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Abstract 

Lessons learned (LL) records constitute a software organization’s memory of successes and 

failures. LL are recorded within the organization repository for future reference to optimize 

planning, gain experience, and elevate market competitiveness. However, manually 

searching this repository is a daunting task, so it is often overlooked. This can lead to the 

repetition of previous mistakes and missing potential opportunities, which, in turn, can 

negatively affect the organization’s profitability and competitiveness. In this thesis, we 

present a novel solution that provides an automatic process to recall relevant LL and to push 

them to project managers. This substantially reduces the amount of time and effort required 

to manually search the unstructured LL repositories, and therefore, it encourages the 

utilization of LL. In this study, we exploit existing project artifacts to build the LL search 

queries on-the-fly, in order to bypass the tedious manual search process. While most of the 

current LL recall studies rely on case-based reasoning, they have some limitations including 

the need to reformat the LL repository, which is impractical, and the need for tight user 

involvement. This makes us the first to employ information retrieval (IR) to address the LL 

recall. An empirical study has been conducted to build the automatic LL recall solution and 

evaluate its effectiveness. In our study, we employ three of the most popular IR models to 

construct a solution that considers multiple classifier configurations. In addition, we have 

extended this study by examining the impact of the hybridization of LL classifiers on the 

classifiers’ performance. Furthermore, a real-world dataset of 212 LL records from 30 

different software projects has been used for validation. Top-k and MAP, well-known 

accuracy metrics, have been used as well. The study results confirm the effectiveness of the 

automatic LL recall solution by a discerning accuracy of about 70%, which was increased to 

74% in the case of hybridization. This eliminates the effort needed to manually search the LL 

repository, which positively encourages project managers to reuse the available LL 

knowledge – which in turn avoids old pitfalls and unleash hidden business opportunities.  

Keywords 

Software lessons learned recall, software project management, knowledge management, 

information retrieval models, software analytics, systematic literature review.  
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Chapter 1  

1 Introduction 

Everyday situations teach us lessons and provide us with analogs. We rely on these 

lessons learned (LL) and analogs in dealing with similar problems and identifying 

opportunities. Accordingly, the decision making literature [1] tells us about the power of 

analogs. Analogs are experiences or knowledge from domains similar to that of the 

subject at hand and can work for different domains such as management, decision 

making, and entrepreneurship. They can support decision making by providing 

recommendations, improving contextual awareness, facilitating difficult tasks, clarifying 

problem definition, and fostering development of reasonable plans. Thus, managers can 

rely on analogs to facilitate their decision making. Also, entrepreneurs can rely on 

analogs to build their business models and to test their hypothesis [2].   

The software engineering domain is no exception, regarding analogs, as learning from 

similar projects or previous experiences improves the success and quality of software 

projects. This was highlighted by Pfleeger [3] when she used an analogy from soccer. In 

a soccer game, the team does not just play the game and then forget about it. Instead, a 

good team comes together after the game to discuss and analyze their performance, what 

happened and what can be improved. They define the LL from their performance and 

analyze the game scenarios and circumstances. They make use of these LL to overcome 

mistakes, improve their performance and leverage good plays. It can be the same for 

software engineering. Project managers (PMs) can make use of their experiences and 

conduct post-action meetings in order to discuss, analyze and report LL. 

Analogs can come from accumulated personal or organizational knowledge or 

experience. For any organization, local LL can provide a precious and reliable source of 

applicable analogs since LL are generated from the same organization’s culture and work 

environment. This makes LL more convenient and fitting for the organization’s current 

and future projects and customers. LL records can contain information regarding either a 

positive experience, such as a business opportunity, or a negative experience such as a 
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After the attack on Pearl Harbor in 1941, the Japanese commander, Mitsue 

Fuchido, was surprised by its success. He asked, “Had these Americans never 

heard of Port Arthus?” that event, which was famous in Japan, had preceded the 

Russo-Japanese war of 1904. The Japanese tactic was to destroy the Russian 

Pacific fleet at anchor at Port Arthur in a surprise attack. 

Wohlstetter 1962 [1] 

mistake or a problem. Both positive and negative experiences are valuable since they can 

either highlight an opportunity for leveraging profit or eliminate an anticipated loss, 

respectively. That said, reporting and safely storing such historical knowledge, or LL, is 

encouraged by different standards from reputable management institutions such as the 

Project Management Body of Knowledge (PMBOK) by the Project Management Institute 

(PMI) [4] and the Capability Maturity Model Integration (CMMI) [5]. Both standards 

emphasize the importance of conducting closing reviews and retrospective meetings to 

record and analyze LL from previous projects for future reference. Because of the high 

value placed on LL, the National Aeronautics and Space Administration (NASA) has 

assigned an effort and budget to improve its LL reporting process and launch its LL 

portal [6]. 

It is worth mentioning that it is not the existence of data itself— the LL records in our 

case— that is valuable, but rather the awareness of the appropriate and relevant records 

and the ability to manipulate these LL records to deal with needs. Keeping this in mind, 

we should ask what happens when PMs overlook LL records, ignore them, or do not even 

know of the existence of relevant LL records. 
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Overlooking or missing relevant LL records can lead not only to missing available 

opportunities and business success, but can also cause a catastrophic loss of profit due to 

the repetition of known previous mistakes which could be easily avoided by just knowing 

about them. In this thesis, we have worked on the enhancement of the retrieval of 

relevant LL records to make them available to PMs. Our goal has been to facilitate access 

to these LL records in the organization’s repository, and therefore minimize or eliminate 

the problem of overlooking LL. Accordingly, our solution, automatically recalls relevant 

LL records and provides them to PMs to avoid the intensive effort needed to manually 

search for them. In order to build this solution, we have employed information retrieval 

(IR) techniques, for the first time within the LL recall context. In addition, we have 

manipulated two of the existing project management artifacts in order to construct search 

queries automatically instead of searching manually by PMs. 

1.1 Motivation 

Our software analytics (SA) systematic literature review (SLR), described in Chapter 2, 

has shown that most of the available SA studies address issues that serve developers 

(about 90% of the studies), while a few studies target other stakeholders such as 

management and quality assurance teams (See Section 2.2.2). Also, the SLR results have 

shown that the majority of studies analyzed only a few of the artifacts accompanying the 

software development lifecycle, with many of the studies analyzing only source code. 

The focus of this thesis is twofold. First, we decided to focus the research on providing a 

solution to serve stakeholders other than developers. Second, we aimed to exploit the 

software management artifacts that were not heavily analyzed in previous studies in the 

software engineering literature. By concentrating the research point on these two axes, we 

have worked towards closing the research gap, as revealed by the SLR, and tackle a 

genuine research challenge. With this motivation in mind, we decided to define the 

general research topic as serving software PMs. Also, we have focused our thinking on a 

solution that would have a high impact and promote knowledge. In order to narrow down 

the research topic and define specific research areas, we started by surveying the LL 

literature. The survey indicated that there are a small number of existing LL studies. In 

addition, most of these studies were focused on the implementation of a standalone LL 
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system.  Beyond this, the LL literature survey has clarified that there is a problem in the 

dissemination or recall of LL, and that this can be attributed to the intensive task of 

manually searching the LL repository for relevant LL.  Finally, we have noticed that most 

of the available LL recall studies employed case-based reasoning techniques, which have 

some practical limitations (See Section 3.2). These observations led us to defining the 

research gap which we have worked to close in the solution provided in this thesis work. 

As will be described in detail, we have provided a solution to improve LL recall using IR 

techniques. The solution serves software PMs, and it can also be generalized to serve 

PMs in other domains, by providing them with LL records relevant to the projects at 

hand.  

As described, the recall of LL is not currently being optimized due to the challenge of 

manually searching for relevant LL. This can lead to overlooking this valuable 

knowledge and losing precious opportunities.  As a result, in this thesis, we aim to 

address this issue in order to facilitate LL recall, which in turn improves the benefit to 

stakeholders from existing LL knowledge. With our motivation clarified, in the next 

section, we will describe the problem we have addressed. 

1.2 Problem Statement and Research Questions 

Every aspect of a software PM's job is about predicting the future and anticipating 

problems and outcomes. Information technology organizations and project management 

offices (PMO) usually have LL repository systems. This LL repository can be viewed as 

the organization’s memory, as it contains a wealth of historical experiences. These LL 

records can provide valuable analogs for PMs which can facilitate the decision-making 

process and make decisions more accurate, rational and reasonable. 

The problem is that these repositories are rarely reviewed or referenced by PMs during 

the project lifecycle, especially the project initiation phase. This can lead to the repetition 

of previous mistakes. It also means that opportunities for benefiting from previous 

success stories are missed. Discarding lessons learned repositories can be the result of the 

intensive nature of manually searching for relevant lessons learned by PMs, or other 

reasons such as time limitations or lack of awareness of the presence of relevant LL. 
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In this work, we provided a solution to address this problem by improving the recall of 

LL records. As aforementioned, we employed IR techniques to implement this solution. 

That said, we defined two main research questions in order to implement and validate the 

proposed solution as follows (See Section 4.2): 

RQ1: Can we automatically, rather than manually, recall and push relevant LL to PMs 

using IR-based LL classifiers?  

RQ2: Can project artifacts be used to construct on-the-fly queries to recall LL records 

relevant to the software project at hand? 

As shown in these two research questions, we sought a solution to the issue of the 

intensive effort required to manually search the LL repository for relevant records. Our 

other aim in this solution was to avoid the existing limitations of previous studies, which 

employed case-based reasoning (See Section 4.3), by employing IR techniques for the 

first time in the LL recall context as per our knowledge, to construct an LL classifier to 

retrieve the LL relevant records to the project at hand. In the second research question, 

we intended to examine whether we could exploit any of the existing project management 

artifacts to automatically construct queries to search for relevant LL records. By 

constructing the queries automatically, we avoided the need for the manual involvement 

of PMs to define the queries, which could lead to overlooking LL records due to time 

limitations and the effort required. In order to answer the research questions and validate 

the solution, we conducted an empirical study. In this study, we employed a real dataset 

from an industrial partner. The dataset considered contained records for both LL and 

project management artifacts (See Section 5.1). The study results confirmed the validity 

of the solution in recalling relevant LL efficiently (See Sections 5.3 and 5.4). 

In addition, we considered multiple IR techniques and classifier configurations. Since the 

LL classifier’s configuration could affect its performance, we examined the impact of 

configuration by defining the following research question:   
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RQ3: Do the configurations of LL classifiers have an impact on the performance results? 

In order to answer this research question, we conducted a statistical test on the results 

considering different classifier parameter configurations (See Section 4.4.2).  

After recording the LL recall results, we performed one more step by examining the 

impact of the hybridization of multiple classifiers on the accuracy of the LL retrieved. 

Therefore, we considered two of the hybridization techniques from the literature (See 

Section 6.2) and sought an answer to the last research question: 

RQ4: Can hybridization improve the LL recall accuracy?  

We answered this question by first constructing multiple hybrid classifiers using 

combinations of the individual classifiers from our empirical study. Second, we 

compared the hybrid classifiers performance to that of the individual classifiers and 

calculated the relevant improvement. The results showed improvement in many cases, 

which encourages the consideration of hybridization for future studies in the LL recall 

context (See Section 6.4). 

1.3 Research Contributions 

The contribution of our research includes the comprehensive SLR which we conducted in 

order to come up with the SA state-of-the-art. The SLR results contribute to the software 

engineering community by providing valuable insights and defining research gaps. In 

addition, our research contributes by providing an LL automatic recall solution. 

Therefore, the main contributions of this thesis can be summarized as follows: 

1. It provides both researchers and practitioners with a vision of the SA state-of-the-

art to support them, in focusing their research on the research trends and 

important domains (See Section 2.2.2.2). This survey clarifies the research gaps 

and research opportunities within the SA domain. It can also facilitate the 

selection of future research topics and projects for interested researchers (See 

Sections 2.2.2 and 2.4). 
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2. It is first to tackle the LL recall problem within the software engineering domain 

and to provide an LL recall solution. 

3. It is the first time, as per our knowledge, that IR models have been used to build 

an LL recall classifier (See Section 4.3). It bypasses the limitations of existing 

studies, which require the close involvement of users and reformation of the LL 

repository. This is impractical (See Section 3.2). 

4. It exploits two of the existing software project management artifacts to create the 

search query on-the-fly. This relieves PMs from the burden of manually searching 

and facilitates the recall of relevant LL records (See Section 4.3.2). It also 

examines the impact of the classifier configurations on the LL retrieval accuracy. 

5. It extends the main case study by examining the impact of hybridization on the 

accuracy of LL recall. The results showed a relative improvement in the hybrid 

classifier versus the individual classifiers in many cases. This can encourage the 

consideration of hybridization in future LL recall studies. 

Table 1-1 summaries the mapping of the research questions to their corresponding 

research contributions and the chapters where the RQs are addressed. 

Table 1-1 Research Questions to Research Contributions Mapping 

Research Question Corresponding Contribution Chapter 

SLR questions and results Contributions 1 Chapter 2 

RQ1 Contributions 2 and 3 Chapters 3, 4 and 5 

RQ2 Contribution 4 Chapters 4 and 5 

RQ3 Contribution 4  Chapters 4 and 5 

RQ4 Contribution 5 Chapter 6 
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1.4 Thesis Structure 

This thesis is organized as follows: Chapter 2 presents the methodology and results of the 

software analytics systematic literature review. Chapter 3 describes the related terms and 

concepts used in this thesis, including the LL and IR description, followed by an LL 

recall literature survey. In Chapter 4, we introduce the proposed LL recall solution, 

research questions and research methodology. The case study and validation of the 

proposed solution are illustrated in Chapter 5. In Chapter 6, we extend our main study by 

examining the classifiers hybridization impact on performance. Finally, Chapter 7 

summarizes this thesis work and proposes future work. 
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Chapter 2  

2 Software Analytics Systematic Literature Review 

In this chapter, we will describe the software analytics (SA) concept and we will present 

the state-of-the-art of the current SA research. Moreover, we will explain the protocol 

defined to conduct the extensive SA systematic literature review (SLR), and demonstrate 

the main findings and insights.1 

2.1 Software Analytics 

SA represents a branch of big data analytics. The SA term was initially coined by Zhang 

et al. in 2011 [7]. SA is concerned with the analysis of all software artifacts, not only 

source code. Its importance comes from the need to extract insights and facts from 

available software artifacts to support and facilitate decision making. Artifacts are 

available from all software development life cycle steps, beginning with the proposal and 

project initiation phases and ending with the project closure and customer satisfaction 

surveys. The dynamic nature of the software industry is associated with decision-making 

needs through all software business tiers. These tiers vary from the senior management 

board, setting the enterprise vision and portfolio management, going through project 

management planning and implementation by software developers. As emphasized by 

some experts [8][9][10][11] in the SA domain, all of the stakeholders involved deserve to 

be supported with decision-making tools in order to facilitate the decision-making 

process. SA can play the role of tool provider by offering suitable and supportive insights 

and facts to software industry stakeholders to make their decision making easier, faster, 

more precise, and more certain. The main difference between SA and direct software 

analysis is that rather than just providing straightforward insights extraction, SA performs 

                                                 

1
 Part of this chapter was published in the IEEE International Conference on Software Engineering 

Workshop on BIG Data Software Engineering. 

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Software Analytics to Software 

Practice: A Systematic Literature Review,” in Proceedings of the 37th IEEE International Conference on 

Software Engineering (ICSE) Workshop on BIG Data Software Engineering (BIGSE), 2015, Florence, 

Italy, pp. 30–36. 



10 

 

additional advanced steps. As clarified by Hassan [8], SA provides both visualization and 

useful interpretation of insights in order to facilitate decision making. 

2.2 Systematic Literature Review 

In this section, we describe in detail the protocol employed to conduct the SLR regarding 

the SA research field. We discuss the results of this SLR, which represent the state-of-

the-art of SA within the software engineering literature.  

Since SA is currently a promising topic of broad interest, we have conducted an SLR to 

identify gaps in knowledge and open research areas in SA. Because many researchers are 

still confused about the true potential of SA, we had to filter out the available research 

papers to obtain the most SA-relevant work for our review. 

In the SLR, we followed Kitchenham’s [12] approach for a software engineering 

literature review. As a result, we started with the planning phase, in which we developed 

the review protocol.  

In the following subsections, we start by describing the defined protocol of the SLR. 

Then, we demonstrate the results and findings of our study.   

2.2.1 Systematic Literature Review Protocol 

We conducted the review in six stages: defining questions, designing the search strategy, 

selecting the studies to use, assessing the quality, extracting data, and synthesizing data. 

The following subsections describe in detail each of the six stages considered. 

2.2.1.1 Defining Questions for Systematic Review 

In this SLR, we answered four main questions. We kept in mind, while defining these 

questions (Q’s), the two main targets of defining research gaps and defining opportunities 

within the SA field.  The questions, for our SLR, are as follows: 
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Q1: Which software practitioners does the available SA research target? 

Q1 aims to identify the stakeholders who will benefit from the available SA studies. It 

also aims to assess whether SA studies target different levels of stakeholders or only 

focus on the software development team in order to draw the attention of the SA research 

community to improve the research plan.  

Q2: Which domains are covered by SA studies? 

Q2 tries to highlight the scope of the available SA studies. The target domains, such as 

software maintainability and incident management, will be determined. Practitioners can 

interpret this information from two points of view. The first point of view is to know SA 

hot topics and consider them for their research plan, while the other view is to analyze 

any research gap and take the lead to consider it as an original research point.  

Q3: Which software artifacts are extracted? 

The main difference between SA and direct software analysis is making use of all of the 

available artifacts in order to come up with insights for strong decision making. 

Therefore, Q3 aims to verify that this idea is clear for the current research community.     

Q4: If different artifacts are used, are they linked together? 

Q4 tries to evaluate whether each study satisfies SA’s main focus of linking different 

software artifacts. This linkage aims to come up with more advanced insights, unlike 

direct software analysis and metrics where researchers use each artifact separately 

without linkage to other artifacts. 

2.2.1.2 Search Strategy 

Designing the search strategy is crucial and has a direct impact on the SLR results and 

concluding insights. The search strategy stage is two-pronged and includes defining the 

search terms and determining which software engineering literature libraries will be 

considered. In the following two subsections, we demonstrate our decisions regarding 

these two steps. Also, the rationale behind our decisions is illustrated. 
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“Software analytics” OR “Software analytic” OR “Software development 

analytics” OR “Software development analytic” 

2.2.1.2.1 Search Terms Definition 

To guarantee that the review would be closely relevant to SA, we tried to limit the search 

to the most SA relevant search term. So, we started with the term “software analytics”, 

then we went through the following four steps in order to come up with the final search 

term that would be considered: 

1. Extracting the major distinct terms from the questions. 

We ran a small prototype using the original “software analytics” search term. In this 

prototype, we analyzed about 20 of the search result papers. From this analysis, we 

noticed the usage of different spellings of the original “software analytics” term. 

2. Using different spellings of the terms. 

As described in step 1, different spellings of the main keywords from the original search 

term were noticed. These spellings included the use of both singular and plural forms of 

the keyword “analytic”. Also, the term “development” was sometimes associated with the 

original search term. 

3. Updating the search term with keywords from relevant papers. 

We considered the different keywords we had noticed in updating and considering 

different parts within the final search term. 

4. Using the main alternatives and adding the “OR” operator in order to get the 

maximum amount of directly relevant literature. 

These steps yielded the following search term: 
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It is worth to mention that we did not consider the popular term of “software analysis” as 

we noticed that it led to a lot of studies, i.e., papers, which deal with traditional source 

code analysis studies. Since in our SLR we focused on the most current and the state-of-

the-art studies targeting more than one software artifact and stakeholders other than 

developers, we preferred to exclude this term, i.e., “software analysis,” from the search 

term. Instead, we analyzed most of the studies which use this term and are referenced by 

other studies within the primary studies list. We considered any of these studies that 

satisfied the filtration criteria as described later in this chapter. 

2.2.1.2.2 Literature Libraries Resources 

In this SLR, we included two of the most popular electronic databases in order to search 

for the primary review studies, namely IEEE – Xplore and ACM Digital Library. The 

search term was constructed using the advanced search features provided by each of these 

two databases. The search covered metadata in the case of IEEE – Xplore, and both 

metadata and body (content) of literatures in the case of ACM Digital Library. 

