0155 + j0.3719) Ω per km and ZL0 = (0.3546 + j1.0670) Ω per km, respectively.

The line positive and zero-sequence admittances are YL1 = (0 + j4.4099 × 10−6) S per km,

YL0 = (0 + j2.7844×10−6) S per km, respectively. The positive and zero-sequence impedances

for sending end source are ZS 1 = (0.5 + j7.5) Ω and ZS 0 = (1.2 + j12.5) Ω, respectively.

The positive and zero-sequence impedances for receiving end source are ZR1 = (1.2 + j18) Ω

and ZR0 = (2.6 + j26.5) Ω, respectively. Load angle is 30◦ with receiving end source voltage

lagging.

Further, current and voltage signals are obtained by using CT and CVT models, respec-

tively, available in PSCAD. A 4th order anti-aliasing filter with a cutoff frequency of 1536Hz

is applied to the output of each instrument transformer, and its output is recorded with the

sampling rate of 20 kHz. The recorded signal is then imported to Matlab and downsampled to

3840 Hz. In order to avoid aliasing, the frequencies higher than 1920Hz need to be sufficiently

attenuated before sampling, and that is the reason behind the use of anti-aliasing filter with a
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cut-off frequency of 1536Hz at the output of instrument transformers. The resultant voltage

and current signals are then applied to the Cosine algorithm for phasor estimation, the results

of which are fed to the fault location algorithm. The fault location algorithm yields a fault loca-

tion result at every sampled point. However, one value for a fault location result is obtained by

averaging fault location results over the entire time period of fault after accounting for Cosine

filter response time (=20.83ms). The fault clearance time (total time from fault inception to

fault clearance) is considered as 4 cycles of 60Hz.

2.7.2 Simulation results

Most of the algorithms found in literature have been tested on the system when SCB is located

in the middle of the transmission line assuming that it is more general configuration of the

SCCTLs such as the System B shown in Figure 2.6 (b). However, any fault in System B

is located at 50% or greater length of the transmission line from the bus that sees the same

fault current as flowing through SCB. For example any fault lying in between SCB and Bus

R in System B configuration would lie at least 50% or higher line length away from Bus S

which is the bus that sees the same fault current as SCB. In the same way, any fault that lies

between Bus S and SCB will lie at least 50% or greater line length away from Bus R which

is the bus that sees the same fault current as SCB. Hence, the faults in the range of 0-50% of

the line length from the bus which will see the same fault current as SCB, are not possible

in System B configuration of an SCCTL. On the other hand, the faults in System A lying

between 0-50% of the transmission line length as measured from Bus S will always lie less

than 50% of the transmission line length away from the Bus S. Thus, System A offers more

varied fault conditions as compared to System B. Moreover, higher amount of transients will

be encountered in measured signals in System A as compared to System B due to the proximity

of the faults to the source seen through series capacitor, which in turn could affect the accuracy

of the fault location results in System A configuration of SCCTL.

Table 2.3 shows the fault location results obtained from Izykowski Algorithm for the var-

ious types of solid faults simulated in System A and System B configurations of the SCCTL.

It could be observed that the maximum error encountered in System B configuration is 4.71%

while it is 24.1% in System A. Also for almost all of the fault scenarios, the error in System B

remains below 2% while the numerous fault scenarios in System A lead to an error higher than

2%.

Another observation that could be made from Table 2.3 is that that as the fault moves from

100% towards 50%, the error in fault location results keep on increasing in System A as well

as System B. However, as the fault moves from 50% to 0% the error in System A keeps on
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Table 2.3: Error (%) in fault location results obtained from Izykowski Algorithm for various
solid faults in System A and System B configurations of the SCCTL.

Fault System Actual Fault Location (%)
Type Type 0 10 20 30 40 50 60 70 80 90 100

AG
A 2.53 3.90 5.28 24.1 11.5 5.00 2.71 1.51 0.73 0.29 0.01
B 0.02 0.19 0.42 0.79 1.25 4.71 2.57 1.46 0.76 0.31 0.01

BCG
A 0.05 0.02 0.03 0.04 6.95 2.43 1.21 0.62 0.30 0.12 0.05
B 0.04 0.01 0.04 0.09 0.21 2.20 1.14 0.60 0.29 0.12 0.05

BC
A 0.04 0.02 0.02 4.58 1.89 1.04 0.59 0.31 0.15 0.05 0.04
B 0.04 0.01 0.04 0.09 0.22 2.34 1.18 0.61 0.29 0.12 0.05

ABC
A 0.04 0.04 9.30 2.81 1.53 0.92 0.56 0.31 0.17 0.08 0.05
B 0.04 0.03 0.05 0.10 0.19 1.95 1.07 0.58 0.30 0.13 0.04

growing until it reaches its maximum for the faults lying around 20%-40%, while in System

B, the error keeps on decreasing as the fault location moves from 50% to 0%. The reason

behind this divergence in error in fault location results of System A and System B is that due to

the location of the SCU in the middle of the SCCTL in System B the faults in 0%-50% range

are almost equivalent to the faults lying in 50-100% range. Therefore, the error peaks for the

faults lying at 50% line length in System B. While in System A as the fault location moves

from 100% towards 0% the severity of fault keeps on increasing until it reaches its maximum

for the faults located in the range 20%-40%. As explained earlier, the faults lying in the range

0%-50% in System A are not possible in System B. In the existing fault loop-based algorithms,

only System B configuration of the SCCTLs has been studied, thus, the loss of accuracy of

fault loop-based algorithms for System A was not discovered. However, as shown in Figure

1.4 most of the transmission lines in Hydro-Quebec system are of System A type. Thus, System

A has been selected to elaborate the key points about the performance of the fault loop-based

algorithms hereafter.

A total of 176 cases of the fault scenarios covering different fault types, fault resistance, and

locations of fault in System A have been generated in PSCAD. The error in the fault location

result for each fault scenario has been listed in Table 2.4. It is important to note here that

the error in fault location results not higher than 2% is generally accepted limit. However, in

Table 2.4 only the fault scenarios for which the fault loop-based algorithm yields higher than

5% error have been highlighted. A 5% error in 350 km transmission line translates into the

uncertainty of 17.5 km in location of fault in the transmission line.

It could be noted from Table 2.4 that the error in the fault location results is higher than

2% for almost half of the cases. The number of fault cases in which error is higher than 5%

are also significant. Another observation that can be made from Table 2.4 is that that for the
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Table 2.4: Error (%) in fault location results obtained from Izykowski Algorithm for different
fault scenarios in System A configuration of the SCCTL.

Fault Fault Actual Fault Location (%)
Resist. Type 0 10 20 30 40 50 60 70 80 90 100

0Ω

AG 2.53 3.90 5.28 24.1 11.5 5.00 2.71 1.51 0.73 0.29 0.01
BCG 0.05 0.02 0.03 0.04 6.95 2.43 1.21 0.62 0.30 0.12 0.05
BC 0.04 0.02 0.02 4.58 1.89 1.04 0.59 0.31 0.15 0.05 0.04

ABC 0.04 0.04 9.30 2.81 1.53 0.92 0.56 0.31 0.17 0.08 0.05

10Ω

AG 0.78 3.51 6.85 16.5 24.6 7.26 3.32 1.69 0.81 0.30 0.01
BCG 2.23 0.13 1.01 2.24 7.18 5.49 1.51 0.66 0.31 0.13 0.03
BC 1.99 0.76 1.09 3.22 10.3 3.52 1.34 0.62 0.29 0.11 0.04

ABC 2.40 0.19 1.33 3.19 17.3 3.88 1.45 0.67 0.31 0.12 0.02

50Ω

AG 6.86 3.14 3.52 13.3 25.0 34.5 50.7 28.6 17.0 8.59 4.07
BCG 8.36 5.81 2.55 1.95 8.29 17.3 29.7 44.3 56.0 40.6 13.1
BC 4.89 3.83 0.33 5.52 12.4 18.4 38.6 19.0 13.8 8.04 3.36

ABC 8.12 5.57 1.87 3.09 9.77 18.7 30.0 41.5 47.8 37.5 13.3

100Ω

AG 22.6 18.1 11.4 2.08 12.1 35.4 48.2 34.0 26.5 74.1 36.2
BCG 22.7 19.3 15.4 11.0 5.93 0.34 8.41 20.8 70.9 36.8 34.3
BC 14.3 12.1 7.72 0.04 10.6 25.3 45.3 69.7 67.8 72.8 27.2

ABC 22.2 18.3 13.6 8.34 2.13 5.37 14.8 28.8 72.7 39.3 36.2
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low impedance faults (fault resistance of 0Ω and 10Ω) the Izykowski Algorithm suddenly loses

the accuracy when the location of the fault in an SCCTL is closer to 40% of the line length as

measured from Bus S. For example, for 10Ω AG, BCG, BC, and ABC faults occurring at 40%

of the line length as measured from Bus S, the errors in the fault location results are 24.5%,

7.18%, 10.3%, and 17.3%, respectively. As the fault resistance increases, the area in which the

Izykowski algorithm loses accuracy also increases, eventually covering the entire transmission

line when the fault resistance reaches 100Ω. To understand the reason behind this sudden loss

of accuracy of the Izykowski Algorithm it is important to remember the working principle of

the fault loop-based algorithms as explained in Section 2.6 which states that the fault loop-

based algorithms ‘scan’ the section of transmission line between Bus R and the fault point

using Bus R measurements (see Equation (2.36)), and yield that value of d as fault location

for which the argument of fault current and fault voltage become equal. Now for the faults

lying at 40% consider the following two factors in lieu of the working principle of the fault

loop-based algorithms. Note that Figure 2.7 shows the various phasor quantities and calculated

fault location by Izykowski Algorithm for a solid AG fault at 40% line length measured from

Bus S.

1. Condition 1: When the fault is located close to 40%, the SCB is almost completely

compensating for the combined inductance of the source and the faulted transmission line

segment (series compensation is effectively reduced from 70% due to MOV conduction).

Thus, resulting in a very high and almost resistive fault current contribution from Bus S

as compared to the fault current contribution from Bus R. It could be observed from

Figure 2.7 (a) that the fault current contribution from Bus S side (IS ) is more than 3

times higher than that from the Bus R (IR). The fault current from Bus S will now form

predominant part of the total fault current at the fault point, and it along with the total

fault current will be very close in phase with the Bus S voltage (and consequently with

voltage at Bus R which lags Bus S by 30◦). Since, the faults are assumed to be purely

resistive in nature, therefore, the voltage at the fault point will be very close in phase

with the Bus R voltage. This phenomenon could be observed from Figure 2.7 (b) which

shows that the phase angles of the Bus S voltage (VS ), Bus R voltage (VR), total fault

current or fault voltage (IF/VF) are very close to each other while the argument of Bus

R current lies far away. Thus, a very narrow band of argument variation stretches over

the section of the transmission line between the fault point and Bus R. In other words,

very small error in the estimation of argument of the fault voltage will result in relatively

large error in the calculation of d.

2. Condition 2: Considerable amount of transients including sub-synchronous frequency
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Figure 2.7: The estimated phasors for an AG fault at 40% line length from Bus S: (a) estimated
phasor magnitude of fault current at Bus S (IS ) and Bus R (IR), (b) estimated phasor arguments
of Bus S voltage (VS ), Bus R voltage (VR), fault point current or voltage (IF/VF), Bus R current
(IR), (c) calculated fault location.
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components (SSFCs) get introduced in the voltage and current signals following the oc-

currence of fault in an SCCTL, which adversely impact the accuracy of the estimated

phasors including the phasor of the total fault current. Therefore, a considerable error

will always exist in the argument of the estimated phasor of the total fault current.

Therefore, two factors have combined: 1-a very narrow band of argument variation stretches

over the transmission line between fault point and Bus R making the Izykowski Algorithm

insensitive to the values of d; 2-there is a considerable error in the estimated argument of the

total fault current. Now, the Izykowski Algorithm ‘scans’ the transmission line from Bus R

towards the fault point and ‘tries’ to find the value of d for which the argument of the fault

voltage would become equal to the erroneous argument of the total fault current. Since, the

argument of voltage changes very less as the d changes, the error in the argument of the total

fault current would result in a large error in d. Figure 2.7 (c) shows the calculated fault location

by Izykowski Algorithm fluctuates between 50%-60% range while the fault lies at 40% line

length as measured from Bus S. It should be noted that there will always be some error in

the argument of the total fault current which means that Condition 2 will always hold true.

It is simultaneous occurrence of Condition 1 and Condition 2 that will cause the Izykowski

Algorithm to lose accuracy.

As the fault moves away from the 40% towards Bus R, the fault current contribution from

Bus R rises and contribution from Bus S is no longer the predominant component of the total

fault current. Thus, the argument of the total fault current and the fault voltage will not remain

close to that of the Bus R voltage. The Condition 1 is not met, thus, relatively lower error in

the fault location results. This phenomenon could be observed from Figure 2.8 which shows

various phasor magnitudes and arguments for a solid AG fault at 80% line length as measured

from Bus S. It could be seen from Figure 2.8 (a) that the magnitude of Bus S and Bus R

fault currents are close to each other, so Bus S fault current would not remain the dominant

part. As a result, the arguments of the fault voltage or total fault current would not be close

to that of the Bus R voltage as seen from Figure 2.8 (b). The resulting higher accuracy of

Izykowski Algorithm in this case could be witnessed from the fact that the calculated fault

location remains within the band of 80.5%-81% for a fault at 80% line length from Bus S.

However, when the fault impedance rises, the reduction in the fault current contribution

from Bus R is more profound than that from Bus S. It is so because any decrease in fault

current level from Bus S will decrease the conduction by MOV, thus, increasing the effective

series capacitive compensation which in turn again increases the fault current contribution from

Bus S which is also highly resistive in nature. Therefore, for high impedance faults the fault

current contribution from Bus S will be predominant part of the total fault current irrespective

of the fault location, and also causes the argument of the total fault current to be close to the
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Figure 2.8: The estimated phasors for a solid AG fault at 80% line length from Bus S: (a)
Estimated phasor magnitude of fault current at Bus S (IS ) and Bus R (IR), (b) Estimated phasor
arguments of: Bus S voltage (VS ), Bus R voltage (VR), fault point current or voltage (IF/VF),
Bus R current (IR) (c) Calculated fault location.
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Bus R voltage. Thereby, satisfying the Condition 1 and causing the Izykowski Algorithm to

lose accuracy for all the high impedance faults irrespective of the location of the fault.

2.8 Conclusion

In this chapter, the insufficiency of the conventional impedance-based algorithms for their ap-

plicability to SCCTLs has been shown. Thereafter, the two types of fault location algorithms

for SCCTLs found in literature, i.e., the MOV-model-based, and fault loop-based impedance-

based algorithms have been discussed. It is shown in this chapter through mathematical anal-

ysis that the most widely used impedance-based algorithms for SCCTLs, i.e., fault loop-based

algorithms are equivalent to each other, and are based on the argument comparison of the fault

voltage and fault current for obtaining the fault location results. The simulations covering var-

ious fault types, fault resistances, and fault locations have been carried out on two different

configurations of SCCTL. It is observed that the configuration of SCCTL when the series ca-

pacitor is located at a side of transmission line is more challenging for the fault loop-based

algorithms. This configuration of SCCTL has not been evaluated in the previous publications,

thus, the existing fault location algorithms stand untested for such configuration of SCCTL.

The simulations results have shown that when the series capacitor is present at the side of a

transmission line the fault loop-based algorithms lose accuracy for almost all the possible fault

locations in an SCCTL for high impedance faults. The reason for the loss of accuracy as iden-

tified in this chapter is the limitation of the concept of argument comparison for the purpose

of fault location. Since, all the fault loop-based fault location algorithms are based on the ar-

gument comparison of the fault voltage and fault current, all the fault loop-based algorithms

are prone to yield high errors. Thus, arises a need to have a robust impedance-based algorithm

which does not suffer from the innate shortcomings of the fault loop-based algorithms.
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A new impedance-based fault location
algorithm for ground faults

3.1 Introduction

As discussed earlier that MOV introduces non-linearity in the voltage drop across SCB, and

the existing fault loop-based fault location algorithms avoid using the voltage drop across SCB

by using the fault loop-based fault location algorithms. However, the fact that has remained

ignored so far is that MOV conducts only in the faulted phase. For healthy phase the series

capacitor is responsible for the conduction of the current exclusively. Thus, the voltage drop

across SCB in healthy phase could be estimated and used towards proposing a new fault lo-

cation algorithm. In this chapter, a radically new double-ended fault location algorithm is

proposed for single phase to ground and double-phase to ground faults. In the proposed tech-

nique, the fault location equations based on each sequence component (positive, negative and

zero) are compiled and in each equation the impedance of faulted phase SCB appears as an

unknown quantity. Thus, resulting in two unknowns in each equation i.e., fault location and

impedance of SCB in the faulted phase. Thereafter, the methodology to remove the unknown

impedance of faulted phase SCB from the expressions is presented, which then leads to the fault

location results. The advantages of the proposed technique lie in the facts that it overcomes

the problem of excessively higher errors observed in fault location results obtained from nat-

ural fault loop-based algorithms of [22]-[25], and it is accomplished without using the model

of MOV. Another important feature is that the proposed technique unlike the pre-existing al-

gorithms does not require specialized subroutines for determining the faulted segment of the

transmission line. The proposed technique is also able to yield accurate fault location results

irrespective of the MOV status in the faulted phase, i.e., the fault location can be performed

48



Chapter 3 49

using the proposed method even if MOV is conducting, idle, or bypassed. In this paper, the

measurements from both ends of the transmission line are obtained through synchronized sam-

pling, so no time delay compensation is required. If however, the measurements from both ends

are not synchronized, the synchronization techniques such as the ones proposed in [22], [24],

[25], and [37] could be used to achieve synchronization before passing on the measurements

to the proposed fault location algorithm.

3.2 The proposed technique

Figure 3.1 (a) shows a fault scenario in an SCCTL in which a fault is located in between

Bus R and Node N at per unit (p.u.) distance d from SCB. The voltage and current signals

are measured at terminals of the SCCTL, i.e., at Bus S and Bus R. From hereafter, the zone

between Bus S and Node M is referred to as Zone-SM while that between Node N and Bus R is

called as Zone-RN. It should be noted that the proposed fault location algorithm for SCCTLs is

derived and elaborated for the faults lying in Zone-RN and it is called as Subroutine-RN in this

chapter. For the faults lying in Zone-SM (see Figure 3.1 (b)) i.e., Subroutine-SM, the equations

can be obtained analogously.

Now, d could be obtained using ith sequence measurements and parameters of the transmis-

sion line from (3.1) [38].

d =
1

γi (1 − m) l
tanh−1

(
Ki + ∆V MN

i

Ji

)
(3.1)

where

Ji = VR
i sinh((1 − m) γil) − ZCi I

R
i cosh((1 − m) γil) − ZCi I

M
i

Ki = VR
i cosh((1 − m) γil) − ZCi I

R
i sinh((1 − m) γil) − V M

i

V M
i = VS

i cosh (mγil) − IS
i ZCisinh (mγil) (3.2)

IM
i = IS

i cosh (mγil) −
VS

i

ZCi

sinh (mγil) (3.3)

i attains the value of 0, 1 and 2 for depicting zero, positive, and negative sequence components,

respectively; VS
i and IS

i represent ith sequence component voltage and current phasors at Bus S;

V M
i and IM

i represent ith sequence component voltage and current phasors at Node M (calculated

from Bus R measurements using (3.2) and (3.3), respectively); ∆V MN
i is ith sequence component

phasor of voltage drop across SCB from Node M to Node N; ZCi and γi are the ith sequence

characteristic impedance and propagation constant of the transmission line, respectively; l is
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via

Figure 3.1: Faults in the subsections of the SCCTL: (a) Zone-RN, (b) Zone-SM.

the total length of the transmission line; m is p.u. distance of SCB from Bus S.

In (3.1), ∆V MN
i is another unknown besides d. Now owing to the highly non-linear behavior

of MOV, the estimation of ∆V MN
i is not straightforward. In order to overcome this limitation,

the fault location equation (3.1) is rearranged to:

Jitanh((1 − m) γild) − Ki − ∆V MN
i = 0

Now, multiplying the above expression with ai and adding each term for all sequence compo-

nents, (3.4) is obtained.

2∑
i=0

aiJitanh((1 − m) γild) −
2∑

i=0

aiKi −

2∑
i=0

ai∆V MN
i = 0 (3.4)

where ai is a coefficient for ith sequence component which depending upon the fault type at-

tains different values that are derived later in this chapter. The advantage of using the fault

location equation represented in (3.4) is that though ∆V MN
i still remains unknown, but the term∑2

i=0 ai∆V MN
i can be estimated as will be shown in this chapter. Thereafter, the fault location
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equation (3.4) can be solved for obtaining d.

In order to estimate the term
∑2

i=0 ai∆V MN
i , consider the SCB bank as a series impedance

connected in the transmission line. Therefore, the sequence impedance of the SCB bank can

be defined using (3.5).

[ZS ] = [A]−1[ZP][A] (3.5)

where [A]=
[ 1 1 1

1 α2 α
1 α α2

]
; α = 1∠120◦; [ZS ] is the sequence impedance matrix of SCB bank; [ZP]

is the phase impedance matrix of SCB bank. Equation (3.5) can now be expanded to yield the

expressions for sequence impedances of the SCB bank as:

[
ZS

]
=

1
3


1 1 1

1 α α2

1 α2 α



ZA 0 0

0 ZB 0

0 0 ZC



1 1 1

1 α2 α

1 α α2



=
1
3


ZA + ZB + ZC ZA + α2 ZB + αZC ZA + αZB + α2 ZC

ZA + αZB + α2 ZC ZA + ZB + ZC ZA + α2 ZB + αZC

ZA + α2 ZB + αZC ZA + αZB + α2 ZC ZA + ZB + ZC

 (3.6)

where ZA, ZB, ZC are the impedances of SCBs in phase A, phase B, and phase C, respectively.

Now under balanced steady state conditions, only the series capacitors are responsible for the

conduction of the current. Therefore, the impedance of SCB in each phase would be identical

and equal to the reactance of the series capacitor, i.e., ZA = ZB = ZC = − jXC. The sequence

impedance matrix under balanced steady state conditions becomes: [ZS ]=
[ − jXc 0 0

0 − jXc 0
0 0 − jXc

]
Now, the ith-sequence voltage drop across SCB (∆V MN

i ) could be obtained by multiplying

the sequence impedance matrix with the sequence currents flowing through SCB:[
∆V MN

i

]
=

[
ZS

] [
IM
i

]
(3.7)

When a fault occurs in an SCCTL, the MOV located only in the faulted phase conducts. While

in the healthy phase, the series capacitor is exclusively responsible for the conduction of cur-

rent. Therefore, the impedance of the SCB in the healthy phase is equal to the reactance of the

series capacitor. On the other hand, the impedance of the SCB in the faulted phase remains

unknown. In lieu of the above facts, the expressions for ∆V MN
i obtained from (3.7) would take

different forms depending upon the fault type as shown in the following sections.

Since the faulted phases can be arbitrarily labeled as phase A, B, or C; therefore, the pro-

posed technique is elaborated using only phase A to ground (AG), phase B to phase C to ground
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(BCG), and phase B to phase C (BC) faults for the single-phase, double-phase to ground, and

phase to phase faults, respectively.

3.2.1 Single-phase to ground (AG) faults

For an AG fault, the impedances of SCB in each phase can be represented as: ZA = Z
′

(un-

known), ZB = ZC = − jXC, where XC denotes the series capacitor reactance. The expression

(3.7), thus, gets reduced to:
∆V MN

0

∆V MN
1

∆V MN
2

 =
1
3


(Z
′

− 2 jXC) (Z
′

+ jXC) (Z
′

+ jXC)

(Z
′

+ jXC) (Z
′

− 2 jXC) (Z
′

+ jXC)

(Z
′

+ jXC) (Z
′

+ jXC) (Z
′

− 2 jXC)



IM
0

IM
1

IM
2


The simplification of the above matrix yields:

∆V MN
0 =

1
3

[
Z
′

(IM
0 + IM

1 + IM
2 ) − jXC(2IM

0 − IM
1 − IM

2 )
]

(3.8)

∆V MN
1 =

1
3

[
Z
′

(IM
0 + IM

1 + IM
2 ) − jXC(2IM

1 − IM
2 − IM

0 )
]

(3.9)

∆V MN
2 =

1
3

[
Z
′

(IM
0 + IM

1 + IM
2 ) − jXC(2IM

2 − IM
0 − IM

1 )
]

(3.10)

It can be observed that an unknown term Z
′

(IM
0 + IM

1 + IM
2 ) appears in (3.8), (3.9), and (3.10)

which prevents the estimation of ∆V MN
i . However, Z

′

can be eliminated by subtracting (3.9)

from (3.8):

∆V MN
0 − ∆V MN

1 =− jXC(IM
0 − IM

1 ) (3.11)

The value of the term ∆V MN
0 −∆V MN

1 as obtained from (3.11), can now be used for fault location

in (3.4) with the coefficients ai as: a0 = 1, a1 = −1, a2 = 0. Thus, the fault location equation of

(3.4) becomes (3.12):

J0 tanh(mγ0ld) − J1 tanh(mγ1ld) − K0 + K1 + jXC(IM
0 − IM

1 ) = 0 (3.12)

The only unknown in (3.12) is d, which could be solved for by using numerical methods such

as Newton-Raphson, to obtain fault location result for an AG fault. It is important to note

that similar to (3.12), two more fault location equations can be written which would utilize the

information from (3.13) and (3.14), which like (3.11) are also obtained using (3.8), (3.9), and
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(3.10).

∆V MN
0 − ∆V MN

2 =− jXC(IM
0 − IM

2 ) (3.13)

∆V MN
1 − ∆V MN

2 =− jXC(IM
1 − IM

2 ) (3.14)

The fault location equation based on (3.13) could be used an alternative for (3.12), however,

the fault location equation compiled based on (3.14) cannot be utilized for fault location as

explained below.

It is shown in [22] that:

IF
i =

IMS

i + IR
i cosh ((1 − m) γil) −

VR
i

ZCi
sinh ((1 − m) γil)

cosh ((1 − m) γildRN)

The denominator of the expression given in [22] is cosh(mγ1l(1 − d)) while in the above ex-

pression it is cosh
(
(1 − m) γildRN

)
. The reason for this difference is that d is measured from

terminal of the transmission line in [22] while in this chapter d is measured from SCB. Also,

the p.u. length of the faulted section in this study is (1 − m) (Zone RN) while in [22] the p.u.

length of the faulted section is m.

By the definition of Ji from (3.1), the above equation can be written as:

IF
i =

−Ji

ZCicosh((1 − m)γ1ld)

=⇒ Jitanh((1 − m)γ1ld) = −IF
i ZCisinh((1 − m)γ1ld) (3.15)

Now consider the fault location equation based on the positive and negative sequence mea-

surements and parameters of the line:

J1 tanh((1 − m) γ1ld) − J2 tanh((1 − m) γ2ld) − K1 + K2 + jXC

(
IM
1 − IM

2

)
= 0 (3.16)

Using the expression derived in (3.15), the equation (3.16) can be rewritten as:

−IF
1 ZC1sinh((1 − m) γ1ld)+IF

2 ZC2sinh((1 − m) γ2ld) − K1 + K2 + jXC

(
IM
1 − IM

2

)
= 0 (3.17)

where, IF
1 , and IF

2 are the positive and negative sequence components of the total fault cur-

rent, respectively. It is a known fact that the positive and negative sequence parameters of the

transmission line are identical, i.e., ZC1 = ZC2 and γ1 = γ2. Also, for a single phase to ground

fault IF
1 = IF

2 as shown in Figure 3.2(a). In view of the above facts, the expression of (3.17)
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Figure 3.2: Sequence diagram for different faults in an SCCTL: (a) AG Fault, (b) BCG Fault,
(c) BC Fault, (d) ABC Fault.

becomes:

0 − K1 + K2 + jXC

(
IM
1 − IM

2

)
= 0 (3.18)

It can be seen from (3.18) that the term containing d disappears from the fault location equa-

tion. Hence, for a single phase to ground fault, the fault location results have to be obtained

from the fault location equations based on 1-positive and zero sequence, or 2-negative and zero

sequence measurements and parameters of the transmission line.
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3.2.2 Double-phase to ground (BCG) faults

For BCG faults, the impedances of SCB in each phase becomes: ZA = − jXC, ZB = ZC = Z
′

(unknown) for BCG faults. Therefore, for a BCG fault the expression for ∆V MN
i becomes:


∆V MN

0

∆V MN
1

∆V MN
2

 =
1
3


(2Z

′

− jXC) −(Z
′

+ jXC) −(Z
′

+ jXC)

−(Z
′

+ jXC) (2Z
′

− jXC) −(Z
′

+ jXC)

−(Z
′

+ jXC) −(Z
′

+ jXC) (2Z
′

− jXC)



IM
0

IM
1

IM
2



∆V MN
0 =

1
3

[
Z
′

(2IM
0 − IM

1 − IM
2 ) − jXC(IM

0 + IM
1 + IM

2 )
]

(3.19)

∆V MN
1 =

1
3

[
Z
′

(2IM
1 − IM

2 − IM
0 ) − jXC(IM

0 + IM
1 + IM

2 )
]

(3.20)

∆V MN
2 =

1
3

[
Z
′

(2IM
2 − IM

0 − IM
1 ) − jXC(IM

0 + IM
1 + IM

2 )
]

(3.21)

The unknown term Z
′

appears in (3.19), (3.20) and (3.21) which can be eliminated by adding

all the equations:

2∑
i=0

∆V MN
i = − jXC

2∑
i=0

IM
i (3.22)

Hence, the fault location equation for BCG fault becomes as shown in (3.23), with a0 = 1,

a1 = 1, a2 = 1.

2∑
i=0

Ji tanh((1 − m) γild) −
2∑

i=0

Ki + jXC

2∑
i=0

IM
i = 0 (3.23)

Thus, the value of d can be obtained by solving (3.23) for BCG faults.

3.2.3 Phase to phase (BC) faults

For BC faults, the impedances of SCB in each phase becomes: ZA = − jXC, ZB = ZC = Z
′

(unknown), as was the case for BCG faults. Thus, the process of obtaining the term
∑2

0 ai∆V MN
i ,

and fault location d for BC faults remains same as for BCG faults as derived in (3.22) and

(3.23), respectively.

However, the equation (3.23) is unable to yield fault location result for BC faults as shown
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hereafter. Equation (3.23) can be written as (see Appendix):

−

2∑
i=0

IF
i ZCisinh((1 − m) γild)−

2∑
i=0

Ki + jXC

2∑
i=0

IM
i = 0 (3.24)

It can be observed from Figure 3.2(c) that for BC faults, IF
1 = −IF

2 , IF
0 = 0, and also for a

transmission line ZC1 = ZC2 , and γ1 = γ2. In lieu of these facts, (3.24) becomes (3.25).

0 −
2∑

i=0

Ki + jXC

2∑
i=0

IM
i = 0 (3.25)

It can be observed from (3.25) that the term containing d vanishes for BC faults. Thus, implying

that the fault location cannot be obtained from (3.23) for BC faults.

3.2.4 Three phase faults

For a three phase fault MOVs located in all three phases would be conducting fault current,

which means that the impedances of SCB in each phase will remain unknown ZA = ZB = ZC =

Z
′

. Since, three phase faults are symmetrical faults, the negative and zero sequence components

of the current through SCB bank will be zero i.e., IM
2 = 0, IM

0 = 0 as also depicted in Figure

3.2(d). In light of the above facts, the expression for ∆V MN
i becomes:


∆V MN

0

∆V MN
1

∆V MN
2

 =


Z
′

0 0

0 Z
′

0

0 0 Z
′



IM
0

IM
1

IM
2

 =


0

IM
1 Z

′

0



=⇒ ∆V MN
1 = IM

1 Z
′

(3.26)

Since, only one equation is available, the unknown term IM
1 Z

′

cannot be eliminated from (3.26).

Thus, preventing the application of the proposed fault location algorithm for three phase faults

in transmission line. Table 3.1 lists the values attained by ai for different types of fault where

α = 1∠120◦.

It is worth pointing out that the proposed methodology can be extended for double-circuit

line, for which an extra term (IRP
0 ZM0) corresponding to voltage drop due to zero-sequence

mutual coupling between parallel lines would appear in fault location equation, which then
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becomes:

2∑
i=0

aiJi tanh(1 − mγild)−
2∑

i=0

aiKi−

2∑
i=0

ai∆V MN
i +a0IRP

0 ZM0 = 0

where IRP
0 is the zero sequence current in the parallel transmission line measured at Bus R;

ZM0 is the zero sequence mutual impedance between two parallel lines. The values of ai would

remain same for the double-circuit lines as well.

3.3 Equivalence of Subroutines

The fault location equation for the faults lying in Zone-RN (Subroutine-RN) is shown in (3.4).

If mγildRN is small then, tanh(mγildRN) ≈ mγildRN . Note that superscript RN is added to differ-

entiate the variables of Subroutine-RN from that of Subroutine-SM (S M), which is presented

later. In light of the above approximation, the p.u. fault location as calculated by Subroutine-

RN (dRN) is obtained from:

dRN =

2∑
i=0

aiKRN
i − jXC

2∑
i=0

aiIMS

i

(1 − m) l
2∑

i=0
aiγiJRN

i

(3.27)

where

IMS

i = IS
i cosh (mγil) −

VS
i

ZCi

sinh (mγil) (3.28)

JRN
i = VR

i sinh((1 − m)γil) − ZCi I
R
i cosh((1 − m)γil)

+ VS
i sinh(mγil) − ZCi I

S
i cosh(mγil)

KRN
i = VR

i cosh((1 − m)γil) − ZCi I
R
i sinh((1 − m)γil)

− VS
i cosh(mγil) + ZCi I

S
i sinh(mγil)

Note that JRN
i and KRN

i are obtained when the values of V M
i and IM

i from (3.2) and (3.3) are

substituted in Ji and Ki of (3.1). The superscript S in IMS

i represents that IMS

i is estimated using

measurements at Bus S. Once dRN is known, the distance of the fault from Bus S as computed
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by Subroutine-RN (DRN) can be estimated as follows:

DRN = ml + (1 − m) ldRN

DRN =

ml
2∑

i=0
aiγiJRN

i +
2∑

i=0
aiKRN

i − jXC

2∑
i=0

aiIMS

i

2∑
i=0

aiγiJRN
i

(3.29)

Similar to (3.27), the equation for finding p.u. fault location for the faults in Zone-SM

(Subroutine-SM) can be written as (3.30) where dS M is the p.u. fault distance from SCB as

yielded by Subroutine-SM.

dS M =

2∑
i=0

aiKS M
i − jXC

2∑
i=0

aiINR

i

ml
2∑

i=0
aiγiJS M

i

(3.30)

where INR

i is the sequence current at Node N estimated from measurements at Bus R.

INR

i = IR
i cosh ((1 − m) γil) −

VR
i

ZCi

sinh ((1 − m) γil) (3.31)

JS M
i = VS

i sinh(mγil) − ZCi I
S
i cosh(mγil)

+ VR
i sinh((1 − m)γil) − ZCi I

R
i cosh((1 − m)γil)

KS M
i = VS

i cosh(mγil) − ZCi I
S
i sinh(mγil)

− VR
i cosh((1 − m)γil) + ZCi I

R
i sinh((1 − m)γil)

The total distance of the fault from Bus S as yielded by Subroutine-SM (DS M) can be estimated

as shown below:

DS M = ml − mldS M

DS M =

ml
2∑

i=0
aiγiJS M

i −
2∑

i=0
aiKS M

i + jXC

2∑
i=0

aiINR

i

2∑
i=0

aiγiJS M
i

(3.32)

It is worth noting that for any particular fault scenario irrespective of the faulted zone (RN or

S M), JRN
i = JS M

i and KRN
i = −KS M

i . When the equations of (3.29) and (3.32) are compared in

lieu of the above fact, it is observed that (3.29) and (3.32) are identical to each other except for

the terms
∑2

i=0 aiINR

i and
∑2

i=0 aiIMS

i . It is important to note that Subroutine-RN estimates the
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Table 3.1: Coefficients for obtaining fault location.

