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Abstract 

Previous work has identified a positive relationship between the density of aerial LiDAR 

input for building reconstruction and the accuracy of the resulting reconstructed models. We 

hypothesize a point of diminished returns at which higher data density no longer contributes 

meaningfully to higher accuracy in the end product. We investigate this relationship by 

subsampling a high-density dataset from the City of Surrey, BC to different densities and 

inputting each subsampled dataset to reconstruction using two different reconstruction 

methods. We then determine the accuracy of reconstruction based on manually created 

reference data, in terms of both 2D footprint accuracy and 3D model accuracy. We find that 

there is no quantitative evidence for meaningfully improved output accuracy from densities 

higher than 4 p/m2 for either method, although aesthetic improvements at higher point cloud 

densities are noted for the 2.5D Dual Contouring method. 

Keywords 

LiDAR, laser scanning, building reconstruction, building extraction, 3d urban modeling, 

SPHARM, 3d model accuracy assessment, 2.5D dual contouring, point cloud 
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1 Introduction 

Automated 3D building reconstruction encompasses a broad range of techniques which 

are applicable to remote-sensed data from a variety of sources. Applications of 3D 

building models reconstructed from remote-sensed data include not only visualization 

and urban planning but also problems environmental monitoring such as air and noise 

pollution monitoring and heat transfer modeling, as well as modeling the propagation of 

telecommunications signals through the urban environment (Hron and Halounová 2015) 

and damage assessment for disaster response. When reconstructing building models for 

large urban areas, the automated nature of such techniques is a major benefit, as manual 

modeling requires a large time investment for even neighbourhood-sized areas. Data 

sources include aerial and satellite imagery, as well as Light Detection and Ranging 

(LiDAR) scanning. The latter has several advantages, principal among which is that 

depth information is inherent to the sensing technology and is collected at time of sensing 

as opposed to being the product of post-collection analysis (Musialski et al. 2013) – in 

other words, LiDAR data is inherently 3-dimensional. LiDAR scan data is however 

expensive to collect at high density levels and for large areas, which poses a challenge for 

widespread adoption for urban modelling. This thesis presents a novel methodology for 

assessing the relationship between data density and accuracy for 3D building 

reconstruction algorithms using real-world LiDAR data. We seek to provide clarity as to 

what level of density is adequate for the purposes of building reconstruction so that those 

commissioning data collection for this purpose can make informed decisions as to their 

requirements. 

1.1 Aerial LiDAR Technology 

LiDAR encompasses a variety of remote sensing technologies, all relying on the sensing 

of light emitted by a laser and reflected by subject phenomena. LiDAR scanners may be 

stationary, or ground vehicle based, or mounted to aircraft, in what is referred to as 

Airborne Laser Scanning (ALS).  ALS’s main advantage over other modes of LiDAR 
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remote sensing is the high speed of data collection over large areas, particularly when 

compared to stationary terrestrial scanners. Most airborne laser scanning technology uses 

‘time-of-flight’ to determine distance; that is, they measure the time between emission 

and reception of a pulse of light and calculate the distance traveled by that pulse using the 

known speed of light in the atmosphere (Vosselman and Maas 2010). Combined with the 

known angle at which the laser pulse is emitted and the known position of the scanner 

itself, as determined by a combination of GPS and inertial measurement systems, the 

position of the reflecting surface can be computed and stored as one or more return(s). 

Several returns per pulse are possible in the case of semi-transparent or permeable 

surfaces such as tree canopy, since the laser beam has an areal footprint and can therefore 

shine ‘through’ thin objects such as tree branches and power lines. The spatial accuracy 

and precision of a return varies, not only with footprint of the beam but also with the type 

and texture of the surface it represents (El Hakim et al. 2008). In addition to discrete 

returns, an increasing body of research has formed using full-waveform techniques, 

which measures the reflection of emitted light in much greater temporal detail; this 

technique is more common in applications such as forestry and surface topography 

(Cheng et al. 2017) than for building extraction and modelling. 

The spatial resolution of discrete-return LiDAR data is typically characterised in terms of 

the number of return points per unit of horizontal area, usually points per square meter. 

Mean distance between points is also sometimes used, though more often the distance 

between points is used as a basis for subsampling than as a density metric. The spatial 

resolution of aerial LiDAR data is dependent on several factors including the 

specifications of the sensor, the height of flight of the airborne platform carrying the 

sensor, and the platform’s speed. In general, these factors combine to produce a trade-off 

between speed of collection and spatial density for any given sensor system. An aircraft 

flying higher and faster will collect the same number of points over a larger area than an 

aircraft flying slower and lower, producing lower-resolution data. 

1.2 Building Extraction and Reconstruction 

The meaning of the terms ‘extraction’ and ‘reconstruction’ in the context of building 

identification and modeling varies across the literature, so it is useful to define them as 
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conceptualized here. ‘Building extraction’ for our purposes refers to the process of 

identifying areas and/or data corresponding to building features, including the production 

of 2-dimensional outlines (‘footprints’) representing the locations and shapes of buildings 

and potentially also the extraction of point cloud subsets corresponding to building 

surface returns, in some methods. ‘Building reconstruction’ here refers to the production 

of 3D models from LiDAR data or other remotely sense data, with building extraction 

processes potentially but not necessarily serving as a by-product or intermediate step to 

full 3D reconstruction. Although simply extruding extracted building footprints to an 

average height can be considered a form of building reconstruction and has been used to 

check the 3D accuracy of footprint extraction (Wang et al. 2016) we do not consider this 

to qualify as building reconstruction as roof shape and within-footprint height differences 

are not respected. Another process which may be characterised as intermediate between 

building extraction and building reconstruction is boundary line extraction, which 

identifies both the overall building footprint and within-footprint breaks in elevation. 

Such processes are often part of a full building reconstruction workflow but are also 

sometimes developed in a stand-alone context (Tseng and Hung 2016). 

1.3 Research Question and Objectives 

The overall goal of this study is to determine the relationship between point density in 

input LiDAR data and the accuracy of 3D building models extracted from that data. 

Based on previous research examining the effects of LiDAR data attributes on building 

model extraction (Lohani and Singh 2008), we expect a point of diminished returns for 

point cloud density, above which reconstruction accuracy does not significantly vary. 

Below this level of density, however, reconstruction accuracy is expected to deteriorate 

with decreasing point cloud density; we aim to both establish the level of diminished 

return and to characterize rate of deterioration for point cloud densities below it. 

City-scale LiDAR datasets can be expected to contain a range of building sizes and 

architectures, and there is reason to expect that reconstruction performance will not be 

uniform across them for a given point cloud density. At the very least, small buildings are 

considered more difficult to correctly identify than larger ones (Soininen 2016). It may be 

the case that the point of diminished returns on the reconstruction accuracy of detached 
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houses, for example, is different than for large commercial outlets. Establishing the 

degree of difference in the relationships between point cloud density and accuracy for 

buildings of various sizes and purposes is another research objective. 

In summary, our research questions are as follows: 

1) Is there a point of diminishing returns on accuracy for increasing density of input 

data for building reconstruction from aerial LiDAR data? 

2) Does the relationship between point cloud density and accuracy as assessed based 

on 2D footprints differ from the relationship with accuracy as assessed by 3D 

similarity metrics? 

3) Does the relationship between accuracy and point cloud density vary between the 

two 3D reconstruction methods tested? 

4) How does building size affect the accuracy of 3D reconstruction, and does the 

relationship between accuracy and point cloud density vary with building size?  

 

1.4 Organization of this Thesis 

The most general background information relevant to this thesis has been presented in the 

above sections of the introduction. Chapter 2 presents the literature review, which 

describes previous work in 2D extraction and 3D reconstruction of buildings from 

LiDAR data as well as methods of analyzing the accuracy of extraction and 

reconstruction. The literature review also details what has already been published on the 

question of the effect of point cloud density on extraction and reconstruction accuracy, 

and gives background information on polygonal 3D models as relevant to our method of 

3D model comparison. Chapter 3 details our methods for reference data collection, point 

cloud thinning, building extraction and reconstruction, and accuracy assessment. Chapter 

4 presents our results, which Chapter 5 discusses in depth. Finally, Chapter 6 presents our 

conclusions. 
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2 Literature Review 

Relatively little literature exists on the effect of point cloud density on 2D building 

extraction, and virtually none on its effect on 3D reconstruction accuracy. What 

information is available often takes the form of informal advice; the documentation for 

LiDAR software TerraSolid, for example, suggests good performance for all buildings at 

densities above 2 p/m2 (Soininen 2016). Point clouds used for building reconstruction 

range from as thin as 0.1 p/m2 (Rottensteiner and Briese 2002) to as dense as 225 p/m2 

(Truong-Hong and Laefer 2015).  

A thorough study of the effectiveness of building reconstruction at different point cloud 

densities requires an understanding of both reconstruction itself and of the ways in which 

a reconstructed building model may be assessed for accuracy. Building reconstruction 

must be understood as closely related to building extraction, the identification of building 

footprints from remote-sensed data. Reconstruction of a building model in 3D inevitably 

involves identifying its footprint in 2D, either explicitly as a part of the modelling process 

or implicitly as the external boundary of a planform projection of the 3D model. 

Therefore, the accuracy of building model reconstruction has both 3D and 2D 

components, representing respectively the accuracy of the 3-dimensional model itself and 

the accuracy of that model’s 2-dimensional footprint. Assessment of the building 

footprint identified during reconstruction allows for the effectiveness of the footprint to 

be gauged and analyzed in relation to 3D accuracy. Although 2D and 3D accuracy are 

expected to be strongly correlated, measuring the strength of the relationship gives 

insight into how strongly the post-identification reconstruction process influences 3D 

accuracy. Even more crucial to the research question is 3D model accuracy assessment, 

for which several metrics have been developed. To use them, it is necessary to ensure that 

the 3D models used are topologically valid, the criteria for validity varying depending on 

the method used. 
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2.1 Conceptualization of Buildings 

Conceptual uncertainty, in the context of remote sensing, arises from vagueness in the 

definition of what is to be studied or classified. Conceptual uncertainty in remote sensing 

of buildings arises from the arbitrary and culturally variable way in which humans 

differentiate buildings from other permanent or semi-permanent artificial structures. 

Kuhn (2002) defines a building as “a structure that has a roof and walls and stands more 

or less permanently in one place”. While this definition fits with the popular conception 

of a building, it is not adequate to accurately classify every possible building and non-

building structure that might be encountered by remote sensing technology. Consider, for 

example, a geodesic dome, which has no distinct walls but would nevertheless be 

classified as a building by most observers, or a derelict RV, which satisfies all of Kuhn’s 

criteria but would not be considered by most to be a building.  

The International Building Code (IBC) also defines buildings broadly, as “any structure 

used or intended for supporting any use or occupancy” (International Code Council 2011) 

Such a definition could be liberally interpreted as including mobile structures such as 

vehicles, which the scope of the IBC does not include, and to structures not inhabited by 

humans such as freestanding antennae or storage tanks, which are within the defined 

scope of the IBC. The objective of a building code to set out legally binding requirements 

to ensure public safety and accessibility (Potworowski, Murray-Choudhary, and Losfeld 

2010) and the latter buildings fit within that scope, but such structures are not ‘buildings’ 

in the conventional sense as they have no intention of even occasional occupancy by 

humans. The IBC’s definition is therefore not suitable for this study’s purposes without 

modification. 

Given the concerns raised for the above definitions, it is useful to devise a comprehensive 

definition of ‘building’ for the purposes of this study. That definition is composed of the 

following three criteria: 

a) Permanence: A building is designed to remain in its constructed form for at least a 

year and is not intended to be regularly disassembled and reassembled, as (for 

example) a tent is.  
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b) Immobility: A building cannot move under its own power or be moved by towing, 

and performs its intended function while stationary. This first part of this criterion 

excludes both land vehicles and trailers as well as floating objects such as ships 

and barges; the second excludes objects such as cargo containers whose primary 

function is to contain cargo while in transport. It also excludes machinery such as 

dockyard cranes which move during normal function. Neither part excludes semi-

movable buildings such mobile homes or portable classrooms, which must be 

loaded onto a vehicle for transport and fulfill their primary function only when 

unloaded. 

c) Habitation: The structure must be intended for human occupancy for at least part 

of its operating life post-construction. This excludes tanks for fluids as well as 

electrical substations and other pieces of stationary outdoor machinery, but not for 

storage buildings such as barns, sheds and warehouses which must admit human 

occupants for the purposes of loading and unloading or maintenance. It also does 

not exclude most types of grain silo, namely those that are designed to 

accommodate human entry as part of maintenance. 

2.2 Building Footprint Extraction 

Most building footprint extraction methods for LiDAR data are more specifically roofline 

extraction methods; they detect the 2D outline of roofs, not walls (Potůčková and 

Hofman 2016). The reason for this can be readily intuited from the appearance of most 

aerial LiDAR point clouds; the vast majority of points represent sky-facing surfaces such 

as roofs and the ground, with very few points representing vertical features such as walls. 

Although aerial datasets with large amounts of wall and façade points do exist, these are 

rare and high-density datasets gathered with the specific intent of maximizing vertical 

surface data (Truong-Hong and Laefer 2015). Footprint extraction methods encompass a 

diverse array of processes and algorithms ranging from varieties of edge detection 

algorithms (Sajadian and Arefi 2014, Zhang et al. 2017) to shape-based contouring (Yari 

et al. 2014) and neural networks (Silván-Cárdenas and Wang 2011, Liu et al. 2013). Early 

approaches frequently rely on rasterization of range data into a DSM, filtering to produce 

a DEM, then algorithmically separating buildings and vegetation from a normalized DSM 
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(Brunn and Weidner 1997); conversely, buildings may be extracted from a DSM for the 

purposes of creating a building-free DEM (Priestnall, Jaafar, and Duncan 2000). 

Although DEM-related techniques and applications clearly drive much of the early work 

on building extraction, the applications of LiDAR data to 3D city modeling were also 

realized relatively early in the maturation of aerial LiDAR sensing (Haala and Brenner 

1999). 

Data fusion approaches are popular, frequently involving high-resolution multispectral 

imagery (e.g. Li et al. 2013), another common data source for building extraction. Fusion 

of LiDAR and imagery is common enough to be considered a third approach, 

complementing LiDAR-only and imagery-only building extraction methods, integrating 

height and return-intensity information with texture and edge information from optical 

images (Lee, Lee, and Lee 2008). Some integration techniques use imagery only to 

address the problem of vegetation removal, but more in-depth data fusion methodologies 

use both LiDAR and imagery to detect footprints as well (Awrangjeb, Ravanbakhsh, and 

Fraser 2010). 

 The work of Sohn and Dowman (2006), which fuses high resolution satellite imagery 

with low-density LiDAR data, has been identified as particularly influential in terms of 

citation by other authors (Tomljenovic et al. 2015). Most techniques that fuse LiDAR 

with other data do so with some other remote sensing technology, but non-remote-sensed 

data such as address information has also been used (Jarzabek-Rychard, 2012).  

Techniques which work directly on the point cloud, such as ‘marked point’ methods, 

have the advantage of skipping an intermediate rasterization stage (Yang, Xu, and Dong 

2013) but as a consequence cannot leverage well-developed raster-based algorithms. 

Methods that rely on separating the point cloud into subsets representing individual 

buildings are often associated with 3D building reconstruction, but it is equally possible 

to use such techniques to delineate building boundaries in 2D, for footprint extraction 

(Sampath and Shan 2007). Fully 3D methods such as plane detection, frequently applied 

to 3D roof reconstruction, have also been applied productively to footprint extraction 

(Varghese, Shajahan, and Nath 2016). Such ‘reverse’ applications of reconstruction 



9 

 

methods to the problem of footprint extraction illustrate the interrelatedness of these two 

problems, and the way in which developments in one field can contribute to 

advancements in the other. 

Extraction methods often seek to regularize the produced footprints in some way in order 

to reduce noise and produce visually ‘clean’ boundaries. Established methods include the 

traditional Douglas-Peucker line simplification algorithm, which generalizes lines by 

reducing the number of vertices, Model Hypothesis-Verification algorithms that generate 

sets of simplified line segments and select the best fitting candidate, least-squares 

adjustment of initial footprint lines, and rule-based regularization processes (Jwa et al. 

2008). Frequently such methods rely on the detection of ‘principle directions’; since most 

buildings have rectilinear footprints (i.e. footprints composed of straight lines at right 

angles to each other), automatic processes may be employed to estimate these directions 

and ‘snap’ lines composing the footprint to them (Yunfan and Hongchao, 2011) 

Alternative regularization methods employing shape-fitting strategies such as minimum 

bounding rectangles (Yunfan and Hongchao 2011) have also been developed. 

2.3 3D Building Reconstruction 

3D building reconstruction consists of the generation of 3D models from remote-sensed 

data. Applications of 3D building data include visualization for urban planning, real 

estate and entertainment but also in the provision of data for analysis of the urban 

environment, such as for solar energy assessment (Martinez Rubio et al. 2016). As with 

building footprint extraction, several remote sensing techniques have been leveraged for 

building reconstruction, including RADAR and orthophotography, but our review 

confines itself to method using aerial LiDAR, one of the most common methods found in 

literature (Wang 2013). 

3D building reconstruction from LiDAR has, since early in the development of the field, 

been approached from two distinct classes of technique: data-driven methods and model-

driven methods (Maas and Vosselman 1999). Data-driven methods seek to construct 

building models by reconstructing shapes such as lines and planes apparent in the LiDAR 

point cloud. Model-driven surfaces, on the contrary, seek to approximate the shape of 



10 

 

buildings by fitting parametric 3D shapes to the point cloud, often in a ‘building-block’ 

approach. Certain authors (e.g. Jarząbek-Rychard and Borkowski 2016) term these 

approaches ‘bottom-up’ and ‘top-down’, respectively. Both approaches can achieve 

comparable accuracy; model-driven approaches rely on having suitable models to match 

to the data, while data-driven approaches are more ‘universal’ in terms of geometry but 

can produce deformed models, particularly where the point cloud is unevenly distributed 

or too sparse in relation to building feature size (Tarsha-Kurdi et al. 2007) 

Model driven approaches reconstruct buildings by fitting pre-defined objects or 

primitives to the data. Frequently, such approaches attempt to match objects in a library 

to features in the dataset; the contents of the library constrain the range of possible output 

geometries, which can be advantageous if the library is compiled with knowledge of the 

architecture present in the study area (Taillandier and Deriche 2004). An overly-limited 

library of primitives, however, will not be able to accurately reconstruct a wide range of 

architectural forms. Even for study areas with homogenous architectural characteristics, 

model-based methods must have some way to vary the shape and scale of individual 

primitives in order to adequately represent differently sized and proportioned buildings. 

Such parameters may include not only scale and rotation but also specifications of roof 

symmetry, slope, and other information (Lafarge et al. 2010). Building primitives may be 

prescribed 3D shapes such as prisms or polygons, but a high degree of flexibility can be 

achieved by conceptualizing primitives as topological models that may be combined to 

build an overall model of roof structure (Xiong et al. 2015). Model-driven approaches 

may also be integrated into data-driven reconstruction in order to recover details too 

small to be reconstructed using a purely data-driven approach (Cao et al. 2017). 

Data-driven approaches frequently work on the raw LiDAR point cloud, but DSM-based 

methods have also been developed (Yan et al. 2017). The characteristic strategy of data-

driven approaches is to construct models from shapes that approximate the distribution of 

building points in the point cloud; key to this process is segmentation, the grouping of 

points representing individual surfaces. A very common method of doing this is plane-

fitting; using algorithms to detect planar sets of points and construct planes to represent 

them. Once roof points are segmented, roof models may thereby be assembled by 
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agglomerating nearby roof planes, with building models optionally generated by 

extruding walls to the detected ground level along the outer perimeter. Random Sample 

Consensus (RANSAC) algorithms are frequently employed for plane-fitting in building 

reconstruction (Sun and Salvaggio 2013) and indeed in point cloud-based surface 

reconstruction in general. Multiple RANSAC plane-fitting algorithm variants have been 

developed, all of which involve generating multiple random planes to fit a set of points 

and selecting the plane that fits the most points (Qian and Ye 2014). Of course, not all 

points in a LiDAR point cloud necessarily represent planar building features, or indeed 

features at all; a plane-based segmentation approach must have some method of 

excluding such points (Sampath and Shen 2010). 

Region-growing is another commonly encountered segmentation approach (e.g. Xu et al. 

2017). Region growing algorithms operate by selecting a point in the dataset and 

grouping nearby points with it in an iterative process, until no suitable nearby points can 

be found. An important difference from plane-fitting is that iterative growing; RANSAC 

methods are also iterative but iterate one surface at a time, rather than iterating multiple 

times as a single surface is identified. Optimization strategies deployed for region-

growing algorithms in this context include filtering to select ideal ‘seed points’ to initiate 

region growing as well as voxel-based aggregation of multiple points (Vo et al. 2015). 

Some criterion or criteria must be used to ensure that grouped points represent the same 

surface; using estimated surface normal vectors is one popular solution (Sampath and 

Shen 2010, Chen et al. 2014). As with plane-fitting methods, there must also be a means 

of separating vegetation and ground points from those that represent buildings; this may 

be done prior to segmentation or accomplished by separating ground and/or vegetation 

segments from those that represent buildings; in the former case, the difference in spatial 

distribution between vegetation and building/ground points may be used to filter 

vegetation points in advance of segment identification (Zhou and Neumann 2008). 

The 3D Hough transform was developed from a 2D process used for signals processing 

and has been adapted for matching 3D shapes such as planes (Tarsha-Kurdi, Landes, and 

Grussenmeyer 2007). The process relies on representing a set of points in a different 

mathematical space, one which facilitates the detection of the desired primitive. The 



12 

 

primitive detected is often a plane, but detection of lines and 3d primitives such as 

cylinders is also possible (Rabbani and van den Heuvel 2005). The Hough transform may 

be applied on its own or used in combination with region growing methods by grouping 

the initial products of the transform into regions using a region-growing algorithm (Leng, 

Xiao, and Wang 2016). Optimizations such as Randomized Hough Transform modify the 

algorithm to work more efficiently by reducing the effective number of points that must 

be processed without compromising the thoroughness of plane detection (Maltezos and 

Ioannidis 2016). 

