
Western University Western University 

Scholarship@Western Scholarship@Western 

Digitized Theses Digitized Special Collections 

2009 

Confidence interval estimation for a difference between two Confidence interval estimation for a difference between two 

correlated intraclass correlation coefficients with variable class correlated intraclass correlation coefficients with variable class 

sizes sizes 

Danuta Kowalik 

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses 

Recommended Citation Recommended Citation 
Kowalik, Danuta, "Confidence interval estimation for a difference between two correlated intraclass 
correlation coefficients with variable class sizes" (2009). Digitized Theses. 3851. 
https://ir.lib.uwo.ca/digitizedtheses/3851 

This Thesis is brought to you for free and open access by the Digitized Special Collections at 
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3851&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3851?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3851&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Confidence interval estimation for a difference between two correlated 

intraclass correlation coefficients with variable class sizes

(Spine Title: Cl for a difference between two correlated ICCs)

(Thesis Format: Monograph)

by

Danuta Kowalik

Graduate Program in Epidemiology & Biostatistics

Submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science

School of Graduate and Postdoctoral Studies 

The University of Western Ontario 

London, Ontario 

July 2009

©  Danuta Kowalik, 2009



A BSTR A C T

The intraclass correlation coefficient (ICC) has application in several fields of research. 

Various confidence interval methods for a single ICC are available. However, statis­

tical inference for multiple ICCs has primarily relied on hypothesis testing which 

cannot distinguish between statistical significance and practical importance. The 

focus of this thesis is to develop and evaluate confidence interval procedures for a 

difference between two correlated ICCs with variable class sizes. The strategy used 

in the thesis is to recover variance estimates needed for the confidence interval for the 

difference from the confidence limits for single ICCs. Simulation results show that 

the procedure based on inverse hyperbolic tangent transformation for single ICCs 

performs well. The Galton’s 1886 dataset on siblings heights is used to illustrate the 

methodology.

K ey W ords : Intraclass correlation coefficients, confidence limits, random effects model, 

statistical significance, variance.
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Chapter 1

INTRODUCTION

The intraclass correlation coefficient (ICC), an index of resemblance, plays an 

important role in a wide range of disciplines. For example, in epidemiologic research, 

it is commonly used to measure the degree of resemblance among family members 

with respect to biological or environmental attributes. It can also be used as an 

index of reliability in biomedical and psychological research. Intraclass correlation 

coefficients also play an important role in the design and analysis of trials in which 

the units being randomized are in fact social clusters. So called cluster randomization 

trials, have become widespread in health research.

Comparison of two ICCs is sometimes a focus in biomedical and epidemiologic 

research. Despite the fact that inferential procedures for the problem of comparing 

ICCs from two or more independent samples have been developed, limited literature 

exists on the comparison of two ICCs obtained from the same sample.

Assuming a balanced one-way random effects model, Ramasundarahettige et al. 

(2009) provided a confidence interval for a difference of two correlated ICCs by ap­

plying a procedure developed by Zou and Donner (2008). Ramasundarahettige et al. 

(2009) showed by their simulation study that the method based on the F-distribution 

for single ICCs performs very well in small sample sizes. The general idea is to re­
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cover variance estimates needed for setting confidence limits for the difference from 

confidence limits for single ICCs. The advantage of this method is that it can reflect 

the underlying sampling distribution, in contrast to the conventional method of point 

estimate plus/minus a multiplier of critical values.

However, very often researchers encounter unbalanced studies. For instance, in 

family studies it is rare to have sibships of constant size. In reliability studies, vari­

able number of observations per subject could arise due to missing data. Therefore, 

confidence interval procedures for the unbalanced case are needed. The purpose of 

this project is to apply the procedure proposed by Zou and Donner (2008) to a differ­

ence between two correlated ICCs with variable class sizes. Monte Carlo simulation 

is used to assess the performance of the proposed methods.

The rest of this chapter is organized as follows. The concept of ICC is introduced 

by providing its definition and interpretation in Section 1.1. An overview of statistical 

inference for ICC is provided in Section 1.2. A  motivating example is given in Section 

1.3. The chapter ends with the objective of the thesis and its organization presented 

in Sections 1.4 and Section 1.5, respectively.

1.1 Intraclass correlation coefficient

Suppose that observations on a single variable Y  are arranged in k classes and the 

following one-way random effects model is assumed

Yij /r -j- &ij, (1.1)
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where Yy represents an observation on the j th member of the i th class, j  =  1, 2, .. . ,  71*; 

i =  1, 2, .. . ,  k. The overall mean is denoted as p, the class effects a* are normally 

distributed with mean 0 and variance o\. the residual errors are normally dis­

tributed with mean 0 and variance a\. In addition, a* and are independent. The 

variance of Y¡j is given by <72(Y k  =  Oy =  o\ +  o2e. Model (1.1) sometimes is referred 

as “components of variance model” (Donner, 1986) since the total variance, Oy. is a 

sum of two variance components, o\ and a\. Under model (1.1), the covariance of 

observations in the same class, Yjj, YU and j  ^  / , is

cov(Y,j,Yi f ) =  E[(U, -  E (y(j) ) ( r y . -  E(yy,))]

=  E[(aj +  eij)(ai +  e¿y)]

=  E k 2]

=  4

and the covariance of observations from different classes is

covO^.y,'-/) =  o, i ±  i .

Thus, the correlation between any two observations Y,j and YU is given by

p P v ’ W  =  ¿ r h *

since by definition of correlation, p is given by

C O V ^ f y )
p =  cor(Yy ,*V )

er a'

y /var(yii)var(yiy ) v ^ r ^ y  aY a“A +  °A +  al

(1.2)

The intraclass correlation coefficient, p, can be interpreted as the proportion of the 

total variability that is attributed to the variability among classes.
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Another commonly used model is a common correlation model under which p is 

defined explicitly. Specifically, observations Ip  are assumed to be distributed with the 

same mean /j and with the same variance o\. Any two members within a class have a 

common correlation but and any two members from different classes are uncorrelated. 

This latter model is more general than model (1.1) since it also allows values of p to 

be negative. When in fact, p is nonnegative, the two models become equivalent.

In this thesis, p is assumed to be positive with possible values range from 0 to 1. 

The lowest possible value of p =  0, which implies independence of observations among 

individuals within a class. On the other hand, values of p >  0 indicate that individuals 

within a class are more similar with respect to the attribute Y  than to individuals 

from a different class. If the value of p is near zero, differences in mean observations 

between classes are relatively small as compared to the differences in observations 

within each class. On the contrary, if p is close to 1, then much of the total variability 

is attributed to differences between classes.

1.2 Statistical inference on intraclass correlation coefficient

Statistical inference for a single ICC have been well established and applied to various 

areas of research. There exist several methods to estimate p. The most commonly 

used in practice (Donner and Eliasziw, 1991) include: the ANOVA estimator; the 

pairwise estimator; and the maximum likelihood estimator (MLE). Although, the lat­

ter is efficient for all values of p, it cannot be obtained explicitly, but requires iterative 

procedures at least when class sizes are variable. Several other estimators of p have
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been proposed including variations of the ANOVA estimator and the pairwise estima­

tor implementing different weighting schemes, others rely on algebraic combinations 

of two estimators with an appropriate choice of weights. Further discussion of point 

estimation is provided in the next chapter.

While statistical inference for p frequently focuses on point estimation and hypoth­

esis testing, confidence interval estimation is a more informative approach. There are 

several methods for constructing confidence intervals for p. The most intuitive ap­

proach is to implement a simply asymptotic method of point estimate plus/minus 

critical values times the estimated standard error. Since this approach is not ex­

pected to perform well in small sample sizes, as the distribution of p is skewed except 

when p =  0, other methods have been developed. One of them is an approach based 

on Fisher’s Z-transformation (Fisher, 1925, Ch.7), which is used to normalize and 

stabilize the sampling distributions of p.

A similar transformation to that of Fisher’s Z-transformation is inverse hyperbolic 

tangent transformation. Lachin (2004) suggested that this transformation with its 

variance obtained by the Delta method may perform better than that of Fisher’s Z- 

transformation. Confidence intervals are first obtained on the transformed scale and 

then transformed back to obtain the limits on the original scale.

Another method also known to researchers is based on the F-distribution. Since 

under variable class sizes, the distribution of variance-ratio statistics is not exact, 

Thomas and Hultquist (1978) and Donner (1979) approximated the F-distribution 

by modifying the variance-ratio statistic using a common mean class size in place of a
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constant class size. Thomas and Hultquist (1978) made use of harmonic mean and un­

weighted sum of squares of class means in the variance-ratio statistics to approximate 

the F-distribution.

There also exist a vast literature concerning ICCs in multiple samples, especially 

in the case of independent samples. A further discussion of inferential procedures for 

ICCs in multiple samples will be given in the the next chapter.

1.3 Motivating example

An example which motivates this thesis is based on the well known Galton’s 1886 

data set on human stature. These data consist of records of heights for 205 families 

including father, mother, sons, and daughters. For further details about these data, 

we refer to Hanley (2004a).

These data played a profound role in statistical research. First, Galton used these 

data to calculate the correlation coefficient of the bivariate Gaussian distribution. Sec­

ond, Pearson used these data to quantify multiple and partial correlations. Recently, 

these data were analyzed by Naik and Helu (2007), as an illustration for testing the 

equality of two independent ICCs. For that purpose, the data were divided into two 

groups, the first one consisting of data for daughters only from the first 102 families, 

the second one consisting of data for sons from the remaining 103 families. Then two 

sex-specific ICCs were compared by means of hypothesis testing. In this thesis, these 

data are used to compare the degree of resemblance with respect to height of brothers 

to that of sisters. In comparing the two sex-specific ICCs, the proposed confidence
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interval approach is implemented taking into account the dependency among siblings 

and also the distributional properties of ICCs.

1.4 The objective o f the thesis

The objective of this thesis is to construct confidence interval for a difference of two 

correlated ICCs. The strategy is to apply the procedure proposed by Zou and Donner 

(2008), given that confidence intervals for a single ICC are well established. The 

proposed method has been referred to as the MOVER, method of variance estimates 

recovery (Zou, 2008), because the idea is to recover variance estimates needed for 

the confidence interval for a difference between two correlated ICCs from those for 

the separate ICCs. Thus, the proposed method takes its validity from those limits 

obtained for a single ICC. The MOVER takes into account the asymmetric sampling 

distribution of ICC estimators in contrast to the standard simple asymptotic method, 

which lacks this ability. The performance of the proposed method is evaluated by a 

Monte Carlo simulation with respect to the empirical coverage, balance of tail errors, 

and confidence interval width.

1.5 Organization o f the thesis

The thesis is composed of six chapters. Chapter 2 provides a review of the literature on 

inferential procedures for ICC. Construction of intervals for a difference of two ICCs 

are in Chapter 3. Chapter 4 presents the simulation study. In Chapter 5, Galton’s 

data are used to illustrate the proposed method. The thesis ends with conclusions.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

The intraclass correlation coefficient has a long standing history of applications in 

diverse disciplines including epidemiologic, psychological, and biomedical research. 

Due to its wide spectrum of applications across different disciplines, an extensive 

literature on its inference is available, with a review focusing on inference based on a 

one-way random effects model provided by Donner (1986).

The purpose of this chapter is to provide a review of statistical inference for ICC 

with an emphasis on recent procedures. Specifically, Section 2.2 presents a summary of 

point estimators and in Section 2.3, various methods for confidence interval estimation 

for a single ICC are discussed. Section 2.4 summarizes statistical inference in multiple 

samples.
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2.2 Point estimators

The concept of intraclass correlation coefficient, p, can be traced back to Pearson 

(1901), where p was estimated by calculating product-moment correlation over all 

possible pairs of observations within a class. In the calculation process each pair of 

observations within a class is counted twice. This estimator is known as the pairwise 

estimator of p and is given by

Pp  —

E t i  £ " = i  (Yn -  Ÿp ) (yij' ~  ÿp )/j  - l
________i±i_____________________
EL(™.-i)E"ii(U-Ü)2

(2.1)

where Ŷ - denotes a random variable representing a measurement on the j th member of 

the ith class, rti is the size of the ith class, k is the number of classes, Y* =  E j l i  

and Yp =  ^ fc=1 -  1 )Y)/ E?= :1ni(rii — 1). In the case of variable class sizes, this

estimator can be used but it tends to give more weight to classes of larger sizes than 

to classes of smaller sizes (Fieller and Smith, 1951). For example, a class of size 10 

receives 45 times as much weight in the calculation process as class of size 2.

