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Abstract 
During courtship, it is vital for organisms to recognize conspecifics because of the costs 

associated with forming interspecies hybrids. Many organisms use species-specific cues to 

recognize potential mates. These cues are perceived and evaluated via neural pathways. The 

genetic basis of how species-specific cues are evaluated and processed into receptive or rejection 

behaviour remains almost entirely unknown. The gene Katanin 60 (Kat60) has previously been 

identified as contributing to interspecific mate rejection between Drosophila melanogaster and 

D. simulans. I use the CRISPR/Cas9 system and RNA interference (RNAi) to confirm if Kat60 

influences female receptivity between D. melanogaster and D. simulans and to identify which 

tissues affect it. I have created 16 RNAi stocks that silence transcripts of one species’ allele, and 

one CRISPR stock that disrupts the D. melanogaster Kat60 sequence. These stocks can be used 

in future reciprocal hemizygosity experiments to determine if Kat60 affects interspecific mate 

rejection. 
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1 Introduction 

1.1 Speciation 
The process of speciation, whereby distinct species arise from a common ancestor, is central to 

our understanding of diversity. While many different concepts are used to categorize populations 

as distinct species, evolutionary biologists primarily use the Biological Species Concept which 

states that “species are groups of actually or potentially interbreeding natural populations, which 

are reproductively isolated from other such groups” (Mayr 1942; reviewed in Coyne and Orr 

1998). Different processes, such as selection, genetic drift, and divergent habitat utilization can 

contribute to speciation (reviewed in Coyne et al. 2004; Rundle and Nosil 2005). These 

processes can lead species to become isolated from one another by biotic factors, such as 

incompatible reproductive structures, or abiotic factors like mountain ranges or elevation 

differences (Lagomarsino et al. 2016; Barnard et al. 2017). However, reproductive isolation 

generally refers to genetic incompatibilities that prevent the formation of zygotes or fertile 

offspring between species (Gregorius 1992). Reproductive isolation can manifest as various 

mechanisms at all stages of reproduction. The mechanisms are commonly grouped into two 

categories based on when they occur in relation to the formation of the zygote: prezygotic 

barriers and postzygotic barriers (Chang 2004; Matute and Coyne 2010). I focus on prezygotic 

barriers as they are most relevant to my work. 

 

1.1.1 Prezygotic Barriers 
Prezygotic barriers refer to incompatibilities between species that prevent a zygote from being 

formed. Prezygotic barriers can themselves be divided into two categories: premating and 

postmating barriers (Markow 1997). Mechanical isolation, one example of a premating 

prezygotic barrier, prevents zygote formation due to physical incompatibility between 

reproductive organs. For example, the species pair of damselflies Enallagma anna and E. 

carunculatum are able to produce viable hybrid offspring but inter-specific mating rarely occurs 

because incompatible reproductive structures prevent males from forming tandems, which is a 

position required for copulation (Barnard et al. 2017). Behavioural isolation is another common 

form of premating prezygotic isolation. In this case, one species is not receptive to the mating 
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behavior of another species, as observed between Drosophila ananassae and D. pallidosa. 

Females of either species are less willing to mate with heterospecific males that produce a wing 

song during courtship relative to heterospecific males that cannot, indicating that heterospecific 

wing songs serve as an aversive cue for females (Yamada et al. 2002).  

 

Postmating prezygotic barriers act during the time between copulation and zygote formation and 

can affect the ability of sperm from one species to reach or fertilize the egg of another (Markow 

1997). While there has been relatively little research into postmating prezygotic barriers 

compared to premating barriers, some examples can be found across diverse taxa. Conspecific 

sperm precedence, where conspecific gametes outcompete heterospecific gametes, has been 

observed in darter species (Mendelson et al. 2007), ladybirds (Nakano 1985), and sunflowers 

(Rieseberg et al. 1995). Conspecific sperm precedence has also been observed between 

Drosophila species. Drosophila simulans can be mated to its sister species D. mauritiana and D. 

sechellia and produce hybrid offspring that survive to adulthood. However, D. simulans displays 

strong conspecific sperm precedence as conspecific sperm outcompetes both heterospecific 

sperm regardless of whether the conspecific male was mated to the D. simulans female before or 

after the heterospecific male (Price 1997). Another type of postmating prezygotic barrier 

includes gametic isolation, where the sperm from one species cannot survive in the reproductive 

tract or fertilize the egg of a heterospecific female (Turissini et al. 2017).  

 

Behavioural isolation is often one of the first barriers to develop between sympatric species and 

also plays an important role in reinforcement, which is the strengthening of reproductive 

isolation between nascent species through selection (Coyne and Orr 1989, Noor 1995). Studies in 

Drosophila species have found that premating prezygotic barriers appear first, followed by 

postmating prezygotic barriers, and finally postzygotic barriers (Turissini et al. 2017). Some 

plant species develop prezygotic and postzygotic barriers at the same rate whereas others, such 

as those from the genus Pedicularis, developed postzygotic barriers before prezygotic ones 

(Moyle et al. 2004, reviewed in Widmer et al. 2009). However, most studies have found that 

early prezygotic isolating barrier development is most common, indicating that prezygotic 

isolation mechanisms tend to be the primary driver of speciation (reviewed in Coyne and Orr 

2004).  
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1.1.2 Behavioural Isolation 
Behavioural isolation is a complex phenomenon that involves multiple sensory modalities. While 

instances of sexual solicitations have been observed between highly diverged species (Gunst et 

al. 2018), species are more often unreceptive to the sexual behaviours of heterospecifics. 

Behavioural isolation due to inappropriate auditory information is one of the more well-known 

forms. The African cricket Acanthoplus longpipes has a slightly different calling song from a 

closely-related species A. discoidales, but A. longpipes females are only attracted to song models 

that resemble their species-specific calling song (Kowalski and Lakes-Harlan 2011). Similar 

results have been observed in subalpine warblers of the Sylvia cantillans complex, as males from 

both S. (cantillans) moltoni and S. cantillans cantillans were more likely to respond to songs of 

their own taxon (Brambilla et al. 2008). Auditory information has also been found to affect 

female receptivity of various Drosophila species: D. melanogaster and D. simulans females were 

more willing to mate with wingless males when a homospecific wing song was played (Ritchie 

et al. 1999), and D. montana females were willing to mate with wingless D. lummei males if 

male D. montana wing songs were played during the mating assay (Saarikettu et al. 2005). 

 

Chemical cues can also act as mechanisms to recognize conspecific mates and therefore can be 

involved in sexual isolation between species. Female angelfish have been found to increase 

spawning rate in response to chemical signals produced by male conspecifics (Chien 1973), and 

the two swordtail species Xiphorus nigrensis and X. pygmaeus were found to prefer the odour of 

male conspecifics over heterospecifics (Crapon de Caprona and Ryan 1990). Pheromones have 

also been implicated in species-specific social interactions of rodents of the Mus genus (Li et al. 

2013). In insects, nonvolatile pheromones consist of cuticular hydrocarbons (CHCs), waxy 

chemicals produced by insects that primarily serve to confer dessication resistance (reviewed in 

Howard and Blomquist 2005). Because the type and amount of the CHCs differ between species, 

there has been considerable research into their role as behavioural isolation factors between 

species. For example, Ellychnia corrusca fireflies spent significantly more time in contact with 

conspecific CHC extracts relative to CHC extracts from other firefly species (South et al. 2008). 

Likewise, female aggression towards heterospecific males in Gryllus campestris crickets were 
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found to be influenced by their ability to identify and receive CHC chemical cues from the males 

(Tyler et al. 2015).  

 

Behavioural isolation is thought to develop between two populations as a consequence of 

evolutionary changes within each population (Coyne and Orr 1998). Many genes that influence 

sexual isolation also affect other traits (such as CHCs influencing both desiccation resistance and 

species recognition), so selection that acts upon these genes due to one trait could cause 

reproductive isolation between two populations through its effect on a pleiotropic trait (reviewed 

in Laturney and Moehring 2012a; Nanda and Singh 2012). If the hybrids between two closely-

related taxa have reduced fitness, they are selected against and reinforcement occurs. 

Reinforcement occurs when hybrids between incipient species have reduced fitness. This 

increases selection on traits in the parental species that would prevent these maladaptive matings, 

thus enhancing behavioural isolation (reviewed in Servedio and Noor 2003). The reduced fitness 

of hybrids can sometimes be due to behavioral dysfunction. For example, in two species of wolf 

spiders, females were far less receptive to courtship attempts from male hybrids and hybrid 

females had greatly reduced receptivity to all males regardless of whether they were purebred or 

hybrid (Stratton and Uetz 1986). Hybrid dysfunction causes reinforcement in the species pair 

Drosophila persimilis and D. pseudoobscura, which form sterile male hybrids as a result of 

impaired spermatogenesis (White 1977). Populations of these species that inhabit the same 

region have a much greater degree of behavioural isolation than populations that are not in 

contact, presumably due to the strengthening of behavioural isolation in locations where these 

two species come in contact and form dysfunctional hybrids (Noor 1995).  

 

1.2 Using Drosophila to Study Behavioural Isolation 
Drosophila species present several advantages as a model that make them ideal to study the 

genetic basis of behavioural isolation. D. melanogaster has been used in genetic research for 

over 100 years (Stephenson and Metcalfe 2013), and its extensive use has produced many 

invaluable genetic tools that can be used to identify genes of interest (Stern 2014) and create 

stable transgenic lines (Prokop and Root 2013).  
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1.2.1 The Drosophila Courtship Ritual 
The Drosophila courtship ritual is a highly stereotypical series of behaviours that is common to 

most Drosophila species (reviewed in Greenspan and Ferveur 2000). The courtship ritual 

initiates with the male orienting himself towards the female and following her, then tapping her 

abdomen with his foreleg. He then “sings” her a courtship song by vibrating one wing and licks 

her genitalia. The male will then attempt to copulate with the female (reviewed in Sokolowski 

2001). If the female deems that the male is unworthy during courtship, she will display rejection 

behaviours that prevent copulation (Connolly and Cook 1973). Forced copulations occur very 

rarely in natural Drosophila populations and tend to happen only in very high density 

environments or with extremely young adult females who cannot resist copulation attempts from 

mature adult males (Markow 2000). Consequently, females ultimately control whether 

copulation occurs in Drosophila.  

 

The complexity of the Drosophila courtship ritual allows for the transfer of many different 

sensory cues between the male and female (reviewed in Laturney and Moehring 2012a). The 

main signals involved in courtship are visual, auditory, and chemical cues (reviewed in 

Greenspan and Ferveur 2000). Males primarily utilize visual stimuli to recognize females to 

court and these cues strongly influence how vigourously males court females. Paralyzed females 

elicit reduced courtship from D. melanogaster males and males that could not recognize 

horizontally-moving patterns also showed aberrant courtship behaviours (Tompkins et al. 1982). 

D. melanogaster males that lack eye pigments also have reduced mating success and have an 

impaired ability to orient themselves toward females, showing that visual recognition of the 

female is an important component of courtship in males (Connolly et al. 1969). The effect of 

light on courtship also varies between species. Drosophila melanogaster and D. funebris can 

mate easily in darkness (Hardeland 1971), D. affinis can copulate most easily in the light but can 

still mate in the dark (McRobert and Tompkins 1987), but D. subobscura and D. auraria cannot 

mate in the dark at all (Philip et al. 1944; Spieth and Hsu 1950). 

 

Courtship auditory cues are most often provided through the wing vibration song the male 

“sings” to the female. Wing songs consist of a pulse song interrupted by a hum resembling a sine 
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wave (known as a sine song) of a specific frequency (Kyriacou and Hall 1982; Greenspan and 

Ferveur 2000). The pulse song consists of a wing beat (called a “pulse”) separated by an 

interpulse interval (IPI) that varies between species (Kyriacou and Hall 1982). Drosophila 

melanogaster has a pulse length of 3 milliseconds and an IPI of around 34 milliseconds whereas 

D. simulans has an IPI of 48 milliseconds (Bennet-Clark and Ewing 1968; Kyriacou and Hall 

1982). Artificially producing a wing song during courtship by wingless Drosophila melanogaster 

males increases female willingness to mate (Bennet-Clark and Ewing 1968). That same study 

found that the species-specific nature of the song depended on IPI rather than pulse length, as D. 

simulans was significantly more likely to mate with wingless D. melanogaster males when the 

IPI of the artificial song was 48 milliseconds long. 

 

Drosophila species are also able to recognize conspecifics by their cuticular hydrocarbon (CHC) 

profile. CHCs are nonvolatile chemical cues that play an important role in courtship in 

Drosophila. Because they are nonvolatile, they are only perceived at a short distance through 

olfactory organs or gustatory receptors on the tarsi or proboscis (reviewed in Bontonou and 

Wicker-Thomas 2014). CHCs are highly varied between Drosophila species and sometimes 

exhibit sexually dimorphic patterns. For example, the predominant CHC produced by D. 

melanogaster males is 7-tricosene, but D. melanogaster females mainly produce 7,11-

heptacosadiene and produce 7-tricosene in much lower proportions (Antony and Jallon 1982). 

