
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-27-2018 2:30 PM

Automatic Recall of Lessons Learned for Software Project Automatic Recall of Lessons Learned for Software Project

Managers Managers

Tamer Mohamed Abdellatif Mohamed, The University of Western Ontario

Supervisor: Capretz, Luiz F., The University of Western Ontario

Co-Supervisor: Ho, Danny, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© Tamer Mohamed Abdellatif Mohamed 2018

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Mohamed, Tamer Mohamed Abdellatif, "Automatic Recall of Lessons Learned for Software Project
Managers" (2018). Electronic Thesis and Dissertation Repository. 5615.
https://ir.lib.uwo.ca/etd/5615

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5615&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Fetd%2F5615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5615?utm_source=ir.lib.uwo.ca%2Fetd%2F5615&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

i

Abstract

Lessons learned (LL) records constitute a software organization’s memory of successes and

failures. LL are recorded within the organization repository for future reference to optimize

planning, gain experience, and elevate market competitiveness. However, manually

searching this repository is a daunting task, so it is often overlooked. This can lead to the

repetition of previous mistakes and missing potential opportunities, which, in turn, can

negatively affect the organization’s profitability and competitiveness. In this thesis, we

present a novel solution that provides an automatic process to recall relevant LL and to push

them to project managers. This substantially reduces the amount of time and effort required

to manually search the unstructured LL repositories, and therefore, it encourages the

utilization of LL. In this study, we exploit existing project artifacts to build the LL search

queries on-the-fly, in order to bypass the tedious manual search process. While most of the

current LL recall studies rely on case-based reasoning, they have some limitations including

the need to reformat the LL repository, which is impractical, and the need for tight user

involvement. This makes us the first to employ information retrieval (IR) to address the LL

recall. An empirical study has been conducted to build the automatic LL recall solution and

evaluate its effectiveness. In our study, we employ three of the most popular IR models to

construct a solution that considers multiple classifier configurations. In addition, we have

extended this study by examining the impact of the hybridization of LL classifiers on the

classifiers’ performance. Furthermore, a real-world dataset of 212 LL records from 30

different software projects has been used for validation. Top-k and MAP, well-known

accuracy metrics, have been used as well. The study results confirm the effectiveness of the

automatic LL recall solution by a discerning accuracy of about 70%, which was increased to

74% in the case of hybridization. This eliminates the effort needed to manually search the LL

repository, which positively encourages project managers to reuse the available LL

knowledge – which in turn avoids old pitfalls and unleash hidden business opportunities.

Keywords

Software lessons learned recall, software project management, knowledge management,

information retrieval models, software analytics, systematic literature review.

ii

Acknowledgments

I am cordially thankful to my supervisors, Luiz Fernando Capretz and Danny Ho, for their

advices, encouragement and time. I appreciate their constructive feedback and support

through my PhD studies. They motivated me to refine my research and publish my work in

top ranked conferences and reputable journals.

I dedicate this thesis to my wife Dina Kandil for her inspiration, patience and unlimited

support.

In addition, I want to thank my family and my children Dorra and Youssef for their

emotional support that helped me to keep up my passion throughout my research.

Also, I am grateful to my industrial partner for providing the dataset, which was necessary

for the evaluation process of this work.

iii

Table of Contents

Abstract .. i

Acknowledgments... ii

Table of Contents ... iii

List of Tables .. vii

List of Figures .. ix

List of Appendices ... xi

List of Terms and Acronyms .. xii

Chapter 1 ... 1

1 Introduction .. 1

1.1 Motivation ... 3

1.2 Problem Statement and Research Questions... 4

1.3 Research Contributions ... 6

1.4 Thesis Structure .. 8

Chapter 2 ... 9

2 Software Analytics Systematic Literature Review .. 9

2.1 Software Analytics .. 9

2.2 Systematic Literature Review ... 10

2.2.1 Systematic Literature Review Protocol .. 10

2.2.2 Systematic Literature Review Results .. 19

2.2.3 Systematic Literature Review Limitations.. 31

2.3 Systematic Literature Review Addendum .. 31

2.4 Summary ... 32

Chapter 3 ... 34

3 Lessons Learned Recall Background and Motivation ... 34

iv

3.1 Lessons Learned in Software Engineering ... 34

3.2 Lessons Learned Recall State-of-the-Art .. 36

3.3 Information Retrieval Models Applied to Recall Lessons Learned...................... 38

3.3.1 Text Preprocessing Steps .. 39

3.3.2 Vector Space Model .. 39

3.3.3 Latent Semantic Indexing ... 41

3.3.4 Latent Dirichlet Allocation ... 41

3.4 Summary ... 42

Chapter 4 ... 43

4 The Design of the Lessons Learned Recall Solution ... 43

4.1 Problem Statement .. 43

4.2 Research Questions and Goals .. 44

4.3 Proposed Solution and Case Study Methodology ... 46

4.3.1 Lessons Learned Classifiers Construction .. 46

4.3.2 Dynamic Query Construction ... 50

4.4 Evaluation Process .. 50

4.4.1 Performance Metrics ... 51

4.4.2 IR Configuration Impact ... 53

4.5 Summary ... 54

Chapter 5 ... 56

5 Can Lessons Learned Be Recalled Automatically: An Empirical Study 56

5.1 Data Collection ... 56

5.1.1 Dataset Description ... 57

5.1.2 Gold Set Construction ... 58

5.2 LL Classifiers Construction .. 59

5.2.1 Data Preprocessing Tool ... 59

v

5.2.2 LDA Classifiers Construction Tool .. 60

5.2.3 VSM Classifiers Construction Tool .. 62

5.2.4 LSI Classifiers Construction Tool .. 63

5.3 Results ... 64

5.3.1 Top-K Results ... 64

5.3.2 MAP Results ... 70

5.4 Results Discussion .. 77

5.5 Threats to Validity .. 82

5.6 Case Study Challenges .. 84

5.7 Scalability of the Automatic LL Recall Solution .. 85

5.8 Summary ... 86

Chapter 6 ... 88

6 Can Hybridization Improve the Accuracy of Lessons Learned Recall: An Empirical

Study Extension ... 88

6.1 Classifiers Hybridization .. 89

6.2 Hybridization Techniques ... 91

6.2.1 Borda ... 91

6.2.2 Score Addition .. 91

6.3 Hybrid Classifiers Selection ... 92

6.4 Results ... 93

6.4.1 Top-K Results ... 95

6.4.2 MAP Results ... 97

6.5 Summary ... 98

Chapter 7 ... 99

7 Summary and Future Work .. 99

7.1 Future Work .. 102

vi

References ... 105

Appendices .. 111

Curriculum Vitae .. 122

vii

List of Tables

Table 1-1 Research Questions to Research Contributions Mapping .. 7

Table 2-1 Primary Studies Selected .. 20

Table 2-2 Primary Studies Quality Scores .. 21

Table 2-3 Quality Assessment Levels Statistics ... 23

Table 2-4 Q1 Extracted Data .. 23

Table 2-5 Q2 Extracted Data .. 26

Table 2-6 Q3 Extracted Data .. 30

Table 3-1 Lesson Learned Example 1 .. 35

Table 3-2 Lesson Learned Example 2 .. 36

Table 4-1 Parameter Configurations ... 49

Table 5-1 lscp Tool Parameters .. 59

Table 5-2 MALLET Tool Parameters... 61

Table 5-3 lucene-lda Tool Parameters (LDA mode) .. 62

Table 5-4 lucene-lda Tool Parameters (VSM mode) .. 63

Table 5-5 simserver Tool Parameters ... 64

Table 5-6 Lessons Learned Classifiers Top-K Performance Results (Best Four and Worst

Four Classifiers) .. 65

Table 5-7 Top-K Descriptive Statistics... 66

Table 5-8 Tukey’s HSD Statistical Test Results (Top-K) (95% Confidence Level) 67

file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523442019
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523442020
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523442021
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523442022

viii

Table 5-9 Lessons Learned Classifiers MAP Performance Results (Best Four and Worst Four

Classifiers) .. 72

Table 5-10 MAP Descriptive Statistics... 73

Table 5-11 Tukey’s HSD Statistical Test Results (MAP) (95% Confidence Level) 73

Table 6-1 Hybrid Classifiers ... 94

Table 6-2 Top-20 Hybrid Classifiers Results ... 96

Table 6-3 MAP Hybrid Classifiers Results .. 97

ix

List of Figures

Figure 2-1 Quality Assessment Scoring Process .. 16

Figure 2-2 The Data Extraction Card.. 17

Figure 2-3 A Summary of the SLR Process.. 18

Figure 2-4 Filtration Process ... 19

Figure 2-5 Distribution of Selected Studies per Year ... 22

Figure 2-6 Distribution of Selected Studies per Practitioner .. 24

Figure 2-7 Distribution of Selected Studies per Domain .. 25

Figure 2-8 Number of Analyzed Artifacts Versus Number of Studies 30

Figure 4-1 Construction of the Lessons Learned Classifiers .. 49

Figure 4-2 Lessons Learned Classifier Evaluation Process and Performance Results

Calculation .. 51

Figure 5-1 Gold Set Construction Process .. 58

Figure 5-2 lscp Preprocessing Example .. 60

Figure 5-3 Top-20 Statistical Test Results for VSM (Similarity Methods)............................ 68

Figure 5-4 Top-20 Statistical Test Results for VSM (Term Weighting Methods) 69

Figure 5-5 Top-20 Statistical Test Results for LSI (Term Weighting Methods) 70

Figure 5-6 Top-20 Statistical Test Results for LSI (Number of Topics) 71

Figure 5-7 Top-20 Statistical Test Results for LDA (Number of Topics) 74

Figure 5-8 Top-20 Statistical Test Results for VSM (Preprocessing Method) 75

file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475502
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475503
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475504
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475505
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475506
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475507
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475508
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475509
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475510
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475511
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475511
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475512
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475513
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475514
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475515
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475516
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475517
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475518
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475519

x

Figure 5-9 Top-20 Statistical Test Results for LSI (Preprocessing Method) 75

Figure 5-10 Top-20 Statistical Test Results for LDA (Preprocessing Method) 76

Figure 5-11 MAP Statistical Test Results for VSM (Similarity Method) 77

Figure 5-12 MAP Statistical Test Results for VSM (Term Weighting Method) 78

Figure 5-13 MAP Statistical Test Results for LSI (Term Weighting Method) 79

Figure 5-14 MAP Statistical Test Results for LSI (Number of Topics) 80

Figure 5-15 MAP Statistical Test Results for LDA (Number of Topics) 81

Figure 5-16 MAP Statistical Test Results for VSM (Preprocessing Method) 82

Figure 5-17 MAP Statistical Test Results for LSI (Preprocessing Method) 83

Figure 5-18 MAP Statistical Test Results for LDA (Preprocessing Method) 84

Figure 6-1 Hybridization Calculation Process .. 90

file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475520
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475521
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475522
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475523
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475524
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475525
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475526
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475527
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475528
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475529
file:///C:/Users/Tamer/Desktop/Western%20University/PhD/Defense/Updated%20Thesis%20based%20on%20Examiners%20comments/PhD_Thesis_Tamer%20Mohamed.docx%23_Toc523475530

xi

List of Appendices

Appendix A: Examples of Lessons Learned, Issues and Risks .. 111

Appendix B: Top-20 88 Classifiers Results.. 113

Appendix C: MAP 88 Classifiers Results ... 116

Appendix D: Tukey’s HSD Statistical Test Results ... 119

xii

List of Terms and Acronyms

SA Software Analytics: represents a branch of big data analytics. The term was

initially coined by Zhang et al. in 2011 and it is concerned with the analysis

of all software artifacts

SLR Systematic Literature Review: type of literature review where a systematic

method is followed to search, collect, extract and synthesize data to answer

a set of defined review questions.

LL Lessons Learned: the organization’s memory of what went wrong

(mistakes) or what went right (opportunities) in certain situations or events.

IR Information Retrieval: refers to the process of finding a relevant document

or information of interest within a collection of documents or artifacts.

VSM Vector Space Model: is an algebraic information retrieval model. It

represents the documents’ corpus in a matrix format of terms versus

documents

SVD Singular Value Decomposition: a matrix decomposition method from linear

algebra where a matrix is decomposed into three new matrices.

LSI Latent Semantic Indexing: is an extension of the VSM model. It takes the

context or topic into consideration instead of only matching the terms which

can have different meanings.

LDA Latent Dirichlet Allocation: is a generative probabilistic IR model. It

considers the context of terms by eliciting the topics within the documents’

corpus.

HSD Tukey’s Honestly Significant Difference: a statistical test with the ability to

perform a comparison between different groups in one step. It can

significantly differentiate between more than two groups based on the

xiii

statistically significant difference between the groups’ mean.

Top-K An accuracy metric calculates the percentage of queries, which are executed

by the IR model, in whose top k result records there is at least one relevant

record.

MAP Mean Average Precision: a popular accuracy metric from the IR literature. It

is calculated as the average of the aggregated average precision of each

individual query.

Borda Count A rank-based hybridization technique. The total hybrid score of each

retrieved item is calculated as the summation of the item ranks from each

individual classifier retrieval list.

Score

Addition

A hybridization technique relies on the item’s weight. The total hybrid score

of each retrieved item is calculated as the summation of the individual score

of this item from each of the combined classifiers.

RI Relative Performance Improvement: an improvement percentage which is

calculated by comparing the result of the hybrid classifier to that of the

classifier with the highest performance among the individual classifiers

within the combination set.

1

Chapter 1

1 Introduction

Everyday situations teach us lessons and provide us with analogs. We rely on these

lessons learned (LL) and analogs in dealing with similar problems and identifying

opportunities. Accordingly, the decision making literature [1] tells us about the power of

analogs. Analogs are experiences or knowledge from domains similar to that of the

subject at hand and can work for different domains such as management, decision

making, and entrepreneurship. They can support decision making by providing

recommendations, improving contextual awareness, facilitating difficult tasks, clarifying

problem definition, and fostering development of reasonable plans. Thus, managers can

rely on analogs to facilitate their decision making. Also, entrepreneurs can rely on

analogs to build their business models and to test their hypothesis [2].

The software engineering domain is no exception, regarding analogs, as learning from

similar projects or previous experiences improves the success and quality of software

projects. This was highlighted by Pfleeger [3] when she used an analogy from soccer. In

a soccer game, the team does not just play the game and then forget about it. Instead, a

good team comes together after the game to discuss and analyze their performance, what

happened and what can be improved. They define the LL from their performance and

analyze the game scenarios and circumstances. They make use of these LL to overcome

mistakes, improve their performance and leverage good plays. It can be the same for

software engineering. Project managers (PMs) can make use of their experiences and

conduct post-action meetings in order to discuss, analyze and report LL.

