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Abstract

There are new challenges in network security, introduced by the nature of modern networks

like IoT systems, Cloud systems, and other distributed systems. System resource limitations in

IoT, delays in processing the large stream of data from Cloud and distributed system, incapabil-

ity to handle multi-step attacks due to delay in updates, limited datasets used for Intrusion De-

tection System (IDS) training which impacts the system performance are some of the pressing

issues. To address these challenges, the author proposes Intelligent Network Security Systems,

a framework that can handle these issues and also be as accurate as a commercial grade IDS.

The proposed framework consists of three components: a Dataset Creation Software (DCS),

an Intrusion Detection System and a Learning module. This thesis presents implementation

details and validation results for DCS and IDS.

The first component is a highly customizable software framework capable of generating

labeled network intrusion datasets on demand. This software is able to collect data from a live

network as well as from a pre-recorded packet capture file. The output can be either Raw packet

capture (PCAP) with selected attributes per packet or a processed dataset with customized

attributes related to both individual packet features and overall traffic behavior within a time

window. The abilities of this component are compared with a state-of-the-art dataset creation

system through a feature comparison.

The proposed Intrusion Detection System is a novel, distributed IDS that is able to perform

in real-time in a distributed system. Hierarchical decision making is used to reduce traffic

overhead on the IDS and allow faster Intrusion Detection. The IDS also detects multi-step

attacks faster by updating the system rules when a reconnaissance attack is detected, without

any human intervention. Internal attacks are also detected easily because of the distributed

nature of the IDS. The performance tests show that the IDS performs 8 times faster on averages

with the hierarchical decision-making structure and still maintains the same level of accuracy

as Snort.

Keywords: Intrusion Detection, Intrusion Datasets, Distributed System Security, IoT and
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Chapter 1

Introduction

1.1 Motivation

Intrusion detection and prevention has become an important part of cybersecurity in recent

times due to the increase in network-based attacks and intrusions happening on computer sys-

tems across the world. Systems that have been thought of as being very secure have ended

up being hacked by intruders whose identity, in some cases, is just limited to a country name.

[74].

Network intrusion techniques are continuously evolving and intrusion detection algorithms

must evolve alongside to keep pace. Network Intrusion Detection System (NIDS) community

builds and tests security algorithms based on standard datasets. A common problem with

standard datasets is that they are a snapshot (often simulated) of intrusion and normal traffic

at the time of creation and quickly becomes outdated when newer types of network intrusions

occur [69]. Another issue with datasets is the limitation of the attacks that are presented in

them [69, 12].

Intrusion Detection Systems (IDS) encounter different types of traffic depending on the

type of network and the nature of services offered. However, standard datasets are created

on a specific network under a specific scenario. For example in the case of DARPA dataset,

1



2 Chapter 1. Introduction

they created their own network and collected intrusion traffic for the attacks they simulated

[10]. The other popular datasets that were derived from DARPA were KDD 99 and NSL-KDD

which also suffer from the same drawback [40].

There have been attempts to create more recent datasets by different researchers with im-

provements in the number and quantity of attacks, the quality of networks where data is cap-

tured from, attack simulation methods etc. [9]. Still, when a user tries to train their IDS with

these newer datasets, they will be training on a subset of scenarios the creator of the data set

faced even though the user of the IDS will not be facing the same threats locally [20]. It is also

likely that the user runs different versions of software and services than what was used by the

dataset creators, causing the user to have a different set of vulnerabilities.

Another factor to consider is the security features that were present in the network that

hosted the platforms used for creating the data sets. Firewalls and encrypted communication

channels are common security features in a network and traffic from such a network is different

from traffic from a network without those features. This acts as further justification for the need

of a method to create custom data sets that are specialized for local traffic.

One factor affecting the intrusion prevention efforts is that the volume of data that needs to

be protected has increased exponentially. Thus, network traffic, which is generated as a result

of people accessing all that data, has also increased. This increase in traffic is responsible for

causing delays in the intrusion detection/prevention efforts due to its volume per unit time [65].

Some systems drop packets as a solution to this while others use distributed approaches to

optimize intrusion detection.

Another trend is the increased use of Cloud computing throughout many fields. Cloud

services now offer infrastructure, software and platform services all bundled together at very

affordable rates. Due to the improvements made in communication and related infrastructure,

many commercial entities find Cloud services a better alternative to housing and managing all

their computing resources themselves. While accepting all the advantages of Cloud computing

systems we also need to accept the risks involved when it comes to security. Cloud computing
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has introduced new challenges that did not exist with in-house computing resources and thus,

intrusion detection/prevention has to improve to keep up [42, 7].

Internet of Things (IoT) is another field that has emerged as an important part of modern

technology in this age of connectivity. Traditional systems are being replaced by smart devices

that are networked together to be more efficient and work without human intervention. This is

a distributed computing challenge that requires new levels of security because of the inherent

problems with system resources and communication in most IoT devices [47],[56]. In recent

times, many IoT systems have been under attack from DoS and Botnet attacks, which makes

them a liability and often renders them useless in many cases. This has prompted new security

research directions such as vehicular security, smart home security, smart-grid security, etc.

Traditional intrusion detection/prevention systems are particularly vulnerable in today’s en-

vironment because of the speed at which threat models and attack strategies are changing. The

attack that was used today is not an attack that a system would face tomorrow. The traditional

IDS/IPS needs to be updated by a system admin to keep up with the challenges introduced by

constantly improving hacking tools, attack scripts and knowledge about the latest vulnerabili-

ties. This whole process of manual updating causes a delay that makes the production systems

(systems protected by the Intrusion Detection Systems) vulnerable to complex attack patterns

(multi-step attacks). Detecting the reconnaissance attacks first and then, preparing for more

harmful attacks to immediately follow them is absolutely crucial in defending against such

attacks.

Given these challenges, modern intrusion detection/prevention systems should have the ca-

pability to handle these challenges and offer reasonable assurances that they are capable of

providing security for modern information systems. Another factor that hinders the perfor-

mance of Intrusion Detection Systems is incomplete or unsuitable datasets. Any IDS trained

using such a dataset would inherit the associated issues. After careful consideration of the

issues presented above, I propose Intelligent Network Security Systems-Intrusion Detection

Framework (INSecS-IDF) as a system capable of providing a comprehensive solution to Intru-
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sion Detection. Figure 1.1 shows how the proposed framework work in an example situation

where one mobile device is connected to the network. Even with multiple devices connected

to the network, the intrusion detection process would be the same.

INSecS Intrusion Detection System (INSecS-IDS) is one of the three components of the

proposed Intrusion Detection Framework. The other two components- INSecS Dataset Cre-

ation Software (INSecS-DCS) [53] and the Learning module add critical functionality to the

IDS, thus completing the INSecS Intrusion Detection Framework collectively. INSecS-IDF is

to be deployed in a network in such a way that INSecS-DCS creates datasets at regular intervals,

the learning module extracts rules out of the datasets using an unsupervised learning technique

and finally, INSecS-IDS performs intrusion detection based on both the newly generated and

existing rules.

1.2 Contributions

In this document, the author is presenting INSecS-Dataset Creation Software and INSecS-

Intrusion Detection System while claiming the following contributions,

1. INSecS-DCS, an on-demand dataset creation software that can be run on a network of

choice and gives the user the ability to fully customize the dataset according to their

requirements. This includes the ability to make a dataset with new attributes, make

attributes with temporal properties and collective properties, change attributes, etc. This

provides a solution for the weakness in intrusion detection research related to inadequate

or unsuitable datasets. This software is available under MIT 1 license so that the research

community is able to create many new and relevant data sets by customizing every aspect

of the dataset.

2. INSecS-IDS, a distributed IDS fit for modern networks due to the design and architec-

ture, which is aimed at supporting IoT, Cloud and distributed systems. It detects intru-
1Massachusetts Institute of Technology
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Figure 1.1: Design and Architecture of INSecS Intrusion Detection Framework (INSecS-IDF)
with one device in the network.
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sions faster by using a hierarchical decision making process, works in distributed setups,

detects complex attacks (multi-step) faster due to the system being ready for the second

attack, updates intruder information automatically enabling IDS to detect attacks from

known intruders faster and accurately and detect internal and external attacks. This ap-

proach is different from the conventional IDS approach and results show that compared

to the conventional approach, the proposed IDS performs 8 times faster on average in a

test scenario.

3. In the absence of a single survey covering security of all modern distributed systems, this

thesis provides a survey of network attacks and existing IDS solutions in the context of

IoT, Cloud and distributed computing setups.

4. Provide flexibility within the IDS enabling users to replace the proposed Complex Deci-

sion Engine (CDE) with their choice of Decision Engines.

5. A comparison of the performance of INSecS-IDs compared to Snort 2.

6. Possible example setups for INSecS-IDS in IoT and Cloud applications.

A dataset generated by the proposed software framework includes not only the raw PCAP

3 files for each packet but also a processed dataset file in CSV 4 or JSON 5, that can be fed into

a machine learning tool easily.

1.3 Document Structure

The remainder of this thesis consists of the following chapters. Chapter 2 provides an overview

and details of related work on Intrusion Detection Systems and Intrusion datasets. Chap-

ter 3 explains the implementation details of INSecS-Dataset Creation Software and INSecS-

2A popular intrusion detection system. More information is provided in section 2.1.3 under Chapter 2
3Packet Capture
4comma-separated values
5JavaScript Object Notation format
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Intrusion Detection System. Chapter 4 provides test results and how our implementations

compare with the competition. Chapter 5 on Conclusions and Future work gives example im-

plementations of INSecS-IDS for hypothetical IoT and Cloud systems and an overview of how

the proposed INSecS Intrusion Detection Framework incorporates the dataset creation software

with the intrusion detection system.



Chapter 2

Background and Related work

2.1 Intrusion Detection Systems

Intrusions affecting computer systems are quite numerous and their attack strategies, behavior

and consequences are different from one another. Due to this, different defense techniques need

to be employed by security personnel for comprehensive protection.