Our search included the period January 2000 to December 2014. Since the SA concept 

was initially introduced by Zhang et al. in 2011 [7], we expected that relevant literature 

would be found from 2011 and forward. However, we made our search timeframe wider 

in order to guarantee gathering all possible relevant papers. 

2.2.1.3 Study Selection 

In order to eliminate any irrelevant papers which would not add any significant 

information, we conducted the following two filtration phases: 

• Filtration phase 1: both inclusion and exclusion criteria (as defined in the next 

subsection) were defined and applied to the unique candidate papers to eliminate any 

irrelevant papers so that only relevant papers with useful information would result from 

this phase. 

• Filtration phase 2: the quality assessment criteria (as defined in the next subsection) 

were used to assess candidate papers that emerged from phase 1. The papers which 

satisfied the quality boundary were used in the data extraction stage. 



14 

 

2.2.1.3.1 Inclusion and Exclusion Criteria 

As mentioned above, carefully defining the inclusion and exclusion criteria is crucial in 

leveraging the chance of including only relevant studies from the search results. For this 

reason, we defined the inclusion and exclusion criteria as follows: 

Inclusion Criteria 

The studies that satisfied the following four criteria passed the first filtration phase and 

were considered for the quality assessment step or second filtration phase. The inclusion 

criteria are defined as follows: 

• SA concepts were applied to extract insights from software project artifacts. 

This criterion was defined to guarantee the alignment between the considered study and 

the SA definition. 

• Research was relevant to software project lifecycle phases. 

Again, this criterion was defined to guarantee the fulfilling of the SA definition.  

• Research was directly related to the software industry and stakeholders. 

This criterion originated from the SLR prototype, as we noticed the usage of the SA term 

within studies from domains other than software engineering which just refer to the SA 

term. 

• For duplicate publications of the same study, the newest and most complete one was 

selected. This is recorded for only one study whose related work appeared in two 

conferences. 

Exclusion Criteria 

When any of the following criteria applied to a study, we excluded it from the list of 

papers to consider. The exclusion criteria defined for this study were as follows: 

• Studies that were irrelevant to SA.  
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This occurs due to the misuse of the term “software analytics” for describing traditional 

data mining, machine learning, or statistical work. 

• Studies that were irrelevant to software projects. 

This includes studies targeting other domains such as the automotive industry that 

misuses the term “software analytics” to refer to general “data analytics.” 

• Studies that are relevant to generic data analytics and are not directly relevant to SA or 

software artifacts. 

2.2.1.3.2 Review Quality Assessment 

This step was important to ensure the accuracy of data extraction from the studies 

reviewed and in order to be confident about the results and conclusions. Also, as 

previously mentioned, this step was considered to be the second filtration step in order to 

come up with the final primary studies to consider while answering the questions. We 

defined the following quality assessment criteria:  

QA1: The study contribution is clearly stated. 

QA2: Software artifacts that are used are clearly explained. 

QA3: SA characteristics are clear and different from those of direct statistics where 

advanced insights are provided. 

QA4: The results and application(s) are described in detail. 

Each of the quality assessment criteria has only three optional answers: “Yes” = 1, 

“Partly” = 0.5 and “No” =0. For each study, the quality score is the sum of the scores of 

each quality assessment point, and the overall score is adjusted to a percentage scale. For 

this study, the quality assessment was used mainly as a selection criteria, as previously 

mentioned, based on the limitation that the papers considered were only those which had 

a quality score ≥ 50%. 
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It is worth mentioning that for the scoring process, we adopted the scoring method 

recommended by Kitchenham [12] in the case of having only one main researcher. So, 

the main researcher, the PhD candidate in this case, scored the studies based on his 

judgment and experience. Then, in this case, a review check was performed by the 

research team, the PhD supervisors and teammates. For this review check, the principle 

researcher went through the scores of the studies considered. In case of any concern or 

disagreement, a discussion meeting was scheduled between the researchers where a 

discussion took place until reaching an agreement regarding all scores of the studies 

considered. The review check process is a repetitive process and can be repeated until 

reaching a confident level of agreement among researchers regarding the assigned scores. 

For this study, the review discussion was finalized in one discussion meeting of about 

one hour. A summary of the scoring process is shown in Figure 2-1. 

Figure 2-1 Quality Assessment Scoring Process 
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2.2.1.4 Data Extraction 

The data extraction step is two- pronged. First, it involves defining the extracted pieces of 

information or the data which should be obtained from each study considered, in order to 

answer the questions. Second, these defined pieces of information for each of the studies 

considered need to be extracted and stored to prepare for the analysis and data synthesis 

stages as described in the next subsection. 

 We defined the data extraction card as shown in Figure 2-2. It is important to be very 

careful when defining fields or pieces of information to be included in the data extraction 

card, since all of the information required to answer all of the questions should be 

collected and made available for the analysis phase. This is crucial, because discovering 

missing information at the analysis stage will be very expensive and can lead to an 

intensive process of going through all of the studies that were considered to extract this 

missing information. For this reason, the data extraction card was carefully reviewed, and 

then a pilot study was executed on a small sample of the studies being considered in order 

to be confident that the questions could be answered using the information from the data 

extraction cards. Once we were confident of the completeness of the defined data 

extraction card, we ran the data extraction process on all of the studies considered. 

Study id 

Authors 

Study title 

Source 

Year of publication 

Q1: Beneficiary practitioners 

Q2: Domain 

Q3: Analyzed software artifacts 

Q4: Different linked artifacts 

Figure 2-2 The Data Extraction Card 
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2.2.1.5 Data Synthesis 

In this stage, the extracted data was aggregated in order to answer the questions. For the 

questions answers representation, we used the narrative synthesis method. Accordingly, 

we used tables and charts to present the results. 

After defining the protocol, the next step was to execute this protocol in order to come up 

with the primary studies, and then extract and record the needed information. After that, 

we applied data synthesis on the recorded data to come up with and report our insights 

and conclusions. Moreover, as a final step, we reported in detail the review limitations 

and provided our recommendations in the next section.  

A summary of the protocol definition and the conduction processes for the SLR is shown 

in Figure 2-3. 

Figure 2-3 A Summary of the SLR Process 
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2.2.2 Systematic Literature Review Results 

We followed the defined protocol (see Section 2.2.1), in order to execute the SLR.  As a 

result, we started by searching the libraries we had decided on using the defined search 

terms. The search results contained 135 unique candidate papers (41 papers from IEEE 

Xplore, 102 from ACM Digital Library). There were 8 duplicate papers, for which we 

considered only one version.  

The next step was to apply the two filtration steps. By applying both inclusion and 

exclusion criteria, the relevant papers totaled 41. After applying phase 2 of the filtration 

process, represented by the quality assessment stage, the relevant papers were narrowed 

down to 19; these papers were used for data extraction. The list of selected primary 

studies is shown in Table 2-1, and their correspondence quality scores are shown in 

Table 2-2. Also, the filtration process is summarized in Figure 2-4. 

Figure 2-4 Filtration Process 
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Table 2-1 Primary Studies Selected 

ID Authors Addressed 

Questions 

Reference 

S1 M. van den Brand et al. 1 2 3 4 [13] 

S2 A. Gonzalez-Torres et al. 1 2 3   [14] 

S3 E. Stroulia et al. 1 2 3 4 [15] 

S4 D. Reniers et al. 1 2 3   [16] 

S5 R. Minelli and M. Lanza 1 2 3 4 [17] 

S6 J. Lou et al. 1 2 3 4 [18] 

S7 C. Klammer and J. Pichler 1 2 3   [19] 

S8 T. Taipale et al. 1 2 3 4 [20] 

S9 O.Baysal et al. 1 2 3   [21] 

S10 P. Johnson et al. 1 2 3 4 [22] 

S11 J. Czerwonka et al. 1 2 3 4 [23] 

S12 J. Gong and H. Zhang 1 2 3 4 [24] 

S13 A. Miranskyy et al. 1 2 3 4 [25] 

S14 R. Wu et al. 1 2 3   [26] 

S15 S. Han et al. 1 2 3   [27] 

S16 Y. Dubinsky et al. 1 2 3   [28]   

S17 N. Chen et al. 1 2 3   [29] 

S18 M. Mittal and A. Sureka 1 2 3   [30] 

S19 G. Robles et al. 1 2 3 4 [31] 

By defining the primary studies to consider, we employed the defined data extraction 

card to extract the information needed to answer the questions and execute the data 

synthesis stage.  

The dominant observation of this review was that there was not much relevant or well 

established research in the field of SA. This was clear from the number of papers 

considered (19) after applying both filtration phases, as explained earlier. The number of 

publications shown included all studies that were available and reviewed. Results showed 

that about 79% of the considered papers (15) were from conferences, while the remaining 

21% (4) were from journals.  Furthermore, almost all journal papers (3) were from IEEE 

software and were included in SA special edition published in 2013. These statistics 

emphasize the difficulty we faced in finding mature SA work for this review. As 

mentioned in the quality assessment section, we considered only the papers with a quality 

score ≥ 50% in order to guarantee including the most relevant studies. Most of the studies 
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considered have a quality score ≥ 75% (15 out of 19 papers). Table 2-3 shows the quality 

score levels of all papers that passed the first filtration phase. 

The distribution of the studies selected in each publication year is shown in Figure 2-5, 

which clearly indicates that SA studies became more active only in the last two years, 

2013 and 2014. 

In the following subsections, we illustrate the review results for each of the questions, 

one by one, supported with statistics from the data extraction. 

Table 2-2 Primary Studies Quality Scores 

Study 

ID 

QA1 QA2 QA3 QA4 Score 

S1 1 1 0 1 75% 

S2 1 1 0 1 75% 

S3 1 1 1 1 100% 

S4 1 1 0 1 75% 

S5 1 1 0.5 0.5 75% 

S6 1 1 1 0.5 87.5% 

S7 0.5 1 0 0.5 50% 

S8 1 1 1 0.5 87.5% 

S9 1 1 0 1 75% 

S10 1 1 1 0.5 87.5% 

S11 1 1 1 1 100% 

S12 1 1 1 1 100% 

S13 1 1 1 1 100% 

S14 0.5 1 0 0.5 50% 

S15 1 1 0 0.5 62.5% 

S16 0.5 1 0 0.5 50% 

S17 1 1 0 1 75% 

S18 1 1 0.5 1 87.5% 

S19 1 1 1 1 100% 
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2.2.2.1 Beneficiary Practitioners (Q1) 

The first question of this literature review was defined as follows: 

Q1: Which software practitioners does the available SA research target? 

The target of the first question is to figure out the main practitioners who would benefit 

from the primary SA studies.  From the studies selected, we identified that the main 

practitioners who would be supported by available SA studies are: 

 Developer 

 Tester 

 Project manager (PM) 

Figure 2-5 Distribution of Selected Studies per Year 
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 Portfolio manager and Senior management 

These results are shown in Figure 2-6, where 90% of all studies targeted developers (17 

out of 19) with about 47% (9) exclusively supporting developers (for details see 

Table 2-4). This shows that SA needs more research regarding stakeholders other than 

developers. Even the available research work that supports other stakeholders, like PMs, 

is still undeveloped and is similar to the direct statistics and dashboard work. For 

example, Stroulia et al. (S3) proposed a framework called “Collaboratorium Dashboard” 

in order to visualize insights extracted from collaborative software development tools. 

These tools included information related to a team that has worked on a certain project, 

project artifacts, communication between project stakeholders, and the process followed. 

Also, the authors integrated their framework with IBM Jazz and WikiDev, which already 

included integration with SVN, Bugzilla, email, and wikis.  

Although the proposed dashboard provided useful information for PMs in a visual form, 

such as the number of emails sent by each team member and the number of files checked 

Table 2-4 Q1 Extracted Data 

Practitioner Supporting Studies 

Developer S1, S4, S5, S6, S7, S8, S9, S10, S11, S13, S14, S15, S16, S17, S19 

Tester S2, S13 

Project 

Manager 
S2, S3, S4, S8, S10, S11, S12, S13, S18, S19 

Portfolio 

Manager 
S10, S19 

 

Table 2-3 Quality Assessment Levels Statistics 

Quality Levels # 

Studies 

Percentage 

Very high (85% ≤ score ≤ 100%) 9 22% 

High (75% ≤ score < 85%) 6 15% 

Medium (50% ≤ score < 75%) 4 9% 

Low (0% ≤ score < 50%) 22 54% 
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in by each developer, this still formed a straight-forward insight extraction or statistics 

from software artifacts. More analytics are needed to link more than one artifact and get 

more supportive and powerful decisions. This can be the link between the source code of 

a certain feature, the emails related to this feature, or the quality reports, which can be 

very useful to highlight the need for refactoring a certain part of this code. Such advanced 

analytics are a major need for any future research in SA. 

2.2.2.2 Research Domain (Q2) 

The second question of this literature review was defined as follows: 

Q2: Which domains are covered by SA studies? 

The aim of the data extracted for Q2 was to identify the main active SA research domains 

in order to support practitioners in deciding both innovative and cutting edge topics and 

research opportunities. 

Figure 2-6 Distribution of Selected Studies per Practitioner 
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Our review showed that most available SA studies fell into one of the following domains: 

 Maintainability and Reverse Engineering 

 Team Collaboration and Dashboard  

 Incident Management and Defect Prediction 

 SA Platform 

 Software Effort Estimation 

The distribution of the studies considered per domain can be found in Figure 2-7 (for 

details see Table 2-5). 

 

Figure 2-7 Distribution of Selected Studies per Domain 
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In the following subsections, we illustrate our findings for the most significant studies in 

each domain. 

2.2.2.2.1 Software Analytics for Software Maintenance and 
Reverse Engineering 

Gonzalez-Torres et al. (S2) provided a visualization tool (Maleku) which extracts facts 

and insights from large legacy software and provides PMs and developers with useful 

information to support their decisions related to software maintenance. This tool extracts 

information from software repositories and monitors the repository for any updates in 

order to redo the analysis. 

Although the proposed tool provided visualization features, these features simply 

represent traditional statistical information, like extracting the metrics related to 

inheritance and interface implementation. 

Another study by Van den Brand et al. (S1), presents SQuAVisiT – a powerful visual SA 

tool. It has been successfully applied to the maintainability assessment of industry-sized 

software systems, combining results of metrics analysis (such as quality analysis), and 

visualization of these analysis results. The tool provides software design metrics such as 

cyclomatic complexity and inheritance depth. The tool also provides checking of code 

convention, duplication, and bad practices. Although the visual tool provided is useful, 

the metrics analysis is traditional and appears in older literature. 

Table 2-5 Q2 Extracted Data 

Domain Studies 

Maintainability and Reverse 

Engineering 

S1, S2, S4, S5, S7, S12, S13, S14, S15, 

S16, S17 

Team Collaboration and 

Dashboard  

S3, S9, S10, S18 

Incident Management and Defect 

Prediction 

S6, S8 

Software Analytics Platform S11 

Software Effort Estimation S19 
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Minelli and Lanz (S5) are trying to determine whether the traditional maintainability 

approaches are valid for mobile applications (apps). They rely on the analytics of three 

artifacts: source code, third party API invocation, and application revision historical data. 

Minelli and Lanz implemented a visualization SA tool for mobile apps called “SAMOA” 

(Software Analytics for Mobile Applications). The tool provides visual presentation for 

multiple software metrics, apps versions, and the size of relative lines of code between 

core functionality and third party invocation.  

Although the visualization tool presented can support project management, the metrics 

presented are very similar to traditional metrics from literature. It was expected to use 

more available artifacts such as user comments and ratings from app stores (like iOS 

Apple store or Google apps store). Also, Minelli and Lanz rely on only one dataset for 

their study.  

Klammer and Pichler (S7) introduced a reverse engineering tool and applied it to 

electrical engineering software programs. The tool analyzes only the software source 

code in order to provide some insights related to source code structure and to locate 

features within source code. Multiple languages are supported such as C++ and Python. 

This work is similar to traditional work, and it needs to consider other software artifacts 

in order to apply SA concepts. 

2.2.2.2.2 Software Analytics for Team Collaboration and 
Dashboard 

Baysal et al. (S9) provided the Mozilla development team with a new qualitative 

dashboard as a complementary tool for the traditional quantitative reports of the Bugzilla 

issue tracking system. The qualitative dashboard improves development team awareness 

of the project situation and future directions. New features were provided, such as 

guiding developers to new information regarding their patches since the last check, 

highlighting new comments and reassigned patch reviewers. This research is promising 

since the trend towards qualitative analysis is strong, and it can facilitate and speed up the 

decision-making process which has traditionally relied on deep quantitative statistical 

analysis.  However, the features provided are very direct and can be easily achieved by 
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reviewing the bug history on the issue tracking system. In order to make this work in a 

more sophisticated way, new features such as team productivity trend charts can be 

provided.  

2.2.2.2.3 Software Analytics for Incident Management and 
Defect Prediction 

Lou et al. (S6) introduce an SA tool called Service Analysis Studio (SAS). SAS supports 

engineers in improving incident management by facilitating and automating the 

extraction of supportive insights. SAS has the ability to use multiple data sources – such 

as performance counters, operating system logs, and service transaction logs – to provide 

insights.  

What makes this study important is that it applies the SA concept by linking multiple 

artifacts. Also, it presents a new algorithm to analyze system metrics data and suggests 

which abnormal metric is suspected of being the root cause of the incident. In addition, it 

introduces a mining technique to find the suspicious execution patterns—which are the 

sequence of actions that led to the incident— within the huge number of transaction logs. 

2.2.2.2.4 Software Analytics Platform 

Czerwonka et al. at Microsoft (S11) provide an SA common platform called 

CODEMINE. The need for CODEMINE emerged from the observation of the 

commonality between the input, outputs, and processing needs of multiple analytics team 

tools. CODEMINE acts as the common analytics framework for multiple client SA 

applications at Microsoft. The CODEMINE’s ability to provide data from different 

software artifacts (such as source code, project schedule, milestones, and defect reports) 

opens new research opportunities at Microsoft. In turn, this will enrich insights by 

extracting information from cross-products which will boost team collaboration. 

2.2.2.2.5 Software Analytics for Software Effort Estimation 

G. Robles et al. (S19) present a study on the effort estimation of the OpenStack open-

source project. Effort estimation of open source projects is challenging, as such projects 

have both a collaborative and distributed nature, and it is difficult to track the 
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development effort. As a result, the authors offer a model that extracts data related to 

developer activities from the source code management repository, and then guesses the 

effort roughly based on these activities (like the time between two commits). Then, the 

model calibrates the rough estimates based on other estimates collected from the 

developers in a survey. This study is promising, especially in the way it links artifacts to 

obtain insights that are useful for tackling such a hard-to-track topic as effort estimation 

of open source software projects. 

2.2.2.3 Analyzed Software Artifacts (Q3) 

The third question was defined as follows: 

Q3: Which software artifacts are extracted? 

In order to address Q3, we extracted the analyzed artifacts in each study. This was very 

important for our study to be able to evaluate the alignment of the studies with the goal of 

having SA analyze more than one software artifact and provide more advanced insights.  

The results of the review show that around 47% of the studies are still using only one 

artifact (9 studies), and many of these studies only analyze source code, as do traditional 

software analysis and metrics studies (4 studies). These results support our conclusion 

that most of the currently available SA studies are still in the early stages and reflect 

confusion about the difference between direct software analysis and the new SA. The 

results summary is shown in Figure 2-8; more details can be found in Table 2-6. 
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Table 2-6 Q3 Extracted Data 

Study ID Analyzed Artifacts 

S1, S4, S7, S16 Source code 

S2 Code repository 

S3 Source code repository, issue tracking system, email, wikis 

S5 Source code, version control system 

S6 Performance counters, operating system logs, service 

transaction logs 

S8 Issue management system, version control system, code 

reviewing system, source code, organizational data, testing data 

S9 Issue tracker 

S10 Process data, product data 

S11 Source code, project schedule, milestones, defect reports 

S12 Source code, bug reports 

S13 Source code, version control system, bug reports 

S14, S15 Call stack 

S17 Mobile apps users reviews 

S18 Team wiki, version control system, issue tracking system 

S19 Version control system, developers survey 

 

Figure 2-8 Number of Analyzed Artifacts Versus Number of Studies 



31 

 

2.2.2.4 Checking Artifacts Linkage Before Analysis (Q4) 

The fourth question was defined as follows: 

Q4: If different artifacts are used, are they linked together? 