Analogs can come from accumulated personal or organizational knowledge or

experience. For any organization, local LL can provide a precious and reliable source of

applicable analogs since LL are generated from the same organization’s culture and work

environment. This makes LL more convenient and fitting for the organization’s current

and future projects and customers. LL records can contain information regarding either a

positive experience, such as a business opportunity, or a negative experience such as a

2

After the attack on Pearl Harbor in 1941, the Japanese commander, Mitsue

Fuchido, was surprised by its success. He asked, “Had these Americans never

heard of Port Arthus?” that event, which was famous in Japan, had preceded the

Russo-Japanese war of 1904. The Japanese tactic was to destroy the Russian

Pacific fleet at anchor at Port Arthur in a surprise attack.

Wohlstetter 1962 [1]

mistake or a problem. Both positive and negative experiences are valuable since they can

either highlight an opportunity for leveraging profit or eliminate an anticipated loss,

respectively. That said, reporting and safely storing such historical knowledge, or LL, is

encouraged by different standards from reputable management institutions such as the

Project Management Body of Knowledge (PMBOK) by the Project Management Institute

(PMI) [4] and the Capability Maturity Model Integration (CMMI) [5]. Both standards

emphasize the importance of conducting closing reviews and retrospective meetings to

record and analyze LL from previous projects for future reference. Because of the high

value placed on LL, the National Aeronautics and Space Administration (NASA) has

assigned an effort and budget to improve its LL reporting process and launch its LL

portal [6].

It is worth mentioning that it is not the existence of data itself— the LL records in our

case— that is valuable, but rather the awareness of the appropriate and relevant records

and the ability to manipulate these LL records to deal with needs. Keeping this in mind,

we should ask what happens when PMs overlook LL records, ignore them, or do not even

know of the existence of relevant LL records.

3

Overlooking or missing relevant LL records can lead not only to missing available

opportunities and business success, but can also cause a catastrophic loss of profit due to

the repetition of known previous mistakes which could be easily avoided by just knowing

about them. In this thesis, we have worked on the enhancement of the retrieval of

relevant LL records to make them available to PMs. Our goal has been to facilitate access

to these LL records in the organization’s repository, and therefore minimize or eliminate

the problem of overlooking LL. Accordingly, our solution, automatically recalls relevant

LL records and provides them to PMs to avoid the intensive effort needed to manually

search for them. In order to build this solution, we have employed information retrieval

(IR) techniques, for the first time within the LL recall context. In addition, we have

manipulated two of the existing project management artifacts in order to construct search

queries automatically instead of searching manually by PMs.

1.1 Motivation

Our software analytics (SA) systematic literature review (SLR), described in Chapter 2,

has shown that most of the available SA studies address issues that serve developers

(about 90% of the studies), while a few studies target other stakeholders such as

management and quality assurance teams (See Section 2.2.2). Also, the SLR results have

shown that the majority of studies analyzed only a few of the artifacts accompanying the

software development lifecycle, with many of the studies analyzing only source code.

The focus of this thesis is twofold. First, we decided to focus the research on providing a

solution to serve stakeholders other than developers. Second, we aimed to exploit the

software management artifacts that were not heavily analyzed in previous studies in the

software engineering literature. By concentrating the research point on these two axes, we

have worked towards closing the research gap, as revealed by the SLR, and tackle a

genuine research challenge. With this motivation in mind, we decided to define the

general research topic as serving software PMs. Also, we have focused our thinking on a

solution that would have a high impact and promote knowledge. In order to narrow down

the research topic and define specific research areas, we started by surveying the LL

literature. The survey indicated that there are a small number of existing LL studies. In

addition, most of these studies were focused on the implementation of a standalone LL

4

system. Beyond this, the LL literature survey has clarified that there is a problem in the

dissemination or recall of LL, and that this can be attributed to the intensive task of

manually searching the LL repository for relevant LL. Finally, we have noticed that most

of the available LL recall studies employed case-based reasoning techniques, which have

some practical limitations (See Section 3.2). These observations led us to defining the

research gap which we have worked to close in the solution provided in this thesis work.

As will be described in detail, we have provided a solution to improve LL recall using IR

techniques. The solution serves software PMs, and it can also be generalized to serve

PMs in other domains, by providing them with LL records relevant to the projects at

hand.

As described, the recall of LL is not currently being optimized due to the challenge of

manually searching for relevant LL. This can lead to overlooking this valuable

knowledge and losing precious opportunities. As a result, in this thesis, we aim to

address this issue in order to facilitate LL recall, which in turn improves the benefit to

stakeholders from existing LL knowledge. With our motivation clarified, in the next

section, we will describe the problem we have addressed.

1.2 Problem Statement and Research Questions

Every aspect of a software PM's job is about predicting the future and anticipating

problems and outcomes. Information technology organizations and project management

offices (PMO) usually have LL repository systems. This LL repository can be viewed as

the organization’s memory, as it contains a wealth of historical experiences. These LL

records can provide valuable analogs for PMs which can facilitate the decision-making

process and make decisions more accurate, rational and reasonable.

The problem is that these repositories are rarely reviewed or referenced by PMs during

the project lifecycle, especially the project initiation phase. This can lead to the repetition

of previous mistakes. It also means that opportunities for benefiting from previous

success stories are missed. Discarding lessons learned repositories can be the result of the

intensive nature of manually searching for relevant lessons learned by PMs, or other

reasons such as time limitations or lack of awareness of the presence of relevant LL.

5

In this work, we provided a solution to address this problem by improving the recall of

LL records. As aforementioned, we employed IR techniques to implement this solution.

That said, we defined two main research questions in order to implement and validate the

proposed solution as follows (See Section 4.2):

RQ1: Can we automatically, rather than manually, recall and push relevant LL to PMs

using IR-based LL classifiers?

RQ2: Can project artifacts be used to construct on-the-fly queries to recall LL records

relevant to the software project at hand?

As shown in these two research questions, we sought a solution to the issue of the

intensive effort required to manually search the LL repository for relevant records. Our

other aim in this solution was to avoid the existing limitations of previous studies, which

employed case-based reasoning (See Section 4.3), by employing IR techniques for the

first time in the LL recall context as per our knowledge, to construct an LL classifier to

retrieve the LL relevant records to the project at hand. In the second research question,

we intended to examine whether we could exploit any of the existing project management

artifacts to automatically construct queries to search for relevant LL records. By

constructing the queries automatically, we avoided the need for the manual involvement

of PMs to define the queries, which could lead to overlooking LL records due to time

limitations and the effort required. In order to answer the research questions and validate

the solution, we conducted an empirical study. In this study, we employed a real dataset

from an industrial partner. The dataset considered contained records for both LL and

project management artifacts (See Section 5.1). The study results confirmed the validity

of the solution in recalling relevant LL efficiently (See Sections 5.3 and 5.4).

In addition, we considered multiple IR techniques and classifier configurations. Since the

LL classifier’s configuration could affect its performance, we examined the impact of

configuration by defining the following research question:

6

RQ3: Do the configurations of LL classifiers have an impact on the performance results?

In order to answer this research question, we conducted a statistical test on the results

considering different classifier parameter configurations (See Section 4.4.2).

After recording the LL recall results, we performed one more step by examining the

impact of the hybridization of multiple classifiers on the accuracy of the LL retrieved.

Therefore, we considered two of the hybridization techniques from the literature (See

Section 6.2) and sought an answer to the last research question:

RQ4: Can hybridization improve the LL recall accuracy?

We answered this question by first constructing multiple hybrid classifiers using

combinations of the individual classifiers from our empirical study. Second, we

compared the hybrid classifiers performance to that of the individual classifiers and

calculated the relevant improvement. The results showed improvement in many cases,

which encourages the consideration of hybridization for future studies in the LL recall

context (See Section 6.4).

1.3 Research Contributions

The contribution of our research includes the comprehensive SLR which we conducted in

order to come up with the SA state-of-the-art. The SLR results contribute to the software

engineering community by providing valuable insights and defining research gaps. In

addition, our research contributes by providing an LL automatic recall solution.

Therefore, the main contributions of this thesis can be summarized as follows:

1. It provides both researchers and practitioners with a vision of the SA state-of-the-

art to support them, in focusing their research on the research trends and

important domains (See Section 2.2.2.2). This survey clarifies the research gaps

and research opportunities within the SA domain. It can also facilitate the

selection of future research topics and projects for interested researchers (See

Sections 2.2.2 and 2.4).

7

2. It is first to tackle the LL recall problem within the software engineering domain

and to provide an LL recall solution.

3. It is the first time, as per our knowledge, that IR models have been used to build

an LL recall classifier (See Section 4.3). It bypasses the limitations of existing

studies, which require the close involvement of users and reformation of the LL

repository. This is impractical (See Section 3.2).

4. It exploits two of the existing software project management artifacts to create the

search query on-the-fly. This relieves PMs from the burden of manually searching

and facilitates the recall of relevant LL records (See Section 4.3.2). It also

examines the impact of the classifier configurations on the LL retrieval accuracy.

5. It extends the main case study by examining the impact of hybridization on the

accuracy of LL recall. The results showed a relative improvement in the hybrid

classifier versus the individual classifiers in many cases. This can encourage the

consideration of hybridization in future LL recall studies.

Table 1-1 summaries the mapping of the research questions to their corresponding

research contributions and the chapters where the RQs are addressed.

Table 1-1 Research Questions to Research Contributions Mapping

Research Question Corresponding Contribution Chapter

SLR questions and results Contributions 1 Chapter 2

RQ1 Contributions 2 and 3 Chapters 3, 4 and 5

RQ2 Contribution 4 Chapters 4 and 5

RQ3 Contribution 4 Chapters 4 and 5

RQ4 Contribution 5 Chapter 6

8

1.4 Thesis Structure

This thesis is organized as follows: Chapter 2 presents the methodology and results of the

software analytics systematic literature review. Chapter 3 describes the related terms and

concepts used in this thesis, including the LL and IR description, followed by an LL

recall literature survey. In Chapter 4, we introduce the proposed LL recall solution,

research questions and research methodology. The case study and validation of the

proposed solution are illustrated in Chapter 5. In Chapter 6, we extend our main study by

examining the classifiers hybridization impact on performance. Finally, Chapter 7

summarizes this thesis work and proposes future work.

9

Chapter 2

2 Software Analytics Systematic Literature Review

In this chapter, we will describe the software analytics (SA) concept and we will present

the state-of-the-art of the current SA research. Moreover, we will explain the protocol

defined to conduct the extensive SA systematic literature review (SLR), and demonstrate

the main findings and insights.1

2.1 Software Analytics

SA represents a branch of big data analytics. The SA term was initially coined by Zhang

et al. in 2011 [7]. SA is concerned with the analysis of all software artifacts, not only

source code. Its importance comes from the need to extract insights and facts from

available software artifacts to support and facilitate decision making. Artifacts are

available from all software development life cycle steps, beginning with the proposal and

project initiation phases and ending with the project closure and customer satisfaction

surveys. The dynamic nature of the software industry is associated with decision-making

needs through all software business tiers. These tiers vary from the senior management

board, setting the enterprise vision and portfolio management, going through project

management planning and implementation by software developers. As emphasized by

some experts [8][9][10][11] in the SA domain, all of the stakeholders involved deserve to

be supported with decision-making tools in order to facilitate the decision-making

process. SA can play the role of tool provider by offering suitable and supportive insights

and facts to software industry stakeholders to make their decision making easier, faster,

more precise, and more certain. The main difference between SA and direct software

analysis is that rather than just providing straightforward insights extraction, SA performs

1
 Part of this chapter was published in the IEEE International Conference on Software Engineering

Workshop on BIG Data Software Engineering.

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Software Analytics to Software

Practice: A Systematic Literature Review,” in Proceedings of the 37th IEEE International Conference on

Software Engineering (ICSE) Workshop on BIG Data Software Engineering (BIGSE), 2015, Florence,

Italy, pp. 30–36.

10

additional advanced steps. As clarified by Hassan [8], SA provides both visualization and

useful interpretation of insights in order to facilitate decision making.

2.2 Systematic Literature Review

In this section, we describe in detail the protocol employed to conduct the SLR regarding

the SA research field. We discuss the results of this SLR, which represent the state-of-

the-art of SA within the software engineering literature.

Since SA is currently a promising topic of broad interest, we have conducted an SLR to

identify gaps in knowledge and open research areas in SA. Because many researchers are

still confused about the true potential of SA, we had to filter out the available research

papers to obtain the most SA-relevant work for our review.

In the SLR, we followed Kitchenham’s [12] approach for a software engineering

literature review. As a result, we started with the planning phase, in which we developed

the review protocol.

In the following subsections, we start by describing the defined protocol of the SLR.

Then, we demonstrate the results and findings of our study.

2.2.1 Systematic Literature Review Protocol

We conducted the review in six stages: defining questions, designing the search strategy,

selecting the studies to use, assessing the quality, extracting data, and synthesizing data.

The following subsections describe in detail each of the six stages considered.

2.2.1.1 Defining Questions for Systematic Review

In this SLR, we answered four main questions. We kept in mind, while defining these

questions (Q’s), the two main targets of defining research gaps and defining opportunities

within the SA field. The questions, for our SLR, are as follows:

11

Q1: Which software practitioners does the available SA research target?

Q1 aims to identify the stakeholders who will benefit from the available SA studies. It

also aims to assess whether SA studies target different levels of stakeholders or only

focus on the software development team in order to draw the attention of the SA research

community to improve the research plan.

Q2: Which domains are covered by SA studies?

Q2 tries to highlight the scope of the available SA studies. The target domains, such as

software maintainability and incident management, will be determined. Practitioners can

interpret this information from two points of view. The first point of view is to know SA

hot topics and consider them for their research plan, while the other view is to analyze

any research gap and take the lead to consider it as an original research point.

Q3: Which software artifacts are extracted?

The main difference between SA and direct software analysis is making use of all of the

available artifacts in order to come up with insights for strong decision making.

Therefore, Q3 aims to verify that this idea is clear for the current research community.

Q4: If different artifacts are used, are they linked together?

Q4 tries to evaluate whether each study satisfies SA’s main focus of linking different

software artifacts. This linkage aims to come up with more advanced insights, unlike

direct software analysis and metrics where researchers use each artifact separately

without linkage to other artifacts.