One of two methods used to generate 3D building models in this study is an existing 

implementation of the 2.5D dual contouring method developed by Zhou and Neumann 

(2010), henceforth referred to as dual contouring or DC, which has been the subject of 

recent further development by Orthuber and Avbelj (2015). Dual contouring is a data-

driven process initially developed as a fully 3D method for use with high-density point 

clouds (Fiocco et al. 2005), as a relative of the Marching Cubes algorithm, a common 

surface reconstruction approach (Fuhrmann, Kazhdan, and Goesele 2015). The details of 

the specific implementation used in this case is described in detail in Zhou and Neumann, 

(2010) but a basic overview can be given as follows: First, individual roof points are 

segmented into roof layers using a region growing algorithm. Then, a two-dimensional 

square grid called a quadtree is created, a grid subdivided into cells in which each atomic 

‘leaf’ or cell is one of four children of a parent cell, which is in turn a child of a larger 

parent cell, and so on. The spacing lg of the atomic subtree cells is an important parameter 

in the DC modeling process.  Each node, or center point, on the grid is assigned an 

elevation and surface normal based on the mean of the nearest nth data points. These 

nodes form ‘hermite data’, which in this context are sets of datapoints in which both a 

value and its derivatives are known (Ju et al. 2002, Fuhrmann Kazhdan and Goesele 

2015). In this case, the value is elevation z with the derivative z’ with respect to x and y 

calculated via covariance analysis (Zhou and Neumann 2010). Boundary points are also 

estimated, representing points on edges between different roof layers, separated by 

vertical walls (Zhou 2012). Each quadtree cell contains at a ‘hyperpoint’, a point with a 

single x and y coordinates but with (potentially) multiple z coordinates, the number 

depending on whether it represents an intersection of two roof polygons or the edge of a 
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vertical wall (Orthuber and Avbelj, 2015). The x, y and all z coordinates of the hyperpoint 

are calculated by minimizing a 2.5D quadratic error function (QEF) involving all sample 

and boundary points in the given hyperpoint’s cell.  Once QEFs have been calculated for 

all atomic-level quadtree cells, said cells can be amalgamated into larger and larger cells, 

each amalgamated cell having a QEF composed of its child cells’ QEFs and a hyperpoint 

defined by the error-minimizing solution of that QEF. Subtree collapse halts when no 

four child cells can be collapsed without the residual of that prospective cell’s QEF 

exceeding a given threshold , which controls the amount of simplification-induced error 

tolerated in the final model. The end product is realized by connecting the final set of 

hyperpoints into a crack-free mesh. Additional safeguards to preserve sharp features and 

ensure topological correctness also constrain subtree collapse, and a principle-direction 

snapping feature adjusts model features to better align with those of its neighbours. 

2.4 Previous Research on the Effects of Point Cloud Density on 

Extraction and Reconstruction 

Previous research has established building detection as requiring relatively high spatial 

data density relative to other applications; while Pirotti and Tarolli (2010) find that 0.2 

ppm2 point clouds are sufficient for relief mapping, building extraction in existing 

literature is typically performed using data at least an order of magnitude denser. 

Research using simulated LiDAR data has established point cloud density as the only 

attribute of LiDAR data to have a significant impact on reconstruction accuracy (Lojani 

and Singh 2008). One study using a raster object-based extraction algorithm reports 

noticably reduced accuracy, on the order of 20% loss of completeness, for point clouds 

below 18 ppm2, and fewer than 50% of buildings detected at point cloud densities below 

7 ppm2 (Tomjlenovic and Roussel 2014). In contrast, a different method which included 

reconstruction of simple roofs found area correctness in excess of 90% for point cloud 

densities as low as 2 ppm2 (Lohani and Singh 2008). The large discrepancy in reported 

performance may have more to do with different metrics than different methods; the 

former study uses per-building completeness and correctness metrics while the latter 

reports in terms of area. 
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Apart from studies looking specifically at the question of building identification and 

reconstruction as varying in accuracy with point cloud density, it is possible to gain some 

insights from research looking at these topics more generally. There is general agreement 

that building size is an important determinant in whether or not a building can be detected 

using a given extraction method, both theoretically (Kodors and Kangro 2016) and in 

practice. Some authors quantify rates of reconstruction based on absolute building area 

(Rutzinger, Rottensteiner and Pfeifer 2009) but others suggest quantifying building area 

relative to point cloud density for the purposes of reconstruction quality assessment 

(Potůčková and Hofman 2016). 

2.5 Assessment of Extraction and Reconstruction Accuracies 

Of the two processes, accuracy metrics for building extraction are better established than 

those for building reconstruction. A variety of assessment techniques exist, and no 

consensus on a standard set of performance metrics has as of yet been reaches (Avbelj, 

Muller and Bamler 2015). Disagreement between methods stems from the choice of 

entity to form the basis of comparison, the definition of what is and is not a building to be 

detected, and the method of comparison itself (Rutzinger, Rottensteiner, and Pfeifer 

2009). In many cases, extraction results are either not assessed numerically or assessed 

without a full description of the parameters used, making comparing the performance of 

different published methods challenging (Potůčková and Hofman 2016).  

In early literature, the rate of detection is the most common gauge of accuracy (Song and 

Haithcoat 2005), which gives no indication of geometric correctness. Measurement of 

detection rate entails both quantifying the number of buildings detected and identifying 

detected building objects with objects in reference data, in order to distinguish between 

true and false positives. More developed accuracy assessments generally assess accuracy 

in areal terms as at least part of their analyses. Building extraction is at its core a 

classification process; one in which building footprint areas are distinguished from non-

building ‘background’ land covers and identified as separate based on non-contiguity. It 

is therefore unsurprising that many of the most widely reported accuracy metrics are 

classification accuracy measurements, which assess producer and user accuracy and 

related metrics such as quality percentage (Shufelt 1999), completeness, and correctness 
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(Rutzinger, Rottensteiner, and Pfeifer 2009), the latter two being particularly common 

(Tomljenovic et al. 2015). Overall assessment of extraction in this manner may 

conducted on a pixel-by-pixel basis (Ekhtari et al. 2009), very much like traditional land 

cover classification assessment. Such metrics classify pixels as being True Positive (TP), 

which are accurately classified as buildings; False Positives (FP), where a building is 

‘detected’ where none actually exists; and False Negatives (FN), where the detection 

method fails to identify a building where one exists; see Figure 2-1 for a visual 

representation.  

 

Figure 2-1 A diagrammatic explanation of classification accuracy. The blue circle 

represents real building area in the input, the red circle represents building area in the 

classification. True Negative area is represented by the area outside both circles. 

 

 

 

 

 

 

True Negative 
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From these classifications, metrics of accuracy can be calculated. Completeness measures 

the proportion of existing buildings (by area) that are identified in the output and is 

calculated by Equation (1). 

Completeness =  
TP

TP+FN
 (1) 

The counterpart to completeness is correctness, which measures the proportion of area 

identified in the output that is in reality building area. It is calculated by Equation (2). 

Correctness = 
TP

TP+FP
 (2) 

Finally, Q combines both metrics, providing an overall measure of how well buildings 

are classified. It is calculated by Equation (3). 

Q = 
TP

TP+FP+FN
 (3) 

Note that although true negative area is not explicitly measured, it is accounted for in 

both correctness and Q, as any misclassification of non-building area as building area 

results in a false positive, reducing both Q and correctness. 

Object-based analyses however are common in building extraction and allow for 

building-specific as well as overall accuracy assessment, including comparisons of 

building shape in addition to areal overlap (Zeng, Wang, and Lehrbass 2013). Object-

level quality assessments are particularly useful since not all buildings are extracted to an 

equal level of accuracy (Avbelj and Muller 2014), and the reliability of extraction for 

different types of buildings is frequently of interest. Proposed shape similarity metrics 

include distance between matched check points (Song and Haithcoat, 2005). Such 

comparisons frequently require one-to-one associations between extracted and reference 

buildings, which can create problems when, for example, a single building is erroneously 

extracted as multiple separate structures. For that reason, such methods usually require 

some degree of manual intervention to split or merge reference footprints for comparison, 

although in most cases metrics such as overlap threshold and principle-direction 

matching can establish matches for most structures automatically (Wang et al. 2016). The 
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way in which erroneously merged or split buildings are evaluated introduces further 

variability in accuracy metrics across studies. Researchers may, for example, only count 

an extracted polygon as correct if and only if it represents a single building (Tomljenovic 

and Roussel 2014), and rates of over- or under-segmentation may or may not be reported 

(Siddiqui et al. 2016).  

Methods of accuracy assessment for 3D building models are less developed than those 

for building footprints, but a variety of methods do exist to assess model accuracy and 

quality. One approach compares the generated model with the original point cloud data, 

measuring the distance between building points and the resulting surface (Oude Elberink 

and Vosselman 2011). Another approach is analogous to that taken by traditional 

footprint accuracy assessment, measuring the intersecting and non-intersecting volume of 

the model with a reference (Mohammed et al. 2013). In doing so, it is possible to extend 

the familiar principles of classification accuracy assessment to the assessment of 3D 

models; along with the familiar metrics of correctness, completeness and quality. Another 

method of accuracy assessment for 3D models involves comparing the distance between 

select points on model and reference (Gómez-Gutiérrez et al. 2015), but such methods are 

more challenging in LiDAR reconstruction relative to photogrammetric methods where 

control points are readily available for such comparisons. In addition to point and 

volume-based comparisons, it is also possible to compare building surfaces. Direct 

comparisons, which may measure Euclidean distance between paired surfaces (Akca et 

al. 2010) are simple conceptually but require some way of matching surfaces between the 

model and reference. Surface matching is computationally intensive for highly detailed or 

noisy models composed of millions of polygons.  

An alternative is to parameterize the model, transforming it into a form that is more 

readily comparable. The SPHARM (Spherical Harmonic) method of shape comparison 

involves mapping the surface of a closed 3D object onto a unit sphere, then 

parameterizing that mapping using spherical harmonics, producing a set of parameters 

which may be compared numerically (Brechbühler, Gerig and Kübler 1995). To begin 

with, the surface of the subject shape must be mathematically projected onto the surface 

of a unit sphere, such that every point on the sphere has values x, y, and z, equal to the 
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spatial coordinates of the corresponding point on the surface of the original object. Each 

spherical harmonic function 𝑌ℓ
𝑚(𝜃, 𝜑) is of a given positive integer degree ℓ and integer 

order m. A spherical harmonic function of degree ℓ for every value of m such that |𝑚| ≤ 

ℓ; so for example there are three spherical harmonic functions for degree one (m=-1,0,1), 

five for degree two (m=-2,-1,0,1,2), et cetera. To represent the spherical mapping of an 

object, each function is assigned a set of three coefficients (one for each spatial 

dimension) referred to as its parameters. The values of these functions for any one point 

on the surface of the sphere equals, when multiplied by the relevant parameter and 

summed, the spatial coordinates of the corresponding point on the original shape. Thus, 

the shapes of two objects may be compared quantitatively by comparing the parameters 

of their SPHARM representations.  

 

 

Figure 2-2: An illustration of the SPHARM process. The polygonal model (a) is 

voxelized and mapped to the unit sphere using a heat diffusion algorithm illustrated by 

(b) and (c), with the final mapping shown by (d). The building model as approximated by 

SPHARM coefficients of up to degree 80 is shown by (e). Reproduced with permission 

from Zeng, Wang, and Lehrbass (2013). 

Lower-degree harmonics represent low spatial frequency (coarser) patterns, whereas 

high-degree harmonics represent finer details (Chung, Dalton, and Davidson 2008).  

There are an infinite number of spherical harmonic functions, so in practice spherical 

harmonic representations are computed up to a desired degree; the higher the degree, the 

closer the approximation of the original spherical mapping. As the three-dimensional 

extension of Fourier analysis, the spherical harmonic transform allows for the analysis of 
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geometry as a problem of frequency (Benseddik et al. 2016); crucially, the produce of the 

transform may be analyzed using descriptors that are positionally and rotationally 

invariant (Brechbühler, Gerig and Kübler 1995), meaning no surface-matching process is 

required so long as model and reference can be matched. SPHARM-based comparison 

methodologies are popular in medical imaging analysis, where they allow for shape 

comparison of 3D-scanned organs and tissues (Thompson et al. 2013, Paniagua et al. 

2011). The scale, rotation and positional invariance of SPHARM makes it highly 

applicable to the problem of building shape comparison as well (Zeng, Zhao, and Wang 

2014). One downside of traditional SPHARM is that lower-degree spherical harmonics 

tend to encode most of the shape information of the original object, while higher degree 

harmonics are very noisy; this can be addressed by including a weighting function such 

that higher-degree parameters are weighted less when the SPHARM representation is 

computed (Chung, Dalton, and Davidson 2008). 

Accuracy assessment of any type usually requires accurate reference data for comparison, 

the source of which varies from study to study; researchers often create reference data 

manually by digitization, often of the same dataset used for extraction; this option is 

particularly viable where LiDAR and optical data are used in conjunction, and where the 

study area is relatively small (Uzar and Yastikli 2013). Use of the source dataset for 

accuracy assessment is recommended by some authors, since deriving reference data 

from an external dataset introduces additional uncertainty stemming from inaccuracies in 

the reference (Zhang and Geng 2006). Since LiDAR data itself contains spatial error of 

variable magnitude, it is possible for reference data to be ‘too’ accurate, resulting in 

measured errors that are not attributable to the method in question (Shen 2008). That 

being said, most studies derive their reference data from external sources (Potůčková and 

Hofman 2016). In some cases, pre-existing data is used from sources such as cadastral 

maps (Tomljenovic et al. 2015). An increasing number of studies make use of established 

benchmark datasets such as the ISPRS (International Society for Photogrammetry and 

Remote Sensing) benchmarks of Vaihingen, Germany and Toronto, Canada 

(Rottensteiner et al. 2012); doing so enables standardisation of input data across multiple 

studies at the expense of limiting study to one of a few pre-selected sites. Accuracy 

assessment can be carried out without external reference data by comparison between the 
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extracted building outline and manually selected points in the LiDAR cloud (Seo, Lee 

and Kim 2014) but such methods is not frequently used compared to those that make use 

of reference data of some type.  

2.6 Characteristics of Polygonal 3D Models 

3D model comparison methods impose certain requirements on the topology of the 

subjects if the comparison is to be valid. Polygonal models, often referred to as ‘meshes’, 

can have geometric properties that are not found in real objects; surfaces, for example, 

can self-intersect, and models may not necessarily enclose a finite volume.  The 

comparison methods used in this study demand models with certain properties for both 

algorithmic and conceptual reasons; the most obvious example of the latter being that 

volume comparisons require both compared models to enclose a finite fixed volume. The 

terminology used when discussing polygonal model topology does not necessarily strictly 

adhere to formal mathematical usage and can become confusing since they may be 

applied both to the real objects being represented and the collections of vertices, edges 

and faces that represent them digitally; here I follow the conventions of Ju (2008). It is 

common, especially in informal contexts, to refer to geometrically incorrect models as 

being non-manifold, or more precisely, non-2-manifold. 2-Manifold meshes are those in 

which every point is locally homomorphic to a disc; informally, this means that the 

surfaces of these meshes can be divided up into pieces that, when sufficiently small, 

resemble flat or creased two-dimensional discs (Botsch et al. 2007). In practice, not all 

unbounded 2-manifold surfaces are fit for comparison, as not all enclose a volume. To do 

so, a surface must be orientable; it must be possible to determine a consistent surface 

normal and thereby an inner volume. Non-orientable shapes such as the Klein bottle do 

not have defined surface normals because they are one-sided, and as a consequence 

cannot enclose a finite volume as they lack an ‘inside’ space to measure. Orientability is 

also important in those comparisons of mesh point accuracy that require surface normal 

information to match points (as in Zeng 2014). Note that in general, orientability does not 

guarantee two-sidedness, and vice versa, but in the Euclidean (R3) space in which 3D 

objects are modeled an orientable surface is necessarily two-sided, and likewise a non-

orientable surface one-sided (White 2009). 
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 To enclose a volume, a 2-manifold must also be ‘closed’, it must have no open faces or 

‘holes’ in the mesh. Even if a mesh has no holes, it may not necessarily be 2-manifold; 

non-manifold features occur in cases where the local topology is not disc-like (Ju 2008). 

These include complex edges, edges which border on three or more faces (Chang and Ho 

2001), as well as non-manifold vertices where the surface of the model ‘pinches’ to a 

point of zero thickness (Botsch et al. 2017). In extreme cases, reconstructed surfaces from 

scanned point clouds can produce models so riddled with gaps, holes and non-manifold 

elements that they are referred to as a ‘polygon soup’ and must be subject to considerable 

re-processing before use (Jin, Tai and Zhang 2009). Even for manually created models, 

significant effort must be expended to ensure that meshes are topologically correct and 

boundaryless. 

SPHARM comparison methods place a further requirement on the topology of input 

models; they must be topologically equivalent to a sphere (Zeng 2014) meaning that in 

addition to the above topological criteria they must also be of genus-0, lacking the three-

dimensional holes that some authors refer to as ‘topological handles’ (Ju 2008). This 

means that shapes such as the genus-1 torus and their topological equivalents cannot be 

subjected to SPHARM comparison without modification. 
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3 Data and Study Area 

3.1 Surrey BC 

Surrey, British Columbia is a city located in the Vancouver Metro Area, with a 

population of roughly half a million people as of the latest census distributed over a 316 

square kilometer area (Statistics Canada 2017).  The city contains numerous suburban 

neighbourhoods dominated by detached single-family housing as well as a mix of 

commercial and industrial land uses and denser residential housing. There is also a large  

amount of agricultural land in the south and east, and patches of forested parkland. 

Surrey’s roof-level landscape is representative of post-WWII developments across 

Canada and the temperate US; in suburban neighbourhoods hipped or gabled roof shapes 

are punctuated by tree canopy, whereas flat roofs predominate in largely treeless 

industrial and commercial centres.  

3.2 LiDAR And Supplementary Data 

The LiDAR data used for this study is publicly available via the City of Surrey, which 

contracted Airborne Imaging, a private remote sensing company, to acquire LiDAR and 

other data for the entire area of the municipality. The LiDAR data was acquired in April 

of 2013 via manned fixed wing aircraft flying at 1 kilometer above ground level. The 

resulting point cloud data had a mean density of 25 points per square meter across the 

entire covered area; see Figure 3-1 for an example. The producers assessed the 95th 

percentile of horizontal accuracy at 15cm and a 95th percentile vertical accuracy of 8.2cm 

for flat, hard surfaces (Airborne Imaging 2016).  
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Figure 3-1: Original LiDAR point cloud data, coloured by elevation, representing a hotel 

and nearby surroundings in the Bridgeview study area. 

Since 50% of the scan area overlaps, actual point cloud density is spatially variable; at 

full resolution, flat areas have a point cloud density of around 30 points per square meter 

in areas with overlap and 15 points per square meter in areas without overlap. Point cloud 

density is markedly higher in areas with tree canopy, vertical walls, power lines, and 

other vertical features. 
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Figure 3-2: Locations of the study areas in relation to each other are shown with an 

orthoimage background. 

Orthoimage data was collected as part of the same project that gathered LiDAR data, and 

is publicly available via the municipal government of Surrey. The imagery was collected 

on March 30th, 2013, in true colour with a ground resolution of 10 cm. Other data 

including hyperspectral imagery and building footprints was also available but was not 

used, the latter because it was not entirely consistent with the LiDAR and image data. 
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3.3 Sampling Regions 

Time and processing power constraints render it impractical to perform reconstruction 

and analysis on the entire City of Surrey dataset. Instead, four neighbourhoods were 

selected for analysis, representing a combined area of 1.9 square kilometers out of the 

city’s 316.4 square kilometer extent. The neighbourhoods were selected with the goal of 

including a range of architectures, building sizes, and building purposes, and were 

delineated such that their boundaries always lay on roadways or unbuilt terrain to avoid 

buildings being only partially included in the analysed data. The location of each 

neighbourhood relative to the others is shown in Figure 3-2. Figure 3-3 shows buildings 

footprints coloured by size. Table 3-1 shows area, built area, and total number of 

buildings in each study area and overall, as well the number of buildings in each study 

area selected for modeling. The numbers in parentheses show the sampling quota for 

buildings selected: ‘S:’ gives the number of buildings selected for their size; for example, 

the 30 largest buildings in Bridgeview were selected, the 10 largest in North Whalley. 

‘H:’ gives the number of buildings selected by height; the five tallest buildings in Central 

Whalley were selected for this reason, before any others. ‘R:’ gives the number selected 

at random, after the other two quotas had been filled. 

Table 3-1: Study Area Characteristics 

Region Name Area (m2) Built area (m2) Number of 

Buildings 

Buildings 

Selected for 

3D Modeling 

1 - Bridgeview 

930,553 

121,433  

 

907 70 (S:30, 

R:40) 

2 - North Whalley 

279,537 

54,268  

 

77 40 (S: 10, R: 

30) 

3 - Central Whalley 

527,539  

160,263  

 

135 40 (S:20, 

R:15, H:5) 

4 - Cindrich 

146,563 

25,291  

 

113 50 (L:10, 

R:40) 

Total 1,884,193  

 

361,255  

 

1,232 200 (S:60, 

R:85, H:5) 
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Figure 3-3: Buildings footprints for each study area are shown coloured according to size class. 

Clockwise from top: Bridgeview, Cindrich, North Whalley, Central Whalley. 
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3.3.1 Bridgeview 

The neighbourhood of Bridgeview is located close to the northern limit of the City of 

Surrey on the Fraser River. For our purposes, it is bounded on the north and west by the 

South Fraser Perimeter Road (SFPR), a four-lane highway; to the south by the King 

George Boulevard, and to the east by Bridgeview Drive. It is the largest study area by a 

large margin, being 0.93 square kilometers in area. It is predominantly a detached-

housing residential neighbourhood, with light industrial establishments along the western 

edge and various, mostly automotive related commercial establishments on the southern 

edge. The largest building in the area is a brewery on the eastern limits of the study area, 

but other large buildings include an elementary school, a community centre, a block of 

attached auto-repair workshops, and a small office building. Most buildings present in 

this study area are detached houses with gabled or hipped roofs or small structures such 

as sheds associated with the former. In addition to the permanent housing, there is also a 

block of approximately 30 mobile homes in the southern-central part of the 

neighbourhood. Non-building area includes patches of wooded land, open grass parks 

associated with the community centre and school, and vacant grass lots, as well as sand 

and gravel lots. The latter are in use for storage of tractor trailers and scrap metal. 

Potential challenges for building reconstruction identified in the Bridgeview study area 

include trees and smaller vegetation mixed in and sometimes overhanging residential 

buildings as well as the collections of non-building objects such as vehicles, piled scrap 

metal, and other objects found in association with the industrial sites. 

3.3.2 North Whalley 

North Whalley is the second and smaller study area located in the Whalley 

neighbourhood, with an area of 0.28 square kilometers. It is bounded by 108 Avenue to 

the north, University Drive to the east, 105a Avenue to the south, and Whalley Boulevard 

to the east. It is mainly composed of flat-roofed commercial and service buildings with a 

smaller number of detached houses along the eastern edge. Trees are scattered throughout 

the neighbourhood but there are no major areas of contiguous canopy cover; there are 

however large areas of grass, gravel and paved lots. Notable large buildings include a 
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9,800 square meter shopping center and a recreational center with an unusual curving 

roof profile. 

 

3.3.3 Central Whalley 

The Whalley neighbourhood is located roughly 2 km south-east of Bridgeview and is the 

location of two study areas. Central Whalley is the southern of the two and is comprised 

of high-density residential structures in its western portion and large commercial 

establishments to the east. It is bounded by 104 Avenue to the north, 123 Street to the 

west, Old Yale Road and 100 Avenue to the south, and King George Boulevard to the 

east, with an area of 0.53 square kilometers. The area is dominated by a combination 

university campus, shopping center, office high-rise and parking garage, which has a total 

area of roughly 77,000 square meters. Other large buildings of note include a recreation 

center and attached elevated light rail station as well as two high-rise apartment 

buildings. Also present are smaller commercial establishments, low-rise and townhouse-

style housing, and a small number of detached houses. Trees are common in the 

residential area, where unbuilt lots are grassy or wooded. In the commercial area, trees 

sparser but still present, and parking lots are the predominating non-building land cover. 