In order to address the last question, Q4, we evaluated the analysis of the artifacts used. 

The main goal was to make sure that the artifacts were linked together in order to get 

more complex insights that could support software practitioners in making their 

decisions. It is worthwhile to highlight that this analysis was valid for only 10 studies 

when more than one artifact was used. This was achieved by reviewing the study scores 

for the third quality assessment criteria (QA3). The results show that eight studies scored 

100%, which reveals that these studies link multiple artifacts to get insights that can 

support decision making. Therefore, these studies comply with the SA concept and can 

be considered as good references for practitioners to understand the SA concept. For 

more details, see quality scores in Table 2-2. 

2.2.3 Systematic Literature Review Limitations 

In this review, we considered both journal and conference papers without evaluating their 

rankings. This can be attributed to the difficulty that we faced when trying to find well 

established and relevant papers, which was a result of two factors. The first was that the 

SA field was less than four years old at the time of this review. The second factor had to 

do with the misuse of the term SA and the confusion of the researchers about its correct 

indication. This was shown by the number of papers considered after applying the 

filtration phases, as previously mentioned. 

2.3 Systematic Literature Review Addendum 

Since SA is an emerging field and the conducted SLR covers research work up to 2014, 

we re-ran our searching terms on both libraries considered for the period January 2015- 

August 2018 (the time of defending this thesis). The search included both the metadata 

and body (content) of literatures for both libraries. The search results contained 176 

papers from IEEE Xplore and 141 papers from ACM Digital Library. Since the main 

objective of conducting the SLR was to come up with open research gaps in the SA 
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research area, we examined the status of the same gaps. This was achieved by analyzing 

the new search results list, which confirmed the existence of the same research gaps that 

had been detected by our previous SLR. Those gaps include the analysis of only one 

software artifact (in most cases is the source code), and the scarcity of studies that target 

stakeholders other than developers. However, our search detected a few studies (around 

8) that have done some promising effort, which comes aligned with our recommendations 

from the SLR, such as targeting more stakeholders [32] and exploiting more artifacts 

[33]. 

2.4 Summary 

In this chapter, the available SA studies were investigated in order to understand the 

current status of this new research topic. We conducted a literature review searching for 

the relevant studies available from 2000-2014. Our review considered 19 primary studies 

that supported us in addressing the four defined questions. The results can be summarized 

as follows: 

 Q1: The practitioners who benefit from the current SA studies are developers, testers, 

PM, portfolio managers, and senior management; about 47% of the considered 

studies support only developers. 

 Q2: The studies considered showed that SA research covered the domains of 

maintainability and reverse engineering, team collaboration and dashboards, incident 

management and defect prediction, the SA platform, and software effort estimation.  

 Q3: Most of the studies considered (around 47%) analyze only one artifact for their 

study.  

 Q4: Most of the studies we considered analyze more than one artifact providing more 

complex insights, but there is still room for improvement of these studies. The review 

results showed that most of the available SA research introduces direct software 

statistics like design metrics and change history, and simply embellish these with 

some new analytics contributions such as linking team members to the classes they 

update. Also, most of the research addresses the low-level analytics of source code.  
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Based on our analysis, this review provides a recommendation for researchers that more 

research and elaboration needs to be done, such as considering more artifacts in order to 

add value to traditional work, and using more datasets to achieve higher confidence levels 

in the results. In addition, there is a lack of research targeting higher-level business 

decision making, such as project management, portfolio management, marketing strategy, 

and sales strategy.  This was one of the main triggers for the selection of our research 

problem, as explained in more detail in Chapter 4. 
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Chapter 3  

3 Lessons Learned Recall Background and Motivation 

In this chapter, we will explain the main concepts employed in this research work. This 

includes the description of the lessons learned (LL) definition and the fundamentals of 

the information retrieval (IR) models. Moreover, we will present the state-of-the-art and 

research gaps of the LL recall field will be illustrated. 

3.1 Lessons Learned in Software Engineering 

The LL could be conceived of as an important part of the organization’s memory and 

cumulative experience and knowledge. LL could be guidelines, handling scenarios or tips 

related to what went wrong (mistakes), or what went right (opportunities), in certain 

situations or events. In addition, LL could be a success that the organization wants to 

repeat, or a failure that the organization wants to avoid in the future. The need to preserve 

the organization’s knowledge, which could be lost as a result of several factors, such as 

expert turnover, calls for the adoption of these LL repositories. The LL concept is 

evolving, and multiple organizations have their own LL repositories [6] [34]. 

It is valuable to highlight that LL differ from best practices. In contrast to the best 

practices that capture only successful scenarios, the LL can capture both success and 

failure scenarios. Also, best practices are ideas that are recommended on the industrial 

scale and could be localized to the organization, while LL are organization-oriented and 

could be globalized to the industrial scale. 

 It is worth mentioning that although LL records can be related to any software practice, 

such as project management and development, we focus in this work only on LL records 

related to project management. 

LL representation should give information about the context or situation where the lesson 

learned is applicable, the need to apply the LL actions in order to avoid a problem or to 

leverage an opportunity, and the recommended actions that can be followed in order to 

avoid the problem or to leverage the opportunity. Table 3-1 shows an example of a lesson 
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learned represented by three fields, namely context, problem/opportunity, and 

recommendations. In this example, the development team should be at the customer’s 

premises, which means that issuing an entry visa for the team could be the cause of a 

planning issue. For this reason, the recommended action is to plan for this ahead, as 

shown in the LL recommendation section. 

Table 3-1 Lesson Learned Example 1 

Attribute Value 

Context One of our project constraints is to have the development 

team onsite (at the customer’s site), and our customer is in 

X country. 

 

Problem/Opportunity Issuing a visitor’s visa for our team members takes a lot of 

time, especially during high seasons. 

 

Recommendations Try to keep your staffing plan updated and make sure it 

covers 1 or 2 months ahead. 

Try to start the visa issuing process, for any member, 4-5 

weeks ahead of the start date of the planned task at the 

customer’s site. 

Try to seek your customer’s support in getting a long-term 

visa (example: 6 months) with multiple entries. 

Obs: some sensitive information regarding customer’s identity and country was updated 

or removed due to the non-disclosure agreement 

Another example of an LL record is shown in Table 3-2. This record concerns a decision 

about whether to implement a mobile application in-house or to outsource the 

implementation. It is important to highlight that the LL representation can differ from one 

organization to another. For example, the LL record can be described as a flat text, as in 

the case of the dataset employed in this thesis, without using specific attributes or fields. 

For more LL examples, please refer to Appendix A. 
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Table 3-2 Lesson Learned Example 2 

Attribute Value 

Context Project scope includes an implementation of a small-sized 

mobile application. This mobile application is not reusable, 

i.e., it will only be used in this project. 

 

Problem/Opportunity If the mobile application is of a small size, then the 

organizational process and overhead tasks, such as quality 

assurance and management reporting, will reduce the profit 

from implementing the mobile application in-house. 

 

Recommendations Outsource the implementation to an external mobile 

application specialized company. 

Contact the purchase team for a trusted partners list. 
 

3.2 Lessons Learned Recall State-of-the-Art  

The LL information can only be beneficial if project managers (PMs) refer to it for 

solving present issues or avoiding expected risks, which is not always the case. 

Unfortunately, LL are often abandoned due to the lack of knowledge of relevant LL by 

PMs or due to the need to continuously remind them of the existence of new relevant LL 

[35]. Although, this can be overcome by PMs manually searching for relevant LL 

records, this is effort and time costly, especially when searching unstructured 

information. Also, there could be other reasons for disregarding LL repositories, such as 

time limitations [35]. This calls for effective and automatic LL recall solutions. By 

automatic we mean that there should be no need for manual searching to facilitate and 

support frequent references to and exploitation of LL. In this section, we present the 

related work and state-of-the-art regarding the LL automatic recall. 

Most of the available LL research focuses on either the LL process or the implementation 

of a standalone LL repository system [34]. To the best of our knowledge, there is a 

paucity of software engineering research addressing LL recall solutions [34]. 

Harrison [36] has introduced a standalone software LL system. In his implementation, he 

has tried to improve the efficiency of information retrieval by providing different search 

options. The system provided the ability to search based on domain, keyword, or 
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repository navigation. However, this does not eliminate the need for users to manually 

define the search query string. This is different than our proposed solution, as will be 

described in Chapter 4, which makes use of the existing project artifacts to search for the 

relevant LL. 

Sary and Mackey [37] have introduced RECALL, which is a case-based reasoning (CBR) 

system. CBR has been employed to improve relevant LL retrieval by users. RECALL 

work differs from our proposed research in significant ways. First, the employed CBR 

technique is different from the proposed IR techniques that are presented in this thesis. 

Second, the RECALL system relies on describing the LL in a case-based question-answer 

format. This format is difficult to follow for the existing organizations’ LL repositories. 

To the best of our knowledge, the work of Weber et al. [38] is the only available work 

that does not require users to fully construct the query string. They introduced an LL 

retrieval tool called “ALDS,” and they embedded this tool in a decision-making tool 

called “HICAP.” They provided an implementation for ALDS within the task 

decomposition of the project planning phase. However, ALDS differs from our proposed 

solution in multiple ways. First, ALDS employs the case-based reasoning (CBR) 

technique, while our solution employs the IR approach, which is different, as will be 

explained in Chapter 4. IR and CBR are different in some aspects; e.g., in CBR, cases are 

stored in a “case representation” format, where additional inferred knowledge can be kept 

to make them more fitting for reasoning and learning in new situations [39], while IR 

relies on searching within the original format of the document repository including all 

features and terms. The second difference is related to LL similarity evaluation; ALDS 

relies on the indexing of LL in a question-answer format, where users have to go through 

answering the questions while describing their task condition. In contrast, this limitation 

is not required for our solution since it relies on automatically querying the LL classifiers 

or the search engine using data extracted from the project artifacts. The queries, the issue 

or risk records, are extracted from the existing project artifacts, which are issue/risk 

register documents. We describe the proposed methodology in more detail in Chapter 4. 
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3.3 Information Retrieval Models Applied to Recall 
Lessons Learned 

IR refers to the process of finding a relevant document or information of interest within a 

collection of documents or artifacts. In this thesis, we use the IR term to refer to text IR in 

mining software repositories. Usually the data within the searched collection, in the case 

of IR, is in an unstructured format (i.e., natural language text) [40]. The input to the IR 

classifier is a query, or question, and the result is a list of the documents relevant to this 

query [41]. The IR idea is similar to that of web search engines, such as Google, where 

the user provides a query, describing the need or the question, and the search engine tries 

to answer the user’s question by replying with a list of the most relevant web content. 

Regarding the employment of IR techniques in solving software engineering problems, it 

is worth mentioning that IR models have been used to solve several problems in the 

software engineering domain, such as bug localization [42][43][44] and concept location 

[45], but have not been employed to improve the LL recall as per our knowledge [46]. 

Thus, to the best of our knowledge, we are the first to employ IR techniques to solve the 

LL recall issue within the software engineering context [46]. We will explain our solution 

in detail in Chapter 4.  

There are multiple IR models that can be used to construct classifiers, and they vary 

based on their theories, such as simple keyword matching and statistics. There are two 

main factors which affect the operation and the accuracy of the IR classifier. The first 

factor is the preprocessing steps, which are employed to process the text inputs before 

forwarding them to the IR classifier. In our case, the text inputs include both the LL 

records, which are used to construct the IR classifier, and the issue/risk records, which 

are used to query the constructed classifier. Different preprocessing steps from the natural 

language processing (NLP) literature can be used. Later in this section, we provide some 

details regarding the preprocessing steps used. The IR model parameters are the second 

factor. Each of the IR models or techniques has its own specific parameters which drive 

the classifier construction and operation. Examples of these parameters can be the 

similarity, the method to calculate the document relevance to the query, and the term 

weight. The fact that the impact of parameter configurations on the IR classifiers’ 
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performance has already been studied in software engineering domains other than LL 

recall, such as bug localization [42] and equivalent requirements [47], plays a role in the 

motivation to consider the parameter configurations impact in our own study. In addition, 

an optimization of the IR model configurations based on the dataset at hand is important 

and is an open research area (for more details, please see Section 7.1). 

In the following subsections, we will provide some details regarding the preprocessing 

steps that we applied to the text inputs. Then, we will give an introduction to three of the 

most popular IR models from the literature that were used in this study. These models 

are: Vector Space Model (VSM), Latent Semantic Indexing (LSI), and the Latent 

Dirichlet Allocation (LDA). 

3.3.1 Text Preprocessing Steps 

Since both the documents’ corpus, LL repository in our case, and the query comprise 

unstructured information, they are preprocessed before being forwarded to construct or 

query the LL classifiers. The preprocessing plays a key role in reducing any information 

noise, which could be a source of confusion to the LL classifiers. It is common practice in 

IR research to apply one or more preprocessing steps from the NLP literature [41].  The 

following is a brief description of the two preprocessing steps we applied in this study: 

 Stopping step: removing the common stop words from the English language, such as 

“the” and ‘a’. Such words are very common and have high appearance frequency 

within the document, which can impact the relevance score while not representing a 

real relevance of the document to the query. 

 Stemming step: reducing the words to their morphological roots or stems. For 

example, “stem” is the root for both “stemming” and “stems”. 

3.3.2 Vector Space Model 

The VSM is an algebraic IR model [40][41]. It relies on representing the documents’ 

corpus in a matrix format of terms versus documents (t x d matrix). In this matrix format, 

each term in the corpus vocabulary, where the vocabulary contains all the different terms, 
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has a term weight value corresponding to each document in the corpus. The row 

dimension value of the matrix represents the number of the different terms, where each 

row represents a term. On the other hand, the column dimension value represents the 

number of the various documents in the corpus. In each term row, the term has a non-zero 

weight value if the term exists in the corresponding document, and a zero value 

otherwise. The term can represent a single word and its weight can be calculated as a 

simple existing Boolean value, where existing Boolean value ‘1’ is “exist” and ‘0’ is “not 

exist,” in each document. In order to decide if two documents, or a document from the 

corpus and a query, are relevant, the VSM model compares these two documents’ 

columns or vectors from the terms versus the documents’ matrix. This comparison is 

achieved using a configured similarity method which can be, for example, the inner 

product of the two documents’ vectors. To consider two documents relevant, they should 

have one or more common terms. The VSM model returns a proportional continuous 

similarity value according to the number of common terms between the two compared 

documents. 

The VSM model has two main configurable parameters: 

 Term weight:  the term weight in a document. The basic weight method is the Boolean 

method whose value is ‘1’ if the term appears in the document, and ‘0’ otherwise. 

Other popular weighing methods are term frequency (tf), which is the number of 

times the term appears in a document, and term frequency-inverse document 

frequency (tf-idf), which is an extended version of the original tf with the 

consideration of the term popularity in corpus documents [40]. For tf-idf, the term 

weight for a certain document is high if it appears with high frequency in this 

document and, at the same time, the term is rare and has a low frequency within the 

overall document corpus. 

 Similarity: the method used to calculate the similarity degree between two document 

vectors, or, as in our case, between a document and a query. Popular similarity 

methods include cosine distance and overlap methods [40]. 
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3.3.3 Latent Semantic Indexing 

The LSI model is an extension of the VSM model. Unlike VSM, LSI takes the context or 

topic into consideration instead of only matching the terms, which can have different 

meanings, polysemy, within different topics. For LSI, documents sharing the same topics, 

even if they do not share the same terms, can be considered similar documents. This is 

very important in the case of synonymy and polysemy [41][48]. To achieve this goal, LSI 

employs a technique called singular value decomposition (SVD). SVD decomposes the 

term-document matrix (t x d), used by VSM, into three new matrices: the term-topic or T 

matrix (t x k), the diagonal eigenvalues matrix S (k x k), and the topic-document matrix 

D (k x d). The k value represents the number of topics, which is a value provided by the 

model user. The SVD technique works on reducing the rank of both T and D matrices to 

the provided k value [49]. During this decomposition, the SVD technique works on 

grouping the co-occurring terms, which appear together, into one topic. 

The LSI has three parameters as follows: 

 Term weight: the same as in the VSM model. 

 Similarity: the same as in the VSM model. 

 K or number of topics: the number of topics remaining after the SVD reduction. 

3.3.4 Latent Dirichlet Allocation 

The LDA is a generative probabilistic model [41][50]. LDA considers the context of 

terms by eliciting the topics within the documents’ corpus. For the LDA model, each 

document can be composed of one or more topics with a different membership degree for 

each topic. Also, the topics can be constructed from one or more terms. Each term can 

belong to one or more topics with a certain membership value [41]. 

LDA model has several parameters which can be listed as follows [41]: 

 α: the document-topic smoothing parameter for the probability distribution. 

 β: the term-topic smoothing parameter for the probability distribution.  
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 Similarity: the same as in the VSM model. 

 K or number of topics: the number of topics to be created by the LDA model. 

 Number of iterations: the number of iterations considered for the inference process. 

3.4 Summary 

In this chapter, we provided a brief introductory background to the main topics that are 

addressed in this thesis. We clarified the meaning of LL, and explained how they can be 

considered as the organization’s memory. The value of LL records was underscored by 

clarifying that they can provide information regarding either historical problem solving or 

previous opportunity leveraging. 

Also, we illustrated that despite the LL repository being a valuable source of knowledge 

for project managers, it can be abandoned for various reasons, including the difficulty 

and time required for manual searching of the LL unstructured data. This limitation called 

for the need for automatic LL recall solutions. Therefore, we explained how such 

solutions would eliminate the need for manual involvement of project managers to search 

for relevant LL records, and thus would improve the LL exploitation. We presented the 

state of current research of the LL automatic recall. 

Furthermore, the main concept of the IR techniques was illustrated. Moreover, we 

described the fundamentals of three of the most popular IR models, which are used in this 

dissertation, namely Vector Space Model (VSM), Latent Semantic Indexing (LSI) and 

Latent Dirichlet Allocation (LDA). For each of these models, we clarified the main 

theory and listed the main configuration parameters. 
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Chapter 4  

4 The Design of the Lessons Learned Recall Solution 

Our literature review, from Chapter 2, revealed the existence of research gaps regarding 

the practitioners who benefit from existing software analytics research. As has been 

shown, most of the available research supports software developers, while rare studies 

serve other stakeholders such as project managers. This was the main motive behind 

focusing our research on addressing this gap by supporting other stakeholders. We took 

this into account when selecting and defining the problem statement and research goals.  

In this chapter, we start by stating the research problem. Then, the translation of this 

problem into the research questions is explained. In order to solve the problem at hand, 

we provide a novel solution which is explained in detail. Moreover, we describe how our 

solution is evaluated and the research questions are answered by conducting an empirical 

case study. The detailed plan and methodology of this empirical study are also illustrated 

in this chapter.2 

4.1 Problem Statement 

As we described in Chapter 3 (Section 3.1), the lessons learned (LL) records constitute 

the software organization’s memory of successes and failures. The LL are recorded in the 

organization’s repository for future reference in order to optimize planning, gain 

experience, and elevate market competitiveness.  

However, the LL repository is often disregarded despite the valuable information it 

provides. This can lead to the repetition of previous mistakes, or even missing potential 

opportunities. This, in turn, can negatively affect the organization’s profitability and 

competitiveness. Disregarding the LL repositories could be due to the lack of knowledge 

                                                 

2
 Part of this chapter is under review in the Information and Software Technology Journal. 

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Automatic Recall of Software 

Lessons Learned for Software Project Managers,” Inf. Softw. Technol. (IST), March 2018. (Under review) 
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of relevant LL by project managers (PMs), or to the need to continuously remind them of 

the existence of new relevant LL [35]. Although, this can be partially overcome by 

manually searching for relevant LL records by PMs, the effort is labor and time costly, 

especially when searching in unstructured information. Also, there could be other reasons 

for abandoning LL repositories, such as time limitations [35]. 

4.2 Research Questions and Goals 

Based on the defined problem statement, it is clear that our research targets PMs, which 

clearly aligns with the research trigger of supporting different stakeholders than 

developers in order to close one of the research gaps from our systematic literature 

review (SLR). 