Fault Type a1 a2 a0

AG
-1 0 1

0 -1 1

BG
-α2 0 1

0 -α 1

CG
-α 0 1

0 -α2 1

BCG 1 1 1

ACG α2 α 1

ABG α α2 1

current going through Nodes M and N as IMS

i , using Bus S measurements assuming that fault

is lying in Zone-RN. On the other hand Subroutine-SM estimates the current flowing through

Nodes N and M as INR

i , which is estimated from Bus R measurements assuming the fault is

in Zone-SM. Now in order to obtain relationship between IMS

i and INR

i consider the expression

derived (for faults lying in Zone-RN) in Appendix, i.e.,

IF
i =

IMS

i + IR
i cosh ((1 − m) γil) −

VR
i

ZCi
sinh ((1 − m) γil)

cosh ((1 − m) γildRN)
(3.33)

Since, (1 − m) γildRN is small, therefore cosh((1 − m) γildRN) ≈ 1. Also using (3.31) the above

expression (3.33) can be written as:

IF
i = IMS

i + INR

i

=⇒

2∑
i=0

aiIF
i =

2∑
i=0

aiIMS

i +

2∑
i=0

aiINR

i

It can be observed from Figs. 3.2 (a) and (b) that for the values of ai in Table 3.1, the term
2∑

i=0
aiIF

i = 0, thus, resulting in:

2∑
i=0

aiIMS

i = −

2∑
i=0

aiINR

i (3.34)
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Figure 3.3: Simulated power system in PSCAD: (a) System A, (b) System B.

The significance of the relation derived in (3.34) lies in the fact that the expressions for obtain-

ing total fault distance for both subroutine as given in (3.29) and (3.32), become identical for

any specific fault scenario. Similarly, the equivalence of both subroutines can also be shown for

faults lying in Zone-SM. Thus, the proposed algorithm eliminates the requirement of special

procedure for identifying the faulted section of the line before locating the fault.

3.4 Evaluation and Simulation Results

3.4.1 Test System

For the performance evaluation of the proposed fault location algorithm, a 500kV test power

system as described in Section 2.7.1 has been simulated in PSCAD while the fault location al-

gorithms have been simulated in Matlab. Two configurations of test power system i.e., System

A and System B are simulated. As shown in Figure 3.3, the SCB is located at Bus S and at

the midpoint of the transmission line for System A and System B, respectively. The MOV is

rated at 273kV after considering an overload factor of 1.5. The detailed procedure of sizing the

MOV can be found in [39]. The phasors of the measured current and voltage signals are also

obtained as per the methodology presented in Section 2.7.1.
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3.4.2 Accuracy and the effect of fault resistance

The fault scenarios covering different locations of fault over the full length of the line with

different fault resistances are run in PSCAD for both system configurations, i.e., System A

and System B. In System A there is wider range of possible locations of fault (0-100%) as

compared to System B (50-100%) as all the faults in System B lie at least 50% of the line

length away from the bus that sees the same fault current as passing through SCB. Hence, to

elaborate the performance of the proposed algorithm System A is utilized, while System B is

used to demonstrate the equivalence of the fault location results obtained by both subroutines.

The fault location results obtained from the proposed algorithm and the algorithm of [22] are

compared to each other for comparative analysis. The proposed algorithm is referred to as

Algorithm PM (i.e., Proposed Method) while the algorithm of [22] is called Algorithm EM

(i.e, Exiting Method) hereafter. Another point that is worth highlighting here is that the error

of 2% and less is acceptable for the fault locators available in the commercial relays [40].

Tables 3.2 and 3.3 show the fault location results for AG and BCG faults in System A (see

Figure 3.3 (a)), respectively obtained using Algorithm PM and Algorithm EM. The distance

of fault is measured from Bus S as percentage of the total line length. As already shown in

Section 3.2.1, Algorithm PM yields the fault location results for AG in two different ways as

shown in Table 3.2 with (a0 = 1, a1 = −1, a2 = 0), and (a0 = 1, a1 = 0, a2 = −1). The high

accuracy of the Algorithm PM can be witnessed from the fact that error in the results obtained

from Algorithm PM remains below 1% for almost all fault scenarios as seen in Tables 3.2 and

3.3. On the other hand the results from Algorithm EM exhibit higher than 2% error for nearly

half of the fault scenarios. Furthermore, the highest error in fault location results is 1.45% for

Algorithm PM while for Algorithm EM it exceeds 20% for many fault cases.

Another peculiar observation that can be made from Tables 3.2 and 3.3 that when fault

resistance is 0 Ω, Algorithm EM loses accuracy when fault is located close to 40%. Figure

3.4 shows the voltage and current waveforms for an AG fault at 40% line length. Note the

relative large fault current contribution from Bus S as compared to Bus R contribution (Figure

3.4 (b), and (d)). Also note that it is in phase with Bus S and Bus R voltage (Figure 3.4 (a),

(b), and (c)). It so happens that when the fault is located close to 40%, the SCB is almost

completely compensating for the inductance of the faulted line segment and source (series

compensation is effectively reduced from 70% due to MOV conduction). Thus, resulting in a

very high and almost resistive fault current contribution from Bus S as compared to the fault

current contribution from Bus R. Note that fault current measured at Bus S is more than double

of that measured at Bus R (see Figure 3.5 (b)) and note also that the fault current from Bus

S is very close in phase with the voltage at Bus S (see Figure 3.5 (c) and (d)). Now, any
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Table 3.2: Error (%) in fault location results for AG faults.

Algorithm PM

Algorithm EM
Fault Actual Fault a0=1 a0=1

Resistance Location (%) a1=−1 a1 = 0
a2= 0 a2=−1

0Ω

0 0.80 0.52 2.53
20 0.94 0.87 5.28
40 0.92 0.79 11.5
60 0.68 0.55 2.71
80 0.28 0.19 0.73

100 0.21 0.24 0.18

10Ω

0 0.76 0.46 0.70
20 0.89 0.84 6.89
40 0.92 0.80 24.6
60 0.69 0.55 3.25
80 0.30 0.19 0.81

100 0.11 0.16 0.01

50Ω

0 0.29 0.08 6.88
20 0.67 0.72 3.52
40 0.82 0.73 25.0
60 0.62 0.48 50.7
80 0.01 0.11 17.0

100 0.21 0.30 4.07

100Ω

0 0.09 0.27 22.6
20 0.60 0.70 11.5
40 0.65 0.59 12.1
60 0.13 0.01 47.8
80 0.32 0.49 26.8

100 0.19 0.33 36.2
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Table 3.3: Error (%) in fault location results for BCG faults.

Fault Actual Fault
Algorithm PM Algorithm EM

Resistance Location (%)

0Ω

0 0.08 0.05
20 0.99 0.03
40 0.54 6.95
60 0.04 1.21
80 0.47 0.30

100 0.44 0.05

10Ω

0 0.50 2.23
20 1.45 1.01
40 0.78 7.19
60 0.22 1.51
80 0.20 0.31

100 0.23 0.03

50Ω

0 0.53 8.36
20 0.95 2.55
40 1.26 8.29
60 0.82 29.7
80 0.13 56.0

100 0.23 13.1

100Ω

0 0.66 22.7
20 0.38 15.4
40 0.86 5.93
60 0.25 8.41
80 0.46 70.9

100 0.18 34.3
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fault location algorithm that is based on the argument comparison of analytically obtained

fault voltage and current (like Algorithm EM) is inherently prone to yield high errors when

the fault current contribution from the segment of transmission line containing SCB becomes

increasingly higher as compared to the contribution from the other end as seen in Figure 3.5 (e).

As the fault resistance increases, the zone in which the Algorithm EM yields excessively high

errors keeps getting greater in length eventually covering the whole line when fault resistance

increases to 100 Ω. On the other hand, the proposed algorithm i.e., Algorithm PM is immune to

such conditions. The waveforms of measured voltages and currents, and the estimated phasors

for more fault scenarios are given in Appendix B.

3.4.3 Equivalent subroutine results

The derivation presented in Section 3.3 shows that irrespective of which section of the trans-

mission line does the fault lie, both subroutines of Algorithm PM would yield accurate and

almost equal fault location results as long as tanh(mγild) ≈ mγild holds true. In System B

shown in Figure 3.3 (b), the fault location results for faults lying in Zone-RN and Zone-SM

are yielded by Subroutine-RN and Subroutine-SM respectively for both algorithms. The fault

resistance for the fault scenarios shown in Table 3.4 is 0 Ω.

It can be seen from Table 3.4 that for Algorithm EM only one subroutine would yield accu-

rate fault location result (as highlighted) depending upon the faulted section of the transmission

line. So a specialized algorithm is needed to select the appropriate subroutine for Algorithm

EM as presented in [22]. Even the error in the ‘correct’ subroutine could be as high as 2%-5%

for Algorithm EM. On the other hand, both subroutines of Algorithm PM yield less than 1%

error for almost all the fault scenarios, irrespective of which section of the transmission line is

faulted. However, it should be noted that for the faults lying at the ends of the transmission line

(represented by 0% and 100%), the error in one of the subroutines comes in the vicinity of 1%

while the error in the other subroutine remains below 0.5%. For example for AG fault at 100%

line length (fault lying close to Bus R), the error yielded by Subroutine-RN (assumes fault lies

in Zone-RN) is 0.92% whereas the error in Subroutine-SM (assumes fault lies in Zone-SM) is

0.15%.

Therefore, to minimize the maximum error that can be encountered in Algorithm PM, the

‘correct’ subroutine should be selected. So when both subroutines point out that fault lies in

Zone-RN, the result of Subroutine-RN should take precedence over Subroutine-SM, whereas

when the both subroutines indicate Zone-SM as the faulted zone, the results of Subroutine-

SM should be treated as more accurate. In light of the above discussion, the selection of the

appropriate subroutine for the fault located close to SCB (around 50% line length) becomes
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Figure 3.4: Voltage and current waveforms for a solid AG fault at 40% line length from Bus S:
(a) Bus S voltage, (b) Bus S current (c) Bus R voltage, (d) Bus R current.
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Figure 3.5: (a)-(d): Estimated phasors of phase-A voltage and current signals measured at
Bus S and Bus R for a solid AG fault at 40% line length from Bus S; (e) fault location result
obtained from Algorithm PM and Algorithm EM.
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Table 3.4: Error (%) in fault location results of both subroutines of Algorithm PM and Algo-
rithm EM.

Fault Actual Algorithm PM Algorithm EM
Type Fault Loc (%) Sub-RN Sub-SM Sub-RN Sub-SM

AG

0 0.28 1.04 0.02 58.2
20 0.01 0.31 0.42 50.9
40 0.57 0.53 1.25 43.5
50− 0.73 0.73 1.92 39.4
50+ 0.71 0.71 36.4 4.71
60 0.52 0.57 39.6 2.57
80 0.06 0.23 43.8 0.76
100 0.92 0.15 48.6 0.01

BCG

0 0.14 0.91 0.04 70.4
20 0.51 0.22 0.04 60.1
40 0.87 0.85 0.21 49.2
50− 0.86 0.88 0.40 43.9
50+ 0.37 0.39 35.3 2.19
60 0.05 0.11 38.2 1.41
80 0.65 0.37 45.1 0.29
100 1.17 0.41 54.3 0.05

critical as the fault is lying very close to the ‘boundary’ of each subroutine. In Table 3.4 the

fault at 50−% signifies the fault is very close to SCB on Bus S side of SCB, while 50+% means

that the fault is close to SCB on the Bus R side of SCB. It can be observed from Table 3.4 that

for the faults lying at 50% the error in fault location results yielded by both algorithms is very

close to each other, e.g., for BCG fault at 50−% line length the errors in results of Subroutine-

RN and Subroutine-SM are 0.86% and 0.88%, respectively. It can thus be inferred that no

specialized criteria is required by Algorithm PM for selecting the ‘correct’ subroutine.

3.4.4 Effect of errors in zero sequence parameters of the transmission
line

The error in the fault location results discussed so far has been due to: 1-error that creeps into

the phasor estimation due to the high amount of transients present in the measured voltage

and current signals; 2-error due to the approximations made during the proposition of the

algorithm; 3-due to the modeling of the transmission line. Other sources of error that could

impact the accuracy of the fault location results are the error in the estimation of zero sequence

transmission line parameters, or, the error originating from the measuring devices, i.e., CT and

CVT. In this section the effect of error in transmission line parameters on the accuracy of the
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Table 3.5: Effect of error in zero sequence transmission line parameters (%) on the error in
fault location results (%) yielded by Algorithm PM for solid faults in the SCCTL.

AG BCG
Fault Parameter Error (%) Parameter Error (%)

Location (%) 0% 5% 10% 15% 0% 5% 10% 15%
0 0.80 0.01 0.70 1.29 0.08 0.84 1.49 1.94

20 0.94 0.88 0.84 0.82 0.99 0.28 0.31 0.83
40 0.92 1.04 1.16 1.28 0.54 0.38 0.25 0.14
60 0.68 0.94 1.17 1.37 0.04 0.12 0.27 0.39
80 0.28 0.64 0.94 1.21 0.47 0.11 0.19 0.44
100 0.21 0.18 0.52 0.81 0.44 0.04 0.29 0.59

Table 3.6: Effect of CT and CVT error on the error in fault location results (%) yielded by
Algorithm PM for solid faults in the SCCTL.

AG Fault BCG Fault
Fault CT CVT CT CVT

Location (%) 0% 2% 5% 2% 5% 0% 2% 5% 2% 5%
∠0° ∠0° ∠3° ∠0° ∠3° ∠0° ∠0° ∠3° ∠0° ∠3°

0 0.80 0.09 1.90 0.77 0.57 0.08 0.39 2.04 0.12 0.28
20 0.94 1.73 1.47 0.95 0.92 0.99 1.60 0.04 0.98 0.87
40 0.92 1.78 0.95 0.92 0.90 0.54 1.23 0.56 0.53 0.49
60 0.68 1.45 0.22 0.68 0.70 0.04 0.49 1.48 0.03 0.01
80 0.28 0.82 0.27 0.29 0.33 0.47 0.17 1.75 0.46 0.40

100 0.21 0.07 0.20 0.21 0.21 0.44 0.30 0.73 0.44 0.44
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proposed algorithm is investigated.

The zero-sequence parameters of a transmission line depends upon the resistivity of the

ground, which in turn is highly dependent upon the environmental conditions such as precip-

itation, soil moisture etc. On the other hand the positive sequence parameters of the trans-

mission line depend upon the geometrical arrangement of the conductors, physical character-

istics, etc which practically remain constant and does not change with change in environmen-

tal conditions. Thus, there always remains some ambiguity in the accuracy of the estimated

zero-sequence parameters of the transmission line. Thus, the effect of error in zero-sequence

parameters of the transmission lines on the performance of the proposed algorithm has been

evaluated in this section.

In order to observe the effects of imperfect estimation of zero sequence parameters of the

transmission line on the accuracy of Algorithm PM, various amounts of errors are added to

the zero sequence parameters of the transmission line. Thereafter, the results of Algorithm PM

are observed in lieu of the amount of error added to the transmission line parameters for solid

AG and BCG faults in the SCCTL (see Table 3.5). It could be observed from Table 3.5 that

when there is no error in the zero sequence parameters of the transmission line the error in fault

location results remain below 1% for all locations of the fault. When the error in zero sequence

parameters is gradually increased to 15%, the error of more than 1% is yielded by Algorithm

PM in 4 out of 6 fault scenarios for AG faults. On the other hand the error in fault location

results yielded by Algorithm PM for BCG faults the error remains below 1% for most of the

fault scenarios irrespective of the error in the zero sequence parameters of the transmission line.

The highest error of 1.94% for BCG faults is seen when the error in zero sequence parameters

is 15% and the fault located at 0% line length. It could be seen from Table 3.5 that the error for

all the fault scenarios remains below 2% which is the industrially accepted limit of the error in

fault locators of the commercial relays.

Thus, the proposed algorithm maintains its accuracy even with significant error in the zero-

sequence parameters of the transmission lines. The effect of error in zero sequence parameters

of the transmission line on the performance of Algorithm PM could further be minimized by

using the algorithms for estimating the zero sequence transmission line parameters such as the

one proposed in [41].

3.4.5 Sensitivity to CT and CVT errors

The instrument transformers (CT and CVT) are unable to perfectly replicate the primary side

signals after the occurrence of the fault. As a result, the estimated phasors for current and

voltage signals become imperfect. In order to emulate the effect of CT and CVT errors on the
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Algorithm PM, deliberate errors are added to the magnitude (2%, 5%) and phase angle (0°,

3°) of the faulted phase current and voltage phasors. Table 3.6 shows the fault location results

results yielded by Algorithm PM for solid AG and BCG faults after various amounts of error

are added to the voltage and current signals of the faulted phase. It could be observed from

Table 3.6 that the addition of error in faulted phase current produces higher error in the fault

location results as compared to the case when the error is added to the voltage. For example,

the maximum error in fault location results for AG and BCG faults are 1.90% and 2.04%,

respectively and in both cases the error of 5%∠3° is added to the CT measurements. On the

other hand the fault location error remains below 1% for all the fault scenarios of AG and

BCG faults irrespective of the error in the CT or CVT measurements. Therefore, it could be

concluded that error in CT measurements impacts the accuracy of Algorithm PM relatively

more than the error in CVT measurements. However, the error in fault location results remain

below 2% even with addition of considerable error of 5%∠3° in CT and CVT measurements,

thus, highlighting the robustness of the Algorithm PM with respect to the error in CT and CVT

measurements.

3.4.6 Need to reduce computational burden for practical implementation

The Algorithm PM has been proposed using distributed model of the transmission line which

results in the exponential functions appearing in the fault location equation. As can be observed

from equation (3.4), the unknown fault location d appears as an exponential. The solution to

such equations would have to found using numerical methods, which are very time consuming.

For example, for the sampling rate of 64 samples per fundamental cycle, and total four cycles of

fault time period, we have 256 samples. After ignoring the first 80 samples due to transient time

period the Cosine filter, it took MATLAB about 30 seconds for yielding fault location results

for remaining 176 samples. Such type of computing power is not available in the numerical

relays, thus, arises need to reduce the computational burden of the proposed algorithm. The

usage of the simpler model of the transmission line would reduce the computational burden but

will also impact the accuracy of the fault location results. Therefore, a very careful approach

would be needed to simplify the transmission line models for decreasing the computational

burden, and at the same time to limit the degradation in the accuracy of the Algorithm PM.

3.5 Conclusion

A new fault location algorithm is presented in this chapter for single-phase to ground and

double-phase to ground faults in SCCTLs. The proposed algorithm provides accurate fault lo-
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cation results while avoiding simultaneously, the modeling of MOV and the use of natural fault

loop. It has also been shown that proposed algorithm does not lose accuracy for specific fault

scenarios for which fault loop-based fault location algorithms would yield high errors. The

equivalence of the fault location results from both subroutines regardless of the faulted section

of the transmission line is mathematically proved as well as using simulations. Additionally,

it has been demonstrated that the maximum error in the proposed algorithm can further be

reduced by selecting the corresponding subroutine to the faulted section of the transmission

line. Another salient feature of the proposed technique is that for the selection of appropriate

subroutine no specialized procedure is needed. The performance and the features of the pro-

posed algorithm have been verified through simulations in PSCAD and MATLAB. The future

avenues for research in the this field could focus into the effects of non-ideal transposition

of the transmission line, error in estimation of transmission line parameters, error in phasor

estimation on the performance of the proposed fault location algorithm.
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Impedance-based fault location algorithm
for ground faults in SCCTLs compensated
with multiple series capacitor banks

4.1 Introduction

As shown in Section 2.4, the fault loop-based impedance-based fault location algorithms like

[22]-[25] estimate the fault voltage as function of the unknown fault location (d) using mea-

surements from that end of the transmission line which does not see SCB between itself and the

fault. For example, for the fault scenario shown in Figure 4.1 the fault voltage function (VF(d))

is not written using Bus S measurements as the SCB falls in between Bus S and the fault point,

and the impedance of SCB is unknown. Therefore, the fault voltage function will be compiled

using the measurements of Bus R. Thereafter, the VF(d) is solved for d under the condition

that at the fault point the arguments of fault voltage and the fault current will be same, i.e.,

Figure 4.1: Diagram depicting a fault in an SCCTL located between SCB and Bus R.

72
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Figure 4.2: Non-applicability of fault loop-based fault location algorithms: (a) series compen-
sation applied at multiple locations, (b) the fault lies in the SCB

∠VF(d) = ∠IF . Apart from the shortcomings of fault loop-based algorithms as listed in Section

2.6, the fault loop-based fault location algorithms are inapplicable if: 1-series compensation

is applied at more than one location in an SCCTL, and the fault is lying in between the two

SCBs as shown in Figure 4.2 (a); 2-the fault lies in the SCB, even if there is only one SCB in

an SCCTL as shown in Figure 4.2 (b). It is worth noting here that SCB rather than consisting

of only one series capacitor is a combination of multiple capacitors connected in parallel and

series (see Figure 4.2 (b)). For both fault scenarios shown in Figure 4.2 (a) and (b), the MOVs

will be present on both sides of the fault, preventing the derivation of the fault voltage function,

VF(d) from either terminal of the SCCTL. Therefore, the application of the fault loop-based

algorithms to both fault scenarios shown in Figure 4.2 (a) and (b), will yield erroneous fault

location results. Thus, no impedance-based fault location algorithm exists that is applicable

to the SCCTLs with multiple series compensating devices, and to the faults occurring in the

SCBs. In this chapter, it is shown that the fault location algorithm proposed in Chapter 3 for

ground faults could be modified and applied to the SCCTLs with SCBs located at multiple

locations, and to the faults occurring in SCB.

The proposed algorithm is firstly presented for N-number of series compensating devices

using lumped element model of transmission line in Section 4.2. Thereafter, the application
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Figure 4.3: Fault scenario in an SCCTL compensated with N number of SCBs.

of the proposed algorithm to the double-circuited transmission lines is presented in Section

4.3. In Section 4.4 the algorithm is presented using more accurate model of transmission line,

i.e., distributed model of transmission line for two SCBs in an SCCTL. The simulation results

showing the performance of the proposed fault location algorithm are given in Section 4.5.

4.2 The Proposed Algorithm

Consider a transmission line of total length l units, compensated with the total number of N

SCBs as shown in Figure 4.3. Let the fault be located at distance d units from Bus S, and

lying between the nth and (n + 1)th SCB as counted from Bus S. Now, the equations for the ith

sequence of the fault voltage, i.e., VF
i could be written from Bus S and Bus R as given in (4.1)

and (4.2), respectively.

VF
i =VS

i − IS
i zid −

n∑
k=1

∆Vi,k (4.1)

VF
i =VR

i − IR
i zi (l − d) −

N∑
k=n+1

∆Vi,k (4.2)

Equating (4.1) and (4.2) we obtain:

VS
i − VR

i − IS
i zid + IR

i zi (l − d) −
n∑

k=1

∆Vi,k +

N∑
k=n+1

∆Vi,k = 0 (4.3)

=⇒ d =

VS
i − VR

i + IR
i zil −

n∑
k=1

∆Vi,k +
N∑

k=n+1
∆Vi,k(

IS
i + IR

i

)
zi

(4.4)

where i attains the values of 0, 1 and 2 for representing zero, positive, and negative sequence

components, respectively; VS
i and IS

i represent ith sequence component voltage and current
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Table 4.1: Coefficients for obtaining fault location.

Fault Type a1 a2 a0

AG
-1 0 1

0 -1 1

BG
-α2 0 1

0 -α 1

CG
-α 0 1

0 -α2 1

BCG 1 1 1

ACG α2 α 1

ABG α α2 1

phasors at Bus S; VR
i and IR

i represent ith sequence component voltage and current phasors at

Bus R. ∆Vi,k is ith sequence component phasor of voltage drop across kth SCB as counted from

Bus S; zi is the ith sequence impedance of the transmission line per unit distance; l is the total

length of the transmission line.

In the fault location equation (4.4), there are two unknowns: firstly, the voltage drop across

kth SCU bank, i.e., ∆Vi,k is unknown; secondly, the number n which is the number of SCUs

lying between Bus S and fault point is also unknown, thus, preventing the estimation of d.

It is shown in Chapter 3 that though the term ∆Vi,k would remain unknown, however, the

term
2∑

i=0
ai∆Vi,k could be estimated for the values of ai listed in Table 4.1. Now, in order to

utilize the term
2∑

i=0
ai∆Vi,k, the fault location equation (4.4) needs to be modified. It is done by

multiplying (4.3) with the constant ai, through out and adding each term for all the sequence

components. As a result, the Equation (4.5) will be obtained.

2∑
i=0

ai

(
VS

i − VR
i − IS

i zid + IR
i zi (l − d)

)
−

n∑
k=1

2∑
i=0

ai∆Vi,k +

N∑
k=n+1

2∑
i=0

ai∆Vi,k = 0

=⇒ d =

2∑
i=0

ai

(
VS

i − VR
i + IR

i zil
)
−

n∑
k=1

2∑
i=0

ai∆Vi,k +
N∑

k=n+1

2∑
i=0

ai∆Vi,k

2∑
i=0

aizi

(
IS
i + IR

i

) (4.5)

Now, the term
2∑

i=0
ai∆Vi,k could be evaluated as per the methodology presented in the previous
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chapter, but n still remains unknown. The method to eliminate n from Equation (4.5) for various

types of fault is presented in the following sections. Since the faulted phases can arbitrarily be

labeled as phase A, B, or C, therefore, the proposed algorithm is explained using only phase A

to ground (AG), phase B to phase C to ground (BCG), and phase B to phase C (BC) faults for

the single-phase, double-phase to ground, and phase to phase faults, respectively.

4.2.1 Single-phase to ground (AG) faults

It can be observed from Table 4.1 that for an AG fault, two sets of ai could be used. The

derivation of the fault location presented in this section is based on a0 = 1, a1 = −1, a2 = 0.

For the other set of values of ai, the fault location equation can be derived analogously.

As per the Equation (3.11), derived in Section 3.2.1, following expression could be obtained

for the kth SCU for an AG fault:

2∑
i=0

ai∆Vi,k = ∆V0,k − ∆V1,k = − jXCk

(
I0,k − I1,k

)
=⇒

n∑
k=1

2∑
i=0

ai∆Vi,k = − j
n∑

k=1

XCk

(
I0,k − I1,k

)
(4.6)

where a0 = 1, a1 = −1, a2 = 0; XCk denotes reactance of the series capacitor in the kth SCB;

I0,k and I1,k are the zero and positive sequence currents flowing through the kth SCB.

For all the SCBs lying between the Bus S and the fault point, the current flowing through

each SCB will be same and equal to IS
i , i.e., for k ∈ [0, n], Ii,k = IS

i . Thus, the Equation (4.6)

becomes:

n∑
k=1

2∑
i=0

ai∆Vi,k = − j
(
IS
0 − IS

1

) n∑
k=1

XCk (4.7)

Similarly, for the SCBs lying between SCB and Bus R, the term
N∑

k=n+1

2∑
i=0

ai∆Vi,k could be esti-

mated from Equation (4.8).

N∑
k=n+1

2∑
i=0

ai∆Vi,k = − j
(
IR
0 − IR

1

) N∑
k=n+1

XCk (4.8)

Substituting the values of ai i.e. a0 = 1, a1 = −1, a2 = 0, and Equations (4.7), and (4.8) in
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Figure 4.4: Sequence diagram for different faults in an SCCTL: (a) AG Fault, (b) BCG Fault,
(c) BC Fault, (d) ABC Fault.
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Equation (4.5) the following is obtained:

d =

((
VS

0 − VS
1

)
−

(
VR

0 − VR
1

)
+

(
IR
0 z0 − IR

1 z1

)
l
)

+ j
(
IS
0 − IS

1

) n∑
k=1

XCk − j
(
IR
0 − IR

1

) N∑
k=n+1

XCk

z0

(
IS
0 + IR

0

)
− z1

(
IS
1 + IR

1

) (4.9)

Tt can be observed from Figure 4.4 (a) that (4.10) holds true for an AG fault.

IS
0 + IR

0 = IS
1 + IR

1 (4.10)

=⇒ IS
0 − IS

1 = −
(
IR
0 − IR

1

)
(4.11)

Substituting (4.11) in (4.9):

d =

((
VS

0 − VS
1

)
−

(
VR

0 − VR
1

)
+

(
IR
0 z0 − IR

1 z1

)
l
)
− j

(
IR
0 − IR

1

) ( n∑
k=1

XCk +
N∑

k=n+1
XCk

)
z0

(
IS
0 + IR

0

)
− z1

(
IS
1 + IR

1

)
=⇒ d =

((
VS

0 − VS
1

)
−

(
VR

0 − VR
1

)
+

(
IR
0 z0 − IR

1 z1

)
l
)
− j

(
IR
0 − IR

1

) N∑
k=1

XCk

z0

(
IS
0 + IR

0

)
− z1

(
IS
1 + IR

1

) (4.12)

All the terms on the R.H.S of the Equation (4.12) are known, thus, d could be obtained from

(4.12) for an AG fault.

Similarly, fault location equation utilizing negative sequence measurements and parameters

could be obtained as (4.13) with a0 = 1, a1 = 0, a2 = −1.

d =

((
VS

0 − VS
2

)
−

(
VR

0 − VR
2

)
+

(
IR
0 z0 − IR

2 z2

)
l
)

+ j
(
IS
0 − IS

2

) N∑
k=1

XCk

z0

(
IS
0 + IR

0

)
− z2

(
IS
2 + IR

2

) (4.13)

Therefore, the fault location result for an AG fault could be calculated from two different Equa-

tions (4.12) and (4.13). A question might arise that why not derive the fault location equation

which utilizes the positive and negative sequence component measurements and parameters,

i.e, a0 = 0, a1 = 1, a2 = −1. However, the denominator of such a equation will become zero

because of the fact that for a transmission line the positive sequence impedance is equal to its

negative sequence impedance, i.e., z1 = z2. Thus, the value of d would become indeterminate.
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4.2.2 Double-phase to ground (BCG) faults

The values of ai for a BCG fault are a0 = 1, a1 = 1, a2 = 1, as can be observed from the Table

4.1. Thus, the Equation (4.5) for a BCG fault becomes (4.14).

=⇒ d =

2∑
i=0

(
VS

i − VR
i + IR

i zil
)
−

n∑
k=1

2∑
i=0

∆Vi,k +
N∑

k=n+1

2∑
i=0

∆Vi,k

2∑
i=0

zi

(
IS
i + IR

i

) (4.14)

Using the relation derived in Equation (3.22) in Section 3.2.2, following expression could be

derived for the kth SCB.

2∑
i=0

∆Vi,k = − jXCk

2∑
i=0

Ii,k

=⇒

n∑
k=1

2∑
i=0

∆Vi,k = − j
n∑

k=1

XCk

2∑
i=0

Ii,k

 (4.15)

For all the SCBs lying between Bus S and the fault point, the current flowing through each

SCB will be equal to the IS
i , i.e., for k ∈ [0, n], Ii,k = IS

i . Since the current is equal for all the

SCBs, the term
2∑

i=0
Ii,k could be taken out of the summation and replaced with the term

2∑
i=0

IS
i in

(4.15), thus yielding the Equation (4.16).

n∑
k=1

2∑
i=0

∆Vi,k = − j
2∑

i=0

IS
i

n∑
k=1

XCk (4.16)

For the SCBs lying between fault point and Bus R, the current through each SCB will be IR
i ,

i.e., for k ∈ [n + 1,N], Ii,k = IR
i . The Equation (4.17) could be derived analogous to (4.16).

N∑
k=n+1

2∑
i=0

∆Vi,k = − j
2∑

i=0

IR
i

N∑
k=n+1

XCk (4.17)

Substituting the values of the terms
n∑

k=1

2∑
i=0

∆Vi,k, and
N∑

k=n+1

2∑
i=0

∆Vi,k from Equations (4.16) and

(4.17) in (4.14), the following expression is obtained:

d =

2∑
i=0

(
VS

i − VR
i + IR

i zil
)

+ j
2∑

i=0
IS
i

n∑
k=1

XCk − j
2∑

i=0
IR
i

N∑
k=n+1

XCk

2∑
i=0

zi

(
IS
i + IR

i

) (4.18)
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The only unknown in the Equation (4.18) is n. Considering the Figure 4.4 (b), it can be

seen that:

IS
0 + IR

0 + IS
1 + IR

1 + IS
2 + IR

2 = 0

=⇒ IS
0 + IS

1 + IS
2 = −

(
IR
0 + IR

1 + IR
2

)
=⇒

2∑
i=0

IS
i = −

2∑
i=0

IR
i (4.19)

Substituting (4.19) in (4.18), the Equation (4.20) is obtained. Since all the terms on the R.H.S

of (4.20) are known, d could be calculated from (4.20) for BCG faults.

d =

2∑
i=0

(
VS

i − VR
i + IR

i zil
)
− j

2∑
i=0

IR
i

N∑
k=1

XCk

2∑
i=0

zi

(
IS
i + IR

i

) (4.20)

4.2.3 Phase to phase (BC) faults

Though not listed in Table 4.1, the set of values of ai for BC faults remain same as that for the

BCG faults. Therefore, the fault location equation for BC faults will remain same as that for

BCG Faults, i.e., Equation (4.20).

However, the zero sequence circuit does not see the fault as shown in Figure 4.4 (c), which

implies that IS
0 + IR

0 = 0. As a result, the denominator (Dr) of the Equation (4.20) is reduced to

0 as shown through the following analysis.

Dr = z0

IS
0 + IR

0︸ ︷︷ ︸
=0

 + z1

(
IS
1 + IR

1

)
+ z2

(
IS
2 + IR

2

)
=⇒ Dr = z1

(
IS
1 + IR

1

)
+ z2

(
IS
2 + IR

2

)
(4.21)

For a transmission line, the positive and negative impedance are identical, i.e., zo = z1. Also

for a BC fault the
(
IS
1 + IR

1

)
= −

(
IS
2 + IR

2

)
, as evident from Figure 4.4 (c). In lieu of these facts

the Equation (4.21), becomes (4.22).

Dr = 0 (4.22)

Since, the denominator of the Equation (4.20) becomes 0 for a BC fault, the value of d cannot

be determined from (4.20) for a BC fault. Thus, the proposed method cannot be applied to BC

faults.
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4.2.4 Three phase faults

For a three phase fault, no combination of values of ai could be derived which would make

the term
2∑

i=0
ai∆Vi,k independent of the unknown impedance of MOV as shown in Section 3.2.4.

Thus, preventing the estimation of d using the proposed algorithm for a three phase fault.

4.2.5 The general equation

The general form of fault location equation for locating ground faults in an SCCTL with series

compensation applied at multiple locations, will be as given in (4.23) with values of ai given in

Table 4.1.

d =

2∑
i=0

ai

(
VS

i − VR
i + IR

i zil
)

+ j
2∑

i=0
aiIS

i

N∑
k=1

XCk

2∑
i=0

aizi

(
IS
i + IR

i

) (4.23)

One of the peculiar advantage of the proposed algorithm is that it directly yields d, without

depending upon the number of SCBs lying on either side of the fault as it is independent of n.