Of special note is the elevated rail line that bisects the study area east of the largest 

structure; this was not categorized as a building and was identified as a potential source 

of false positive detections.  

3.3.4 Cindrich 

Cindrich is a residential neighbourhood with a typical subdivision layout and 

architectural style and is the smallest study area designated, at 0.15 square kilometers. It 

is located 2 kilometers directly south of central Whalley and is bounded by 134 Street 

and 135a Street to the east, 90 Avenue and 88a Avenue to the south, the wooded Quibble 

Creek to the east, and 91 Avenue to the north. Most buildings are detached houses with 

dormered or hipped roofs; some of the latter are highly complex with dozens of distinct 

roof facets. The largest building in Cindrich is an elementary school, other large 

buildings include a strip mall and a small office building. There is substantial tree cover, 
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both in the form of wooded patches and in front and back yards. The school’s parking lot 

and yard form the only large continuous unbuilt and un-wooded area in the 

neighbourhood. 

3.4 Point Cloud Density 

Each study area has its own pattern of point cloud density. Figure 3-4 shows the density 

of the original point clouds for all four study areas on a common scale. Note that there is 

substantial internal variability in the density of the point cloud; this is the product of 

overlapping coverage by the aircraft-borne sensor. Bridgeview’s point cloud is sharply 

divided into high and low-density segments in a ‘striped’ pattern. These stripes of high-

density data are present in North Whalley and Cindrich datasets as well, but are wider in 

Bridgeview, being roughly equal in width to the lower-density stripes. Central Whalley’s 

point cloud is the most variable of the four in terms of point cloud density; in addition to 

the north-south banding found in the other three study areas, there is a noticeable 

difference in density between the northern and southern portions of the neighbourhood. 

This is the product of an east-west overflight of the southern part of the neighbourhood 

incidental to the mainly north-south flight pattern of the scanning aircraft. As a result, the 

southern portion of Central Whalley is covered by variously, two or three overlapping 

LiDAR scans, as opposed to one or two overlapping scans for the remaining dataset.  
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Figure 3-4: Point cloud density for the full-density subsets of all four study areas, higher 

point cloud densities indicated with lighter colours. Clockwise from top: Bridgeview, 

Cindrich, North Whalley, Central Whalley. Completely black areas indicate areas outside 

of the study area, data for which has been removed to accelerate processing. 
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4 Methods 

The study methodology consists of several stages. First, multiple point clouds of varying 

density were generated from the existing LiDAR dataset, from building models were then 

reconstructed using two independent methods. The generated model footprints are then 

compared to reference building footprint data. Select building models are also subject to 

accuracy assessment by comparison to reference building models. Finally, the results of 

these comparisons were analyzed to determine what relationships exist between detection 

and reconstruction accuracies with point cloud density, building size, and building type. 

4.1 Point Cloud Subsampling 

Point cloud data for each preselected region was collected into a single LAS format file, 

which lists each point’s location and properties. This is then subsampled using 

las2las.exe, a free (LGPL licence) component of Rapidlasso GmbH’s LAStools software 

package to produce a less dense derivative point cloud. We refer to each of these thinned 

point clouds as a ‘subset’, as they are composed of a subset of the points making up the 

original point cloud. Subsampling was conducted on an every-nth-point basis, e.g. every 

second point sampled, every third point, et cetera, as in Pirotti and Tarolli (2010). 

Subsampling every nth point, versus a grid-based resampling method, has the advantage 

of preserving the spatial variability in point density of the point cloud, such that areas of 

relatively high density in the original dataset will also be of high density compared to the 

dataset as a whole in the subsampled datasets. Subsampling using a grid, in which one 

point per grid unit is sampled, produces point clouds of unrealistically uniform density, 

eliminating the effects of flight line overlap and vegetation. As implemented in 

las2las.exe, a counter starts at one and increments every time the program reads a point in 

the source LAS file; if the counter equals the sampling ration n, that point is retained and 

the counter resets to one for the next point.  
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The overall point density ds of the resulting point cloud is given by Equation (4) 

𝑑𝑠 =
(𝑝−𝑝 mod 𝑛)

𝑛

𝑎
 (4) 

where p represents the number of points in the original dataset, a represents the size of 

the area of interest of the point cloud in units of area, and n represents the subsampling 

factor, ex. 2 when sampling second point, 3 when sampling every third. In practical 

cases, p≫n and a is the same as the original for all subsets, meaning the overall point 

cloud density ds for a subset of a cloud with a density of do can be closely approximated 

by the much simpler Equation (5). 

𝑑𝑠 ≈
𝑑𝑜

𝑛
 (5) 

The every-nth-point method has one major disadvantage for the purposes of this study: 

gradations in the subsampling density are coarse across low values of n, since n is always 

an integer. For example, the difference in mean point density between the highest point 

density dataset (the original) and the second highest (produced by sampling every second 

point) is twice that of the difference between the second and third highest density set. 

Table 4-1 shows mean point cloud densities for each study area and overall, while Figure 

4-1 shows the same area of the point cloud for several different subsets, illustrating the 

effect of thinning. 
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Figure 4-1: Point clouds at different subsampling levels are shown with a transparent 

reference model as background. In reading order: n=1, n=2, n=5, n=10, n=20, n=30. 
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Table 4-1: Point Cloud Density Per Subsample 

Subsampling 

Factor n 

Mean Point Cloud Density (p/m2) 

1 - Bridgeview 2 - North Whalley 3 - Central Whalley 4 - Cindrich Overall 

1 25.38 23.07 26.24 21.96 25.05 

2 12.69 11.53 13.12 10.98 12.53 

3 8.46 7.69 8.75 7.32 8.35 

4 6.34 5.77 6.56 5.49 6.26 

5 5.08 4.61 5.25 4.39 5.01 

6 4.23 3.84 4.37 3.66 4.18 

7 3.63 3.30 3.75 3.14 3.58 

8 3.17 2.88 3.28 2.75 3.13 

10 2.54 2.31 2.62 2.20 2.51 

15 1.69 1.54 1.75 1.46 1.67 

20 1.27 1.15 1.31 1.10 1.25 

30 0.85 0.77 0.87 0.73 0.84 

 

4.2 Reference Data Creation 

Reference data representing 2D building footprints and 3D building shape were created 

for comparison to the results of building footprint extraction and 3d reconstruction, 

respectively. As reference models are more time consuming to create than footprints, the 

latter where created first, and then used to select a sample of buildings for which 3D 

models were created. Figures 4-2 through 2-5 show all reference data created for each 

study area. 
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Figure 4-2: Reference data, with manually created models floating above reference 

footprints, is shown for the Cindrich study area. 



36 

 

 

 

 

 

 

Figure 4-3: Reference data, with manually created models floating above reference footprints, is shown for the 

North Whalley study area. 
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Figure 4-4: Reference data, with manually created models floating above reference footprints, is shown for the 

Bridgeview study area. 
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4.2.1 Reference Footprint Digitization 

Building footprint data were created (digitized) manually for each study area based on 

that area’s digital surface model, as derived from the full-density lidar data, with 

reference to orthoimage data to assist in differentiating between small buildings such as 

sheds and similar non-building objects such as vehicles and cargo containers. Footprint 

was defined as per the IBC standard, meaning it includes both the entire enclosed area of 

a building plus the space directly under any overhanging roof elements (International  

                                                                                                                                         

Code Council 2011). The reference footprint data therefore represent the maximum 

horizontal extent of the building at any level, rather than a strictly ground-level footprint 

or floorplan. The reference footprint data as produced by the above mention differs from 

the City of Surrey building footprint data in some key respects. In the reference data, 

building sections are considered part of the same building if they are adjacent, with no 

Figure 4-5: Reference data, with manually created models floating above reference footprints, is shown for the 

Central Whalley study area. 
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non-building space (i.e. space with no building object at any point on vertical axis) 

separating them. This is because the distinction between separate but adjacent buildings, 

though potentially in a legal or engineering context, is indiscernible using the building 

identification methods chosen. Distinguishing between contiguous building areas is 

considered difficult and it is therefore generally advised to collect reference footprints as 

unified blocks and separate them if necessary (Potůčková and Hofman 2016). By virtue 

of its source, the reference building data is also truer to the LiDAR data than the city 

building data. Buildings present in the LiDAR data may be absent in the City footprints 

due to being derived from data collected at different times or created using a different set 

of criteria for what qualifies a building. Those buildings that are present are frequently 

spatially out-of-alignment with the lidar data, presumably because the City footprints 

were derived by digitization from aerial imagery and therefore subject to the same 

geometric error as the source imagery. Figure 4-3 shows illustrative examples of both 

issues. Comparison with the manually-created reference data shows that the municipal 

data has a completeness rate of 89.8%, a correctness rate of 92.7% and a Q rate of 83.8%. 

4.2.2 Reference Building Model Creation 

Reference building models were created for some, but not all, buildings in each study 

area, based on digitized reference footprints. A two-part sampling strategy was used: 

first, the nl largest buildings by footprint area were selected for analysis. Next, nr random 

buildings were selected from the remaining un-sampled buildings. Both sets exclude 

buildings with shapes of genus >0, as these cannot be analyzed using SPHARM. The 

reference models were created manually using Trimble SketchUp modeling software, 

based on imported full-density point cloud data for each building and with reference to 

orthoimagery. In the  

case of especially large buildings importing full-resolution data into the modeling 

software resulted in performance issues. In these cases, full resolution data was 

subsampled and a rough model created, after which details could be modeled by 

importing full-resolution data in smaller regions. Building reference models were created 

using the LOD 2.2 level-of-detail standard, meaning they included both overall roof 

shape as well as smaller roof substructures such as dormers (Biljecki, Ledoux, and Stoter 
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2016). Small substructures such as chimneys and rooftop air conditioning units were 

included in the model if their horizontal footprint was of a certain size, specifically if 

their footprint’s bounding rectangle had a diagonal of two or more meters. This contrasts 

with the footprint area specification used in Biljecki, Ledoux and Stoter; the diagonal 

length was used in this study because of the difficulty in tracing out and measuring exact 

footprint geometry for roof substructures in the discontinuous LiDAR data. Overhangs 

were not modeled; like the generated building models, the reference models were 2.5D, 

with roof edges ending in vertical walls.  

 

4.3 2.5D Dual Contouring Pipeline 

The first, and most complex modeling method used in this study is the 2.5D Dual 

Contouring (DC) method developed by Qian-yi Zhou as part of a PhD dissertation 

(2012). This method is a complete pipeline, shown in outline in Figure 4-4, which 

Figure 4-6 The manually-created reference footprint data and municipally-sourced building 

footprint data, overlaid on LiDAR-derived DSM elevation data. Note both the displaced 

outline of the large building and the absence of the smaller one in the municipal data. 
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performs all steps necessary to generate 3D building models from an unclassified point 

cloud. Zhou’s implementation, used for this study, is open-source (under the MIT 

licence) and freely available as of writing on GitHub (Zhou 2017).  

 

Figure 4-7: A simplified diagram of the 2.5D dual contouring pipeline. 

As implemented, the DC method consists of several stages, the key stages being 

classification, segmentation and 2.5D dual contouring itself. Classification is performed 

by applying a Support Vector Machine (SVM) classifier to a set of five features, each a 

metric representing the spatial distribution of a given point and its neighbours (Zhou 

2012). Points are discarded as noise if they do not have a required number of neighbours 

nr within a given distance; otherwise, they are classified by the SVM into vegetation and 

non-vegetation classes. The classification process takes advantage of the difference in 

spatial arrangement between parts of the point cloud that represent continuous opaque 

surfaces and those that represent semi-transparent ones such as bushes and tree canopy. 

The value of nr has a strong influence on the quality of overall classification since, if too 

large for a given point cloud density, large numbers of points will be erroneously 

classified as noise (Zhou 2012). 

Once the points have been classified as vegetation, noise or non-vegetation, non-

vegetation points are split into segments in the segmentation stage. Points within a certain 

distance dn are assigned to the same segment based on a region-growing algorithm, with 

the largest segment then identified as ground and the remainder as buildings (Zhou 2012). 

The process takes advantage of the fact that LiDAR data rarely captures points on 

building sides, meaning building roofs and ground tend to be assigned to separate 

patches. dn has a crucial effect on whether a patch will be correctly segmented; too low 

and points on the same surface will be assigned to different segments, too high and roof 

and ground points will be assigned to the same segment. dn must be determined 

empirically for each subsampled dataset; lower data densities should have larger values, 

in keeping with the increased sparsity of points. Once split, point patches are assigned as 



42 

 

either ground or building via a region-growing algorithm. Patches are classified by 

number of points into large and small patches using the threshold tLP; different (hard-

coded) distance thresholds are used to classify these as building or non-building patches 

based on their distance to already detected ground patches. 

2.5D contouring itself, as detailed in Section 2.2 is the final part of the core pipeline, in 

which roof geometry is generated based on point data and connected to the ground level 

by vertical polygons. An important parameter for dual contouring is the grid length gl, 

which determines the lowest-level cell width of the quadtree. Model features can be no 

finer, spatially, than gl, but setting gl too low will result in holes in the model, rendering it 

both inaccurate and unusable for SPHARM parameterization. As with nr and dn, gl must 

be determined empirically for each level of subsampling, as all optimal values for all 

three depend on average point cloud density; Table 4.2.3-1 shows their values. In our 

case, parameters were determined experimentally by repeatedly running DC modelling 

and footprint analysis for a subsection of the Bridgeview neighbourhood, targeting a 

footprint correctness rate of 95% and as high a completeness rate as could be obtained. 

The final set of parameters achieved a completeness ratio of between 80% and 85% for n 

1 through 4, 70-80% for n 5 through 10, and 30-50% for n 15 through 40. 

 Once generated, building models must be processed using a simple hole-filling algorithm 

(“3D Printing Toolbox” 2013) in the 3D modeling software Blender (Blender Foundation 

2018) to produce watertight final models, as by default they contain no bottom face and 

therefore have no enclosing volume. Models are then georeferenced, with those models 

representing buildings selected for 3D analysis are labeled for comparison and re-

exported. After export, they are translated back into the regional local coordinate system, 

spatially aligning them with the reference data and rendering them suitable for 

comparison. 
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Table 4-2: Dual Contouring Parameters 

Subsampling 

Factor n 

Classification  

Neighbourhood 

Requirement nr 

Plane Splitting 

Neighborhood 

Distance dn (m) 

Large 

Patch 

Threshold 

tLP 

(points) 

Dual 

Contouring 

Grid 

Length lg 

(m) 

1 10 0.56 800 0.75 

2 10 0.73 400 1.50 

3 10 0.81 267 1.50 

4 10 0.97 200 2.00 

5 10 1.17 160 2.00 

6 10 1.35 133 2.25 

7 8 1.40 114 2.5 

8 8 1.45 100 2.5 

10 5 1.50 80 2.5 

15 3 2.15 53 3 

20 3 2.60 40 3 

30 2 3.90 27 3.5 

 

4.4 ENVI+TIN Modelling 

The second modeling method used in this study is based on TIN (Triangulated Irregular 

Network) modelling from rasterized, classified LiDAR data. Harris Geospatial’s ‘ENVI 

LiDAR’ (2015) software package is used to classify subsampled point clouds (see Figure 

4-8), identifying which points represent buildings and extracting building footprint data 

as well as a Digital Terrain Model, all using proprietary algorithms. ENVI’s classification 

parameters do not require adjustment for point cloud density, although a minimum 

building area is required: this was set to 5 square meters in all cases. Using ArcGIS, the 

resulting LiDAR point cloud is filtered to exclude non-building points, and a raster image 

representing building surface elevation is generated. This raster image is then filtered to 

smooth the elevational noise inherent in the LiDAR data, and converted to a TIN, a 2.5D 

surface composed of triangles. A second TIN is then generated from the DEM raster, and 

building models are extruded between the two TINs in areas where ENVI detected 

building footprints; Figure 4-8 shows key steps in this process, which is represented 

graphically in Figure 4-10. 
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The resulting models are then exported and georeferenced using the same translation 

method used for the DC models. 

Figure 4-8: Part of a LiDAR point cloud classified into building, non-building and ground 

points using ENVI. 

 

Figure 4-9: Key steps of the ENVI+TIN modeling process are shown. From left to right: the 

ground TIN, the roof TIN, and the building models generated by extruding between the two, all 

for the full resolution dataset of the Cindrich study area. 
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Figure 4-10: A diagrammatic representation of the ENVI+TIN building modelling process. 

Note that the detected building footprints are re-used for footprint analysis, since due to the 

nature of the TIN to TIN extrusion process they exactly represent the 2D extents of the 

models produced. 

4.5 Footprint Generation 

Building footprints are generated by ENVI Lidar (Harris Geospatial, 2015) as an 

intermediate step in the ENVI+TIN model generation process. Since these footprints are 

identical in 2D extent to the models generated using that method, they may be used to 

analyze models’ 2D accuracy without further processing. The Dual Contouring method, 

in contrast, does not produce footprint data until after model creation and post-

processing; output models must be analyzed using ArcGIS to extract 2D representations 

of their footprints, which is also a necessary step in registering generated models with 

their corresponding reference building models. 

4.6 Footprint Accuracy Analysis 

Due to the large number of iterations and individual buildings involved in the study, an 

object-by-object analysis of footprint extraction would be too time consuming to be 

practical, since manual intervention would be required to ensure a one-to-one relationship 
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between reference and detected building polygons. Instead, extracted footprints were 

analyzed on the basis of overall accuracy and by per-building completeness. The former 

approach examines the rate of false positives and false negatives in relation to true 

positives, while the latter measures how much of each building’s 2D area was 

successfully recognized. 

The area analysis looks at the study area as a whole, using a simple raster-based method 

to produce a map of classification accuracy for buildings in each study area, for each 

subset of LiDAR data. The analysis is conducted using python scripting in ArcGIS, as 

part of a script that also handles the ENVI-based 3D modeling and model identification 

processes. Extracted and reference buildings are rasterized at a 0.1m by 0.1 m resolution, 

producing rasters that have a value of 0 where there is no building and 1 where there is a 

building. A comparison raster is then created by multiplying the reference raster by a 

factor of two and adding its value to that of the raster representing detected buildings. 

The resulting raster has a value of 3 for pixels that represent true positives (TP), 2 for 

pixels representing false negatives (FN, buildings not detected where one exists), 1 

representing false positives (FP, buildings detected where none exists) and 0 for true 

negatives (TN). Overall counts may be corrected to remove ‘true negative’ pixels that 

exist outside of the study area but are included in processing due to ArcGIS’s raster 

analysis implementation. The main metric used to judge overall accuracy was q, as given 

by Equation (3), but Completeness and Correctness, given in Equations (1) and (2), were 

also calculated. 

The above analysis produces an overall picture of reconstruction accuracy, with a single q 

score representing accuracy over the entire study area. This is insufficient for establishing 

a relationship between point cloud density and extraction accuracy because, as noted in 

section 3.2, point cloud density varies widely within the study areas due to flight line 

overlap. 

Another method of measuring extraction accuracy is completeness, which measures how 

much of a reference building or buildings are identified by the extraction process. This 

does not give any indication of the rate of false positives (correctness) but does not 
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require intervention to match merged or split buildings to the appropriate building in the 

reference data. The advantage of using completeness compared to overall accuracy 

assessment is that the completeness of each reference building can be calculated 

independently, allowing for analysis of completeness rates by building characteristics 

such as overall area. This is important since detection rates are expected to be different 

for small buildings than for large ones. It is also helpful to give some indication of the 2D 

accuracy of buildings subject to 3D accuracy assessment, allowing for a measurement of 

how footprint completeness relates to model completeness. As with the overall analysis, 

local point cloud density is important to measure when analyzing the completeness of 

individual footprints. It can be assessed by extracting per-footprint point counts, then 

dividing by the area of the footprint. Correctness, the proportion of an extracted building 

footprint that is also classified as building area in the reference data, can also be analyzed 

in a similar fashion. 

Footprint accuracy analysis, along with footprint extraction and the latter part of 

ENVI+TIN modelling, is performed using a python script in ArcGIS. The script, referred 

to as ‘ArcScript’, also calculates the centroid of each 3D model so that it may be 

translated into a local coordinate space for comparison. Automation using ArcScript was 

an important part of our method, as the many processing steps necessary to process and 

analyze building data would be extremely time-consuming and error-prone if conducted 

manually; its development represents a significant portion of the work conducted in this 

study. An overview of the ArcScript’s function is shown in Figure 4-11, while the script 

itself is presented in full in Appendix B. 
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Figure 4-11: A diagrammatic representation of ArcScript, the python script used to automate the workflow for ENVI+TIN 

model creation, 2D accuracy assessment, and model position calculation. 
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4.7 3D Model Accuracy Analysis 

The 3D model analysis procedure used in this study is that of Zeng, Wang and Lehrbass 

(2014) and analyzes the similarity of a generated model to its corresponding reference in 

terms of volume, point and surface similarities.  

Volume accuracy is assessed via a Monte-Carlo algorithm that first places 2000 points at 

random locations inside an axis-aligned bounding cuboid fitted to both reference and 

sample models. The algorithm then checks each point to determine if it is inside either, 

neither, or both input shapes. Completeness, Correctness and Quality metrics may then be 

calculated by counting points inside both shapes as true positives, points inside only the 

reference as a false negative, points inside only the subject as false positives, and points 

outside both as true negatives. All of these metrics are proportional to area; a model of a 

shed and a model of a shopping mall with the same completeness score will have 

correctly identified the same ratio of their respective total volumes, even though the 

volumes identified will be vastly different in absolute terms. One notable requirement of 

the volume comparison process which also applies to the point comparison process as 

well is that subject and reference model must be in identical coordinate systems. 

Point accuracy is assessed by determining the Euclidean distance between matched 

corner points in the reference and subject models. Corners are discovered by searching in 

each model for vertices between three near-perpendicular polygon faces. Matches 

between eligible corner points are made based on shortest distance. The final per-building 

metrics produced the scalar average distance between matched points and a vector 

representing the mean shift in each spatial dimension. 

Surface accuracy is measured by comparing the parameterized weighted Spherical 

Harmonic (SPHARM) representation of subject and reference models. First, a voxel 

representation of each model is generated, in this case at a resolution of 50 by 50 voxels. 

This representation is then subject to weighted SPHARM transformation, producing a set 

of spherical harmonics by mapping the surface of the model onto a sphere, in our case 

using an isotropic heat diffusion model (Chung Dalton and Davidson 2008). This 

mapping is then decomposed into a set of basic functions referred to as spherical 
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harmonics. The weighting, as governed by parameter , has the effect of smoothing the 

SPHARM isosurface at each stage, reducing both the processing time required and the 

ringing artifacts known as the Gibbs phenomenon (Chung et al. 2007). Once a SPHARM 

representation has been computed, its Fourier coefficient matrices, of which there are one 

for each spatial dimension, may be vectorized. The root mean square distance (RMSD) 

between the set of SPHARM coefficients for each building may then be calculated by 

Equation (6), as given in Zeng (2014), 

RMSD = √4𝜋 ∑ ∑ ‖𝑐1,𝑙
𝑚 − 𝑐2,𝑙

𝑚 ‖
2𝑙

𝑚=−𝑙
inf
𝑙=0    (6) 

where l is the degree of the SPHARM representation and m is the order. A percent score 

may be produced by dividing the SPHARM RMSD by a reference RMSD, such as one 

produced by comparing a unit sphere and unit cube (Zeng 2014). 