Drosophila simulans and D. mauritiana females do not produce 7,11-heptacosadiene, so this 

could serve as an aversive cue to males from these species (Coyne 1996). Behavioural isolation 

due to CHCs has been observed in both sexes of various Drosophila species: transferring CHCs 

from D. sechellia or D. melanogaster onto D. mauritiana females greatly reduced how often D. 

mauritiana males courted or attempted to copulate with them (Coyne and Charlesworth 1997), 

and transferring CHCs from D. sechellia or D. melanogaster (which both produce 7,11-

heptacosadiene) onto D. simulans females almost completely eliminated courtship by D. 

simulans males (Coyne et al. 1994). 
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1.2.2 Genetic and Neurological Basis of Courtship 
Because of the multiple sensory modalities and behaviours involved, the genetic and 

neurological bases of courtship and receptivity are highly complex. However, some genes have 

been discovered that influence various aspects of the courtship ritual, the aspect of this male-

female interaction that has been most widely studied. The gene desatF encodes a desaturase in 

D. melanogaster females but not males. Knocking down this gene using RNA interference 

reduced the amount of diene CHCs in females and consequently led to a decrease in courtship 

and copulation attempts by D. melanogaster males (Chertemps et al. 2006). Kyriacou and Hall 

(1982) found that the period gene, which encodes a transcription factor known to play a role in 

circadian rhythms, influenced the regularity of courtship songs in D. melanogaster. Drosophila 

melanogaster and D. simulans females were also more likely to copulate with wingless D. 

melanogaster males when an artificial wing song was played that matched the species of the 

female (Kyriacou and Hall 1982), though these results are controversial due to difficulty 

replicating them (Stern 2014; Kyriacou et al. 2017; Stern et al. 2017a).  

 

Two particularly important genes involved in Drosophila courtship are fruitless (fru) and 

doublesex (dsx). Both fru and dsx encode transcription factors and are able to change the 

structure of the fly central nervous system (CNS) dramatically in a sex-specific manner due to 

their sex-specific mRNA splice products (Ryner et al. 1996; reviewed in Dauwalder 2011). The 

male forms (FruM and DsxM) of these transcription factors produce the neuronal circuitry that 

encode male specific behaviours whereas female-specific neural circuitry is controlled only by 

the female DsxF (Rideout et al. 2010; reviewed in Dauwalder 2011; Pavlou and Goodwin 2013). 

Approximately 1500 neurons in the CNS express the male-specific form of fruitless, and many 

are in regions implicated in sexual behaviour (Lee et al. 2000). FruM is also expressed in sensory 

neurons outside of the CNS, for example olfactory receptor neurons and gustatory receptor 

neurons, though it is not expressed in the sensory neurons of the visual system (Stockinger et al. 

2005). Stockinger et al. (2005) also proposed that these FruM-expressing neurons are organized 

into a circuit which is thought to affect male courtship behaviours.  

 



 

 

8 

 

FruM neurons have been strongly linked to behaviour: silencing expression of FruM transcripts 

has been shown to impair male courtship and expressing FruM in females causes them to exhibit 

male courtship behaviours (Ito et al. 1996; Demir and Dickson 2005; Stockinger et al. 2005). The 

1500 fru-expressing neurons can be differentiated into ca. 100 anatomically-distinct types in the 

Drosophila CNS, with a particularly high concentration of fru-expressing neurons surrounding 

the mushroom body (Yu et al. 2010). The mushroom body of the Drosophila brain has been 

linked to memory and sensory information integration (reviewed in Guven-Ozkan and Davis 

2014). A recent study found that each lobe of the mushroom body integrates a different 

combination of sensory modalities (Yagi et al. 2016), and certain lobes affect courtship 

behaviours. The gamma lobes of the mushroom body contain many fru-expressing neurons (Yu 

et al. 2010) and silencing the neurons in these lobes impairs courtship memory (Montague and 

Baker 2016). 

 

While fru mutations in males can nearly completely prevent courtship from occurring, dsx 

mutations do not affect courtship as strongly but still have a considerable effect. Males that lack 

a functional copy of dsx are unable to sing sine song and show other defects in song production. 

dsx is expressed in a specific subset of neurons known as TN1A neurons, which are required for 

males to produce the sine song (Villella and Hall 1996; Shirangi et al. 2016). TN1A neurons 

share a strong functional connection with the hg1 motorneuron, which is also required for the 

production of sine song (Shirangi et al. 2013). Shirangi et al. (2016) found that TN1A neurons 

require expression of dsx during development to make proper synaptic contacts with the hg1 

motorneuron, proving that dsx plays an important functional role in male wing song production.  

 

Female receptivity, while less studied, is known to be influenced by some of the same 

mechanisms that affect male courtship. Silencing fru neurons in females causes them to reject 

male copulation attempts significantly more often and also to lay more eggs, which are both 

stereotypical postmating behaviours (Kvitsiani and Dickson 2006). Genes fru and dsx both 

mediate the decrease in postmating female receptivity caused by the transfer of male sex peptide 

in male ejaculate. Expressing the membrane-bound form of sex peptide in dsx-expressing 

neurons caused virgin females to exhibit reduced receptivity to males to levels comparable with 

mated females. The cell bodies of these neurons were found in the abdominal ganglion and 
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projected both to the suboesophageal ganglion in the brain and to the uterus, providing a neural 

link between sex peptide and female postmating behaviours (Rezával et al. 2012). The gene dsx 

has also been found to have a direct effect on female receptivity: expression of dsx neurons in the 

pC1 and pCd neuronal clusters significantly increased female receptivity whereas silencing those 

clusters reduced receptivity. The pC1 neuronal cluster was found to respond to artificial pulse 

and sine songs and the male pheromone cVA whereas pCd only responded to cVA (Zhou et al. 

2014). Some genes affect female receptivity through neural regions associated with fru 

expression. For example, female spinster mutants are known to reject copulation attempts by 

males vigourously (Suzuki et al. 1997). These rejectionary behaviours were found to be mediated 

by the VA1v glomerulus of the antennal lobe and the spin-A cluster in the suboesophageal 

ganglion (Sakurai et al. 2013). The VA1v glomerulus is one of the sexually-dimorphic brain 

regions that fru neurons project to (Stockinger et al. 2005) and the suboesophageal ganglion has 

been shown to affect female receptivity though dsx-expressing neurons (Rezával et al. 2012). 

 

dsx and/or fru-expressing neurons are not the only ones that influence mating behaviour, 

however. For example, the apterous (ap) gene encodes a transcription factor that influences wing 

and neuron pathway development (Lundgren et al. 1995), and female ap-deficient mutants were 

found to exhibit reduced female receptivity (Ringo et al. 1991). However, the ap neurons 

responsible for this reduction in mating were not part of a sexually differentiated circuit and did 

not express either fru or dsx (Aranha et al. 2017).  

 

Despite great progress in our understanding of the genetic and neural basis of female receptivity 

in Drosophila, much remains unknown. One particularly important question for evolutionary 

biologists working with Drosophila is whether the genes and neural regions that affect female 

receptivity towards males of the same species affect heterospecific males as well. Unfortunately, 

as of the time of writing, no genes have been identified that are involved with interspecific mate 

rejection in females (reviewed in Laturney and Moehring 2012a). As such, we have a limited 

understanding of how behavioural isolation develops between species on a genetic level. 

 As mentioned earlier, many aspects of the Drosophila courtship ritual have species-specific 

components, and females ultimately decide whether a mating attempt is successful. Therefore, 

when searching for genes that affect interspecific mating, it makes sense to identify them through 
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changes in female receptivity towards mating attempts from heterospecific males. Identifying 

genes that influence female receptivity to courtship by other species would greatly advance our 

understanding of how behavioural isolation develops and speciation in general. 

 

1.3 Genetic Basis of Behavioural Isolation in Drosophila 
Though there has been extensive research into behavioural isolation, the genetic basis is still 

unclear. Reproductive isolation in Drosophila is a complex polygenic trait involving a number of 

concurrently evolving loci (Zeng et al. 2000; Ting et al. 2001; McNabney 2012). For example, a 

QTL mapping study investigating the genetic basis of male genital arch shape differences 

between D. simulans and D. mauritiana found 19 different loci that contributed to the trait (Zeng 

et al. 2000). Incompatible reproductive structures could act as unattractive tactile cues that 

reduce female willingness to mate (Barnard et al. 2017). In addition, Ting et al. (2001) found that 

seven loci on the third chromosome influenced either female preference or male mating success 

in different races of D. melanogaster. The authors believe that the influence of each region on 

genital arch shape is epistatic or polygenic, further complicating the ability for scientists to 

determine specific genes that influence behavioural isolation. Some progress has been made 

towards identifying genes of interest that influence reproductive isolation, however: the 

desaturase2 gene affects desiccation resistance in two races of D. melanogaster and may have 

influenced behavioural isolation between them through ecological adaptation (Greenberg et al. 

2003). No individual genes responsible for behavioural isolation have been identified at the time 

of writing, but QTL and deficiency mapping studies have identified the third chromosome as a 

promising region of study (Civetta and Cantor 2003; Moehring et al. 2006; Laturney and 

Moehring 2012b).  

 

Genes that cause behavioural isolation are difficult to identify for several reasons. One of the 

biggest obstacles to overcome is that hybrids of different species are difficult (and sometimes 

impossible) to produce, and surviving offspring are often sterile. Sterile hybrids can prevent 

researchers from introgressing genes into either parental genome and can make QTL mapping 

impossible (reviewed in Laturney and Moehring 2012a). This problem disproportionately affects 

genes that cause premating isolation because it is still possible to study sterility or inviability 
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genes in parental species that cannot produce fertile hybrids (Coyne and Charlesworth 1989; 

Sawamura et al. 1993; Ting 1998; Chatterjee et al. 2007). Despite these difficulties, the powerful 

genetic tools available to drosophilists and the well-characterized mating behaviour of 

Drosophila species makes them an excellent system with which to study behavioural isolation. 

 

 

1.3.1 Behavioural Isolation between D. melanogaster and D. simulans  
D. melanogaster and D. simulans (henceforth referred to as mel and sim) are two commonly-

used species in the study of species isolation. The species diverged about 5.4 million years ago 

and currently exist sympatrically (Tamura et al. 2004). D. melanogaster might initially appear to 

be a poor model to study behavioural isolation genes as it only forms sterile or inviable hybrids 

with other species (reviewed in Orr 2005). However, the effect of single genes on behavioural 

isolation can be studied in sterile F1 hybrids by crossing single gene knockout lines to a different 

species and studying the effect on courtship and copulation in the hemizygous hybrid (Stern 

2014). D. simulans females are extremely choosy towards mel males whereas the reciprocal 

heterospecific cross is far easier to produce (Sturtevant 1920). Offspring produced from the 

permissive cross are always female and always sterile. Two genes, Lethal hybrid rescue (Lhr) 

and Hybrid male rescue (Hmr) interact to cause this hybrid male lethality (Brideau et al. 2006). 

The two genes code for proteins that repress expression of transposable elements and regulate 

satellite DNA transcription, suggesting that lethality might be caused by misregulation of these 

elements (Satyaki et al. 2014). Despite being nearly indistinguishable visually, sim and mel 

exhibit differences that could serve as aversive cues for females, such as the different CHC 

blends in the two species (Antony and Jallon 1982; Sharma et al. 2012), and the different IPI of 

the wing song (Bennet-Clark and Ewing 1968a), mentioned above. 

 

Even though sim females strongly reject mel males, hybrid females are somewhat receptive to 

courtship attempts by mel males (Davis et al. 1996). This suggests that the mel alleles for 

receptivity towards mel males are semi-dominant over the sim alleles for rejecting these males. 

Because mel males readily court sim, mel, and hybrid females, genes responsible for female 

receptivity towards heterospecific males can be identified through knocking out the mel allele of 
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a gene in a hybrid female and quantifying the resulting effect on receptivity to mel males. If the 

gene is responsible for receptivity, then the sim rejection phenotype should be at least partially 

restored. The genes influencing female rejection of heterospecific males could normally be 

identified through recombination mapping, but recombination mapping requires fertile F1 

hybrids that mel is unable to produce (reviewed in Orr 2005). This problem can be overcome by 

using deficiency mapping and balancer chromosomes. Deficiency mapping and balancer 

chromosomes allow researchers to test if certain genomic regions influence a quantitative trait 

(such as female rejection) while only requiring F1 offspring. These techniques therefore allow 

scientists to utilize the many genetic tools available in D. melanogaster to study behavioural 

isolation. 

 

1.4 Genetic Tools Available in D. melanogaster 
Because D. melanogaster is one of the most widely-used model organisms, many different 

researchers have developed tools to help identify or characterize genes. D. melanogaster was one 

of the first organisms to have its genome fully sequenced (Adams et al. 2000) and many well-

studied phenotypic markers can be used to track a gene of interest (reviewed in Gramates et al. 

2017). Some tools, such as the Gal4/UAS system or green fluorescent protein, originated in other 

organisms but have been adapted for use in D. melanogaster (Brand and Perrimon 1993; Plautz 

et al. 1996). New transgenic lines can also be created easily and quickly due to the efficiency of 

Drosophila blastoderm injections. Deficiency mapping can be done especially well in D. 

melanogaster as available deletion stocks cover 98.3% of all euchromatic genes (Bloomington 

Drosophila Stock Centre). Many deleted regions are homozygous lethal and would normally be 

lost from a stock due to selection. However, homozygous lethal deletions can be maintained over 

balancer chromosomes which allow Drosophila geneticists to maintain mutations over 

generations without fear that they will be lost due to selection or recombination. 