4.3 Application to double-circuited transmission lines

In case of the double-circuited transmission lines, the effect of zero sequence mutual coupling

has to be considered. The equations for zero sequence component of the voltage at fault point

from both ends of the transmission line considering zero sequence mutual coupling could be

written as:

VF
0 =VS

0 − IS
0 z0d −

n∑
k=1

∆V0,k − IS P
0 zm0d (4.24)

VF
0 =VR

0 − IR
0 z0 (l − d) −

N∑
k=n+1

∆V0,k − IRP
0 zm0 (l − d) (4.25)

where IS P
0 and IRP

0 are the zero sequence currents in the parallel transmission line measured

at Bus S and Bus R, respectively; zm0 is the zero sequence mutual impedance per unit length

between two parallel lines.
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Equating (4.24) and (4.25):

VS
0 − VR

0 − IS
0 z0d + IR

0 z0 (l − d) −
n∑

k=1

∆V0,k +

N∑
k=n+1

∆V0,k − IS P
0 zm0d + IRP

0 zm0 (l − d) = 0 (4.26)

Since the fault does not lie in the parallel transmission line, therefore IRP
0 = −IS P

0 . The Equation

(4.26) becomes:

VS
0 − VR

0 − IS
0 z0d + IR

0 z0 (l − d) −
n∑

k=1

∆V0,k +

N∑
k=n+1

∆V0,k − IS P
0 zm0l = 0 (4.27)

Since the mutual coupling phenomenon is observed only in zero sequence network, the equa-

tions for positive and negative sequence components remain unchanged. As a result, the fault

location equation becomes as (4.28) considering the effect of zero sequence mutual coupling.

d =

2∑
i=0

ai

(
VS

i − VR
i + IR

i zil
)
−

n∑
k=1

2∑
i=0

ai∆Vi,k +
N∑

k=n+1

2∑
i=0

ai∆Vi,k − a0IS P
0 zm0l

2∑
i=0

aizi

(
IS
i + IR

i

) (4.28)

It is to be noted that values of ai remain same as given in Table 4.1.

4.4 Implementation of the proposed algorithm on distributed
model of transmission line

So far, the lumped model of the transmission line has been utilized to elaborate the proposed

fault location algorithm. The usage of lumped model the transmission line offered the simplic-

ity in elaborating the principle of the fault location algorithm, at the expense of accuracy of

the algorithm. As a matter of fact, the elimination of the unknown variable n that appears in

the Equations (4.9) and (4.18) could only be eliminated from the subsequent equations due to

the usage of lumped model of the transmission line. Now, the implementation of the proposed

fault location algorithm using distributed model of the transmission line would be presented,

in order to increase the accuracy of the fault location results. However, the complexity of the

equations will increase with the usage of distributed model of the transmission line.

Figure 4.5 shows a fault located between the two SCBs at p.u. distance d as measured from

SCB1. The voltage and current are measured at Bus S and Bus R, respectively. The expression

for d could be derived in terms of ith sequence voltages and currents at Nodes M and Q as
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Figure 4.5: Fault located between two SCBs in an SCCTL containing two SCBs.

(4.29).

d =
1(

γilNQ
) tanh−1

 VQ
i cosh

(
γilNQ

)
− ZCi I

Q
i sinh

(
γilNQ

)
− VN

i

VQ
i sinh

(
γilNQ

)
− ZCi I

Q
i cosh

(
γilNQ

)
− ZCi I

N
i

 (4.29)

where i attains the value of 0, 1 and 2 for depicting zero, positive, and negative sequence

components, respectively; VQ
i and IQ

i represent ith sequence component voltage and current

phasors at Node Q; VN
i and IN

i represent ith sequence component voltage and current phasors at

Node N; ZCi and γi are the ith sequence characteristic impedance and propagation constant of

the transmission line, respectively; lNQ is the length of the transmission line between Node N

and Node Q;

Now, the voltages and currents at Nodes N and Q will have to be estimated using the

measurements at Bus S and Bus R, respectively as shown in (4.30)-(4.33).

VN
i = VS

i cosh (γilS M) − IS
i ZCisinh (γilS M) − ∆V MN

i (4.30)

IN
i = IM

i = IS
i cosh (γilS M) −

VS
i

ZCi

sinh (γilS M) (4.31)

VQ
i = VR

i cosh (γilRP) − IR
i ZCisinh (γilRP) − ∆VPQ

i (4.32)

IQ
i = IP

i = IR
i cosh (γilRP) −

VR
i

ZCi

sinh (γilRP) (4.33)

where VS
i and IS

i represent ith sequence component voltage and current phasors at Bus S; VR
i

and IR
i represent ith sequence component voltage and current phasors at Bus R; ∆V MN

i and

∆VPQ
i represent the ith sequence voltage drop across SCB1 and SCB2, respectively; lS M is the

distance between Bus S and Node M; lRP is the distance between Bus R and Node P.

Substituting the Equations (4.30)-(4.33) in (4.29), the Equation (4.34) is obtained.

d =
1(

γilNQ
) tanh−1

Ki + ∆V MN
i − ∆VPQ

i cosh
(
γilNQ

)
Ji − ∆VPQ

i sinh
(
γilNQ

)  (4.34)
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where,

Ji = VR
i sinh

(
γi

(
lRP + lNQ

))
− ZCi I

R
i cosh

(
γi

(
lRP + lNQ

))
+ VS

i sinh (γilS M) − ZCi I
S
i cosh (γilS M)

Ki = VR
i cosh

(
γi

(
lRP + lNQ

))
− ZCi I

R
i sinh

(
γi

(
lRP + lNQ

))
− VS

i cosh (γilS M) + ZCi I
S
i sinh (γilS M)

In Equation (4.34), the terms ∆V MN
i , ∆VPQ

i cosh
(
γilNQ

)
, and ∆VPQ

i sinh
(
γilNQ

)
are unknown.

It is shown in Chapter 3 that though the ith sequence voltage drop across any SCB, i.e., ∆Vi

cannot be estimated individually, but the composite sum (
2∑

i=0
ai∆Vi) could be estimated for the

values of ai given in Table 4.1. Accordingly, the Equation (4.34) is rearranged to obtain (4.35).

2∑
i=0

aiJitanh
((
γilNQ

)
d
)
−

2∑
i=0

ai∆VPQ
i sinh

(
γilNQ

)
tanh

(
γilNQd

)
︸                                          ︷︷                                          ︸

I

−

2∑
i=0

aiKi −

2∑
i=0

ai∆V MN
i︸        ︷︷        ︸

II

+

2∑
i=0

ai∆VPQ
i cosh

(
γilNQ

)
︸                        ︷︷                        ︸

III

= 0 (4.35)

Focusing our attention on the terms I and III in (4.35), it could be seen that though the term
2∑

i=0
ai∆VPQ

i could be estimated, but the composite terms
2∑

i=0
ai∆VPQ

i sinh
(
γilNQ

)
tanh

(
γilNQd

)
and

2∑
i=0

ai∆VPQ
i cosh

(
γilNQ

)
cannot be estimated with the available measurements. Therefore, ap-

proximations are needed for the terms I and III, while term II could be evaluated as it is. It

should be noted that the approximations to the terms I and III might affect the accuracy. It

might seem that the implementation of the proposed algorithm using the distributed model of

the transmission line is a self-defeating purpose, however, the simulation results show that even

with the approximations, the results obtained from distributed model based implementation of

the proposed algorithm are considerably more accurate than those obtained from the lumped

model of the transmission line.

In term I, the factor sinh
(
γilNQ

)
tanh

(
γilNQd

)
could be taken out of the summation only if

the propagation constant γi is same for all the sequences, i.e., γ1 = γ2 = γ0. However, for a

transmission γ1 = γ2, but γ0 , γ1 and γ0 , γ2. Therefore, γi is replaced with
(
γ0+γ1

2

)
in term I.

Now the term sinh
((
γ0+γ1

2

)
lNQ

)
tanh

((
γ0+γ1

2

)
lNQd

)
becomes common for all the sequences and

can be taken out of the summation, as shown in (4.36).

2∑
i=0

ai∆VPQ
i sinh

(
γilNQ

)
tanh

(
γilNQd

)
≈

[
sinh

((
γ0 + γ1

2

)
lNQ

)
tanh

((
γ0 + γ1

2

)
lNQd

)] 2∑
i=0

ai∆VPQ
i

(4.36)
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Moving on a similar lines, the term III is estimated as shown in (4.37).

2∑
i=0

ai∆VPQ
i cosh

(
γilNQ

)
≈

[
cosh

((
γ0 + γ1

2

)
lNQ

)] 2∑
i=0

ai∆VPQ
i (4.37)

Substituting Equations (4.36) and (4.37) in (4.35), the Equation (4.38) is obtained. Now,

all the variables in (4.38) are known except d, which can be obtained by solving (4.38).

2∑
i=0

aiJitanh
((
γilNQ

)
d
)
−G

2∑
i=0

ai∆VPQ
i −

2∑
i=0

aiKi −

2∑
i=0

ai∆V MN
i = 0 (4.38)

where,

G = sinh
((
γ0 + γ1

2

)
lNQ

)
tanh

((
γ0 + γ1

2

)
lNQd

)
− cosh

((
γ0 + γ1

2

)
lNQ

)
2∑

i=0

ai∆VPQ
i = − jXC2

2∑
i=0

IP
i = − jXC2

2∑
i=0

(
IR
i cosh (γilRP) −

VR
i

ZCi

sinh (γiłRP)
)

2∑
i=0

ai∆V MN
i = − jXC1

2∑
i=0

IM
i = − jXC1

2∑
i=0

(
IS
i cosh (γilS M) −

VS
i

ZCi

sinh (γiłS M)
)

It is worth noting that the fault location equation (4.38) is derived for the fault lying between

SCB1 and SCB2 in the SCCTL. Similarly, the fault location equations for the faults lying in the

sections between 1-Bus S and SCB1, 2-SCB2 and Bus R could be derived. This might lead to

a question that why three different fault location equations are needed for locating faults in dif-

ferent regions of SCCTL when the distributed model is utilized, while only one fault location

equation i.e., (4.23) was derived irrespective of the faulted region when utilizing the lumped

model. The answer lies in the fact that due to the simplicity of the lumped model of transmis-

sion line, the fault location equation for each section of the transmission line became identical

to each other. The fault location equations based on distributed model for different sections of

the SCCTL are also similar to each other. As a matter of fact, one fault location equation is

sufficient to locate the fault in all sections of the transmission line. This phenomenon has also

been illustrated through the simulation results presented in Section 4.5.

4.5 Evaluation of the proposed algorithm

A 500kV , 350km long SCCTL with series compensation applied at two locations has been

simulated in PSCAD. The transmission line and source parameters are as per given in Table

4.2. In System A configuration of the SCCTLs, a series compensation equivalent of 35%
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Table 4.2: System Parameters.

Source Impedance
Positive Seq. Zero Seq.

Sending End (Ω) 1.6 + j18.5 2.8 + j32.4
Receiving End (Ω) 1.2 + j13.8 2.1 + j24.5

Transmission Line
Positive Seq. Zero Seq.

Impedance (Ω/km) 0.0155 + j0.3719 0.3546 + j1.0670
Admittance (S /km) j4.4099×10−6 j2.7844×10−6

Figure 4.6: Presence of two SCBs in an SCCTL: (a) System A, (b) System B.
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(C = 58.22µF) is present at each terminal, while in System B, two SCBs equivalent to 35%

series compensation each are present at 30% and 70% of line length as measured from Bus S of

the SCCTL. The schematic diagrams showing System A and B configurations of the SCCTL

are shown in Figure 4.6 (a) and (b), respectively. The System A offers wider variations in the

location of fault while System B is utilized to elaborate the fact that one subroutine is sufficient

to locate the fault in the three subsections of the SCCTL which are: 1-Bus S-SCB1; 2-SCB1-

SCB2; 3-SCB2-Bus R. The load angle across the length of the SCCTL is 30◦ with Bus S

voltage leading Bus R voltage.

The CT and CVT models available in PSCAD have been utilized to measure the current

and voltage signals. The output of CTs and CVTs is passed through a 4th order filter called

anti-aliasing filter, and is then recorded with the sampling frequency of 20kHz. The recorded

voltage and current signals are imported into Matlab, where they are resampled at 3840Hz.

Thereafter, the resampled current and voltage signals are passed onto the phasor estimation

algorithm, i.e., the Cosine algorithm. The estimated phasors are then applied to the proposed

fault location algorithm to obtain the fault location results. The total time period from the

inception of the fault to the opening of the transmission line circuit breakers is assumed to be

4 cycles of the fundamental frequency. The final fault location result is obtained by averaging

the fault location results over the entire duration of the fault after discarding the 11
4 cycle worth

of results which correspond to the transient time period of the Cosine filter.

4.5.1 Relative accuracy of the proposed algorithm using lumped and dis-
tributed model of transmission lines

The total number of 88 cases covering AG and BCG faults for different locations of fault and

fault resistances have been simulated in PSCAD in System A configuration of the SCCTL.

Table 4.3 shows the error in fault location results for each of the 88 cases. It could be observed

from Table 4.3 that the proposed algorithm using distributed model consistently yields the error

below 2% except for 5 fault cases. The highest error encountered in the fault location results

obtained from distributed model of the proposed algorithm is 2.96% for a 100Ω BCG fault

located at Bus S. On the other hand, the proposed algorithm using lumped model yields the

error greater than 2% for 45 cases out of the total 88 cases. In particular, the errors yielded

by the proposed algorithm using lumped model become increasingly excessive for the high

impedance faults lying in the region of 60%-100% of the transmission line length as measured

from the Bus S. The highest errors encountered for AG and BCG faults in the results obtained

from the proposed algorithm using lumped model are 9.68%, and 9.97%, respectively. On the

other hand, the highest errors for AG and BCG faults obtained from proposed algorithm based
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Table 4.3: Error (%) in fault location results obtained from the proposed algorithm using
lumped and distributed model of transmission line for different fault scenarios in System A
configuration of the SCCTL.

Fault Fault Lumped Distributed
Type Location(%) 0Ω 10Ω 50Ω 100Ω 0Ω 10Ω 50Ω 100Ω

AG

0 0.81 0.14 2.28 2.39 0.58 0.73 2.15 2.89
10 2.04 1.74 0.90 1.11 0.64 0.68 0.13 0.82
20 2.31 2.12 1.77 2.22 0.50 0.55 0.22 0.66
30 1.85 1.69 1.46 1.97 0.40 0.48 0.27 0.58
40 0.91 0.80 0.58 0.81 0.35 0.37 0.17 0.45
50 0.23 0.33 0.71 1.22 0.32 0.28 0.13 0.10
60 1.27 1.66 2.47 3.54 0.07 0.34 0.41 0.62
70 1.95 2.35 4.00 5.73 0.45 0.25 0.46 0.91
80 2.43 2.88 4.99 7.63 0.79 0.66 0.26 1.03
90 2.36 2.92 5.26 8.94 1.01 0.93 0.14 0.89

100 1.40 2.20 4.89 9.68 1.07 1.04 0.51 0.60

BCG

0 1.04 0.41 2.34 2.23 1.40 0.70 2.37 2.96
10 2.61 2.53 1.19 1.47 1.47 1.53 0.76 0.77
20 2.67 2.69 2.02 2.56 1.55 1.53 1.11 0.38
30 1.77 1.59 1.51 2.08 1.65 1.81 1.16 0.13
40 1.16 0.06 0.31 0.91 0.63 2.09 1.01 0.18
50 0.17 0.46 1.22 1.19 0.27 0.38 0.80 0.19
60 1.06 1.39 2.97 3.81 0.94 0.69 0.69 0.75
70 2.63 2.81 4.77 6.22 0.92 0.91 0.77 1.06
80 3.48 3.69 5.54 8.24 1.00 1.17 0.07 1.22
90 3.23 3.89 5.72 9.51 1.30 1.25 0.50 1.11

100 1.68 2.70 5.26 9.97 1.28 1.21 0.51 0.80

on distributed model of the transmission line are 2.89%, and 2.96%, respectively.

It is worth noting that the acceptable limit for the error in the fault location results is 2% or

below in the commercially available numerical relays [40]. In order to achieve the performance

closer to this benchmark, the proposed algorithm needs to be implemented using distributed

model of the transmission line. Therefore, all the fault location results presented hereafter have

been obtained from the proposed algorithm based on the distributed model of the transmission

line.
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Table 4.4: Error (%) in fault location results obtained from the proposed algorithm using dis-
tributed model of transmission line for different fault scenarios in System B configuration of
the SCCTL.

Fault AG Faults BCG Faults
Location(%) 0Ω 10Ω 50Ω 100Ω 0Ω 10Ω 50Ω 100Ω

0 1.22 1.24 1.03 0.84 0.97 1.21 1.03 0.80
10 1.20 1.33 1.24 1.11 0.49 0.46 1.38 1.16
20 0.91 1.13 1.35 1.42 0.10 0.36 1.73 1.61
30− 0.49 0.75 1.34 1.61 0.62 0.77 1.96 2.01
30+ 0.47 0.55 0.47 0.17 1.64 2.08 1.55 0.39
40 0.41 0.41 0.32 0.27 0.55 2.09 1.28 0.20
50 0.41 0.37 0.19 0.15 0.23 0.40 0.97 0.26
60 0.13 0.42 0.47 0.59 0.82 0.52 0.76 0.71
70− 0.22 0.01 0.62 0.92 0.87 0.81 0.93 1.05
70+ 0.46 0.52 0.39 0.35 0.33 0.27 1.24 0.17
80 0.12 0.18 0.07 0.59 0.76 0.18 0.60 0.49
90 0.29 0.19 0.45 0.52 1.11 0.56 0.17 0.51

100 0.73 0.58 0.71 0.34 1.18 0.80 0.70 0.34

4.5.2 Sufficiency of one subroutine for fault location throughout SCCTL

In System B configuration of the SCCTL, a fault may lie between any section of the SCCTL

which are: 1-Bus S-SCB1, 2-SCB1-SCB2, 3-SCB2-Bus R. Table 4.4 shows the error (%) in the

fault location results for different locations of AG and BCG faults in System B configuration

as measured from Bus S, and for different fault resistances. However, the point worth noting

here is that the fault location results shown in Table 4.4 are yielded by only one subroutine,

which assumes that the fault is lying in the section of the SCCTL between SCB1 and SCB2.

Total of 104 cases of the fault scenarios were simulated in PSCAD. The signs ‘-’ and ‘+’ in

super scripts for the faults at 30% and 70% denote the faults lying on the left and right side,

respectively of the SCB1 and SCB2.

It could be seen from Table 4.4 that except for 3 cases, the error in the fault location results

for all other cases is below 2%. As a matter of fact, for majority of the cases the error is blow

1.5%. The 3 fault scenarios for which the error is higher than 2% are 100Ω BCG fault at 30−%,

10Ω BCG fault at 30+%, and 10Ω BCG fault at 40%,with errors are 2.01%, 2.08%, and 2.09%,

respectively. However, the only fault scenario with error higher than 2% that lies outside the

zone of the used subroutine is the BCG fault at 30−% with fault resistance 100Ω with error of

2.01%, which exceeds the commercial acceptable limit of 2% by a negligible amount. Thus,

underscoring the fact that only one subroutine of the proposed algorithm is sufficient to locate
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Table 4.5: Effect of errors in zero sequence parameters of the transmission line on the fault
location results yielded by the proposed algorithm for solid AG and BCG faults in the SCCTL.

AG Faults BCG Faults
Fault Parameter Error (%) Parameter Error (%)

Location (%) 0% 5% 10% 15% 0% 5% 10% 15%
0 0.83 0.41 0.05 0.05 1.40 0.88 0.44 0.06

20 0.50 0.29 0.12 0.12 1.55 1.20 0.90 0.65
Error in 40 0.35 0.26 0.18 0.18 0.63 0.42 0.23 0.05

Zero Seq. 60 0.07 0.02 0.13 0.13 0.94 0.95 0.99 1.03
80 0.79 0.78 0.78 0.78 1.00 0.85 0.75 0.68

100 1.07 0.76 0.49 0.49 1.28 0.88 0.55 0.27

the faults in the SCCTL, irrespective of the faulted section of the SCCTL.

4.5.3 Effect of errors in zero sequence parameters of the transmission
line

In order to observe the effects of imperfect estimation of zero sequence parameters of the

transmission line on the accuracy of the proposed algorithm, the deliberate errors of 5%, 10%,

and 15% are introduced in zero sequence parameters of the transmission line, and the variation

in the fault location results is noted as shown in Table 4.5. The maximum error noted for

AG faults is 1.07% when the fault is located at 100% line length, while for BCG faults the

maximum error of 1.55% is observed when the fault is located at 20% line length. Out of the

total 48 cases, the error higher than 1% is observed in only 7 cases. The most significant point

to note here is that the errors in all cases is below the industrially accepted limit of 2% [40].

Another metric to observe the immunity of the proposed algorithm to the error in zero

sequence parameters of the transmission line is the variation in the error in fault location results

as the error in zero sequence transmission line parameters changes. For example, for the case of

AG fault at 100% line length, when the error in the zero sequence parameters is increased from

0% to 15% the error in fault location results decreases from 1.07% to 0.49%. The significance

of this observation lies in the fact that with over the course of change in error from 0% to

15%, the variation in the fault location result has only been 0.58% between 1.07% to 0.49%.

Similarly, for an AG fault at 60% line length, the maximum variation in the fault location results

is 0.11% between 0.02% and 0.13% as the error in transmission line parameters changed from

0% to 15%. From the above discussion, it could be concluded that the proposed algorithm is

relatively immune to the error in the zero sequence parameters of the transmission line.
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Table 4.6: Effect of CT and CVT error on the error in fault location results (%) yielded by the
proposed algorithm for solid faults in the SCCTL.

Fault Fault Error in Fault CT Error (%) CVT Error (%)
Type Location Location with Bus S Bus R Bus S Bus R

(%) zero in CT\CVT 2% 5% 2% 5% 2% 5% 2% 5%
error (%) ∠0° ∠3° ∠0° ∠3° ∠0° ∠3° ∠0° ∠3°

AG

0% 0.83 0.81 0.80 0.83 0.24 0.83 0.83 0.83 0.80
20% 0.50 0.85 1.09 0.41 0.83 0.50 0.50 0.50 0.46
40% 0.35 0.90 1.04 0.06 1.39 0.35 0.35 0.35 0.34
60% 0.07 0.56 0.59 0.36 1.41 0.07 0.07 0.08 0.09
80% 0.79 0.42 0.19 1.07 1.52 0.79 0.79 0.79 0.76
100% 1.07 0.85 0.47 1.05 1.04 1.07 1.07 1.08 1.07

BCG

0% 1.40 1.37 1.33 1.42 0.82 1.40 1.40 1.39 1.35
20% 1.55 1.88 2.06 1.47 0.02 1.55 1.55 1.54 1.47
40% 0.63 1.17 1.30 0.32 1.22 0.63 0.63 0.63 0.60
60% 0.94 0.36 0.43 1.30 2.36 0.94 0.94 0.94 0.91
80% 1.00 0.51 0.73 1.24 1.75 1.00 1.00 0.99 0.93
100% 1.28 1.05 0.96 1.26 1.23 1.28 1.28 1.29 1.27

4.5.4 Sensitivity to CT and CVT errors

Another potential source of error that might affect the performance of the proposed algorithm

is the error in signal measurements, i.e., CT and CVT error. The magnetizing current, leakage

reactance and relay burden are some of the factors that limit the accuracy of the instrument

transformers. The occurrence of a fault introduces considerable amount of transients into the

current and voltage signals. As a result the instrument transformers are unable to faithfully

replicate the primary side measurements at the secondary side especially under fault conditions.

In order to observe the effect of errors emanating from CT and CVT, two sets of deliberate

error have been added to the estimated current and voltage phasors of the faulted phases. The

two sets of the errors that have been used in this section are: 1- 2% error in phasor magnitude

and no error in phase angle; 2- 5% error in phasor magnitude, and 3° error in phase angle.

Each set of error is applied separately to Bus S and Bus R current and voltage phasors, which

are then passed onto the proposed fault location algorithm. The fault location results for each

scenario has been listed in Table 4.6.

It could be observed that addition of error in CT measurements affects the fault location

results relatively more than the errors in CVT measurements. For example, for an AG fault at

40% line length the error in fault location result without any CT\CVT error is 0.35%. When

an error of 2%∠0° is added to CT measurement at Bus S and Bus R the errors in fault location
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result become 0.90% and 0.06%, respectively. When an error of 5%∠3° is introduced to Bus S

and Bus R CT measurements, it produces the errors of 1.04% and 1.39%, respectively. How-

ever, when the same errors are added to the CVT measurements to either Bus S or Bus R, the

error in fault location results remains at 0.35% or very close to it (=0.34%). This trend also

holds for all other fault scenarios including BCG faults. The highest variation in fault location

error for CVT error is noted for a BCG fault at 80% line length where the error of 5%∠3°

produces an error of 0.93% in the fault location results while the error in fault location result

is 1.00% when there is no CT and CVT error. In all of the the scenarios shown in Table 4.6,

there is only one fault scenario for which the error in the fault location result is higher than 2%

which is a BCG fault at 60% line length with 5%∠3° error in the CT measurement at Bus R.

From above discussion, it could be concluded that the proposed algorithm is highly immune

to CVT errors that could be encountered in the faulted phase. On the other hand, the effect of

CT error on the proposed algorithm is noticeable, however, the proposed algorithm is able to

maintain adequate accuracy even under considerable error in CT measurement.

4.6 Conclusion

The impedance-based fault location algorithm proposed in this chapter is the first and only one

of its kind that yields correct results for ground faults in the SCCTLs in which series com-

pensation is applied at more than one location in an SCCTL. A general case of the proposed

algorithm with N SCB locations in an SCCTL has been derived using lumped model of the

transmission line. Thereafter, the proposed algorithm has been presented for two SCBs in an

SCCTL using more accurate distributed model of the transmission line. Thereafter, the pro-

posed algorithm has been evaluated for its performance on various metrics such as equivalence

of the subroutines, the effect of errors in zero-sequence transmission line parameters, CT and

CVT measurements on the fault location results yielded by the proposed algorithm through

simulations carried out in PSCAD and Matlab.
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New MOV current measurement enabled
impedance-based fault location algorithms

5.1 Introduction

As already discussed in previous chapters, the MOV located in the faulted phase conducts

the fault current to protect SCB from the over-voltage caused by the fault current. During

the process of fault current conduction, MOV in the faulted phase starts accumulating energy

which results in the heating of the MOV. As an example, consider the Figure 5.1 which shows

the MOV accumulated energy and the MOV current. Note that the accumulated energy in an

MOV increases (see 5.1(a)) with each period of current conduction by the MOV (see 5.1(b)),

leading to abrupt heating of MOV. This process lasts till the fault is cleared by the opening

of the breakers located at the ends of the transmission line which is about 60-100ms. Any

meaningful dissipation of energy from MOV cannot be achieved irrespective of the cooling

mechanism employed in such a rapid process.

Therefore, the energy accumulated in MOV needs to be estimated to avoid the runaway

heating of MOV. The estimation of the energy accumulated in an MOV is accomplished by

measuring the current flowing through it [14] as shown in Figure 5.2. Note the presence of CT

to measure the current flowing through the MOV. It may seem from Figure 5.2 that the current

going through bypass switch and bypass gap will also be measured by the CT. However, the

bypass gap and bypass switch only conduct in case of MOV failure or the transmission line

protection failure. For ‘normal’ fault conditions, MOV alone provides over-voltage protection

to the series capacitor. The estimation of the amount of energy accumulated in an MOV using

the current flowing through it is accomplished using one of various ways listed in [14].

From the prospective of fault location, the most important point to be noted from above dis-
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Figure 5.1: Heating of MOV due to fault current conduction: (a) accumulated energy in phase-
A MOV, (b) current flowing through various elements of SCB in phase A for an AG fault.

Figure 5.2: Series capacitor bank with current transformer in the MOV branch.
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cussion is that the current flowing through MOV is measured. The measured MOV current can

be used to propose new fault location algorithms which would only utilize positive sequence

measurements and parameters of transmission line.

In this chapter, two new fault location algorithms are proposed which utilize the MOV

current measurement from the SCB bus in addition to the SCCTL terminal measurements. The

first fault location technique assumes that complete phasor information (magnitude and phase

angle) is available from the CT located in MOV branch. The second fault location algorithm

presented in this chapter is based on the scenario when only magnitude part of the phasor of

the MOV current is known. It is important to note here that for the calculation of the MOV

accumulated energy only the magnitude is needed. Therefore, in scenarios when phase angle of

the current phasor of MOV current is not available, the second fault location algorithm would

be applied. The fault location algorithm utilizing complete phasor is referred to Algorithm CP

while the algorithm based only on magnitude of phasor is called Algorithm MP.

Firstly, Algorithm CP is presented in Section 5.2. Thereafter, Algorithm MP is presented

in Section 5.3. The evaluation of the proposed algorithms through simulations carried out is

presented in Section 5.4. The conclusion of the chapter is presented in 5.5.

5.2 Algorithm CP

As shown in Figure 5.3, the presence of the SCB in an SCCTL divides the transmission line

in two sections: 1-section between Bus R and SCB; 2-section between SCB and Bus S. Any

particular fault could lie in any of the two sections. Therefore, two subroutines are run simul-

taneously for each fault scenario with each subroutine dedicated to locate the fault in ‘their’

section. It would yield us two fault location results, one from each subroutine. The correct

subroutine is then identified using the methodology presented in Section 5.2.3. As an example,

for the system shown in Figure 5.3 (a), Subroutine 1 is used for locating faults lying between

SCB and Bus R while Subroutine 2 is used to locate the fault between Bus S and SCB (Figure

5.3 (b)).

5.2.1 Subroutine 1

Consider an SCCTL with total length of l units, with SCB located at the p.u. distance of m

from Bus S. Assume a fault lying at p.u. distance d from the SCB in the section between SCB

,and Bus R, as shown in Figure 5.3 (a). Note that the polarities of CTs have also been marked

in Figure 5.3. The expression for the ith sequence component of the fault voltage (VF
i ) could be
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Figure 5.3: Faults in an SCCTL in between: (a) SCB and Bus R, (b) Bus S and SCB.

written as (5.1), using the voltage and currents at Node M.

VF
i =

(
V M

i − ∆V MN
i

)
cosh ((1 − m) γild) − Zci I

M
i sinh ((1 − m) γild) (5.1)

where i attains the value of 0, 1 and 2 for depicting zero, positive, and negative sequence

components, respectively; V M
i and IM

i represent ith sequence component voltage and current

phasors at Node M as calculated from Bus S measurements using (5.2) and (5.3), respectively;

∆V MN
i is the ith sequence voltage drop across the SCB as measured from Node M to Node

N; Zci and γi are the ith sequence characteristic impedance and propagation constant of the

transmission line, respectively; l is the total length of the transmission line; m is p.u. distance

of SCB from Bus S.

V M
i = VS

i cosh (mγil) − Zci I
S
i sinh (mγil) (5.2)

IM
i = IS

i cosh (mγil) −
VS

i

Zci

sinh (mγil) (5.3)
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Similarly, the expression for VF
i as written from Bus R will be:

VF
i = VR

i cosh ((1 − m) γil (1 − d)) − Zci I
R
i sinh ((1 − m) γil (1 − d)) (5.4)

where VR
i and IR

i represent ith sequence component voltage and current phasors at Bus R.

Equating (5.1) and (5.4) we get:

d =
1

γi (1 − m) l
tanh−1

(
VR

i cosh((1 − m) γil) − Zci I
R
i sinh((1 − m) γil) − V M

i + ∆V MN
i

VR
i sinh((1 − m) γil) − Zci I

R
i cosh((1 − m) γil) − Zci I

M
i

)
(5.5)

Now each term in (5.5) is known except ∆V MN
i . The term ∆V MN

i could be estimated using

the current measurement in MOV branch, i.e., IV . It can be observed from Figure 5.3 (a)

that the voltage drop across SCBs of phase A, B, and C can be obtained by using (5.6)-(5.8),

respectively.

∆V MN
A = − j

(
IM

A − IV
A

)
Xc (5.6)

∆V MN
B = − j

(
IM

B − IV
B

)
Xc (5.7)

∆V MN
C = − j

(
IM
C − IV

C

)
Xc (5.8)

where ∆V MN
A , ∆V MN

B , ∆V MN
C are the voltage drops across SCB in phase A, B, and C; respec-

tively. IM
A , IM

B , IM
C are the currents entering SCBs in phase A, B, and C; respectively. IV

A , IV
B ,

and IV
C represent the measured current by MOV CT’s of phase A, B, and C; respectively. Xc is

the reactance of the series capacitor in each phase.

Now, the sequence component of the voltage drop across SCB could be obtained from:
∆V MN

0

∆V MN
1

∆V MN
2

 =
1
3


1 1 1

1 α α2

1 α2 α



∆V MN

A

∆V MN
B

∆V MN
C

 (5.9)

where α = 1∠120◦.

Substituting the values of ∆V MN
A , ∆V MN

B , ∆V MN
C from (5.6)-(5.8) in (5.9):


∆V MN

0

∆V MN
1

∆V MN
2

 =
1
3


1 1 1

1 α α2

1 α2 α



− j

(
IM

A − IV
A

)
Xc

− j
(
IM

B − IV
B

)
Xc

− j
(
IM
C − IV

C

)
Xc


By performing the multiplication operation of the matrices in the above expression and utilizing
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the identity: 1 + α + α2 = 0, following expressions will be obtained:

∆V MN
0 = − j

(
IM
0 − IV

0

)
Xc (5.10)

∆V MN
1 = − j

(
IM
1 − IV

1

)
Xc (5.11)

∆V MN
2 = − j

(
IM
2 − IV

2

)
Xc (5.12)

The expressions listed in (5.10)-(5.12) can be summarized as (5.13) in more generalized form:

∆V MN
i = − j

(
IM
i − IV

i

)
Xc (5.13)

Substituting the value of ∆V MN
i from (5.13) in (5.5), the Equation (5.14) is obtained. It could

be noted that all the variables on R.H.S. of (5.14) are known, thus, d could be calculated from

(5.14).

d =
1

γi (1 − m) l
tanh−1

VR
i cosh((1 − m) γil) − Zci I

R
i sinh((1 − m) γil) − V M

i − j
(
IM
i − IV

i

)
Xc

VR
i sinh((1 − m) γil) − Zci I

R
i cosh((1 − m) γil) − Zci I

M
i


(5.14)

The total distance of the fault from Bus S could now be calculated from (5.15) where value of

d is obtained from (5.14).

DS 1 = ml + (1 − m)ld (5.15)

5.2.2 Subroutine 2

For the faults lying at p.u. distance d from SCB in the section between Bus S and SCB as

shown in Figure 5.3 (b), the equation for obtaining d could be written as:

d =
1

γiml
tanh−1

(
VS

i cosh(mγil) − Zci I
S
i sinh(mγil) − VN

i + ∆VNM
i

VS
i sinh(mγil) − Zci I

S
i cosh(mγil) − Zci I

N
i

)
(5.16)

where VN
i and IN

i represent ith sequence component voltage and current phasors at Node N as

calculated from Bus R measurements using (5.17) and (5.18), respectively; ∆VNM
i is the ith

sequence voltage drop across the SCB as measured from Node N to Node M.

VN
i = VR

i cosh ((1 − m) γil) − Zci I
R
i sinh ((1 − m) γil) (5.17)

IN
i = IR

i cosh ((1 − m) γil) −
VR

i

Zci

sinh ((1 − m) γil) (5.18)
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The only term that is unknown in (5.16) is ∆VNM
i which can be estimated using the measured

current IV , flowing through the MOV branch of the SCB. The voltage drops across Node N to

Node M in phases A, B, and C could be obtained from (5.19)-(5.21), respectively.

∆VNM
A = − j

(
IN

A + IV
A

)
Xc (5.19)

∆VNM
B = − j

(
IN

B + IV
B

)
Xc (5.20)

∆VNM
C = − j

(
IN
C + IV

C

)
Xc (5.21)

where ∆VNM
A , ∆VNM

B , ∆VNM
C are the voltage drops across SCB in phase A, B, and C as measured

from Node N to Node M; respectively. IN
A , IN

B , IN
C are the currents entering SCBs in phase A, B,

and C at Node N; respectively. It is worth noting that the sign of IV for Subroutine 2 is opposite

to that of Subroutine 1, it is due to the polarity of CT of MOV being opposite to that of IV for

Subroutine 2 while for Subroutine 1 the polarity of IV and MOV CT was same.

