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Chapter 1  

1 Introduction 

1.1 The Stress Response 

The stress response is an essential survival mechanism that evolved to enhance an 

organism’s ability to respond when a threat is perceived. This emergency response — 

also referred to as the fight-or-flight response — involves the coordination of the nervous 

and endocrine systems to prime the animal to fight off an impending challenge or escape 

to safety. One important aspect of the stress response is the activation of the 

hypothalamic-pituitary-adrenal (HPA) axis and the subsequent release of stress hormones 

(glucocorticoids, GCs) into the bloodstream that have widespread physiological and 

psychological effects on the animal. While vital in life threatening situations, long-term 

activation of the stress response can be detrimental. For example, long-term elevated 

glucocorticoid levels have been implicated in immune system dysfunction, heart disease, 

diabetes, and psychological conditions such as depression and post-traumatic stress 

disorder (PTSD) (Lupien, McEwen, Gunnar, & Heim, 2009; McEwen, 2000). 

Fortunately, animals have an innate ability to fine-tune the magnitude of the response in 

accordance with the learned significance of a given stressor. Indeed, stress-induced 

activation of the HPA axis becomes less and less pronounced when an animal is 

repeatedly challenged by a predictable stressor (i.e., stress habituation). Importantly, the 

same animal still maintains its ability to respond normally, or even becomes sensitized, to 

a novel stressor. This points to complex forms of plasticity that allow the HPA axis to 

respond with opposing outputs (sensitization and habituation) depending on the stressor. 

These two forms of plasticity evolved to allow an animal to escape from the negative 

consequences of glucocorticoid actions when confronted with a non-threatening stressor, 

but to also maintain a response to unfamiliar (thus threatening) stressors that require 

glucocorticoids to support a full-blown stress response. 

It is important to emphasize that a sensitized stress response can be maladaptive and has 

been implicated in human psychopathologies, such as major depressive disorder, bipolar 
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disorder, anxiety, PTSD and psychosis (Harkness, Hayden, & Lopez-duran, 2015). For 

this reason, understanding the underlying neural mechanisms for this stress-induced 

plasticity is fundamental to advance our understanding of these diseases. Despite its 

importance, the neural mechanisms that support sensitization have not been identified. 

This project investigates the neural mechanisms that allow the stress response to 

overcome habituation and respond to novel or unfamiliar stressors. Here, we use a mouse 

model of chronic stress, repeated restraint stress (RRS), that has been shown to lead to 

HPA axis habituation to a repeated stressor (restraint) while responding normally (or in a 

sensitized manner) to a novel stressor. 

1.2 The HPA Axis 

The HPA axis is the neuroendocrine arm of the stress response that ultimately leads to the 

release of stress hormones to mobilize stored energy and prepare the body to respond to a 

stressor. It begins with neuroendocrine neurons in the paraventricular nucleus of the 

hypothalamus (PVN), which release corticotropin releasing hormone (CRH) into the 

hypophyseal portal circulation. CRH (in addition to other co-released secretagogues) 

stimulates the anterior pituitary to release adrenocorticotrophic hormone (ACTH) into the 

general circulation (Vale & River, 1977), which in turn, travels to the adrenal cortex and 

initiates the systemic release of glucocorticoids (GCs; Fig. 1.1).  

GCs have widespread physiological effects throughout the body. GCs (primarily cortisol 

in humans and corticosterone in animals) help the body to cope with a stressor by down-

regulating energy-demanding processes, such as growth, immune function and 

reproduction and divert energy towards metabolism to increase available glucose in the 

blood. In addition to these peripheral effects, GC receptors are widely expressed in the 

brain and act as a negative feedback at various locations along the stress pathway (e.g., 

PVN, hippocampus, prefrontal cortex), as well as mediate the cognitive and emotional 

changes associated with stress. Importantly, GCs play a role in mediating synaptic 

plasticity along stress regulatory neural circuits that allows for modification of future 

responses to stress (Sapolsky, Romero, & Munck, 2000). Although these changes are 

adaptive in the short-term, it is well known that chronic GC exposure can be detrimental 

(McEwen, 2000). For this reason, there must be mechanisms to control the plasticity of 
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the HPA axis and maintain the delicate balance between adaptive and detrimental stress 

responses.  

