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Abstract

Musculoskeletal (MSK) conditions are a leading cause of pain and disability worldwide. Reha-

bilitation is critical for recovery from these conditions and for the prevention of long-term disability.

Robot-assisted therapy has been demonstrated to provide improvements to stroke rehabilitation in

terms of efficiency and patient adherence. However, there are no wearable robot-assisted solutions

for patients with MSK injuries. One of the limiting factors is the lack of appropriate models that

allow the use of biosignals as an interface input. Furthermore, there are no models to discern the

health of MSK patients as they progress through their therapy.

This thesis describes the design, data collection, analysis, and validation of a novel muscle

health model for elbow trauma patients. Surface electromyography (sEMG) data sets were col-

lected from the injured arms of elbow trauma patients performing 10 upper-limb motions. The

data were assessed and compared to sEMG data collected from the patients’ contralateral healthy

limbs. A statistical analysis was conducted to identify trends relating the sEMG signals to muscle

health.

sEMG-based classification models for muscle health were developed. Relevant sEMG features

were identified and combined into feature sets for the classification models. The classifiers were

used to distinguish between two levels of health: healthy and injured (50% baseline accuracy

rate). Classification models based on individual motions achieved cross-validation accuracies of

48.2–79.6%. Following feature selection and optimization of the models, cross-validation accuracies

of up to 82.1% were achieved.

This work suggests that there is a potential for implementing an EMG-based model of muscle

health in a rehabilitative elbow brace to assess patients recovering from MSK elbow trauma.
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However, more research is necessary to improve the accuracy and the specificity of the classification

models.

Keywords: Electromyography, rehabilitation, musculoskeletal injury
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Chapter 1

Introduction

Musculoskeletal (MSK) conditions are disorders or injuries that affect the bones, joints, skeletal

muscles and/or connective tissues. MSK conditions are a dominant cause of long-term pain and

disability, affecting over 1.2 billion people worldwide [1] and 11 million Canadians annually [2].

MSK injuries are often chronic, and are responsible for 21% of the total years lived with disability

in the world [3]. Patients without adequate rehabilitation may suffer pain and disability for years.

This results in significant time lost from work, and psychological suffering for both the patient

and their family. Prolonged periods of disability also increase the risk of inactivity-associated

conditions including cardiovascular disease, diabetes, cancer, osteoporosis, and depression [2].

MSK conditions impose a significant burden on the Canadian economy. In 2010, MSK disorders

were estimated to cost the Canadian economy over $22 billion per year, and MSK injuries were

estimated to cost $15 billion per year [2]. Direct costs including hospitalization, doctor visits,

drugs, and private expenditures represented 20% of the total annual cost. Over 80% of the cost

was due to time lost from work [2].

Obesity and old age are both major risk factors for MSK conditions. With obesity anticipated

to rise over the coming decade, and with a demographically aging global population, the incidence

of MSK conditions is expected to increase concomitantly worldwide [3]. By 2031, an estimated

15 million Canadians will be affected annually by MSK conditions [2]. Innovative strategies and

treatments must be developed to reduce the imminent burden of these conditions on the economy

and on health care and social care systems. A potential area of innovation is in the development

1
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of technologies to assist with rehabilitation and mobility.

1.1 Motivation

Robotic devices have the potential to improve rehabilitation outcomes. Robot-assisted therapy

is currently employed for upper-extremity rehabilitation for patients suffering from neurological

disorders, primarily stroke. These devices assist patients with performing the repetitive exercises

required for stroke rehabilitation and decrease the amount of time therapists spend manually

assisting patients [4]. However, these devices are typically expensive, stationary, and confined to

the clinic. Mechatronic braces for patients with neurological disorders have been developed to

assist with mobility and to provide resistance during therapy [5]. These wearable devices allow

patients to perform exercises at home and at their own convenience.

There are currently no smart robotic devices that can assist patients recovering from MSK

injuries, despite the numerous potential improvements to the convenience and economy of therapy

that such devices could provide. Low adherence to rehabilitation exercises is an ongoing barrier to

patient recovery. Patients may fail to adhere to rehabilitation programs as a consequence of a lack

of sufficient education and training, or an unwillingness to adhere to regimens that require major

lifestyle changes [6]. Supervised exercise programs are more successful than home exercise programs

in terms of patient adherence and recovery [4, 7, 8], however these programs require the time and

attention of a therapist. Supervised exercise programs are also less accessible for Canadians who

live in rural areas and are unable to regularly travel to visit a qualified professional. Wearable

robotic rehabilitation devices could allow patients to perform therapy exercises independently,

thus mitigating accessibility issues. As well, comparable outcomes to supervised exercise programs

could be provided at a reduced cost.

An ideal rehabilitative smart device for MSK injuries would be capable of objectively deter-

mining a patient’s muscle health as they heal. This would allow for more accurate and objective

measurements of health, and would allow therapists to develop treatment recommendations and

rehabilitation exercises for individual patient requirements. Furthermore, the amount of mechan-

ical assistance provided by a smart brace to the patient could be modified based on the patient’s
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health.

Electromyography (EMG), the study of the electrical currents generated during muscle contrac-

tion, offers the potential to provide a wearable rehabilitation device with muscle health assessment

capabilities. Quantitative EMG analysis is an established diagnostic tool for patients with nerve

damage and skeletal muscle damage [9], and there is some evidence that EMG data from patients

with MSK injuries conforms to patterns that distinguish the level of injury [10–12]. Little work

has been done, however, to quantify EMG data collected from patients with MSK injuries for use

in rehabilitation robots. Further research is necessary in order to develop an EMG-based model

for health that can be implemented in a wearable device to assess patient muscle health and to

inform individualized therapies.

1.2 General Problem Statement

Wearable robotic devices have the potential to improve MSK patient rehabilitation outcomes, and

to reduce the cost of rehabilitation. However, there is a lack of research towards identifying EMG

patterns associated with MSK patient health. Autonomous assessment of patient muscle health is

necessary to 1) improve diagnostics, 2) allow for the development of individualized therapies specific

to a patient’s level of health, and 3) create objective outcome measures to inform evidence-based

rehabilitation practices.

The purpose of this work is to identify patterns in EMG data that represent the injury levels of

patients with MSK elbow injuries. This work proposes that classification models based on EMG

data be implemented into the control system of a robotic device to identify the level of muscle

health in patients with MSK elbow injuries and to respond accordingly.

1.3 Research Objectives and Scope

This thesis specifically focuses on identifying and classifying patterns of muscle health based on

EMG data for patients recovering from MSK elbow trauma. A database of EMG signals was

collected from patients with MSK elbow injuries at several stages of healing. A control group of

data from healthy limbs was developed.
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The primary objectives of this thesis are as follows:

1. To acquire and analyze EMG data from patients with MSK elbow injuries while they perform

rehabilitation exercises.

2. To acquire and analyze EMG data from a control group of healthy subjects.

3. To evaluate and generalize the differences in EMG data between the healthy and injured

groups.

4. To identify EMG features that are best for evaluating muscle health.

5. To develop a decision system to predict patient muscle health.

6. To evaluate the decision system using new patient data.

1.4 Overview of the Thesis

The structure of this thesis is as follows:

Chapter 1 Introduction: The introductory chapter.

Chapter 2 Literature Review: A review of elbow anatomy, elbow trauma rehabilitation,

robotic rehabilitation, muscle physiology, and EMG signal acquisition,

processing, and analysis.

Chapter 3 Data Collection and Processing: Outlines the methods of EMG data

collection and processing including equipment specifications, data collection

protocol, and methods of data processing and data analysis.

Chapter 4 Results and Discussion: Presents the results of the data analysis and explains

their significance.

Chapter 5 Concluding Remarks: Highlights the contributions of this work, and provides

recommendations for future work.
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Appendix A Permissions and Approvals: Includes ethics permission and approval, consent

form, trial form, and permissions for images.

Appendix B MATLAB Code: Describes the MATLAB codes used for EMG analysis.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of the literature in the areas of elbow anatomy (Section 2.2),

elbow rehabilitation (Section 2.3), robotic rehabilitative devices (Section 2.4), muscle physiology

(Section 2.5), EMG (Section 2.6), surface EMG signal acquisition and processing (Section 2.7),

and EMG signal analysis, including EMG feature extraction and classification (Section 2.8). The

literature review provided a background into elbow rehabilitation processes and the procedure

for collecting, processing, and analyzing surface EMG signals. A literature search was conducted

using Google Scholar from September 2016 to August 2018. The keywords used in the search

included combinations of the following: elbow rehabilitation, EMG features, EMG control, elbow

rehabilitation. A total of 120 papers and books were incorporated into the literature review.

2.2 Elbow Anatomy

The elbow is a critical component of the upper body. The elbow functions as the point of rotation

for the forearm, as a link in the lever system that positions the hand in space, and as a load-

carrying joint [13]. The elbow also allows for powerful grasping and fine motions of the hand and

wrist. The loss of elbow function severely impacts the activities of daily living [14]. This section

describes the anatomy of the elbow.

6
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Figure 2.1: Anterior (left) and lateral (right) views of the right elbow. Reprinted, with permission,
from [15].

The elbow is generally considered a trochoginglymoid joint with two degrees of freedom:

flexion–extension and pronation–supination. The range of motion (ROM) for elbow flexion–

extension is 0–140 ± 10 degrees. The ranges of pronation and supination are 75 degrees and

85 degrees respectively. The elbow also exhibits varus–valgus motion during flexion and extension.

The axis of elbow flexion follows a helical motion of 3 to 4 degrees during a flexion–extension arc.

2.2.1 Osteology and Articulations

Three bones articulate at the elbow: the humerus, the ulna, and the radius. The humerus is the

single long bone from the shoulder to the elbow. In standard anatomical position, the ulna is

found in the medial forearm and the radius is found in the lateral forearm (Figure 2.1). These

bones provide the following three articulations: 1) ulnohumeral (ulnotrochlear), 2) radiohumeral

(radiocapitellar), and 3) proximal radioulnar. The ulnohumeral articulation resembles a hinge

(ginglymus) and allows for flexion and extension. The radiohumeral and proximal radioulnar

articulations allow for pivoting (trochoid) motion [13]. The three articulations are covered with a

single joint capsule [16].
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The distal humerus contains two condyles that form the articular surfaces of the trochlea and

the capitellum, which interact with the ulna and radius respectively. The trochlea articulates with

the sigmoid notch of the proximal ulna. The capitellum articulates with the radial head of the

radius [14].

The proximal radioulnar articulation is the major articulation of the elbow and provides sta-

bility [13]. The articulation between the radial head and the capitellum is also an important elbow

stabilizer [17].

2.2.2 Elbow Ligaments

The two major ligaments of the elbow are the medial and lateral collateral ligaments. The medial

collateral ligament provides valgus stability to the elbow and is a stabilizer of the ulnohumeral

joint during flexion [16]. The lateral collateral ligament is the primary ligament for providing

elbow stability, particularly to the radial head and lateral side of the elbow [17].

The lateral epicondyle, located at the capitellum, is the source of attachment for the lateral

collateral ligament and the supinator–extensor muscle groups. The medial epicondyle, located at

the trochlea, is the source of attachment for the medial collateral ligament and the flexor–pronator

muscle groups [13].

2.2.3 Elbow Muscles

The muscles that cross the elbow joint are summarized in Table 2.1. The primary elbow flexors are

the brachialis, biceps brachii, and brachioradialis. The secondary elbow flexors are the pronator

teres, extensor carpi radialis longus, and flexor carpi radialis. The primary elbow extensors are

the triceps brachii and the anconeus at the posterior of the elbow [18].

Pronation of the forearm is performed by the pronator teres and pronator quadratus. Forearm

supination is performed by the biceps and the supinator. The flexor–pronator muscles are located

at the medial elbow, and the extensor–supinator muscles are located in the lateral elbow [18].

The majority of the muscles crossing the elbow also provide forearm rotation and flexion–

extension of the wrist and fingers [18].
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Table 2.1: Summary of muscles crossing the elbow joint [14,19].

Muscle Origin Insertion Level Action

Posterior Elbow

Triceps

brachii

Scapula (Long Head)

Humerus (Lateral

and Medial heads)

Olecranon Superficial Elbow extension

Anconeus Lateral epicondyle Proximal ulna Intermediate Elbow extension,

abduction, and

stabilization

Extensor carpi

ulnaris

Lateral epicondyle Fifth metacarpal Superficial Wrist extension,

ulnar deviation

Extensor

digitorum

communis

Anterolateral

epicondyle

Extensor

mechanism of

each finger

Intermediate Metalcarpal

phalangeal joint

extension

Lateral Elbow

Extensor carpi

radialis

Lateral epicondyle

(brevis)

Lateral supra-

condylar ridge

(longus)

Third

metacarpal (brevis)

Second

metacarpal (longus)

Superficial Wrist extension,

radial deviation

Brachioradialis Lateral supra-

condylar ridge

Distal radius Superficial Elbow flexion

with forearm in

neutral rotation

Supinator Lateral epicondyle Proximal radius Deep Forearm

supination

Medial Elbow

Flexor

digitorum

superficialis

Medial epicondyle,

Proximal radius

Middle phlanges

of the fingers

Superficial/

Intermediate

Flexion of

proximal

interphalangeal

joints

Flexor

digitorum

profundus

Medial olecranon,

Proximal ulna

Distal phlanges

of the fingers

Deep Flexion of distal

interphalangeal

joints

Anterior Elbow

Biceps brachii Scapula Radius (bicepital

tuberosity)

Superficial Elbow flexion,

forearm

supination
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Prontator teres Medial epicondyle Pronator tuberosity

of radius

Superficial Forearm

pronation, weak

elbow flexion

Flexor carpi

radialis

Medial epicondyle Second and third

metacarpals

Superficial Wrist flexion,

weak forearm

pronation,

radial deviation

Palmaris longus Medial epicondyle Palmar aponeurosis Superficial Wrist flexion

Flexor carpi

ulnaris

Medial epicondyle Pisiform and fifth

metacarpal

Superficial Wrist flexion,

ulnar deviation

Brachialis Deltoid tuberosity Ulna
Superficial/

Deep
Elbow flexion

2.3 Elbow Trauma Rehabilitation

Due to the elbow’s complex anatomy, rehabilitation from elbow trauma is a challenging process.

The elbow capsule is prone to thickening, contracture formation, and stiffening following trauma

[16]. Furthermore, there is no standard guideline or protocol for elbow rehabilitation [20]. Most of

the scientific evidence to support rehabilitation approaches is based on retrospective and case series

studies with small sample sizes, not on randomized control trials (RCTs) [20, 21]. Rehabilitative

procedures tested are often poorly described and unreproducible [20]. However, there is expert

consensus and some weak clinical evidence to support certain rehabilitative approaches [22]. This

section reviews the existing methods of rehabilitation for elbow trauma, and the ongoing challenges

of rehabilitation.

2.3.1 Elbow Trauma and Surgical Rehabilitation

The rehabilitation methods used for recovery from elbow trauma and surgical procedures depend on

the stages of healing. These can be divided into the healing stage, and the functional rehabilitation

stage [20].
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2.3.1.1 Healing Stage: 0–6 weeks

In early stages of recovery from elbow injury or surgery, the elbow tissues undergo an inflammatory

phase. Elbow trauma typically impacts the lymphatic system of the elbow, resulting in edema. The

primary focus during this stage is on pain and edema management [20,22]. Rest, ice, compression,

and elevation (RICE) are used to manage pain and edema. Lymphatic drainage is an important

step for early rehabilitation [16].

Early mobilization is recommended to improve articular homeostasis, reduce edema and hema-

toma, and to progressively improve the ROM [20, 23]. Active ROM (AROM) and active assisted

ROM (AAROM) exercises are introduced at this stage [22]. ROM exercises influence collagen re-

modeling to ensure full motion of the joints, and to improve venous return and lymphatic drainage,

which reduces pain and edema.

Active elbow motion with the forearm in pronation is recommended following damage or repair

to the lateral collateral ligament. If both collateral ligaments are damaged, early active motion

with the forearm in midprone or neutral rotation is preferable [16].

2.3.1.2 Functional Rehabilitation Stage: 6–12 weeks

The primary focus of the later stage of rehabilitation is to restore elbow function [20,22]. This stage

can be further divided into the “intermediate stage of recovery” and the “advanced strengthening”

stages [20].

The intermediate stage of recovery involves a focus on restoring elbow extension and forearm

pronation [20]. Heat modalities such as hot packs or whirlpool treatments are used to increase

the plasticity of the tissues and make them amenable to stretching. Strengthening exercises are

performed to enhance the collagen orientation and the elongation of musculotendinous and capsular

tissues [16]. Exercises during the intermediate stage of recovery include stretches, functional

exercises, AROM, AAROM, and passive ROM (PROM) [20, 22]. Forearm pronation–supination

exercises are performed actively with the elbow at 90 degrees. AROM exercises of the shoulder,

wrist, and fingers are also performed throughout the rehabilitation program. Static progressive

splinting may be used to improve the ROM [16]. The required ROM for performing the activities
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of daily living is 30–130 degrees. Ranges of 50 degrees for pronation and supination are required

for performing the activities of daily living [13].

The advanced strengthening stage introduces strengthening exercises to reduce muscle weakness

[20, 22]. Muscle weakness due to pain, soft tissue injury, and/or immobilization, is a common

problem following an elbow fracture. Muscle weakness can persist up to 6 months following injury,

long after bone healing has occurred, and impacts everyday tasks such as grasping and lifting [22].

Strengthening exercises should not be introduced prematurely, particularly in older patients, as

this could place excessive stresses on the healing bone. It is recommended to begin strengthening

when the ROM is complete and painless and the power is at least 70% of the contralateral limb [20].

Typically, strengthening is begun after 8 to 12 weeks in complex fractures. There is no consensus,

however, with respect to the ideal dosage and type of strengthening exercises [16]. The American

College of Sports Medicine recommends performing 1–3 sets of 6–12 repetitions per exercise, at

80% of the one repetition maximum load that can be lifted by the patient, 3 times per week [24].

2.3.1.3 Rehabilitative Braces

There are several types of elbow braces that may be required during elbow trauma rehabilitation,

as follows [25]:

1. Immobilization braces are used to protect the limb by restricting movement. They are used

at the beginning of treatment. The amount of time an immobilization brace is worn should

be kept to a minimum.

2. Restriction braces allow for early movement, but provide protection by restricting the ROM

within a specified range of flexion and extension.

3. Mobilization braces exert forces on soft tissue, and are used to maintain or increase the ROM.

These are typically used during Weeks 2–8 of recovery, often to treat stiff elbow.

2.3.2 Specific Rehabilitation Practices

The specific rehabilitation practices and exercises performed depend on the type of injury to the

elbow. This section describes recommended practices with respect to common elbow traumas.
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2.3.2.1 Radial Head Fractures

Radial head fractures are the most common type of elbow fractures. Rehabilitation is similar

for both operative and nonoperative treatments. The ROM exercises performed typically include

forearm rotation with the elbow at 90 degrees of flexion, and elbow extension and flexion with

the forearm in pronation. ROM exercises are performed at a frequency of 10–15 repetitions per

hour. Strengthening exercises begin after 8 weeks. Elbow flexion–extension with the forearm in

pronation is performed, with the weight gradually increasing [16].

2.3.2.2 Elbow Dislocations

Elbow dislocation rehabilitation focuses on protecting the collateral ligaments and slowly increasing

the ROM by performing AROM exercises. Patients are splinted at 90 degrees of flexion for 5–7

days. If the elbow is stable, full active motion is permitted. If the elbow is unstable, full flexion is

permitted, and extension is slowly increased each week [16].

2.3.2.3 Arthroscopic Debridement

Arthroscopic surgical procedures are performed for loose body removal, synovectomy, contracture

release, radial head excision, and lateral epicondylitis debridement for tennis elbow. Rehabilitation

is similar to open surgical procedures in terms of treating pain and edema. The major difference

is that rehabilitation can start immediately following the procedure. AROM may be started on

the same day as the surgery. Continuous passive motion (CPM) exercises should start as early as

possible to improve tissue extensibility [26].

2.3.2.4 Stiff Elbow

The elbow capsule is prone to thickening, contracture formation, and stiffening following trauma

[16]. Stiff elbow is a common complication following elbow surgery or injury due to the decreased

compliance of the joint capsule. On a biochemical level, the joint capsule experiences structural

alterations in collagen crosslinks, decreased proteoglycan content, and decreased water content

[20]. However, the viscoelasticity of soft tissue in the elbow allows ligaments to regain their
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original length following injury. Stretching forces are exerted on the tissues by progressive splints

to stimulate tissue adaptation. PROM and AROM exercises are employed to increase tissue

length [27].

2.3.2.5 Bicep Tendon Tears

Distal bicep tendon tears typically result from an acute eccentric load on a flexed elbow. Patients

with a distal biceps tear suffer asymmetrical weakness in supination and elbow flexion [28]. Surgery

is typically performed to treat the tear, as nonoperative treatments result in reduced strength.

There is limited research on the optimal methods of bicep tear rehabilitation following surgery.

The current protocol is to maintain the arm in a sling for 3 to 5 days to minimize pain and edema.

Afterwards, early ROM exercises are introduced with a weight restriction. After 3 months, flexion

and supination exercises are performed [29].

2.3.3 Elbow Rehabilitation Challenges

Ongoing challenges for traditional rehabilitative approaches include a lack of patient adherence to

therapy, and the lack of evidence-based rehabilitation methods and objective outcome measures.

2.3.4 Adherence to Therapy

Patient adherence to therapy requires collaboration between the patient and the therapist to

produce the therapeutic result [30]. Non-adherence to therapy increases the risk of disability,

and reduces the effectiveness of the treatment [6]. Patient education is essential for adherence

to treatment during all phases of healing from elbow trauma [22]. Social determinants of health

(SDOH) including race, culture, poverty, illiteracy, unemployment, lack of social support, distances

from treatment, family problems, and the cost of travel and treatment are associated with factors

that affect adherence to long-term therapies [30].

2.3.5 Assessment and Outcome Measures

The most frequent assessment methods used by therapists throughout elbow rehabilitation include:

radiographs, ROM, functional performance assessments, strength assessments, and assessments of
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the presence of swelling and pain [22].

The outcome measures most commonly used by therapists include: goniometry, dynamometry,

and manual muscle testing (MMT) [22]. The current outcome measures often depend on the

therapist’s perspective. Subjective outcome measures pose difficulties for researchers who aim to

assess the effectiveness of a particular therapy.

Patient questionnaires to rate elbow pain and function include the DASH (disabilities of the

arm shoulder and hand) outcome measure, in which patients score items on a 5 point scale. The

American Shoulder and Elbow Surgeons elbow scale (ASES-e) consists of a patient questionnaire

and an assessment from the physician [31]. Finally, the Patient Rated Elbow Evaluation (PREE)

allows patients to rate pain, and their ability to perform specific activities and usual activities on

an 11 point scale [32].

2.4 Robotic Rehabilitation

The previous section described traditional elbow trauma rehabilitation methods and identified

challenges with these methods. Robot-assisted rehabilitation offers potential solutions to the chal-

lenges of patient adherence and the development of objective outcome measures. Robotic devices

can assist patients with performing multiple repetitions of exercises. Robotic rehabilitation could

also lead to more objective outcome measures of patient health. This section describes the prior

art and efficacy of robot-assisted rehabilitation.

2.4.1 Prior Art

A number of robotic systems have been developed to assist patients with rehabilitation and move-

ment. These devices were designed for patients with neurological disorders (e.g., stroke) [4]. The

key robotic rehabilitation devices are described below.

2.4.1.1 Stationary Robotic Systems

The robotic rehabilitation systems developed for stroke rehabilitation are primarily exoskeletons

attached to large stationary workstations. Stroke patients must perform repetitious exercises
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during their rehabilitation. Robot-assisted therapy allows patients to repeat exercises many times

and remain motivated, while reducing the time burden on the therapist. Table 2.2 summarizes the

major rehabilitative upper-limb exoskeleton systems.

Table 2.2: Summary of rehabilitative upper-limb exoskeleton systems.

Name DOF Shoulder Elbow Wrist
Commercial

Availability

Motion

Assistance

ARAMIS [33] 6 X X — — X

ABLE [34] 4 — X X — X

ArmeoPower [35] 7 X X X X X

ArmeoSpring [36] 8 X X X X —

EXO-UL7 [37] 7 X X X — X

CAREX [38] 7 X X X — X

IntelliArm [39] 6 X X X — X

BOTAS [40] 6 X X X — X

ALEx [41] 6 X X X — X

L-Exos [42] 4 X X X — X

Major commercially available upper-limb exoskeletons for stroke rehabilitation include the

ArmeoPower robot (commercial version of the ARMin III [35]) and the ArmeoSpring (commercial

version of the T-WREX [36]), both distributed by Hocoma [43]. The ArmeoPower is a 7 degree

of freedom (DOF) exoskeleton that assists with movement in the shoulder, elbow, and wrist.

Angular sensors and a grip pressure sensor determine when the patient is unable to perform

an exercise so that assistance-as-needed can be provided in response to individual requirements.

The ArmeoPower was designed for stroke patients in early stages of rehabilitation, and enables

the patient to perform repetitive therapeutic exercises to relearn motor function. Games are

integrated into the system to provide motivation during training [43]. The ArmeoSpring is an 8

DOF system designed for an intermediate stage of recovery from stroke. The ArmeoSpring allows

for simultaneous training of the shoulder, elbow, wrist, and hand. Games are also incorporated

into the device to improve patient motivation [43].

Stationary exoskeleton systems are beneficial because they provide a more controlled environ-

ment for patient movement, which allows for multiple DOF to be safely implemented into the

system, enabling patients to perform movements that closely approximate natural motion. How-

ever, the rehabilitative exercises can only be performed at a clinic [4]. Wearable rehabilitation
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devices could assist patients with performing the activities of daily living, and allow rehabilitation

exercises to be performed at home.

2.4.1.2 Wearable Devices

Several wearable robotic rehabilitative devices have been developed (Table 2.3). A key device

is the Myomo e100 (MyoPro), a commercial exoskeleton that provides mechanical assistance to

patients performing activities of daily living. The MyoPro can also provide resistance training for

strengthening exercises during rehabilitative therapy [5]. The MyoPro estimates joint torque using

EMG signals from the flexor and extensor muscles of the elbow. The MyoPro provides 1 DOF

(flexion–extension). The reduced complexity is necessary to allow for safety and portability.

Table 2.3: Summary of wearable rehabilitative robotic systems.

Name Description DOF Shoulder Elbow Wrist
Commercial

Availability

Motion

Assistance

Myomo [5] Upper-limb brace

with myoelectric

input

1 X X X X X

RUPERT IV [44] Upper-limb, portable

exoskeleton

5 X X X — X

ArmeoSenso [43] Enables self-

directed upper-limb

rehabilitation

6 X X X X —

Wear-ME Brace [45] Upper-limb brace 2 — X — — X

2.4.1.3 Health Monitoring Devices for Rehabilitation

Several devices have also been developed or proposed for monitoring and diagnosing the health

of patients undergoing upper-limb rehabilitation for stroke. A major focus has been on using

information from EMG, accelerometer, and/or flex sensors to autonomously determine outcome

measures of functional independence for stroke patients [46–48]. Stroke outcome measures, such as

the Fugl-Meyer assessment and Wolf Motor Function Test, are self-reported or observer-reported,

and can therefore be inaccurate. As well, observer-rated measures are time-consuming for the

caregiver to perform [47]. However, the Fugl-Meyer and Wolf Motor Function Test are both

ordinal scales that cannot accurately describe patient behaviour, therefore there is interest in
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using assessment devices to develop new outcome measures [49].

Hocoma supplies the ArmeoSenso device, which monitors patients with mild upper-limb im-

pairments as they undergo self-directed rehabilitation exercises [43]. The 6 DOF system includes

motivating exercises and provides summaries of the patient’s performance in terms of coordination

and reaction time.

2.4.2 Efficacy of Robotic Rehabilitation Therapy

Few clinical studies have been performed to study the efficacy of robot-assisted therapy. The

results of these studies are often difficult to compare because outcome measures are often based on

therapist opinion [4]. As well, the majority of the studies have used small numbers of participants

and/or lacked a control group [50,51].

Robot-assisted rehabilitation could be expected to maximize a patient’s effort and adherence

to the rehabilitation program and to improve rehabilitation outcomes. The evidence tends to

suggest, however, that there are no clinically significant differences in outcome between robot-

assisted therapy and intensive therapist-provided rehabilitation [4, 51]. For example, an RCT

that compared the efficacy of treatment provided by the ARMin III exoskeleton with conventional

stroke therapy found that the increase in the Fugl-Meyer score in patients assigned to robot-assisted

therapy was not clinically relevant, and that patients assigned to conventional therapy exhibited

larger gains in muscle strength [52]. A pilot trial that compared the efficacy of rehabilitation for

stroke patients using the MyoPro with patients who followed a manual regimen provided by a

therapist found that both groups of patients had similar increases in their Fugl-Meyer scores [53].

The current rehabilitative robotic devices are therefore unlikely to provide a significant im-

provement over therapist-assisted rehabilitation, but they can still reduce the burden on therapists

by reducing the time spent manually assisting patients, and by allowing patients to participate

in rehabilitation more independently. A study that evaluated the efficacy of the ArmeoSpring

as a rehabilitation method for patients suffering cervical spinal cord injuries found no significant

difference in rehabilitation outcomes, but found that robot-assisted training required therapist

involvement for only 25% of the normal time, indicating that robotic devices can greatly improve

efficiency [54]. A cost analysis and RCT study conducted in 2010 determined that there was
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no significant difference between outcomes of robot-assisted rehabilitation and intensive therapy.

The cost of robot-assisted therapy per patient was slightly less than the cost of therapist-assisted

therapy ($5,152 for robot-assisted therapy, $7,382 for intensive therapist-assisted therapy [55]).

Robot-assisted therapy will likely become increasingly desirable, as the cost of robot-assisted re-

habilitation therapy is expected to decrease over time [4].

2.4.3 Towards Robotic Systems for Musculoskeletal Rehabilitation

There are currently no commercial robotic systems developed specifically for MSK rehabilitation.

Work has been accomplished towards developing mechanisms of sensing patient motion [45], but

not towards sensing and identifying patient health. Further research is required to enable wearable

devices to identify the muscle health of patients suffering from MSK injuries.

2.5 Muscle Physiology

An understanding of muscle physiology and EMG is necessary in order to develop a system to

identify patient muscle health. This section briefly reviews the background knowledge required to

understand the physiological basis of the EMG signal.

2.5.0.1 Skeletal Muscle Fibres

Skeletal muscle is composed of numerous parallel fibres. Each muscle fibre is a single long tubular

cell. Muscle fibres are composed of fibrils, which are in turn composed of filaments. There are two

types of filaments: thick filaments, which are composed of the motor protein myosin-II, and thin

filaments, which are primarily composed of actin. The thick filaments and thin filaments overlap

and the thin filaments slide over the thick filaments during muscle contraction (Figure 2.2).

2.5.0.2 The Motor System

The central nervous system is arranged in a hierarchal structure. Motor programming begins

in the premotor cortex. The outputs from the premotor cortex, cerebellum, and basal ganglia

converge at the primary motor cortex to excite and inhibit the primary motor cortex neurons.
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Figure 2.2: Overlapping structure of thick and thin filaments. The thin filaments are composed
primarily of actin, and the thick filaments are composed of the double-headed motor
protein myosin-II. Reprinted, with permission, from [57] ©2016 McGraw-Hill Educa-
tion.

Figure 2.3: Structure of motor unit (MU) and muscle fibres. Reprinted, with permission, from [56].