Table 4-3 Sample SPHARM Coefficients 

     m    

  -3 -2 -1 0 1 2 3 

l 
0 0 0 0 95.61397 0 0 0 

1 0 0 3.018421 -16.6051 -0.18695 0 0 

2 0 1.854371 2.156973 0.070593 0.46308 -0.13101 0 

3 0.470993 0.588065 -1.55056 3.52027 0.01401 -0.0043 0.209342 

SPHARM representations are calculated to a degree l, which governs the number of basic 

functions into which the spherical mapping is decomposed. Each degree l has (non-zero) 

coefficients for order m=-l to m=l, for a total of l*2+1 coefficients, for each spatial 

dimension (Chung, Dalton and Davidson, 2008). For the SPHARM representations of 

degree 80 used in this study, this means there were a total of 19,683 coefficients for each 

model analyzed. Table 4-3 shows all non-zero SPHARM coefficients for l=0 to l=3 for 

the x dimension of an example building in the Bridgeview study area, as an illustration of 

SPHARM representation. Note that this represents only a small fraction of the SPHARM 

coefficients that make up the representations used in this study, which were of degree 80. 

Note also the trend of decreasing absolute value as l increases. 
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5 Results 

2D and 3D reconstruction accuracy are closely linked; not only does the accuracy of 

extraction affect what parts of a building’s planform area are modeled, the completeness 

of building detection also determines whether an existing building is modeled at all. The 

correctness of the 2D footprint is also important: areas of a detected footprint that do not 

actually represent building area will produce defects in the resulting model. Figure 5-1 

shows an example building as reconstructed by both methods, plus the reference 3D 

model for comparison. Figure 5-2 shows a representative reconstruction via the DC 

method, from full sensity data, while Figure 5-3 shows an overview of the Cindrich 

neighbourhoods with ENVI generated footprints and ENVI+TIN models, both also from 

full density data. In general, models produced by the Dual Contouring method had a 

‘cleaner’ asthetic as compared to those produced by the ENVI+TIN method, which 

suffered from noisy roof surfaces due to being derived from rasterized LiDAR data. The 

noise issue is not purely aesthetic; ENVI+TIN models contained large numbers of 

polygons and thus consumed more space to store and took more time to load and process. 

The ENVI+TIN building models also suffer from artefacts around roof edges, caused by 

interpolation between non-adjacent building areas when the roof surface rasters were 

produced. This results in a ‘chipped’ appearance when a roof edge’s nearest external 
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neighbouring building surface is a lower-elevation roof surface, or a raised edge in cases 

where the nearest neighbour building surface is higher. 

 

Figure 5-1: Examples of models of the same building produced by the ENVI+TIN (left) and Dual Contouring 

(centre) methods from original density (n=1) LiDAR data are shown with the reference model (right) of the same 

building. 

Figure 5-2: An area of the Central Walley area reconstructed from full 

density data using the Dual Contouring method. 
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Figure 5-3: The Cindrich neighbourhood, as reconstructed using the ENVI+TIN method from the full 

density dataset, is shown floating above building footprints detected by ENVI. 
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5.1 2D Accuracy 

Overall performance for each subset for all four regions and both methods is summarized 

in Table 5-1. Metrics for Completeness, Correctness and Q are calculated as per the 

formulae in section 4.6 for the output of both methods from each subset of the LiDAR 

data. Overall mean point cloud density is also shown for reference. As predicted, there is 

a negative relationship between overall accuracy indicated by Q and the degree of 

subsampling; thinner point clouds produce less accurate classifications of building and 

non-building area. For both methods, there is a noticeable drop in accuracy from n=10 to 

n=15, corresponding to a decrease in mean overall point cloud density from 2.20 to 1.46 

points per square meter. Apart from being generally more accurate, the ENVI+TIN 

method’s classification, produced by ENVI Lidar, shows a more consistent level of 

accuracy from n=1 to n=8, but with a sharper decrease for thinner point clouds.  

Table 5-1: Overall 2D Accuracy 

Subsampling 

Factor n 

Mean Point 

Cloud Density 

(Pt. m-2) 

DC TIN 

Completeness Correctness Q Completeness Correctness Q 

1 22.97 67.09% 91.04% 62.94% 85.39% 94.94% 81.67% 

2 10.99 69.54% 90.70% 64.91% 83.25% 95.60% 80.17% 

3 7.32 69.92% 91.13% 65.46% 83.12% 96.07% 80.39% 

4 5.49 67.51% 91.78% 63.66% 82.60% 95.99% 79.85% 

5 4.39 63.05% 93.35% 60.34% 78.03% 95.80% 75.45% 

6 3.66 57.74% 93.05% 55.35% 80.06% 95.95% 77.44% 

7 3.14 58.97% 92.66% 56.34% 79.94% 96.28% 77.54% 

8 2.75 54.61% 92.75% 52.38% 77.43% 96.55% 75.35% 

10 2.20 59.78% 93.22% 57.29% 67.64% 96.98% 66.25% 

15 1.46 41.14% 92.77% 39.86% 30.44% 97.07% 30.16% 

20 1.10 36.30% 91.52% 35.12% 18.19% 98.14% 18.13% 

30 0.73 20.96% 87.85% 20.37% 1.84% 98.14% 1.84% 
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Due to the spatially variable density of the Surrey point cloud, a per-subset accuracy 

assessment fails to give a complete picture of the relationship; local point cloud density 

often varies substantially from the average. One way of accounting for the variability of 

point cloud density in the data is to instead look at the relationship between the point 

cloud density within an extracted building’s footprint area and the accuracy of that 

footprint. Due to the very large number of extracted building footprints, it is not possible 

to manually establish a one-to-one relationship between detected and reference building 

footprints; instead, the accuracy of extraction must be judged by two separate criteria: 

one measuring how much of a reference footprint is correctly identified as a building 

(completeness) and one measuring how much of an extracted building footprint represent 

actual building area (correctness).  

With a combined total of 1232 buildings in the four study areas, and 12 data subsets per 

extraction method, there are 14,784 possible partial or full building footprint detections 

per method. Of these only a fraction (7,402 for DC, 9,477 for TIN) have any part of their 

area classified as a building in the output.  Table 5-2 shows the number of buildings in 

the study area with non-zero completeness in the output for each method and subset, 

indicating at least partial detection. Also shown is the mean proportion complete and the 

standard deviation of completeness for all footprints, detected or not. 
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Table 5-2 Number of Buildings Extracted per Method and Subset 

Method Subset Study Area Total Proportion 

Identified 

Mean 

Completeness 

St. Dev of 

Completeness 

Bridgeview Cindrich 

Central 

Whalley 

North 

Whalley 

Reference n/a 909 113 135 77 1234 n/a n/a n/a 

DC 

 

 

 

 

 

 

 

 

 

1 598 80 122 70 870 70.62% 60.02% 40.67% 

2 579 76 117 66 838 68.02% 58.61% 41.86% 

3 613 77 115 65 870 70.62% 59.77% 40.69% 

4 553 80 108 62 803 65.18% 54.70% 42.16% 

5 470 74 91 61 696 56.49% 47.01% 42.36% 

6 461 72 78 56 667 54.14% 43.27% 41.33% 

7 437 72 68 57 634 51.46% 40.69% 41.40% 

8 404 72 62 54 592 48.05% 37.40% 41.35% 

10 465 69 78 61 673 54.63% 42.71% 41.00% 

15 247 65 49 39 400 32.47% 24.85% 37.31% 

20 188 53 44 46 331 26.87% 18.18% 32.24% 

30 3 1 14 10 28 2.27% 6.45% 20.18% 

TIN 1 823 99 129 76 1127 91.48% 84.26% 27.33% 

2 805 95 128 76 1104 89.61% 81.61% 29.38% 

3 767 87 122 72 1048 85.06% 76.83% 33.77% 

4 735 81 122 70 1008 81.82% 74.04% 36.25% 

5 727 77 119 73 996 80.84% 72.90% 37.01% 

6 696 76 117 69 958 77.76% 69.57% 39.02% 

7 672 75 115 71 933 75.73% 66.97% 39.40% 

8 634 74 115 69 892 72.40% 62.86% 40.32% 

10 528 67 112 64 771 62.58% 49.66% 41.06% 

15 288 12 65 29 394 31.98% 23.46% 36.53% 

20 153 9 39 17 218 17.69% 10.53% 24.24% 

30 3 1 14 10 28 2.27% 0.51% 4.11% 
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Figures 5-4 and 5-5 shows the mean completeness of extracted building footprints with 

point cloud densities relative to the reference of between one and ten, for a set of 9 

building size classes. Each reference footprint is assigned a completeness value and point 

cloud density for each combination of subset and method. Footprint completeness is 

calculated for each reference footprint and each subset and represents the proportion of 

area of the reference footprint represented by a building in the extracted output. Point 

cloud density is calculated for the entire reference footprint area, from the subset point 

cloud from which a given output was extracted, by counting all points within the 2-

dimensional area of the footprint and then dividing the total by the area in meters. The 

relationship between mean point cloud area and accuracy is more easily shown if 

footprints or models with similar mean point cloud density values are grouped together in 

a bin and their accuracy metrics represented as a mean. To this end, results are displayed 

by rounding individual footprint point cloud density values to the nearest integer, in 

effect creating 1 p/m2 wide bins. We combine data on detection and non-detection across 

all 12 subsets; thus for the point cloud density-based analyses each building is 

represented in twelve different bins. 
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Figure 5-4: Mean completeness for buildings of different sizes is plotted, with buildings 

grouped based on point cloud density into 1 p/m2 bins. 

 

Figure 5-5: As in Figure 5-2, but for the ENVI+TIN method. 

A similar relationship is found to that demonstrated in the overall accuracy assessment 

for most size classes: completeness remains fairly across high and mid-density levels 

before degrading sharply at lower (1-2 p/m2) densities. For the very small size class 

however, overall accuracy is low regardless of local point cloud density for both 
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methods. For the other size classes, performance differs noticeably between the two 

methods. For the ENVI+TIN method, mean completeness is high at and above the 2.5-3.5 

p/m2 bin, with a sharp degradation in accuracy below that level. For the DC method, the 

three larger size classes also experience a sharp drop in performance from a stable level 

below the 2.5-3.5 p/m2 bin, but the stable level of mean completeness varies; the Large 

size class shows the highest level of mean completeness, the small size class shows the 

lowest of the three. Very Small buildings have poor mean completeness at all point cloud 

density bins with substantial data; for the ENVI+TIN method, mean completeness peaks 

for 8.5-9.5 p/m2 and degrades steadily below that level, but for DC mean completeness is 

well below 20% for all density bins. 

Figure 5-6 shows mean footprint completeness for footprints grouped by mean point 

cloud density, rounded to the nearest 0.1, for footprints with very low point cloud density. 

The transition from relatively high to near zero mean completeness for the ENVI+TIN 

method is clearly visible, as is the Dual Contouring method’s more gradual decline. 

Although the nature of the subsampling method means most building footprints are 

extracted from relatively low-density point clouds, enough data is available to reliably 

measure extraction performance at higher point cloud densities.  Even with a 1 p/m2 wide 

binning method, many bins above 10 p/m2 have too few members to be a reliable 

indicator of extraction performance at their respective density levels; the multi-modal 

nature of distribution of point cloud density in the study areas means that certain bins will 

have many more member footprints than others. Figure 5-7 shows a plot of mean 

completeness of footprints in 1 p/m2 bins, with low population bins (n<10) omitted, for 

both methods, both omitting and including buildings with a reference footprint area 

below 50 m2. The performance characteristics of both methods can be readily intuited. 

For buildings greater than 50 m2 in area, extraction by ENVI shows consistently high 

performance (~90% completeness) for all bins above 4 p/m2, while the DC method shows 

more variable performance with mean completeness ranging from 60% to just above 

80%, for point cloud densities greater than 5 p/m2. As one would expect based on the size 

class analysis, overall performance is consistently worse than performance for only 

buildings larger than 50 m2.  
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Figure 5-6 Mean footprint completeness is shown for all footprint size classes at point 

cloud densities from 3.9 to 0.5, rounded to the nearest 0.1  

 

Figure 5-7 Mean completeness for footprints in 1 p/m2 density bins is plotted, both 

overall and for only buildings larger than 50 m2 in area. Bins with fewer than 10 

extracted footprints are omitted.  
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5.2 3D Accuracy 

While the accuracy of footprint extraction is assessed based on reference data for the 

entirety of each study area, time constraints necessitated that 3D reference data be created 

only for a subset of buildings; information on sample selection is given in Chapter 3. To 

show reconstruction performance on the basis of point cloud density, we use a binning 

method identical to that used for 2D footprint accuracy, where extracted models are 

placed in 1 p/m2 bins based on mean per-building point cloud density, with those bins 

that have fewer than 10 members omitted. Note that one key difference separating the 2D 

footprint comparisons from the 3D model comparisons is that a comparison between 

reference and extracted model can only be made if at least part of the building in question 

has been extracted and identified. If no corresponding building is extracted from a given 

subsample, it will not contribute to the assessed accuracy of extraction; this differs from 

the 2D assessment where a completeness and correctness score of 0 would be assigned to 

said building’s footprint for that subset. 3D assessment is therefore an indication of the 

quality of models produced by reconstruction, not a metric of overall performance. 

 Figures 5-8 and 5-9 show accuracy for both methods as measured by completeness, the 

three-dimensional counterpart to the 2D completeness metric used to assess footprints 

earlier.  Figures 5-10 and 5-11 show accuracy as measured by Q, which as discussed in 

section 2.4 describes both the completeness and correctness of the output model. 
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Figure 5-8 Mean completeness of models produced by dual contouring is plotted, binned 

by mean point cloud density, for three size classes. Only bins with 10 or more members 

are shown.  

Figure 5-9 Mean completeness of models produced by ENVI+TIN method is plotted, 

binned by mean point cloud density, for three size classes. Only bins with 10 or more 

members are shown. 
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Figure 5-10: Mean Q of models produced by dual contouring is plotted, binned by mean 

point cloud density, for three size classes. Only bins with 10 or more members are shown. 

Figure 5-11: Mean Q of models produced by ENVI+TIN method is plotted, binned by 

mean point cloud density, for three size classes. Only bins with 10 or more members are 

shown. 
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Figures 5-12 and 5-13 show the accuracy of produced models on the basis of SPHARM 

RMSD for the Dual Contouring and ENVI+TIN method, respectively. Note that unlike 

with completeness and Q, higher SPHARM RMSD values indicate less similarity found 

in comparison, and therefore lower accuracy. Note also that the SPHARM comparison 

process produced a handful of outlier RMSD values (>100) that have been omitted as 

they strongly skew the binned mean RMSD values. 

 

Figure 5-12: Mean SPHARM RMSD of models produced by dual contouring is plotted, 

binned by mean point cloud density, for three size classes. Only bins with 10 or more 

members are shown. 
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Figure 5-13: Mean SPHARM RMSD of models produced by ENVI+TIN method is 

plotted, binned by mean point cloud density, for three size classes. Only bins with 10 or 

more members are shown. 

Besides comparing generated models to a manually created reference, it is also possible 

to compare them to each other. By comparing the models generated from the full 

resolution point cloud data to those from subsampled datasets, it is possible to measure 

how the result of automatic reconstruction changes based on point cloud density. Figures 

5-14 and 5-15 show the results of these comparisons in terms of both Q and SPHARM 

RMSD. 
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Figure 5-14: The mean Q of models generated by either method from subsampled point 

clouds compared to those generated by the corresponding method from the full-resolution 

point clouds is plotted. 

 

 

Figure 5-15: The mean SPHARM RMSD of models generated by either method from 

subsampled point clouds compared to those generated by the corresponding method from 

the full-resolution point clouds is plotted.  
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Q and SPHARM RMSD measure related but distinct properties; shared volume and shape 

similarity, respectively. Two identical models have a Q of 1, indicating 100% of volume 

is shared by both models, and an RMSD of 0, indicating an identical spherical harmonic 

representation. Higher values of SPHARM RMSD indicate difference in shape while 

lower values of Q indicate a lower proportion of shared area. As one would expect, the 

two measures are negatively correlated (see figure 6-4).  

 

Figure 5-16: SPHARM RMSD plotted against Q for all comparisons, including both 

reference-to-reconstruction and reconstruction-to-reconstruction. Outlier SPHARM 

RMSD values (those >100, n=3) are omitted, as are comparisons in which one or both 

models lacked a valid SPHARM representation. 
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6 Discussion and Conclusions 

6.1 Discussion 

Overall assessment of 2D accuracy shows higher performance under the ENVI method 

than for the Dual Contouring for all but the lowest-density subsets, which is unsurprising 

given that the former is a mature, commercially developed system and the latter an 

academically-developed method focused on 3D reconstruction. The most important 

lesson drawn from the overall accuracy assessment is that, relative to completeness, 

correctness is quite high for both methods and all subsets, being above 90% for all but 

one combination of the two. This is critically important since the per-footprint 

assessments can measure completeness only and would thus be a poor measure of 

performance were false positives a large contributor to overall inaccuracy. Fortunately, 

this does not appear to be the case, and there is little apparent relation between subset 

factor n (and thus overall mean point cloud density, as the relationship is shown in Figure 

6-1) and correctness. 

 

Figure 6-1: Overall 2D accuracy in terms of both completeness and correctness are 

plotted for both methods. 
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point cloud density drops below 3 p/m2. This drop is clearly visible for buildings of all 
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size classes except for those buildings below 50 m2 in area, which is either very low 

overall (for the DC method) or declines continuously below 6 p/m2 mean density (for the 

ENVI method).  

Figure 5-7 best illustrates overall footprint completeness across the entire range of point 

cloud density levels available in our data. There is little evidence of a stable positive or 

negative relationship between completeness and point cloud density above 3 p/m2 except 

for this latter trend. For all other size classes, mean completeness is consistently between 

85% and 95% for all density bins above 3 p/m2. Mean completeness is both lower in 

general and less consistent for the DC method than for ENVI above 3 p/m2. 

Completeness at low density values is shown in higher detail in Figure 5-4 which shows 

mean completeness for footprints in point cloud density bins 0.1 p/m2 wide. For both 

methods, footprint completeness declines below 3 p/m2, but the nature of the decline is 

not the same between methods. The completeness of footprints produced by the ENVI 

method declines very sharply between 2.5 and 1.2 p/m2 from a range of 60-70% to near 

zero. For the DC method, the decline is more gradual and less pronounced, from 30-40% 

mean completeness at the high end to 10-20% at the low end. Note that the mean 

completeness values quoted here are for all buildings; as Figure 5-7 shows, completeness 

is typically substantially higher when buildings smaller than 50 square meters are 

excluded. 

In terms of 3D reconstruction accuracy, the relative performances of the two methods are 

reversed; the ENVI+TIN method creates less accurate models than the Dual Contouring, 

particularly for large buildings. It is difficult to identify a trend in accuracy with point 

cloud density using any of the three metrics shown in Section 5.2, particularly in the 

higher point cloud density bins where sample size is small. Both methods show lower 

accuracy at the lowest density bin (1 p/m2, corresponding to mean densities between 0.5 

and 1.5 p/m2) for all metrics compared to the 2, 3 and 4 p/m2 bins, suggesting there may 

be a major effect on reconstruction accuracy at very low density levels. Overall, accuracy 

as assessed by 3D metrics appears to be less sensitive to decreases in point cloud density 

than when assessed based on footprints. This is not to say that 3D reconstruction process 

is unaffected by point cloud density: there are noticeable differences in models of the 
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same building generated from different point cloud subsets (as shown in Figures 5-13 and 

5-14). The difference between models generated using the full resolution dataset and 

those created with subsampled datasets appears to increase with increasing values of n 

(thinner point clouds), a trend that is more pronounced for the ENVI+TIN models than 

those generated using dual contouring. These differences do not appear to reflect an 

overall trend in 3D accuracy, however. It is notable that subjectively, there is less 

apparent detail in DC models created from heavily thinned datasets than from the original 

or less thinned (n = 1,2,3) datasets. This appears to be due to the larger values of the grid 

spacing parameter lg necessary to generate hole-free models from sparse datasets; grid 

cells that contain no points will be reconstructed as pits in the output model. Since cells 

in the dual contouring grid cannot by smaller than lg, this parameter acts as a lower bound 

on the size of features that may be represented in the reconstructed model. Interestingly, 

the loss of detail does not appear to be reflected in numerical assessments of model 

accuracy, suggesting that other factors such as spuriously added or excluded objects have 

a larger effect on both volume and shape accuracy metrics. See figures 6-2, 6-3 and 6-4 

for an illustrative example of how reconstruction output changes with decreased point 

cloud density from both methods. 

 

 

Figure 6-2: A reference model of a large house. 
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Figure 6-3: The products of DC reconstruction of the same large house shown in Figure 

6-2 are shown for four datasets, clockwise from top right: n=1, n=5, n=15, n=10. Note the 

loss of fine details associated with increasing initial grid length, as well as the 

agglomeration of a smaller, non-building structure onto the model in the n=1 model.  
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Figure 6-4: Products of reconstruction using the ENVI+TIN method are shown, on the 

same house and from the same datasets as in Figure 6-3. Note minor omission of building 

volume in the n=10 reconstruction and major omission in the n=15 volume. 
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Interestingly, the 3D quality metrics show a considerable accuracy gap for the 

ENVI+TIN method between large and medium-sized buildings; unexpectedly, large 

buildings are reconstructed to noticeably worse accuracy in many cases. We have strong 

reason to believe that this in fact reflects a flaw in the quality assessment methodology 

rather than an actual difference in reconstruction performance. In general, the 3D 

completeness metric of a generated model tends to be close to the footprint completeness, 

with a mean absolute difference of 0.13. For some models however, the difference is far 

higher, in excess of 0.9. For high-discrepancy models, those 152 models with a footprint 

completeness vs. 3D completeness difference of greater than 0.5, all have a 3D (i.e. 

volume) completeness lower than their associated footprint completeness. On inspection, 

it appears that the 3D model accuracy assessment process in some cases greatly under-

reports model accuracy; models that appear complete and accurately positioned are 

assessed as though only a tiny fraction of their volume is accurate. The problem appears 

to disproportionately affect large models and those generated using the ENVI+TIN 

method: of the 152 high-discrepancy models 44.4% are TIN models of Large (>500 sq. 

m) buildings, despite such models making up only 18.3% of models with valid accuracy 

assessments. When high-discrepancy models are eliminated from the data, the gap in 

accuracy between large and medium-sized TIN models disappears almost completely (see 

Figures 6-5 and 6-6). Fortunately, the overall point cloud density to accuracy curves are 

unaffected, as no correlation between discrepancy and point cloud density is apparent. 



74 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

C
o

m
p

le
te

n
es

s

Point Cloud Density (1 p/m2 bins)

Large (>500 sq. m)

Medium (200 - 500 sq. m)

Small (50 - 200 sq. m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

C
o

m
p

le
te

n
es

s

Point Cloud Density (1 p/m2 bins)

Large (>500 sq. m)

Medium (200 - 500 sq. m)

Small (500 - 200 sq. m)

Figure 6-5: 3D completeness of dual contouring models is plotted against point 

cloud density for only models where 3D and 2D completeness are within 50%. 