The most common network-based attacks are given in Figure 2.1. Active attacks are where

an intruder would use the attack as a means to change private information. In passive attacks,

the intruder is observing to either learn more about the system, to steal private information or

even to plan the next attack. Advance attacks are mostly done on routers or on neighboring

nodes of the real target in order to make an attack possible. Given these different types of

attacks, the most popular defense techniques are,

1. Firewalls

2. Intrusion Detection/Prevention Systems (IDS/IPS)

3. Encryption Techniques

4. Anti-virus software

8
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Figure 2.1: Taxonomy of some of the common Network-based attacks
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Not all of the above-mentioned defenses are suitable for all situations and attacks. With

the advancements in the field of cyber-security, anti-virus and host-based IDSs have developed

very similar characteristics and have quite a bit of overlap. Some anti-virus software now

comes with inbuilt IDS/IPS systems.

Intrusion detection systems have different classifications based on different qualities such as

detection strategy, function and capabilities, the location of IDS, etc. There are different ideas

expressed by different researchers on proper classification. However, Some of the popular

classifications are given in subsection 2.1.1. Subsection 2.1.2 describes evaluation metrics

used in IDS literature and subsection 2.1.3 gives a brief overview of some of the widely used

Intrusion Detection Systems. There have also been attempts at addressing the challenges faced

by modern intrusion detection systems in different forms.

2.1.1 Common IDS taxonomies

Intrusion detection systems are classified into the following categories based on the detection

strategy [34].

Anomaly-based detection

As the name suggests, anomaly-based detection systems are built on the principle that legiti-

mate users have a certain pattern of system usage and that a deviation from that is a possible

intrusion. Failed login attempts, processor and memory usage, network connections, etc are

examples of behavior trends used to build a behavior pattern. Due to this reason anomaly de-

tection is also known as behavior-based detection. Anomaly detection can be used to detect

attacks such as Denial of service (DoS), Trojans, exploits, masquerading etc. Since an anomaly

is detected if there is a deviation from normal behavior, anomaly-based detection systems have

the capability to detect unknown attack patterns. This means that we can detect new attacks

without having prior knowledge of the nature of the attack. One drawback of this approach
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is that in case of a misidentification, an unknown or new attack will be considered as normal

traffic, which will increase the risk to the entire network unless there are additional security

measures in place for such a situation.

To implement anomaly detection, several techniques are widely used.

• Machine Learning - By using labeled data for normal behavior and training a model,

anomalous traffic can be identified using machine learning techniques[43]. K-Nearest

Neighbor, Bayesian networks, Neural networks, Decision trees and support vector ma-

chines are some of the machine learning techniques found in the literature [49]. Cur-

rently, Recurrent Neural Networks (RNN) are quite popular among researchers for this

purpose and they produce good results in identifying previously unknown attack se-

quences [64, 18].

• Statistical Models - Statistical methods are among some of the earliest methods to be

used in intrusion detection and possibly triggered the move towards machine learning

techniques. In this technique, statistical models are made for normal behavior and deci-

sions are made under the assumption that intruder behavior is noticeably different from

that of a normal user. Examples of effective statistical models in anomaly-based intrusion

detection are,

1. Stanford Research Institute’s next-generation real-time intrusion detection expert

system statistical component (NIDES/STAT) which collects data in the host over

time and adaptively creates a profile for normal behavior [46].

2. Haystack creates four vectors related to behavior and uses them in a weighting

system to calculate an intrusion score based on which it determines how suspicious

the current session is [46].
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Signature-based detection (Misuse detection)

In signature-based detection, knowledge about attacks is used to detect intrusions. Each attack

would have its own signature [5]. A port scan, an IP sweep, a DoS would have a unique signa-

ture, which can be used to detect it. This attack is also known as misuse detection in security

literature. This method can only be used for known attacks and would fail if confronted with

a new attack because of its reliance on prior knowledge about the attack. Common techniques

used to implement a signature based intrusion detection system are listed below.

• Rule-based approach - This is the most widely used approach for misuse detection be-

cause it is quite straightforward and requires no training due to the fact that all infor-

mation about the attack is known [24]. Implementation is simpler compared to machine

learning and detection is faster overall because there is no training involved [17].

• Machine learning - Use of machine learning for misuse detection has proven to be ef-

fective according to most researchers [54], while misuse detection on KDD dataset has

been reported to be unsuccessful based on tests [57]. Although popular algorithms used

in anomaly detection are also popular in misuse detection, there are differences in the

implementation. Traffic containing known attacks are used to train the model for various

attacks, and test data are classified into different classes based on how close they are to a

specific attack in comparison to the model.

Most practical intrusion detection methodologies use a hybrid model involving both anomaly

detection and misuse detection combined, due to the fact that they complement each other.

Anomaly detection would identify a behavior that is different from normal usage behavior and

when attack signatures are used to match that anomalous behavior, an intrusion can be detected

with much more precision and ease.

Intrusion Detection Systems (IDS) can also be classified into different categories based on

the function and capabilities (scope of protection) [60].
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Network-based Intrusion Detection Systems (NIDS)

In Network-based Intrusion Detection Systems, intrusion detection is done based on the data

collected about network traffic [52]. To get network data, network traffic is mirrored to the IDS

by a router or some other device with the capability to capture network traffic. NIDS can be

placed at different locations in a network.

1. Between the Border Firewall and the Internet. This allows the IDS to listen to all in-

coming and outgoing traffic. This placement usually results in data overload conditions

which most likely leads to delays in intrusion detection.

2. Between the Border Firewall and the Internal Network. This is a better placement be-

cause the firewall will block some traffic that is already known to be harmful. This allows

the IDS to focus on traffic that truly needs to be checked.

3. Inside the Local Network. Placing the IDS at crucial points within the network is a strat-

egy that would work well if the servers or systems which are most likely to be attacked

are known. This will ensure that intrusion detection is faster than the previous two setups

and that any internal attacks would be detected as well.

The main drawback of basing intrusion detection only on network data is that it would not

work very well with encrypted traffic. Since encryption can be done at any layer, information

required for an IDS to make a decision (regardless of detection strategy) would be inaccessible,

if the traffic is encrypted.

Host-based Intrusion Detection Systems (HIDS)

HIDS use system logs, login attempts, system calls and other host-based information to detect

intrusions [21]. There are known patterns of behavior related to certain attacks involving spe-

cific system commands and file creations which can be identified using the host information.

This type of IDS can only be used in a single host and is more effective at doing so because
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of all the additional data from the host activity. A host-based IDS would collect information

under the following three categories.

1. Protocol Stack monitoring - This is similar to having an NIDS on a single host.

2. Operating System monitoring - OS monitoring gives access to information like login

attempts, system calls and commands, unusual file creations, system registry modifica-

tions, file deletions, unusual communication attempts, etc.

3. Application monitoring - In this monitoring, the IDS looks at logs generated by individ-

ual applications.

Information collected under all three categories are used together to detect attacks. The

main problem with these is that if the host is compromised, all the logs may be changed or

deleted and thus make it impossible to detect the intrusion anymore.

Distributed Intrusion Detection Systems

Distributed IDSs gather data from multiple host-based detectors in order to optimize resource

usage [15]. It also allows for faster detection and faster preventive action thus being an ideal

solution for intrusion prevention. Another unique feature of distributed IDSs is that they can

detect attacks occurring internally. Internal attacks can occur from malicious software installed

somewhere inside the network or because of intruders who has access to the network. Dis-

tributed IDS have detectors at most network nodes within the network and localized detection

is achieved faster and with precision because of the internal switching and routing information

availability. The main disadvantage with distributed IDS is that the performance is directly

affected by the communication between the distributed components. Network delays, security

issues due to public networks, unreliable connections are some of the known issues.
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2.1.2 Evaluation Metrics

To analyze the performance of intrusion detection several metrics are used and the most com-

monly used evaluation metrics given below [30].

1. True positive rate (TP) - Percentage of traffic identified as intrusions and are actual in-

trusions.

2. True negative rate (TN) - Percentage of traffic identified as non-intrusion (normal) and

are actual non-intrusion (normal).

3. False positive rate (FP) - Percentage of traffic identified as intrusions but are actually

non-intrusion (normal) traffic.

4. False negative rate (FN) - Percentage of traffic identified as non-intrusion (normal) but

are actually intrusion traffic.

5. Precision - The number of true positives divided by the total of true positives and false

positives (see equation 2.1).

6. Sensitivity - The number of true positives divided by the total of true positives and false

negatives (see equation 2.2).

7. accuracy - The number of true positives and true negatives divided by all 4 possibilities

(see equation 2.3).

8. Processing speed which is the amount of time it takes an IDS to classify all of the attacks

in a dataset.

9. System utilization: the amount of memory and CPU required to run the IDS.

Precision, Sensitivity and Accuracy are defined in the following manner,

Precision = T P/(T P + FP) (2.1)
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S ensitivity = T P/(T P + FN) (2.2)

Accuracy = (T P + T N)/(T P + FP + T N + FN) (2.3)

Positive and Negative indicate the verdict of the IDS while the terms True and False indicate

whether the verdict is right or wrong. Not all of them are used to evaluate a single IDS because

different IDS have different purposes.

2.1.3 Widely used Intrusion Detection Systems

There are multiple intrusion detection systems that are freely available with some of them even

being open source. The most popular ones and their features are given below.

• Snort: A free, widely used Intrusion Detection/ Intrusion Prevention System (IDS/IPS)

[29]. It is a rule-based IDS/IPS which relies on the Snort company to provide the latest

rules. It also has a set of community updated rules. Some of the advanced rules are only

offered for paid subscribers. A comparison of Snort vs INSecS-IDS is given in section

4.2.1.

• Bro: An open-source, passive, Unix based network intrusion detection system that works

well with large traffic loads [50]. A key advantage Bro has is its deep analysis involving

a broad range of protocols. It has its own script which is used to write new rules if

required.

• Suricta: Considered to be a close competitor to Snort, with an advantage over Snort in

detection speed [60]. According to literature, Suricta supports Snort rules which makes

it a strong performer as Snort is the most widely supported IDS.