2.2.1.2 Search Strategy

Designing the search strategy is crucial and has a direct impact on the SLR results and

concluding insights. The search strategy stage is two-pronged and includes defining the

search terms and determining which software engineering literature libraries will be

considered. In the following two subsections, we demonstrate our decisions regarding

these two steps. Also, the rationale behind our decisions is illustrated.

12

“Software analytics” OR “Software analytic” OR “Software development

analytics” OR “Software development analytic”

2.2.1.2.1 Search Terms Definition

To guarantee that the review would be closely relevant to SA, we tried to limit the search

to the most SA relevant search term. So, we started with the term “software analytics”,

then we went through the following four steps in order to come up with the final search

term that would be considered:

1. Extracting the major distinct terms from the questions.

We ran a small prototype using the original “software analytics” search term. In this

prototype, we analyzed about 20 of the search result papers. From this analysis, we

noticed the usage of different spellings of the original “software analytics” term.

2. Using different spellings of the terms.

As described in step 1, different spellings of the main keywords from the original search

term were noticed. These spellings included the use of both singular and plural forms of

the keyword “analytic”. Also, the term “development” was sometimes associated with the

original search term.

3. Updating the search term with keywords from relevant papers.

We considered the different keywords we had noticed in updating and considering

different parts within the final search term.

4. Using the main alternatives and adding the “OR” operator in order to get the

maximum amount of directly relevant literature.

These steps yielded the following search term:

13

It is worth to mention that we did not consider the popular term of “software analysis” as

we noticed that it led to a lot of studies, i.e., papers, which deal with traditional source

code analysis studies. Since in our SLR we focused on the most current and the state-of-

the-art studies targeting more than one software artifact and stakeholders other than

developers, we preferred to exclude this term, i.e., “software analysis,” from the search

term. Instead, we analyzed most of the studies which use this term and are referenced by

other studies within the primary studies list. We considered any of these studies that

satisfied the filtration criteria as described later in this chapter.

2.2.1.2.2 Literature Libraries Resources

In this SLR, we included two of the most popular electronic databases in order to search

for the primary review studies, namely IEEE – Xplore and ACM Digital Library. The

search term was constructed using the advanced search features provided by each of these

two databases. The search covered metadata in the case of IEEE – Xplore, and both

metadata and body (content) of literatures in the case of ACM Digital Library.

Our search included the period January 2000 to December 2014. Since the SA concept

was initially introduced by Zhang et al. in 2011 [7], we expected that relevant literature

would be found from 2011 and forward. However, we made our search timeframe wider

in order to guarantee gathering all possible relevant papers.

2.2.1.3 Study Selection

In order to eliminate any irrelevant papers which would not add any significant

information, we conducted the following two filtration phases:

• Filtration phase 1: both inclusion and exclusion criteria (as defined in the next

subsection) were defined and applied to the unique candidate papers to eliminate any

irrelevant papers so that only relevant papers with useful information would result from

this phase.

• Filtration phase 2: the quality assessment criteria (as defined in the next subsection)

were used to assess candidate papers that emerged from phase 1. The papers which

satisfied the quality boundary were used in the data extraction stage.

14

2.2.1.3.1 Inclusion and Exclusion Criteria

As mentioned above, carefully defining the inclusion and exclusion criteria is crucial in

leveraging the chance of including only relevant studies from the search results. For this

reason, we defined the inclusion and exclusion criteria as follows:

Inclusion Criteria

The studies that satisfied the following four criteria passed the first filtration phase and

were considered for the quality assessment step or second filtration phase. The inclusion

criteria are defined as follows:

• SA concepts were applied to extract insights from software project artifacts.

This criterion was defined to guarantee the alignment between the considered study and

the SA definition.

• Research was relevant to software project lifecycle phases.

Again, this criterion was defined to guarantee the fulfilling of the SA definition.

• Research was directly related to the software industry and stakeholders.

This criterion originated from the SLR prototype, as we noticed the usage of the SA term

within studies from domains other than software engineering which just refer to the SA

term.

• For duplicate publications of the same study, the newest and most complete one was

selected. This is recorded for only one study whose related work appeared in two

conferences.

Exclusion Criteria

When any of the following criteria applied to a study, we excluded it from the list of

papers to consider. The exclusion criteria defined for this study were as follows:

• Studies that were irrelevant to SA.

15

This occurs due to the misuse of the term “software analytics” for describing traditional

data mining, machine learning, or statistical work.

• Studies that were irrelevant to software projects.

This includes studies targeting other domains such as the automotive industry that

misuses the term “software analytics” to refer to general “data analytics.”

• Studies that are relevant to generic data analytics and are not directly relevant to SA or

software artifacts.

2.2.1.3.2 Review Quality Assessment

This step was important to ensure the accuracy of data extraction from the studies

reviewed and in order to be confident about the results and conclusions. Also, as

previously mentioned, this step was considered to be the second filtration step in order to

come up with the final primary studies to consider while answering the questions. We

defined the following quality assessment criteria:

QA1: The study contribution is clearly stated.

QA2: Software artifacts that are used are clearly explained.

QA3: SA characteristics are clear and different from those of direct statistics where

advanced insights are provided.

QA4: The results and application(s) are described in detail.

Each of the quality assessment criteria has only three optional answers: “Yes” = 1,

“Partly” = 0.5 and “No” =0. For each study, the quality score is the sum of the scores of

each quality assessment point, and the overall score is adjusted to a percentage scale. For

this study, the quality assessment was used mainly as a selection criteria, as previously

mentioned, based on the limitation that the papers considered were only those which had

a quality score ≥ 50%.

16

It is worth mentioning that for the scoring process, we adopted the scoring method

recommended by Kitchenham [12] in the case of having only one main researcher. So,

the main researcher, the PhD candidate in this case, scored the studies based on his

judgment and experience. Then, in this case, a review check was performed by the

research team, the PhD supervisors and teammates. For this review check, the principle

researcher went through the scores of the studies considered. In case of any concern or

disagreement, a discussion meeting was scheduled between the researchers where a

discussion took place until reaching an agreement regarding all scores of the studies

considered. The review check process is a repetitive process and can be repeated until

reaching a confident level of agreement among researchers regarding the assigned scores.

For this study, the review discussion was finalized in one discussion meeting of about

one hour. A summary of the scoring process is shown in Figure 2-1.

Figure 2-1 Quality Assessment Scoring Process

17

2.2.1.4 Data Extraction

The data extraction step is two- pronged. First, it involves defining the extracted pieces of

information or the data which should be obtained from each study considered, in order to

answer the questions. Second, these defined pieces of information for each of the studies

considered need to be extracted and stored to prepare for the analysis and data synthesis

stages as described in the next subsection.

 We defined the data extraction card as shown in Figure 2-2. It is important to be very

careful when defining fields or pieces of information to be included in the data extraction

card, since all of the information required to answer all of the questions should be

collected and made available for the analysis phase. This is crucial, because discovering

missing information at the analysis stage will be very expensive and can lead to an

intensive process of going through all of the studies that were considered to extract this

missing information. For this reason, the data extraction card was carefully reviewed, and

then a pilot study was executed on a small sample of the studies being considered in order

to be confident that the questions could be answered using the information from the data

extraction cards. Once we were confident of the completeness of the defined data

extraction card, we ran the data extraction process on all of the studies considered.

Study id

Authors

Study title

Source

Year of publication

Q1: Beneficiary practitioners

Q2: Domain

Q3: Analyzed software artifacts

Q4: Different linked artifacts

Figure 2-2 The Data Extraction Card

18

2.2.1.5 Data Synthesis

In this stage, the extracted data was aggregated in order to answer the questions. For the

questions answers representation, we used the narrative synthesis method. Accordingly,

we used tables and charts to present the results.

After defining the protocol, the next step was to execute this protocol in order to come up

with the primary studies, and then extract and record the needed information. After that,

we applied data synthesis on the recorded data to come up with and report our insights

and conclusions. Moreover, as a final step, we reported in detail the review limitations

and provided our recommendations in the next section.

A summary of the protocol definition and the conduction processes for the SLR is shown

in Figure 2-3.

Figure 2-3 A Summary of the SLR Process

19

2.2.2 Systematic Literature Review Results

We followed the defined protocol (see Section 2.2.1), in order to execute the SLR. As a

result, we started by searching the libraries we had decided on using the defined search

terms. The search results contained 135 unique candidate papers (41 papers from IEEE

Xplore, 102 from ACM Digital Library). There were 8 duplicate papers, for which we

considered only one version.

The next step was to apply the two filtration steps. By applying both inclusion and

exclusion criteria, the relevant papers totaled 41. After applying phase 2 of the filtration

process, represented by the quality assessment stage, the relevant papers were narrowed

down to 19; these papers were used for data extraction. The list of selected primary

studies is shown in Table 2-1, and their correspondence quality scores are shown in

Table 2-2. Also, the filtration process is summarized in Figure 2-4.

Figure 2-4 Filtration Process

20

Table 2-1 Primary Studies Selected

ID Authors Addressed

Questions

Reference

S1 M. van den Brand et al. 1 2 3 4 [13]

S2 A. Gonzalez-Torres et al. 1 2 3 [14]

S3 E. Stroulia et al. 1 2 3 4 [15]

S4 D. Reniers et al. 1 2 3 [16]

S5 R. Minelli and M. Lanza 1 2 3 4 [17]

S6 J. Lou et al. 1 2 3 4 [18]

S7 C. Klammer and J. Pichler 1 2 3 [19]

S8 T. Taipale et al. 1 2 3 4 [20]

S9 O.Baysal et al. 1 2 3 [21]

S10 P. Johnson et al. 1 2 3 4 [22]

S11 J. Czerwonka et al. 1 2 3 4 [23]

S12 J. Gong and H. Zhang 1 2 3 4 [24]

S13 A. Miranskyy et al. 1 2 3 4 [25]

S14 R. Wu et al. 1 2 3 [26]

S15 S. Han et al. 1 2 3 [27]

S16 Y. Dubinsky et al. 1 2 3 [28]

S17 N. Chen et al. 1 2 3 [29]

S18 M. Mittal and A. Sureka 1 2 3 [30]

S19 G. Robles et al. 1 2 3 4 [31]

By defining the primary studies to consider, we employed the defined data extraction

card to extract the information needed to answer the questions and execute the data

synthesis stage.

The dominant observation of this review was that there was not much relevant or well

established research in the field of SA. This was clear from the number of papers

considered (19) after applying both filtration phases, as explained earlier. The number of

publications shown included all studies that were available and reviewed. Results showed

that about 79% of the considered papers (15) were from conferences, while the remaining

21% (4) were from journals. Furthermore, almost all journal papers (3) were from IEEE

software and were included in SA special edition published in 2013. These statistics

emphasize the difficulty we faced in finding mature SA work for this review. As

mentioned in the quality assessment section, we considered only the papers with a quality

score ≥ 50% in order to guarantee including the most relevant studies. Most of the studies

21

considered have a quality score ≥ 75% (15 out of 19 papers). Table 2-3 shows the quality

score levels of all papers that passed the first filtration phase.

The distribution of the studies selected in each publication year is shown in Figure 2-5,

which clearly indicates that SA studies became more active only in the last two years,

2013 and 2014.

In the following subsections, we illustrate the review results for each of the questions,

one by one, supported with statistics from the data extraction.

Table 2-2 Primary Studies Quality Scores

Study

ID

QA1 QA2 QA3 QA4 Score

S1 1 1 0 1 75%

S2 1 1 0 1 75%

S3 1 1 1 1 100%

S4 1 1 0 1 75%

S5 1 1 0.5 0.5 75%

S6 1 1 1 0.5 87.5%

S7 0.5 1 0 0.5 50%

S8 1 1 1 0.5 87.5%

S9 1 1 0 1 75%

S10 1 1 1 0.5 87.5%

S11 1 1 1 1 100%

S12 1 1 1 1 100%

S13 1 1 1 1 100%

S14 0.5 1 0 0.5 50%

S15 1 1 0 0.5 62.5%

S16 0.5 1 0 0.5 50%

S17 1 1 0 1 75%

S18 1 1 0.5 1 87.5%

S19 1 1 1 1 100%

22

2.2.2.1 Beneficiary Practitioners (Q1)

The first question of this literature review was defined as follows:

Q1: Which software practitioners does the available SA research target?

The target of the first question is to figure out the main practitioners who would benefit

from the primary SA studies. From the studies selected, we identified that the main

practitioners who would be supported by available SA studies are:

 Developer

 Tester

 Project manager (PM)

Figure 2-5 Distribution of Selected Studies per Year

23

 Portfolio manager and Senior management

These results are shown in Figure 2-6, where 90% of all studies targeted developers (17

out of 19) with about 47% (9) exclusively supporting developers (for details see

Table 2-4). This shows that SA needs more research regarding stakeholders other than

developers. Even the available research work that supports other stakeholders, like PMs,

is still undeveloped and is similar to the direct statistics and dashboard work. For

example, Stroulia et al. (S3) proposed a framework called “Collaboratorium Dashboard”

in order to visualize insights extracted from collaborative software development tools.

These tools included information related to a team that has worked on a certain project,

project artifacts, communication between project stakeholders, and the process followed.

Also, the authors integrated their framework with IBM Jazz and WikiDev, which already

included integration with SVN, Bugzilla, email, and wikis.

Although the proposed dashboard provided useful information for PMs in a visual form,

such as the number of emails sent by each team member and the number of files checked

Table 2-4 Q1 Extracted Data

Practitioner Supporting Studies

Developer S1, S4, S5, S6, S7, S8, S9, S10, S11, S13, S14, S15, S16, S17, S19

Tester S2, S13

Project

Manager
S2, S3, S4, S8, S10, S11, S12, S13, S18, S19

Portfolio

Manager
S10, S19

Table 2-3 Quality Assessment Levels Statistics

Quality Levels #

Studies

Percentage

Very high (85% ≤ score ≤ 100%) 9 22%

High (75% ≤ score < 85%) 6 15%

Medium (50% ≤ score < 75%) 4 9%

Low (0% ≤ score < 50%) 22 54%

24

in by each developer, this still formed a straight-forward insight extraction or statistics

from software artifacts. More analytics are needed to link more than one artifact and get

more supportive and powerful decisions. This can be the link between the source code of

a certain feature, the emails related to this feature, or the quality reports, which can be

very useful to highlight the need for refactoring a certain part of this code. Such advanced

analytics are a major need for any future research in SA.

2.2.2.2 Research Domain (Q2)

The second question of this literature review was defined as follows:

Q2: Which domains are covered by SA studies?

The aim of the data extracted for Q2 was to identify the main active SA research domains

in order to support practitioners in deciding both innovative and cutting edge topics and

research opportunities.

