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   Abstract 

Aberrant function and over-expression of protease-activated receptor 2 (PAR2), a GPCR, is 

associated with various cancers and inflammatory diseases. PAR2-targeting ligands have 

been developed with therapeutic applications but the development of imaging probes is 

lacking. A series of PAR2-targeted fluorescent and 18F-PET imaging agents were synthesized 

and assessed for PAR2-binding. A novel dye-conjugated peptide, Isox-Cha-Chg-ARK(Sulfo-

Cy5)-NH2 (EC50=16nM, KD=38nM), showed >10-fold increase in potency and binding 

affinity for PAR2 compared to the leading known fluorescent probe. A novel PET imaging 
18F-labeled peptide, Isox-Cha-Chg-AR-Dpr([18F]4-FB)-NH2, is the first PAR2-targeted in 

vivo imaging agent. It showed significant uptake in PAR2-expressing prostate cancer cells 

compared to controls (P<0.001) and the 19F-standard was highly potent (EC50=13nM) and 

PAR2-selective. The peptide was 18F-labeled through standard prosthetic group labeling 

(RCY=37±3%, RCP>98%, Am=20±2GBq/µmol, EOS=125±2min, n=4). These probes are 

useful chemical tools that could provide insight into PAR2 expression in vitro and in vivo 

with potential clinical applications in PAR2-related diseases. 
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Chapter 1  

1 Introduction 

1.1 Protease-activated Receptors 
Protease-activated receptors (PARs) are a subfamily of G protein-coupled receptors 

(GPCRs). GPCRs are cell membrane receptors that are involved in a broad range of 

cellular processes, making them common therapeutic targets. They have a characteristic 

seven trans-membrane domain, extracellular ligand-binding site, and intracellular three-

subunit G protein (α, β, and γ). GPCRs cause a cellular response through an intricate 

signal transduction pathway initiated when a ligand binds to, and activates, the receptor. 

Ligand binding initiates a conformational change in the receptor, causing its intracellular 

G protein to replace GDP with GTP.1,2 This replacement allows the α-subunit of the G 

protein to dissociate from the β- and γ-subunits.1,2 The dissociated G protein subunits can 

then elicit various effects on other intracellular signaling proteins or directly on 

functional proteins, such as the adenylate cyclase enzyme or ion channels.1,2 Further, the 

ligand-induced conformational change of the receptor can cause intracellular 

phosphorylation and subsequent recruitment of β-arrestin 1 and 2, which often results in 

receptor internalization, desensitization, and G protein independent signaling.1,2 PAR 

pathways are similar to those of the typical GPCR, except their unique method of ligand 

activation. Typical GPCRs are activated by a free endogenous ligand (Figure 1.1A), 

whereas PARs are activated through a covalently linked tethered ligand.1,2 In an inactive 

state, PARs have N-terminal amino acids that ‘mask’ the ligand. Specific proteases 

cleave off the N-terminal portion of the receptor revealing an ‘unmasked’ tethered ligand 

sequence that binds to the PAR binding region and activates the receptor (Figure 1.1B).1,2 

It has been found that exogenous ligands resembling the tethered ligand sequence can 

activate a PAR in lieu of its endogenous tethered ligand (Figure 1.1C).1,2 



2 

 
2 

 

Figure 1.1: GPCR versus PAR agonist activation comparison. (A) Usual GPCR ligand 

activation, (B) PAR tethered ligand activation, (C) PAR free ligand activation. 

 

1.2 Protease-activated Receptor 2 
There are four known PARs, designated PAR1, PAR2, PAR3, and PAR4. All PARs have 

different but related functions, and have been linked to various diseases; the focus of this 

research is on PAR2. PAR2 is naturally expressed in various tissues, in which the 

pancreas, kidneys, liver, small intestine, and colon show the highest expression.3–5 The 

physiological role of PAR2 is generally involved in inflammation, cell migration, tissue 

metabolism, and gastrointestinal function. However, aberrant function or over-expression 

of PAR2 has been linked to various cancers and inflammatory diseases. More 

specifically, PAR2 is implicated in conditions including arthritis, colitis, asthma, 
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cardiovascular disease, prostate cancer, lung cancer, gastric cancer, colon cancer, 

melanoma, ovarian cancer, and breast cancer.6–21 In cancerous tissue, this undesirable 

activity of PAR2 has been shown to significantly contribute to cancer cell proliferation, 

angiogenesis, and metastasis.8,22,23 Of specific interest, there is up to a 16-fold increase in 

PAR2 expression in colon, lung, breast, prostate, ovarian, and gastric cancers and PAR2 

expression levels have been positively correlated to cancer staging and 

progression.10,13,16,19,20,24,25 PAR2 is therefore an important biological target for 

therapeutics and imaging. Optimization of the PAR2-ligand interaction has been 

thoroughly explored, with some ligands showing therapeutic potential.2 There is however 

a paucity of published research into the development of fluorescent ligands and no 

published research available on the development of in vivo imaging agents for PAR2. 

 

1.3 Molecular Imaging 
Molecular imaging is the visualization, characterization, and measurement of biological 

processes at the molecular and cellular levels in living systems.26 It is a technique that is 

able to non-invasively study cellular processes, diagnose disease, monitor treatment 

response of patients, and stratify diseases of patients. Molecular imaging encompasses 

many imaging modalities such as positron emission tomography (PET), single photon 

emission computed tomography (SPECT), optical, and magnetic resonance (MR) 

imaging. Each of these common molecular imaging modalities have their various 

strengths and weaknesses when it comes to their spatial resolution, sensitivity, and depth 

of penetration (Figure 1.2).27 Optical imaging has strong spatial resolution and sensitivity 

in comparison to the other common molecular imaging modalities, but is limited by its 

depth of penetration in living systems.27 MR, PET, and SPECT imaging are not limited 

by their depth of penetration but have their own shortcomings.27 MR imaging has poor 

sensitivity for its contrast agents whereas nuclear (PET and SPECT) imaging have poor 

resolution compared to the other common molecular imaging modalities.27 Nuclear 

imaging does however have very strong sensitivity compared to the other common 

molecular imaging modalities.27 
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Figure 1.2: Comparison of spatial resolution and molecular sensitivity for various 

imaging modalities. 

A crucial component to molecular imaging involves having a detectable agent referred to 

as a molecular imaging agent. Typical molecular imaging agents contain a targeting 

moiety that binds with high affinity and specificity to the biological target of interest, a 

linker, and an imaging moiety (Figure 1.3). 

 

Figure 1.3: Common imaging agent design. 
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1.4 Fluorescence Imaging 
Fluorescence is the emission of electromagnetic radiation from a substance that has 

absorbed some higher energy electromagnetic radiation, in which visual light emission is 

the most useful for molecular imaging.28 This concept can be utilized for fluorescence 

molecular imaging through the use of fluorescent imaging agents. Similar to other 

imaging agents, these agents typically contain a targeting moiety and a fluorescent 

moiety (similar to Figure 1.3). The most significant limitation for imaging using 

fluorescent imaging agents is that detection through tissue is limited, with a maximum 

penetration of several centimeters.29 They therefore have minimal uses for in vivo 

imaging of animals larger than rats.29 Despite this, fluorescent imaging agents have a 

multitude of important applications, such as investigating biologically relevant 

interactions (i.e. receptor-ligand binding) in in vitro cell studies or small animal models, 

histology staining, and intraoperative imaging for image-guided surgeries (e.g. in tumour 

resection surgery, a fluorescent imaging agent targeting cancer could be used to aid in 

cancer-tissue visualization).29,30 Since PAR2 is linked to various diseases, such as cancer, 

PAR2-specific fluorescent imaging agents have potential applications in all of these 

categories.  

 

1.5 Positron Emission Tomography Imaging 
PET is a powerful, highly sensitive, quantitative, in vivo imaging technique that indirectly 

detects positron (β+) radioactive decay. In PET molecular imaging, a β+ emitting imaging 

agent acts as the source of the signal. These PET imaging agents can be directly labeled 

with a β+ emitter, but for higher molecular weight entities they commonly have a 

targeting moiety linked to an imaging moiety (similar to Figure 1.3), where the imaging 

moiety often makes use of a prosthetic group. The prosthetic group is designed to allow 

for facile labeling with a radioactive isotope and conjugation to the targeting moiety; 

prosthetic group labeling is commonly used since direct labeling of peptide or protein 

targeting moieties is often not synthetically feasible. There are many examples of β+ 

emitting isotopes used for PET, such as fluorine-18, copper-64, carbon-11, nitrogen-13, 
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gallium-68, and oxygen-15.29 Each of these radionuclides have their own advantages and 

limitations; however, the most common radionuclide used today is fluorine-18. Fluorine-

18 has facile cyclotron production, an ideal half-life for radiopharmaceuticals (109.8 

min), diverse chemistry for introduction into various molecules, and the best spatial 

resolution compared to other PET isotopes.31,32 Fluorine-18 is produced from a cyclotron 

through proton irradiation of 18O (a naturally occurring stable isotope of oxygen).29,32 

Although PET requires fluorine-18 (or other β+ emitters), signal detection does not 

directly measure β+ decay. Initially, β+ decay converts a proton into a neutron, a positron 

(an antiparticle counterpart of an electron), and a neutrino (Figure 1.4).32,33 The positron 

will travel until it has lost enough kinetic energy to annihilate with an electron, emitting 

two antiparallel 511 keV gamma photons.29,32 PET imaging uses a scintillator to detect 

these antiparallel gamma photons, in which areas of high radionuclide content result in 

high signal.33 The high energy of these gamma photons ensures they will travel, and be 

detected, through tissue of any applicable distance, unlike other imaging methods such as 

fluorescence imaging.29 Developing PET imaging agents targeting PAR2 can provide 

insight into areas of PAR2 expression in vivo and have potential clinical applications in 

the diagnosis and treatment of various cancers and inflammatory diseases.  
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Figure 1.4: Positron decay, annihilation, and PET detection. 

 

1.6 PAR2 Structure-Activity Relationship History 
As described in section 1.1, PARs are activated through a specific protease that cleaves 

the N-terminus of the receptor to reveal a tethered ligand sequence that binds to and 

subsequently activates the receptor. Initial studies on ligands targeting PAR2 were based 

on the tethered ligand sequence of the native protein. The amino acid sequence of the 

tethered ligand was determined to be SLIGRL and SLIGKV in rodents and humans, 

respectively.34 These sequences and their C-terminal amidated sequences were 

synthesized as six-mer peptides and were found to bind to and activate PAR2.34–37 

Further, it was found that the amidated rodent sequence (SLIGRL-NH2, Figure 1.5A) had 

the highest potency and binding affinity for human PAR2 compared to the other three 

sequences, partially due to the C-terminal amide resembling the secondary amide present 

in the tethered ligand sequence.35–38 Further structure-activity relationship studies 

involved substitution and addition of various natural and unnatural amino acids to 

SLIGRL-NH2. Replacing serine in position one with various heterocyclic residues greatly 
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improved potency and affinity for PAR2, of which 2-furoyl (i.e. 2f-LIGRL-NH2) was the 

best.39 Addition of ornithine to the C-terminus of 2f-LIGRL-NH2 (Figure 1.5B) was 

found to have no noticeable effect on potency or binding affinity, nor did the addition of 

a fluorescent dye to the side chain of ornithine.40,41 Recently, improvements in PAR2 

affinity and potency of 2f-LIGRL-NH2 have been made through the replacement of the 2-

furoyl (2f) group with a 5-isoxazoyl (Isox) group as well as leucine and isoleucine with 

more hydrophobic analogues cyclohexylalanine (Cha) and cyclohexylglycine (Chg).39,42–

44 Originally, the truncated sequence Isox-Cha-Chg-NH2 (Figure 1.5C) showed a ten-fold 

increase in potency compared to 2f-LIGRLO-NH2 through a calcium assay, but later was 

reported to have a reduced affinity for PAR2 through a competitive binding assay.42,43 

This was likely due to the absence of the arginine positive charge; a charge that may 

contribute to a relatively strong ionic interaction with the receptor.43 However, the 

sequence Isox-Cha-Chg-AR-NH2 (Figure 1.5C) showed a greater than ten-fold increase 

in potency and affinity for PAR2 compared to 2f-LIGRL-NH2 in those same assays.43 

 

Figure 1.5: Structure of (A) SLIGRL-NH2, (B) 2f-LIGRLO-NH2, and (C) Isox-Cha-Chg-

X. 
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1.7 Labeling Strategy 
There are several ways to label targeting moieties with fluorine-18; however, due to the 

large number of potentially reactive functional groups, labeling of peptides generally 

proceeds using a prosthetic group. The prosthetic group, N-succinimidyl 4-

[18F]fluorobenzoate ([18F]SFB, Figure 1.6A), was used for labeling of peptides in this 

thesis as it is one of the most common fluorine-18 peptide labeling prosthetic groups, 

which gives quick, efficient, and clean labeling with the ability to be automated.45,46 

Commonly, as completed in this thesis, the 4-fluorobenzoyl (4-FB) with natural fluorine 

(fluorine-19) is conjugated to the targeting moiety to identify the lead candidate(s) 

through biological evaluation before the fluorine-18 version(s) are synthesized using 

[18F]SFB. The Sulfo-Cy5 NHS (Sulfo-Cyanine5 N-hydroxysuccinimide) ester fluorescent 

dye (Figure 1.6B) is a commercially available fluorescent dye that can undergo facile 

conjugation to primary amines, which was also used for labeling of peptides in this thesis. 

 

Figure 1.6: Structure of (A) [18F]SFB and (B) Sulfo-Cy5 NHS ester. 

 

1.8 Computational Distribution Coefficient 
The distribution coefficient (D) is a measure of the hydrophilicity/hydrophobicity of a 

compound. It is a ratio of the concentration of a compound that is dissolved in n-octanol 

compared to its concentration dissolved in water from a mixture of these two immiscible 

solvents at a given pH (Eqn. 1).47  
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D =
[ionized	&	unionized	compound	in	octanol]
[ionized	&	unionized	compound	in	water] 										(1) 

The distribution coefficient is usually expressed as a logarithm of D (logD), in which 

more hydrophobic compounds are generally more soluble in n-octanol thereby having a 

more positive value. More hydrophilic compounds are generally more soluble in water 

thereby having a more negative value. This value can be determined experimentally, or 

by the more feasible route, computationally to give a clogD value.47  

Development of imaging agents and therapeutic drugs can be improved by utilizing 

information from logD or clogD, as there is typically an ideal balance of hydrophobicity 

and hydrophilicity for in vivo applications.47 Molecules with very negative logD or clogD 

values typically have rapid clearance and a difficult time passing biological barriers to get 

to the target in vivo. Molecules with very positive values typically have a high uptake in 

fatty tissue, blood solubility issues, and higher chances of producing toxic metabolites in 

vivo.47  

The clogD values for the compounds developed herein were calculated using Simulations 

Plus MedChem Designer ADMET Predictor.48 This program contains several models 

with over 300 atomic and molecular descriptors as well as various algorithms to select the 

best model and prediction parameters to determine the computed distribution coefficient 

at a desired pH. Generally, the pH is set to 7.4 to resemble physiological conditions. 