• OSSEC: An Open Source, host-based Intrusion Detection System that works for most

Operating Systems. It performs log analysis, file integrity checking, Windows registry

monitoring, etc, within the host and communicates using encrypted channels with the

OSSEC server for intrusion detection [1].
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2.2 Background and Related work of INSecS-Dataset Cre-

ation Software

This section provides a background into intrusion dataset creation and related work. Section

2.2.1 explains the key factors to be considered in dataset creation together with comparisons

on various strategies used in the standard datasets.

2.2.1 Dataset requirements

A dataset should possess certain qualities to be deemed fit to be used in the field of network

intrusion detection and these have been identified and verified by researchers [79]. This sec-

tion highlights several key requirements and their importance, along with details on how the

requirements have been addressed.

Realistic nature of Data

Simulated attacks, generated using intrusion tools, are used to create intrusion traffic in most

standard datasets [10][44]. The exception is datasets created using honeypots where the traffic

you get at the honeypot is always intrusion traffic [63]. Both approaches produce realistic

intrusion data and thus users are allowed to pick either option. This is achieved by operating

the software package at any suitable network node and a honeypot, respectively.

Proper labeling of dataset

Labeling an intrusion dataset properly is critical regardless of whether it is being used to train

an IDS or used for research. Insufficient or inaccurate labeling requires users to utilize unsuper-

vised learning methods to determine any attack classes or manually label the dataset based on

anomaly identification [62] which takes a considerable amount of time and effort. Our software

does automatic labeling of records provided that the attack IPs are known.
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Accuracy of normal traffic

When collecting data to be included in the normal traffic portion of the dataset, there is a

possibility that intrusion traffic may get included in it, unknown to the dataset creators. This

is due to undetected attacks present in traffic that is assumed to be normal. This is avoided

by generating normal traffic through simulation or getting a trustworthy group of volunteers to

generate the normal traffic by interacting with the network habitually.

Customizability of dataset

This is a novel and yet indispensable property of the output from INSecS-DCS, as compared

to other dataset creation methods and tools discussed above. What is offered in INSecS-DCS

is the chance for the software user to be able to add more protocols to be tracked, filter out the

undesired traffic, decide on where the data collection should happen inside the network, decide

which attributes to have in the dataset, change the time window for average traffic analysis and

the ability to run the software inside the user’s network, server or personal computer to see

what the traffic looks like and use that data to find what the possible threats are.

Payload availability

This is a debatable topic due to the loss of privacy of the original owners of the captured traffic

[39]. There are anonymizing techniques to hide this information [13]. However, it is not a

service provided with the software. The ability to get the payload in the raw dataset format is

allowed by design but the author leaves it up to the users to anonymize the data they capture

when creating datasets inside networks.

Freedom to choose input

There are two choices offered in selecting data input to create datasets using our software. One

is to run the software on a network node and generate a raw (records are in PCAP format)

or processed (records are saved in CSV file in a tabular form, similar to NSL-KDD dataset
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[38]) dataset based on captured traffic (see figure 3.1). The other option is to use raw PCAPs

provided by other dataset providers and feed it to the software and generate a raw dataset or

processed dataset.

Freedom to select format of output dataset

The dataset generated from our software can be in two forms. The raw form which only allows

attributes related to individual packets to be present. The alternative is the processed format

which allows attributes to represent individual packets as well as average properties of network

traffic for a specific time window. The added advantage of this processed dataset is that it can

be fed directly into ML algorithms without any preprocessing, which in turn saves a lot of time

and effort.

2.2.2 Related work

Although tools that can create custom data sets have been proposed, they can only insert attack

packets into the network traffic capture files and create a Raw dataset [69][12]. A key feature of

the proposed dataset creation software (INSecS-DCS) is the ability to process the data captured

from the PCAP files in order to construct customized and meaningful attributes in a logical

manner. The output is similar to the KDD 99 and NSL-KDD datasets in presentation style,

where the dataset can be directly fed into a learning algorithm with no preprocessing because

of its tabular form.

Shiravi et al. [62] has proposed a profile based custom dataset creation methodology where

profiles are derived from observed traffic to represent certain features or events captured from

network traffic. The profiles are based on HTTP, SMTP, SSH, IMAP, POP3, and FTP protocols

and the output is a raw dataset. In contrast, INSecS-DCS allows the users to add any protocol

they wish to track and set any attribute they wish to see in their dataset.
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2.3 Background and related work of INSecS-Intrusion De-

tection System

Intrusion Detection Systems have existed as a solution to intrusions for a considerable amount

of time. Different IDS solutions have been proposed for various applications and scenarios.

When an existing solution does not adequately provide protection from intrusions, new features

have to be introduced into the Intrusion Detection Systems. This section is divided into two

subsections. Subsection 2.3.1 on Security of Distributed networks, IoT and Cloud gives an

overview of the security needs of those networks, existing security solutions and how those

systems can benefit from an IDS, while subsection 2.3.2 on Related work provides a brief

introduction to similar IDS implementations while .

2.3.1 Security of Distributed systems, IoT and Cloud

With the development of Distributed systems, IoT and Cloud systems, the need for their secu-

rity has become new areas of research as people tend to rely on them more and more. With

the expanding need for data storage, Cloud and distributed systems host a lot of personal and

sensitive data, which makes them obvious targets of intruders.

Distributed systems

Distributed systems can be considered as a precursor of modern Cloud technologies. Because

the system is distributed by nature, the system as a whole has more open ports for communi-

cation. This fact alone increases the chances of an intruder hacking into the system. Different

approaches have been suggested in the literature for handling intrusion detection in distributed

systems. Nezarat [45], has proposed using game theory to model the scenario involving a de-

tection agent reporting from different nodes in the distributed system and an intruder. An IDS

capable of detecting DoS attacks for distributed client-server systems using separate client de-

tectors and server detectors has been proposed by Kshirsagar et al. [15]. The method uses a
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rule-based approach to detecting attacks but details of rule generation are not explained. Snort

has also been proposed to be used in a distributed setup because of its ability in general in-

trusion detection. By running different instances of Snort in a distributed manner, at different

nodes across the network, researchers have controlled the load on each of them by careful

resources usage observation [76]. However, due to processing all the traffic instances with

multiple Snort instances, the researchers were not able to complete the experiment because of

resource insufficiency.

IoT

More and more devices with multiple capabilities are being connected to the internet today and

this has introduced the concept of Internet of Things (IoT). These IoT devices have computing

and networking power embedded in them, enabling different software operations to take place

without proper monitoring. This is why IoT devices are found to be part of Botnets, without

being detected by the system administrators who use these devices [8]. Due to the system

resource limitations, these IoT devices do not have the ability to deploy the defenses used in

other computing systems. The main vulnerabilities in IoT can be listed in the following manner

[33].

• Insecure web interface - Using the default password and having an insecure password

recovery method are some examples of insecure web interface problems in many IoT

devices.

• Insufficient or non-existent authentication/authorization

• Insecure network services - Open ports are used for communication and if the services

using those ports have known vulnerabilities they will be exploited by hackers.

• Lack of transport encryption - If data is not encrypted, it can be read while the data

packets are being transported.
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• Insecure software/firmware - The authenticity of software that is installed in the device

has to be verified by signatures. If not, an intruder can intercept the connection and send

software with malicious code in them.

• Poor physical security - If the device is physically accessible and the data storage is not

secure, an intruder can access, modify or delete the data.

Given this background, there is a clear need for suitable IoT security frameworks that work

well in IoT system restrictions. Noorman et al. [47] has proposed an embedded security

system with a separate microprocessor that relies on knowing each node in the IoT system.

The isolation capabilities ensure that even if one node is compromised, intruders will not be

able to hack into the other nodes using the compromised node. Traditional IDS would not work

well with IoT systems because of the system resource issues in the IoT devices. There have

been multiple approaches suggested to overcome this issue by having the IDS outside the IoT

device[58],[41].

Lee et al. [32] proposed a distributed IDS solution based on analyzing the energy con-

sumption at each node, to detect anomalies. Snort attack signatures have also been used in

signature-based IDS implementations because they are easily accessible [48]. Jun et al. [28]

proposed a centralized IDS based on a Complex Event Processor, which resulted in an IDS that

was CPU intensive but consumed less memory.

Cloud Setups

Cloud service providers offer resources and services to consumers, who use them for various

applications. With the continuous expansion of Cloud usage, the Cloud services and resources

have become targets of attacks. Some of the security issues identified in Cloud computing

setups have been identified by Mishra et al. [42].

• Data Breaches and Loss - Release and possible loss of data that was intended to be

kept private. This includes any sensitive or personal data belonging to individuals or
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companies. There have been some well known examples of this happening, during the

past few years [11], [51].

• Account or Service Hijacking - By getting access to user credentials, intruders can gain

access to the Cloud user accounts. This would enable intruders to see all the personal

data associated with the compromised accounts and also initiate new data exchanges.

• Malicious Insiders - This is a human factor rather than a technical loophole in Cloud

computing. Loss of security due to malicious insiders can occur easily if the people given

access to the Cloud resources by the Cloud Service Provider are not properly filtered.

Even then, there is no guarantee that there will be no malicious insiders.

• Hypervisor Vulnerabilities - Hackers ca figure out vulnerabilities in a hypervisor and

exploit that to gain access to it. By gaining access to the hypervisor, intruders can change

system resources, change access privileges and gain total control of the virtual machines

connected to the hypervisor.

• Denial of Service - Legitimate users are denied access to their accounts and resources

due to Denial or Distributed Denial of Service attacks.

Different techniques and methods have been proposed for Cloud security which can be

categorized under Confidentiality, Integrity, and Availability (CIA triad) [7].