Figure 2-6 Distribution of Selected Studies per Practitioner

25

Our review showed that most available SA studies fell into one of the following domains:

 Maintainability and Reverse Engineering

 Team Collaboration and Dashboard

 Incident Management and Defect Prediction

 SA Platform

 Software Effort Estimation

The distribution of the studies considered per domain can be found in Figure 2-7 (for

details see Table 2-5).

Figure 2-7 Distribution of Selected Studies per Domain

26

In the following subsections, we illustrate our findings for the most significant studies in

each domain.

2.2.2.2.1 Software Analytics for Software Maintenance and
Reverse Engineering

Gonzalez-Torres et al. (S2) provided a visualization tool (Maleku) which extracts facts

and insights from large legacy software and provides PMs and developers with useful

information to support their decisions related to software maintenance. This tool extracts

information from software repositories and monitors the repository for any updates in

order to redo the analysis.

Although the proposed tool provided visualization features, these features simply

represent traditional statistical information, like extracting the metrics related to

inheritance and interface implementation.

Another study by Van den Brand et al. (S1), presents SQuAVisiT – a powerful visual SA

tool. It has been successfully applied to the maintainability assessment of industry-sized

software systems, combining results of metrics analysis (such as quality analysis), and

visualization of these analysis results. The tool provides software design metrics such as

cyclomatic complexity and inheritance depth. The tool also provides checking of code

convention, duplication, and bad practices. Although the visual tool provided is useful,

the metrics analysis is traditional and appears in older literature.

Table 2-5 Q2 Extracted Data

Domain Studies

Maintainability and Reverse

Engineering

S1, S2, S4, S5, S7, S12, S13, S14, S15,

S16, S17

Team Collaboration and

Dashboard

S3, S9, S10, S18

Incident Management and Defect

Prediction

S6, S8

Software Analytics Platform S11

Software Effort Estimation S19

27

Minelli and Lanz (S5) are trying to determine whether the traditional maintainability

approaches are valid for mobile applications (apps). They rely on the analytics of three

artifacts: source code, third party API invocation, and application revision historical data.

Minelli and Lanz implemented a visualization SA tool for mobile apps called “SAMOA”

(Software Analytics for Mobile Applications). The tool provides visual presentation for

multiple software metrics, apps versions, and the size of relative lines of code between

core functionality and third party invocation.

Although the visualization tool presented can support project management, the metrics

presented are very similar to traditional metrics from literature. It was expected to use

more available artifacts such as user comments and ratings from app stores (like iOS

Apple store or Google apps store). Also, Minelli and Lanz rely on only one dataset for

their study.

Klammer and Pichler (S7) introduced a reverse engineering tool and applied it to

electrical engineering software programs. The tool analyzes only the software source

code in order to provide some insights related to source code structure and to locate

features within source code. Multiple languages are supported such as C++ and Python.

This work is similar to traditional work, and it needs to consider other software artifacts

in order to apply SA concepts.

2.2.2.2.2 Software Analytics for Team Collaboration and
Dashboard

Baysal et al. (S9) provided the Mozilla development team with a new qualitative

dashboard as a complementary tool for the traditional quantitative reports of the Bugzilla

issue tracking system. The qualitative dashboard improves development team awareness

of the project situation and future directions. New features were provided, such as

guiding developers to new information regarding their patches since the last check,

highlighting new comments and reassigned patch reviewers. This research is promising

since the trend towards qualitative analysis is strong, and it can facilitate and speed up the

decision-making process which has traditionally relied on deep quantitative statistical

analysis. However, the features provided are very direct and can be easily achieved by

28

reviewing the bug history on the issue tracking system. In order to make this work in a

more sophisticated way, new features such as team productivity trend charts can be

provided.

2.2.2.2.3 Software Analytics for Incident Management and
Defect Prediction

Lou et al. (S6) introduce an SA tool called Service Analysis Studio (SAS). SAS supports

engineers in improving incident management by facilitating and automating the

extraction of supportive insights. SAS has the ability to use multiple data sources – such

as performance counters, operating system logs, and service transaction logs – to provide

insights.

What makes this study important is that it applies the SA concept by linking multiple

artifacts. Also, it presents a new algorithm to analyze system metrics data and suggests

which abnormal metric is suspected of being the root cause of the incident. In addition, it

introduces a mining technique to find the suspicious execution patterns—which are the

sequence of actions that led to the incident— within the huge number of transaction logs.

2.2.2.2.4 Software Analytics Platform

Czerwonka et al. at Microsoft (S11) provide an SA common platform called

CODEMINE. The need for CODEMINE emerged from the observation of the

commonality between the input, outputs, and processing needs of multiple analytics team

tools. CODEMINE acts as the common analytics framework for multiple client SA

applications at Microsoft. The CODEMINE’s ability to provide data from different

software artifacts (such as source code, project schedule, milestones, and defect reports)

opens new research opportunities at Microsoft. In turn, this will enrich insights by

extracting information from cross-products which will boost team collaboration.

2.2.2.2.5 Software Analytics for Software Effort Estimation

G. Robles et al. (S19) present a study on the effort estimation of the OpenStack open-

source project. Effort estimation of open source projects is challenging, as such projects

have both a collaborative and distributed nature, and it is difficult to track the

29

development effort. As a result, the authors offer a model that extracts data related to

developer activities from the source code management repository, and then guesses the

effort roughly based on these activities (like the time between two commits). Then, the

model calibrates the rough estimates based on other estimates collected from the

developers in a survey. This study is promising, especially in the way it links artifacts to

obtain insights that are useful for tackling such a hard-to-track topic as effort estimation

of open source software projects.

2.2.2.3 Analyzed Software Artifacts (Q3)

The third question was defined as follows:

Q3: Which software artifacts are extracted?

In order to address Q3, we extracted the analyzed artifacts in each study. This was very

important for our study to be able to evaluate the alignment of the studies with the goal of

having SA analyze more than one software artifact and provide more advanced insights.

The results of the review show that around 47% of the studies are still using only one

artifact (9 studies), and many of these studies only analyze source code, as do traditional

software analysis and metrics studies (4 studies). These results support our conclusion

that most of the currently available SA studies are still in the early stages and reflect

confusion about the difference between direct software analysis and the new SA. The

results summary is shown in Figure 2-8; more details can be found in Table 2-6.

30

Table 2-6 Q3 Extracted Data

Study ID Analyzed Artifacts

S1, S4, S7, S16 Source code

S2 Code repository

S3 Source code repository, issue tracking system, email, wikis

S5 Source code, version control system

S6 Performance counters, operating system logs, service

transaction logs

S8 Issue management system, version control system, code

reviewing system, source code, organizational data, testing data

S9 Issue tracker

S10 Process data, product data

S11 Source code, project schedule, milestones, defect reports

S12 Source code, bug reports

S13 Source code, version control system, bug reports

S14, S15 Call stack

S17 Mobile apps users reviews

S18 Team wiki, version control system, issue tracking system

S19 Version control system, developers survey

Figure 2-8 Number of Analyzed Artifacts Versus Number of Studies

31

2.2.2.4 Checking Artifacts Linkage Before Analysis (Q4)

The fourth question was defined as follows:

Q4: If different artifacts are used, are they linked together?

In order to address the last question, Q4, we evaluated the analysis of the artifacts used.

The main goal was to make sure that the artifacts were linked together in order to get

more complex insights that could support software practitioners in making their

decisions. It is worthwhile to highlight that this analysis was valid for only 10 studies

when more than one artifact was used. This was achieved by reviewing the study scores

for the third quality assessment criteria (QA3). The results show that eight studies scored

100%, which reveals that these studies link multiple artifacts to get insights that can

support decision making. Therefore, these studies comply with the SA concept and can

be considered as good references for practitioners to understand the SA concept. For

more details, see quality scores in Table 2-2.

2.2.3 Systematic Literature Review Limitations

In this review, we considered both journal and conference papers without evaluating their

rankings. This can be attributed to the difficulty that we faced when trying to find well

established and relevant papers, which was a result of two factors. The first was that the

SA field was less than four years old at the time of this review. The second factor had to

do with the misuse of the term SA and the confusion of the researchers about its correct

indication. This was shown by the number of papers considered after applying the

filtration phases, as previously mentioned.

2.3 Systematic Literature Review Addendum

Since SA is an emerging field and the conducted SLR covers research work up to 2014,

we re-ran our searching terms on both libraries considered for the period January 2015-

August 2018 (the time of defending this thesis). The search included both the metadata

and body (content) of literatures for both libraries. The search results contained 176

papers from IEEE Xplore and 141 papers from ACM Digital Library. Since the main

objective of conducting the SLR was to come up with open research gaps in the SA

32

research area, we examined the status of the same gaps. This was achieved by analyzing

the new search results list, which confirmed the existence of the same research gaps that

had been detected by our previous SLR. Those gaps include the analysis of only one

software artifact (in most cases is the source code), and the scarcity of studies that target

stakeholders other than developers. However, our search detected a few studies (around

8) that have done some promising effort, which comes aligned with our recommendations

from the SLR, such as targeting more stakeholders [32] and exploiting more artifacts

[33].

2.4 Summary

In this chapter, the available SA studies were investigated in order to understand the

current status of this new research topic. We conducted a literature review searching for

the relevant studies available from 2000-2014. Our review considered 19 primary studies

that supported us in addressing the four defined questions. The results can be summarized

as follows:

 Q1: The practitioners who benefit from the current SA studies are developers, testers,

PM, portfolio managers, and senior management; about 47% of the considered

studies support only developers.

 Q2: The studies considered showed that SA research covered the domains of

maintainability and reverse engineering, team collaboration and dashboards, incident

management and defect prediction, the SA platform, and software effort estimation.

 Q3: Most of the studies considered (around 47%) analyze only one artifact for their

study.

 Q4: Most of the studies we considered analyze more than one artifact providing more

complex insights, but there is still room for improvement of these studies. The review

results showed that most of the available SA research introduces direct software

statistics like design metrics and change history, and simply embellish these with

some new analytics contributions such as linking team members to the classes they

update. Also, most of the research addresses the low-level analytics of source code.

33

Based on our analysis, this review provides a recommendation for researchers that more

research and elaboration needs to be done, such as considering more artifacts in order to

add value to traditional work, and using more datasets to achieve higher confidence levels

in the results. In addition, there is a lack of research targeting higher-level business

decision making, such as project management, portfolio management, marketing strategy,

and sales strategy. This was one of the main triggers for the selection of our research

problem, as explained in more detail in Chapter 4.

34

Chapter 3

3 Lessons Learned Recall Background and Motivation

In this chapter, we will explain the main concepts employed in this research work. This

includes the description of the lessons learned (LL) definition and the fundamentals of

the information retrieval (IR) models. Moreover, we will present the state-of-the-art and

research gaps of the LL recall field will be illustrated.

3.1 Lessons Learned in Software Engineering

The LL could be conceived of as an important part of the organization’s memory and

cumulative experience and knowledge. LL could be guidelines, handling scenarios or tips

related to what went wrong (mistakes), or what went right (opportunities), in certain

situations or events. In addition, LL could be a success that the organization wants to

repeat, or a failure that the organization wants to avoid in the future. The need to preserve

the organization’s knowledge, which could be lost as a result of several factors, such as

expert turnover, calls for the adoption of these LL repositories. The LL concept is

evolving, and multiple organizations have their own LL repositories [6] [34].

It is valuable to highlight that LL differ from best practices. In contrast to the best

practices that capture only successful scenarios, the LL can capture both success and

failure scenarios. Also, best practices are ideas that are recommended on the industrial

scale and could be localized to the organization, while LL are organization-oriented and

could be globalized to the industrial scale.

 It is worth mentioning that although LL records can be related to any software practice,

such as project management and development, we focus in this work only on LL records

related to project management.

LL representation should give information about the context or situation where the lesson

learned is applicable, the need to apply the LL actions in order to avoid a problem or to

leverage an opportunity, and the recommended actions that can be followed in order to

avoid the problem or to leverage the opportunity. Table 3-1 shows an example of a lesson

35

learned represented by three fields, namely context, problem/opportunity, and

recommendations. In this example, the development team should be at the customer’s

premises, which means that issuing an entry visa for the team could be the cause of a

planning issue. For this reason, the recommended action is to plan for this ahead, as

shown in the LL recommendation section.

Table 3-1 Lesson Learned Example 1

Attribute Value

Context One of our project constraints is to have the development

team onsite (at the customer’s site), and our customer is in

X country.

Problem/Opportunity Issuing a visitor’s visa for our team members takes a lot of

time, especially during high seasons.

Recommendations Try to keep your staffing plan updated and make sure it

covers 1 or 2 months ahead.

Try to start the visa issuing process, for any member, 4-5

weeks ahead of the start date of the planned task at the

customer’s site.

Try to seek your customer’s support in getting a long-term

visa (example: 6 months) with multiple entries.

Obs: some sensitive information regarding customer’s identity and country was updated

or removed due to the non-disclosure agreement

Another example of an LL record is shown in Table 3-2. This record concerns a decision

about whether to implement a mobile application in-house or to outsource the

implementation. It is important to highlight that the LL representation can differ from one

organization to another. For example, the LL record can be described as a flat text, as in

the case of the dataset employed in this thesis, without using specific attributes or fields.

For more LL examples, please refer to Appendix A.

36

Table 3-2 Lesson Learned Example 2

Attribute Value

Context Project scope includes an implementation of a small-sized

mobile application. This mobile application is not reusable,

i.e., it will only be used in this project.

Problem/Opportunity If the mobile application is of a small size, then the

organizational process and overhead tasks, such as quality

assurance and management reporting, will reduce the profit

from implementing the mobile application in-house.

Recommendations Outsource the implementation to an external mobile

application specialized company.

Contact the purchase team for a trusted partners list.

3.2 Lessons Learned Recall State-of-the-Art

The LL information can only be beneficial if project managers (PMs) refer to it for

solving present issues or avoiding expected risks, which is not always the case.

Unfortunately, LL are often abandoned due to the lack of knowledge of relevant LL by

PMs or due to the need to continuously remind them of the existence of new relevant LL

[35]. Although, this can be overcome by PMs manually searching for relevant LL

records, this is effort and time costly, especially when searching unstructured

information. Also, there could be other reasons for disregarding LL repositories, such as

time limitations [35]. This calls for effective and automatic LL recall solutions. By

automatic we mean that there should be no need for manual searching to facilitate and

support frequent references to and exploitation of LL. In this section, we present the

related work and state-of-the-art regarding the LL automatic recall.