 

1.9 Bioluminescence Resonance Energy Transfer β-
Arrestin 2 Recruitment Assay  

Most GPCRs, including PAR2, initiate β-arrestin 2 (arr2) recruitment when a ligand 

binds to its orthosteric site. This signal is often involved in receptor internalization, 

desensitization, and G protein independent signaling.49,50 This recruitment can be used for 

a biological assay to determine receptor-ligand binding. In this assay, cells are transiently 

transfected with genes that encode for PAR2 tagged with enhanced yellow fluorescent 

protein (eYFP) and arr2 tagged with renilla luciferase (rluc). The cell then begins to 



11 

 
11 

express both of these proteins, PAR2-eYFP on the cell membrane and arr2-rluc in the 

cytoplasm (Figure 1.7). Cells are then incubated with a PAR2-targeting ligand followed 

by h-coelenterazine. Renilla luciferase is an enzyme that catalyzes h-coelenterazine to 

emit at λmax = 480 nm (i.e. bioluminescence). If arr2-rluc is in close proximity with 

PAR2-eYFP, resonance energy transfer occurs from the emitted wavelength to eYFP, 

which than subsequently re-emits at λmax = 527 nm. Both emissions are recorded and 

expressed as a ratio of eYFP over rluc-h-coelenterazine emission to control for 

transfection efficiency. The larger the ratio value, the more arr2 recruitment that 

occurred. This is completed at various concentrations of ligand of interest in order to 

determine a dose-response curve and subsequent EC50 value as a measure of potency. 

 
Figure 1.7: BRET β-arrestin 2 assay principle.  
Step 1: binding of agonist to PAR2. Step 2: continuous h-coelenterazine-rluc bioluminescence. Step 3: arr2 
recruitment. Step 4: resonance energy transfer. Step 5: emission of eYFP. 

 

1.10 Calcium Assay 
Similar to β-arrestin 2 recruitment, most GPCRs, including PAR2, initiate calcium 

release when activated by a ligand, which can also be used for a biological assay. Usually 

this calcium acts as a secondary messenger for the cell and delivers a cellular response. In 

this assay, a fluorescent dye, Fluo-4, is incubated with PAR2-expressing cells. Fluo-4 

enters the cell, is activated by an enzyme, chelates calcium, and subsequently, emits 

fluorescence following the appropriate excitation (Figure 1.8). To reduce extracellular 

calcium reporting, Fluo-4 is designed to be activated only by intracellular enzymes. The 
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inactive Fluo-4 cannot chelate calcium and can passively diffuse across the cell 

membrane. The activated Fluo-4 can chelate calcium and cannot diffuse across the cell 

membrane, thereby ‘trapping’ it inside the cell and chelating only intracellular calcium. 

To control for variation within the experiment, each measurement is expressed as a 

percentage of maximum fluorescence through the use of ionomycin. Ionomycin is an 

ionophore that substantially increases the permeability of the cell membrane to calcium; 

since the extracellular fluid is supplemented with calcium, the limiting factor in the 

maximum response is the activated Fluo-4. This assay was used to determine PAR2 

selective binding through the use of cells expressing and not expressing PAR2. 

 

Figure 1.8: Calcium assay principle for a PAR2-expressing cell.  
Step 1: passive uptake of Fluo-4 I (inactive) and esterase conversion to Fluo-4 A (active). Step 2: binding 
of agonist to PAR2. Step 3: calcium release due to agonist binding. Step 4: excitation and emission of Fluo-
4 A chelated calcium. 

 

1.11 Purpose of Thesis 
The purpose of this thesis is to develop and evaluate an improved fluorescent and the first 

ever in vivo imaging agents targeting PAR2. The first goal was to synthesize and evaluate 

novel PAR2-targeting peptides with primary amines to allow for facile conjugation of 

imaging components based on known PAR2-selective peptides. The second goal was to 

develop an improved PAR2-selective fluorescent probe through the conjugation of a 

Sulfo-Cy5 NHS ester dye to the lead peptide. The third goal was to develop the first ever 

in vivo imaging agent targeting PAR2 through the radiolabeling of the lead peptide with 
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[18F]SFB for use in PET imaging. To determine the lead candidates for radiolabeling, 

peptide standards with [19F]4-fluorobenozyl were synthesized and evaluated for PAR2-

binding prior to radiolabeling. All peptides were synthesized through standard Fmoc-

solid phase peptide synthesis (SPPS) and screened for their imaging ability by 

determining PAR2 potency using a BRET β-arrestin 2 recruitment assay, PAR2 

selectivity using a calcium signaling assay, and hydrophobicity/hydrophilicity using 

clogD values. Lead imaging agents were then evaluated in vitro in prostate cancer cells 

and will continue to be evaluated ex vivo and in vivo in a preclinical model of prostate 

cancer. 
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Chapter 2  

2 A Potent and High Affinity Fluorescent Probe for 
Protease-Activated Receptor 2 

2.1 Introduction 
Protease-activated receptors (PARs) are a class of G protein-coupled receptors (GPCRs) 

that are self-activated by a tethered ligand after a protease cleaves an N-terminal portion 

of the protein. There are four subtypes, denoted PAR1-PAR4. In PAR2, various proteases 

(e.g. trypsin, tryptase, Granzyme A, KLK4) are known to reveal the tethered ligand 

sequence SLIGKV (humans) and SLIGRL (rodents).1–5 

PAR2 is naturally expressed in various tissues (e.g. pancreas, liver, small intestine, colon) 

and is involved in inflammation and cell migration.6–8 However, abnormal function and 

inappropriate expression of PAR2 has been linked to various cancers and inflammatory 

diseases. More specifically, PAR2 is implicated in conditions such as arthritis, colitis, 

asthma, cardiovascular disease, prostate cancer, lung cancer, gastric cancer, melanoma, 

ovarian cancer, and breast cancer.9–23 In cancerous tissue, this undesirable activity of 

PAR2 has been shown to significantly contribute to cell proliferation, angiogenesis, and 

metastasis.11,24,25  

Exogenous agonists have been developed, which bind and activate PAR2. Initial reports 

synthesized and evaluated peptides that resemble the tethered ligand sequences SLIGKV 

and SLIGRL as well as their amidated analogues, and showed that SLIGRL-NH2 (1, 

Figure 2.1) had the highest potency/affinity for human PAR2, which has thus been widely 

used as a PAR2 agonist with micromolar potency.2,26,27 Extensive structure-activity 

relationship studies have involved substitutions of various natural and unnatural amino 

acids into these sequences, generating peptides with improved potency. In particular, 

substituting the serine residue in the first position with various heterocycles (e.g. 2-

furoyl, 5-isoxazoloyl, 3-pyridoyl, 4-(2-methyloxazoloyl), and 2-aminothiazol-4-oyl) has 

substantially improved potency and affinity for PAR2.28 Of these, 2-furoyl (2f) based 

peptides initially showed the best improvements and have been the most widely used. 
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Addition of ornithine to the C-terminus of the 2f-LIGRL-NH2 hexapeptide (2, Figure 2.1) 

and conjugation of various bulky substituents to the side chain of that ornithine (e.g. 

Alexa Fluor 594, 3 and DTPA(Eu), 4, Figure 2.1) have shown no appreciable effect on 

their potency, affinity, or selectivity for PAR2.29,30 More recently, Isox-Cha-Chg (5-

isoxazoloyl-cyclohexylalanine-cyclohexylglycine) based peptides developed by Yau et al. 

(2016) and Jiang et al. (2017), most notably Isox-Cha-Chg-AR-NH2 (7, Figure 2.1), have 

shown substantial improvements in potency and affinity for PAR2.31,32 

 

Figure 2.1: Known PAR2-targeting peptide agonists.26,29–33 

PAR2-targeting imaging probes developed to date have been limited, with only several 

fluorescent and tritiated probes having been reported.27,29,30,34,35 In particular, 3 has been 

the best fluorescent probe developed thus far with sub-micromolar affinity and with an 

Alexa Fluor 594 fluorescent dye (excitation maximum = 590 nm, emission maximum = 

617 nm).29 Development of higher affinity fluorescent probes improve uptake in cells and 

tissues expressing the receptor, which can result in benefits such as reduced off target 

binding, less compound required, and reduced adverse effects. Development of red-

shifted fluorescent probes allow for improved in vivo imaging in small animals due to 

less absorption and scattering from biomolecules of the red-shifted light compared to 

blue-shifted light. Fluorescent probes targeting this receptor can act as useful chemical 

tools for various in vitro experiments (e.g. competitive binding assays, determination of 
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PAR2 expression levels, insight into PAR2 trafficking), for imaging PAR2 in small 

animals in vivo, and that have potential clinical relevance in PAR2-related diseases such 

as in pathological histology staining or intraoperative imaging for image guided surgery.  

This work describes the development of Isox-Cha-Chg-AR-NH2 related peptides that 

would allow for facile conjugation of imaging components in order to develop an 

improved PAR2-targeting fluorescent probe with low nanomolar affinity/potency for 

PAR2 and with a red-shifted fluorescent dye (Sulfo-Cy5, excitation maximum = 646 nm, 

emission maximum = 662 nm). In addition, this work describes the evaluation of the 

improved fluorescent probe in vitro. The insights gained from compounds like 3 and 4, as 

well as reports demonstrating that the N-terminal portion of PAR2-targeting peptides are 

much more crucial for binding than the C-terminal portion, led us to make modifications 

to the C-terminus of 7 that contain a free primary amine for Sulfo-Cy5 dye 

conjugation.29,30,32 
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2.2 Results and Discussion 

2.2.1 General Peptide Synthesis Strategy 

All peptides (2, 6-12, and 14-15) were synthesized using standard Fmoc-solid phase 

peptide synthesis (SPPS) using a solid support MBHA Rink amide resin or 1,6-

diaminohexane trityl resin (Scheme 2.1). 

 

Scheme 2.1: General procedure for Fmoc-SPPS. 

In addition to standard Fmoc-SPPS, 12 utilized an orthogonal protecting group, 

allyloxycarbonyl (Alloc), followed by subsequent acetylation for its synthesis (Scheme 

2.2).  

 

Scheme 2.2: Alloc deprotection and subsequent acetylation. 

2.2.2 Design, Synthesis, and Evaluation of PAR2-Targeting 
Peptides 

All Peptides were synthesized and evaluated for PAR2-binding through a β-arrestin 2 

recruitment assay in HEK293T cells in an effort to develop a more potent, higher affinity 
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PAR2-selective fluorescent probe. In this assay and cell line reported here, compounds 1, 

2, 6, and 7 showed a similar potency trend to previous reports of binding affinity for 

PAR2 (7 >> 2 >> 6 > 1, from most to least potent, Table 2.1).27,29,32 Following these 

results, the best reported PAR2-targeting peptide (7) from Jiang et al. (2017) was 

modified with a primary amine on the C-terminus in various ways. These modifications 

were made since conjugation of imaging components directly to 7 was not synthetically 

feasible and because the addition of a linker region between the targeting moiety and the 

imaging moiety would help keep bulky substituents (e.g. Sulfo-Cy5) from interfering 

with the receptor-ligand interactions. 

The first approach was the addition of an aminohexyl spacer extending from the peptide 

backbone of 7 to yield 8. This was intended such that conjugation of the dye to the C-

terminus would allow the dye to lie outside of the receptor binding pocket. This 

modification resulted in minimal to no reduction in potency but an increase in 

hydrophobicity from -0.85 to -0.70 (Table 2.1). This hydrophobicity change was 

disconcerting because the addition of the Sulfo-Cy5 dye to the peptides will cause an 

additional substantial increase in hydrophobicity, which is a concern for water solubility 

in its various current and future applications (e.g. in vitro experiments).  

Table 2.1: PAR2-targeted peptides (1-2 and 6-12) with their EC50 and cLogD values.  

# Compound EC50 (nM) pEC50 ± SEM cLogD at pH 7.4 

1 SLIGRL-NH2 7144 5.15 ± 0.03 -1.93 

2 2f-LIGRLO-NH2 210 6.68 ± 0.04 -2.71 
6 Isox-Cha-Chg-NH2 2555 5.59 ± 0.10 2.29 
7 Isox-Cha-Chg-AR-NH2 14 7.86 ± 0.06 -0.85 

8 Isox-Cha-Chg-AR-NH(CH2)6NH2 16 7.79 ± 0.04 -0.70 
9 Isox-Cha-Chg-ARLK-NH2 23 7.65 ± 0.07 -1.29 

10 Isox-Cha-Chg-ARAK-NH2 15 7.82 ± 0.07 -1.77 

11 Isox-Cha-Chg-ARK-NH2 10 8.00 ± 0.09 -1.72 
12 Isox-Cha-Chg-ARK(COCH3)-NH2 16 7.78 ± 0.05 -0.84 

EC50 values determined through a dose-response curve from a β-arrestin 2 recruitment assay in HEK293T 
cells. cLogD values calculated through Simulations Plus MedChem Designer ADMET Predictor.  

In an effort to reduce solubility concerns, 9 was synthesized. The addition of leucine-

lysine (position 6 and 7) to the C-terminus of 7 was synthesized to resemble the 
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previously reported 2, which added ornithine (position 7) to the C-terminus of 2f-LIGRL-

NH2. Although this modification lowered the hydrophobicity, it showed a decrease in 

potency (Table 2.1). From here, alanine-lysine was added to the C-terminus of 7 to 

further decrease hydrophobicity and to reduce steric bulk at position 6 while still 

allowing for the same peptide backbone length as 9 and 2. This yielded 10, which was 

found to have improved potency and hydrophobicity (Table 2.1). Compound 11 was 

synthesized through the direct addition of lysine to the C-terminus of 7. It had a similar 

cLogD as 10 and fortunately showed a slight improvement in potency compared to 7 and 

10 (Table 2.1). Therefore, 11 was taken forward as the lead candidate. 

The lysine side chain of 11 was then acetylated to observe the effect of losing this 

positive charge. This yielded 12, which was found to have only a slight reduction in 

potency compared to 11 (EC50 = 16 nM vs. EC50 = 10 nM, Table 2.1), suggesting this 

charge was not crucial for PAR2 binding, making 11 a good candidate to label with a 

fluorescent dye. 

In addition to potency and hydrophobicity measures, receptor selectively was also 

assessed through an intracellular calcium release assay to ensure the synthesized peptides 

target PAR2 specifically. All known and novel PAR2-targeting peptides (1-2 and 6-12) 

were found to bind selectivity to the PAR2 receptor (Table 2.2, see Appendix 1 for 

PAR2-selectivity traces). This was evaluated by comparing calcium response in 

HEK293T cells expressing PAR2 compared to PAR2 knock out (KO) HEK293T cells. 

As a control, a PAR1-specific agonist (TFLLR-NH2, 13) was assessed for its calcium 

response in both of these cells lines as they both contain the PAR1 receptor (Table 2.2). 

These cells and this control were used (similar to previous reports) because it is known 

that some PAR2-targeting peptides can also bind to PAR1.31,32,36,37  
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Table 2.2: PAR2 selectivity of peptides 1-2 and 6-12. 