Confidentiality

Different encryption strategies have been proposed to protect data confidentiality from both

the Cloud service provider and intruders. Fully Homomorphic Encryption (FHE) [66], Search-

able Encryption (SE) [23], Onion Encryption (OE) [14], Attribute based encryption for secure

scalable fine grained access control (ABE) [75] are some of the methods proposed for data

confidentiality, identified by Basu et al. [7].
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Protection of confidentiality of virtual machines in Cloud servers is as important as protect-

ing data confidentiality. Proposed methods for this include algorithms and rules to be used by

Cloud service providers in virtual machine hosting, virtual machine migration and maintenance

[19].

Integrity

Data integrity solutions include using Tree Signature scheme [59] and Public key based ho-

momorphic authenticator with random masking [72] and other similar techniques to ensure the

integrity of the data in Cloud setups. Virtualization integrity issues are handled by using hash-

ing, private and public key encryption [78] and activity log checks within the Cloud servers

[37].

Availability

The main issue concerning the availability of data and virtual machines is Denial of Service

and Distributed Denial of Service attacks and Intrusion Detection System have been used ef-

fectively to provide protection.

Similar to a local computer system, an intrusion detection system can be used in the Cloud

server to detect intrusions [6]. An IDS that can identify the reconnaissance attacks can even

alert the client that a possible hack or system compromise might take place. Depending on the

Cloud service, the IDS can be a Host-based IDS [73] or a Network-based IDS [38].

2.3.2 Related Work

INSecS-IDS has introduced multiple capabilities that enable it to function effectively in a mod-

ern network. Some of these capabilities have been introduced by others in similar or different

applications and situations. In this subsection, research that is similar to INSecS-IDS are pre-

sented.
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The concept of multi stage intrusion detection has been explored by multiple researchers.

A binary SVM classifier identifying anomalous traffic in the first step, followed by a self or-

ganized map for identifying the attack class is proposed in [67]. Multi Stage attack detection

strategies are designed based on the argument that an attack can be broken down into multiple

stages. For the attack to be complete, it needs to complete the different stages in a certain

order. Herwono et al. [25] have proposed a multi-stage intrusion detection system which uses

a Hidden Markov Model to predict the probability of an attack. Each prediction is done in

the form of a state transition and the transition probabilities are calculated within a training

phase. An attack is defined to have a certain set of states. A similar argument has been used in

the design of an intrusion detection system which uses various machine learning techniques to

detect states [68]. The authors have used a resource expensive methods for the second stage of

the attack detection because they manage to reduce the traffic load by a resource inexpensive

classifier in the first stage.

Security models in Intrusion Detection Systems get outdated really fast and IDS should

have adaptively changing models to deal with threats. Adaptively changing the security model

to face continuously changing attack patterns has been proposed in [55]. The clustering models

are adaptively changed based on expert input from an outside source using extreme learning

machines. Wahab et al. [71] has presented a Cloud IDS that adaptively changes its detection

strategy using a sequential Stackelberg game between the intruder and Cloud system. Game

theory is a well suited method to use in this situation because of the dynamic nature of its

models.
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INSecS-Framework

3.1 INSecS-Dataset Creation Software

INSecS-DCS was proposed with the aim of creating Network Intrusion datasets specific to

individual networks, where the network managers can specify their own attributes [53]. There

are very few datasets that have proper documentation and can be used effectively to train and

test an IDS. Although considerably old, NSL-KDD [27] is one such example. INSecS-DCS

allows network managers to create a custom dataset, with attributes they feel are the most

important for their network.

The workflow used in the dataset creation process is shown in figure 3.1. In this section, the

procedure is described in detail. This software was developed in Python due to the availability

of many libraries related to network packet processing. This also allowed this software to work

easily with our future developments.

3.1.1 Dataset creation

The steps involved in the dataset creation is given in the following subsections of the thesis.

Each step has its own software component available for public use under an MIT license.

Instructions on using the software are provided in Appendix B.

26
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Figure 3.1: Architecture of INSecS-DCS

Packet capturing

The first step in dataset creation is capturing network packets. After evaluating several packet

capture tools, Tshark 1 was selected as the packet capturing tool as it provides a great GUI

to view the captured packets with custom filters. No filtering is done at this stage and all the

information available on each packet is captured.

Packet pre-processing

Captured packets are in PCAP format and preprocessing involves converting these PCAP files

to JSON format for easier processing. The rationale behind this is to connect future projects

with this software without the need for type conversions. The pre-processing is done by the

packet pre-processor, which converts the data in a packet into key-value pairs, where the key

1”TShark is a network protocol analyzer. It lets you capture packet data from a live network, or read packets
from a previously saved capture file, either printing a decoded form of those packets to the standard output or
writing the packets to a file. TShark’s native capture file format is pcap format, which is also the format used by
tcpdump and various other tools.” [2].
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Table 3.1: Overall attributes for time window
Feature name Feature description

c o n n e c t i o n p a i r s the number of different source and destination pairs.

I P a d d r e s s e s the different IP addresses used in the connections

n u m p o r t s number of different port numbers used

num packe t s total number of packets sent and received

s r c b y t e s the total amount of source traffic

d s t b y t e s the total amount of destination traffic

t c p f r a m e l e n g t h the total amount of frame bytes for TCP traffic

t c p i p l e n g t h the total amount of IP data for TCP traffic

t c p l e n g t h the total amount of TCP data

u d p f r a m e l e n g t h the total amount of frame bytes for UDP traffic

u d p i p l e n g t h the total amount of IP data for UDP traffic

u d p l e n g t h the total amount of UDP data

a r p f r a m e l e n g t h the total amount of frame bytes for ARP traffic

num tcp total number of tcp packets sent and received

num udp total number of udp packets sent and received

num arp total number of arp packets sent and received

n um s s l total number of packets containing SSL traffic

num ht tp total number of http requests that were sent and received

num f tp total number of ftp packets sent and received

num ssh total number of packets containing SSH traffic

num smtp total number packets containing SMTP traffic

num dhcp total number packets containing DHCP traffic

num dns total number packets using DNS traffic

Note 1: The data type is Discreet Integer in all of the listed attributes.
Note 2: Feature name column shows the attribute names given in the code.

is the name given by tshark for the value. The generated key-value pairs are then stored in a

python Dictionary.
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Collecting individual packet features

During the next step, the features related to individual packets are collected by selecting key-

value pairs of interest. These features include the protocols used (such as TCP, UDP, IP, FTP,

SMTP, SSH, SSL, ARP, DHCP, HTTP etc), the source and destination addresses (IP address)

and port numbers used etc. The software comes with a list of preselected attributes but the user

can customize this.

Dividing the individual traffic flow into time windows and collecting overall features

An important step in creating a processed dataset involves selecting a time window and ana-

lyzing the traffic flow during that time [3]. This will give information about the overall traffic

behavior during given time interval and identify common trends in traffic; as opposed to con-

sidering information from individual packets only. For example, if both TCP and UDP packets

are used in an exploit, analyzing the TCP stream alone or the UDP stream alone would not

suffice. With that taken into consideration, parameters about total traffic flow, such as total

length of TCP packets sent, total length of UDP packets sent etc. are collected. This is done

for a time window, where the length is chosen by the user. Descriptions on setting the time

window are given in related Appendix section.

3.1.2 The processed dataset

The term ”Processed dataset” in this thesis describes an intrusion dataset that is converted to a

tabular format. The format is similar to that of the popular NSL-KDD dataset, which provides

the dataset in a tabular manner. The processed dataset can be considered as the standard output

of the INSecS-DCS. The attributes in the dataset contain information related to individual

packets as well as information about overall traffic behavior during a specified time window.

This is a much better dataset in terms of usability and usefulness as explained previously.

Details of the attributes collected in the dataset are included later in this section. The steps in
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creating the processed dataset are depicted in figure 3.1.

The attributes in the processed dataset

The inbuilt attributes in the processed data set that are related to overall traffic behavior within

a time window, are given in the table 3.1. It should be noted that these attributes were picked

as examples of possible attributes that capture overall information for a specific time. The

purpose of presenting these attributes is to show the capability to extract important attributes

for specific conditions that might serve the research efforts better than attributes from already

available datasets. Attributes related to individual packets include protocols used, flags set,

source and destination information etc. Since the main objective of INSecS-DCS is to provide

customizability in intrusion datasets, I do not believe in dictating which attributes are to be

included in the dataset. So a key factor to be considered here is the ability for the user to add

more features or remove features in their dataset creation.

3.1.3 The raw dataset

The unprocessed or raw dataset is a dataset that presents data in a raw PCAP format. Each

record contains attributes related to a single packet which has been preprocessed. The attributes

include all the data related to the packet, including payload. This may introduce privacy con-

cerns with encrypted traffic, as the payload may contain sensitive information. The author

expects users to use this feature responsibly. Figure 3.1 shows the steps involved in creating

the raw dataset.

3.2 INSecS-Intrusion Detection System

The proposed Intelligent Network Security Systems Intrusion Detection System (INSecS-IDS)

is a real-time, distributed IDS that uses horizontal scaling and hierarchical decision making to

deliver an adaptive intrusion detection system. Making a true real-time IDS that has fast re-
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sponses is a challenge on many fronts. Several major issues faced in developing such a system

have been addressed in a novel manner fitting an industry standard IDS. In the remainder of

this section, the author will present the overall architecture of INSecS-IDS and the features

introduced that makes it better suited as a standalone IDS for any setting.

INSecS-IDS was designed after a careful study of commonly available IDS and their strengths

an weaknesses. What I gathered from that study enabled me to fuse what was learned from

the existing IDS technology, with real-time stream data handling. The latest literature on new

trends in IDS focuses on IDS designed for Cloud and Internet Of Things (IoT) systems, which

have different requirements than the traditional IDS [77],[61]. Traditional Intrusion Detection

Systems are not flexible enough to change according to these requirements. This situation has

introduced a need for an IDS that would work across multiple platforms and applications, in-

cluding traditional networks, Cloud environments, IoT systems and other modern distributed

computing setups [22]. This subsection gives an overview of INSecS-IDS and where it stands

in IDS classification.

3.2.1 Overview and capabilities of INSecS-IDS

The design of INSecS-IDS involved several important decisions that were aimed at addressing

the challenges identified, in comparison to the competition.