The outputs from the primary motor cortex influence the neurons of the brain stem and spinal

cord. The motoneurons in the spinal cord innervate and activate skeletal muscle fibres. A motor

unit (MU) consists of a motoneuron and the muscle fibres that it innervates (Figure 2.3) [56].
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2.5.0.3 Action Potentials of Muscle Cells

Nerve and muscle cells are excitable cells that have the ability to generate a propagating wave

of depolarization known as the action potential. The action potential is generated following the

depolarization of the muscle fibre, and is produced by the flow of ions between the muscle cell

and the extracellular matrix (ECM). Voltage-gated ion channels allow ions to move inside and

outside of the cell. There are three ions involved in producing an action potential: sodium (Na+),

potassium (K+), and chloride (Cl-). Calcium ions (Ca2+) are involved in the process of muscle

fibre contraction [58].

The muscle cell has a resting potential of about -80 mV relative to the ECM. If the cell

membrane potential is depolarized from -80 mV to -65 mV, voltage-gated Na+ and K+ ion channels

open. Na+ ions flow into the cell due to the relative negative charge inside the cell, and due to the

concentration gradient. The flow of positive charge rapidly increases the cell membrane potential

to +10 mV [59].

Muscle fibre depolarization enables the opening of Ca2+ ion channels. Ca2+ ions flow into the

cell due to the concentration gradient. The influx of Ca2+ ions triggers the release of additional

Ca2+ stored in the sarcoplasmic reticulum of the cell. Ca2+ ions enable the formation of cross-

bridges between action and myosin-II, which allows the thin filament to slide across the thick

filament [57].

Cell permeability to Na+ rapidly decreases following depolarization, and permeability to K+

increases. The outflow of K+ ions due to the concentration gradient slowly returns the cell mem-

brane potential to resting potential [58].

2.5.0.4 Motor Unit Action Potentials (MUAPs)

The flow of Na+ ions into the muscle cell is equivalent to a current. The cellular region where

the Na+ ions are drawn to is known as a “current sink,” and the region of the ECM where the

Na+ ions are drawn from is the “current source.” Muscle tissues form a roughly cylindrical shape,

therefore, a central negative current sink surrounded by two positive current sources is observed

from the outside of the cell. This forms the tripole shape (+ - + ) of the action potential (Figure



2.6 Electromyography (EMG) 22

Figure 2.4: Triphasic extracellular action potential waveform. Reprinted, with permission, from
[58].

2.4) [58].

Each motoneuron innervates multiple muscle fibres. The summation of the individual potentials

of all of the muscle fibres within a motor unit is the motor unit action potential (MUAP) [58].

2.6 Electromyography (EMG)

Electromyography, the study of the currents generated by muscle contraction, is an important tool

for studying movement and neuromuscular physiology, and for diagnosing neuromuscular disorders.

EMG data can be collected by inserting a needle electrode into the desired muscle. This method

allows for individual MUAPs to be recorded, but it is invasive and only useful in a clinical setting.

Surface EMG (sEMG) signals are collected noninvasively by placing electrodes on the surface

of the skin. MUAPs produce extracellular currents that extend from the cell membrane to the

surface of the skin. The changing potential gradients on the skin will produce electrical currents

at the leads of an electrode. Electrodes applied the skin convert the ionic potentials generated by

the muscles into electric potentials. The sEMG signal is the sum of all of the MUAPs produced by

the muscle [59]. The sEMG signal is more difficult to interpret than EMG signals obtained from

needle electrodes, but it is simple to implement and practical for daily use. sEMG has potential

as a noninvasive assessment tool for MSK disease [60].

This section describes common applications of sEMG, including measurement of muscle force,

determination of muscle synchronization, and diagnosis of neuromuscular disorders. This section
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also discusses the limitations and challenges of sEMG signals.

2.6.1 sEMG and Muscle Force

The sEMG signal is often used to estimate muscle force. Muscle force is regulated by two mecha-

nisms: 1) the recruitment of MUs, and 2) the firing rate of MUs [61]. The amplitude and frequency

of the sEMG signal also depend on these two mechanisms, therefore the sEMG signal can be used

to estimate the muscle force. However, the relationship between the sEMG signal and muscle force

is very complex. The sEMG signal is the summation of the MUAPs, and since the MUAPs are

biphasic or triphasic, their summation may be destructive or constructive, whereas the contribu-

tion of MUs to force is always constructive. As well, the sEMG signal depends on the distance

from the electrode to the MUs. Only superficial MUs contribute to the sEMG signal, whereas

all MUs contribute to the force [61]. The sEMG–force relationship also depends on the muscle

contraction condition and the joint angle [59]. sEMG activity is higher in concentric contractions

compared to isometric contractions, and lower for eccentric contractions of the same force [61].

Furthermore, the sEMG signal is affected by muscle fatigue. During fatiguing isometric con-

tractions, the following events occur [61]:

1. The sEMG amplitude increases

2. There is a shift of signal power towards the lower end of the frequency spectrum (i.e. there

is a decrease in high frequency power and an increase in low frequency power).

2.6.2 Muscle Activity Profiles

Muscle activity profiles are developed from sEMG signals to study muscle coordination and muscle

activation synergy. A linear envelope is obtained by rectifying the sEMG signal and applying a

low pass filter. The cut-off frequency of the low pass filter should retain 95% of the total power of

the movement under consideration [62].

Muscle activity profiles should be normalized to a time scale when comparing between trials or

individuals. For cyclical behaviour, the time scale can be converted to a percentage of one cycle

of the motion. However, this method does not account for variations between individuals in terms
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of the ratios spent performing a certain type of behaviour within the motion cycle. To avoid this

problem, the motion profile can be normalized to kinematic data [62]. Normalizing the sEMG

signal amplitude is also important for comparing between subjects and muscles.

Upper-limb muscle activation patterns have been studied in neurologically intact subjects and

in stroke patients performing reaching trajectory tasks to identify muscle health and coordination

[63,64].

2.6.3 Diagnosis of Neuromuscular Disorders

EMG collected by inserting a needle into a single muscle fibre is an established method for the

diagnosis of neuromuscular disorders. Individual MUAPs can be classified as normal, neuropathic,

or myopathic [9]. Neuropathic muscles have a reduced numbers of MUs, however muscle fibres

reorganize to produce larger MUs. MUAPs for neuropathic muscles therefore have higher am-

plitudes and longer durations. The MUs also fire at a higher rate to compensate for the loss of

MUs. Myopathic muscles have reduced numbers of muscle fibres, and exhibit MUAPs with short

durations, and low amplitudes [9].

sEMG signals tend to be less reliable than needle EMG signals at identifying neuromuscular

health. There is also a great difficulty in correlating observations of sEMG signal qualities with

the underlying physiology of the muscle. However, sEMG parameters have been found to exhibit

differences between healthy subjects and patients with neuromuscular or muscle disorders including

Duchenne muscular dystrophy [65], non-specific arm pain [11], stiff elbow [10], and elbow trauma

[12].

2.6.4 Limitations and Challenges of sEMG

sEMG acquisition presents many challenges. The tissue between the muscle and the skin attenuates

high-frequency signals, acting as a low pass filter. Surface electrodes placed further away from a

signal source have lower signal amplitudes and greater attenuation [66]. sEMG disproportionately

represents the signals from superficial muscles. Finally, sEMG may pick up crosstalk recordings

from nearby muscles [59].

The sEMG signal is influenced by many factors. Physiological and anatomical features of the
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muscle that influence the sEMG signal include the following [59]:

1. Muscle Fibre Length: The distribution of muscle fibres is not uniform in all muscles. Some

muscles contain groups of muscle fibres that lie primarily in the proximal or distal end of

the muscle. Surface electrodes will only detect the muscle fibres directly underlying the

electrode.

2. Muscle Partitioning: Some muscles are partitioned into having different characteristics and

functions. For example, the flexor carpi radialis contains three major divisions that activate

differently during radial deviation and wrist flexion–extension. An electrode placed without

consideration of these specific divisions could lead to a misclassification of the motion being

performed.

3. MU Organization: The number of MUs and the number of muscle fibres per MU differs

according to the type of muscle. Typically, larger muscles have higher innervation ratios

but lower numbers of MUs, while smaller muscles have higher numbers of MUs but lower

innervation ratios.

4. Muscle Fibre Organization: The composition of muscle is not uniform, and generally involves

fast-twitch fibres closer to the skin, and slow-twitch fibres deeper in the muscle. A surface

electrode will be biased towards detecting the fast-twitch fibres closest to the surface of the

skin.

Inherent factors that unavoidably influence sEMG signals include noise from ambient electro-

magnetic radiation, motion artifacts, and the randomness of the MU firing rate. The electrode

material and placement are technical factors that should also be considered, and will be discussed

in detail in the next section.

2.7 sEMG Acquisition

Since the sEMG signal is inherently affected by various factors, there are several considerations and

requirements for the sEMG signal acquisition system. This section describes the recommendations
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for the sEMG acquisition system (consisting of the following components: electrodes, amplifiers,

filters, and an A/D converter) as well as the procedure for sEMG signal pre-processing.

2.7.1 Electrodes

SENIAM (Surface EMG for the Non-Invasive Assessment of Muscles) was founded in 1996 to pro-

vide recommendations for sEMG signal acquisition, electrodes, and electrode placement [60]. Stan-

dardization of sEMG acquisition methods between research groups promotes the reproducibility of

results and the development of a common body of knowledge. The SENIAM recommendations for

electrodes, as well as further recommendations proposed by other research groups, are described

in detail below.

2.7.1.1 Electrode Configuration

There are three major electrode configurations used in the literature for sEMG acquisition: bipolar,

monopolar, and grid [67].

The monopolar configuration measures the voltage difference between an electrode placed over

the muscle of interest and a reference electrode. The reference electrode is placed on a bony area

of the body, typically the elbow for upper-body measurements [67].

The bipolar configuration is recommended by SENIAM and is the most commonly used con-

figuration for sEMG acquisition [60]. The sEMG signal is the voltage difference between two

electrodes aligned in the direction of the muscle fibres. The bipolar configuration is more tolerant

to noise than the monopolar configuration because the electromagnetic interferences common to

both electrodes is reduced by determining the voltage difference between the electrodes [59].

Research has been moving towards the use of high density sEMG (HD-sEMG) electrode grids.

HD-sEMG provides both temporal and spatial information about muscle activity, and allows for

more accurate information about muscle fibre and MU properties, including muscle fibre conduction

velocity, muscle fibre length and orientation, MU location, and the decomposition of the sEMG

signal into individual MUAPs [66].
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2.7.1.2 Inter-electrode Distance

The inter-electrode distance (IED) is the centre-to-centre distance between the conductive areas of

two electrodes [60]. The IED determines the “distance volume,” or the volume of muscle tissue that

provides a meaningful sEMG signal. The distance volume is approximately a sphere with a radius

equal to the IED [59]. When the IED is increased, the sEMG signal exhibits greater amplitudes and

lower frequencies [59], however, a larger IED reduces spatial specificity and increases the likelihood

of crosstalk from nearby muscles [67].

SENIAM recommends an IED of 20 mm for electrodes in a bipolar configuration [60], however,

increasing the IED to 40 mm can improve the tolerance for electrode shifts, and motion classifi-

cation accuracy [68]. The IED for HD-SEMG configurations should be less than 10 mm to avoid

spatial aliasing [69].

2.7.1.3 Electrode Size and Shape

Electrode shape is not thought to have a major influence on the quality of sEMG recordings [60,67].

There are no SENIAM criteria for electrode shape, however most sEMG electrodes are either

circular or rectangular [60].

Electrode sizes of 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm have not been found to

significantly differ in terms of motion classification accuracy. Larger electrodes are less sensitive

to changes caused by electrode shifts [68].

2.7.1.4 Electrode Type

sEMG recordings can be performed with either wet or dry electrodes. Wet electrodes require

the application of a conductive electrolyte gel between the electrode and the surface of the skin.

Dry electrodes do not require extensive skin preparation [67]. SENIAM recommends the use of

Ag/AgCl (silver plated with a thin layer of silver chloride) wet electrodes [60].

Wet electrodes are not optimal for long-term use because the electrolytic gel commonly causes

skin irritation as it dries [67]. Applying and removing the electrolytic gel is also time-consuming.

Dry electrodes have been observed to achieve signal qualities comparable to wet electrodes [70],
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are more comfortable for subjects, and do not require extensive skin preparation [67].

2.7.1.5 Skin Preparation

Skin preparation is necessary for wet electrodes in order to reduce the impedance and noise of the

electrode–gel–skin interface. Imbalances between the two electrodes should be reduced by removing

body oils and flaky skin layers. SENIAM recommends shaving the skin, cleaning the skin with

alcohol, and waiting for the alcohol to dry before applying the sensor. The impedance of the skin

should be below 10 kΩ [60]. With respect to dry electrodes, shaving the skin was demonstrated

to improve the sEMG signal quality, however the use of alcohol was found to decrease the signal

quality [70].

Electrodes can be fixed to the skin with gel, double-sided adhesive tape, stickers, or elastic

bands. The electrode–skin connection should be secure to avoid motion artifacts due to a loss of

contact or due to changes in impedance. The electrode cables should be positioned so that they

do not tug on the electrodes and affect the sEMG signal [60].

2.7.1.6 Electrode Placement

SENIAM provides recommendations for electrode placements for major muscles [71]. In general,

electrodes should be placed over the belly of the muscle between the innervation zone and the

tendon, and oriented in the direction of the muscle fibres. Electrodes should not be placed near

the innervation zone of the muscle [60].

2.7.2 Amplification

The amplitude of the sEMG signal is usually less than 10 mV. An instrumentation amplifier close

to the recording electrodes is used to amplify the sEMG signal by 100–5000× [67].

2.7.3 Filtering

sEMG signals can be filtered within the hardware prior to A/D conversion or following A/D

conversion using software. A high pass filter with a cut-off frequency of 20–50 Hz is typically

applied to remove low frequency components due to motion artifacts and the instability of the
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electrode–skin interface. The dominant energy of the sEMG signal is limited to frequencies of up

to 400–500 Hz, therefore a low pass filter of 400–450 Hz is typically applied to the sEMG signal [67].

Power line interference at frequencies of 60 Hz in North America can corrupt sEMG recordings.

A digital notch filter centred at 60 Hz can be applied to the sEMG signal to remove the interference

[61]. However, the notch filter may influence the perceived onset of contraction and the mean and

median frequencies [72].

2.7.4 A/D Conversion

The final step of the sEMG signal acquisition process is to convert the signal from an analog

signal to a digital signal. The Nyqust rule requires the sampling rate for A/D conversion to be at

least twice the highest frequency of interest to avoid aliasing. The useful frequencies of the sEMG

signal range up to 500 Hz, therefore the sampling rate for sEMG recordings should be at least

1000 Hz [67]. The resolution and range of the A/D converter should be carefully selected to ensure

that all of the required information within the sEMG signal is recorded [72].

2.7.5 Normalization of sEMG Signals

Due to the many inherent and technical factors influencing the sEMG signal, when sEMG signal

amplitudes are compared between trials, between muscles, or between individuals, signals should

be normalized to a reference value. SENIAM recommends that sEMG signals be normalized by

dividing the amplitude of the signal by the value of a reference contraction. The amplitude of the

signal is then defined as a percentage of the reference value [60]. There are several methods of

obtaining a reference contraction, as follows.

2.7.5.1 Maximum Voluntary Contraction (MVC)

The maximum voluntary contraction (MVC) is frequently used as a reference contraction, and is

the reference contraction recommended by SENIAM. However, the use of the MVC as a reference

contraction has been criticized because values greater than 100% MVC are often observed dur-

ing rapid and forceful contractions, which indicates that the MVC is not truly representative of

maximum muscle activation. Difficulties can also arise in obtaining accurate MVC readings for
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older subjects or for subjects with injuries or pathologies [73]. Clarys found that using reference

contractions at submaximal values of 80% of the MVC provided a more stable reference value [74].

2.7.5.2 Submaximal Contraction

Isometric submaximal contraction methods provide good reliability. The angle of the contraction

does not provide better reliability than using a specific angle, hence it is unnecessary to obtain

submaximal MVCs from a range of joint angles [73].

2.7.5.3 Mean and Peak sEMG Amplitude

Normalization can also be performed using the mean or peak sEMG amplitude when performing a

task. Mean and peak methods reduce inter-individual variability and should be used if the goal is

to reduce the sEMG variability within groups of participants; however, this may not be desirable

for all research. Peak and mean methods may not be able to detect alterations in magnitude or

patterning of sEMG signals between trials, muscles, or individuals [73].

2.7.6 Detection of Muscle Activation Onset

The detection of the point of the onset of muscle activation in the sEMG signal is important for

a variety of applications including motor control analysis, clinical applications, and the control of

prosthetic and orthotic devices. Detection can be performed by visually inspecting the signal, or by

using algorithms. Visual inspection is time consuming, subjective, and depends on the experience

of the examiner. Several algorithms for sEMG onset detection have been proposed [75].

2.7.6.1 Single-threshold Method

The single-threshold method is the most intuitive algorithm. The muscle activation onset is es-

timated as the point at which the amplitude of the rectified sEMG signal exceeds a predefined

threshold. However, the performance of this method depends on the choice of the threshold. The

single-threshold method is prone to false alarms [75].
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2.7.6.2 Double-threshold Method

The double-threshold method was proposed as an improvement to the single-threshold method

in order to decrease the number of false alarms and improve the sensitivity of detection. The

double-threshold method detects the muscle activation onset only when a predefined number of

consecutive samples exceeds a second threshold [76].

2.7.6.3 Other Methods

Several other methods for muscle activation onset detection have been proposed. The maximum-

likelihood method detects the onset of muscle activation by identifying abrupt changes in the

variance of the sEMG signal [75, 77]. Merlo et al. proposed a real-time onset detection method

based on the identification of single MUAPs from an sEMG signal [78].

Computationally complex methods have also been developed for off-line analysis. Drapaa et

al. proposed a two state detection method. In the first stage the onset is roughly estimated using

probability density function estimates of muscle activity and background noise. In the second

stage, a more accurate estimate is found by analyzing the neighbourhood of the sample found in

the first stage [75].

2.7.6.4 Teager–Kaiser Energy Operator

Regardless of the method of onset detection, the accuracy of detection improves following signal

conditioning with the Teager–Kaiser energy operator (TKEO) [79].

The TKEO, Ψ( ), is defined as:

Ψ(xi) = x2
i − (xi+1 · xi−1) (2.1)

where xi is the ith EMG value.
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2.8 Pattern Recognition of EMG Signals

Pattern recognition techniques have been applied to the problems of classifying sEMG signals by

motion [80], force [81], neuromuscular health [9], and fatigue [82].

A general procedure for EMG data classification using pattern recognition techniques is sum-

marized in Figure 2.5. The procedure is as follows [83,84]:

1. Data Collection: Data must be collected and preprocessed.

2. Data Windowing: Data are often divided into segments and analyzed in windows of a certain

time length to allow for real-time analysis.

3. Feature Extraction: Relevant features are extracted from the data to aid with classification.

4. Feature Selection and/or Reduction: The number of features required should be minimized

to reduce the feature extraction time and the information size required for classification. The

selection of appropriate features is a critical step, as the features must be able to provide

high differentiability between categories.

5. Selection of Classification Model: An appropriate classification model should be selected

based on the data. Classifier efficiency may also depend upon the type of features that are

used.

6. Training and Evaluation of Classifier: Supervised classifiers must be trained using a set of

known data. However, classification models must not be overfitted to a specific set of data,

and become unable to classify new data. Therefore, training data must provide a good

representation of the data that will be classified.

The performance of a classifier is assessed by attempting to classify a test data set. The

effectiveness of a classification model is evaluated based on the system performance as a

whole. The computational complexity of the classifier should be evaluated, and a compromise

between complexity and performance may be required.

The process of EMG data collection was described in detail in Section 2.6. The remainder of

this section describes the subsequent steps of EMG pattern recognition.



2.8 Pattern Recognition of EMG Signals 33

Data
Collection

Data
Windowing

Feature
Extraction

Feature
Selection

Select
Model

Train and
Evaluate
Classifier

Figure 2.5: Method for pattern recognition.

2.8.1 Data Windowing

The instantaneous EMG signal is not useful for real-time motion classification. EMG features

must be extracted from analysis windows of a predefined duration. These windows can be either

contiguous or overlapping (Figure 2.6). Window length (Ta) and window increment (Tinc) should

be selected according to the required classification accuracy and controller delay. There is a

trade-off between classification accuracy and delay. Larger window sizes generally provide greater

classification accuracies, but lead to larger controller delays that make interactions unintuitive for

users [85].

The optimal window length for upper-limb myoelectric devices is within the range of 150–

250 ms [85]. Many myoelectric control systems in the literature follow the recommendations of

Englehart and Hudgins [86], who state that the longest acceptable controller delay is 300 ms.

Englehart and Hudgins also recommend that Tinc is set equal to the processing delay, Td, to

maximize the density of the processing stream [86]. Oskoei and Hu [87] found that using 200

ms windows with increments of 50 ms resulted in four times faster control without a significant

degradation of the motion classification accuracy. They also observed that classification accuracies

do not differ significantly with window size, as long as the window size remains between 50–500

ms.

2.8.2 EMG Feature Extraction

Following data segmentation, the next step of pattern recognition is feature extraction. Over

forty features for sEMG analysis have been described in the literature. sEMG features can be

categorized by the type of information about the EMG signal that they provide.
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Figure 2.6: EMG signal with overlapping windows. Ta is the duration of the window, Tinc is the
duration of the increment of new data added to each window, and Td is the processing
time. Reprinted, with permission, from [85] ©2011 IEEE.

2.8.2.1 Time Domain Features

Time domain features are frequently used for real-time applications because they provide high

motion classification accuracies at a low computational cost. EMG features extracted from the

time domain can provide information about the energy, frequency, and information complexity of

the signal. Multiple time domain features can be generated per window.

2.8.2.2 Time Domain: Energy

Time domain features derived from the amplitude of the EMG signal provide information about the

energy of the signal. The mean absolute value (MAV) is one of the most popular features for motion

recognition. Modifications to the MAV feature have been proposed to improve robustness to noise.

The modified MAV Type 1 (MMAV1) feature applies a discrete weighted window function to the

MAV feature, and the modified MAV Type 2 (MMAV2) applies a continuous window function [80].

The integrated EMG (IEMG) signal is commonly used for muscle activation onset detection,

particularly in clinical settings. The simple square integral (SSI) feature is an energy index. The

variance of EMG (VAR) feature is the average of the square values of the standard deviation of
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the signal. The root mean square (RMS) is used to estimate the muscle force in non-fatiguing

contractions. Finally, the log detector (LOG) feature also provides an estimate of the muscle

contraction force [80]. Definitions for these features are provided in Table 2.4.

2.8.2.3 Time domain: Information Complexity

The waveform length (WL), average amplitude change (AAC), and difference absolute standard

deviation value (DASDV) describe the information complexity of the sEMG signal. Table 2.5

provides the definitions of these features. The WL feature is the cumulative length of the sEMG

signal over a time segment. The AAC feature is similar to the WL feature, but averages the

waveform length over the time segment. The DASDV feature provides a standard deviation value

of the waveform length [80].

2.8.2.4 Time domain: Frequency

Mathematical definitions of time domain features that describe the frequency of the EMG signal

are provided in Table 2.6. The zero crossing (ZC) feature is the number of times the sEMG signal

crosses zero. The slope sign change (SSC) is the number of times that the slope of the EMG signal

changes sign [86]. A threshold function may be applied to both of these features to reduce the

background noise [80].

The myopulse percentage rate (MYOP) is the average number of times the EMG signal exceeds

a threshold value. The Willison amplitude (WAMP) is the number of times the difference in EMG

amplitude between two adjoining segments exceeds a threshold value. It is related to the firing of

MUAPs, and the muscle contraction force [80].

The optimum threshold values for these features are data and subject dependent [88]. Thresh-

old values are typically selected between 50 µV and 100 mV [80]. A threshold value of 0 mV for the

ZC and SSC features was found to be the most generalizable to various data sets and subjects [88].

2.8.2.5 Time domain: Multiple features

The value of time domain features can be improved by deriving multiple features for each window

segment. Time domain features that provide multiple values per window include the histogram of
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Table 2.4: Definitions of time domain features that describe EMG signal energy [80]. N is the
length of the EMG signal and xi is the ith sample of the EMG signal.

Feature Definition

Mean Absolute Value
(MAV)

M AV =
1

N

N∑
i=1

|xi |

Modified Mean
Absolute Value 1

(MMAV1)

M M AV1 =
1

N

N∑
i=1

Wi |xi |

Wi =

{
1, if 0.25N ≤ i ≤ 0.75N

0.5, otherwise

}

Modified Mean
Absolute Value

(MMAV2)

M M AV2 =
1

N

N∑
i=1

Wi |xi |

Wi =


1, if 0.25N ≤ i ≤ 0.75N

4i/N, elseif i < 0.25N

4(i-N)/N, otherwise


Integrated EMG

(IEMG)
IE MG =

N∑
i=1

|xi |

Simple Square Integral
(SSI)

SSI =
N−1∑
i=1

x2
i

Variance of EMG
(VAR)

V AR =
1

N − 1

N−1∑
i=1

x2
i

Root Mean Square
(RMS)

RMS =

√√√
1

N

N∑
i=1

x2
i

Log Detector (LOG) LOG = e
1
N

∑N
i=1 log10( |xi |)
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Table 2.5: Definitions of time domain features that describe EMG information complexity [80]. N
is the length of the EMG signal and xi is the ith sample of the EMG signal.

Feature Definition

Waveform Length
(WL)

W L =
N−1∑
i=1

|xi+1 − xi |

Average Amplitude
Change (AAC)

AAC =
1

N

N−1∑
i=1

|xi+1 − xi |

Difference Absolute
Standard Deviation

Value (DASDV)
DASDV =

√√√
1

N − 1

N−1∑
i=1

(xi+1 − xi)2

EMG (HIST), mean absolute value slope (MAVS), and multiple window (MW) features.

The HIST feature is an extension of the ZC and WAMP features. The EMG signal is divided

into voltage bins symmetrical about the signal baseline. The number of times that the EMG voltage

falls within each of the voltage bins is calculated. Nine voltage bins are recommended for EMG

signals [89]. HIST features were applied to motion classification in several older papers [89, 90],

however Phinyomark et al. [80] reported more recently that HIST provides poor classification

performances.

The MAVS is calculated as the difference between two MAV values calculated over adjacent

time windows [90]. The MW features are created by applying a windowing function to the EMG

signal, and using the energy within each window as a feature. The Hamming windowing function

and the trapezoidal windowing function are typically used [91]. Table 2.7 provides the definitions

for the MAVS and MW features.

2.8.2.6 Frequency Domain Features

Frequency domain features (Table 2.8) are used to study muscle fatigue and MU recruitment [80].

They have also been used for motion recognition with some success. Frequency domain features

are primarily calculated from the power spectral density of the EMG signal.
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Table 2.6: Definitions of time domain features that describe EMG signal frequency [80]. N is the
length of the EMG signal, xi is the ith sample of the EMG signal, and ε is a predefined
threshold value.

Feature Definition

ZC (zero crossing)

ZC =
N−1∑
i=2

[(−sgn[xi · xi+1]) ∩ (|xi − xi+1 | ≤ ε)]

sgn(x) =

{
1, if x ≥ 0

0, otherwise

}

SSC (slope sign change)

SSC =
N−1∑
i=2

[ f [(xi − xi−1)(xi − xi+1)]]

f (x) =

{
1, if x ≥ ε

0, otherwise

}

MYOP (myopulse
percentage rate)

MYOP =
1

N

N∑
i=1

[ f (xi)]

f (x) =

{
1, if x ≥ ε

0, otherwise

}

WAMP (Willison
amplitude)

W AMP =
N−1∑
i=1

[ f (|xi − xi+1 |)]

f (x) =

{
1, if x ≥ ε

0, otherwise

}

Table 2.7: Definitions of time domain features that involve multiple features per window [80]. K
is the number of windows and xi is the ith sample of the EMG signal.

Feature Definition

Mean Absolute Value
Slope (MAVS) M AVS = M AVk+1 − M AVk k = 1, ...,K

Multiple Window (MW)
MWk =

N−1∑
i=0

(xiWi−ik )
2, k = 1, ...,K

where Wi is the ith value of the windowing function.
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The mean frequency (MNF) and median frequency (MDF) can be used for motion recogni-

tion [87]. Mean frequency was found to be a highly robust feature when the EMG signal was

contaminated with white Gaussian noise [92].

The peak frequency (PKF) is the frequency at which the maximum power occurs. The mean

power (MNP) and the total power (TTP) are other frequency features [80].

The first three spectral moments of the signal (SM1, SM2, SM3) can be used as features. The

variance of central frequency (VCF) is an important characteristic of the power spectrum and is

calculated using the spectral moments [80].

Frequency features can be generated by determining ratios of frequency components within the

power spectrum. The frequency ratio (FR) is used to distinguish between muscle contraction and

relaxation by using a ratio of low frequency and high frequency components of the signal. The

upper and lower cut-off frequencies of the low frequency band and high frequency band must be

determined. Typically the value can be assigned using the mean frequency. The power spectrum

ratio (PSR) extends the FR feature. It is the ratio of the energy near the maximum of the EMG

power spectrum and the whole energy of the power spectrum [80].

2.8.2.7 Prediction Model Coefficients

Feature vectors consisting of coefficients from the autoregressive (AR) prediction model have been

implemented as EMG features. The EMG spectrum changes with muscle contraction state, which

results in changes in the prediction model coefficients.

The AR model represents each sample of the EMG signal as the linear combination of the

previous p samples and a white noise error term. The AR equation is as follows:

xi =
P∑

p=1

apxi−p + wi (2.2)

where P is the order of the model, wi is white noise, and ap is the pth AR coefficient.

The fourth order AR model (AR4) is most commonly used for EMG signals, but the second

order AR coefficients (AR2) have also been successful for motion classification when combined with

the RMS time domain feature [87]. The AR model coefficients are estimated using the Yule-Walker
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Table 2.8: Definitions of frequency domain features [80]. Pj is the EMG power spectrum at bin j,
fj is the frequency of the spectrum at bin j, and M is the length of the frequency bin.

Feature Definition

Mean Frequency (MNF) MNF =
M∑
j=1

fjPj

/
M∑
j=1

Pj

Median Frequency
(MDF)

MDF∑
j=1

Pj =

M∑
j=MDF

Pj

Peak Frequency (PKF) PKF = fmax(Pj ), j = 1, . . . , M

Mean Power (MNP) MNP =
M∑
j=1

Pj

/
M

Total Power (TTP) TTP =
M∑
j=1

Pj = SM0

Spectral Moments (SM0,
SM1, SM2)

SMs =

M∑
j=1

Pj f sj

where s is the order of the spectral moment.

Variance of Central
Frequency (VCF)

VCF =
SM2

SM0
−

(
SM1

SM0

)2

Frequency Ratio (FR)

FR =
ULC∑
j=LLC

Pj

/
UHC∑
j=LHC

Pj

where ULC and LLC are the upper and lower
cut-off frequency of the low frequency band and
UHC and LHC are the upper and lower cut-off

frequency of the high frequency band respectively.

Power Spectrum Ratio
(PSR)

PSR =
P0

P
=

f0+n∑
j= f0−n

Pj

/
∞∑

j=−∞

Pj

where f0 is the frequency at which the maximum
power occurs, and n is the integral limit (typically

set to 20).
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method [93].

Cepstral analysis is the inverse Fourier transform of the logarithm of the power spectrum

magnitude of the EMG signal. The coefficients of cepstral analysis (CC) can be derived using the

coefficients from the AR model as follows:

c1 = −a1

cp = −ap −

p−1∑
l=1

(
1 −

l
p

)
apcp−l (2.3)

where cp represents the coefficient of the cepstral analysis and 1 ≤ l ≤ P, where P is the order

of the model. This eliminates the requirement of computing the Fourier transform. The fourth

order model is typically used for determining the CC features. AR features have been observed to

perform slightly better than CC features in terms of recognition of upper-limb motions [94].