Following Pearson, the most well known estimator of p is attributed to Fisher 

(1925, Ch.7) who placed it in the context of a balanced one-way random effects model. 

An extension of the ANOVA estimator to an unbalanced one-way random effects 

model is due to Fieller and Smith (1951). An unbalanced one-way random effects 

model assumes that observation of the j th member of the ith class (j =  1, 2, 3 • • • up i =

1, 2, • • • , k), where rii is the class size, k represents number of classes, can be described



10

as

(2.2)

where p, is the true mean of all observations, a* are the class effects which are normally 

distributed with mean 0 and variance aA, eij are the residual errors which are normally 

distributed with mean 0 and variance a2. The at and eVJ are independent. The 

variance of Yy is given by var(Y);) =  aA+a2. The analysis of variance corresponding to 

this model is shown in Table 2.1, where N  =  EjU, is the total number of observations 

across classes, YL =  Ej V?/n-i is the mean of the observations in the i th class (i =  

1, • • • , fc), and Y .. =  Yl3/N  is the overall mean of all observation over all classes.

Then, ANOVA estimator of p is given by

where MSA and MSE are the respective mean sum of squares between and within 

classes, and

MSA -  MSE (F  -  1)
(2.3)

MSA +  (no — 1)MSE (F  +  n o - 1 ) ’

n0 = (N  — T . l inp N )/ (k  -  1). (2.4)

Although p is defined as a non-negative parameter under model (2.2), its ANOVA 

estimator may be negative. This may happen whenever MSE >  MSA.
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Table 2.1: Analysis of variance for an unbalanced one-way random effects model

Source o f Degrees Sum M ean Expected mean

Variation o f freedom o f squares square square

Am ong classes k -  1 SSA = --  Ÿ f M S A  =  S S A / (k -l) 2 i N—J2n?/N 9 rrz -\------ê=L-i±— /j *^  Jfc-1 UA

W ith in  classes N - k SSE = E  'EOïj - Û ) 2 M SE  =  SSE/(N-k)

Total N  — 1 SST = ZZ(YiJ 1 :^
f to
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Smith (1956) derived the large-sample variance formula of pA by first obtaining 

variances of variance components of pa under the normality assumption, and then 

implementing them in conjunction with the Delta method to find the variance of pa - 

The formula as a function of p is given as 

2(1 — p)2 r [1 +  P(no ~  l ) ]2
var(pA)

n; { N  — k

+  (k - l ) ( l - p ) [ l + p { 2 n 0 - l ) \  +  p2[J2n2i - 2 N  ^ n f  +  N  2( E ^ 2)2] -,
( k - i y

(2.5)

A  simpler expression for a large-sample variance of pa (Swiger et al., 1964) intended 

for situations when there is small variation in class sizes is given by

var (pA)
2(N  — 1)(1 — p)2[l +  (rip — l )p]  

n l(N  — k) (k — 1)

In the case of constant class sizes, the Smith’s (1956) large sample variance reduces 

to the variance due to Swiger et al. (1964).

A  weighted ANOVA estimator, where a weight is associated with each component 

of the between sum of squares, and its associated asymptotic variance was derived 

by Smith (1956). There are 3 commonly used weights: class size weights, uniform 

weights, and pairwise weights. Implementing a uniform weighting scheme leads to 

assigning identical weights to all classes. On the other hand, in a pairwise weighting 

scheme each class is weighted by the possible number of pairs of observations that 

can be constructed within a class. The ANOVA estimator defined in equation (2.3) 

is a special case of the generalized ANOVA estimator with a class weighting scheme. 

Similarly, Karlin et al. (1981) considered generalization of the pairwise intraclass
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estimator referred as generalized product moment estimator. The variance of the 

later was provided by Eliasziw and Donner (1991). The pairwise estimator defined in 

equation (2.1) is a special case of the generalized pairwise estimators with pairwise 

weights.

The performance of the weighted estimators depends on the choice of weights. For 

example, it is known that the ANOVA estimator with uniform weights is efficient for 

small values of p but inefficient for large values of p. On the other hand, the ANOVA 

estimator using the pairwise weighting scheme is more efficient at larger values of p 

than at the lower values (Keen, 1993). As noted by Keen (1993), both the generalized 

ANOVA and the generalized product-moment estimator utilizing the same weighting 

scheme perform similarly.

Since no single estimator in closed-form is efficient on the whole range of values 

of p, several authors suggested estimating p by combining two weighted estimators. 

For instance, Srivistava (1993) proposed estimating p by algebraically combining two 

weighted ANOVA estimators with an appropriate choice of weights. In particular, 

combination of the ANOVA estimator utilizing the pairwise weighting scheme and the 

ANOVA estimator using the uniform weighting scheme has been shown to be nearly 

fully efficient on the whole range of the parameter values (Keen, 1996). Keen (1993) 

extended Srivistava’s method by finding the minimum-variance linear combination of 

a pair of the weighted estimators. Keen (1996) also provided a unified mathematical 

expression that can be used to calculate the large-sample standard deviation of all 

previously mentioned non-iterative estimators.
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Although based on an iterative procedure, under the common correlation model 

with an assumption that observations within each class follow a multivariate normal 

distribution, the maximum likelihood estimator (MLE) of p was derived by Donner 

and Koval (1980a). The large sample variance of the latter is given by Donner and 

Koval (19806).

Many biological and psychological characteristics exhibit small to moderate (<  0.5) 

value of p (Donner and Koval, 1980a). Thus, if prior knowledge about the value of p 

is available, the ANOVA estimator utilizing the class size weighting scheme may be 

used, because its performance in an intermediate range of values of p has been shown 

to be good (Keen, 1996). However, when prior knowledge of p is not available, the 

estimator formed by algebraic combination of the ANOVA estimator with the uniform 

and the pairwise weights may be implemented as it has been shown by (Keen, 1993, 

1996) to be nearly fully efficient over the whole range of the parameter values. It is 

worth noting that similar results were obtained for the minimum-variance ANOVA 

combination of the pairwise and the uniform weights. Thus, when prior knowledge of 

p is not available, the assembled estimators may serve as a good alternative to MLE.

2.3 Confidence interval estimation

Confidence interval estimation has been regarded as a preferable way of presenting 

study results because it encompasses hypothesis testing (Altman, 2005). There are 

several methods for constructing confidence intervals for p in studies with variable 

class sizes. The exact method given by Wald (1940), due to its complexity in solving
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two non-linear equations, is not often used in practice. Therefore a number of other 

methods, although based on the large sample theory, have been proposed in the 

literature. The following are the description of five such approximate approaches.

2.3.1 Simple asymptotic method

This method assumes that the sampling distribution of p is approximately normal. 

In other words, asymptotically the estimated variance of p is independent of the 

underlying parameter. This is because Lukács (1942) has shown that independence 

between sample mean and sample variance is a necessary and sufficient condition 

for normality. Thus, assuming adequately large sample size, the skewed sampling 

distribution of p. based on the Central Limit Theorem, approaches a normal curve so

Let za/2 be the upper ot/2 quantile of the standard normal distribution, then

that the simple asymptotic method can be implemented i.e.,

P ~  N(p, var(p)),

then

~ N(0,1).
V var(d)

Thus, a 100(1 — a)% confidence interval for p is given by

(2.6)
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Confidence limits based on the ANOVA estimator and the Smith’s (1956) large 

sample variance are obtained simply by substituting the ANOVA estimator for p and 

the Smith’s large-sample variance estimate for var(p).

2.3.2 Method based on Fisher’s Z-transformation

To normalize the sampling distribution of pA, Fisher (1925, Ch.7) proposed the vari­

ance stabilizing transformation known in the literature as Fisher’s ^-transformation. 

By employing this transformation the resulting distribution of pA on the transformed 

scale is free of the underling parameter value and approaches normality more rapidly. 

However, this transformation is only useful for constant class size. To accommodate 

variable class sizes, Fisher’s transformation has been modified and it was shown to be 

accurate for moderately large sample (Weinberg and Patel, 1981). The transformation 

is given by

Z t? — -In
1 +  (n0 -  1 )pA 

1 -  Pa

which follows as asymptotically normal distribution with mean

i l n 1 +  (no ~2 [ 1 - p

(2.7)

and variance

var( ZF) =  ^ [(k — l ) “ 1 +  (N  -  fc)“ 1] ,

where N  =  E i =  1, • • • , k. An approximate 100(1 — a)%  confidence interval on 

the transformed scale is given by

(Zi, Zu) =  [ z F -  £Q/2\/var(ZF), ZF +  zaj2yJysj:(ZF



17

Transforming the confidence interval back to the original scale, the limits are given

by

(/, u) =  ( I { Z F -  za/2\/var(ZF)}, I{Z F +  za/2\/var(ZF)} 'j , (2.8)

where

I ( ZF) =  [exp(2ZF) -  1] / [exp(2ZF) +  n0 -  1].

2.3.3 Method based on inverse hyperbolic tangent transformation

Another transformation known in the literature is the inverse hyperbolic tangent 

transformation given as

Z(pA) =  arctanh(pA) =  ^ln Q  j  .

Fisher’s Z-transformation reduces to the inverse tanh hyperbolic transformation when 

n0 =  2. Lachin (2004) suggested that confidence intervals for p employing the inverse 

hyperbolic tangent transformation with the variance obtained by the Delta method 

may perform better than that based on Fisher’s Z-transformation.

By the Delta method, the variance of Z(pA) is

var(Z) =  (Z  )2var(p^)

2

var (pA), (2.

where Tl is the first derivative of Z(pA) with respect to pA. The var(pA) term in 

equation (2.8) can be estimated using Smith’s large sample variance estimator given 

by the equation (2.5). Then, a 100(1 — a ) confidence interval on the transformed scale

________1

(1 — Pa ){  1 +  Pa )
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for Z ( pa ) is obtained as follows

(Zi, Zu) =  [ z  -  ¿a/2\/var(Z), Z  +  za/2\/vzr(Z)^

Denote an inverse of this transformation by

I(Z ) =  [exp(2Z) -  1] / [exp(2Z) +  1].

Then, an approximate 100(1 — a)%  confidence interval for p is given by

(/, u) =  ( i { Z  -  za/2V va r (Z )}, I {Z  +  za/2XA ^ ( Z ) } )  . (2.10)

2.3.4 Method based on the modification to the exact confidence limits

Confidence intervals based on the F-distribution are available in the case of constant 

class size, n* =  n, for all i =  1,.. . ,  k (Haggard, 1958; Searle, 1971). Since the limits 

are obtained using the results that MSA/MSE is distributed as F-distribution they 

are usually referred as exact limits. In order to accommodate the variable class sizes, 

Thomas and Hultquist (1978) and Donner (1979) modified the exact formulae for 

confidence limits for p by replacing the constant class size n by no- The modified 

limits are given by

(2.11)

where

F  =  MSA/MSE,

doFu -  F {1_a/2k_ l j : k=ini_ky
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F,_ /n , v-a _ and Fri _ /0 ^  are the lower and upper quantiles of the(a/2,fc—l,5̂ i=1 m—k) ( l - a / 2 , t - l £ i= i nj-fc)

F-distribution with degrees of freedom k — l  and Yli= 1 'T — respectively. These 

limits are approximate since the distribution of variance-ratio statistics is not exact, 

unless p=0 (Donner and Wells, 1986). Therefore, as ICC increases the approximation 

to the central F-distribution may decline.

2.3.5 Method based on F-distribution

Thomas and Hultquist (1978) suggested that the above results can be improved by 

replacing no with the harmonic mean class size and MSA with unweighted sum of 

squares. Specifically, with the harmonic mean class size defined by h =  k/ Y^= i ( l/ ni)> 

the confidence interval for a single intraclass correlation coefficient is given by

f  F*/Fu -  1 F*/Fl -  1 
\h +  F*/Fv -  1 ’ n +  F*/Fl -  1

(2.12)

where

fc k
F ‘ =  « [ ¿ F l  -  ^ ( ¿ F , . ) 2] / ^  -  1)MSE],

i= 1

Fl ■̂ (a/2,k—l,Sf_1ni—k)i

F u  =  F^l _ a / 2^ - l , T . ki=1ni - k ) -

In the context of familial resemblance studies under variable sibship sizes for nor­

mally distributed data, Donner and Wells (1986) and Donner (1987) evaluated a 

number of methods for interval estimation of p. They concluded that a simple asymp­

totic method incorporating Smith’s 1956 large sample variance provided consistently
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good coverage for all values of p. They also showed that application of Fisher’s 

^-transformation provided good coverage probabilities for values of p <  0.3 and ad­

equate coverage for values as high as p <  0.7. Further, evaluation of method based 

on the F-distribution showed good coverage over all values of p but the width of con­

fidence intervals were wider than that of simple asymptotic method. In conclusion, 

they recommended that the simple asymptotic method based on the Smith’s (1956) 

large sample variance be implemented in practice. In their evaluation, confidence 

intervals based on the inverse hyperbolic tangent transformation were not considered.