• First, our research group identified the need for a hierarchical, but distributed, decision-

making structure as the key to having an IDS architecture that works across multiple

platforms. The structure is hierarchical because each node makes simple decisions while

a central, dedicated complex decision maker is used to achieve the final verdict on in-

trusions. The distributed nature of the IDS is due to the fact that, each node connected

to the network does some job related to intrusion detection while maintaining overall

connectivity. Having such a structure allows us to make simple decisions at any node in

the network and leave the complex decision making for a dedicated entity, while main-

taining the distributed nature required by Cloud, IoT and other distributed setups. This
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is further validated by surveys done on possible strategies and technologies for IoT and

Cloud, where a distributed strategy has the least overhead and faster, localized detection

[77].

• Intrusion detection strategy used in INSecS-IDS is an adaptive strategy that learns from

already detected attacks and updates the rules by itself. This allows the proposed IDS to

function as an Intrusion Detection System that has adaptive learning capabilities, allow-

ing it to function for an extended period of time without an operator updating the rules.

This also allows faster intrusion detection of attacks from known intruders.

• Another built-in capability that gives INSecS-IDS the edge, is its ability to face complex

attacks (multi-step attacks). It is the usual practice of an intruder to scan for potential

targets to attack before launching many of the attacks. They look for vulnerable systems,

databases, useful web servers, etc, and finding the ports open for communication is an

important piece of information [70]. Also, knowing which machine hosts the services

inside a network makes it easier for an intruder to target attacks. Because of this, Port

scans and IP sweeps act as reconnaissance attacks, leading way for more dangerous

attacks like DoS, SQL injection, exploits, botnets, etc. This sort of attack pattern is

considered a multi-step attack or complex attack pattern.

• Ability to detect internal attacks is a key characteristic of distributed intrusion detection

systems. It is impossible for NIDS with a central architecture, to detect internal or local

attacks such as ARP spoofing, spreading of botnets inside the network and man in the

middle attack.

• HTTP is used as the communication protocol between the components of the IDS, mak-

ing the IDS simpler to be implemented anywhere without the need for additional hard-

ware or software.

• Tshark, which is a GUI less version of Wireshark that works on most OS, is used for
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packet capturing in INSecS-IDS. This ensures that the IDS works irrespective of the OS

and enables the usage of Wireshark’s advanced packet analyzing features.

Classification

IDS classification has different forms, as shown in Section 2.1 on Intrusion Detection Systems.

INSecS-IDS is a signature based (Misuse) detection system in terms of detection strategy and

a distributed intrusion detection system based on the scope of protection. Although a part of

the IDS is hosted on each node, it does not use host information like systems logs and relies

only on network information.

3.2.2 Logical Architecture

A major challenge in having a real-time IDS is handling the large volume of traffic. A typical

IDS would have to process each and every packet to effectively provide security and protection.

Hence, the time it takes the IDS to process all the traffic generates a considerable delay in the

intrusion detection process. The proposed IDS architecture handles this problem by using

a hierarchical architecture. The argument behind this design is that running each and every

packet through a complex filtering process consumes too much time and resources. By having

a logical hierarchy in the decision-making, resource and time usage were optimized. This

enables quicker intrusion detection and less resource usage. The logical hierarchy is shown

in figure 3.3. Primary decision-making module is allowed to pass judgment on the oncoming

stream of packets and let the complex decision maker spend it’s resources only if there is a

possible threat. Doing so ensures that the full intrusion detection capabilities are spent, in the

form of complex event processing, only on traffic that has a probability of being associated

with an intrusion. In figure 3.2, these two logical stages are shown as stage 1 and stage 2.

The primary decision-making module has been named Primary Decision Node (PDN),

which is placed at each user node in a network. A PDN is responsible for checking each

packet for a pre-defined simple condition. These conditions are typical behavior associated
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with known attacks. The process of selecting and deciding on these conditions is given in

section 3.2.4. If the traffic satisfies the conditions, there is reason to suspect that the traffic is

involved in an intrusion or attack. PDNs then generate a data unit with selected information

about the suspected packet, which is then forwarded to a more complex decision maker. This

generates a stream of Data from each of the PDNs placed within the network.

INSecS-CDE (INSecS-Complex Decision Engine) is the complex decision maker intro-

duced in INSecS-IDS. This decision engine has the capability to receive incoming streams of

data and make a decision on whether the related packets are involved in an intrusion or not. The

CDE is capable of analyzing all the packets in a defined time window and checking for com-

plex conditions. The implementation of time windows and the process of applying complex

conditions is given in detail under section 3.2.5. Once the CDE detects an attack, it updates the

IDS with information which allows the IDS to form new rules and conditions. This allows the

IDS to update itself and to detect multi-stage attacks with the fastest possible detection time.

Multi-step attack detection allows the IDS to deploy new PDNs in the network node which

faced the original attack. These new PDNs detect known attack sequences like Port scans and

IP sweeps followed by DoS, Botnets, vulnerability exploits, SQL injection, etc. CDEs that

are necessary to these second stage attacks are already in place so that no additional effort is

required by the system admins to deploy new CDEs.

3.2.3 Physical Architecture

The physical architecture and workflow of INSecS-IDS are given in figure 3.2. The diagram

relates to an example scenario as is is practically impossible to draw a generic diagram for

an entire network. Different symbols used in the diagram shows different types of functional

blocks. They can be listed in the following manner.

1. IDS Controller

2. Packet Handler
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Figure 3.2: Architecture and workflow of INSecS-IDS for an example setup with 3 PDNs
placed in a single network node working with the CDE placed in a central server.
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3. Primary Decision Node (PDN)

4. Complex Decision Engine (CDE)

5. Storage and Buffer units

There are two types of storage and buffer units used in the setup. See Storage and Buffer

units under subsection 3.2.3 for more details.

The objective of each functional block can be described in the following manner.

IDS Controller

IDS controller is the unit placed inside each network node and is responsible for initiating the

Packet handler and the initial Primary Decision Nodes. This gives the IDS user the ability to

use the IDS controller unit to select which PDNs are to be deployed in which network nodes.

Packet Handler

Packet handler is a unit initiated by the IDS Controller and does a few crucial tasks in handling

the packet stream. There is one packet handler at each network node that needs the IDS. As

soon as the packet handler is initiated, it runs Tshark, which captures the stream of packets

going in and out of the node and generates a JSON object with all the packet attributes and

values for each and every packet. This JSON object is then pre-processed in order to generate

a Python dictionary, which is broadcast to all the active buffers in a network node. There

is a buffer for each active PDN and the corresponding PDN reads the stream of dictionaries

continuously.

Primary Decision Node & Complex Decision Engine

PDNs are functional units that check simple conditions that correspond with known intrusions

and attacks in order to generate events. PDNs required for the initial deployment of the IDS are

selected by the person deploying the IDS. Depending on the network characteristics, the PDNs



3.2. INSecS-Intrusion Detection System 37

Table 3.2: Buffer and Data Storage units placement
Unit type task Using entity
Buffers Act as a data buffer Primary Decision Node

Act as a data buffer Complex Decision Engine
Data Storage Store Possible Intruder IDs Primary Decision Nodes

that are most suitable to be used in the initial deployment are listed in appendix A. Details on

the architecture, functionality and design procedure of Primary Decision Nodes and Complex

Decision Engines are discussed in detail in section 3.2.4 and section 3.2.5 respectively.

Storage and Buffer units

Data buffers and data storage units are required when handling the streams of data involved

in several units of INSecS-IDS. Table 3.2 lists the type of unit, the expected task and where

the unit is used. As illustrated in figure 3.2, the packet handler sends multiple copies of the

same data stream onto data buffers. Each primary decision node then reads from the buffer

that is allocated for that specific PDN. The reason for having the buffer here is to prevent the

processing of the PDNs from interfering with the data flow within the IDS. If the buffer was not

used, the packet handler would have to wait until the condition checking is completed for one

packet by the PDN, before sending the next packet. This will slow down the packet handler,

and consequently hinder the productivity of the IDS. Once the PDN suspects any traffic to be

involved in an intrusion it would generate an event, which is then forwarded to the Complex

Decision Engine. Inside the CDE, complex condition checks are done on the events sent from

the PDNs to identify real intrusions. In some cases, this requires the CDE to break the event

stream into chunks of events for specified time windows and perform condition checks on all

events included in that time window. In order to stop this process affecting the event stream

flow, a buffer is used here to store the events received by the CDE until the CDE is ready to

process them. The data buffers used in both cases are Queues, operating on first in, first out

(FIFO) strategy in order to maintain correct order in the data stream.
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Figure 3.3: Hierarchical decision-making setup

3.2.4 Primary Decision Nodes

The idea of network event detectors in our implementation is based on the concept of hierar-

chical decision making. In hierarchical decision-making, there is less stress on the Primary

Decision Nodes (PDN), which transfers the complex decision making workload onto a ded-

icated Complex Decision-making Engine (CDE). See figure 3.3. The nature of the Primary

Decision Node in a hierarchical decision model would vary depending on the objective and

placement.

The Primary Decision Node assumes the role of a simple event detector, in the proposed

architecture. It looks for a pre-defined simple event and triggers complex action once the

event is detected. The pre-defined events are the simplest possible conditions that can alert

the Complex Decision Engine of a possible attack/intrusion. PDNs are placed at each of the

network end-nodes including servers, personal computers, tablets etc. There are 2 main reasons

behind the placement of the PDNs at each of the network end-nodes.

1. They help reduce the amount of traffic being inspected by IDS.

2. The PDNs are important components of the proposed distributed IDS.
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Reduce traffic overhead on IDS

Network traffic flow in and out of a network can be analyzed using different metrics. Packets

Per Second (PPS) is one such metric used to measure traffic flow volume per unit time[31].