 

1.4.1 Balancer Chromosomes 
Balancer chromosomes (referred to as balancers) are composed of three key components: 

multiple inversions, homozygous-lethal mutations, and dominant visible phenotypic markers 
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(reviewed in Kaufman 2017). Multiple inversions in balancers prevent crossing over from 

occurring near inversion breakpoints and cause lethality in all offspring arising from gametes 

that underwent single crossover events within inversions due to massive aneuploidy 

(Bloomington Drosophila Stock Centre). Balancers also include recessive lethal mutations and 

dominant visible markers which allow researchers to track the presence or absence of a balancer 

through generations and allowing stocks to maintain a mutation of interest (Prokop and Root 

2013). Balancers are most effective when the mutation of interest is very close to an inversion 

breakpoint to reduce the possibility of losing it through double crossover events (reviewed in 

Kaufman 2017). Because harmful mutations cannot easily be lost through selection when 

balanced, balancer chromosomes can allow for the maintenance of highly deleterious alleles or 

deletions, such as those that cause inviability or sterility when homozygous. Balancers also allow 

for the creation and maintenance of deletion stocks that can be used for deficiency mapping. 

 

1.4.2 Deficiency Mapping and Reciprocal Hemizygosity 
Deficiency mapping is a technique used to identify small genomic regions that influence some 

recessive quantitative trait of interest. Deficiency mapping utilizes D. melanogaster stocks that 

have known regions of their genome deleted and maintained over a balancer. This means that the 

stock is effectively hemizygous at known loci. When mapping for a recessive trait, such as eye 

colour, deletion stocks can be crossed with other lines that contain the mutant phenotype to 

identify where the gene(s) of interest are located. If genes influencing the trait are not located 

within the deletion, they will be masked by the wild-type allele present on the deficiency 

chromosome and the organism will resemble the wild-type. If the genes influencing the trait are 

located within the deletion, however, there will be no wild-type allele to mask the effect of the 

mutation and the fly will display the mutant phenotype in a manner similar to classic 

complementation tests (Figure 1A). Multiple deficiency lines can be used to narrow the region of 

interest. Deficiency mapping has been used in Drosophila to identify regions associated with 

longevity (Pasyukova et al. 2000), female receptivity (Laturney and Moehring 2012b), and 

canalization of developmental processes (Takahashi et al. 2011), among other traits. Once 

candidate regions have been identified, the genes within can be tested by crossing the strain of 

interest to stocks containing loss-of-function mutations for those genes then testing in a similar 
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manner as deficiency mapping. If the same mutant phenotype is observed after that cross, then 

that candidate gene at least partially influences the trait of interest. 

 

The reciprocal hemizygosity test is a variant of deficiency mapping that aims to determine the 

relative contribution of strain- or species-specific alleles on a trait (Stern 2014). Briefly, a 

deletion is generated in both strains to be tested, and then the deficiency line from one strain is 

crossed with the wild-type of the other. This produces a line that is hemizygous at a specific 

locus, which unmasks the alleles of one line at that locus. The effect of alleles within that region 

on a trait can then be determined in an identical manner to deficiency mapping. The reciprocal 

cross is then performed and the effect on the trait is once again characterized. Any difference 

between the reciprocal deletion lines represents the contribution of alternative alleles due to 

differences between strains, as the genetic background is otherwise identical (Figure 1B). This 

strategy can be applied to two different species so long as they are able to produce interspecies 

F1 hybrids. Reciprocal hemizygosity tests are therefore very well suited to characterizing genes 

that influence behavioural isolation between mel and sim. Because sim alleles for rejection of mel 

males are recessive towards the mel alleles, identifying regions that restore sim-like rejection 

behaviours when hemizygous in hybrids could help find genes that cause behavioural isolation 

between mel and sim. The reciprocal test acts as a control, as removal of the recessive sim allele 

should have no effect on receptivity in hybrids. Previous work in my lab used deficiency 

mapping to identify five small regions on the right arm of the third chromosome that influenced 

this behaviour, and further fine-scale deficiency mapping identified Katanin 60 as a candidate 

gene for behavioural isolation between mel and sim (Laturney and Moehring 2012b; Calhoun 

2017). 
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Figure 1: Illustration of deficiency mapping and the reciprocal hemizygosity test. 
A) Deficiency mapping is used to identify the location of a gene that influences a recessive trait 
(white eyes, in this case). A strain that displays the mutant phenotype is crossed to a deficiency 
stock that contains a deletion maintained over a balancer (inversions on the balancer are 
indicated by the red region). If the region that has been deleted contains a gene that influences 
the phenotype, then offspring containing the deletion will display the mutant phenotype as the 
mutant allele will be unmasked. B) The reciprocal hemizygosity test is used to determine the 
relative contribution of strain- or species-specific alleles to a trait (eye colour is used in this 
example). Deletions are created in both strains/species and these deletion lines are crossed 
together. This produces deletion lines that are hemizygous only at the deleted region. This 
unmasks the alleles of one lines and the contribution of genes in that region can be quantified 
and compared to the reciprocal deletion line to determine the relative contribution of line-
specific alleles to a phenotype. 
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1.5 Determining if Katanin 60 Affects Female 

Receptivity 
Katanin 60 (henceforth Kat60) encodes an ATPase associated with diverse cellular activities. 

More specifically, Kat60 encodes the catalytic (called AAA+) domain of the microtubule-

severing protein katanin (Hartman et al. 1998). The katanin protein is a heterodimer composed of 

two subunits, named p60 and p80 due to their respective size in kilodaltons (Yu et al. 2005). The 

p60 subunit, encoded by Kat60, contains the catalytic domain that severs microtubules, whereas 

the p80 subunit is responsible for localizing the enzyme to the centrosome and regulating its 

activity (Hartman et al. 1998; Grode and Rogers 2015). Katanin preferentially severs 

microtubules at the plus end, destabilizing them and inducing microtubule ‘catastrophes’ 

(transitions from growth to shrinkage) (Díaz-Valencia et al. 2011).  

 

Kat60 is expressed during all embryonic and larval stages and in certain adult tissues, such as the 

gut, ovary, and brain (Tomancak et al. 2002, 2007; Chintapalli et al. 2007; Hammonds et al. 

2013). Drosophila melanogaster is unable to survive to adulthood without a functional copy of 

Kat60 (Mao et al. 2014). This is likely because Katanin is required for correct cellular function, 

as cells lacking Kat60 divide abnormally due to Kat60’s role in chromosome motility during 

anaphase of mitosis. Chromatid migration during anaphase in cells that are silencing expression 

of Kat60 is so slow that chromosomes begin decondensing before segregation is complete 

(Zhang et al. 2007). Kat60 has also been found to double migration rate of Drosophila cells 

when silenced (Zhang et al. 2011). While all cell types require katanin, it is especially important 

in neurons. NDEL1, a protein implicated in human lissencephaly, interacts with and regulates the 

distribution of the p60 subunit (Toyo-Oka et al. 2005) and katanin also regulates microtubule 

release and length in neurons (Ahmad et al. 2000). Drosophila melanogaster neurons lacking a 

functional copy of Kat60 have neurotransmission defects, increased synaptic boutons, and 

increased dendrite length and branching (Mao et al. 2014). 
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Katanin has previously been implicated in speciation processes. Katanin is twenty times more 

active in Xenopus tropicalis than X. laevis which results in longer kinetochore fibers in X. laevis 

eggs. This difference in activity causes sperm and egg incompatibilities that prevent the 

formation of viable interspecies zygotes (Loughlin et al. 2011). A Kat60 ortholog was also found 

to be noticeably different between two closely-related species of killifish and was thought to be 

involved in possible spermatogenesis differences between them (Kozak et al. 2014), which could 

potentially give rise to sterility in interspecies hybrids. Katanin affects spermatogenesis in mice 

and humans: the p80 subunit of katanin was localized to type B spermatogonia and stage IV and 

V spermatocytes in humans (Pleuger et al. 2016).  

 

Kat60 is particularly interesting because it has the potential to influence both prezygotic isolation 

(through behavioural isolation) and postzygotic isolation (through hybrid inviability). Because 

the amount of Kat60 can greatly affect neuron development (Mao et al. 2014), it is possible that 

different expression patterns of Kat60 between mel and sim influences how some sensory cues 

obtained during courtship are interpreted. Previous work in my lab found that Kat60’s effect of 

female receptivity was mediated by auditory cues (Calhoun 2017). Kat60 could therefore affect 

female receptivity by altering the structure of brain regions such as the Johnston organ or the 

antennal mechanosensory and motor center, which are involved in auditory information 

processing (Kamikouchi et al. 2009). Kat60’s effect on behavioural isolation between mel and 

sim can be determined by creating Kat60 deficiency lines in both species and using the reciprocal 

hemizygosity test to see if an allele of Kat60 affects the mating behaviour of female hybrids. We 

also need to determine where Kat60 is acting in the fly to cause behavioural isolation between 

mel and sim. This can be done by knocking down Kat60 mRNA transcripts in particular tissues 

and testing if this affects mating behaviour. My project’s goal was to create Kat60 deficiency 

lines using the CRISPR/Cas9 system and to create targeted Kat60 transcript knockdown lines by 

utilizing RNA interference (RNAi) in conjunction with the Gal4/UAS system. 

 

1.5.1 Creating Katanin 60 Deficiency Lines Using CRISPR/Cas9 
Many tools can be used to produce single-gene deficiency lines, but the CRISPR/Cas9 

(clustered, regularly interspaced palindromic repeats/CRISPR-associated protein 9) system is one 
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of the most versatile and efficient gene editing tools available to geneticists. The CRISPR/Cas9 

system was derived from the adaptive immune system of the bacterium Streptococcus pyogenes 

(reviewed in Mei et al. 2016). There are two classes of CRISPR-Cas systems comprising six 

types (known as types I through VI), and each type is further divided into subgroups (reviewed 

in Makarova et al. 2015; Zhang and Ye 2017). Class 1 CRISPR-Cas systems use a multisubunit 

protein complex to cleave targets whereas class 2 CRISPR-Cas systems only require a single 

protein (reviewed in Makarova et al. 2015). Types IV, V, and VI are a relatively recent discovery 

and are poorly characterized as of the time of writing. Types I and II cleave DNA while type III 

is thought to cleave both DNA and RNA (Brouns 2008; Tamulaitis et al. 2014; reviewed in Hille 

and Charpentier 2016). Because type II CRISPR-Cas systems only require a single protein 

(Cas9) to cut DNA, they have become the preferred system to use in the lab. 

 

The Cas9 protein contains several structural features that allow it to cleave target DNA precisely 

(Figure 2). The proto-spacer adjacent motif (PAM)-interacting domain screens for NGG 

nucleotide sequences, which are required for Cas9-DNA binding (Mojica et al. 2009). Cas9 has 

nucleotide binding domains that allow it to interface with the guide RNA (gRNA)-target DNA 

complex and two endonuclease domains, RuvC and HNH (reviewed in Oakes et al. 2014). The 

Cas9 protein works by forming a complex with a guide RNA which hybridizes with a perfectly 

complementary DNA target. The Cas9 protein will then bind to the PAM and cleave the target 

DNA three bases upstream of it, inducing a double-stranded break (DSB) (reviewed in Oakes et 

al. 2014; Wu et al. 2014). In bacteria, the DSBs produced by Cas9 are an effective defence 

against invasive nucleotides from bacteriophages. In eukaryotic cells, however, these double 

stranded breaks are repaired using non-homologous DNA end joining (NHEJ). NHEJ is less 

accurate than homology-directed repair (HDR) of DNA breaks but is often necessary in 

situations where homologous DNA is not readily available (reviewed in Lieber et al. 2003). 

NHEJ repair can result in the loss of up to 14 base pairs or even small insertions at either end of 

the break (reviewed in Lieber 2010), which can potentially knock out a gene by causing indels 

and frame shifts. Larger deletions can be induced by using two gRNA molecules that target areas 

close to one another, as Cas9 will induce DSBs at both sites and excise the intervening region 

(Canver et al. 2014). Injecting plasmid DNA or a single-stranded DNA oligo that contains 

sequence homology to both ends of the DSB along with the gRNA and Cas9 can induce HDR 
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rather than NHEJ. The incidence of HDR can also be enhanced by suppressing enzymes 

involved in NHEJ (Chu et al. 2015). This technique can be used to insert DNA of interest at a 

precise point on the genome or even replace native DNA entirely (Richardson et al. 2016; Zhang 

et al. 2017). 

 

 
Figure 2: Cas9 inducing a double-stranded break in a target sequence. 
The Cas9 protein forms a complex with a guide RNA molecule (gRNA) that contains a perfectly 
complementary sequence (dark green) to a DNA target (light green). Cas9 can identify the target 
site through hybridization of the gRNA to the DNA sequence and through a protospacer-adjacent 
motif (PAM) contained within the target site. Upon recognizing the target and the PAM, Cas9 
induces a double-stranded break in the DNA. Image courtesy of Marius Walter (Wikimedia 
Commons free media repository).  

 

Scientists have modified the function of Cas9 to improve specificity or to change how it interacts 

with the target. The gRNA was modified into a single synthetic oligo instead of the two RNA 

molecules that the bacteria normally use (Jinek et al. 2012), and further modifications to the size 

of the gRNA can influence specificity (Fu et al. 2014). The RuvC and HNH endonuclease 
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domains of the Cas9 can be deactivated with point mutations to produce Cas9 proteins that can 

only cut one strand (Cas9 nickase or Cas9n) or are catalytically dead (dCas9). Although Cas9n 

only causes single-stranded breaks at the target site, deletions can still be generated by injecting 

two gRNA molecules that target nearby regions on opposite strands. This method is less efficient 

than using normal Cas9, but this strategy greatly reduces off-target effects as two cuts are needed 

to induce DSBs and single nicks are easily repaired by cellular machinery (Ran et al. 2013; Wu 

et al. 2014). dCas9 proteins bind to targets but are unable to cleave them. This can result in 

transcriptional interference and gene silencing as RNA polymerase is physically blocked by the 

dCas9 protein (Qi et al. 2013). dCas9 proteins can be further modified to reversibly control gene 

expression: dCas9 proteins fused to transcriptional activators or repressors can activate or inhibit 

gene expression, respectively (reviewed in Kampmann 2018). 