Figure 6-6: 3D completeness of ENVI+TIN models is plotted against point cloud 

density for only models where 3D and 2D completeness are within 50%. 
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More generally, it is possible to make several observations on the various metrics used to 

measure model accuracy. Completeness, Correctness and Q were all calculated without 

any apparent issues. The SPHARM RMSD calculation however sometimes produced 

extreme values (on the order of 1000 or higher) in rare cases, roughly one per thousand 

models for the reference comparisons. More frequently, models may lack a valid 

SPHARM representation due to topological defects, making comparison using SPHARM 

RMSD impossible. As described previously, there was also a distance-based metric 

which relied on measuring the distance between matched points and finding a mean. The 

distance metric was omitted from analysis as it proved vulnerable to outliers created 

when tall buildings were not modeled with the correct height; it was however useful in 

identified models that were identified with the wrong reference model or that were 

projected into the wrong local coordinate system. 

The ENVI+TIN method is effective in identifying the two-dimensional footprint of 

buildings but is not always reliable when reconstructing them in 3D. In one instance, the 

roof TIN was generated using only a small portion of building points, meaning most 

buildings were either not modeled or modeled with inaccurate roofs. In most other cases 

the method was sufficient to create geometrically accurate building models, albeit with 

overly-detailed roof surfaces, resulting in large file sizes and consequentially lengthy 

processing times. Roof surfaces generated by the ENVI+TIN method have a rough 

appearance caused by noise in the LiDAR data propagating to the interpolated roof 

surface raster which is attenuated, but not eliminated, by the filtering process prior to the 

creation of the roof TIN.  The DC method in contrast generated much simpler models that 

were nevertheless more accurate on average than those created by the ENVI+TIN 

method.  

Our work shows the SPHARM shape comparison methodology as suitable for use on a 

large scale, that of hundreds or thousands of comparisons. One important drawback of 

this method is the considerable processing time needed to map each shape to the unit 

sphere and parameterize it; this was one of the factors that lead us to limit the number of 
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buildings subject to comparison to a fraction of those president in the study areas. A more 

efficient implementation of the underlying process will likely be necessary to make 

comparisons between methods on the scale of entire cities prohibitive without massive 

investments of either time or computing capacity, but on the scale of neighbourhoods the 

computational barrier is not insurmountable. A more fundamental limitation is the strict 

topological criteria imposed on models by the SPHARM process; despite post-processing 

it was not always possible to ensure that automatically reconstructed models fulfilled 

these criteria. It is advisable for researchers looking to use SPHARM-based comparisons 

to assess the accuracy of their own reconstruction methods to tailor their method to 

produce topologically appropriate models when possible. 

Based on our analysis of the relationship between building extraction and reconstruction 

accuracy and point cloud density, we can make several recommendations and 

observations relevant to those looking to commission aerial LiDAR data. The first is that 

there is no clear evidence a trend in footprint extraction accuracy at per-building point 

cloud densities above 3 p/m2. Above that level, accuracy gain from increased point cloud 

density appears minimal to non-existent. Practitioners should therefore be careful to 

ensure that data density does not fall below 3 p/m2 for flat surfaces; vegetated areas will 

require higher density data to achieve the same functional density for the purposes of 

building extraction, due to the effect of multiple returns. It may be advisable to specify a 

flat-surface minimum density somewhat higher than the 3 p/m2 minimum to provide a 

margin of error both in collection and potential method-specific variability in the 

relationship between density and extraction accuracy. We have also noted subjective 

differences in models created using the DC method which were attributable to the need 

for larger atomic grid lengths to suit sparser datasets; if high-detail models are desired it 

may therefore be desirable to make use of much higher density datasets than the 3 p/m2 

minimum, perhaps on the order of 10 p/m2 or more if surface features smaller than 0.5 m2 

are to be represented. Interestingly, the loss subjective detail noted when atomic grid 

length is increased does not appear to produce a major loss of model accuracy as 

measured quantitatively, suggesting that the differences between more and less detailed 

models may be quantitatively small.  
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Although building size does affect the likelihood of extraction under both methods, in 

most cases there is not a noticeable difference in terms of the relationship between mean 

extraction completeness and point cloud density for buildings of different size. A notable 

exception is for buildings less than 50 square meters in size, which for the ENVI+TIN 

method shows a continuous decline in completeness as point cloud density declines 

below 6 p/m2. This is of limited importance however as neither method was able to 

reliably extract buildings of this size; using full resolution data, the ENVI+TIN method 

achieved a mean completeness of 58% for very small buildings, while the Dual 

Contouring method achieved a mean completeness of only 22%. 

As we find no evidence in a trend in reconstructed model accuracy above the 3 p/m2 

threshold. Below that threshold, there is evidence of a decline in accuracy for both 

methods, but especially for the ENVI+TIN method. There is clear evidence that models 

generated using subsampled data vary from those generated from the full resolution data, 

but only for the ENVI+TIN method is it obvious that those reconstructed from highly 

thinned point clouds vary more than those from higher-density subsamples. Based on 

these observations, we believe that any aerial LiDAR data sufficient for use in building 

extraction should be equally sufficient for traditional 3D reconstruction. Reconstruction 

of façade details would likely require much higher density data with specialized 

characteristics (as in Truong-Hong and Laefer 2015), but such techniques are beyond the 

scope of this study.  

6.2 Conclusions 

Returning to our principal research questions, we find the following:  

1) The existence of a point of diminished returns on accuracy of extraction and 

reconstruction with respect to point cloud density is confirmed, with no clear 

quantitative improvements on accuracy for point clouds denser than 3 p/m2 for 

either method. 

2) The relationship between accuracy and point cloud density is similar regardless of 

whether accuracy is judged based on 2D footprints or 3D model similarity. 
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3) The character of the relationship between point cloud density and overall 

accuracy differs noticeably between methods; although both methods share the 

same point of diminished returns on accuracy, accuracy for the ENVI+TIN 

method decreases much more sharply below this compared to the Dual 

Contouring method. 

4) Building size as measured by footprint area is a strong influence on the likelihood 

of a building being reconstructed, but except for very small (<50 m2) buildings as 

extracted by the ENVI+TIN method, the relationship between point cloud density 

and accuracy is consistent for buildings of all sizes. 

We conclude by advising a 4 p/m2 scan density for flat surfaces as optimal for building 

reconstruction using either of our methods; those commissioning LiDAR data for 

building reconstruction, such as municipalities, should ensure that data is collected to at 

least this density. The 4 p/m2 specification provides a margin for error to accommodate 

local variation in point cloud density and thereby assure that all areas are covered at a 

local point cloud density comfortably above the 3 p/m2 point of diminishing returns. Our 

findings contrast with those of Lohani and Singh (2008) and Tomljenovic and Roussel 

(2014), who both found improvements in accuracy for point cloud densities on intervals 

well above 3 p/m2. This suggests that although both methods tested in this study had 

similar responses to changes in point cloud density, other methods of extraction and/or 

reconstruction may benefit from higher densities. We advice those developing or 

assessing reconstruction techniques to test their process on a range of LiDAR data 

densities; this study’s most significant contribution for building reconstruction 

researchers is the development and presentation of a systematic means of doing so. For 

those using existing techniques, our work gives guidance as to what data is fit for use for 

building reconstruction from aerial LiDAR, which we believe will be useful particularly 

as 3D visualization techniques such as virtual reality see wider and wider adoption in 

settings such as municipal government and real estate development. 
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Appendix A: Calibration of Dual Contouring Parameters  

The 2.5D Dual Contouring method used in this study (see section 4.3) has numerous 

user-defined parameters, of which a few must be set to appropriate values for a given 

input point cloud to maximize output accuracy. Three parameters, neighbourhood 

requirement nr, neighbourhood distance dn, and large patch threshold tLP, are relevant to 

point cloud classification. The fourth, dual contouring grid length lg, controls the initial 

grid length for building reconstruction once the point cloud has been classified. 

Neighbourhood requirement nr sets the number of neighbouring points used to calculate 

per-point neighbourhood metrics during the initial classification pass, which uses each 

point’s nr closest neighbours. These neighbourhood metrics contribute to a factor analysis 

which determines whether a given point likely lies on a surface with its neighbours, in 

which case it is on the ground or a building; if it lies in a diffuse cloud of points, in which 

case it represents vegetation, or if it is isolated from its neighbours, in which case it is 

classified as noise. The neighbourhood requirement must be set low enough that only a 

point’s immediate neighbours are used to calculate the metrics; set too high, distant 

neighbours will contribute to the metrics used for point classification, resulting 

misclassification of points. At the same time, nr must be set high enough that a sufficient 

number of points are included in the metric calculations so as to well represent the 

neighbourhood of the point in question. The neighbourhood requirement is thus set 

highest for high-density point clouds, and decreases as subsampling factor n increases, to 

a minimum of 2 for the n=30 subset. Since near neighbours are required for accurate 

point classification, the neighbourhood-based point classification method imposes a 

lower bound on the density of point clouds used for this method; below a certain density, 

the immediate neighbourhood of each point is so sparse that even the nearest neighbor 

frequently lies on an entirely different surface plane, making calculating accurate 

neighbourhood metrics impossible. Appropriate values for each subset were determined 

experimentally; this was relatively straightforward since nr’s effect on output accuracy is 

not strong except at low density levels. 

Appendix A: Calibration of Dual Contouring Parameters 
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The Large Patch Threshold tLP gives the number of points necessary for a point patch to 

be classified as ‘large’. Such patches are treated differently when the algorithm separates 

building patches from ground patches; the threshold for a large point patch to be 

classified as part of the ground based on its distance to a ground patch is shorter than for 

small point patches. Since tLP is a number of points it can be roughly equated to area for 

point clouds of uniform density. This allows us to set it for each subsample such that it 

corresponds to an area of constant size by dividing the value for the full-resolution 

dataset, 800 (corresponding to an area of 40 sq. m), by the subsampling factor n, as 

shown in Equation (7) 

𝑇𝐿𝑃𝑛 =
800

𝑛
          (7) 

The neighbourhood distance dn controls the effect of distance on the region growing 

algorithm used to separate building and ground points into patches. It is highly sensitive 

to point cloud density and must therefore be carefully calibrated for each point cloud 

subsample. Of the three sets of DC parameter tuning experiments performed, the last 

primarily concerned dn, optimal values three parameters having been (for the most part) 

having been found previously. Calibration of dn was performed iteratively by repeatedly 

reconstructing a spatial subset of the Bridgeview region using different values of dn for 

each subset, then comparing the results of reconstruction using 2D accuracy assessment. 

Three sets of calibration experiments were performed. The first set established preliminary values 

of dn using an iterative process aimed at optimizing the value of Q for the output of each subset. 

The second set of experiments involved various parameters and determined their effect, or non-

effect, on the products of the DC process. The third set of experiments, like the first, aimed to 

optimize values of dn, neighbourhood distance having been established as the most density-

sensitive parameter of those tested. Unlike the first series, output quality in the third 

series was judged using all three metrics (completeness, correctness and quality), and 

used the values for other parameters determined over the course of the second series. 

Table A shows nine of the ten rounds of the third series of calibration experiments. Note 

that Round 4, an experiment which reduced the area corresponding to tLP from 40 m2 to 

30 m2 is omitted as did not result in any detectable difference from Round 3. Also notable 
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is that the neighbourhood requirement for subset n=7 was lowered from 10 to 8 for 

Round 8; the change resulted in slightly improved accuracy and so was retained for 

subsequent rounds and the final parameter set. Of the values of dn shown in Round 10, all 

but one were used as the final values for their corresponding subset. The exception was 

for n=30, for which dn was set to 3.9, between the values for Round 6 and Round 9 where 

highest completeness scores were achieved. Note the presence of a subset n=40; data 

from this subset’s extraction was discarded due to poor performance in both methods, but 

particularly for the ENVI+TIN method, which produced no buildings from that subset. 

Table A 

 Round 1       Round 2       Round 3       

N ND Correctness Completeness Q ND Correctness Completeness Q ND Correctness Completeness Q 

1 0.6 96.97% 79.80% 77.86% 0.55 94.77% 82.52% 78.93% 0.58 96.71% 80.17% 78.05% 

2 0.71 93.89% 85.98% 81.42% 0.75 95.44% 80.53% 77.55% 0.73 94.99% 81.51% 78.15% 

3 0.78 94.68% 85.74% 81.80% 0.8 94.82% 83.63% 79.98% 0.81 95.74% 83.58% 80.58% 

4 0.9 91.10% 83.53% 77.23% 1 96.16% 77.76% 75.42% 0.95 94.42% 81.70% 77.94% 

5 1 90.85% 83.83% 77.30% 1.1 93.48% 79.84% 75.63% 1.05 93.61% 81.62% 77.31% 

6 1 89.36% 83.54% 75.98% 1.2 92.15% 80.65% 75.46% 1.15 90.97% 81.63% 75.51% 

7 1.5 90.57% 76.32% 70.70% 1.4 89.54% 77.23% 70.84% 1.3 89.23% 77.23% 70.64% 

8 1.7 97.85% 65.28% 64.35% 1.6 97.86% 66.73% 65.77% 1.5 97.15% 68.53% 67.18% 

10 1.25 86.80% 82.71% 73.47% 1.8 98.29% 64.86% 64.13% 1.6 97.22% 69.89% 68.52% 

15 1.45 71.31% 84.05% 62.81% 2 96.02% 64.19% 62.53% 1.8 91.43% 74.77% 69.87% 

20 2 84.28% 69.74% 61.71% 2.2 89.43% 63.25% 58.85% 2 84.28% 69.74% 61.71% 

30 2.5 57.66% 59.69% 41.50% 2.7 56.76% 56.96% 39.72% 2.2 55.53% 59.65% 40.37% 

40 2.5 41.02% 67.86% 34.35% 3 43.89% 51.41% 31.02% 2.5 41.02% 67.86% 34.35% 

 Round 5       Round 6       Round 7       

N ND Correctness Completeness Q ND Correctness Completeness Q ND Correctness Completeness Q 

1 0.56 95.11% 82.72% 79.34% 0.56 95.11% 82.72% 79.34% 0.56 95.11% 82.72% 79.34% 

2 0.72 94.56% 82.97% 79.19% 0.73 95.00% 82.18% 78.78% 0.73 95.00% 82.18% 78.78% 

3 0.82 95.01% 84.55% 80.95% 0.81 95.18% 84.49% 81.02% 0.81 95.18% 84.49% 81.02% 

4 0.96 94.59% 81.58% 77.95% 0.97 95.20% 81.12% 77.93% 0.97 95.20% 81.12% 77.93% 

5 1.07 93.00% 81.03% 76.38% 1.2 95.65% 74.90% 72.43% 1.17 95.50% 76.10% 73.46% 

6 1.1 90.99% 83.20% 76.86% 1.35 95.27% 77.15% 74.30% 1.35 95.27% 77.15% 74.30% 

7 1.15 87.91% 80.57% 72.54% 1.7 90.13% 75.13% 69.42% 1.4 89.13% 77.50% 70.80% 

8 1.4 95.59% 70.89% 68.64% 1.5 96.91% 68.66% 67.19% 1.45 95.67% 70.64% 68.45% 

10 1.5 95.89% 72.56% 70.37% 1.5 95.89% 72.56% 70.37% 1.5 95.89% 72.56% 70.37% 

15 2 96.01% 64.27% 62.60% 2.15 95.52% 51.00% 49.81% 2.15 95.52% 51.00% 49.81% 

20 2.5 94.29% 55.44% 53.64% 2.6 94.29% 54.73% 52.97% 2.55 94.29% 54.73% 52.97% 

30 3 74.92% 42.03% 36.84% 4 84.34% 35.74% 33.52% 3 74.92% 42.03% 36.84% 

40 4 49.77% 42.37% 29.68% 6 13.24% 0.29% 0.29% 3.5 47.09% 45.92% 30.29% 

 Round 8       Round 9       Round 10       

N ND Correctness Completeness Q ND Correctness Completeness Q ND Correctness Completeness Q 

1 0.56 95.11% 82.72% 79.34% 0.56 95.11% 82.72% 79.34% 0.56 95.11% 82.72% 79.34% 

2 0.73 95.00% 82.18% 78.78% 0.73 95.00% 82.18% 78.78% 0.73 95.00% 82.18% 78.78% 

3 0.81 95.18% 84.49% 81.02% 0.81 95.18% 84.49% 81.02% 0.81 95.18% 84.49% 81.02% 

4 0.97 95.20% 81.12% 77.93% 0.97 95.20% 81.12% 77.93% 0.97 95.20% 81.12% 77.93% 

5 1.17 95.50% 76.10% 73.46% 1.17 95.50% 76.10% 73.46% 1.17 95.50% 76.10% 73.46% 

6 1.35 95.27% 77.15% 74.30% 1.35 95.27% 77.15% 74.30% 1.35 95.27% 77.15% 74.30% 

7 1.4 95.18% 76.25% 73.42% 1.4 95.18% 76.25% 73.42% 1.4 95.18% 76.25% 73.42% 

8 1.45 95.67% 70.64% 68.45% 1.45 95.67% 70.64% 68.45% 1.45 95.67% 70.64% 68.45% 

10 1.5 95.89% 72.56% 70.37% 1.5 95.89% 72.56% 70.37% 1.5 95.89% 72.56% 70.37% 

15 2.15 95.52% 51.00% 49.81% 2.15 95.52% 51.00% 49.81% 2.15 95.52% 51.00% 49.81% 

20 2.7 93.29% 45.50% 44.06% 2.4 88.13% 60.54% 55.98% 2.6 94.29% 54.73% 52.97% 

30 4.5 81.60% 30.45% 28.49% 3.75 83.44% 36.27% 33.83% 4.3 81.82% 30.96% 28.97% 

40 5 19.07% 0.77% 0.75% 3.8 49.10% 43.97% 30.20% 4.5 49.97% 41.32% 29.23% 
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Appendix B: ArcGIS Python Script 

The script used to convert ENVI footprint and classified point cloud outputs into 3D 

models, perform 2D accuracy assessment on the outputs of both methods, and create the 

table of model centroids used to position each model in local coordinates for comparison. 

import arcpy 

import os 

import time 

import csv 

import datetime 

 

rootFolder = arcpy.GetParameterAsText(0) #Root folder for LiDAR subsets as exported from ENVI 

buildingfootprintsIn=arcpy.GetParameterAsText(1) #Input verification footprints 

buildingfootprintsOut=arcpy.GetParameterAsText(2) #Output feature class with information on footprint matches and 

corresponding point densities 

dcmodelgdb = arcpy.GetParameterAsText(3) #Input GDB containing DC MultiPatches 

tinmodelgdb = arcpy.GetParameterAsText(4) #Input GDB containing TIN MultiPatches 

modelfolder = arcpy.GetParameterAsText(5) #folder to contain output DAE files 

outgdb = arcpy.GetParameterAsText(6) #Output GDB 

SectorCode = arcpy.GetParameterAsText(7) #Sector code, e.g. 'BVW' for Bridgeview 

DCmodelOrigCoordSys = arcpy.GetParameterAsText(8) # 

DCModelRootFolder = arcpy.GetParameterAsText(9) #Folder in which input Dual Contouring models are located 

BoundaryPoly = arcpy.GetParameterAsText(10) #Polygon boundary within which processing will be constrained 

deleteflag = arcpy.GetParameter(11) #If Deleteflag is True, the contents of the destination files will be deleted before 

processing starts (Note: may not work for excel files) 

testflag = arcpy.GetParameter(12) #testflag indicates that certain loops should terminate after the first run, making 

debugging faster if True 

#Raster area analysis settings 

rootworkspace = os.path.dirname(outgdb) 

arcpy.env.workspace=rootworkspace 

arcpy.env.scratchWorkspace = rootworkspace 

endmessages = [] #Creates an empty array to which warning messages may be appended for display at the end of 

processing 

rasterRes = 0.1 #raster analysis resolution 

startTime = time.time() # mark off start time for messages 

startdatetime = datetime.datetime.today() #sets start datetime for log file 

 

#start storing log messages, starting with the initialization settings 

logmessages = [] 

initsettings = ["---INIT SETTINGS---","rootFolder: {}".format(rootFolder), "buildingfootprintsIn: 

{}".format(buildingfootprintsIn), "buildingfootprintsOut: {}".format(buildingfootprintsOut), "dcmodelgdb: 

{}".format(dcmodelgdb), "tinmodelgdb: {}".format(tinmodelgdb), "modelfolder: {}".format(modelfolder), "outgdb: 

{}".format(outgdb), "SectorCode: {}".format(SectorCode),"DCmodelOrigCoordSys: 

{}".format(DCmodelOrigCoordSys), "DCModelRootFolder: {}".format(DCModelRootFolder)] 

logmessages.extend(initsettings) 

logmessages.extend([" ","---SCRIPT START---"]) 

 

def LIST_SHIFT_COORDs(dcGdb, tinGdb, outmodelfolder): 

#ArcGIS outputs COLLADA files in metric with a local coordinate system with the origin at the centroid of the 

multipatch. Therefore we need to identify the coordinates of the centroid of each model and then translate them to the 

correct position in the LCS using a script in Blender. We do so by using the calculate geometry feature to calc the 

coordinates, then exporting a .csv file with a row for each model. 