This number can vary depending on factors like the number of users, the number of servers,

the nature of services hosted on the servers, type of company the network belongs to etc. The

average number of packets per second is the fairer metric to generalize traffic flow volume

over a larger period of time like a day. For a typical server, this value would be stable, with

circumstantial fluctuations. However, the traffic flow volume inside the network would be

different from what is observed at the Gateway. As shown in figure 3.4, if we consider traffic

flow volume per unit time at A and B, the two values would be different with B recording a

higher value. A is just after the gateway to the network and B is inside the network covering

all nodes inside the network. The difference between the PPS values is due to the local traffic

that does not cross the gateway.

Given this background, one major drawback of having the IDS immediately after the fire-

wall (at A in figure 3.4) is that the IDS needs to process each and every packet that enters

the network. This is a considerable overhead for large networks which in some cases handles

over a million packets per second. Under these conditions, an IDS would take a considerable

amount of resources to process all packets and in the process cause a delay in producing a

classification. This will cause the delay to increase with increasing traffic volume per unit time

even if the IDS has dedicated hardware.

The PDNs are capable of filtering normal traffic and forwarding only suspicious traffic

onto the CDEs. The performance advantage of this is verified under Chapter 4 on Results and

Comparison.

Support provided for Distributed IDS

One key feature in INSecS-Intrusion Detection System is the built-in capability for distributed

IDS. The need for distributed intrusion detection systems were discussed in detail in chapter 2
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Figure 3.4: A typical network setup
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under section 2.1.1. The architecture and implementation of PDNs that allow the distributed

IDS will be discussed in this section.

The primary decision nodes are responsible for the detection of simple events and forward-

ing the detected traffic to a complex decision engine, as described earlier in this section. To

detect these simple events, the PDNs use a pre-defined set of conditions pertaining to net-

work attacks or intrusions and expert knowledge is required to identify these conditions. The

INSecS-IDS comes with a set of PDNs for the most common attacks. Creation of additional

PDNs, as required by users, is supported by the architecture.

Structure of PDN

An example PDN algorithm is shown in algorithm 1, which is used for the detection of potential

Port scan packets. In this example, the PDN checks the incoming packet stream for packets

with SYN flag set to 1. The identified packets are considered for potential threats and are sent

to the CDE for further processing. The other PDNs follow a similar algorithmic pattern but

have different condition checks based on the specific attacks they detect. Each and every PDN

is implemented as a different thread so that there will be minimal interference between the

functional blocks shown in figure 3.2.

The purpose of algorithm 1 is to monitor the packet stream in the network and detect packets

that have a possibility of being involved in an intrusion. It also ensures that the suspected

packets are in order, before sending the suspected packets to the Complex Decision Engine. For

this particular attack, the CDE would divide the packet flow based on a defined time window

and count the number of different ports in the destination, probed by the same source. If that

number exceeds a certain threshold, the CDE would identify an attack. This model was made

based on the packets captured during nmap Port scan attacks done on our servers using an

external device.
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Algorithm 1: Port scan Primary Decision Node
Input: Input and output Packet stream in the network.
Output: PDN events in the form of a JSON object consisting of predefined attributes.

1 S tartT ime = timestamp when packet receiving starts;
2 while Port scan PDN is on do
3 Data = get packet from PortsQ
4 if EndO f Transmission == True then
5 EndTime = timestamp when packet receiving stops;
6 Time= EndTime - S tartT ime
7 end
8 timestamp = timestamp on packet;
9 if previous timestamp <= current timestamp and tcp.syn. f lag == 1 then

10 Request = send http request with selected attributes
11 end
12 end

Data Transfer from PDN to CDE

Our architecture supports a distributed IDS architecture, as described earlier. This means that

the PDNs at each network node needs to send their selection of suspicious traffic onto the

complex decision engine. The implementation of this step is shown on algorithm 1 in the line

where an HTTP request is sent, given that the TCP syn flag condition and timestamp conditions

are true. For the purpose of this communication, a simple HTTP client-server connection

was chosen because of the wide availability of the protocol and ease of use, as opposed to

developing our own communication standard. When a PDN communicates with the CDE it

uses a port number unique to each attack. For example, all Portscan PDNs in the network use

the same destination port number (a port number on the server hosting CDE) .

3.2.5 Complex Decision Engine

The complex decision engine (CDE), is a decision unit designed for complex decision making

for data streams. It’s the functional unit responsible for doing a complex analysis and make

decisions based on the data streams sent by the primary decision nodes, which are located

at each network node. The CDE is designed to be placed on a dedicated computing device
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with considerable computing power at its disposal. This is in contrast to the PDN, which is

designed for computing devices with low computing power and memory. Doing so ensures

that the hardware usage is optimized throughout our IDS implementation.

Structure of CDE

Each attack type (like Portscan, Smurf, DoS, etc.) has its own complex decision making al-

gorithm defined as a class, in the CDE. (The CDE class definition for Portscan is based off of

algorithm 3). For each PDN in the network, there is a CDE module (object made using the class

definition). Refer figure 3.5 for an example scenario involving three attack types and 4 PDNs.

The module 1 and module 2 are made from the class definition for attack type 1. Module 3 is

made from the class definition for attack type 2. Module 4 is made from the class definition for

attack type 3.

The CDE is designed to act as a central decision maker, as described earlier in this section.

When the CDE gets a packet from a PDN, it sends the packet to the correct CDE module.

Since all PDNs belonging to the same attack type uses the same port number to communicate

with CDE (example: all portscan PDNs in the network would send packets to port 8081 of

the server hosting CDE) the CDE knows that all traffic on a certain port is from all the PDNs

in the network related to one attack. So in order to send the packet to the correct module,

the Stream Splitter (see figure 3.5) checks the incoming HTTP requests from a certain port to

determine which PDN it is coming from. The HTTP request comes with a tag indicating the

PDN. Using this information, the packet is sent to the correct CDE module. Algorithm 2 is

used to implement the process described above.

Algorithm 3 is the complex decision-making algorithm used by the IDS to identify a Port

scan attack at a specific PDN. The algorithm divides the traffic into time windows (1 second in

this experiment) and counts how many unique ports in a host, received TCP packets with SYN

flag set to 1. If the number exceeds 50 this is identified as an Portscan. The validity of this

algorithm was verified using nmap.
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Figure 3.5: Structure of Complex Decision Engine for an example scenario
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Algorithm 2: Directing traffic to the correct module
Input: Data stream from Primary Decision Nodes

1 PostData = read http request;
2 data = convert PostData to JSON object;
3 PDNno = get the PDN identity;
4 PDNno.window(data)

The validation of the proposed IDS is provided in the next chapter using experiments and

results.
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Algorithm 3: module functionality
Input: Data stream directed to the module
Output: Final verdict on traffic (Intrusion or not)

1 data = get data sent to the module; window = initialized Queue; icmp = object
containing already known destination, port number pairs ;

2 packetcount = packetcount + 1;
3 if packetcount == 1 then
4 startT ime = Timestamp of current packet;
5 endTime = startT ime + 1000 (milliseconds); window.put(data)
6 else if endTime <Timestamp of current packet then
7 startT ime = Timestamp of current packet;
8 endTime = startT ime + 1000 (milliseconds);
9 while window is not empty do

10 packet = window.get();
11 key = ”destination-IP” of packet;
12 port = ”destination-port” of packet;
13 if key in icmp and port not in icmp[key] then
14 append.icmp[key](port);
15 else
16 ports = initialize list;
17 append.ports(port);
18 icmp[key] = ports;
19 end
20 end
21 for key,values in icmp do
22 if values >50 then
23 Port scan is detected;
24 end
25 end
26 Initialize icmp;
27 else
28 window.put(data);
29 end
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Results and Comparison

4.1 INSecS-Dataset Creation Sotware

The tool or software that is closest to the proposed dataset creation software (INSecS-DCS) is

the ID2T toolkit developed by Vasilomanolakis et al. [69]. In order to evaluate INSecS-DCS,

compared to ID2T toolkit, key advantages of INSecS-DCS are highlighted in table 4.1.

The attack generation to capture intrusion traffic is built into the software in ID2T imple-

mentation. This is done by attack scripts and PCAP modification. However, network attack

generation softwares are already highly advanced and the hacker community keeps on devel-

oping better versions. Thus, I felt no need to include attack generation as an inbuilt software

feature.

4.2 INSecS-Intrusion Detection System

Experiments

The following Experiments were designed to validate the detection speed improvement from

hierarchical decision making and to compare intrusion detection abilities of INSecS-IDS with

snort.

47
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Table 4.1: Capabilities of dataset creators

Capability INSecS-DCS ID2T

Ability to Label dataset yes yes

Open Source yes yes

Raw PCAP dataset yes yes

Has a GUI no yes

Allows attack injection within the software no yes

Ability to divide traffic into time window and get overall
traffic attributes

yes no

Ability to select input method (packets captured on a
network of choice or get a raw PCAP dataset from another

source)
yes no

Processed dataset that can be fed into WEKA and other
ML tools directly

yes no

Attribute selection for processed dataset yes no

Experiment 1 (Validate effectiveness of hierarchical decision making): test case 1

In order to validate the idea that using a hierarchical decision-making approach improves per-

formance in intrusion detection, the following experiment was designed. I selected one attack

(Smurf) and designed two experimental setups with one having hierarchical decision making

and the other without it. Both setups had the same task and they were evaluated on accuracy

and detection speed. In order to keep the experiment fair, I used PDNs and CDEs in both setups

but in the setup where hierarchical decision making was absent, the PDN was just forwarding

all traffic without doing any decision making.

To ensure repeatability, 3 dataset files containing Smurf attack from the DARPA 98 dataset

were used. Packets from the dataset files were sent as a stream to simulate the stream of

packets. Details about the number of packets in each dataset file are shown in the table 4.2.