 

I utilized the CRISPR/Cas9 system to knock out one copy of Kat60 in mel and sim to produce 

hemizygous individuals. These hemizygous individuals can then be mated with the other species 

to produce hybrids with only a functional mel Kat60 allele (Kat60mel) and hybrids with only a 

functional sim Kat60 allele (Kat60sim). The remainder of the genome will be identical in these 

two types of hybrids, controlling for background genetic effects. The effect of genes on 

heterospecific courtship can be determined by using a reciprocal hemizygosity test (Figure 1B; 

Stern, 2014). If hemizygous hybrid females containing only Kat60mel are more willing to mate 

with mel males than hybrid females bearing only Kat60sim, then Kat60 affects heterospecific 

rejection. 

 

1.5.2 Finding Where Kat60 Acts using RNAi and the Gal4/UAS System 
The CRISPR/Cas9 system is well suited to inducing mutations into a gene early in the 

development of an organism to create a random genetic mosaic of mutated and unmutated cells. 

It is also commonly used to induce mutations in germline cells to ensure that every cell of the 

resulting offspring contains the desired mutation. While this is useful to study the broad-scale 

effects of a mutation, it cannot be used to study the effect of a gene at specific developmental 

stages or in specific tissues. This can often be done by knocking down the transcript of the gene 

rather than knocking out the gene itself. RNA interference (RNAi) is one of the most effective 
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techniques for reversibly knocking down mRNA transcripts when working with D. 

melanogaster. 

 

RNAi was first reported in 1986 by scientists attempting to breed petunias (Ecker and Davis 

1986), but the double-stranded RNA molecules used in current gene silencing experiments were 

discovered in 1998 by Fire et al., who observed that double-stranded RNA interfered with 

protein expression far more than single-stranded RNA molecules in Caenorhabditis elegans. 

There are three different types of RNAi (miRNA, siRNA, and shRNA) but all are eventually 

processed into 21 or 22 nucleotide-long fragments of double-stranded RNA (Elbashir et al. 

2001). Micro-RNA (miRNA) are transcribed into primary miRNA molecules which are 

processed into pre-miRNAs by the proteins Drosha and Pasha (Figure 3A) (reviewed in 

Torrecilla et al. 2014; Tran and Montano 2016). Pre-miRNAs are then exported into the 

cytoplasm by exportin 5 where Dicer further processes the pre-miRNA into mature miRNA 

(Lund and Dahlberg 2006). The antisense strand, which can be differentiated from the inert 

passenger strand by a 2 nucleotide overhang, guides the RNA-induced silencing complex (RISC) 

to complementary mRNA which it then cleaves (reviewed in Hammond 2005; Torrecilla et al. 

2014). Short interfering RNA (siRNA) molecules are synthetic dsRNA constructs that are 

injected into the cytoplasm of the cell. As they do not need to be exported out of the nucleus, 

only Dicer processes them before they are incorporated into RISC (Figure 3B). Short hairpin 

RNAs (shRNA) inhibit mRNA translation in a similar manner to siRNA, but require nuclear 

processing like miRNAs (Figure 3C) (reviewed in Torrecilla et al. 2014). shRNAs are introduced 

into the nucleus where they are transcribed and then processed by Drosha into pre-shRNAs (Rao 

et al. 2009). They are then transported into the cytoplasm by exportin 5 and processed into 

siRNA by Dicer. After processing by Dicer, they are incorporated into RISC and bind to the 

target mRNA. Micro-RNA are usually produced by endogenous genes and bind to a wide range 

of targets as they only require ~7 complementary nucleotides to bind effectively (Brennecke et 

al. 2005; reviewed in Dai et al. 2012). Short interfering RNAs and shRNAs usually only silence 

mRNA transcripts containing regions of perfect complementarity but they have been known to 

produce off-target effects, particularly when the 7 nucleotides of the 5’ “seed region” are 

complementary to other transcripts (Lin et al. 2005; Cullen 2006; Jackson 2006).  
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Figure 3: Processing of miRNA, siRNA, and shRNA.  
An illustration of how the three different types of double-stranded RNA molecules are processed. 
Shaded regions indicate steps that take place in the cell nucleus. A) Micro-RNA (miRNA) genes 
are transcribed in the nucleus into primary miRNA. These molecules are processed by Drosha 
and Pasha into pre-miRNA and exported out of the nucleus. Dicer unwinds the pre-miRNA and 
separated the active antisense strand from the passenger strand. The antisense RNA is then 
incorporated into the RNA-induced silencing complex (RISC) which then finds and cleaves 
complementary mRNA. B) Short interfering RNA (siRNA) is injected into the cytoplasm of the 
cell and the antisense strand is separated from the passenger strand by Dicer. The antisense 
strand is then loaded into RISC and used to find and cleave complementary mRNA molecules. 
C) Short hairpin RNA (shRNA) genes on plasmids are transcribed in the nucleus into primary 
shRNA. Drosha converts this into pre-shRNA and the pre-shRNA is unwound and processed by 
Dicer after it is exported out of the nucleus. The antisense RNA strand is then incorporated into 
RISC and used to silence complementary mRNA. 

 

RNAi provides several benefits over gene editing techniques such as the CRISPR/Cas9 system. 

As previously mentioned, CRISPR/Cas9 is unable to cause transient knockout of a gene. This 

can be problematic if the gene is required for cell viability or if researchers want to study the 

effect of a gene at a specific developmental stage (reviewed in Unniyampurath et al. 2016). A 
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newer version of CRISPR, called CRISPR interference (CRISPRi), where the gRNA can be 

reversibly bound to a target gene without splicing, allows targeted knockdown of transcription. 

While CRISPRi causes fewer off-target effects than RNAi (Gilbert et al. 2014; Smith et al. 

2017), the silencing machinery is not produced endogenously and therefore might only be 

effective for a short duration after injection. RNAi is a more widely-used technique relative to 

CRISPRi, so it is far easier to obtain or produce RNAi lines. Despite this, the CRISPR/Cas9 

system also presents some advantages over RNAi. The CRISPR/Cas9 system can knock out gene 

function in all cells of an organism which completely eliminates expression. RNAi is unable to 

provide this robust level of gene silencing, and efficiency of transcript knockdown can vary a 

great degree (reviewed in Boutros and Ahringer 2008). RNAi also must target the mature mRNA 

transcript whereas the CRISPR/Cas9 system can target regulatory sequences to study their 

function. The Drosophila RNAi Screening Center (DRSC) and Transgenic RNAi Project (TRiP) 

are particularly useful resources, as they have produced many RNAi lines and vectors that can be 

easily purchased for use. One such vector is pVALIUM20 (Ni et al. 2011), which pairs RNAi 

with the Gal4/UAS system for tissue-specific gene silencing. 

 

The Gal4/UAS system has been used in D. melanogaster to induce high levels of gene 

expression in specific tissues (Figure 4). Gal4 is a protein that was originally identified in yeast 

which can activate genes by binding to an upstream activating sequence (UAS) located just 

upstream of the gene of interest (reviewed in Duffy 2002). Expression of the Gal4 protein is 

dictated by nearby enhancers, allowing for controlled expression of the driver. The UAS is 

linked to a gene of interest (GOI) but will only allow the GOI to be transcribed when bound to 

Gal4. Therefore, both the Gal4 and UAS components are required for expression of the GOI. 

This system allows for precise expression of a GOI: pairing the Gal4 gene with tissue-specific 

enhancer sequences will cause the Gal4 to be expressed only in the tissues dictated by the 

enhancer. Because the UAS does not drive expression of the GOI without being bound to Gal4, 

the GOI is only expressed in the same tissues that the Gal4 is expressed in. Brand and Perrimon 

(1993) adapted this system for use in D. melanogaster by creating one line that contains a Gal4 

gene driven by an enhancer element and another that contains a GOI (such as a reporter) 

downstream of several UAS motifs. Crossing these two stocks together creates offspring that 

contain both Gal4 and UAS motifs, therefore driving expression of the gene only in cells dictated 
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by the enhancer element. This method can be used to test the effect of a GOI in multiple tissues 

by using several Gal4 lines that utilize different enhancer elements. 

 

 
Figure 4: Driving expression of a gene in a particular tissue using the Gal4/UAS system. 
The Gal4/UAS system functions by crossing a driver line, which contains only the Gal4 gene 
paired with a tissue-specific promoter, to an effector line that contains the gene of interest (GOI) 
downstream of an upstream activating sequence (UAS). When the Gal4 protein binds to the 
UAS, it drives expression of the GOI. The GOI is not expressed in the parental lines because 
either the gene or driver is not present. The offspring of the cross contain both components 
however, so the GOI is expressed at high levels in the tissues dictated by the tissue-specific 
promoter. 

 

Many D. melanogaster Gal4 lines have been produced and are readily available to drosophilists, 

allowing for tissue-specific expression of genes. The specificity of the Gal4/UAS system has 

recently been enhanced through the split Gal4/UAS system, which separates the DNA binding 

domain and activating domain of Gal4 and places both components under the control of different 

promoters. Gene activation produced by Gal4 binding to the UAS is only able to occur in cells 

where the promoter expression of the activating and DNA binding domains of Gal4 overlaps, 

allowing for extremely precise spatial control of gene expression (Luan et al. 2006). The 

resolution of the split Gal4/UAS system is such that gene expression can be limited to a single 

cell (Xie et al. 2018).  
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The pVALIUM20 vector combines RNAi with UAS, allowing it to be used with the Gal4/UAS 

system and express the shRNA constructs only in specific tissues. By designing shRNA that 

targets only Kat60mel or Kat60sim mRNA, it is possible to induce hemizygosity in hybrid females 

only in some neural regions to determine which subsets of neurons facilitate species-specific 

female rejection behaviour. One such candidate region is the mushroom body, as it is theorized 

to be a site of sensory integration and has also been implicated in courtship behaviour (Montague 

and Baker 2016; Yagi et al. 2016) If the candidate region does influence female receptivity to 

heterospecific males, then I expect that hybrids expressing shRNA specific to Kat60mel will show 

reduced mating relative to hybrids expressing shRNA specific to Kat60sim as there will be no mel 

katanin 60 to mask the sim rejection phenotype. 

 

1.6 Summary of Experimental Objectives 
During courtship, it is essential for organisms to be able to recognize conspecifics because of the 

heavy costs associated with forming interspecies hybrids. Many organisms use species-specific 

cues that are perceived and evaluated via neural pathways to recognize potential mates. The 

underlying genetic and neural basis of how these cues are processed into either receptive or 

rejection behaviour is almost entirely unknown. My objective was to determine whether Kat60, a 

gene involved in neuron development in Drosophila species, is involved in species identification 

during courtship.  

 

The CRISPR/Cas9 system was utilized to knock out both a mel and sim allele of Kat60 to 

produce hemizygous interspecies hybrids that are identical to wild-type hybrids at all loci except 

for Kat60. The mating behaviour of these hybrids can then be assessed using the reciprocal 

hemizygosity test (Stern 2014). If hybrids lacking Kat60mel reject mel males significantly more 

often than reciprocal hybrids, then Kat60 influences female rejection of heterospecific males. I 

also created stocks that silence either Kat60mel or Kat60sim in hybrids using allele-specific RNAi 

that is expressed in particular subsets of neurons via the Gal4/UAS system. Differences in 

behaviour would indicate that Kat60 is involved in species recognition during courtship via that 

subset of neurons. If successful, this would be the first time that a gene has been linked to 
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interspecies mate rejection and this gene would provide the first insight into which neurons or 

brain regions contribute to that behaviour.  
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2 Materials and Methods 

2.1 Fly Husbandry and Stocks 
All Drosophila stocks were maintained in 30 mL vials containing standard cornmeal 

medium (Bloomington Drosophila Stock Center recipe) at 24 ºC with 70% humidity and a 

14h:10h light:dark cycle. A wildtype D. simulans line Florida City (FC) was obtained from Dr. 

Jerry Coyne and a wild-type D. melanogaster line BJS was obtained from Dr. Brent Sinclair. A 

D. simulans stock containing an inversion on the right arm of the third chromosome (In(3R)Ubx, 

Ubxm/DI1) was obtained from Dr. David Stern. A D. melanogaster stock containing GFP-tagged 

sperm (w*;TI{TI}Pkd2ko67, P{protamineBeGFP2/CyO; P{dj-GFP.S}3) was obtained from Dr. 