 The primary objective of this research is to leverage the benefits to PMs that can be 

gained from the organization’s LL knowledge. We believe that this can be achieved by 

both facilitating the retrieval of relevant information and boosting knowledge about 

relevant and useful LL. We aim to achieve this by employing information retrieval (IR) 

techniques to provide adequate automatic LL retrieval classifiers. Also, our solution 

relies on constructing the search query automatically from existing project artifacts 

(issues and risks) as described in detail in the methodology section (Section 4.3). This 

closes another gap from the SLR since we exploit software artifacts other than source 

code. To the best of our knowledge, we are the first to employ IR techniques in mining 

the software LL repository; this is consistent with the literature survey conducted by 

Chen, Thomas and Hassan [46]. 

In order to achieve our objective, we have defined three main research questions which 

we answer in this research. The research questions are as follows: 

RQ1: Can we automatically, rather than manually, recall and push the relevant LL to 

PMs using IR-based LL classifiers?  

This research question is two-fold. In the first part, we are examining whether having an 

automatic LL recalling solution is efficient. This is important for solving the main 

problem of having the intensive process of manually searching the LL repository for 
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relevant records. Since we plan to employ IR techniques to provide our solution, the 

second part of this research question examines the fitness of IR techniques for the LL 

recall context.  

Reaching an answer to this research question is achieved by examining the performance 

of the solution through an empirical case study as described in Chapter 5.  

RQ2: Can project artifacts be used to construct on-the-fly queries to recall LL records 

relevant to the project at hand? 

As the main characteristic of our solution is to be automatic, i.e., no manual search by 

PMs, this research question examines the effectiveness of constructing the search query 

on-the-fly from existing project artifacts, as described in detail in Section 4.3.2, instead of 

relying on the manual inputting of the search query by PMs. 

The effectiveness of this on-the-fly search query construction can be measured by the 

ability of the LL classifier to return relevant LL records for the project at hand, i.e., the 

project to which the artifacts belong. This will be answered by the empirical case study 

conducted.  

RQ3: Do the configurations of the LL classifiers have an impact on the performance 

results? 

In this research question, we are seeking a statistical validation of the impact of the 

classifier’s parameter on the performance. We will examine the impact of considering 

different classifier’s parameters on the performance. This is crucial for determining 

whether the result conclusions and insights are statistically significant, and whether they 

can be generalized within the dataset at hand and experimental environment context. 

This research question is answered by applying an appropriate statistical test to the 

performance results recorded for the empirical study, as presented in Chapter 5.  
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4.3 Proposed Solution and Case Study Methodology 

As described, the intensiveness of manually searching the unstructured LL repository for 

relevant records is a major cause of the LL abandoning problem. The main contribution 

of our solution is to address this problem by replacing the manual search with an 

automatic search for relevant LL. Thus, in our solution, there is no need for the manual 

involvement of PMs in constructing the search query. Instead, we rely on existing project 

artifacts to build the query string on-the-fly. Moreover, another contribution of this work 

is employing IR models for the first time, as per our knowledge, to construct an IR-based 

LL classifier. We chose IR models because they have shown superior results for similar 

problems, in the software engineering literature, such as bug localization and equivalent 

requirements. 

The LL classifier, in our solution, is able to retrieve a list of the LL records relevant to the 

current project a PM is working on.  The classifier provides these relevant results based 

on a query that is automatically generated from existing project artifacts extracted from 

the project repository. 

In the rest of this section, we describe in detail each part of this solution, including the 

methodology employed to construct the automatic LL classifier solution. Also, the 

methodology employed to conduct the empirical study, in Chapter 5, is defined. This 

covers the processes of constructing the LL classifier, the search query, and the 

evaluation process. 

4.3.1 Lessons Learned Classifiers Construction 

As we mentioned, we rely on IR models in constructing the LL classifiers. Accordingly, 

three popular IR models from the literature, are employed, namely, Latent Semantic 

Indexing (LSI), Latent Dirichlet Allocation (LDA), and Vector Space Model (VSM). In 

this study, we will construct multiple classifiers and compare their performance in order 

to identify the most effective classifier for the problem at hand. To construct these 

classifiers, we have to define three types of configurations: data representation, 

preprocessing steps, and model-based parameter configurations. 
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4.3.1.1 Data Representation Configuration 

The data representation configuration defines which parts or fields from the search query 

and LL record will be employed while calling or constructing the LL classifier.  

As will be described in detail in Chapter 5, both the project artifacts (search query), and 

the LL records are represented using their full description field values. We only rely on 

the description field value because other fields, such as “title,” were not defined for the 

dataset provided.  

4.3.1.2 Preprocessing Steps Configuration 

The preprocessing configuration defines how data (project artifacts and LL records) is 

preprocessed before being forwarded to the IR algorithm to build the LL classifier. Since 

the selection of the appropriate preprocessing steps is an open research area [41], for our 

case study, we have chosen to employ two of the most common techniques from the 

natural language processing (NLP) literature, namely: stemming and stopping. In 

stemming, the words are reduced to their word stem. In stopping, the stop words are 

removed from the original text. In order to apply these two preprocessing steps, we use 

the tool provided by Thomas [51]. We consider the four combinations of applying these 

two preprocessing steps: not applying any of the two steps (none), applying stemming 

individually, applying stopping individually and applying both stemming and stopping. 

4.3.1.3 Model-Based Parameter Configuration 

For the LSI model, there are three parameters which should be configured: number of 

topics, term weight, and similarity. Since there is no optimal selection method for the 

number of topics, and since it is still an open research topic, we consider four values from 

the literature [42] for number of topics; “32,” “64,” “128” and “256.” Those chosen 

values cover the different ranges of the number of topics values [52]. Regarding term 

weight, we consider three methods from the literature [40], namely: the Boolean, tf-idf, 

and sublinear tf-idf methods. For similarity, the cosine similarity method is employed, as 

it is the most suitable method from the literature for the LSI model [40][42]. 

For the LDA model, we consider the same number of topics values as in LSI. Other 
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parameters, including sampling iterations number, topic-word smoothing, document-topic 

smoothing, and similarity, are automatically optimized by the MALLET tool [53], which 

we use for the case study experiments (More details in Section 5.2). Also, for the query 

execution, we used the lucene-lda tool, which is implemented by Thomas [54]. The 

lucene-lda tool employs the conditional probability method for the similarity, as it is the 

most appropriate similarity method for the IR applications [42][55]. 

Regarding the VSM model, there are two parameters: term weight and similarity. For 

term weight, we employ the same methods as in the LSI model. For similarity, we 

consider both the cosine and the overlap methods from the literature [40]. 

4.3.1.4 Overall Configurations Considered  

We consider a fully factorial design [42] for the case study experiments, which means 

that we consider all combinations of the selected parameter values, i.e., data 

representation, preprocessing steps and model-based parameters. So for each parameter, 

every value considered is examined against all values of all other parameters. 

Accordingly, our experiment has yielded 88 LL classifiers; 48 LSI classifiers ((1 project 

artifacts representation) * (1 LL records representation) * (4 preprocessing combinations) 

* (4 number of topics values) * (3 term weighting methods) * (1 similarity method)), 16 

LDA classifiers ((1 project artifacts representation) * (1 LL records representation) * (4 

preprocessing combinations) * (4 number of topics values)), and 24 VSM classifiers ((1 

project artifacts representation) * (1 LL records representation) * (4 preprocessing 

combinations) * (3 term weighting methods) * (2 similarity methods)). We have tested 

and evaluated all of these classifiers. 

A summary of the LL classifiers construction process is shown in Figure 4-1. Also, the 

considered parameter values are summarized in Table 4-1. 
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Table 4-1 Parameter Configurations 

Parameter Value 

Common parameters   

 Preprocessing steps None, Stemming, Stopping, Stemming 

and stopping 

       VSM model parameters   

 Term weight tf-idf, sublinear tf-idf, Boolean 

     Similarity Cosine, overlap 

     LSI model parameters    

 Term weight tf-idf, sublinear tf-idf, Boolean 

     Number of topics 32, 64, 128, 256 

      Similarity Cosine 

LDA model parameters    

 Number of topics 32, 64, 128, 256 

     Number of iterations Until model convergence 

  Similarity Conditional probability 
 

 

Figure 4-1 Construction of the Lessons Learned Classifiers 
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4.3.2 Dynamic Query Construction 

As we described, our solution relies on automatic construction of the search query. To 

achieve this, in the case study, we employ two types of the available project artifact 

records, namely issue records and project risk register records, to dynamically construct 

the query string on-the-fly and search the constructed classifiers. It is important to clarify 

that by issue records we mean project management issues, such as cost management and 

team management issues, and not development issues or bugs. Examples for both issues 

and risks are provided in Appendix A. 

By using the existing artifacts, we bypass the need for users to manually construct the 

query string, and we provide an automatic search process. 

4.4 Evaluation Process 

For the evaluation process, we follow the Cranfield evaluation methodology [56]. This 

methodology is suitable for the empirical evaluation of IR models. For this evaluation 

method, we first need to acquire a real dataset, including both the LL and the project 

artifacts (issues and risks). Therefore, we contacted multiple industrial partners in order 

to collect the needed dataset for the evaluation. We successfully reached an agreement 

with one of our industrial partners to provide us with the needed dataset. Also, for the 

evaluation, we need to build a gold set. The gold set should contain a mapping set of each 

query examined and the relevant results expected for this query. The detailed data 

collection and the construction of this gold set are described in Section 5.1 of the next 

chapter. This set can then be reused to evaluate multiple LL classifiers. The evaluation 

process is conducted based on defined performance metrics. 

Having both the dataset and the gold set, we then pursue the evaluation process by 

applying the data preprocessing steps, following the preprocessing combinations, as 

described in Section 4.3.1.2, to the LL repository in order to get different preprocessed 

versions of the repository. We build the LL classifiers based on each of the LL repository 

versions, and then we repeat this for each of the IR model configuration combinations 

that we have considered in Section 4.3.1.4  (see Figure 4-1). 
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After building the classifiers, we execute each of the queries considered, i.e., issues and 

risks, using each of these classifiers, and then we record the results list. The performance 

metrics are calculated, as described in the next section, for each classifier by comparing 

the results list to the gold set. A summary of the evaluation process is shown in 

Figure 4-2. 

 

4.4.1 Performance Metrics 

To benchmark the performance results for each of the LL classifiers considered, we 

employ two of the most popular performance metrics from the literature [40][41][42], 

namely, top-K and MAP (Mean Average Precision). The top-K accuracy metric 

calculates the percentage of queries, i.e., project issues/risks, whose top k result records 

have at least one LL record relevant to this query, based on the gold set. The top-K value 

is significant to our case study because it measures the ability of the LL classifier to 

provide users with at least one relevant result in an advanced position in the results list, 

which is important to encourage users to use the new searching tool; this can lead to 

improvements in the organization’s LL recall – our main goal. In the study, we follow the 

literature by setting k to 20 in order to measure the accuracy of the classifiers when 

Figure 4-2 Lessons Learned Classifier Evaluation Process and Performance Results 

Calculation  

Obs: this process is repeated for each classifier, and is calculated for each of the queries’ results. Then, the 

average performance metric is calculated for each classifier 
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considering the top 20 records from the relevant records retrieved. In the literature 

[42][43], the value of 20 has been justified as a convenient number of result records 

through which the user can scroll down before disregarding the search results. Top-K 

calculations can be formulated as follows [42]: 

 

𝑡𝑜𝑝 − 𝐾(𝐶𝑖) =  
1

|𝑄|
 ∑ 𝐼 (𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 (𝑞𝑗), 𝑇𝑜𝑝𝐾 𝑅𝑒𝑐𝑜𝑟𝑑𝑠 (𝐶𝑖, 𝑞𝑗 , 𝑘)) ,

|𝑄|

𝑗=1

 

 

where 𝐶𝑖 is the classifier i, |Q| is the total number of the queries examined, 

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 (𝑞𝑗) is a function that returns all of the relevant documents to the jth 

query based on the gold set, 𝑇𝑜𝑝𝐾 𝑅𝑒𝑐𝑜𝑟𝑑𝑠 (𝐶𝑖, 𝑞𝑗 , 𝑘) is a function that returns the top k 

result records from the retrieved list for the 𝑞𝑗 by the ith classifier 𝐶𝑖, and finally I is the 

intersection function which returns ‘1’ if there is at least one common document between 

the two document lists returned by the two functions, 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 and 

𝑇𝑜𝑝𝐾 𝑅𝑒𝑐𝑜𝑟𝑑𝑠, and returns ‘0’ otherwise. 

In the case study, the query can have more than one relevant LL record, so it is important 

to measure the ability of the constructed LL classifiers to recall all possible relevant 

records, as well as evaluate the classifier’s retrieval precision. In order to fulfill this 

measurement, we employ the MAP metric, which is one of the most popular and most 

appropriate metrics, from the literature [40][56] for this kind of measurement, especially 

when comparing multiple IR models and with the existence of multiple query sets. The 

MAP metric can be calculated as the average of the aggregated average precision of each 

individual query. The MAP equations are formalized by Zhai and Massung [56] as 

follows: 

𝑀𝐴𝑃(ℒ) =  
1

𝑚
 ∑ 𝑎𝑣𝑝(ℒ𝑖)

𝑚
𝑖=1 , 

𝑎𝑣𝑝(ℒ𝑖) =  
1

|𝑅𝑒𝑙|
 ∑ 𝑝(𝑗)𝑛

𝑗=1 , 

where ℒ𝑖 is the ranked results list returned by the classifier to answer the ith query from 

the different m queries considered; 𝑎𝑣𝑝(ℒ𝑖) is the average precision for the ranked list ℒ𝑖. 
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The avp is calculated for each query, based on the above equation where 𝑝(𝑗) is the 

precision at the ranked record 𝑗 within the results list ℒ𝑖,  Rel  is the set of all documents 

relevant to this query based on the mapping set, the gold set, and n is the count of the 

records of the results list ℒ𝑖. 𝑝(𝑗) is ‘0’ if the jth document is not relevant to the query. On 

the other hand, if the document is relevant to the query, then 𝑝(𝑗) will be calculated by 

dividing the number of relevant documents, identified relevant so far, by the document 

rank, i.e., j value. For example, if the seventh document within the results list is the fourth 

relevant document retrieved, then 𝑝(7) =  
4

7
. 

4.4.2 IR Configuration Impact 

As we planned to study the impact of the different parameter value configurations, i.e., 

preprocessing steps and parameter values of models, on the classifiers’ performance, we 

have applied the Tukey’s Honestly Significant Difference (HSD) statistical test 

[57][58][59]. The HSD test is a statistical test which has the ability to perform a 

comparison between different groups in one step. The advantage of the Tukey’s HSD test 

is that it can significantly differentiate between more than two groups based on the 

statistically significant difference between the groups’ mean. For our study, we use the 

HSD test to statistically compare the impact of the different parameter configurations on 

the classifier performance. We studied that parameter by parameter.  

So, for each parameter (e.g., term weight), we compare the different performance results 

of each parameter value (e.g., tf-idf versus sublinear tf-idf versus Boolean). While 

studying a certain parameter, the other parameters may vary. The HSD test examines the 

difference in the mean value between the results of the parameter value pairs. For each of 

these pairs, if the difference between their mean values exceeds the expected standard 

deviation, then HSD can report these two parameter values as statistically different 

groups. Therefore, any two parameter values can be either statistically different, i.e., 

reported as different groups, or not statistically different, i.e., the same group, based on 

the mean difference. Also, any parameter value can belong to one or more groups. 
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4.5 Summary 

In this chapter, we started by describing the research problem. We illustrated the existing 

problem – that PMs have been abandoning the LL repository. We noted that this has been 

mainly attributed to the intensive task of manually searching this unstructured repository. 

In order to address this problem, we defined the research questions and illustrated the 

rationale and motivation behind considering each of them.  Moreover, we discussed our 

automatic LL recall solution and identified the research contributions. The first 

contribution is employing IR models, for the first time, to construct an LL recall 

classifier. The second contribution is providing an automatic LL recall solution in order 

to avoid the intensive manual searching that is currently required to locate relevant 

lessons learned. We have clarified that our solution is automatic, i.e., no need for a 

manual search, since the existing project artifacts are employed to construct the search 

query on-the-fly. 

We clarified that answering the research questions and evaluating the effectiveness of the 

LL recall solution are achieved by conducting a real empirical case study. The empirical 

case study methodology was illustrated. This methodology includes the process of 

constructing the LL classifiers using three of the popular IR models. Also, the different 

types of parameter configurations we considered were clarified in detail. The project 

artifacts that were employed have also been described. 

At the end of this chapter, the details of the evaluation process were clarified, which 

included the construction of different classifiers, and the evaluation of the LL list 

retrieved by the classifiers against the expected list based on the gold set. Furthermore, 

the two performance metrics employed, namely top-K and MAP, were demonstrated. 

This included the selection rationale and the calculation procedure for each of these two 

metrics. In addition, we described how the Tukey’s Honestly Significant Difference 

(HSD) statistical test was employed to study the statistical impact of the different 

parameter configurations on the LL recall classifiers.  
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After providing the detailed plan for the case study in this chapter, the details of how the 

case study was conducted will be illustrated in Chapter 5. This includes the detailed 

results, observations and main findings from the case study.  
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Chapter 5  

5 Can Lessons Learned Be Recalled Automatically: An 
Empirical Study 

In this chapter, we describe the execution steps of the case study plan illustrated 

in Chapter 4. This chapter starts by describing the data collection process, including the 

data disclosure agreement, the dataset description and the process that will be followed to 

construct the reference gold set. Moreover, brief technical details are given regarding the 

tools employed to construct information retrieval (IR) based classifiers. In addition, the 

study results, findings and threats to validity are discussed in this chapter. Both the 

performance results and the analysis of the parameter configuration’s impact on the 

classifiers’ performance are discussed. The performance results of all the lessons learned 

(LL) classifiers that are considered are presented and grouped based on the performance 

metric employed, either top-k or MAP.3 For more details regarding the performance 

metrics considered and the configuration impact analysis plan, refer to Chapter 4, 

Section 4.4. 

5.1 Data Collection 

One of the most challenging steps for the success of this case study was to collect the 

dataset needed to evaluate and answer the research questions. Keeping in mind the need 

for confidentiality and the competitiveness that exists within the software industry, it was 

not an easy task to get access to the needed dataset, especially given that we targeted real 

industrial records.  

After communicating with our industrial network, we successfully received the data 

needed from an industrial partner which is a large and reputable multinational software 

company with a workforce of 800+ employees. Our industrial partner is both ISO 9001 

                                                 

3
 Part of this chapter is under review in the Information and Software Technology Journal. 

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Automatic Recall of Software 

Lessons Learned for Software Project Managers,” Inf. Softw. Technol. (IST), March 2018. (Under review) 
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and CMMi Level 3 certified, with more than 20 years in the global IT services domain. 

The company has global branches all over the world, including North America, Canada, 

and Arab Gulf countries, such as the United Arab Emirates, Saudi Arabia, and Kuwait. 

The company provides software solutions within seven different industries, including 

telecommunications, banking, education and government sectors, in addition to strategic 

education programs and partnerships with multiple Arab Gulf governments, including 

Dubai and Qatar governments. 

5.1.1 Dataset Description 

The data provided is under a non-disclosure agreement. Accordingly, the dataset records 

have been made totally anonymous by the partner by removing all sensitive data, such as 

customer names and project names. The collected dataset consists of two parts. The first 

part is the LL repository, while the second part is the project issues/risk register 

documents. 

The LL repository sample provided contains 212 LL records from 30 different software 

projects. Each LL record is represented by both the project’s identification number field, 

identifying the project which has reported the LL, and the description field. The 

description field contains a description of the LL and its context in a flat text format.  

Regarding the project issue/risk records, we have received 55 issue/risk records from five 

different projects that are different than the 30 projects used for the LL records. Those 

records acted as the query string for our case study. The projects are from different 

domain verticals, including governmental, management consultancy, educational, and 

telecommunications projects. The scopes of these projects include migration or new 

implementation of portals, business processes automation, and learning management 

systems (LMS). These projects follow either waterfall or iterative development 

methodologies. Also, the customers represented in these projects are from different 

countries. All the dataset records are written in English. 
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5.1.2 Gold Set Construction 

As described in the case study evaluation process in Chapter 4 (Section 4.4), constructing 

a reference gold set has been a must for comparing and benchmarking the performance of 

the different LL classifiers considered in the study. The gold set should contain a 

mapping set of each query examined and the relevant results expected for this query. 