Due to the widespread actions of GCs, the HPA axis plays a role in regulating digestion, 

immune system function, sexuality, mood, and energy storage. Further, the HPA axis is 

under circadian control and can also be activated by non-traditional stressors, such as 

food intake (Dallman et al., 1987). However, for the purposes of this discussion, I will 

focus on HPA activity in response to stress.  
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Figure 1.1 The HPA axis 

Schematic diagram showing the HPA axis hormonal cascade. Neuroendocrine neurons in 

the PVN secrete CRH into the hypophyseal portal circulation. CRH travels to the anterior 

pituitary and stimulates the secretion of ACTH into the bloodstream. ACTH acts on the 

adrenal cortex to stimulate secretion of GCs, which act through negative feedback 

mechanisms on the pituitary, hypothalamus and upstream brain targets to limit further 

HPA axis activation.  
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1.3 The PVN 

1.3.1 Cell Types  

Neuroendocrine CRH neurons, the apex of the HPA axis, cluster in the PVN. However, 

the PVN is a heterogenous structure with a complex organization of multiple different 

cell types besides neuroendocrine CRH neurons. These are organized into three main 

categories: 1) magnocellular neuroendocrine neurons, which secrete oxytocin and 

vasopressin to the posterior pituitary; 2) parvocellular neuroendocrine neurons, that 

release CRH and other hormones to the anterior pituitary by way of the median eminence 

and hypophyseal portal circulation; and 3) parvocellular preautonomic neurons, that 

project to the brainstem and spinal cord to regulate the autonomic response to stress 

(Tasker & Dudek, 1991).  

These cell types can be distinguished based on the hormones they secrete but also by 

their electrophysiological properties. Differential ion channel expression between the 

three categories allows for identification by unique electrophysiological “fingerprints” 

(Fig. 1.2) in an ex vivo whole-cell patch clamp configuration (Luther et al., 2002; Luther 

& Tasker, 2000). Magnocellular neurons are characterized by a transient outward 

rectification upon depolarization from a hyperpolarized membrane potential (Fig. 1.2 B). 

This is mediated by voltage-gated A-type potassium (K+) channels (IA) and causes a 

delay to the onset of action potential firing (i.e., delay to first spike) (Tasker & Dudek, 

1991). Parvocellular preautonomic neurons exhibit a characteristic low-threshold spike 

upon depolarization from a hyperpolarized membrane potential (Fig. 1.2 D). This is due 

to the opening of low threshold-activated T-type Calcium (Ca2+) channels (IT). 

Parvocellular neuroendocrine neurons, which include CRH secreting cells, can be 

distinguished by their lack of outward rectification and a minimal low-threshold T-type 

Ca2+ component (Fig. 1.2 C) (Tasker & Dudek, 1991). Instead, depolarization of these 

neurons produces tonic firing. As these parvocellular CRH neurons form the apex of the 

HPA axis, they will be our focus of discussion in this study. It is important to note that 

parvocellular neuroendocrine neurons in the PVN can secrete other peptide hormones in 

addition to CRH, including: vasopressin, somatostatin, thyrotropin-releasing hormone, 

enkephalin, and vasoactive inhibitory peptide (Simmons & Swanson, 2009). Small 
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numbers of parvocellular neurons also synthesize and release growth-releasing hormone 

and dopamine. Recent advances in genetic mouse models allow for the precise 

identification of CRH-secreting parvocellular neurons, such as the CRH-reporter mouse 

line characterized by Wamsteeker Cusulin and colleagues (2013).  