# Net % max Ca2+ release in PAR2 
expressing cells ± SEM 

Net % max Ca2+ release in 
PAR2 KO cells ± SEM 

13 49.3 ± 4.4 67.5 ± 6.6 
1 53.4 ± 7.9 -0.5 ± 0.5 
2 53.0 ± 6.4 0.7 ± 1.2 
6 17.2 ± 4.2 -1.4 ± 1.3 
7 64.6 ± 4.9 -0.5 ± 0.5 
8 68.6 ± 9.3 0.0 ± 0.4 
9 69.9 ± 4.1 -0.4 ± 0.4 
10 67.3 ± 3.9 -1.1 ± 0.5 
11 72.0 ± 5.0 -0.9 ± 0.3 
12 67.3 ± 2.6 -1.4 ± 0.5 

Selectivity measures are shown as calcium response in PAR2 expressing (column two) versus PAR2 KO 
(column three) HEK293T cells. 

2.2.3 Synthesis and Evaluation of PAR2-Targeting Fluorescent 
Probes 

The lead candidate (11) was labeled through the lysine side chain with a Sulfo-Cy5 NHS 

ester fluorescent dye to yield compound 15 (Scheme 2.3). Compound 14 was synthesized 

to resemble the previously reported PAR2-targeting fluorescent probe with the highest 

potency/affinity (3).29 Compound 14 contains an identical PAR2-targeting peptide 

sequence compared to 3, but utilizes Sulfo-Cy5 dye conjugated through the ornithine side 

chain as opposed to an Alexa Fluor 594 dye. The Sulfo-Cy5 dye allows for a more direct 

comparison between the novel Sulfo-Cy5 dye conjugated peptide 15 reported here as well 

as it is a red-shifted and less costly dye. The potency of 14 (EC50 = 296 nM, Table 2.3) 

was similar to its unlabeled counterpart, 2 (EC50 = 210 nM, Table 2.1), which is 

consistent with previous reports of analogous probes modified from this peptide 

sequence.29,38 Compound 15 also showed similar potency (EC50 = 16 nM, Table 2.3) 

compared to its unlabeled counterpart, 11 (EC50 = 10 nM, Table 2.1). More importantly, 

15 was found to have a greater than ten-fold increase in potency compared to 14 (EC50 = 

16 nM vs. EC50 = 296 nM, Table 2.3, Figure 2.2).  
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Scheme 2.3: Synthesis of PAR2-selective fluorescent probe, 15.   

Table 2.3: Evaluation of Sulfo-Cy5 labeled peptides (14 and 15).  

# Compound EC50 
(nM) 

pEC50 ± 
SEM 

KD 
(nM) 

pKD ± 
SEM 

cLogD at 
pH 7.4 

14 2f-LIGRLIO(Sulfo-Cy5)-NH2 296 6.53 ± 0.05 430 6.24 ± 0.13 3.57 
15 Isox-Cha-Chg-ARK(Sulfo-Cy5)-NH2 16 7.81 ± 0.09 38 7.20 ± 0.22 3.94 

EC50 values determined through a dose-response curve from a β-arrestin 2 recruitment assay in HEK293T 
cells. KD values determined through a flow cytometry saturation binding experiment. cLogD values 
calculated through Simulations Plus MedChem Designer ADMET Predictor.  
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Figure 2.2: PAR2 β-arrestin 2 recruitment dose-response curves for compound 1, 14, and 

15 in HEK293T cells. 

Similar to the increase in potency, 15 had a similar increase in affinity compared to 14 

(>10 fold) for PAR2 as determined through a saturation binding experiment using flow 

cytometry (KD = 38 nM vs. KD = 430 nM, Table 2.3, and binding curves shown in Figure 

2.3). As a control, competition of 14 and 15 with an excess of a known PAR2-specific 

peptide (7) was completed, which showed a substantial decrease in fluorescence signal 

for both of the fluorescent peptides (see Appendix 2).  
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Figure 2.3: Saturation binding experiments of (A) 14 and (B) 15 in HEK293T cells for 

determination of affinity measures (KD).  

Compound 15 was further evaluated for its in vitro applications using confocal 

microscopy. It was found that this fluorescent probe binds selectively to the receptor and 

does not passively diffuse the cell membrane (Figure 2.4). This is demonstrated by the 

PAR2 expressing PC3 cells showing significant uptake of 15 (Figure 2.4A) compared to 

no uptake in the controls (PAR2 KO PC3 cells, Figure 2.4B, PAR2 expressing PC3 cells 

blocked with excess of an unlabeled known PAR2-selective peptide, 7, Figure 2.4C, and 

PAR2 KO PC3 cells with excess of 7, Figure 2.4D). 
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Figure 2.4: Confocal microscopy of 15 in PC3 cells and PAR2 KO PC3 cells.  
Compound 15 (250 nM final concentration) incubated with (A) PC3 cells and (B) PAR2 KO PC3 cells. 
Compound 15 (250 nM final concentration) and PAR2-selective blocking peptide, 7 (2500 nM final 
concentration) co-incubated with (C) PC3 cells and (D) PAR2 KO PC3 cells. Uptake of 15 was effectively 
blocked upon co-incubation with 7. Sulfo-Cy5 signal shown in red and DAPI signal shown in blue. Size 
reference = 20 µm. 

 

2.3 Conclusions 
The novel peptides described here show high potency and selectively for PAR2. The 

various modifications led to slightly different structural and hydrophobic properties and 

each allow for facile conjugation of various imaging components (NHS ester dyes, 

common radioactive prosthetic groups, etc.) while showing minimal to no detrimental 

effect on PAR2 binding. To the best of our knowledge, compound 15 is the most potent, 
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highest affinity PAR2-targeting fluorescent probe reported to date with a red-shifted 

fluorophore and a greater than ten-fold improvement in potency and affinity when 

compared to the best previously reported probe.29 Compound 15 was also validated in an 

in vitro confocal microscopy experiment, further demonstrating its candidacy as a useful 

chemical tool for various in vitro experiments as well as potential clinical relevance in 

PAR2-related diseases.  

 

2.4 Experimental Procedures 

2.4.1 General Methods 

All reagents were purchased from Sigma-Aldrich, ChemImpex, or Thermo Fischer 

Scientific and used without further purification. Peptides were synthesized using standard 

Fmoc-solid phase peptide synthesis (SPPS), cleaved from resin using 95% TFA, 2.5% 

TIPS, and 2.5% H2O for 5 h (except 8: 20% TFA, 2.5% TIPS, 77.5% DCM for 1.5 h), 

precipitated in ice cold tert-butyl methyl ether, lyophilized, purified by preparative RP-

HPLC, and further lyophilized to obtain a dry powder. Purity was assessed by analytical 

RP-HPLC and characterized by HRMS (Table 2.4). The analytical RP-HPLC was 

performed on a system consisting of an analytical Agilent Zorbax SB-C8 column (4.6 x 

150 mm, 5 µm), Waters 600 controller, Waters in-line degasser, and Waters Masslynx 

software (version 4.1). Two mobile phases were used; eluent A (0.1% TFA in 

acetonitrile) and eluent B (0.1% TFA in MilliQ water). The flow rate was set at 1.5 

mLmin-1 over 10 minutes with an additional 5-minute wash (95% solvent A in solvent 

B). A Waters 2998 Photodiode array detector (200-800 nm) and an ESI-MS (Waters 

Quattro Micro API mass spectrometer) were used to monitor the column eluate. The 

preparative RP-HPLC used the same system, eluents, and detection method as mentioned 

above for the analytical RP-HPLC, except that a preparative Agilent Zorbax SB-C8 

column (21.2 x 150 mm, 5 µm) at a flow rate of 20 mLmin-1 was used. The high-

resolution mass spectra for all peptides were determined in positive or negative mode 

using an electrospray ionization (ESI) ion source on a Bruker micrOToF II mass 

spectrometer. Simulations Plus MedChem Designer ADMET Predictor was used to 
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determine the cLogD values at a pH of 7.4.39 All descriptive statistics are reported as 

mean ± SEM where applicable.  

Table 2.4: HRMS data and purity of peptides 2, 6-12, and 14-15. 

Cmpd # Molecular 
Formula (M) 

Evaluated 
HRMS m/z Calc. m/z Found m/z Purity 

2 C36H63N11O8 [M+H]+ 778.4939 778.4945 > 95 % 
6 C21H32N4O4 [M+Na]+ 427.2321 427.2309 > 95 % 
7 C30H49N9O6 [M+H]+ 632.3884 632.3892 > 95 % 
8 C36H62N10O6 [M+H]+ 731.4932 731.4944 > 95 % 
9 C42H72N12O8 [M+H]+ 873.5674 873.5685 > 95 % 

10 C39H66N12O8 [M+H]+ 831.5205 831.5197 > 95 % 
11 C36H61N11O7 [M+H]+ 760.4834 760.4841 > 95 % 
12 C38H63N11O8 [M+H]+ 802.4939 802.4952 > 95 % 
14 C68H98N13O15S2- M- 1400.6747 1400.6714 > 95 % 
15 C68H96N13O14S2- M- 1382.6641 1382.6589 > 95 % 

Purity assessed by analytical RP-HPLC UV detection. 

2.4.2 Solid-Phase Peptide Synthesis 

All compounds (except 8) were synthesized on Rink amide MBHA resin (256 mg, 0.1 

mmol, 0.39 mmol/g) using standard Fmoc-SPPS procedures and a Biotage® SyrowaveTM 

automated peptide synthesizer (0.4 mmol of HCTU, 0.4 mmol of Fmoc-amino acids, 0.6 

mmol of DIPEA, 1 h coupling). Manual coupling of 5-isoxazoyl (0.3 mmol) was 

performed using HATU (0.3 mmol) and DIPEA (0.6 mmol) for 24 h twice. Compound 8 

was synthesized on 1,6-diaminohexane trityl resin (256 mg, 0.1 mmol, 0.39 mmol/g).  

2.4.3 Solid-Phase Synthesis of 12 

The peptide sequence of 12 was synthesized on resin as described above but with Fmoc-

Lys(Alloc)-OH used in position 6. Subsequently this sequence underwent an Alloc 

deprotection. The resin was swelled in DCM (15 min), washed thrice with dry DCM (3X 

5 mL), and placed under an inert N2 atmosphere. Phenylsilane (296 µL, 2.4 mmol) in dry 

DCM (2 mL) was added to the resin. Tetrakis(triphenylphosphine) palladium(0) (23.1 

mg, 20 µmol) was dissolved in dry DCM (1 mL) and added to the resin. The peptide 

column was flushed with N2 (2 min) before being shaken (5 min). The resin was washed 

thrice with dry DCM (3X 5 mL). The procedure was repeated and shaken (30 min). The 
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resin was washed four times with DCM (4X 5 mL) and DMF (4X 5 mL). Following the 

Alloc deprotection, a solution of 20% acetic anhydride in DMF (5 mL) was added and 

shaken (30 min). The final acetylated on resin peptide was cleaved and purified as usual. 

2.4.4 SPPS Reaction Monitoring 

Two methods were used to monitor SPPS reactions. The first and more frequent method 

is the Kaiser Test. In this method, several resin beads were placed in a test tube followed 

by the addition of 42.5 mM phenol in ethanol (50 µL), 20 µM potassium cyanide in 

pyridine (50 µL), and 280.7 mM ninhydrin in ethanol (50 µL). The mixture was then 

heated (100 °C, 5 min). A positive test indicates the presence of a free amine, which is 

observed by the resin beads turning blue. A negative test indicates no free amine is 

present, which is observed by resin beads remaining the same colour. The second method 

is a small-scale resin cleavage. In this method, several beads and cleavage cocktail (500 

µL) are shaken, worked up, and the desired peptide is confirmed through HPLC-MS. 

2.4.5 Solution-Phase Synthesis of 14 and 15 

Purified 2 or 8 containing a free primary amine (6.16 mg or 6.05 mg, respectively, 6.1 

µmol) were dissolved in DMSO (0.5 mL). DIPEA (12.7 µL, 73 µmol) was then added to 

the reaction followed by the addition of Sulfo-Cy5 NHS ester (5.0 mg, 6.4 µmol) in 

DMSO (0.5 mL). The mixture was shaken at room temperature in the dark (3 h). The 

solution was diluted with a water/acetonitrile mixture, frozen, and lyophilized. The 

product was purified by RP-HPLC, frozen, and lyophilized to yield 14 or 15. 

2.4.6 Cell Lines and Culture Conditions 

All cell culture supplies were purchased from Thermo Fischer Scientific (Waltham, MA, 

US) unless otherwise stated. Human embryonic kidney (HEK-293T, ATCC, Manassas, 

VA, US), CRISPR/Cas9 PAR2 knockout HEK-293T (validated in Mihara et al., 2016), 

prostate cancer (PC3, ATCC, Manassas, VA, US), and CRIPSR/Cas9 PAR2 knockout 

PC3 cells (see Appendix 5 for validation) were cultured in Dulbecco’s Modified Eagle’s 

Medium (HEK293T-derived cell lines) and Ham’s F-12K Nutrient Mixture (PC3-derived 

cell lines) each supplemented with 10% fetal bovine serum (FBS), sodium pyruvate 
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(1mM), and 100 penicillin streptomycin (100 units/mL).40 All culture performed under 

standard conditions (37 °C; 5% CO2). Trypsin (25mM) or PBS-EDTA (1mM) was used 

to passage cell lines. 

2.4.7 BRET β-Arrestin 2 Recruitment Assay 

HEK293T cells were transfected with BRET pair PAR2-eYFP (2 µg) and β-arrestin-2-

rluc (0.2 µg; generous gift from Michel Bouvier) using calcium phosphate and re-plated 

at 24 hours in tissue culture treated white 96-well plates (density approximately 8x102-

1x103 cells/µL). Serial dilutions of agonist (ranging from 300 µM to 300 pM depending 

on the agonist) were prepared in separate 96-well plates in Hank’s Balanced Salt Solution 

(HBSS). Cell media was removed from 96-well plate containing seeded cells. Agonist 

was added from negative control (HBSS) through to highest concentration using a 

multichannel pipette to seeded plates and incubated (37 °C, 10 min). Renilla luciferase 

substrate (h-coelenterazine) was added to each well (5 µM final) and incubated (37 °C, 

10 min). BRET ratios are recorded on Berthold Mithras LB 940. Responses are expressed 

as net emission of eYFP/rluc (calculated by subtracting HBSS baseline eYFP/rluc ratio 

from agonist eYFP/rluc ratio) and normalized to a positive control (1 at 300 µM). 

Experiments were completed in n ≥ 3 and fitted with a non-linear regression analysis 

four-parameter dose-response curve using GraphPad Prism 6 to determine EC50 values. 