In order to construct this gold set, each of the provided issue/risk records was mapped to 

the relevant LL records from the LL repository. As this map could be subjective based on 

the users – practitioners and project managers (PMs) in our case – of the retrieval model, 

we adopted a procedure similar to the one recommended by Kitchenham et al. [12] in 

performing data extraction while conducting a systematic literature review (SLR) in the 

case of having a single main researcher. So, the initial mapping was conducted by the 

main author, the single main researcher in our case who is a subject matter expert (SME). 

Then, a review meeting was scheduled with another SME from the partner software 

company. In the review meeting, the company SME reviewed the mapping of the 

issues/risks to the relevant LL records. In the case of disagreement, the two SMEs held 

discussions until consensus was reached. After finalizing and agreeing on the whole 

mapping set, it was baselined. This final mapping set was used for the evaluation and 

benchmarking of the different LL classifiers within this case study. We summarize the 

gold set construction process in Figure 5-1. 

Figure 5-1 Gold Set Construction Process 
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5.2 LL Classifiers Construction 

5.2.1 Data Preprocessing Tool 

As described in Chapter 4 (Section 4.3.1.2), we employed two of the popular 

preprocessing steps from the natural language processing (NLP), namely stemming and 

stopping, to perform the dataset preprocessing. As aforementioned, we applied these two 

steps in four combinations: apply none of the steps, apply stemming only, apply stopping 

only, and apply both stemming and stopping. We used lscp (version 0.01) [51] for this 

purpose. lscp is an open source lightweight text preprocessor which was originally 

developed by S. W. Thomas [51] for source code preprocessing, but can also be used for 

other text input, such as the LL documents in this case study. The tool is implemented 

using Perl programming language and can accept multiple preprocessing configuration 

parameters. For the stemming, lscp uses the Lingua::Stem Perl’s module which employs 

the Porter’s stemming algorithm [60]. We describe the parameters that we used in 

Table 5-1. 

Table 5-1 lscp Tool Parameters 

Parameter Description Default Value 

inPath  The input files directory  "./in" 

outPath The output directory to store the 

preprocessed files 

"./out"  

numberOfThreads number of parallel processing threads 

to employ 

1 

isCode Set as 1 if the input files contain 

source code,  

set as 0 if the input files are regular 

files (as in our case study) 

1 

doStemming Set as 1 to perform stemming, set as 0 

for no stemming 

0 

doStopwordsEnglish Set as 1 to perform stopping, set as 0 

for no stopping 

0 

 

An example of the preprocessing script in the case of applying both stemming and 

stopping steps is shown in Figure 5-2. 
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5.2.2 LDA Classifiers Construction Tool 

In this case study, there were two steps involved in retrieving the relevant LL records. 

First, we constructed the IR classifiers, i.e., the Latent Dirichlet Allocation (LDA) 

classifiers, given the LL corpus. Second, we indexed and searched the IR classifiers 

constructed for the records relevant to the queries at hand.  

Therefore, we employed the MALLET [53] tool for the construction of the LDA 

classifiers. MALLET is a popular natural language processing (NLP) tool [41]. The tool 

is implemented using the Java programming language and provides multiple applications 

including IR and topic modeling. The constructed LDA classifiers consist of multiple 

membership and mapping files including the list of terms in the corpus, the word-topic 

membership and the file-topic membership. In order to construct the classifiers, the input 

files should be imported to the MALLET tool first. Then, the tool is used to train the 

LDA classifiers based on the input corpus provided. Also, it is worth mentioning that the 

MALLET tool automatically optimizes many of the LDA parameters such as sampling 

iterations number, topic-word smoothing, document-topic smoothing, and similarity. We 

summarize the MALLET main configuration parameters used to train the LDA classifiers 

in Table 5-2. 

use lscp; 
 
my $preprocessor = lscp->new; 
 
$preprocessor->setOption("inPath", "input_test_path"); 
$preprocessor->setOption("outPath", "output_test_path"); 
$preprocessor->setOption("isCode", 0); 
$preprocessor->setOption("doStemming", 1); 
$preprocessor->setOption("doStopwordsEnglish", 1); 
 
$preprocessor->preprocess(); 

 

Figure 5-2 lscp Preprocessing Example 
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Table 5-2 MALLET Tool Parameters 

Parameter Description 

--input The imported data path 

--num-topics number of topics to be created by the LDA 

model 

--output-topic-keys file path to create a map of the words in each 

topic 

--output-doc-topics file path to create a document-topic 

membership 

--topic-word-weights-file file path to create a word-topic membership 
 

After constructing the LDA classifiers, we used another tool called lucene-lda [54] for 

classifiers’ indexing in preparation for searching these classifiers for the queries. To 

achieve this, we inputted the MALLET generated membership— after applying some 

formatting to make it suitable for the lucene-lda tool— to the lucene-lda tool for 

indexing. After indexing, the tool was ready to execute the queries at hand and return the 

LL list. 

The lucene-lda is an open source tool developed by S.W.Thomas [54] using Java 

programming language. The tool employed the well-known Apache lucene [61] open 

source indexing and searching tool for the indexing of the LDA models topics and topic 

memberships. For the indexing process, the tool generates a helper class called 

LDAHelper() to store some of the automatically generated configuration parameters 

while constructing the LDA classifier by the MALLET tool [53]. Moreover, it is 

important to highlight that the lucene-lda tool employs the conditional probability 

method for similarity. We summarize the parameters used for indexing and searching in 

Table 5-3. 
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Table 5-3 lucene-lda Tool Parameters (LDA mode) 

Indexing Parameters 

Parameter Description 

<inDir> Directory path of the original preprocessed documents (LL 

records) 

<outIndexDir> Directory path to generate the indexing data 

<outLDAIndex> Path to generate a helper LDA indexing class (LDAHelper()) 

fileCodes Path of a file that contains the original names of the preprocessed 

files 

ldaConfig Expects two-part value:  

1-The number of topics used while constructing the LDA classifier 

2- The directory path of the associated mapping and topic 

membership files generated by the MALLET tool (after 

reformatting) 

Searching Parameters 

Parameter Description 

<indexDir>  Directory path of the generated indexing data for the LDA 

classifier to be used 

<LDAIndexDir> Path of the generated helper LDA indexing class (LDAHelper()) 

 <queryDir>  Directory path of the query documents to be executed 

<resultsDir>  Directory path to export the retrieved list corresponding to each of 

the executed queries 

K Number of topics configured while constructing the LDA classifier 
 

5.2.3 VSM Classifiers Construction Tool 

For the Vector Space Model (VSM) classifiers construction and search, the same lucene-

lda tool, which was used for LDA, was employed but with the VSM query mode. The 

same indexing process that was used for LDA was used for VSM, except that there was 

no need for the generated topic membership files from MALLET, since the indexing was 

totally handled by the integrated lucene tool. Since VSM is the default IR model used by 

lucene, the searching or query execution was mainly handled by the integrated lucene 

tool. A summary of the configured lucene-lda tool’s parameters, used in indexing and 

searching in the VSM mode, is shown in Table 5-4. 
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Table 5-4 lucene-lda Tool Parameters (VSM mode) 

Indexing Parameters 

Parameter Description 

<inDir> Directory path of the original preprocessed documents (LL records) 

files 

<indexDir> Directory path to generate the indexing data 

fileCodes Path of a file contains the original names of the preprocessed files 

Searching Parameters 

Parameter Description 

<indexDir>  Directory path of the generated indexing data 

 <queryDir>  Directory path of the query documents to be executed 

<resultsDir>  Directory path to export the retrieved list corresponding to each of 

the executed queries 

weightingCode term weighting method: 1=tf-idf, 2=Sublinear tf-idf, 3=Boolean 

scoringCode similarity scoring method: 1=Cosine, 2=Overlap 
 

5.2.4 LSI Classifiers Construction Tool 

In the case of the Latent Semantic Indexing (LSI) classifiers, we employed the gensim 

open source tool [62]. gensim is a topic modeling tool which is implemented in Python 

programming language. Regarding the indexing and searching of the LSI classifiers, we 

employed the document similarity server gensim’s library (simserver). The simserver 

library has the ability to construct the LSI classifiers given the input LL documents, index 

the trained classifiers for future searching, and execute the queries to retrieve the relevant 

records. 

It is important to highlight that cosine similarity is the only similarity method 

implemented by default in genism regarding the LSI modeling. In addition, regarding the 

term weight method, genism calculates the term weight by multiplying the returned 

values of both the local component method wlocal and the global component method 

wglobal. For example, in the case of the tf-idf term weight method, the wlocal is used to 

calculate the term frequency part (tf), where the wglobal is used to calculate the 

document inverse frequency part (idf). So, in order to implement all of the term weight 

methods considered for this study, we had to customize the corresponding wlocal and 

wglobal for each of these term weight methods. Then, we inputted the customized 
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methods to the gensem server to use it for the LSI classifier training. A summary of the 

simserver’s configured parameters is shown in Table 5-5. 

Table 5-5 simserver Tool Parameters 

Training Parameters 

Parameter Description 

method method to be used to train the topic model (we set it as 'lsi') 

wlocal method to calculate the term weight local component 

wglobal method to calculate the term weight global component 

topics the number of topics remaining after the SVD reduction 

Searching Parameters 

Parameter Description 

doc pointer to the query id to be executed to search using the loaded LSI 

model 

min_score minimum similarity score for a retrieved document within retrieved 

list 

max_results maximum number of records to be retrieved within the retrieved list 
 

5.3 Results 

In this section, we describe the results of all the LL classifiers considered. For the 

evaluation of all the considered LL classifiers, we followed the evaluation process 

defined in Chapter 4 (Section 4.4). To make it easy to follow, we discuss the results 

based on each of the chosen performance metrics, top-K and MAP, separately in the 

following two subsections. Each subsection starts with the overall discussion of the 

performance results, and then it demonstrates the statistical test results regarding the 

significant effect of the parameter configurations on the classifier results. Also, we share 

the results of all classifiers in Appendices B and C as a reference for interested 

practitioners and researchers.  

5.3.1 Top-K Results 

The top-20, K is set to 20 (refer to Chapter 4, Section 4.4.1, for details), performance 

results regarding the best four classifiers and the worst four classifiers for each of the IR 

models considered, VSM, LSI, and LDA, are illustrated in Table 5-6. When observing 

the highest performing classifier in each technique, the best top-20 results of 70% are 
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recorded by the VSM and LSI top two classifiers, while the lowest performance is 

recorded by the LDA top classifier with only 52%. So, the top VSM and LSI classifiers 

outperformed the top LDA classifier, which is consistent with the literature results for 

similar problems, such as bug localization [42][44]. An observation regarding the best 

two classifiers of VSM and LSI is that both classifiers miss the relevant LL records for 

almost the same queries (issues/risks) except for only one query. All these queries have 

only three or fewer relevant LL records, which makes them hard queries, except for only 

one query which has seven relevant LL records according to the gold set. This indicates 

that the VSM and LSI best classifiers can be considered good retrieval classifiers for the 

evaluation dataset at hand. 

Table 5-6 Lessons Learned Classifiers Top-K Performance Results (Best Four and 

Worst Four Classifiers) 

VSM LSI LDA 
Rank Parameters Values Top-

20 

(%) 

Rank Parameters Values Top-

20 

(%) 

Rank Parameters 

Values 

Top-

20 

(%) 

1 Stemming+tf-

idf+cosine 

70 1 None+tf-idf+cosine 

+128 topics 

70 1 Stemming and 

stopping 

+32 topic 

52 

2 Stemming+sublinear 

tf-idf+ 

cosine 

69 2 None+sublinear tf-

idf 

+cosine+128 topic 

69 2 Stopping+32 

topic 

46 

3 None+sublinear tf-

idf+ 

cosine 

61 3 Stemming+sublinear 

tf-idf+cosine+256 

topic 

69 3 Stemming and 

stopping 

+64 topic 

46 

4 Stemming and 

stopping+ 

sublinear tf-

idf+cosine 

61 4 None+tf-idf+ 

cosine+256 topic 

69 4 None+32 

topic 

41 

21 Stemming+tf-

idf+overlap 

52 45 Stemming+boolean

+cosine+64 topic 

50 13 Stemming and 

stopping 

+128 topic 

26 

22 Stemming+boolean+ 

overlap 

50 46 None+boolean+ 

cosine+128 topic 

48 14 Stemming+ 

256 topic 

22 

23 None+boolean+ 

cosine 

46 47 None+boolean+ 

cosine+64 topic 

44 15 None+256 

topic 

19 

24 None+boolean+ 

overlap 

46 48 None+boolean+ 

cosine+32 topic 

43 16 Stemming and 

stopping 

+256 topic 

19 

 

In addition, the descriptive statistics of the top-20 performance results, in Table 5-7, 

demonstrate that the parameter configurations of the LL classifiers have a significant 

effect on the results. In the case of the VSM classifiers, there is a significant difference, 
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about 50% relative improvement (calculated as  
70−46

46
%), in the performance between 

the best classifier, 70%, and the worst classifier, 46%, and this can also be observed 

between the best classifier, 70%, and the median classifier, 54%. The same observation is 

true for the LSI and LDA classifiers, as depicted in Table 5-7. 

Table 5-7 Top-K Descriptive Statistics 

VSM LSI LDA 

 

Top-20 

(%) 

 

Top-20 

(%) 

 

Top-20 

(%) 

Minimum 46 Minimum 43 Minimum 19 

1st Quartile 52 1st Quartile 55 1st Quartile 26 

Mean 56 Mean 59 Mean 33 

Median 54 Median 59 Median 35 

Standard 

deviation 

6 Standard 

deviation 

7 Standard 

deviation 

10 

3rd Quartile 58 3rd Quartile 65 3rd Quartile 41 

Maximum 70 Maximum 70 Maximum 52 
 

In order to study the impact of the configuration values on the performance results 

statistically, we apply the Tukey’s HSD statistical test to the performance results of each 

of the parameter configuration values. The results of the Tukey’s test, regarding the top-

20 performance results, illustrated in Table 5-8 at a confidence level of 95%, are 

demonstrated in the following two subsections, in which we use the short term 

“performance results” to refer to the top-20 performance results. Also, the results at 90% 

and 99% confidence levels are shared in Appendix D. 
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Table 5-8 Tukey’s HSD Statistical Test Results (Top-K) (95% Confidence Level) 

VSM LSI LDA 

Group Mean 

 (%) 

Preprocessing 

steps 

Group Mean  

(%) 

Preprocessing 

steps 

Group Mean  

(%) 

Preprocessing 

 steps 

A 59 Stemming and 

stopping 

A 60 Stopping A 36 Stemming 

and stopping 

A 58 Stemming A 60 Stemming 

and stopping 

A 34 Stopping 

A 53 None A 60 Stemming A 32 None 

A 53 Stopping A 58 None A 32 Stemming 

Group Mean 

 (%) 

Similarity Group Mean 

 (%) 

Number of 

topics 

Group Mean  

(%) 

Number of  

topics 

A 58 Cosine A 63 128 A 45 32 

B 53 Overlap A 61 256 AB 37 64 

   AB 60 64 B 28 128 

   B 54 32 B 24 256 

Group Mean 

 (%) 

Term weight Group Mean  

(%) 

Term weight    

A 58 tf-idf A 63 tf-idf    

A 57 Sublinear tf-idf A 63 Sublinear tf-

idf 
   

A 52 Boolean B 53 Boolean    
 

 

5.3.1.1 Lessons Learned Classifier Parameters Statistical Test 
Results 

Regarding the similarity method, in the VSM case, the HSD test results show a 

significant difference in the performance results when using the cosine method versus the 

results of using the overlap method (See Figure 5-3). This means that the similarity 

method employed has an impact on the performance results for the dataset considered in 

this case study. The cosine similarity method shows the best performance results and 

comes in the top group. On the other hand, the overlap method results come in the bottom 

group. 
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Regarding the term weight, in the VSM case, the test results show that there is no 

statistically significant difference when changing the parameter value between the tf-idf, 

sublinear tf-idf and Boolean weighting methods (See Figure 5-4). 

For the LSI classifiers, the statistical test shows that the term weight parameter has a 

statistically significant impact on the performance results. Both the tf-idf and sublinear tf-

idf weighting methods come in the top group and have the highest top-20 performance 

results, while the Boolean weighting method comes in the bottom group with the lowest 

performance results (See Figure 5-5). 

An overall observation, regarding the term weight parameter, is that the tf-idf weighting 

method always shows the highest performance results for both the VSM and LSI models, 

followed by the sublinear tf-idf method, although there is no statistical significance for 

VSM as described, which is consistent with the results from other IR application studies 

[42].  

 

Figure 5-3 Top-20 Statistical Test Results for VSM (Similarity Methods) 
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Regarding the number of topics, the HSD test has revealed that it has a statistically 

significant impact on the classifiers’ performance results. This means that the 

performance results differ when the classifiers are configured with different topic 

numbers. This applies for both the LSI and LDA classifiers. However, for LSI, the largest 

numbers of topics, “128” and “256,” come in the top group. This indicates that the more 

topics used, the better the performance results. On the other hand, for the LDA classifiers, 

the situation is different, where the smallest numbers of topics, “32” and “64,” come in 

the top groups (See Figure 5-6 and Figure 5-7). 

5.3.1.2 Preprocessing Steps Statistical Test Results 

Table 5-8 illustrates the HSD test results of applying the four preprocessing combinations 

on the classifiers’ top-20 performance, where there is no statistically significant 

difference in the results when applying any of the preprocessing steps. This is the case for 

all the IR models considered, VSM, LSI, and LDA, within the context of the dataset at 

hand. However, applying both stemming and stopping together, in the case of VSM and 

Figure 5-4 Top-20 Statistical Test Results for VSM (Term Weighting Methods) 
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LDA, and applying only stopping, in the case of LSI, give the highest top-20 

performance (See Figure 5-8, Figure 5-9, and Figure 5-10). 

 

5.3.2 MAP Results 

Table 5-9 lists the MAP performance results regarding the best four classifiers and the 

worst four classifiers for each of the IR models considered.  

After analyzing the MAP results, we conclude that some of the insights from the top-20 

results still apply. When looking at the top performing classifiers in each model, the 

highest MAP result of 0.198 is recorded by the top classifier in LSI, followed by 0.189 in 

VSM, which is similar to the top-20 results. These MAP performance results are 

satisfactory compared to other studies from the literature [44][63]. Also, as in the top-20 

results, the LDA top classifier achieves the lowest performance of 0.096, compared to the 

top performing classifiers in VSM and LSI. In addition, the worst results for both the  

Figure 5-5 Top-20 Statistical Test Results for LSI (Term Weighting Methods) 
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VSM and LSI classifiers, 0.081 and 0.085, respectively, are slightly different from the 

LDA top classifier result of 0.096. So, again, the MAP results are aligned with both of the 

top-20 results, from this case study, and the literature results, which provide evidence of 

the superiority of both VSM and LSI classifier results over LDA classifiers in different 

empirical studies [42][44]. 

Similar to the top-20 results, the descriptive analysis of the MAP performance results, 

presented in Table 5-10, indicates that the classifier configuration has a remarkable 

impact on the performance. This can be inferred from the difference between the VSM 

best classifier performance of 0.189 and the VSM worst classifier performance of 0.081, 

which represents more than 100% relative improvement. Also, there is a high difference 

between the median VSM classifier, 0.122, and the minimum VSM classifier. The same 

insight applies for both the LSI and LDA results. 