  



7 

 

 

Figure 1.2 Electrophysiological fingerprints of cell types in the PVN 

(A) Current clamp protocol used by Luther and Tasker (2000) to differentiate between 

the three subtypes of neurons in the PVN. (B) Firing pattern of magnocellular PVN 

neurons, showing characteristic outward rectification (black arrow) upon depolarization 

due to A-type K+ channels (IA). (B) Parvocellular neurosecretory neurons (including 

CRH neurons) exhibit a lack of outward rectification (black arrow) and a minimal low 

threshold T-type Ca2+ component. (C) Parvocellular preautonomic neurons exhibit a low 

threshold-activated T-type Ca2+ channel component (IT; black arrow) following 

depolarization from a hyperpolarized membrane potential.  

Modified from “Voltage-gated currents distinguish parvocellular from magnocellular 

neurones in the rat hypothalamic paraventricular nucleus,” by J. A. Luther & J. G. 

Tasker. 2000.  The Journal of Physiology. 523(1): 193–209. Copyright (2000) The 

Journal of Physiology. Reprinted with permission.  
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1.3.2 Afferent Inputs to the PVN 

1.3.2.1 Overview 

The HPA axis can be activated by a wide variety of stress signals, including: visual, 

auditory, somatosensory and olfactory cues of a predator; somatosensory and humoral 

cues indicating pain, injury and inflammation; and psychological or emotional cues in 

anticipation of stress. To accommodate the numerous types of information capable of 

activating the HPA axis, the PVN is innervated by a wide variety of brain areas (Fig. 1.3). 

These afferent projections converge on CRH neurons and control their activation through 

different types of neurotransmitters and neuromodulators. It has been proposed that these 

different inputs transmit signals for distinct types of stress. Specifically, Herman and 

colleagues (2003), suggested that “real” stress and “perceived” stress are coded by 

distinct circuits. Here, “real” stress is defined as a physiological challenge or physical 

damage to the body (e.g., injury, pain, inflammation, loss of blood). This differs from 

“predicted” or “perceived” stress, which are stress responses mounted in anticipation of, 

rather than in reaction to, stimuli that signal threat to homeostasis. Accordingly, the 

authors propose that “real” stress involves direct innervation by brainstem and 

hypothalamic areas, whereas “perceived” stress has more involvement of limbic and 

forebrain afferents by way of relay sites such as the bed nucleus of the stria terminalis 

(BNST) (Herman et al., 2003). Importantly the precise roles of these afferents remain 

elusive as there is much overlap and intermixing within the PVN, making it technically 

difficult to study the physiological roles of afferents in isolation. In this section, we 

review the key inputs to parvocellular, putative neuroendocrine CRH neurons in the 

PVN. 
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Figure 1.3 Major inputs to the PVN 

Schematic diagram of the major inputs to the PVN. Abbreviations: AHA, anterior 

hypothalamus; ARC, arcuate nucleus; BLA, basolateral amygdala; BNST, bed nucleus of 

the stria terminalis; CeA, central amygdala; DMH, dorsomedial hypothalamus; Hc, 

hippocampus; LC, locus coeruleus; MeA, medial amygdala; MnPO, medial preoptic 
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nucleus; NTS, nucleus tractus solitarius; PBN, parabrachial nucleus; PVT, 

paraventricular thalamus; peri-fx, peri-fornical area; PFC, prefrontal cortex; Raphe, 

Raphe nuclei; VLM, ventrolateral medulla; vSub, ventral subiculum; ZI, zona incerta. 

 

Reprinted from “Stress-related synaptic plasticity in the hypothalamus,” by J. S. Bains, J. 

I. Wamsteeker Cusulin, & W. Inoue. 2015.  Nature Reviews. 16(7): 377–388. Copyright 

(2015) Nature Reviews. Reprinted with permission. 
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1.3.2.2 GABA 

Just over half of all synaptic terminals in the PVN are GABAergic (Decavel & van den 

Pol, 1992) and GABA terminals make the most synaptic contacts to CRH neurons 

(Johnson, Bains, & Watts, 2018). Indeed, the HPA axis is normally constrained by 

inhibition; a reduction in this tonic GABAergic drive (i.e., disinhibition) to CRH neurons 

activates the HPA axis (Hewitt & Bains, 2006), whereas injection of GABA agonists 

inhibit GC secretion following restraint stress (Cullinan, 1998). GABAergic projections 

arise from a variety of areas including: the posterior regions of the BNST (Cullinan, 