2.8.2.8 Entropy Features

Another category of feature that has been applied to EMG signals consists of features that describe

non-linear entropy. Entropy is a measure of the complexity and randomness of a system. The

approximate entropy (ApEn) and sample entropy (SampleEn) are entropy features that have been

applied to EMG analysis for motion classification [95,96].

The approximate entropy (ApEn) describes the self-similarity of a time-series, and is a measure

of system complexity [97]. ApEn represents the likelihood that patterns of observations will not be

followed by similar observations. A less predictable system has a higher ApEn. ApEn requires two

parameters: a positive integer, m, representing the sequence length to be compared, and a positive

real number, r, the tolerance for matching the similarity between sequences. These parameters are

typically set to m = 2 and r = 0.2 × σ, where σ is the standard deviation of the signal, for EMG

analysis [98].

ApEn is calculated by producing a sequence of vectors u1,u2, ...,uN−m+1 in IRm, where N is the

length of the sEMG signal and ui = [xi, xi+1, ..., xi+m−1], where xi is the ith sample of the sEMG

signal.

For each i when 1 ≤ i ≤ (N − m + 1), the value of Cm
i (r), the probability that any vector ui is
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within a distance of r of vector uj where 1 ≤ j ≤ (N − m + 1), is calculated as follows:

Cm
i (r) =

number of j such that d[ui,uj] ≤ r
N − m + 1

(2.4)

where:

d[ui,uj] = max
k=1,2,...,m

(|xi+k−1 − xj+k−1 |) (2.5)

Next, the following function is defined:

Φ
m(r) = (N − m + 1)−1

N−m+1∑
i=1

ln Cm
i (r) (2.6)

ApEn is then defined as follows [97]:

ApEn(m, r) = Φm(r) − Φm+1(r) (2.7)

The ApEn feature is subject to a self-matching bias because each vector is counted as being a

distance less than r from itself [99]. SampleEn is a refinement of ApEn that eliminates this bias,

and improves the consistency of comparisons between data sets.

SampleEn is calculated by first defining:

Bm
i (r) =

number of times d1[ui,uj] ≤ r
N − m + 1

1 ≤ j ≤ N − m, j , i (2.8)

Am
i (r) =

number of times d2[ui,uj] ≤ r
N − m + 1

1 ≤ j ≤ N − m, j , i (2.9)

where:

d1[ui,uj] = max
k=1,2,...,m

(|xi+k−1 − xj+k−1 |) (2.10)

d2[ui,uj] = max
k=1,2,...,m+1

(|xi+k−1 − xj+k−1 |) (2.11)

The averages of the Bm
i (r) and Am

i (r) values are then calculated as follows:

Bm(r) = (N − m)−1
N−m∑
i=1

Bm
i (r) (2.12)
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Am(r) = (N − m)−1
N−m∑
i=1

Am
i (r) (2.13)

Bm(r) is the probability that two sequences match for m points, and Am(r) is the probability

that two sequences match for m + 1 points. Finally, SampleEn is defined as [99]:

SampleEn(m, r) = − ln
Am(r)
Bm(r)

(2.14)

SampleEn has been used for muscle activation onset detection and motion recognition. Sam-

pleEn is useful for identifying bursts of EMG activity with low sensitivity to individual spikes [96].

2.8.2.9 Fractal Dimension (FD) Features

Fractal dimension (FD) features provide information about the morphology, spectrum, and vari-

ance of the EMG signal. The FD is a measurement of the non-linear property of a signal, and is

related to muscle size and complexity, but is unrelated to the strength of muscle contraction. FD

is useful for classifying motions using single EMG channels, and low-level muscle activations [94].

Several FD features have been proposed for the classification of EMG signals.

Higuchi’s Fractal Dimension (HFD) is one of the most popular fractal time-series algorithms.

HFD first constructs a new EMG time series, Xk
m, as follows:

Xk
m = [xm, xm+k, xm+2k, ..., xm+b N−mk ck] (2.15)

where the integer k is the time interval between points, the integer m = 1, 2, ..., k represents the

initial time value, and
⌊
N−m
k

⌋
is the integer part of N−m

k . The length of each curve, Lm(k) is then

defined as follows:

Lm(k) =
1

k


N − 1⌊
N−m
k

⌋
k
×

b N−mk c∑
i=1

|xm+ik − xm+(i−1)k |

 (2.16)

L(k), the length of the curve for time interval k, is calculated as the average length of the m curves

as follows:

L(k) =
∑k

m=1 Lm(k)
k

(2.17)
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L(k) vs. k is plotted on a log-log graph and the HFD is estimated by finding the negative slope of

the line relating log (L(k)) and log (k) [94].

Another common FD feature is the maximum fractal length (MFL), which is applied to the

measurement of low-level muscle activation. The MFL is defined as:

MFL = log10

(√√√N−1∑
i=1

(xi+1 − xi)2
)

(2.18)

where N is the length of the EMG signal and xi is the ith sample of the EMG signal [94].

Detrended fluctuation analysis (DFA) is a fractal time-series algorithm that was found to

perform well for identifying low-level muscle activations in upper-limb EMG signals [94]. The DFA

feature uses a self-similarity parameter, α, to represent the FD. A larger value of α corresponds to

a smaller FD. The process of calculating the DFA involves first integrating the EMG signal as:

y(k) =
k∑

t=1

[xi − xi], k = 1, ..., N, (2.19)

where xi is the ith sample of the EMG signal, xi is the average value of xi and N is the length of the

EMG signal. The integrated signal is divided into boxes of size ν. Next, a quadratic least-square

fit is applied to the signals in each box. The y coordinate of the fitted function, yν(k), is used to

calculate the RMS fluctuation of profiles in each box as follows:

F(ν) =

√√√
1

N

N∑
k=1

[y(k) − yν(k)]2 (2.20)

This value is computed for box sizes from ν = 4 to ν = N/10, with the box size incrementing by

powers of 2, in order to obtain a relationship between F(ν) and ν. The value of α is determined

by calculating the slope of the line on a log-log graph of log(F(ν)) vs. log(ν) [94].

2.8.2.10 Higher Order Statistics Features

Higher order statistics of EMG signals, such as skewness (SKEW) and kurtosis (KURT) can

identify details of the EMG signal that are missed when the signal is assumed to be a Gaussian

process. The definitions for these features are provided in Table 2.9.
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Table 2.9: Definitions of higher order statistics features. N is the length of the EMG signal, xi
is the ith sample of the EMG signal, x is the mean of the EMG signal, and σ is the
standard deviation of the signal.

Feature Definition

Skewness (SKEW) SKEW =
(

1

N

N∑
i=1

( xi − x
σ

)3)

Kurtosis (KURT)

(
1

N

N∑
i=1

( xi − x
σ

)4)
− 3

Skewness is the measure of the degree of symmetry of data around the mean. If the skewness

is negative, the data are spread to the left of the mean, and if it is positive, the data are spread

to the right of the mean. The skewness of a normal distribution is zero. The SKEW feature has

been used for motion classification of facial EMG [100].

Kurtosis describes the peakedness of a probability distribution relative to a normal distribu-

tion. Kurtosis values greater than 0 are more prone to outliers (the graph has a “heavy-tailed

distribution”), and values less than 0 are less prone to outliers (the graph has a “light-tailed dis-

tribution”). The kurtosis of the EMG signal tends to be greater than 0, and to decrease as the

contraction level increases. This indicates that as the contraction level increases, the EMG signal

begins to approximate a Gaussian distribution [101].

2.8.2.11 Time-Scale Features

The classification accuracies achieved with time domain and frequency domain EMG features may

be improved upon by using wavelet methods for time–frequency analysis. Features derived from

the wavelet transform have been used to identify MUAPs, determine muscle force and fatigue, and

classify motions [102].

The discrete wavelet transform (DWT) is implemented to develop a feature vector, however

this process requires a high computational complexity. A wavelet function, typically from the

Daubechies wavelet family, is applied to the EMG signal. The EMG signal is transformed into

subsets of coefficients, and the original signal is passed through high pass and low pass filters. This
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Figure 2.7: Illustration of sEMG spikes and peaks. Spikes are numbered and indicated with red
circles. The peak is indicated with a black “x”. Reprinted from [104] ©2007, with
permission from Elsevier.

achieves a detailed coefficient subset and an approximation coefficient subset. Each subset can be

reconstructed to estimate an EMG component using the inverse DWT [103].

2.8.2.12 Spike Shape Analysis Features

Further information about muscle activation and MU activity can be assessed from the morphology

of the sEMG signal with the spike shape analysis (SSA) technique [11]. A spike is defined as a

single upward and downward deflection that is greater than a predefined threshold amplitude.

The threshold is typically the 95% confidence interval for baseline EMG activity [104]. A peak is

defined as an upward and downward deflection within a spike (Figure 2.7).

Table 2.10 provides the definitions for the spike shape features: mean spike amplitude (MSA),

mean spike frequency (MSF), mean spike slope (MSS), mean number of peaks per spike (MNPPS),

and mean spike duration (MSD). Increased MU recruitment is associated with increases in MSA,

MSF, MSS, and MNPPS, and decreases in MSD. Increased MU synchronization is associated with

increases in MSA, MSS, and MSD, and decreases in MSF and MNPPS [11].

Spike shape analysis was implemented for identifying and evaluating patients of non-specific
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Table 2.10: Definitions of spike shape features [104]. Ax, Bx, Cx, Ay, By, and Cy are the x and y

coordinates of the points on the spike, indicated in Figure 2.7. NS is the number of
spikes, T D is the total duration of the EMG segment, SA is the spike amplitude, SS is
the spike slope, and NP is the number of peaks in the EMG segment.

Feature Definition

Mean Spike Amplitude
(MSA)

SAi =
(By − Ay) + (By − Cy)

2

MSA =
NS∑
i=1

SAi

NS

Mean Spike Frequency
(MSF)

MSF =
NS

TD

Mean Spike Slope
(MSS)

SS i =
By − Ay

Bx − Ax

MSS =
NS∑
i=1

SSi
NS

Mean Number of Peaks
Per Spike (MNPPS)

MNPPS =
NP
NS

Mean Spike Duration
(MSD)

MSD =
NS∑
i=1

Cx − Ax

NS

arm pain. Significant increases in MSA, MSF, MSS, and MNPPS and significant decreases in MSD

were observed in the sEMG signals collected from the extensor carpi radialis muscle in subjects

with non-specific arm pain compared to controls [11].

2.8.3 Feature Selection and Feature Reduction

EMG features are typically organized into feature sets to improve classification accuracy by in-

corporating multiple types of information as inputs into a classifier. The number of features in a

feature set should be minimized in order to reduce the size of the data set, and computational and
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memory requirements.

2.8.3.1 Feature Selection

Features should be selected for inclusion within a feature set according to the following specifica-

tions [89]:

1. Class Separability: Clusters of motions or muscle states should have as little overlap as

possible within the feature space.

2. Robustness: Class separability should be preserved in noisy environments.

3. Computational complexity: The computational complexity of the features should be low

enough for real-time applications and the processing power of small devices, as required for

a wearable device.

This section describes algorithms that assist with feature selection and provides a review of

the literature concerning the performance of EMG features.

2.8.3.2 Davies–Bouldin Index

The first of these algorithms is the Davies–Bouldin cluster validity index (DB index) [105], which

is a measure of cluster separation and is used to determine the class separability of EMG features.

Clusters with greater dispersions and smaller distances between them have higher similarities. The

similarity between two clusters, Ri j , is therefore defined as:

Ri j =
Si + Sj

Mi j
(2.21)

where Si and Sj are the dispersions of clusters i and j, and Mi j is the distance between the clusters.

The dispersion of a cluster is calculated as follows:

Si =

√√√
1

Ni

Ni∑
j=1

(yi −mi)
T (yj −mi) (2.22)
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where Ni is the number of elements within the ith cluster, yi is the ith input vector, and mi is the

mean vector of cluster i.

The distance, Mi j is usually defined as the Euclidean distance between the mean vectors of the

clusters as follows:

Mi j =

√
(mi −mj)

T (mi −mj) (2.23)

The DB index, R, is the average of the similarity of each cluster to its most similar cluster, i.e.,

R =
1

κ

k∑
i=1

max(Ri j) (2.24)

where κ is the number of clusters.

Higher values of R indicate low cluster separation. A good cluster separation measure is

considered to be R <1 [106].

The DB index can be used to obtain relative rankings of feature spaces for classifying sEMG

signals [89,106,107].

2.8.3.3 RELIEFF Algorithm

The importance of individual features in predicting an outcome can be ranked using the RELIEF

algorithm. RELIEF works well for features with conditional dependencies, but can only be applied

to two-class problems [108].

The RELIEF algorithm provides a weight for each feature based on its predictive ability.

Features are first scaled on the interval [0,1]. A set of n instances is randomly selected. For each

instance, the RELIEF algorithm searches for the nearest neighbour in the same class (nearest hit)

and a different class (nearest miss). A good feature should have high similarity between each

instance and the nearest hit, and a low similarity between each instance and the nearest miss.

Therefore, the difference between each instance and the nearest hit is added to the feature weight,

and the difference between the instance selected and the nearest miss is subtracted from the feature

weight as follows:

ζ
j
i = ζ

j−1
i +

∆(fi − fH )

n
−
∆(fi − fM )

n
(2.25)
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where ζ
j
i is the weight for the ith instance at iteration j, fi is the feature vector for the ith instance,

∆( ) is a function that provides the difference between two vectors (typically the Euclidean dis-

tance), fH is the nearest hit, and fM is the nearest miss [108]. The updates are divided by n to

ensure that the weights are normalized on the interval [-1, 1].

The RELIEFF algorithm [108] extends the RELIEF algorithm to multi-class data sets. RE-

LIEFF searches for k near misses from each different class and averages them when updating the

weight vector.

The RELIEFF algorithm ranks features in decreasing order of importance. The appropriate

number of top-ranked features to select for a feature set can then be determined by calculating the

DB index for the feature space as each additional feature is added. The optimal cut-off point for

adding more features occurs when adding an additional feature leads to no significant improvement

in the DB index [48].

2.8.3.4 Individual Feature Evaluation

The DB index has been employed to evaluate the performance of individual EMG features. Of a set

of time domain features, HIST and RMS were found to provide the best DB indices when classifying

upper-limb motions [89]. Boostani and Moradi used the DB index and a scattering criterion to

evaluate the effectiveness of 19 EMG features for the control of a prosthetic hand. Features studied

included time domain, frequency domain, cepstral coefficients, and features derived from wavelet

and wavelet packet coefficients. A feature vector of wavelet packet coefficients, and a feature vector

of cepstral coefficients were found to provide the greatest separabilities [109].

Oskoei and Hu reported that WL, followed by MAV and RMS, offers the best class separability

when features are examined individually [87]. Phinyomark et al. assessed the performances of

EMG features for the classification of upper-limb motions based on the type of information that

they provide [80]. WL was found to be the best single feature in terms of classification accuracy,

stability, and computation complexity. MAV1 and MAV2 did not provide any more discriminative

information than MAV. RMS and VAR had similar performances, with RMS performing slightly

better. WAMP, ZC, and SSC were similar in terms of the computation method and performance,

with WAMP having the highest performance.
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2.8.3.5 Robustness

Phinyomark et al. [92] assessed the classification accuracies obtained from features when EMG

signals were contaminated with white Gaussian noise. The most robust features were HIST, WL,

and MNF. Individually, WL was the best feature for discerning between different upper-limb

motions. MAV and WAMP were also found to be useful features. AR features and RMS were

useful for noisy situations.

2.8.3.6 Feature Set Evaluation

The Hudgins feature set, developed by Hudgins in 1993, consists of the following five time domain

features: MAV, SSC, WL, ZC, and MAVS [90]. MAVS is typically omitted from the Hudgins set

in the most recent literature [86]. Many myoelectric devices implement the Hudgins feature set

or a variation of the Hudgins feature set because it includes features that are effective for motion

classification and are computationally simple to extract [86]. The ZC and SSC features have similar

spatial distributions, therefore the Hudgins set can be simplified to include only MAV, WL, and

SSC without a large reduction in classification accuracy [80]. Oskoei and Hu [87] determined that

the Hudgins feature set worked well for pattern classification, but that a feature set of RMS and

AR2 was best for time segments of 200 ms. Phinyomark et al. [80] concluded that time domain

features are superior to frequency domain features because time domain features achieve similar

classification accuracies, but require less computational resources.

Haddara [12] compared six sEMG features (RMS, MAV, MSA, ZC, MDF, MNF) collected from

elbow trauma patients and a group of healthy subjects. Statistically significant differences were

primarily identified using the RMS and MAV features. The RMS and MAV features collected from

the patients at the end of the therapy program were found to more closely resemble the healthy

population. The frequency domain features, MDF and MNF, showed no significant differences

between the groups.
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2.8.3.7 Feature Reduction

Feature reduction is performed to reduce the dimensional space of the feature set, which can

improve both the speed of classification and the classification accuracy. The most common feature

reduction method applied to EMG signals is principal component analysis (PCA).

2.8.3.8 Principal Component Analysis (PCA)

PCA is a method of representing data in a lower dimensional feature space. PCA develops new

features in a lower dimensional space by projecting existing features along the directions of their

greatest variances. The feature data are projected onto the most significant eigenvectors of the

covariance matrix of the data. PCA is for data representation, not for data classification, therefore

PCA is only effective for data classification if the directions of the greatest variances are important

for classification [83]. PCA has been successfully applied to several EMG motion recognition

problems in order to improve the classification accuracy and increase the classification rate [110].

2.8.4 Classification Models

This section reviews the classifiers commonly used in the literature to develop models for EMG

signals. Machine learning classifiers (including linear discriminant analysis (LDA), support vector

machines (SVM), k -nearest neighbours (k -NN), and decision tree classifiers), and artificial neural

network (ANN) classifiers are described below.

2.8.4.1 Linear Discriminant Analysis (LDA)

LDA uses hyperplanes to separate a feature space into linear decision regions. LDA minimizes the

distances between feature vectors of the same class, and maximizes the distances between different

classes. Observations within each class are assumed to come from a Gaussian distribution, and the

covariance of all classes is assumed to be equal, therefore LDA is best for Gaussian distributions

with equal covariance, but can work well for data with other distributions. The LDA decision

regions must be spatially contiguous and convex. If the regions are not linearly separable, a linear

machine will not work [111].
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LDA is a robust classifier and is advantageous for embedded processors involved with real-

time applications because it provides fast prediction speeds and small memory usages. LDA

has been applied to a variety of EMG classification problems [112], and is generally found to

provide acceptable classification accuracies [86] and to provide superior classification accuracies

for fluctuating EMG signals [98].

2.8.4.2 Quadratic Discriminant Analysis (QDA)

Quadratic discriminant analysis (QDA) is an extension of LDA that assumes each class has a

different covariance matrix. QDA is best for large data sets as it may overfit data sets with a low

number of observations and high variance. QDA provides nonlinear quadratic decision boundaries.

LDA performance for classifying EMG signals is typically better or comparable to QDA [113,114].

2.8.4.3 Support Vector Machines (SVM)

An extension of the LDA classification method is the SVM classifier, which uses separating hyper-

planes to distinguish between two classes of data. An ideal separating hyperplane should be as far

away as possible from any sample, to maximize the probability of classifying new data correctly.

If a hyperplane cannot be constructed to separate all classes, a margin must be tuned to allow for

some violations. The data samples that are closest to a separating hyperplane are called “support

vectors”. These data are the most difficult to classify. An optimal SVM separating hyperplane

is defined solely by the support vectors. The SVM classifier is robust to observations far from

the hyperplane. The SVM method only works for two-class problems, however, multiple SVM

classifications can be performed to apply this method to multi-class problems [111].

Pattern classifications in high dimensional space are more likely to be linearly separable than

in low dimensional space. Data can be projected into higher dimensions to achieve better clas-

sifications. Since these types of functions require high computational power, they can be solved

implicitly using kernel functions. Commonly used kernel functions include the polynomial kernel

function and the radial basis function [111].

The SVM classifier typically allows for better classifications than LDA, but the prediction

speed and memory usage is worse than for LDA. The SVM classifier has been used for many EMG
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applications including motion classification [87] and the diagnosis of neuromuscular disorders [115].

2.8.4.4 K-Nearest Neighbours Classification (k-NN)

The k-NN classification method works well on data that are not linearly separable. k-NN is an

unsupervised learning method that allows unlabeled data to be organized into “clusters.” Clusters

of data should have small inter-cluster distances, and large intra-cluster distances. Data points

are assigned to the clusters such that the sum of the squares of the distances of each data point

to the centre of the cluster is at a minimum. k-NN classifies each new datum by determining the

most common class among the k closest data points. k-NN was found to be very effective for using

sEMG forearm signals to distinguish between upper-limb motions [113,114].

2.8.4.5 Decision Trees

Linear models are simple, but perform poorly if the relationships between features are non-linear.

Decision tree classifiers are simple models that provide easily interpretable results, and can outper-

form linear models when classifying non-linear data. A single decision tree classifier determines an

outcome based on a series of splitting rules starting at the top of a tree and continuing into a series

of branches. The decision tree stratifies the feature space into regions to provide the prediction.

A single decision tree model is susceptible to over-fitting and a lack of robustness. These

problems can be avoided by aggregating many decision trees. The tree bagging method builds

hundreds to thousands of decision trees by taking repeated samples from the data set. The most

common decision obtained from the trees is used as the final output.

An improvement upon the tree bagging method is the random forest (RF) algorithm, which

ensures that decision trees will not be highly correlated due to the influence of a very strong

predictor. The RF algorithm prevents decision tree models from considering most of the available

predictors at each split (usually the number of predictors considered is the square root of the total

number of predictors) [48].
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2.8.4.6 Artificial Neural Networks (ANNs)

The ANN is another classification method that works well for non-linear data. ANNs are designed

to imitate the networks of neurons in the brain. The most basic ANN is the multilayer perceptron,

or feed-forward neural network, which consists of an input layer of neurons, one or more hidden

layers, and an output layer. The output of each neuron is determined by a non-linear function of

the sum of its inputs.

ANNs have high generalization abilities and can learn directly from large data sets. They

work well with data that are not linearly separable, or when the classes of the training data are

unknown. ANNs can be also be implemented in real-time.

ANN models have been used for the classification of motions [81]. Often a back-propagation

neural network is employed. More sophisticated ANNs such as deep belief networks [116] have been

used to classify sEMG signals with greater success than traditional methods such as LDA. ANNs

have also been successfully used with needle EMG data to classify neuromuscular disorders [9].

2.8.4.7 Classification Model Evaluation

Classification models, as the ones presented above, should be developed using a training set and

a validation set. The model is fitted using the training set, and then the fitted model is used to

predict the classes of the validation set and to determine the classification error.

k-fold cross-validation divides the data set into k groups, or folds. The first fold is the validation

set and the remaining k − 1 folds are the training set. This procedure is repeated k times, and the

average of the classification error is obtained [111].

Leave-one-out cross-validation can be used for data sets with a low number of observations.

A single observation is used as the validation set, and the remaining observations are used as the

training set. This is repeated until each observation has been used as the validation set, and the

average of the classification error is obtained. This method decreases the bias in determining the

classification error [111].
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2.9 Conclusion

This chapter reviewed the anatomy of the elbow, and the motivation and methods for elbow

rehabilitation following trauma. The prior art in robot-assisted upper-limb rehabilitation was

described. Finally, EMG data acquisition, analysis, and classification methods were reviewed.

These topics will be explored in the following section in order to progress towards an EMG model

of muscle health.



Chapter 3

Data Collection and Processing

This chapter describes the procedure for EMG data collection and processing. The following

section outlines the equipment, patient recruitment, electrode placement, data collection protocol,

and signal processing methods implemented to move towards the objective of quantifying health

in patients rehabilitating from elbow trauma.

3.1 Equipment

3.1.1 Acquisition System

The sEMG signals were collected with a commercial wireless myoelectric system (Trigno Wireless

system, Delsys Inc., USA). The Trigno system includes a base station that interfaces with 16

wireless radio frequency sensors (Figure 3.1). Each 27 × 37 × 15 mm sensor (Figure 3.2) was

composed of sEMG electrodes and a triaxial accelerometer. The EMG sampling frequency was

1925.93 Hz and the accelerometer sampling frequency was 148.1 Hz. The signals were amplified

300× and filtered on-board with a 20–450 Hz Butterworth bandpass filter. The signals were

digitized with a 16 bit A/D converter with 168 nV/bit resolution.

The sEMG detection system consisted of four silver bar electrodes. The electrodes were ar-

ranged into two pairs of contacts: 1) a positive signal detection and reference contact, and 2) a

negative signal detection and reference contact. This unique electrode configuration was designed

to eliminate the need for a separate reference electrode. The stabilizing reference electrodes re-

57
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Figure 3.1: Trigno base station for charging and RF communication with sEMG sensors.

duced motion artifact by limiting the impact of disturbances on the surface of the skin [117]. The

contact surface on the skin for each bar was 5 × 1 mm, and the IED was 10 mm. The sensors were

affixed to the skin using Trigno Sensor Skin Interface (SCF03) double-sided adhesive stickers.

The Trigno commercial system was selected for data collection because it promised to mitigate

common sEMG signal acquisition difficulties, while fulfilling the requirements for sEMG data

collection. The use of a wireless system ensured for more natural movements and eliminated

the possibility of motion artifacts due to moving electrical cables. The use of silver electrodes

eliminated the need for gel which simplified the data acquisition process, and was more suitable

for a prospective wearable application.

3.1.2 Data Recording and Analysis Software

Data were recorded with the Delsys EMGworks 4.3.0 Acquisition software installed on a laptop

(Figure 3.3). Delsys EMGworks 4.3.0 Analysis software (Figure 3.4) was used to convert the data

to comma-separated format. All off-line data analysis was performed using MATLAB software

(The MathWorks Inc., Natick, MA, USA, Version R2017b).
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Figure 3.2: Trigno sensor. The front of the sensor (left) includes an arrow to assist with the
direction of sensor placement. The arrow should be aligned in the direction of the
muscle fibres. The x axis of the accelerometer is parallel to the sensor arrow, and
y axis is perpendicular and coplanar to the sensor arrow. The back (right) of the
electrode contains 4 bar electrodes.

Figure 3.3: Data acquisition software.
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Figure 3.4: Data analysis software.

3.1.3 Load Cell

A load cell (American Archery Products M110 Digital Bow Hang Scale 110 lbs) with an accuracy

of 0.05 lbs was used to obtain the peak weight and the holding weight exerted when performing

flexion MVC and extension MVC (Figure 3.5).

Figure 3.5: Load cell.
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3.2 Patient Recruitment

Trials began after permission was received from the Human Research Ethics Board at Western

University. Patients were recruited over a period of 12 months from January to December 2017 from

the Roth McFarlane Hand and Upper Limb Centre at St. Joseph’s Hospital in London, Ontario.

All patient trials were performed at St. Joseph’s Hospital. Patients were excluded from the

trials if they indicated that they had congenital musculoskeletal defects, or if they had previously

experienced elbow trauma on their contralateral limb. The majority of patients (92%) presented

with elbow fractures resulting from elbow trauma. Other injuries studied were biceps tendon tears

and surgery to treat osteoarthritis. Table 3.1 shows a summary of the patient information.

Table 3.1: Elbow trauma patient information.

Sex Age (years) Height (cm) Weight (kg) Injured Hand
Time since

Injury (weeks)

21 Male

9 Female
45.0 ± 11.5 175 ± 9.8 89.2 ± 20.3

17 Dominant

13 Non-Dominant
9.6 ± 5.9

3.3 Electrode Placement

Electrodes were placed to obtain sEMG recordings from the following muscles:

1. Biceps brachii (BB)

2. Triceps brachii lateral head (TBlat)

3. Triceps brachii long head (TBlong)

4. Pronator teres (PT)

5. Brachioradialis (BRD)

6. Extensor carpi ulnaris (ECU)

7. Flexor carpi ulnaris (FCU)
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Electrodes were placed on the skin in accordance to the SENIAM recommendations [71]. The

muscle groups not included in SENIAM were placed in the direction of the muscle fibres near the

belly of the muscle as recommended by literature guidelines [60]. A sensor was also placed on the

inside of the patient’s wrist to collect acceleration data. Figure 3.6 and Figure 3.7 indicate the

anterior and posterior views of the electrode placement, respectively.

Figure 3.6: sEMG sensor placement (anterior view).

3.4 Motions

This section describes the motions performed during each trial. The motions were selected based

on standard elbow rehabilitation exercises. Wrist and hand exercises were included because elbow

trauma patients are also encouraged to perform wrist and finger exercises during rehabilitation [16].

The forearm, wrist, and hand exercises were performed with the elbow held at approximately 90
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Figure 3.7: sEMG sensor placement (posterior view).

degrees.

1. Elbow Flexion–Extension: Patients were asked to perform elbow flexion (EF) by moving the

forearm from approximately 0 degrees to the maximum point of flexion, approximately 120

degrees for healthy subjects [13] (Figure 3.8). Elbow extension (EE) was then performed

by moving the arm from the point of maximum possible flexion back to a relaxed position

(Figure 3.9). The patients were instructed to keep the wrist at a neutral position while

performing this motion.
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Figure 3.8: Elbow flexion (EF).

Figure 3.9: Elbow extension (EE).

2. Forearm Pronation–Supination: Patients were asked to perform forearm pronation (P) by

rotating the forearm until the palm of the hand faced down (Figure 3.10). Forearm supination

(S) was performed by rotating the forearm so that the palm of the hand faced up (Figure

3.11).
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Figure 3.10: Forearm pronation (P).

Figure 3.11: Forearm supination (S).

3. Wrist Flexion–Extension: Patients were asked to perform wrist flexion (WF) (Figure 3.12)

and wrist extension (WE) (Figure 3.13).
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Figure 3.12: Wrist flexion (WF).

Figure 3.13: Wrist extension (WE).

4. Ulnar–Radial Deviation: Patients were asked to perform ulnar deviation (UD) by moving

the hand downward towards the ulna (Figure 3.14) and radial deviation (RD) by moving the

hand upward towards the radius (Figure 3.15).
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Figure 3.14: Ulnar deviation (UD).

Figure 3.15: Radial deviation (RD).

5. Hand Open–Close: Patients were asked to close their hand into a fist (HC) (Figure 3.16),

and then to open their hand with their fingers spread out (HO) (Figure 3.17).
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Figure 3.16: Hand close (HC).

Figure 3.17: Hand open (HO).

6. Maximum Voluntary Contraction (MVC): An elbow flexion MVC was performed by having

the patient pull up on a band attached to the load cell. An extension MVC was performed

by pulling down on the load cell (Figure 3.18). Patients were instructed to avoid using their

shoulder to assist with this exertion and to keep the elbow at a 90 degree angle. The EMG

signals and the maximum force exerted in pounds were recorded for each MVC.
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Figure 3.18: Extension MVC.

3.5 Data Collection Protocol

The following protocol was adopted for all patients. If specific motions were deemed unsafe by the

patient’s therapist, these motions were not performed.

1. Patients were asked to report the following information:

(a) Age

(b) Sex



3.6 Data Processing 70

(c) Height

(d) Weight

(e) Dominant Hand

(f) Type of Injury

(g) Date of Injury and/or Surgery

2. The sEMG sensors were placed on the areas specified in Section 3.3 on both the injured and

contralateral uninjured limb.