The experiment was conducted in the same network. One Linux virtual machine contained

the PDN for Smurf. This served as the node under attack and received the stream of packets.
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Table 4.2: Dataset details for experiment 1:test case 1

Dataset
Number of

packets
Week 1, Wednesday 875,472
Week 3, Wednesday 619,767

Week 5, Monday 2,202,859

Table 4.3: Results of hierarchical decision making performance experiment 1: Test case 1

Dataset Setup 1/ (mins) Setup 2/ (mins)
Percentage
of ICMP
traffic/ %

Percentage
decrease in
detection
time/ %

Week 1, Wednesday 53.5 5.090 4.25 90.485
Week 3, Wednesday 34.2 6.837 13.15 80.008

Week 5, Monday 141.25 124.266 87.67 12.024

Note 1: Setup 1 has no hierarchical decision making while setup 2 has hierarchical decision making.
Note 2: Only Smurf attack is detected and test was conducted with 3 datasets containing Smurf attack signatures.

It contained a RAM of 2 Gb, hosted on a computer with a 2.9 GHz CPU with 4 cores and

was connected to the network using Ethernet. The machine hosting the CDE was a windows

computer with 8 Gb of RAM 2.9 GHz CPU with 4 cores which was also connected to the

network using Ethernet.

Results of Experiment 1: test case 1

The results of experiment 1, given in table 4.3, shows that setup 2 (using hierarchical decision

making) performs faster Intrusion Detection with all 3 datasets. Results seen in table 4.3 can

be explained by considering the variation of the percentage of potential threats (ICMP traffic in

the case of Smurf) in each dataset, with the percentage decrease in detection time (See graph

given in figure 4.1) for the setup 1 and setup 2.

In the case of setup 1, there is a linear variation between percentage of potential threats and

percentage decrease in detection time. When the percentage of potentially anomalous traffic is

low, detection time is low and when the percentage of potentially anomalous traffic is higher,

detection time is larger. This is because the full processing power of IDS is spent only on traffic
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that has a possibility of belonging to an intrusion. This is the advantage of using hierarchical

decision making.

In result for the dataset from week 5, Monday, even with hierarchical decision making, most

of the traffic needs to be fully processed by both PDN and CDE (percentage of potentially

anomalous traffic is 87.67%. Hence, the advantage given by hierarchical decision making

depends on the nature of traffic. Imperva [26], which is an industry leader in internet traffic

statistics, has reported that 28.9% of all traffic in the internet are generated by bad bots. So

it is safe to assume that the percentage of anomalous traffic that a network my experience is

somewhere close to this. 87.67% is an unlikely percentage of anomalous traffic for a network.

So out of the 3 datasets used, the first two seems to represent a real situation. In both those

situations, INSecS-IDS has achieved a large improvement in detection speed (90 and 80 percent

decrease in detection time, respectively).

In setup 2, where hierarchical decision making was not used, the full processing capability

of IDS is spent on the entire traffic stream. This means that in comparison to setup 1, there is

no change in detection time. The contrast between the results for setup 1 and setup 2 can be

seen in figure 4.1). The curve for setup 2 shows no percentage decrease in detection time.

The average detection time for the setup 1 and setup 2 are given in Figure 4.2 (the average

for the 3 datasets). From the figure it is clear that hierarchical decision making improves the

detection time in intrusion detection.

Experiment 1: test case 2

Another test case was designed to validate that using a hierarchical decision-making approach

improves performance in intrusion detection even in the presence of multiple attacks simulta-

neously. So I selected Smurf, IP sweep and Port scan as our attacks. The DARPA 98 datasets

were available according to weeks of data collection. Since DARPA did not have a week

which contained all three attacks, I combined datasets from Monday and Wednesday of week

3 to form one dataset file. The combined file had 1,327,564 packets in it.
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Figure 4.1: Variation of the percentage decrease in detection time with percentage of potential
threats in Experiment 1: test case 1
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Figure 4.2: Comparison of average detection time without and with hierarchical decision mak-
ing in Experiment 1: test case 1
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Table 4.4: Results of hierarchical decision making performance experiment 1: Test case 2

Attack Setup 1/ (mins) Setup 2/ (mins)
Percentage
of possible
threats/ %

Percentage
decrease in
detection
time/ %

Smurf, IP sweep, Port scan 112.55 14.202 15.49 87.7

Note 1: Setup 1 has no hierarchical decision making while setup 2 has hierarchical decision making.
Note 2: Test was conducted on 1 dataset file containing all 3 attack signatures.

The experiment was conducted in the same network. One Linux virtual server contained the

3 PDNs for Smurf, Portscan and IPsweep. This served as the node under attack and received

the stream of packets. It contained a RAM of 2 Gb, hosted on a computer with a 2.9 GHz CPU

with 4 cores and was connected to the network using Ethernet. The machine hosting the CDE

was a windows computer with 8 Gb of RAM and also connected to the network using Ethernet.

Results of Experiment 1: test case 2

The results of this experiment are given in table 4.4. The ratio between column 1 and column

2 gives ratio between detection time without hierarchical decision making over detection time

with hierarchical decision making.

Ratio o f column 1 over column 2 f rom Table 4.4 =
112.55
14.202

= 7.92

This test case shows that setup 2, which uses hierarchical decision making, is nearly 8 times

faster in detecting intrusions.
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Table 4.5: Results of hierarchical decision making performance experiment: Test case 1 with
Wisdom

Dataset Setup 1/ (mins) Setup 2/ (mins)
Percentage
of ICMP
traffic/ %

Percentage
decrease in
detection
time/ %

Week 1, Wednesday 55.2 5.474 4.25 90.08
Week 3, Wednesday 37.9 7.24 13.15 80.89

Week 5, Monday 105.65 133.58 87.67 11.33

Note: Setup 1 has no hierarchical decision making while setup 2 has hierarchical decision making.

Experiment 2 ((Validate effectiveness of hierarchical decision making with a CEP instead

of CDE): test case 1

The flexibility of our IDS design allows the users to use a commercial grade Complex Event

Processor, which is a software capable of tracking and analyzing streams of data related to

events deriving conclusions. This capability makes it useful in a scenario such as the one

presented in our IDS. The Complex Decision Engine that is inbuilt, is a case-specific complex

event processor designed for this specific IDS. This allows the author to introduce a commercial

grade CEP, with queries written with similar logic as our complex decision engine, to be used

instead of the CDE. This was tested using Wisdom [36], a Complex Event Processor developed

by a researcher in our lab at the University of Western Ontario. I repeated test case 1 from

Experiment 1, but replacing the CDE with the Wisdom CEP. The results of this experiment are

given in tables 4.5.

Results of Experiment 2: test case 1

By comparing table 4.3 with table 4.5 it is evident that the Complex Event processor performs

slightly better than Wisdom when considering the detection time. The percentage decrease in

detection time has similar trends in both experiments and shows that the advantage given by

hierarchical decision making is consistent. However, it should be noted that the full capabilities

of Wisdom are not used and that the advantage the INSecS-CDE has over Wisdom is due the
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Figure 4.3: Comparison of average detection time with and without hierarchical decision mak-
ing in Experiment 1: test case 1

fact that the CDE is like a stripped down version of Wisdom with only the necessary modules.

Figure 4.3 shows the difference between average detection times with and without hierar-

chical decision making for test case 1 in experiment 2.

Experiment 2: test case 2

Test case 2 of Experiment 1 was again repeated as test case 2 of experiment 2, with the CDE

replaced by Wisdom.

Results of Experiment 2: test case 2

Results of this test are given in table 4.6. Results show similar trends as in experiment 1, but

the detection times are slightly higher in comparison. The reasons for this behavior are again
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Table 4.6: Results of hierarchical decision making performance experiment with 3 attacks:
Test case 2 with Wisdom

Attack Setup 1/ (mins) Setup 2/ (mins)
Percentage
of possible
threats/ %

Percentage
decrease in
detection
time/ %

Smurf, IP sweep, Port scan 124.617 14.90 15.49 88.04

Note: Setup 1 has no hierarchical decision making while setup 2 has hierarchical decision making.

the slight advantage CDE has over a CEP in this specific application.

The ratio between column 1 and column 2 of table 4.6 gives ratio between detection time

without hierarchical decision making over detection time with hierarchical decision making.

Ratio o f column 1 over column 2 f rom Table 4.6 =
124.617
14.90

= 8.36

This test case shows that setup 2, which uses hierarchical decision making, is more than 8

times faster in detecting intrusions.

The purpose of this comparison was to show that INSecS-IDS has the capability to integrate

well with other software packages, that ensures an easier learning curve for INSecS-IDS users.

Since CEPs use a query structure similar to SQL, the above-mentioned capability will be useful

in situations where an organization prefers to use a CEP product they are already familiar with,

when setting up and using INSecS-IDS. But, the use of INSecS-Complex Decision Engine is

recommended if better performance is valued over the easier learning curve.

4.2.1 Comparison with Snort

Snort is a popular, open source, real-time IDS which is widely used by researchers for its

strengths compared to other intrusion detection systems [4],[16]. Snort is a rule-based IDS
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(similar to INSecS-IDS) and has a large rule base which is updated periodically. It also allows

community rules, which is custom rules written by users. Using this functionality, I compared

the accuracy of Snort with compared to INSecS-IDS by writing Snort rules that were logically

similar to the rules used in our IDS. Tests showed that INSecs-IDS has an accuracy identical

to the accuracy of Snort, demonstrating that INSecS-IDS is comparable to a leading IDS in the

industry.

The experiment was conducted on a windows computer with 8 Gb of RAM and a 2.9 GHz

CPU with 4 cores which was also connected to the network using Ethernet.

During the course of the study, the following advantages of INSecS-IDS over a popular and

widely used IDS like Snort were identified.

• Better control over rule deployment - One drawback of Snort is that it has a large number

of rules in multiple repositories [16] with no central control. It’s also possible to write

custom rules or change the existing ones without having prior knowledge about whether

that rule is already in place. This introduces a problem in system performance because

there might be multiple rules which perform the same condition checks.

In INSecS-IDS, there is only one rule base and the rule implementation is much more

flexible although it requires more work since it has no application-specific script like

Snort does. Conversely, INSecS-IDS is completely implemented in Python and only

requires a basic knowledge of Python, to make changes to rules or implement new ones.

• Efficiency in intrusion detection - Evaluating the entire rule set on each packet is an

unavoidable situation with the Snort design. As shown in section 3.2.4, this causes a

significant difference in the detection time. By having a hierarchical decision-making

structure, this challenge faced by many IDS including Snort, has been overcome.