Most of the available LL research focuses on either the LL process or the implementation

of a standalone LL repository system [34]. To the best of our knowledge, there is a

paucity of software engineering research addressing LL recall solutions [34].

Harrison [36] has introduced a standalone software LL system. In his implementation, he

has tried to improve the efficiency of information retrieval by providing different search

options. The system provided the ability to search based on domain, keyword, or

37

repository navigation. However, this does not eliminate the need for users to manually

define the search query string. This is different than our proposed solution, as will be

described in Chapter 4, which makes use of the existing project artifacts to search for the

relevant LL.

Sary and Mackey [37] have introduced RECALL, which is a case-based reasoning (CBR)

system. CBR has been employed to improve relevant LL retrieval by users. RECALL

work differs from our proposed research in significant ways. First, the employed CBR

technique is different from the proposed IR techniques that are presented in this thesis.

Second, the RECALL system relies on describing the LL in a case-based question-answer

format. This format is difficult to follow for the existing organizations’ LL repositories.

To the best of our knowledge, the work of Weber et al. [38] is the only available work

that does not require users to fully construct the query string. They introduced an LL

retrieval tool called “ALDS,” and they embedded this tool in a decision-making tool

called “HICAP.” They provided an implementation for ALDS within the task

decomposition of the project planning phase. However, ALDS differs from our proposed

solution in multiple ways. First, ALDS employs the case-based reasoning (CBR)

technique, while our solution employs the IR approach, which is different, as will be

explained in Chapter 4. IR and CBR are different in some aspects; e.g., in CBR, cases are

stored in a “case representation” format, where additional inferred knowledge can be kept

to make them more fitting for reasoning and learning in new situations [39], while IR

relies on searching within the original format of the document repository including all

features and terms. The second difference is related to LL similarity evaluation; ALDS

relies on the indexing of LL in a question-answer format, where users have to go through

answering the questions while describing their task condition. In contrast, this limitation

is not required for our solution since it relies on automatically querying the LL classifiers

or the search engine using data extracted from the project artifacts. The queries, the issue

or risk records, are extracted from the existing project artifacts, which are issue/risk

register documents. We describe the proposed methodology in more detail in Chapter 4.

38

3.3 Information Retrieval Models Applied to Recall
Lessons Learned

IR refers to the process of finding a relevant document or information of interest within a

collection of documents or artifacts. In this thesis, we use the IR term to refer to text IR in

mining software repositories. Usually the data within the searched collection, in the case

of IR, is in an unstructured format (i.e., natural language text) [40]. The input to the IR

classifier is a query, or question, and the result is a list of the documents relevant to this

query [41]. The IR idea is similar to that of web search engines, such as Google, where

the user provides a query, describing the need or the question, and the search engine tries

to answer the user’s question by replying with a list of the most relevant web content.

Regarding the employment of IR techniques in solving software engineering problems, it

is worth mentioning that IR models have been used to solve several problems in the

software engineering domain, such as bug localization [42][43][44] and concept location

[45], but have not been employed to improve the LL recall as per our knowledge [46].

Thus, to the best of our knowledge, we are the first to employ IR techniques to solve the

LL recall issue within the software engineering context [46]. We will explain our solution

in detail in Chapter 4.

There are multiple IR models that can be used to construct classifiers, and they vary

based on their theories, such as simple keyword matching and statistics. There are two

main factors which affect the operation and the accuracy of the IR classifier. The first

factor is the preprocessing steps, which are employed to process the text inputs before

forwarding them to the IR classifier. In our case, the text inputs include both the LL

records, which are used to construct the IR classifier, and the issue/risk records, which

are used to query the constructed classifier. Different preprocessing steps from the natural

language processing (NLP) literature can be used. Later in this section, we provide some

details regarding the preprocessing steps used. The IR model parameters are the second

factor. Each of the IR models or techniques has its own specific parameters which drive

the classifier construction and operation. Examples of these parameters can be the

similarity, the method to calculate the document relevance to the query, and the term

weight. The fact that the impact of parameter configurations on the IR classifiers’

39

performance has already been studied in software engineering domains other than LL

recall, such as bug localization [42] and equivalent requirements [47], plays a role in the

motivation to consider the parameter configurations impact in our own study. In addition,

an optimization of the IR model configurations based on the dataset at hand is important

and is an open research area (for more details, please see Section 7.1).

In the following subsections, we will provide some details regarding the preprocessing

steps that we applied to the text inputs. Then, we will give an introduction to three of the

most popular IR models from the literature that were used in this study. These models

are: Vector Space Model (VSM), Latent Semantic Indexing (LSI), and the Latent

Dirichlet Allocation (LDA).

3.3.1 Text Preprocessing Steps

Since both the documents’ corpus, LL repository in our case, and the query comprise

unstructured information, they are preprocessed before being forwarded to construct or

query the LL classifiers. The preprocessing plays a key role in reducing any information

noise, which could be a source of confusion to the LL classifiers. It is common practice in

IR research to apply one or more preprocessing steps from the NLP literature [41]. The

following is a brief description of the two preprocessing steps we applied in this study:

 Stopping step: removing the common stop words from the English language, such as

“the” and ‘a’. Such words are very common and have high appearance frequency

within the document, which can impact the relevance score while not representing a

real relevance of the document to the query.

 Stemming step: reducing the words to their morphological roots or stems. For

example, “stem” is the root for both “stemming” and “stems”.

3.3.2 Vector Space Model

The VSM is an algebraic IR model [40][41]. It relies on representing the documents’

corpus in a matrix format of terms versus documents (t x d matrix). In this matrix format,

each term in the corpus vocabulary, where the vocabulary contains all the different terms,

40

has a term weight value corresponding to each document in the corpus. The row

dimension value of the matrix represents the number of the different terms, where each

row represents a term. On the other hand, the column dimension value represents the

number of the various documents in the corpus. In each term row, the term has a non-zero

weight value if the term exists in the corresponding document, and a zero value

otherwise. The term can represent a single word and its weight can be calculated as a

simple existing Boolean value, where existing Boolean value ‘1’ is “exist” and ‘0’ is “not

exist,” in each document. In order to decide if two documents, or a document from the

corpus and a query, are relevant, the VSM model compares these two documents’

columns or vectors from the terms versus the documents’ matrix. This comparison is

achieved using a configured similarity method which can be, for example, the inner

product of the two documents’ vectors. To consider two documents relevant, they should

have one or more common terms. The VSM model returns a proportional continuous

similarity value according to the number of common terms between the two compared

documents.

The VSM model has two main configurable parameters:

 Term weight: the term weight in a document. The basic weight method is the Boolean

method whose value is ‘1’ if the term appears in the document, and ‘0’ otherwise.

Other popular weighing methods are term frequency (tf), which is the number of

times the term appears in a document, and term frequency-inverse document

frequency (tf-idf), which is an extended version of the original tf with the

consideration of the term popularity in corpus documents [40]. For tf-idf, the term

weight for a certain document is high if it appears with high frequency in this

document and, at the same time, the term is rare and has a low frequency within the

overall document corpus.

 Similarity: the method used to calculate the similarity degree between two document

vectors, or, as in our case, between a document and a query. Popular similarity

methods include cosine distance and overlap methods [40].

41

3.3.3 Latent Semantic Indexing

The LSI model is an extension of the VSM model. Unlike VSM, LSI takes the context or

topic into consideration instead of only matching the terms, which can have different

meanings, polysemy, within different topics. For LSI, documents sharing the same topics,

even if they do not share the same terms, can be considered similar documents. This is

very important in the case of synonymy and polysemy [41][48]. To achieve this goal, LSI

employs a technique called singular value decomposition (SVD). SVD decomposes the

term-document matrix (t x d), used by VSM, into three new matrices: the term-topic or T

matrix (t x k), the diagonal eigenvalues matrix S (k x k), and the topic-document matrix

D (k x d). The k value represents the number of topics, which is a value provided by the

model user. The SVD technique works on reducing the rank of both T and D matrices to

the provided k value [49]. During this decomposition, the SVD technique works on

grouping the co-occurring terms, which appear together, into one topic.

The LSI has three parameters as follows:

 Term weight: the same as in the VSM model.

 Similarity: the same as in the VSM model.

 K or number of topics: the number of topics remaining after the SVD reduction.

3.3.4 Latent Dirichlet Allocation

The LDA is a generative probabilistic model [41][50]. LDA considers the context of

terms by eliciting the topics within the documents’ corpus. For the LDA model, each

document can be composed of one or more topics with a different membership degree for

each topic. Also, the topics can be constructed from one or more terms. Each term can

belong to one or more topics with a certain membership value [41].

LDA model has several parameters which can be listed as follows [41]:

 α: the document-topic smoothing parameter for the probability distribution.

 β: the term-topic smoothing parameter for the probability distribution.

42

 Similarity: the same as in the VSM model.

 K or number of topics: the number of topics to be created by the LDA model.

 Number of iterations: the number of iterations considered for the inference process.

3.4 Summary

In this chapter, we provided a brief introductory background to the main topics that are

addressed in this thesis. We clarified the meaning of LL, and explained how they can be

considered as the organization’s memory. The value of LL records was underscored by

clarifying that they can provide information regarding either historical problem solving or

previous opportunity leveraging.

Also, we illustrated that despite the LL repository being a valuable source of knowledge

for project managers, it can be abandoned for various reasons, including the difficulty

and time required for manual searching of the LL unstructured data. This limitation called

for the need for automatic LL recall solutions. Therefore, we explained how such

solutions would eliminate the need for manual involvement of project managers to search

for relevant LL records, and thus would improve the LL exploitation. We presented the

state of current research of the LL automatic recall.

Furthermore, the main concept of the IR techniques was illustrated. Moreover, we

described the fundamentals of three of the most popular IR models, which are used in this

dissertation, namely Vector Space Model (VSM), Latent Semantic Indexing (LSI) and

Latent Dirichlet Allocation (LDA). For each of these models, we clarified the main

theory and listed the main configuration parameters.

43

Chapter 4

4 The Design of the Lessons Learned Recall Solution

Our literature review, from Chapter 2, revealed the existence of research gaps regarding

the practitioners who benefit from existing software analytics research. As has been

shown, most of the available research supports software developers, while rare studies

serve other stakeholders such as project managers. This was the main motive behind

focusing our research on addressing this gap by supporting other stakeholders. We took

this into account when selecting and defining the problem statement and research goals.

In this chapter, we start by stating the research problem. Then, the translation of this

problem into the research questions is explained. In order to solve the problem at hand,

we provide a novel solution which is explained in detail. Moreover, we describe how our

solution is evaluated and the research questions are answered by conducting an empirical

case study. The detailed plan and methodology of this empirical study are also illustrated

in this chapter.2

4.1 Problem Statement

As we described in Chapter 3 (Section 3.1), the lessons learned (LL) records constitute

the software organization’s memory of successes and failures. The LL are recorded in the

organization’s repository for future reference in order to optimize planning, gain

experience, and elevate market competitiveness.

However, the LL repository is often disregarded despite the valuable information it

provides. This can lead to the repetition of previous mistakes, or even missing potential

opportunities. This, in turn, can negatively affect the organization’s profitability and

competitiveness. Disregarding the LL repositories could be due to the lack of knowledge

2
 Part of this chapter is under review in the Information and Software Technology Journal.

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Automatic Recall of Software

Lessons Learned for Software Project Managers,” Inf. Softw. Technol. (IST), March 2018. (Under review)

44

of relevant LL by project managers (PMs), or to the need to continuously remind them of

the existence of new relevant LL [35]. Although, this can be partially overcome by

manually searching for relevant LL records by PMs, the effort is labor and time costly,

especially when searching in unstructured information. Also, there could be other reasons

for abandoning LL repositories, such as time limitations [35].

4.2 Research Questions and Goals

Based on the defined problem statement, it is clear that our research targets PMs, which

clearly aligns with the research trigger of supporting different stakeholders than

developers in order to close one of the research gaps from our systematic literature

review (SLR).

 The primary objective of this research is to leverage the benefits to PMs that can be

gained from the organization’s LL knowledge. We believe that this can be achieved by

both facilitating the retrieval of relevant information and boosting knowledge about

relevant and useful LL. We aim to achieve this by employing information retrieval (IR)

techniques to provide adequate automatic LL retrieval classifiers. Also, our solution

relies on constructing the search query automatically from existing project artifacts

(issues and risks) as described in detail in the methodology section (Section 4.3). This

closes another gap from the SLR since we exploit software artifacts other than source

code. To the best of our knowledge, we are the first to employ IR techniques in mining

the software LL repository; this is consistent with the literature survey conducted by

Chen, Thomas and Hassan [46].

In order to achieve our objective, we have defined three main research questions which

we answer in this research. The research questions are as follows:

RQ1: Can we automatically, rather than manually, recall and push the relevant LL to

PMs using IR-based LL classifiers?

This research question is two-fold. In the first part, we are examining whether having an

automatic LL recalling solution is efficient. This is important for solving the main

problem of having the intensive process of manually searching the LL repository for

45

relevant records. Since we plan to employ IR techniques to provide our solution, the

second part of this research question examines the fitness of IR techniques for the LL

recall context.

Reaching an answer to this research question is achieved by examining the performance

of the solution through an empirical case study as described in Chapter 5.

RQ2: Can project artifacts be used to construct on-the-fly queries to recall LL records

relevant to the project at hand?

As the main characteristic of our solution is to be automatic, i.e., no manual search by

PMs, this research question examines the effectiveness of constructing the search query

on-the-fly from existing project artifacts, as described in detail in Section 4.3.2, instead of

relying on the manual inputting of the search query by PMs.

The effectiveness of this on-the-fly search query construction can be measured by the

ability of the LL classifier to return relevant LL records for the project at hand, i.e., the

project to which the artifacts belong. This will be answered by the empirical case study

conducted.

RQ3: Do the configurations of the LL classifiers have an impact on the performance

results?

In this research question, we are seeking a statistical validation of the impact of the

classifier’s parameter on the performance. We will examine the impact of considering

different classifier’s parameters on the performance. This is crucial for determining

whether the result conclusions and insights are statistically significant, and whether they

can be generalized within the dataset at hand and experimental environment context.

This research question is answered by applying an appropriate statistical test to the

performance results recorded for the empirical study, as presented in Chapter 5.