3. The patient was asked to perform the following sets of motions:

(a) Elbow Flexion–Extension (EF–EE)

(b) Forearm Pronation–Supination (P–S)

(c) Wrist Flexion–Extension (WF–WE)

(d) Ulnar–Radial Deviation (UD–RD)

(e) Hand Open–Close (HO–HC)

Each motion set was performed with the injured arm three times and with the healthy arm

three times. The patient was instructed to perform all motions at a comfortable pace.

4. If agreed upon by the therapist, the patient was asked to perform a static elbow flexion MVC

and a static elbow extension MVC with both the injured and uninjured limb. A load cell

was used to record the maximum force exerted.

3.6 Data Processing

The EMG signals were further processed and filtered prior to feature extraction. The data pro-

cessing was performed using MATLAB. The steps of data processing, data segmentation, feature

extraction, feature selection, and classification are described in this section.
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3.6.1 Data Segmentation

The EMG data were divided into segments representing each motion based on muscle activation.

The double-threshold method for detecting EMG onset [75] was used to facilitate segmentation.

The first threshold, th1, (the amplitude the EMG signal must exceed) was defined as b + 15σ,

where b is the baseline value of the EMG signal and σ is the standard deviation of b. The second

threshold, th2, (the number of consecutive EMG samples that must exceed th1) was set to 25

based on trial and error. The signals were conditioned with the Teager–Kaiser energy operator

(TKEO) using Equation 2.1 and then rectified and passed through a 2nd order Butterworth 50 Hz

low pass filter to improve the robustness and accuracy of muscle activation onset detection [79].

An example of the segmentation output is shown in Figure 3.19.

The segmentations for each EMG recording were verified visually and sets that were not seg-

mented correctly by the algorithm were segmented manually. About 50% of the data sets had to

be resegmented manually. Data sets from three subjects were excluded from further analysis after

visual inspection indicated that the data were corrupted.

3.6.2 Filtering

The EMG signals were filtered with a 2nd order Butterworth 20–400 Hz band pass filter in order

to remove low frequency motion artifacts, and uninformative high-frequency components. The

signals were also filtered with a 60 Hz notch filter to reduce power line interference in accordance

with literature recommendations [67].

3.6.3 Feature Extraction

Forty EMG features were extracted from each EMG segment. The definitions for these features

were provided in Section 2.8.2. These features were also used to develop three preliminary feature

sets, as follows:

� Feature Set 1 (FS1) : MAV, SSC, WL, ZC.

� Feature Set 2 (FS2) : RMS, AR2.
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Figure 3.19: Segmentation for EMG signal filtered with TKEO. The green circle indicates the
point of muscle activation. The red circle indicates the point of muscle deactivation.

� Feature Set 3 (FS3) : MSA, MSF, MSS, MNPPS, MSD.

FS1 is the Hudgins feature set [90]. FS2 is the feature set developed by Oskeoi and Hu [87]

that was observed to perform well for motion classification. FS3 is a feature set consisting of spike

shape features [104].

Each feature was calculated from the signal collected over the entire motion. One feature was

obtained for each muscle. For example, for FS1 there were 4 features × 7 EMG muscle channels

= 28 total features in the feature vector for each segment.

3.6.4 Classification

Classification models were developed and evaluated for each of the ten motions separately. The

LDA, SVM, and RF classification models were investigated. The LDA classifier was selected

because it is simple, and has been found to be effective for classifying EMG signals in the liter-

ature. The SVM classifier was selected as an extension of the LDA classifier. The RF classifier

was selected due to its usefulness for classifying stroke rehabilitation outcomes [118]. The RF
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classifier was generated from 200 decision trees. Classification models were initially developed to

distinguish between healthy and injured limbs. The classification models were also investigated for

distinguishing between patients at two different stages of rehabilitation: 0–6 weeks and 7+ weeks.

3.6.5 Evaluation

The classification accuracies were evaluated for each model using a leave-one-patient-out cross-

validation method [119]. All of the trials from one patient were used as a test set, and the

remaining patients were used as the training set. This process was repeated for each patient. The

accuracy was calculated as the number of correct classifications divided by the total number of

patients.

3.6.6 Optimization of Feature Sets and Models

Both the feature sets and classification models were further optimized. A majority vote was

performed for each patient to combine the outputs of the individual motion models. The majority

vote models were further optimized by generating weighted majority vote models.

The process of feature selection was performed in two ways. The best individual features

were found by comparing their individual performances in a majority vote model. The RELIEFF

algorithm [108] was used with k=10 as recommended in [118] to search for the best combinations

of features within a feature set.

3.6.7 Identification of Patient Characteristics Influencing the Perception of

Patient Health

Following the development and testing of the various classification models, the influence of patient

characteristics (sex, age, body mass index (BMI), and the time since injury) on the outcomes of the

models was investigated. The patient characteristics were input into the classification models as

non-zero ordinal categories, and the models were reevaluated. Decision tree models were explored

to determine the patient characteristics that were used for splitting rules.
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This chapter described the methods of data collection and processing, feature extraction and

selection, and classification model development. The next chapter will describe and discuss the

results of the feature selection and the classification model performance.



Chapter 4

Results and Discussion

This chapter describes the results obtained following the execution of the procedure of EMG data

collection and analysis described in Chapter 3. First, models were developed to classify between

the healthy and injured limbs of subjects. Feature sets based on recommendations in the literature

were used for the initial classification. Models were developed for each individual motion, and were

then aggregated into majority vote models. New feature sets were developed and optimized based

on the performances of individual features. Optimization of the feature sets was performed using

the RELIEFF algorithm.

Further explorations were conducted towards improving the classification models. Patient

characteristics were added to the models to determine if knowledge of specific characteristics could

improve the classification. Time windowing of the EMG data was also investigated. Finally, models

were developed to investigate the possibility of classifying between different stages of rehabilitation.

A statistical analysis was performed to identify EMG feature differences between healthy and

injured limbs. An analysis was also performed on returning patients to study the changes in EMG

features following therapy.

4.1 Healthy–Injured Models

A preliminary goal was to determine if classification models based on EMG features could be

developed to distinguish between the healthy and injured limbs of patients. This section describes

75
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the development and evaluation of classification models to differentiate between two levels of health

(healthy and injured).

4.1.1 Preliminary Feature Sets

Three preliminary feature sets (FS1–FS3) were developed based on feature set recommendations

in the literature. Features were extracted from EMG segments consisting of the entire motion.

Classification models were developed for each individual motion. Classification accuracies were

obtained using a leave-one-patient-out cross-validation. The classification results for each feature

set and motion are shown in Table 4.1.

The models distinguished between the two levels of health with accuracies ranging from 45.9–

79.6%, depending on the classification algorithm and the motion. The RF models provided the

best classification accuracies for the majority of the motions when used with FS1 and FS2. For

example, the RF classification accuracies for FS1 ranged from 56.8–72.2%, while the LDA and

SVM classification accuracies ranged from 55.6–69.1% and 54.9–67.9% respectively (Figure 4.1).

The better performances of the non-linear RF classifier suggest that many of the relationships

between the features in FS1 and FS2 that influence health are non-linear. There was no evident

best classifier for FS3, although the best accuracy was obtained with the LDA model for WF,

which provided an accuracy of 79.6%.

The performances of the classification models were influenced by the feature sets. When com-

pared to FS1, FS2 had similar performances and performed similarly with the various classifiers,

but had an overall worse performance than FS1. FS3 was unique in that there was not a single

classifier that was the best, however, FS3 also provided the highest accuracies out of all feature

sets. These observations are consistent with the literature, which suggests that feature set selection

is more important than classifier selection for obtaining good classification accuracy with EMG

signals [67].

The addition of more features in the feature set can improve accuracy, until an asymptote is

reached, at which point adding new features will not improve the accuracy [80]. FS1 consisted

of four features. FS2 contained two features, although the AR2 feature produced two values per

window, providing the FS2 with effectively three features in the feature set. FS3 contained five
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Table 4.1: Classification accuracies for each feature set. The best classification result for each
motion within each feature set is in bold.

Feature Set Motion
Classification Accuracy (%)

LDA SVM RF

FS1 (MAV, SSC,

WL, ZC)

EF 62.3 60.5 70.3

EE 65.4 62.3 71.6

P 69.1 67.9 67.3

S 60.5 62.3 68.5

WF 67.3 56.8 69.1

WE 55.6 64.8 56.8

UD 58.6 62.3 71.6

RD 61.7 65.4 66.0

HC 64.8 54.9 72.2

HO 55.6 61.1 57.4

FS2 (RMS, AR2)

EF 59.9 57.4 67.9

EE 61.7 64.8 69.8

P 67.3 49.4 71.6

S 58.6 54.9 69.8

WF 63.6 59.3 65.4

WE 60.5 54.3 59.9

UD 62.3 57.4 63.0

RD 59.1 45.9 69.2

HC 63.0 56.2 66.7

HO 58.6 64.2 63.0

FS3 (MSA, MSF,

MSS, MNPPS, MSD)

EF 74.1 61.1 64.8

EE 61.1 77.8 68.5

P 72.2 63.0 61.1

S 50.0 63.0 72.2

WF 79.6 64.8 75.9

WE 57.4 66.7 64.8

UD 72.2 68.5 61.1

RD 61.1 77.8 57.4

HC 57.4 59.3 64.8

HO 48.2 50.0 51.9
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Figure 4.1: Classification accuracies for each motion when using the LDA, SVM, and RF classifiers
with FS1. The range of the y axis has been adjusted for clarity. The motions tested
were as follows: elbow flexion (EF), elbow extension (EE), forearm pronation (P),
forearm supination (S), wrist flexion (WF), wrist extension (WE), ulnar deviation
(UD), radial deviation (RD), hand close (HC), and hand open (HO). The RF classifier
tended to provide the best accuracy.

features. The inclusion of a greater number of features in FS1 compared to FS2 could account

for the better classification performances of FS1. Likewise, FS3 contained the greatest number of

features of the three feature sets tested, and displayed higher accuracies than FS1 and FS2.

The initial classification results also suggest that some motions are better than others for

classifying patient health. The EE motion provided the range with the highest accuracies overall

(62.3–77.8%). The models for the WE and HO motions provided the ranges with the lowest

classification accuracies (54.3–66.7% and 48.2–64.2% respectively). All other motions achieved a

classification accuracy of at least 72.2% for one of the models, however the RD motion provided

classification accuracies below 70% with the exception of only one classification model. Table 4.2

shows the range of classification accuracies for each motion.

The WE, HO, and RD motions are hand and wrist motions, therefore, the performance of these

motions may be less impacted by an injury to the elbow. For example, the HO motion involves the
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relaxation of the forearm muscles as the hand is released from the closed position, which may be

less strenuous on the elbow. The lower classification performances may also be due to the muscles

involved in the motion. The primary muscles involved in RD, the extensor carpi radialis and the

flexor carpi radialis, were not used as inputs for the classification models. The WE motion is

primarily performed by the ECU muscle, which suggests that the activation of the ECU muscle is

less informative for assessing elbow health.

The performances of the initial models ranging from 45.9–79.6% were not ideal. This raises

the possibility of exploring additional options to improve the performance. The next section will

describe the aggregation of the individual motion models into single models in an attempt to

improve the classification performances.

Table 4.2: Range of classification accuracies for each motion.

Motion Classification Accuracy (%)

EF 57.4–74.2

EE 62.3–77.8

P 49.4–72.2

S 50.0–72.2

WF 56.8–79.6

WE 54.3–66.7

UD 57.4–72.2

RD 45.9–77.8

HC 54.9–72.2

HO 48.2–64.2

4.1.2 Majority Vote Models

The classification models for each motion were next aggregated into a majority vote. The decision

agreed upon by the majority of the ten individual motion models for each patient was selected as

the final classification result. This procedure reduced the effect of errors made by individual motion

models. The majority vote models were evaluated using a leave-one-patient-out cross-validation.

The results of the majority votes for each feature set and classification model are shown in Table

4.3.
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The classification accuracies ranged from 58.6–74.7%. Most of the accuracies obtained with

the majority vote models were within the upper range of accuracies that had been achieved with

the individual motion models. Two of the majority vote models (SVM with FS1 and LDA with

FS2) surpassed the accuracies of all of the individual motion models (see Table 4.1). This indicates

that misclassification can be reduced by performing a majority vote, although the motion models

often still agree on incorrect classifications.

Table 4.3: Majority vote classification accuracies. Majority vote decisions were developed from all
ten motions. The best classification results within each feature set are in bold.

Feature Set Classification Accuracy (%)

LDA SVM RF

FS1 67.9 69.8 71.0

FS2 70.4 58.6 69.8

FS3 71.6 74.7 71.6

The majority vote model was further extended by implementing a weighted majority vote

decision. The individual motion models were weighted by their respective classification accuracies.

For example, when using the LDA classifier with FS1, the weights for each decision model were

selected as follows: EF = 62.3, EE = 65.4, P = 69.1, S = 60.5, etc., based on the classification

results found in Table 4.1. The sum of the weights of the decision models that identified the

patient as healthy was determined, as well as the sum of the weights of the models that identified

the patient as injured. The highest sum (representing either healthy or injured) was selected as the

final weighted majority vote decision. The classification results for the weighted majority vote are

shown in Table 4.4. The weighted majority vote classification accuracies ranged from 64.8–77.2%,

and the weighted vote provided improvements to the basic majority vote classification accuracy

for all models. This improvement was expected, as the influence of models that were known to

be less accurate was reduced. The weighted majority vote provided the highest accuracies when

combined with the RF classifier.

The weighted majority vote requires the prior knowledge of how to weight the motion models,

and still requires the patient to perform all ten motions. The benefits of using a weighted majority

vote could be improved if some of the motions were completely eliminated from consideration in
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Table 4.4: Weighted majority vote classification accuracies. The best classification results within
each feature set are in bold.

Feature Set Classification Accuracy (%)

LDA SVM RF

FS1 72.2 71.0 74.1

FS2 73.5 64.8 75.3

FS3 71.6 73.5 77.2

the vote. This would decrease the number of motions that a patient would be required to perform,

as well as the size of the input data sets.

The WE and HO motions provided low ranges of classification accuracies (Table 4.2), so they

were eliminated from the majority vote decision. The RD motion was also removed from the

majority vote decision because, with the exception of one classification model, the individual

motion models provided classification accuracies below 70%. Majority vote decisions based on

the outputs of the top motions (EF, EE, P, S, WF, UD, and HC) were weighted equally. The

classification results for the majority vote models using only the top motions are shown in Table

4.5.

Table 4.5: Majority vote classification accuracies of majority vote decisions developed from the
top motions (EF, EE, P, S, WF, UD, and HC). The best classification results within
each feature set are in bold.

Feature Set Classification Accuracy (%)

LDA SVM RF

FS1 70.4 69.1 75.3

FS2 69.1 60.5 67.9

FS3 72.2 72.8 74.1

The majority vote classification accuracies ranged from 60.5–75.3% for the top motion models.

The highest classification accuracy of 75.3% was achieved using the RF classifier combined with

FS1.

The implementation of only the top motion models in the majority vote improved upon the

original majority vote. However, out of the three majority vote types investigated, the weighted

majority vote provided the best classification accuracies. It should be noted that the improvements
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obtained by using the weighted models and the top motion models may have upward bias, as the

same set of patient data was used to validate these models.

The majority vote models provided more consistent results than the individual motion models,

however, a maximum accuracy of only 77.2% was achieved. Other potential methods of improving

performance will be discussed in the following sections.

4.2 Data Windows

The classification models for health must be implemented in a wearable device, which will restrict

the computational power and memory of the system. Data windowing would allow for smaller

data sets, faster processing times, and lower computational and memory requirements. Data

windowing would also be able to provide real-time estimates of patient health. The classification

models discussed so far in this chapter were developed from features that were extracted from the

entire segment of the EMG signal representing each motion. This section will discuss the effect of

applying data windows to the patient data.

The EMG data from each motion were divided into the following segmentation windows of 50%

overlap: 250 ms with 125 ms increments, and 125 ms with 75 ms increments. The segmentation

window sizes were based on commonly used window sizes in the literature, and the recommended

window sizes for myoelectric control [85,86].

FS1–FS3 were extracted from the data windows. Classification models were developed for

each feature set and motion individually, and were evaluated using a leave-one-patient-out cross-

validation. The classification results for the 250 ms windows are shown in Table 4.6, and the

results for the 125 ms windows are shown in Table 4.7. The accuracies for the 250 ms windows

ranged from 52.0–70.8%, and the accuracies for the 150 ms windows ranged from 49.3–69.8%.

The performances of the window sizes depended on both the classifier used and the motions

that were performed. Windows consisting of the entire motion tended to provide better results

for the RF classifier (Figure 4.2). Windows for the full motion also tended to provide better

performances for the EF, EE, P, and WF motions. The 250 ms window worked best for the HO

motion. The 150 ms and 250 ms windows both tended to outperform the full window when used
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Table 4.6: Classification accuracies for each feature set extracted from window segments of 250 ms
with 50% overlap. The best classification result for each motion within each feature set
is in bold.

Feature Set Motion
Classification Accuracy (%)

LDA SVM RF

FS1 (MAV, SSC,

WL, ZC)

EF 62.4 65.0 61.1

EE 64.6 65.0 67.0

P 63.1 60.4 65.8

S 65.8 61.9 68.1

WF 64.9 61.2 60.4

WE 62.6 63.6 63.2

UD 65.8 65.2 63.9

RD 65.4 63.1 65.1

HC 59.0 52.0 68.1

HO 67.6 65.3 66.0

FS2 (RMS, AR2)

EF 62.3 58.2 64.0

EE 66.4 64.6 65.6

P 62.3 57.0 59.7

S 60.9 57.1 64.1

WF 62.5 56.0 62.9

WE 67.6 57.6 62.2

UD 59.7 59.6 65.9

RD 61.6 57.4 61.6

HC 62.4 54.3 70.8

HO 61.4 68.1 64.4

FS3 (MSA, MSF,

MSS, MNPPS, MSD)

EF 64.0 67.2 65.0

EE 63.2 65.0 65.2

P 63.4 64.2 62.6

S 69.4 62.6 67.8

WF 61.1 63.4 60.7

WE 62.8 65.6 64.6

UD 65.6 67.2 63.4

RD 64.5 63.1 70.4

HC 61.8 53.4 68.0

HO 64.5 60.0 62.3
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Table 4.7: Classification accuracies for each feature set extracted from window segments of 150 ms
with 50% overlap. The best classification result for each motion within each feature set
is in bold.

Feature Set Motion
Classification Accuracy (%)

LDA SVM RF

FS1 (MAV, SSC,

WL, ZC)

EF 64.8 63.1 60.8

EE 64.4 63.6 63.5

P 61.6 56.9 66.4

S 68.8 59.2 65.4

WF 62.0 58.6 61.2

WE 63.8 60.8 61.1

UD 65.1 59.5 68.0

RD 62.7 58.7 69.8

HC 61.8 52.8 60.8

HO 62.1 59.9 59.9

FS2 (RMS, AR2)

EF 64.3 60.5 62.8

EE 65.6 64.8 63.5

P 61.0 59.6 64.8

S 62.3 57.3 68.6

WF 63.7 55.3 63.5

WE 66.7 60.4 63.2

UD 63.7 57.5 67.0

RD 62.3 57.4 67.0

HC 61.9 57.2 63.4

HO 57.6 56.9 63.6

FS3 (MSA, MSF,

MSS, MNPPS, MSD)

EF 57.5 52.5 59.8

EE 52.9 48.8 56.2

P 57.6 50.9 61.9

S 62.0 59.8 60.8

WF 61.8 58.4 64.2

WE 62.9 49.3 63.7

UD 63.7 53.4 64.4

RD 57.7 50.2 67.9

HC 58.1 50.9 56.5

HO 56.4 49.3 56.8
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(a) LDA (b) SVM

(c) RF

Figure 4.2: FS1 classification accuracies for 150 ms windows, 250 ms windows, and windows con-
sisting of the full motion. The range of the y axis has been adjusted for clarity. The
motions tested were as follows: elbow flexion (EF), elbow extension (EE), forearm
pronation (P), forearm supination (S), wrist flexion (WF), wrist extension (WE), ul-
nar deviation (UD), radial deviation (RD), hand close (HC), and hand open (HO).

with the S, WE, RD, and HO motions.

The optimal window size is likely influenced by the average duration of the motions that were

performed. Elbow motions (EF, EE, P, and S) typically take more time to perform than wrist and

hand motions. The 250 ms and 150 ms window sizes therefore represent a lower proportion of the

overall motion for the elbow motions than for the hand and wrist motions.

Changing the window size from 250 ms to 150 ms did not significantly degrade the classification

accuracies, which is consistent with Oskoei and Hu’s observation that classification accuracies do
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not significantly differ if the window size remains between 50–500 ms [87].

The results indicate that there is the possibility of using windowed segments to achieve similar

or even better results than using a window representing the full duration of the motion.

4.3 Feature Selection

In order to identify EMG features and feature sets that are useful for differentiating between

healthy and injured limbs, the process of feature selection was performed. First, all of the features

summarized in Section 2.8 were extracted from the EMG data sets. The performances of each

feature were then evaluated individually, and feature sets were developed based on combinations

of the best individual features. Feature reduction was performed with the RELIEFF algorithm

in order to further optimize feature sets. Classifiers developed using the new feature sets were

evaluated.

4.3.1 Individual Feature Performances

The classification performances for individual EMG features were evaluated by developing models

for each feature and each motion, combining the motion models into a majority vote, and then

evaluating the final models with a leave-one-patient-out cross-validation. The individual feature

models classified between healthy and injured limbs with accuracies ranging from 46.3–76.5%. The

LDA classifier provided the highest classification accuracy for most individual features. Table 4.8

shows the individual classification performances ranked in order of LDA classification performance.

The individual features were then organized and ranked by classification performance based

on the type of information that each feature provides (Table 4.9). The following features were

ranked the highest for each feature category: LOG (time domain: energy), DASDV (time domain:

information complexity), MYOP (time domain: frequency), MAVS (time domain: multi-window),

PSR (frequency domain), AR4 (prediction model coefficients), ApEn (entropy), MFL (fractal

dimension), SKEW (higher order statistics), and MSD (spike shape analysis).
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Table 4.8: Majority vote classification accuracies for individual features. Features are ordered by
LDA classification accuracy. The best classifier result for each feature is in bold.

Feature LDA SVM RF

MFL 76.54 73.45 59.88

MYOP 74.69 66.67 58.64

MSD 74.69 54.94 55.56

AR4 74.07 59.88 50.00

MSF 72.84 72.84 54.94

MNPPS 70.99 64.20 52.47

PSR 70.99 66.67 56.17

ApEn 69.14 65.43 57.41

LOG 69.14 57.41 63.58

MNF 69.14 68.52 54.32

ZC 68.52 62.35 55.56

DASDV 68.52 51.85 61.73

VCF 68.52 57.41 56.17

AAC 67.90 51.85 59.88

MSS 67.90 51.85 56.17

MMAV2 67.38 54.32 61.73

WL 66.05 51.85 56.17

CC4 66.05 51.23 50.62

MDF 65.43 65.43 56.79

SampleEn 65.43 64.81 56.17

SSC 64.81 61.73 51.85

MMAV1 64.81 54.94 62.35

HFD 64.20 62.35 59.88

MAVS 64.20 50.00 56.17

PKF 63.58 67.9 61.11

MAV 63.58 55.60 64.81

MSA 63.58 53.70 62.35

MTW 62.96 50.62 64.20

RMS 62.35 57.41 65.43

MHW 61.73 51.85 62.34

SM3 60.49 61.73 60.49

MNP 59.88 52.47 63.58

TTP 58.79 51.85 64.20

VAR 58.64 52.47 64.20

FR 58.02 67.90 58.02

SM1 58.02 51.85 61.11

SKEW 57.41 53.09 50.00

DFA 56.80 46.30 50.00

SM2 55.56 56.79 59.23

WAMP 54.32 56.17 50.62

KURT 52.47 53.70 50.00
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Table 4.9: Individual feature performances organized by feature category.

Feature Type Ranking

Time Domain: Energy 1. LOG

2. MMAV2

3. MMAV1

4. MAV

5. RMS

6. VAR

Time Domain: Information Complexity 1. DASDV

2. AAC

3. WL

Time Domain: Frequency 1. MYOP

2. ZC

3. SSC

4. WAMP

Time Domain: Multi-Window 1. MAVS

2. MTW

3. MHW

Frequency Domain 1. PSR

2. MNF

3. VCF

4. MDF

5. PKF

6. SM3

7. MNP

8. TTP

9. FR

10. SM1

11. SM2

Prediction Model Coefficients 1. AR4

2. CC4

Entropy 1. ApEn

2. SampleEn

Fractal Dimension 1. MFL

2. HFD

3. DFA

Higher Order Statistics 1. SKEW

2. KURT

Spike Shape Analysis 1. MSD

2. MSF

3. MNPPS

4. MSS

5. MSA
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4.3.2 FS4 and FS5 Feature Set Performances

The individual feature performances were used to inform the development of new feature sets. FS4

consisted of the overall top ranked features. The MFL and MYOP features were selected because

adding subsequent features was found to degrade the classification accuracy.

FS5 was developed to include the the maximum ranked feature within each feature category.

SKEW was excluded because of its low individual performances (below 60% for all classifiers). FS5

ultimately consisted of the following features: LOG, DASDV, MYOP, MAVS, PSR, AR4, ApEn,

MFL, MSD.

Feature reduction is necessary in order to improve the performance, speed, and memory usage

of the classifiers. FS5 contained nine features, therefore it was desirable to minimize the number of

features in this set. The RELIEFF algorithm with k=10 was used to rank the top scoring features

in FS5. The MSD, PSR, and MFL features were consistently ranked among the best features in

FS5 for all motions, and were selected for the optimized feature set.

The classification accuracies for the new feature sets are summarized in Table 4.10. FS4 pro-

vided the best ranges of classification accuracies when used with the LDA and SVM classifiers

(63.0–78.4% and 60.5–79.6%), however the ranges achieved with the RF classifier were poor (57.4–

70.4%). FS5 tended to work better with the SVM and RF classifiers, and tended to have poor

classification accuracies when used with the LDA classifier. Following optimization with the RE-

LIEFF algorithm, FS5 tended to achieve higher classification accuracies (Figure 4.3), although

the accuracies were degraded for some of the motions and classifiers. The LDA classifier demon-

strated the greatest improvement following feature reduction. The RF classification results did

not improve following the feature reduction.

The majority vote classification accuracies for FS4 and FS5 are shown in Table 4.11. As was the

case with FS1–FS3, the weighted majority vote provided the best results, followed by the majority

vote of the top motions, and then the majority vote of all motion models. The highest accuracies

were achieved with FS4 using the LDA classifier. FS5 provided higher accuracies following feature

reduction with the RELIEFF algorithm.

Both of the new feature sets (FS4, and FS5 optimized with RELIEFF) provided higher clas-
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Table 4.10: Classification accuracies for each new feature set. The best classification result for
each motion within each feature set is in bold.

Feature Set Motion
Classification Accuracy (%)

LDA SVM RF

FS4 (MFL, MYOP)

EF 78.4 70.4 63.6

EE 68.5 65.4 67.3

P 71.6 70.4 63.6

S 72.2 71.0 70.4

WF 70.3 70.4 70.4

WE 66.0 60.5 57.4

UD 77.2 79.6 67.3

RD 74.7 69.1 67.9

HC 69.8 69.8 63.6

HO 63.0 70.4 63.6

FS5 (LOG, DASDV, MYOP,

MAVS, PSR, AR4,

ApEn, MFL, MSD)

EF 61.7 73.5 71.0

EE 75.9 72.8 72.8

P 59.9 66.7 67.9

S 58.0 71.0 67.9

WF 64.8 59.9 69.1

WE 51.9 58.6 63.0

UD 69.1 74.7 64.8

RD 61.1 73.5 67.3

HC 56.2 63.6 67.3

HO 56.8 64.8 60.5

FS5 Optimized with

RELIEFF (PSR, MFL, MSD)

EF 69.8 71.6 64.8

EE 72.5 72.2 75.9

P 72.8 70.4 66.0

S 71.0 72.8 70.4

WF 56.8 69.1 68.5

WE 61.7 66.7 64.2

UD 72.2 76.5 69.1

RD 67.3 64.8 68.5

HC 65.4 71.0 61.7

HO 63.6 66.7 71.6
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(a) LDA (b) SVM

(c) RF

Figure 4.3: FS5 classification accuracies for all features and after feature reduction with RELIEFF.
The range of the y axis has been adjusted for clarity. The motions tested were as
follows: elbow flexion (EF), elbow extension (EE), forearm pronation (P), forearm
supination (S), wrist flexion (WF), wrist extension (WE), ulnar deviation (UD), radial
deviation (RD), hand close (HC), and hand open (HO).

Table 4.11: Majority vote classification accuracies for feature sets FS4 and FS5. The best classi-
fication result for each feature set is in bold.

Classification Accuracy (%)

LDA SVM RF

Feature Set All Weighted Top All Weighted Top All Weighted Top

FS4 77.8 82.1 79.6 73.4 74.1 77.8 62.3 71.0 64.2

FS5 64.8 67.3 68.5 73.5 75.9 76.5 66.7 75.3 65.4

FS5 Optimized
with RELIEFF

74.1 79.6 74.1 78.4 81.5 77.2 63.0 77.2 62.3
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sification accuracies than the feature sets developed from the literature (FS1–FS3). These results

suggest that the MFL, MYOP, PSR, and MSD features are preferable to the more commonly used

EMG features for identifying muscle health.

4.4 Patient Characteristics

Further improvement to the classification models was attempted by introducing patient character-

istics into the models. The sex, age, BMI, and time since injury of the patients were included as

features in the LDA, SVM, and RF classification models.

These characteristics were input into the classification models as the following feature values:

� Sex:

– Male: 1

– Female: 2

� Age (Years):

– <30: 1

– 30–45: 2

– >45: 3

� BMI (kg/m2):

– Normal (18.5–25): 1

– Overweight (25–30): 2

– Obese (>30): 3

� Time Since Injury:

– Early (0–6 weeks): 1

– Late (7–12 weeks): 2

� Injured Limb Dominance:



4.5 Three-Class Models 93

– Dominant: 1

– Non-Dominant: 2

The patient characteristic features were added to FS1–FS5, and the classification accuracies were

obtained using leave-one-patient-out cross-validation (Table 4.12). The results were compared with

the classification accuracies obtained from FS1–FS5 without the patient characteristics included.

The inclusion of the patient characteristic features did not significantly improve the classification

accuracies for any of the motion models. Comparisons of the classification accuracies for FS4 with

and without the patient characteristic features are shown in Figure 4.4.

The individual decision tree classification models within the RF classifier were assessed to

determine if patient characteristic features were selected as splitting rules. The number of instances

that each feature type was selected for a splitting rule was counted for 2000 decision trees (200

per motion model). The average number of times that each patient characteristic feature was used

for a splitting rule was calculated and compared to the average number of times that the LOG

features were used (Figure 4.5). The features selected for decision branches by the RF algorithm

were overwhelmingly EMG features.

Based on this analysis, the patient characteristics of sex, age, BMI, time since injury, and hand

dominance do not provide important information for the classifiers tested that could assist with

determining the category of muscle health.

4.5 Three-Class Models

Following the development of models with only two categories of health (healthy and injured),

models were developed to distinguish between three categories of health: healthy, the early stages

of rehabilitation (0–6 weeks of therapy), and the late stages of rehabilitation (7+ weeks of therapy).

The rationale behind these divisions was that strengthening rehabilitation exercises begin at 7–8

weeks of therapy [16, 20]. As well, patients in later stages of recovery have been observed to have

more similar EMG metrics to healthy subjects [12]. A three-class model could therefore be expected

to improve classification over a two-class model if patients in the later stages of rehabilitation were

more likely to be misclassified as healthy by the two-class model.
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Table 4.12: Classification accuracies for feature sets including patient characteristic features. The
best classification result for each motion within each feature set is in bold.