2.4.8 Intracellular Calcium Release Assay 

HEK293T or PC3 cells endogenously expressing PAR2 or CRISPR/Cas9 HEK293T or 

PC3 PAR2 KO cells were lifted from confluent T75 flasks using PBS-EDTA (1 mM, 5 

mL). PBS-EDTA was removed by centrifugation. Cells were re-suspended in 500 µL of 

Fluo-4 NW (no wash) dye solution and assay buffer (1 x HBSS, 20 mM HEPES) and 

incubated at ambient temperature on a rocking platform (30 min). Fluo-4 NW cell 

suspensions were then increased to the volume required for the assay with HBSS (with 

Ca2+ and Mg2+). Cells were aliquoted into cuvettes (2 mL/cuvette final volume) 

containing a magnetic stir-bar to keep cells in suspension for the assay. Individual 

cuvettes were loaded into a Photon Technologies Institute (PTI) spectrophotometer. 

Time-based assay parameters were assigned through PTI software as follows: excitation 
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480 nm, emission 530 nm with 8 nm capture window, and 5000 seconds duration. Before 

the addition of agonist, individual cuvette emission was collected for approximately 10 

seconds to obtain baseline emission. Agonist was pipetted into the cuvette (final 

concentration of 10 µM for 2 and 6-12 and 100 µM for 1 and 13) and the fluorescence 

was measured. As a positive control, untreated cuvettes were treated with a calcium 

ionophore (ionomycin calcium salt in DMSO, 3 µM final) to obtain maximum possible 

calcium response. As a negative control, untreated cuvettes were treated with HBSS only 

(no agonist). Response elicited by agonist treatment at individual concentrations (n ≥ 2) 

was expressed as a net percentage of the average maximum response (calculated by 

subtracting no agonist treatment percentage from agonist treatment percentage).  

2.4.9 Flow Cytometry for Determination of KD for 14 and 15 using 
Saturation Binding Experiments 

Assay was performed similar to previous reports.41 HEK293T cells were removed from 

10 cm dish using 5 mL of 1 mM EDTA in PBS. EDTA solution was removed and cell 

pellet was re-suspended in media. Cells were placed into a 25 mL falcon tube, media 

removed, and rinsed with 2% FBS in PBS. The cells were then incubated with a 4% 

paraformaldehyde in PBS solution for 10 min at room temperature followed by being 

rinsed with 2% FBS in PBS. Cells were aliquoted into 300 000 cell portions, PBS was 

removed, and incubated with 500 µL of 2% BSA in HBSS for 15 min at room 

temperature. Cells were then rinsed with 0.1% BSA in HBSS and incubated with 200 µL 

of 14 or 15 at different concentrations (0, 5, 10, 20, 50, 100, 200, 500, 1000, and 2000 

nM) in a 0.1% BSA in HBSS solution for 50 min at room temperature. The cell aliquots 

were washed twice with 1 mL of 2% FBS in PBS, re-suspended in 500 µL of 2% FBS in 

PBS, and fluorescence was measured using a Navios flow cytometer [Beckman Coulter]. 

A 638 nm laser was used for excitation (set at a voltage of 449 V) and detected using a 

660/20 band pass filter. Approximately 5000 cells were gated on forward and side scatter, 

and assessed for Cy5 fluorescence. Experiments were performed in n ≥ 4. The KD values 

for 14 and 15 were calculated using ‘Binding – Saturation, One site – Total’ (Eqn. 2) 

through GraphPad Prism 6.  

Y =	 :;<=∗?
@AB?

+ NS ∗ X + Background (2) 
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where,  

Y represents normalized fluorescence. 

Bmax represents maximum specific binding in the same units as Y. 

X represents the concentration of 14 or 15 in nM. 

KD represents the equilibrium binding constant in the same units as X. The concentration 

of 14 or 15 needed to achieve half-maximum binding at equilibrium. 

NS represents the slope of non-specific binding in Y units divided by X units. 

Background represents the amount of normalized fluorescence with no 14 or 15 added in 

the same units as Y.  

2.4.10 Confocal Microscopy of 15 in PC3 Cells 

PC3 cells were seeded to a density of 75 000 cells/well in a 12-well Nunc plate 

containing coverslips prepared with gelatin (15 minute incubation with a 2% gelatin 

solution followed by 15 minutes of drying). Cell media was removed 24 hours following 

seeding and replaced with serum free Ham’s F-12K media to remove FBS (1 h, 37 °C). 

PC3 cells or PAR2 KO PC3 cells were incubated with 250 nM of dye labeled compound 

(15) with or without 10x concentrated unlabeled compound (7; blocking study) for 30 

minutes at 37 °C. Following incubation, cells were rinsed thrice with PBS (3X 1 mL) to 

remove excess probe and then incubated in a paraformaldehyde solution (1 mL, w/v 4%, 

20 min) to fix cells. Fixed cells were rinsed three additional times with PBS (3X 1 mL) to 

remove excess fixative. Coverslips were mounted to slides using ProLong Gold antifade 

reagent with DAPI (Invitrogen) and cured for 24 hours at 4 °C. Nail polish was used to 

seal slides following curing. Cells were imaged on an Olympus FV1000 confocal system 

at 40x magnification. DAPI was imaged with a diode 405 laser for excitation and 

emission collected at 430-470 nm. Cy5 was imaged with a HeNe2 laser (635 nm) and 

emission recorded at 655-755 nm. Given the large spectral window differences between 

DAPI and Cy5, there were no concerns regarding spectral overlap. Kalman sequential 
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line scanning was employed to further increase confidence in emission profiles of the 

sample.  
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Chapter 3  

3 A Novel PET Probe for In Vivo Imaging of Protease-
Activated Receptor 2 

3.1 Introduction 
Protease-activated receptors (PARs) are a class of G protein-coupled receptors (GPCRs), 

which uniquely are self-activated by a tethered ligand after a specific protease cleaves an 

N-terminal portion of the receptor. Before protease cleavage, the tethered ligand is 

‘masked’ by multiple N-terminal amino acids, but afterwards, the ‘unmasked’ tethered 

ligand is able to bind to and activate the receptor. There are four PAR subtypes, denoted 

PAR1-PAR4. For PAR2, various proteases (e.g. trypsin, tryptase, Granzyme A, KLK4) 

are known to reveal the tethered ligand sequence SLIGKV (humans) and SLIGRL 

(rodents).1–5 

PAR2 is naturally expressed in multiple tissues (e.g. pancreas, liver, small intestine, 

colon) and is involved in inflammation and cell migration.6–8 However, aberrant function 

and over-expression of PAR2 has been linked to various cancers and inflammatory 

diseases. More specifically, PAR2 is implicated in conditions such as arthritis, colitis, 

asthma, cardiovascular disease, prostate cancer, lung cancer, gastric cancer, melanoma, 

ovarian cancer, and breast cancer.9–23 In cancerous tissue, this undesirable activity of 

PAR2 has been shown to significantly contribute to cell proliferation, angiogenesis, and 

metastasis.11,24,25 Of specific interest, there is up to a 16-fold increase in PAR2 expression 

in various cancers and PAR2 expression levels have been positively correlated to cancer 

staging and progression.15,18,21,22,26,27  

Exogenous agonists that resemble the tethered ligand sequences have been developed, 

which bind to and activate PAR2. The tethered ligand sequences SLIGKV and SLIGRL 

as well as their C-terminally amidated analogues were synthesized in initial studies. 

These studies showed that SLIGRL-NH2 (1, Figure 3.1) had the highest potency for 

human PAR2 and is widely used as a PAR2 agonist with micromolar potency.2,28,29 

Extensive structure-activity relationship studies have involved substitutions of various 
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natural and unnatural amino acids into these sequences, which have generated peptides 

with improved potency. In particular, substituting the serine residue in the first position 

with various heterocycles (e.g. 2-furoyl, 5-isoxazoloyl, 3-pyridoyl, 4-(2-

methyloxazoloyl), and 2-aminothiazol-4-oyl) has substantially improved potency and 

affinity for PAR2 to the sub-micromolar range.30 Of these, 2-furoyl (2f) based peptides 

(e.g. 2, Figure 3.1, referred to hereon in as Class I peptides) initially showed the best 

improvements and have been the most widely used. Addition of ornithine to the C-

terminus of the 2f-LIGRL-NH2 hexapeptide (2, Figure 3.1) and conjugation of various 

bulky substituents to the side chain of that ornithine (e.g. Alexa Fluor 594, 3 and 

DTPA(Eu), 4, Figure 3.1) did not appreciably change the potency, affinity, or selectivity 

for PAR2.31,32 More recently, Isox-Cha-Chg (5-isoxazoloyl-cyclohexylalanine-

cyclohexylglycine) based peptides developed by Jiang et al. (2017) and Yau et al. (2016), 

most notably Isox-Cha-Chg-AR-NH2 (7, Figure 3.1), have shown substantial 

improvements in potency and affinity for PAR2.33,34 These Isox-Cha-Chg based peptides 

are referred to hereon in as Class II peptides. In addition, our recent work has shown that 

the addition of primary amines to various positions of 7 (8-11, Figure 3.1) and addition of 

a bulky substituent (15, Figure 3.1) resulted in peptides that maintained PAR2-selectivity 

and potency/affinity for PAR2 in the low nanomolar range (Chapter 2).  
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Figure 3.1: Known PAR2-targeting peptide agonists. (A) SLIGRL-NH2, (B) Class I 

peptides, and (C) Class II peptides.28,31–35 

To our knowledge, PAR2-targeting imaging probes developed to date have been limited 

to in vitro or small animal ex vivo applications, which is because the probes are 

fluorescent or tritiated probes.29,31,32,36,37 A PAR2-targeting in vivo imaging agent could 

provide insight into PAR2 expression in real-time in living systems. In addition, it could 

have potential clinical relevance in the treatment and diagnosis of PAR2-related diseases 

such as various cancers and inflammatory diseases.  

Positron emission tomography (PET) is a highly sensitive, quantitative imaging technique 

that could be used to achieve in vivo imaging of PAR2. Within PET imaging, various 

radionuclides and strategies can be used to label a targeting moiety with a radioactive 

isotope. Fluorine-18 was chosen for this application due to its facile cyclotron production, 

ideal half-life for radiopharmaceuticals (109.8 min), diverse chemistry for introduction 

into various molecules, and the highest spatial resolution compared to other PET 

isotopes.38,39 The N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) prosthetic group was 

used for 18F-labeling as it is one of the most common prosthetic groups for 18F-labeling of 

peptides, because it gives quick, efficient, and clean labeling with the ability to be 

automated.40,41  
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This work describes the design, synthesis, and evaluation of Class I and Class II PAR2-

targeting peptides derived with a 4-fluorobenzoyl group through a free primary amine on 

the peptide. These 4-fluorobenzoyl conjugated peptides act as the 19F-standard of a 

potential 18F-labeled probe for use in in vivo imaging. Further, this work describes the 

radiosynthesis of the radiolabeled lead PAR2-targeting peptide and its evaluation in vitro 

in prostate cancer (PC3) cells. 

 

3.2 Results and Discussion 

3.2.1 Peptide Synthesis 

Similar to Chapter 2, all peptides (2, 6-7, 16-29, and 35) were synthesized using standard 

Fmoc-SPPS using a solid support MBHA Rink amide resin or 1,6-diaminohexane trityl 

resin (Scheme 2.1 – sec. 2.2.1). Compounds 18-19, 22-24, and 26-29 required additional 

orthogonal protecting group allyloxycarbonyl (Alloc) deprotection and subsequent 

conjugation of 4-fluorobenzoic acid (Scheme 3.1A). Compounds 21 and 25 were 

conjugated with the 4-fluorobenozyl group off resin, as the primary amine being 

conjugated was protected by the solid support on resin (Scheme 3.1B and 3.1C, 

respectively). 
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Scheme 3.1: Conjugation of 4-FB to peptides. 
(A) Solid-phase conjugation of 4-fluorobenzoic acid (18-19, 22-24, and 26-29), (B) solution-phase 
conjugation of 4-fluorobenzyl chloride (21), and (C) solution-phase conjugation of 4-fluorobenzoic acid 
(25). 

3.2.2 Synthesis and Evaluation of Class I PAR2-Targeted 
Peptides 

Similar to our previous work in Chapter 2, 2 shows a greater than ten-fold increase in 

potency for PAR2 (187 nM, Table 3.1) compared to 1 (7024 nM, Table 3.1) as 

determined by a β-arrestin 2 recruitment assay in HEK293T cells. This encouraged us to 

investigate Class I peptides for the development of PAR2-targeting PET imaging agents. 

Modifications to Class I peptide sequences were completed to improve PAR2 potency 

first before the conjugation of the 4-fluorobenzoyl group. Previous reports showed that 

the substitution of leucine with alanine at position six of 2f-LIGRL-NH2 improved 

potency.34 Thus, this substitution of 2 was completed to yield 17 where an expected 

increase in potency was observed (99 nM, Table 3.1). In addition, prior reports described 

that the addition of isoleucine to the C-terminus of related peptides (position seven) 

increased potency.30,34 Thus, 18 was synthesized with isoleucine at position seven and 

ornithine at position eight. Compound 18 was also found to have the expected increase in 

potency (56 nM, Table 3.1).  

Next was the conjugation of the 4-fluorobenzoyl group to Class I peptides. The widely 

used PAR2-targeting peptide, 2, and its more potent counterpart, 18, were conjugated to 
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4-fluorobenzoic acid through the primary amine of the ornithine side chain to yield 19 

and 20, respectively. As shown in Table 3.1, 19 showed similar potency (151 nM) 

compared to 2 (187 nM), but with the addition of the isoleucine, 20 showed a substantial 

and unexpected decrease in potency (252 nM) compared to 18 (56 nM). As expected, the 

addition of the 4-fluorobenozyl moiety to these peptides resulted in a noticeable increase 

in hydrophobicity as demonstrated through the cLogD values (Table 3.1).  

Further, PAR2 selectivity was evaluated by measuring intracellular calcium response 

caused by the receptor-peptide interaction in HEK293T cells endogenously expressing 

PAR2 compared to PAR2 knock out (KO) cells. As a control, a PAR1-specific agonist 

(TFLLR-NH2, 13) was assessed for its calcium response in both of these cells lines as 

they both contain the PAR1 receptor (Table 3.1, see Appendix 6 for representative 

examples of traces). These cells and this control were used (similar to previous reports) 

because it is known that some PAR2-targeting peptides can also bind to PAR1.33,34,42,43 

Based on the calcium response in these cells, peptides 17-20 were found to be 

consistently selective to PAR2 (Table 3.1).  
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Table 3.1: Class I PAR2-targeted peptides (2 and 17-20) and control peptides (1 and 13) with their EC50 values, PAR2 selectivity 

measures, and cLogD values.  