• Ease of usage and flexibility - While conducting the test cases, I also noted that counting

instances within user defined time windows is much more difficult to implement in Snort

due to the preset options for threshold and filtering. Such preset options have an adverse
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effect on the flexibility of Snort, which has to be avoided in order to face the challenge

posed by varying attacks.

• Designed for distributed intrusion detection - Another characteristic that was identified

when using Snort was the difficulty of using it in a distributed setting. It does not support

distributed real-time usage in its design and requires instances of Snort to run on all nodes

in the network if Snort is used in a distributed setup [76]. INSecS-IDS addresses these

issues by having a more flexible design and by keeping track of the various intrusion

detectors available for deployment.

In all the experiments presented above, the IDS was able to detect all attack instances listed

in the dataset documentation.
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Conclusions and Future work

5.1 INSecS-Dataset Creation Software

This thesis introduced a software framework (INSecS-DCS) that is capable of creating a labeled

network intrusion dataset, with the option to choose between a raw and processed dataset as

the output. A real-time packet capture stream, as well as imported PCAP files, are accepted

as inputs. INSecS-DCS is highly customizable and depending on the needs of the researcher

or IDS user, they are able to recreate a dataset with the attributes they want, instead of the

attributes selected by another researcher.

5.2 INSecS-Intrusion Detection System

INSecS-IDS has the capability to perform well as a modern Intrusion Detection System and

as demonstrated by the test cases involving different setups and scenarios, it is quite effective.

INSecS-IDS works well for any modern network setup including a Cloud environment or an

IoT setup and shows it’s true potential in a distributed setup, using it’s adaptive learning ca-

pabilities, hierarchical decision making, detecting complex attack patterns (multi-step attacks)

etc. The following subsections give examples of how INSecS-IDS can be used with IoT and

Cloud setups.

59
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5.2.1 IoT system

Let us consider an IoT system consisting of mobile devices that connect to a central control

system. An example would be modern smart cars, which connect to central servers in order to

share information, receive guidance, update travel details, carry out passenger communication,

etc. A few more fitting examples would be a system of sensors and cameras working together

to give guidance to a vehicle system [35] or a security system providing security to a vulnerable

facility. The IoT devices in the above examples, cannot manage their own intrusion detection

functions due to constraints such as,

1. Low system/computing resources (low processing power and low memory) - The IoT

devices such as sensors, cameras and even the on-board computer of a smart car, have

limited computing capabilities because they are designed for a certain task and the soft-

ware and hardware they carry are mostly adequate for those specified tasks only.

2. Limited rule updating capabilities - Updating an IDS rule set in each IoT device would

be practically impossible due to the communication and effort overhead.

Given the above issues, IoT devices have to rely on a data processing system to operate

Intrusion Detection tasks along with the dedicated functions/services expected of the IoT sys-

tem. A data processing system has dedicated hardware for complex processes and enough

computing power to perform a thorough intrusion detection. INSecS-IDS would fit well in this

scenario with PDNs placed at each IoT device or gateway devices, sending suspicious traffic to

a data processing server for more processing and CDEs can work well inside the data process-

ing servers to complete the detection tasks. No additional communication means are necessary

because INSecS-IDS uses the same communication channels used in the standard operation of

the IoT system, with the added benefit of using the same protocols and security features used

by the IoT system to protect its communication channels.
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5.2.2 Cloud computing setup

Because of the distributed nature and flexible design, INSecS-IDS can be easily deployed in

a Cloud computing environment. Consider a Cloud computing setup where multiple services

and resources are hosted on different Cloud platforms. A few Cloud servers host a website and

a database is implemented as a Cloud service. By gaining access to at least one component, an

intruder can gain access to the other components because the Cloud companies mostly provide

intrusion prevention regarding traffic from unverified users. In this setup, the Cloud servers

(infrastructure as a service) are possible weak links, because they allow users to interact with

the OS. Since there are multiple servers with OS access, a distributed intrusion detection such

as INSecS-IDS would be the most suitable choice. Primary Decision Nodes can be deployed

at each server and Complex Decision Engine can be hosted in a local machine.

5.2.3 Future work

In the future, I plan to utilize the dataset creation capability to provide a Real Time Network

Intrusion Detection System (Real Time NIDS), with real-time datasets. Customization options

of the dataset will give the NIDS user, the ability to customize the performance of the NIDS

to fit the local network. This would have a huge impact on commercial and private network

security industry.

I have identified a few areas that can be improved. The communication between the dis-

tributed components of INSecS-IDS is done using HTTP, making it vulnerable to an attack

from within the network. Encrypted and secure communication channels can be used to mit-

igate this threat. It also lacks a Graphical User Interface (GUI), which would add value to its

usability. An improvement which would make this even better is integrating host-based IDS

capabilities into INSecS and making it the perfect hybrid IDS that would work on any setup

against any attack.

The next step is to integrate INSecS-DCS and INSecS-IDS using the machine learning
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module. The expected functionality for learning module is to be able to extract rules from

custom datasets and feed them to the IDS rule set. An unsupervised learning algorithm would

be an ideal fit given the need for automation of the entire process. Even if that does not yield

the expected results, INSecS-DCS has the ability to label the datasets it creates and we can

expect to have good supervised learning algorithm to complete the task.
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Appendix A

Primary Decision Nodes selected for

Initial Deployment

INSecS-Intrusion Detection System can be deployed in a distributed environment. As ex-

plained in the Chapters on functionality, Primary Decision Nodes (PDNs) have to be deployed

in each network node. These would communicate with a Complex Decision Engine, placed on

a dedicated server, in order to complete the Intrusion Detection task. For the initial deployment

of the IDS the author has selected the following Primary Decision Nodes,

1. Port scan

2. Smurf

3. IP sweep.

There is flexibility to add more Primary Decision Nodes as new attacks are identified.
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Appendix B

Operating instructions of INSecS-DCS

File available on Github for local dataset creation are listed below.

• dataset creator with foreign PCAP

• counts.py

• countsVariables.py

• cvar.py

• detectors.py

• main.py

• services.py

• set.py

• requirements.txt

• LICENSE

• README.md
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76 Chapter B. Operating instructions of INSecS-DCS

B.1 Requirements

Wireshark/Tshark is needed to run this software. Installation method would vary depending on

the OS. This software is written in python3 so python3 needs to be installed before running the

code.

sudo ap t −g e t u p d a t e

sudo ap t −g e t i n s t a l l py thon3 . 5 . 2

The requirements.txt file includes the python packages needed for the software.

p ip3 i n s t a l l − r r e q u i r e m e n t s . t x t

B.2 Making datasets from local traffic

Users can start creating datasets from local traffic by running the following code on a shell.

py thon3 main . py

B.2.1 Setting a timer to capture files

When creating the dataset from local traffic, a user can define the duration for packet collection

by setting the variable howlong in milliseconds. The changes are to be done on the file set.py.

B.2.2 Setting time window for processed attributes (attributes that cor-

respond to overall behavior within a time window)

A user needs to define a time window in creating attributes that correspond to the overall

behavior of traffic within a time window. This can be done by setting variable time window in

the file set.py.
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B.3 Making datasets from Captured PCAP

The same set of python files with changes inside them are found in the folder named dataset

creator with foreign PCAP. To use this code, the user needs to specify the path to the PCAP

file in main.py by changing the following line of code.

cmd = sudo t s h a r k − r / p a t h / f i l e n a m e −V −T j s o n

Setting a time window is exactly as described in section B.2.



Appendix C

Intrusion Detection Logs for INSecS-IDS

The following logs are from the test case described in subsection 3.2.5 where the related results

are given in Table 4.3. All the attack instances were identified with and without hierarchical

decision making, with the only difference being the difference in detection time.

C.1 Attack Detection Log

smurf attack detected. icmp count: 1090 172.16.114.50

smurf attack detected. icmp count: 1084 172.16.114.50

smurf attack detected. icmp count: 1033 172.16.114.50

smurf attack detected. icmp count: 1084 172.16.114.50

smurf attack detected. icmp count: 1076 172.16.114.50

smurf attack detected. icmp count: 1082 172.16.114.50

smurf attack detected. icmp count: 1081 172.16.114.50

smurf attack detected. icmp count: 1029 172.16.114.50

smurf attack detected. icmp count: 1080 172.16.114.50

smurf attack detected. icmp count: 1072 172.16.114.50

smurf attack detected. icmp count: 1085 172.16.114.50

smurf attack detected. icmp count: 1076 172.16.114.50
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C.1. Attack Detection Log 79

smurf attack detected. icmp count: 1010 172.16.114.50

smurf attack detected. icmp count: 1045 172.16.114.50

smurf attack detected. icmp count: 1046 172.16.114.50

smurf attack detected. icmp count: 1044 172.16.114.50

smurf attack detected. icmp count: 1062 172.16.114.50

smurf attack detected. icmp count: 1003 172.16.114.50

smurf attack detected. icmp count: 1039 172.16.114.50

smurf attack detected. icmp count: 1048 172.16.114.50

smurf attack detected. icmp count: 1061 172.16.114.50

smurf attack detected. icmp count: 1060 172.16.114.50

smurf attack detected. icmp count: 912 172.16.114.50

smurf attack detected. icmp count: 1047 172.16.114.50

smurf attack detected. icmp count: 1066 172.16.114.50

smurf attack detected. icmp count: 1070 172.16.114.50

smurf attack detected. icmp count: 1069 172.16.114.50

smurf attack detected. icmp count: 994 172.16.114.50

smurf attack detected. icmp count: 1086 172.16.114.50

smurf attack detected. icmp count: 1105 172.16.114.50

smurf attack detected. icmp count: 1098 172.16.114.50

smurf attack detected. icmp count: 1095 172.16.114.50

smurf attack detected. icmp count: 1034 172.16.114.50

smurf attack detected. icmp count: 1091 172.16.114.50

smurf attack detected. icmp count: 986 172.16.114.50
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