Feature Set Motion
Classification Accuracy (%)

LDA SVM RF

FS1 (MAV, SSC,

WL, ZC)

EF 65.4 66.7 71.0

EE 66.0 60.5 74.1

P 61.1 68.5 67.9

S 56.8 51.9 67.9

WF 64.8 59.9 71.6

WE 55.6 62.3 54.3

UD 54.9 67.3 68.5

RD 59.9 66.0 66.0

HC 63.6 59.9 73.5

HO 59.8 60.5 59.9

FS2 (RMS, AR2)

EF 61.1 58.0 70.4

EE 63.6 74.1 70.4

P 64.8 58.6 69.8

S 54.9 61.7 73.5

WF 58.6 63.6 71.0

WE 61.7 53.7 61.7

UD 61.1 65.4 68.5

RD 57.4 57.4 72.8

HC 66.7 59.9 72.8

HO 58.0 65.4 66.0

FS3 (MSA, MSF,

MSS, MNPPS, MSD)

EF 63.6 64.8 69.8

EE 66.0 67.3 71.6

P 67.3 66.0 65.4

S 58.6 66.0 73.5

WF 60.5 64.8 71.0

WE 61.7 71.6 68.5

UD 61.7 70.4 66.0

RD 59.9 73.5 66.0

HC 59.3 64.2 67.9

HO 56.2 56.2 58.6

FS4 (MFL, MYOP)

EF 71.6 66.0 61.7

EE 65.4 64.2 67.9

P 72.2 66.7 63.6

S 70.4 72.2 71.0

WF 69.8 66.0 70.4

WE 60.5 63.6 57.4

UD 74.1 77.8 54.2

RD 71.0 63.0 69.8

HC 69.8 59.9 64.8

HO 64.8 72.8 63.0

FS5 Optimized with

RELIEFF (PSR, MFL, MSD)

EF 64.2 69.1 67.9

EE 70.4 74.1 75.9

P 73.5 64.2 70.4

S 69.8 74.1 72.2

WF 58.0 69.8 67.9

WE 60.5 69.8 69.8

UD 69.8 76.5 69.8

RD 70.4 69.1 73.5

HC 66.0 71.0 63.0

HO 67.3 67.3 70.4
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(a) LDA (b) SVM

(c) RF

Figure 4.4: FS4 classification accuracies with and without patient information. The range of the
y axis has been adjusted for clarity. The motions tested were as follows: elbow flexion
(EF), elbow extension (EE), forearm pronation (P), forearm supination (S), wrist
flexion (WF), wrist extension (WE), ulnar deviation (UD), radial deviation (RD),
hand close (HC), and hand open (HO).

Of the patients evaluated, 13 patients were considered to be in the early stages of injury and

14 patients were considered to be in the later stages. Healthy data sets were collected from the

27 healthy patient arms. In order to prevent imbalance in the number of instances in each class,

12 data sets were randomly selected from each of the three classes for training, and one data set

was selected from each category for testing. This process was repeated 10 times, and the average

of the accuracies obtained was used as the final result.

The three-class model classification results are shown in Table 4.13 for FS1–FS5. The accuracies
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Figure 4.5: Average number of times features were used for decision tree splitting rules in RF
classifier.

ranged from 23.3–63.3%. Most results were equal to or slightly greater than the baseline accuracy

of 33.3%. These levels of accuracy would not be adequate for determining muscle health.

Confusion matrices were developed to determine if the models tended to have difficulties dis-

tinguishing between specific classes. The confusion matrices for the EF and EE motions for the

LDA classifier are shown in Table 4.14 and Table 4.15 respectively.

The rows of the confusion matrix represent the actual classes, and the columns represent the

predicted classes. Each cell of the confusion matrix represents the percentage of instances within

a specific actual class that were classified as a specific predicted class. The ideal confusion matrix

for a three-class classification problem would have 33.33% in each of the three cells along the

left diagonal of the matrix (representing the correct predictions), and 0% in the remaining cells

(representing the incorrect predictions).

In general, the confusion matrices for the classification results tended to indicate that more

misclassifications occur between the early and late patient categories than between the early and

healthy and the late and healthy categories. The patients included in this study suffered from

various types and severities of injuries, hence the number of weeks spent in therapy is likely a poor
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Table 4.13: Classification accuracies for three categories of health (baseline accuracy = 33.33%).
The best classification result for each motion within each feature set is in bold.

Feature Set Motion
Classification Accuracy (%)

LDA SVM RF

FS1 (MAV, SSC,

WL, ZC)

EF 33.3 35.6 36.7

EE 32.2 38.9 41.1

P 36.7 37.8 28.9

S 63.3 47.8 54.4

WF 51.1 40.0 35.6

WE 50.0 37.8 35.6

UD 34.4 33.3 45.6

RD 50.0 48.9 37.8

HC 38.9 45.6 43.3

HO 34.4 41.1 30.0

FS2 (RMS, AR2)

EF 46.7 45.6 53.3

EE 44.4 41.1 38.9

P 47.8 35.6 31.1

S 45.6 48.9 42.2

WF 43.3 50.0 31.1

WE 35.6 40.0 34.4

UD 46.7 37.8 34.4

RD 55.6 26.7 26.8

HC 37.8 31.1 54.4

HO 32.2 57.8 40.0

FS3 (MSA, MSF,

MSS, MNPPS, MSD)

EF 38.9 26.7 26.7

EE 36.7 56.7 36.7

P 40.0 31.1 36.7

S 43.3 43.3 37.8

WF 38.9 33.3 38.9

WE 41.1 43.3 34.4

UD 53.3 44.4 41.1

RD 30.0 37.8 35.6

HC 41.1 58.9 37.8

HO 34.4 36.7 35.6

FS4 (MFL, MYOP)

EF 50.0 43.3 33.3

EE 37.8 61.1 46.7

P 35.6 36.7 31.1

S 48.9 53.3 56.7

WF 35.6 36.7 37.8

WE 34.4 32.2 26.7

UD 48.9 53.3 34.4

RD 52.2 41.1 38.9

HC 51.1 50.0 44.4

HO 40.0 41.1 41.1

FS5 Optimized with

RELIEFF (PSR, MFL, MSD)

EF 35.6 36.7 33.3

EE 45.6 41.1 33.3

P 38.9 30.0 32.2

S 47.8 51.1 47.8

WF 33.3 44.4 33.3

WE 53.3 32.2 34.4

UD 56.7 61.1 38.9

RD 47.8 42.2 23.3

HC 36.7 52.2 43.3

HO 41.1 45.6 47.8
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Table 4.14: Confusion matrix for elbow flexion with LDA classifier. Correct predictions are in
bold.

Predicted

Actual Healthy Early Late

Healthy 15.11% 8.89% 9.33%

Early 3.56% 17.78% 12.00%

Late 8.89% 16.00% 8.44%

Table 4.15: Confusion matrix for elbow extension with LDA classifier. Correct predictions are in
bold.

Predicted

Actual Healthy Early Late

Healthy 18.89% 9.33% 5.11%

Early 4.22% 18.67% 10.44%

Late 12.67% 8.89% 11.78%

estimate of the patient health, and this is reflected by the poor classification results. The results

suggest that the stage of injury was not discernible based on the EMG signals.

4.6 Statistical Analysis of Features

Following the development of classification models, a statistical analysis of the EMG features was

conducted in order to identify trends in the EMG data related to patient health. The Statistical

Package for Social Sciences v.24 (SPSS) software was used to perform all analyses, and a statistical

significance of 0.05 was used.

Paired difference tests were conducted to identify differences between the healthy and injured

limbs of the patients. A repeated measures analysis was also conducted for the patients who

performed trials at multiple stages of their rehabilitation. This section will discuss the significant
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differences found in the results.

4.6.1 Paired Difference Tests

Paired difference tests were performed for the following EMG features: LOG, DASDV, MYOP,

PSR, ApEn, MFL, and the spike shape analysis features (MSA, MSF, MSS, MNPPS, MSD). These

features were selected for analysis because they had exhibited the highest individual classification

performances within their respective feature categories.

The EMG features for each muscle were first averaged over the three repetitions of each motion

for each patient. Pairs were then formed between the healthy and injured features for each patient.

The distribution of each EMG feature for each muscle was evaluated for normality using the

Shapiro–Wilk test. A paired samples t-test was applied to the pairs observed to have normal dis-

tributions. A Wilcoxen signed rank test was applied to pairs that were not normally distributed.

There were 11 features tested over 7 muscles and 10 different motions, therefore 770 paired differ-

ence tests were performed. Using a statistical significance of 0.05, 266 significant differences were

identified. The false discovery rate [120] for this dataset was estimated to be 14.5%. The muscles

and the motions that exhibited statistically significant differences between healthy and injured

limbs are summarized for each feature tested in Tables 4.16–4.25.

The mean values of the healthy LOG features were higher for the healthy muscles for all muscles

and motions tested. The significant differences were primarily observed in the forearm muscles

(PT, BRD, ECU, FCU), and are listed in Table 4.16. The MFL feature was also observed to have

a higher mean in the healthy limb for all muscles and motions. The significant differences are

shown in Table 4.17.

The mean MYOP values for the healthy muscles were higher than the mean values for the

injured muscles for all instances with significant differences (Table 4.18). The BB and TB1 muscles

showed a trend towards having lower mean MYOP values for the healthy limb, although none of

these differences were significant.

Fewer significant differences between the healthy and injured means were observed for the

DASDV, PSR, and ApEn features. The healthy group had higher mean DASDV values than the

injured group for all instances (Table 4.19). The PSR feature was significantly lower for the TB1
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Table 4.16: Significant differences for paired difference tests for the LOG feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF PT 8.96E-04 3.77E-04 0.005

BRD 7.92E-03 2.14E-03 <0.001

ECU 1.01E-03 4.51E-04 0.025

FCU 1.32E-03 3.21E-04 <0.001

EE TB2 1.14E-03 9.34E-04 0.006

PT 1.01E-03 4.39E-04 0.025

BRD 8.33E-03 2.22E-03 <0.001

FCU 9.60E-04 2.89E-04 0.008

P TB2 1.26E-03 4.38E-04 0.004

PT 1.05E-03 3.10E-04 0.002

BRD 7.58E-03 1.96E-03 <0.001

FCU 7.13E-04 2.76E-04 0.006

S PT 7.19E-04 3.24E-04 0.003

BRD 7.63E-03 1.87E-03 <0.001

ECU 1.20E-03 4.50E-04 0.021

FCU 7.06E-04 2.42E-04 0.007

WF BRD 5.89E-03 1.82E-03 <0.001

ECU 2.45E-03 7.91E-04 0.005

WE PT 6.75E-04 2.12E-04 0.001

BRD 7.40E-03 1.88E-03 <0.001

ECU 1.42E-03 5.81E-04 0.017

FCU 7.09E-04 1.74E-04 <0.001

UD PT 5.19E-04 2.19E-04 0.015

BRD 6.86E-03 1.77E-03 <0.001

ECU 2.10E-03 7.45E-04 0.005

FCU 1.67E-03 5.32E-04 0.001

RD PT 8.29E-04 3.00E-04 0.011

BRD 7.32E-03 2.14E-03 <0.001

ECU 1.26E-03 5.29E-04 0.020

FCU 1.28E-03 2.70E-04 <0.001

HC PT 5.34E-04 1.85E-04 0.001

BRD 6.55E-03 1.88E-03 <0.001

ECU 2.20E-03 7.47E-04 0.005

FCU 1.42E-03 5.68E-04 0.015

HO PT 4.64E-04 2.03E-04 0.014

BRD 7.32E-03 1.98E-03 <0.001

ECU 2.25E-03 7.48E-04 0.004

FCU 1.00E-03 4.49E-04 0.014
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Table 4.17: Significant differences for paired difference tests for the MFL feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF PT 4.14E-01 1.31E-01 0.004

BRD 1.05E+00 2.56E-01 <0.001

FCU 4.07E-01 1.00E-01 0.001

EE TB1 3.41E-01 1.42E-01 0.020

TB2 4.57E-01 1.72E-01 0.006

PT 4.12E-01 1.78E-01 0.029

BRD 1.14E+00 2.47E-01 <0.001

FCU 2.39E-01 1.30E-01 0.021

P TB2 3.77E-01 1.32E-01 0.019

PT 4.10E-01 1.24E-01 0.003

BRD 9.87E-01 2.26E-01 <0.001

S PT 3.66E-01 1.31E-01 0.010

BRD 1.10E+00 2.05E-01 <0.001

WF BRD 8.90E-01 1.91E-01 <0.001

ECU 5.16E-01 1.98E-01 0.015

WE PT 3.33E-01 7.65E-02 <0.001

BRD 8.95E-01 1.43E-01 <0.001

ECU 4.77E-01 1.67E-01 0.008

FCU 3.83E-01 8.82E-02 <0.001

UD TB2 3.11E-01 1.33E-01 0.034

PT 2.79E-01 7.82E-02 0.002

BRD 1.00E+00 2.08E-01 <0.001

ECU 5.24E-01 1.77E-01 0.006

FCU 5.70E-01 1.36E-01 <0.001

RD PT 2.89E-01 1.17E-01 0.02

BRD 8.53E-01 1.96E-01 <0.001

FCU 4.74E-01 9.56E-02 <0.001

HC PT 1.96E-01 7.40E-02 0.011

BRD 7.13E-01 1.74E-01 <0.001

ECU 4.60E-01 1.32E-01 0.002

FCU 3.44E-01 1.43E-01 0.023

HO PT 2.14E-01 7.61E-02 0.008

BRD 1.02E+00 2.17E-01 <0.001

ECU 5.97E-01 1.80E-01 0.003
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Table 4.18: Significant differences for paired difference tests for the MYOP feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF TB2 3.55E-02 6.82E-03 0.010

PT 1.85E-02 3.56E-03 <0.001

BRD 3.10E-02 5.97E-03 <0.001

ECU 3.69E-02 7.10E-03 0.019

FCU 2.70E-02 5.21E-03 <0.001

EE BB 2.75E-02 5.30E-03 0.027

TB1 3.60E-02 6.92E-03 0.045

TB2 3.31E-02 6.36E-03 <0.001

PT 4.28E-02 8.25E-03 0.028

BRD 2.68E-02 5.15E-03 <0.001

FCU 3.98E-02 7.66E-03 0.020

P TB2 4.60E-02 8.86E-03 0.001

PT 2.67E-02 5.14E-03 0.002

BRD 4.12E-02 7.92E-03 0.009

FCU 2.72E-02 5.24E-03 0.002

S TB2 5.27E-02 1.01E-02 0.013

PT 3.19E-02 6.14E-03 0.015

BRD 3.52E-02 6.78E-03 0.005

ECU 2.74E-02 5.28E-03 0.044

FCU 3.51E-02 6.76E-03 0.044

WF BRD 3.43E-02 6.61E-03 <0.001

ECU 3.46E-02 6.66E-03 0.005

WE PT 2.48E-02 4.77E-03 0.012

BRD 3.26E-02 6.27E-03 0.002

FCU 2.65E-02 5.10E-03 0.012

UD TB2 4.93E-02 9.49E-03 0.005

PT 2.66E-02 5.12E-03 0.010

BRD 3.10E-02 5.97E-03 0.010

FCU 2.62E-02 5.05E-03 0.034

RD TB2 4.92E-02 9.46E-03 0.002

PT 2.71E-02 5.21E-03 0.013

BRD 3.89E-02 7.49E-03 0.020

FCU 2.48E-02 4.77E-03 0.005

HC TB2 5.41E-02 1.04E-02 0.009

PT 2.47E-02 4.76E-03 0.004

BRD 3.44E-02 6.61E-03 0.004

HO TB2 5.43E-02 1.05E-02 0.011

PT 2.78E-02 5.34E-03 0.100

BRD 3.70E-02 7.13E-03 0.007

ECU 3.61E-02 6.94E-03 0.026

FCU 2.82E-02 5.42E-03 0.004
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Table 4.19: Significant differences for paired difference tests for the DASDV feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF TB1 3.28E-06 1.54E-06 0.016

PT 7.12E-06 2.77E-06 0.001

BRD 7.27E-05 2.23E-05 <0.001

FCU 4.40E-06 1.61E-06 <0.001

EE BRD 6.30E-05 2.06E-05 <0.001

P PT 4.68E-06 1.93E-06 0.002

BRD 5.03E-05 2.00E-05 <0.001

S BRD 5.44E-05 2.22E-05 <0.001

WF BRD 3.52E-05 1.49E-05 <0.001

ECU 1.71E-05 6.17E-06 0.009

WE PT 1.89E-06 5.65E-07 0.001

BRD 4.93E-05 1.74E-05 0.001

FCU 2.38E-06 7.39E-07 0.001

UD PT 1.37E-06 5.41E-07 0.005

BRD 4.66E-05 1.68E-05 <0.001

RD BRD 5.22E-05 1.97E-05 0.001

FCU 5.69E-06 1.59E-06 <0.001

HC PT 1.34E-06 4.56E-07 0.007

BRD 4.28E-05 1.70E-05 0.018

ECU 1.56E-05 7.02E-06 0.035

HO PT 8.89E-07 4.18E-07 0.012

BRD 5.28E-05 1.90E-05 0.001

ECU 1.34E-05 6.02E-06 0.008

muscle and significantly higher for the BRD muscle in the healthy limb (Table 4.20). The ApEn

feature tended to have a lower mean value in healthy muscles (Table 4.21). The ApEn values

showed a trend towards higher values in the healthy BB muscle, although these differences were

not significant.

All of the spike shape analysis features were investigated because these features provided rela-

tively high individual performance classification accuracies. The MSA (Table 4.22) and MSS (Ta-

ble 4.23) features primarily exhibited significant differences in the PT and BRD muscles. Higher

activations were observed in the healthy muscle groups for all motions.

The MSF feature primarily exhibited significant differences between healthy and injured means
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Table 4.20: Significant differences for paired difference tests for the PSR feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF TB1 -1.09E-01 3.13E-02 0.002

BRD 1.83E-01 4.49E-02 <0.001

EE TB1 -7.33E-02 3.43E-02 0.044

PT 9.73E-02 4.22E-02 0.029

BRD 2.63E-01 5.71E-02 <0.001

FCU 1.35E-01 4.53E-02 0.011

P TB1 -6.91E-02 3.14E-02 0.037

BRD 1.77E-01 6.66E-02 0.027

S TB1 -6.56E-02 2.66E-02 0.021

BRD 1.73E-01 6.75E-02 0.029

WF BRD 1.53E-01 6.58E-02 0.021

WE BRD 1.67E-01 6.33E-02 0.041

UD TB1 -1.07E-01 3.85E-02 0.010

BRD 1.55E-01 6.61E-02 0.049

RD TB1 -1.37E-01 3.22E-02 <0.001

HC TB1 -7.47E-02 2.74E-02 0.008

HO TB1 -8.51E-02 3.38E-02 0.018

in the BB, TB1, and BRD muscles. Higher MSF values were observed in the healthy BB and TB1

muscles, and lower values were observed in the BRD and PT muscles (Table 4.24).

Conversely, healthy subjects had lower MSD values for the BB and TB1 muscles, and higher

values for the forearm muscles, although only the BRD muscle showed significant differences (Table

4.25).

The MNPPS feature tended to exhibit lower mean values in healthy patients for the TB1

muscle and higher values for the BRD muscle (Table 4.26).

The general trends observed for each feature did not change depending on the specific motions

that were performed. This could indicate that the EMG trends for injured and healthy patients

are similar regardless of the type of motion performed. However, this could also suggest that

factors outside of the muscle activity influence the EMG signals. For example, decreased muscular

strength in the injured arm due to a period of inactivity could affect the EMG recordings regardless
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Table 4.21: Significant differences for paired difference tests for the ApEn feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF PT -1.25E-01 3.52E-02 0.002

BRD -2.66E-01 7.19E-02 0.002

FCU -1.24E-01 4.48E-02 0.010

EE TB2 -9.57E-02 5.21E-02 0.078

PT -1.98E-01 5.85E-02 0.002

BRD -3.17E-01 6.86E-02 <0.001

P BRD -1.69E-01 7.24E-02 0.028

S TB2 -9.00E-02 4.30E-02 0.011

BRD -2.30E-01 7.76E-02 0.004

WF TB1 1.01E-01 3.04E-02 0.002

BRD -1.82E-01 6.30E-02 0.008

WE BRD -1.53E-01 4.54E-02 0.002

ECU -9.09E-02 3.36E-02 0.012

FCU -9.86E-02 3.70E-02 0.013

UD BRD -1.79E-01 5.82E-02 0.005

RD BRD -1.45E-01 4.64E-02 0.002

FCU -8.20E-02 2.35E-02 0.002

HC BRD -1.48E-01 4.85E-02 0.005

FCU -4.97E-02 2.32E-02 0.042

HO TB1 6.95E-02 3.30E-02 0.045

BRD -1.66E-01 6.49E-02 0.037

of the motion performed.

The EF, EE, WF, and WE motions exhibited the most significant differences between motion

pairs, and P and HO had the least significant differences. This is consistent with the P and HO

motion models tending to provide lower classification accuracies.

The forearm muscles (PT, BRD, ECU, FCU) tended to provide significant differences between

healthy and injured groups for all of the motions performed, with the BRD muscle exhibiting

the most differences for all motions. The major elbow flexors and extensors (BB, TB1, and TB2

muscles) tended to exhibit the most differences when the EF, EE, P, S, and WF motions were

performed. With the exception of the WF motion, this is consistent with the necessity of the

activation of the major elbow muscles to perform the EF, EE, P, and S motions.
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Table 4.22: Significant differences for paired difference tests for the MSA feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF BRD 8.76E-02 3.06E-02 <0.001

FCU 2.76E-05 8.66E-06 <0.001

EE BRD 8.04E-04 2.79E-04 <0.001

P PT 3.20E-05 1.37E-05 0.002

BRD 6.14E-04 1.99E-04 0.001

S BRD 6.06E-04 2.11E-04 <0.001

WF BRD 4.23E-04 2.01E-04 <0.001

ECU 1.11E-04 4.05E-05 0.012

WE PT 1.35E-05 4.65E-06 0.002

BRD 6.83E-04 2.50E-04 <0.001

ECU 6.03E-05 2.77E-05 0.009

FCU 1.30E-05 3.57E-06 0.001

UD PT 8.78E-06 3.92E-06 0.015

BRD 5.39E-04 1.80E-04 0.001

FCU 6.36E-05 3.10E-05 0.002

RD BRD 7.11E-04 2.96E-04 0.001

FCU 3.71E-05 1.05E-05 <0.001

HC PT 9.50E-06 3.96E-06 0.002

BRD 6.12E-04 2.46E-04 0.001

ECU 1.10E-04 4.88E-05 0.008

HO BRD 7.01E-04 2.53E-04 0.001

ECU 8.93E-05 3.97E-05 0.009

The results of the paired difference tests suggest that there is more activation in healthy muscles

compared to injured muscles, particularly in terms of signal energy and information complexity of

the EMG signal. MSA and MSS were also always higher in the healthy group, which suggests that

there was both higher MU recruitment and synchronization in the healthy muscles. The ApEn

feature was lower in most healthy muscles, indicating that the EMG signal had a greater amount

of predictability for healthy muscles.

The injured BB and TB1 muscles were observed to have more activity in the MYOP, MSF,

and MNPPS features. The PSR feature also demonstrated a higher TB1 activation in the injured

subjects. The ApEn and MSD features demonstrated the reverse of this pattern. This suggests
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Table 4.23: Significant differences for paired difference tests for the MSS feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF TB1 2.11E-03 1.00E-03 0.031

PT 5.98E-03 2.21E-03 0.007

FCU 5.05E-03 1.53E-03 <0.001

EE BRD 7.90E-02 3.00E-02 <0.001

P PT 6.39E-03 2.39E-03 0.001

BRD 6.65E-02 2.86E-02 <0.001

S PT 3.99E-03 1.85E-03 <0.001

BRD 7.30E-02 3.42E-02 <0.001

WF ECU 2.64E-02 9.50E-03 0.009

WE PT 2.74E-03 7.10E-04 <0.001

BRD 6.71E-02 2.77E-02 0.001

FCU 2.56E-03 7.07E-04 <0.001

UD PT 1.57E-03 6.88E-04 0.002

BRD 5.75E-02 2.51E-02 <0.001

RD BRD 6.60E-02 2.87E-02 0.002

FCU 8.23E-03 2.39E-03 <0.001

HC PT 2.17E-03 8.14E-04 0.002

BRD 6.03E-02 2.71E-02 0.002

ECU 2.34E-02 9.88E-03 0.006

HO BRD 6.91E-02 2.79E-02 0.001

ECU 1.96E-02 8.61E-03 0.015

that the major elbow flexors and extensors may be more active in injured limbs. The MYOP and

PSR features both represent the frequency of the EMG signal, indicating that the EMG frequency

is higher for the injured BB and TB1 muscles. The increase in the MSF and MNPPS features and

the decrease in the MSD features indicates increased MU recruitment and synchronization.

The results for the LOG, MYOP, MSA, and PSR features are of particular interest because the

efficacy of using similar features for assessing elbow muscle health was studied by Haddara [12].

Haddara compared EMG data collected from elbow trauma patients with EMG data collected

from healthy subjects performing upper-limb motions. The injured subjects exhibited significantly

higher RMS, MAV, ZC, and MSA feature values compared to the healthy subjects. A general

trend of higher values for the MNF and MDF frequency domain features was found in the patient
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Table 4.24: Significant differences for paired difference tests for the MSF feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF BB 1.10E+01 3.23E+00 0.002

TB1 1.06E+01 4.61E+00 0.029

PT -9.09E-02 3.48E+00 0.979

EE BB 1.49E+01 3.23E+00 0.001

BRD -4.05E+01 9.64E+00 0.001

P BB 1.05E+01 3.75E+00 0.010

TB1 1.03E+01 3.91E+00 0.014

S TB1 1.15E+01 2.90E+00 <0.001

BRD -2.34E+01 1.01E+01 0.016

WF BB 1.07E+01 4.69E+00 0.029

TB1 1.54E+01 4.29E+00 0.002

WE TB1 1.12E+01 4.96E+00 0.032

BRD -2.15E+01 9.15E+00 0.027

UD TB1 1.48E+01 4.65E+00 0.004

RD BB 8.35E+00 3.30E+00 0.018

TB1 1.45E+01 4.36E+00 0.003

HO TB1 1.27E+01 4.61E+00 0.011

population, however no significant differences were found.

The results of this study were not in agreement with the conclusions made by Haddara. The

LOG feature values were higher in the healthy group, which was the opposite of Haddara’s ob-

servation that injured patients exhibit higher values for the time domain features that describe

signal energy (RMS and MAV). Furthermore, with the exception of the BB muscle, the MYOP

feature was lower for injured muscles. This was the opposite of Haddara’s observations for the ZC

feature, which like MYOP is a time domain feature that describes the signal frequency. Finally,

several significant differences were observed for the PSR feature in this study, whereas Haddara

found that frequency domain features do not demonstrate significant differences.

The differing results between this study and Haddara’s study could be due to the differences

in the data collection protocols. In this study, control values were obtained from the contralateral

healthy arm of the each patient. In Haddara’s trials, the healthy controls were obtained from a

separate population of subjects. There was no effort to ensure that the healthy subjects resembled
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Table 4.25: Significant differences for paired difference tests for the MSD feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF BB -9.68E-04 2.92E-04 0.004

TB1 -1.05E-03 4.31E-04 0.022

BRD 2.81E-03 7.83E-04 0.002

EE BB -8.81E-04 1.98E-04 <0.001

BRD 4.54E-03 1.29E-03 0.002

P BB -7.62E-04 2.98E-04 0.008

TB1 -6.30E-04 2.23E-04 0.008

BRD 3.31E-03 1.48E-03 0.020

S TB1 -7.55E-04 1.79E-04 <0.001

BRD 3.15E-03 1.40E-03 0.033

WF BB -1.01E-03 4.18E-04 0.022

TB1 -8.50E-04 2.46E-04 0.002

WE TB1 -7.12E-04 2.85E-04 0.012

UD TB1 -9.97E-04 3.06E-04 0.002

RD BB -8.50E-04 2.67E-04 0.005

TB1 -9.13E-04 3.08E-04 0.004

HC TB1 -6.39E-04 2.65E-04 0.017

HO TB1 -7.70E-04 2.60E-04 0.003

the characteristics of the elbow trauma patients in terms of age, sex, BMI, etc. Therefore, some

of the differences that Haddara observed could have been unrelated to subject health, and due to

differences between two groups with different attributes.

However, using the contralateral limb as a control, while avoiding issues with differences in

subject characteristics, could also introduce other confounding factors, particularly differences in

handedness. As well, patients may have begun to overuse their healthy arm. Therefore, the

healthy patient arm may not have represented the state of the patient’s healthy arm under normal

conditions.

The results indicate that while there are some significant differences between the features, there

is often an overlap between healthy and injured EMG feature values. This limits the ability for

the classification models to assess patient health. As well, the trends observed in this study differ

from the trends observed in a similar EMG study. The collection of more data could ameliorate
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Table 4.26: Significant differences for paired difference tests for the MNPPS feature.

Motion Muscle
Mean

(Healthy - Injured)

Standard Error

(Healthy - Injured)
Significance

EF TB1 -8.12E-02 3.11E-02 0.019

BRD 2.21E-01 5.47E-02 <0.001

EE BRD 3.33E-01 8.54E-02 0.001

FCU 7.96E-02 3.70E-02 0.041

P BB -6.30E-02 3.03E-02 0.048

TB1 -6.40E-02 3.06E-02 0.047

S TB1 -6.04E-02 2.69E-02 0.033

BRD 2.01E-01 9.65E-02 0.046

WF TB1 -7.22E-02 3.37E-02 0.041

FCU -4.16E-02 1.97E-02 0.045

WE BRD 1.73E-01 8.04E-02 0.014

UD TB1 -1.04E-01 4.46E-02 0.027

RD TB1 -1.17E-01 3.96E-02 0.007

HO TB1 -7.16E-02 3.34E-02 0.020

the understanding of the differences between healthy and injured limbs.

4.6.2 Returning Patients

A three-level repeated measures comparison was conducted for elbow trauma patients that returned

over the course of their therapy to re-perform the trials. Four patients agreed to return. The

average time since injury was 5.5 weeks for the initial trial, and 8.5 weeks for the subsequent trial.

Repeated measures comparisons were conducted between the three health conditions (healthy, early

stage of rehabilitation, and late stage of rehabilitation). Unfortunately, the data sets for one of the

patients were compromised during some of the trials, therefore the repeated measures comparisons

could only be performed with all four patients for the WF, WE, UD, and RD motions. The

LOG, DASDV, MYOP, PSR, MFL, and spike shape analysis features (MSA, MSF, MSS, MNPPS,

MSD) were tested for significant differences. Table 4.27 and Table 4.28 summarize the muscles and

features that exhibited a significant difference for the WF–WE and UD–RD motions respectively.

The false discovery rate was estimated to be 16.8%.
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The mean values of the PSR and ApEn features were observed to be higher in the healthy

limbs for all muscles and motions tested. The LOG, DASDV, MYOP, and MFL features tended

to have higher values for the healthy forearm muscles (PT, BRD, ECU, FCU) than for the injured

forearm muscles. The BB muscle exhibited higher feature values in the injured limbs than in the

healthy limbs.