# Compound EC50 
(nM) 

pEC50 ± 
SEM 

Net % max Ca
2+

 release 
in PAR2 expressing 

cells ± SEM 

Net % max Ca
2+

 
release in PAR2 KO 

cells ± SEM 

cLogD 
at pH 

7.4 

13 TFLLR-NH2 - - 45.6 ± 2.9 63.5 ± 5.5 -0.67 
1 SLIGRL-NH2 7024 5.15 ± 0.03 55.9 ± 4.4 -0.2 ± 0.4 -1.93 

2 2f-LIGRLO-NH2 187 6.73 ± 0.05 58.2 ± 3.2 0.5 ± 0.2 -2.71 
17 2f-LIGRAO-NH2 99 7.00 ± 0.05 54.2 ± 2.9 -0.9 ± 0.2 -3.22 
18 2f-LIGRLIO-NH2 56 7.25 ± 0.07 62.9 ± 6.0 -0.5 ± 0.5 -2.29 
19 2f-LIGRLO(4-FB)-NH2 151 6.82 ± 0.08 57.5 ± 3.5 0.1 ± 1.0 -0.94 
20 2f-LIGRLIO(4-FB)-NH2 252 6.60 ± 0.08 18.5 ± 6.5 -2.2 ± 0.5 -0.51 

EC50 values determined through a dose-response curve from a β-arrestin 2 recruitment assay in HEK293T cells. Selectivity measures are shown as calcium 
response in PAR2 expressing (column five) versus PAR2 KO (column six) HEK293T cells. cLogD values calculated through Simulations Plus MedChem 
Designer ADMET Predictor.  
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3.2.3 Synthesis and Evaluation of First Generation Class II PAR2-
Targeted Peptides 

Since multiple reports have shown that Class II peptides can have improved potency and 

affinity for PAR2 compared to Class I peptides, they were also investigated for the 

development of PAR2-targeting PET imaging agents. The first generation Class II 

peptides were developed from the base peptide sequence of Isox-Cha-Chg. Reports of 

this peptide class including 6 and 16 showed a ten-fold increase in potency for PAR2 

compared to 2 through a calcium assay, but later they were reported to have a reduced 

affinity for PAR2 through a competitive binding assay, likely due to the absence of 

strong hydrogen bond(s) or electrostatic interactions from the loss of the positively 

charged arginine residue when compared to 2.33,34 The results from the β-arrestin 2 

recruitment assay in the HEK293T cell line reported here show a decrease in potency for 

6 and 16 compared to 2; a similar trend to the affinity measures (Table 3.2). Nonetheless, 

the addition of an aminohexyl spacer conjugated to 4-fluorobenzoic acid extending from 

the peptide backbone of 6 was synthesized to yield 21. Unfortunately, peptide 21 showed 

a large reduction in potency (>3000 nM), a loss of PAR2 selectivity, and a large, 

undesirable increase in hydrophobicity (Table 3.2).  
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Table 3.2: First generation Class II PAR2-targeted peptides (6, 16, and 21) with their EC50 values, PAR2 selectivity measures, and 

cLogD values.  

# Compound EC50 
(nM) 

pEC50 ± 
SEM 

Net % max Ca
2+

 release 
in PAR2 expressing 

cells ± SEM 

Net % max Ca
2+

 
release in PAR2 KO 

cells ± SEM 

cLogD 
at pH 

7.4 

6 Isox-Cha-Chg-NH2 1925 5.72 ± 0.07 14.6 ± 3.3 -0.1 ± 0.3 2.29 
16 Isox-Cha-Chg-G-NH2 1179 5.93 ± 0.07 22.0 ± 5.5 -2.2 ± 0.1 1.54 
21 Isox-Cha-Chg-NH(CH2)6NH-4-FB >3000 >5.53 7.0 ± 1.9 9.1 ± 4.0 5.00 

EC50 values determined through a dose-response curve from a β-arrestin 2 recruitment assay in HEK293T cells. Selectivity measures are shown as calcium 
response in PAR2 expressing (column five) versus PAR2 KO (column six) HEK293T cells. cLogD values calculated through Simulations Plus MedChem 
Designer ADMET Predictor.  
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3.2.4 Synthesis and Evaluation of Second Generation Class II 
PAR2-Targeted Peptides 

Unsuccessful results from the first generation Class II peptides led to the development of 

a second generation of Class II imaging agents. These were based on known high 

potency/affinity PAR2-selective peptides with the base peptide sequence of Isox-Cha-

Chg-Ala-Arg, such as 7 (Table 3.3, see Appendix 6 for representative examples of PAR2-

selectivity traces) reported by Jiang et al. (2017) and 8-11 (Table 3.3) reported in our 

recent work with the development of PAR2-targeting fluorescent peptides (Chapter 2).34 

This generation of peptides contain the arginine positive charge at position five, which is 

likely the reason they have high affinity and potency in all reported assays compared to 

the first generation Class II peptides.  

Peptides 8-11 from our previous work are highly potent and PAR2-selective peptides that 

contain a free primary amine. Thus, these peptides were used to conjugate a 4-

fluorobenzoyl group to them to yield 22-25. Peptides 22-24 showed similar potencies (10 

to 23 nM, Table 3.3) compared to their unconjugated counterparts 8-11 (13 to 23 nM, 

Table 3.3), making 22 and 24 the most potent 4-fluorbenzoyl conjugated peptides and the 

leading candidates. However, 22-24 showed a lack of PAR2 selectivity, as indicated by 

their calcium response in HEK293T PAR2 KO cells (Table 3.3, see Appendix 6 for 

representative examples of PAR2-selectivity traces). Peptide 25 retained PAR2-

selectivity, but, unfortunately, showed a substantial loss in potency (42 nM) compared to 

its unconjugated counterpart (8) and to 22 and 24 (Table 3.3).  

In our previous work, Isox-Cha-Chg-ARK(COCH3)-NH2 (12) was found to be highly 

potent and have selective binding to PAR2 (Table 2.1, Chapter 2). This suggested that the 

presence of the 4-fluorobenzoyl group caused the lack of selectivity for PAR2 (likely due 

to hydrophobic or pi stacking interactions) as opposed to the loss of charge from the 

amide bond formed on the lysine side chain for peptides 22-24. Therefore, this gave rise 

to the development of a third generation of Class II imaging agents which have the base 

peptide sequence of Isox-Cha-Chg-Ala-Arg-Xaa where the distance of the 4-

fluorobenzoyl group to the peptide backbone of the position six amino acid was modified 

in an effort to improve PAR2 selectivity. 
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Table 3.3: Second generation Class II PAR2-targeted peptides (7-11 and 22-25) with their EC50 values, PAR2 selectivity measures, 

and cLogD values.  

# Compound EC50 
(nM) 

pEC50 ± 
SEM 

Net % max Ca
2+

 release 
in PAR2 expressing 

cells ± SEM 

Net % max Ca
2+

 
release in PAR2 KO 

cells ± SEM 

cLogD 
at pH 

7.4 

7 Isox-Cha-Chg-AR-NH2 12 7.92 ± 0.05a 68.8 ± 3.9 -0.5 ± 0.3 -0.85 
11 Isox-Cha-Chg-ARK-NH2 10a 8.00 ± 0.09a 72.0 ± 5.0a -0.9 ± 0.3a -1.72a 

22 Isox-Cha-Chg-ARK(4-FB)-NH2 13 7.89 ± 0.08 63.5 ± 4.6 8.8 ± 2.4 -0.06 
9 Isox-Cha-Chg-ARLK-NH2 23a 7.65 ± 0.07a 69.9 ± 4.1a -0.4 ± 0.4a -1.29a 

23 Isox-Cha-Chg-ARLK(4-FB)-NH2 24 7.61 ± 0.15 70.5 ± 4.7 16.9 ± 4.1 0.26 
10 Isox-Cha-Chg-ARAK-NH2 15a 7.82 ± 0.07a 67.3 ± 3.9a -1.1 ± 0.5a -1.77a 

24 Isox-Cha-Chg-ARAK(4-FB)-NH2 10 8.00 ± 0.06 66.4 ± 6.7 5.8 ± 1.3 -0.13 
8 Isox-Cha-Chg-AR-NH(CH2)6NH2 16a 7.79 ± 0.04a 68.6 ± 9.3a 0.0 ± 0.4a -0.70a 

25 Isox-Cha-Chg-AR-NH(CH2)6NH-4-FB 42 7.37 ± 0.05 58.3 ± 4.4 -1.0 ± 1.0 0.90 

EC50 values determined through a dose-response curve from a β-arrestin 2 recruitment assay in HEK293T cells. Selectivity measures are shown as calcium 
response in PAR2 expressing (column five) versus PAR2 KO (column six) HEK293T cells. cLogD values calculated through Simulations Plus MedChem 
Designer ADMET Predictor. aPeptide data originally found in Chapter 2, Table 2.1 and Table 2.2. 
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3.2.5 Synthesis and Evaluation of Third Generation Class II PAR2-
Targeted Peptides 

The first approach for the third generation Class II imaging agents was to extend the 

linker region that connected the peptide to the 4-fluorobenzoyl group. This was achieved 

by adding a spacer to the lysine side chain of 11, followed by the conjugation of a 4-

fluorobenzoyl group. Two spacers were used for this purpose, 6-aminohexanoyl (Ahx) 

and the longer, more hydrophilic spacer [2-(2-amino)ethoxy)ethoxy]acetyl (AEEA). This 

yielded 26 and 27, respectively, which were selective for PAR2 (Table 3.4) but showed a 

slight reduction in potency (21 nM and 24 nM, respectively, Table 3.4) compared to 22 

(13 nM, Table 3.3).  
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Table 3.4: Third generation Class II PAR2-targeted peptides (26-29) with their EC50 values, PAR2 selectivity measures, and cLogD 

values.  

# Compound EC50 
(nM) pEC50 ± SEM 

Net % max Ca
2+

 
release in PAR2 

expressing cells ± 
SEM 

Net % max Ca
2+

 
release in PAR2 KO 

cells ± SEM 

cLogD 
at pH 

7.4 

26 Isox-Cha-Chg-ARK(Ahx-4-FB)-NH2 21 7.68 ± 0.09 52.8 ± 5.5 -0.9 ± 0.2 0.43 
27 Isox-Cha-Chg-ARK(AEEA-4-FB)-NH2 24 7.62 ± 0.06 58.8 ± 6.9 -1.6 ± 0.5 -0.07 
28 Isox-Cha-Chg-ARO(4-FB)-NH2 8 8.13 ± 0.07 55.8 ± 3.8 7.4 ± 1.0 -0.26 
29 Isox-Cha-Chg-AR-Dpr(4-FB)-NH2 13 7.89 ± 0.06 51.0 ± 7.8 -2.1 ± 0.4 -0.71 

EC50 values determined through a dose-response curve from a β-arrestin 2 recruitment assay in HEK293T cells. Selectivity measures are shown as calcium 
response in PAR2 expressing (column five) versus PAR2 KO (column six) HEK293T cells. cLogD values calculated through Simulations Plus MedChem 
Designer ADMET Predictor.  
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The other approach was to decrease the distance between the peptide backbone and the 4-

fluorobenzoyl group by decreasing the side chain length of the position six lysine on 11. 

Ornithine (O) was first used for this purpose, having one less carbon in its side chain 

compared to lysine, and although this peptide (28) showed good potency (8 nM, Table 

3.4), it was unfortunately non-selective for PAR2 as indicated by its calcium response in 

HEK293T PAR2 KO cells (Table 3.4). Second, 2,3-diaminopropionic acid (Dpr), which 

has three carbons less than the side chain of lysine, was used to further shorten the chain, 

giving 29. Compound 29 showed high potency (13 nM, Table 3.4) compared to 1 and 2 

and similar potency compared to 7 (Figure 3.2) and was PAR2-selective (Table 3.4, see 

Appendix 6 for representative examples of PAR2-selectivity traces), making it the lead 

candidate for 18F-labeling and subsequent in vitro and in vivo experiments.  

 

Figure 3.2: PAR2 β-arrestin 2 recruitment dose-response curves for 1, 2, 7, and 29 in 

HEK293T cells.  

Results from peptides 26, 27, and 29 further supported the insignificance of an amino 

functional group being present at position six of Class II peptides. Further, these results 

support that the specific location of an aromatic group to these Class II peptides is 

important, as the addition of the 4-fluorobenzoyl group can cause non-selective PAR2 

binding as indicated through calcium response in HEK293T PAR2 KO cells, possibly 

caused by hydrophobic or pi stacking interactions between the ligand and a receptor. 
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3.2.6 Radiosynthesis of [18F]29 

The overall synthesis of [18F]29 is outlined in Scheme 3.2. The radiosynthesis of [18F]29 

made use of known radiochemistry.44,45 The first two steps in the synthesis involved 

preparation of the prosthetic group precursor, 32. Briefly, the carboxylic acid of 30 was 

protected with a tert-butyl group, followed by methylation of the tertiary amine using 

MeOTf to obtain the radiolabeling precursor 32. 

 

Scheme 3.2: Synthesis of [18F]29. 

Radiolabeling of 32 with [18F]F- was accomplished through an automated synthetic 

protocol previously developed in our lab to yield the 18F-prosthetic group, 34 (see  

Appendix 7 for the automated synthesis display). Compound 32 was reacted with 

azeotropically dried [18F]F- to obtain tert-butyl [18F]4-fluorobenzoate through a 

nucleophilic aromatic substitution reaction, followed by subsequent deprotection of the 

tert-butyl ester with 5M HCl to yield [18F]33. This product was purified by solid-phase 

extraction, reacted with EDC hydrochloride and NHS to provide the activated ester 
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([18F]34), and purified on RP-HPLC (RCY = 31 ± 3%, RCP > 98%, n = 4, Figure 3.3A, 

see Appendix 8A for 34 and [18F]34 RP-HPLC co-injection).  

The final step in the radiosynthesis was the conjugation of the 18F-prosthetic group to the 

peptide to yield [18F]29. Compound [18F]34 was conjugated to 35 through nucleophilic 

acyl substitution followed by RP-HPLC purification to obtain [18F]29. Peptide 35 did not 

require protecting groups and subsequent deprotection step(s), unlike other peptide 

labeling reports, because the [18F]SFB prosthetic group is preferentially selective for 

primary amines under these conditions and because 35 was designed to contain one 

primary amine. A water and acetonitrile (v/v 1:3) mixture was initially used for this 

conjugation as 35 had poor solubility in pure acetonitrile; however, hydrolysis of [18F]34 

was observed and poor yields of [18F]29 were obtained (RCY = 18 ± 4%, n = 2). 

Acetonitrile was used to prevent hydrolysis despite poor solubility of the starting 

material. Reaction temperatures of 85 °C improved solubility, resulting in improved 

radiochemical yields (RCY = 37 ± 3%, RCP > 98%, Am = 20 ± 2 GBq/µmol, EOS = 125 

± 2 min, n = 4, Figure 3.3B, see Appendix 8B for 29 and [18F]29 RP-HPLC co-injection). 
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Figure 3.3: Overlay of RP-HPLC chromatogram and radio-trace of (A) SFB and 

[18F]SFB, respectively, and (B) 29 and [18F]29, respectively. 