The sequence components of the voltage drop across Nodes M to N could be obtained from

the following equation: 
∆VNM

0

∆VNM
1

∆VNM
2

 =
1
3


1 1 1

1 α α2

1 α2 α



∆VNM

A

∆VNM
B

∆VNM
C

 (5.22)

Combining Equations (5.19)-(5.21), and (5.22) we obtain following equations:

∆VNM
0 = − j

(
IM
0 + IV

0

)
Xc (5.23)

∆VNM
1 = − j

(
IM
1 + IV

1

)
Xc (5.24)

∆VNM
2 = − j

(
IM
2 + IV

2

)
Xc (5.25)

Equations (5.23) to (5.25) in a generalized way could be written as:

∆VNM
i = − j

(
IM
i + IV

i

)
Xc (5.26)

which could be utilized in (5.16) to yield (5.27). Since, all the variables on R.H.S. of (5.16) are

known, d could be obtained from (5.27).

d =
1

γiml
tanh−1

VS
i cosh(mγil) − Zci I

S
i sinh(mγil) − VN

i − j
(
IM
i + IV

i

)
Xc

VS
i sinh(mγil) − Zci I

S
i cosh(mγil) − Zci I

N
i

 (5.27)

The total distance of the fault from Bus could now be obtained from the Equation (5.28), where
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value of d is used from (5.27).

DS 2 = ml − mld (5.28)

It should be noted that though the fault location Equations (5.14) and (5.27) could be compiled

using any of positive, negative or zero sequence parameters and measurements, exclusively.

However, only the positive sequence based fault location equations will be used to calculate

fault location results. It is due to the fact that positive sequence currents are present in all of

the fault types, and the estimated positive sequence parameters of the transmission lines are

relatively more accurate as compared to zero sequence parameters. Thus, the performance

evaluation of Algorithm CP will be performed on positive sequence based fault location equa-

tions.

5.2.3 Selection of Subroutine

For any fault scenario, each subroutine of the Algorithm CP would yield a fault location result,

and only one of the two fault location results would be accurate. Therefore, a procedure is

needed to select the ‘correct’ subroutine. One seemingly intuitive solution to this challenge

would be comparing the MOV current (IV) of the faulted phase with the current of the cor-

responding phase at each terminal of the transmission line, i.e., IS and IR. If IV is close to

IS , then the fault must lie between SCB and Bus R, and Subroutine1 would be correct. On

the other hand, if IV is closer to IR, then the fault would lie in between Bus S and SCB, and

Subroutine2 would yield correct fault location. However, this scheme would fail for the fault

scenarios where fault current is too small to force the conduction by MOV in the faulted phase.

This would be particularly true for the high impedance faults occurring far from the SCB.

Moreover, IV would be available in its phasor form, and due to the intermittent nature of IV , its

phasor would be highly oscillatory in nature as compared to IS and IR. Therefore, comparison

of IV to IS and IR for selecting the appropriate subroutine might not yield the correct results.

Therefore, the methodology for selecting the appropriate subroutine as presented in [22]

would be utilized for identifying the correct subroutine of Algorithm CP. As per the methodol-

ogy of [22], the impedance of the SCB in a faulted phase is calculated using the fault location

results of Subroutine 1 and Subroutine 2 as denoted by ZS CB
S UB1 and ZS CB

S UB2, respectively. If the

real part of either ZS CB
S UB1, or ZS CB

S UB2 is negative, then the fault location result of the corresponding

subroutine is rejected. If however, the real of both SCB impedances is positive then the imagi-

nary part of the the SCB impedances is observed. The imaginary part of the correct subroutine

would be negative, and its magnitude will be less than the reactance of the series capacitor.
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5.3 Algorithm MP

As already mentioned that in order to avoid the overheating of MOV, the energy accumulated

in the MOV is estimated by measuring the current passing through it. For the estimation of

the accumulated energy, only the magnitude of the current passing through MOV is required.

Thus, the situation may arise that only the magnitude of the MOV current phasor is available

for the purpose of fault location. The fault location algorithm that will be presented in this

section, estimates the location of a fault in an SCCTL using the magnitude of MOV current

only, and has been referred to as Algorithm MP in this thesis.

It is a known fact that SCB consists of a parallel combination of an MOV, and a series

capacitor. The MOV acts as a resistive element while conducting the fault current. Thus, the

SCB could be seen as a parallel combination of a series capacitor of known capacitance and

unknown resistance (of MOV) in the faulted phase. Though, this assumption is not completely

accurate as the series capacitor and MOV conduct alternatively during each fundamental cycle

of the fault current as could be observed from Figure 5.1 (b). Therefore, the SCB acts as:

1-a pure capacitance when series capacitor is conducting the fault current; 2-a pure resistance

for the time period MOV is conducting fault current. Now, to extrapolate above fact into

assumption that the resulting combination will be a parallel combination of known capacitance

and an unknown resistance is not entirely accurate, it nevertheless gives us a useful information

that could be used towards fault location in an SCCTL.

As in the case of Algorithm CP, the Algorithm MP would need two subroutines with Sub-

routine1 for the faults lying between SCB and Bus R, and Subroutine2 for the faults lying in

the region between Bus S and SCB. Thereafter, the correct subroutine would be selected using

specialized procedure to obtain the location of the fault in the SCCTL.

5.3.1 Subroutine1

Consider a fault scenario in an SCCTL with fault lying at p.u. distance of d from SCB between

SCB and Bus R as shown in Figure 5.4 (a). The length of the transmission line is l units with

SCB located at the p.u. distance of m from Bus S. The following relations would hold true with

reference to Figure 5.4 (a):

IM
p = IC

p + IV
p

=⇒ IC
p = IM

p − IV
p (5.29)

where p represents phase A, B, and C. IM
p represents the pth phase current at Node M; IC

p and

IV
p are the pth phase currents passing through series capacitor and MOV, respectively.
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Figure 5.4: Faults in an SCCTL in between, (a) SCB and Bus R, (b) Bus S and SCB.

The Equation (5.29) could be written as (5.30) by resolving the MOV current phasor IV
p

into its magnitude and argument.

IC
p = IM

p − |I
V
p |e

jθIV
p (5.30)

IM
p is calculated from Bus S measurements using Equation (5.3); |IV

p | is known from the MOV

current measurement. The only unknown that prevents the estimation of IC
p from (5.30) is θIV

p .

It is a known fact that for an RC parallel combination the Capacitor current will lead the current

in resistive branch by 90◦. The phasor representation of the currents IC
p , IM

p , and IV
p would be

as given in Figure 5.5. From Figure 5.5, it can be observed that:

θIV
p = θIM

p − cos−1

 |IV
p |

|IM
p |


Substituting value of θIV

p in (5.30), the Equation (5.31) is obtained which yields the value of IC
p .

IC
p = IM

p − |I
V
p |e

j
(
θ

IM
p −cos−1

(
|IV

p |

|IM
p |

))
(5.31)
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Figure 5.5: Phasor diagram depicting various currents in an SCB with respect to the voltage
drop across SCB for Subroutine1.

Consequently, the voltage drop across SCB in pth phase, i.e., ∆V MN
p could be obtained from the

following equation:

∆V MN
p = − jXCIC

p = − jXC

IM
p − |I

V
p |e

j
(
θ

IM
p −cos−1

(
|IV

p |

|IM
p |

)) (5.32)

The sequence component of the voltage drop across SCB could be obtained from (5.33).


∆V MN

0

∆V MN
1

∆V MN
2

 =
1
3


1 1 1

1 α α2

1 α2 α





− jXC

IM
A − |I

V
A |e

j
(
θ

IM
A −cos−1

(
|IV

A |

|IM
A |

))
− jXC

IM
B − |I

V
B |e

j
(
θ

IM
B −cos−1

(
|IV

B |

|IM
B |

))
− jXC

IM
C − |I

V
C |e

j
(
θ

IM
C −cos−1

(
|IV

C |

|IM
C |

))


(5.33)

Now, d would be obtained from the Equation (5.34) for the Subroutine1, where value of ∆V MN
i

is obtained from (5.33).

d =
1

γi (1 − m) l
tanh−1

(
VR

i cosh((1 − m) γil) − Zci I
R
i sinh((1 − m) γil) − V M

i + ∆V MN
i

VR
i sinh((1 − m) γil) − Zci I

R
i cosh((1 − m) γil) − Zci I

M
i

)
(5.34)
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The total distance of the fault from the Bus S by Subroutine1 (DS 1) will be given by Equation

(5.35).

DS 1 = ml + (1 − m)ld (5.35)

5.3.2 Subroutine2

For Subroutine2, consider the fault lying between Bus S and SCB at p.u. distance of d units

from SCB as shown in Figure 5.4 (b). Noting the polarity of the MOV CT and the current

direction in the MOV for faults lying between Bus S and SCB, the following expressions would

hold true at Node N:

IN
p = IC

p − IV
p

=⇒ IC
p = IN

p + IV
p (5.36)

where IN
p represents the pth phase current at Node N. IN

p is estimated from Bus R measurements

using Equation (5.18), and converting sequence currents to phase currents. The magnitude

of IV
p is also known from the SCB measurements. The Equation (5.36) could be written as

(5.37) where the only unknown quantity is θIV
p , which prevents the estimation of the IC

p and

consequently, the voltage drop across SCB ∆VNM
p .

IC
p = IN

p + |IV
p |e

jθIV
p (5.37)

For the faults lying between Bus S and SCB, and the direction of currents as shown in

Figure 5.4 (b), the phasor diagram for currents in SCB could be drawn as shown in Figure 5.6.

Now referring to the Figure 5.6, the following relationship could be derived.

θIV
p = θIN

p + π − cos−1

 |IV
p |

|IN
p |


Substituting the value of θIV

p in (5.37):

IC
p = IN

p + |IV
p |e

jθIN
p +π−cos−1

(
|IV

p |

|IN
p |

)

= IN
p − |I

V
p |e

jθIN
p −cos−1

(
|IV

p |

|IN
p |

) (
∵ e jπ = −1

)
=⇒ ∆VNM

p = − jXCIC
p = − jXC

IN
p − |I

V
p |e

jθIN
p −cos−1

(
|IV

p |

|IN
p |

) (5.38)
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Figure 5.6: Phasor diagram depicting various currents in SCB with respect to the voltage drop
across SCB for Subroutine2.
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where VNM
p is the voltage drop across Node N to Node M in pth phase.

Accordingly, the sequence component of the voltage drop, i.e., VNM
i could be obtained

from:


∆VNM

0

∆VNM
1

∆VNM
2

 =
1
3


1 1 1

1 α α2

1 α2 α





− jXC

IN
A − |I

V
A |e

j
(
θ

IN
A −cos−1

(
|IV

A |

|IN
A |

))
− jXC

IN
B − |I

V
B |e

j
(
θ

IN
B −cos−1

(
|IV

B |

|IN
B |

))
− jXC

IN
C − |I

V
C |e

j
(
θ

IN
C −cos−1

(
|IV

C |

|IN
C |

))


(5.39)

Now d would be obtained from the Equation (5.40) for the Subroutine2, where value of ∆VNM
i

is obtained from (5.39).

d =
1

γiml
tanh−1

(
VS

i cosh(mγil) − Zci I
S
i sinh(mγil) − VN

i + ∆VNM
i

VS
i sinh(mγil) − Zci I

S
i cosh(mγil) − Zci I

N
i

)
(5.40)

The total distance of the fault from the Bus S by Subroutine1 (DS 1) will be given by Equa-

tion (5.41).

DS 2 = ml − mld (5.41)

Similar to the Algorithm CP, the performance evaluation of Algorithm MP will be performed

on positive sequence based fault location equations only.

5.3.3 Selection of Subroutine

The correct subroutine for Algorithm MP is selected following the same procedure as per-

formed for the Algorithm CP as detailed in Section 5.2.3.

5.4 Evaluation of the proposed algorithms

5.4.1 Test System

The System A and System B configurations of the power system described in Section 2.7.1 have

been utilized in this chapter to validate the performance of the Algorithm CP and Algorithm

MP. The schematic diagrams of System A ,and System B configurations are shown in Figure

5.7 (a), and (b), respectively. The configuration of System A offers wider variety of the fault

scenarios to test the performance of the proposed fault location algorithms while System B is

used to show the need for different subroutines for locating faults in different sections of the
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Figure 5.7: Single-line diagram of simulated system in PSCAD; (a) System A, (b) System B.

SCCTL. The MOV current measurement at the SCB is the only additional measurement that

has been added to the power system of Section 2.7.1.

5.4.2 Accuracy and the effect of fault resistance on the Algorithm CP and
Algorithm MP

The Table 5.1 shows the error in fault location results yielded by Algorithm CP and Algorithm

MP for different fault types, fault resistances and fault locations. The fault location is measured

as percentage of the total line length as measured from Bus S. It could be observed from

Table 5.1 that for lower fault resistances (0Ω and 10Ω), the error yielded by the Algorithm

CP remains below 2% for all types of faults and locations of the fault. The highest errors

yielded by Algorithm CP for each type of low resistive faults are 1.48% for 10Ω AG fault at

80% line length, 1.84% for 0Ω BCG fault at 0% line length, 1.57% for 10Ω BC fault at 20%

line length, 1.77 % for 0Ω ABC fault at 0% line length. For fault resistance 50Ω, the errors

yielded by Algorithm CP are relatively higher than those for the low impedance fault, still the

errors are below 2% level for all the fault scenarios except one which is the error of 2.89%

for fault at 80% line length. However, as the fault resistance reaches 100Ω the errors yielded

by Algorithm CP exceed 2% level for multiple fault scenarios. The error as high as 4.26% is

observed for a 100Ω AG fault at 80% line length. The reason for this increase in error yielded
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Table 5.1: Error (%) in the fault location results yielded by Algorithm CP and Algorithm MP.

Fault Actual Fault AG Fault BCG Fault BC Fault ABC Fault
Resistance Location (%) CP MP CP MP CP MP CP MP

0Ω

0 1.11 2.17 1.84 3.18 0.83 3.59 1.77 3.00
20 0.23 7.93 0.37 8.10 0.86 9.87 0.28 6.66
40 0.28 4.59 0.44 4.37 0.54 4.28 0.16 4.17
60 0.79 1.35 0.80 1.97 1.02 1.42 0.37 2.35
80 1.48 1.00 1.07 0.01 1.44 0.71 0.53 0.74
100 1.43 1.37 1.08 0.90 1.16 1.05 0.65 0.39

10Ω

0 0.97 1.68 1.52 2.22 1.52 3.29 1.58 2.04
20 0.56 8.91 1.01 10.1 1.57 11.4 0.94 9.39
40 0.24 4.85 0.15 5.61 0.36 5.11 0.08 5.35
60 0.80 1.36 0.65 2.57 0.93 1.82 0.27 2.86
80 1.45 0.98 0.93 0.35 1.35 0.45 0.47 0.97
100 1.19 1.15 0.96 0.74 1.14 0.96 0.59 0.29

50Ω

0 0.91 1.52 1.24 1.84 1.75 2.94 1.44 1.83
20 0.92 6.30 1.10 6.51 2.12 9.08 1.73 6.80
40 0.20 3.50 0.32 5.07 0.59 6.94 0.95 5.94
60 1.47 0.30 0.62 1.78 0.43 2.82 0.12 2.84
80 2.89 2.84 1.75 1.27 1.18 0.15 0.81 0.12
100 1.91 1.92 1.85 1.85 1.34 1.27 1.62 1.62

100Ω

0 0.01 0.25 0.42 0.71 1.72 2.64 0.71 0.84
20 0.22 1.49 0.05 1.89 1.70 5.69 0.95 2.66
40 1.90 0.87 1.27 0.37 0.93 5.20 0.18 1.94
60 4.22 4.15 2.88 2.41 0.48 1.60 1.31 0.70
80 4.26 4.26 3.66 3.66 1.99 1.58 2.83 2.82
100 2.64 2.65 2.22 2.22 2.01 2.01 1.90 1.91
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Figure 5.8: The current flowing through SCB and MOV for 0Ω and 100Ω AG faults at 20%
line length: (a) total phase A current flowing through SCB, (b) current flowing through MOV
of phase A.

by Algorithm CP with increasing fault resistance is similar to the loss of accuracy of distance

relay for the high impedance fault which is due to the fact that with increase in fault resistance

the fault current decreases which makes the fault location algorithm relatively insensitive to the

location of the fault.

The Algorithm MP on the other hand yields the error higher than 2% for almost half of the

fault scenarios irrespective of the fault resistance. However, the error is extraordinarily high

for the low resistive faults lying at 20% line length. For example, the errors for AG, BCG, BC,

and ABC faults at 20% line length are 7.93%, 8.10%, 9.87%, and 6.66%, respectively. The

error then gradually decreases as the fault moves away from Bus S. Also, as the fault resis-

tance increases the error for the faults located at 20% line length also decreases. The relatively

high errors from Algorithm MP for the low impedance faults lying in the range of 20-40% line

length is due to the high MOV activity for the faults lying in that range. Since, the proposi-

tion of Algorithm MP is based on the assumption that the MOV and series capacitor form a

parallel combination during fault period, which as mentioned in Section 5.3, is not completely
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accurate as the series capacitor and MOV conduct alternatively during each fundamental cycle

of the fault current. The underlying assumption becomes erroneous whenever MOV conducts

for considerable part of the fundamental cycle. As the fault moves away from 40% line length

towards Bus R, or as the fault resistance becomes higher the conduction through MOV de-

creases which in turn improves the accuracy of the Algorithm MP as the assumption becomes

true again. Figure 5.8 shows the effect of fault resistance on the current flowing through phase

A SCB, and MOV for 0Ω and 100Ω AG faults at 20% line length. It could be seen from Figure

5.8 (a) that the total fault current flowing through phase A SCB for 100Ω AG fault is consider-

ably less as compared to 0Ω AG fault. As a result, the MOV conducts for very less time in the

case of 100Ω AG fault as compared to the case of 0Ω AG fault as evident from Figure 5.8 (b).

The magnitude of MOV current for 100Ω fault is very small as compared to that for 0Ω fault.

Thus, the higher activity in phase-A MOV for 0Ω AG fault translates into relatively higher

error in the fault location result. The waveforms of MOV current and the total current flowing

through SCB in all three phases for all the simulated fault scenarios are shown in Appendix

D. As could be observed from Appendix D, the fault scenarios for which MOV conducts for

longer time period within a fundamental cycle are the ones for which Algorithm MP yields

significant error.

Another peculiar observation that could be made from Table 5.1 is that for the high impedance

faults lying close to the Bus R, i.e., 100% line length, the errors yielded by Algorithm CP and

Algorithm MP become almost identical. This is due to the fact that the fault current flowing

through SCB for the high impedance faults located close to Bus R is not high enough for MOV

to start conduction. Therefore, the series capacitor is exclusively responsible for the conduction

of the fault current, consequently, the voltage drop across SCB as calculated by both algorithms

is equivalent. Hence, the identical fault location error is yielded by both algorithms for the high

impedance faults lying close to the Bus R.

5.4.3 Relative accuracy of the Algorithm CP, Algorithm MP, Algorithm
PM and Algorithm EM

The fault loop based fault location algorithms for SCCTLs have been discussed in Chapter 2,

while a new fault location algorithm for ground faults has been proposed in Chapter 3. Two new

fault location algorithms which use the MOV current measurement have been proposed in this

chapter. In this section, the accuracy of all the proposed impedance-based fault locations and

the existing fault loop based fault location algorithms is compared to each other for different

scenarios in System A configuration of the SCCTL.

The fault location algorithm of Chapter 3 is denoted by Algorithm PM while the existing
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Table 5.2: Comparison of the accuracy of the different fault location algorithms.

Fault Fault Fault Resistance: 0Ω Fault Resistance: 100Ω

Type Location(%) CP MP PM EM CP MP PM EM

AG

0 1.11 2.17 0.27 0.59 0.01 0.25 0.01 24.08
20 0.23 7.93 0.52 3.62 0.23 1.49 0.11 12.95
40 0.28 4.59 0.61 12.73 1.90 0.88 0.22 10.27
60 0.79 1.36 0.59 3.54 4.23 4.15 0.58 51.05
80 1.48 1.01 0.41 1.18 4.26 4.27 0.80 29.40
100 1.43 1.37 0.04 0.04 2.65 2.65 0.43 34.80

BCG

0 1.85 3.19 0.56 1.96 0.42 0.71 0.56 24.19
20 0.37 8.10 0.25 1.64 0.06 1.90 0.42 16.72
40 0.44 4.37 0.09 8.11 1.28 0.37 0.20 7.17
60 0.80 1.98 0.14 2.05 2.88 2.42 0.56 7.02
80 1.07 0.01 0.31 0.73 3.67 3.66 0.92 66.51
100 1.08 0.91 0.26 0.05 2.22 2.23 0.47 36.78

BC

0 0.83 3.60 – 1.96 1.73 2.64 – 15.97
20 0.87 9.88 – 1.64 1.70 5.70 – 9.20
40 0.54 4.28 – 10.17 0.93 5.20 – 8.91
60 1.03 1.42 – 2.08 0.49 1.61 – 43.05
80 1.44 0.72 – 0.73 1.99 1.59 – 70.39
100 1.17 1.05 – 0.05 2.01 2.01 – 26.21

ABC

0 1.77 3.01 – 1.97 0.72 0.85 – 23.68
20 0.28 6.67 – 1.66 0.95 2.66 – 14.97
40 0.16 4.17 – 5.85 0.18 1.95 – 3.46
60 0.37 2.36 – 1.96 1.31 0.71 – 13.29
80 0.53 0.74 – 0.74 2.84 2.82 – 68.50
100 0.66 0.40 – 0.04 1.91 1.91 – 36.78

algorithm fault loop based algorithms are denoted by Algorithm EM in Table 5.2. The Table

5.2 shows the fault location results obtained from each type of fault location algorithm for

solid and 100Ω faults. Since the Algorithm PM proposed in Chapter 3 provides fault location

results for only ground faults in SCCTLs, the column for fault location results for BC and

ABC by Algorithm PM remain blank. The errors over 2% in the fault location results have

been highlighted in Table 5.2.

For solid faults the Algorithm CP and Algorithm PM yield error below 2% for all the fault

scenarios. In particular, the error yielded by Algorithm PM remains below 1%. The maximum

error in the fault location results obtained from Algorithm CP in case of solid faults is 1.85%

for BCG fault at 0% line length while the maximum error yielded by Algorithm PM is 0.61%

for an AG fault at 40% line length. On the other hand the Algorithm MP and Algorithm EM
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yield error in excess of 2% for almost half of the solid fault scenarios. Another significant point

to be noted is that an excessively large error are seen in case of Algorithm MP when the fault

lies close to of 20% of the line length, while in the case of Algorithm EM the largest errors are

observed when the fault is close to 40% of the transmission line length. For example, for faults

at 20% line length the errors yielded by Algorithm MP for AG, BCG, BC, and ABC faults

are 7.93%, 8.10%, 9.88%, and 6.67% respectively. The error yielded by Algorithm EM for

faults lying at 40% line length the errors are 12.7%, 8.11%, 10.17%, and 5.85% for AG, BCG,

BC, and ABC faults, respectively. The maximum MOV activity for the fault lying at 20% line

length as explained in the Section 5.4.2 is the reason for high error in Algorithm CP. On the

other hand the reason for high error yielded by Algorithm EM for the faults lying at 40% line

length is the ‘closeness’ of the argument of the total fault current to the argument of Bus R as

explained in detail in Section 2.7.2.

As the fault resistance reaches 100Ω the error yielded by Algorithm PM still remains below

1% with maximum error of 0.92% for BCG fault at 80% line length. The Algorithm EM on the

other hand loses accuracy for virtually all of the fault scenarios with errors in excess of 10%

seen for almost all the fault scenarios. The performance of Algorithm CP and Algorithm MP

becomes almost equivalent to each other for AG and BCG faults with the fault resistance of

100Ω as the MOV activity has decreased drastically due to lower fault current. However, for the

BC and ABC faults close to 20% line length where the fault current through SCB is relatively

higher even with the fault resistance of 100Ω, the Algorithm MP still yields relatively higher

errors as compared to Algorithm CP. For example, for 100Ω BC fault at 20% line length the

errors yielded by Algorithm CP and Algorithm MP are 1.70% and 5.70%, respectively.

Thus, it could be concluded that Algorithm PM yields the most accurate fault location re-

sults, followed by Algorithm CP. Though it is worth noting that Algorithm CP is applicable

to all types of faults while Algorithm PM is only applicable to the ground faults. The Algo-

rithm MP and Algorithm EM are susceptible to higher errors. However, it is worth noting that

accuracy of Algorithm MP improves with increase in fault resistance while the accuracy of

Algorithm EM decays with increase in fault resistance.

5.4.4 Effect of errors in zero sequence parameters of the transmission
line

It has already been mentioned that the fault location equations used by both algorithms, i.e.,

Algorithm CP and Algorithm MP utilize only positive sequence parameters of the transmission

line. Therefore, the Algorithm CP and Algorithm MP would remain unaffected by the amount

of error in the zero sequence parameters of the transmission line. In order to elaborate this
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Table 5.3: Effect of errors in zero sequence parameters of the transmission line on the error in
fault location results (%) yielded by the Algorithm CP and Algorithm MP.

Algorithm CP
AG Faults BCG Faults BC Faults ABC Faults

Fault Parameter Error Parameter Error Parameter Error Parameter Error
Loc. (%) 0% 10% 15% 0% 10% 15% 0% 10% 15% 0% 10% 15%

0 1.11 1.11 1.11 1.85 1.85 1.85 0.83 0.83 0.83 1.77 1.77 1.77
20 0.23 0.23 0.23 0.37 0.37 0.37 0.87 0.87 0.87 0.28 0.28 0.28
40 0.28 0.28 0.28 0.44 0.44 0.44 0.54 0.54 0.54 0.16 0.16 0.16
60 0.79 0.79 0.79 0.80 0.80 0.80 1.03 1.03 1.03 0.37 0.37 0.37
80 1.48 1.48 1.48 1.07 1.07 1.07 1.44 1.44 1.44 0.53 0.53 0.53
100 1.43 1.43 1.43 1.08 1.08 1.08 1.17 1.17 1.17 0.66 0.66 0.66

Algorithm MP
AG Faults BCG Faults BC Faults ABC Faults

Fault Parameter Error Parameter Error Parameter Error Parameter Error
Loc. (%) 0% 10% 15% 0% 10% 15% 0% 10% 15% 0% 10% 15%

0 2.17 2.17 2.17 3.19 3.19 3.19 3.60 3.60 3.60 3.01 3.01 3.01
20 7.93 7.93 7.93 8.10 8.10 8.10 9.88 9.88 9.88 6.67 6.67 6.67
40 4.59 4.59 4.59 4.37 4.37 4.37 4.28 4.28 4.28 4.17 4.17 4.17
60 1.36 1.36 1.36 1.98 1.98 1.98 1.42 1.42 1.42 2.36 2.36 2.36
80 1.01 1.01 1.01 0.01 0.01 0.01 0.72 0.72 0.72 0.74 0.74 0.74
100 1.37 1.37 1.37 0.91 0.91 0.91 1.05 1.05 1.05 0.40 0.40 0.40

point, the deliberate errors of 10% and 15% are added to the zero sequence parameters of the

transmission lines, and the fault location results are calculated for the solid faults occurring in

the SCCTL. The fault location results so obtained are given in Table 5.3.

It could be seen from Table 5.3 irrespective of the error in the zero sequence parameters

of the transmission line, the error in fault location results obtained from Algorithm CP and

Algorithm MP remains constant. For example, a the errors in fault location results yielded by

Algorithm CP and Algorithm MP for an AG fault at 60% line length are 0.79%, and 1.36%,

respectively and remain constant for 0%, 10%, and 15% errors in the zero sequence parameters

of the transmission line. Thus, it could be concluded that the Algorithm CP and Algorithm MP

are immune to the errors in the zero sequence parameters of the transmission line.

5.4.5 Sensitivity to CT and CVT errors

In this section, the effect of CT and CVT errors on the performance of the proposed fault

location algorithms, Algorithm CP and Algorithm MP has been investigated using the System
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A configuration of the SCCTL. A deliberate errors of 5% in phasor magnitude, and 3° in phasor

angle are applied to the estimated current and voltage phasors of the faulted phases, separately.

There are three points for current measurement in the test power system which are Bus S,

Bus R, and SCB (MOV) while voltage measurement is done at two points Bus S and Bus R.

Therefore, the error of 5%∠3° is added to current measurements at Bus S, Bus R, and MOV,

while for voltage measurements the error 5%∠3° is added to the Bus and Bus R. The fault

location results obtained from Algorithm CP, and Algorithm MP after the addition of error at

different measurement points are given in Table 5.4.

It could be seen from Table 5.4 that the widest fluctuation in fault location error due to

addition of error in CT measurements is observed for the faults lying close to Bus S and when

the error lies in CT located at Bus S. For example, for a solid AG faults at 0% line length the

fault location error yielded by Algorithm CP without any CT\CVT error is 1.11%. However,

when the error of 5%∠3° is added to CT measurement at Bus S, the error in fault location result

becomes 4.74%. In the same way, the fault location result error yielded by Algorithm MP for

the same fault scenario without any CT\CVT error is 2.17%. However, with the addition of

error 5%∠3° to the current measurement at Bus S the fault location errors yielded by Algorithm

MP becomes 6.03%, thus highlighting the higher effect of error in Bus S CT on the accuracy

of Algorithm MP. Similar observations are made from BCG, BC, and ABC faults lying at 0%

line length regarding the relatively higher influence of error in CT located at Bus S on the

fluctuation of the fault location results yielded by Algorithm CP and Algorithm MP. As the

faults move away from the Bus S the effect of CT error on the fault location results decreases.

This observation is evident from the fact that the fault location error yielded by both algorithms

fluctuates in a band smaller than 1% for all the faults lying at 100% line length.

However, the introduction of error to the CTs located at Bus R and MOV does not lead

to wider variations in the fault location errors yielded by Algorithms CP and Algorithm MP.

As an example when the error 5%∠3° is added to the CTs located at Bus R and MOV for a

solid AG fault at 0% line length, the errors in fault location results become 1.93% and 1.40%,

respectively while the error in fault location results without any CT\CVT is 1.11%. The widest

variation in the fault location results yielded by Algorithm CP and caused by the error in CT

located at Bus R is found for a solid BC fault at 0% line length when the fault location error

changes from 0.83% with no CT\CVT error to 2.68% with introduction of error at Bus R CT.

Moving on similar lines it could be seen that the error in CTs located at Bus R and MOV bank

does impact the output of the fault location location algorithms, however, the effect is relatively

smaller as compared to that of the error in CT located at Bus S, especially for the fault located

at 0% line length.

The effect of CVT error on the fault location results obtained from both algorithms is also
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Table 5.4: Effect of CT and CVT error on the error in fault location results (%) yielded by the
Algorithm CP and Algorithm MP for solid faults in the SCCTL.

Algorithm CP
Fault Fault Error in Fault Error in CT Error in CVT
Type Location Location without Bus S Bus R MOV Bus S Bus R

(%) error in CT\CVT

AG

0 1.11 4.74 1.93 1.40 2.31 1.01
40 0.28 1.94 1.82 0.90 1.49 1.10
60 0.79 0.13 1.35 1.05 0.67 0.31

100 1.43 1.92 1.31 1.44 0.79 1.42

BCG

0 1.85 5.49 2.65 2.08 1.53 1.63
40 0.44 1.49 1.43 1.55 1.34 0.56
60 0.80 0.26 1.01 1.50 0.65 0.54

100 1.08 1.59 0.98 1.16 0.53 1.08

BC

0 0.83 4.28 2.68 1.58 4.43 1.26
40 0.54 1.50 1.75 1.68 1.70 0.73
60 1.03 0.45 1.38 1.81 0.88 0.70

100 1.17 1.72 1.08 1.30 0.47 1.31

ABC

0 1.77 5.73 2.39 1.99 1.78 1.39
40 0.16 1.66 0.93 1.38 0.87 0.63
60 0.37 0.12 0.45 1.12 0.20 0.20

100 0.66 1.17 0.57 0.72 0.15 0.66

Algorithm MP
Fault Fault Error in Fault Error in CT Error in CVT
Type Location Location without Bus S Bus R MOV Bus S Bus R

(%) error in CT\CVT

AG

0 2.17 6.03 2.99 2.18 1.26 2.07
40 4.59 7.58 3.06 3.04 3.37 5.98
60 1.36 2.47 0.73 0.62 1.46 1.84

100 1.37 1.84 1.26 1.41 0.74 1.37

BCG

0 3.19 7.01 4.01 3.18 0.19 2.98
40 4.37 7.30 3.26 2.24 3.45 5.38
60 1.98 3.14 1.58 0.78 2.10 2.24

100 0.91 1.36 0.84 1.01 0.35 0.91

BC

0 3.60 7.61 5.37 3.80 1.66 4.02
40 4.28 7.21 2.98 2.18 3.10 5.56
60 1.42 2.56 0.89 0.22 1.54 1.76

100 1.05 1.56 1.01 1.19 0.35 1.20

ABC

0 3.01 7.12 3.64 3.01 0.54 2.63
40 4.17 6.99 3.23 1.98 3.44 4.96
60 2.36 3.52 2.07 1.08 2.51 2.54

100 0.40 0.82 0.35 0.51 0.11 0.40
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higher for when the error is applied to CVT located at Bus S and the fault lies close to Bus

S. For example, the fault location error yielded by Algorithm CP changes from 0.83% when

there is no error in the measurements to 4.43% when the error 5%∠3° is added to the CVT

measurements at Bus S for a solid BC fault at 0% line length. For the same fault scenario,

the error yielded by Algorithm MP change from 3.60% when there is no measurement error

to 1.66% when the error of 5%∠3° is added to Bus S CVT measurements. Another example

depicting the same phenomenon is the solid BCG fault at 0% line length when the fault location

error yielded by Algorithm MP changes from 3.19% to 0.19% when error of 5%∠3° is added

to CVT measurement at Bus S. Similar to the case of CT error, the effect of CVT error at Bus

S on the performance of both fault location algorithms lessens as the fault moves closer to Bus

R.

On the other hand, the effect of error in CVT located at Bus R on the performance of

both algorithms is relatively lower when compared to the effect of Bus S CVT error. It is

evident from the fact that when the error is added to CVT at Bus R the observed changes

in fault location error are less than 1% for all the fault scenarios. For example, for a solid BC

fault at 0% line length the error yielded by Algorithm CP changes from 0.83% when there is no

CT\CVT error to 1.26% when the error 5%∠3° is added to the Bus R CVT. Similar, observation

regarding the effect of Bus R CVT error on the output of Algorithm CP, and Algorithm MP

could be made from all other fault scenarios shown in Table 5.4.

Thus, it could be concluded from the above discussion that when SCB is present at Bus S

terminal of the transmission line then the Algorithm CP and Algorithm MP become susceptible

to error in Bus S measurements, particularly for the faults lying closer to Bus S.

5.4.6 Selection of subroutines

If the SCB is located anywhere in the SCCTL apart from its terminals, the dedicated subrou-

tines are needed to locate the fault in each section of the SCCTL. For example, in System B

configuration as shown in Figure 5.7 (b), one subroutine would assume the fault to be located

between Bus S and SCB and will yield a fault location result. Similarly, the other subroutine

will yield a fault location result assuming the fault is located between SCB and Bus R. Thus,

arises the need to select the ‘correct’ subroutine and to discard the ‘wrong’ subroutine.