Patients re-tested at a later stage of therapy exhibited increases in the PT and BRD muscles

features to more closely resemble the values for the healthy muscles. As well, the BB feature

values decreased to more closely resemble the observations for the healthy limbs. However, the

FCU muscle activity tended to decrease for patients measured at the later stage of rehabilitation,

indicating that there was a greater difference between the injured and healthy muscle activity

following therapy. Examples for these trends are summarized for the LOG feature and the UD

motion in Figure 4.6.
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Table 4.27: Repeated measures comparison for wrist flexion and extension for returning subjects.
Significant differences are in bold.

Instance Factor 1 Factor 2
Mean Difference

(Factor 1 - Factor 2)
Std Error Significance

WF

ApEn BB Healthy Early 0.172 0.016 0.002

Healthy Late 0.039 0.061 0.564

Early Late -0.133 0.065 0.133

MFL TB1 Healthy Early 0.695 0.074 0.003

Healthy Late 0.414 0.27 0.223

Early Late -0.28 0.201 0.256

MFL PT Healthy Early 0.895 0.264 0.043

Healthy Late 0.628 0.079 0.004

Early Late -0.267 0.298 0.436

WE

DASDV ECU Healthy Early 1.17E-05 0.000 0.168

Healthy Late 1.337E-05 0.000 0.022

Early Late -1.66E-06 0.000 0.662

MYOP ECU Healthy Early 0.139 0.126 0.352

Healthy Late 0.046 0.009 0.016

Early Late -0.093 0.133 0.534

MSA ECU Healthy Early 8.85E-05 0.000 0.126

Healthy Late 9.842E-05 0.000 0.017

Early Late 9.94E-06 0.000 0.709

MSS ECU Healthy Early 0.009 0.007 0.328

Healthy Late 0.016 0.003 0.039

Early Late 0.007 0.004 0.214

The general trends suggest that muscle activation in elbow trauma patients is higher in BB

muscles and lower in the TB and forearm muscles. The results also indicate that as the patients

progressed in their therapy, the muscle activity of the injured limb tended to approximate the

healthy EMG signal patterns, with the exception of the FCU muscle. However, the results are not

conclusive, as only four patients were tested.

These results are somewhat similar to the paired difference test observations described in

Section 3.6.1, in which muscle activation was observed to be higher in the TB2 and forearm muscles,

and lower for some features, particularly in features describing the frequency of the EMG signal,

for the BB and TB1 muscles. The paired difference tests and the repeated measures comparisons

both indicate that there is a possibility of using EMG signals to measure the progression of patient



4.6 Statistical Analysis of Features 113

Table 4.28: Repeated measures comparison for radial and ulnar deviation for returning subjects.
Significant differences are in bold.

RD

Instance Factor 1 Factor 2
Mean Difference

(Factor 1 - Factor 2)
Std Error Significance

LOG FCU Healthy Early 0.001 <0.001 0.82

Healthy Late 0.001 <0.001 0.017

Early Late <0.001 <0.001 0.56

DADSV FCU Healthy Early 1.554E-06 <0.001 0.54

Healthy Late 1.576E-06 <0.001 0.21

Early Late 2.218E-08 <0.001 0.917

MYOP FCU Healthy Early 0.022 0.01 0.115

Healthy Late 0.27 0.003 0.004

Early Late 0.006 0.008 0.561

ApEn BB Healthy Early 0.209 0.061 0.042

Healthy Late 0.069 0.073 0.416

Early Late -0.14 0.127 0.351

UD

LOG FCU Healthy Early 0.002 <0.001 0.015

Healthy Late 0.003 <0.001 0.002

Early Late 0.001 <0.001 0.137

DADSV FCU Healthy Early 1.35E-05 <0.001 0.01

Healthy Late 1.65E-05 <0.001 0.001

Early Late 2.95E-06 <0.001 0.168

MYOP FCU Healthy Early 0.004 0.013 0.791

Healthy Late 0.03 0.005 0.008

Early Late 0.026 0.011 0.099

MFL TB1 Healthy Early 0.782 0.186 0.024

Healthy Late 0.594 0.403 0.237

Early Late -0.189 0.225 0.464

MFL FCU Healthy Early 0.862 0.076 0.001

Healthy Late 1.152 0.191 0.009

Early Late 0.29 0.205 0.251

MSA FCU Healthy Early 7.00E-05 <0.001 0.004

Healthy Late 8.73E-05 <0.001 <0.001

Early Late 1.73E-05 <0.001 0.216

MSS FCU Healthy Early 0.017 0.003 0.011

Healthy Late 0.022 0.002 0.001

Early Late 0.005 0.002 0.13

MNPPS PT Healthy Early -0.159 0.016 0.002

Healthy Late -0.096 0.007 0.001

Early Late 0.063 0.011 0.011

MSD PT Healthy Early -0.001 <0.001 0.027

Healthy Late 0.000 <0.001 0.08

Early Late 0.001 <0.001 0.089
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healing.

There are multiple potential causes for the general trends observed in this study. The lower

muscle activations observed in most of the injured muscles could be due to tissue damage. Greater

activation in the BB and TB1 muscles, particularly in the frequency domain, could be due to

increased MU firing frequency and recruitment required to achieve the motion while injured.

There are other factors that could affect the EMG signals that are indirectly related to the

injury. All of the patients tested would have experienced a loss of muscle mass due to immobility,

which could have resulted in the decrease in muscle activation observed in most muscles. Immo-

bility during the injury could also increase the amount of fatty tissue on the skin, which could

attenuate the signals and provide the appearance of lower muscle activation.

4.7 Conclusion

This concludes the discussion and results section. There is an indication that it is possible to

identify trends, and to differentiate between healthy and injured limbs, based on EMG features.

The features that indicated the most promise towards this objective were the MFL, MYOP, PSR,

and the spike shape analysis features. Statistical analysis revealed that injured subjects generally

have lower muscle activity, although higher muscle activity was observed in the BB and TB1

muscles. Patients tested at later stages of their therapy tended to display EMG signals closer to

the expected properties of healthy EMG signals. A greater number of patients should be studied

and analyzed to validate these results.
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(a) BB (b) TB1

(c) TB2 (d) PT

(e) BRD (f) ECU

(g) FCU

Figure 4.6: LOG feature values for returning subjects. The boxplots are shown for each muscle
during the UD motion.



Chapter 5

Concluding Remarks

The work presented in this thesis was towards developing an EMG-based model of muscle health

for elbow trauma patients. The purpose of the model was to allow for an objective metric of

muscle health to be determined that could identify if a patient was healing. This work was also

towards identifying trends in EMG behaviour that reflect muscle health following elbow trauma.

A literature review was performed to identify the current challenges in elbow rehabilitation, and

the gaps in the development of rehabilitative robotic devices for elbow trauma patients. EMG has

been used to study the muscle health of patients with neuromuscular injuries, however, no models

have yet been developed to identify and diagnose the muscle health of elbow trauma patients.

EMG features have been applied to the myoelectric control of rehabilitative devices for patients

with neuropathologies, and have been used for studying muscle activation and health in certain

patients, however, there has not been any significant work done towards an EMG-based model

of muscle health for elbow trauma rehabilitation. This study attempted to develop EMG-based

classification models to distinguish between the healthy and injured limbs of elbow trauma patients

as a precursor to developing a more advanced model of elbow muscle health. EMG data from

elbow trauma patients performing elbow, hand, and wrist motions were collected, processed, and

analyzed. EMG recordings from the contralateral healthy arm of the patients were collected to

provide a control. Feature extraction and selection were performed. Classification models were

developed and improved. Majority votes of the motions were studied in order to improve accuracy

of the models. Accuracies of up to 82.1% were achieved for these models. However, attempts to

116
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adequately classify the results based on the time that the patient had spent in rehabilitation were

unsuccessful with the existing data.

Additionally, a statistical analysis of the EMG features was performed. In general, injured

patients tended to show lower muscle activity in most muscles, particularly the forearm muscles.

The BB and TB1 muscles in injured subjects tended to exhibit higher activity in some of the

features than in healthy limbs. There was some evidence, based on patients who returned to

perform the study, that as healing progressed, the behaviour of the injured limbs began to more

closely resemble the behaviour of the healthy limb.

This work helped to identify general trends in EMG signals during elbow trauma healing, and

some of the best features for identifying patient health. The classification models developed in

this thesis achieved results of 48.2–82.1%, and there is much room for improvement.

5.1 Contributions

The contributions of the work presented in this thesis are as follows:

1. A database of sEMG signals was developed from elbow trauma patients and their healthy

limbs. This data can be used towards informing the design of future models and control

systems for a wearable elbow brace. The patient data are particularly useful because the

healthy and injured data sets were collected from the same patient, so that the healthy data

sets can be compared to the injured sets, and can allow for a better representation of the

population of patients (in terms of age, sex, BMI) presenting at clinics with elbow trauma

injuries.

2. EMG features capable of predicting muscle health were identified. An extensive variety of

EMG features was investigated. The best individual features were identified to be MFL,

MYOP, PSR, and spike shape analysis features, in particular MSD.

3. EMG feature sets were developed and evaluated for efficacy of evaluating muscle health. The

spike shape analysis feature set (FS3) provided the best performances of existing feature sets

in the literature. New feature sets were proposed based on combinations of features that
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performed well individually, and the best feature set overall was a feature set consisting of

the MFL and MYOP features.

4. The first classification models to distinguish between healthy and injured limbs of elbow

trauma patients based on EMG data were developed. The highest classification accuracy

achieved (82.1%) was not ideal, however, this sets a baseline for future comparisons.

5.2 Future Work

The work performed indicates that extensive future work will be necessary in order to develop a

practical model of muscle health for a wearable device. The following steps would be required to

improve the results of this specific project:

1. Development of a database of healthy sEMG signals specific to the population for which the

elbow brace will be designed. The average elbow trauma patient recruited for this study was

45 years old and overweight. Only a few studies have examined the muscle activation patterns

of subjects representative of middle-aged and elderly populations [63,121]. There is evidence

that the decrease in strength, power, and upper extremity function with age begins around

age 40, and subjects over the age of 65 experience decreased ROM. Work by Syczewska et al.

found that EMG activation patterns in healthy subjects differed between age groups [121].

Further research should be directed towards further understanding the effects of obesity, age,

BMI, and handedness on healthy sEMG signals and motion activation patterns.

2. Recruitment of elbow trauma patients based on the type and severity of elbow injury. The

patient data sets collected in this study varied in terms of the severity of the injury and the

treatment for their injury. Most notably, some patients had received only non-surgical treat-

ments, some had received arthroscopic surgery, others had received more extensive surgeries

to treat elbow fracture, and one patient underwent multiple surgeries. As well, a variety of

injury types were included in the trial including bicep tendon tears, radial head fractures,

multiple fractures, and elbow dislocations. In order to obtain a more specific model of muscle

health, data sets should be collected from patients who had experienced similar severity and
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types of injuries. Due to the limited availability of subjects from where the patients for this

study were recruited, a multi-site study would most likely be necessary in order to recruit

enough patients in a timely manner.

3. Improve knowledge of the consistency of therapy treatments. The patients’ schedules some-

times took precedence over therapist recommendations. Some of the patients delayed the

start of therapy until up to two weeks after the recommended start time following injury.

Patient adherence to home therapy exercises was also not measured. For a few cases, the

therapist indicated that they believed that the patient had not followed their exercise reg-

imen. Finally, although the patients in the study were recruited from the same site, they

were recruited from different therapists. The treatments recommended to each patient could

have varied based on each therapist’s opinion. Future studies should attempt to record

information about the recommended treatment program and patient adherence.

4. Collect data from the same patients at multiple stages of recovery. Unfortunately, it was

difficult to convince patients to complete the study multiple times. Only four patients were

willing to repeat the study. Issues encountered included the time constraints and availability

of the patients, as well as the fact that some of the patients attending the clinic lived several

hours away and performed the remainder of their therapy treatments in their hometown.

This issue could be diminished if the ease of sEMG acquisition was improved, as described

below.

5. Perform research towards improving the interpretation of sEMG recordings from elbow trauma

patients. The interpretation of sEMG signals is an ongoing challenge. For example, an ob-

served decrease in muscle activity based on sEMG recordings could be due to many underly-

ing factors. Such concerns were observed in a follow-up of patients with Duchenne muscular

dystrophy, in which it was unknown if the decrease in muscle activity was due to the loss

of muscle fibres or to nonmuscular factors such as the increase of fatty tissues near the skin

due to inactivity [65]. Likewise for elbow trauma patients, muscle health will be affected by

both the initial injury and by the periods of relative inactivity following the injury.

Over the course of the study, possibilities for future work with sEMG signal acquisition and
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analysis were identified that are outside of the scope of the work for this project, but would greatly

improve the results of this project. The following issues should be addressed:

1. Ease of sEMG acquisition and interpretation. The use of a commercial dry electrode sEMG

system greatly improved the ease of recording over the standard wet electrode and wired

system, however, the setup for data collection was not without tedium or difficulty. The

patients had to agree to move to a separate room to allow for the space and time for 16

electrodes to be correctly placed on their arms by the experimenter. The process required

the experimenter to be present at the clinic to perform all of the tests.

The improvement of the ease of use of sEMG acquisition systems could lead to an increase in

the amount of data collected for experiments. An acquisition system that is extremely simple

to use could allow therapists to collect data from patients during therapy instead of requiring

the patient to spend additional time with the experimenter to collect data. An sEMG system

that is easy to use could be sent home with the patient, so that data collection could be

obtained as the patient performs home exercises. For example, HD-sEMG technology could

be applied to this problem to allow patients to place an array of electrodes over the entirety

of the desired region, and the experimenter could later assess which electrodes provide the

desired signals. The improvement in the ease of acquisition of EMG signals will be critical

for the development of a smart brace, as patients will eventually be required to use the device

at home without the help of a therapist or researcher.

2. Improvement of sEMG signal quality. sEMG signal quality is a major concern for identifying

patient muscle health. Care should be taken to ensure that the best signal can be read from

the patient. The susceptibility of sEMG signals to noise and motion artifact, as well as the

dependency of sEMG signals on environmental factors such as temperature and humidity,

will be an ongoing issue. As well, the EMG sensors will need to be placed correctly on each

patient’s limb while wearing the device. Again, the use of HD-sEMG electrode arrays may

assist with these issues.

The purpose of this thesis was to develop and evaluate EMG-based classification models for

identifying and monitoring the health of elbow trauma patients. Classification models were de-
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veloped that indicated possible to discern between healthy and injured limbs of patients with

accuracies of up to 82%. This work also indicated that there are EMG trends that may be used

to evaluate patient health. However, the models developed in this thesis are not yet useful for a

practical elbow brace. There is the potential for implementing a classification model of health in a

rehabilitative elbow brace to assess patients recovering from elbow trauma, however, further work

in this direction, including further data collection, validation, optimization, and improvements to

the existing state-of-the-art EMG acquisition systems will be necessary to achieve this goal.
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Permissions and Approvals

The following ethics permission statements and forms are presented in this Appendix:

1. Ethics Approval for Trials on Patients from the Research Ethics Board for Health Sciences

Research Involving Human Subjects at the University of Western Ontario

2. Patient Consent Form

3. Patient Trial Form

4. Permissions for Images
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Musculoskeletal Conditions cost the Canadian health care system over $17 billion yearly. The 

purpose of this study is to create a reference base of task-specific bio-signals of people’s arm 

motions in order to inform the development of smart rehabilitation technologies (smart braces). 

Our smart brace, the WearMe Brace, is a rigid brace in development for the purpose of 

supporting a patient’s weak or deformed arm to enable functional activities. In order to enhance 

in the development of the brace, muscle activity data will be collected and analyzed to determine 

how muscle activity changes when the muscles heal. This will provide more intuitive and 

interpretable information for the control system of the smart brace. The results of the trials will 

provide valuable information for future improvements of the brace, such that it can provide 

therapy and assist individuals with upper arm musculoskeletal conditions.  

  

You are being asked to participate because you have a musculoskeletal injury or disorder in your 

arm. Your usual standard of care will not be altered.   
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Up to 300 people will participate in this study and it will take 1 year to complete. It is expected 

that you will be in this study throughout the length of your treatment, until you fully recover 

(rehabilitation time is different from patient to patient).  

  

Study Design and Procedures:  

  

The experiments will be conducted at the Hand Therapy Clinic at Saint Joseph’s Hospital. If 

you agree to participate, you will be first asked to sign the consent form. You will also be asked 

to fill out a self-reported trial form with your personal information as follows: age, gender, weight, 

height, and hand dominance. After that, a research coordinator will measure the dimensions of 

your arm. The one-time collection of such personal information is required because muscle 

activity is intimately related to these characteristics and being able to relate the data to these 

baseline values is critical for proper analysis.   

  

You will then be asked to sit down on a chair. Surface electrodes (small sensors) will be placed 

on the skin overlying each muscle or group of muscles in the upper arm and forearm (using sticky 

pads). These sensors do not obstruct normal movement and are not invasive. The skin where 

the sensors will be placed will be cleaned with alcohol. As the alcohol vaporizes, two electrodes 

will be placed on the biceps, four on the triceps, and four on the forearm.  

  

You will then be directed to perform the exercises prescribed by your hand therapist in his or 

her presence and guidance. The therapy normally provided by the therapist will not be modified. 

The activity of the arm muscles will be recorded during the tasks using the surface electrodes. A 

video camera will record the motions of your arm as you are performing the exercises. Your face 

will not appear in the frame of the camera at any time.  

  

If your other arm is healthy and uninjured, you will be asked to participate in a one-time trial. 

If you agree, surface electrodes will also be placed on that arm. You will then be asked to put 

your arm in an adjustable mechanical brace. Your arm will then be secured to the brace using 

padded straps. The brace limits the arm motion in one of your natural directions of motion. You 

will be asked to hold a 5-pound weight on your hand and will be instructed to perform elbow 

flexion-extension tasks (biceps-curls) requiring you to move your lower arm through a specified 

range at a low speed. You will perform 3 sets of 3 repetitions at 6 different ranges of motion (for 

a total of 54 repetitions), with a 2-minute break in between sets. We will measure arm motion 

and muscle activity while you perform these tasks. You will be given a few trial runs to help you 
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learn and understand the process and the speed required for the motions. This experiment is a 

one-time process and you will not be asked to do it again during your next visits. It is estimated 

to take up to 45 minutes for this one-time experiment.  

  

Your participation in this study is voluntary. You may decide not to be in this study, or to be in 

the study now and then change your mind later. You may leave the study at any time without 

affecting your care. We will give you new information that is learned during the study that might 

affect your decision to stay in the study.  

  

Withdrawal:  

If you decide to withdraw from the study, the information that was collected before you leave 

will still be used in order to help answer the research question. No new information will be 

collected without your permission.  

  

Risks:  

There are no added risks to you since you will be performing what your hand therapist is 

prescribing you to do.  

  

For the healthy arm, there may be temporary muscle discomfort/fatigue due to the tasks being 

performed. The mechanical brace will limit your motion in a single plane, which is one of your 

natural motion directions. The operation can be stopped immediately at any time you wish. The 

loads for the trial are comparable to the weight of a textbook.  

 

Benefits:  

There are no direct benefits to you by participating in this study. Although you may not benefit 

directly from this study, your participation may contribute to our basic knowledge of human 

mechanical dynamics, human muscle recruitment, and how to incorporate this knowledge into 

improving the treatment of musculoskeletal disorders. It will also allow us to advance in the 

development of a mechatronics-enabled elbow brace in our lab through tuning the system and 

using the data to allow the brace to provide individualized therapy to its wearers.  

  

Confidentiality:  

Confidentiality cannot be 100% guaranteed. All data will be stored in password-protected 

personal computer (University of Western Ontario, Spencer Engineering Building, Room 2091). 

Hardcopies of any documents will be stored in locked cabinets in TEB 373. The only documents 
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containing your name will be the Consent Forms, which will not be linked to any of the recorded 

data. Access to records and data is limited to authorized persons.   

  

Qualified representatives of the following organizations may look at your study records at the site 

where these records are held, for quality assurance (to check that the information collected for 

the study is correct and follows proper laws and guidelines).  

  

Examples include:  

• Representatives of Lawson Quality Assurance Education Program  

• Representatives of University of Western Ontario Health Sciences Research Ethics Board 

that oversees the ethical conduct of this study.  

• Representatives of Health Canada or other regulatory bodies (groups of people who 

oversee research studies) outside of Canada, such as the United States food and Drug 

Administration.  

• Intronix Technologies Corporation and its affiliated companies   

  

Some of the muscle activity data collected will be transferred to Intronix Technologies 

Corporation by using an encrypted USB hard drive in order to improve the data collection 

software.  Your anonymity will be protected through the use of alphanumeric codes when 

analyzing your experimental data.  

  

This project is supported by a Discovery Grant and an Engage grant of the Natural Sciences and 

Engineering Research Council (NSERC) of Canada, by the Western Strategic Support for 

NSERC Success Grant, by the Academic Development Fund, Western University, and by the 

Ontario Centres of Excellence with support from Intronix Technologies Corporation.   

  

If you have any questions or concerns regarding participation in our study, please contact Dr. 

Ana Luisa Trejos at (519) 661-2111 Ext. 89281, email: atrejos@uwo.ca  

If you have any questions about the conduct of this study or your rights as a research subject 

you may contact Dr. David Hill, Scientific Director, Lawson Health Research Institute at (519) 

667-6649.  A copy of this information package is yours to keep for your personal records.    
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CONSENT FORM  

  

Title of Research:   Title: Patient Data Collection and Analysis for an Elbow Smart 

Brace  

Principal Investigator:  Dr. Ana Luisa Trejos  

Co-Investigators:  Shrikant Chinchalkar  

Collaborators:  Emma Farago, Abelardo Escoto, and Intronix Technologies 

Corporation  

  

For the Participant:  

I have read and understand the above information describing this study. I have had the purposes, 

procedures and technical language of this study explained to me. I have been given sufficient 

time to consider the above information and to seek advice if I chose to do so. I have had the 

opportunity to ask questions which have been answered to my satisfaction. I am voluntarily 

signing this form. I will receive a copy of this consent form for my information.   

If at any time I have further questions, problems or adverse events, I can contact Dr. Ana Luisa 

Trejos, the principal investigator of the project, at (519) 661-2111 Ext. 89281 or any of the 

investigators and collaborators on the project.  

If I have any questions about the conduct of this study or your rights as a research subject I may 

contact Dr. David Hill, Scientific Director, Lawson Health Research Institute at (519) 6676649.   

By signing this consent form, I am indicating that I agree to participate in this study.  

  

  

_________________________  ___________________________  _______________  

Name of Participant  Signature of Participant  Date  

(Please print)  

  

  

_________________________  ____________________________  _______________  

Name of Person Obtaining  Signature of Person Obtaining   Date  

Informed Consent  Informed Consent  
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TRIAL FORM 
 

Title of Research:  Patient Data Collection and Analysis for an Elbow Smart 
Brace 

Principal Investigator: Dr. Ana Luisa Trejos 

Co-Investigators: Shrikant Chinchalkar 

Coordinators: Emma Farago, Abelardo Escoto 

 

To be filled out by the Participant: 

If you are not comfortable answering any of these questions you do not have to respond.  
 
Age: ___________       Weight: _________ 
Dominant Hand: R  L     Height: __________ 
Gender: M  F  
 
To be measured and entered by the Coordinator:  
 

Upper arm length: ___________mm            Upper arm circumference: ____________mm 

Forearm length: _____________mm            Forearm circumference: ______________mm  

Hand length: ________________mm           Hand circumference: ________________ mm 

 

Subject Code: _____________ 
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MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED 

WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY 

QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, 

INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES 
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED 
BY YOU.  

    

WILEY shall have the right to terminate this Agreement immediately upon breach of 
this Agreement by you. 

    

You shall indemnify, defend and hold harmless WILEY, its Licensors and their 
respective directors, officers, agents and employees, from and against any actual or 
threatened claims, demands, causes of action or proceedings arising from any breach 
of this Agreement by you. 

    

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR 

ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY 

SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR 

PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN 

CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR 
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, 

WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, 

NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT 

LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, 

BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND 
WHETHER 

OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY 
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED 
HEREIN.  

    

Should any provision of this Agreement be held by a court of competent jurisdiction to 
be illegal, invalid, or unenforceable, that provision shall be deemed amended to 
achieve as nearly as possible the same economic effect as the original provision, and 
the legality, validity and enforceability of the remaining provisions of this 
Agreement shall not be affected or impaired thereby.     

The failure of either party to enforce any term or condition of this Agreement shall not 
constitute a waiver of either party's right to enforce each and every term and condition 
of this Agreement. No breach under this agreement shall be deemed waived or 
excused by either party unless such waiver or consent is in writing signed by the party 
granting such waiver or consent. The waiver by or consent of a party to a breach of 
any provision of this Agreement shall not operate or be construed as a waiver of or 
consent to any other or subsequent breach by such other party.  

    

This Agreement may not be assigned (including by operation of law or otherwise) by 
you without WILEY's prior written consent.     

Any fee required for this permission shall be non-refundable after thirty (30) days from 
receipt by the CCC. 
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These terms and conditions together with CCC's Billing and Payment terms and 
conditions (which are incorporated herein) form the entire agreement between you and 
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes 

all prior agreements and representations of the parties, oral or written. This Agreement 
may not be amended except in writing signed by both parties. This Agreement shall be 
binding upon and inure to the benefit of the parties' successors, legal representatives, 
and authorized assigns.  

    

In the event of any conflict between your obligations established by these terms and 
conditions and those established by CCC's Billing and Payment terms and 
conditions, these terms and conditions shall prevail.     

WILEY expressly reserves all rights not specifically granted in the combination of (i) 
the license details provided by you and accepted in the course of this licensing 
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms 
and conditions. 

    

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type 
was misrepresented during the licensing process. 

    

This Agreement shall be governed by and construed in accordance with the laws of the 
State of New York, USA, without regards to such state's conflict of law rules. Any 
legal action, suit or proceeding arising out of or relating to these Terms and 
Conditions or the breach thereof shall be instituted in a court of competent jurisdiction 
in New York County in the State of New York in the United States of America and 
each party hereby consents and submits to the personal jurisdiction of such court, 
waives any objection to venue in such court and consents to service of process by 
registered or certified mail, return receipt requested, at the last known address of such 
party. 

    

WILEY OPEN ACCESS TERMS AND CONDITIONS 

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription 
journals offering Online Open. Although most of the fully Open Access journals publish 
open access articles under the terms of the Creative Commons Attribution (CC BY) License 
only, the subscription journals and a few of the Open Access Journals offer a choice of 
Creative Commons Licenses. The license type is clearly identified on the article. 

The Creative Commons Attribution License 

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and 
transmit an article, adapt the article and make commercial use of the article. The CC-BY 
license permits commercial and non- 

Creative Commons Attribution Non-Commercial License 

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use, 
distribution and reproduction in any medium, provided the original work is properly cited 
and is not used for commercial purposes.(see below) 

    

Creative Commons Attribution-Non-Commercial-NoDerivs License 

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) 
permits use, distribution and reproduction in any medium, provided the original work is 
properly cited, is not used for commercial purposes and no modifications or adaptations are 
made. (see below) 
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Use by commercial "for-profit" organizations 

Use of Wiley Open Access articles for commercial, promotional, or marketing 
purposes requires further explicit permission from Wiley and will be subject to a fee. 
Further details can be found on Wiley Online Library 
http://olabout.wiley.com/WileyCDA/Section/id-410895.html 

  

  

Other Terms and Conditions: 

    

  

  

v1.10 Last updated September 2015 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 
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JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS   

Jul 03, 2018 

 

  

This Agreement between Western University -- Emma Farago ("You") and John Wiley and 
Sons ("John Wiley and Sons") consists of your license details and the terms and conditions 
provided by John Wiley and Sons and Copyright Clearance Center. 
License Number 4377141360992 

License date Jun 27, 2018 

Licensed Content Publisher John Wiley and Sons 

Licensed Content Publication Muscle and Nerve 

Licensed Content Title Physiologic basis of potentials recorded in electromyography 

Licensed Content Author Daniel Dumitru 

Licensed Content Date Oct 23, 2000 

Licensed Content Volume 23 

Licensed Content Issue 11 

Licensed Content Pages 19 

Type of use Dissertation/Thesis 

Requestor type University/Academic 

Format Print and electronic 

Portion Figure/table 

Number of figures/tables 1 

Original Wiley figure/table 

number(s) 
Figure 1D 

Will you be translating? No 

Title of your thesis / 

dissertation 
Development of an EMG-based muscle health model for 

elbow trauma patients 

Expected completion date Aug 2018 

Expected size (number of 

pages) 
180 

Requestor Location Western University 
1151 Richmond St  

    

  
London, ON N6A 3K7 
Canada   
Attn: Emma Farago  

Publisher Tax ID EU826007151 

Total 

Terms and Conditions 

0.00 CAD 

TERMS AND CONDITIONS 

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or 
one of its group companies (each a"Wiley Company") or handled on behalf of a society with 
which a Wiley Company has exclusive publishing rights in relation to a particular work 
(collectively "WILEY"). By clicking "accept" in connection with completing this licensing 
transaction, you agree that the following terms and conditions apply to this transaction 
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(along with the billing and payment terms and conditions established by the Copyright 
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that 
you opened your RightsLink account (these are available at any time at 
http://myaccount.copyright.com). 

  

Terms and Conditions 

  

The materials you have requested permission to reproduce or reuse (the "Wiley 
Materials") are protected by copyright.  

  

You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone 
basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials 
for the purpose specified in the licensing process. This license, and any CONTENT 

(PDF or image file) purchased as part of your order, is for a one-time use only and 
limited to any maximum distribution number specified in the license. The first 
instance of republication or reuse granted by this license must be completed within 
two years of the date of the grant of this license (although copies prepared before the 
end date may be distributed thereafter). The Wiley Materials shall not be used in any 
other manner or for any other purpose, beyond what is granted in the license. 
Permission is granted subject to an appropriate acknowledgement given to the author, 
title of the material/book/journal and the publisher. You shall also duplicate the 
copyright notice that appears in the Wiley publication in your use of the Wiley 
Material. Permission is also granted on the understanding that nowhere in the text is a 
previously published source acknowledged for all or part of this Wiley Material. Any 
third party content is expressly excluded from this permission. 

    

With respect to the Wiley Materials, all rights are reserved. Except as expressly granted 
by the terms of the license, no part of the Wiley Materials may be copied, modified, 
adapted (except for minor reformatting required by the new Publication), translated, 
reproduced, transferred or distributed, in any form or by any means, and no derivative 
works may be made based on the Wiley Materials without the prior permission of the 
respective copyright owner.For STM Signatory Publishers clearing permission 

under the terms of the STM Permissions Guidelines only, the terms of the license 

are extended to include subsequent editions and for editions in other languages, 

provided such editions are for the work as a whole in situ and does not involve 
the separate exploitation of the permitted figures or extracts, You may not alter, 
remove or suppress in any manner any copyright, trademark or other notices displayed 
by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as 
security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the 
rights granted to you hereunder to any other person. 

    

The Wiley Materials and all of the intellectual property rights therein shall at all times 
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or 

their respective licensors, and your interest therein is only that of having possession of 
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the 
continuance of this Agreement. You agree that you own no right, title or interest in or 

to the Wiley Materials or any of the intellectual property rights therein. You shall have 
no rights hereunder other than the license as provided for above in Section 2. No right, 

license or interest to any trademark, trade name, service mark or other branding 
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall 

not assert any such right, license or interest with respect thereto     
NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR 
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REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, 

EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS 

OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE 

MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED 

WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY 

QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, 

INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES 
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED 
BY YOU.  

    

WILEY shall have the right to terminate this Agreement immediately upon breach of 
this Agreement by you. 