John Belote. All other transgenic D. melanogaster stocks were obtained from the Bloomington 

Drosophila Stock Center (BDSC; Bloomington, Indiana). For creation of transgenic lines, a 

stock expressing phiC31 (ΦC31) integrase in the germ line and with an AttP site in the left arm 

of the third chromosome (Stock #25709: y1 v1 P{nos-phiC31\int.NLS}X; P{CaryP}attP40), a 

stock expressing Cas9 in the germ line (Stock #54591: y1 M{nos-Cas9.P}ZH-2A w*), and a stock 

containing multiple balancers (Stock #3703: w1118/Dp(1;Y)y+; CyO/nub1 b1 snaSco lt1 stw3; 

MKRS/TM6B, Tb1) was used. Multiple Gal4 D. melanogaster stocks will be used for the RNAi 

experiments: a stock driving Gal4 ubiquitously (Stock #3954: y1 w1; P{w[+mC]=Act5C-

GAL4}17bFO1/TM6B, Tb1), only in neural tissues (Stock #8760: w*; P{GAL4-elav.L}3 and 

#458: P{w[+mW.hs]=GawB}elav[C155]), and only in the mushroom body (Stock #49265: 

w1118; P{y[+t7.7] w[+mC]=GMR15E01-GAL4}attP2).  

 

2.2 Preparing CRISPR Constructs 

2.2.1 Designing gRNA Sequences 
Two different gRNA molecules were used to ensure complete gene knockout of Kat60. Kat60 

was previously sequenced in the two species strains I am using (Calhoun 2017), and sequences 

that are identical in the two species were located so that each gRNA can cut Kat60 in either 

species. One gRNA molecule (5’ GTA CTA GCT TTG TTA CGC GG) will target the 5’UTR of 

the gene while the other (5’ GCG TAG GAA TGA CCG TAA TGG) will target the second exon. 
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These two cut sites were chosen because the Cas9 exonuclease will excise the start codon, exon 

1, and part of exon 2, preventing functional product from being formed (Figure 5). While gRNA 

molecules are usually 20 nucleotides long (excluding the PAM), the two gRNA molecules that I 

designed are 17 or 18 nucleotides long. This was done to improve target specificity as gRNA 

molecules that are 17 or 18 nt long greatly reduce off-target mutagenesis while retaining their 

on-target functionality (Fu et al. 2014). Off-target mutagenesis was further prevented by 

comparing both gRNA sequences to the full D. melanogaster and D. simulans genome using 

NCBI BLAST (Altschul et al. 1990) to ensure that there were no off-target sites with at least 16 

nt of complementarity.  

 
Figure 5: Schematic indicating where gRNAs and shRNAs bind to Katanin 60  
The black line represents the D. melanogaster chromosome and the grey line represents the D. 
simulans chromosome. The bar represents the region excised by Cas9. Black triangles indicate 
where D. melanogaster-specific shRNA will bind, and grey triangles indicate where D. 
simulans-specific shRNA will bind. 

 

2.2.2 Creating the gRNA Vector 
The gRNA sequences were cloned into the pCFD4 vector (Port et al. 2014). The vector was a 

gift from Dr. Simon Bullock. pCFD4 allows for the expression of both gRNAs simultaneously 

from the same vector, reducing the number of components in the injection mix. pCFD4 also 

contains an AttB site which allows the vector to be integrated into flies containing an AttP site 

(Groth 2004) and a functional copy of the vermillion gene to find successful transformants 

(Fridell and Searles 1991). 

 

My gRNA sequences were introduced into pCFD4 using a modified protocol outlined by Dr. 

Ben Ewen-Campen (https://fgr.hms.harvard.edu/cloning-and-sequencing-0). Oligos for PCR 

were ordered that contain the gRNA sequences between sequences complementary to pCFD4 (F: 

5’ tatataggaaagatatccgggtgaacttcGTACTAGCTTTGTTACGCGGgttttagagctagaaatagcaag, R: 5’ 
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attttaacttgctatttctagctctaaaacCCATTACGGTCATTCCTACGCgacgttaaattgaaaataggtc, uppercase 

letters denote gRNA sequences) and a PCR was run using pCFD4 as the template and the oligos 

as the primers. The PCR master mix consisted of 10 µL of 5X Phusion HF Buffer, 5 µL of 2 mM 

dNTPs mix, 2.5 µL of a 10 µM solution of each primer, 2 µL of pCFD4 plasmid template, 0.5 µL 

of Phusion HS Taq, and 27.5 µL of UltraPure water. The PCR programs is as follows: One cycle 

of 95 °C for 30 s; 36 cycles of 95 °C for 10 s, 61 °C for 30 s, and 72 °C for 1 minute; one cycle 

of 72 °C for 10 minutes. Phusion Taq Polymerase and its buffer were obtained from New 

England Biolabs (Ipswich, Massachusetts). 

 

The pCFD4 vector was then digested with BbsI (New England Biolabs) to linearize and remove 

the “filler” gRNA sequence present in the vector. The digestion mix was as follows: 2 µg of 

pCFD4, 4 µL of 10X NEB4 Buffer, 2 µL of BbsI, and UltraPure water up to 40 µL. Fifteen 

microliters of PCR product and BbsI-digested backbone were then run on a 1% TBE agarose gel 

and the appropriate bands were cut out and extracted using a Geneaid purification kit 

(FroggaBio). The PCR product was then ligated into the digested pCFD4 using a Gibson 

assembly kit (New England Biolabs) according to this recipe: 4 µL of digested pCFD4, 1 µL of 

PCR product, and 5 µL of the Gibson Assembly mix. The mixture was incubated at 50 °C for 1 

hour, and then transformed into NEB 10-beta competent E. coli cells (New England Biolabs) 

using a 30 second heat shock at 42 °C and a 1 hour incubation in SOC medium at 37 °C. Twenty 

microliters of the reaction were plated onto LB+Ampicillin plates and incubated at 37 °C 

overnight. Four colonies per reaction were selected and grown in 1 mL of LB+Ampicillin (100 

µL/mL) for 24 hours at 37 °C. Plasmid DNA was extracted using a QIAprep spin miniprep kit 

(Qiagen, Hilden, Germany) and sent to Robarts DNA Sequencing Facility (London, ON) for 

sequencing using the primer 5’ GAC ACA GCG CGT ACG TCC TTC G.  

 

2.3 Preparing shRNA Constructs 

2.3.1 shRNA Design 
Allele-specific shRNA constructs were created by aligning D. melanogaster and D. simulans 

Kat60 gene sequences and finding regions with high concentrations of mismatches as this 
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decreases the likelihood of silencing the wrong allele. All potential shRNA sequences that shared 

19 or more nucleotides with any other gene or mRNA product in either species were discarded 

due to potential off-target effects. Two constructs for each species were designed to increase the 

likelihood of silencing the desired Kat60 allele. The D. melanogaster shRNA constructs target 

exon 5 and 6 whereas the D. simulans constructs target exon 3 and exon 6 (Figure 5). All Gal4 

lines were sequenced (F: 5’ ATC GAC GAG ATC GAC TCC CT, R: 5’ GTA CTT GTC CAG 

GTC TGC CC) to confirm that all mel-targeting shRNA sequences match the Kat60 sequences in 

each Gal4 line. 

 

2.3.2 Creating the shRNA Vector 
All shRNA constructs were cloned into the vector pVALIUM20, which was a gift from Dr. 

Norbert Perrimon and Dr. Jian-Quan Ni. The vector contains several upstream activating 

sequences (UAS) paired to the heat-sensitive promoter Hsp70 (Ni et al. 2011). This allows for 

time- and tissue-specific expression of the shRNA: hairpin expression can be controlled 

temporally by exposing the flies to high temperatures (28 °C) at the desired developmental stage 

and spatially by utilizing tissue-specific Gal4s (Ni et al. 2007). Like pCFD4, pVALIUM20 

contains an AttB site which allows for site-specific integration of the vector using ΦC31 

integrase (Groth 2004). 

 

All four of my desired shRNA sequences were cloned into pVALIUM20 using a slight 

modification of the protocol from Chang et al. (2014). The hairpin was constructed by adding 

“tagttatattcaagcata” to the 5’ end of the antisense strand and then adding the complement of the 

antisense sequence to the 5’ end of that oligo. This is known as the “top” strand. The 

complementary sequence of the “top” strand was then generated to form the “bottom” strand. 

CTAGCAGT and GCG were added to the 5’ and 3’ end of the “top” strand respectively, and 

AATTCGC and ACTG were added to the 5’ and 3’ end of the “bottom” strand respectively. 

These additions create the NheI and EcoRI sites used to integrate the hairpin construct into 

pVALIUM20. The sequences of all oligos that were used create the four different pVALIUM20 

constructs can be found in Figure 6. 
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Oligos were diluted to a concentration of 20µM and 10µL of both the “top” and “bottom” oligo 

were mixed with 100 µL of 1.2X annealing buffer (12 mM pH 7.5 Tris-HCl, 120 mM NaCl, and 

1.2 mM EDTA). This mixture was then heated to 95 °C for 5 minutes and then cooled to room 

temperature. Next, pVALIUM20 plasmid was linearized with NheI and EcoRI (New England 

Biolabs). The double-digest protocol was as follows: 1 µL of each restriction enzyme, 10 µL of 

pVALIUM20 DNA, 5 µL of NEBuffer1.1, and 33 µL of UltraPure water were mixed and 

incubated at 37 °C for 4 hours followed by 20 minutes at 65 °C to heat-inactivate the enzymes. 

The annealed oligos were then ligated into the linearized pVALIUM20 by mixing 6 µL of the 

annealed oligo product with 1 µL of linearized pVALIUM20, 10 µL of 2X ligation buffer, 1 µL 

of T4 DNA Ligase, and 2 µL of UltraPure water and incubating the mixture at 16 °C for two 

hours. 

 

The ligated pVALIUM20 product was added to NEB 10-beta competent E. coli cells (New 

England Biolabs) which were then transformed using a 30 second heat shock at 42 °C and a 1 

hour incubation in SOC medium at 37 °C. Twenty microliters of this media were plated onto 

LB+ampicillin plates (100 µL/mL) and grown overnight at 37 °C. Four colonies were then 

selected and grown in 1 mL of LB+Ampicillin (100 µL/mL) for 24 hours and plasmid DNA was 

extracted using a QIAprep spin miniprep kit (Qiagen). A PCR was then run on the extracted 

plasmid DNA to verify successful transformation (forward primer: 5’ ACC AGC AAC CAA 

GTA AAT CAA C, reverse primer: 5’ TAA TCG TGT GTG ATG CCT ACC). The PCR 

program consisted of: 95 °C for 5 mins; 35 cycles of 95 °C for 30s, 52 °C for 30s, and 72 °C for 

1 min; and 72 °C for 10 min. The PCR product was run on a 1% TBE agarose gel. Successful 

transformants were marked by a 350 bp PCR product, whereas unsuccessful colonies gave a 

900bp product (Figure 7). All 350 bp PCR products were sent to Robarts DNA Sequencing 

Facility (London, ON) for verification using the forward primer. 

  



 

 

32 

 

 
Figure 6: Differences between alleles in regions used to create shRNA constructs. 
Four shRNA constructs were designed to target Kat60 in a species-specific manner. Exon 
number and species name indicates which exon and allele of Kat60 is bound by that construct. 
Shaded nucleotides indicate differences between alleles. Sequences that are shaded grey are 
shown for comparison but were not used to create shRNA.  

  
Figure 7: Screening for colonies containing ligated pVALIUM20  
Vectors were screened with PCR to confirm that the cells were transformed with the correct 
vector. Bands amplified from vectors that contain the shRNA sequence are 350bp long whereas 
bands from vectors that do not contain shRNA are 900 bp long. The arrow indicates  bands from 
colonies containing shRNA in the vector (lanes 2 and 3). Sample DNA was electrophoresed 
alongside a 100 bp DNA ladder. 



 

 

33 

 

 

2.4 Microinjection Protocol 

2.4.1 Microinjection Preparations 
Approximately 500 flies were transferred to a fly cage with an apple juice agar plate topped with 

active yeast paste 2–7 days before injecting and kept in a 25 °C incubator. Apple juice plates 

were replaced at least once a day. Loading needles were prepared by stretching a 1.0mm 

borosilicate tube over a Bunsen burner by hand and breaking it in the centre. Injection needles 

were pulled on a Micropipette Puller P-97 needle puller (Sutter Instrument Company), provided 

by Dr. Greg Gloor. Most injection mixes were prepared in advance by mixing a 10µL aliquot of 

the desired vector with 2µL of blue food colouring and storing at -20 °C until use. The D. 

simulans CRISPR injection mix was prepared immediately before use by mixing 1µL of Cas9, 

1.5µL of pCFD4, 2.5µL of Cas9 Buffer (NEB), and 1µL of blue food dye because the Cas9 

protein loses functionality after repeated freeze-thaw cycles. The Cas9 protein was a generous 

gift from Dr. David Edgell. 

 

2.4.2 Microinjection Protocol 
Apple juice agar plates topped with active yeast paste were changed 30 minutes before injections 

began in order to remove old embryos. New fly embryos were washed off the apple juice plate 

with distilled water and collected in baskets made of 1.5” Sheer Ribbon. Embryos were washed 

with distilled water in the basket to remove yeast paste and aligned on a coverslip. Embryos were 

coated in extra-virgin olive oil immediately prior to injection and visualized using a dissecting 

microscope (Nikon Stereo microscope). Embryos were injected at the posterior end and the oil 

was washed off immediately after injection.  

 

2.5 Post-Injection Care, Screening, and Crosses 
The injected embryos were placed in a petri dish filled with food and kept in a 24 °C incubator 

with a 14:10 light:dark cycle until pupation. Each pupa was transferred from the petri dish to its 

own food vial.  
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2.5.1 Screening and Balancing RNAi Lines 
Injected D. melanogaster embryos that reached adulthood were crossed to other adults who were 

injected with the same construct. This was done to increase the likelihood that the F1 generation 

would contain the construct. Adults were crossed to the parental stock (#25709) when no 

injected adults of the opposite sex were available. Transgenic offspring were identified by their 

wild-type (rather than vermillion) eyes (Figure 8; Figure 9). Virgin transgenic females were 

crossed to the balancer stock (#3703) to maintain and track the transgene during further crosses. 