46

4.3 Proposed Solution and Case Study Methodology

As described, the intensiveness of manually searching the unstructured LL repository for

relevant records is a major cause of the LL abandoning problem. The main contribution

of our solution is to address this problem by replacing the manual search with an

automatic search for relevant LL. Thus, in our solution, there is no need for the manual

involvement of PMs in constructing the search query. Instead, we rely on existing project

artifacts to build the query string on-the-fly. Moreover, another contribution of this work

is employing IR models for the first time, as per our knowledge, to construct an IR-based

LL classifier. We chose IR models because they have shown superior results for similar

problems, in the software engineering literature, such as bug localization and equivalent

requirements.

The LL classifier, in our solution, is able to retrieve a list of the LL records relevant to the

current project a PM is working on. The classifier provides these relevant results based

on a query that is automatically generated from existing project artifacts extracted from

the project repository.

In the rest of this section, we describe in detail each part of this solution, including the

methodology employed to construct the automatic LL classifier solution. Also, the

methodology employed to conduct the empirical study, in Chapter 5, is defined. This

covers the processes of constructing the LL classifier, the search query, and the

evaluation process.

4.3.1 Lessons Learned Classifiers Construction

As we mentioned, we rely on IR models in constructing the LL classifiers. Accordingly,

three popular IR models from the literature, are employed, namely, Latent Semantic

Indexing (LSI), Latent Dirichlet Allocation (LDA), and Vector Space Model (VSM). In

this study, we will construct multiple classifiers and compare their performance in order

to identify the most effective classifier for the problem at hand. To construct these

classifiers, we have to define three types of configurations: data representation,

preprocessing steps, and model-based parameter configurations.

47

4.3.1.1 Data Representation Configuration

The data representation configuration defines which parts or fields from the search query

and LL record will be employed while calling or constructing the LL classifier.

As will be described in detail in Chapter 5, both the project artifacts (search query), and

the LL records are represented using their full description field values. We only rely on

the description field value because other fields, such as “title,” were not defined for the

dataset provided.

4.3.1.2 Preprocessing Steps Configuration

The preprocessing configuration defines how data (project artifacts and LL records) is

preprocessed before being forwarded to the IR algorithm to build the LL classifier. Since

the selection of the appropriate preprocessing steps is an open research area [41], for our

case study, we have chosen to employ two of the most common techniques from the

natural language processing (NLP) literature, namely: stemming and stopping. In

stemming, the words are reduced to their word stem. In stopping, the stop words are

removed from the original text. In order to apply these two preprocessing steps, we use

the tool provided by Thomas [51]. We consider the four combinations of applying these

two preprocessing steps: not applying any of the two steps (none), applying stemming

individually, applying stopping individually and applying both stemming and stopping.

4.3.1.3 Model-Based Parameter Configuration

For the LSI model, there are three parameters which should be configured: number of

topics, term weight, and similarity. Since there is no optimal selection method for the

number of topics, and since it is still an open research topic, we consider four values from

the literature [42] for number of topics; “32,” “64,” “128” and “256.” Those chosen

values cover the different ranges of the number of topics values [52]. Regarding term

weight, we consider three methods from the literature [40], namely: the Boolean, tf-idf,

and sublinear tf-idf methods. For similarity, the cosine similarity method is employed, as

it is the most suitable method from the literature for the LSI model [40][42].

For the LDA model, we consider the same number of topics values as in LSI. Other

48

parameters, including sampling iterations number, topic-word smoothing, document-topic

smoothing, and similarity, are automatically optimized by the MALLET tool [53], which

we use for the case study experiments (More details in Section 5.2). Also, for the query

execution, we used the lucene-lda tool, which is implemented by Thomas [54]. The

lucene-lda tool employs the conditional probability method for the similarity, as it is the

most appropriate similarity method for the IR applications [42][55].

Regarding the VSM model, there are two parameters: term weight and similarity. For

term weight, we employ the same methods as in the LSI model. For similarity, we

consider both the cosine and the overlap methods from the literature [40].

4.3.1.4 Overall Configurations Considered

We consider a fully factorial design [42] for the case study experiments, which means

that we consider all combinations of the selected parameter values, i.e., data

representation, preprocessing steps and model-based parameters. So for each parameter,

every value considered is examined against all values of all other parameters.

Accordingly, our experiment has yielded 88 LL classifiers; 48 LSI classifiers ((1 project

artifacts representation) * (1 LL records representation) * (4 preprocessing combinations)

* (4 number of topics values) * (3 term weighting methods) * (1 similarity method)), 16

LDA classifiers ((1 project artifacts representation) * (1 LL records representation) * (4

preprocessing combinations) * (4 number of topics values)), and 24 VSM classifiers ((1

project artifacts representation) * (1 LL records representation) * (4 preprocessing

combinations) * (3 term weighting methods) * (2 similarity methods)). We have tested

and evaluated all of these classifiers.

A summary of the LL classifiers construction process is shown in Figure 4-1. Also, the

considered parameter values are summarized in Table 4-1.

49

Table 4-1 Parameter Configurations

Parameter Value

Common parameters

 Preprocessing steps None, Stemming, Stopping, Stemming

and stopping

 VSM model parameters

 Term weight tf-idf, sublinear tf-idf, Boolean

 Similarity Cosine, overlap

 LSI model parameters

 Term weight tf-idf, sublinear tf-idf, Boolean

 Number of topics 32, 64, 128, 256

 Similarity Cosine

LDA model parameters

 Number of topics 32, 64, 128, 256

 Number of iterations Until model convergence

 Similarity Conditional probability

Figure 4-1 Construction of the Lessons Learned Classifiers

50

4.3.2 Dynamic Query Construction

As we described, our solution relies on automatic construction of the search query. To

achieve this, in the case study, we employ two types of the available project artifact

records, namely issue records and project risk register records, to dynamically construct

the query string on-the-fly and search the constructed classifiers. It is important to clarify

that by issue records we mean project management issues, such as cost management and

team management issues, and not development issues or bugs. Examples for both issues

and risks are provided in Appendix A.

By using the existing artifacts, we bypass the need for users to manually construct the

query string, and we provide an automatic search process.

4.4 Evaluation Process

For the evaluation process, we follow the Cranfield evaluation methodology [56]. This

methodology is suitable for the empirical evaluation of IR models. For this evaluation

method, we first need to acquire a real dataset, including both the LL and the project

artifacts (issues and risks). Therefore, we contacted multiple industrial partners in order

to collect the needed dataset for the evaluation. We successfully reached an agreement

with one of our industrial partners to provide us with the needed dataset. Also, for the

evaluation, we need to build a gold set. The gold set should contain a mapping set of each

query examined and the relevant results expected for this query. The detailed data

collection and the construction of this gold set are described in Section 5.1 of the next

chapter. This set can then be reused to evaluate multiple LL classifiers. The evaluation

process is conducted based on defined performance metrics.

Having both the dataset and the gold set, we then pursue the evaluation process by

applying the data preprocessing steps, following the preprocessing combinations, as

described in Section 4.3.1.2, to the LL repository in order to get different preprocessed

versions of the repository. We build the LL classifiers based on each of the LL repository

versions, and then we repeat this for each of the IR model configuration combinations

that we have considered in Section 4.3.1.4 (see Figure 4-1).

51

After building the classifiers, we execute each of the queries considered, i.e., issues and

risks, using each of these classifiers, and then we record the results list. The performance

metrics are calculated, as described in the next section, for each classifier by comparing

the results list to the gold set. A summary of the evaluation process is shown in

Figure 4-2.

4.4.1 Performance Metrics

To benchmark the performance results for each of the LL classifiers considered, we

employ two of the most popular performance metrics from the literature [40][41][42],

namely, top-K and MAP (Mean Average Precision). The top-K accuracy metric

calculates the percentage of queries, i.e., project issues/risks, whose top k result records

have at least one LL record relevant to this query, based on the gold set. The top-K value

is significant to our case study because it measures the ability of the LL classifier to

provide users with at least one relevant result in an advanced position in the results list,

which is important to encourage users to use the new searching tool; this can lead to

improvements in the organization’s LL recall – our main goal. In the study, we follow the

literature by setting k to 20 in order to measure the accuracy of the classifiers when

Figure 4-2 Lessons Learned Classifier Evaluation Process and Performance Results

Calculation

Obs: this process is repeated for each classifier, and is calculated for each of the queries’ results. Then, the

average performance metric is calculated for each classifier

52

considering the top 20 records from the relevant records retrieved. In the literature

[42][43], the value of 20 has been justified as a convenient number of result records

through which the user can scroll down before disregarding the search results. Top-K

calculations can be formulated as follows [42]:

𝑡𝑜𝑝 − 𝐾(𝐶𝑖) =
1

|𝑄|
 ∑ 𝐼 (𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 (𝑞𝑗), 𝑇𝑜𝑝𝐾 𝑅𝑒𝑐𝑜𝑟𝑑𝑠 (𝐶𝑖, 𝑞𝑗 , 𝑘)) ,

|𝑄|

𝑗=1

where 𝐶𝑖 is the classifier i, |Q| is the total number of the queries examined,

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 (𝑞𝑗) is a function that returns all of the relevant documents to the jth

query based on the gold set, 𝑇𝑜𝑝𝐾 𝑅𝑒𝑐𝑜𝑟𝑑𝑠 (𝐶𝑖, 𝑞𝑗 , 𝑘) is a function that returns the top k

result records from the retrieved list for the 𝑞𝑗 by the ith classifier 𝐶𝑖, and finally I is the

intersection function which returns ‘1’ if there is at least one common document between

the two document lists returned by the two functions, 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 and

𝑇𝑜𝑝𝐾 𝑅𝑒𝑐𝑜𝑟𝑑𝑠, and returns ‘0’ otherwise.

In the case study, the query can have more than one relevant LL record, so it is important

to measure the ability of the constructed LL classifiers to recall all possible relevant

records, as well as evaluate the classifier’s retrieval precision. In order to fulfill this

measurement, we employ the MAP metric, which is one of the most popular and most

appropriate metrics, from the literature [40][56] for this kind of measurement, especially

when comparing multiple IR models and with the existence of multiple query sets. The

MAP metric can be calculated as the average of the aggregated average precision of each

individual query. The MAP equations are formalized by Zhai and Massung [56] as

follows:

𝑀𝐴𝑃(ℒ) =
1

𝑚
 ∑ 𝑎𝑣𝑝(ℒ𝑖)

𝑚
𝑖=1 ,

𝑎𝑣𝑝(ℒ𝑖) =
1

|𝑅𝑒𝑙|
 ∑ 𝑝(𝑗)𝑛

𝑗=1 ,

where ℒ𝑖 is the ranked results list returned by the classifier to answer the ith query from

the different m queries considered; 𝑎𝑣𝑝(ℒ𝑖) is the average precision for the ranked list ℒ𝑖.

53

The avp is calculated for each query, based on the above equation where 𝑝(𝑗) is the

precision at the ranked record 𝑗 within the results list ℒ𝑖, Rel is the set of all documents

relevant to this query based on the mapping set, the gold set, and n is the count of the

records of the results list ℒ𝑖. 𝑝(𝑗) is ‘0’ if the jth document is not relevant to the query. On

the other hand, if the document is relevant to the query, then 𝑝(𝑗) will be calculated by

dividing the number of relevant documents, identified relevant so far, by the document

rank, i.e., j value. For example, if the seventh document within the results list is the fourth

relevant document retrieved, then 𝑝(7) =
4

7
.

4.4.2 IR Configuration Impact

As we planned to study the impact of the different parameter value configurations, i.e.,

preprocessing steps and parameter values of models, on the classifiers’ performance, we

have applied the Tukey’s Honestly Significant Difference (HSD) statistical test

[57][58][59]. The HSD test is a statistical test which has the ability to perform a

comparison between different groups in one step. The advantage of the Tukey’s HSD test

is that it can significantly differentiate between more than two groups based on the

statistically significant difference between the groups’ mean. For our study, we use the

HSD test to statistically compare the impact of the different parameter configurations on

the classifier performance. We studied that parameter by parameter.

So, for each parameter (e.g., term weight), we compare the different performance results

of each parameter value (e.g., tf-idf versus sublinear tf-idf versus Boolean). While

studying a certain parameter, the other parameters may vary. The HSD test examines the

difference in the mean value between the results of the parameter value pairs. For each of

these pairs, if the difference between their mean values exceeds the expected standard

deviation, then HSD can report these two parameter values as statistically different

groups. Therefore, any two parameter values can be either statistically different, i.e.,

reported as different groups, or not statistically different, i.e., the same group, based on

the mean difference. Also, any parameter value can belong to one or more groups.

54

4.5 Summary

In this chapter, we started by describing the research problem. We illustrated the existing

problem – that PMs have been abandoning the LL repository. We noted that this has been

mainly attributed to the intensive task of manually searching this unstructured repository.

In order to address this problem, we defined the research questions and illustrated the

rationale and motivation behind considering each of them. Moreover, we discussed our

automatic LL recall solution and identified the research contributions. The first

contribution is employing IR models, for the first time, to construct an LL recall

classifier. The second contribution is providing an automatic LL recall solution in order

to avoid the intensive manual searching that is currently required to locate relevant

lessons learned. We have clarified that our solution is automatic, i.e., no need for a

manual search, since the existing project artifacts are employed to construct the search

query on-the-fly.

We clarified that answering the research questions and evaluating the effectiveness of the

LL recall solution are achieved by conducting a real empirical case study. The empirical

case study methodology was illustrated. This methodology includes the process of

constructing the LL classifiers using three of the popular IR models. Also, the different

types of parameter configurations we considered were clarified in detail. The project

artifacts that were employed have also been described.

At the end of this chapter, the details of the evaluation process were clarified, which

included the construction of different classifiers, and the evaluation of the LL list

retrieved by the classifiers against the expected list based on the gold set. Furthermore,

the two performance metrics employed, namely top-K and MAP, were demonstrated.

This included the selection rationale and the calculation procedure for each of these two

metrics. In addition, we described how the Tukey’s Honestly Significant Difference

(HSD) statistical test was employed to study the statistical impact of the different

parameter configurations on the LL recall classifiers.

55

After providing the detailed plan for the case study in this chapter, the details of how the

case study was conducted will be illustrated in Chapter 5. This includes the detailed

results, observations and main findings from the case study.

56

Chapter 5

5 Can Lessons Learned Be Recalled Automatically: An
Empirical Study

In this chapter, we describe the execution steps of the case study plan illustrated

in Chapter 4. This chapter starts by describing the data collection process, including the

data disclosure agreement, the dataset description and the process that will be followed to

construct the reference gold set. Moreover, brief technical details are given regarding the

tools employed to construct information retrieval (IR) based classifiers. In addition, the

study results, findings and threats to validity are discussed in this chapter. Both the

performance results and the analysis of the parameter configuration’s impact on the

classifiers’ performance are discussed. The performance results of all the lessons learned

(LL) classifiers that are considered are presented and grouped based on the performance

metric employed, either top-k or MAP.3 For more details regarding the performance

metrics considered and the configuration impact analysis plan, refer to Chapter 4,

Section 4.4.