    

You shall indemnify, defend and hold harmless WILEY, its Licensors and their 
respective directors, officers, agents and employees, from and against any actual or 
threatened claims, demands, causes of action or proceedings arising from any breach 
of this Agreement by you. 

    

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR 

ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY 

SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR 

PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN 

CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR 
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, 

WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, 

NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT 

LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, 

BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND 
WHETHER 

OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY 
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED 
HEREIN.  

    

Should any provision of this Agreement be held by a court of competent jurisdiction to 
be illegal, invalid, or unenforceable, that provision shall be deemed amended to 
achieve as nearly as possible the same economic effect as the original provision, and 
the legality, validity and enforceability of the remaining provisions of this 
Agreement shall not be affected or impaired thereby.     

The failure of either party to enforce any term or condition of this Agreement shall not 
constitute a waiver of either party's right to enforce each and every term and condition 
of this Agreement. No breach under this agreement shall be deemed waived or 
excused by either party unless such waiver or consent is in writing signed by the party 
granting such waiver or consent. The waiver by or consent of a party to a breach of 
any provision of this Agreement shall not operate or be construed as a waiver of or 
consent to any other or subsequent breach by such other party.  

    

This Agreement may not be assigned (including by operation of law or otherwise) by 
you without WILEY's prior written consent.     

Any fee required for this permission shall be non-refundable after thirty (30) days from 
receipt by the CCC. 
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These terms and conditions together with CCC's Billing and Payment terms and 
conditions (which are incorporated herein) form the entire agreement between you and 
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes 
all prior agreements and representations of the parties, oral or written. This Agreement 
may not be amended except in writing signed by both parties. This Agreement shall be 
binding upon and inure to the benefit of the parties' successors, legal representatives, 
and authorized assigns.  

    

In the event of any conflict between your obligations established by these terms and 
conditions and those established by CCC's Billing and Payment terms and 
conditions, these terms and conditions shall prevail.     

WILEY expressly reserves all rights not specifically granted in the combination of (i) 
the license details provided by you and accepted in the course of this licensing 
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms 
and conditions. 

    

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type 
was misrepresented during the licensing process. 

    

This Agreement shall be governed by and construed in accordance with the laws of the 
State of New York, USA, without regards to such state's conflict of law rules. Any 
legal action, suit or proceeding arising out of or relating to these Terms and 
Conditions or the breach thereof shall be instituted in a court of competent jurisdiction 
in New York County in the State of New York in the United States of America and 
each party hereby consents and submits to the personal jurisdiction of such court, 
waives any objection to venue in such court and consents to service of process by 
registered or certified mail, return receipt requested, at the last known address of such 
party. 

    

WILEY OPEN ACCESS TERMS AND CONDITIONS 

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription 
journals offering Online Open. Although most of the fully Open Access journals publish 
open access articles under the terms of the Creative Commons Attribution (CC BY) License 
only, the subscription journals and a few of the Open Access Journals offer a choice of 
Creative Commons Licenses. The license type is clearly identified on the article. 

The Creative Commons Attribution License 

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and 
transmit an article, adapt the article and make commercial use of the article. The CC-BY 
license permits commercial and non- 

Creative Commons Attribution Non-Commercial License 

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use, 
distribution and reproduction in any medium, provided the original work is properly cited 
and is not used for commercial purposes.(see below) 

    

Creative Commons Attribution-Non-Commercial-NoDerivs License 

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) 
permits use, distribution and reproduction in any medium, provided the original work is 
properly cited, is not used for commercial purposes and no modifications or adaptations are 
made. (see below) 
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Use by commercial "for-profit" organizations 

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes 
requires further explicit permission from Wiley and will be subject to a fee. 

Further details can be found on Wiley Online Library 

http://olabout.wiley.com/WileyCDA/Section/id-410895.html 

  

  

Other Terms and Conditions: 

    

  

  

v1.10 Last updated September 2015 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 
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ELSEVIER LICENSE TERMS AND CONDITIONS  

Jun 27, 2018 

 

  

This Agreement between Western University -- Emma Farago ("You") and Elsevier 
("Elsevier") consists of your license details and the terms and conditions provided by 
Elsevier and Copyright Clearance Center. 
License Number 4377140748584 

License date Jun 27, 2018 

Licensed Content Publisher Elsevier 

Licensed Content Publication Journal of Neuroscience Methods 

Licensed Content Title Analysis of surface EMG spike shape across different levels of 

isometric force 

Licensed Content Author David A. Gabriel,Steven M. Lester,Sean A. Lenhardt,Edward D.J. 

Cambridge 

Licensed Content Date Jan 15, 2007 

Licensed Content Volume 159 

Licensed Content Issue 1 

Licensed Content Pages 7 

Start Page 146 

End Page 152 

Type of Use reuse in a thesis/dissertation 

Portion figures/tables/illustrations 

Number of 1 

figures/tables/illustrations 

Format both print and electronic 

Are you the author of this No 

Elsevier article? 

Will you be translating? No 

Original figure numbers Figure 3 

Title of your Development of an EMG-based muscle health model for elbow 

thesis/dissertation trauma patients 

Expected completion date Aug 2018 

Estimated size (number of 180 

pages) 

Requestor Location Western University 

1151 Richmond St  
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London, ON N6A 3K7 

 Canada   

Attn: Emma Farago  

Publisher Tax ID GB 494 6272 12 

Total 0.00 CAD 

Terms and Conditions 

INTRODUCTION 

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in 
connection with completing this licensing transaction, you agree that the following terms 
and conditions apply to this transaction (along with the Billing and Payment terms and 
conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you 
opened your Rightslink account and that are available at any time at 
http://myaccount.copyright.com). 

GENERAL TERMS 

2. Elsevier hereby grants you permission to reproduce the aforementioned material 
subject tothe terms and conditions indicated. 
3. Acknowledgement: If any part of the material to be used (for example, figures) 
hasappeared in our publication with credit or acknowledgement to another source, 
permission must also be sought from that source.  If such permission is not obtained then 
that material may not be included in your publication/copies. Suitable acknowledgement to 
the source must be made, either as a footnote or in a reference list at the end of your 
publication, as follows: 
"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of 
chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE 
SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The 
Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with 
permission from Elsevier." 
4. Reproduction of this material is confined to the purpose and/or media for 
whichpermission is hereby given. 
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may 
bealtered/adapted minimally to serve your work. Any other abbreviations, additions, 
deletions and/or any other alterations shall be made only with prior written authorization of 
Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can 
be made to any Lancet figures/tables and they must be reproduced in full. 
6. If the permission fee for the requested use of our material is waived in this 
instance,please be advised that your future requests for Elsevier materials may attract a fee. 
7. Reservation of Rights: Publisher reserves all rights not specifically granted in 
thecombination of (i) the license details provided by you and accepted in the course of this 
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment 
terms and conditions. 
8. License Contingent Upon Payment: While you may exercise the rights 
licensedimmediately upon issuance of the license at the end of the licensing process for the 
transaction, provided that you have disclosed complete and accurate details of your 
proposed use, no license is finally effective unless and until full payment is received from 
you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and 
conditions.  If full payment is not received on a timely basis, then any license preliminarily 
granted shall be deemed automatically revoked and shall be void as if never granted.  
Further, in the event that you breach any of these terms and conditions or any of CCC's 
Billing and Payment terms and conditions, the license is automatically revoked and shall be 
void as if never granted.  Use of materials as described in a revoked license, as well as any 
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use of the materials beyond the scope of an unrevoked license, may constitute copyright 
infringement and publisher reserves the right to take any and all action to protect its 
copyright in the materials. 
9. Warranties: Publisher makes no representations or warranties with respect to the 
licensedmaterial. 
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, 
andtheir respective officers, directors, employees and agents, from and against any and all 
claims arising out of your use of the licensed material other than as specifically authorized 
pursuant to this license. 
11. No Transfer of License: This license is personal to you and may not be 
sublicensed,assigned, or transferred by you to any other person without publisher's written 
permission. 
12. No Amendment Except in Writing: This license may not be amended except in a 
writingsigned by both parties (or, in the case of publisher, by CCC on publisher's behalf). 
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in 
anypurchase order, acknowledgment, check endorsement or other writing prepared by you, 
which terms are inconsistent with these terms and conditions or CCC's Billing and Payment 
terms and conditions.  These terms and conditions, together with CCC's Billing and Payment 
terms and conditions (which are incorporated herein), comprise the entire agreement 
between you and publisher (and CCC) concerning this licensing transaction.  In the event of 
any conflict between your obligations established by these terms and conditions and those 
established by CCC's Billing and Payment terms and conditions, these terms and conditions 
shall control. 
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions 
describedin this License at their sole discretion, for any reason or no reason, with a full 
refund payable to you.  Notice of such denial will be made using the contact information 
provided by you. Failure to receive such notice will not alter or invalidate the denial.  In no 
event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, 
expenses or damage incurred by you as a result of a denial of your permission request, other 
than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center 
for denied permissions. 

LIMITED LICENSE 

The following terms and conditions apply only to specific license types: 

15. Translation: This permission is granted for non-exclusive world English rights only 
unless your license was granted for translation rights. If you licensed translation rights you 
may only translate this content into the languages you requested. A professional translator 
must perform all translations and reproduce the content word for word preserving the 
integrity of the article. 
16. Posting licensed content on any Website: The following terms and conditions 
apply as follows: Licensing material from an Elsevier journal: All content posted to the web 
site must maintain the copyright information line on the bottom of each image; A hyper-text 
must be included to the Homepage of the journal from which you are licensing at 
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at 
http://www.elsevier.com; Central Storage: This license does not include permission for a 
scanned version of the material to be stored in a central repository such as that provided by 
Heron/XanEdu. 
Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier 
homepage at http://www.elsevier.com . All content posted to the web site must maintain the 
copyright information line on the bottom of each image. 

  

Posting licensed content on Electronic reserve: In addition to the above the following 
clauses are applicable: The web site must be password-protected and made available only to 
bona fide students registered on a relevant course. This permission is granted for 1 year 
only. 
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You may obtain a new license for future website posting. 

17. For journal authors: the following clauses are applicable in addition to the above: 

Preprints: 
A preprint is an author's own write-up of research results and analysis, it has not been 
peerreviewed, nor has it had any other value added to it by a publisher (such as formatting, 
copyright, technical enhancement etc.). 
Authors can share their preprints anywhere at any time. Preprints should not be added to or 
enhanced in any way in order to appear more like, or to substitute for, the final versions of 
articles however authors can update their preprints on arXiv or RePEc with their Accepted 
Author Manuscript (see below). 
If accepted for publication, we encourage authors to link from the preprint to their formal 
publication via its DOI. Millions of researchers have access to the formal publications on 
ScienceDirect, and so links will help users to find, access, cite and use the best available 
version. Please note that Cell Press, The Lancet and some society-owned have different 
preprint policies. Information on these policies is available on the journal homepage. 
Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an 
article that has been accepted for publication and which typically includes 
authorincorporated changes suggested during submission, peer review and editor-author 
communications. 
Authors can share their accepted author manuscript: 

immediately via their non-commercial person 
homepage or blog 
by updating a preprint in arXiv or RePEc with the accepted manuscript via 
their research institute or institutional repository for internal institutional 
uses or as part of an invitation-only research collaboration work-group 
directly by providing copies to their students or to research collaborators 
for their personal use 
for private scholarly sharing as part of an invitation-only work group on 

commercial sites with which Elsevier has an agreement 

After the embargo period via non-commercial hosting platforms such as their 

institutional repository via commercial sites with which Elsevier has an agreement In 

all cases accepted manuscripts should: 

link to the formal publication via its DOI bear a 
CC-BY-NC-ND license - this is easy to do 
if aggregated with other manuscripts, for example in a repository or other site, be 

shared in alignment with our hosting policy not be added to or enhanced in any way to 
appear more like, or to substitute for, the published journal article. 

Published journal article (JPA): A published journal article (PJA) is the definitive final 
record of published research that appears or will appear in the journal and embodies all 
value-adding publishing activities including peer review co-ordination, copy-editing, 
formatting, (if relevant) pagination and online enrichment. 
Policies for sharing publishing journal articles differ for subscription and gold open access 
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Appendix B

MATLAB Code

This appendix includes the MATLAB codes used to conduct the EMG feature extraction and

analysis work presented in this thesis. The appendix is divided into sections describing the codes

used for segmentation (Section B.1), feature functions (Section B.2), feature extraction (Section

B.3), classification (Section B.4), and majority vote classification (Section B.5).

B.1 Segmentation Codes

The first step of EMG analysis was to segment the EMG data into meaningful regions of muscle

activation. This section describes the codes used to divide the data into segments representing

each motion.

Teager Kaiser Energy Operator (TKEO) Function

The emgprocessTKEO function was developed to condition the signals with the Teager Kaiser

Energy Operator (TKEO) in order to provide a clearer observation of the onset and offset of muscle

contractions during motion.

1 function TKEO = emgprocessTKEO(rawsignal , fs)

2 %set EMG baseline to zero

3 y = rawsignal - mean(rawsignal);

4 [l, w] = size(y);

5 %apply TKEO operator to the data

167
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6 TKEOop = zeros(l,w);

7 for i = 2:l-1

8 for j = 1:w

9 TKEOop(i,j) = y(i,j)^2 - y(i+1,j)*y(i-1,j);

10 end

11 end

12 %rectification

13 rect = abs(TKEOop);

14 %apply a 50Hz LPF to the data for threshold analysis

15 fc = 50;

16 [a,b] = butter (2,fc/(fs/2));

17 TKEO = filtfilt(a,b,rect);

18 end

Automatic Segmentation

The emgprocessTKEO function was implemented in the codes used for data segmentation. The

automatic segmentation code is shown below.

1 p = [331 49 1164 948];

2 set(0, 'DefaultFigurePosition ', p)

3 fs =1925.93; % sampling frequency Hz

4 motions = {'EFE', 'PS', 'WFE', 'URD', 'HOC'};

5 muscles = {'bb', 'tb1', 'tb2', 'pt', 'brd', 'ecu', 'fcu'};

6

7 %VARIABLES

8 file_output_motion = 'WF'; %motion to identify

9 health = 1; %health = 0 -> injured , health = 1 -> healthy

10 subjects = {'S137'}; %subject list

11 musc = 1; %muscle of interest

12 mot= 1; %motion of interest

13

14 for s = 1:numel(subjects)

15 filename = strcat('C:\Users\Emma\Documents\Data\', ...

16 subjects{s},'\',subjects{s},motions{mot},'.csv');

17 rawdata = xlsread(filename);

18 % IMPORT EMG DATA

19 rawemgdata=zeros(length(rawdata) ,7);

20 count = 1;
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21 if health ==0

22 cols = 2:8:50;

23 else

24 cols = 66:8:114;

25 end

26 for i = cols

27 rawemgdata (:,count)=rawdata(:,i);

28 count = count +1;

29 end

30

31 % CONDITION EMG DATA WITH TKEO

32 [~,filt] = emgprocessTKEO(rawemgdata ,fs);

33

34 % PLOT EMG SIGNAL

35 figure (1)

36 hold off

37 plot(filt(:,musc))

38 title(filename)

39 legend (muscles{musc})

40

41

42

43 % SELECT BASELINE REGION

44 [x_values ,~] = ginput;

45 x_values = floor(x_values);

46 baseline = filt(x_values (1):x_values (2),musc);

47

48 % FIND THRESHOLDS

49 h = 15;

50 T1 = mean(baseline)+h*std(baseline);

51 t2 = 25; %starting threshold

52 t3=200; %ending threshold

53

54 %DETERMINE ONSET AND OFFSET

55 divisions = zeros (3,2);

56 start =2;

57 for i = 1:3

58 count = 0;

59 % FIND POINT WHEN T2 CONSECUTIVE SAMPLES EXCEED T1

60 while count <t2

61 if filt(start ,musc)>T1 && filt(start -1,musc)>T1
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62 count = count +1;

63 else

64 count = 0;

65 end

66 start=start +1;

67 end

68 divisions(i,1) = start;

69 count = 0;

70 % FIND POINT WHEN T3 CONSECUTIVE SAMPLES ARE BELOW T1

71 while count <t3

72 if filt(start ,musc)<T1 && filt(start -1,musc)<T1

73 count = count +1;

74 else

75 count = 0;

76 end

77 start=start +1;

78 end

79 divisions(i,2) = start;

80 end

81

82 % VALIDATE WITH GRAPH

83 figure

84 plot(filt(:,musc))

85 hold on

86 scatter(divisions (:,1) ,[0,0,0], 'g')

87 scatter(divisions (:,2) ,[0,0,0], 'r')

88 title (strcat('validation ', subjects{s}))

89

90 % SAVE DATA TO FILE

91 if health ==0

92 name = 'Injured ';

93 else

94 name = 'Healthy ';

95 end

96 for i = 1:3

97 savefilename = strcat('C:\Users\Emma\Documents\Reps',...

98 '\',name ,'\',subjects{s},...

99 file_output_motion , '_R',num2str(i),'.csv');

100 A = rawemgdata(divisions(i,1):divisions(i,2) ,:);

101 csvwrite(savefilename ,A)

102 end
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103 end

Manual Segmentation

Each segmentation was observed visually in order to determine if the segmentation appeared to be

correct based on motion activation. If the segmentation was not conducted appropriately by the

automatic method, the segmentation was performed by manually indicating the desired regions to

segment using the sEMG voltage vs. time plot. The manual segmentation is shown below.

1 p = [331 49 1164 948];

2 set(0, 'DefaultFigurePosition ', p)

3 fs =1925.93; % sampling frequency Hz

4 motions = {'EFE', 'PS', 'WFE', 'URD', 'HOC'};

5 muscles = {'bb', 'tb1', 'tb2', 'pt', 'brd', 'ecu', 'fcu'};

6

7 %VARIABLES

8 file_output_motion = 'WF'; %motion to identify

9 health = 1; %health = 0 -> injured , health = 1 -> healthy

10 subjects = {'S137'}; %subject list

11 musc = 1; %muscle of interest

12 mot= 1; %motion of interest

13

14 for s = 1:numel(subjects)

15 filename = strcat('C:\Users\Emma\Documents\Data\', ...

16 subjects{s},'\',subjects{s},motions{mot},'.csv');

17 rawdata = xlsread(filename);

18 % IMPORT EMG DATA

19 rawemgdata=zeros(length(rawdata) ,7);

20 count = 1;

21 if health ==0

22 cols = 2:8:50;

23 else

24 cols = 66:8:114;

25 end

26 for i = cols

27 rawemgdata (:,count)=rawdata(:,i);

28 count = count +1;

29 end

30

31 % CONDITION EMG DATA WITH TKEO
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32 [~,filt] = emgprocessTKEO(rawemgdata ,fs);

33

34 % PLOT DATA

35 figure (1)

36 hold off

37 plot(filt(:,musc))

38 title(filename)

39 legend (muscles{musc})

40

41 % DEFINE FILE NAME

42 if health ==0

43 name = 'Injured ';

44 else

45 name = 'Healthy ';

46 end

47

48 %SELECT SEGMENTS MANUALLY AND SAVE

49 [x_values ,~] = ginput;

50 x_values = floor(x_values);

51 for i = 1:3

52 savefilename = strcat('C:\Users\Emma\Documents\Reps',...

53 name ,'\',subjects{s},...

54 file_output_motion , '_R',num2str(i),'.csv');

55 A = rawemgdata(x_values(i*2-1):x_values(i*2) ,:);

56 csvwrite(savefilename ,A)

57 end

58 end
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B.2 Feature Function Codes

Functions were developed to calculate each EMG feature. Window size and increment could

be implemented, if necessary. If window size and increment were not specified in the function

inputs, the feature was calculated for the entire EMG signal. This section provides the codes to

generate each of the features implemented in this thesis. The feature function codes were developed

with assistance from Julian Saldarriaga, and by referring to the Myoelectric Control Development

Toolbox [122]. Feature functions for the ApEn and HFD features were developed after referring

to codes available on MATLAB Central File Exchange [123,124].

EMG Feature Function Template

The feature functions are all very similar to each other. The functions first develop data windows

based on the window size and increment specified by the user. Features are then extracted from

each window segment. The following code is the full feature function code for the MAV feature.

This code demonstrates the basic template for the feature functions. Other feature functions were

implemented by changing the “feature calculation” region indicated in the MAV function code to

the required code for each feature.

1 %Mean Amplitude Value (MAV)

2 function feat = mavfeat(X,winsize ,wininc)

3 if nargin < 3

4 if nargin < 2

5 winsize = size(X,1);

6 end

7 wininc = winsize;

8 end

9

10 datasize = size(X,1);

11 Nsignals = size(X,2);

12 datawin = ones(winsize ,1);

13 numwin = floor(( datasize - winsize)/wininc)+1;

14 feat = zeros(numwin ,Nsignals);

15 st = 1;

16 en = winsize;

17



B.2 Feature Function Codes 174

18 for i = 1: numwin

19 curwin = X(st:en ,:).* repmat(datawin ,1,Nsignals);

20 %feature calculation

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 feat(i,:) = mean(abs(curwin));

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 st = st + wininc;

25 en = en + wininc;

26 end

The “feature calculation” regions for the other feature functions are shown below:

Time Domain: Energy

MMAV1:

1 temp = 0;

2 for j = 1: winsize

3 if (0.25* winsize) <= j && j <= (0.75* winsize)

4 w_i = 1;

5 else

6 w_i = 0.5;

7 end

8 temp = temp + w_i*abs(curwin(j,:));

9 end

10 feat(i,:) = temp/winsize;

MMAV2:

1 temp = 0;

2 for j = 1: winsize

3 if ((0.25* winsize) <= j) && (j <= (0.75* winsize))

4 w_i = 1;

5 elseif j < (0.25* winsize)

6 w_i = 4*j/winsize;

7 else

8 w_i = 4*(j-winsize)/winsize;

9 end

10 temp = temp + w_i*abs(curwin(j,:));

11 end

12 feat(i,:) = temp/winsize;

IEMG:
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1 feat(i,:) = sum((abs(curwin)));

SSI:

1 temp = 0;

2 for j = 1: winsize

3 temp = temp + curwin(j,:) .^2;

4 end

5 feat(i,:) = temp/winsize;

VAR:

1 temp = 0;

2 for j = 1: winsize

3 temp = temp + curwin(j,:) .^2;

4 end

5 feat(i,:) = temp/(winsize -1);

RMS:

1 temp = 0;

2 for j = 1: winsize

3 temp = temp + curwin(j,:) .^2;

4 end

5 feat(i,:) = sqrt(temp/winsize);

LOG:

1 temp = 0;

2 for j = 1: winsize

3 temp = temp + log10(abs(curwin(j,:)));

4 end

5 feat(i,:) = exp(temp/winsize);

Time Domain: Information

WL:

1 temp = 0;

2 for j = 1:winsize -1

3 temp = temp + abs(curwin(j+1,:)-curwin(j,:));

4 end

5 feat(i,:) = temp;

AAC:
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1 temp = 0;

2 for j = 1:winsize -1

3 temp = temp + abs(curwin(j+1,:)-curwin(j,:));

4 end

5 feat(i,:) = temp/winsize;

DASDV:

1 temp = 0;

2 for j = 1:winsize -1

3 temp = temp + abs(( curwin(j+1,:)-curwin(j,:)).^2);

4 end

5 feat(i,:) = sqrt(temp/(winsize -1));

Time Domain: Frequency

The time domain features that were related to the frequency also required an optional threshold

value to be set. The preliminary part of the feature function was therefore modified for the time

domain: frequency features as follows:

1 function feat = zcfeat(X,winsize ,wininc ,threshold)

2 if nargin < 4

3 if nargin < 3

4 if nargin < 2

5 winsize = size(X,1);

6 end

7 wininc = winsize;

8 end

9 threshold = 0;

10 end

The feature calculation codes are as follows:

ZC:

1 for k = 1: Nsignals

2 temp = 0;

3 for j = 1:winsize -1

4 if sign(curwin(j,k)*curwin(j+1,k)) == -1

5 sgn = 1;

6 else

7 sgn = 0;
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8 end

9 if abs(curwin(j,k)-curwin(j+1,k)) >=threshold

10 check = 1;

11 else

12 check = 0;

13 end

14 if sgn == 1 && check == 1

15 temp = temp + 1;

16 end

17 end

18 feat(i,k) = temp;

19 end

SSC:

1 for k = 1: Nsignals

2 temp = 0;

3 for j = 2:winsize -1

4 if (curwin(j,k)- curwin(j-1,k)) > threshold

5 f1 = 1;

6 else

7 f1 = 0;

8 end

9 if (curwin(j,k)- curwin(j+1,k)) > threshold

10 f2 = 1;

11 else

12 f2 = 0;

13 end

14 temp = temp + f1*f2;

15 end

16 feat(i,k) = temp;

17 end

WAMP:

1 for k = 1: Nsignals

2 temp = 0;

3 for j = 1:winsize -1

4 if abs(curwin(j,k)-curwin(j+1,k)) >=threshold

5 temp = temp + 1;

6 else

7 temp = temp + 0;

8 end
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9 end

10 feat(i,k) = temp;

11 end

MYOP:

1 temp = 0;

2 for k = 1: Nsignals

3 for j = 1: winsize

4 if curwin(j,k) >=threshold

5 temp = temp + 1;

6 end

7 end

8 feat(i,k) = temp/winsize;

9 end

Time Domain: Multiple Features

The MAVS function calculates the MAV function for a series of consecutive windows. The feature

outputs are the differences between the features.

MAVS:

1 function feat = mavsfeat(X,winsize ,wininc ,k)

2

3 if nargin <4

4 if nargin < 3

5 if nargin < 2

6 winsize = size(X,1);

7 end

8 wininc = winsize;

9 end

10 k=3;

11 end

12 datasize = size(X,1);

13 Nsignals = size(X,2);

14 datawin = ones(winsize ,1);

15 numwin = floor(( datasize - winsize)/wininc)+1;

16 feat = zeros(numwin ,Nsignals *(k-1));

17

18 st = 1;

19 en = winsize;
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20 for i = 1: numwin

21 curwin = X(st:en ,:).* repmat(datawin ,1,Nsignals);

22 winsize_k = floor(winsize/k);

23 mav = zeros(k,Nsignals);

24 st2 = 1;

25 en2 = winsize_k;

26 for w = 1:k

27 curwin_k = curwin(st2:en2 ,:);

28 %feature calculation

29 %------------------------------------------------

30 mav(w,:) = mean(abs(curwin_k));

31 %-------------------------------------------------

32 st2 = st2 + winsize_k;

33 en2 = en2 + winsize_k;

34 end

35 for i2 = 1:k-1

36 feat(i,i2) = mav(i2+1,:)-mav(i2);

37 end

38 st = st + wininc;

39 en = en + wininc;

40 end

MHW:

1 %create 3 hamming windows with 30% overlap

2 L = length(curwin);

3 %length hamming

4 LH = floor (5/12*L);

5 w = hamming(LH);

6 for k = 1: Nsignals

7 feat1 = sum(( curwin (1:LH,k).*w).^2);

8 feat2 = sum(( curwin(floor(LH*.7):floor(LH*.7)+LH -1,k).*w).^2);

9 feat3 = sum(( curwin(L-LH+1:L,k).*w).^2);

10 feat (i,(k-1) *3+1:k*3) = [feat1 , feat2 , feat3];

11 end

MTW:

1 %create 3 trapezoidal windows with 30% overlap

2 L = length(curwin);

3 %length of window

4 LH = floor (5/12*L);

5 w = trapmf (1:LH ,[1 LH/4 LH*3/4 LH]);
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6 for k = 1: Nsignals

7 feat1 = sum(( curwin (1:LH,k) '.*w).^2);

8 feat2 = sum(( curwin(floor(LH*.7):floor(LH*.7)+LH -1,k) '.*w).^2);

9 feat3 = sum(( curwin(L-LH+1:L,k) '.*w).^2);

10 feat (i,(k-1) *3+1:k*3) = [feat1 , feat2 , feat3];

11 end

Prediction Model Coefficients

The prediction model coefficient codes for AR and CC features are shown in full. Both codes were

designed to be used for any order, but the default order is 4.