Herman, & Watson, 1993), dorsomedial hypothalamus (Cullinan et al., 1993), arcuate 

nucleus (Baker & Herkenham, 1995; Canteras, Simerly, & Swanson, 1995), medial 

preoptic nucleus (Viau & Meaney, 1996), anterior hypothalamus (Bali, Erdélyi, Szabó, & 

Kovács, 2005), peri-fornical area, and from peri-PVN GABA neurons that project to 

CRH neurons (Bowers, Cullinan, & Herman, 1998; Roland & Sawchenko, 1993). Many 

of these GABAergic projections to the PVN are believed to serve as important relay sites 

for the integration of stress signals from other brain areas (Herman, Mueller, & 

Figueiredo, 2004). For example, the posterior BNST sends predominant GABAergic 

projections to the PVN and integrates input from the central amygdala (Dong, Petrovich, 

& Swanson, 2001; Redgate & Fahringer, 1973), which conveys information about 

psychological stressors, as well as the medial amygdala (Cullinan et al., 1993), which is 

activated by systemic stressors.  

1.3.2.3 Glutamate 

Glutamatergic transmission is the predominant excitatory input to the PVN and is a 

crucial mediator of HPA axis activity (van den Pol, Wuarin, & Dudek, 1990). Injection of 

glutamate into the PVN causes ACTH release (Darlington, Miyamoto, Keil, & Dallman, 

1989), and injection of the glutamate receptor antagonist, kynurenate, into the PVN 

reduces HPA axis responses to restraint stress (Ziegler & Herman, 2000). About half of 

the terminals that appose CRH neurons are glutamatergic (Flak, Ostrander, Tasker, & 

Herman, 2009) and these are mostly non-somatic (Johnson et al., 2018). Glutamatergic 

synapses arise from a variety of areas including: periaqueductal gray, zona incerta, 

subfasicular nucleus, parabrachial nucleus, raphe nuclei, nucleus of the solitary tract, and 
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the ventrolateral medulla (Herman et al., 2003; Ziegler, Edwards, Ulrich-Lai, Herman, & 

Cullinan, 2012). Many of these projections are thought to co-release other 

neurotransmitters and peptides, such as noradrenaline, glucagon-like peptide, 

neuropeptide Y, but not GABA (Ziegler, Cullinan, & Herman, 2002). Glutamate acts on 

both pre- and postsynaptic ionotropic and metabotropic glutamate receptors. The 

ionotropic component is thought to be primarily mediated by AMPA and NMDA 

receptors; however, some studies have hinted towards a role for kainate action in the 

PVN: Evanson, Van Hooren, and Herman (2009) showed that injection of a specific 

kainate antagonist into the PVN increased release of ACTH and corticosterone and 

increased c-Fos immunoreactivity in the PVN, indicating the paradoxical inhibitory roles 

of kainite type glutamate receptors on PVN neurons’ excitability. Koenig and Cho (2005) 

showed that kainate receptor mRNA was upregulated following hypoglycemia stress. 

Interestingly, no electrophysiological evidence for kainate receptors in CRH neurons has 

been found, leading to the conclusion that the majority of PVN glutamate signaling is 

likely mediated by AMPA receptors.  