5.1 Data Collection

One of the most challenging steps for the success of this case study was to collect the

dataset needed to evaluate and answer the research questions. Keeping in mind the need

for confidentiality and the competitiveness that exists within the software industry, it was

not an easy task to get access to the needed dataset, especially given that we targeted real

industrial records.

After communicating with our industrial network, we successfully received the data

needed from an industrial partner which is a large and reputable multinational software

company with a workforce of 800+ employees. Our industrial partner is both ISO 9001

3
 Part of this chapter is under review in the Information and Software Technology Journal.

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Automatic Recall of Software

Lessons Learned for Software Project Managers,” Inf. Softw. Technol. (IST), March 2018. (Under review)

57

and CMMi Level 3 certified, with more than 20 years in the global IT services domain.

The company has global branches all over the world, including North America, Canada,

and Arab Gulf countries, such as the United Arab Emirates, Saudi Arabia, and Kuwait.

The company provides software solutions within seven different industries, including

telecommunications, banking, education and government sectors, in addition to strategic

education programs and partnerships with multiple Arab Gulf governments, including

Dubai and Qatar governments.

5.1.1 Dataset Description

The data provided is under a non-disclosure agreement. Accordingly, the dataset records

have been made totally anonymous by the partner by removing all sensitive data, such as

customer names and project names. The collected dataset consists of two parts. The first

part is the LL repository, while the second part is the project issues/risk register

documents.

The LL repository sample provided contains 212 LL records from 30 different software

projects. Each LL record is represented by both the project’s identification number field,

identifying the project which has reported the LL, and the description field. The

description field contains a description of the LL and its context in a flat text format.

Regarding the project issue/risk records, we have received 55 issue/risk records from five

different projects that are different than the 30 projects used for the LL records. Those

records acted as the query string for our case study. The projects are from different

domain verticals, including governmental, management consultancy, educational, and

telecommunications projects. The scopes of these projects include migration or new

implementation of portals, business processes automation, and learning management

systems (LMS). These projects follow either waterfall or iterative development

methodologies. Also, the customers represented in these projects are from different

countries. All the dataset records are written in English.

58

5.1.2 Gold Set Construction

As described in the case study evaluation process in Chapter 4 (Section 4.4), constructing

a reference gold set has been a must for comparing and benchmarking the performance of

the different LL classifiers considered in the study. The gold set should contain a

mapping set of each query examined and the relevant results expected for this query.

In order to construct this gold set, each of the provided issue/risk records was mapped to

the relevant LL records from the LL repository. As this map could be subjective based on

the users – practitioners and project managers (PMs) in our case – of the retrieval model,

we adopted a procedure similar to the one recommended by Kitchenham et al. [12] in

performing data extraction while conducting a systematic literature review (SLR) in the

case of having a single main researcher. So, the initial mapping was conducted by the

main author, the single main researcher in our case who is a subject matter expert (SME).

Then, a review meeting was scheduled with another SME from the partner software

company. In the review meeting, the company SME reviewed the mapping of the

issues/risks to the relevant LL records. In the case of disagreement, the two SMEs held

discussions until consensus was reached. After finalizing and agreeing on the whole

mapping set, it was baselined. This final mapping set was used for the evaluation and

benchmarking of the different LL classifiers within this case study. We summarize the

gold set construction process in Figure 5-1.

Figure 5-1 Gold Set Construction Process

59

5.2 LL Classifiers Construction

5.2.1 Data Preprocessing Tool

As described in Chapter 4 (Section 4.3.1.2), we employed two of the popular

preprocessing steps from the natural language processing (NLP), namely stemming and

stopping, to perform the dataset preprocessing. As aforementioned, we applied these two

steps in four combinations: apply none of the steps, apply stemming only, apply stopping

only, and apply both stemming and stopping. We used lscp (version 0.01) [51] for this

purpose. lscp is an open source lightweight text preprocessor which was originally

developed by S. W. Thomas [51] for source code preprocessing, but can also be used for

other text input, such as the LL documents in this case study. The tool is implemented

using Perl programming language and can accept multiple preprocessing configuration

parameters. For the stemming, lscp uses the Lingua::Stem Perl’s module which employs

the Porter’s stemming algorithm [60]. We describe the parameters that we used in

Table 5-1.

Table 5-1 lscp Tool Parameters

Parameter Description Default Value

inPath The input files directory "./in"

outPath The output directory to store the

preprocessed files

"./out"

numberOfThreads number of parallel processing threads

to employ

1

isCode Set as 1 if the input files contain

source code,

set as 0 if the input files are regular

files (as in our case study)

1

doStemming Set as 1 to perform stemming, set as 0

for no stemming

0

doStopwordsEnglish Set as 1 to perform stopping, set as 0

for no stopping

0

An example of the preprocessing script in the case of applying both stemming and

stopping steps is shown in Figure 5-2.

60

5.2.2 LDA Classifiers Construction Tool

In this case study, there were two steps involved in retrieving the relevant LL records.

First, we constructed the IR classifiers, i.e., the Latent Dirichlet Allocation (LDA)

classifiers, given the LL corpus. Second, we indexed and searched the IR classifiers

constructed for the records relevant to the queries at hand.

Therefore, we employed the MALLET [53] tool for the construction of the LDA

classifiers. MALLET is a popular natural language processing (NLP) tool [41]. The tool

is implemented using the Java programming language and provides multiple applications

including IR and topic modeling. The constructed LDA classifiers consist of multiple

membership and mapping files including the list of terms in the corpus, the word-topic

membership and the file-topic membership. In order to construct the classifiers, the input

files should be imported to the MALLET tool first. Then, the tool is used to train the

LDA classifiers based on the input corpus provided. Also, it is worth mentioning that the

MALLET tool automatically optimizes many of the LDA parameters such as sampling

iterations number, topic-word smoothing, document-topic smoothing, and similarity. We

summarize the MALLET main configuration parameters used to train the LDA classifiers

in Table 5-2.

use lscp;

my $preprocessor = lscp->new;

$preprocessor->setOption("inPath", "input_test_path");
$preprocessor->setOption("outPath", "output_test_path");
$preprocessor->setOption("isCode", 0);
$preprocessor->setOption("doStemming", 1);
$preprocessor->setOption("doStopwordsEnglish", 1);

$preprocessor->preprocess();

Figure 5-2 lscp Preprocessing Example

61

Table 5-2 MALLET Tool Parameters

Parameter Description

--input The imported data path

--num-topics number of topics to be created by the LDA

model

--output-topic-keys file path to create a map of the words in each

topic

--output-doc-topics file path to create a document-topic

membership

--topic-word-weights-file file path to create a word-topic membership

After constructing the LDA classifiers, we used another tool called lucene-lda [54] for

classifiers’ indexing in preparation for searching these classifiers for the queries. To

achieve this, we inputted the MALLET generated membership— after applying some

formatting to make it suitable for the lucene-lda tool— to the lucene-lda tool for

indexing. After indexing, the tool was ready to execute the queries at hand and return the

LL list.

The lucene-lda is an open source tool developed by S.W.Thomas [54] using Java

programming language. The tool employed the well-known Apache lucene [61] open

source indexing and searching tool for the indexing of the LDA models topics and topic

memberships. For the indexing process, the tool generates a helper class called

LDAHelper() to store some of the automatically generated configuration parameters

while constructing the LDA classifier by the MALLET tool [53]. Moreover, it is

important to highlight that the lucene-lda tool employs the conditional probability

method for similarity. We summarize the parameters used for indexing and searching in

Table 5-3.

62

Table 5-3 lucene-lda Tool Parameters (LDA mode)

Indexing Parameters

Parameter Description

<inDir> Directory path of the original preprocessed documents (LL

records)

<outIndexDir> Directory path to generate the indexing data

<outLDAIndex> Path to generate a helper LDA indexing class (LDAHelper())

fileCodes Path of a file that contains the original names of the preprocessed

files

ldaConfig Expects two-part value:

1-The number of topics used while constructing the LDA classifier

2- The directory path of the associated mapping and topic

membership files generated by the MALLET tool (after

reformatting)

Searching Parameters

Parameter Description

<indexDir> Directory path of the generated indexing data for the LDA

classifier to be used

<LDAIndexDir> Path of the generated helper LDA indexing class (LDAHelper())

 <queryDir> Directory path of the query documents to be executed

<resultsDir> Directory path to export the retrieved list corresponding to each of

the executed queries

K Number of topics configured while constructing the LDA classifier

5.2.3 VSM Classifiers Construction Tool

For the Vector Space Model (VSM) classifiers construction and search, the same lucene-

lda tool, which was used for LDA, was employed but with the VSM query mode. The

same indexing process that was used for LDA was used for VSM, except that there was

no need for the generated topic membership files from MALLET, since the indexing was

totally handled by the integrated lucene tool. Since VSM is the default IR model used by

lucene, the searching or query execution was mainly handled by the integrated lucene

tool. A summary of the configured lucene-lda tool’s parameters, used in indexing and

searching in the VSM mode, is shown in Table 5-4.

63

Table 5-4 lucene-lda Tool Parameters (VSM mode)

Indexing Parameters

Parameter Description

<inDir> Directory path of the original preprocessed documents (LL records)

files

<indexDir> Directory path to generate the indexing data

fileCodes Path of a file contains the original names of the preprocessed files

Searching Parameters

Parameter Description

<indexDir> Directory path of the generated indexing data

 <queryDir> Directory path of the query documents to be executed

<resultsDir> Directory path to export the retrieved list corresponding to each of

the executed queries

weightingCode term weighting method: 1=tf-idf, 2=Sublinear tf-idf, 3=Boolean

scoringCode similarity scoring method: 1=Cosine, 2=Overlap

5.2.4 LSI Classifiers Construction Tool

In the case of the Latent Semantic Indexing (LSI) classifiers, we employed the gensim

open source tool [62]. gensim is a topic modeling tool which is implemented in Python

programming language. Regarding the indexing and searching of the LSI classifiers, we

employed the document similarity server gensim’s library (simserver). The simserver

library has the ability to construct the LSI classifiers given the input LL documents, index

the trained classifiers for future searching, and execute the queries to retrieve the relevant

records.

It is important to highlight that cosine similarity is the only similarity method

implemented by default in genism regarding the LSI modeling. In addition, regarding the

term weight method, genism calculates the term weight by multiplying the returned

values of both the local component method wlocal and the global component method

wglobal. For example, in the case of the tf-idf term weight method, the wlocal is used to

calculate the term frequency part (tf), where the wglobal is used to calculate the

document inverse frequency part (idf). So, in order to implement all of the term weight

methods considered for this study, we had to customize the corresponding wlocal and

wglobal for each of these term weight methods. Then, we inputted the customized

64

methods to the gensem server to use it for the LSI classifier training. A summary of the

simserver’s configured parameters is shown in Table 5-5.

Table 5-5 simserver Tool Parameters

Training Parameters

Parameter Description

method method to be used to train the topic model (we set it as 'lsi')

wlocal method to calculate the term weight local component

wglobal method to calculate the term weight global component

topics the number of topics remaining after the SVD reduction

Searching Parameters

Parameter Description

doc pointer to the query id to be executed to search using the loaded LSI

model

min_score minimum similarity score for a retrieved document within retrieved

list

max_results maximum number of records to be retrieved within the retrieved list

5.3 Results

In this section, we describe the results of all the LL classifiers considered. For the

evaluation of all the considered LL classifiers, we followed the evaluation process

defined in Chapter 4 (Section 4.4). To make it easy to follow, we discuss the results

based on each of the chosen performance metrics, top-K and MAP, separately in the

following two subsections. Each subsection starts with the overall discussion of the

performance results, and then it demonstrates the statistical test results regarding the

significant effect of the parameter configurations on the classifier results. Also, we share

the results of all classifiers in Appendices B and C as a reference for interested

practitioners and researchers.

5.3.1 Top-K Results

The top-20, K is set to 20 (refer to Chapter 4, Section 4.4.1, for details), performance

results regarding the best four classifiers and the worst four classifiers for each of the IR

models considered, VSM, LSI, and LDA, are illustrated in Table 5-6. When observing

the highest performing classifier in each technique, the best top-20 results of 70% are

65

recorded by the VSM and LSI top two classifiers, while the lowest performance is

recorded by the LDA top classifier with only 52%. So, the top VSM and LSI classifiers

outperformed the top LDA classifier, which is consistent with the literature results for

similar problems, such as bug localization [42][44]. An observation regarding the best

two classifiers of VSM and LSI is that both classifiers miss the relevant LL records for

almost the same queries (issues/risks) except for only one query. All these queries have

only three or fewer relevant LL records, which makes them hard queries, except for only

one query which has seven relevant LL records according to the gold set. This indicates

that the VSM and LSI best classifiers can be considered good retrieval classifiers for the

evaluation dataset at hand.

Table 5-6 Lessons Learned Classifiers Top-K Performance Results (Best Four and

Worst Four Classifiers)

VSM LSI LDA
Rank Parameters Values Top-

20

(%)

Rank Parameters Values Top-

20

(%)

Rank Parameters

Values

Top-

20

(%)

1 Stemming+tf-

idf+cosine

70 1 None+tf-idf+cosine

+128 topics

70 1 Stemming and

stopping

+32 topic

52

2 Stemming+sublinear

tf-idf+

cosine

69 2 None+sublinear tf-

idf

+cosine+128 topic

69 2 Stopping+32

topic

46

3 None+sublinear tf-

idf+

cosine

61 3 Stemming+sublinear

tf-idf+cosine+256

topic

69 3 Stemming and

stopping

+64 topic

46

4 Stemming and

stopping+

sublinear tf-

idf+cosine

61 4 None+tf-idf+

cosine+256 topic

69 4 None+32

topic

41

21 Stemming+tf-

idf+overlap

52 45 Stemming+boolean

+cosine+64 topic

50 13 Stemming and

stopping

+128 topic

26

22 Stemming+boolean+

overlap

50 46 None+boolean+

cosine+128 topic

48 14 Stemming+

256 topic

22

23 None+boolean+

cosine

46 47 None+boolean+

cosine+64 topic

44 15 None+256

topic

19

24 None+boolean+

overlap

46 48 None+boolean+

cosine+32 topic

43 16 Stemming and

stopping

+256 topic

19

In addition, the descriptive statistics of the top-20 performance results, in Table 5-7,

demonstrate that the parameter configurations of the LL classifiers have a significant

effect on the results. In the case of the VSM classifiers, there is a significant difference,

66

about 50% relative improvement (calculated as
70−46

46
%), in the performance between

the best classifier, 70%, and the worst classifier, 46%, and this can also be observed

between the best classifier, 70%, and the median classifier, 54%. The same observation is

true for the LSI and LDA classifiers, as depicted in Table 5-7.