2.4 Inference for intraclass correlation coefficients in multiple samples

Hypothesis testing procedures for a single ICC based on the normal distribution with 

variable class sizes and its extension to multiple independent samples are well estab­

lished. The focus has been on estimation of the common ICC and constructing tests 

of homogeneity of several ICCs. For instance, under a mixed ANOVA model, Donner 

(1985) derived an estimator of common ICC and provided a test for homogeneity 

of two ICCs based on the extension to Fisher’s variance stabilizing transformation. 

Young and Bhandary (1998) proposed three asymptotic tests including: likelihood 

ratio test and two based on the large sample Z-test for the equality of ICCs for 

two independent multivariate samples. Bhandary and Alam (2000) extended this 

approach to several multivariate samples. It is worth noting that a unified test for 

the equality of ICCs in multiple sample cases has been constructed (Bhandary and 

Fujiwara, 2006).
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When the assumption of homogeneity of variances across samples does not hold, 

Mian and Shoukri (1997) considered estimating the common ICC by ANOVA and 

the maximum likelihood method and proposed several tests for the equality of ICCs. 

In the same context a number of other asymptotic tests have been proposed by Naik 

and Helu (2007).

In contrast to hypothesis testing, literature on confidence interval estimation is 

limited. Nonetheless, Donner (1985) considered constructing confidence intervals for 

the common ICC based on the modification to the Fisher’s Z-transformation. Re­

cently, Bhandary and Fujiwara (2008) discussed confidence intervals for a linear con­

trast of ICCs. Two flaws are apparent in their presentation. First, their method 

is only valid if the between class variances are equal in the two populations being 

compared. This is a rather restrictive assumption. Second, they specified the lower 

limit for the difference between two ICCs as the difference between the lower limit for 

one ICC and the upper limit for another ICC, and similarly for the upper limit. It 

can be recognized that this method is equivalent to one using overlapping to perform 

hypothesis testing. Shenker and Gentleman (2001) discussed the disadvantages of us­

ing overlap between confidence intervals as a method for significance testing. Under 

assumption of normality, independence, and consistency of two estimators, they have 

shown that the overlap method is more conservative and less powerful in comparison 

to the traditional method.

The methods described above aimed at ICCs obtained from independent samples. 

In the case of constant class size, Donner and Zou (2002) proposed a procedure
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for testing the equality of two dependent ICCs implementing the modified form of 

Fisher’s ^-transformation due to Konishi and Gupta (1987). Donner and Zou (2002) 

showed by their simulation study that the proposed method has greater power than 

a procedure based on the traditional Fisher’s ^-transformation, and it is comparable 

with that of the likelihood ratio test. Since no explicit formula exists for the likelihood 

ratio statistics for testing two dependent ICCs and thus for calculating the power of 

the test, iterative procedures have been used. For macros that allow for such tests 

and power calculations are provided by Giraudeau et al. (2005). The likelihood ratio 

test for testing two dependent ICCs with variable class sizes has been provided by 

Donner et al. (1984). A  confidence interval for a difference of two dependent ICCs was 

developed by Ramasundarahettige et al (2009) applying an approach proposed by 

Zou and Donner (2008). Ramasundarahettige et al. (2009) showed by their simulation 

study that the proposed method performs superior to the conventional method of 

point estimate plus/minus a critical value multiplied by the estimated standard error.
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Chapter 3

CONFIDENCE INTERVAL ESTIMATION FOR A 
DIFFERENCE BETWEEN TWO INTRACLASS 

CORRELATION COEFFICIENTS

3.1 Introduction

Confidence interval for a difference between two correlated ICCs with constant class 

size has been recently developed in the context of reliability studies (Ramasundara- 

hettige et al, 2009). The confidence interval approach relied on method of variance 

estimates recovery (MOVER) as outlined in Zou and Donner (2008). The MOVER 

is most useful when confidence limits for single ICCs are available. In this chapter, 

the MOVER is used to construct confidence interval for a difference between two 

correlated ICCs with an extension to variable class sizes.

This chapter starts with providing the definition and interpretation of a confidence 

interval given in Section 3.2. The MOVER is presented in Section 3.3. The chapter 

ends with the construction of the proposed confidence interval for a difference between 

two correlated ICCs with variable class sizes presented in Section 3.4.
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3.2 Definition and interpretation of a confidence interval

Denote a population parameter by 0. For 0, a two-sided 100(1 — a)%  confidence 

interval, (l, u) , provides a range of plausible parameter values that cannot be rejected 

at the a% level. Then, the upper limit, u, is a value that, under random samples, may 

be expected to exceed 0’s true parameter value 100(1 — a/2)% of the time. Similarly, 

the lower limit, l , is a value that, under random samples, may fall below 0’s true 

parameter value 100(1 — a/2)% of the time. In other words, the lower limit l satisfies

Pr(0 <  l) =  a/2

and the upper limit u satisfies

Pr(0 >  u) =  a/2.

Therefore, a 100(1 — a)%  confidence interval satisfies

Pr(Z <  0 <  u) =  (1 - a ) .

A two-sided 100(1 — a)% confidence interval is constructed from the observed 

data in such a way that under infinite replications of the study, 100(1 — a)% of these 

confidence intervals will contain the true parameter value.

Confidence intervals answer a more general question than hypothesis testing, pro­

viding not only a yes/no answer but also the magnitude and direction of the effect 

in question. To this end, it may be more useful to consider inferences consisting 

not only in terms of point estimation and hypothesis testing, but rather in terms of
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quantifying the uncertainty in the estimation process by means of confidence interval 

construction.

3.3 The method o f variance estimates recovery (M O V E R )

This section describes a general approach for constructing a confidence interval about 

a difference between two effect measures as derived by Zou and Donner (2008). This 

approach has been previously applied in many special cases. For instance, it has been 

applied to construct confidence intervals for the lognormal mean (Zou and Donner, 

2008), a difference between correlation coefficients (Zou, 2007), and measures of ad­

ditive interaction (Zou, 2008). Recently, it has been applied to comparison of two 

correlated intraclass correlation coefficients under constant class size (Ramasundara- 

hettige et al., 2009).

The fundamental idea of the method of variance estimates recovery is to recover 

variance estimates from already reliable limits for each separate effect measure, and 

then use these estimated variances to construct limits about the difference. The 

method is formally referred to as the MOVER, method of variance estimates recovery 

(Zou, 2008).

Let 9i be a respective parameter of interest for population i, i =  1,2, with a point 

estimate and variance estimate given as §i and vaf(0j), respectively.

A  traditional approach for an approximate confidence interval for — 62 is based 

on the Central Limit Theorem. The resulting 100(1 — a)%  confidence limits, (L, U),



26

are then given by

(L, U) =  0i -  92 ± ^ a/2V v a r ( ^ - 4 ) ,  (3.3.1)

where zQ//2 is the upper a/2 quantile of the standard normal distribution.

Under the assumption that 9\ and 9\ are independent,

var(0i — 92) =  var(^i) +  var(02),

otherwise

var(0! — 02) =  var(^i) +  var(02) — 2cov(0i, §2 ).

In a simple asymptotic method, var(0i — 02) is estimated assuming 9\—92 =  9\ — 92- 

This further implies that var(0i — 92) is the same at the lower (L ) and the upper 

limit (U ) of 61 — 62 and the obtained 100(1 — a)%  confidence interval is symmetric. 

The resulting confidence interval based on the simple asymptotic method is given as 

follows:

(L, U) =  § i - § 2 ±  za/2^/var(0i -  02).

Validity of the simple asymptotic procedure is assured if 0* follows a normal distribu­

tion with constant variance. When these assumptions are not satisfied, the imposed 

symmetry on the confidence intervals is considered as the most severe error one can 

make in confidence estimation (Efron and Tibshirani, 1993, p. 180).

Recognizing the limitation of the traditional method, a general approach for con­

structing a confidence interval for a difference between two effect measures has been 

given by Zou and Donner (2008), which requires no specific sampling distribution for 

9i, but only reliable confidence intervals for 0,.
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Suppose that a two-sided 100(1 — <2 )% confidence interval (k,Ui) for 0* is available. 

Using the Central Limit Theorem,

k = 9 i -  za/2 Ĵvar(0j).

Without imposing symmetry about 0j, one can recover variances estimates for 6( at the 

lower and upper limits of 0j. Thus, under the assumption that 9l ~  lt. the estimated

variance of 0* is given by

~  rn  ̂ ~var 1(6 i) = ---- j-----
Zcc/2

Similarly,

U i =  9t +  za/2 \Jvar(0i)

and thus under the assumption of 0j ~  the estimated variance of 9t is given by

(Ui -  9i) 2
var u{9i

'a/2

Denote the 100(1 — a)%  lower and upper limit for 91 — 02 as L and £/, respectively. 

Then, I1 —U2 is the value near L  and U1 —I2 is the value near U. To retrieve the variance 

estimates of 9\ — § 2  at the neighborhood of L, var(0j) and var(02) are estimated under 

0i ~  L and 02 ~  « 2, respectively (Zou and Donner, 2008). Then the lower limit L  is 

obtained by substituting the retrieved variances into the asymptotic formula (3.3.1) 

for L

L — 0i — 02 — Za / 2 ^/varz(0i - 9,

9 l^ 2_ Za/2, ^ A ) ±  +  t o - W (3.3.2)
'a/2 'a/2

=  0 i-0 : 9 i - h ) 2 +  (u 2 -9 2 )
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Following the same logic, we obtain the estimated variance of 9\ — 02 near U so that 

var(^i) and var(#2) are estimated under 9\ fa u2 and 02 ~  k, respectively. The upper 

limit for Oi — 6 2 is obtained by substituting the retrieved variances into the asymptotic 

formula (3.3.1) for U

U =  01 ~ 02 +  za/2 \Jvaxu(0i -  02)

0 1 — 02 +  za/2
( « l - 0 l ) 2 , {02 - k ? (3.3.3)

'a/2 'a/2

0\ ~ 2̂ +  V {ul ~ $i)2 +  ($2 — k)

A confidence interval for a difference between two effect measures, 0\ — 02) obtained 

by the MOVER can be reduce to a confidence interval obtained by the traditional 

method when the confidence intervals for 0i are symmetric, as shown below:

Now, the lower and upper confidence limits for 0{ are given by

k =  0 i -  z a/2\Jvax{9i) 

m =  9i +  za/2 <Jvar(0j)

Then,

(0* -  k f  =  ^/2var(^)

{ui -  9i) 2 =  z l/2 vax{0i).

If li and Ui are symmetric around 0$, then the estimated variances for 9i at the lower 

and upper limit of 9{ are the same. Hence, for 9i

(0i -  h f  =  {ui -  0i)2 =  22/2var(0i) (3.3.4)
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Similarly, for 02

(02 ~ h f  =  («2 -  4 ) 2 =  z2aj2Yar(<92). (3.3.5)

When equations (3.3.4) and (3.3.5) are substituted into equation (3.3.2) and (3.3.3), 

the lower and the upper limit for 0, — 02 reduce to limits obtained by the simple 

asymptotic method shown below

L =  9, -  02 -  \/(01 ~ h ) 2 +  (u2 -  02 ) 2 

=  0 1 - 0 2 -  z2a/2\a r (^ ) +  ^ /2w (0 2)

=  0, -  02 -  za/2\] vSx(0,) +  var(^2),

17 =  0 , - 0 2  +  \/(ui -  0 i ) 2 +  (02 ~  k ) 2 

=  0 1 - 0 2  +  yj z l/2v$x(9,) +  z l/2vSx(92)

=  9 , - 6 2  +  za/2 \Jvar(0i) +  var(02).