3.2.7 Cell Uptake of [18F]29 in PC3 Cells 

Upon successful synthesis of [18F]29, cell uptake studies were completed in a prostate 

cancer cell line (PC3) that endogenously over-expresses PAR2 as well as in a PAR2 KO 

PC3 cell line. As shown in Figure 3.4, [18F]29 showed a significant uptake in the PAR2 

expressing cell line at 20 and 60 minutes (7.9 ± 0.7%, 7.4 ± 0.7%, respectively) 

compared to the PAR2 KO cell line (2.3 ± 0.1%, 2.3 ± 0.1%, respectively) and the PAR2 

expressing cell line blocked with 7 (1.6 ± 0.2%, 2.1 ± 0.1%, respectively). This suggests 

that there is receptor selective binding as well as that [18F]29 is not passively diffusing 

the cell membrane. This is consistent with our results of a similar, but even more 

hydrophobic fluorescent probe (15), which showed PAR2-selective uptake and no 

passive diffusion across the cell membrane (Figure 2.4, Chapter 2). 
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Figure 3.4: Cell uptake of [18F]29 in PAR2 KO PC3 cells (white), PC3 cells blocked 

with 20 µM of 7 (grey), and PC3 cells (black).  
A two way ANOVA (cell condition, time) for percent uptake followed by a post-hoc Tukey multiple 
comparisons test was used to assess significance (significance set at 0.05). Overall cell condition effect was 
significant (P < 0.001) but the overall time effect was not significant (P = 0.956). Different letters represent 
significance (P ≤ 0.05). 

 

3.3 Conclusions and Future Work 

3.3.1 Conclusions 

Many novel peptides described here show high potency and selectivity for PAR2, while 

also having potential to be PET imaging agents for PAR2. The first approach to obtain 

these peptides was through the synthesis and evaluation of various Class I peptides (2f-

LIGRLO-NH2 based sequences) for PAR2-binding. These results lead to peptide 18 

being the most potent (EC50 = 56 nM, Table 3.1); however, conjugation of it with a 4-

fluorobenozyl group showed an unexpected decrease in potency, making 19 the leading 

PAR2-targeting Class I imaging agent (EC50 = 151 nM, Table 3.1). The next approach 

was the synthesis and evaluation of Class II peptides (based on Isox-Cha-Chg based 

sequences). The first generation of Class II peptides showed poor potency for PAR2 

(Table 3.2), likely because of the absence of arginine at position five. The second 
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generation of Class II peptides (containing arginine in position five) showed substantial 

improvements in potency (EC50 = 10 to 42 nM, Table 3.3), but the lead candidates 22-24 

showed non-selective PAR2 binding as measured through a calcium assay in HEK293T 

PAR2 KO cells (Table 3.3). The third generation of Class II peptides modified the 

distance of the 4-fluorobenzoyl group to the peptide backbone of the position six amino 

acid since the specific position of this 4-fluorobenzoyl group was the expected cause of 

non-selective PAR2 binding. This generation of Class II peptides had several candidates 

(26, 27, and 29) that showed high potency (EC50 = 13 to 24 nM, Table 3.4) and 

selectivity for PAR2 (Table 3.4).  

The investigation of these various PAR2-targeting probes gave rise to five peptides (19, 

25-27, and 29) that have various structural and hydrophobic properties with strong 

potential as PET imaging agents for PAR2, of which, 29 was the lead candidate (EC50 = 

13 nM, Table 3.4). The 18F-labeled version of 29 was then successfully synthesized with 

radiochemical yields of 37 ± 3%, radiochemical purity of >98%, molar activity of 20 ± 2 

GBq/µmol, and end of synthesis time of 125 ± 2 min (n = 4). Compound [18F]29 showed 

a significantly higher uptake in a PAR2-expressing prostate cancer cell line compared to 

the controls (P < 0.001, Figure 3.4) and is the first ever developed PAR2-targeted in vivo 

imaging agent.  

Compound [18F]29 can serve as a chemical tool that could provide insight into areas of 

PAR2 expression in vivo and has potential clinical applications as a non-invasive imaging 

approach for patient diagnosis, stratification, and treatment monitoring of various PAR2-

related cancers and inflammatory diseases. 

3.3.2 Future Work 

Compound [18F]29 is currently being evaluated through ex vivo biodistribution studies in 

mice and in vivo imaging in a xenograft mouse model of prostate caner. 
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3.4 Experimental Procedures 

3.4.1 General Methods 

All reagents were purchased from Sigma-Aldrich, ChemImpex, or Thermo Fischer 

Scientific and used without further purification. Peptides were synthesized using standard 

Fmoc-solid phase peptide synthesis (SPPS), cleaved from resin using 95% TFA, 2.5% 

TIPS, and 2.5% H2O for 5 h (except 21 and 25: 20% TFA, 2.5% TIPS, 77.5% DCM for 

1.5 h), precipitated in ice cold tert-butyl methyl ether, lyophilized, purified by preparative 

RP-HPLC, and further lyophilized to obtain a dry powder. Purity was assessed by 

analytical RP-HPLC and characterized by HRMS (Table 3.5). The analytical RP-HPLC 

was performed on a system consisting of an analytical Agilent Zorbax SB-C8 column 

(4.6 x 150 mm, 5 µm), Waters 600 controller, Waters in-line degasser, and Waters 

Masslynx software (version 4.1). Two mobile phases were used; eluent A (0.1% TFA in 

acetonitrile) and eluent B (0.1% TFA in MilliQ water). The flow rate was set at 1.5 

mLmin-1 over 10 minutes with an additional 5-minute wash (95% solvent A in solvent 

B). A Waters 2998 Photodiode array detector (200-800 nm) and an ESI-MS (Waters 

Quattro Micro API mass spectrometer) were used to monitor the column eluate. The 

preparative RP-HPLC used the same system, eluents, and detection method as mentioned 

above for the analytical RP-HPLC, except that a preparative Agilent Zorbax SB-C8 

column (21.2 x 150 mm, 5 µm) at a flow rate of 20 mLmin-1 was used. The high-

resolution mass spectra for all peptides were determined in positive mode using an 

electrospray ionization (ESI) ion source on a Bruker micrOToF II mass spectrometer. For 

small molecules, high-resolution mass spectra were determined in positive mode using an 

electron ionization (EI) ion source on a Thermo Scientific Double Focusing Sector mass 

spectrometer. Simulations Plus MedChem Designer ADMET Predictor was used to 

determine the cLogD values at a pH of 7.4.46 NMR spectra for appropriate compounds 

were recorded on a Bruker Avance III HD 400 spectrometer at 400 and 100 MHz for 1H 

and 13C experiments, respectively. All descriptive statistics are reported as mean ± SEM 

where applicable.  
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Table 3.5: HRMS data and purity of peptides 2, 6-7, 16-29, and 35. 

Cmpd # Molecular 
Formula (M) 

Evaluated 
HRMS m/z Calc. m/z Found m/z Purity 

2 C36H63N11O8 [M+H]+ 778.4939 778.4945 > 95 % 
6 C21H32N4O4 [M+Na]+ 427.2321 427.2309 > 95 % 
7 C30H49N9O6 [M+H]+ 632.3884 632.3892 > 95 % 

16 C23H35N5O5 [M+Na]+ 484.2536 484.2526 > 95 % 
17 C33H57N11O8 [M+H]+ 736.4470 736.4475 > 95 % 
18 C42H74N12O9 [M+H]+ 891.5780 891.5801 > 95 % 
19 C43H66FN11O9 [M+H]+ 900.5107 900.5129 > 95 % 
20 C49H77FN12O10 [M+H]+ 1013.5948 1013.5955 > 95 % 
21 C34H48FN5O5 [M+Na]+ 648.3537 648.3550 > 95 % 
22 C43H64FN11O8 [M+H]+ 882.5002 882.5011 > 95 % 
23 C49H75FN12O9 [M+H]+ 995.5842 995.5852 > 95 % 
24 C46H69FN12O9 [M+H]+ 953.5373 953.5398 > 95 % 
25 C43H65FN10O7 [M+H]+ 853.5100 853.5110 > 95 % 
26 C49H75FN12O9 [M+H]+ 995.5842 995.5855 > 95 % 
27 C49H75FN12O11 [M+H]+ 1027.5741 1027.5745 > 95 % 
28 C42H62FN11O8 [M+H]+ 868.4845 868.4864 > 95 % 
29 C40H58FN11O8 [M+H]+ 840.4532 840.4525 > 95 % 
35 C33H55N11O7 [M+H]+ 718.4364 718.4372 > 95 % 

Purity assessed by analytical RP-HPLC UV detection. 

 

3.4.2 Solid-Phase Peptide Synthesis 

All compounds (except 21 and 25) were synthesized on Rink amide MBHA resin (256 

mg, 0.1 mmol, 0.39 mmol/g) using standard Fmoc-SPPS procedures and a Biotage® 

SyrowaveTM automated peptide synthesizer (0.4 mmol of HCTU, 0.4 mmol of Fmoc-

amino acids, 0.6 mmol of DIPEA, 1 h coupling). Manual coupling of 5-isoxazoyl (0.3 

mmol) was performed using HATU (0.3 mmol) and DIPEA (0.6 mmol) for 24 h twice. 

Compound 21 and 25 were synthesized on 1,6-diaminohexane trityl resin (256 mg, 0.1 

mmol, 0.39 mmol/g).  

3.4.3 Solid-Phase Orthogonal Alloc Deprotection 

On resin peptide sequences were synthesized as described above but with Fmoc-

Lys(Alloc)-OH, Fmoc-Orn(Alloc)-OH, or Fmoc-Dpr(Alloc)-OH. After the sequence was 

synthesized on resin, the Alloc protecting group was selectively removed. Briefly, the 
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resin was swelled in DCM (15 min) and washed three times with dry DCM (3X 5 mL). 

The resin was placed under an inert N2 atmosphere and phenylsilane (296 µL, 2.4 mmol) 

in dry DCM (2 mL) was added to the resin. Tetrakis(triphenylphosphine) palladium(0) 

(23.1 mg, 20 µmol) was dissolved in dry DCM (1 mL) and added to the resin. The 

peptide column was flushed with N2 (2 min) before being shaken (5 min). The resin was 

washed three times with dry DCM (3X 5 mL). The procedure was repeated and shaken 

(30 min). The resin was washed four times with DCM (4X 5 mL) and DMF (4X 5 mL). 

3.4.4 Solid-Phase Conjugation of 4-Fluorobenzoic Acid (19-20, 22-
24, and 26-29) 

4-Fluorobenzoic acid (28.0 mg, 0.2 mmol), HCTU (82.7 mg, 0.2 mmol), and DIPEA (70 

µL, 0.4 mmol) were combined in DMF and shaken (5 min) to activate the acid. This 

mixture was then added to the peptide on resin (0.1 mmol) and shaken (2 h). The final on 

resin peptides (19-20, 22-24, and 26-29) were cleaved and purified as usual. 

3.4.5 Solution-Phase Conjugation of 4-Fluorobenzyl Chloride (21) 

Isox-Cha-Chg-NH(CH2)6NH2 was cleaved off resin and purified by RP-HPLC. The 

purified product containing a free primary amine (4.0 mg, 6.5 µmol) was dissolved in 

DMF (1 mL) followed by the addition of DIPEA (7.9 µL, 45.5 µmol). 4-Fluorobenzyl 

chloride (4.67 µL, 39 µmol) was added to the mixture and shaken (1 h). Following the 

addition of water, the product was lyophilized and purified by RP-HPLC.   

3.4.6 Solution-Phase Conjugation of 4-Fluorobenoic Acid (25) 

Isox-Cha-Chg-AR-NH(CH2)6NH2 (8) was cleaved off resin and purified by RP-HPLC. 

Peptide 8 containing a free primary amine (10.8 mg, 11.3 µmol) was dissolved in DMF 

(1 mL). Separately, 4-fluorobenzoic acid (7.9 mg, 56.3 µmol) and EDC hydrochloride 

(10.8 mg, 56.3 µmol) were dissolved in DMF (1 mL) and shaken (15 min). The EDC 

mixture was added to the peptide solution, stirred, and heated (60 °C, 2 h). Following the 

addition of water, the product was lyophilized and purified by RP-HPLC.   
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3.4.7 SPPS Reaction Monitoring 

Two methods were used to monitor SPPS reactions. The first and more frequent method 

is the Kaiser Test. In this method, several resin beads were placed in a test tube followed 

by the addition of 42.5 mM phenol in ethanol (50 µL), 20 µM potassium cyanide in 

pyridine (50 µL), and 280.7 mM ninhydrin in ethanol (50 µL). The mixture was then 

heated (100 °C, 5 min). A positive test indicates the presence of a free amine, which is 

observed by the resin beads turning blue. A negative test indicates no free amine is 

present, which is observed by resin beads remaining the same colour. The second method 

is a small-scale resin cleavage. In this method, several beads and cleavage cocktail (500 

µL) are shaken, worked up, and the desired peptide is confirmed through HPLC-MS. 

3.4.8 Cell Lines and Culture Conditions 

All cell culture supplies were purchased from Thermo Fischer Scientific (Waltham, MA, 

US) unless otherwise stated. Human embryonic kidney (HEK-293T, ATCC, Manassas, 

VA, US), CRISPR/Cas9 PAR2 knockout HEK-293T (validated in Mihara et al., 2016), 

prostate cancer (PC3, ATCC, Manassas, VA, US), and CRIPSR/Cas9 PAR2 knockout 

PC3 cells (see Appendix 5 for validation) were cultured in Dulbecco’s Modified Eagle’s 

Medium (HEK293T-derived cell lines) and Ham’s F-12K Nutrient Mixture (PC3-derived 

cell lines) each supplemented with 10% fetal bovine serum (FBS), sodium pyruvate 

(1mM), and 100 penicillin streptomycin (100 units/mL).47 All culture performed under 

standard conditions (37 °C; 5% CO2). Trypsin (25mM) or PBS-EDTA (1mM) was used 

to passage cell lines. 

3.4.9 BRET β-Arrestin 2 Recruitment Assay 

HEK293T cells were transfected with BRET pair PAR2-eYFP (2 µg) and β-arrestin-2-

rluc (0.2 µg; generous gift from Michel Bouvier) using calcium phosphate and re-plated 

at 24 hours in tissue culture treated white 96-well plates (density approximately 8x102-

1x103 cells/µL). Serial dilutions of agonist (ranging from 300 µM to 300 pM depending 

on the agonist) were prepared in separate 96-well plates in Hank’s Balanced Salt Solution 

(HBSS). Cell media was removed from 96-well plate containing seeded cells. Agonist 

was added from negative control (HBSS) through to highest concentration using a 
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multichannel pipette to seeded plates and incubated (37 °C, 10 min). Renilla luciferase 

substrate (h-coelenterazine) was added to each well (5 µM final) and incubated (37 °C, 

10 min). BRET ratios are recorded on Berthold Mithras LB 940. Responses are expressed 

as net emission of eYFP/rluc (calculated by subtracting HBSS baseline eYFP/rluc ratio 

from agonist eYFP/rluc ratio) and normalized to a positive control (1 at 300 µM). 

Experiments were completed in n ≥ 3 and fitted with a non-linear regression analysis 

four-parameter dose-response curve using GraphPad Prism 6 to determine EC50 values. 

3.4.10 Intracellular Calcium Release Assay 

HEK293T cells endogenously expressing PAR2 or CRISPR/Cas9 HEK293T PAR2 KO 

cells were lifted from confluent T75 flasks using PBS-EDTA (1 mM, 5 mL). PBS-EDTA 

was removed by centrifugation. Cells were re-suspended in 500 µL of Fluo-4 NW (no 

wash) dye solution and assay buffer (1 x HBSS, 20 mM HEPES) and incubated at 

ambient temperature on a rocking platform (30 min). Fluo-4 NW cell suspensions were 

then increased to the volume required for the assay with HBSS (with Ca2+ and Mg2+). 