A full schematic of the RNAi crossing scheme is provided in Figure 9. The crosses produced two 

different transgenic lines: one that contained a balanced transgene on chromosome 2 and a 

balanced Gal4 on chromosome 3, and one that contained a balanced transgene on chromosome 2 

and two different chromosome 3 balancers. The first line was used to produce hybrids for mating 

assays whereas the second line was crossed to other Gal4 stocks. Efficacy of the Gal4 stocks was 

confirmed by crossing them to w1, y1; UAS-GFP flies, dissecting the brains of offspring, and 

seeing GFP excitation in the correct brain regions of F1 flies under 488nm wavelength light. 

 

2.5.2 Determining Functionality of shRNA Constructs 
Constructs targeting mel Kat60 were tested by extracting RNA from ten pure-species third-instar 

larvae, whereas constructs targeting sim Kat60 were tested by extracting RNA from hybrid adults 

that contain both the Gal4 and shRNA construct. Hybrid adults needed to be used as the 

dominant marker on the balancers are not visible in larvae. Flies and larvae were heat-shocked at 

30 °C for two hours and homogenized in 500 μL of Trizol, then 100 μL of chloroform was 

added. The mixture was shaken vigorously for 30 seconds and incubated at room temperature for 

5 minutes. The aqueous phase was separated from the organic phase by centrifuging at 13,000 

RCF for 15 minutes and transferred to a new tube. An equal volume of 70% RNase-free ethanol 

was added to the aqueous phase and vortexed to mix. The sample was then transferred to a 

PureLink Mini Kit (ThermoFisher, Waltham, Massachusetts) spin column and RNA was 

extracted by following the provided protocol. Extracted RNA concentration and quality was 

determined using a spectrophotometer. cDNA of the extracted RNA was produced using a 

slightly modified Maxima™ H Minus cDNA Synthesis Master Mix with dsDNase kit 

(ThermoFisher). The total volume of the reaction was doubled to 20 μL to increase the amount 
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of usable product and 2 μg of RNA was used in each reaction. RT-PCR was performed using the 

primer set F: 5’ AAC GTC CGC CAC AGC ACC GAG, R: 5’ CCA GCA GCT CAG ACT TCA 

CTC and a thermocycler protocol that was as follows: 95 °C for 3 minutes; 25 cycles of 95 °C 

for 30 seconds, 56.8 °C for 10 seconds, and 72 °C for 30 seconds; and 72 °C for 3 minutes. Five 

microlitres of the PCR product was run on a 1% agarose-TBE gel to visualize the results. 

 

 
Figure 8: Identifying transgenic offspring 
Transgenic offspring can be recognized by their wild type eyes. The male (top) does not contain 
the transgene and has bright orange eyes indicative of vermillion mutants. The female (bottom) 
has the transgene and darker wild-type eyes indicating vermillion rescue. Both flies were 
collected ~6 hours after eclosion and were produced by the same screening cross. 
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Figure 9: Crossing scheme used to produce transgenic shRNA stocks  
Horizontal bars represent chromosomes and forked bars represent Y chromosomes. Male 
genotypes are only shown in crosses that require males and females of a specific genotype, 
otherwise males and females are interchangeable. These crosses produce two stable stocks: one 
that contains a balanced insert and two third chromosome balancers (shRNA stock), and one that 
contains a balanced insert and a balanced Gal4 (shRNA+Gal4 stock). The shRNA+Gal4 stock 
can be used for mating assays whereas the shRNA stock can be easily crossed to other Gal4 lines 
to produce additional shRNA+Gal4 stocks.  
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2.5.3 Screening and Balancing CRISPR Lines 
Injected D. melanogaster flies that reached adulthood were screened the same way as described 

for RNAi. Balanced transgenic males were then crossed to a line producing Cas9 in the germline 

(y1 M{nos-Cas9.P}ZH-2A w*). Offspring produced from that cross were crossed with to the 

balancer stock (#3703) until larvae were visible, at which point the father had his DNA extracted 

and PCR-screened to detect deletions in Kat60. The primers used to screen for deletions were F: 

5’ CCA GAG CAC GCA CAT CAC and R: 5’ GTC GTA GTT GCC CGT CAG AG and the 

PCR program used to test for deletions was as follows: 95 °C for 5 mins; 35 cycles of 95 °C for 

30s, 51 °C for 30s, and 72 °C for 2 min; 72 °C for 10 mins. PCR product was run on a 1% TBE 

agarose gel at 130V for 90 minutes to visualize band size. Unmodified Kat60 yields a band 

~1.1kbp long, whereas a full deletion from both gRNA target sites produces a band ~200bp long. 

Siblings produced from fathers containing a Kat60 deletion were mated to each other until larvae 

were visible, at which point both parents were PCR screened for Kat60 deletions. Offspring 

produced from crosses where both parents contain a deletion in Kat60 were used to produce a 

stable Kat60(mel-) deletion stock that can be used in mating assays. The full D. melanogaster 

CRISPR crossing scheme is given in Figure 10a. 

 

Injected D. simulans adults were crossed to the D. simulans inversion line. Injected parents were 

screened for Kat60 deletions using the same method outlined above. If the deletion was present, 

their offspring were mated brother-to-sister and screened for the deletion. Both parents were 

screened once offspring from that cross are visible. The offspring of parents who both contained 

the deletion made a stable Kat60sim- stock that was used in mating assays. The crossing scheme 

for D. simulans CRISPR is given in Figure 10b. 
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Figure 10: Crossing scheme to create Katanin 60 deletion stocks  
Horizontal bars represent chromosomes, forked bars represent the Y chromosome, and gaps 
represent deletions. A) CRISPR in D. melanogaster. After producing offspring, flies of the 
“Deletion” genotype are screened using PCR to confirm the presence of a deletion in Kat60. If a 
deletion is present, that fly’s offspring are mated brother-to-sister and PCR screened to identify 
crosses where both parents contain the deletion. The offspring of two such parents become a 
stable deletion stock for Kat60(mel-). B) CRISPR in D. simulans. Injected flies that reach 
adulthood are crossed to D. simulans flies containing an inversion on the third chromosome. 
After producing offspring, the injected parents are screened using PCR to confirm the presence 
of a deletion in Kat60. If a deletion is present, offspring are crossed brother-to-sister and are 
themselves screened once their offspring are visible. The offspring of two parents that both 
contain a balanced deletion become a stable stock for Kat60(sim-).
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2.6 Behavioural Assays 

2.6.1 Test Crosses 
Female D. melanogaster virgins from each shRNA; Gal4 stock were collected 0–8 hours after 

eclosion, transferred to new food vials under CO2 anaethesia, and aged 5–7 days to ensure 

reproductive maturity and virginity. Female virgins were also collected from the corresponding 

Gal4 stock and D. melanogaster strain BJS and stored in the same way. F1 female hybrids were 

produced by crossing 8–10 female virgins to 20–25 D. simulans males in a food vial with the 

cotton plug pushed down. The interspecies hybrid crosses took place in a 28 °C incubator set to a 

14:10 hour light cycle. These crosses produced four sim/mel hybrid genotypes to be tested: 

(sim/RNAi; sim/Gal4), (sim/RNAi; sim/Bal), (sim/mel; sim/Gal4), and (sim/mel; sim/mel).  

 

Female D. melanogaster virgins from each Kat60 deletion stock were collected and crossed in 

the same manner but placed in a 24 °C incubator set to a 14:10 hour light cycle. The Kat60 

deletion stock was also crossed to D. melanogaster strain BJS to control for potential effects of 

the deletion on intraspecific mating behaviour. The inter- and intraspecies crosses each produced 

two genotypes for testing: sim/Kat60Del and sim/Bal interspecies hybrid females and 

mel/Kat60Del and mel/Bal intraspecies females.  

 

2.6.2 Mating Assays 
Females were collected 0–8 hours after eclosion and sorted based on the presence or absence of 

the dominant markers corresponding to balancer chromosomes under CO2 anaesthesia. Virgin 

females were transferred to new food vials with each vial containing up to 10 females. Females 

were assayed 5–7 days after eclosion. D. melanogaster males with GFP-tagged sperm were 

collected and maintained the same way. Assays were performed by putting a virgin female and 

male in the same 30mL food vial and observing the courtship and mating behavior of both flies 

for 45 minutes. Equal numbers of each test genotype were tested simultaneously to control for 

environmental effects. Assays testing the effect of RNAi knockdown of Kat60 were carried out 

at 28 °C with 70% relative humidity whereas assays testing the effect of Kat60 deletions would 

be carried out at 24 °C with 70% relative humidity. Females and males were kept together for 24 
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hours, after which the female reproductive tract was dissected to determine the presence or 

absence of sperm. Sperm presence was used as a proxy for mating as many interspecies mating 

events would not occur within the relatively short 45-minute observation period. The proportion 

of pairs that mated would be analyzed using a G-test. Significant (p<0.05) reduction in female 

receptivity after deletion or RNAi knockdown of the D. melanogaster copy of Kat60 would 

indicate that this gene influences female mating behavior. 

  



 

 

41 

 

3 Results 

3.1 Determining Functionality of Gal4 Stocks 
I tested the functionality of four Gal4 stocks by crossing them to a UAS-GFP line and imaging 

the brains. At least three brains per genotype were dissected. The Gal4 stocks #3954 (Act5C-

Gal4, Figure 11A) and #6920 (elav-Gal4, Figure 11B) initially showed the expected pattern of 

GFP expression. Stock #8760 (elav-Gal4, Figure 11C) did not ubiquitously express GFP in all 

parts of the brain. For example, there was no GFP fluorescence visible in the optic lobes. The 

version of stock #49265 (rut-Gal4, Figure 11D) that was given to me by a previous lab member 

had lost its functionality, as it was no longer driving Gal4 in any of the mushroom body lobes. 

GFP expression was observed in the mushroom body lobes after reordering it, however (Figure 

11E). 

 

 
Figure 11: Functionality of the Gal4 Stocks 
Images of D. melanogaster brains to test the functionality of the (A) Act-5C-Gal4 (stock #3954), 
(B) elav-Gal4 (#6920), (C) elav-Gal4 (#8760), (D) old rut-Gal4 (#49265), and (E) new rut-Gal4 
(#49265) stocks when paired with UAS-GFP. Note that the functionality of stock #8760 and old 
#49265 did not show the expected pattern of Gal4 expression. Scale bars represent 100 µm. 

3.2 Creating Kat60-targeting Vectors 	
All four shRNA constructs and the gRNA construct were successfully cloned into their 

respective vector. The shRNA vectors were checked for accuracy using PCR (Figure 7, Figure 

12A) and all constructs were verified by sequencing (Figure 12B, C).  
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Figure 12: Confirming the accuracy of all Kat60-targeting vectors. 
A) pVALIUM20 vectors that contain the shRNA of interest produce a band ~350bp long 
(indicated by an arrow), whereas untransformed vectors produce a band ~900bp long. 
Confirmation of mel-Exon5 is shown in the left image (lanes 1, 2, 4, and 5), mel-Exon6 and sim-
Exon3 are confirmed in the middle image (lanes 2 and 3 respectively), and sim-Exon6 is 
confirmed in the right image (lanes 4 and 5). Sample DNA was electrophoresed alongside 100 bp 
DNA ladder B) Example of sequencing data that confirm successful cloning of an shRNA 
sequence into pVALIUM20. The data were used to confirm the sequence of mel-Exon6. The 
shRNA sequence is indicated by the shaded region. C) Example of sequencing data that confirms 
successful cloning of my gRNA sequence into pCFD4. The gRNA sequences are indicated by 
the shaded region. 
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3.3 Embryo Survival After Microinjection 	

Efficiency of transgenesis is highly dependent on both the number of embryos that can be 

injected in 30 minutes and the survivability of embryos post-microinjection. Practice increases 

both rate of injection and embryo survival. For simplicity, I will refer to each 30-minute period 

spent microinjecting as a “round” of injections whereas I will refer to the cumulative number of 

embryos injected that day as a “session”. I initially could inject 30 embryos per round, but 

increased to my maximum, 119 injections per round, after 3 months of practice. It took 37 

sessions (~5 months) of microinjections using an optimized protocol to achieve at least a 10% 

survival rate consistently (Figure 13). I was able to produce several of my transgenic stocks 

during my initial rounds of microinjections however, which indicates that vector integration 

using ΦC31 integrase is highly robust and can be effective even in the hands of inexperienced 

researchers. Integration efficiency could not be determined using my crossing scheme as injected 

survivors were crossed with each other, which made it difficult to determine how many parents 

successfully had the vector integrated into the germline. I injected 4,875 embryos in total, 489 of 

which reached adulthood for an overall 10.03% post-injection survivability rate.  
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Figure 13: Change in post-microinjection survival of embryos over time. 
Embryo survivability post-injection was calculated by counting the number of embryos that 
produced adult flies and dividing that by the total number of embryos injected that session. All 
sessions that consisted of fewer than 50 injections are marked using unfilled circles as they could 
skew results. 