3.4 Confidence interval for a difference between two intraclass corre­

lated coefficients

3 .4 .I Notation and terminology

Suppose we have data collected on two dependent groups: group 1 and group 2, and in 

each of these groups observations on a single variable Y  are arranged in k classes. Let 

Y i =  (Yi,, Yi2, . . . ,Y ini, Yitni+,,Y i}ni+2:. . . ,  Y^ni+mi), where YiU Yi2, . . . ,  Yin. represent 

the observations from the i th class in group 1 and Yi>ni+,, YiiTli+2, . . . ,  Yi>ni+mi represent 

the observations from the ith class in group 2; i — 1, . . .  ,k, ni and m* are the sizes of
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the ith class in group 1 and group 2, respectively. The following model is assumed:

T"i (hii, Yi2 ■ ■., Yini, Yiini+1, Yi,ni+2, . . . ,  Yitni. Tlj)

where =  (pi, pi, . . ., pi, p2, P2, • • •, /x2), and 

/

S,- = [(1 -  p i)!^  +  PiJ„Jof p^CTi^Jn, xm.
(3.4.1)

 ̂ Pl‘2<Jl&2JnjXrrii [(1 P2)Imj T  P2Jmj0’2 y

In expression (3.4.1), I „ 4 and Im< are rq x rp and x identity matrices, J„„t 

and Jmi are rq x n2- and rn2 x m* matrices with all the elements equal to 1 and, 

J?ij x mj is a n, x m2 matrix for which all elements equal 1. Under this model, it is 

assumed that members from the k classes in group 1 have a common mean pi and 

variance of. Similarly, members from k classes in group 2 have a common mean p2 

and variance of. The intraclass correlations for group 1 and group 2 are denoted 

by pi and p2, respectively. Furthermore, the interclass correlation, pbs, is used to 

quantify the degree of resemblance among members belonging to two different groups 

(with the mean and variance of each being estimated separately) with respect to 

some quantitative characteristic. The model assumes also that of, of, pi, P2, P12 are 

constant across all classes.

Due to the complexity of obtaining maximum likelihood estimators of the three 

correlations, the ANOVA estimators are used to estimate pi and p2. The correspond­

ing estimates of pi and p2 are given by

MSAt -  MSEt
MSAt +  (ni0 — l)MSEt ’  ̂_  ’
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The pairwise estimator is used, for simplicity of calculation, to estimate the interclass 

correlation p12. The pairwise estimator of p\ 2 is obtained by computing the ordinary 

Pearson pro duct-moment correlation over the set of pairs of observations

(Yij,Yitn.+j>) in the sample (Rosner, 1982), given by

E l i  J2 "U  E "C +1 ( *  -  ? . ) ( »/  -  h )
P12

where

[{Ell n, Er.it»« - Si)2} • (E li m, E?^+1(% ,=7̂ 2 1 1/2
(3.4.2)

-  ^ k  s rni „  y'rii+mi
2^ i= inirniyn = ls i=1 nimiyi2 _ _ ^ ' = ^ + 1  »■

yi — x^k 1 y2 — > yn > y&
2-*=1 nm i 2^*=i nimi rrii

3.4- 2 Confidence interval for a difference between two correlated ICCs using the 

MOVER

Let a 100(1 — a)%  confidence interval for p\ and p2 be (h, u2) and (/2, u2), respectively. 

Then, under the assumption that and p2 are independent a 100(1 — a)%  confidence 

interval for p\—p2 is developed. Applying MOVER to the problem of estimating limits 

for two independent intraclass correlations results in

r r  , 7  / (Pi - ¿ i ) 2 . (“ 2 - P 2 ) 2
L - { p i -  P2 ) -  Zal2 \l ~2 ~  I ~2

Za / 2  Zct/2

=  {Pi ~  P2 ) -  V (p i -  h ) 2 +  {u2 -  P2)2. (3.4.3)

Similarly, the upper limit for pi — p2 is given by

tt r* s 7 , , (“ i “ P i)2 , ( P 2 - I 2 ) 2u  — [Pi — P2) +  za/2 AI o h
z\'ol/ 2  a /2

=  {Pl — P2) +  \J (^ 1 — Pl)2 +  (p2 — h ) 2 ■ (3.4.4)
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In the case when two pi,p2 are dependent,

var(pi -  fa) =  var(pi) +  var(p2) -  2cov(px, fa)

The covariance term by the definition is given as

corr ^  cov(pi,p2) 
\P u PV  -  ■; =

Vvar(pi) x var(p2)

by which

cov(pufa) =  corr (fa, fa) x y/var (fa) x var (fa).

When class sizes are constant, n* ~  n and rrii =  m, Elston (1975) derived an 

asymptotic formula for var(pt) given by

. . .  2 (5 -1 ).., 2 f  1
var(pi) -  — ----- (1 -  p tf

ks s — 1 +  Pt) )

t — 1,2 and s =  n,m. Also, he derived an asymptotic formula for cov(pi,p2) given

by

cov(p!,p2) =  ^ p ( l  — P i) ( l  - p 2)

Then,

corr(pi, fa) =
cov(pi,p2) 

yva r(p i) x var (fa)

___________________________________________________________________

d 2is i l (1 -  p i ) 2 ( ¿ i  +  p i ) 2 XV ^ % 7 1( 1 -  f t ) 2 ( s b  +  p i f

P12 [nm(n — 1 )(m  — l ) ] 1̂ 2 
[1 +  (n — l)p i][l +  (m — l)p 2] '

An extension of the correlation formula to variable class sizes is considered by 

replacing n and m by h and m, respectively, where h and rh correspond to harmonic
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means of class sizes in group 1 and group 2 . The resulting modified formula is given

by

corr(pi, fa) =
p\2 [nrh(n — l)(ih  — 1)]1/2

[l +  ( u - l ) p 1][l +  ( rh - l )p 2]'

The estimator of corr(pi, p2) is obtained by replacing pi2, pi and p2 by their respective

estimators, i.e.,

corr(p!,p2) =
p\ 2 [hm(h — l)(m  — 1)]1/2

(3.4.5)
[l +  (h - l )p i ] [ l  +  ( rh - l )p 2]'

A 100(1 — a)%  confidence limits for the difference of two correlated ICCs are now

constructed by taking into account the correlation between fa and fa. Thus, the

confidence interval for a difference of two independent ICCs given in equation (3.4.3)

and equation (3.4.4) can be extended to the case of two correlated ICCs, and the

following confidence interval limits are obtained

L =  (fa -  fa) -  za / 2

\
(fa -  h ) 2 {u2 -  fa) 2

+ -  2corr(pi,p2
(pi -  h ) 2 I(U2 ~ fa ) 2

'a/2 'a/2 'a/2 a/2

= (Pi -  fa) -  V i fa  ~  h ) 2 +  {u2 -  fa)2 -  2corr(pi,p2)(pi -  h) (u2 - f a )

and

U — (pi — fa) +  Za /2

\
( n . - h f  . _ 2 m ( h  jk) K m - h T  ¡ ( h - h f

a / 2 'a/2 a / 2 a / 2

=  (fa -  fa) +  V ( ui -  P i)2 +  (fa ~  h ) 2 -  2corr(pi, fa)(ui -  fa)(fa -  h)-

Thus, 95% lower and upper limit for pi — p2 are given by

L =  (fa — fa) -  \/(fa -  h ) 2 +  (u2 -  fa) 2 -  2corr(pb p2)(p i -  h )(u 2 -  fa) (3.4.6)

U =  ( f a -  fa) +  \/(ui ~  fa) 2 +  (fa ~  h ) 2 ~  2corr(p1,p2)(u 1 -  p i)(p2 -  Z2). (3.4.7)
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Chapter 4

SIMULATION STUDY

4.1 Introduction

The derivation in Chapter 3 using the MOVER is based on large sample theory. 

Therefore, a Monte Carlo simulation study is undertaken to evaluate the performance 

of the methods in terms of empirical coverage, balance of tail errors, and interval 

width. This chapter provides the description of the simulation design in Section 4.2. 

Simulation results are provided in Section 4.3, followed by a discussion in Section 4.4.

4.2 Simulation design

4-2.1 Parameter selection

We designed the simulation study in the context of family studies. The parameters 

for the simulation study included: the number of families k, values of Pb- ps and p\JS 

corresponding to brother-brother correlation, sister-sister correlation, and brother- 

sister correlation. The total number of families was chosen to be k =  50,100, 200 to 

reflect small, medium, and large sample sizes. The variable family sizes were generated
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using the negative binomial distribution truncated below one, given by

" ■ • c . ' a g " " ..... q - " p

Brass (1958) has shown that this distribution fits the observed distribution of sibship 

sizes for most of the human populations provided appropriate choice of parameters, 

m and P. In order to avoid generating unreasonably large class sizes we truncated 

the extreme right tails of class sizes at the probability of .999. Values of m =  2.84 

and P  =  0.93 were chosen corresponding to the mean sibship size of 3.12 and the 

variance of family size 4.52, reported by Brass (1958) for the United States in 1950. 

To classify each sibling as a male or a female, a random number generator based on 

the binomial distribution was used. The probability of a male or a female was taken as 

0.5. In order to evaluate MOVER, a wide range of parameter values were considered, 

Pb =  0.1 0.3, 0.5, 0.7, 0.9; ps — 0.1, 0.3, 0.5, 0.7, 0.9; pbs =  0.1 to min(p6,ps) with an 

increment of 0.2 such that the variance-covariance matrix 3.4.1 is positive definite. 

Without loss of generality, pb — — 0 and erf =  o2s =  1, where pb, ps and uf, o2s

are the common mean and common variance of the observations obtained on brothers 

and sisters, respectively. In the simulation study 129 parameter combinations were 

considered. For each parameter combination, observations for brothers and sisters 

were generated from a multivariate normal distribution with the correlated structure 

defined by equation 3.4.1 in Section 3.1. The number of runs was set to 10000 such 

that the empirical coverage is expected (with 95% confidence interval) to vary between 

94.6% to 95.4% for a nominal level of 95%.
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4-2.2 Confidence interval methods compared

The proposed method uses limits for a single ICC to set limits for the difference 

of two correlated ICCs. Four different confidence interval procedures were used for 

single ICCs. Namely, the simple asymptotic approach with Smith’s large sample 

variance, Fisher’s Z-transformation method, application of the inverse hyperbolic 

tangent transformation, and approach based on the F-distribution due to Thomas 

and Hultquist (1978). These are described in Section 2.2.

4-2.3 Evaluation criteria 

4-2.3.1 Coverage

The coverage of a confidence interval is defined as the proportion of times, under 

repeated sampling, the obtained confidence interval contains the true parameter value. 

The usual confidence level for an interval is taken as 95%. Hence, a confidence interval 

procedure whose empirical coverage approaches that value is said to perform well. 

When the empirical coverage is short of the nominal level, the confidence interval is 

said to be too liberal. On the other hand, when the empirical coverage is above the 

desired interval, the confidence interval is considered to be conservative.

4.2.3.2 Tail errors

The coverage alone is not enough to assess the performance of a confidence interval. 

As pointed out by Efron and Tibshirani (1993), balance of tail errors is also important 

and should be evaluated. When a confidence interval misses the parameter value from
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the left, it refers to as missing from the left (ML). Similarly, when a confidence interval 

misses the parameter value from the right it refers to as missing from the right (MR). 

Consequently, the evaluation of total tail errors as well as the balance between the 

left tail and the right tail are considered. Tail errors are estimated by calculating the 

frequencies of the 10000 intervals lying completely to the left of the parameter value 

(ML), and similarly, for those lying completely to the right of the parameter values 

(MR). The tail imbalance is measured by

Relative imbalance (%) =  — —r x  100.
v ’ MR +  ML

The smaller the relative imbalance the less unbalanced the tail errors are.

4 -2.3.3 Interval width

The performance of the methods considered in the simulation study was also analyzed 

with respect to interval width. A  narrower confidence interval can be considered to 

have a greater accuracy, so that a procedure yielding a narrower confidence interval 

is preferable. The width of a confidence interval was calculated by subtracting the 

upper limit from the lower limit.