The different fault scenarios are simulated in System B configuration, with faults between

0-50−% line length as measured from Bus S lying between Bus S and SCB, while faults be-

tween 50+-100% line length as measured from Bus S lying between SCB and Bus R. The

Tables 5.5, and 5.6 show the fault location results obtained from both subroutines of Algorithm

CP, and Algorithm MP, respectively. The real and imaginary parts of impedance of the SCB
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Table 5.5: The selection of subroutine for Algorithm CP

Fault Actual Subroutine1 Subroutine2
Type Fault Estimated Estimated

Location Fault Loc. < (ZS CB) = (ZS CB) Fault Loc. < (ZS CB) = (ZS CB)
(%) (%) (Ω) (Ω) (%) (Ω) (Ω)

AG

0 70.51 -45.7 -155.6 1.45 14.7 -83.0
20 91.36 -88.0 -170.4 21.05 17.1 -84.9
40 108.60 -153.7 -217.6 40.05 22.2 -85.8
50− 116.89 17.5 -283.8 49.06 2.93 -86.0
50+ 49.71 27.2 -73.5 17.99 180.6 -226.5
60 59.48 24.6 -78.9 8.99 118.4 -239.2
80 78.98 18.4 -87.5 9.68 18.8 -217.7

100 98.93 14.7 -90.5 29.89 -25.9 -169.5

BCG

0 70.1 -58.4 -85.7 1.11 22.4 -93.5
20 90.01 -64.9 -93.7 20.71 27.4 -87.3
40 108.31 -83.3 -117.6 39.78 31.1 -77.3
50− 117.17 -88.3 -137.1 49.38 32.1 -72.0
50+ 49.44 31.9 -60.6 18.23 11.2 -233.8
60 59.30 31.2 -65.1 9.15 -22.3 -202.9
80 79.09 28.7 -74.6 9.79 -50.7 -144.7

100 99.14 25.0 -85.6 30.11 -62.7 -106.6

BC

0 70.13 -6.87 -90.7 1.09 13.5 -99.4
20 89.74 -19.5 -95.7 20.44 24.9 -92.2
40 107.99 -29.3 -121.7 39.44 30.7 -79.6
50− 116.90 -25.6 -143.1 49.09 32.1 -72.8
50+ 49.33 31.9 -58.3 18.33 88.8 -208.2
60 59.14 31.3 -62.7 9.30 39.9 -186.5
80 78.81 29.2 -71.5 9.52 -3.84 -135.9

100 98.86 25.6 -80.7 29.82 -8.98 -102.0

ABC

0 69.72 -10.2 -92.0 0.70 27.4 -86.4
20 89.58 -26.2 -103.6 20.28 32.1 -77.5
40 108.16 -40.1 -136.9 39.63 33.9 -66.6
50− 117.16 -40.6 -164.7 49.38 34.0 -60.9
50+ 49.76 32.9 -56.9 17.94 55.5 -172.8
60 59.67 32.1 -62.9 8.80 25.3 -156.4
80 79.55 28.7 -74.9 10.25 -3.92 -121.8

100 99.49 22.4 -86.5 30.48 -7.64 -98.03
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Table 5.6: The selection of subroutine for Algorithm MP.

Fault Actual Subroutine1 Subroutine2
Type Fault Error Error

Location Fault Loc. < (ZS CB) = (ZS CB) Fault Loc. < (ZS CB) = (ZS CB)
(%) (%) (Ω) (Ω) (%) (Ω) (Ω)

AG

0 70.57 -45.8 -155.8 1.40 15.1 -83.6
20 90.55 -86.3 -167.7 21.75 17.4 -86.1
40 102.15 -133.2 -181.2 38.56 22.0 -90.7
50− 104.01 15.8 -242.9 46.49 2.2 -79.2
50+ 53.60 22.4 -79.9 9.02 133.6 -209.2
60 62.13 20.7 -83.5 4.08 98.1 -225.6
80 79.78 16.4 -89.3 12.55 13.9 -208.2

100 99.06 13.8 -91.2 31.07 -26.0 -166.4

BCG

0 69.66 -58.0 -85.0 0.68 20.7 -96.8
20 84.61 -61.5 -82.5 18.78 24.3 -93.4
40 89.83 -77.7 -68.0 36.06 26.6 -84.7
50− 79.04 -89.6 -25.2 44.90 27.2 -79.4
50+ 53.42 28.4 -64.4 25.43 -93.1 -129.9
60 62.36 27.9 -68.3 11.74 -55.5 -150.7
80 80.41 26.3 -76.2 19.17 -54.4 -124.3

100 99.39 23.7 -85.9 33.01 -61.3 -101.9

BC

0 70.61 -6.9 -91.4 0.56 14.0 -103.7
20 85.78 -19.7 -87.2 18.32 23.8 -99.5
40 89.97 -39.9 -72.1 35.61 28.1 -88.5
50− 78.60 -65.9 -29.4 44.62 29.1 -81.7
50+ 53.24 30.1 -63.5 38.87 -144.8 -103.4
60 61.98 29.6 -66.7 23.85 -58.0 -111.4
80 79.83 28.1 -73.4 21.68 -19.0 -109.4

100 99.03 25.1 -81.3 34.43 -10.3 -94.2

ABC

0 68.55 -10.1 -90.2 0.23 27.6 -89.9
20 82.30 -26.0 -87.1 18.34 31.5 -83.7
40 88.45 -47.6 -75.1 36.04 32.5 -74.6
50− 86.58 -64.9 -54.5 45.14 32.4 -69.3
50+ 53.41 30.4 -61.9 31.42 -75.3 -83.4
60 62.58 29.6 -67.2 13.67 -19.5 -112.0
80 81.01 26.6 -77.8 20.20 -13.1 -103.1

100 99.86 21.1 -88.0 33.64 -8.4 -93.1
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in the faulted phase, as calculated using fault location results of both subroutines of Algorithm

CP, and Algorithm MP, are also given in the Tables 5.5, and 5.6. For AG faults, the impedance

of phase A SCB is given while for BCG, BC, and ABC faults the impedance of phase B SCB

is given.

To find the correct subroutine, first of all the real part of the SCB impedance is observed.

The subroutine whose SCB impedance has negative real part is immediately discarded and the

result of subroutine whose SCB impedance has positive real part is regarded as the correct

fault location result. For example, it could be seen from Table 5.5 that for an AG fault at

40% line length Subroutine1 of Algorithm CP yields the fault location result as 91.36% while

Subroutine2 of Algorithm CP yields the fault location result as 21.05%. The real part of the

impedance of the faulted phase SCB calculated by Subroutine1 is -88.0Ω while that calculated

by Subroutine2 is 17.1Ω. Therefore, the result of Subroutine2, i.e., 21.05% is selected as the

correct fault location result.

In case the real part of the impedances of the faulted phase SCB calculated by both sub-

routines is positive, then the imaginary part of the SCB impedances has to be observed. The

imaginary part of the correct subroutine would be negative, and its magnitude will be less than

or equal to the reactance of the series capacitor. One such example is the BCG fault at 50+% of

the line length where Subroutine1 of Algorithm CP yields the result as 49.44% with real part

of SCU impedance as 31.9Ω, while Subroutine2 of Algorithm CP yields the result as 18.23%

with real part of SCB impedance as 11.2Ω. Looking at imaginary parts of SCB impedances it

could be observed that the imaginary part of SCB impedance yielded by Subroutine1 is -60.6Ω

which is negative, and its magnitude is less than 91Ω, while that yielded by Subroutine2 is

-233.8Ω which is negative, but its magnitude is quite large as compared to 91Ω. Therefore, the

result of Subroutine1 of Algorithm CP, i.e., 49.44% is regarded as correct fault location result.

The correct subroutine for Algorithm CP, and Algorithm MP for all other fault scenario

could be identified by using the above shown procedure. The correct subroutines of Algorithm

CP and Algorithm MP have been highlighted in Tables 5.5 and 5.6, respectively.

5.5 Conclusion

In this chapter, two new faults location algorithms have been presented which utilize the MOV

current measurement from SCB. The first proposed fault location algorithm utilizes the com-

plete phasor, i.e., phasor magnitude and phase angle of the measured MOV current for the

purpose of fault location. The second proposed fault location algorithm uses only phasor mag-

nitude of the measured MOV current. Both of the proposed fault location algorithms are in-

dependent of the zero sequence parameters of the transmission line. As the presence of SCB
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in an SCCTL splits the transmission line into two sections, both of the proposed fault location

algorithms need a dedicated subroutine for locating the fault in each section of the transmis-

sion line. The process for identifying the correct subroutine which is based on the proposition

of [22], is presented in the chapter. The simulations carried out in PSCAD and Matlab have

been utilized to verify the performance of the proposed fault location algorithms on various

metrics such as the effect of error in CT\CVT measurements, error in zero sequence param-

eters of the transmission line on the performance of the proposed algorithms. The accuracy

of the proposed algorithms has been compared to that of the algorithm proposed in Chapter 3,

and the fault loop-based fault location algorithm of [22]. The criteria for selecting the correct

subroutine has been elaborated through simulations.



Chapter 6

Fundamentals: Traveling wave-based
fault location algorithms

6.1 Introduction

The occurrence of fault in a transmission line acts as an application of a step voltage at the

point of fault. This sudden application of step voltage produces the traveling waves which start

traveling from the fault point towards each end of the transmission line. As a matter of fact, the

traveling wave is the mechanism through which any ‘incident’ gets ‘communicated’ through

the transmission system. For example, assume that a fault occurs at distance d kilometers away

from one of the terminals of the transmission line at time t = 0s, where s denotes second. Let

the propagation speed of traveling wave in the transmission line be u kilometers per second.

The traveling wave generated at fault point would reach that particular end of the transmission

line at t = d
u s. For the time period between t = 0s to t = d

u s, the source at the terminal remains

‘oblivious’ to the fact that a fault has occurred in the transmission line and keeps supplying the

steady state current to the transmission line. At the time t = d
u s the traveling wave arrives at the

source, and then source ’reacts’ to the fault by making the changes to the voltage and current

at its terminal.

A key inference that could be drawn from the above discussion is that if time taken by the

traveling wave to arrive at a terminal of the transmission line from the fault point is known then

the distance of the fault could be easily calculated. This is what forms the basis of the traveling

wave-based fault location algorithms. It led to the advent of traveling wave-based fault loca-

tion algorithms. The application of the concept of traveling waves for the distance protection

of transmission lines was first proposed in [29] in 1983. Thereafter, numerous fault location

algorithms for conventional as well as series capacitor compensated transmission lines have

121
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been proposed (SCCTLs) [28], [30], [31]. However, the practical application of the traveling

wave-based fault location algorithms did not happen until about late 2015, when Schweitzer

Engineering Laboratories introduced SEL-T400L. This delay between the proposition and im-

plementation of the traveling wave-based fault location algorithms is due to the fact that the

traveling waves travel at the speeds which are close to the speed of light, and to obtain an

acceptable accuracy of the fault location results a very high sampling frequency is required.

Higher the sampling frequency, higher will be the accuracy of the the fault location results.

However, the technological barriers have limited the sampling frequency to 1 MHz in commer-

cial products as reported for SEL-T400L. The sampling frequency of 1MHz will reduce the

uncertainty in the fault location results to 300 meters. However, most of the numerical relays

used in the power systems have sampling frequency below 5kHz. With the introduction of high

sampling frequency relay like SEL-T400L, the interest in traveling wave-based fault location

algorithms has re-emerged.

In this chapter, the fundamental concepts forming the basis of the traveling wave-based

fault location algorithms for SCCTLs such as the modeling of transmission lines for traveling

wave, detection of a traveling wave, types of traveling wave-based fault location algorithms etc.

are discussed. The Section 6.2 presents the background to the theory of traveling waves and

modeling of transmission line, while Section 6.3 presents the introduction of wavelet trans-

formation which is used for the detection of traveling waves in the measured signals. The

two types of existing traveling wave-based fault location algorithms, i.e., single-ended, and

double-ended fault location algorithms are explained in Section 6.4.

6.2 Modeling of the transmission line

The transmission line is usually considered as an inductive component when modeling a power

system, and it holds true for the relatively slower events in the power systems with the time

period of few tens of milliseconds. However, when analyzing the traveling waves in a transmis-

sion line which travel at the speed close to that of light, the steady state models of transmission

line cannot reflect the behavior of the transmission line properly. Highly detailed and accu-

rate models of the transmission line have been proposed in literature [43]. However, Bergeron

model, which assumes that the line is lossless is relatively simpler to analyze, and could be

used for studying the first few traveling waves following a fault in a transmission line. In the

following section, the equations representing traveling waves in a transmission line are derived

which further lead to the proposition of Bergeron model of the transmission line.

Figure 6.1 shows an infinitesimally small section of a lossless transmission line of length

dx located at the distance of x units from the Bus S. In Figure 6.1, k represents α, β, or γ modes;
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Figure 6.1: Representation of a lossless line using a series of lumped elements.

vk and ik represent the kth mode instantaneous voltage and current, respectively at point x units

away from Bus S; Lk and Ck represent the kth mode inductance per unit length, and capacitance

per unit length of the transmission line, respectively.

In Figure 6.1, the voltage drop across the infinitesimally small section is given by:

∂vk = −Lk∂x
∂ik

∂t

Rearranging the above equation we get equation (6.1).

∂vk

∂x
= −Lk

∂ik

∂t
(6.1)

Similar equation could be written for the current flowing through the infinitesimally small

section:

∂ik = −Ck∂x
∂vk

∂t

=⇒
∂ik

∂x
= −Ck

∂vk

∂t
(6.2)

The equations (6.1) and (6.2) are mutually coupled and are famously known as ‘Telegrapher’s

Equations’. By combining both equations the term ik could be eliminated, resulting in:

∂2vk

∂t2 =
1

LkCk

∂2vk

∂x2

=⇒
∂2vk

∂t2 −
1

LkCk

∂2vk

∂x2 = 0 (6.3)
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Figure 6.2: Voltage and current in a transmission line along with the traveling waves.

The general solution for equation (6.3) is

vk(x, t) = Gk

(
x −

t
√

LkCk

)
+ Fk

(
x +

t
√

LkCk

)
(6.4)

In equation (6.4), the term Gk

(
x − t

√
LkCk

)
represents the wave traveling in forward direction

while the term Fk

(
x + t

√
LkCk

)
denotes the wave traveling in the backward direction. By substi-

tuting (6.4) in (6.2), the wave equation for the kth mode current could be obtained as:

ik(x, t) =
1

Zck
Gk

(
x −

t
√

LkCk

)
−

1
Zck

Fk

(
x +

t
√

LkCk

)
(6.5)

where Zck =

√
Lk
Ck

represents the kth mode characteristic impedance of the transmission line.

A well-known fact that voltage at any point in the transmission line is the summation of the

forward and backward traveling waves while current is equal to the difference of the forward

and backward traveling waves divided by the characteristic impedance of the transmission line,

could be verified from (6.4) and (6.5), respectively.

It can also be derived from (6.4) and (6.5) that:

Gk

(
x −

t
√

LkCk

)
=

vk(x, t) + ik(x, t)Zck

2
(6.6)

Fk

(
x +

t
√

LkCk

)
=

vk(x, t) − ik(x, t)Zck

2
(6.7)

Now let us focus our attention at Bus R of the transmission line as shown in Figure 6.2. At

Bus R, the following equations would hold true with reference to the equations derived in (6.4)
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and (6.5):

GR
k (t) + FR

k (t) = vR
k (t)

GR
k (t) − FR

k (t) = ZckiR
k (t)

where GR
k and FR

k are kth-mode forward and backward propagating waves at Bus R, respectively;

iR
k and vR

k are the kth-mode current and voltage at Bus R, respectively.

If the time taken by a traveling wave to traverse whole of the transmission line is τ time

units, then the backward propagating wave present at Bus R (FR (t)) was present at Bus S τ

time units ago, as forward traveling wave (GS
k (t − τ)). Therefore, the above equations become:

GR
k (t) + GS

k (t − τ) = vR
k (t) (6.8)

GR
k (t) −GS

k (t − τ) = ZckiR
k (t) (6.9)

Subtracting (6.9) from (6.8) we obtain:

2GS
k (t − τ) = vR

k (t) − ZckiR
k (t)

=⇒
2GS

k (t − τ)
Zck

=
vR

k (t)
Zck
− iR

k (t) (6.10)

Moving on similar lines, an equation for the Bus S could be derived as:

2GR
k (t − τ)
Zck

=
vS

k (t)
Zck
− iS

k (t) (6.11)

The equivalent model of a transmission line that describes the model derived in equations (6.10)

and (6.11) is shown in Figure 6.3, which is known as Bergeron model of transmission line.
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Figure 6.3: The Bergeron model of transmission line.

6.3 Wavelet transform

For the application of the traveling wave-based fault location algorithms, the arrival of a travel-

ing wave at the terminal of the transmission line needs to be detected. The arrival of a traveling

wave at transmission line terminals manifests itself as a sudden change in voltage and current

signals. The two types of measured signals, i.e., voltage, and current are available for sensing

the arrival of the traveling wave. However, the voltage transformers being highly inductive

in nature, offer high impedance to high frequency components (like traveling wave) of the

measured voltage. On the other hand, the current transformers are able to reproduce the high

frequency components at their secondary side with relatively smaller attenuation. Therefore,

the current signal is often used to detect the arrival of a traveling wave by the fault location

algorithms found in literature.

After the selection of the type of signal, i.e., current signal, the next factor that needs to be

considered is the selection of an appropriate signal processing technique. The Fourier trans-

form depicted mathematically by (6.12), is an excellent tool for analyzing stationary signals.

However, the kernel e− jωt in (6.12) keeps oscillating till infinite time, therefore, any local in-

formation or change with respect to time cannot be sensed using Fourier transform [42].

F { f (t)} =

∫ ∞

−∞

f (t) e− jωt (6.12)

This shortcoming of Fourier transform could be overcome by using short-time Fourier trans-

form (STFT) which gives both frequency and time information. The trade-off between the

frequency and time information obtained depends on the size of window used for implement-
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Figure 6.4: Mexican-hat wavelet.

ing STFT. However, another type of signal processing technique which has been widely used

in the existing fault location algorithms and is better suited to detect the traveling waves is

Wavelet transform originally proposed in [44].

A wavelet is an oscillating function localized in time with its mean equal to zero. For

example, a wavelet called Mexican-hat wavelet as shown in Figure 6.4 is obtained from the

expression given in (6.13) with σ = 0.001. It is so called due to its shape resembling a Mexican

hat. Note that the waveform is localized between the time interval of -0.004s to 0.004s.

ψ(t) =
2

√
3σπ

1
4

(
1 −

( t
σ

)2
)

e−
t2

2σ2 (6.13)

The integral form of continuous wavelet transformation of function f is given in (6.14):

Wψ

[
f
]
(a, b) =

∫ ∞

−∞

f (t)
1
√
|a|
ψ

(
t − b

a

)
dt (6.14)

where ψ (t) is the mother wavelet function; ψ (t) represents the conjugate of ψ (t). a is the

scaling factor while b is the translation factor where a, b ∈ R and a , 0. The factor 1
√
|a|

is used

for energy normalization across the different scales.

As the scaling factor a changes, the width of wavelet also changes as shown in Figure 6.5.

For a < 1 the width of the resulting wavelet is the ‘compressed version’ of the mother wavelet

(corresponding to higher frequencies). Also the resulting wavelet becomes highly localized in

time. For example, in Figure 6.5 (a) when the value of a is 0.5, it is compressed as compared
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Figure 6.5: Time dilation of Mexican-hat wavelet and corresponding Fourier transform for
different values of a: (a) and (b) with a < 1 (a = 0.5), (c) and (d) with a = 1, (e) and (f) with
a > 1 (a = 2).
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to the wavelet with a = 1 or a = 2 as shown in Figures 6.5 (c) and (e), respectively. For a > 1

the width of the wavelet increases (corresponding to lower frequencies). Also, the Fourier

transform of the wavelets show that for lower value of a the wavelet becomes more sensitive to

the higher frequencies as compared to the wavelets with the higher value of a (see Figures (b),

(d), and (f)). Depending upon the requirement a signal can be analyzed at different resolutions

by varying the value of a. Generally, the wavelet with smaller scaling factor are ideal for

detecting the traveling wave in the measured signal. The translation factor b is utilized to move

the wavelet window across the signal to be analyzed.

Most of the modern power system protective relays and fault locators utilize sampled sig-

nals, therefore, it requires us to utilize the Discrete Wavelet Transform (DWT). DWT could be

obtained from its continuous counterpart by discretizing a and b. The variables a and b are

discretized by substituting a = am
0 , and b = nb0am

0 where a0(> 1) and b0(> 0) are fixed real

values, while m and n are integers [42]. Also, the time variable t has been replaced with the

sample number, k.

ψm,n (k) =
1√
am

0

ψ

(
k − nb0am

0

am
0

)
(6.15)

The values of a0 = 2, and b0 = 1 are commonly used as they result in a binary dilation of

2m and a dyadic translation of n2m [42]. Thus, the most common expression that is used for

finding DWT becomes:

Wψ

[
f
]
(m, n) =

∑
k

f (k)
1
√

2m
ψ

(
k − n2m

2m

)
(6.16)

6.3.1 An Example: Singularity detection through DWT

Figure 6.6 shows the DWT of a 60Hz signal with noise level of 3%. It can be seen from Figure

6.6 (a) that abrupt changes occur in 60Hz sinusoid at around the time instances of 16ms, 32ms,

and 54ms. Correspondingly, a spike is observed in the DWT of the 60Hz signal whenever the

singularity is encountered as can be seen from Figure 6.6 (b). The wavelet function Symlet-4

is used for carrying out the transformation. Thus, DWT could be utilized to detect the arrival

of the traveling waves from the signals measured at the transmission line terminals.
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Figure 6.6: Singularity detection through DWT: (a) abrupt changes occurring in 60Hz sinu-
soidal signal with noise level of 3%; (b) DWT of the waveform of (a).

6.4 Existing traveling wave-based fault location algorithms

The modeling of the transmission line for traveling wave, and the signal processing for de-

tecting the traveling waves have been discussed so far. Now, let us focus our attention on the

fault location algorithms for SCCTLs based on the traveling wave theory. The traveling wave-

based fault location algorithms relate the time of arrival of a traveling wave at a terminal of

the transmission line to the distance of the fault from that terminal of the transmission line.

The traveling wave-based fault location algorithms for SCCTLs could be broadly categorized

as: 1-single-ended traveling wave-based fault location algorithms; 2-double-ended traveling

wave-based fault location algorithms. Single-ended fault location algorithms utilize the mea-

surements from only one terminal of the transmission line while double-ended fault location

algorithms utilize the measurements from both terminals of the transmission line.
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Figure 6.7: Diagram of an SCCTL with fault lying between Bus S and SCB.

6.4.1 Double-ended traveling wave-based fault location algorithms

The double-ended fault location algorithms utilize the time instance of arrival of the first trav-

eling wave at each terminal of the transmission line. Consider the fault scenario depicted in

Figure 6.7 where a fault is located at an unknown distance d units from the Bus S. The SCB

is located m units away from Bus S. The total length of the transmission line is l units. The

occurrence of the fault in a transmission line produces traveling waves at the fault point which

propagate towards both ends of the transmission line. Now the time taken by the traveling

wave to reach Bus S from the fault point will be tS = d
uk

, where uk is the speed of the kth mode

traveling wave. Similarly, the time taken by the traveling wave to reach Bus R will be tR = l−d
uk

.

Now it should be noted that a part of the traveling wave which is moving towards Bus R might

get reflected from SCB which lies in the way, however, the time of arrival of the traveling wave

at Bus R remains unaffected by the presence of SCB in the way.

Now subtracting tR from tS we obtain (6.17).

∆t = tS − tR =
2d − l

uk

=⇒ d =
l + uk∆t

2
(6.17)

The fault location result d could thus be obtained from (6.17). It should be noted that if the

traveling wave reaches Bus S before Bus R, then ∆t is negative, and fault will lie between 0

units to l
2 units as measured from Bus S. On the other hand, if traveling wave reaches Bus

R before Bus S then ∆t is positive, and fault will lie between l
2 units to l units as measured

from Bus S. If both reach at the exact same time interval then ∆t will be zero and the fault lies

exactly at the mid point of the transmission line. For the external faults ∆t will either be l
uk

or − l
uk

. Therefore, for the external faults, the double-ended algorithm would yield 0 units or l

units as the fault location result, which would be discarded if the relay has picked up the fault

as an external fault.
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It could be seen that the underlying principle of double-ended fault location algorithms is

straight forward. However, the accuracy of time synchronization between the measurements

from both terminals of the transmission line becomes a critical factor governing the accuracy

of the fault location algorithm. As an example, consider a scenario with fault located exactly in

the middle of the transmission line. The ∆t is supposed to be zero in this case. If however the

measurements from each end of the transmission line are not perfectly synchronized ∆t would

attain some finite value which would introduce an error in the fault location result yielded by

double-ended fault location algorithm. Since, the traveling waves travel at the speeds close

to that of the light, the synchronization error of 1µs would incur an error of 300 meters in

the fault location results. The single-ended fault location algorithms on the other hand do not

require synchronization of the measurements, which makes the usage of single-ended traveling

wave-based algorithms an attractive avenue of locating faults in an SCCTL.

6.4.2 Single-ended traveling wave-based fault location algorithms

Single-ended traveling wave-based fault location algorithms as the name suggests utilize the

measured signals (usually current) from only one end of the transmission line. A single-ended

traveling wave-based fault location algorithm estimates the distance of the fault by using the

time difference between the arrival of the first two traveling waves arriving at that terminal of

the transmission line where the fault locator is located. Apart from the time difference between

first two successive traveling-waves, a single-ended fault location algorithm also needs the

information regarding the point from where the second traveling got reflected before arriving

at the terminal of the SCCTL.

It is a known fact that any traveling wave would keep propagating in the transmission line

till it encounters any point of discontinuity, which could be the fault point, terminal of the

transmission line, series capacitor etc. in a faulted SCCTL. At the point of discontinuity the

incident traveling wave splits into two parts, one which gets reflected in the reverse direction

and the other which gets transmitted from that point onwards in the direction of the incident

wave. Thus, the second traveling wave that would arrive at Bus S could be a wave reflected

from any of the above mentioned points of discontinuity. The question might arise: “Why the

point of reflection of the second traveling wave is needed?”.
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Figure 6.8: Schematic diagram showing a fault in an SCCTL between Bus S and SCB.

To elaborate this point, let us consider the fault scenario shown in Figure 6.8 where a fault

is located between Bus S, and SCB at a distance of d units away from Bus S in an SCCTL of

length l. The SCB is located at distance of m units from Bus S. The fault locator is located

at Bus S. As there would be multiple traveling waves traveling along the entire span of the

SCCTL, the methodology used to label the traveling waves should be noted before proceeding

further. The traveling wave is denoted by the symbol G followed by letters in subscript and

superscript. The letter k in subscript denotes the mode of the wave, i.e., α, β, or γ. The first

letter in the superscript represents the point of origin of the wave, the last letter identifies the

final detection point, while all the letters in between represent the points where the wave got

reflected. The superscript letters ‘F’, ‘S ’, ‘R’, and ‘C’ represent fault point, Bus S, Bus R, and

point of SCB coupling, respectively. As an example, a wave named GFRS
α would represent an

α-mode traveling wave which originated at fault point, traveled towards Bus R, gets reflected

from Bus R, and then gets detected at Bus S.

After the occurrence of the fault in an SCCTL, the first traveling wave that would arrive at

Bus S will be GFS
k . The distance covered by GFS

k will be d units, as shown in Figure 6.8. The

second traveling wave arriving at the Bus S could be reflected from any one of the multiple

possibilities. Various types of traveling waves that could arrive at Bus S as second traveling

wave are given as follows:

1. GFS FS
k : If the second traveling wave arriving at Bus S is GFS FS

k , then the distance traveled

by this wave would be 3d units. Assuming that the time difference between the succes-

sive waves is ∆t, the distance of fault from Bus S (d) would be calculated as follows:

∆t =
3d
uk
−

d
uk

=⇒ d =
uk∆t

2
(6.18)

2. GFCS
k : Let the second wave that arrives at Bus be GFCS

k . The distance covered by wave
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GFCS
k will be 2m − d units. If the time difference between the arrival of the first and

second wave is ∆t then the d could be found as per:

∆t =
2m − d

uk
−

d
uk

=⇒ d = m −
uk∆t

2
(6.19)

3. GFRS
k : Though for the fault scenario shown in Figure 6.8, the traveling wave GFCS

k would

always reach Bus S before GFRS
k , however, for the faults lying close to Bus R (not shown

in Figure 6.8), the second wave that arrives at Bus S will be GFRS
k . Since, the location of

fault is unknown before the fault locator yields the result, the arrival of GFRS
k as second

traveling wave at Bus S is a possibility. The distance covered by GFRS
k will be 2l−d units

(=l− d + l). If the time difference between the arrival of these waves is ∆t then following

equation would hold true:

∆t =
2l − d

uk
−

d
uk

=⇒ d = l −
uk∆t

2
(6.20)

From above discussion it can be seen that depending upon which type of traveling wave ar-

rives at Bus S after GFS
k , only one of the fault location equations given in (6.18) - (6.20) would

be ‘correct’. Therefore, the single-ended traveling wave-based fault location algorithms for

SCCTLs would require some form of mechanism to find the point of discontinuity in the SC-

CTL from which the second traveling wave arriving at the fault locator got reflected. Different

publications have tried to overcome this challenge in different ways.

The authors of [30] have proposed to put the fault locator at the SCB bus, and to integrate

directionality into the fault locator using incremental changes in voltage and current measure-

ments. Due to the location of the fault locator at SCB, the traveling wave reflected from SCB

will not be detected by the fault locator. For the fault lying in the section between SCB and

Bus R, the directional element of the fault locator will reject all the waves that get reflected

from Bus S and then reach the fault locator. Therefore, the fault locator will only accept that

traveling wave which either has been reflected from fault point, or from Bus R. In order to

decide the point of reflection between Bus R, and fault point, the authors of [30] have proposed

to use the polarity of the second traveling wave with respect to the first traveling wave to arrive
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at fault locator. However, this scheme of fault location would fail when the terminal that is

closer to the fault (Bus R in this case) has a group of other transmission lines connected to it

as shown later in the next chapter. Similar conclusion could be arrived at for the faults lying in

the section between Bus S and SCB.

Though, the algorithm proposed in [31] is for non-compensated transmission lines, how-

ever, the observations of [31] have been considered. The authors of [31] have claimed that for

ungrounded faults, the remote end of the transmission line do not cause significant reflection

of the traveling waves. Therefore, the traveling waves detected at local terminal will be the

traveling waves that were reflected from the fault point. For the grounded faults, the authors

of [31] claim that for the faults lying between 0-50% of the line length as measured from Bus

S the ground mode traveling waves arriving at Bus S would have significant peaks while for

the faults between 50-100% the ground mode traveling waves reaching Bus S will show no

significant peaks. Thus, if the significant peaks are observed in ground mode traveling waves

then the second wave to arrive at Bus S was reflected from the fault point. On the other hand,

if no significant peaks are observed in ground mode traveling waves then the second wave

to arrive at Bus S will be the one reflected from remote terminal, i.e., Bus R. However, this

methodology would not have high reliability for the faults lying in the region around 50% line

length as measured from Bus S as the change in the peaks of the ground mode traveling waves

will change gradually as fault moves from first half to the second half of the transmission line.

A distance protection scheme is presented in [29] which works on the principle of estimat-

ing the distance of fault from the given terminal of the transmission line. The authors of [29]

have also used the polarity of the reflected wave to determine whether it got reflected from

remote bus or from fault point. However, the proposed technique is only presented for only

one configuration of the transmission line in which only an inductive source is present at each

terminal of the transmission line. As a matter of fact when an inductive source is present at

one terminal while a group of transmission lines is present at the other terminal, the proposed

protection scheme of [29] would fail as shown later.

In [28] it is presented that the series capacitor would not reflect any traveling wave rather

it acts as short circuit for the traveling waves. Thus, there are only two types of points of

discontinuity in the SCCTL from where the second traveling wave arriving at Bus S would have

been reflected, which are fault point and the remote bus. The authors of [28] also proposed to

use the polarity of the second traveling wave arriving at the fault locator to determine whether

it was reflected from the fault point, or from the remote terminal of the transmission line. Three

configurations of SCCTLs as shown in Figure 6.9 have been studied in [28], and the polarity

of the second wave with respect to the first wave in each configuration has been utilized to

identify the second traveling wave as follows:
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Figure 6.9: Schematic diagram showing various configurations of SCCTL studied in [28]: (a)
Configuration1, (b) Configuration2, and (c) Configuration3.
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1. In Configuration1, an inductive source is present at each end of a transmission line as

shown in Figure 6.9 (a). In this configuration if the polarity of the second traveling

wave arriving at Bus S (fault locator) is same as that of the first traveling wave, then the

second traveling wave was reflected from the remote end of the SCCTL, i.e., Bus R. If

however the polarity of the second traveling wave is opposite to that of the first one then

the second traveling wave was reflected from the fault point.

2. In Configuration2 as shown in Figure 6.9 (b), a group of transmission lines is present at

each end of the SCCTL. In this configuration if the polarity of first traveling wave is same

as that of second traveling wave, it implies that the second traveling wave was reflected

from the fault point. In case the polarities of first two traveling waves are opposite to

each other then the second traveling was reflected from Bus R.

3. In Configuration3, a source is present at Bus S while at Bus R the SCCTL is connected

to other transmission lines as shown in Figure 6.9 (c). Authors contend that the polarity

of the waves reflected from fault point and the Bus R will have the same polarity among

themselves, and, thus, cannot be distinguished from each other by comparing their polar-

ities to the polarity of the first traveling wave to arrive at Bus S. Therefore, the algorithm

of [28] is not applicable to Configuration3 of the SCCTL.

It is worth noting that the recognition of the second traveling wave using polarity of the trav-

eling wave as proposed in [30], [31], [29], and [28] are all based on the observation of the

EMTD simulations. No mathematical analysis regarding the effect of a certain type of discon-

tinuity on the polarity of the reflected wave has been presented. Also, most of the publications

have focused on only one configuration of the transmission line in which an inductive source

is present at each terminal of the transmission line which in fact is very rare configuration.

The only publication to consider the other configurations of SCCTL is [28]. The effect of the

fault resistance, the level of series compensation, the type of electrical component connected

at terminal of the transmission line on the reflected traveling wave has not been studied in the

existing publications. Thus, there arises a need to conduct a detailed mathematical analysis of

the traveling wave-based fault location algorithms.

6.5 Conclusion

In this chapter, an introduction to the application of the traveling wave theory to the process

of fault location has been presented. The most popular technique for detection of the traveling

waves, i.e., DWT has also been explained in this chapter. Thereafter, the concepts underlying
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the double-ended, and single-ended traveling wave-based fault location algorithms have been

explained. The key challenge facing the single-ended fault location algorithms is identified,

which is identification of the point of discontinuity in the SCCTL from which the second trav-

eling wave to arrive at fault locator is reflected. Thereafter, different methodologies to identify

the reflection point of the second traveling wave, as employed by the different publications

have been investigated. It is found that the existing publications are based on the empirical

observations from EMTP simulations of the traveling waves. Moreover, the existing solutions

have been proposed for a specific configuration of a transmission line. The need to have a

detailed mathematical analysis of the single-ended algorithm has been identified, which could

open further avenues for the improvement to the existing algorithm or for the proposition of

new fault location algorithms based on traveling wave theory.
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A new traveling wave-based single-ended
fault location algorithm

7.1 Introduction

It was stated in the previous chapter that the single-ended traveling wave algorithms do not

require synchronization of the measurements from both ends of the SCCTL, which is a signif-

icant advantage over the double ended fault location algorithms. The single-ended algorithms

yield fault location results by noting the time difference between the first and second traveling

waves arriving at the fault locator. However, as explained in detail in Section 6.4.2, the single-

ended algorithms also need to identify the point of discontinuity in the SCCTL from where the

second traveling wave to arrive at fault locator was reflected. The path taken by the authors of

the existing single-ended algorithms like [28], [29], and [30] is to compare the polarity of the

second traveling wave to arrive at the fault locator to the polarity of the first traveling wave. It

is postulated in [29], and [30] that the polarity of the second traveling wave to arrive at fault

locator will be opposite to that of the first traveling wave if the second traveling wave was

reflected from the fault point. On the other hand, the polarity of the second and the first wave

will be same if the second traveling wave was reflected from the remote terminal of the SC-

CTL. However, the only configuration of SCCTL studied in [29], and [30] is the one in which

only an inductive source is present at both ends of the SCCTL, which as we know is a very

rare configuration of the SCCTL. In [28], three configurations of the SCCTL are studied: in

Configuration1, only an inductive source is present at each end; in Configuration2, a group of

transmission lines is present at each end; Configuration3 has an inductive source on the one

end and a group of transmission lines on the other. It is mentioned in [28] that the fault could

be located for the Configuration1 and Configuration2 by comparing the polarity of the first and

139
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second traveling wave to arrive at fault locator. However, this methodology cannot be applied

to Configuration 3 [28].