#WARNING: Sometimes this script fails at the CalculateField stage, probably because of problems with the input 

geometry that RepairGeometry does not appear to solve. ArcGIS provides no facility to handle errors like this, so in 

this case the user will have to run the 'Calculate Geometry' tool themselves in the allMPCs table and then export it after 

the script crashes. 

 tempTinMPCs = os.path.join(outgdb,arcpy.ValidateTableName('TinMPCs',outgdb)) 

Appendix B: ArcGIS Python Script 
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tempDCMPCs =  os.path.join(outgdb,arcpy.ValidateTableName('DCMPCs',outgdb)) 

 allMPCs = os.path.join(outgdb,arcpy.ValidateTableName('AllMPCs',outgdb)) 

 oldworkspace = arcpy.env.workspace 

 #list and merge DC MPCs in preparation for final merge 

 arcpy.env.workspace=dcGdb 

 dcMPCs = arcpy.ListFeatureClasses(feature_type="Multipatch") 

 arcpy.Merge_management(dcMPCs,tempDCMPCs) 

 #list and merge TIN MPCs in preparation for final merge 

 arcpy.env.workspace=tinGdb 

 tinMPCs = arcpy.ListFeatureClasses(feature_type="Multipatch") 

 arcpy.Merge_management(tinMPCs,tempTinMPCs) 

 arcpy.env.workspace=oldworkspace 

#Need to create field mappings so that the name of each modeled MPC is properly represented in the same 

field 

 fm_modelName = arcpy.FieldMap() 

 fMaps = arcpy.FieldMappings() 

 fm_modelName.addInputField(tempTinMPCs,'FullModelName') 

 fm_modelName.addInputField(tempDCMPCs,'ModelNameField') 

 model_name = fm_modelName.outputField 

 model_name.name='ModelName' 

 fMaps.addFieldMap(fm_modelName) 

#Merge TIN and DC MPCs into a single Multipatch feature class (MPC). Need to have merged into 1 DC 

MPC and 1 TIN MPC previously for the field mappings to work properly. 

 oldcoordsys = arcpy.env.outputCoordinateSystem 

 arcpy.env.outputCoordinateSystem = DCmodelOrigCoordSys #Set the merged MPCs to use the 

DC models' original coordinate system, ensuring the calculated centroid coordinates are in the desired LCS 

 arcpy.Merge_management([tempTinMPCs,tempDCMPCs],allMPCs,fMaps) 

 #Now dispose of temporary MPCs 

 arcpy.Delete_management(tempTinMPCs) 

 arcpy.Delete_management(tempDCMPCs) 

 #Now add coordinate fields 

 arcpy.AddField_management(allMPCs,'CentroidX','FLOAT') 

 arcpy.AddField_management(allMPCs,'CentroidY','FLOAT') 

 arcpy.AddField_management(allMPCs,'CentroidZ','FLOAT') 

 #Calculate the centroid coordinates 

 arcpy.RepairGeometry_management(allMPCs) 

 arcpy.CalculateField_management(allMPCs,'CentroidX','!SHAPE.CENTROID.X!','PYTHON_9.3') 

 arcpy.CalculateField_management(allMPCs,'CentroidY','!SHAPE.CENTROID.Y!','PYTHON_9.3') 

 arcpy.CalculateField_management(allMPCs,'CentroidZ','!SHAPE.CENTROID.Z!','PYTHON_9.3') 

 arcpy.env.outputCoordinateSystem = oldcoordsys #reset coordinate system 

 shiftCoordsFile=os.path.join(outmodelfolder,'daeshiftcoords.csv') 

 with open(shiftCoordsFile,'wb') as csvfile: 

  csvwriter=csv.writer(csvfile,delimiter=',') 

  with arcpy.da.SearchCursor(allMPCs,['FullModelName','CentroidX','CentroidY','CentroidZ']) as 

MPCTable: 

   for MPCrow in MPCTable: 

    if MPCrow[0] != 'None': #Skip models with no name assigned 

    

 csvwriter.writerow([MPCrow[0],MPCrow[1],MPCrow[2],MPCrow[3]]) 

     if testflag: 

      MESSAGE_USER("Model {} with X coord {}, Y coord 

{}, and Z coord {}".format(MPCrow[0],MPCrow[1],MPCrow[2],MPCrow[3])) 

 

def DC_REFERENCE(modelRootFolder,refFootprints,modelOrigCoordSys,OutputRootFolder,outgdb): 

 DCfolderList = os.listdir(modelRootFolder) 

 refFootprintsPt = os.path.join(dcmodelgdb,arcpy.ValidateTableName('refFPPoints',dcmodelgdb)) 

 arcpy.FeatureToPoint_management(refFootprints, refFootprintsPt, 'INSIDE') #generates centre(ish) points 

for footprint matching 

    #Exact algorith is a black box; setting 'CENTROID' generates points outside of the polygon in question for some 

polygons. Fortunately, ArcGIS’s model output function exports models with the centroid as the origin. 

 MESSAGE_USER('DEBUG: REF_FPPTs: {}'.format(refFootprintsPt)) 

 #so we need to use 'INSIDE', which appears to constrain the calculated 
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 #Note: Keeping the reference point feature class so it can be inspected 

 if testflag: 

  DCfolderList = DCfolderList[-6:-5] 

 for DCfolder in DCfolderList: 

  DCfolder = os.path.join(modelRootFolder,DCfolder) 

  foldDesc = arcpy.Describe(DCfolder) 

  MESSAGE_USER("Now processing DC models in folder: {}".format(foldDesc.baseName)) 

  DatasetCode = foldDesc.baseName[-2:] 

  arcpy.AddMessage(modelRootFolder) 

  arcpy.AddMessage('test') 

  arcpy.env.workspace=outgdb 

  arcpy.AddMessage(DCfolder) 

  outMP = 

os.path.join(outgdb,arcpy.ValidateTableName(os.path.basename('D'+DatasetCode+'_'+SectorCode), outgdb)) 

  arcpy.Delete_management(outMP) #delete MP in case it already exists 

  arcpy.Import3DFiles_3d(in_files=DCfolder, out_featureClass=outMP, 

root_per_feature="ONE_ROOT_ONE_FEATURE", spatial_reference=modelOrigCoordSys, y_is_up="Z_IS_UP", 

file_suffix="*", in_featureClass="", symbol_field="")     

  outMPdesc=arcpy.Describe(outMP) 

  MESSAGE_USER("MultiPatch feature class created: {}".format(outMPdesc.baseName)) 

  tempfootprints = arcpy.ValidateTableName('tempfootprints',outgdb) 

  tempjoin = arcpy.ValidateTableName('tempjoin',outgdb) 

  arcpy.MultiPatchFootprint_3d(outMP,tempfootprints) 

  #MESSAGE_USER("Multipatch footprint {} created".format(outMPdesc.baseName)) 

  #MESSAGE_USER("DEBUG: OUTGDB {}".format(outgdb)) 

  #MESSAGE_USER("DEBUG: TEMPFOOTRINTS {}".format(tempfootprints)) 

  #MESSAGE_USER("DEBUG: tempjoin {}".format(tempjoin)) 

 

 arcpy.SpatialJoin_analysis(tempfootprints,refFootprintsPt,tempjoin,'JOIN_ONE_TO_ONE','KEEP_ALL', 

'#','CLOSEST','2') 

  #the above Spatial Join attempts to match temp footprint polygons to the closest footprint point 

within 2 meters of its boundary. The 5m threshold prevents the algorithm from matching distant, unrelated footprint 

centers in the case of a false positive. In the typical case for a correct detection, the reference point is inside the subject 

footprint and the distance is calculated as zero. A search radius is necessary however because the feature-to-point 

algorithm may place the reference point on the boundary of it's respective polygon in cases where the actual centroid 

lies outside the polygon. 

  arcpy.JoinField_management(outMP,'OID',tempjoin,'TARGET_FID','ModelNameSuffix') 

  arcpy.AddField_management (outMP, 'ModelNameField', 'TEXT') 

  arcpy.CalculateField_management(outMP, 

'ModelNameField','"D{0}_"+!ModelNameSuffix!'.format(DatasetCode),'PYTHON') 

  arcpy.Delete_management(tempfootprints) 

  arcpy.Delete_management(tempjoin) 

  tempSelectExport = 'outTemp' 

  arcpy.Select_analysis(outMP,tempSelectExport,'ModelNameSuffix IS NOT NULL') 

 

 arcpy.MultipatchToCollada_conversion(tempSelectExport,OutputRootFolder,'PREPEND_NONE','ModelNa

meField') 

  MESSAGE_USER("Multipatch features in {} exported to 

COLLADA".format(outMPdesc.baseName)) 

  arcpy.Delete_management(tempSelectExport) 

 arcpy.env.workspace = oldworkspace 

 

def TIN_MODELING(ENVIFolderList,refFootprints,TINOutGDB,DAEOutFolder): 

 refFootprintsPtTwo = os.path.join(tinmodelgdb,arcpy.ValidateTableName('refFPPoints',tinmodelgdb)) 

 arcpy.FeatureToPoint_management(refFootprints, refFootprintsPtTwo, 'INSIDE') #generates centre(ish) 

points for footprint matching 

 for ENVIFolder in ENVIFolderList: 

  ENVIFoldDesc = arcpy.Describe(ENVIFolder) 

  DatasetCode = ENVIFoldDesc.baseName[-2:] 

  MESSAGE_USER("ENVI folder {} IDed as containing subset with code 

{}".format(ENVIFolder,DatasetCode)) 

  perimPath=os.path.join(os.path.abspath(ENVIFolder),r'Products\buildings_perimeter.shp') 
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  if not arcpy.Exists(perimPath): 

   MESSAGE_USER("No building perimeters found for folder {}".format(ENVIFolder)) 

   break 

  tempLASD1 = 

os.path.join(DAEOutFolder,arcpy.CreateUniqueName('templasd1.lasd',DAEOutFolder)) 

  tempLASD2 = 

os.path.join(DAEOutFolder,arcpy.CreateUniqueName('templasd2.lasd',DAEOutFolder)) 

  tempLASFolder = 'tempLASFolder' 

  arcpy.CreateFolder_management(DAEOutFolder,tempLASFolder) 

  tempLASFolder = os.path.join(DAEOutFolder,tempLASFolder) 

  sourceLAS = filename = os.path.join(ENVIFolder,r'Products\PointClouds\pointCloud_000.las') 

  CREATE_LASD(sourceLAS,tempLASD1) 

  MESSAGE_USER("LAS dataset loaded") 

  laslayer = arcpy.CreateUniqueName('laslayer',DAEOutFolder) 

  arcpy.MakeLasDatasetLayer_management(tempLASD1, laslayer, 6) 

  MESSAGE_USER("LAS dataset filtered") 

  arcpy.ExtractLas_3d (laslayer, tempLASFolder, perimPath, perimPath, '', '', '', '', '', tempLASD2) 

  MESSAGE_USER("LAS point data within detected footprints extracted") 

  arcpy.management.Delete(laslayer) 

  arcpy.Delete_management(tempLASD1) 

  unAgRast=arcpy.CreateUniqueName("RoofUnAgTemp") 

  AgRastName=arcpy.CreateUniqueName("RoofAgTemp") 

  arcpy.LasDatasetToRaster_conversion (tempLASD2, unAgRast, "ELEVATION", "BINNING 

MAXIMUM LINEAR", "FLOAT", "CELLSIZE", "0.1", "1") 

  MESSAGE_USER("Roof points converted to raster") 

  AgRast=arcpy.sa.Aggregate(unAgRast, 5, "MAXIMUM") 

  MESSAGE_USER("Roof elevation raster aggregation complete") 

  arcpy.Delete_management(unAgRast) 

  AgRast.save(AgRastName) 

  RoofTIN = os.path.join(DAEOutFolder,arcpy.CreateUniqueName('roofTIN')) 

  arcpy.RasterTin_3d (AgRastName, RoofTIN, 0.01) 

  MESSAGE_USER("Roof TIN generated.") 

  #arcpy.Delete_management(AgRastName) 

  DEMPath=os.path.join(ENVIFolder,r'Products\dem.tif') 

  if not arcpy.Exists(DEMPath): 

   DEMPath=os.path.join(ENVIFolder,r'Products\dem.dat') 

  GroundTIN=os.path.join(DAEOutFolder,arcpy.CreateUniqueName('groundTIN')) 

  arcpy.RasterTin_3d(DEMPath,GroundTIN,0.01) 

  MESSAGE_USER("Ground TIN generated.") 

  outMP = os.path.join(tinmodelgdb,'T'+DatasetCode+'_'+SectorCode) 

  arcpy.Delete_management(outMP) #delete MP in case it already exists 

  arcpy.ExtrudeBetween_3d(RoofTIN, GroundTIN, perimPath, outMP) 

  MESSAGE_USER("Models extruded to multipatch feature 

class".format('T'+DatasetCode+'_'+SectorCode)) 

  #arcpy.Delete_management(GroundTIN) 

  #arcpy.Delete_management(RoofTIN) 

  oldworkspace=arcpy.env.workspace 

  arcpy.env.workspace=TINOutGDB 

  tempfootprints = arcpy.ValidateTableName('tempfootprints',TINOutGDB) 

  tempjoin = arcpy.ValidateTableName('tempjoin',TINOutGDB) 

  arcpy.MultiPatchFootprint_3d(outMP,tempfootprints) 

 

 arcpy.SpatialJoin_analysis(tempfootprints,refFootprintsPtTwo,tempjoin,'JOIN_ONE_TO_ONE','KEEP_CO

MMON', '#','CLOSEST','2') 

  arcpy.JoinField_management(outMP,'OBJECTID',tempjoin,'TARGET_FID','ModelNameSuffix') 

  arcpy.AddField_management (outMP, 'FullModelName', 'TEXT') 

  arcpy.CalculateField_management(outMP, 

'FullModelName','"T{0}_"+!ModelNameSuffix!'.format(DatasetCode),'PYTHON') 

  MESSAGE_USER("TIN model referencing complete for models in feature class 

{}".format('T'+DatasetCode+'_'+SectorCode)) 

  arcpy.Delete_management(tempfootprints) 

  arcpy.Delete_management(tempjoin) 
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  tempSelectExport = 'outTemp' 

  arcpy.Select_analysis(outMP,tempSelectExport,'ModelNameSuffix IS NOT NULL') 

  try: 

  

 arcpy.MultipatchToCollada_conversion(tempSelectExport,DAEOutFolder,'PREPEND_NONE','FullModelN

ame') 

  except: 

   MESSAGE_USER("COLLADA export error on T{}, check outputs 

manually".format(DatasetCode)) 

   endmessages.append("COLLADA export error on T{}".format(DatasetCode)) 

  MESSAGE_USER("TIN models in MP feature class {} exported to 

COLLADA".format('T'+DatasetCode+'_'+SectorCode)) 

  arcpy.Delete_management(tempSelectExport) 

  arcpy.env.workspace = oldworkspace 

 

def DELETE_EXISTING():  

 oldworkspace = arcpy.env.workspace 

 arcpy.env.workspace = rootworkspace 

 walk = arcpy.da.Walk(arcpy.env.workspace)  

 for dirpath, dirnames, filenames in walk:   

  for filename in filenames: 

   #MESSAGE_USER("Attempting to delete file: {}".format(filename)) 

   arcpy.Delete_management(os.path.join(dirpath,filename)) 

   #MESSAGE_USER("{} deleted".format(filename)) 

 for root, dirs, files in os.walk(modelfolder): 

  for file in files: 

   os.remove(os.path.join(root,file)) 

 

def MESSAGE_USER(message): #quick funtion to send messages with a timestamp, and store them for writing in the 

log file 

 currtime = time.time()-startTime 

 fullmessage = ('%09.2fs: %s' % (currtime, message)) 

 arcpy.AddMessage(fullmessage) 

 logmessages.append(fullmessage) 

 

def CREATE_LASD(fname,outLASDat): #using this function simplifies lasdat creation by supplying a default 

argument for projection files 

 arcpy.CreateLasDataset_management (fname, outLASDat, 'NO_RECURSION', '', '', '', '', 'NO_FILES') 

 

def FP_IDENTIFY(fpIn): #a simple function to id the series and subset codes of a given model footprint feature class 

 fpDescribe = arcpy.Describe(fpIn) #create a describe object for the fp 

 fpSerCode = fpDescribe.baseName[0:3] #cut out the part of the basename corresponding to the series code 

(e.g. 'D02') 

 fpSubCode = fpSerCode[1:3] #get the sub code from the last two chars in the series code (e.g. '02' from 

'D02') 

 return (fpSerCode,fpSubCode) #return both values, series code first 

 

def FOLDER_IDENTIFY(folderin): #similar to FP_IDENTIFY, but returns only one value, the subset code 

 folderDescribe=arcpy.Describe(folderin) 

 folderSubCode = folderDescribe.baseName[-2:] 

 return folderSubCode; 

 

#MODEL_PROCESSOR makes and names model footprints and attaches their area, then appends each FP file to a list. 

Runs only for DC, we use ENVI_FP_PROC for ENVI footprints 

def MODEL_PROCESSOR(inWorkspace, fplist): 

 modelist = [] 

 DCWalk = arcpy.da.Walk(inWorkspace) 

 for dirpath, dirnames, filenames in DCWalk: 

  for filename in filenames: 

   MESSAGE_USER(filename) 

   modelist.append(os.path.join(inWorkspace, filename)) 

   MESSAGE_USER("DEBUG - APPENDED {}".format(filename)) 
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 for modelfc in modelist: 

  modelfcdesc = arcpy.Describe(modelfc) 

  modelfcname = modelfcdesc.baseName 

  MESSAGE_USER("DEBUG - MODEL_PROCESSOR ITERATING ON 

".format(modelfcdesc.baseName)) 

  if modelfcdesc.shapeType == "MultiPatch": 

   modelfcname = modelfcdesc.baseName 

   MESSAGE_USER("Processing multipatch feature set 

{}".format(modelfcdesc.baseName)) 

   outFPName = os.path.join(outgdb,modelfcname[0:3] + '_FP') 

   outFPNameTemp = os.path.join(outgdb,modelfcname[0:3] + '_FPTEMP') 

   arcpy.MultiPatchFootprint_3d(modelfc, outFPNameTemp) 

   arcpy.Clip_analysis(outFPNameTemp,BoundaryPoly,outFPName) #need to clip out any 

detected buildings not in the study area 

   arcpy.Delete_management(outFPNameTemp) 

   fpareafieldname = 'M_'+modelfcname[0:3]+'_A' 

   arcpy.AddField_management(outFPName,fpareafieldname,'DOUBLE') 

  

 arcpy.CalculateField_management(outFPName,fpareafieldname,'!shape.area@SquareMeters!','PYTHON') 

   fplist.append(outFPName) 

   MESSAGE_USER("Processing complete for multipatch feature set 

{}".format(modelfcname)) 

  else: 

   modelfcdesc.basename 

   MESSAGE_USER("DEBUG - FC {} classified as non 

MultiPatch".format(modelfcname)) 

 

def ENVI_FP_PROC(fplist, foldlist): #need to process ENVI footprints seperately since we want all of them, not just 

those selected for modeling 

 for folder in foldlist: 

  subCode = FOLDER_IDENTIFY(folder) 

  fpPath = os.path.join(folder,r'Products\buildings_perimeter.shp') 

  if arcpy.Exists(fpPath): 

   fpDest = os.path.join(outgdb,'T'+subCode+'_FP') #create naming convention conforming 

FP dataset name in output GDB 

   fpDestTemp = os.path.join(outgdb,'T'+subCode+'_FPTEMP') 

   arcpy.CopyFeatures_management(fpPath,fpDestTemp) #copy the features to GDB 

   arcpy.RepairGeometry_management(fpDestTemp) #The building perimeter polygons 

output by ENVI sometimes have invalid topological qualities (e.g. self intersection) 

   #Running RepairGeometry corrects these and allows the boundary clip operation to 

procede without errors. 

   arcpy.Clip_analysis(fpDestTemp,BoundaryPoly,fpDest) 

   fplist.append(fpDest) #append the FP to the fp list for analysis 

   MESSAGE_USER("ENVI footprints for subset {} identified and moved to 

{}".format(subCode,fpPath)) 

 

#FP_PROCESSOR calculates point count transfers it to a new, permanent field, as well as calculating local point cloud 

density using the built in Shape.Area field. Note that arcpy.LasPointStatsByArea_3d works by appending the specified 

field onto the subject polygon table directly, overwriting if one already exists. This necessitates adding a new field for 

each LAS dataset. 

def FP_PROCESSOR(fplist,folder_list): 

 MESSAGE_USER("Per-MFP point cloud density processing initialized") 

 for fp in fplist: 

  fpDesc = arcpy.Describe(fp) 

  (fpSeriesCode,fpSubsetCode) = FP_IDENTIFY(fp) #call fp identify to get the needed identifier 

codes 

  MESSAGE_USER("Target FP {} identified as having series code {} and subset code 

{}".format(fpDesc.baseName,fpSeriesCode,fpSubsetCode)) 

  foundFolder = False 

  for folder in folder_list: 

   folderdesc=arcpy.Describe(folder) 

   folderPCDens = FOLDER_IDENTIFY(folder) 



97 

 

   if folderPCDens == fpSubsetCode: #check if is same subset as fp; fortunately we only 

need one LAS dataset this time 

    fieldname = 'PTS_'+str(fpSeriesCode) 

    arcpy.AddField_management(fp,fieldname,'DOUBLE') 

    filename = folder+r'\Products\PointClouds\pointCloud_000.las' 

    MESSAGE_USER("Target MFP {} matched to point cloud in folder {} 

".format(fpDesc.baseName,folderdesc.baseName)) 

    tempLASD = os.path.join(modelfolder,'templasd'+fpSubsetCode+'.lasd') 

    CREATE_LASD(filename,tempLASD) 

    arcpy.LasPointStatsByArea_3d(tempLASD,fp,'POINT_COUNT') 

    MESSAGE_USER("Point density information for MFP {} 

extracted".format(fpDesc.baseName)) 

    densfieldname = 'PTD_' + str(fpSeriesCode) 

    arcpy.AddField_management(fp,densfieldname,'DOUBLE') 

    arcpy.CalculateField_management(fp,fieldname,'!PointCount!','PYTHON') 

   

 arcpy.CalculateField_management(fp,densfieldname,'!PointCount!/!Shape.Area@SquareMeters!','PYTHON'

) 

    MESSAGE_USER("Point density information for MFP {} appended to MFP 

table".format(fpDesc.baseName)) 

    foundFolder = True 

    break #break out of the loop once the correct folder has been found 

  if not foundFolder: 

   MESSAGE_USER("No match found for FP {}".format(fpSeriesCode)) 

  arcpy.DeleteField_management(fp,'POINT_COUNT') #delete remnant POINT_COUNT field to 

avoid any conflicts later 

 MESSAGE_USER("Per-MFP point cloud density processing completed") 

 

#FP_JOIN does two jobs 

# 1 - flags verif polygons if they have a match in each of the generated polygons 

# 2 - attaches calculated point counts and densities for each corresponding generated polygon (not that only 

first join value is attached) 

def FP_JOIN(fplist,buildingfootprintsOut): 

 MESSAGE_USER("Footprint join process initiated.") 

 VerifPolysTempCopy=os.path.join(outgdb,arcpy.ValidateTableName('cleanVFP_temp',outgdb)) #create a 

'clean' backup VFP feature class to avoid a feedback loop in which attributes joined to the main VFP carry over through 

the spatial join and are re-added each loop 

 arcpy.CopyFeatures_management(buildingfootprintsOut,VerifPolysTempCopy) 

 for fp in fplist: 

  #VerifPolysTempCopy2=VerifPolysTempCopy=os.path.join(outgdb,'cleanVFP_temp2') 

  #arcpy.CopyFeatures_management(buildingfootprintsOut,VerifPolysTempCopy2) need to create a 

-second- clean VFP as a source for the spatial join, otherwise feedback loop still exists 

  fpdesc=arcpy.Describe(fp) 

  MESSAGE_USER("MFP file {} selected for analysis".format(fpdesc.baseName)) 

  tempSJoin= os.path.join(outgdb,arcpy.ValidateTableName('temp_SJoin'+fpdesc.baseName)) 

 

 arcpy.SpatialJoin_analysis(VerifPolysTempCopy,fp,tempSJoin,'JOIN_ONE_TO_ONE','KEEP_COMMON',''

,'INTERSECT') #only keep matches 

  #first task is to flag verif fp as detected if footprint fp contains at least one spatial match 

  anyintersectname = arcpy.ValidateFieldName('AnyIntrsct_'+fpdesc.baseName[0:3], outgdb) 

#create a field for anyintersect for the coresponding generated model set 

  arcpy.AddField_management(buildingfootprintsOut,anyintersectname,'TEXT') 

   

  targetfields = ['OBJECTID',str(anyintersectname)] 

  with arcpy.da.UpdateCursor(buildingfootprintsOut,targetfields) as fpcursor: 

   with arcpy.da.SearchCursor(tempSJoin,['TARGET_FID']) as sjcursor: #look only at 

target id to check if it is same as fp OID 

    for fprow in fpcursor: 

     sjcursor.reset() #IMPORTANT: inner cursor 'remembers' its position 

and therefore must be reset for each iteration of the outer; otherwise it will resume where it left off, which may be at the 

end of the table 

     fprow[1]='FALSE' #initialize anyintersect val as false 



98 

 

     for sjrow in sjcursor: 

      if int(sjrow[0]) == int(fprow[0]): #check if TID is same as 

fp OID for each row of sjcursor 

       fprow[1] = 'TRUE' 

       break #stop looking for TID matches 

     fpcursor.updateRow(fprow) #update verif fp entry, flagging as 

detected if anyintersect = 'TRUE'S, 'FALSE' if not 

  MESSAGE_USER("MFP to VFP matching completed for MFP {}".format(fpdesc.baseName)) 

  #this part joins local point cloud count and density for each footprint 

  joinFields=arcpy.ListFields(tempSJoin) 

  #MESSAGE_USER("DEBUG fields listed") 

  fieldstojoin = [] #initialize empty list of fields to join 

  #MESSAGE_USER("DEBUG empty list created") 

  for field in joinFields: #go through list of fields and check if they have one of the desired prefixes 

(from FP_PROCESSOR) 

   #MESSAGE_USER("DEBUG checking "+field.name) 

   if field.name[0:4]=='PTS_': 

    fieldstojoin.append(field.name) 

    MESSAGE_USER("Field name appended: "+field.name) 

   elif field.name[0:4]=='PTD_': 

    fieldstojoin.append(field.name) 

    MESSAGE_USER("Field name appended: "+field.name) 

  if fieldstojoin !=[]: #join only if there are field matches 

  

 arcpy.JoinField_management(buildingfootprintsOut,'OBJECTID',tempSJoin,'TARGET_FID',fieldstojoin) 

   MESSAGE_USER("Field join performed for {}".format(fpdesc.baseName)) 

  MESSAGE_USER("Footprint join process finished for MFP {}".format(fpdesc.baseName)) 

 arcpy.Delete_management(VerifPolysTempCopy) #delete the temporary VFP FC after we're done with it 

 MESSAGE_USER("Footprint join process completed.") 