4.3 Simulation results

The results of the study for a 95% confidence interval for a difference of two cor­

related ICCs under variable class sizes are given in Tables 4.1-4.3 corresponding to
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small, medium and large sample size, respectively. Each table presents the compar­

ative performance of MOVER incorporating four different methods with respect to 

empirical coverage, tail errors, and interval width. Moreover, the performance of the 

methods under consideration is graphically illustrated in Figure 4.1-4.3. Each re­

spective figure presents the results split over small, medium, and large sample sizes 

with respect to the evaluative criteria. Specifically, Figure 4.1 presents box plots of 

empirical coverage percentages where on each box plot a horizontal line of 95% was 

drawn to reflect the nominal level reference. Also, two additional horizontal lines were 

drawn on each box plots to locate reference lines of the expected empirical coverage 

of 94.6% and 95.4%. Figure 4.2 presents the imbalance of tail errors across all four 

methods measured by the relative imbalance. The smaller the relative imbalance the 

less unbalanced the tail errors are. At last, the performance of the four methods with 

regards to a confidence interval width is presented in Figure 4.3.

The results in Table 4.1 indicate that, when the number of classes is k =  50, 

the simple asymptotic method provides good empirical coverage when both pb and 

Ps <  0.5. For the rest of the parameter combinations, the method exhibits erratic 

behavior. For instance, when pb =  0.9 and ps =  0.5 this method shows undercoverage 

as low as 93.19% and for ps =  0.9 and ps — 0.9 overcoverage as high as 99.19%. 

As sample size increases, Tables 4.2-4.3 show that the performance of the simple 

asymptotic is less erratic. However, the method still provides empirical coverage in 

excess of the nominal level of 95%, especially when values of pb and ps are high and 

of the same value (pb =  ps =  0.9, Pb =  Ps =  0.7 and pbs >  0.5). Furthermore, the
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method provides unbalanced tail errors in comparison to the other methods, except 

when both pb, ps <  0.5, across all sample sizes. It is worth mentioning that when 

k >  100, even though this method has a good coverage for pb — 0.9 and ps — 0.5, 0.7, 

the tail errors are severely unbalanced. In other words, the total error is concentrated 

in one tail, either the right or the left tail. The confidence interval width obtained 

by simple asymptotic method is comparable to that of other methods (except for 

F-distribution based method) across all sample sizes.

The results in Tables 4.1-4.3 show that the method based on Fisher’s ^-transformation 

provides empirical coverage percentages close to the nominal level of 95% at all lev­

els of interclass correlations given that both pb and ps <  0.5. When pb and and ps 

>  0.5, the empirical coverage percentages are close to the nominal level provided that 

Pbs >  0.5. In other cases, the method has a tendency to fall below the nominal level 

resulting in under cover age. With regards to the tail errors, this method does not show 

a high degree of imbalance on the tails and for most of the parameter combinations 

the tails are symmetrically distributed between the left and the right tails. Also, this 

method is comparable to the other methods under consideration in terms of interval 

width providing slightly narrower interval width over the entire parameter space. As 

sample size increases the coverage of this method improves although it still provides 

slight undercoverage over the entire parameter spectrum.

The results in Tables 4.1-4.3 also show that the inverse hyperbolic tangent trans­

formation method provides consistently good empirical coverage percentages for all 

values of pb and ps provided pbs is <  0.3. When pbs increases to 0.5, although obtained
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empirical coverage percentages are good, they have a tendency to be slightly farther 

away from the nominal level of 95%. When both pb and ps are 0.7 or 0.9 and high val­

ues of pbs (>  0.7) are considered, this method is inclined to slight overcoverage. Tail 

errors obtained by this method are balanced in most cases, showing a minor degree 

of imbalance in tail errors when both pb and ps <  0.5 and pbs <0.1. Interval width 

is comparable to that of other methods (except for method based on F-distribution) 

across all sample sizes.

The performance of the method based on the F-distribution displays a similar 

pattern across all sample sizes (Tables 4.1-4.3). In particular, this method tends to 

provide overcoverage when both pb and ps are <  0.5. Also, overcoverage is evident 

when both pb and ps are >  0.7 and pbs >  0.5. Otherwise, the coverage percentages are 

acceptable yet more conservative in comparison to the other three methods discussed 

previously. In terms of tail error imbalance, the tails are symmetric over the whole 

parameter space. In comparison to all other methods discussed above, the method 

based on the F-distribution exhibits the widest confidence interval at almost every 

parameter value combination. Nonetheless, when both pb and ps are >  0.7, the 

discrepancy in terms of interval width between the four methods appears to vanish.

4.4 Discussion

Simulation results have shown that the simple asymptotic method, the Fisher’s Z- 

transformation method, and the application of the inverse hyperbolic tangent trans­

formation give comparable results when values of p are small to moderate (<  0.5). All
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methods provide good empirical coverage and balanced tail errors and are competitive 

with respect to interval width, overall the inverse hyperbolic tangent transformation 

method provides consistently good empirical coverage over the whole parameter space 

even with samples as small as k =  50 (Figure 4.1). Also, this method does not pro­

vide any major tail imbalance and is competitive in terms of interval width with the 

other methods (Figure 4.2-4.3). The simple asymptotic method, on the other hand, 

provides erratic coverage in small sample size (k =  50) and even for large sample sizes 

(k =  100, k =  200), obtained tails error are unbalanced. The poor performance of 

the simple asymptotic method may occur because it ignores the asymmetric sampling 

distribution of p while imposing symmetry on the confidence interval. The Fisher’s 

Z-transformation method overall has a tendency to provide coverage short of the nom­

inal level of 95% whereas the empirical coverage percentages for the F-distribution 

method are in excess of the nominal level. Also, confidence intervals obtained by 

F-distribution tend to be wide.

Recently, Ramasundarahettige et al. (2009) applied MOVER to construct a con­

fidence interval for a difference of two correlated ICCs with constant class size. They 

compared a number of methods including; the simple asymptotic method; a method 

based on the F-distribution; a method based on the Z-transformat ion, application 

of inverse hyperbolic tangent transformation; and one based on the modified Fisher’s 

Z-transformation. Simulation results show that major differences in the performance 

of aforementioned methods were seen with small sample sizes (k= 15 and k— 50). 

In contrast to the results obtained in this thesis, they concluded that the procedure
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based on the F-distribution for single ICCs is preferable as it provides consistently 

good coverage even with samples as small as k =  15. Also, the method provides 

balanced tail errors and is competitive in terms of interval width. Not surprisingly, 

consistent results were obtained regarding the simple asymptotic method, where the 

simulation shows erratic behavior especially in small sample sizes. In other words, 

for some parameter combinations the coverage was overly conservative and for oth­

ers overly liberal. In contrast to the results obtained in this thesis, they showed the 

procedure based on the Fisher’s ^-transformation provides coverage in excess of 95%, 

whereas the method based on the inverse hyperbolic tangent transformation tends to 

fall below the nominal level.
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Table 4.1: Performance of procedures for constructing two-sided 95% confidence in­
terval (C l) for a difference between two correlated intraclass correlation coefficients 
with respect to empirical coverage based on 10000 runs and sample size, k= 50

k =  50 Simple asymptotic Fisher’s Z Inverse tanh F-distribution

Pb Ps Pbs Cover(M L,M R )t% Cover(M L,M R)% Cover(M L,M R)% Cover(M L,M R )%

C l W idth C l W idth C l W idth C l W idth

0.1 0.1 0.0 94.19(2.87,2.94)0.91 94.63(2.67,2.70)0.87 95.16(2.41,2.43)0.88 96.27(1.78,1.95)1.17

0.1 93.96(2.97,3.07)0.90 94.32(2.82,2.86)0.87 95.09(2.41,2.50)0.87 96.16(1.94,1.90)1.17

0.3 0.1 0.0 94.25(2.71,3.04)0.87 94.34(2.49,3.17)0.84 94.98(2.05,2.97)0.85 96.13(1.78,2.09)1.10

0.1 94.56(2.59,2.85)0.87 94.81(2.30,2.89)0.84 95.43(1.90,2.67)0.85 96.41(1.54,2.05)1.10

0.3 0.0 94.50(2.75,2.75)0.84 94.43(2.77,2.80)0.81 95.15(2.37,2.48)0.82 96.30(1.81,1.89)1.02

0.1 94.10(2.98,2.92)0.84 94.21(2.97,2.82)0.81 94.79(2.67,2.54)0.82 96.25(1.88,1.87)1.02

0.3 94.86(2.58,2.56)0.83 94.90(2.50,2.60)0.80 95.45(2.25,2.30)0.81 96.35(1.76,1.89)1.01

0.5 0.1 0.0 94.82(2.53,2.65)0.81 94.68(2.28,3.04)0.78 95.41(1.76,2.83)0.80 96.10(1.61,2.29)1.01

0.1 94.32(2.74,2.94)0.81 94.29(2.43,3.28)0.78 94.78(2.12,3.10)0.79 95.73(1.91,2.36)1.01

0.3 0.0 94.45(2.50,3.05)0.78 94.06(2.62,3.32)0.75 94.70(2.23,3.07)0.77 95.65(1.81,2.54)0.92

0.1 94.68(2.62,2.70)0.78 94.36(2.58,3.06)0.75 95.08(2.27,2.65)0.77 96.18(1.85,1.97)0.92

0.3 95.65(2.03,2.32)0.77 95.46(1.96,2.58)0.74 96.06(1.72,2.22)0.76 96.91(1.36,1.73)0.92

0.5 0.0 94.92(2.67,2.41)0.71 93.69(3.29,3.02)0.69 94.69(2.78,2.53)0.71 95.92(2.18,1.90)0.82

0.1 94.93(2.33,2.74)0.71 93.92(2.94,3.14)0.69 94.82(2.45,2.73)0.71 95.95(1.87,2.18)0.82

0.3 95.36(2.46,2.18)0.70 94.41(2.98,2.61)0.68 95.11(2.64,2.25)0.70 96.39(1.96,1.65)0.81

0.5 96.38(1.87,1.75)0.69 95.43(2.33,2.24)0.67 96.16(1.94,1.90)0.69 96.75(1.70,1.55)0.80

Continued on next page



44

Table 4.1 -  Continued from previous page
k = 50 Simple asymptotic Fisher’s Z Inverse tanh F-distribution

Pb Ps Pbs Cover(M L,M R)% Cover(ML,MR)% Cover(M L,M R)% Cover(ML,MR)%

Cl Width C l Width C l Width Cl Width

0.7 0.3 0.0 93.98(2.66,3.36)0.69 93.59(2.72,3.69)0.67 94.49(2.47,3.04)0.69 95.19(2.03,2.78)0.81

0.1 93.94(2.39,3.67)0.69 93.47(2.45,4.08)0.67 94.56(2.16,3.28)0.68 95.23(1.90,2.87)0.81

0.3 94.84(2.08,3.08)0.69 94.77(2.14,3.09)0.67 95.42(1.90,2.68)0.68 95.74(1.73,2.53)0.81

0.5 0.0 94.64(2.19,3.17)0.62 93.32(2.98,3.70)0.60 94.46(2.58,2.96)0.62 95.35(2.02,2.63)0.70

0.1 94.79(1.96,3.25)0.61 93.52(2.80,3.68)0.60 94.50(2.36,3.14)0.62 95.43(1.84,2.73)0.69

0.3 95.32(1.89,2.79)0.61 94.02(2.61,3.37)0.59 95.10(2.25,2.65)0.62 95.67(1.93,2.40)0.69

0.5 95.53(1.51,2.96)0.60 94.52(2.05,3.43)0.59 95.48(1.78,2.74)0.61 96.06(1.46,2.48)0.68

0.7 0.0 96.04(1.88,2.08)0.50 93.39(3.22,3.39)0.49 94.87(2.46,2.67)0.52 95.35(2.25,2.40)0.55

0.1 95.95(2.19,1.86)0.50 93.46(3.49,3.05)0.49 94.74(2.78,2.48)0.52 95.48(2.41,2.11)0.55

0.3 96.28(1.77,1.95)0.50 93.64(3.04,3.32)0.49 95.09(2.33,2.58)0.52 95.72(2.01,2.27)0.55

0.5 97.26(1.53,1.21)0.49 94.83(2.74,2.43)0.48 96.23(1.97,1.80)0.51 96.47(1.82,1.71)0.54

0.7 97.90(1.09,1.01)0.48 96.01(2.08,1.91)0.48 96.88(1.60,1.52)0.50 97.17(1.46,1.37)0.54

0.9 0.5 0.0 93.19(1.82,4.99)0.52 93.56(2.71,3.73)0.50 94.55(2.49,2.96)0.52 94.67(2.39,2.94)0.58