It is aimed in this chapter to mathematically analyze the phenomenon of the reflection

of traveling waves from different types of discontinuities in the SCCTL and to identify the

configurations of the SCCTL to which the single-ended traveling wave-based fault location

algorithms in their current form remain inapplicable. After the identification of the cause of

inapplicability of the single-ended traveling wave-based algorithms to specific configurations

of the SCCTL, it is aimed to develop a new single-ended traveling wave-based fault location

algorithm which is applicable to all the configurations of SCCTL.

Firstly, the mathematical expressions for the traveling waves reflected from different point

of discontinuities are derived in Section 7.2. Thereafter, different configurations of the SCCTL

are investigated for the applicability of the single-ended fault location algorithm in Section 7.3

in lieu of the presented mathematical analysis. The simulated test power system is described

in Section 7.4. The proposed single-ended traveling wave-based algorithm which is applicable

to all configurations of the SCCTLs is given in Section 7.5 along with simulated results. More

simulation results for the proposed algorithm are given in Appendix D. The conclusion of the

chapter is given in Section 7.6.

7.2 Mathematical analysis of the reflected traveling waves

The various points of discontinuity in an SCCTL are: SCB, transmission line terminals, and

fault point. In this section, the analytical expressions are derived for the reflected traveling

wave when a incident wave hits each type of discontinuity. The incident wave used for the

analysis is the step function traveling wave, which is due to the fact that occurrence of the fault

is analogous to the application of a step voltage at the fault point.

7.2.1 Series capacitor bank

The equivalent model of an SCCTL is shown in Figure 7.1, where Zck is the characteristic

impedance of the transmission line. GS C
k represents the wave traveling from Bus S to SCB,

while GCS
k represents the wave traveling from SCB towards Bus S. Similarly, GRC

k represents

the wave traveling from Bus R to SCB, while GCR
k represents the wave traveling from SCB to

Bus R. Co denotes the capacitance of the series capacitor. The presence of Zck on both sides

of capacitor represents the presence of transmission line on both sides of the SCB. vCS
k and iCS

k

represent kth mode voltage and current at Bus S side of SCB, respectively; vCR
k and iCR

k represent

kth mode voltage and current at Bus R side of SCB, respectively. τCS and τCR represent the time
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Figure 7.1: Equivalent model of SCCTL for traveling wave analysis.

taken by the traveling wave to travel between SCB to Bus S, and SCB to Bus R, respectively.

It should be noted that the sources at both ends of the SCCTL are not shown. For the sake of

simplicity of the analysis, the initial value of all the traveling waves in the transmission line are

assumed to be zero. However, for a general case the existing values of the traveling waves can

be superimposed on the values of the traveling waves found out through the presented analysis

without affecting the accuracy of the analysis.

Now question may arise that why MOV has not been included in the model. Actually,

MOV starts conducting only when the voltage across series capacitor has reached the protective

threshold value of the MOV which usually does not occurs during first few traveling wave

reflections in the transmission line. Since, the time period of our interest for fault location only

stretches to the first two traveling waves reaching the fault locator, the MOV is considered as

non-conducting for the analysis carried out and not included in the modeling.

Let us assume that a step voltage in kth-mode, vS
k is applied to the transmission line at Bus

S. Since the initial value of GCS
k is zero, the value of GS C

k which gets generated at Bus S will

be given by:

GS C
k =

vS
k + iS

k Zck

2
=

vS
k +

vS
k

Zck
Zck

2
= vS

k (7.1)

After the time τCS units has elapsed, the traveling wave GS C
k generated at Bus S would reach

SCB. The arrival of the wave GS C
k at SCB is equivalent of applying a step change of 2vS

k
Zck

to

the current source on Bus S side of SCB. Now the value of GRC
k is zero because no voltage

was applied to Bus R. Now assuming the instance of arrival of GS C
k at SCB as t = 0 units, the
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expressions for iCS
k and iCR

k can now be obtained as per the integral equation (7.2).

iCS
k (t) = −iCR

k (t) = −
2vS

k

2Zck + 1
Co

∫
dt

(7.2)

The solution of the integral equation (7.2) can be obtained by taking its Laplace transform.

Since the applied voltage vS
k is a step voltage, its Laplace transform becomes vS

k
s . Hence, the

Laplace transform of the equation (7.2) becomes (7.3).

iCS
k (s) = −iCR

k (s) = −
vS

k

Zck

(
s + 1

2ZckCo

) (7.3)

Now taking the Laplace inverse of (7.3), the expression for the currents iCS
k and iCR

k are obtained

as (7.4).

iCS
k (t) = −iCR

k (t) = −
vS

k

Zck
e−

t
2ZckCo (7.4)

Following similar steps the voltage vCS
k could be obtained as shown in (7.5).

vCS
k (t) = vS

k

(
2 − e−

t
2ZckCo

)
(7.5)

The voltage vCR
k can be obtained as per (7.6) using the value of iCR

k from (7.4).

vCR
k (t) = iCR

k (t) Zck = vS
k e−

t
2ZckCo (7.6)

Now all the currents and voltages shown in Figure 7.1 are known, the reflected traveling wave

from the series capacitor towards Bus S (GCS
k ), and the transmitted traveling wave from series

capacitor towards Bus R (GCR
k ) could be obtained as:

GCS
k (t) =

vCS
k + iCS

k Zck

2
= vS

k

(
1 − e−

t
2ZckCo

)
(7.7)

GCR
k (t) =

vCR
k + iCR

k Zck

2
= vS

k e−
t

2ZckCo . (7.8)

It can be observed from (7.7) that the reflected traveling wave GCS
k is a bounded exponential

with the time constant of 2ZckCo. The value of GCS
k rises from GCS

k = 0 at t = 0, to reach its

final value of GCS
k = vS

k as t approaches infinity. On the other hand, the traveling wave GCR
k

as given by (7.8) is a decaying exponential with the time constant of 2ZckCo. The wave GCR
k

decays from GCR
k = vS

k at t = 0 to GCR
k = 0 as time t tends to infinity. It is evident that for the
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Figure 7.2: Arrival of traveling waves at Bus S after a 50Ω three phase fault at 40% transmis-
sion line length from Bus S.

GCS
k to be detected from voltage and current measurements, it has to produce sharp change in

vk and ik. For this to occur, the term e−
t

2ZckCo has to decay rapidly.

For the power system described in Section 2.7.1 of Chapter 2, the α-mode time constant

2ZcαCo of the traveling wave GCS
k with Zcα = 290Ω and Co = 29.11µF becomes 0.0168838s.

In comparison, the total time taken for α-mode traveling wave to traverse the whole 350 km

line is τ = 0.0011681s. Thus, it can be observed that the term e−
t

2ZckCo is a very slowly decaying

exponential. In other words, vk and ik would change by only 6.67% till the next wave (reflected

from Bus R) reaches Bus S in 0.0011681s. Now, detecting a traveling wave with such a slowly

changing wavefront would be a major challenging through any type of signal processing in-

cluding DWT. In order to make the term e−
t

2ZckCo decay faster and to make it ‘detectable’, the

value of Co needs to be unrealistically small. As a matter of fact, the detection of traveling

wave reflected from SCB for all practical implementations of series capacitive compensation

is very unlikely.
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Figure 7.2 shows the various traveling waves detected at Bus S following a single-phase

to ground fault at 40% transmission line length from Bus S for two series compensation lev-

els: 70% and 17500%. Though the series capacitive compensation level of 17500% (Co =

0.116µF) is unrealistic, this extraordinary high level of compensation is selected to exaggerate

the amount of traveling waves getting reflected from the series capacitor. In this way, we obtain

the point in time when a traveling wave reflected from series capacitor would reach Bus S for

the 70% compensation level which otherwise could not be identified as shown through math-

ematical analysis. Any traveling wave reflected from SCB has letter ‘C’ in the superscript.

It could be observed from Figure 7.2 that any traveling wave reflected even once from SCB

during its trajectory, cannot be detected for 70% series compensation. In conclusion, it could

be inferred that series capacitor could be regarded as ‘non-existent’ or as a ‘short-circuit’ for

the purpose of fault location through traveling waves. It essentially implies that the traveling

wave-based fault location algorithms for conventional lines and SCCTLs could be applied in-

terchangeably. Thus, the claim made by authors of [28] that SCB does not reflect the traveling

waves will hold true for all the practical series compensation levels.

7.2.2 Fault point

Fault in a transmission line could be a: 1-single-phase fault, 2-double-phase to ground fault,

3-phase to phase fault, 4-three phase fault. Since any phase could be arbitrarily labeled as

phase A, B, or C, the analysis presented in this chapter is for: phase A to ground fault, phase B

to phase C to ground fault, phase B to phase C fault, and ABC fault. The traveling wave fault

location algorithms are implemented in αβγ domain while the faults occur in phase domain.

Therefore, drawing of equivalent diagram of a fault in an SCCTL is not as straightforward as

for the case of series capacitor. Thus, faults need to be analyzed in αβγ domain to find the

expressions for reflected wave from the faulted point.

The matrix for transforming phase domain quantities to αβγ domain quantities is given in

(7.9), while the matrix used for converting αβγ domain quantities to phase domain quantities

is given in (7.10). 
iA

iB

iC

 =


1 0 1

−1
2

√
3

2 1

−1
2 −

√
3

2 1



iα
iβ
iγ

 (7.9)


iα
iβ
iγ

 =
2
3


1 −1

2 −1
2

0
√

3
2 −

√
3

2
1
2

1
2

1
2



iA

iB

iC

 (7.10)
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Figure 7.3: Vicinity of the fault point in a transmission line

Now, suppose a step voltage is applied to Bus S of SCCTL and the resulting traveling

wave GS F
k is traveling towards the fault point from Bus S side. After reaching the fault point

GS F
k splits into two parts: GFS

k which gets reflected back towards Bus S; and GFR
k which gets

transmitted from fault point towards Bus R. As only Bus S is energized, the wave traveling

from Bus R to the fault point is zero, i.e.,

GRF
k = 0. (7.11)

The wave GRF
k will only attain a value after the wave GFR

k has reached Bus R and consequently,

reflected from Bus R. The only known traveling wave is GS F
k , the traveling waves GFS

k and GFR
k

will attain different values depending on the fault type as discussed below.

AG fault

At the fault point following relations would hold true for an AG fault:

vF
A = iFF

A RF (7.12)

iFF
B = iFF

C = 0 (7.13)

where vF
A represents the phase A voltage at the fault point; iFF

A , iFF
B , and iFF

C represent the cur-

rents in phase A, B, and C respectively which flow into the fault; and RF is the fault resistance.

The αβγ domain equivalent of the expression (7.12) becomes:

vF
α + vF

γ =
(
iFF
α + iFF

γ

)
RF (7.14)

It can be observed from Figure 7.3 that iFF
k = iS F

k − iFR
k , where iS F

k is the incoming kth-mode

from Bus S at the fault point; while iFR
k is the kth-mode current leaving the fault point towards
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Bus R. The expression (7.14) now becomes:

vF
α + vF

γ =
(
iS F
α + iS F

γ − iFR
α − iFR

γ

)
RF (7.15)

It is a known fact that the kth mode voltage at any point in a transmission line is the summation

of the forward and backward traveling waves at that point, while the current is given by the

difference of the forward and backward traveling waves divided by the characteristic impedance

of the transmission line. Therefore, the traveling wave equivalent of the expression (7.15)

becomes:

GS F
α + GFS

α + GS F
γ + GFS

γ =

GS F
α

Zcα
−

GFS
α

Zcα
+

GS F
γ

Zcγ
−

GFS
γ

Zcγ
−

GFR
α

Zcα
+

GRF
α

Zcα
−

GFR
γ

Zcγ
+

GRF
γ

Zcγ

 RF

(7.16)

Another point to be noted here is that the kth mode voltage at the fault point will be the

summation of traveling waves in the segment between Bus S and fault, as well as the segment

between fault and Bus R, i.e,

vF
k =GFR

k + GRF
k = GS F

k + GFS
k

=⇒ GFR
k = GS F

k + GFS
k (∵ GRF

k = 0) (7.17)

Now substituting (7.17) in (7.16), we get:

GS F
α + GFS

α + GS F
γ + GFS

γ = −2
GFS

α

Zcα
+

GFS
γ

Zcγ

 RF (7.18)

In the expression (7.18), there are two unknowns: GFS
α and GFS

γ . Thus, one more equation is

needed to solve for GFS
α and GFS

γ , which is obtained by simplifying the equation (7.13) in αβγ

domain:

iFF
B = iFF

C = 0

=⇒ −
1
2

iFF
α +

√
3

2
iFF
β + iFF

γ = −
1
2

iFF
α −

√
3

2
iFF
β + iFF

γ = 0

=⇒ iFF
β = 0 (7.19)

& iFF
α = 2iFF

γ (7.20)
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The expression (7.20) could be written as:

=⇒ iS F
α − iFR

α = 2
(
iS F
γ − iFR

γ

)
The traveling wave equivalent of the above expression becomes:

GS F
α

Zcα
−

GFS
α

Zcα
−

GFR
α

Zcα
= 2

GS F
γ

Zcγ
−

GFS
γ

Zcγ
−

GFR
γ

Zcγ

 . (7.21)

Substituting the value of GFR
k from (7.17) in (7.21), and simplifying we get:

GFS
α

Zcα
= 2

GFS
γ

Zcγ

 . (7.22)

Solving equations (7.18) and (7.22) the expressions for the waves reflected back from fault

point, i.e., GFS
α , and GFS

γ are obtained as given in (7.23) and (7.24), respectively.

GFS
α = −2

 GS F
α + GS F

γ

2 +
Zcγ

Zcα
+ 6 RF

Zcα

 (7.23)

GFS
γ = −

 GS F
α + GS F

γ

1 + 2Zcα
Zcγ

+ 6 RF

Zcγ

 (7.24)

The expressions for the transmitted waves from fault point onwards towards Bus R, i.e., GFR
α ,

and GFR
γ for an AG fault are given in (7.25) and (7.26):

GFR
α =GS F

α + GFS
α =

 Zcγ

Zcα
GS F
α + 6 RF

Zcα
GS F
α − 2GS F

γ

2 +
Zcγ

Zcα
+ 6 RF

Zcα

 (7.25)

GFR
γ =GS F

γ + GFS
γ =

2Zcα
Zcγ

GS F
γ + 6 RF

Zcγ
GS F
γ −GS F

α

1 + 2Zcα
Zcγ

+ 6 RF

Zcγ

 (7.26)

Therefore, it can be observed from equations (7.23)-(7.26) that the reflected waves, will have

opposite polarities to the incident waves while the transmitted waves will have same polarities

as that of the incident traveling waves. It may occur to the reader here that what if the traveling

waves GS F
α , and GS F

γ are of mutually opposite polarities, it might make the polarity of the

reflected waves same as that of the incident wave. However, it must be remembered that for an

AG fault GS F
α , and GS F

γ will have the same polarities.
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In β-mode, the fault current is zero for an AG fault as derived in the expression (7.19).

iFF
β = 0

=⇒ iS F
β = iFR

β

=⇒
GS F
β

Zcβ
−

GFS
β

Zcβ
=

GFR
β

Zcβ
−

GRF
β

Zcβ

=⇒
GS F
β

Zcβ
−

GFS
β

Zcβ
=

GFR
β

Zcβ
(∵ GRF

k = 0) (7.27)

It also known from (7.17) that:

GFR
β = GS F

β + GFS
β (7.28)

From equations (7.27) and (7.28) it can be concluded that:

GFS
β = 0

=⇒ GFR
β = GS F

β (7.29)

It can be observed from (7.29) that the incident wave in β-mode GS F
β is transmitted as is towards

Bus R as GFR
β , and no reflection of traveling wave takes place.

BCG fault

For a BCG fault, the following equations would hold true:

vF
B + vF

C =
(
iFF
B + iFF

C

)
RF (7.30)

iFF
A = 0 (7.31)

In αβγ domain, the expression (7.30) could be written as:

−vF
α + 2vF

γ =
(
−iFF

α + 2iFF
γ

)
RF

−vF
α + 2vF

γ =
(
−iS F

α + iFR
α + 2iS F

γ − 2iFR
γ

)
RF (7.32)

Writing the above expression in traveling wave form (7.33) is obtained.

−GS F
α −GFS

α + 2GS F
γ + 2GFS

γ =

−GS F
α

Zcα
+

GFS
α

Zcα
+

GFR
α

Zcα
−

GRF
α

Zcα
+ 2

GS F
γ

Zcγ
− 2

GFS
γ

Zcγ
− 2

GFR
γ

Zcγ
+ 2

GRF
γ

Zcγ

 RF

(7.33)
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Since, kth-mode voltage will be equal as seen from both sides of transmission line, therefore,

vF
k = GFR

k + GRF
k = GS F

k + GFS
k . With GRF

k = 0, the relation becomes GFR
k = GS F

k + GFS
k . Now

substituting the value of GFR
k in (7.33), the following expression is obtained.

−GS F
α −GFS

α + 2GS F
γ + 2GFS

γ = 2
GFS

α

Zcα
+ 2

GFS
γ

Zcγ

 RF (7.34)

Consider the expression (7.31), and transforming it into αβγ-domain, the equation (7.35) is

obtained.

iFF
A = 0

=⇒ iFF
α + iFF

γ = 0

=⇒ iS F
α − iFR

α = −iS F
γ + iFR

γ (7.35)

Substituting traveling waves in (7.35), following is obtained:

GS F
α

Zcα
−

GFS
α

Zcα
−

GFR
α

Zcα
+

GRF
α

Zcα
= −

GS F
γ

Zcγ
+

GFS
γ

Zcγ
+

GFR
γ

Zcγ
−

GRF
γ

Zcγ
(7.36)

Now substituting GFR
k = GS F

k + GFS
k and GRF

k = 0 in (7.36):

GS F
α

Zcα
−

GFS
α

Zcα
−

GS F
α

Zcα
−

GFS
α

Zcα
= −

GS F
γ

Zcγ
+

GFS
γ

Zcγ
+

GFS
γ

Zcγ

GFS
α

Zcγ
= −

GFS
γ

Zcγ
(7.37)

Solving (7.34) and (7.37) for GFS
α and GFS

γ , the following expressions are obtained:

GFS
α = −

 GS F
α − 2GS F

γ

1 + 2 Zcγ

Zcα
+ 6 RF

Zcα

 (7.38)

GFS
γ = −

 2GS F
γ −GS F

α

2 + Zcα
Zcγ

+ 6 RF

Zcγ

 (7.39)
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The expression for the traveling waves transmitted from fault point towards Bus R, i.e., GFR
α

and GFR
γ for a BCG faults are given by:

GFR
α =GS F

α + GFS
α =

2 Zcγ

Zcα
GS F
α + 6 RF

Zcα
GS F
α + 2GS F

γ

1 + 2 Zcγ

Zcα
+ 6 RF

Zcα

 (7.40)

GFR
γ =GS F

γ + GFS
γ =


Zcα
Zcγ

GS F
γ + 6 RF

Zcγ
GS F
γ + GS F

α

2 + Zcα
Zcγ

+ 6 RF

Zcγ

 (7.41)

It should be noted here that that for a BCG fault, the polarities of the waves GS F
α and GS F

γ will

be opposite to each other while their magnitudes will be equal. Therefore, the reflected waves

GFS
α and GFS

γ will have opposite signs as compared to GS F
α and GS F

γ , respectively. On the other

hand, the transmitted waves GFR
α and GFR

γ will have same polarity as GS F
α and GS F

γ , respectively.

For β-mode traveling waves in a BCG fault, following relation would hold true:

vF
B − vF

C =
(
iFF
B − iFF

C

)
RF .

Above expression is converted to αβγ-domain and simplified. The expressions for the reflected

(GFS
β ) and transmitted traveling waves (GFR

β ) in β-mode for BCG faults are obtained as shown

in (7.42) and (7.43)

vF
β = iFF

β RF

=⇒ vF
β =

(
iS F
β − iFR

β

)
RF

=⇒ GS F
β + GFS

β =

GS F
β

Zcβ
−

GFS
β

Zcβ
−

GFR
β

Zcβ
+

GRF
β

Zcβ

 RF

Since, GFR
k = GS F

k + GFS
k and GRF

k = 0, therefore, the above expression becomes:

GS F
β + GFS

β = −2
GFS
β

Zcβ
RF

=⇒ GFS
β = −

GS F
β

1 + 2 RF

Zcβ

(7.42)

The transmitted traveling wave from fault point towards Bus R is obtained as:

GFR
β = GS F

β + GFS
β =

GS F
β

1 +
Zcβ

2RF

(7.43)
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It can be seen from (7.42) and (7.43) that in β mode as well the reflected traveling wave will

have the opposite polarity to the incident wave while the transmitted traveling wave will have

the same polarity as that of the incident wave.

7.2.3 BC faults

For a BC fault, following relations would hold true:

iFF
B = −iFF

C (7.44)

iFF
A = 0 (7.45)

vF
B − vF

C = iFF
B RF (7.46)

Transforming the expression (7.44) to αβγ domain, equation (7.47) is obtained.

iFF
B = − iFF

C

=⇒ −
1
2

iFF
α +

√
3

2
iFF
β + iFF

γ =
1
2

iFF
α +

√
3

2
iFF
β − iFF

γ

=⇒ iFF
α =2iFF

γ (7.47)

Similarly, using (7.45) the expression (7.48) could be obtained.

iFF
A =0

=⇒ iFF
α + iFF

γ =0

=⇒ iFF
α = − iFF

γ (7.48)

From (7.47), and (7.48), it can be observed that:

iFF
α = 0 (7.49)

iFF
γ = 0. (7.50)
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The expression (7.49) is then converted to its traveling waves equivalent as shown in (7.51).

iFF
α = 0

=⇒ iS F
α = iFR

α

=⇒
GS F
α

Zcα
−

GFS
α

Zcα
=

GFR
α

Zcα
−

GRF
α

Zcα

=⇒
GS F
α

Zcα
−

GFS
α

Zcα
=

GFR
α

Zcα
(∵ GRF

k = 0) (7.51)

Since the α-mode voltage is same as seen from both sides of the fault, therefore following

would hold true.

GFR
α + GRF

α =GS F
β + GFS

β

=⇒ GFR
α =GS F

β + GFS
β (∵ GRF

k = 0) (7.52)

From equations (7.51) and (7.52) it can be concluded that:

GFS
α =0 (7.53)

GFR
α =GS F

α (7.54)

Similarly, it can be shown that:

GFS
γ =0 (7.55)

GFR
γ =GS F

γ (7.56)

Thus, α-mode and γ-mode traveling waves do not see a BC fault, and are transmitted as it is

towards the Bus R as shown by the equations (7.54) and (7.56). No reflection of α-mode and

γ-mode traveling waves takes place at fault point for a BC fault as shown by the equations

(7.53) and (7.55).

Now, consider the expression (7.46):

vF
B − vF

C = iFF
B RF

=⇒ −
1
2

vF
α +

√
3

2
vF
β + vF

γ+
1
2

vF
α +

√
3

2
vF
β − vF

γ =

−1
2

iFF
α +

√
3

2
iFF
β + iFF

γ

 RF

=⇒
√

3vF
β =

−1
2

iFF
α +

√
3

2
iFF
β + iFF

γ

 RF (7.57)

It is already shown in (7.49) and (7.50) that iFF
α = 0, and iFF

γ = 0, therefore, the expression
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(7.57) becomes:

vF
β = −

1
2

iFF
β RF (7.58)

The traveling wave equivalent of the above expression becomes:

GS F
β + GFS

β =
1
2

GS F
β

Zcβ
−

GFS
β

Zcβ
−

GFR
β

Zcβ
+

GRF
β

Zcβ

 RF

Since, GFR
k = GS F

k + GFS
k and GRF

k = 0, therefore the above expression becomes:

GS F
β + GFS

β = −
GFS
β

Zcβ
RF

=⇒ GFS
β = −

GS F
β

1 + RF

Zcβ

(7.59)

The β-domain traveling wave reflected from fault point (GFS
β ) for a BC fault is given by equa-

tion (7.59). The β-domain traveling wave transmitted from fault point towards Bus R (GFR
β ) for

a BC fault is given in (7.60).

GFR
β = GS F

β + GFS
β =

GS F
β

1 +
Zcβ

RF

(7.60)

It is observed from (7.59) and (7.60) that the polarity of the reflected wave is opposite to that

of the incident wave, while the polarity of the transmitted wave is same as the polarity of the

incident wave.

7.2.4 ABC faults

For an ABC fault following equations hold true:

vF
A = iFF

A RF (7.61)

vF
B = iFF

B RF (7.62)

vF
C = iFF

C RF (7.63)
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The expressions given (7.64)-(7.66) could be derived from (7.61)-(7.63).

vF
α = iFF

α RF (7.64)

vF
β = iFF

β RF (7.65)

vF
γ = iFF

γ RF (7.66)

Now transforming the equation (7.64) into its traveling wave equivalent we obtain:

vF
α =

(
iS F
α − iFR

α

)
RF

=⇒ GS F
α + GFS

α =

(
GS F
α

Zcα
−

GFS
α

Zcα
−

GFR
α

Zcα
+

GRF
α

Zcα

)
RF (7.67)

It is a known fact that GFR
α + GRF

α = GS F
α + GFS

α , and GRF
α = 0. Substituting these relations

in (7.67), the α-mode traveling wave reflected from fault point to Bus S for an ABC fault is

obtained as shown in (7.68).

GS F
α + GFS

α = −2
GFS
α

Zcα
RF

=⇒ GFS
α = −

GS F
α

1 + 2 RF

Zcα

(7.68)

The transmitted α-mode traveling wave from fault point towards Bus R for an ABC fault is

obtained as given in (7.69) using the value of GFS
α from (7.68).

GFR
α = GS F

α + GFS
α =

GS F
α

1 + Zcα
2RF

(7.69)

Moving on the similar lines, the expressions for β-mode and γ-mode traveling waves reflected

and transmitted from the fault point for an ABC fault could be obtained as shown in equations
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(7.70)-(7.73).

GFS
β = −

GS F
β

1 + 2 RF

Zcβ

(7.70)

GFR
β =

GS F
β

1 +
Zcβ

2RF

(7.71)

GFS
γ = −

GS F
γ

1 + 2 RF

Zcγ

(7.72)

GFR
γ =

GS F
γ

1 +
Zcγ

2RF

(7.73)

It is evident from equations (7.68)-(7.73) that the polarity of the reflected waves is opposite to

that of the incident waves while the transmitted waves have same polarity as that of the incident

waves.

It can thus be concluded from the above discussion that the polarity of the reflected wave

from the fault point will be opposite to that of the incident wave, while the transmitted wave

retains the polarity of the incident wave. This fact holds true irrespective of the fault type.

7.2.5 Line terminal

At the terminal of a transmission line, one of the two types of electrical components would ex-

ist: 1-a group of other transmission lines; 2-an inductive source such as generator, transformer.

The expressions for the reflected waves have been derived for each case as follows:

1. Presence of only a source at the transmission line terminal: Figure 7.4 (a) shows the

configuration of Bus R, and its equivalent circuit diagram when only an inductive source

is present at Bus R terminal of the transmission line. It can be seen from the Figure 7.4

(a) that the equivalent diagram consists of inductance as well as resistance, therefore, the

analysis has to be carried out in Laplace domain and then converted into time domain.

Assume that the traveling wave GS R
k is comprised of a step voltage vF

k in kth-mode, i.e.,

GS R
k = vF

k , and is incident on Bus R. Also, let the sinusoidal voltage of the source con-

nected at the Bus R be vT
k cos (ωt + φ), where vT

k and ω are the magnitude and angular

frequency of the inductive source. Zck is the kth mode characteristic impedance of the

transmission line, while Lo represents the inductance of the source. Now the terminal
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Figure 7.4: Schematic diagram showing various types of components connected at Bus R
terminal of the SCCTL: (a) an inductive source, (b) other transmission lines.

current in Laplace domain iR
k (s) will be given by:

iR
k (s) = −

2vF
k

s (Zck + Los)
+

vT
k cos (φ) s(

s2 + ω2) (Zck + Los)
−

vT
k sin (φ) s(

s2 + ω2) (Zck + Los)
(7.74)

Taking the Laplace inverse of the above expression, iR
k in time domain is obtained as:

iR
k (t) = −

2vF
k

Zck

(
1 − e−

Zck
Lo

t
)

+
vT

k√
Z2

ck + ω2L2
o

cos
(
ωt + φ̃

)
−

vT
k cosφ̃√

Z2
ck + ω2L2

o

e−
Zck
Lo

t

= −
2vF

k

Zck
+

vT
k√

Z2
ck + ω2L2

o

cos
(
ωt + φ̃

)
−

 vT
k cosφ̃√

Z2
ck + ω2L2

o

−
2vF

k

Zck

 e−
Zck
Lo

t (7.75)

where

φ̃ = tan−1
(
Zcksinφ − ωLocosφ
Zckcosφ + ωLosinφ

)
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Similarly, vR
k in time domain is obtained as:

vR
k (t) =2vF

k e−
Zck
Lo

t +
vT

k Zck√
Z2

ck + ω2L2
o

cos
(
ωt + φ̃

)
−

vT
k Zckcosφ̃√
Z2

ck + ω2L2
o

e−
Zck
Lo

t (7.76)

It can be seen from the expressions (7.75), and (7.76) that at t = 0: iR
k (0) = 0, while

vR
k (0) = 2vF

k ; which is typical of an open circuited transmission line. This observed

phenomenon is due to the presence of source inductance, which does not let the current

through it change abruptly, thus, acting as an open circuit at t = 0. Now, the traveling

wave originating at Bus R which travels towards Bus S, i.e., GRS
k will be given by (7.77).

GRS
k (t) =

vR
k (t) + iR

k (t)Zck

2

=vF
k

(
2e−

Zck
Lo

t
− 1

)
+

vT
k Zck√

Z2
ck + ω2L2

o

cos
(
ωt + φ̃

)
−

vT
k Zckcosφ̃√
Z2

ck + ω2L2
o

e−
Zck
Lo

t

=

 vT
k Zck√

Z2
ck + ω2L2

o

cos
(
ωt + φ̃

)
− vF

k

 −
 vT

k Zckcosφ̃√
Z2

ck + ω2L2
o

− 2vF
k

 e−
Zck
Lo

t (7.77)

Additional point that could be noted here is that the polarity of a traveling wave is decided

by the sign of the edge of traveling wave, i.e., the value of GRS
k at t = 0. Since, GRS

k (0) =

vF
k , therefore, GRS

k will have the same polarity as that of the incident traveling wave GS R
k .

2. Presence of other transmission lines at the transmission line terminal: The Figure

7.4 (b) shows the configuration of Bus R and its equivalent circuit digram with Bus R

connected to a group of n transmission lines. Zck is the kth mode characteristic impedance

of the transmission line; Zeq
ck represents the equivalent kth-mode characteristic impedance

of N-transmission lines connected in parallel ( 1
Zeq

ck
= 1

Zck1
+ 1

Zck2
+ · · · + 1

Zckn
+ · · · + 1

ZckN
). vR

k

and iR
k represent the kth-mode voltage and current at Bus R.

Let us assume that a traveling wave GS R
k traveling from Bus S towards Bus R and com-

prised of a step voltage vF
k in kth-mode is incident on Bus R, i.e., GS R

k = vF
k . iR

k and vR
k

would then be as per the expressions (7.78) and (7.79).

iR
k = −

2vF
k

Zeq
ck + Zck

(7.78)

vR
k = 2vF

k

Zeq
ck

Zeq
ck + Zck

(7.79)
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The traveling wave that gets produced at Bus R and travels towards Bus S, i.e., GRS
k will

be given by:

GRS
k =

vR
k + iR

k Zck

2
= vF

k

Zeq
ck − Zck

Zeq
ck + Zck

(7.80)

Since the Zeq
ck is the characteristic impedance of the parallel combination of the transmis-

sion lines, therefore Zeq
ck < Zck. Thus, the polarity of the GRS

k will be opposite to that of

GS R
k when a terminal of a transmission line is connected to a group of other transmission

lines. However, in an unlikely configuration when there is only one transmission line

connected at Bus R and its characteristic impedance is larger than Zck, the polarity of

reflected wave will become same as that of incident wave.

Now, the transmitted wave in nth transmission line connected at Bus R GRT
kn will be given

by:

GRT
kn =

vR
kn + iR

knZckn

2

Since all the transmission lines are in parallel, therefore, vR
kn = vR

k = 2vF
k

Zeq
ck

Zeq
ck +Zck

. Also,

iR
kn =

vR
kn

Zckn
= 2vF

k
Zeq

ck

(Zeq
ck +Zck)Zckn

. Substituting, the values of vR
kn and iR

kn in the above equation it

becomes (7.81).

GRT
kn = 2vF

k

Zeq
ck

Zeq
ck + Zck

(7.81)

It can be seen from (7.81) that the polarity of the transmitted traveling wave along nth

transmission line will be same as that of the incident traveling wave when a group of

N-transmission lines is connected at Bus R.

The polarities of the reflected and transmitted waves with respect to the polarity of the inci-

dent wave from various points of discontinuity in a transmission line as derived in the section

above are summarized in Table 7.1. The polarity of the incident wave is assumed positive for

all the cases. It should be noted that the transmitted wave when only an inductive source is

present at a transmission line terminal is ‘not available (NA)’ as there exists no medium of

transmission beyond the inductive source.
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Table 7.1: Relative polarities of the reflected and transmitted traveling waves from various
points of discontinuity in a transmission line

Type of Component Polarity
Discontinuity Connected Incident Reflected Transmitted

Wave Wave Wave

Fault Point Fault Resistance + – +

Terminal
Inductive Source + + NA

Other Transmission Lines + – +

7.3 Applicability of the single-ended algorithms to various
configurations of SCCTL

In order to locate a fault in an SCCTL using the measurements from only one terminal of the

transmission line, it is imperative to know the origin of the second traveling wave to arrive at

that terminal of the transmission line as shown in Section 6.4.2. For example, for the applica-

tion of single-ended fault location at Bus S, it needs to be identified that the second traveling

wave to arrive at Bus S is GFS FS
k or GFRS

k . If the second traveling wave arriving at fault locator

is GFS FS
k then the fault location (d) is measured using equation (6.18). If on the other hand the

second traveling wave to arrive at fault locator is GFRS
k , then d is obtained through equation

(6.20). Similar approach would be needed at Bus R as well to distinguish between GFRFR
k and

GFS R
k for the purpose of fault location. It is also worth noting that series capacitor can be re-

garded as a short circuit for traveling waves as shown in Section 7.2.1, therefore, the traveling

waves reflected from SCB could be ignored without affecting the accuracy of the fault location.

A methodology has been proposed in [28] which identifies the second traveling wave to

arrive at the transmission line terminal by comparing the polarity of the second traveling wave

to that of the first traveling wave to arrive at the same terminal. For instance, at Bus S the

algorithm of [28] would compare the polarity of the second wave to that of GFS
k , and conse-

quently identify the second wave as GFS FS
k or as GFRS

k . In this section, the methodology of [28]

is examined in lieu of the Table 7.1 for various configurations of an SCCTL as shown in Figure

7.5 (a)-(c). The limitations of the methodology presented in [28] are identified, and thereafter,

a solution is proposed to overcome those challenges based on the mathematical expressions

derived in Section 7.2. It should be noted that the traveling waves produced by the occurrence

of the fault, i.e., GFS
k and GFR

k have been assumed to have ‘+’ polarity.
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Figure 7.5: Schematic diagram showing various configurations of an SCCTL: (a) Configuration
A, (b) Configuration B, (c) Configuration C.
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1. Configuration A: In Configuration A, an inductive source is present at each end of an

SCCTL as shown in Figure 7.5 (a). The trajectories and polarities of the traveling waves

GFS FS
k , and GFRS

k in Configuration A of an SCCTL are discussed as below:

(a) GFSFS
k

and GFSR
k

i. Fault point: The traveling wave GFS
k gets generated at fault point with polarity

‘+’. GFS
k starts traveling from the fault point towards Bus S.

ii. Bus S: GFS
k arrives at Bus S with polarity ‘+’; the inductive source reflects part

of the wave GFS
k towards fault point with the same polarity as GFS

k i.e., ‘+’.

iii. Fault point: The reflected wave from Bus S arrives at fault point where it splits

into two parts, GFS FS
k which gets reflected towards Bus S with polarity ‘–’, and

GFS R
k which is transmitted towards Bus R with polarity ‘+’.

iv. A. Bus S: The traveling wave GFS FS
k arrives at Bus S with polarity ‘–’.