Figure 5-6 Top-20 Statistical Test Results for LSI (Number of Topics) 
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Table 5-9 Lessons Learned Classifiers MAP Performance Results (Best Four and 

Worst Four Classifiers) 

VSM LSI LDA 

Rank Parameter values MAP Rank Parameter 

values 

MAP Rank Parameter 

values 

MAP 

1 Stemming and 

stopping+ 

sublinear tf-

idf+cosine 

0.189 1 Stemming 

and 

stopping+ 

sublinear tf-

idf+cosine+ 

128 topic 

0.198 1 Stemming

+32 topic 

0.096 

2 Stemming and 

stopping+ 

tf-idf+cosine 

0.188 2 Stemming 

and 

stopping+ 

tf-idf+ 

cosine+128 

topic 

0.198 2 Stemming 

and  

stopping+

32 topic 

0.089 

3 Stemming+tf-

idf+cosine 

0.156 3 Stopping+tf-

idf+ 

cosine+64 

topic 

0.194 3 None+32 

topic 

0.082 

4 Stemming+ 

sublinear tf-

idf+cosine 

0.153 4 Stopping+ 

sublinear tf-

idf+cosine+ 

64 topic 

0.194 4 Stopping+

32 topic 

0.075 

21 None+tf-

idf+overlap 

0.099 45 None+ 

boolean+ 

cosine+ 

128 topic 

0.107 13 Stemming 

and 

stopping+

128 topic 

0.040 

 

22 None+sublinear 

tf-idf+ 

overlap 

0.095 46 None+ 

boolean+ 

cosine+ 

64 topic 

0.096 14 Stopping+

64 topic 

0.036 

23 None+boolean+ 

cosine 

0.082 47 Stemming+ 

boolean+ 

cosine+32 

topic 

0.086 15 None+256 

topic 

0.031 

24 None+boolean+ 

overlap 

0.081 48 None+ 

boolean+ 

cosine+ 32 

topic 

0.085 16 Stemming 

and 

stopping+

256 topic 

0.030 

In the following subsections, we demonstrate the HSD statistical test results, at 95% 

confidence level, listed in Table 5-11, regarding the significant effect of the LL 

classifiers’ configuration on the MAP performance results. We refer to the MAP 

performance results as “performance results” in the following two subsections. Also, the 

results at 90% and 99% confidence levels are shared in Appendix D. 
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Table 5-10 MAP Descriptive Statistics 

VSM LSI LDA 

  MAP   MAP   MAP 

Minimum 0.081 Minimum 0.085 Minimum 0.030 

1st Quartile 0.111 1st Quartile 0.132 1st Quartile 0.043 

Mean 0.126 Mean 0.153 Mean 0.058 

Median 0.122 Median 0.163 Median 0.057 

Standard 

deviation 

0.028 Standard 

deviation 

0.029 Standard deviation 0.020 

3rd Quartile 0.142 3rd Quartile 0.172 3rd Quartile 0.065 

Maximum 0.189 Maximum 0.198 Maximum 0.096 
 

Table 5-11 Tukey’s HSD Statistical Test Results (MAP) (95% Confidence Level) 

VSM LSI LDA 

Group Mean Preprocessing 

steps 

Group Mean Preprocessing 

steps 

Group Mean Preprocessing 

steps 

A 0.159 Stemming 

and stopping 

A 0.170 Stemming and 

stopping 

A 0.067 Stemming 

B 0.126 Stemming A 0.164 Stopping A 0.056 Stemming and 

stopping 

B 0.117 Stopping AB 0.147 Stemming A 0.055 None 

B 0.102 None B 0.132 None A 0.053 Stopping 

Group Mean Similarity Group Mean Number of 

topics 

Group Mean Number of 

topics 

A 0.135 Cosine A 0.161 128 A 0.085 32 

A 0.117 Overlap A 0.161 64 B 0.053 64 

   A 0.158 256 B 0.051 128 

   A 0.133 32 B 0.042 256 

Group Mean Term weight Group Mean Term weight    

A 0.136 tf-idf A 0.167 Sublinear tf-

idf 

   

A 0.134 Sublinear tf-

idf 

A 0.166 tf-idf    

A 0.109 Boolean B 0.127 Boolean    
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5.3.2.1 Lessons Learned Classifier Parameters Statistical Test 
Results 

In the case of the VSM classifiers, the Tukey’s test results demonstrate that the classifier 

parameter values have no significant impact on the performance results. This means that 

both within the context of this case study dataset and the experiments that were 

conducted, neither the similarity parameter nor the term weight parameter affects the 

performance of the VSM classifiers (See Figure 5-11 and Figure 5-12). 

This is not exactly the same for the LSI classifiers, where the statistical test results reveal 

the significant impact of the term weight parameter on the classifier performance results. 

The sublinear tf-idf term weighting method records the highest mean performance value, 

0.167, and shares the top group with the tf-idf method, while the Boolean method comes 

in the bottom group (See Figure 5-13). On the other hand, the statistical test of the 

Figure 5-7 Top-20 Statistical Test Results for LDA (Number of Topics) 
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number of topics parameter demonstrates no significant difference in the performance 

results (See Figure 5-14). 

For the LDA classifiers, a significant difference in the number of topics parameter results 

Figure 5-8 Top-20 Statistical Test Results for VSM (Preprocessing Method) 

Figure 5-9 Top-20 Statistical Test Results for LSI (Preprocessing Method) 
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is reported by the statistical test. The top group comprises the performance results of the 

“32” topic classifiers, while the bottom group involves the performance results 

corresponding to “64,” “128” and “256” topic configuration values (See Figure 5-15). 

 

5.3.2.2 Preprocessing Steps Statistical Test Results 

In the case of the VSM classifiers, the HSD test shows a significant impact from the 

preprocessing steps parameter, where applying both the stemming and stopping together 

comes in the top group, while the application of other preprocessing steps, including 

stemming alone, stopping alone, and using none of the preprocessing steps, comes in the 

bottom group (See Figure 5-16).  

For the LSI classifiers, both preprocessing steps configurations of applying the stemming 

and stopping steps together, and only the stopping step are ranked in the top groups. The 

Figure 5-10 Top-20 Statistical Test Results for LDA (Preprocessing Method) 
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stemming step is ranked in the middle, and not applying any step comes in the bottom 

group (See Figure 5-17). 

Regarding the LDA classifiers, the statistical test infers no significant impact for the 

preprocessing steps on the classifier performance results (See Figure 5-18). 

In the following section, we elaborate on the results analysis and provide our overall 

findings and observations. We then link these findings to the original research questions 

defined in Chapter 4 (Section 4.2). 

5.4 Results Discussion 

In this section, we provide an overall discussion and demonstrate our overall findings 

from the results of the case study. 

 
 

Figure 5-11 MAP Statistical Test Results for VSM (Similarity Method) 
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Regarding the research questions, the conclusions are based on the analysis of the 

performance results of the 88 different LL classifiers considered in the case study. Our 

conclusions can be summarized as follows: 

 Considering the achieved adequate performance results, 70% for top-20 and 0.198 for 

MAP, we confirm the effectiveness of employing IR techniques in order to 

automatically push the relevant LL information to PMs within software organizations.  

 With this convenient level of performance, practitioners are encouraged to rely on the 

LL IR-based classifiers to automatically search, within the existing organization’s LL 

repositories, for relevant solutions regarding their most pressing issues/risks; this 

answers the first research question RQ1. 

 

 

Figure 5-12 MAP Statistical Test Results for VSM (Term Weighting Method) 
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 Relying on the available artifacts, such as project management issues and risk register 

that are associated with software development and project management processes, to 

replace the manual querying of the organization’s repositories can be significant. This 

is a positive answer to the second research question RQ2, which is supported by the 

case study results. Since there is no manual querying needed, the practitioners can 

explore the organization’s repositories without worrying about the burden of 

manually searching the unstructured data, which can be time and effort consuming. 

 Regarding the hypothesis of the impact of the classifier configuration on 

performance, this is generally found to be significant. The same IR technique shows 

different performance results considering different configurations, and this provides 

an answer to the third research question, RQ3. 

 

Figure 5-13 MAP Statistical Test Results for LSI (Term Weighting Method) 
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 In the study, the VSM and LSI IR techniques achieved the best top-20 and MAP 

performance, followed by LDA. 

 Our statistical test of the impact of applying different preprocessing steps shows no 

significant difference for the top-20 performance results. This can be attributed to our 

dataset and models. However, since the statistical test of the impact of applying 

different preprocessing steps shows significance in the MAP results, for VSM and 

LSI, and in other cases from the literature, such as bug localization [42], we advise 

considering those different preprocessing steps in future studies. 

 

 

 

Figure 5-14 MAP Statistical Test Results for LSI (Number of Topics) 
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An overall observation is that the worst VSM and LSI classifier performance results, 46% 

and 43%, respectively, for the top-20, are slightly lower than the best LDA classifier’s 

performance of 52%. Also, the worst LDA classifier’s performance, 19%, is significantly 

poorer than the worst classifiers in the case of VSM and LSI of 46% and 43%, 

respectively. The same insight can be inferred from the MAP performance results. This 

can be considered an indication that the LDA technique is not suitable for the LL recall 

problem. This indication can be useful for practitioners and researchers who plan to work 

on similar problems in the future. Also, we advise the consideration of employing the tf-

idf or sublinear tf-idf weighting method together with the cosine similarity method, as 

this combination showed the best classifiers’ top-20 and MAP results for both the VSM 

and LSI techniques. 

Since the results indicate that the configurations and the selected IR techniques do matter, 

we recommend considering different configurations and IR techniques, and to be careful 

when deciding on the LL classifier to be applied to the problem and dataset in hand. 

Figure 5-15 MAP Statistical Test Results for LDA (Number of Topics) 
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5.5 Threats to Validity 

In this section, we discuss two validity threats for the empirical study we conducted. 

These threats involve the gold set, as well as the dataset representation and context. 

Gold set validity. In this study, we have relied in the classifier validation on the collection 

constructed of the queries-relevant LL records mapping. As this mapping collection can 

be subjective and may cause a threat to the validity of the case study and conclusions, we 

have taken two mitigation steps. First, as a trial to eliminate any bias, we involved two 

practitioners in the discussion and construction of this mapping collection. Second, after 

reaching a consensus from the two practitioners regarding this mapping collection, the 

collection was baselined. So, even if the collection has flaws, such as positive or negative 

false, the baseline guarantees that the same collection is used to evaluate all the classifiers 

considered using all the three IR techniques. So, the classifiers were evaluated under the 

Figure 5-16 MAP Statistical Test Results for VSM (Preprocessing Method) 
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same comparison factors and within the same context. 

Dataset representation. Although in this empirical study we were keen to consider a 

significant dataset, including both significant LL records and query records, the dataset 

considered does not represent all of the LL records in the world or even in the 

organization. In addition, we were limited to the dataset provided by our industrial 

partner, which was out of our control because of data confidentiality restrictions. Since 

this is a common challenge in the context of empirical studies seeking real industrial data, 

we did our best to come up with solid conclusions by including LL and queries from a 

variety of projects, domains, and regions. Due to this limitation in the dataset 

representation, the results and conclusions are not necessarily valid for other contexts. 

Although our experiment cannot be reproduced, since we cannot share the dataset, due to 

the non-disclosure agreement limitation, we provide the details of the case study design 

to encourage researchers and practitioners to proceed with similar methodologies and 

case studies regarding their different datasets. 

Figure 5-17 MAP Statistical Test Results for LSI (Preprocessing Method) 
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5.6 Case Study Challenges 

We faced multiple challenges while conducting this empirical case study. We share here 

some of the challenges, hoping this can support future researchers and practitioners who 

plan to conduct similar empirical studies. 

 The main challenges can be summarized as follows: 

 Data collection challenge: the major challenge was convincing an industrial 

partner to provide us with the data that was required for the study, including both 

the LL repository and the project artifacts data. The main problem was related to 

the confidentiality of our partner’s data, which made it difficult to obtain their 

approval. To overcome this challenge, we had to communicate with a decision 

maker or senior management staff to convince them of the importance and the 

Figure 5-18 MAP Statistical Test Results for LDA (Preprocessing Method) 
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value of the study, so that they would release the data required for the study. Of 

course, this cost us time and effort. 

 Evaluation process: to evaluate the LL classifiers that were provided, we had to 

compare the retrieved LL records to a reference map or gold set. This gold set 

should define the expected relevant LL records for each of the study queries, i.e., 

issue or risk records for the case study. It was challenging to ask our industrial 

partner PMs to be involved in constructing this gold set from scratch. Fortunately, 

the main researcher, the PhD candidate in this case, had extensive project 

management experience, so he took over the responsibility for constructing the 

gold set. Then, we asked one of the industrial partner PMs to simply review and 

validate the gold set, which was more achievable. 

5.7 Scalability of the Automatic LL Recall Solution 

Although the automatic LL classifiers have been constructed and the performance has 

been examined based on the dataset considered, our solution can be extended and applied 

to other organizations and datasets. In order to achieve that, practitioners can follow our 

process that is wrapped up as an inspiring framework as follows: 

1- Construct the gold set based on the new dataset considered. As a hint, a method 

similar to that used in our study can be employed, where the judgements of 

multiple practitioners have been considered, then the baselined gold set has been 

based on the discussion and consensus of all the involved practitioners (please 

refer to Section 5.1.2). 

2- Define the IR models considered. As a hint, as per our conclusion, the VSM and 

LSI models are more suitable than the LDA model for the LL recall context. 

Accordingly, practitioners can save the effort of examining the LDA model and 

directly proceed with constructing the IR classifier using VSM and LSI. 

3- Define the experiment parameters. This includes defining the IR model parameter 

configurations, data preprocessing steps and performance metrics used. 

4- Consider the new dataset. Practitioners should construct the IR classifiers, 

following the same method used in our experiment. This includes considering all 
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the combinations of the IR models, preprocessing steps, and parameter 

configurations. As a hint, practitioners can follow our observations and 

conclusions of the best performance configurations recorded for our study. 

Finally, benchmark the constructed LL classifiers and compare them according to the 

gold set, record the performance metrics, and choose the best achiever classifier to 

consider and deploy within the organization and dataset context. 

5.8 Summary 

Improving the awareness of a software organization’s LL records can reform the decision 

making and project management processes. Providing an automatic process to support 

PMs in obtaining relevant LL records can improve the PMs’ awareness of the 

organization’s historical experiences. This is crucial for leveraging any potential 

opportunities and for mitigating any previous mistakes. We proposed a new automatic LL 

recall solution in Chapter 4. In this solution, we employed IR techniques for the first time 

within the software LL retrieval context. 

In this chapter, we evaluated the effectiveness of the proposed solution, and sought 

answers to the research questions by conducting an empirical case study on a real dataset 

of industrial software projects. In the case study, we considered three state-of-the-art IR 

techniques, VSM, LSI and LDA, as well as the existing project artifacts, including the 

project issue and risk records. In addition, we verified statistically, using the Tukey’s 

statistical test, the impact of considering different LL classifier parameter configurations 

on the classifiers’ performance results. The impact of applying different preprocessing 

steps on the data records before constructing the LL classifiers was studied as well. 

The case study results confirmed the effectiveness of the proposed solution and its ability 

to provide PMs with relevant LL in an automatic way and, thus, to eliminate the burden 

of the time and effort required to manually get the LL. The summary of our main findings 

is as follows: 

 The best top-20 and MAP performance results were recorded for the VSM and LSI 

classifiers, while the LDA classifiers came next.  
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 Regarding the top-20, the best VSM classifier was configured using tf-idf for the term 

weight, cosine for the similarity, and stemming for the preprocessing steps of the LL 

and the queries. For the best LSI classifier, the configuration was the same for both 

term weight and similarity parameters, there were no preprocessing steps for the data 

records, and the number of topics was set to “128.” 

 Regarding the MAP performance results, the best classifiers for both VSM and LSI 

were configured using sublinear tf-idf for the term weight, cosine for the similarity, 

stemming and stopping for the preprocessing steps, as well as setting the number of 

topics to “128” for the LSI classifier. 

 The statistical analysis of the different classifier configurations indicated the high 

impact of the configurations on the classifier performance. This was elicited from the 

significant difference between the performance of the best configured classifiers and 

the worst classifiers. As an example, for the VSM classifiers, the relative 

improvement between the best and worst classifiers was about 50% for the top-20 and 

more than 100% for MAP. 

Moreover at the end of this chapter, we shared the threats to validity and some of the 

major challenges from our industrial case study regarding the data collection and the 

industrial partner’s involvement. By sharing this, we aim to support practitioners in the 

industrial and software engineering community who would like to conduct similar studies 

in the future. 
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Chapter 6  

6 Can Hybridization Improve the Accuracy of Lessons 
Learned Recall: An Empirical Study Extension 

In the previous empirical study in Chapter 5, we evaluated our automatic lessons learned 

(LL) recall solution using a real dataset from industry. The results of the case study 

proved the effectiveness of the solution by achieving an accuracy rate of about 70% in 

the case of top-k. In that study, we relied on some of the most popular information 

retrieval (IR) models from the literature to construct the LL classifiers. In addition, since 

our focus was limited to project management LL records, we relied on two of the existing 

and most influential project management artifacts, namely issues and risks, to actively 

invoke the constructed classifiers. Since these artifacts are already associated with the 

software development project lifecycle, there is no need for the manual involvement of 

project managers. 

In this chapter, we will present an extension of the case study in Chapter 5.4 In this 

extension, we considered one more research question RQ4, in addition to the three main 

research questions in Chapter 4 (See Section 4.2): 

RQ4: Can hybridization improve the LL recall accuracy?  

In order to answer this question, we constructed hybrid LL classifiers by combining 

multiple LL classifiers from the previous case study. The main motive for conducting 

such an extension was that although several domains studied the hybridization of 

classifiers [42][64], it was not studied in the LL recall context. In the extension study, we 

                                                 

4
 The work in this chapter is published in the First International Workshop on Professional Search 

(ProfS18), Co-located with ACM SIGIR 2018. 

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Searching for Relevant Lessons 

Learned Using Hybrid Information Retrieval Classifiers: A Case Study in Software Engineering,” in Joint 

Proceedings of the First International Workshop on Professional Search (ProfS2018); the Second 

Workshop on Knowledge Graphs and Semantics for Text Retrieval, Analysis, and Understanding (KG4IR); 

and the International Workshop on Data Search (DATA:SEARCH’18), Co-located with (ACM SIGIR 

2018), 2018, Ann Arbor, Michigan, USA, pp. 12–17. 
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employed two popular hybridization methods and studied their impact on the 

performance of different classifier combinations. 

6.1 Classifiers Hybridization  

Different classifiers can perform in different ways in relation to the same dataset and 

inputs. This means that different classifiers can exhibit different errors and advantages. 

Thus, combining multiple classifiers together can lead either optimistically to better 

performance as they complement each other to avoid individual errors, or negatively to 

worse performance by distracting each other. This depends heavily on the chosen 

classifiers. Based on this information, we aim, in our case study, to combine multiple 

classifiers from the previous work to construct a hybrid classifier, and then study the 

impact of this combination on performance. We will compare the performance of the 

hybrid classifier to the performance of each combined classifier. The case study goal is to 

examine if we can achieve better performance by combining more than one classifier 

versus depending on each of the classifiers separately.  

The hybridization calculation process is illustrated in Figure 6-1. As shown in the figure, 

the individual scores of the retrieved list—including the corresponding score for each LL 

record within the list—for each of the combined classifiers are forwarded to a hybrid 

technique. Based on the hybrid technique, the new hybrid score for each record, i.e., LL 

record in our case, is calculated. Then, the newly retrieved hybrid list is constructed by 

reordering the retrieved records according to the new hybrid scores. This retrieved hybrid 

list can be thought of as a retrieval list from a classifier, different than the original 

combined classifiers, which is constructed by combining the results of each combined 

classifier. 

In order to evaluate the impact of hybridization on performance, the performance of the 

constructed hybrid classifier is compared to the performance of the highest performer 

classifier within the combined classifiers, as shown in Figure 6-1. The comparison is 

conducted by calculating the value of the relative performance improvement (RI) which 

will be described in detail in Section 6.4. 
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From the hybridization calculation process, it is clear, as described, that there are two 

main factors that affect the performance of hybridization: the employed hybrid technique 

and the selection of the combined classifiers. For this reason, in the following 

subsections, we will clarify both the hybrid techniques that we used to combine the 

classifiers and the selection criteria that we used to choose the classifiers that we 

combined.  

Figure 6-1 Hybridization Calculation Process 

Obs: 

LLij: is the jth retrieved lessons learned record by the ith combined classifier, where j is 

the rank of this record within the retrieved list based on the given score. 

Score ij: is the given score for the jth retrieved record by the ith combined classifier. 

The hybrid classifier is considered as the classifier number H 
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6.2 Hybridization Techniques 

In this study, we employed two popular hybridization methods from the software 

literature [42] namely Borda and Score Addition. We will describe the calculation of both 

methods in the following subsections. 