0.1 93.29(1.80,4.91)0.52 93.74(2.68,3.58)0.50 94.75(2.44,2.81)0.52 94.57(2.30,3.13)0.58

0.3 93.49(1.70,4.81)0.52 93.86(2.66,3.48)0.50 94.83(2.40,2.77)0.52 94.99(2.18,2.83)0.58

0.5 93.82(1.60,4.58)0.51 94.24(2.54,3.22)0.50 95.11(2.32,2.57)0.52 95.41(1.94,2.65)0.58

0.7 0.0 94.78(0.84,4.38)0.38 93.86(2.67,3.47)0.37 95.12(2.13,2.75)0.39 95.48(1.76,2.76)0.41

0.1 94.05(1.06,4.89)0.38 93.10(3.04,3.86)0.37 94.75(2.52,2.73)0.39 95.06(2.14,2.80)0.41

0.3 94.65(0.82,4.53)0.38 93.90(2.59,3.51)0.37 95.14(2.14,2.72)0.39 95.24(1.89,2.87)0.41

0.5 94.40(0.98,4.62)0.38 93.51(2.94,3.55)0.37 94.93(2.35,2.72)0.39 95.49(1.94,2.57)0.41

0.7 95.30(0.61,4.09)0.37 94.98(2.05,2.97)0.36 96.21(1.60,2.19)0.38 96.25(1.36,2.39)0.40

0.9 0.0 97.80(0.96,1.24)0.20 92.94(3.37,3.69)0.20 94.90(2.39,2.71)0.22 95.38(2.02,2.60)0.21

0.1 98.01(0.96,1.03)0.20 93.18(3.44,3.38)0.20 95.27(2.43,2.30)0.22 95.37(2.38,2.25)0.21

0.3 97.82(1.10,1.08)0.20 92.82(3.40,3.78)0.20 94.87(2.51,2.62)0.22 95.50(2.16,2.34)0.21

0.5 98.35(0.77,0.88)0.19 94.11(2.84,3.05)0.20 95.77(1.91,2.32)0.21 96.00(1.80,2.20)0.21

0.7 98.53(0.77,0.70)0.19 94.88(2.63,2.49)0.19 96.25(1.87,1.88)0.21 96.48(1.90,1.62)0.20

0.9 99.19(0.37,0.44)0.19 96.29(1.63,2.08)0.19 97.34(1.15,1.51)0.21 97.59(1.05,1.36)0.20

fM L: the interval lies below the parameter; MR: the interval lies above the parameter

Note: Data generated with the mean family size of 3.12 and with the family size variance of 4.52
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Table 4.2: Performance of procedures for constructing two-sided 95% confidence in­
terval (C l) for a difference between two correlated intraclass correlation coefficients 
with respect to empirical coverage based on 10000 runs and sample size, A;=100

k =  100 Simple asymptotic Fisher’s Z Inverse tanh F-distribution

Pb Ps Pbs C over(M L,M R )f% Cover(M L,M R)% Cover(M L,M R)% Cover(M L,M R )%

C l W idth C l W idth C l W idth C l W idth

0.1 0.1 0.0 94.65(2.77,2.58)0.63 94.85(2.70,2.45)0.62 95.13(2.56,2.31)0.62 96.41(1.91,1.68)0.82

0.1 94.74(2.43,2.83)0.63 94.95(2.31,2.74)0.62 95.25(2.19,2.56)0.62 96.43(1.61,1.96)0.82

0.3 0.1 0.0 94.70(2.67,2.63)0.61 94.73(2.49,2.78)0.60 95.09(2.24,2.67)0.60 96.26(1.70,2.04)0.76

0.1 94.98(2.52,2.50)0.61 94.93(2.41,2.66)0.60 95.40(2.06,2.54)0.60 96.18(1.77,2.05)0.76

0.0 94.93(2.57,2.50)0.59 94.73(2.70,2.57)0.57 95.19(2.40,2.41)0.58 96.26(1.87,1.87)0.70

0.3 0.1 94.70(2.72,2.58)0.59 94.41(2.88,2.71)0.57 94.99(2.54,2.47)0.58 96.08(2.00,1.92)0.70

0.3 95.55(2.43,2.02)0.58 95.30(2.55,2.15)0.57 95.72(2.35,1.93)0.58 96.51(1.85,1.64)0.70

0.5 0.1 0.0 94.65(2.76,2.59)0.57 94.48(2.56,2.96)0.55 94.96(2.29,2.75)0.56 95.87(1.80,2.33)0.70

0.1 94.61(2.68,2.71)0.57 94.44(2.41,3.15)0.55 94.91(2.16,2.93)0.56 95.55(2.01,2.44)0.70

0.3 0.0 94.65(2.59,2.76)0.54 94.15(2.67,3.18)0.53 94.82(2.43,2.75)0.54 95.92(1.91,2.17)0.63

0.1 95.19(2.28,2.53)0.54 94.72(2.45,2.83)0.53 95.28(2.12,2.60)0.54 96.12(1.75,2.13)0.63

0.3 95.45(2.12,2.43)0.54 94.99(2.23,2.78)0.52 95.57(1.97,2.46)0.54 96.32(1.60,2.08)0.63

0.5 0.0 95.13(2.35,2.52)0.50 94.13(2.88,2.99)0.48 95.10(2.38,2.52)0.50 96.20(1.86,1.94)0.55

0.1 94.91(2.67,2.42)0.50 93.79(3.23,2.98)0.48 94.89(2.65,2.46)0.50 95.90(2.12,1.98)0.55

0.3 95.55(2.13,2.32)0.49 94.50(2.60,2.90)0.47 95.44(2.18,2.38)0.49 96.28(1.91,1.81)0.55

0.5 96.50(1.64,1.86)0.49 95.62(2.03,2.35)0.47 96.43(1.68,1.89)0.49 96.90(1.44,1.66)0.54

Continued on next page
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Table 4.2 -  Continued from previous page

oor*HII Simple asymptotic Fisher’s Z Inverse tanh F-distribution

Pb Ps Pbs Cover(ML,MR)% Cover(ML,MR)% Cover(M L,M R)% Cover(ML,MR)%

Cl Width C l Width C l Width C l Width

0.7 0.3 0.0 95.23(2.15,2.62)0.48 94.68(2.36,2.96)0.47 95.34(2.15,2.51)0.48 95.75(1.99,2.26)0.56

0.1 94.81(2.06,3.13)0.48 94.34(2.25,3.41)0.47 95.07(2.04,2.89)0.48 95.52(1.83,2.65)0.56

0.3 94.71(2.33,2.96)0.48 94.13(2.58,3.29)0.46 94.87(2.32,2.81)0.48 95.55(2.07,2.38)0.55

0.5 0.0 95.02(2.17,2.81)0.43 93.93(2.76,3.31)0.41 94.98(2.41,2.61)0.43 95.41(1.95,2.64)0.47

0.1 95.25(1.98,2.77)0.43 93.89(2.81,3.30)0.41 95.11(2.34,2.55)0.43 95.89(1.85,2.26)0.47

0.3 95.35(1.90,2.75)0.43 94.05(2.74,3.21)0.41 95.20(2.18,2.62)0.43 95.66(1.99,2.35)0.47

0.5 96.07(1.64,2.29)0.42 95.13(2.22,2.65)0.41 96.07(1.85,2.08)0.42 96.41(1.64,1.95)0.46

0.7 0.0 95.71(2.06,2.23)0.35 93.41(3.10,3.49)0.34 94.97(2.43,2.60)0.36 95.63(2.11,2.26)0.37

0.1 95.13(2.45,2.42)0.35 92.94(3.57,3.49)0.34 94.40(2.82,2.78)0.36 95.05(2.51,2.44)0.37

0.3 95.94(2.05,2.01)0.35 94.04(2.91,3.05)0.33 95.41(2.32,2.27)0.35 95.93(2.02,2.05)0.36

0.5 96.62(1.69,1.69)0.34 94.77(2.76,2.47)0.33 96.12(2.00,1.88)0.35 96.20(2.06,1.74)0.36

0.7 97.45(1.32,1.23)0.34 95.79(2.17,2.04)0.32 96.98(1.57,1.45)0.34 97.07(1.45,1.48)0.36

0.9 0.5 0.0 94.08(1.83,4.09)0.36 93.65(3.05,3.30)0.35 94.74(2.70,2.56)0.36 95.06(2.31,2.63)0.40

0.1 94.27(1.83,3.90)0.36 94.17(2.72,3.11)0.35 95.06(2.37,2.57)0.36 95.06(2.22,2.72)0.40

0.3 94.29(1.71,4.00)0.36 93.98(2.69,3.33)0.35 94.95(2.42,2.63)0.36 95.25(1.99,2.76)0.39

0.5 94.60(1.58,3.82)0.36 94.35(2.55,3.10)0.35 95.46(2.14,2.40)0.36 95.19(2.10,2.71)0.39

0.7 0.0 94.64(1.50,3.86)0.26 93.58(2.93,3.49)0.25 95.15(2.25,2.60)0.27 95.05(2.29,2.66)0.27

0.1 94.35(1.23,4.42)0.26 93.19(2.93,3.88)0.25 94.82(2.31,2.87)0.27 95.10(1.98,2.92)0.27

0.3 94.64(1.24,4.12)0.26 93.74(2.78,3.48)0.25 95.24(2.23,2.53)0.27 95.44(1.93,2.63)0.27

0.5 95.41(0.99,3.60)0.26 94.26(2.55,3.19)0.25 95.90(1.81,2.29)0.26 95.88(1.72,2.40)0.27

0.7 95.83(0.88,3.29)0.26 94.75(2.38,2.87)0.25 95.86(1.96,2.18)0.26 96.04(1.73,2.23)0.27

0.9 0.0 96.50(1.79,1.71)0.13 93.08(3.53,3.39)0.13 95.03(2.55,2.42)0.14 95.16(2.53,2.31)0.13

0.1 96.55(1.80,1.65)0.14 92.98(3.35,3.67)0.13 94.97(2.53,2.50)0.14 95.14(2.39,2.47)0.14

0.3 96.87(1.50,1.63)0.13 93.60(3.28,3.12)0.13 95.42(2.23,2.35)0.14 95.56(2.23,2.21)0.13

0.5 97.06(1.46,1.48)0.13 93.97(3.04,2.99)0.13 95.72(2.11,2.17)0.14 95.87(2.04,2.09)0.13

0.7 97.52(1.13,1.35)0.13 94.73(2.54,2.73)0.13 96.34(1.74,1.92)0.14 96.67(1.66,1.67)0.13

0.9 98.49(0.81,0.70)0.13 96.39(1.86,1.75)0.12 97.59(1.31,1.10)0.13 97.75(1.21,1.04)0.13

|ML: the interval lies below the parameter; MR: the interval lies above the parameter

Note: Data generated with the mean family size of 3.12 and with the family size variance of 4.52
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Table 4.3: Performance of procedures for constructing two-sided 95% confidence in­
terval (C l) for a difference between two correlated intraclass correlation coefficients 
with respect to empirical coverage based on 10000 runs and sample size, k= 200

k =  200 Simple asymptotic Fisher’s Z Inverse tanh F-distribution

Pb Ps Pbs C over(M L,M R )f% Cover(M L,M R)% Cover(M L,M R)% Cover (M L, M R ) %

C l W idth C l W idth C l W idth C l W idth

0.1 0.1 0.0 95.15(2.30,2.55)0.44 95.22(2.24,2.54)0.44 95.33(2.23,2.44)0.44 96.27(1.79,1.94)0.57

0.1 94.98(2.39,2.63)0.44 95.05(2.36,2.59)0.44 95.18(2.32,2.50)0.44 96.27(1.67,2.06)0.57

0.3 0.1 0.0 95.06(2.51,2.43)0.43 94.92(2.42,2.66)0.42 95.21(2.26,2.53)0.43 96.15(1.97,1.88)0.53

0.1 94.91(2.54,2.55)0.43 94.79(2.46,2.75)0.42 95.16(2.24,2.60)0.43 96.14(1.75,2.11)0.53

0.3 0.0 95.12(2.37,2.51)0.41 94.75(2.57,2.68)0.40 95.27(2.29,2.44)0.41 96.03(1.97,2.00)0.49

0.1 95.16(2.43,2.41)0.41 94.78(2.60,2.62)0.40 95.27(2.40,2.33)0.41 96.32(1.88,1.80)0.49