B. Bus R: The traveling wave GFS R
k arrives at Bus R with polarity ‘+’.

(b) GFRS
k

and GFRFR
k

i. Fault point: The traveling waves GFR
k is generated at fault point with polarity

‘+’ GFR
k starts traveling towards Bus R.

ii. Bus R: GFR
k arrives at Bus R with polarity ‘+’; the inductive source reflects a

part of the wave GFR
k towards fault point with the same polarity as GFR

k i.e., ‘+’.

iii. Fault point: The reflected wave from Bus R arrives at fault point where it

splits into two parts, GFRFR
k which gets reflected towards Bus R with polarity

‘–’, while GFRS
k is transmitted towards Bus R with polarity ‘+’.

iv. A. Bus S: The traveling wave GFRS
k arrives at Bus S with polarity ‘+’.

B. Bus R: The traveling wave GFRFR
k arrives at Bus R with polarity ‘–’.

It can be seen from above discussion that at Bus S, polarity of the traveling wave

GFS FS
k will be opposite to that of GFS

k , while that of GFRS
k is same as that of GFS

k .

Therefore, if the second traveling wave encountered at Bus S has opposite polarity

to that of the first wave, i.e., GFS
k , then the second wave is GFS FS

k and the equation

(6.18) should be employed for obtaining d. If, on the other hand, the polarity of

the second wave at Bus S is same as that of the first wave, then the second wave

is GFRS
k , and equation (6.20) should be used for calculating d. Similarly, at Bus R

the traveling wave GFRFR
k would arrive with polarity opposite to that of GFR

k , while

the wave GFS R
k would arrive at Bus R with same polarity as that of GFR

k . Therefore,

the application of [28] at Bus R would be identical to that at the Bus S. Thus, the



162 Chapter 7

algorithm of [28] can be applied at both terminals of the Configuration A of the

SCCTL.

2. Configuration B: In Configuration B, a group of transmission lines is present on each

side of the SCCTL as shown in Figure 7.5 (b). Since, the equivalent characteristic

impedances of the group of transmission lines will be smaller when compared to the

characteristic impedance of the SCCTL, the waves reflected by each terminal will be

of the opposite polarity to that of the incident waves. The trajectories and correspond-

ing changes in polarities of the waves GFS FS
k , GFRS

k , GFRFR
k , and GFS R

k , are discussed as

follows:

(a) GFSFS
k

and GFSR
k

i. Fault point: Following a fault, the traveling wave GFS
k is generated with po-

larity ‘+’ at the fault point which then travels towards Bus S.

ii. Bus S: GFS
k arrives at Bus S with polarity ‘+’, where it is split into two parts.

The polarity of the reflected part of GFS
k is reversed to ‘–’ which then travels

towards fault point. The other part of the wave GFS
k is transmitted onto the

group of transmission lines present at Bus S with the same polarity as that of

GFS
k , i.e., ‘+’.

iii. Fault point: The reflected wave from Bus S with polarity ‘–’ arrives at fault

point where it is split into two parts GFS FS
k and GFS R

k . The fault point changes

the polarity of reflected part, GFS FS
k to ‘+’ which travels towards Bus S. The

transmitted portion of the wave, GFS R
k is transmitted towards Bus R with the

same polarity as the incident wave on the fault point, i.e., ’–’.

iv. A. Bus S: The traveling wave GFS FS
k arrives at Bus S with polarity ‘+’.

B. Bus R: The traveling wave GFS R
k arrives at Bus R with polarity ‘–’.

(b) GFRS
k

and GFRFR
k

i. Fault point: The traveling wave GFR
k is generated following a fault with polar-

ity ‘+’ at the fault point which starts traveling towards Bus R.

ii. Bus R: The traveling wave GFR
k reaches Bus R with polarity ‘+’, where the

group of transmission lines reflect part of the incident wave with opposite po-

larity ‘–’ towards the fault point. The other part of the incident wave GFR
k is

transmitted with polarity ‘+’ onto the transmission lines present at Bus S with

the same polarity as that of GFS
k , i.e., ‘+’.

iii. Fault point: At fault point, the wave reflected from Bus R is split in two parts

with GFRFR
k reflected back to Bus R with polarity ‘+’ which is opposite to that
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of the incident wave. The other part GFRS
k is transmitted towards Bus S with

the polarity ‘–’ which is same as the incident wave at the fault point.

iv. A. Bus S: The traveling wave GFRS
k arrives at Bus S with polarity ‘–’.

B. Bus R: The traveling wave GFRFR
k arrives at Bus R with polarity ‘+’.

It could be observed from above discussion that for Configuration B if the polarity

of the second traveling wave to arrive at Bus S is same as that of the first traveling

wave then the second traveling wave to arrive at Bus S is GFS FS
k , and equation

(6.18) should be used for locating the fault. On the other hand, if the polarity of

the second wave to arrive at Bus S is opposite to that of the first wave at Bus S

then the second wave arriving at Bus S is GFRS
k , and equation (6.20) should be used

to estimate the location of the fault. Similarly, at Bus R the second wave to arrive

will be GFRFR
k if its polarity is identical to GFR

k . If on the other hand the polarity of

the second wave to arrive at Bus R is opposite to that of GFR
k then the second wave

is GFS R
k . Therefore, depending upon the type of second wave arriving at Bus R,

the appropriate fault location equation could be used to calculate the fault location

from Bus R. Thus, the algorithm of [28] can be applied at both terminals of the

Configuration B of the SCCTL.

3. Configuration C: In Configuration C, an inductive source is connected at Bus S while

a group of transmission lines is connected at Bus R as shown in Figure 7.5 (c). The

polarities of the traveling waves GFS FS
k , GFRS

k , GFRFR
k , and GFS R

k have been derived in the

following section assuming that the polarity of the traveling waves generated at the fault

point GFR
k and GFR

k is ‘+’.

(a) GFSFS
k

and GFSR
k

i. Fault point: The fault occurs and the traveling wave GFS
k is generated at fault

point with polarity ‘+’ and starts traveling towards Bus S.

ii. Bus S: Wave GFS
k arrives at Bus S where inductive source absorbs a part of

it while the other part is reflected towards fault point with the same polarity

which is ‘+’.

iii. Fault point: The wave reflected from Bus S arrives at fault point where part

of it is reflected back towards Bus S as GFS FS
k with opposite polarity, i.e., ‘–’,

while the other part is transmitted with ‘+’ polarity towards Bus R as GFS R
k .

iv. A. Bus S: The traveling wave GFS FS
k arrives at Bus S with polarity ‘–’.

B. Bus R: The traveling wave GFS R
k arrives at Bus R with polarity ‘+’.

(b) GFRS
k

and GFRFR
k
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i. Fault point: The fault occurs and the traveling wave GFR
k so generated starts

traveling from fault point towards Bus R with polarity ‘+’.

ii. Bus R: The traveling wave GFR
k arrives at Bus R with polarity ‘+’, where the

presence of multiple transmission lines split into two parts. One of the parts is

transmitted into various transmission lines with same polarity as GFR
k , i.e., ‘+’.

While the other part is reflected back towards the fault point but with polarity

opposite to GFR
k , i.e, with polarity ‘–’.

iii. Fault point: The wave reflected from Bus R arrives at fault point with polarity

‘–’, where the wave is split into two parts. One part of the part is transmitted

through the fault point with polarity ‘–’ which reaches Bus S as GFRS
k , while

the other part is reflected back with opposite polarity (‘+’) which arrives at Bus

R as GFRFR
k .

iv. A. Bus S: The traveling wave GFRS
k arrives at Bus S with polarity ‘–’.

B. Bus R: The traveling wave GFRFR
k arrives at Bus R with polarity ‘+’.

It is seen from above discussion that both traveling waves, GFRS
k , and GFS FS

k would

arrive at Bus S with polarity ‘–’. It implies that the methodology of comparing

polarities to distinguish between waves GFRS
k , and GFS FS

k cannot be applied at Bus

S in Configuration C. Similarly, it is observed that traveling waves arriving at Bus

R, i.e., GFS R
k , and GFRFR

k have ‘+’ polarity. Thus, the polarity of the traveling waves

GFS R
k , and GFRFR

k cannot be distinguished from each other at Bus R by using their

polarities in Configuration C. Thus, the algorithm of [28] cannot be applied to any

terminal of the Configuration C of the SCCTL.

From the above discussion, it could be seen that the methodology of [28] in its current form

is applicable to only those configurations of the SCCTL in which the traveling waves reflected

from each terminal have alike polarities. This condition remains true only for Configuration A

and Configuration B of the SCCTL, thus implying the applicability of [28] to the Configuration

A and Configuration B of the SCCTL . For Configuration C, the polarity of the traveling wave

reflected from one end will always be opposite to the polarity the traveling wave reflected from

the other end. Therefore, the methodology of [28] is inapplicable to Configuration C of the

SCCTL.

One more challenge facing the single-ended traveling wave-based fault location algorithm

needs to be addressed for those configurations of the SCCTL in which at least one transmission

line has been connected to at least one of its terminals, which is true for Configurations B, and

C. In order to elaborate this point consider Bus S of the Configuration B of SCCTL (Figure

7.5 (b)). It was discussed that the second traveling wave to arrive at Bus S will either be
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GFS FS
k or GFRS

k . However, if even one of the transmission lines connected at Bus S is shorter

than half of the length of the SCCTL (assuming wave speed is same in all transmission lines),

there could be fault scenarios in the SCCTL for which the second traveling wave to arrive

at Bus S would neither be GFS FS
k nor GFRS

k , it would rather be the wave reflected from the

remote end of that shortest line. As an example, consider that one of the transmission lines

connected at Bus S is 0.4 times the length of the SCCTL, and the fault occurs in SCCTL

at 45% line length as measured from Bus S. If τk is the time taken by the traveling wave to

traverse whole of the SCCTL, then the wave GFS
k will arrive at Bus S at 0.45τk time units

after the occurrence of the fault. A part of the wave GFS
k will be transmitted to the shortest

transmission line which will get reflected back from its remote end and will arrive at Bus S

at 1.25τk (= 0.45τk + 2 × 0.4τk) time units after the occurrence of the fault. It is assumed that

velocity kth-mode wave is same in both transmission lines. While a part of GFS
k will be reflected

towards the fault point from where a part of the the wave will be reflected wave which would

arrive at Bus S at 1.35τk (= 0.45τk + 2 × 0.45τk) time units after the occurrence of the fault.

Hence, we see that in above example the second wave to arrive at Bus S is neither GFS FS
k

nor GFRS
k , rather it is the reflected wave from the remote end of the shortest transmission line

connected at Bus S, which if used for fault location assuming that it is GFS FS
k or GFRS

k will

result in erroneous fault location. There could also be the cases where multiple transmission

lines out of all the lines connected at Bus S, are shorter than half of the length of the SCCTL.

Thus, a procedure needs to be proposed to block the wave reflected from the remote ends of the

transmission lines connected at fault locator terminal of the SCCTL from being used towards

calculating the fault location in Configurations B, and C.

7.4 Test System

The proposed solution to the challenges identified in the previous section is elaborated using

the simulated fault scenarios in an SCCTL. Therefore, it is imperative to describe the power

system simulated in PSCAD. Since various types of electrical components could be connected

at the terminals of the SCCTL for different configurations as presented in Section 7.3, the test

power system will change according to the configuration. Therefore, the parameters of each

component has been described separately. The test power system for each configuration then

could be constructed using the described components.

The voltage level of the power system is 500 kV. The positive and zero sequence impedances

for the sources used in power system are ZS 1 = (0.5+ j7.5) Ω and ZS 0 = (1.2+ j12.5) Ω, respec-

tively. The positive and zero sequence impedances for the transmission lines used in the test

power system are ZL1 = (0.0155 + j0.3719) Ω per km and ZL0 = (0.3546 + j1.0670) Ω per km,
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respectively, while the positive and zero sequence admittances are YL1 = (0 + j4.4099 × 10−6)

f per km, and YL0 = (0 + j2.7844 × 10−6) f per km, respectively. The level of series compen-

sation of SCCTL is 70% series compensation which corresponds to an equivalent capacitance

of 29.11µF. The length of the SCCTL is 350 km.

7.5 The Proposed solution

As explained in Section 7.3, the traveling waves reflected from the fault point and the remote

terminal of the SCCTL cannot be distinguished from each other using their polarities in Con-

figuration C of the SCCTL. Therefore, more detailed look into the properties of the traveling

waves reflected from fault point and the remote terminal of the SCCTL is warranted. First

of all, the proposed method is presented for the Configuration C of the SCCTL, thereafter its

application to Configuration A and B has been presented.

7.5.1 Configuration C

After the occurrence of a fault in Configuration C of an SCCTL, the second traveling wave to

arrive at Bus R would either be GFRFR
k or GFS R

k depending upon the location of the fault in an

SCCTL. First of all, let us focus our attention on the trajectory of the traveling wave GFRFR
k

arriving at fault locator situated at Bus R in the Configuration C. The occurrence of a fault in a

transmission line acts as an application of a step voltage at the fault point. The traveling wave

GFR
k produced at the fault point consists of a step voltage which would reach Bus R where

part of it will be reflected back as per equation (7.80). Since, the characteristic impedance

of the transmission lines is almost real in nature with a very small imaginary component, the

traveling wave reflected from Bus R as per (7.80) will be a step function albeit with a smaller

amplitude and opposite polarity as compared to GFR
k . The step function reflected wave from

Bus R then reaches the fault point where part of it will be transmitted towards Bus S while

other is reflected back towards Bus R as GFRFR
k with polarity opposite to the incident wave. It

could be noted from the equations derived in Section 7.2.2 for reflected and transmitted waves

from the fault point, that all the variables occurring in equations, i.e., characteristic impedance

of the transmission line (Zck) and fault resistance (RF) are purely resistive in nature. Thus,

the traveling wave reflected from fault point towards Bus R (GFRFR
k ) and the traveling wave

transmitted towards Bus S from fault point (GFRS
k ) will be step functions. Consequently, the

arrival of GFRFR
k at Bus R would produce step change in Bus R current with same polarity as

GFR
k , as the group of transmission line acts as pure resistive component to the traveling waves.

The other traveling wave to arrive at Bus R fault locator is GFS R
k , the trajectory of which
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is discussed now. The traveling wave GFS
k , which has same magnitude and polarity as GFR

k ,

consisting of step voltage gets generated at fault point and propagates towards Bus S. After

the arrival of GFS
k at Bus S, part of it gets reflected back towards fault point with the same

polarity as GFS
k as per the equation analogous to (7.77) which is derived for Bus R. The reflected

wave as could be witnessed from (7.77) is comprised of a decaying exponential component

superimposed on the fundamental frequency sinusoid. The traveling wave reflected from Bus S

will reach the fault point from where a part of it will be transmitted with the same polarity as the

incident wave towards Bus R. The traveling wave transmitted from fault point will reach Bus R

as GFS R
k and will have the same properties as described by (7.77) as all variables in the equations

governing the transmitted wave from the fault point are purely real in nature. The GFS R
k as

explained earlier, will be composed of an exponential decaying component superimposed on

a sinusoidal function and a constant value. It is worth noting that the decaying exponential

component of the wave GFS R
k decays relatively fast while the fundamental frequency part of

GFS R
k does not change significantly during the time intervals encountered between the arrival

of two successive traveling waves. Therefore, the fundamental frequency part of GFS R
k could

be seen as an application of step function. Hence, the arrival of GFS R
k at Bus R will manifest

itself as a step change followed by the decaying exponential component.

From the above discussion, it could be concluded that the traveling wave GFRFR
k will pro-

duce a step change in the Bus R current which means that derivative of Bus R current would

show an impulse function on the arrival of GFRFR
k at Bus R. On the other hand, the arrival of

GFS R
k at Bus R would produce a step change followed by an exponentially decaying changes in

the Bus R current. It means that the derivative of Bus R current following the arrival of GFS R
k

at Bus R will yield an impulse function followed by exponentially decaying waveform. Thus,

the presence or absence of an exponential decaying component in the kth mode Bus R current,

or its derivative following the arrival of the second traveling wave can be used to distinguish

between GFRFR
k and GFS R

k . In GFRFR
k there will be no exponential decaying component while in

the case of GFS R
k an exponential decaying component will be observed.

It should be noted here that taking derivative of the current removes all the slow occurring

changes in the waveform, thus, making the identification of the traveling wave type much

easier. However, taking a derivative of a signal increases the noise level in the signal. Thus, de-

noising of the signal is necessary before taking the derivative of Bus R current. In this chapter,

the current is averaged for 10 samples to decrease the noise level in its derivative. It should be

noted that derivative of the current waveform is used only for the identification of the traveling

waves; the time instance of the arrival of a traveling wave for the purpose of fault location

should be used from the Bus R current only. In this way the accuracy limit of the algorithm

does not get impacted by averaging of the current waveform.
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Figure 7.6: The arrival of traveling waves GFR
α , GFS R

α , GFRFR
α at Bus R of Configuration C of

the SCCTL for a 50Ω three phase fault at 40% line length measured from Bus S as observed in
(a) α-mode Bus R current, (b) derivative of α-mode Bus R current.
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Figure 7.7: The arrival of traveling waves GFR
α , GFRFR

α , GFS R
α at Bus R of Configuration C of

the SCCTL for a three phase fault at 60% line length measured from Bus S as observed in (a)
α-mode Bus R current, (b) derivative of α-mode Bus R current.
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In order to verify the postulates of the above discussion, consider a three phase fault sce-

nario with fault resistance of 50Ω lying at 40% line length as measured from Bus S. The

waveforms of α-mode of the current measured at Bus R (IR
α ) and its first derivative, for the fault

scenario under consideration are shown in Figure 7.6 (a) and (b), respectively. The amount of

noise present in all of the signals presented in this chapter is 1%. It is a known fact that for any

fault lying at 40% line length as measured from Bus S, the first three α-mode traveling waves

to arrive at Bus R will be GFR
α , GFS R

α , and GFRFR
α , respectively. The time period shown in Figure

7.6 is from the time of fault inception to the arrival of third traveling wave, i.e, GFRFR
α at Bus

R. The first traveling wave GFR
α which is a negative step function produces a step change in the

IR
α , correspondingly, the derivative of IR

α shows a negative impulse. The next traveling wave

to arrive at Bus R is GFS R
α which as explained earlier, is composed of a step function and a

fast decaying exponential component. The initial change produced by GFS R
α in IR

α is like a step

function marked by sudden change in IR
α in Figure 7.6 (a), and a negative spike in derivative of

IR
α observed in Figure 7.6 (b). Thereafter, an exponential decay caused by GFS R

α is observed in

Figure 7.6 (a) and (b) following the initial step change. The third wave to arrive at Bus R is

GFRFR
α which is also a step function produces only a step change in IR

α , and does not produce

any decaying exponential component as could be observed from the Figures 7.6 (a) and (b).

Similarly, IR
α and its first derivative are shown in Figure 7.7 (a) and (b), respectively for a

50Ω three phase fault lying at 60% line length as measured from Bus S. For this case, the first,

second, and third α-mode traveling waves to arrive at Bus R will be GFR
α , GFRFR

α , and GFS R
α ,

respectively. It can be observed from Figure 7.7 that the exponential decaying component

is absent after the arrival of the second traveling wave, i.e., GFRFR
α . On the other hand, the

exponential decaying component is detected after the arrival of the third wave, i.e., GFS R
α as

could be observed from Figure 7.7 (a) and (b). Thus, it could be concluded that at Bus R in

Configuration C of the SCCTL, the traveling waves GFS R
α , and GFRFR

α could be differentiated

from each other by the presence or absence of the exponential decay in IR
α or its first derivative.

The exponential decaying component will be present after the arrival of GFS R
α , while, it will be

absent after the arrival of GFRFR
α .

Similarly, the traveling waves GFRS
k , and GFS FS

k would arrive at Bus S after getting reflected

from Bus R, and fault point, respectively. The traveling wave GFR
k comprised of a step function

gets generated at the fault point due to the occurrence of the fault. GFR
k reaches Bus R where it

gets reflected as a step function as per the equation (7.80) with a lesser magnitude and polarity

opposite to that of GFR
k . The reflected wave from Bus R reaches fault point where part of it

gets transmitted through fault point towards Bus S with same polarity as the incident wave

which then arrives at Bus S as GFRS
k . Since, all the components of the equations governing the

reflection and transmission of the traveling waves from the fault point as derived in Section
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7.2.2 are real, the traveling wave GFRS
k will maintain the profile of the incident wave and will

arrive at Bus S as a step function. Now the arrival of GFRS
k acts as application of step voltage

at Bus S which produces the changes in kth mode current at Bus S as per equation analogous

to (7.75) for Bus S. It should be noted that an inductive source is located at Bus S. It could

be seen from (7.75) that the change in kth mode current at Bus S caused by the arrival of

GFRS
k comprises of a bounded exponential function superimposed on a fundamental frequency

sinusoidal signals. Since, the change in the fundamental frequency signals will be relatively

small during the time periods involved in traveling waves, the derivative of kth mode of Bus

S current after the arrival of traveling wave GFRS
k will predominantly be comprised of the

exponential function.

Now, let us consider the trajectory of the traveling wave GFS FS
k . The traveling wave GFS

k

comprised of a step function gets generated at fault point, and starts traveling towards Bus S.

The wave reflected from Bus S will be governed by the equation analogous to (7.77) written

for Bus S. The wave reflected from Bus S will comprise of a rapidly decaying bounded ex-

ponential component superimposed on a fundamental frequency sinusoidal signal. This wave

then reaches fault point from where part of it gets reflected. The wave reflected from fault point

maintains its profile and arrives at Bus S as GFS FS
k . It could be shown through mathematical

analysis that the derivative of the kth mode current at Bus S caused by the arrival of GFS FS
k will

have the form given by (7.82).

diS
k

dt
= p1e−

Zck
Lo

t
−

Zck

Lo
p2te−

Zck
Lo

t
− ωp3cos (ωt + θ) (7.82)

where p1, p2, and p3 are real numbers of relatively comparable magnitude; θ is the phase angle

of the fundamental component of the reflected wave; while t represents the time with t = 0

representing the instance of arrival of GFS FS
k at Bus S. The term ωp3cos (ωt + θ) would not

produce any dynamic changes in the waveform plot of derivative of kth mode current at Bus S

as it does not change considerably within the time period between the arrival of GFS FS
k and the

next traveling wave. The fast occurring changes that could be observed in the waveform plot

of kth mode current at Bus S will only be the result of the term p1e−
Zck
Lo

t
−

Zck
Lo

p2te−
Zck
Lo

t.

As an example, consider a 50Ω three phase fault lying at 40% line length as measured from

Bus S in Configuration C of the SCCTL. The first, second and third α-mode traveling waves

to arrive at Bus S will be GFS
α , GFS FS

α , GFRS
α , respectively for the fault lying at 40% of the line

length. Figure 7.8 (a) and (b) shows the α-mode of Bus S current (IS
α ) and its first derivative,

respectively following the arrival of the first three traveling waves at Bus S. As discussed, the

derivative of IS
α following the arrival of GFS

α , and GFRS
α at Bus S is comprised of a bounded

exponentially decaying component as can be seen from Figure 7.8 (b). On the other hand, the
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Figure 7.8: The arrival of traveling waves GFS
α , GFS FS

α , GFRS
α at Bus S of Configuration C of

the SCCTL for a 50Ω three phase fault at 40% line length measured from Bus S as observed
in, (a) α-mode Bus S current, (b) derivative of α-mode Bus S current.



Chapter 7 173

0 0.5 1 1.5 2
−2

−1.8

−1.6

−1.4

−1.2

−1

I
R α
(k
A
)

(a) Time (ms)

Gα
FS

Gα
FRS

Gα
FSFS

0 0.5 1 1.5 2
−0.5

0

0.5

d
I
R α

d
t

(b) Time (ms)

Gα
FS

Gα
FRS

Gα
FSFS

Figure 7.9: The arrival of traveling waves GFS
α , GFS FS

α , GFRS
α at Bus S of Configuration C of

the SCCTL for a 50Ω three phase fault at 60% line length measured from Bus S as observed
in, (a) α-mode Bus S current, (b) derivative of α-mode Bus S current.
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derivative of IS
α following the arrival of GFS FS

α is typical of the function te−at characterized by

the ‘overshoot’ of the waveform from its starting point. Though, this waveform is described

more accurately by the expression p1e−
Zck
Lo

t
−

Zck
Lo

p2te−
Zck
Lo

t.

Similarly, Figure 7.9 shows IS
α and its derivative for a 50Ω three phase fault lying at 60%

line length as measured from Bus S in Configuration C of the SCCTL. For this fault scenario,

the first three α-mode traveling waves to arrive at Bus S will be GFS
α , GFRS

α , GFS FS
α , respectively.

It can be seen from Figure 7.9 that the derivative of IS
α following the arrival of the first two

traveling waves is comprised of a bounded exponentially decaying component only, which is

typical behavior of GFS
α , and GFRS

α . On the other hand, the derivative of IS
α following the arrival

of third traveling wave shows an ‘overshoot’ from its starting point, which is typical behavior

of GFS FS
α .

It can thus be concluded that at Bus S terminal of Configuration C of the SCCTL, the

traveling waves GFRS
α , and GFS FS

α could be differentiated from each other by observing the

presence or absence of the overshoot in the derivative of IS
α from its starting point following

the arrival of the second traveling wave. If the derivative of IS
α depicts an overshoot from its

starting point following the arrival of a traveling wave then this traveling wave will be GFS FS
α .

If on the other hand, the derivative of IS
α following the arrival of the second traveling wave

is comprised only of exponential decaying component, it would not result in overshoot of the

derivative of IS
α . In this case, the second traveling wave arriving at Bus S will be GFRS

α .

As presented in this section, the origin of the second traveling wave to arrive at both termi-

nals of an SCCTL in its Configuration C could be identified by observing the properties of the

derivative of the kth mode current at each terminal of the transmission line. It could be recalled

here that the single-ended fault location algorithms based on polarity comparison of the first

two traveling waves to arrive at each terminal are not applicable to Configuration C of the SC-

CTL. The waveforms of the derivative of Bus S and Bus R currents for all other fault locations

and fault types in Configuration C of the SCCTL are given in Appendix D. The accuracy of

the proposed algorithm for Configuration C of the SCCTL can further be validated from the

Figures given in Appendix D.

7.5.2 Configuration A

In Configuration A of the SCCTL, there is only an inductive source present at each terminal

of the SCCTL, i.e., at Bus S and Bus R (Figure 7.5 (a)). It has been explained in Section

7.3 through derived expressions that the traveling waves reflected from the remote terminal

would arrive at the local terminal with same polarity as the first traveling wave at the local

terminal, while, the traveling wave reflected from the fault point would arrive at local terminal
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Figure 7.10: The arrival of traveling waves GFS
α , GFS FS

α , GFRS
α at Bus S of Configuration A of

the SCCTL for a 50Ω three phase fault located at: (a) 40% line length, (b) 60% line length as
measured from Bus S.

with opposite polarity to that of the first traveling wave. For example, if the second traveling

wave to arrive at Bus S has polarity opposite to the first one then the second traveling wave

has to be GFS FS
k while if it arrives with the same polarity as the first one then the second

wave has to be GFRS
k . The polarity of the traveling wave as defined by the [28] is the sign

of the incremental change caused by the arrival of a traveling wave in the measured signal.

If the incremental change is positive then the traveling wave has positive polarity and vice

versa. The method proposed in this chapter to identify the traveling wave arriving at each

terminal uses the derivative of the kth-mode current signal at the local terminal. The derivative

of the current signal would become positive for positive incremental changes and negative for

negative incremental changes in the current. Therefore, the derivative of the current could be

used for identifying the polarity of the traveling waves arriving at the both terminals of the

SCCTL in Configuration A of the SCCTL.
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Figure 7.11: The arrival of traveling waves GFR
α , GFRFR

α , GFS R
α at Bus R of Configuration A of

the SCCTL for a 50Ω three phase fault located at: (a) 40% line length, (b) 60% line length as
measured from Bus S.
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The first three α-mode traveling waves to arrive at Bus S in Configuration A of SCCTL for a

50Ω three phase fault located at 40% and 60% line length as measured from Bus S are shown in

Figure 7.10 (a) and (b), respectively. The first wave to arrive at Bus S in both cases is GFS
α with

derivative of α-mode Bus S current identifying its polarity as negative. The second traveling

wave to arrive at Bus for a fault at 40% line length will be GFS FS
α which could be identified

from its opposite polarity as compared to that of GFS
α . The third wave to arrive at Bus for the

same fault scenario will be GFRS
α but with same polarity as GFS

α . It is seen from Figure 7.10 (a)

that the derivative of α-mode Bus S current picks the polarity of GFS FS
α as positive while the

polarity of GFRS
α is negative. For a fault located at 60% line length as measured from Bus S

the second traveling wave to arrive at Bus S will be GFRS
α while third one will be GFS FS

α . It is

seen from 7.10 that polarities of GFRS
α and GFS FS

α are identified as negative and positive by the

derivative of α-mode Bus S current.

Figure 7.11 (a) and (b) show the first three α-mode traveling wave detected at Bus R through

derivative of α-mode current at Bus R following a three phase fault located at 40% and 60%

line length as measured from Bus S, respectively. The first traveling wave to arrive at Bus R in

both cases is GFR
α with polarity identified as negative. For the case of fault at 40% line length

the second and third traveling waves to arrive at Bus R will be GFS R
α with negative polarity

and GFRFR
α with positive polarity, respectively. For the fault located at 60%, the second, and

third traveling waves arriving at Bus R will be GFRFR
α with positive polarity, and GFS R

α with

negative polarity, respectively. It could be witnessed from Figure 7.11 (a) and (b) that the

derivative of α-mode current at Bus R is able to correctly find the polarities of the traveling

waves GFS R
α and GFRFR

α for both fault scenarios in Configuration A of the SCCTL. Thus, it

could be concluded that in Configuration A of SCCTL the derivative of the current measured

at a terminal could be used for identifying the second traveling wave to arrive at that terminal of

the SCCTL. Consequently, the accurate fault location result could be obtained by using single

ended algorithms.

7.5.3 Configuration B

In Configuration B of the SCCTL, a group of transmission lines is located at each terminal

of the SCCTL as shown in Figure 7.5 (b). As detailed in Section 7.3, the traveling wave

reflected from remote terminal would arrive at local terminal with opposite polarity relative

to the first traveling wave while that reflected from the fault point will have same polarity as

the first wave. As explained earlier the polarity of the relative polarities of the traveling waves

could be obtained by observing the derivative of the kth-mode current signal measured at local

terminal. When the wave reflected from remote terminal would arrive at local terminal the
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derivative of the kth-mode current signal would attain the sign opposite to the sign it attained

when the first traveling wave arrived at the local terminal. While in the case of the traveling

wave being reflected from fault point the derivative of kth-mode current signal will attain same

sign as when the first traveling wave arrived at that terminal. Thus, the method presented in

this chapter could be applied to the Configuration B of the SCCTL.

Figure 7.12 shows the first three traveling waves after the occurrence of fault arriving at

Bus S of Configuration B of the SCCTL, detected through derivative of the α-mode current at

Bus S. The fault is a three phase fault lying at 40% (Figure 7.12 (a)) and 60% (Figure 7.12 (b))

line length away from Bus S. The first traveling wave to arrive at Bus S in both fault scenarios

is GFS
α and its polarity is detected as negative by the derivative of α-mode current at Bus S. For

the fault lying at 40% line length measured from Bus S, the second, and third traveling waves

to arrive at Bus S will be GFS FS
α , and GFRS

α , respectively, while for the fault located at 60% line

length measured from Bus S, the second, and third traveling waves to arrive at Bus S would

be GFRS
α , and GFS FS

α , respectively. It has been explained in Section 7.3 that in Configuration B

of the SCCTL the traveling wave arriving at local terminal after getting reflected from remote

terminal of the transmission line will have opposite polarity to that of the first traveling wave

while the traveling wave arriving at local end after getting reflected from fault point will have

same polarity as the first traveling wave. Now, for the algorithm proposed in this chapter to

be applicable to Configuration B of the SCCTL the derivative of α-mode current at Bus S

should yield the polarity of GFS FS
α as negative, while, for GFRS

α the polarity should be yielded

as positive. It could be witnessed from Figure 7.12 that the proposed method has been able to

correctly identify the polarity of the traveling waves arriving at Bus S for both fault scenarios,

thus, making the proposed method applicable to Bus S of Configuration B of the SCCTL.

Similarly, at Bus R the first traveling wave to arrive for faults lying at 40% and 60% line

length away from Bus S is GFR
α and its polarity is negative as could be seen from Figure 7.13

(a) and (b). Now for the fault lying at 40% line length away from Bus S the second and third

traveling waves to arrive at Bus R will be GFS R
α and GFRFR

α , respectively, while for the fault lying

at 60% line length as measured from Bus S the first and second traveling waves arriving at Bus

R would be GFRFR
α and GFS R

α . For the algorithm proposed in this chapter to be applicable to

Bus R of the Configuration B of the SCCTL, the derivative of α-mode current at Bus R should

yield the polarity of GFRFR
α as negative while for GFS R

α its polarity should be yielded as positive.

It could be seen from Figure 7.13 (a) and (b) that for both fault scenarios the derivative of α-

mode current at Bus R is able to correctly identify the the polarities of the respective traveling

waves, thus, implying the applicability of the proposed method of this chapter to the Bus R of

the Configuration B of the SCCTL.

From the analysis and discussion carried out in this section it could be concluded that by
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Figure 7.12: The arrival of traveling waves GFS
α , GFS FS

α , GFRS
α at Bus S of Configuration B of

the SCCTL for a 50Ω three phase fault located at: (a) 40% line length, (b) 60% line length as
measured from Bus S.
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Figure 7.13: The arrival of traveling waves GFR
α , GFRFR

α , GFS R
α at Bus R of Configuration B of

the SCCTL for a 50Ω three phase fault located at: (a) 40% line length, (b) 60% line length as
measured from Bus S.
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Figure 7.14: Traveling wave arriving at Bus S after traveling through (a) SCCTL, (b) a trans-
mission line connected at Bus S.

observing the derivative of α, β, or γ-mode of the current measured at any one terminal of

any configuration of SCCTL, the second traveling wave to arrive at that terminal could be

identified. Consequently, the single-ended traveling wave based fault location algorithm could

be applied.

Another challenge that single-ended traveling wave-based fault location algorithm will have

to overcome is the blocking the traveling waves reflected from the remote terminals of the

transmission lines connected at the terminals of the SCCTL in Configurations B and C. This

could be achieved by comparing the polarities of the same traveling wave obtained from kth

mode current and voltage at that terminal. Any traveling wave reaching the terminal of the

SCCTL after traveling through SCCTL will produce mutually opposite polarities in the current

and voltage waveforms. This phenomenon has been explained below.

Consider a set of CT and CVT located at a terminal Bus S of the SCCTL as shown in

Figure 7.14 (a) and (b). In Figure 7.14 (a), the traveling wave Gk is traveling in the SCCTL

towards Bus S from the SCB. The arrival of traveling wave Gk at Bus S will produce following
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incremental changes in the current and voltage measurements at Bus S:

∆ik = −
Gk

Zck

∆vk = Gk (7.83)

The negative sign in current equation is due to the fact that the direction of CT is opposite to

the direction of the traveling wave Gk.