 

#This function calculates point counts and density for each verif footprint, from each LAS subset (based off of ENVI 

subsets since DC subsets are translated in XY plane to make them more manageable in 3D modeling software (coords 

have too many sig. figures when in UTM) 

def VERIF_PROCESSOR(folderlist,buildingfootprintsOut): 

 MESSAGE_USER("Verification footprint processing initiated") 

 for folder in folderlist: 

  foldesc=arcpy.Describe(folder) 

  MESSAGE_USER("Folder IDed as :" + foldesc.file) 

  ptcSuffix = foldesc.file[-2:] 

  MESSAGE_USER('Point Cloud Code IDed as: {}'.format(ptcSuffix)) 

  filename = folder+r'\Products\PointClouds\pointCloud_000.las' 

  #LASDesc=arcpy.Describe(filename) 

  MESSAGE_USER('Point Cloud at {} IDed'.format(filename)) 

  tempLASD = os.path.join(modelfolder,'LASD_' + ptcSuffix + '.lasd') 

  CREATE_LASD(filename,tempLASD) 

  tempLASDesc = arcpy.Describe(tempLASD) 

  MESSAGE_USER('LASD named as: {}'.format(tempLASDesc.file)) 

  MESSAGE_USER("Calculating VFP point counts for subset: {}".format(ptcSuffix)) 

  arcpy.LasPointStatsByArea_3d(tempLASD,buildingfootprintsOut,'POINT_COUNT') 

  MESSAGE_USER("Point point counts calculated") 

  fieldname = 'VPPointCount_'+str(ptcSuffix) 

  arcpy.AddField_management(buildingfootprintsOut,fieldname,'LONG')

 arcpy.CalculateField_management(buildingfootprintsOut,fieldname,'!PointCount!','PYTHON') 

  densfieldname = 'VPPointDens' + str(ptcSuffix) 

 arcpy.AddField_management(buildingfootprintsOut,densfieldname,'DOUBLE') 

 arcpy.CalculateField_management(buildingfootprintsOut,densfieldname,'!PointCount!/!Shape.Area@Square

Meters!','PYTHON') 

  arcpy.DeleteField_management(buildingfootprintsOut,'PointCount') 

  arcpy.Delete_management(tempLASD) 

  MESSAGE_USER("VFP Point count and density calculated for subset: {}".format(ptcSuffix)) 

 MESSAGE_USER("Verification footprint processing initiated") 
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def AREA_ANALYSIS(folderlist, verifFPs, fplist): 

 MESSAGE_USER("Area Analysis initiated.") 

 oldSnap = arcpy.env.snapRaster #store old snap raster, will restore later 

 def POLY_RASTERIZE(inPoly,outRast): 

 #Simple function to produce the desired identity raster from a given input polygon dataset. 

 #Takes a polygon dataset, produces a raster with a value of '1' where there is a building and '0' where there 

isn't. 

  defaultZFlagVal = arcpy.env.outputZFlag 

  defaultMFlagVal = arcpy.env.outputMFlag 

  arcpy.env.outputZFlag="Disabled" 

  arcpy.env.outputMFlag="Disabled" 

  predispoly=os.path.join(outgdb,arcpy.ValidateTableName('TempFP',outgdb)) 

  arcpy.CopyFeatures_management(inPoly,predispoly) 

  inpolyName = arcpy.Describe(inPoly).baseName 

  MESSAGE_USER("Rasterizing polygon {}".format(inpolyName)) 

  disPoly = os.path.join(outgdb,arcpy.ValidateTableName('polygon_dissolve')) 

  arcpy.Dissolve_management(predispoly, disPoly) #dissolve the input polygons 

  tempRast=os.path.join(outgdb,arcpy.ValidateTableName('TEMPRAST')) 

  arcpy.PolygonToRaster_conversion(disPoly,'OBJECTID',tempRast,'','',rasterRes) 

  outRastobj = ~arcpy.sa.IsNull(tempRast) #isnull returns 0 where the raster isnt null and 1 where it 

is, the ~ operator flips this 

  outRastobj.save(outRast) 

  #delete temporary files 

  arcpy.Delete_management(tempRast) 

  arcpy.Delete_management(disPoly) 

  arcpy.Delete_management(predispoly) 

  MESSAGE_USER("Rasterization of polygon {} complete".format(inpolyName)) 

  arcpy.env.outputZFlag=defaultZFlagVal 

  arcpy.env.outputMFlag = defaultMFlagVal 

 #rasterize verif polys first 

 MESSAGE_USER("Rasterizing VFPs") 

 verifRast = os.path.join(outgdb,'VRT') 

 POLY_RASTERIZE(verifFPs,verifRast) 

 MESSAGE_USER("VFPs rasterized") 

 arcpy.env.extent = verifRast 

 arcpy.env.snapRaster = verifRast #set verif rast as the snap raster, ensuring the other rasters are aligned to it 

 csvpath = os.path.join(modelfolder,'classificationAreas.csv') 

 csvfile = open(csvpath,'wb') #create a csv file to which classification accuracy stats may be copied 

 csvwriter=csv.writer(csvfile,delimiter=',',quotechar='|',quoting=csv.QUOTE_MINIMAL) 

 csvwriter.writerow(['Sector_Code','Series_Code','Subset_Code','True_Positive','False_Negative','False_Positi

ve','True_Negative']) 

 for folder in folderlist: 

  folderSubCode = FOLDER_IDENTIFY(folder) 

  MESSAGE_USER("Folder for subset {} identified".format(folderSubCode)) 

  tempLASD = os.path.join(modelfolder,'TEMP_ARAN_'+folderSubCode+'.lasd') #name temp lasd 

  filename = folder+r'\Products\PointClouds\pointCloud_000.las' 

  CREATE_LASD(filename,tempLASD) #Want to generate LASD stats at folder level since we can 

use the same one for each subsampling level 

  lasStatsRast = os.path.join(outgdb,arcpy.ValidateTableName('TARANLS'+folderSubCode)) 

  MESSAGE_USER("Calculating 1x1m point density raster for subset {}".format(folderSubCode)) 

  arcpy.LasPointStatsAsRaster_management(tempLASD, lasStatsRast, 'POINT_COUNT', 

'CELLSIZE', '1') 

  LasStatsObj = arcpy.Raster(lasStatsRast) 

  lasstatsCorRastObj = arcpy.sa.Con(arcpy.sa.IsNull(LasStatsObj),0, LasStatsObj) #For some reason 

the above function returns cells with no points as NoData instead of 0. This throws off the average, so you need to set 

NoData to zero with this. 

  lasstatsCorRastObj = arcpy.sa.Con(lasstatsCorRastObj,0,lasstatsCorRastObj,"VALUE = -1") 

#Make sure any empty cells are set to a value of 0, not negative 1, which would throw off analysis. 

 lasstatsCorRastObj.save(os.path.join(modelfolder,'DLASSTATS'+folderSubCode+'.tif')) 

  lasstatsCorRastObj.save(lasStatsRast) 

  MESSAGE_USER("Point density raster for subset {} calculated".format(folderSubCode)) 

  arcpy.Delete_management(tempLASD)#we can delete the LASD right away, before the fp loop 
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  for fp in fplist: #iterate through footprints,  

   (fpSerCode,fpSubCode) = FP_IDENTIFY(fp) 

   if folderSubCode == fpSubCode: #check for a match between subset code and folder. 

    #This process should run twice per LAS file, once for each reconstruction 

method 

    MESSAGE_USER("Match identified for FP with series code 

{}".format(fpSerCode)) 

    FPRast= os.path.join(outgdb,arcpy.ValidateTableName('AFPR_'+fpSerCode)) 

    POLY_RASTERIZE(fp,FPRast) 

    MESSAGE_USER("FP with series code {} rasterized".format(fpSerCode)) 

    vrast = arcpy.Raster(verifRast) 

    AreaRast = (2*vrast) + arcpy.Raster(FPRast) 

    MESSAGE_USER("Area raster for FP with series code {} 

calculated".format(fpSerCode)) 

#AreaRast has the following values: 

# 3 - building in both fp and verif rasters (true positive) 

# 2 - building in verifraster but not fp (false negative) 

# 1 - building in fp but not verifraster (false positive) 

# 0 - building in neither verifraster nor fp (true negative) 

                                arcpy.BuildRasterAttributeTable_management (AreaRast)# Make sure that AreaRast has an 

attribute table if it didn't get one automatically 

                                perFPTableBaseName = fpSerCode+'_AreaAnalysis' 

                                perFPTableName = os.path.join(outgdb,arcpy.ValidateTableName(perFPTableBaseName,outgdb)) 

                                perFPProportionTablename = 

os.path.join(outgdb,arcpy.ValidateTableName('AreaTab'+fpSerCode,outgdb)) 

                                arcpy.sa.ZonalStatisticsAsTable(verifFPs, "Verif_UID", FPRast, perFPProportionTablename, 

'DATA', 'MEAN') 

                                #Since FPrast represents detected building as 1 and non-building as 0, the mean per-footprint will 

be equal to the proportion of footprint detected as a building 

                                ProportionFieldName = arcpy.ValidateFieldName("FCompR_"+fpSerCode) #FCR - Footprint 

Completeness Ratio, ratio of area in verif footprint correctly identified 

                                arcpy.AlterField_management (perFPProportionTablename, 'MEAN', ProportionFieldName) 

#change calculated field name 

                                arcpy.JoinField_management(verifFPs, "Verif_UID", perFPProportionTablename, "Verif_UID", 

[ProportionFieldName]) 

                                #New per-fp correctness analysis here 

                                perFPCorTableBaseName = fpSerCode+'_CorArea' 

                                perFPCorTableName = 

os.path.join(outgdb,arcpy.ValidateTableName(perFPCorTableBaseName,outgdb)) 

                                arcpy.sa.TabulateArea(fp,"OBJECTID",verifRast,"Value",perFPCorTableName) 

                                arcpy.AlterField_management (perFPCorTableName, 'VALUE_0', 'FalsePositiveArea') 

                                arcpy.AlterField_management (perFPCorTableName, 'VALUE_1', 'TruePositiveArea') 

                                arcpy.JoinField_management(fp, "OBJECTID", perFPCorTableName, "OBJECTID", 

['FalsePositiveArea','TruePositiveArea',]) 

                                arcpy.AddField_management(fp,"CorRatio","DOUBLE") 

                                

arcpy.CalculateField_management(fp,"CorRatio",'!TruePositiveArea!/(!FalsePositiveArea!+!TruePositiveArea!)',"PYT

HON") 

                                #New per-fp correctness analysis ends 

                                perFPAreaPerPDensTableName = 

os.path.join(outgdb,arcpy.ValidateTableName(fpSerCode+"_APerPtDAn",outgdb)) 

                                perFPTablePath = os.path.join(modelfolder,perFPTableBaseName+'.xls') 

                                perFPAreaPerPDensTablePath = os.path.join(modelfolder,perFPAreaPerPDensTableName+'.xls') 

                                geomTable = arcpy.ValidateTableName('ARAN_GEOM_TEMP') 

                                AreaRast_name = os.path.join(modelfolder,fpSerCode+'_BuildingAreas.tif') 

                                arcpy.sa.ZonalStatisticsAsTable(AreaRast, "Value", lasStatsRast, perFPTableName, "DATA", 

"ALL") 

                                arcpy.sa.TabulateArea(lasStatsRast, "Value", AreaRast, "Value", perFPAreaPerPDensTableName, 

1) 

                                MESSAGE_USER("DEBUG: Alterfield Tablename: 

{0}".format(perFPAreaPerPDensTableName)) 

                                arcpy.AlterField_management(perFPAreaPerPDensTableName,"Value","PtDensity") 
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                                arcpy.AlterField_management(perFPAreaPerPDensTableName,"Value_0","TrueNegative") 

                                arcpy.AlterField_management(perFPAreaPerPDensTableName,"Value_1","FalsePositive") 

                                arcpy.AlterField_management(perFPAreaPerPDensTableName,"Value_2","FalseNegative") 

                             arcpy.AlterField_management(perFPAreaPerPDensTableName,"Value_3","TruePositive") 

arcpy.sa.ZonalGeometryAsTable(AreaRast,"Value",geomTable)          

arcpy.JoinField_management(perFPTableName,"Value",geomTable,"Value",["Area"]) 

                                try: 

                                        arcpy.TableToExcel_conversion(perFPTableName,perFPTablePath) 

                                        MESSAGE_USER("Area table for FP with series code {} exported as 

{}".format(fpSerCode,perFPTablePath)) 

                                except: 

                                        MESSAGE_USER("Per-FP Table to Excel conversion failure for table {} to path 

{}".format(perFPTableName,perFPTablePath)) 

                                try:                            

arcpy.TableToExcel_conversion(perFPAreaPerPDensTableName,perFPAreaPerPDensTablePath) 

                                        MESSAGE_USER("Area per PT Density table for FP with series code {} exported as 

{}".format(fpSerCode,perFPAreaPerPDensTablePath)) 

                                except: 

                                        MESSAGE_USER("Per-FP Area Per Pt Dens Table to Excel conversion failure for table {} to 

path {}".format(perFPAreaPerPDensTableName,perFPAreaPerPDensTablePath)) 

                                AreaRast.save(AreaRast_name) 

                                TPArea='nul' 

                                FNArea='nul' 

                                FPArea='nul' 

                                TNArea='nul' 

areaRastReader=arcpy.da.SearchCursor(AreaRast_name,['VALUE','COUNT']) 

                                for row in areaRastReader: 

                                        if row[0]==0: 

                                                TNArea=(row[1]/100) #Arearasts is 1x1cm resolution, so divide by 100 to get area in sq. 

m 

                                        elif row[0]==1: 

                                                FPArea=(row[1]/100) 

                                        elif row[0]==2: 

                                                FNArea=(row[1]/100) 

                                        elif row[0]==3: 

                                                TPArea=(row[1]/100) 

                                if testflag: 

                                        MESSAGE_USER("DEBUG: {0} TN {1} sq. m.".format(fpSerCode,TNArea)) 

                                        MESSAGE_USER("DEBUG: {0} FP {1} sq. m.".format(fpSerCode,FPArea)) 

                                        MESSAGE_USER("DEBUG: {0} FN {1} sq. m.".format(fpSerCode,FNArea)) 

                                        MESSAGE_USER("DEBUG: {0} TP {1} sq. m.".format(fpSerCode,TPArea)) 

                                csvwriter.writerow([SectorCode,fpSerCode,fpSubCode,TPArea,FNArea,FPArea,TNArea]) 

                                try: 

                                        

arcpy.TableToExcel_conversion(fp,os.path.join(modelfolder,(arcpy.Describe(fp).name+".xls"))) 

                                except: 

                                        MESSAGE_USER("FP Excel export failed.") 

                                MESSAGE_USER("Area raster for FP with series code {} saved as 

{}".format(fpSerCode,AreaRast_name)) 

 arcpy.env.snapRaster = oldSnap #reset the snap raster 

 csvfile.close() #close csv after we're done 

 MESSAGE_USER("Area analysis complete") 

 

#Main sequence of the script starts here: functions defined above are called in sequence. 

MESSAGE_USER("Script started") 

oldworkspace = arcpy.env.workspace 

arcpy.env.workspace=rootFolder 

folderlist = arcpy.ListWorkspaces() 

MESSAGE_USER("Folders recognized:") 

for folder in folderlist: 

 foldesc = arcpy.Describe(folder) 

 MESSAGE_USER(" "+foldesc.name) 
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arcpy.env.workspace = oldworkspace 

if deleteflag: 

 DELETE_EXISTING() 

 MESSAGE_USER("Pre-existing files deleted") 

if testflag: 

 folderlist = folderlist[-6:-5]#truncate the subset list if testflag is true to save time (bigger subsets take much 

longer),truncating ensures a smaller subset is picked first 

 MESSAGE_USER("Folderlist truncated to:") 

 for folder in folderlist: 

  MESSAGE_USER(" "+folder) 

 MESSAGE_USER("WARNING: TEST FLAG SET TO TRUE") 

 

 

NewInBFPs = os.path.join(outgdb,'InFPs') #copy input features just to make sure they aren't modified by accident 

arcpy.CopyFeatures_management(buildingfootprintsIn,NewInBFPs) 

buildingfootprintsIn=NewInBFPs 

arcpy.CopyFeatures_management(buildingfootprintsIn,buildingfootprintsOut) 

MESSAGE_USER("DC Referencing started") 

DC_REFERENCE(DCModelRootFolder,buildingfootprintsIn,DCmodelOrigCoordSys,modelfolder,dcmodelgdb) 

MESSAGE_USER("DC referencing finished") 

MESSAGE_USER("Beginning TIN Modeling") 

TIN_MODELING(folderlist,buildingfootprintsIn,tinmodelgdb,modelfolder) 

MESSAGE_USER("TIN Modeling complete") 

#First, calculate verif poly point counts/densities for each LAS subset 

MESSAGE_USER("Calculating point densities for verification footprints") 

VERIF_PROCESSOR(folderlist,buildingfootprintsOut) 

MESSAGE_USER("Point density information acquired for verification footprints") 

footprintlist = [] #initialize empty list of model footprints to be filled by MODEL_PROCESSOR 

#Next, process models from each method, storing the resulting footprints 

MESSAGE_USER("DC Model processing initiated.") 

MODEL_PROCESSOR(dcmodelgdb, footprintlist) 

MESSAGE_USER("DC Modeling complete") 

MESSAGE_USER("Envi footprint processing initiated.") 

ENVI_FP_PROC(footprintlist, folderlist) 

MESSAGE_USER("ENVI footprints processed") 

#Process the resulting footprints 

MESSAGE_USER("Model footprint processing initiated") 

FP_PROCESSOR(footprintlist,folderlist) 

MESSAGE_USER("Model footprints processed") 

#Finally, join the desired data to the verification footprints 

MESSAGE_USER("Footprint joining initiated") 

FP_JOIN(footprintlist,buildingfootprintsOut) 

MESSAGE_USER("Footprint joining complete") 

MESSAGE_USER("Commencing area analysis") 

AREA_ANALYSIS(folderlist,buildingfootprintsOut, footprintlist) 

MESSAGE_USER("Area Analysis complete") 

MESSAGE_USER("Extracting centroid coordinates") 

try: 

 LIST_SHIFT_COORDs(dcmodelgdb, tinmodelgdb, modelfolder) 

except: 

 MESSAGE_USER("WARNING: Centroid calculation failed, user must run calculation manually.") 

MESSAGE_USER("KML coordinates extracted to table in {}".format(outgdb)) 

if endmessages != []: 

 arcpy.AddMessage("Ouput errors detected:") 

 for endmessage in endmessages: 

  arcpy.AddMessage(endmessage) 

MESSAGE_USER("Process complete") 

sdt=datetime.datetime.now() 

logfilename=os.path.join(os.path.dirname(outgdb),"logfile_{}-{}-{}_{}-{}-

{}.txt".format(sdt.year,sdt.month,sdt.day,sdt.hour,sdt.minute,sdt.second)) 

with open(logfilename, 'w') as logfile: 

 for logmessage in logmessages: 
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  logfile.write(logmessage+'\n') 

if testflag: 

 MESSAGE_USER("WARNING: TEST FLAG SET TO TRUE") 
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Appendix C: Reference Building List 

A table showing basic information on all reference building models is shown below. 

Coordinates are in meters using the Web Mercator (WGS84) projection. 