0.3 95.41(2.37,2.22)0.41 95.15(2.48,2.37)0.40 95.57(2.29,2.14)0.41 96.65(1.75,1.60)0.49

0.5 0.1 0.0 95.02(2.58,2.40)0.40 94.69(2.48,2.83)0.39 95.28(2.12,2.60)0.40 95.93(1.89,2.18)0.49

0.1 94.98(2.53,2.49)0.40 94.63(2.42,2.95)0.39 95.11(2.20,2.69)0.40 95.94(1.78,2.28)0.49

0.3 0.0 94.80(2.63,2.57)0.38 94.20(2.76,3.04)0.37 94.86(2.52,2.62)0.38 95.86(1.96,2.18)0.44

0.1 94.76(2.74,2.50)0.38 94.16(2.92,2.92)0.37 94.82(2.62,2.56)0.38 96.05(2.02,1.93)0.44

0.3 95.49(2.25,2.26)0.38 95.04(2.45,2.51)0.37 95.57(2.16,2.27)0.38 96.22(1.78,2.00)0.44

0.5 0.0 95.07(2.47,2.46)0.35 94.09(2.98,2.93)0.34 95.03(2.49,2.48)0.35 95.86(2.01,2.13)0.38

0.1 94.89(2.55,2.56)0.35 93.79(3.09,3.12)0.34 94.82(2.58,2.60)0.35 95.65(2.12,2.23)0.38

0.3 95.39(2.54,2.07)0.35 94.57(2.91,2.52)0.33 95.35(2.57,2.08)0.35 96.10(2.20,1.70)0.38

0.5 96.46(1.82,1.72)0.34 95.59(2.23,2.18)0.33 96.45(1.80,1.75)0.34 96.96(1.64,1.40)0.38

Continued on next page
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Table 4.3 -  Continued from previous page
k =  200 Simple asymptotic Fisher’s Z Inverse tanh F-distribution

Pb Ps Pbs Cover(M L,M R)% Cover(M L,M R)% Cover(M L,M R)% Cover(ML,MR)%

Cl Width C l Width C l W idth C l Width

0.7 0.3 0.0 94.50(2.42,3.08)0.34 93.86(2.73,3.41)0.33 94.68(2.35,2.97)0.34 95.24(2.11,2.65)0.39

0.1 95.38(2.08,2.54)0.34 94.56(2.45,2.99)0.33 95.48(2.10,2.42)0.34 95.69(2.06,2.25)0.39

0.3 95.11(2.08,2.81)0.34 94.70(2.29,3.01)0.33 95.32(2.05,2.63)0.34 95.81(1.78,2.41)0.39

0.5 0.0 94.83(2.30,2.87)0.30 93.73(2.95,3.32)0.29 94.79(2.52,2.69)0.30 95.55(1.97,2.48)0.32

0.1 95.08(1.80,3.12)0.30 93.80(2.52,3.68)0.29 94.87(2.09,3.04)0.30 95.58(1.89,2.53)0.32

0.3 95.80(2.00,2.20)0.30 94.78(2.58,2.64)0.29 95.83(2.16,2.01)0.30 96.23(2.01,1.76)0.32

0.5 96.09(1.73,2.18)0.30 94.83(2.46,2.71)0.28 95.99(1.96,2.05)0.30 96.14(1.68,2.18)0.32

0.7 0.0 95.21(2.50,2.29)0.24 93.38(3.36,3.26)0.23 94.80(2.71,2.49)0.25 95.44(2.34,2.22)0.25

0.1 95.23(2.31,2.46)0.24 93.69(3.10,3.21)0.23 94.93(2.44,2.63)0.25 95.66(2.15,2.19)0.25

0.3 95.77(2.18,2.05)0.24 94.08(3.09,2.83)0.23 95.49(2.32,2.19)0.24 95.88(2.14,1.98)0.25

0.5 96.43(1.86,1.71)0.24 94.87(2.62,2.51)0.23 96.04(2.08,1.88)0.24 96.69(1.67,1.64)0.25

0.7 97.40(1.28,1.32)0.23 96.04(1.97,1.99)0.22 97.13(1.40,1.47)0.24 97.44(1.32,1.24)0.24

0.9 0.5 0.0 94.63(1.86,3.51)0.26 93.86(2.89,3.25)0.25 94.90(2.49,2.61)0.26 95.11(2.29,2.60)0.28

0.1 94.76(1.91,3.33)0.26 93.95(2.95,3.10)0.24 95.00(2.57,2.43)0.26 94.86(2.38,2.76)0.28

0.3 94.81(2.05,3.14)0.26 94.12(3.00,2.88)0.24 95.01(2.67,2.32)0.26 94.92(2.61,2.47)0.27

0.5 95.11(1.76,3.13)0.25 94.65(2.51,2.84)0.24 95.52(2.26,2.22)0.25 95.50(2.02,2.48)0.27

0.7 0.0 94.90(1.49,3.61)0.18 93.46(3.10,3.44)0.17 95.15(2.40,2.45)0.19 95.18(2.29,2.53)0.19

0.1 94.87(1.66,3.47)0.18 93.41(3.21,3.38)0.17 94.78(2.57,2.65)0.19 95.11(2.33,2.56)0.19

0.3 95.17(1.44,3.39)0.18 93.63(3.07,3.30)0.17 95.23(2.33,2.44)0.19 95.16(2.38,2.46)0.19

0.5 95.56(1.33,3.11)0.18 94.22(2.79,2.99)0.17 95.70(2.14,2.16)0.18 95.97(1.90,2.13)0.18

0.7 95.98(1.14,2.88)0.18 94.80(2.50,2.70)0.17 96.07(1.85,2.08)0.18 96.21(1.86,1.93)0.18

0.9 0.0 95.20(2.29,2.51)0.09 92.51(3.61,3.88)0.09 94.45(2.64,2.91)0.10 94.87(2.52,2.61)0.09

0.1 95.80(1.99,2.21)0.09 92.93(3.52,3.55)0.09 94.89(2.52,2.59)0.10 95.14(2.48,2.38)0.09

0.3 96.33(1.87,1.80)0.09 93.44(3.43,3.13)0.09 95.51(2.31,2.18)0.10 95.53(2.31,2.16)0.09

0.5 96.75(1.55,1.70)0.09 93.94(3.05,3.01)0.09 95.82(2.02,2.16)0.09 96.18(1.90,1.92)0.09

0.7 97.45(1.36,1.19)0.09 95.61(2.28,2.11)0.09 96.88(1.65,1.47)0.09 97.05(1.59,1.36)0.09

0.9 98.25(0.85,0.90)0.09 96.20(1.69,2.11)0.08 97.86(1.08,1.06)0.09 97.92(0.96,1.12)0.09

fM L: the interval lies below the parameter; MR: the interval lies above the parameter

Note: Data generated with the mean family size of 3.12 and with the family size variance of 4.52



49

Sample size = 50 Sample size = 100 Sample size = 200

SA FZ IT F SA FZ IT F SA FZ IT F
Method Method Method

Figure 4.1: Performance of MOVER with respect to empirical coverage for two-sided 
95% confidence interval for a difference between two correlated ICCs using four dif­
ferent methods: simple asymptotic method (SA), method based on the Fisher’s Z- 
transformation (FZ), method based on the inverse hyperbolic tangent transformation 
(IT ), method based on the F-distribution (F). There are 43 data points per sample 
size.
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Sample size = 50 Sample size = 100 Sample size = 200

Method Method Method

Figure 4.2: Performance of MOVER with respect to tail errors for two-sided 95% 
confidence interval for a difference between two correlated ICCs using four different 
methods: simple asymptotic method, method based on the Fisher’s ¿^-transformation 
(FZ), method based on the inverse hyperbolic tangent transformation (IT ), method 
based on the E-distribution (F). There are 43 data points per sample size.
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Sample size = 50 Sample size = 100 Sample size = 200

Method Method Method

Figure 4.3: Performance of MOVER with respect to interval width for two-sided 
95% confidence interval for a difference between two correlated ICCs using four dif­
ferent methods: simple asymptotic method (SA), method based on the Fisher’s Z- 
transformation (FZ), method based on the inverse hyperbolic tangent transformation 
(IT ), method based on the F-distribution (F). There are 43 data points per sample 
size.
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Chapter 5

EXAMPLE - THE GALTON DATA ON SIBLINGS
HEIGHTS

5.1 The data source

We now use Galton’s 1886 data set to illustrate the procedures. Hanley (2004a) de­

tailed the historical background of the data and how he brought the data to light 

from Galton’s original notebook. The data set is available at Hanley’s web site (Han­

ley, 20046) with the appropriate corrections. Recently, the data were analyzed by 

Naik and Helu (2007) to illustrate testing two independent ICCs. Interest focused 

on comparing the ICC between boys in a family with that between girls in another 

family. In other words, the first population consisted of families for which only boys 

were considered, the second consisted of families for which only girls were considered. 

Such division lead to loss of essential information, since the data set is only partially 

analyzed. Moreover, in the comparison of sex-specific ICCs, it would be more infor­

mative to compare the coefficients of resemblance obtained from the same families by 

taking into account the dependency of observations among siblings of the opposite 

sex. Such comparisons lead to the comparison of two correlated ICCs.
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The data on human stature consist of 205 families where the number of children 

ranges from 1 to 15. The entire data set contains 963 children of which 486 are sons 

and 476 are daughters. Among the 963 children, some of them are described verbally 

as: “tallish” , “middle” , “deformed” , etc., others have numerical values recorded as 

“about x.O inches” . Thus, among the 963 children, only 934 from the 205 families 

have numeric values.The total number of families having at least one son and one 

daughter is 150. Also, there are 179 families with at lest one son and 176 families 

with at least one daughter. Based on the 934 observations, the average family size 

and the sample variance of family size are 4.6 and 7.4, respectively. The summary 

statistics for heights of brothers and sisters are provided in Table 5.1. Table 5.1 shows 

that when estimating ICC, sisters and brothers should be treated as separate groups, 

as the sample means and samples variances in these two groups are different.

The brother-brother correlation (pb) and the sister-sister correlation (ps) with 

respect to stature are estimated by the ANOVA estimator given by the equation 

(2.3) in Section 2.2. Thus, for brothers, based on 179 families, MSE& =  4.242, 

MSA(, =  11.367, ribo =  2.682 and

MSA6 -  MSE6 
Pb ~  MSA& +  (nb0 -  1)MSE6 

11.367-4.242 
“  11.367+ (2.682 -  1)4.242

=  0.385.

Similarly, for sisters, based on 176 families, MSEs =  3.222, MSAs =  9.238, nso =  2.567, 

and ps =  0.421.
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Table 5.1: Summary of Galton’s 1886 data set on siblings heights

Number of children Average heightf Sample variance of heightf P

of the same sex (inches) (inches)

Brothers 481 69.233 6.898 0.385

Sisters 453 64.103 5.565 0.421

f Average height and the sample variance were calculated based on the ANOVA table
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5.2 Confidence intervals for sex-specific intraclass correlation coeffi­

cients

To compare two sex-specific ICCs, the confidence interval for pb — ps is computed 

using MOVER incorporating four different methods for sex-specific ICCs including: 

the simple asymptotic method, the method based on Fisher’s Z -1ransforination. the 

inverse hyperbolic tangent transformation method, and the method based on the 

F-distribution. The confidence interval estimates of pbl ps and pb — ps using the four 

methods are summarized in Table 5.2.

A  95% confidence interval for each pb and ps is obtained using the simple asymp­

totic method as described in Section 2.3. For brothers, pb =  0.385, w (p& ) =  0.003

h  =  P b ~  A*/2\/vâr(p&)
=  0.385 -  1.96\/0.003 

=  0.278,

Ub =  Pb +  za/2\/vsîr (pb)

=  0.385 +  1.96\/0.003 

=  0.492

and similarly for sisters, pb =  0.421, var(p) =  0.003

(ls,us) =  (0.314, 0.528).

A  95% confidence interval for each pb and ps obtained using method based on 

the Fisher’s Z-transformation as explained in Section 2.3. For brothers, nob =  2.682,
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pb =  0.385, Nb =  481, kb =  179. Then,

zFb l ln ~1 +  O-06 ~  1 )pb)
2 _ 1 — Pb
1 [ l  +  (2.682 -  1)0.385
2 n 1 -  0.385

=  0.493,

var(Z Fb) =  ^ [(kb -  1)_1 +  (N b -  A;6) _1]

=  ^[(179 -  1)_1 +  (481 -  179)"1], 

=  0.004.