Changes in glutamatergic synapses are likely important for HPA axis activation as well 

as adaptation and plasticity following chronic stress (Evanson & Herman, 2015). It has 

been shown that NMDA receptors undergo stress-induced plasticity following chronic 

variable stress (Ziegler, Cullinan, & Herman, 2005), and acute immobilization (Bartanusz 

et al., 1995). Also, the marker for presynaptic glutamate vesicles (vesicular glutamate 

transporter 2; VGLUT2) is significantly increased following chronic variable stress, 

suggesting increased glutamatergic innervation (Flak et al., 2009). Similarly, RRS 

increased glutamatergic synaptic transmission to CRH neurons, as measured by an 

increased frequency of excitatory activity. Further, our lab has recently shown that 

chronic variable stress decreases glutamatergic synaptic multiplicity in CRH neurons, 

thereby dampening synaptic gain (Salter, Sunstrum, Matovic, & Inoue, 2018). Clearly, 

there is strong evidence that glutamate signaling plays an important role in the 

modulation of the HPA axis, but precise changes in their functions require further 

investigation. 
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1.3.2.4 Catecholamine 

A large portion of synaptic terminals in the PVN express markers for catecholamine 

containing vesicles (tyrosine hydroxylase and dopamine beta dehydroxylase); however, 

no adrenaline inputs have been discovered suggesting they likely secrete noradrenaline 

(Johnson et al., 2018). Noradrenaline inputs to the PVN originate from brainstem nuclei, 

specifically the ventral medulla, nucleus of the solitary tract, and locus coeruleus 

(Swanson & Sawchenko, 1983). These inputs are known to activate the HPA axis 

(Plotsky, Cunningham, & Widmaier, 1989) in response to both psychological (Kinzig et 

al., 2003) and physiological stressors (Herman et al., 2003). It has been proposed that 

noradrenergic terminals may co-release glutamate (Swanson & Sawchenko, 1983; Ulrich-

Lai & Herman, 2009).  

1.3.2.5 Serotonin 

Serotonin injection into the PVN increases ACTH and corticosterone secretion, and 

therefore can activate the HPA axis (Feldman, Newman, & Weidenfeld, 2000; Pan & 

Gilbert, 1992). Interestingly, there is only a small contribution of serotonergic fibers 

innervating the PVN directly (Swanson & Sawchenko, 1983), which arise from the raphe 

nuclei. There is a much higher density of serotonergic fibers in the area surrounding the 

PVN, suggesting serotonin may act on GABAergic interneurons to CRH neurons, or 

synapse on other excitatory inputs to CRH neurons, just outside of the parvocellular 

PVN. However, it is still possible that these serotonergic fibers innervate distal dendrites 

of CRH neurons that reach outside the borders of the parvocellular region. Although the 

precise anatomy of this pathway is still elusive, there is strong evidence that the 

serotonergic projection modulates HPA axis activity. Pharmacological lesions of the 

serotonergic input (either by 5-HT antagonism in the PVN or raphe nuclei) result in a 

blunted ACTH response to restraint stress and endotoxin-induced stress in rats 

(Jørgensen, Knigge, Kjær, Vadsholt, & Warberg, 1998). It is possible that this is 

mediated by direct action on CRH neurons, as electrophysiological data shows that 5-

HT2CR agonists cause CRH neuron depolarization and an increase in firing rate (Heisler 

et al., 2007) and 5-HT1BR/5-HT6R activation resulted in c-Fos activation (Tung, Hardy, 

Wheeler, & Belsham, 2012).  
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1.3.2.6 Dopamine 

The PVN is innervated by dopaminergic projections from the zona incerta (Cheung, 

Ballew, Moore, & Lookingland, 1998), which may co-release glutamate. Dopamine 

receptor mRNA for D1, D2, D3, D4 and D5 have all been found in the PVN (Bitner et 

al., 2006; Bouthenet et al., 1991; Fremeau et al., 1991; Gurevich & Joyce, 1999; Rivkees 

& Lachowicz, 1997) and dopaminergic terminals are located in close proximity to CRH 

neurons (Liposits & Paull, 1989) suggesting dopamine may regulate HPA axis responses. 

Indeed, systemic administration of dopamine increases CRH mRNA production in the 

PVN (Eaton, Cheung, Moore, & Lookingland, 1996) and activates the HPA axis 

(Borowsky & Kuhn, 1992).  

1.3.2.7 Summary 

Although much work has been done to define the anatomical connections in the PVN, the 

precise nature of specific projections and how they modulate subtypes of stressors is not 

fully understood. It is likely that different neuromodulators work synergistically and 

through heterosynaptic modulation to regulate other neurotransmitters within the PVN.   