 

Name Study Area Centroid X (m) Centroid Y 
(m) 

Centroid 
Z (m) 

Centroid 
Height 
(m) 

Footprint 
Area (m2) 

Minimum Z 
(m) 

Maximum Z 
(m) 

Maximum 
Height 

REF_BVW_L01 Bridgeview -13679292.62 6309978.72 4.69 2.68 308.78 2.02 7.67 5.66 

REF_BVW_L02 Bridgeview -13679269.61 6309983.53 5.48 3.32 545.80 2.16 8.80 6.64 

REF_BVW_L03 Bridgeview -13679235.06 6309984.43 5.49 3.10 608.74 2.38 8.73 6.35 

REF_BVW_L04 Bridgeview -13679110.26 6309976.81 6.55 3.90 1872.89 2.65 10.96 8.31 

REF_BVW_L05 Bridgeview -13678993.32 6309998.59 6.69 3.86 1272.85 2.83 11.19 8.35 

REF_BVW_L06 Bridgeview -13678931.56 6309991.21 5.20 3.04 311.03 2.16 8.56 6.40 

REF_BVW_L08 Bridgeview -13678888.74 6310079.51 3.76 2.00 578.93 1.75 6.15 4.39 

REF_BVW_L09 Bridgeview -13678822.44 6310001.07 5.07 2.86 590.39 2.22 9.45 7.24 

REF_BVW_L10 Bridgeview -13678733.79 6310009.06 6.30 4.18 1480.33 2.11 11.86 9.74 

REF_BVW_L11 Bridgeview -13678585.34 6310014.68 5.19 3.19 361.93 2.00 9.43 7.43 

REF_BVW_L12 Bridgeview -13678419.26 6310028.70 5.66 3.15 419.85 2.51 9.65 7.14 

REF_BVW_L13 Bridgeview -13678419.18 6310115.83 8.03 5.35 1656.54 2.68 14.95 12.28 

REF_BVW_L15 Bridgeview -13678854.00 6310356.88 5.68 3.77 340.56 1.90 10.39 8.48 

REF_BVW_L16 Bridgeview -13678951.00 6310498.37 3.75 1.96 345.22 1.78 6.23 4.45 

REF_BVW_L17 Bridgeview -13678942.20 6310604.76 6.03 3.40 868.61 2.62 9.72 7.10 

REF_BVW_L18 Bridgeview -13678875.90 6310605.45 6.19 3.32 898.67 2.86 9.76 6.90 

REF_BVW_L19 Bridgeview -13678630.80 6310275.28 6.09 4.61 313.73 1.48 11.51 10.04 

REF_BVW_L20 Bridgeview -13678473.33 6310498.53 6.68 4.74 350.45 1.95 12.73 10.79 

REF_BVW_L21 Bridgeview -13678536.99 6310585.01 4.58 3.05 299.26 1.52 8.32 6.79 

REF_BVW_L22 Bridgeview -13677866.34 6310000.24 4.88 2.40 444.62 2.47 7.62 5.14 

REF_BVW_L23 Bridgeview -13677615.49 6309994.97 5.66 3.34 386.22 2.33 9.39 7.07 

REF_BVW_L24 Bridgeview -13677802.30 6310375.61 3.83 1.81 310.36 2.01 6.14 4.12 

REF_BVW_L25 Bridgeview -13677575.83 6310493.11 4.59 2.80 353.16 1.78 8.46 6.68 

REF_BVW_L26 Bridgeview -13678016.63 6310779.54 6.61 4.03 1087.11 2.58 12.46 9.88 

REF_BVW_L27 Bridgeview -13677891.63 6310575.09 3.74 1.89 299.00 1.85 6.32 4.47 

REF_BVW_L28 Bridgeview -13677572.71 6310939.99 6.39 4.72 324.45 1.66 12.12 10.45 

REF_BVW_L29 Bridgeview -13677242.28 6310784.03 7.89 5.56 1639.05 2.34 14.75 12.41 

REF_BVW_L30 Bridgeview -13677132.05 6310544.80 10.43 6.50 5533.09 3.92 18.52 14.60 

REF_BVW_R01 Bridgeview -13678949.89 6310078.99 4.16 2.41 120.61 1.75 7.45 5.70 

REF_BVW_R02 Bridgeview -13679166.80 6310158.52 3.95 1.75 116.80 2.21 6.32 4.11 

REF_BVW_R03 Bridgeview -13678667.30 6310478.57 3.14 1.41 42.96 1.73 4.88 3.14 

Appendix C: ArcGIS Python Script 
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REF_BVW_R04 Bridgeview -13678644.91 6310494.86 2.89 1.38 12.64 1.50 4.39 2.89 

REF_BVW_R05 Bridgeview -13678593.26 6310505.48 3.49 1.89 113.52 1.60 5.77 4.16 

REF_BVW_R06 Bridgeview -13678647.34 6310451.30 3.29 1.69 41.32 1.60 5.53 3.93 

REF_BVW_R07 Bridgeview -13678579.13 6310441.56 2.95 1.06 7.14 1.88 4.18 2.30 

REF_BVW_R08 Bridgeview -13678345.09 6310508.59 5.41 3.47 89.47 1.95 9.84 7.89 

REF_BVW_R09 Bridgeview -13678720.64 6310674.92 3.70 1.99 58.46 1.71 6.30 4.59 

REF_BVW_R10 Bridgeview -13678258.66 6310505.84 5.87 3.99 216.58 1.88 11.12 9.24 

REF_BVW_R11 Bridgeview -13677998.81 6310480.19 3.02 0.99 22.75 2.02 4.13 2.10 

REF_BVW_R12 Bridgeview -13678035.91 6310423.46 4.75 3.07 170.28 1.67 8.32 6.65 

REF_BVW_R13 Bridgeview -13678257.58 6310267.26 3.96 2.31 144.92 1.64 6.85 5.21 

REF_BVW_R14 Bridgeview -13678045.56 6310198.02 4.10 2.10 148.87 2.00 6.75 4.74 

REF_BVW_R15 Bridgeview -13678189.32 6310145.85 3.75 1.70 50.46 2.04 5.88 3.83 

REF_BVW_R16 Bridgeview -13678163.81 6310121.14 4.12 2.25 297.59 1.87 7.24 5.36 

REF_BVW_R17 Bridgeview -13677976.07 6310050.22 3.85 1.62 73.96 2.23 5.65 3.41 

REF_BVW_R18 Bridgeview -13677952.54 6310051.32 3.79 1.78 57.80 2.01 5.61 3.59 

REF_BVW_R19 Bridgeview -13677642.72 6310105.16 3.61 1.48 23.83 2.13 5.39 3.25 

REF_BVW_R20 Bridgeview -13677688.13 6310129.56 4.02 1.78 17.12 2.23 6.13 3.89 

REF_BVW_R21 Bridgeview -13677642.22 6310350.92 3.32 1.41 12.25 1.91 4.81 2.90 

REF_BVW_R22 Bridgeview -13677586.92 6310377.48 6.07 4.18 219.10 1.88 11.40 9.51 

REF_BVW_R23 Bridgeview -13678287.80 6310887.76 4.99 3.24 156.98 1.75 9.00 7.26 

REF_BVW_R24 Bridgeview -13678137.36 6310918.99 2.85 1.21 46.35 1.63 4.37 2.74 

REF_BVW_R25 Bridgeview -13678101.75 6310887.01 5.04 3.35 172.49 1.70 8.82 7.12 

REF_BVW_R26 Bridgeview -13678018.72 6310977.04 3.03 1.54 25.46 1.48 4.96 3.48 

REF_BVW_R27 Bridgeview -13677843.05 6310933.17 3.30 1.65 107.61 1.64 5.27 3.63 

REF_BVW_R28 Bridgeview -13677760.09 6310964.25 3.08 1.46 13.37 1.62 4.66 3.04 

REF_BVW_R29 Bridgeview -13677799.20 6310862.60 6.04 4.50 181.86 1.54 11.60 10.05 

REF_BVW_R30 Bridgeview -13677822.84 6310810.64 4.38 2.60 111.74 1.77 7.86 6.08 

REF_BVW_R31 Bridgeview -13677800.07 6310572.29 4.23 2.49 189.62 1.74 7.58 5.84 

REF_BVW_R32 Bridgeview -13677678.04 6310816.52 6.39 4.67 212.11 1.72 12.21 10.50 

REF_BVW_R33 Bridgeview -13677585.96 6310983.26 5.32 3.88 201.00 1.45 10.50 9.06 

REF_BVW_R34 Bridgeview -13677611.96 6310934.20 3.17 1.92 97.10 1.25 5.47 4.21 

REF_BVW_R35 Bridgeview -13677470.37 6310960.67 2.99 1.63 72.73 1.35 5.00 3.65 

REF_BVW_R36 Bridgeview -13677399.63 6310954.91 2.70 0.98 6.35 1.72 3.79 2.07 

REF_BVW_R37 Bridgeview -13677293.35 6310964.25 3.20 1.32 11.67 1.87 4.67 2.80 

REF_BVW_R38 Bridgeview -13677448.34 6310583.97 3.09 1.55 54.15 1.54 5.19 3.65 

REF_BVW_R39 Bridgeview -13677417.85 6310570.95 4.72 2.92 143.92 1.79 8.52 6.73 

REF_BVW_R40 Bridgeview -13677453.75 6310488.38 3.75 1.87 207.25 1.88 5.80 3.91 

REF_CND_L01 Cindrich -13675659.54 6303257.69 57.14 6.29 4319.11 50.85 63.97 13.12 

REF_CND_L02 Cindrich -13675195.23 6303355.01 54.13 5.29 1347.07 48.84 60.30 11.46 

REF_CND_L03 Cindrich -13675063.13 6303212.62 49.90 4.59 949.54 45.31 55.25 9.94 

REF_CND_L04 Cindrich -13675322.15 6303114.46 50.45 3.88 360.74 46.57 55.68 9.11 

REF_CND_L05 Cindrich -13675340.22 6302880.39 48.69 5.27 355.92 43.42 55.44 12.02 

REF_CND_L06 Cindrich -13675287.76 6303012.49 50.09 4.42 325.05 45.67 55.85 10.18 
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REF_CND_L07 Cindrich -13675270.59 6302812.23 45.72 5.44 306.89 40.28 52.77 12.49 

REF_CND_L08 Cindrich -13675291.88 6303101.41 50.64 4.55 323.70 46.09 56.86 10.77 

REF_CND_L09 Cindrich -13675251.92 6303260.98 51.76 3.65 322.60 48.11 56.70 8.59 

REF_CND_L10 Cindrich -13675324.59 6302810.94 46.14 3.85 347.97 42.29 51.55 9.26 

REF_CND_R01 Cindrich -13675349.13 6302975.19 46.81 2.05 145.32 44.76 49.29 4.53 

REF_CND_R02 Cindrich -13675188.13 6303249.50 51.07 3.56 240.04 47.51 55.73 8.22 

REF_CND_R03 Cindrich -13675360.48 6303403.35 54.08 2.90 250.66 51.18 57.58 6.40 

REF_CND_R04 Cindrich -13675282.20 6303272.83 51.86 3.28 290.08 48.58 56.31 7.73 

REF_CND_R05 Cindrich -13675386.54 6303348.23 51.30 1.47 15.13 49.83 52.98 3.15 

REF_CND_R06 Cindrich -13675380.40 6303160.05 48.58 1.11 7.62 47.47 49.84 2.37 

REF_CND_R07 Cindrich -13675299.91 6302878.22 48.56 4.58 267.01 43.98 54.73 10.75 

REF_CND_R08 Cindrich -13675184.28 6302827.71 42.74 3.31 139.42 39.43 47.03 7.60 

REF_CND_R09 Cindrich -13675580.57 6303411.28 55.70 3.30 167.99 52.40 59.83 7.43 

REF_CND_R10 Cindrich -13675185.45 6303218.71 50.29 3.42 214.21 46.87 54.70 7.83 

REF_CND_R11 Cindrich -13675526.66 6303403.56 55.02 2.96 235.73 52.06 59.00 6.94 

REF_CND_R12 Cindrich -13675188.05 6303188.99 50.11 3.65 256.43 46.46 55.09 8.63 

REF_CND_R13 Cindrich -13675646.34 6303375.35 55.10 1.64 23.06 53.46 56.99 3.53 

REF_CND_R14 Cindrich -13675169.23 6302864.38 41.43 1.84 19.47 39.59 42.99 3.40 

REF_CND_R15 Cindrich -13675191.87 6302869.36 45.05 5.03 299.68 40.02 51.68 11.66 

REF_CND_R16 Cindrich -13675355.42 6303279.10 52.86 3.65 253.81 49.21 57.88 8.67 

REF_CND_R17 Cindrich -13675341.57 6302852.00 47.50 3.80 286.89 43.70 52.81 9.11 

REF_CND_R18 Cindrich -13675248.77 6302867.64 47.25 4.81 274.85 42.44 53.65 11.21 

REF_CND_R19 Cindrich -13675485.51 6303384.57 52.40 1.17 7.26 51.23 53.74 2.51 

REF_CND_R20 Cindrich -13675718.09 6303403.46 59.06 2.59 166.33 56.47 62.45 5.98 

REF_CND_R21 Cindrich -13675077.87 6303004.42 42.93 1.67 18.81 41.26 44.95 3.69 

REF_CND_R22 Cindrich -13675351.62 6302808.72 47.30 4.49 276.71 42.81 53.58 10.77 

REF_CND_R23 Cindrich -13675272.94 6302877.57 47.70 4.67 290.96 43.03 54.00 10.97 

REF_CND_R24 Cindrich -13675584.35 6303386.65 54.00 1.94 51.12 52.06 56.40 4.34 

REF_CND_R25 Cindrich -13675324.69 6302963.87 45.71 1.16 7.49 44.55 47.06 2.51 

REF_CND_R26 Cindrich -13675255.81 6303032.61 47.24 1.87 244.25 45.37 49.58 4.21 

REF_CND_R27 Cindrich -13675372.81 6303139.35 50.23 3.38 166.88 46.85 54.33 7.48 

REF_CND_R28 Cindrich -13675384.79 6303261.76 50.07 1.34 15.73 48.73 51.52 2.79 

REF_CND_R29 Cindrich -13675243.21 6302811.10 45.61 4.01 298.95 41.60 51.14 9.54 

REF_CND_R30 Cindrich -13675185.65 6303366.00 50.35 1.24 14.31 49.11 51.69 2.58 

REF_CND_R31 Cindrich -13675398.80 6303164.82 49.92 2.63 266.97 47.29 53.81 6.52 

REF_CND_R32 Cindrich -13675382.61 6303212.35 49.01 1.15 5.86 47.86 50.26 2.40 

REF_CND_R33 Cindrich -13675355.78 6303317.01 52.19 2.85 267.79 49.34 56.01 6.67 

REF_CND_R34 Cindrich -13675262.26 6303313.89 50.35 1.19 6.75 49.16 51.67 2.51 

REF_CND_R35 Cindrich -13675354.17 6303223.35 51.74 3.61 224.01 48.13 56.29 8.16 

REF_CND_R36 Cindrich -13675067.94 6303062.06 43.48 1.53 16.21 41.95 45.21 3.26 

REF_CND_R37 Cindrich -13675085.13 6303128.86 48.03 3.10 98.23 44.93 52.08 7.15 

REF_CND_R38 Cindrich -13675440.39 6303413.27 54.65 3.25 160.62 51.40 58.82 7.42 

REF_CND_R39 Cindrich -13675468.35 6303411.67 54.87 3.14 207.80 51.73 59.12 7.39 
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REF_CND_R40 Cindrich -13675071.95 6303080.96 45.38 1.30 21.80 44.08 46.72 2.64 

REF_CWH_L01 C. Whalley -13675451.31 6307076.42 89.74 8.50 10068.14 81.24 102.69 21.45 

REF_CWH_L02 C. Whalley -13675176.51 6307241.85 85.51 5.09 4926.52 80.42 92.28 11.86 

REF_CWH_L03 C. Whalley -13675173.68 6306968.64 81.97 3.36 3285.49 78.61 86.41 7.80 

REF_CWH_L04 C. Whalley -13676003.83 6307036.02 100.34 6.99 3126.35 93.35 108.02 14.67 

REF_CWH_L05 C. Whalley -13675197.53 6306267.08 82.42 5.52 2645.12 76.90 89.70 12.80 

REF_CWH_L06 C. Whalley -13675248.84 6306847.66 83.78 5.13 2225.47 78.65 91.14 12.49 

REF_CWH_L07 C. Whalley -13676145.88 6306938.40 101.34 7.24 1909.97 94.10 109.52 15.42 

REF_CWH_L08 C. Whalley -13675886.00 6307024.00 96.68 8.13 1751.34 88.55 105.36 16.81 

REF_CWH_L09 C. Whalley -13675236.87 6306933.82 81.58 3.14 1743.91 78.44 85.58 7.14 

REF_CWH_L10 C. Whalley -13676136.99 6307127.22 99.68 7.26 1711.41 92.42 108.15 15.73 

REF_CWH_L11 C. Whalley -13675815.80 6306763.93 91.65 5.56 1635.61 86.09 98.20 12.11 

REF_CWH_L12 C. Whalley -13675839.18 6306681.29 91.02 6.03 1580.57 84.99 97.99 13.00 

REF_CWH_L13 C. Whalley -13675911.93 6306614.64 100.28 10.46 1472.69 89.82 116.01 26.19 

REF_CWH_L14 C. Whalley -13675881.79 6306838.89 94.62 5.14 1429.95 89.48 100.56 11.08 

REF_CWH_L15 C. Whalley -13675286.47 6307092.20 85.85 4.30 1310.72 81.55 91.95 10.40 

REF_CWH_L16 C. Whalley -13676217.81 6307372.42 96.49 6.31 1251.88 90.18 104.83 14.65 

REF_CWH_L17 C. Whalley -13675299.35 6307015.41 87.33 5.92 1158.26 81.41 94.29 12.88 

REF_CWH_L18 C. Whalley -13676220.20 6306805.24 100.11 5.13 1017.39 94.98 106.13 11.15 

REF_CWH_L19 C. Whalley -13675288.87 6307383.64 83.34 2.72 1027.19 80.62 86.40 5.78 

REF_CWH_L20 C. Whalley -13675266.57 6307146.63 85.63 4.00 970.43 81.63 92.50 10.87 

REF_CWH_R01 C. Whalley -13676114.19 6306724.69 97.66 2.53 192.73 95.13 100.94 5.81 

REF_CWH_R02 C. Whalley -13675794.18 6307332.90 89.08 3.00 187.93 86.08 93.12 7.04 

REF_CWH_R03 C. Whalley -13676135.61 6307282.44 94.22 3.20 191.20 91.02 98.64 7.62 

REF_CWH_R04 C. Whalley -13675211.80 6306649.02 80.60 1.69 51.20 78.91 82.30 3.39 

REF_CWH_R05 C. Whalley -13675939.26 6306829.15 94.48 3.27 808.37 91.21 98.55 7.34 

REF_CWH_R06 C. Whalley -13675769.88 6307080.01 88.17 1.36 9.69 86.81 89.71 2.90 

REF_CWH_R07 C. Whalley -13675862.89 6307241.88 92.76 2.89 177.24 89.87 96.29 6.42 

REF_CWH_R08 C. Whalley -13675641.39 6307316.85 85.00 3.04 159.69 81.96 88.96 7.00 

REF_CWH_R09 C. Whalley -13675673.82 6307319.42 86.16 2.98 145.44 83.18 89.86 6.68 

REF_CWH_R10 C. Whalley -13675153.04 6307139.61 83.87 2.45 222.96 81.42 86.95 5.53 

REF_CWH_R11 C. Whalley -13676270.63 6306919.36 98.06 3.29 403.60 94.77 102.31 7.54 

REF_CWH_R12 C. Whalley -13676112.40 6307064.02 95.97 3.27 162.12 92.70 99.90 7.20 

REF_CWH_R13 C. Whalley -13676276.10 6306856.02 98.23 3.63 272.62 94.60 103.20 8.60 

REF_CWH_R14 C. Whalley -13675771.69 6307000.07 89.49 2.13 131.12 87.36 92.16 4.80 

REF_CWH_R15 C. Whalley -13675765.07 6307320.97 88.32 2.90 155.48 85.42 92.59 7.17 

REF_CWH_T01 C. Whalley -13675958.74 6307128.20 141.59 50.70 847.96 90.89 193.96 103.07 

REF_CWH_T02 C. Whalley -13676175.10 6306817.59 100.22 5.21 767.88 95.01 106.16 11.15 

REF_CWH_T04 C. Whalley -13675771.32 6306932.90 89.71 2.48 151.73 87.23 92.86 5.63 

REF_CWH_T05 C. Whalley -13676179.57 6306764.68 99.83 4.90 458.67 94.93 105.44 10.51 

REF_NWH_L01 N. Whalley -13674939.31 6308070.40 90.60 7.13 22691.07 83.47 98.44 14.97 

REF_NWH_L02 N. Whalley -13675001.55 6308559.62 91.68 4.01 10775.77 87.67 97.66 9.99 

REF_NWH_L03 N. Whalley -13674950.31 6308317.26 91.64 6.17 6445.29 85.47 98.47 13.00 
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REF_NWH_L04 N. Whalley -13675520.19 6308334.07 86.92 5.39 4830.65 81.53 93.46 11.93 

REF_NWH_L06 N. Whalley -13675155.91 6308285.02 88.25 5.17 4580.94 83.08 94.84 11.76 

REF_NWH_L07 N. Whalley -13675371.31 6308466.47 86.06 3.28 3440.20 82.78 90.36 7.58 

REF_NWH_L08 N. Whalley -13675331.72 6308014.05 83.63 3.32 2404.75 80.31 88.08 7.77 

REF_NWH_L09 N. Whalley -13675016.45 6308397.16 92.42 3.58 3482.72 88.83 97.10 8.27 

REF_NWH_L10 N. Whalley -13675451.88 6308119.05 84.99 4.09 2821.56 80.90 90.03 9.13 

REF_NWH_R01 N. Whalley -13675287.59 6308222.50 84.00 2.18 1183.04 81.82 86.59 4.77 

REF_NWH_R02 N. Whalley -13674787.31 6308325.71 98.04 2.50 329.31 95.54 101.28 5.74 

REF_NWH_R03 N. Whalley -13675397.81 6308311.90 83.98 2.62 1656.30 81.36 86.78 5.42 

REF_NWH_R04 N. Whalley -13675162.20 6307970.53 83.00 1.69 80.15 81.32 85.05 3.73 

REF_NWH_R05 N. Whalley -13674786.04 6308196.14 97.20 2.60 280.80 94.60 100.41 5.81 

REF_NWH_R06 N. Whalley -13674790.15 6307950.84 94.12 3.12 280.67 91.00 98.15 7.15 

REF_NWH_R09 N. Whalley -13675431.62 6308417.80 83.64 2.04 374.47 81.60 86.06 4.46 

REF_NWH_R10 N. Whalley -13675127.47 6308020.33 86.84 3.51 1204.39 83.33 91.25 7.92 

REF_NWH_R11 N. Whalley -13674787.61 6308029.20 94.67 2.44 237.12 92.24 97.69 5.45 

REF_NWH_R12 N. Whalley -13675171.84 6308624.24 88.76 3.09 1150.72 85.67 92.30 6.63 

REF_NWH_R13 N. Whalley -13675125.31 6308411.65 88.54 3.66 1992.46 84.88 93.61 8.73 

REF_NWH_R14 N. Whalley -13675411.66 6308392.37 84.16 2.28 1176.02 81.88 87.16 5.28 

REF_NWH_R16 N. Whalley -13674790.72 6308144.58 95.75 2.31 260.86 93.44 98.74 5.30 

REF_NWH_R17 N. Whalley -13674803.54 6308285.80 97.68 3.83 1404.15 93.85 102.03 8.18 

REF_NWH_R18 N. Whalley -13674788.67 6308351.99 97.58 3.05 415.43 94.53 101.55 7.02 

REF_NWH_R19 N. Whalley -13674854.48 6308374.96 94.58 2.77 854.17 91.81 97.95 6.14 

REF_NWH_R20 N. Whalley -13674879.47 6308395.86 93.11 1.15 19.15 91.96 94.44 2.48 

REF_NWH_R21 N. Whalley -13674847.64 6308501.25 95.29 1.75 800.67 93.54 97.89 4.35 

REF_NWH_R22 N. Whalley -13674808.00 6308629.20 97.44 3.21 1308.87 94.23 101.10 6.87 

REF_NWH_R23 N. Whalley -13675251.53 6308555.66 87.40 3.70 1052.23 83.70 91.53 7.83 

REF_NWH_R24 N. Whalley -13675163.75 6308539.95 88.62 3.58 2258.48 85.04 92.64 7.60 

REF_NWH_R25 N. Whalley -13675182.83 6308275.00 86.66 3.53 883.48 83.14 90.19 7.05 

REF_NWH_R26 N. Whalley -13675198.33 6308249.75 86.04 2.95 898.51 83.09 89.82 6.73 

REF_NWH_R27 N. Whalley -13675180.83 6308201.65 86.12 3.06 2252.58 83.06 89.69 6.63 

REF_NWH_R28 N. Whalley -13675165.07 6308087.77 84.56 1.30 144.17 83.26 86.18 2.92 

REF_NWH_R29 N. Whalley -13675161.42 6308135.55 84.61 1.63 35.14 82.98 86.24 3.26 

REF_NWH_R30 N. Whalley -13675130.26 6307986.93 84.47 2.00 726.10 82.47 86.93 4.46 
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