A  95% confidence interval for pb on the transformed scale is

{Zh Zu) =  [ z Fb -  2;Q/2y /var(ZFJ, ZFb +  2:a/2̂ /var(ZFJ 

(Z i,Z u) =  (0.369,0.617).

Then, transforming the limits back to the original scale result in

l _  exp(2Zi) -  1
b exp(2Zi) +  (nb0 -  1)

exp(2 x 0.369) — 1 
=  exp(2 x 0.369) +  (2.682 -  1)

=  0.289,

exp(2Zu) — 1 
exp(2Zu) +  (nbo -  1) 

exp(2 x 0.617) -  1 
exp(2 x 0.617) +  (2.682 -  1)

=  0.476.
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Similarly for sisters,

Z Fs =  0.527 

vai(ZFs) =  0.005,

(Z i,Z u) =  (0.388, 0.666),

{Is, U S )  =  (0.314, 0.521).

A  95% confidence interval for each pb and ps is obtained using the inverse hy­

perbolic tangent transformation method as described in Section 2.3. For brothers, 

Pb — 0.385, var(pb) =  0.003

-In
1 +  Pb

2 Ll -  Pb\
1, r 1 +  0.385
2 11 1-0.385

=  0.406,

var(Z6)
var (pb)

[ ( l  +  pb) ( l - p b ) ) 2

0.003
[(1 +  0.385)(1 -0.385)]2

=  0.004.

Then, a 95% confidence interval for pb on the transformed scale is

(Zi, Zu) ^Zb ô;/2\Jvar(Z\,), Zb zaj2 var(Zb

(Z h Zu) =  (0.282, 0.530).
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Then, transforming the limits to the original scale result in

_  exp(2Z;) -  1 
6 exp(2Z() +  1

exp(2 x 0.282) — 1 
exp(2 x 0.282) +  1

=  0.275,

_  exp(2Zu) -  1 
Ub exp(2 Zu) +  1

_  exp(2 x 0.530) -  1 
exp(2 x 0.530) +  1

=  0.485.

Similarly for sisters,

Zs =  0.449, 

var(Zs) =  0.004,

(Zh Zu) =  (0.325, 0.573)

{la,ua) =  (0.314, 0.518).

A  95% confidence interval for each and ps based on the F  -distribution method 

due to Thomas and Hultquist (1978) as described in Section 2.3. For brothers,

rp =  jp
r L b ^  (a/2,179-1,

F,(0.05/2,179-1,481-179)

=  0.766
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F j j b -^ (l-a / 2 ,179-1,

=  F Jl—0.05/2,179—1,481—179)

=  1.294,

F ; =  2.254, 

hb =  1.968.

When the values for F6*, FLb, F,Jb, hb are substituted into the formula (2.12) in Section

2.3, a 95% confidence interval for pb is produced

F*/FUb -  1 
6 +  FZ/FUb -  1

2.254/1.294 -  1 
_  1.968 +  2.254/1.294 - 1

=  0.274,

ub
Fb*/FLb -  1 

nb +  F£/FLb -  1 

2.254/0.766 -  1 
1.968 +  2.254/0.766 -  1

=  0.497.

Similarly, for sisters

FLs =  0.762, 

FUs =  1.303, 

F* =  2.284, 

hs =  1.753,

(ls, ua) =  (0.300, 0.533).
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5.3 Confidence intervals for a difference between two sex-specific intr­

aclass correlation coefficients

The 95% confidence limits for pb — ps are obtained using the equations (3.4.6) and 

equation (3.4.7) derived in Section 3.4 are given as

L =  {pb - Ps) -  V  (pb -  h )2 +  ( u a -  Ps)2 -  2corr(p6, ps)(pb -  lb)(us -  ps), (5.3.1)

U =  (pb — ps) +  y/(ub -  pb)2 +  (ps -  ls)2 -  2corr(pi), ps)(ub -  pb)(ps -  ls)- (5.3.2)

The estimated interclass correlation, pbs, is 0.264 (based on 150 families who have at 

least one son and one daughter). Now, the corr(pb,ps) term in equation (5.3.1) and 

equation (5.3.2) can be estimated using the formula (3.4.5) in Section 3.4

_  Pbs [h b h a ih b  -  l)(fh, -  1)]1/2 
[1 + (nb -  l)Pb][i + (na -  l )p8]
0.2642 [1.968 x 1.753(1.968 -  1)(1.753 -  1)]1/2 

[1 +  (1.968 -  1)0.385][1 +  (1.753 -  1)0.421]

=  0.061.

A 95% confidence interval for pb — ps using the MOVER and incorporating con­

fidence intervals for pb and ps obtained by the simple asymptotic method. The 95% 

confidence interval for separate pb and ps using the simple asymptotic method are as 

given in Section 5.2,

(lb,ub) =  (0.278, 0.492),

(ls,us) =  (0.314, 0.528).
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By substituting pb, ps, h i  u b, h i  u s into the formulae (5.3.1) and (5.3.2), we obtained 

95% confidence limits for pb — ps as shown below

L =  ( p b -  p a ) ~  V ( p b  ~  lb )2 +  ( u a -  p s ) 2 -  2corr(p6, p s ){pb ~  h ) ( u s -  p 8)

=  -0.036 -  y/(0.107)2 +  (0.107)2 -  2 x 0.061(0.107)(0.107)

=  -0.183,

U  =  ( p b — P a )  +  V ( u b ~  p b )2 +  ( p a ~  h ) 2 -  2 c o r i ( p b, p s ) ( u b ~  pb){f>s ~  h )

=  -0.036 +  \J(0.107)2 +  (0.107)2 -  2 x 0.061(0.107)(0.107)

=  0.111.

A second 95% confidence interval for pb — ps using the MOVER incorporating 

confidence intervals of pb and ps is based on Fisher’s ¿^-transformation. The 95% 

confidence intervals for pb and ps using Fisher’s ^-transformation are as given in 

Section 5.2,

(lb,ub) =  (0.289, 0.476), 

(la,Ua) =  (0.314, 0.521)

and the corresponding 95% confidence limits for p b — p s are

(L, U )  =  (-0.170, 0.100).

For a 95% confidence interval for p b — p s using MOVER incorporating the inverse 

hyperbolic tangent transformation, the 95% confidence interval for pb and ps based
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on inverse hyperbolic tangent transformation are as given in Section 5.2,

(k ,ub) =  (0.275, 0.485),

(la, u8) =  (0.314, 0.518)

and the corresponding 95% confidence limits for pb — ps are

(L ,U ) =  (-0.178, 0.101).

Lastly, for a 95% confidence interval for pb — ps using the MOVER based on the 

F - distribution method, the 95% confidence intervals for pb and ps are as given in 

Section 5.2:

(lb,ub) =  (0.274, 0.497), 

(Is,ua) =  (0.300, 0.533)

and 95% confidence limits for pb — ps are

(L ,U ) =  (-0.188, 0.124).
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Table 5.2: 95% two sided confidence intervals (CIs) for pb — ps using four different 
methods of confidence interval estimation for sex-specific ICCs

Method 95% Cl about p& 95% Cl about ps 95% Cl about ( pb  — p 8)

Pb = 0.385 Ps  =  0.421 p b -  p s  = -0.036

Simple asymptotic (0.278, 0.492) (0.314, 0.528) (-0.183, 0.111)

Fisher’s Z (0.289, 0.476) (0.314, 0.521) (-0.170, 0.100)

Inverse hyperbolic tangent (0.275, 0.485) (0.314, 0.518) (-0.178, 0.101)

F-distribution (0.274, 0.497) (0.300, 0.533) (-0.188, 0.124)
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5.4 Summary

Galton’s 1886 data consist of 963 children, 934 of which have numeric values (29 

children were described verbally and were omitted from the analysis). Among the 

934 children, there are 481 brothers and 453 sisters and 205 families. The estimated 

brother-brother correlation and sister-sister correlation (and their variances) are given 

respectively by 0.385(0.003) for brothers and 0.421(0.003) for sisters. The interclass 

correlation coefficient is 0.264. Furthermore, 95% confidence intervals for pb and ps 

were obtained using four different methods as they were used in the process of esti­

mating a 95% confidence interval for pb — ps. The estimated difference between two 

sex-specific intraclass correlations, pb — ps is -0.036. Based on the results provided in 

Table 5.2, there is no significant difference between the sex-specific intraclass correla­

tions coefficients at the a =  5% level regardless of the method used, as the resulting 

confidence intervals for pb — ps all contained zero. Similar results were obtained by 

Naik and Helu (2007), where no significant difference was found between indepen­

dent sex-specific intraclass correlations by means of significant testing. Even though 

no significant difference was found between the two sex-specific intraclass correlation 

coefficients, the proposed confidence intervals still showed substantial variability. Re­

lying on hypothesis testing alone, this information is discarded and the direction and 

magnitude of the underlying difference ignored.
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Chapter 6

CONCLUSIONS

This thesis has focused on confidence interval estimation for a difference between two 

correlated ICCs assuming an unbalanced one-way random effects model. Even though 

an hypothesis testing procedure for the equality of two correlated ICCs has been 

developed (Donner et al, 1984), confidence intervals are considered more informative 

as they indicate statistical significance as well as the magnitude of the effect for 

practical importance.

Limited methodology exist for constructing a confidence interval for a difference of 

two correlated ICCs when class sizes are variable. This thesis aimed at filling that gap. 

The approach taken is to recover variance estimates needed for the difference from 

confidence limits for single ICCs. The advantage of this approach is that is can take 

into account asymmetric properties of p, and in contrast to the traditional method, 

does not enforce symmetry on the interval. The method has been referred to as the 

MOVER, method of variance estimates recovery (Zou, 2008). Another advantage of 

the MOVER is that it can be used when the raw data are not available, given the 

summary in terms of point estimators of ICCs and their respective confidence limits.

The good performance of the MOVER as applied to a confidence interval for a dif­
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ference of two correlated ICCs in the case of constant class size has been demonstrated 

by Ramasundarahettige et al. (2009). The MOVER with limits for single ICCs based 

on F-distribution was recommended as its performance even in small sample size was 

shown to be good.

The major finding of this thesis is that the MOVER method implementing limits 

for single ICCs obtained by application of inverse hyperbolic tangent transformation 

performs consistently well even in small sample sizes. The traditional method did not 

provide satisfactory results in small sample sizes where the assumption of normality 

may not hold. These results are consistent with those obtained by Ramasundarahet­

tige et al. (2009) where they showed that, although the performance of the simple 

asymptotic method in terms of empirical coverage was good as sample increased, its 

performance in small sample sizes was not acceptable. The poor performance of the 

simple asymptotic method in small sample size occurs because this method has diffi­

culty adjusting for the asymmetric sampling distribution of p, which is a function of 

the parameter.

It must be emphasized that conclusions obtained in this thesis will only be valid 

under several assumptions. First, the distribution of class sizes was obtained from 

families typically seen in United States in 1950. In the cases of greater imbalance, 

the conclusions of this thesis may not apply and further investigation is required 

for evaluating the proposed method. Second, the MOVER takes its validity from 

that of confidence limits for single ICCs. In this thesis, confidence intervals for single 

ICCs relied on the assumption of approximate normality; therefore in situations when
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this assumption may not hold, other procedures should be sought. One possible 

solution is to first transform the data using a power transformation (Box and Cox, 

1964) and then obtain the desired confidence interval using the proposed method. 

However, due to the transformation the confidence intervals on the transformed scale 

may not be directly interpretable. Another possibility is to use the bootstrap. This 

procedure has been widely used with non-normal data. For example, Ukoumunne 

et al. (2003) implemented a non-parametric bootstrap confidence interval for ICC with 

constant class size in the context of cluster randomization trials. They showed that 

the application of bootstrap-t method to the Fisher’s Z-transfer mat ion of p performs 

good even in small sample sizes. Evaluation of the bootstrap for the difference of two 

correlated ICCs, however, is beyond the scope of this thesis.

The proposed method is not only limited to ICCs obtained under unbalanced one­

way random effects model but it can be extended to models where one is able to 

adjust for other source of variability in the data. For instance, Stanish and Taylor 

(1983) considered estimation of ICC under the covariance model where one is able 

to adjust for a potential confounding variable. Other models can also be considered 

including mixed effects models and random effects models. Confidence intervals for 

ICCs under these models are given in Harville and Fenech (1985).
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