Cells were aliquoted into cuvettes (2 mL/cuvette final volume) containing a magnetic 

stir-bar to keep cells in suspension for the assay. Individual cuvettes were loaded into a 

Photon Technologies Institute (PTI) spectrophotometer. Time-based assay parameters 

were assigned through PTI software as follows: excitation 480 nm, emission 530 nm with 

8 nm capture window, and 5000 seconds duration. Before the addition of agonist, 

individual cuvette emission was collected for approximately 10 seconds to obtain 

baseline emission. Agonist was pipetted into the cuvette (final concentration of 10 µM for 

2, 6, 7, and 16-29 and 100 µM for 1 and 13) and the fluorescence was measured. As a 

positive control, untreated cuvettes were treated with a calcium ionophore (ionomycin 

calcium salt in DMSO, 3 µM final) to obtain maximum possible calcium response. As a 

negative control, untreated cuvettes were treated with HBSS (no agonist). Response 

elicited by agonist treatment at individual concentrations (n ≥ 2) was expressed as a net 

percentage of the average maximum response (calculated by subtracting no agonist 

treatment percentage from agonist treatment percentage).  
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3.4.11 Synthesis of 4-(tert-butoxycarbonyl)-N,N,N-
trimethylbenzenammonium triflate (32) 

Synthesis was completed as previously described.48 Briefly, 4-dimethylaminobenzoic 

acid (1.00 g, 6.05 mmol) was dissolved in THF (50 mL) and cooled (0 °C), followed by 

the dropwise addition of trifluoroacetic anhydride (1.85 mL, 13.3 mmol) and stirring (35 

min). tert-Butanol (11.4 mL, 119 mmol) was then added and stirred at room temperature 

(120 min). A saturated solution of sodium bicarbonate (200 mL) was added to the 

reaction mixture and extracted with DCM (3X 100 mL, 3X 50mL). The organic layers 

were then combined, dried over MgSO4, and gravity filtered. The solvent was removed in 

vacuo, dissolved in DCM, and eluted through a silica pad with DCM (60 mL). Solvent 

was removed in vacuo, dissolved in dry DCM (30 mL), and cooled to 0 °C under N2. 

Methyl trifluoromethanesulfonate (0.86 mL, 7.61 mmol) was added to the mixture and 

stirred (60 min, 0 °C). Ice-cold diethyl ether (200 mL) was added to precipitate the 

product. The solid was then collected by vacuum filtration to yield white crystals (721 

mg, 31%). 1H-NMR (400 MHz, CD3COCD3); δ 8.22 (m, 4H), 3.93 (s, 9H), 1.60 (s, 9H) 

ppm; 13C-NMR (100 MHz, CD3COCD3); δ 205.19, 164.41, 134.70, 131.96, 121.72, 

82.66, 57.81, 28.16 ppm; HRMS (EI-MS): [M-H]+ 235.1567 (calc.) 235.1198 (found). 

3.4.12 Synthesis of N-succinimidyl 4-fluorobenzoate (34) 

4-Fluorobenzoic acid (140.1 mg, 1.0 mmol) was dissolved in DCM (10 mL). EDC 

hydrochloride (210.9 mg, 1.1 mmol) and NHS (126.6 mg, 1.1 mmol) were added and the 

solution was stirred (24 h). The organic solution was washed and extracted with water 

thrice (3X 10 mL), saturated sodium bicarbonate (10 mL), and saturated sodium chloride 

(10 mL). The organic layer was then dried with MgSO4, gravity filtered, and solvent 

removed in vacuo to obtain a white solid (121 mg, 52%). 1H-NMR (400 MHz, CDCl3); δ 

8.17 (m, 2H), 7.20 (m, 2H), 2.91 (s, 4H) ppm; 13C-NMR (100 MHz, CDCl3); δ 169.29 

(s), 166.02 (d, 1JCF = 256.2 Hz), 161.06 (s), 133.54 (d, 3JCF = 9.7 Hz), 121.54 (d, 4JCF = 

3.1 Hz), 116.46 (d, 2JCF = 22.1 Hz), 25.81 (s) ppm; HRMS (EI-MS): [M+] 237.0437 

(calc.) 237.0436 (found). 
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3.4.13 General Methods for Radiochemistry 

[18F]Fluoride was produced by a GE PETtrace 880 cyclotron (Lawson Cyclotron & PET 

Radiochemistry Facility, Lawson Health Research Institute, London, Ontario, Canada) 

through the 18O(p,n)18F reaction involving proton bombardment of [18O]H2O. GE Tracer 

Lab FXN was used for the automated synthesis and purification of [18F]SFB. Compounds 

were analyzed on a system consisting of an analytical RP-HPLC Waters Atlantis T3 

column (6 x 150 mm, 5 µm), Waters 1525 binary pump system, Waters in-line degasser, 

and Breeze software (version 3.30, 2002 Waters Corporation). Two mobile phases were 

used; eluent A (0.1% TFA in acetonitrile) and eluent B (0.1% TFA in MilliQ water). The 

flow rate was set at 1.5 mLmin-1 over 10 min with an additional 5-minute wash (95% 

solvent A in solvent B). A Waters 2487 Dual λ absorbance detector set at 220 nm and 

254 nm and a radioactive flow count detector were used to monitor the column eluate. 

Compounds were purified using semi-preparative RP-HPLC with the same system, 

eluents, and detection method as mentioned above for the analytical RP-HPLC, except 

that a semi-preparative Agilent Zorbax SB-C8 column (9.4 x 150 mm, 5 µm) at a flow 

rate of 4 mLmin-1 over 15 minutes with an additional 5-minute wash was used. A Biotage 

V-10 evaporator (Uppsala Sweden) was used to remove solvent. 

3.4.14 Synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]34) 

Synthesis was prepared on the GE Tracer Lab FXN using an automated synthesis 

procedure (see  Appendix 7 for the automated synthesis display). Aqueous [18F]F- was 

trapped on a Waters Sep-Pak Accell plus carbonated QMA light cartridge. The trapped 

[18F]F- was eluted into a reaction vial with a solution of acetonitrile/water (v/v 9:1, 1 mL) 

containing potassium carbonate (1.0 mg, 7.2 µmol) and Kryptofix 2.2.2 (7 mg, 18.6 

µmol). This solvent was removed azeotropically under vacuo with helium flow (75 °C). 

Anhydrous acetonitrile (2X 1 mL) was used to dry the [18F]F- twice under vacuo with 

helium flow (75 °C). 4-(tert-Butoxycarbonyl)-N,N,N-trimethylbenzenammonium triflate 

(5 mg, 13.0 µmol) in anhydrous DMSO (0.5 mL) was then added under helium flow. The 

reaction vial was sealed and stirred (120 °C, 8 min). The reaction was cooled (40 °C), 

followed by the addition of aqueous HCl (1 mL, 5 N) and further stirring (100 °C, 3 min). 

The reaction was cooled again (40 °C) followed by the addition of H2O (2.5 mL) to dilute 
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the reaction mixture. The product was trapped on a Waters Sep-Pak C18 light cartridge 

and eluted into a reaction vial containing NHS (N-hydroxysuccinimide, 20.0 mg, 0.17 

mmol) and EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) hydrochloride (200.0 

mg, 1.04 mmol) with acetonitrile (1.5 mL). The reaction mixture was stirred at room 

temperature (15 min). H2O (3.0 mL) was added to the reaction mixture followed by 

purification on semi-preparative RP-HPLC (36% MeCN in H2O, tR = 7-9 min) to yield 

[18F]34 (RCY = 31 ± 3% and RCP >98%, n = 4).  

3.4.15 Synthesis of Isox-Cha-Chg-AR-Dpr([18F]4FB)-NH2 ([18F]29) 

Compound 35 (1.0 mg, 1 µmol) was dissolved in acetonitrile (300 µL) followed by the 

addition of DIPEA (5 µL, 29 µmol). This mixture was added to a vial containing [18F]34 

and heated at 85 °C (15 min). The solution was cooled to room temperature, followed by 

the addition of water (0.7 mL) and purification on RP-HPLC (30-55% solvent A in 

solvent B, tR = 9-10 min) to yield [18F]29 (RCY = 37 ± 3%, RCP >98%, and Am = 20 ± 2 

GBq/µmol, n = 4). 

3.4.16 Determination of [18F]29 Molar Activity 

A calibration curve was made from five concentrations (1, 5, 10, 50, and 100 µM) of 29 

to determine the molar activity of [18F]29. For each of the five concentrations, at least 

two analytical HPLC runs were completed in order to obtain the area under the peak (at 

230 nm absorbance) associated with 29 within 5% of each other. This was plotted as 

concentration versus area under the peak and non-linear regression was performed to 

determine an equation of the line (Appendix 9). The molar activity was calculated based 

on determining the amount of radioactivity from the [18F]29 sample, the volume the 

[18F]29 sample was dissolved in, the area under the peak of the [18F]29 sample analytical 

HPLC trace at 230 nm, and the linear equation from the calibration curve. 

3.4.17 Cell uptake of [18F]29 

Cells were seeded into 6-well tissue culture plates at a density of 5.0 x 105 cells for PC3 

cells and 1.0 x 106 cells for PC3 PAR2 KO cells per 35-mm well. Appropriate seeding 

densities were determined prior to experiment. Cells were allowed to seed for 48 hours 
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before cell uptake was performed. On the day of experiment after [18F]29 was 

synthesized, serum media was removed and washed with HBSS (1 mL/well). A 2% BSA 

in HBSS solution (3 mL) was added to each well and incubated (37 °C, 30 min) to help 

block non-specific binding. The BSA solution was removed and 1mL of 50 to 100 kBq of 

[18F]29 in HBSS (with or without 20 µM of block peptide, 7) was added to each well and 

incubated (20 or 60 min). At the end of the incubation, plates were wash with HBSS (3X 

1mL/well) thrice to remove any unbound probe. This wash solution was collected and 

activity was measured on a gamma counter. PBS (1mL) was added to each well and cells 

were removed from the wells using a cell scrapper. Wells were then rinsed with PBS two 

additional times (2X 1 mL) to ensure all cells were collected. Collected cells were 

measured on a gamma counter to determine cell uptake activity. Experiments were 

completed in n ≥ 6. Data was decay corrected and expressed as a percentage of cell 

uptake over total activity (where total activity = wash + uptake). A two way ANOVA 

(cell condition, time) for percent uptake followed by a post-hoc Tukey multiple 

comparisons test was used to assess significance through GraphPad Prism 6 (significance 

set at 0.05).  
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Chapter 4  

4 Conclusions and Future Work 

4.1 Conclusions 
Aberrant function and over-expression of PAR2 is known to be involved in many 

cancers, including cancer progression, as well as multiple inflammatory diseases.1–17 

PAR2 is therefore an important biological target for the development of targeted 

therapeutics and imaging agents. Ligands targeting this receptor have been widely 

studied, with the development of various agonists and antagonists showing therapeutic 

potential. Some examples include agonists such as 2f-LIGRLO-NH2, Isox-Cha-Chg-AR-

NH2, and GB110 (Figure 4.1A) and antagonists such as GB88, C391, and K-14585 

(Figure 4.1B).18–22 Yet, imaging probes for this receptor are scarce. There are only a few 

fluorescent and tritiated probes that have been developed (examples shown in Figure 

4.1C), which all have a limited depth of penetration, lack of applicable in vivo imaging 

potential, and still show potential for significant PAR2 binding affinity improvement.23–25 

This thesis addresses this paucity of research though the design, synthesis, and evaluation 

of novel PAR2-targeting fluorescent and 18F-PET imaging agents.  
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Figure 4.1: Several reported leading (A) agonists, (B) antagonists, and (C) imaging 

probes targeting PAR2.18–22,24 

This thesis has three main goals. The first goal was the development and evaluation of 

novel PAR2-targeting peptides with primary amines to allow for facile conjugation of 

imaging components. The second goal was to develop an improved PAR2-selective 

fluorescent probe for use in various in vitro experiments and potential clinical 

applications in PAR2-related diseases. The third goal was the development of the first 

ever in vivo imaging agent targeting PAR2 for use in PET imaging, providing insight into 

PAR2 expression in vivo and potential clinical applications in the treatment and diagnosis 

of PAR2-related diseases. 

To achieve these goals, peptides were synthesized through standard Fmoc-SPPS, purified 

and characterized through RP-HPLC and HRMS, and evaluated for PAR2-binding 

through β-arrestin recruitment, calcium release, flow cytometry, and cell uptake assays. 

The beginning portion of Chapter 2 addressed the first goal of the thesis. Modifications 

were made to known PAR2-targeting peptides to include a free primary amine allowing 
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for facile conjugation of the various imaging components. Several synthesized peptides 

(8-11) showed strong potencies (EC50 = 10 nM to 23 nM, Table 2.1, Chapter 2) and 

selectivity for PAR2 with varying structural and hydrophobic properties. This 

preliminary work demonstrated the suitability of Isox-Cha-Chg-Ala-Arg related peptides 

for conjugation to various imaging components. 

The later portion of Chapter 2 addressed the second goal of the thesis. A Sulfo-Cy5 dye 

was conjugated to 11 to yield 15 (Isox-Cha-Chg-ARK(Sulfo-Cy5)-NH2). Peptide 15 

(Figure 4.2A) was found to be a PAR2-selective fluorescent probe with a greater than 

ten-fold increase in potency and binding affinity (EC50 = 16 nM and KD = 38 nM, 

respectively) compared to an analogue of the best known PAR2-targeting fluorescent 

probe (2f-LIGRLO(Cy5)-NH2, Table 2.3, Chapter 2). Peptide 15 was then further 

evaluated in an in vitro confocal microscopy experiment, showing PAR2-selective uptake 

in PC3 cells (Figure 2.4, Chapter 2). 

Chapter 3 addressed the third goal of the thesis. To achieve PAR2-targeing 18F-PET 

imaging agents, [19F]4-fluorobenzoyl-standards were conjugated to peptides for in vitro 

evaluation before generating the 18F-labeled analogue. A PAR2-targeting peptide of Class 

I showed promise (19, Table 3.1, Chapter 3), but many Class II peptides showed greater 

promise. First generation Class II peptides showed poor potency and loss of PAR2-

selectivity (21, Table 3.2, Chapter 3), but the second generation of Class II peptides 

showed substantial improvements in PAR2 potency comparable to 8-11 (22-25, Table 

3.3, Chapter 3). Unfortunately, the most potent candidates 22-24, were found to lose 

PAR2-selectivity (Table 3.3, Chapter 3). Thus, third generation Class II peptides were 

synthesized, many of which (26, 27, and 29) showed high potency and selectivity for 

PAR2 (Table 3.4, Chapter 3). The lead candidate, 29 (Isox-Cha-Chg-AR-Dpr(4-FB)-

NH2, EC50 = 13 nM) was synthesized successfully with fluorine-18 in place of fluorine-

19 using [18F]SFB to yield [18F]29 (Figure 4.2B) with a radiochemical yield of 37 ± 3%, 

greater than 98% radiochemical purity, molar activity of 20 ± 2 GBq/µmol, and end-of-

synthesis time of 125 ± 2 min (n = 4). Peptide [18F]29 was then evaluated in in vitro cell 

uptake studies using PC3 and PAR2 KO PC3 cells where it showed significant uptake in 
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the PAR2-expressing cells compared to controls (P < 0.001, Figure 3.4, Chapter 3). 