1.4 Habituation 

A central characteristic of the stress response is that the experience of stress itself 

changes subsequent responses. This has been shown extensively through the phenomenon 

of stress habituation, i.e., the decrease in the magnitude of a response to a repeated 

stressor (Grissom & Bhatnagar, 2009). For example, acute exposure to restraint in rats 

produces a robust rise in plasma ACTH levels; however, repeated exposure to restraint 

stress leads to attenuated production of ACTH with each subsequent exposure (Aguilera, 

1994). Habituation has also been shown to occur in response to cold stress, novel 

environment, water immersion, noise exposure, handling, and ethanol (Grissom & 

Bhatnagar, 2009). 

The concept of habituation was first characterized in a pioneering study by Thompson 

and Spencer (1966), in which 9 criteria were outlined to determine whether a given 

phenomenon represents habituation, which they defined as a “decrement as a result of 
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repeated stimulation”. These criteria were revisited and confirmed in a more recent 

review by a panel of experts in the field (Rankin et al., 2009) and specifically analyzed in 

regards to stress habituation in the same issue (Grissom & Bhatnagar, 2009). Grissom 

and Bhatnagar found that HPA axis habituation meets the criteria for habituation, and the 

authors highlight some key features for HPA axis habituation. 1) The HPA axis 

habituates to psychological (i.e., “perceived”) stressors more so than physiological (i.e., 

“real”) stressors. Although HPA axis activation occurs in response to both psychological 

and physiological stressors, it is only psychological stressors that generate decrements in 

stress responses with repeated exposure. The predicted adaptive value of this is simple; 

the animal consistently mounts a response when it is physically (i.e., actually) 

experiencing challenges, for example, injury, inflammation and starvation, but is able to 

fine-tune the stress response to psychological (i.e., anticipated but not actually 

happening) challenges based on the learned significance of a stressor. 2) Habituation is 

stressor-specific. That is, habituation to one type of stressor (e.g., restraint in mice) does 

not decrease subsequent responses to other stressors. This characteristic is one line of 

evidence that distinguishes habituation from general GC negative feedback (a second is 

that habituation is still evident in animals that lack GC negative feedback following 

adrenalectomy (Jaferi & Bhatnagar, 2006)). In some cases, the HPA axis is actually 

primed or sensitized for novel stressors after undergoing habituation to a repeated stressor 

(Bhatnagar & Dallman, 1998).  

Grissom and Bhatnagar  (2009) also emphasized the importance of studying HPA axis 

habituation and its mechanisms as it is closely linked to psychological disorders. It has 

been suggested that depression and PTSD may involve a failure to habituate to chronic 

stress. Despite the importance of this knowledge, remarkably little is known about the 

neural mechanisms underlying habituation. Our lab has recently identified a possible 

mechanism that could support habituation of the HPA axis. Inoue, Matovic, and Salter, 

(2017) found that mice that have habituated to RRS show decreased intrinsic excitability 

of CRH neurons. Specifically, CRH neurons fire fewer action potentials in response to 

depolarizing current injections after chronic stress. A similar change in the intrinsic 

excitability has been reported in rats after 3 days of repeated restraint (Kusek, Tokarski, 

& Hess, 2013). As CRH neuron activation controls the activation of the HPA axis, this 
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4.7 Sensitization at the level of CRH afferents 

Our mouse model of chronic stress, RRS, causes habituation at the level of the CRH 

neurons as shown by a reduction in c-Fos immunoreactivity and as a decrease in the 

intrinsic excitability. Importantly, following RRS, subsequent exposure to novel stress 

(e.g., cold swim) recovers c-Fos immunoreactivity despite the CRH neurons’ habituation. 