6.2.1 Borda 

The Borda technique is a rank-based technique. This means that it relies on the rank, (i.e., 

the order in the retrieved list of the retrieved item, the relevant LL in our case), within the 

classification results list from each individual classifier, to assign this item a rank-based 

score. So, for each retrieved LL item, the final rank or order within the hybrid retrieval 

list is the summation of the item ranks from each individual classifier retrieval list. Each 

of the item ranks is adjusted to the total number of items with non-zero rank score within 

each classifier retrieval list. This results in assigning the items with the highest Borda 

score an early appearance or low order in the final hybrid retrieval list. The Borda count 

can be calculated as stated in [42] as: 

𝐵𝑜𝑟𝑑𝑎 (𝑑𝑘) =  ∑ 𝑀𝑖  −  𝑟(𝑑𝑘 | 𝐶𝑖) + 1𝐶𝑖 𝜖 𝐶  ,        [42] 

where 𝑑𝑘 is the retrieved list item for which the Borda count is calculated, 𝐶 is the 

collection of the hybrid classifiers, 𝐶𝑖 is the ith classifier within the 𝐶 collection, 𝑀𝑖 is the 

number of retrieved items that received a non-zero score in the list retrieved by the 

classifier 𝐶𝑖, and  𝑟(𝑑𝑘 | 𝐶𝑖) is the 𝑑𝑘  rank or order within the 𝐶𝑖 retrieved list [42]. 

6.2.2 Score Addition 

The score addition technique relies on the item’s weight, i.e., the score given by the 

individual classifiers. The total hybrid score of each retrieved item is calculated as the 

summation of the individual score of this item from each of the combined classifiers [42]. 

In order to avoid any mistaken bias to a certain classifier due to the weighting scale, the 

items’ weights in each of the combined classifiers list are scaled to be within the same 

range of [0-1]. Accordingly, the individual item’s score addition can be calculated as 

follows: 
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𝑆𝑐𝑜𝑟𝑒𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛(𝑑𝑘) =  ∑ 𝑠(𝑑𝑘 | 𝐶𝑖) 𝐶𝑖𝜖 𝐶                      [42] 

where 𝑠(𝑑𝑘 | 𝐶𝑖) is the score of 𝑑𝑘 given by the classifier 𝐶𝑖 [42]. Finally, the items are 

placed in a descending order, based on their total score. 

6.3 Hybrid Classifiers Selection 

The selection of the combined classifiers has a crucial impact on the performance of the 

constructed hybrid classifier. For this reason, we tried to choose the classifiers that could 

positively complement each other. Thus, we chose the classifiers that had been exposed 

to different formats of the input data, because such classifiers would have a higher chance 

of coming up with different insights and conclusions regarding the dataset at hand, which 

we thought could improve their combined performance. That said, we decided to proceed 

with the classifiers that were constructed by applying the different input preprocessing 

step combinations.  

As clarified in Chapter 4 (Section 4.3.1), the previous case study considered four 

different classifier subspaces or groups according to the preprocessing step combinations 

applied to the input data before it was forwarded to the IR model and before constructing 

the LL classifier. These preprocessing step combinations included applying none of the 

preprocessing steps, applying the stemming step, applying the stopping step, and 

applying both the stemming and stopping steps together. So, for each IR model, we 

considered a top performer classifier from each of the four classifier subspaces. This 

resulted in the selection of four classifiers from each of the VSM, LSI, and LDA models. 

The four selected classifiers included the top classifier when none of the preprocessing 

steps were applied, the top classifier when the stemming step was applied, the top 

classifier when the stopping step was applied, and finally the top performer classifier 

when both the stemming and stopping steps were applied together. In this experiment, we 

examined the performance of the hybrid classifiers constructed by combining the four 

selected classifiers of each IR model in pairs. In addition to studying these pairs of 

classifier combinations, we studied the performance of the combination of the four 

selected classifiers in each IR model as well. Finally, we combined all of the selected 
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classifiers from all IR models together (four classifiers from each of the three IR models 

considered). All the classifier combinations are shown in Table 6-1. 

6.4 Results 

Since the goal of this case study extension is to investigate the impact of constructing a 

hybrid LL classifier by combining multiple LL classifiers from the previous study on 

performance, we constructed the hybrid classifiers following the selection criteria 

described in Section 6.3. The performance results for each of the constructed hybrid 

classifiers were recorded. Then, the relative performance improvement (RI) percentage 

was calculated. This was done by comparing the result of the hybrid classifier to that of 

the classifier with the highest performance among the individual classifiers within the 

combination set. The RI calculation is formulated as follows: 

 

𝑅𝐼 =  
𝑃(𝐻𝐶) − 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠)

𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠)
 

 

where 𝑃(𝐻𝐶) is the value of the performance metric 𝑃 for the hybrid classifier 𝐻𝐶, and 

𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃() method returns the highest performance metric value among the 

performance values of the combined classifiers [42]. 

 Since we considered two performance metrics in this study, top-20 and MAP, the results 

regarding each of these two metrics will be illustrated separately in the following 

sections. 
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Table 6-1 Hybrid Classifiers 

Top-20 Hybrid Classifiers MAP Hybrid Classifiers 

LDA Top  

Classifiers 

LDA_T1:LDA+32+None 

LDA_T2:LDA+32+Stopping 

LDA_T3:LDA+32+Stemming 

LDA_T4:LDA+32+Stemming and 

stopping 

LDA Top  

Classifiers 

LDA_M1: LDA+32+None 

LDA_M2: LDA+32+Stopping 

LDA_M3: LDA+32+Stemming 

LDA_M4: LDA+32+Stemming and 

stopping 

ID Combined Classifiers ID Combined Classifiers 

CT1 LDA_T1, LDA_T2 CM1 LDA_M1, LDA_M2 

CT2 LDA_T2, LDA_T3 CM2 LDA_M2, LDA_M3 

CT3 LDA_T1, LDA_T4 CM3 LDA_M1, LDA_M4 

CT4 LDA_T2, LDA_T4 CM4 LDA_M2, LDA_M4 

CT5 LDA_T3, LDA_T4 CM5 LDA_M3, LDA_M4 

CT6 LDA_T1, LDA_T3 CM6 LDA_M1, LDA_M3 

CT7 LDA_T1, LDA_T2, LDA_T3, LDA_T4 CM7 LDA_M1, LDA_M2, LDA_M3, 

LDA_M4 

LSI Top  

Classifiers 

LSI_T1: LSI+TF-

IDF+Cosine+128+None 

LSI_T2: LSI+Sublinear+Cosine+ 

64+Stopping 

 LSI_T3: LSI+Sublinear+Cosine+ 

256+Stemming 

LSI_T4: LSI+TF-IDF+Cosine+128+ 

Stemming and stopping 

LSI Top  

Classifiers 

LSI_M1: LSI+TF-

IDF+Cosine+256+None 

LSI_M2: LSI+TF-

IDF+Cosine+64+Sopping 

LSI_M3: LSI+Sublinear+Cosine+64+ 

Stemming 

LSI_M4: LSI+Sublinear+Cosine+128+ 

Stemming and stopping 

ID Combined Classifiers ID Combined Classifiers 

CT8 LSI_T2, LSI_T3 CM8 LSI_M1, LSI_M3 

CT9 LSI_T3, LSI_T4 CM9 LSI_M3, LSI_M4 

CT10 LSI_T1, LSI_T2 CM10 LSI_M1, LSI_M4 

CT11 LSI_T1, LSI_T3 CM11 LSI_M2, LSI_M4 

CT12 LSI_T1, LSI_T4 CM12 LSI_M2, LSI_M3 

CT13 LSI_T2, LSI_T4 CM13 LSI_M1, LSI_M2 

CT14 LSI_T1, LSI_T2, LSI_T3, LSI_T4 CM14 LSI_M1, LSI_M2, LSI_M3, LSI_M4 

VSM Top  

Classifiers 

VSM_T1:VSM+Sublinear+Cosine+None 

VSM_T2: VSM+Sublinear+Cosine+ 

Stopping 

VSM_T3: VSM+TF-IDF+Cosine+ 

Stemming 

VSM_T4: VSM+Sublinear+Cosine+ 

Stemming and stopping 

VSM Top  

Classifiers 

VSM_M1: VSM+TF-IDF+Cosine+None 

VSM_M2: VSM+TF-IDF+ 

Cosine+Stopping 

VSM_M3: VSM+TF-

IDF+Cosine+Stemming 

VSM_M4: VSM+Sublinear+Cosine+ 

Stemming and stopping 

ID Combined Classifiers ID Combined Classifiers 

CT15 VSM_T1, VSM_T2 CM15 VSM_M1, VSM_M4 

CT16 VSM_T1, VSM_T4 CM16 VSM_M2, VSM_M4 

CT17 VSM_T2, VSM_T4 CM17 VSM_M3, VSM_M4 

CT18 VSM_T1, VSM_T3 CM18 VSM_M1, VSM_M2 

CT19 VSM_T2, VSM_T3 CM19 VSM_M1, VSM_M3 

CT20 VSM_T3, VSM_T4 CM20 VSM_M2, VSM_M3 

CT21 VSM_T1, VSM_T2, VSM_T3, VSM_T4 CM21 VSM_M1, VSM_M2, VSM_M3, 

VSM_M4 

CT22 CT7, CT14, CT21 CM22 CM7, CM14, CM21 
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6.4.1 Top-K Results 

The results for the hybrid classifiers that we considered and the impact on the top-20 are 

shown in Table 6-2. In the case of using the score addition method, the hybrid classifier 

results show either an improvement or no effect against the individual classifiers in about 

77% of the cases considered. In other words, the score addition combination has led to a 

decrease in the performance in only five cases. Regarding the Borda method, there is an 

improvement or no effect in about 59% of the cases. The maximum improvement is 15% 

for the score addition method and 24% for the Borda method. 

An important additional observation is that the combination performance has exceeded 

the 70% top-20, which was the top performance recorded among all the individual 

classifiers in the previous experimental work. For score addition, this is recorded in four 

cases where top-20 performance accuracies of 74% and 72% are recorded. In the case of 

Borda, this has been achieved in three cases where a top-20 of 72% is recorded. Also, it is 

important to highlight that the combination of the selected classifiers of all the IR models 

considered has led to an RI where the score addition results outperform or are comparable 

to the Borda results in most of the cases, at approximately 73%. 
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Table 6-2 Top-20 Hybrid Classifiers Results 

Combination 

 ID 

Top Individual  

Performance 

(%) 

Score  

Addition  

RI 

(%) 

Borda  

Count 

RI 

(%) 

CT1 46 50 8 56 20 

CT2 46 52 12 57 24 

CT3 52 50 -4 50 -4 

CT4 52 54 4 56 7 

CT5 52 46 -11 44 -14 

CT6 41 46 14 44 9 

CT7 52 48 -7 48 -7 

CT8 69 69 0 70 3 

CT9 69 70 3 72 5 

CT10 70 67 -5 70 0 

CT11 70 72 3 69 -3 

CT12 70 74 5 69 -3 

CT13 69 69 0 69 0 

CT14 70 70 0 70 0 

CT15 61 61 0 59 -3 

CT16 61 70 15 65 6 

CT17 61 61 0 59 -3 

CT18 70 65 -8 63 -11 

CT19 70 70 0 70 0 

CT20 70 72 3 72 3 

CT21 70 70 0 65 -8 

CT22 70 72 3 72 3 
 

 

Although the hybridization has not proven to be an improvement in all cases within this 

experiment, the number of the improved cases, especially the 77% of cases for score 

addition, is considered satisfactory and encourages the consideration of hybrid classifiers 

within the scope of LL retrieval context. 
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6.4.2 MAP Results 

Table 6-3 shows the RI results in the case of the MAP performance metric. The results 

demonstrate either an improvement or no effect in the RI for about 81% of the cases 

using score addition. On the other hand, the improvement is not satisfactory in the case of 

the Borda method since the RI is negative for about 60% of the cases. 

Table 6-3 MAP Hybrid Classifiers Results 

Combination 

ID 

Top 

Individual  

Performance 

(%) 

Score  

Addition  
RI (%) 

Borda 

 Count 
RI (%) 

CM1 0.082 0.095 16 0.085 4 

CM2 0.096 0.096 0 0.106 10 

CM3 0.089 0.094 5 0.098 10 

CM4 0.089 0.090 1 0.084 -6 

CM5 0.096 0.103 7 0.089 -8 

CM6 0.096 0.102 6 0.114 18 

CM7 0.096 0.114 18 0.100 4 

CM8 0.175 0.182 4 0.172 -2 

CM9 0.198 0.207 4 0.197 -1 

CM10 0.198 0.200 1 0.186 -6 

CM11 0.198 0.198 0 0.190 -4 

CM12 0.194 0.199 3 0.196 1 

CM13 0.194 0.189 -3 0.199 3 

CM14 0.198 0.199 0 0.199 0 

CM15 0.189 0.193 2 0.164 -13 

CM16 0.189 0.169 -11 0.156 -18 

CM17 0.189 0.194 3 0.186 -2 

CM18 0.131 0.149 14 0.130 -1 

CM19 0.156 0.151 -4 0.142 -9 

CM20 0.156 0.175 12 0.156 0 

CM21 0.189 0.190 0 0.163 -14 

CM22 0.198 0.195 -2 0.160 -19 
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Similar to the top-20 results, the same insight regarding the number of cases where the 

score addition outperformed or was comparable to the Borda, applies for the MAP results 

in about 81% of the cases. 

6.5 Summary 

In this chapter, we provided an extension of our previous empirical study regarding the 

construction of an automatic software management LL recall system. In this extension, 

we sought an answer for a research question, in addition to the questions answered 

in Chapter 5, that examined the impact of the hybridization of LL classifiers on 

performance. We relied on the existing LL classifiers from the previous study in Chapter 

5 in constructing the hybrid classifiers. In the extension, we employed two combination 

techniques from literature in constructing the hybrid classifiers. A comparison was 

conducted between the performance of each hybrid classifier and the performance of the 

top performer from the combined individual classifiers.  

Both top-K and MAP performance metrics were employed to measure the retrieval 

accuracy of the classifiers that were considered. The study results showed a relative 

improvement, or no effect, of the hybrid classifiers’ performance against the individual 

classifiers’ performance in about 77% of the cases of top-20 using the score addition 

method. On the other hand, the results regarding the MAP metric showed an 

improvement in about 81% of the cases when using score addition. Although, the 

improvement was not satisfactory in some cases, such as the MAP results in the case of 

using the Borda method, the overall results were encouraging and provided positive 

insights regarding employing IR classifiers hybridization within the LL recall context.  
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Chapter 7  

7 Summary and Future Work 

In this thesis, we presented an innovative solution for improving the recall of software 

lessons learned (LL). To the best of our knowledge, this is the first time that a solution 

has employed information retrieval (IR) models within the LL recall context. 

Furthermore, we have proven the validity of the solution through an empirical case study 

using a real industrial dataset and performance metrics from the IR literature. In addition, 

we clarified how we automated the LL recall by constructing the search query on-the-fly 

using two of the existing project artifacts, issues and risks. We explained how our 

solution addresses the limitations of other studies, available from the literature, and 

eliminates the complication of manually searching LL repositories.  

In Chapter 1, we described the context of the thesis and asserted the importance of the 

exploitation of an organization’s knowledge. We clarified how the LL repository can be 

considered as one of the most highly valuable sources of knowledge and applicable 

analogs for an organization. In addition, we demonstrated the main motivation for the 

study and formulated the research questions. The motivation has two axes. First, we 

focused the solution, or research work, on supporting stakeholders other than software 

developers. Second, we sought to improve the exploitation of the organization’s 

knowledge. We also clarified how we had defined our motivation. This was based on the 

insights from our comprehensive systematic literature review. Furthermore, we clearly 

stated the problem, i.e., the lack of automatic LL recall and how this can lead to 

overlooking existing LL records. That said, the main goal was to close this research gap 

by providing an automatic solution for LL recall based on IR techniques. We translated 

the problem statement to a research goal and formulated it into four research questions. 

Also, we listed the main research contributions and their mapping to the research 

questions in Section 1.3. 

In Chapter 2, we explained in detail the protocol and methodology that we employed to 

conduct the systematic literature review (SLR) of software analytics (SA). This included 
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the definition of the review questions, the search strategy, study selection, and data 

extraction and analysis (See Section 2.2.1). In the search strategy, we explained how we 

constructed the search query. We clarified the steps that we followed to improve this 

query until we came up with the search terms. Also, we listed the electronic libraries 

considered for the SLR. Regarding the studies selection, we defined the filtration criteria, 

for both inclusion and exclusion, and the quality assessment. The search resulted in 135 

unique studies which were filtered and narrowed down to a final list of 19 primary 

studies. We extracted the needed data from these primary studies in order to come up 

with answers to the review questions. The results of the SLR provided informative 

insights and a vision of the SA state-of-the-art. We determined multiple research gaps, 

especially regarding the analyzed artifacts. Most of the primary studies analyzed only one 

artifact, which was source code in most cases. Furthermore, we defined some future 

research opportunities such as focusing on serving different stakeholders rather than only 

developers, as occurs in the majority of the existing studies. This can be beneficial to 

practitioners when deciding on their future projects and research problems. This was the 

first contribution of this thesis as we defined in the contribution list (See Section 1.3). 

In Chapter 3, we clarified the main concepts and terms which were used in this thesis. 

This included the definition of LL and the review of the current research state of the LL 

recall. Also, we clarified the main concept of IR and provided some details regarding the 

three employed models, namely Vector Space Model (VSM), Latent Semantic Indexing 

(LSI), and Latent Dirichlet Allocation (LDA). The basic concepts regarding the 

configuration parameters for each of these models and the data preprocessing steps were 

provided. 

We presented the research methodology in Chapter 4. We started by stating the problem 

of LL overlooking and the scarcity of the available LL recall solutions. We addressed this 

problem by articulating it in the research questions and goals. We clarified how we 

defined the research methodology and designed the case study to get answers to the 

research questions and validate the LL recall solution. In the research methodology, we 

explained how we designed and constructed the solution based on the IR techniques. 

Also, we demonstrated how the construction of the search queries was automated by 
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dynamically building the queries using two of the existing project artifacts. The 

evaluation process, based on a real collected dataset from an industrial partner, was also 

defined. This included the definition of the two performance metrics considered, namely 

top-K and MAP. Also, we clarified the statistical test which we used to study the impact 

of different classifier configurations on performance. 

We illustrated the execution and results of the case study in Chapter 5. We provided a 

description of the dataset used and how we constructed a gold set to use in the 

benchmarking of the classifiers performance. Also, we described the different classifier 

configurations and the applied data preprocessing steps combinations. The case study 

results showed a significant top-20 accuracy of 70% in the cases of VSM and LSI and a 

satisfactory MAP accuracy with the same models. In addition, an overall observation was 

that both VSM and LSI outperformed the LDA model. The LDA results were 

dissatisfactory and far away from the results of the other two models (See Sections 5.3 

and 5.4). These results positively answered the first research question RQ1 by proving the 

efficiency of employing IR models to automatically recall relevant LL (refer to 

Section 1.2 for the list of the research questions). Also, the results proved the efficiency 

of using both project management issues and risk register to dynamically construct the 

search queries, which bypassed the need for manually searching the LL repository and 

answered the second research question RQ2. The answer to the third research question 

RQ3 was provided by the results of the statistical test which showed a high impact of the 

classifier configurations on performance. In addition, at the end of this chapter, we shared 

some of the case study threats to validity and challenges. We clarified how we dealt with 

each of these threats and how we overcame the challenges. 

In Chapter 6, we extended the study by examining the ability of hybridization to improve 

the accuracy of classifiers. In order to achieve this, we sought an answer to the fourth 

research question RQ4 by employing two of the hybridization techniques, namely Borda 

count and Score Addition. We constructed hybrid classifiers by combining individual 

classifiers, from the primary study in Chapter 5, using these two hybridization 

techniques. Also, we clarified the selection criteria of the combined classifiers. In 

choosing the selection criteria, our goal was to consider individual classifiers from 
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different subspaces in order to boost each other’s classification (See Section 6.3). Then, 

we compared the performance of the hybrid classifiers to that of the individual classifiers 

using relative performance improvement (RI). The results were significant, especially in 

the case of using the score addition technique where there was a performance 

improvement or no effect in about 77% of the cases for top-20 and 81% of the cases for 

MAP. Also, a relative improvement—up to 24%— was recorded for the top-20 using the 

Borda technique. Although, the results were not satisfactory in some cases, such as the 

MAP results when using the Borda method, the overall hybridization results provide 

positive insights and encouragement to employ hybridization in future IR studies within 

the LL recall context. By answering the four research questions, we provided the core 

contributions of this thesis as clarified in Section 1.3. 