While if the wave Gk is traveling towards Bus S in one of the transmission lines connected

at Bus S, as shown in Figure 7.14 (b), it will result in the following incremental changes in the

current and voltage measurements at Bus S:

∆ik =
Gk

Zck

∆vk = Gk (7.84)

It can be seen from the set of equations (7.83) that incremental changes in current and

voltage measurements will be of mutually opposite polarities when the traveling wave arriving

at Bus S has traveled through SCCTL. On the other hand, the incremental changes produced

in current and voltage measurements will be of the same polarity when the traveling wave

arriving at Bus S has traveled in the other transmission lines connected at Bus S as shown in

set of equations (7.84). Thus, the traveling wave which produces same polarity changes in

voltage and current measurement at the terminal of the SCCTL should be blocked from being

used for the purpose of the fault location.

As an example, consider a scenario in Configuration B of the SCCTL where the length of

the shortest transmission lines connected at Bus S is equal to 0.3 times of the SCCTL, and

the fault in the SCCTL lies at 40% line length as measured from Bus S. In this case the first

traveling wave to arrive at Bus S will be GFS
α , the second traveling wave to arrive at Bus S will

be the one reflected from the remote end of the shortest transmission line connected at Bus S

(GX
α), while the third wave arriving at Bus S will be GFS FS

α . Figure 7.15 shows the detection

of the first three traveling waves from the derivative of voltage and current waveforms for the

above mentioned fault scenario. It could be seen from Figure 7.15 that for the traveling wave

which traveled through the transmission line connected at Bus S, i.e., GX
α the polarities of the

wave determined from current, and voltage measurements will be of similar sign. On the other

hand, the polarities of the traveling waves which traveled only through SCCTL before being

detected at Bus S, i.e, GFS
α , and GFS FS

α as determined from current and voltage will be of
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Figure 7.15: Traveling waves arriving at Bus S after traveling through SCCTL, and a transmis-
sion line connected at Bus S as observed through (a) voltage waveform (b) current waveform.
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mutual opposite polarity. Thus, the traveling waves arriving at the terminal of the SCCTL after

traveling through any of the transmission lines connected at that terminal of the SCCTL could

be rejected by comparing the polarities of that wave determined from the current and voltage

waveform.

7.6 Conclusion

In this chapter the expressions governing reflection and transmission of the traveling waves

from various points of discontinuity in SCCTL have been derived. The limitations of the

existing single-ended fault location algorithms which prevent their application to all the con-

figurations of the SCCTL have been identified. A new single-ended traveling wave-based

fault location algorithm which is applicable to all the configurations of the SCCTL has been

presented through the analysis of derived expressions for reflection and transmission of the

traveling waves for each type of discontinuity in the SCCTL. The proposed algorithm has been

verified through simulations carried out in PSCAD for various configurations of the SCCTL.
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Summary, Conclusions, and Future Work

The impedance-based fault location algorithms for transmission lines are usually implemented

as a feature of the numerical protective relays located at the terminals of the transmission

line. The fault location algorithms used for conventional transmission lines are highly accu-

rate, robust and a mature subject matter. However, the fault location in SCCTLs is relatively

challenging due to the action of MOV during the fault time interval. In order to overcome

the hurdles posed by the presence of MOV, the existing fault location algorithms for SCCTLs

either use MOV model, or utilize the natural fault loop under the assumption that the argu-

ments of current and voltage phasors will be identical to each other at the fault point. However,

the former approach is unable to account for the varying ambient temperature, aging of MOV,

different manufacturers, while, the latter is prone to losing accuracy under specific conditions.

Therefore, this thesis focused on providing new impedance-based fault location algorithms

which neither use MOV model nor based on the argument comparison of the fault current and

voltage.

The traveling wave-based fault location algorithms for SCCTLs were not implemented in

the real systems until recently, as they require higher sampling rates in the range of 1 MHz

to bring the fault location error within acceptable limits. However, with the introduction of

the relay SEL-T400L released by Schweitzer Engineering Laboratories in 2015 with sampling

frequency of 1 MHz, the interest in traveling wave-based fault location algorithms have been

rejuvenated. The single-ended traveling wave-based fault location algorithms have been pro-

posed in the existing literature, however, they remain inapplicable to one of the most common

topology of a transmission line in which an inductive source is present at one of its terminal

while other transmission lines are connected at the other. Therefore, a new single-ended trav-

eling wave-based fault location algorithm has been developed in this thesis which is applicable

to all the topologies of the SCCTL.

185
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8.1 Summary

The basic concept of series compensation of the transmission lines, the protection system of the

SCBs, the process of fault location in transmission lines, the complexities and the challenges

involved in the fault location in SCCTLs, and the broad classifications of the fault location

algorithms were presented in Chapter 1. The opportunities for research were also identified in

Chapter 1. The existing impedance-based fault location algorithms for SCCTLs were presented

in Chapter 2, and the equivalence of all the existing impedance-based algorithms based on

natural fault loops was shown through mathematical analysis of each algorithm. Thereafter,

the conditions under which fault loop-based impedance-based fault location algorithms would

lose accuracy were identified and simulated in Chapter 2.

A new impedance-based fault location algorithm was proposed in Chapter 3 for single-

phase to ground, and double phase to ground faults in an SCCTL. The proposed algorithm

was derived through detailed mathematical analysis, and verified through simulations carried

out in PSCAD. The proposed algorithm of Chapter 3 was tested on number of metrics such

as the effect of error in CT\CVT measurements, transmission line parameters, and the level

of fault resistance on the performance of the proposed algorithm. In Chapter 4, the proposed

algorithm of Chapter 3 was applied to the SCCTLs with multiple SCBs located at more than

one location. The proposed algorithm was presented for a general case of SCBs located at N

number of locations using the lumped model of the transmission line. Thereafter, a case of

SCBs located at two locations was derived using more accurate model of the the transmission

line, i.e., distributed model of the transmission line. The algorithm of Chapter 4 was tested

for different fault locations, fault resistance, CT\CVT errors, and error in transmission line

parameters using simulations in PSCAD and Matlab.

In Chapter 5, two new impedance-based fault location algorithms were proposed that utilize

the MOV current phasor from the CT located in SCB. The CT is needed in MOV branch of the

SCB to monitor the heat accumulated in the MOV during the faulted time period. The proposed

algorithms use this current measurement, in addition to the measurements made at the terminals

of the transmission line. The first proposed algorithm uses complete phasor (magnitude and

angle) of the MOV current while the second proposed algorithm uses only magnitude part of the

MOV current phasor. Both proposed algorithms were tested on wide range of fault scenarios

simulated in PSCAD. The effect of various sources of error such as CT\CVT errors, error in

transmission line parameters on the performance of both algorithms was also investigated in

Chapter 5. The fault location results obtained from both proposed algorithms were compared

in Chapter 5 to those obtained from the algorithm proposed in Chapter3, and the existing fault

loop-based impedance-based fault location algorithm found in literature.
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In Chapter 6, the phenomenon of traveling wave in an electrical transmission line was ex-

plained from which the modeling of a transmission line was derived. The principle of traveling

wave-based fault location algorithms was also presented in this chapter. The detection mech-

anism for detecting the arrival of a traveling wave at transmission line terminal that has been

used by existing traveling wave-based fault location algorithms, i.e., DWT was explained in this

chapter. Thereafter, the existing traveling wave-based fault location algorithms were discussed,

and their limitations were identified in Chapter 6 as well. In Chapter 7, the mathematical ex-

pressions for the traveling waves reflected and emitted from various points of discontinuity

in an SCCTL such as line terminal, fault point, SCB were derived. Thereafter, a new trav-

eling wave-based fault location algorithm employing the derived mathematical equations was

proposed in Chapter 7 which overcomes the limitations of the existing traveling wave-based al-

gorithms. The applicability of the proposed algorithm to various configurations of the SCCTL

was also shown in Chapter 7.

8.2 Conclusions

The research undertaken in this thesis was focused on two areas: 1-impedance-based fault

location algorithms for SCCTLs; 2-traveling wave-based fault location algorithms for SCCTLs.

Thus, conclusions for each area of research is given separately.

8.2.1 Impedance-based fault location algorithms for SCCTLs

Based on the research carried out in this thesis, following conclusions could be drawn regarding

the impedance-based fault location algorithms for SCCTLs:

1. It was shown in this thesis that all the fault loop-based impedance-based fault location

algorithms for SCCTLs inherently involve the angle comparison of the fault voltage, and

fault current phasors, and are equivalent to each other. Moreover, it was observed that

all the existing studies of the fault location in SCCTL had studied that configuration of

SCCTL in which SCB is located in the middle of the transmission line. However, if the

SCB is located close to one of the terminals of the SCCTL, more challenging scenar-

ios for fault location algorithms are encountered which have never been studied before.

The existing fault loop-based fault location algorithms were tested on two configurations

of the SCCTL simulated in PSCAD, with SCB located at one of the terminals in first

case, and SCB located in the middle of the transmission line in the second case. It was

observed that when the SCB was located close to one of the terminals of the SCCTL,
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the fault loop-based fault location algorithms became highly erroneous for specific fault

conditions.

2. Three new fault location algorithms for SCCTLs have been proposed in this thesis, and

all the proposed algorithms do not require MOV model or the consideration of fault

loops.

3. The first proposed algorithm is used for locating the single-phase to ground, and dou-

ble phase to ground faults in an SCCTL. The proposed algorithm is based on the fact

that in non-faulted phase only series capacitor is responsible for the conduction of the

current, and it utilizes only the available measurements. Both subroutines of the pro-

posed algorithm yield almost identical fault location result, and does not require special

subroutines to find the faulted section of the SCCTL. The PSCAD simulations covering

different fault types, fault locations, fault resistances, and different locations of SCB have

shown that the proposed algorithm is able to maintain the desired level of accuracy.

4. It has also been demonstrated that the first proposed algorithm could be applied to that

configuration of the SCCTL in which the series compensation is applied at more than

one location. Firstly, the lumped model of the transmission line is utilized to depict the

applicability of the proposed algorithm to N number of series capacitors. Thereafter, the

distributed model of transmission line is used to describe the proposed algorithm with

two series capacitors present in the SCCTL. The proposed algorithm is the first and the

only impedance-based fault location algorithm that is applicable to SCCTLs with series

compensation applied at multiple locations.

5. The second, and third impedance-based fault location algorithms, i.e., Algorithm CP, and

Algorithm MP, proposed in this thesis utilize the current measurement from the MOV

branch of the SCB. Algorithm CP uses the complete phasor of MOV current (magnitude

as well as phase angle) for yielding fault location results. On the other hand, Algorithm

MP utilizes only magnitude of the MOV current phasor for calculating the fault loca-

tion. The presence of SCB in an SCCTL splits the transmission line into two parts. Both

proposed algorithms will yield two fault location results assuming that the fault could in

any of the two sections of the transmission lines. Thereafter, a subroutine is presented

to identify the faulted section of the SCCTL, and its corresponding fault location result

is treated as the correct result. Both algorithms utilize only positive sequence measure-

ments and parameters of the transmission line, thus, making them immune to the error in

zero-sequence parameters of the transmission line. The performance of Algorithm CP,

and Algorithm MP has been tested rigorously through simulations carried out in PSCAD
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covering all the fault types, different fault locations, fault resistances, errors in CT\CVT

measurements, and zero-sequence parameters of the transmission line.

8.2.2 Traveling wave-based fault location algorithms

The following conclusions could be arrived at regarding the research carried out in the area of

traveling wave-based fault location algorithms:

1. The traveling wave theory as it applies to transmission lines, along with the modeling

of the transmission line with respect to the traveling wave theory has been presented in

this thesis. The principle underlying the traveling wave-based fault location algorithms

and signal processing technique to detect the arrival of a traveling wave at the terminal

of a transmission, i.e., DWT have been presented in thesis. The research focused solely

on single-ended traveling wave-based fault location algorithms as they do not require the

time synchronization of the relays present at each terminal of the SCCTL.It has been

observed from the literature review that the existing single-ended traveling wave-based

fault location algorithms locate the fault by noting two things: 1-the time gap between

the arrival of the first two traveling waves at a line terminal, 2-the point of reflection

from where the second wave got reflected. It is observed that most of the algorithms

have been proposed using the simplest of the topology of the SCCTL where an inductive

source is present at each terminal of the SCCTL. Only one of the algorithms have studied

different topologies of the SCCTL and concluded that if an inductive source is present at

one terminal and group of other transmission lines is present at the other then the point

of reflection of the second traveling wave cannot be determined. Thus, the single-ended

traveling wave-based fault location algorithms cannot be applied to such configuration

of SCCTL, necessitating the use of double-ended traveling wave-based fault location

algorithms.

2. The mathematical expressions describing the reflected and transmitted traveling waves

from different points of discontinuity such as fault point, line terminals, SCB has been de-

rived. The limitations of the single-ended traveling wave-based fault location algorithms

have been understood in lieu of the derived expressions. Consequently, a new single-

ended traveling wave-based fault location algorithm is proposed based on the derivative

of α or β modes of the current measured at the transmission line terminals. Since the

expressions of reflected wave from all the types of reflection points are known, the re-

flection point of the second traveling wave arriving at the terminal could be determined

by observing the shape of the derivative waveform. The proposed algorithm is appli-
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cable to all the topologies of the SCCTL. the proposed algorithm has been tested with

simulations carried out on PSCAD covering different fault types and fault locations.

The main contributions of this thesis could be summarized as follow:

1. Identified the fault scenarios where existing impedance-based fault location algorithms

would become highly erroneous.

2. Proposed three impedance-based fault location algorithms:

(a) The first algorithm Algorithm PM is proposed for single-phase to ground, and

double-phase to ground faults, and uses only measurements from the transmission

line terminals.

(b) The second algorithm Algorithm CP uses phasor of the MOV current measured at

SCB bus, in addition to the transmission line terminal measurements.

(c) The third algorithm Algorithm MP uses only phasor magnitude of the MOV current

measured at SCB bus, in addition to the transmission line terminal measurements.

3. Modified the proposed algorithm, i.e., Algorithm PM to obtain first and the only impedance-

based fault location algorithm able to locate faults in the SCCTLs where series compen-

sation is applied at multiple locations.

4. Derived the mathematical expressions describing the traveling waves reflected and trans-

mitted from the various points in the SCCTL.

5. Proposed a new single-ended traveling wave-based fault location algorithm applicable to

all topologies of the SCCTL.

8.3 Future Works

The following avenues have been identified for the future work in the area of this research.

1. The Algorithm PM is applicable to single-phase to ground, and double-phase to ground

faults only. Thus, a research could be conducted to propose a new impedance-based fault

location algorithm which yields fault location results for phase to phase and three phase

faults without using SCB bus measurements.

2. The Algorithm CP and Algorithm MP utilize MOV current measurement which is used

to estimate the energy stored in MOV bank. A research could be conducted to estimate

the MOV current if only the value of the amount of energy stored in MOV is available

from the SCB bus and then use that towards the fault location.
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3. A study investigating the effect of CT and CVT error on the performance of the proposed

single-ended traveling wave-based fault location algorithm could be performed.
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Appendix A

Phasor estimation techniques: Discussion

The current transformer (CT) and capacitive voltage transformer (CVT) located at a terminal

of the transmission line measure the current and voltage in the transmission line. The mea-

sured current and voltage signals are then passed onto the Intelligent Electronic Device (IED),

which could be a relay located at that terminal of the transmission line as shown in Figure A.1.

Thereafter, the measured signals are sampled and discretized by the IED. In order to obtain the

phasor of fundamental component (60Hz) from the discrete samples of the measured signals

a phasor estimation algorithm is needed. Discrete Fourier Transform (DFT) and the Cosine

algorithm are the most popular phasor estimation algorithms.

Full cycle DFT (FCDFT) as the name suggests is the version of DFT which uses one com-

plete cycle of the fundamental frequency to yield the phasor of the fundamental frequency.

Mathematically, FCDFT for a fundamental component sampled with N samples per cycle could

be expressed as:

Figure A.1: Schematic showing CTs, CVTs and IEDs located at the terminals of a transmission
line
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Figure A.2: Figure depicting: (a) the coefficients of Cosine and Sine filter for N=64, (b) fre-
quency response of Cosine and Sine filter.

0 10 20 30 40 50 60 70 80

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Coefficient Number

M
ag

ni
tu

de

 

 

Quater cycle delayed Cosine Sine
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X[n] =
2
N

N−1∑
k=0

x[n + k]e− j2π k
N (A.1)

where j =
√
−1; k =0, 1, 2, . . . , N-1; x[n] and X[n] represent nth sample of the measured

signal and its estimated phasor, respectively; e− j2π k
N is the kth filter coefficient of the FCDFT.

It can be seen that from (A.1) that the filter coefficient of FCDFT are complex. Therefore, the

FCDFT can be split into two filters i.e., real and imaginary filters as shown in (A.2) and (A.3),

respectively.

< (X[n]) =
2
N

N−1∑
k=0

x[n + k] cos
(
2π

k
N

)
(A.2)

= (X[n]) = −
2
N

N−1∑
k=0

x[n + k] sin
(
2π

k
N

)
(A.3)

Thus, the Cosine filter acts as the real filter while Sine filter acts as the imaginary filter in

FCDFT. The magnitude and the phase angle of the phasor could be obtained of the phasor

would be obtained using equations (A.4) and (A.5), respectively.

|X[n]| =
√(
< (X[n])

)2
+

(
= (X[n])

)2 (A.4)

∠(X[n]) =tan−1
(
= (X[n])
< (X[n])

)
(A.5)

The coefficients of the Cosine and Sine filters for FCDFT with 64 samples per cycle of the

fundamental frequency, i.e., N = 64 have been plotted in the Figure A.2 (a). The frequency

response of the Cosine and Sine filters of Figure A.2 (a) is given in Figure A.2 (b). From Figure

A.2 (b) it could be seen that Cosine filter has better performance in the sub-synchronous region

(<60Hz), especially close to 0Hz. On the other hand Sine filter has lower side lobes which

means that Sine filter is better able to attenuate frequencies higher than 60Hz. Another key

point to be noted is that both Cosine and Sine filter completely remove the integer harmonics

of the fundamental frequency. Thus, the presence of integer harmonics in the measured signal

will not affect the accuracy of the estimated phasor by FCDFT.

Another one of the most popular phasor estimation technique is the Cosine algorithm. In

Cosine algorithm both filters i.e., real and imaginary filters are realized using the Cosine filter

only. The basis of the use of Cosine filter as imaginary filter comes from the fact that Sine

filter is nothing but Cosine filter delayed by quarter cycle as shown in Figure A.3. Therefore,

the output of Cosine filter could be buffered for a quarter cycle and then added orthogonally to

the output of the Cosine filter, to obtain the phasor. The block diagrams showing the process
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Figure A.4: Block diagrams representing (a) FCDFT, (b) Cosine algorithm.
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of phasor estimation through FCDFT and Cosine algorithm are given in Figures A.4 (a) and

(b), respectively. It could be observed from Figure A.4 (b) that the real and imaginary filters of

Cosine algorithm are realized using Cosine filter only.

The benefit of the Cosine filter over FCDFT is that the Cosine filter would have better

performance in sub-synchronous region but at the same time the Cosine algorithm would take

one and a quarter cycle (11
4 cycle) of the fundamental to yield the phasor while FCDFT would

take one cycle to yield the phasor. As an example, Figure A.5 shows the estimated by FCDFT

and Cosine algorithms for a signal x = cos(ωt + 30o) + e−
t

0.25 which consists of a decaying DC

offset component (DDOC) superimposed on the fundamental frequency component. It could

be seen Figure A.5 that the phasor estimated through the Cosine algorithm has considerably

less oscillations as compared to that obtained through FCDFT. On the other hand the transient

period of the FCDFT is one cycle of fundamental frequency, i.e., 16.6ms while that of the

Cosine algorithm is a quarter cycle longer i.e., 20.83ms. However, it should be noted that the

performance of FCDFT could be made almost equivalent to that of Cosine filter by using mimic

filter along with FCDFT. Nonetheless, the usage of mimic filter with FCDFT would increase

the time taken by FCDFT to yield the phasor. In this thesis, the Cosine algorithm is used as

standard due to its superior performance in the sub-synchronous region.

Once the phasor of all the voltage and current signals is obtained, the sequence components

of the current and voltage phasors are calculated which are then passed on to the impedance-

based fault location algorithm.
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Figure A.5: Phasors estimated using FCDFT and Cosine algorithms.



Appendix B

Additional waveforms for Chapter 3

The waveforms presented in this Appendix depict the measured three phase currents and volt-

ages, the estimated phasors of the faulted phase current and voltage, and the computed fault

location result by the algorithm presented in Chapter 3. The depicted waveforms correspond

to the single phase to ground faults (AG) and double phase to ground faults (BCG) located at

40% line length as measured from Bus S with different fault resistance values (0Ω, 10Ω, 50Ω,

and 100Ω). Figures B.1 to B.6 correspond to AG faults while Figures B.7 to B.14 correspond

to BCG faults.
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Figure B.1: Voltage and current waveforms for a 10Ω AG fault at 40% line length from Bus S:
(a) Bus S voltage, (b) Bus S current (c) Bus R voltage, (d) Bus R current
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Figure B.2: (a)-(d): Estimated phasors of phase-A voltage and current signals measured at Bus
S and Bus R for a 10Ω AG fault at 40% line length from Bus S; (e) fault location result obtained
from Algorithm PM and Algorithm EM.
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Figure B.3: Voltage and current waveforms for a 50Ω AG fault at 40% line length from Bus S:
(a) Bus S voltage, (b) Bus S current (c) Bus R voltage, (d) Bus R current
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Figure B.4: (a)-(d): Estimated phasors of phase-A voltage and current signals measured at Bus
S and Bus R for a 50Ω AG fault at 40% line length from Bus S; (e) fault location result obtained
from Algorithm PM and Algorithm EM.
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Figure B.5: Voltage and current waveforms for a 100Ω AG fault at 40% line length from Bus
S: (a) Bus S voltage, (b) Bus S current (c) Bus R voltage, (d) Bus R current
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Figure B.6: (a)-(d): Estimated phasors of phase-A voltage and current signals measured at
Bus S and Bus R for a 100Ω AG fault at 40% line length from Bus S; (e) fault location result
obtained from Algorithm PM and Algorithm EM.
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Figure B.7: Voltage and current waveforms for a 0Ω BCG fault at 40% line length from Bus S:
(a) Bus S voltage, (b) Bus S current (c) Bus R voltage, (d) Bus R current



210 Appendix B

20 30 40 50 60 70
300

350

400

450
M
a
g
.
P
h
-B

V
o
l.

(k
V
)

(a) Time(ms)

 

 

Bus S Bus R

20 30 40 50 60 70
2
4
6
8

10
12
14

M
a
g
.
P
h
-B

C
u
r.

(k
A
)

(b) Time(ms)

 

 

Bus S Bus R

20 30 40 50 60 70
−115

−110

−105

−100

−95

A
n
g
.
P
h
-B

V
o
l.
(◦
)

(c) Time(ms)
20 30 40 50 60 70

−100

0

100

200

A
n
g
.
P
h
-B

C
u
r.
(◦
)

(d) Time(ms)

20 30 40 50 60 70
300

320

340

360

M
a
g
.
P
h
-C

V
o
l.

(k
V
)

(e) Time(ms)
20 30 40 50 60 70
0

5

10

15
M
a
g
.
P
h
-C

C
u
r.

(k
A
)

(f) Time(ms)

20 30 40 50 60 70
130

132

134

136

138

A
n
g
.
P
h
-C

V
o
l.
(◦
)

(g) Time(ms)
20 30 40 50 60 70
0

50

100

150

A
n
g
.
P
h
-C

C
u
r.
(◦
)

(h) Time(ms)

20 25 30 35 40 45 50 55 60 65 70
30

40

50

60

F
a
u
lt

L
o
ca
ti
o
n
(%

)

(i) Time(ms)

 

 

Algorithm PM Algorithm EM

Figure B.8: (a)-(d): Estimated phasors of phase-B voltage and current signals measured at Bus
S and Bus R; (e)-(h): estimated phasors of phase-C voltage and current signals measured at
Bus S and Bus R for a 0Ω BCG fault at 40% line length from Bus S; (i) fault location result
obtained from Algorithm PM and Algorithm EM.
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Figure B.9: Voltage and current waveforms for a 10Ω BCG fault at 40% line length from Bus
S: (a) Bus S voltage, (b) Bus S current (c) Bus R voltage, (d) Bus R current
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Figure B.10: (a)-(d): Estimated phasors of phase-B voltage and current signals measured at
Bus S and Bus R; (e)-(h): estimated phasors of phase-C voltage and current signals measured
at Bus S and Bus R for a 10Ω BCG fault at 40% line length from Bus S; (i) fault location result
obtained from Algorithm PM and Algorithm EM.
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Figure B.11: Voltage and current waveforms for a 50Ω BCG fault at 40% line length from Bus
S: (a) Bus S voltage, (b) Bus S current (c) Bus R voltage, (d) Bus R current



214 Appendix B

20 30 40 50 60 70

350

400

450

M
a
g
.
P
h
-B

V
o
l.

(k
V
)

(a) Time(ms)

 

 

Bus S Bus R

20 30 40 50 60 70

2

4

6

8

10

M
a
g
.
P
h
-B

C
u
r.

(k
A
)

(b) Time(ms)

 

 

Bus S Bus R

20 30 40 50 60 70
−110

−105

−100

−95

−90

A
n
g
.
P
h
-B

V
o
l.
(◦
)

(c) Time(ms)
20 30 40 50 60 70

−100

0

100

200

A
n
g
.
P
h
-B

C
u
r.
(◦
)

(d) Time(ms)

20 30 40 50 60 70
300

350

400

450

M
a
g
.
P
h
-C

V
o
l.

(k
V
)

(e) Time(ms)
20 30 40 50 60 70

2

4

6

8
M
a
g
.
P
h
-C

C
u
r.

(k
A
)

(f) Time(ms)

20 30 40 50 60 70
130

135

140

145

A
n
g
.
P
h
-C

V
o
l.
(◦
)

(g) Time(ms)
20 30 40 50 60 70

0

100

200

A
n
g
.
P
h
-C

C
u
r.
(◦
)

(h) Time(ms)

20 25 30 35 40 45 50 55 60 65 70
20

30

40

50

F
a
u
lt

L
o
ca
ti
o
n
(%

)

(i) Time(ms)

 

 

Algorithm PM Algorithm EM

Figure B.12: (a)-(d): Estimated phasors of phase-B voltage and current signals measured at
Bus S and Bus R; (e)-(h): estimated phasors of phase-C voltage and current signals measured
at Bus S and Bus R for a 50Ω BCG fault at 40% line length from Bus S; (i) fault location result
obtained from Algorithm PM and Algorithm EM.
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Figure B.13: Voltage and current waveforms for a 100Ω BCG fault at 40% line length from
Bus S: (a) Bus S voltage, (b) Bus S current (c) Bus R voltage, (d) Bus R current
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Figure B.14: (a)-(d): Estimated phasors of phase-B voltage and current signals measured at
Bus S and Bus R; (e)-(h): estimated phasors of phase-C voltage and current signals measured
at Bus S and Bus R for a 100Ω BCG fault at 40% line length from Bus S; (i) fault location
result obtained from Algorithm PM and Algorithm EM.
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Additional waveforms for Chapter 5

The waveforms presented in this Appendix correspond to the fault location algorithms pro-

posed in Chapter 5. The current flowing through MOVs and SCBs in each phase for different

types of faults have been depicted in Figures C.1 to C.8. The Figures C.9 to C.16 represent the

estimated phasors of positive sequence of the measured quantities and the fault location results

yielded by both of the proposed algorithms.
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Figure C.1: The total current flowing though SCB, and the MOV current for solid AG faults
at various points in an SCCTL measured as percent of the line length from Bus S: (a) 0%, (b)
20%, (c) 40%, (d) 60%.
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Figure C.1 (Continued): The total current flowing though SCB, and the MOV current for solid
AG faults at various points in an SCCTL measured as percent of the line length from Bus S:
(e) 80%, and (f) 100%.
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Figure C.2: The total current flowing though SCB, and the MOV current for solid BCG faults
at various points in an SCCTL measured as percent of the line length from Bus S: (a) 0%, (b)
20%, (c) 40%, (d) 60%.
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Figure C.2 (Continued): The total current flowing though SCB, and the MOV current for solid
BCG faults at various points in an SCCTL measured as percent of the line length from Bus S:
(e) 80%, and (f) 100%.
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Figure C.3: The total current flowing though SCB, and the MOV current for solid BC faults
at various points in an SCCTL measured as percent of the line length from Bus S: (a) 0%, (b)
20%, (c) 40%, (d) 60%.
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Figure C.3 (Continued): The total current flowing though SCB, and the MOV current for solid
BC faults at various points in an SCCTL measured as percent of the line length from Bus S:
(e) 80%, and (f) 100%.
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Figure C.4: The total current flowing though SCB, and the MOV current for solid ABC faults
at various points in an SCCTL measured as percent of the line length from Bus S: (a) 0%, (b)
20%, (c) 40%, (d) 60%.
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Figure C.4 (Continued): The total current flowing though SCB, and the MOV current for solid
ABC faults at various points in an SCCTL measured as percent of the line length from Bus S:
(e) 80%, and (f) 100%.
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Figure C.5: The total current flowing though SCB, and the MOV current for solid AG faults
at various points in an SCCTL measured as percent of the line length from Bus S: (a) 0%, (b)
20%, (c) 40%, (d) 60%.
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Figure C.5 (Continued): The total current flowing though SCB, and the MOV current for 100Ω

AG faults at various points in an SCCTL measured as percent of the line length from Bus S:
(e) 80%, and (f) 100%.
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Figure C.6: The total current flowing though SCB, and the MOV current for 100Ω BCG faults
at various points in an SCCTL measured as percent of the line length from Bus S: (a) 0%, (b)
20%, (c) 40%, (d) 60%.
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Figure C.6 (Continued): The total current flowing though SCB, and the MOV current for 100Ω

BCG faults at various points in an SCCTL measured as percent of the line length from Bus S:
(e) 80%, and (f) 100%.
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Figure C.7: The total current flowing though SCB, and the MOV current for 100Ω BC faults
at various points in an SCCTL measured as percent of the line length from Bus S: (a) 0%, (b)
20%, (c) 40%, (d) 60%.
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Figure C.7 (Continued): The total current flowing though SCB, and the MOV current for 100Ω

BC faults at various points in an SCCTL measured as percent of the line length from Bus S:
(e) 80%, and (f) 100%.
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Figure C.8: The total current flowing though SCB, and the MOV current for 100Ω ABC faults
at various points in an SCCTL measured as percent of the line length from Bus S: (a) 0%, (b)
20%, (c) 40%, (d) 60%.
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Figure C.8 (Continued): The total current flowing though SCB, and the MOV current for 100Ω

ABC faults at various points in an SCCTL measured as percent of the line length from Bus S:
(e) 80%, and (f) 100%.
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Figure C.9: Various estimated phasors for the fault scenario of a solid AG fault at 40% line
length measured from Bus S: (a)-(b) positive sequence voltage magnitude and phase angle, (c)-
(d) positive sequence current magnitude and phase angle, (e)-(f) magnitude and phase angle of
the positive sequence of voltage drop across SCB as estimated by Algorithms CP and MP, (f)
fault location results yielded by Algorithms CP and MP.
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Figure C.10: Various estimated phasors for the fault scenario of a solid BCG fault at 40% line
length measured from Bus S: (a)-(b) positive sequence voltage magnitude and phase angle, (c)-
(d) positive sequence current magnitude and phase angle, (e)-(f) magnitude and phase angle of
the positive sequence of voltage drop across SCB as estimated by Algorithms CP and MP, (f)
fault location results yielded by Algorithms CP and MP.
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Figure C.11: Various estimated phasors for the fault scenario of a solid BC fault at 40% line
length measured from Bus S: (a)-(b) positive sequence voltage magnitude and phase angle, (c)-
(d) positive sequence current magnitude and phase angle, (e)-(f) magnitude and phase angle of
the positive sequence of voltage drop across SCB as estimated by Algorithms CP and MP, (f)
fault location results yielded by Algorithms CP and MP.
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Figure C.12: Various estimated phasors for the fault scenario of a solid ABC fault at 40% line
length measured from Bus S: (a)-(b) positive sequence voltage magnitude and phase angle, (c)-
(d) positive sequence current magnitude and phase angle, (e)-(f) magnitude and phase angle of
the positive sequence of voltage drop across SCB as estimated by Algorithms CP and MP, (f)
fault location results yielded by Algorithms CP and MP.
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Figure C.13: Various estimated phasors for the fault scenario of a 100Ω AG fault at 40% line
length measured from Bus S: (a)-(b) positive sequence voltage magnitude and phase angle, (c)-
(d) positive sequence current magnitude and phase angle, (e)-(f) magnitude and phase angle of
the positive sequence of voltage drop across SCB as estimated by Algorithms CP and MP, (f)
fault location results yielded by Algorithms CP and MP.
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Figure C.14: Various estimated phasors for the fault scenario of a 100Ω BCG fault at 40% line
length measured from Bus S: (a)-(b) positive sequence voltage magnitude and phase angle, (c)-
(d) positive sequence current magnitude and phase angle, (e)-(f) magnitude and phase angle of
the positive sequence of voltage drop across SCB as estimated by Algorithms CP and MP, (f)
fault location results yielded by Algorithms CP and MP.
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Figure C.15: Various estimated phasors for the fault scenario of a 100Ω BC fault at 40% line
length measured from Bus S: (a)-(b) positive sequence voltage magnitude and phase angle, (c)-
(d) positive sequence current magnitude and phase angle, (e)-(f) magnitude and phase angle of
the positive sequence of voltage drop across SCB as estimated by Algorithms CP and MP, (f)
fault location results yielded by Algorithms CP and MP.
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Figure C.16: Various estimated phasors for the fault scenario of a 100Ω ABC fault at 40% line
length measured from Bus S: (a)-(b) positive sequence voltage magnitude and phase angle, (c)-
(d) positive sequence current magnitude and phase angle, (e)-(f) magnitude and phase angle of
the positive sequence of voltage drop across SCB as estimated by Algorithms CP and MP, (f)
fault location results yielded by Algorithms CP and MP.



Appendix D

Additional waveforms for Chapter 7

In this appendix the first two traveling waves arriving at Bus S and Bus R in Configuration C

of the SCCTL as observed in the derivative of α and β modes of the current measured at the

terminals are shown. The α mode current is used for the AG and ABC faults, while β mode

current is utilized for BCG and BC faults. It is due to the reason that for AG faults β mode

does not see the fault. Similarly, for BCG and BC faults the α mode does not see the fault. For

ABC fault all the modes see the fault, so α mode current is used for observing traveling waves

for ABC faults. The time period shown in the Figures D.1 to D.12 is from the time instance

of the fault occurrence to just before the arrival of third traveling wave at that terminal of the

transmission line.
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Figure D.1: The arrival of first two traveling waves at Bus S for various 50Ω faults at 0% line
length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.2: The arrival of first two traveling waves at Bus S for various 50Ω faults at 20%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.3: The arrival of first two traveling waves at Bus S for various 50Ω faults at 40%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.4: The arrival of first two traveling waves at Bus S for various 50Ω faults at 60%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.5: The arrival of first two traveling waves at Bus S for various 50Ω faults at 80%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.6: The arrival of first two traveling waves at Bus S for various 50Ω faults at 100%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.7: The arrival of first two traveling waves at Bus R for various 50Ω faults at 0% line
length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.8: The arrival of first two traveling waves at Bus R for various 50Ω faults at 20%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.9: The arrival of first two traveling waves at Bus R for various 50Ω faults at 40%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.10: The arrival of first two traveling waves at Bus R for various 50Ω faults at 60%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.11: The arrival of first two traveling waves at Bus R for various 50Ω faults at 80%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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Figure D.12: The arrival of first two traveling waves at Bus R for various 50Ω faults at 100%
line length measured from Bus S: (a) AG fault (α-mode), (b) BCG fault (β-mode), (c) BC fault
(β-mode), (d) ABC fault (α-mode).
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