Peptide [18F]29 is the first PAR2-selective in vivo imaging agent ever developed. 

 

Figure 4.2: Structures of the lead PAR2-targeting (A) fluorescent probe, 15, and (B) PET 

imaging agent,  [18F]29, developed in this thesis.  

These novel probes, specifically 15 and [18F]29, are chemical tools that could provide 

insight into areas of PAR2 expression in vitro and in vivo with potential clinical 

applications in the diagnosis and treatment of various cancers and inflammatory diseases. 

 

4.2 Future Work and Outlook 

Studies to evaluate [18F]29 in normal mice are underway to determine ex vivo 

biodistribution of the tracer as well as to determine non-specific and specific uptake in 

various tissues through the use of a blocking peptide. In addition, a PC3 xenograft mouse 

model in immunodeficient mice will be used as a preclinical model of cancer for 

evaluation of [18F]29 uptake in the tumour and other tissue through PET imaging.  

In the long term, both probes (15 and [18F]29) will be evaluated in various in vitro and in 

vivo models of PAR2-related diseases, providing insights into PAR2 expression as well 

as advancing their potential for future clinical translation. More specifically in research 

purposes, 15 could be used in experiments such as PAR2-targeted competitive binding 

assays, determination of PAR2 expression levels for different cell types, and 

determination of PAR2 trafficking. Compound [18F]29 could potentially be used in 
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experimental research such as providing insight into endogenous PAR2 expression in 

vivo, providing insight into PAR2 expression and relevance in models of disease in vivo 

(e.g. a colon cancer model), and determining the effectiveness of new PAR2-targeting 

therapies in vivo. The research-based applications of 15 and [18F]29 will help the future 

development of PAR2-targeting imaging agents, ligands, and drug therapies, as well as 

improve the understanding of PAR2 expression and pathogenesis in relevant diseases.  

Clinically, since PAR2 is implicated in various cancers and inflammatory diseases and 

since its expression levels are linked to cancer staging, 15 has potential applications in 

pathological histology staining and intraoperative imaging for image-guided surgeries.1-17 

Similarly, [18F]29 has potential clinical applications as a non-invasive imaging approach 

for patient diagnosis, stratification, treatment monitoring, and early-stage detection of 

PAR2-related diseases. Both 15 and [18F]29 especially have strong potential in the 

stratification and treatment monitoring of patients with PAR2-related diseases as 

medicine continues to advance towards personalized medicine approaches. 

This thesis also provides a good platform for the development of targeted drug delivery 

conjugates for PAR2-related diseases. The targeted drug delivery approach generally 

involves a therapeutic component (e.g. a chemotherapy drug), a linker, and a targeting 

moiety, similar to the design of the imaging agents described in this thesis.26,27 The target 

is a biomarker which is inappropriately found in a disease in comparison to normal tissue, 

and so the targeted drug delivery approach helps maximize therapeutic effect while 

minimizing off-target side effects.26,27 The first component to this thesis that helps give a 

good platform for the development of targeted drug delivery conjugates is the extensive 

PAR2-ligand SAR. The second is the many lead candidates that could be used as the 

targeting moiety of the targeted drug delivery conjugate. The third is the amine handle on 

the various peptides, which would allow for facile conjugation of the PAR2-targeting 

moiety with the remaining component of the targeted drug delivery conjugate. 
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Appendices  

Appendix 1: Representative Examples of PAR2-Selectivity Measurements as 

Determined Through Calcium Response Assay in HEK293T and PAR2 KO 

HEK293T Cells 

 

(A) HEK293T cells + 100 µM of 13, (B) HEK293T PAR2 KO cells + 100 µM of 13, (C) 

HEK293T cells + 10 µM of 2, (D) HEK293T PAR2 KO cells + 10 µM of 2, (E) 

HEK293T cells + 10 µM of 12, (F) HEK293T PAR2 KO cells + 10 µM of 12. 
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Appendix 2: Validation of Specific Binding for Flow Cytometry Experiments 

#  Concentration 
(nM) 

Normalized fluorescence 
signal ± SEM 

Normalized fluorescence 
signal with block ± SEM* 

14  200 22.2 ± 2.3 10.8 ± 1.1 
14  1000 64.5 ± 2.1 38.2 ± 0.2 
15  200 24.8 ± 4.2 7.3 ± 2.3 
15  1000 60.2 ± 7.2 32.7 ± 7.4 

*Block done with 20 µM of a known PAR2-selective peptide, Isox-Cha-Chg-AR-NH2 

(7). 

Appendix 3: Characterization of Synthesized Peptides (2, 6-12, and 14-15) 

All peptides were >95% pure as determined by analytical RP-HPLC UV detection (see 

chromatograms below).  

2f-LIGRLO-NH2, 2 (C36H63N11O8):  

 
tR = 9.36 min; HRMS (ESI-MS): [M+H]+ 778.4939 (calc.) 778.4945 (found). 
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Isox-Cha-Chg-NH2, 6 (C21H32N4O4): 

 
tR = 9.85 min; HRMS (ESI-MS): [M+Na]+ 427.2321 (calc.) 427.2309 (found). 

 

 

Isox-Cha-Chg-AR-NH2, 7 (C30H49N9O6): 

 
tR = 9.57 min; HRMS (ESI-MS): [M+H]+ 632.3884 (calc.) 632.3892 (found). 
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Isox-Cha-Chg-AR-NH(CH2)6NH2, 8 (C36H62N10O6): 

 

tR = 9.29 min; HRMS (ESI-MS): [M+H]+ 731.4932 (calc.) 731.4944 (found). 
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Isox-Cha-Chg-ARLK-NH2, 9 (C42H72N12O8): 

 
tR = 9.09 min; HRMS (ESI-MS): [M+H]+ 873.5674 (calc.) 873.5685 (found). 

 

 

Isox-Cha-Chg-ARAK-NH2, 10 (C39H66N12O8): 

 
tR = 9.38 min; HRMS (ESI-MS): [M+H]+ 831.5205 (calc.) 831.5197 (found). 
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Isox-Cha-Chg-ARK-NH2, 11 (C36H61N11O7): 

 
tR = 9.14 min; HRMS (ESI-MS): [M+H]+ 760.4834 (calc.) 760.4841 (found). 
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Isox-Cha-Chg-ARK(COCH3)-NH2, 12 (C38H63N11O8): 

 

tR = 9.15 min; HRMS (ESI-MS): [M+H]+ 802.4939 (calc.) 802.4952 (found). 

 

 

2f-LIGRLIO(Sulfo-Cy5)-NH2, 14 (C68H98N13O15S2-): 

 

tR = 8.92 min; HRMS (ESI-MS): [M-] 1400.6747  (calc.) 1400.6714 (found). 
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Isox-Cha-Chg-ARK(Sulfo-Cy5)-NH2, 15 (C68H96N13O14S2-): 

 

tR = 8.87 min; HRMS (ESI-MS): [M-] 1382.6641 (calc.) 1382.6589 (found). 
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Appendix 4: PAR2 β-Arrestin 2 Recruitment Dose-Response Curves for Peptides 1, 

2, 6-12, and 14-15 in HEK293T Cells 
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Compound 6 
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Compound 8 
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Compound 10 
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Compound 12 

 

Compound 14 
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Compound 15 
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Appendix 5: Representative Examples of PAR2-Selectivity Measurements as 

Determined Through Calcium Response Assay in PC3 and PAR2 KO PC3 Cells 

 

(A) PC3 cells + 100 µM of 13, (B) PC3 PAR2 KO cells + 100 µM of 13, (C) PC3 cells + 

100 µM of 2, (D) PC3 PAR2 KO cells + 100 µM of 2. 
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Appendix 6: Representative Examples of PAR2-Selectivity Measurements as 

Determined Through Calcium Response Assay in HEK293T and PAR2 KO 

HEK293T Cells 

 

(A)                                                         (B)     
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(A) HEK293T cells + 100 µM of 13, (B) HEK293T PAR2 KO cells + 100 µM of 13, (C) 

HEK293T cells + 10 µM of 7, (D) HEK293T PAR2 KO cells + 10 µM of 7, (E) 

HEK293T cells + 10 µM of 23, (F) HEK293T PAR2 KO cells + 10 µM of 23, (G) 

HEK293T cells + 10 µM of 29, (H) HEK293T PAR2 KO cells + 10 µM of 29. 

Appendix 7: GE Tracer Lab FXN Automated Synthesis Display. 
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Appendix 8: Fluorine-18 Co-Injection Radio-traces and Chromatograms.  

 

(A) Overlay of RP-HPLC radio-trace and chromatogram of SFB and [18F]SFB co-

injection and of (B) 29 and [18F]29 co-injection. 

 

 

 

 

 

 

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

0

200

400

600

800

1000

Time (min)

U
V

 A
bs

or
ba

nc
e 

(A
U

)

SFB

[18F]SFB

R
adioactivity (m

V
)

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0

20

40

60

80

100

Time (min)

U
V

 A
bs

or
ba

nc
e 

(A
U

)

29

[18F]29

R
adioactivity (m

V
)

(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(B) 



94 

 
94 

Appendix 9: Calibration Curve of 29 to Determine Molar Activity of [18F]29. 

 

Appendix 10: Characterization of Synthesized Peptides (2, 6, 7, 16-29, and 35) 

All peptides were >95% pure as determined by analytical RP-HPLC UV detection (see 

chromatograms below).  
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tR = 9.36 min; HRMS (ESI-MS): [M+H]+ 778.4939 (calc.) 778.4945 (found). 
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Isox-Cha-Chg-NH2, 6 (C21H32N4O4): 

 
tR = 9.85 min; HRMS (ESI-MS): [M+Na]+ 427.2321 (calc.) 427.2309 (found). 

 

 

Isox-Cha-Chg-AR-NH2, 7 (C30H49N9O6): 

 
tR = 9.57 min; HRMS (ESI-MS): [M+H]+ 632.3884 (calc.) 632.3892 (found). 
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Isox-Cha-Chg-G-NH2, 16 (C23H35N5O5): 

 
tR = 8.91 min; HRMS (ESI-MS): [M+Na]+ 484.2536 (calc.) 484.2526 (found). 

 

 

 

 

0 2 4 6 8 10 12

0

1×106

2×106

3×106

4×106

5×106

Time (min)

U
V

 A
bs

or
ba

nc
e 

(A
U

)

N O

O

N
H

H
N N

HO

O
NH2

O

0 2 4 6 8 10 12
0

1×107

2×107

3×107

4×107

5×107

Time (min)

U
V

 A
bs

or
ba

nc
e 

(A
U

)



97 

 
97 

2f-LIGRAO-NH2, 17 (C33H57N11O8): 

 
tR = 9.19 min; HRMS (ESI-MS): [M+H]+ 736.4470 (calc.) 736.4475 (found). 

 

 

2f-LIGRLIO-NH2, 18 (C42H74N12O9): 

 
tR = 9.37 min; HRMS (ESI-MS): [M+H]+ 891.5780 (calc.) 891.5801 (found). 
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2f-LIGRLO(4-FB)-NH2, 19 (C43H66FN11O9): 

 
tR = 9.19 min; HRMS (ESI-MS): [M+H]+ 900.5107 (calc.) 900.5129 (found). 
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2f-LIGRLIO(4-FB)-NH2, 20 (C49H77FN12O10): 

 
tR = 9.04 min; HRMS (ESI-MS): [M+H]+ 1013.5948 (calc.) 1013.5955 (found). 

 

 

Isox-Cha-Chg-NH(CH2)6NH-4-FB, 21 (C34H48FN5O5): 

 
tR = 9.39 min; HRMS (ESI-MS): [M+Na]+ 648.3537 (calc.) 648.3550 (found). 
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Isox-Cha-Chg-ARK(4-FB)-NH2, 22 (C43H64FN11O8): 

 
tR = 9.58 min; HRMS (ESI-MS): [M+H]+ 882.5002 (calc.) 882.5011 (found). 
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Isox-Cha-Chg-ARLK(4-FB)-NH2, 23 (C49H75FN12O9): 

 
tR = 9.30 min; HRMS (ESI-MS): [M+H]+ 995.5842 (calc.) 995.5852 (found). 

 

 

Isox-Cha-Chg-ARAK(4-FB)-NH2, 24 (C46H69FN12O9): 

 
tR = 8.52 min; HRMS (ESI-MS): [M+H]+ 953.5373 (calc.) 953.5398 (found). 
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Isox-Cha-Chg-AR-NH(CH2)6NH-4-FB, 25 (C43H65FN10O7): 

 
tR = 8.96 min; HRMS (ESI-MS): [M+H]+ 853.5100 (calc.) 853.5110 (found). 
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Isox-Cha-Chg-ARK(Ahx-4-FB)-NH2, 26 (C49H75FN12O9): 

 
tR = 9.22 min; HRMS (ESI-MS): [M+H]+ 995.5842 (calc.) 995.5855 (found). 

 

 

Isox-Cha-Chg-ARK(AEEA-4-FB)-NH2, 27 (C49H75FN12O11): 

 
tR = 8.92 min; HRMS (ESI-MS): [M+H]+ 1027.5741 (calc.) 1027.5745 (found). 

H
N

O

O

N O

O

N
H O

N
H

OH
N

O
N
H

HN

NH2

O H
N

O

F

NH

HN NH2

0 2 4 6 8 10 12

0

1×106

2×106

3×106

4×106

5×106

Time (min)

U
V

 A
bs

or
ba

nc
e 

(A
U

)

H
N

O

O

N O

O

N
H O

N
H

OH
N

O
N
H

HN

NH2

O O

O H
N

O

F

NH

HN NH2



104 

 
104 

 

 

Isox-Cha-Chg-ARO(4-FB)-NH2, 28 (C42H62FN11O8): 

 
tR = 8.81 min; HRMS (ESI-MS): [M+H]+ 868.4845 (calc.) 868.4864 (found). 
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Isox-Cha-Chg-AR-Dpr(4-FB)-NH2, 29 (C40H58FN11O8): 

 
tR = 8.87 min; HRMS (ESI-MS): [M+H]+ 840.4532 (calc.) 840.4525 (found). 

 

 

Isox-Cha-Chg-AR-Dpr-NH2, 35 (C33H55N11O7): 

 
tR = 8.74 min; HRMS (ESI-MS): [M+H]+ 718.4364 (calc.) 718.4372 (found). 
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Appendix 11: PAR2 β-Arrestin 2 Recruitment Dose-Response Curves for Peptides 1, 

2, 6-7, and 16-29 in HEK293T Cells 
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Appendix 12: NMR of N-succinimidyl 4-fluorobenzoate (34) 
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Appendix 13: NMR of 4-(tert-butoxycarbonyl)-N,N,N-trimethylbenzenammonium 

triflate (32) 
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