This points to two distinct forms of plasticity, that decrease sensitivity to homotypic 

stressors while also maintaining a normal response to novel stressors.  In the present 

study, we found that CRH neurons from mice exposed to the same RRS paradigm, show 

a greater capacity for synaptic activity at the level of the CRH afferents. This finding is 

similar to Kusek and colleagues (2013)’s finding that sEPSC frequency was greater after 

RRS. One difference was that the previous study revealed a stress-induced difference at 

baseline, whereas the present study only showed a trend towards a baseline frequency 

increase after RRS. As the activity of afferent inputs to CRH neurons determines their 

activity (and subsequent HPA axis activation), this increased capacity may compensate 

for habituation by increasing the response to incoming stress signals. Specifically, we 

found that the stress-induced synaptic change was only evident when synapses were 

driven (by forskolin) to a high level of activity and not at the baseline. This could suggest 

that exposure to a novel stressor, which would elicit high afferent stress activity to the 

PVN, would cause a greater response in CRH neurons after RRS. This finding supported 

our hypothesis that stress sensitization could manifest as an upregulation of neural circuit 

upstream of CRH neurons. However, further experiments are needed to show a causal 

link between this plasticity and hormonal or behavioural sensitization of HPA axis 

responses. Interestingly, our effect was not found to be an overall increase in synaptic 

activity (as shown by 4-AP experiments), but rather a difference in the response to 

cAMP-dependent activity, which may hint as to how a novel stressor is “coded” at the 

level of the PVN. In support of this theory, Gaillet, Lachuer, Malaval, Assenmacher, & 

Szafarczyk (1991) propose that specific neurotransmitter pathways (e.g., noradrenaline) 

represent specific types of stressors (Pacak & Palkovitis, 2001).  

Our data revealed that presynaptic HCN channels partially mediate the effects of 

forskolin on glutamatergic transmission to CRH neurons. Interestingly, HCN channels 
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have been found to undergo plasticity in response to chronic stress in other brain areas. 

Chronic stress increases HCN-mediated currents in the hippocampus and prefrontal 

cortex (Arnsten, 2011; Kim et al., 2017) but decreases HCN-mediated currents in the 

ventral tegmental area (Zhong et al., 2018), which was found to increase anxiety and 

depression behaviour. In line with these studies our data suggest that chronic stress 

causes HCN channel plasticity. Specifically, we propose that RRS upregulates the Ih, 

thereby increasing the capacity for forskolin-induced sEPSC increase through HCN 

channels. Future studies should attempt to pinpoint the nature of the HCN channel 

plasticity. Genetic approaches that modulate HCN channel expression can also be used to 

determine to what extent HCN channels modulate behavioural responses to stress in vivo. 

We believe the mechanism identified in the present study supports the ability of the HPA 

axis to respond normally (or in a sensitized manner) to a novel stressor despite being 

habituated to chronic stress.  

4.8 Conclusion 

This study identified a form of chronic stress-induced synaptic plasticity that could 

support sensitization of the HPA axis. We found that RRS potentiated glutamatergic 

afferents to CRH neurons, which manifests as a sensitization of these synapses to 

stimulation by the cAMP activator, forskolin. As our recent work showed that the 

intrinsic excitability of CRH neurons decreases after RRS (Inoue et al., 2017), the 

potentiated afferent activity may serve to overcome the decreased CRH neuron 

excitability when responding to novel stress. Specifically, we found that the response to 

the forskolin-induced increase in sEPSC frequency was greater after RRS, and this RRS-

induced synaptic potentiation was lost in the presence of the HCN channel antagonist 

ZD7288. Our data also indicate that the HCN channels targeted by ZD7288 are located 

on presynaptic terminals and facilitate the release of glutamate upon cAMP signaling. 

The ability of the HPA axis to undergo experience-dependent activity and habituate to 

chronic stress is a key mechanism that allows animals to conserve energy and prevent the 

detrimental effects of chronic glucocorticoid exposure. However, it is not adaptive to 

have a “downregulated” stress response if a novel stressor is encountered; therefore, a 

mechanism that allows the stress response to overcome habituation and respond to 
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unfamiliar stressors is vital to the survival of the animal. These data identify a possible 

mechanism and further our understanding of this important form of plasticity.  
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