AR:

1 function feat = ARfeat( X, winsize ,wininc , order)

2 if nargin <4

3 if nargin < 3

4 if nargin < 2

5 winsize = size(X,1);

6 end

7 wininc = winsize;

8 end

9 order = 4;

10 end

11

12 datasize = size(X,1);

13 Nsignals = size(X,2);

14 datawin = ones(winsize ,1);

15 numwin = floor(( datasize - winsize)/wininc)+1;

16 feat = zeros(numwin ,Nsignals ,order);

17 st = 1;

18 en = winsize;

19 for i = 1: numwin

20 curwin = X(st:en ,:).* repmat(datawin ,1,Nsignals);

21 for k = 1: Nsignals

22 %feature calculation

23 %------------------------------------------------

24 temp = -aryule(curwin(:,k),order);

25 feat (i,k,1: order) = temp (2: order +1);

26 end

27 %-------------------------------------------------
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28 st = st + wininc;

29 en = en + wininc;

30 end

CC4:

1 function feat = ccfeat( X, winsize ,wininc , order)

2 if nargin <4

3 if nargin < 3

4 if nargin < 2

5 winsize = size(X,1);

6 end

7 wininc = winsize;

8 end

9 order = 4;

10 end

11

12 datasize = size(X,1);

13 Nsignals = size(X,2);

14 datawin = ones(winsize ,1);

15 numwin = floor(( datasize - winsize)/wininc)+1;

16

17 feat = zeros(numwin ,Nsignals*order);

18

19 st = 1;

20 en = winsize;

21 for i = 1: numwin

22 curwin = X(st:en ,:).* repmat(datawin ,1,Nsignals);

23

24 %feature calculation

25 %------------------------------------------------

26 for k = 1: Nsignals

27

28 temp = -aryule(curwin(:,k),order);

29 c = zeros(1,order);

30 c(1) = -temp (2);

31 for p = 2:order

32 temp2 = 0;

33 for l = 1:p-1

34 temp2 = temp2 +(1-l/p)*temp(p+1)*c(p-l);

35 end

36 c(p) = -temp(p+1)-temp2;
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37 end

38 feat (i,(k-1)*order +1:k*order) = c;

39 end

40 end

41 %-------------------------------------------------

42 st = st + wininc;

43 en = en + wininc;

44 end

Frequency Domain Features

MNF:

1 fs = 1925.93; %Sampling frequency (Hz)

2 feat(i,:) = meanfreq(curwin)*fs/2/pi;

MDF:

1 fs = 1925.93;

2 feat(i,:) = medfreq(curwin)*fs/2/pi;

PKF:

1 %Peak frequency (PKF) feature calculation

2 fs = 1925.93;

3 for k = 1: Nsignals

4 xdft = fft(curwin(:,k));

5 if mod(winsize ,2) == 0

6 xdft = xdft (1: winsize /2+1); %even window size

7 else

8 xdft = xdft (1:( winsize +1) /2); %odd window size

9 end

10 %compute power spectral density (PSD)

11 psdx = (1/(2* pi*winsize)) * abs(xdft).^2;

12 psdx (2:end -1) = 2*psdx (2:end -1);

13 freq = 0:fs/winsize:fs/2;

14 [~,b] = max(psdx);

15 feat (i,k) = freq(b);

16 end

MNP:

1 fs = 1925.93;

2 xdft = fft(curwin);
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3 if mod(winsize ,2) == 0

4 xdft = xdft (1: winsize /2+1); %even window size

5 else

6 xdft = xdft (1:( winsize +1) /2); %odd window size

7 end

8 %compute power spectral density (PSD)

9 psdx = (1/(2* pi*winsize)) * abs(xdft).^2;

10 psdx (2:end -1) = 2*psdx (2:end -1);

11 feat (i,:) = sum(psdx)/winsize;

TTP:

1 fs = 1925.93;

2 xdft = fft(curwin);

3 if mod(winsize ,2) == 0

4 xdft = xdft (1: winsize /2+1); %even window size

5 else

6 xdft = xdft (1:( winsize +1) /2); %odd window size

7 end

8 %compute power spectral density (PSD)

9 psdx = (1/(2* pi*winsize)) * abs(xdft).^2;

10 psdx (2:end -1) = 2*psdx (2:end -1);

11 feat (i,:) = sum(psdx);

SM1–3:

1 fs = 1925.93;

2 xdft = fft(curwin);

3 if mod(winsize ,2) == 0

4 xdft = xdft (1: winsize /2+1); %even window size

5 else

6 xdft = xdft (1:( winsize +1) /2); %odd window size

7 end

8 %compute power spectral density (PSD)

9 psdx = (1/(2* pi*winsize)) * abs(xdft).^2;

10 psdx (2:end -1) = 2*psdx (2:end -1);

11 freq = 0:fs/winsize:fs/2;

12 sm1feat (i,:) = freq*psdx;

13 sm2feat (i,:) = freq .^2* psdx;

14 sm3feat (i,:) = freq .^3* psdx;

VCF:

1 fs = 1925.93;
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2 xdft = fft(curwin);

3 if mod(winsize ,2) == 0

4 xdft = xdft (1: winsize /2+1); %even window size

5 else

6 xdft = xdft (1:( winsize +1) /2); %odd window size

7 end

8 %compute power spectral density (PSD)

9 psdx = (1/(2* pi*winsize)) * abs(xdft).^2;

10 psdx (2:end -1) = 2*psdx (2:end -1);

11 freq = 0:fs/winsize:fs/2;

12 M1 = freq*psdx;

13 M0 = sum(psdx);

14 M2 = freq .^2* psdx;

15 feat (i,:) = M2/M0 -(M1/M0)^2;

FR:

1 fs = 1925.93;

2 %Low Frequency Band

3 LLC = 15;

4 ULC = 45;

5 %High Frequency Band

6 LHC = 95;

7 UHC = 500;

8 xdft = fft(curwin);

9 if mod(winsize ,2) == 0

10 xdft = xdft (1: winsize /2+1); %even window size

11 else

12 xdft = xdft (1:( winsize +1) /2); %odd window size

13 end

14 %compute power spectral density (PSD)

15 psdx = (1/(2* pi*winsize)) * abs(xdft).^2;

16 psdx (2:end -1) = 2*psdx (2:end -1);

17 freq = 0:fs/winsize:fs/2;

18 %find index

19 %Low Frequency Band

20 [~, LLC_i]= min(abs(freq -LLC));

21 [~, ULC_i]= min(abs(freq -ULC));

22 %High Frequency Band

23 [~, LHC_i]= min(abs(freq -LHC));

24 [~, UHC_i]= min(abs(freq -UHC));

25 lower_band = sum(psdx(LLC_i:ULC_i));
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26 upper_band = sum(psdx(LHC_i:UHC_i));

27 feat (i,:) = lower_band/upper_band;

PSR:

1 fs = 1925.93;

2 n=20;

3 for k = 1: Nsignals

4 xdft = fft(curwin(:,k));

5 if mod(winsize ,2) == 0

6 xdft = xdft (1: winsize /2+1); %even window size

7 else

8 xdft = xdft (1:( winsize +1) /2); %odd window size

9 end

10 %compute power spectral density (PSD)

11 psdx = (1/(2* pi*winsize)) * abs(xdft).^2;

12 psdx (2:end -1) = 2*psdx (2:end -1);

13 freq = 0:fs/winsize:fs/2;

14

15 %find f0

16 [~,b] = max(psdx);

17 f0 = freq(b);

18

19 %Frequency Bands

20 [~, LC_i]= min(abs(freq -10));

21 [~, UC_i]= min(abs(freq -500));

22

23 [~, LC2_i]= min(abs(freq -(f0-n)));

24 [~, UC2_i]= min(abs(freq -(f0+n)));

25 P = sum(psdx(LC_i:UC_i));

26 P0 = sum(psdx(LC2_i:UC2_i));

27

28 feat (i,k) = P0/P;

29 end

Entropy Features

The full codes for the entropy features are shown below.

ApEn:

1 function feat = ApEnfeat(X,winsize ,wininc ,m1,r)

2 if nargin <5
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3 if nargin <4

4 if nargin < 3

5 if nargin < 2

6 winsize = size(X,1);

7 end

8 wininc = winsize;

9 end

10 m1 = 2;

11 end

12 r = 0.2* std(X);

13 end

14 m = m1;

15 datasize = size(X,1);

16 Nsignals = size(X,2);

17 datawin = ones(winsize ,1);

18 numwin = floor(( datasize - winsize)/wininc)+1;

19

20 feat = zeros(numwin ,Nsignals);

21

22 st = 1;

23 en = winsize;

24 for i = 1: numwin

25 curwin1 = X(st:en ,:).* repmat(datawin ,1,Nsignals);

26 for j = 1: Nsignals

27 curwin = curwin1(:,j);

28 Phi_m = zeros (1,2);

29 %feature calculation

30 %------------------------------------------------

31 for k = 1:2

32 m = m+k-1;

33 count = zeros(1,winsize -m+1);

34 %make the correlation dimension matrix (i.e. matrix of u_i)

35 corr_dim = zeros (m,winsize -m+1);

36 for i2 = 1:m

37 corr_dim(i2 ,:) = curwin(i2:winsize -m+i2);

38 end

39

40 %calculate Cm

41 for i3 = 1:winsize -m+1

42 tempMat = abs(corr_dim - repmat(corr_dim(:,i3),1,winsize -m+1));

43 boolMat = any(tempMat > r);
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44 count(i3) = sum(~ boolMat)/(winsize -m+1);

45 end

46 %calculate Phi_m

47 Phi_m(k) = sum(log(count))/(winsize -m+1);

48 end

49 feat(i,j) = Phi_m (1)- Phi_m (2);

50 m=m1;

51 end

52 %------------------------------------------------

53 st = st + wininc;

54 en = en + wininc;

55 end

SampleEn:

1 function feat = SampleEnfeat(X,winsize ,wininc ,m1,r)

2 if nargin <5

3 if nargin <4

4 if nargin < 3

5 if nargin < 2

6 winsize = size(X,1);

7 end

8 wininc = winsize;

9 end

10 m1 = 2;

11 end

12 r = 0.2* std(X);

13 end

14 m = m1;

15 datasize = size(X,1);

16 Nsignals = size(X,2);

17 datawin = ones(winsize ,1);

18 numwin = floor(( datasize - winsize)/wininc)+1;

19

20 feat = zeros(numwin ,Nsignals);

21

22 st = 1;

23 en = winsize;

24 for i = 1: numwin

25 curwin1 = X(st:en ,:).* repmat(datawin ,1,Nsignals);

26 for j = 1: Nsignals

27 curwin = curwin1(:,j);
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28 Phi_m = zeros (1,2);

29 %feature calculation

30 %------------------------------------------------

31 for k = 1:2

32 m = m+k-1;

33 count = zeros(1,winsize -m+1);

34 %make the correlation dimension matrix (i.e. matrix of u_i)

35 corr_dim = zeros (m,winsize -m+1);

36 for i2 = 1:m

37 corr_dim(i2 ,:) = curwin(i2:winsize -m+i2);

38 end

39

40 %calculate Cm

41 for i3 = 1:winsize -m+1

42 tempMat = abs(corr_dim - repmat(corr_dim(:,i3),1,winsize -m+1));

43 boolMat = any(tempMat > r);

44 count(i3) = (sum(~ boolMat) -1)/(winsize -m+1);

45 end

46 %calculate Phi_m

47 Phi_m(k) = sum(count)/(winsize -m);

48 end

49 feat(i,j) = -log(Phi_m (2)/Phi_m (1));

50 m=m1;

51 end

52 %------------------------------------------------

53 st = st + wininc;

54 en = en + wininc;

55 end

Fractal Dimension Features

The codes for the feature calculations of the fractal features are shown below.

MFL:

1 temp = 0;

2 for j = 1:winsize -1

3 temp = temp + (curwin(j+1,:)-curwin(j,:))^2;

4 end

5 feat(i,:) = log10(temp);

HFD:



B.2 Feature Function Codes 189

1 %get time series

2 kmax = 128;

3 X2 = zeros(kmax ,kmax ,winsize);

4 for k = 1:kmax

5 for m = 1:k

6 limit = floor ((winsize -m)/k);

7 j = 1;

8 for i2 = m:k:(m + (limit*k))

9 X2(k,m,j) = curwin(i2);

10 j = j + 1;

11 end

12 end

13 end

14 L = zeros(1, kmax);

15 for k = 1:kmax

16 L_m = zeros(1,k);

17 for m = 1:k

18 R = (winsize - 1)/( floor(( winsize - m)/k) * k);

19 aux = squeeze(X2(k,m,logical (~isnan(X2(k,m,:))))); %We get the sub -serie without

the NaNs.

20 for i2 = 1:( length(aux) - 1)

21 L_m(m) = L_m(m) + abs(aux(i2+1) - aux(i2));

22 end

23 L_m(m) = (L_m(m) * R)/k;

24 end

25 L(k) = sum(L_m)/k;

26 end

27 %Compute the HFD:

28 x = 1./(1: kmax);

29 aux = polyfit(log(x),log(L) ,1);

30 feat(i,n) = aux (1);

DFA:

1 %Detrended Fluctuation Analysis (DFA) feature calculation

2 for j = 1: Nsignals

3 curwin = curwin1(:,j);

4 %Step 1: Integrate

5 y = zeros(1,winsize);

6 t= 1:1: winsize;

7 for k = 1: winsize

8 y(k) = sum(curwin (1:k));
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9 end

10

11 %Step 2: Calculate Box Sizes

12 boxsize = 4;

13 nmax = winsize /10;

14 while boxsize(end)<nmax

15 boxsize(end+1)=boxsize(end)*2;

16 end

17

18 %Step 3: Fit Each Box to Quadratic Least Squares

19 for n = 1: length(boxsize)

20 temp = 0;

21 p = zeros (1,3);

22 pv = zeros(1,winsize);

23 m = boxsize(n);

24 for i2 = 1:m:winsize -m+1

25 temp = temp +1;

26 p(temp ,:)=polyfit(t(i2:i2+m-1),y(i2:i2+m-1) ,2);

27 pv(i2:i2+m-1) = polyval(p(temp ,:),t(i2:i2+m-1));

28

29 end

30 %Step 4: Calculate RMS

31 F(n)= sqrt ((1/ winsize)*sum(y-pv)^2);

32 end

33

34 %Step 5: Calculate self -similarity parameter , alpha (i.e. the feature)

35 fit = polyfit(log(boxsize),log10(F) ,1);

36 feat(i,j) = fit (1);

37 end

Higher Order Features

The codes for the feature calculations of the higher order features are shown below.

SKEW:

1 sigma = std (curwin);

2 mu = mean(curwin);

3 temp = 0;

4 for j = 1: winsize

5 temp = temp + (( curwin(j,:)-mu)/sigma).^3;

6 end
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7 feat(i,:) = temp/winsize ;

KURT:

1 sigma = std (curwin);

2 mu = mean(curwin);

3 temp = 0;

4 for j = 1: winsize

5 temp = temp + (( curwin(j,:)-mu)/sigma).^4;

6 end

7 feat(i,:) = (temp/winsize) -3; %subtract 3 to get 0 for a normal distribution

Spike Shape Analysis Features

The full code to generate all five of the major spike shape analysis features is shown below.

1 function feat = spikefeat( X, winsize ,wininc , th)

2 if nargin <4

3 if nargin < 3

4 if nargin < 2

5 winsize = size(X,1);

6 end

7 wininc = winsize;

8 end

9 th = 0;

10 end

11

12 datasize = size(X,1);

13 Nsignals = size(X,2);

14 datawin = ones(winsize ,1);

15 numwin = floor(( datasize - winsize)/wininc)+1;

16

17 feat = zeros(numwin ,Nsignals *5);

18

19 st = 1;

20 en = winsize;

21 for i = 1: numwin

22 curwin = X(st:en ,:).* repmat(datawin ,1,Nsignals);

23 for k = 1: Nsignals

24

25 %feature calculation

26 %------------------------------------------------
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27 time_dur = 5.1923e-04* length(curwin);

28 data_10 = curwin(:,k);

29

30 [pks ,locs] = findpeaks(data_10 ,'MinPeakHeight ',th);

31 [btm ,locbtm ]= findpeaks(-data_10 ,'MinPeakHeight ',th);

32 btm = -btm;

33

34 peak_no = length(pks);

35

36 %how to find spikes

37 spike_no = 0;

38 Ax = [];

39 Ay = [];

40 Bx = [];

41 By = [];

42 Cy = [];

43 Cx = [];

44

45 for j = 2: length(pks)-1

46 btml = max(find(locbtm <locs(j)));

47 btmlv = locbtm(btml);

48 btmh = min(find(locbtm >locs(j)));

49 btmhv = locbtm(btmh);

50

51 if isempty(btmlv) == 0 && isempty(btmhv)==0

52 if btmlv > locs(j-1) && btmhv < locs(j+1)

53 Ax(end+1) = btmlv;

54 Ay(end+1) = btm(btml);

55 Bx(end+1) = locs(j);

56 By(end+1) = pks(j);

57 Cy(end+1) = btm(btmh);

58 Cx(end+1) = btmhv;

59 spike_no = spike_no +1;

60 else

61 peaks_index = find(locs >btmlv & locs <btmhv);

62 test = btmlv;

63

64 if isempty(Ax) == 0

65 if test ~= Ax(end)

66 [By(end+1),ind] = max(pks(peaks_index));

67 Bx(end+1) = locs(peaks_index(ind));
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68 Ax(end+1) = btmlv;

69 Ay(end+1) = btm(btml);

70 Cy(end+1) = btm(btmh);

71 Cx(end+1)= btmhv;

72 spike_no = spike_no +1;

73 end

74 else

75 [By(end+1),ind] = max(pks(peaks_index));

76 Bx(end+1) = locs(peaks_index(ind));

77 Ax(end+1) = btmlv;

78 Ay(end+1) = btm(btml);

79 Cy(end+1) = btm(btmh);

80 Cx(end+1)= btmhv;

81 spike_no = spike_no +1;

82 end

83 end

84 end

85 end

86

87 %calculate single spike amplitudes (SA) and spike slopes (SS)

88 SA = zeros(1,spike_no);

89 SS = SA;

90 SD = SA;

91

92 for j = 1: spike_no

93 SA(j) = (By(j)-Ay(j)) + (By(j)-Cy(j))/2;

94 SS(j) = (By(j)-Ay(j))/(Bx(j)-Ax(j));

95 SD(j) = Cx(j)-Ax(j);

96 end

97

98 %% FEATURES %%

99

100 %MSA (Mean Spike Amplitude)

101 MSA = mean(SA);

102

103 %MSF (Mean Spike Frequency)

104 MSF = (spike_no +2)/time_dur;

105

106 %MSS (Mean Spike Slope)

107 MSS = mean(SS)/5.1923e-04;

108
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109 %MNPPS (Mean Number of Peaks per Spike)

110 MNPPS = peak_no/spike_no;

111

112 %MSD (Mean Spike Duration)

113 MSD = mean(SD)*5.1923e-04;

114

115 temp = [MSA , MSF , MSS , MNPPS , MSD];

116 feat(i,(k-1) *5+1:k*5) = temp;

117 %-------------------------------------------------

118 st = st + wininc;

119 en = en + wininc;

120 end

121 end
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B.3 Feature Generation Codes

The sEMG feature functions described in the previous section were implemented within the feature

generation codes to extract feature vectors. In addition to the sEMG feature functions, a function,

emgprocess trigno ( ) was developed to filter the EMG signals with a 20–400 Hz bandpass

filter and a 60 Hz notch filter as follows:

1 function f2 = emgprocess_trigno(rawsignal)

2 fs =1925.93; %Sample frequency

3

4 %Centre on x-axis

5 m = rawsignal - mean(rawsignal);

6

7 %Bandpass filter 20 - 400 Hz

8 [b,a]= butter (2 ,[20/(fs/2) ,400/(fs/2)]);

9 f1 = filtfilt(b,a,m);

10

11 %Notch filter 60 Hz

12 wo = 60/(fs/2);

13 bw = wo/10;

14 [b,a] = iirnotch(wo ,bw);

15 f2 = filtfilt(b,a,f1);

16 end

Feature generation codes for extracting features were developed for both single and multiple win-

dows. Features were extracted for each segment of data, and saved in separate files for each feature

and motion type.

Single Window Feature Generation

The following code extracts features for one window segment of the data.

1 %Basic Feature Generation Code

2 number_of_channels = 7;

3 feature_list = {'mflfeat ','myopfeat '};

4 health = {'Healthy ','Injured '};

5 motion_sets = {'EF', 'EE','P','S','WF','WE','UD','RD','HC','HO'};

6 number_of_features = length(feature_list);

7
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8 %GENERATE FEATURES

9 for h = 1:numel(health)

10 for k=1: numel(motion_sets)

11 if strcmp(health{h},'Injured ') == 1

12 %Injured Subjects

13 subjects = {'S84','S85','S86',...

14 'S137'};

15 else

16 %Healthy Subjects

17 subjects = {'S84','S85','S86',...

18 'S137'};

19 end

20 for f = 1:numel(feature_list)

21 B = zeros(length(subjects),number_of_channels);

22 for s = 1:numel(subjects)

23 A = zeros(3, number_of_channels *( number_of_features));

24 for r = 1:3

25 %Import EMG data

26 input_data_file = strcat('C:\Users\Emma\Documents\Data\Repetition Data

',motion_sets{k},'\',health{h},'\', subjects{s},motion_sets{k}, '_R

',num2str(r), '.csv');

27 emg_data = xlsread(input_data_file);

28 %Filter EMG data

29 emg_data = emgprocess_trigno(emg_data);

30 %Extract features

31 st = 1;

32 for ch = 1: number_of_channels

33 feature_function = str2func(feature_list{f});

34 %Feature array for all repetitions for one subject

35 A(r,st) = feature_function(emg_data(:,ch));

36 st = st+1;

37 end

38 end

39 B((s-1) *3+1:s*3,:) = A; %Feature array for all subjects

40 end

41 %Save array

42 savefilename = strcat('C:\Users\Emma\Documents\Data\Feature Data\',health{h},'\

',motion_sets{k},feature_list ,'.xlsx');

43 xlswrite(savefilename ,B);

44 end

45 end
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46 end

Multi-window Feature Generation

The following code is similar to the first feature generation code, but is developed for multiple

windows. The subject number for each window is saved within the feature set to allow patients to

be identifiable during the next step of leave-one-patient-out cross-validation.

1 %Generate Multi -window Features

2 number_of_channels = 7;

3 feature_list = {'mflfeat ','myopfeat '};

4 health = {'Healthy ','Injured '};

5 motion_sets = {'EF', 'EE','P','S','WF','WE','UD','RD','HC','HO'};

6

7 %Window Sizes

8 window_size = 500;

9 increment_size = 250;

10 number_of_features = numel(feature_list);

11

12 for f = 1:numel(feature_list)

13 %Develop list of subjects

14 for h = 1:numel(health)

15 for k=1: numel(motion_sets)

16 if strcmp(health{h},'Injured ') == 1

17 %Injured Subjects

18 subjects = {'S84','S85','S86',...

19 'S137'};

20 else

21 %Healthy Subjects

22 subjects = {'S84','S85','S86',...

23 'S137'};

24 end

25 B = [];

26 for s = 1:numel(subjects)

27 R = [];

28 for r = 1:3

29 A = [];

30 %Import EMG data

31 input_data_file = strcat('C:\Users\Emma\Documents\Data\Repetition Data

',motion_sets{k},'\',health{h},'\', subjects{s},motion_sets{k}, '_R
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',num2str(r), '.csv');

32 emg_data = xlsread(input_data_file);

33 %Filter EMG data

34 emg_data = emgprocess_trigno(emg_data);

35

36 %Calculate number of windows

37 datasize = length(emg_data);

38 numwin = floor(( datasize - window_size)/increment_size)+1;

39 %Develop feature array

40 st = 1;

41 for ch = 1: number_of_channels

42 feature_function = str2func(feature_list{f});

43 A = [A,feature_function(emg_data(:,ch),window_size ,increment_size)

];

44 end

45 R = [R;A]; %Array of all repetitions for each subject

46 end

47 R = [R,ones(size(R,1) ,1)*s]; %Save subject numbers

48 B = [B;R]; %Feature array of all subjects

49 end

50 %Save array

51 savefilename = strcat('C:\Users\Emma\Documents\Data\Feature Data\',health{h},'\

',motion_sets{k},feature_list{f},'.xlsx');

52 xlswrite(savefilename ,B);

53 end

54 end

55 end
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B.4 Classification

Following feature extraction, classification models for individual features or for feature sets were

developed and evaluated. The classification model code imports the feature data from the indi-

vidual excel files for each feature. The classification model options are linear discriminant analysis

(LDA), support vector machines (SVM), or random forest (RF). The accuracy of classification

using leave-one-patient out is determined for each individual motion. Classification model codes

were developed to categorize between two classes (healthy or injured) and between three classes

(healthy, early stages of rehabilitation, late stages of rehabilitation).

Healthy or Injured classification

The following code categorizes between the healthy and injured limbs of the patients.

1 %Basic Classification

2 feature_list = {'mflfeat ', 'myopfeat '};

3 model_type = 'LDA'; %LDA , SVM , or RF

4 motion_sets = {'EF','EE', 'P','S','WF','WE','UD','RD','HC','HO'};

5

6 A = zeros(1,numel(motion_sets));

7 for k = 1:numel(motion_sets)

8 healthy = [];

9 injured = [];

10 %Import feature sets

11 for f = 1: length(feature_list)

12 %Healthy features

13 healthy_name = strcat('C:\Users\Emma\Documents\Data\Feature Data\Healthy\',

motion_sets{k},feature_list{f},'.xlsx');

14 healthytemp= xlsread(healthy_name);

15 healthy = [healthy ,healthytemp ];

16 %Injured features

17 injured_name = strcat('C:\Users\Emma\Documents\Data\Feature Data\Injured\',

motion_sets{k},feature_list{f},'.xlsx');

18 injuredtemp = xlsread(injured_name);

19 injured = [injured ,injuredtemp ];

20 end

21

22 %Feature Set Arrays
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23 full = [healthy;injured ];

24 type = [ones(size(healthy ,1) ,1);zeros(size(injured ,1) ,1)];

25

26 match = 0; %Number of correct classifications

27 %Number of data sets

28 N = size(full ,1);

29 nds = size(healthy ,1);

30

31 for i = 1:3: nds

32 %Assign training data sets and test data sets

33 %Assign one subject to the test data set

34 train_data = full;

35 train_data ([i:i+2,nds+i:nds+i+2],:)= [];

36 train_type = type;

37 train_type ([i:i+2,nds+i:nds+i+2],:)= [];

38 test_data = full([i:i+2,nds+i:nds+i+2] ,:);

39 test_type = type([i:i+2,nds+i:nds+i+2] ,:);

40

41 %Train model

42 switch model_type

43 case 'LDA'

44 Mdl = fitcdiscr(train_data ,train_type);

45 case 'SVM'

46 Mdl = fitcecoc(train_data ,train_type);

47 case 'RF'

48 Mdl = TreeBagger (200, train_data ,train_type);

49 end

50 label = predict(Mdl ,test_data);

51 if strcmp(model_type ,'RF') == 1

52 label = str2num(cell2mat(label));

53 end

54 test_result = sum(eq(label ,test_type));

55 match = match + test_result;

56 end

57 accuracy = match/N*100 ;

58 A(k) = accuracy;

59 end

60 T = array2table(A,'VariableNames ',{'EF', 'EE','P','S','WF','WE','UD','RD','HC','HO'})
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Three levels of health classification

The following code implements classifiers for three levels of health. The training data sets are

developed using 12 data sets randomly from each group in order to balance the number of train-

ing sets representative of each of the three categories. The evaluation is repeated 10 times and

the average of the classification accuracies is determined in order to obtain an estimate of the

classification accuracy.

1 %Three Levels of Health Classification

2 feature_list = {'mflfeat ', 'myopfeat '};

3 model_type = 'LDA'; %LDA , SVM , or RF

4 motion_sets = {'EF','EE', 'P','S','WF','WE','UD','RD','HC','HO'};

5

6 A = zeros(1,numel(data_sets));

7 for k = 1:numel(data_sets)

8 healthy = [];

9 injured = [];

10 %Import feature sets

11 for f = 1: length(feature_list)

12 %healthy features

13 healthy_name = strcat('C:\Users\Emma\Documents\Data\Feature Data\Healthy\',

motion_sets{k},feature_list{f},'.xlsx');

14 healthytemp= xlsread(healthy_name);

15 healthy = [healthy ,healthytemp ];

16 %injured features

17 injured_name = strcat('C:\Users\Emma\Documents\Data\Feature Data\Injured\',

motion_sets{k},feature_list{f},'.xlsx');

18 injuredtemp = xlsread(injured_name);

19 injured = [injured ,injuredtemp ];

20 end

21

22 %Hard Coded Groups of Early and Late Stage Patients

23 early = injured ([1:3 ,7:9 , 10:12 , 13:15, 25:42 ,49:51 ,58:60 , 73:75] ,:);

24 late = injured ([4:6 ,16:24 ,43:48 , 52:57 ,61:72 , 76:81] ,:);

25

26 match = 0;

27

28 %Repeat Classifications 10 times

29 for r = 1:10

30 %Assign training data sets and test data sets
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31 %Assign 13 random patients from each health group

32 %to the training data set

33

34 %Healthy

35 dataset=randperm (27 ,13);

36 msize=numel(dataset);

37 test=dataset(randperm(msize ,1));

38 testn = (1+(test -1) *3) :(1+( test -1) *3+2);

39 train=dataset(find(dataset ~=test));

40 for n = 1: length(train)

41 trainn (1+(n-1) *3:3+(n-1) *3) = (1+( train(n) -1)*3) :(1+( train(n) -1)*3+2);

42 end

43 healthy_train = healthy(trainn ,:);

44 healthy_test = healthy(testn ,:);

45

46 %Early

47 dataset=randperm (13 ,13);

48 msize=numel(dataset);

49 test=dataset(randperm(msize ,1));

50 testn = (1+(test -1) *3) :(1+( test -1) *3+2);

51 train=dataset(find(dataset ~=test));

52 for n = 1: length(train)

53 trainn (1+(n-1) *3:3+(n-1) *3) = (1+( train(n) -1)*3) :(1+( train(n) -1)*3+2);

54 end

55 early_train = early(trainn ,:);

56 early_test = early(testn ,:);

57

58 %Late

59 dataset=randperm (14 ,13);

60 msize=numel(dataset);

61 test=dataset(randperm(msize ,1));

62 testn = (1+(test -1)*3) :(1+( test -1) *3+2);

63 train=dataset(find(dataset ~=test));

64 for n = 1: length(train)

65 trainn (1+(n-1) *3:3+(n-1) *3) = (1+( train(n) -1)*3) :(1+( train(n) -1)*3+2);

66 end

67 late_train = late(trainn ,:);

68 late_test = late(testn ,:);

69

70 %Training Data Set

71 train_data = [healthy_train; early_train; late_train ];
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72 train_type = [ones (12*3 ,1);(ones (12*3 ,1) +2); (ones (12*3 ,1) +1)];

73

74 %Test Data Set

75 test_data = [healthy_test; early_test; late_test ];

76 test_type = [ones (3,1);ones (3,1)+2; ones (3,1) +1];

77

78 %Train models

79 switch model_type

80 case 'LDA'

81 Mdl = fitcdiscr(train_data ,train_type);

82 case 'SVM'

83 Mdl = fitcecoc(train_data ,train_type);

84 case 'RF'

85 Mdl = TreeBagger (200, train_data ,train_type);

86 end

87 label = predict(Mdl ,test_data);

88 if strcmp(model_type ,'RF') == 1

89 label = str2num(cell2mat(label));

90 end

91 test_result = sum(eq(round(label),test_type));

92 match = match + test_result;

93 end

94 A(k)=match /(9*r)*100;

95 end

96 T = array2table(A,'VariableNames ',{'EF', 'EE','P','S','WF','WE','UD','RD','HC','HO'})

B.5 Majority Vote

The majority vote code implements a separate classification for each of the motions in each data

set. The final classification result is the mode of the outputs of the individual motion models. The

weighted majority vote result is determined as the highest sum of the weights. A majority vote

can also be implemented using only the top data sets.

1 %Majority Vote

2 feature_list = {'mflfeat ','myopfeat '};

3 model_type = 'LDA'; %LDA , SVM , or RF

4 vote_type = 'TOP'; %ALL , WEIGHT , TOP

5 switch vote_type

6 case {'ALL','WEIGHT '}
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7 motion_sets = {'EF','EE','P','S','WF','WE','UD','RD','HC','HO'};

8 case 'TOP'

9 motion_sets = {'EF','EE','P','S','WF','UD','HC'};

10 end

11 number_of_subjects = 27;

12 nds = number_of_subjects *3; %Number of data sets

13 N= nds*2;

14 A = zeros(1,numel(motion_sets));

15 match = 0; %Number of correct classifications

16 for i = 1:3: nds

17 final_label = zeros (6, numel(motion_sets));

18 for k = 1:numel(motion_sets)

19 healthy = [];

20 injured = [];

21 %Import feature sets

22 for f = 1: length(feature_list)

23 %Healthy features

24 healthy_name = strcat('C:\Users\Emma\Documents\Data\Feature Data\Healthy\',

motion_sets{k},feature_list{f},'.xlsx');

25 healthytemp= xlsread(healthy_name);

26 healthy = [healthy ,healthytemp ];

27 %Injured features

28 injured_name = strcat('C:\Users\Emma\Documents\Data\Feature Data\Injured\',

motion_sets{k},feature_list{f},'.xlsx');

29 injuredtemp = xlsread(injured_name);

30 injured = [injured ,injuredtemp ];

31 end

32 %Feature Set Arrays

33 full = [healthy;injured ];

34 type = [ones(nds ,1);zeros(nds ,1)];

35

36 %Assign training data sets and test data sets

37 %Assign one subject to the test data set

38 train_data = full;

39 train_data ([i:i+2,nds+i:nds+i+2],:)= [];

40 train_type = type;

41 train_type ([i:i+2,nds+i:nds+i+2],:)= [];

42 test_data = full([i:i+2,nds+i:nds+i+2] ,:);

43 test_type = type([i:i+2,nds+i:nds+i+2] ,:);

44

45 %Train Model
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46 switch model_type

47 case 'LDA'

48 Mdl = fitcdiscr(train_data ,train_type);

49 case 'SVM'

50 Mdl = fitcecoc(train_data ,train_type);

51 case 'RF'

52 Mdl = TreeBagger (200, train_data ,train_type);

53 end

54 label = predict(Mdl ,test_data);

55 if strcmp(model_type ,'RF') == 1

56 label = str2num(cell2mat(label));

57 end

58 final_label (:,k) = label;

59 end

60 %Majority Vote

61 switch vote_type

62 case {'ALL','TOP'}

63 vote = mode(final_label ') ';

64 case 'WEIGHT '

65 %Assign weights based on previous results

66 weights = [71 72.8 67.9 67.9 69.1 63 64.8 67.3 67.3 60.5];

67 healthy_sum = sum(final_label .*weights ,2);

68 injured_sum = sum(abs(final_label -1).*weights ,2);

69 vote = healthy_sum >injured_sum;

70 end

71 test_result = sum(eq(round(vote),test_type));

72 match = match + test_result;

73 end

74 accuracy = match/N*100
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