 

3.4 Creating Transgenic shRNA Lines 	
I have produced 17 different successful transgenic fly insertions for this project in total, 16 of 

which are with/of shRNA (Table 1). Four of these insertions have been made into balanced 

shRNA lines which can be used to easily create new shRNA-Gal4 line combinations (Figure 9, 

bottom right). Twelve transgenic insertions have been made into both the balanced shRNA line 

and a shRNA-Gal4 line by crossing three Gal4 stocks (#3954, #8760, and #49265) into each of 

the four balanced shRNA lines (Figure 9, bottom left). Finally, I have produced a balanced 

gRNA line to induce deletions in the gene sequence of Kat60. The shRNA-Gal4 lines with stock 

#6920 are currently in progress as that line was obtained much more recently than the others. 
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Table 1: Time to completion of all shRNA transgenic lines. 

 sim-exon3 sim-exon5 mel-exon5 mel-exon6 

Balanced Transgene Complete Complete Complete Complete 

49265 (rut-Gal4) Complete Complete Complete Complete 

8760 (elav-Gal4) Complete Complete Complete Complete 

6920 (elav-Gal4) 3 weeks 3 weeks 3 weeks 3 weeks 

3954 (Act5C-Gal4) Complete Complete Complete Complete 

 
	

3.5 Knocking Out Kat60 with the CRISPR/Cas9 System 
I used the CRISPR/Cas9 system to create the expected ~900bp deletion in mel Kat60 (Figure 

14). Each of the four flies arising from an injected embryo contained at least some cells with the 

full deletion, indicating that the protocol used in mel to induce deletions worked. I have not 

produced any sim flies that contain a similar deletion yet, but the results in mel are encouraging 

and proof that the construct and gRNA function as predicted. Generation of a stable stock 

bearing the deletion is in progress, as is confirming the breakpoints of the deletion through 

sequencing. 
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Figure 14: Inducing deletions in D. melanogaster Kat60 using the CRISPR/Cas9 system. 
PCR was run on DNA from offspring of parents containing pCFD4 or nanos-Cas9 (see Figure 
10) to determine if they contained a CRISPR-induced deletion. Flies containing wild-type Kat60 
only produce a band corresponding to a DNA fragment 1,100bp long (WT lane) whereas injected 
flies containing mutated Kat60 produce two bands, one corresponding to a DNA fragment 
1,100bp long and one 200bp long (lanes 1–4). The faint band at the bottom of the WT lane is 
unused primer. Sample DNA was run alongside a 1 kb DNA ladder. 
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4 Discussion 
I successfully produced multiple transgenic D. melanogaster lines that can be used to determine 

Kat60’s effect on female receptivity towards heterospecific males. My ability to create these 

lines relied on efficient microinjections and transgene design that maximized construct potency 

while maintaining specificity. I was unable to gather any mating assay data due to lethality 

problems, but the lines I created can be used immediately after these issues are resolved. 

 

4.1 Optimizing and Improving Microinjections 
Because both aspects of my project (CRISPR and RNAi) relied on my ability to microinject 

embryos, I optimized the microinjection protocol to improve efficiency and survival. Time is 

extremely limited when injecting, as embryos must be injected before the formation of pole cells 

(Cartwright 2009), otherwise the injection mix cannot reach the nuclei and generate germline 

mutations after nuclei are encased by a cell membrane. In D. melanogaster, pole cells form after 

the tenth cell division and eventually give rise to germ cells (Illmensee 1973). This occurs 

roughly two hours after the egg is fertilized (reviewed in Gilbert 2000). Most microinjection 

protocols call for 30 minutes of egg laying and 30 minutes of microinjecting (Bachmann and 

Knust 2008), and the number of eggs that can be injected in this time is influenced by the amount 

of time spent preparing the embryos for injection. Drosophila melanogaster embryos can be 

injected with or without their chorion (the eggshell), and both methods have benefits and 

drawbacks. Removing the chorion allows for easier visualization of the injection mix within the 

embryo which increases precision and can also prevent needles from clogging or breaking 

against the chorion. However, removing the chorion can be a slow process without specialized 

filtration equipment (Cartwright 2009), as it can take 3–4 minutes to dechorionate and wash all 

the embryos. Dechorionation is also usually performed by washing the embryos in bleach and a 

previous member of my lab found that this process reduced survival by over 50% (Bielaska Da-

Silva 2017). Because of these disadvantages, I elected to inject embryos with the chorion on, 

which increased both the number of embryos I could inject and their survival rate.  
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I integrated all my constructs into D. melanogaster by using this protocol. It has the further 

advantage of being relatively easy to learn, as other members of my lab could integrate their own 

constructs despite having less practice with the technique. Unsurprisingly, the number of 

embryos I could align per round and post-injection survivability increased as I became more 

experienced with the protocol. It took 23 microinjection sessions to reach 10% post-injection 

survival, but I could consistently maintain 10% survival after 39 sessions (Figure 13). I reached 

my maximum number of embryos aligned per round during session 29, roughly three months 

after I began using this protocol. This protocol can be used for all techniques that require 

germline transformations in Drosophila, such as P-element transformations (Venken and Bellen 

2007) or Minos insertions (Metaxakis et al. 2005). 

 

4.2 Optimizing Transgenesis 

4.2.1 Optimizing Gene Silencing 
Many factors should be considered when designing shRNA as small changes in hairpin sequence 

can affect specificity and efficacy of the construct. For example, Vert et al. (2006) found that 

siRNA guide strands that began with a uridine are particularly potent. This was also found to be 

the case in shRNA (Knott et al. 2014). This increase in potency is likely because the first 

nucleotide of the guide strand is incorporated into RISC rather than being used for binding to the 

target mRNA (Elkayam et al. 2012; Nakanishi et al. 2012). Future shRNA designs could be 

improved by making the 5’ nucleotide of the guide strand uridine regardless of complementarity 

to improve loading into RISC. If possible, it would also be ideal to target low GC regions of the 

gene of interest as low GC content was found to be predictive of high shRNA efficacy (Knott et 

al. 2014). The requirements of my project prevented me from selecting regions of Kat60 at my 

discretion as the shRNA I designed needed to be able to differentiate between the sim and mel 

alleles of Kat60. Creating allele-specific shRNA forced me to select regions with the greatest 

number of mismatches between the two alleles. Complicating this issue is the fact that Kat60 is 

nearly identical between these two species (Figure 6) (Calhoun 2017), making it difficult to find 

regions that contain at least two mismatches in a 21-nucleotide range. This is also why I needed 
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to develop my own RNAi constructs instead of ordering Kat60-targeting RNAi stocks already 

available at the Bloomington Drosophila Stock Center.  

 

While integrating pVALIUM20 and creating shRNA stocks was relatively simple, maintaining 

some of the stocks was difficult because Kat60 is an essential gene. My mel-exon5; Actin5C-

Gal4 stock has been particularly difficult to maintain. This is likely because pVALIUM20 is still 

transcribed at 24 °C (Ni et al. 2011), causing the Actin5C enhancer to drive Gal4 expression in 

all tissues. High levels of Gal4 expression could further amplify any leaky expression of the mel-

targeting shRNA. If expression levels of the shRNA are high enough the shRNA could cause 

lethality as it would significantly reduce or eliminate expression of this essential gene. This 

effect can be reduced by rearing the stock at lower temperatures, but Ni et al. (2011) also found 

that pVALIUM20 is able to induce strong gene silencing even at 18 °C. As 18 °C is near the 

lowest temperature that D. melanogaster can tolerate before experiencing a reduction in 

longevity (Cohet 1975), it is possible that there will always be some shRNA expression. I also 

noticed that the Actin5C-Gal4 transgene itself also affects fly viability as a single copy of the 

transgene caused some lethality and it was impossible to create flies homozygous for the Ga4 

transgene. Since the mel-exon5 shRNA construct does not noticeably alter viability when paired 

with other broadly-expressed Gal4s (such as elav-Gal4), it is likely that the low viability of this 

stock is due to this combination of driver and shRNA construct. One way to bypass this problem 

would be to reduce how responsive the vector is to Gal4 binding. pVALIUM20 was designed 

with two 5x UAS motifs to drive expression of the shRNA, but one of those motifs can be 

removed using the Cre-LoxP system. This modification might be worthwhile if rearing at lower 

temperatures is not sufficient to rescue stocks that are difficult to maintain.  

 

4.2.2 Optimizing CRISPR Efficiency  
Maximizing target specificity is important when designing both gRNA and shRNA. The most 

obvious way to maximize the specificity of gRNA molecules is to change the 20-nucleotide 

sequence that is complementary to the target sequence. A study that examined the effect of a 

single mismatch on off-target effects found that mismatches distal to the PAM were less 

effective at preventing off-target binding (Morgens et al. 2017). Therefore, gRNA molecules 
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should be designed to have mismatches with likely off-targets as close to the PAM as possible. 

Off-target effects can be further reduced by using truncated gRNAs, which have guides 17–18 

nucleotides long rather than the usual 20 (Fu et al. 2014). Truncated gRNA molecules also do not 

require mismatches to be near the PAM to be most effective (Morgens et al. 2017) The gRNA 

molecules I designed were 17 or 18 nucleotides long in order to take advantage of this increased 

specificity.  

 

The method by which the gRNA and Cas9 are delivered greatly affects the ease and efficiency of 

CRISPR/Cas9 mutagenesis. Injecting the gRNA and Cas9 plasmid requires the least amount of 

preliminary work, but the method tends to have the lowest efficiency of all delivery methods 

(reviewed in Bassett and Liu 2014). Injecting a gRNA plasmid and Cas9 together results in a 

similar rate of mutagenesis to injecting gRNA oligos and Cas9 but is preferable because 

plasmids are more stable and easier to work with than RNA (Gokscezade et al. 2014). This is the 

method I decided to use in D. simulans as there are no pre-existing stocks of that species with the 

tools required to make pCFD4 integration by ΦC31. The method with the highest efficiency 

involves crossing a stock that produces gRNA(s) with another transgenic stock that produces 

Cas9. This method has been observed to cause mutagenesis in all progeny of the cross (Port et al. 

2014), but producing the gRNA stock can often take months. I elected to use this method to 

induce a deletion in Kat60 due to the high efficiency and the reduction in screening required after 

injection. The ability to produce a stable gRNA line was also attractive as it would allow future 

member of my lab to screen for Kat60 deletions easily without having to microinject in case I 

was not able to finish this aspect of my project. 

 

The two gRNA molecules I used targeted the 5’ UTR and exon 2 of Kat60 in the hope that they 

would excise the intervening region between both gRNA target sites. I was able to produce D. 

melanogaster flies that contained the full deletion between the two gRNA binding sites with an 

efficiency similar to those observed in other experiments that employed similar methods (Kondo 

and Ueda 2013; Ren et al. 2013; reviewed in Bassett and Liu 2014; Gratz et al. 2015). The main 

advantage of creating a large multi-exon deletion is that it ensures no functional Kat60 protein 

could be produced from that allele. However, a similar effect could be achieved by using a single 

gRNA that targets the catalytic domain. Inducing an indel using NHEJ at this location could 
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prevent any functional protein product from being formed, similar to the Kat6017A allele 

produced by Mao et al. (2014). This method would also be more efficacious as it only requires a 

single Cas9-induced DSB rather than two. This makes using a single gRNA especially attractive 

for D. simulans injections as the method used to induce mutagenesis in that species is less 

effective than the method used for D. melanogaster. However, the use of a single gRNA would 

require large amounts of screening and a complete lack of functional protein from that allele 

would be difficult to prove. In addition, there is also a chance that a mutation in the catalytic 

domain would not significantly affect function of the protein (if the mutation does not cause a 

frame shift, for example). Despite these drawbacks, this method might be worth pursing if it 

remains difficult to produce D. simulans flies that contain the full deletion. 

 

4.3 Testing Kat60 RNAi Using Mating Assays 
The mating assay protocol requires further optimization to determine the effects of silencing 

either the mel or sim allele of Kat60 in certain tissues. While matings between mel females and 

sim males are easy to produce, it is extremely difficult to obtain hybrid offspring from these 

crosses when they contain a shRNA for Kat60. Larvae and pupae appear to develop normally, 

but hybrid offspring rarely progress past pupation. This resembles the phenotype produced by 

flies that lack a functional copy of Kat60 (Mao et al. 2014), so it is possible that the shRNA is 

being driven too strongly at 28 °C. If this is correct, however, then the observed lethality would 

imply that the two shRNA constructs used to troubleshoot the assays (mel-exon5 and sim-exon6 

because they were produced first) may not be allele-specific. Because both alleles of Kat60 are 

similar, off-target binding of the guide strand to mRNA from the wrong allele could occur. High 

expression levels of shRNA can exacerbate off-target effects (Caffrey et al. 2011), so that rearing 

flies at 28 °C could drive expression to the point where the proportion of guide strands binding to 

the wrong allele is high enough to cause lethality. I am currently testing the viability of 

transgenic mel/sim hybrids reared at 24 °C and 20 °C to see if lowering the temperature can 

rescue the flies, but the assay should be run at the highest possible temperature to maximize 

efficacy of shRNA silencing. 
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4.4 Limitations 
Despite my success producing transgenic lines, my work has several limitations. One of the most 

severe limitations is the time required to become proficient at microinjections and to produce 

stocks. As both aspects of my project (CRISPR and RNAi) relied on the ability to microinject 

embryos efficiently, a considerable amount of time was required to become skilled enough at 

microinjected to integrate plasmids or induce CRISPR mutations successfully. This was 

exacerbated by the fact that the original microinjection protocol required considerable changes to 

enhance optimization. Although I managed to optimize the protocol and integrate all my 

plasmids, a further 8–10 weeks was required to produce and expand the shRNA+Gal4 stocks for 

testing. I was only able to produce my first transgenic stock over a year after the start of my 

project, which greatly reduced the time available to gather data and troubleshoot. While a 

specialized company could have been used to perform these steps and decrease the time required 

to produce transgenics, the method is prohibitively expensive when injecting multiple constructs 

and complicated when the injections are desired in a species other than D. melanogaster.  