Since we conducted the first empirical study that considers applying IR techniques to 

tackle the automatic recall of software LL records for PMs, the results represent a value 

added to the state-of–the-art, and they can guide interested researchers, practitioners and 

organizations through the context of automatic LL retrieval. 

7.1 Future Work  

Since this work is the first, to the best of our knowledge, to apply IR techniques within 

the context of software LL retrieval, there are several promising avenues to extend the 

research as follows: 

1. Considering other state-of-the-art IR ranking functions and models, such as Pivoted 

Length Normalization VSM [65], BM25F [66][67], and BM25+ [68]. This will 

extend our insights and boost the empirical evidence on the feasibility of employing 

those state-of-the-art functions within the software engineering domains, specifically 

the LL recall context. 

2. Examining other weighing and similarity techniques, from the software literature. 

Regarding weighting techniques, they can include assigning different weights for 

different Part of Speech (PoS) tags as in [47]. There is no strong evidence from the 

literature that a specific part of speech can be more important than other parts in 

software engineering problems [47], rather it depends on the problem at hand. 

Therefore, it is important to examine the impact of considering PoS tags, such as 
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nouns and adjectives, on the performance of classifiers in the context of the problem 

at hand, i.e., LL recall in our case. Regarding similarity methods, other methods from 

the IR literature, such Manhattan distance can be examined as conducted by other IR 

studies [69]. 

3. Analyzing natural language patterns in the LL and project artifacts to determine if the 

patterns can be used to improve the retrieval accuracy.  

4. Optimizing the selection of appropriate IR model configurations, based on the dataset 

and problem at hand, can be examined. Currently, this is an open research topic, 

especially regarding the optimization of the LDA model configurations. Recent 

software engineering research has revealed that text extraction from software 

engineering artifacts, such as source code, is more repetitive compared to the text 

extraction from regular natural language documents [70]. Therefore, it is important to 

examine the optimization of the IR model configurations based on the dataset at hand, 

especially for the LDA model since it gave poor results using the ad hoc parameter 

values recommended by the IR and natural language literature as shown in the case 

study. Optimization techniques, such as genetic algorithms, can be used to optimize 

the LDA parameters by maximizing an optimization function based on a similarity 

score between the inferred clusters, i.e., topics, as in [71]. 

5. Contacting more software organizations to collect more datasets. The new collected 

datasets can support an extension of our study for cross-organizational datasets. This 

has two main benefits. First, we can examine the validity of our study’s overall 

observations and insights within different circumstances and organizational dataset 

contexts. Second, sampling techniques can be applied to construct a mixed dataset 

from cross-organizational datasets, and the feasibility of constructing a cross-

organizational LL recall classifier based on this mixed data can be further studied.    

6. Constructing a content-based recommender to serve long-term information needs of 

users, especially that the efficiency of recommendation systems has been highly 

examined for other software engineering problems and domains such as requirements 

elicitations [72] and adapted recommenders based on context awareness [73]. We 

designed our LL recall solution as an IR search engine based on the assumption that 

the need for relevant LL records, for the project at hand, is an ad-hoc information 
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need. However, our solution can be transformed to a content-based recommender to 

indicate the most relevant LL records based on the content similarity between the LL 

records and a text profile, instead of the queries in our study, of the project at hand 

[56]. 

7. Finally, conducting a utility study of the system usage, although it is challengeable, to 

evaluate the adoption of practitioners for our LL recall solution. Techniques from the 

IR domain, such as user interviewing [74] and studying the relationship between user 

clicks and the satisfaction level [75], can be employed. In addition, involving user 

feedback can support in transforming our solution into a collaborative-based 

recommender system based on the similarity analysis between different users’ 

feedback [56]. 
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Appendices 

Appendix A: Examples of Lessons Learned, Issues and Risks 

Note: sensitive information was removed from all of the following examples. 

A) Lessons Learned Examples 

Example 1 

Problem Discussion in program review meetings was sometimes getting 

too emotional and long-winded. 

Recommendations Participants should understand their roles in the meeting, better 

control by chairperson is also suggested. 

Example 2 

Problem Module X of System Y was not developed or published in 

advance to the teams until the last minute, without sufficient 

instruction. 

Recommendations Instructions on Module X should be standardized and 

disseminated throughout the organization early enough. 

Example 3 

Opportunity Completed version and training on Module Z with excellent 

feedback from customers. 

Recommendations This can be used as a model for future versions: 

 - good planning sessions with customers prior to release, regular 

dialogue to update status of preparation for the release, exchange 

of test plan/cases/etc., readiness for the version from both sides. 

Example 4 

Problem Too much context switching amongst team members 

Recommendations Since this is unavoidable due to attrition, separation, career 

planning, etc., constant update to organization chart within tools 

team is needed. Team members are to share domain knowledge, 

back each other up as part of organization planning. 
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B) Issues Examples 

Delay in signing requirement and design documents by client. 

There is no availability of a technical writer. 

Additional ramp up effort and constant re-clarification of roles and responsibilities due to 

context switching. 

Project Contract is not clear and has not been signed yet 

 

C) Risks Examples 

Source code is at client side with no remote access. If no appropriate backup and labeling 

are processed, then an issue can happen or code loss can occur. 

If there is delay in requirement document sign off by customer as planned on <date>, this 

can lead to delay of schedule and can affect milestone dates and resources travel dates. 

If roles of different stakeholders are not set clear, then this will impact the scoping and 

requirements sign off. 

If there is any issue in issuing an entry Visa for the team leader, then this can lead to 

delay of schedule and can affect milestone dates and resources travel dates 

 

D) Mapping Relevant Lessons Learned to a Query Example 

Query Relevant Lessons Learned  

Additional ramp up effort and 

constant re-clarification of 

roles and responsibilities due 

to context switching. 

Problem: Too much context switching amongst team 

members. 

Recommendations:  

Since this is unavoidable due to attrition, separation, 

career planning, etc., constant update to organization 

chart within tools team is needed. Team members are to 

share domain knowledge, back each other up as part of 

organization planning. 
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Appendix B: Top-20 88 Classifiers Results 

VSM: 

Term weight Similarity method Preprocessing steps Top-20 (%) 

tf-idf Cosine Stemming 70 

Sublinear tf-idf Cosine Stemming 69 

Sublinear tf-idf Cosine None 61 

Sublinear tf-idf Cosine Stemming and stopping 61 

tf-idf Cosine None 61 

tf-idf Cosine Stemming and stopping 61 

Boolean Cosine Stemming and stopping 57 

Boolean Overlap Stemming and stopping 57 

Sublinear tf-idf Overlap Stemming and stopping 57 

tf-idf Overlap Stemming and stopping 57 

Sublinear tf-idf Cosine Stopping 54 

Sublinear tf-idf Overlap Stemming 54 

tf-idf Cosine Stopping 54 

tf-idf Overlap Stopping 54 

Boolean Cosine Stopping 52 

Boolean Overlap Stopping 52 

Boolean Cosine Stemming 52 

Sublinear tf-idf Overlap None 52 

Sublinear tf-idf Overlap Stopping 52 

tf-idf Overlap None 52 

tf-idf Overlap Stemming 52 

Boolean Overlap Stemming 50 

Boolean Cosine None 46 

Boolean Overlap None 46 

LSI:  

Term weight Similarity 

method 

Preprocessing steps Number of 

topics 

Top-20 

(%) 

tf-idf Cosine None 128 70 

Sublinear tf-

idf 

Cosine None 

128 69 

Sublinear tf-

idf 

Cosine Stemming 

256 69 

tf-idf Cosine None 256 69 

tf-idf Cosine Stemming 128 69 

tf-idf 

Cosine Stemming and 

stopping 128 69 



114 

 

Sublinear tf-

idf 

Cosine None 

256 67 

Sublinear tf-

idf 

Cosine Stopping 

64 67 

Sublinear tf-

idf 

Cosine Stemming 

128 67 

Sublinear tf-

idf 

Cosine Stemming and 

stopping 128 67 

tf-idf Cosine Stopping 64 67 

tf-idf Cosine Stemming 256 67 

Sublinear tf-

idf 

Cosine Stopping 

128 65 

tf-idf Cosine Stopping 128 65 

Boolean Cosine Stopping 64 63 

Sublinear tf-

idf 

Cosine Stopping 

256 63 

Sublinear tf-

idf 

Cosine Stemming and 

stopping 64 63 

tf-idf Cosine Stopping 256 63 

tf-idf 

Cosine Stemming and 

stopping 64 63 

Boolean 

Cosine Stemming and 

stopping 64 61 

Sublinear tf-

idf 

Cosine Stemming and 

stopping 256 61 

tf-idf Cosine Stemming 64 61 

tf-idf 

Cosine Stemming and 

stopping 256 61 

Boolean 

Cosine Stemming and 

stopping 128 59 

Sublinear tf-

idf 

Cosine None 

64 59 

Sublinear tf-

idf 

Cosine Stemming 

32 59 

Sublinear tf-

idf 

Cosine Stemming 

64 59 

tf-idf Cosine None 32 59 

tf-idf Cosine None 64 59 

Sublinear tf-

idf 

Cosine None 

32 57 

tf-idf Cosine Stemming 32 57 

Boolean Cosine Stopping 128 56 

Boolean Cosine Stopping 256 56 

Boolean Cosine Stemming 128 56 
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Sublinear tf-

idf 

Cosine Stemming and 

stopping 32 56 

tf-idf 

Cosine Stemming and 

stopping 32 56 

Sublinear tf-

idf 

Cosine Stopping 

32 54 

tf-idf Cosine Stopping 32 54 

Boolean Cosine None 256 52 

Boolean Cosine Stemming 256 52 

Boolean 

Cosine Stemming and 

stopping 32 52 

Boolean 

Cosine Stemming and 

stopping 256 52 

Boolean Cosine Stopping 32 50 

Boolean Cosine Stemming 32 50 

Boolean Cosine Stemming 64 50 

Boolean Cosine None 128 48 

Boolean Cosine None 64 44 

Boolean Cosine None 32 43 

LDA: 

Preprocessing steps Number of topics Top-20 (%) 

Stemming and stopping 32 52 

Stopping 32 46 

Stemming and stopping 64 46 

None 32 41 

Stemming 32 41 

Stemming 64 39 

None 64 35 

None 128 35 

Stopping 256 35 

Stopping 64 28 

Stopping 128 26 

Stemming 128 26 

Stemming and stopping 128 26 

Stemming 256 22 

None 256 19 

Stemming and stopping 256 19 
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Appendix C: MAP 88 Classifiers Results 

VSM: 

Term weight Similarity method Preprocessing steps MAP 

Sublinear tf-idf Cosine Stemming and stopping 0.189 

tf-idf Cosine Stemming and stopping 0.188 

tf-idf Cosine Stemming 0.156 

Sublinear tf-idf Cosine Stemming 0.153 

tf-idf Overlap Stemming and stopping 0.151 

Sublinear tf-idf Overlap Stemming and stopping 0.150 

Boolean Cosine Stemming and stopping 0.140 

Boolean Overlap Stemming and stopping 0.140 

tf-idf Cosine None 0.131 

Sublinear tf-idf Cosine None 0.126 

tf-idf Overlap Stemming 0.124 

Sublinear tf-idf Overlap Stemming 0.122 

tf-idf Cosine Stopping 0.121 

Sublinear tf-idf Cosine Stopping 0.119 

Sublinear tf-idf Overlap Stopping 0.118 

tf-idf Overlap Stopping 0.117 

Boolean Cosine Stopping 0.114 

Boolean Overlap Stopping 0.114 

Boolean Cosine Stemming 0.101 

Boolean Overlap Stemming 0.101 

tf-idf Overlap None 0.099 

Sublinear tf-idf Overlap None 0.095 

Boolean Cosine None 0.082 

Boolean Overlap None 0.081 
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LSI: 

Term weight Similarity method Preprocessing steps Number of topics MAP 

Sublinear tf-idf Cosine Stemming and stopping 128 0.198 

tf-idf Cosine Stemming and stopping 128 0.198 

tf-idf Cosine Stopping 64 0.194 

Sublinear tf-idf Cosine Stopping 64 0.194 

Sublinear tf-idf Cosine Stemming and stopping 64 0.183 

Boolean Cosine Stopping 64 0.181 

tf-idf Cosine Stemming and stopping 256 0.180 

tf-idf Cosine Stemming and stopping 64 0.179 

Sublinear tf-idf Cosine Stopping 128 0.177 

Sublinear tf-idf Cosine Stemming and stopping 256 0.176 

Sublinear tf-idf Cosine Stemming 64 0.175 

Sublinear tf-idf Cosine Stopping 256 0.174 

tf-idf Cosine Stopping 256 0.174 

tf-idf Cosine Stemming 64 0.171 

Sublinear tf-idf Cosine Stemming 128 0.169 

tf-idf Cosine Stopping 128 0.168 

Sublinear tf-idf Cosine Stemming 256 0.167 

tf-idf Cosine Stemming 256 0.167 

tf-idf Cosine Stemming and stopping 32 0.167 

Sublinear tf-idf Cosine Stemming and stopping 32 0.165 

Boolean Cosine Stopping 128 0.164 

Boolean Cosine Stemming and stopping 128 0.164 

tf-idf Cosine Stemming 32 0.164 

Sublinear tf-idf Cosine Stemming 32 0.163 

tf-idf Cosine None 256 0.163 

tf-idf Cosine Stemming 128 0.162 

Sublinear tf-idf Cosine None 256 0.161 

Sublinear tf-idf Cosine None 128 0.157 

tf-idf Cosine None 128 0.157 

Boolean Cosine Stemming and stopping 256 0.154 

Sublinear tf-idf Cosine None 64 0.153 

tf-idf Cosine None 64 0.153 

Boolean Cosine Stopping 256 0.149 

Boolean Cosine Stemming and stopping 64 0.144 

tf-idf Cosine Stopping 32 0.135 

Sublinear tf-idf Cosine Stopping 32 0.132 

Boolean Cosine Stemming and stopping 32 0.130 

Boolean Cosine Stopping 32 0.125 
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tf-idf Cosine None 32 0.124 

Sublinear tf-idf Cosine None 32 0.119 

Boolean Cosine Stemming 128 0.116 

Boolean Cosine Stemming 256 0.115 

Boolean Cosine None 256 0.111 

Boolean Cosine Stemming 64 0.111 

Boolean Cosine None 128 0.107 

Boolean Cosine None 64 0.096 

Boolean Cosine Stemming 32 0.086 

Boolean Cosine None 32 0.085 

 

LDA: 

Preprocessing steps Number of topics MAP 

Stemming 32 0.096 

Stemming and stopping 32 0.089 

None 32 0.082 

Stopping 32 0.075 

Stemming and stopping 64 0.066 

Stemming 128 0.065 

Stemming 64 0.059 

Stopping 256 0.058 

None 128 0.057 

None 64 0.049 

Stemming 256 0.049 

Stopping 128 0.044 

Stemming and stopping 128 0.040 

Stopping 64 0.036 

None 256 0.031 

Stemming and stopping 256 0.030 
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Appendix D: Tukey’s HSD Statistical Test Results  

Obs: the overall insights from the results in the case of 95% confidence level hold for 

both 90% and 99% confident levels. 

Note: for the following results, any difference than the results of 95% confidence level is 

highlighted in red. 

A) 90% Confidence Level 

Top-20 Results: 

VSM LSI LDA 

Group Mean 

 (%) 

Preprocessing 

steps 

Group Mean  

(%) 

Preprocessing 

steps 

Group Mean  

(%) 

Preprocessing 

 steps 

A 59 Stemming and 

stopping 

A 60 Stopping A 36 Stemming 

and stopping 

A 58 Stemming A 60 Stemming 

and stopping 

A 34 Stopping 

A 54 None A 60 Stemming A 32 None 

A 53 Stopping A 58 None A 32 Stemming 

Group Mean 

 (%) 

Similarity Group Mean 

 (%) 

Number of 

topics 

Group Mean  

(%) 

Number of  

topics 

A 58 Cosine A 63 128 A 45 32 

B 53 Overlap A 61 256 AB 37 64 

   AB 60 64 BC 28 128 

   B 54 32 C 24 256 

Group Mean 

 (%) 

Term weight Group Mean  

(%) 

Term weight    

A 58 tf-idf A 63 tf-idf    

A 57 Sublinear tf-idf A 63 Sublinear tf-

idf 
   

A 52 Boolean B 53 Boolean    
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MAP Results: 

VSM LSI LDA 

Group Mean Preprocessing 

steps 

Group Mean Preprocessing 

steps 

Group Mean Preprocessing 

steps 

A 0.159 Stemming 

and stopping 

A 0.170 Stemming and 

stopping 

A 0.067 Stemming 

B 0.126 Stemming A 0.164 Stopping A 0.056 Stemming and 

stopping 

B 0.117 Stopping AB 0.147 Stemming A 0.055 None 

B 0.102 None B 0.132 None A 0.053 Stopping 

Group Mean Similarity Group Mean Number of 

topics 

Group Mean Number of 

topics 

A 0.135 Cosine A 0.161 128 A 0.085 32 

A 0.117 Overlap A 0.161 64 B 0.053 64 

   AB 0.158 256 B 0.051 128 

   B 0.133 32 B 0.042 256 

Group Mean Term weight Group Mean Term weight    

A 0.136 tf-idf A 0.167 Sublinear tf-

idf 

   

A 0.134 Sublinear tf-

idf 

A 0.166 tf-idf    

A 0.109 Boolean B 0.127 Boolean    

B) 99% Confidence Level 

Top-20 Results: 

VSM LSI LDA 

Group Mean 

 (%) 

Preprocessing 

steps 

Group Mean  

(%) 

Preprocessing 

steps 

Group Mean  

(%) 

Preprocessing 

 steps 

A 59 Stemming and 

stopping 

A 60 Stopping A 36 Stemming 

and stopping 

A 58 Stemming A 60 Stemming 

and stopping 

A 34 Stopping 

A 53 None A 60 Stemming A 32 None 

A 53 Stopping A 58 None A 32 Stemming 

Group Mean 

 (%) 

Similarity Group Mean 

 (%) 

Number of 

topics 

Group Mean  

(%) 

Number of  

topics 

A 58 Cosine A 63 128 A 45 32 

A 53 Overlap AB 61 256 AB 37 64 

   AB 60 64 AB 28 128 

   B 54 32 B 24 256 

Group Mean 

 (%) 

Term weight Group Mean  

(%) 

Term weight    

A 58 tf-idf A 63 tf-idf    

A 57 Sublinear tf-idf A 63 Sublinear tf-

idf 
   

A 52 Boolean B 53 Boolean    
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MAP Results: 

VSM LSI LDA 

Group Mean Preprocessing 

steps 

Group Mean Preprocessing 

steps 

Group Mean Preprocessing 

steps 

A 0.159 Stemming 

and stopping 

A 0.170 Stemming and 

stopping 

A 0.067 Stemming 

AB 0.126 Stemming AB 0.164 Stopping A 0.056 Stemming and 

stopping 

B 0.117 Stopping AB 0.147 Stemming A 0.055 None 

B 0.102 None B 0.132 None A 0.053 Stopping 

Group Mean Similarity Group Mean Number of 

topics 

Group Mean Number of 

topics 

A 0.135 Cosine A 0.161 128 A 0.085 32 

A 0.117 Overlap A 0.161 64 B 0.053 64 

   A 0.158 256 B 0.051 128 

   A 0.133 32 B 0.042 256 

Group Mean Term weight Group Mean Term weight    

A 0.136 tf-idf A 0.167 Sublinear tf-

idf 

   

A 0.134 Sublinear tf-

idf 

A 0.166 tf-idf    

A 0.109 Boolean B 0.127 Boolean    
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