 

The nature of the mel and sim alleles of Kat60 also limited my ability to design shRNA. 

Algorithms have been developed to create potent shRNA constructs with limited off-target 

effects (Vert et al. 2006; Knott et al. 2014), but I was unable to utilize these tools because the 

shRNA sequences designed by these algorithms were not allele-specific. Because of this, the 

shRNA I designed are likely not as potent as shRNA produced by these algorithms.  

 

While both pVALIUM20 and pCFD4 are excellent tools for RNAi and CRISPR respectively, 

both constructs have limitations. pVALIUM20 can induce strong silencing of target mRNA but 

the expression of shRNA can be leaky, especially when paired with a Gal4. The high expression 

of shRNA even at very low rearing temperatures (18 °C) can make it difficult to create or 

maintain some shRNA+Gal4 lines that target essential genes as the leaky expression can affect 

viability (Ni et al. 2011). The conventional method of using pCFD4 requires genome integration 

and crossing to a transgenic mel stock that produces Cas9. This method is an efficient way of 

producing gene knockouts, but it does not work in sim because of the relative lack of tools 

available in that organism. The construct must instead be injected into sim embryos along with a 
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Cas9 which has a far lower rate of mutagenesis (reviewed in Bassett and Liu 2014). The decision 

to use two gRNAs to create a large deletion in Kat60 rather than using one and relying on NHEJ 

also reduced mutation efficiency, although such methods are likely necessary to be certain that 

the gene is nonfunctional. 

 

4.5 Future Work 
Substantial progress has been made on both aspects of my project, but much work remains. 

Several shRNA stocks still need to be produced and rearing conditions for sickly stocks need to 

be adjusted so that they can be expanded for use in mating assays. More pressing, however, is the 

need to characterize and create the D. melanogaster CRISPR deletion stocks as they are not yet 

stable and the deletion can be lost without careful screening. Even after a stable D. melanogaster 

stock is established, a D. simulans deletion stock is required before the reciprocal hemizygosity 

test can be performed to test the effect of Kat60 on female receptivity (Stern 2014). This stock 

will be much more difficult to produce than the D. melanogaster deletion stock using my current 

method. A transgenic D. simulans stock containing an AttP site could be utilized in future 

methods (Stern et al. 2017b), but the lack of balancer chromosomes in D simulans might prove 

troublesome, particularly as Kat60 deletions are not homozygous viable. 

 

Despite producing many transgenic stocks, I was unable to gather any mating assay data. The 

interspecies crosses caused unacceptable levels of hybrid lethality which could be due to leaky 

shRNA expression and/or nonspecific shRNA binding (Caffrey et al. 2011; Ni et al. 2011). This 

protocol must be improved before data determining the tissue-specific effects of Kat60 can be 

gathered. The assay temperature should be lowered from 28 °C to reduce transgene expression 

and removing some of the UAS motifs present in pVALIUM20 should be considered if shRNA 

levels remain high even at low rearing temperatures. All shRNA stocks that I produced must also 

be tested for functionality through RT-PCR as it is uncertain whether they function as expected.  

 

After these problems are resolved, I predict that the hybrids containing mel-targeting shRNA 

constructs, and thus predominantly producing sim Kat60, will be less receptive to mating 

attempts from mel males. The effect is likely to be strongest in hybrids that contain a mel--
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targeting construct and Act5C- or elav-Gal4 as these would silence the mel copy of Kat60 in all 

neural tissues, though I would still expect to see a reduction in female receptivity when the 

shRNA is paired with rut-Gal4 because of the mushroom body’s effect on sensory integration 

and courtship memory (Montague and Baker 2016; Yagi et al. 2016). The contribution of each 

lobe of the mushroom body to female receptivity could be determined by using lobe-specific 

Gal4’s. The rut-Gal4 likely will not reduce female receptivity as strongly as Act5C- or elav-Gal4 

because other neural regions, such as the antennal lobe or the subesophageal ganglion, likely 

influence this trait as well (Rezával et al. 2012a; Sakurai et al. 2013). These regions should be 

tested to determine if they also mediate female receptivity through Kat60. If Kat60 is shown to 

influence female receptivity in hybrids, it will be the first time a gene has been linked to 

heterospecific mate rejection, greatly increasing our understanding of the genetic basis of 

behavioural isolation. It will also indicate which neural regions influence female receptivity to 

heterospecifics and show how behavioural barriers to mating can develop between closely-

related species. 

 

4.6 Conclusions 
I have produced multiple transgenic lines to determine the effect of Kat60 on female receptivity 

towards heterospecific males. The protocol I generated to produce them is simple and can be 

learned to competency after a few months of practice. I designed four shRNA and one gRNA 

construct and integrated each into D. melanogaster. I have also produced stable stocks of each 

transgene. Three shRNA+Gal4 stocks have been produced for each shRNA to identify neural 

regions that influence female receptivity. Mating assay data could not be gathered due to severe 

hybrid lethality, but the shRNA stocks can be used immediately after those problems are 

resolved. I have not yet produced a Kat60 deletion stock in D. simulans, which must be 

accomplished before the reciprocal hemizygosity test can be carried out. The stocks I have 

produced can be used to study the genetic basis of behavioural isolation between D. 

melanogaster and D. simulans, and the protocol I have developed can be used to study the 

function of nearly all genes in D. melanogaster.  
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Appendix: Moehring Lab Microinjection Protocol 
Making Apple/Grape Juice Plates 

 You will use apple or grape juice plates to collect fly embryos. Both types of juice work 

equally well. The recipe is as follows: 

 

Ingredient 1L 2L 4L 

Water 500 ml 1L 2L 

Juice 500 ml 1L 2L 

Agar 25g 50g 100g 

Sugar 60g 120g 240g 

Propionic Acid 3ml 6ml 12ml 

 

Pour water, juice, and agar into the pot, begin heating the mixture, and stir constantly. This 

prevents the agar and juice from burning. Add the sugar and stir until all the granules are 

dissolved. Heat to a boil and wait for the solution to become clear, then take the mixture off the 

heat, add the propionic acid, stir, and pour into petri dishes. One litre of media usually makes 

25–40 plates. 

Setting Up the Fly Cage 

 Expand the stock you wish to inject until you have around 12–20 vials. Anaesthetize the 

flies with CO2 and put them in one of the plastic fly cages. Take a juice plate and spread some 

yeast paste (active yeast granules mixed with water until smooth and the consistency of peanut 

butter) on it, then close the fly cage with it and seal with the orange cap. Put these flies in a 25°C 

incubator and leave the for a day to adjust to the cage. Changing the plates once or twice later in 

the day can help them adjust as well. 

 

Pulling Loading and Injection Needles 

 Two types of needles are needed to inject: Injection needles, which are used to inject the 

embryos with DNA, and loading needles, which are used to load the injection mix into the 

injection needle. Loading needles are pulled by hand over a Bunsen burner. Borosilicate 
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capillary tubes (usually 1.0mm in diameter) are placed in the centre of the flame and rotated 

slowly. Once the glass becomes hot enough that the tube bends easily, quickly pull both ends 

apart to create a long, thin section in the middle. Take off the heat for about two seconds to allow 

the glass to harden and then break it in the centre with a razor. This will produce two loading 

needles. The point of these tubes should be able to reach the bottom of an injection needle, so it 

should be thinner than 0.75mm and at least 1.5 inches long. Secure them to a large petri dish 

with tape, label the dish, and bring the needles to the Biotron. 

 Injection needles are produced by using the needle puller in Dr. Greg Gloor’s lab (MBL 

8, send him an e-mail to ask if you can use it). Bring the 0.75mm borosilicate tubes from the 

Biotron to the puller to make the injection needles. Turn the needle puller on and select program 

1 by pressing the “1” key. Then load your tube into the puller, align the centre on the heating 

filament, and secure the it at both ends with the thumbscrews. Close the UV shield and press the 

“pull” button. The puller will create two injection needles for every borosilicate tube that is 

pulled. Secure them to a large petri dish with tape (take care to not accidentally break the tip of 

the needle), label the dish, and bring it to the Biotron. 

 

Preparing to Inject 

 Aliquot several microliters of your injection cocktail into a PCR tube and mix it with a 

microliter or two of food dye. This will allow you to easily visualize your injection mix entering 

the embryo. Then change the juice plate in the fly cage and set a timer for 30 minutes. During 

this time, load your injection needles and insert them into the microinjector. Turn the 

microinjector on and set the machine to “continuous” instead of “pulse”. Change the injection 

pressure so that it is around 600 hPa (better to start with a low pressure and increase it than start 

with a high pressure, as this will kill your embryos), and set the transfer pressure to +50. This 

prevents the cytoplasm of the embryo from backflowing into the needle, which reduces 

survivability. Also, align the needle so that it is centered under the microscope. Prepare at least 

two needles to reduce the delay caused by a clogged or broken injection needle (which happens 

often).  

 Next, find or create an egg collection basket. These are made by taking a 50ml falcon 

tube, cutting it in half (keep the side with the cap), and then cutting a small square out of the cap. 

Take two pieces of 1.5” blue sheer ribbon, place them on top of the threaded opening, and screw 
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them into place using the cap. Ensure that the ribbon is pulled tight around the hole in the cap. 

The ribbon will act as a filter to catch embryos while allowing waste water to flow through. 

Finally, put a food plate (a petri dish filled with normal fly food) into an incubator to pre-warm 

it. 

 

Injection Protocol 

 Once the 30 minutes are up, change the juice plate once more and keep the old one. You 

only have 30 minutes to inject a round of embryos so speed and efficiency are key. Rinse the old 

plate with distilled water to dislodge the embryos from the agar and pour them into the collection 

basket. Repeat once more to ensure that all embryos are collected. Wash the sides of the 

collection basket with water to collect any embryos that might have stuck to the side. Dry the 

ribbons with paper towel, remove it from the collection basket, and place under a microscope. 

You should see several embryos present. Take a coverslip and put a drop of distilled water on it. 

Using a damp paintbrush, align the embryos in the centre of the coverslip with the posterior end 

(the side without the two respiratory filaments) facing left. Try and become skilled enough to 

align at least 50 in 10 minutes. After alignment, remove most of the water from the embryos with 

a dry paintbrush or paper towel and move to the Biotron.  

 Cover the dry embryos with extra virgin olive oil (found in a 50ml falcon tube in the 

biotron or side room in the fly cave) and stick the coverslip to a microscope slide with a drop of 

water. Align the embryos vertically with their posterior end facing the needle. Slowly move the 

needle into the same vertical plane as the embryos, and gently brush the tip of needle on the 

chorion (egg shell) to open it (hold down the pedal so that you can see when the injection 

mixture first escapes the needle). Try to ensure that the break is as small as possible by moving 

the needle slowly and carefully. This causes the least amount of damage to the embryos and 

prevents backflow. The width of the needle tip should be less than 10% the width of the posterior 

end—I recommend using a different needle if this is not the case. 

 Inject the embryo by moving the stage toward the needle until the needle punctures the 

chorion. Ensure that the needle penetrated the egg and did not stop between the vitelline 

membrane (membrane surrounding the egg) and the chorion. Inject the embryo by pressing the 

pedal down or by holding “clear” and stop as soon as you see any food dye. Holding the “clear” 

button can cause the embryo to explode, so be extremely careful when using that method. If no 
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fluid escaped the needle, increase the pressure or hold “clear” to remove clogging. If the needle 

is still clogged, try to break it again on a chorion. If this does not help or is taking too long, use a 

new injection needle. After injection, quickly pull the needle out of the embryo. A good injection 

has little to no cytoplasmic leakage after removing the needle. Heavy leakage is a sign of a 

damaging injection and usually means that the embryo will not survive. Move the stage so that 

the needle is aligned with the next embryo and inject the next embryo in the same way. 

 

Post-injection Care 

 After injection, tilt the coverslip vertically and use Kimwipes to drain as much oil as 

possible. Bring the coverslip back to the fly cave and wash the embryos with distilled water to 

remove the rest of the oil. Take care not to wash too vigorously as this can wash the embryos off 

the slide and ruin all your work. Dry the coverslip and embryos with Kimwipes as best as you 

can and stick them in the pre-warmed food plate so that the anterior end of the embryos is in 

direct contact with the food. Be careful not to crush the embryos against the food. You can fit 

multiple coverslips on a single plate if you are doing multiple rounds of injections per day. 

Surviving larva should be visible on the food within 1–2 days. After they develop into pupae, 

transfer each pupa into its own food vial for screening/crosses. If the injection stock is 

Bloomington Stock # 25709 or any other vermillion mutant stock, transgenic flies can be 

identified by the rescue of dark red/brown wild-type eyes (Figure 1). 

 
Figure 1: Identifying transgenic offspring 

Transgenic offspring can be recognized by their wild type eyes. The male (top) does not contain 

the transgene and has bright orange eyes indicative of vermillion mutants. The female (bottom) 
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has the transgene and darker wild-type eyes indicating vermillion rescue. Both flies were 

collected ~6 hours after eclosion and were produced by the same screening cross.   
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