Table 5-7 Top-K Descriptive Statistics

VSM LSI LDA

Top-20

(%)

Top-20

(%)

Top-20

(%)

Minimum 46 Minimum 43 Minimum 19

1st Quartile 52 1st Quartile 55 1st Quartile 26

Mean 56 Mean 59 Mean 33

Median 54 Median 59 Median 35

Standard

deviation

6 Standard

deviation

7 Standard

deviation

10

3rd Quartile 58 3rd Quartile 65 3rd Quartile 41

Maximum 70 Maximum 70 Maximum 52

In order to study the impact of the configuration values on the performance results

statistically, we apply the Tukey’s HSD statistical test to the performance results of each

of the parameter configuration values. The results of the Tukey’s test, regarding the top-

20 performance results, illustrated in Table 5-8 at a confidence level of 95%, are

demonstrated in the following two subsections, in which we use the short term

“performance results” to refer to the top-20 performance results. Also, the results at 90%

and 99% confidence levels are shared in Appendix D.

67

Table 5-8 Tukey’s HSD Statistical Test Results (Top-K) (95% Confidence Level)

VSM LSI LDA

Group Mean

 (%)

Preprocessing

steps

Group Mean

(%)

Preprocessing

steps

Group Mean

(%)

Preprocessing

 steps

A 59 Stemming and

stopping

A 60 Stopping A 36 Stemming

and stopping

A 58 Stemming A 60 Stemming

and stopping

A 34 Stopping

A 53 None A 60 Stemming A 32 None

A 53 Stopping A 58 None A 32 Stemming

Group Mean

 (%)

Similarity Group Mean

 (%)

Number of

topics

Group Mean

(%)

Number of

topics

A 58 Cosine A 63 128 A 45 32

B 53 Overlap A 61 256 AB 37 64

 AB 60 64 B 28 128

 B 54 32 B 24 256

Group Mean

 (%)

Term weight Group Mean

(%)

Term weight

A 58 tf-idf A 63 tf-idf

A 57 Sublinear tf-idf A 63 Sublinear tf-

idf

A 52 Boolean B 53 Boolean

5.3.1.1 Lessons Learned Classifier Parameters Statistical Test
Results

Regarding the similarity method, in the VSM case, the HSD test results show a

significant difference in the performance results when using the cosine method versus the

results of using the overlap method (See Figure 5-3). This means that the similarity

method employed has an impact on the performance results for the dataset considered in

this case study. The cosine similarity method shows the best performance results and

comes in the top group. On the other hand, the overlap method results come in the bottom

group.

68

Regarding the term weight, in the VSM case, the test results show that there is no

statistically significant difference when changing the parameter value between the tf-idf,

sublinear tf-idf and Boolean weighting methods (See Figure 5-4).

For the LSI classifiers, the statistical test shows that the term weight parameter has a

statistically significant impact on the performance results. Both the tf-idf and sublinear tf-

idf weighting methods come in the top group and have the highest top-20 performance

results, while the Boolean weighting method comes in the bottom group with the lowest

performance results (See Figure 5-5).

An overall observation, regarding the term weight parameter, is that the tf-idf weighting

method always shows the highest performance results for both the VSM and LSI models,

followed by the sublinear tf-idf method, although there is no statistical significance for

VSM as described, which is consistent with the results from other IR application studies

[42].

Figure 5-3 Top-20 Statistical Test Results for VSM (Similarity Methods)

69

Regarding the number of topics, the HSD test has revealed that it has a statistically

significant impact on the classifiers’ performance results. This means that the

performance results differ when the classifiers are configured with different topic

numbers. This applies for both the LSI and LDA classifiers. However, for LSI, the largest

numbers of topics, “128” and “256,” come in the top group. This indicates that the more

topics used, the better the performance results. On the other hand, for the LDA classifiers,

the situation is different, where the smallest numbers of topics, “32” and “64,” come in

the top groups (See Figure 5-6 and Figure 5-7).

5.3.1.2 Preprocessing Steps Statistical Test Results

Table 5-8 illustrates the HSD test results of applying the four preprocessing combinations

on the classifiers’ top-20 performance, where there is no statistically significant

difference in the results when applying any of the preprocessing steps. This is the case for

all the IR models considered, VSM, LSI, and LDA, within the context of the dataset at

hand. However, applying both stemming and stopping together, in the case of VSM and

Figure 5-4 Top-20 Statistical Test Results for VSM (Term Weighting Methods)

70

LDA, and applying only stopping, in the case of LSI, give the highest top-20

performance (See Figure 5-8, Figure 5-9, and Figure 5-10).

5.3.2 MAP Results

Table 5-9 lists the MAP performance results regarding the best four classifiers and the

worst four classifiers for each of the IR models considered.

After analyzing the MAP results, we conclude that some of the insights from the top-20

results still apply. When looking at the top performing classifiers in each model, the

highest MAP result of 0.198 is recorded by the top classifier in LSI, followed by 0.189 in

VSM, which is similar to the top-20 results. These MAP performance results are

satisfactory compared to other studies from the literature [44][63]. Also, as in the top-20

results, the LDA top classifier achieves the lowest performance of 0.096, compared to the

top performing classifiers in VSM and LSI. In addition, the worst results for both the

Figure 5-5 Top-20 Statistical Test Results for LSI (Term Weighting Methods)

71

VSM and LSI classifiers, 0.081 and 0.085, respectively, are slightly different from the

LDA top classifier result of 0.096. So, again, the MAP results are aligned with both of the

top-20 results, from this case study, and the literature results, which provide evidence of

the superiority of both VSM and LSI classifier results over LDA classifiers in different

empirical studies [42][44].

Similar to the top-20 results, the descriptive analysis of the MAP performance results,

presented in Table 5-10, indicates that the classifier configuration has a remarkable

impact on the performance. This can be inferred from the difference between the VSM

best classifier performance of 0.189 and the VSM worst classifier performance of 0.081,

which represents more than 100% relative improvement. Also, there is a high difference

between the median VSM classifier, 0.122, and the minimum VSM classifier. The same

insight applies for both the LSI and LDA results.

Figure 5-6 Top-20 Statistical Test Results for LSI (Number of Topics)

72

Table 5-9 Lessons Learned Classifiers MAP Performance Results (Best Four and

Worst Four Classifiers)

VSM LSI LDA

Rank Parameter values MAP Rank Parameter

values

MAP Rank Parameter

values

MAP

1 Stemming and

stopping+

sublinear tf-

idf+cosine

0.189 1 Stemming

and

stopping+

sublinear tf-

idf+cosine+

128 topic

0.198 1 Stemming

+32 topic

0.096

2 Stemming and

stopping+

tf-idf+cosine

0.188 2 Stemming

and

stopping+

tf-idf+

cosine+128

topic

0.198 2 Stemming

and

stopping+

32 topic

0.089

3 Stemming+tf-

idf+cosine

0.156 3 Stopping+tf-

idf+

cosine+64

topic

0.194 3 None+32

topic

0.082

4 Stemming+

sublinear tf-

idf+cosine

0.153 4 Stopping+

sublinear tf-

idf+cosine+

64 topic

0.194 4 Stopping+

32 topic

0.075

21 None+tf-

idf+overlap

0.099 45 None+

boolean+

cosine+

128 topic

0.107 13 Stemming

and

stopping+

128 topic

0.040

22 None+sublinear

tf-idf+

overlap

0.095 46 None+

boolean+

cosine+

64 topic

0.096 14 Stopping+

64 topic

0.036

23 None+boolean+

cosine

0.082 47 Stemming+

boolean+

cosine+32

topic

0.086 15 None+256

topic

0.031

24 None+boolean+

overlap

0.081 48 None+

boolean+

cosine+ 32

topic

0.085 16 Stemming

and

stopping+

256 topic

0.030

In the following subsections, we demonstrate the HSD statistical test results, at 95%

confidence level, listed in Table 5-11, regarding the significant effect of the LL

classifiers’ configuration on the MAP performance results. We refer to the MAP

performance results as “performance results” in the following two subsections. Also, the

results at 90% and 99% confidence levels are shared in Appendix D.

73

Table 5-10 MAP Descriptive Statistics

VSM LSI LDA

 MAP MAP MAP

Minimum 0.081 Minimum 0.085 Minimum 0.030

1st Quartile 0.111 1st Quartile 0.132 1st Quartile 0.043

Mean 0.126 Mean 0.153 Mean 0.058

Median 0.122 Median 0.163 Median 0.057

Standard

deviation

0.028 Standard

deviation

0.029 Standard deviation 0.020

3rd Quartile 0.142 3rd Quartile 0.172 3rd Quartile 0.065

Maximum 0.189 Maximum 0.198 Maximum 0.096

Table 5-11 Tukey’s HSD Statistical Test Results (MAP) (95% Confidence Level)

VSM LSI LDA

Group Mean Preprocessing

steps

Group Mean Preprocessing

steps

Group Mean Preprocessing

steps

A 0.159 Stemming

and stopping

A 0.170 Stemming and

stopping

A 0.067 Stemming

B 0.126 Stemming A 0.164 Stopping A 0.056 Stemming and

stopping

B 0.117 Stopping AB 0.147 Stemming A 0.055 None

B 0.102 None B 0.132 None A 0.053 Stopping

Group Mean Similarity Group Mean Number of

topics

Group Mean Number of

topics

A 0.135 Cosine A 0.161 128 A 0.085 32

A 0.117 Overlap A 0.161 64 B 0.053 64

 A 0.158 256 B 0.051 128

 A 0.133 32 B 0.042 256

Group Mean Term weight Group Mean Term weight

A 0.136 tf-idf A 0.167 Sublinear tf-

idf

A 0.134 Sublinear tf-

idf

A 0.166 tf-idf

A 0.109 Boolean B 0.127 Boolean

74

5.3.2.1 Lessons Learned Classifier Parameters Statistical Test
Results

In the case of the VSM classifiers, the Tukey’s test results demonstrate that the classifier

parameter values have no significant impact on the performance results. This means that

both within the context of this case study dataset and the experiments that were

conducted, neither the similarity parameter nor the term weight parameter affects the

performance of the VSM classifiers (See Figure 5-11 and Figure 5-12).

This is not exactly the same for the LSI classifiers, where the statistical test results reveal

the significant impact of the term weight parameter on the classifier performance results.

The sublinear tf-idf term weighting method records the highest mean performance value,

0.167, and shares the top group with the tf-idf method, while the Boolean method comes

in the bottom group (See Figure 5-13). On the other hand, the statistical test of the

Figure 5-7 Top-20 Statistical Test Results for LDA (Number of Topics)

75

number of topics parameter demonstrates no significant difference in the performance

results (See Figure 5-14).

For the LDA classifiers, a significant difference in the number of topics parameter results

Figure 5-8 Top-20 Statistical Test Results for VSM (Preprocessing Method)

Figure 5-9 Top-20 Statistical Test Results for LSI (Preprocessing Method)

76

is reported by the statistical test. The top group comprises the performance results of the

“32” topic classifiers, while the bottom group involves the performance results

corresponding to “64,” “128” and “256” topic configuration values (See Figure 5-15).

5.3.2.2 Preprocessing Steps Statistical Test Results

In the case of the VSM classifiers, the HSD test shows a significant impact from the

preprocessing steps parameter, where applying both the stemming and stopping together

comes in the top group, while the application of other preprocessing steps, including

stemming alone, stopping alone, and using none of the preprocessing steps, comes in the

bottom group (See Figure 5-16).

For the LSI classifiers, both preprocessing steps configurations of applying the stemming

and stopping steps together, and only the stopping step are ranked in the top groups. The

Figure 5-10 Top-20 Statistical Test Results for LDA (Preprocessing Method)

77

stemming step is ranked in the middle, and not applying any step comes in the bottom

group (See Figure 5-17).

Regarding the LDA classifiers, the statistical test infers no significant impact for the

preprocessing steps on the classifier performance results (See Figure 5-18).

In the following section, we elaborate on the results analysis and provide our overall

findings and observations. We then link these findings to the original research questions

defined in Chapter 4 (Section 4.2).

5.4 Results Discussion

In this section, we provide an overall discussion and demonstrate our overall findings

from the results of the case study.

Figure 5-11 MAP Statistical Test Results for VSM (Similarity Method)

78

Regarding the research questions, the conclusions are based on the analysis of the

performance results of the 88 different LL classifiers considered in the case study. Our

conclusions can be summarized as follows:

 Considering the achieved adequate performance results, 70% for top-20 and 0.198 for

MAP, we confirm the effectiveness of employing IR techniques in order to

automatically push the relevant LL information to PMs within software organizations.

 With this convenient level of performance, practitioners are encouraged to rely on the

LL IR-based classifiers to automatically search, within the existing organization’s LL

repositories, for relevant solutions regarding their most pressing issues/risks; this

answers the first research question RQ1.

Figure 5-12 MAP Statistical Test Results for VSM (Term Weighting Method)

79

 Relying on the available artifacts, such as project management issues and risk register

that are associated with software development and project management processes, to

replace the manual querying of the organization’s repositories can be significant. This

is a positive answer to the second research question RQ2, which is supported by the

case study results. Since there is no manual querying needed, the practitioners can

explore the organization’s repositories without worrying about the burden of

manually searching the unstructured data, which can be time and effort consuming.

 Regarding the hypothesis of the impact of the classifier configuration on

performance, this is generally found to be significant. The same IR technique shows

different performance results considering different configurations, and this provides

an answer to the third research question, RQ3.

Figure 5-13 MAP Statistical Test Results for LSI (Term Weighting Method)

80

 In the study, the VSM and LSI IR techniques achieved the best top-20 and MAP

performance, followed by LDA.

 Our statistical test of the impact of applying different preprocessing steps shows no

significant difference for the top-20 performance results. This can be attributed to our

dataset and models. However, since the statistical test of the impact of applying

different preprocessing steps shows significance in the MAP results, for VSM and

LSI, and in other cases from the literature, such as bug localization [42], we advise

considering those different preprocessing steps in future studies.

Figure 5-14 MAP Statistical Test Results for LSI (Number of Topics)

81

An overall observation is that the worst VSM and LSI classifier performance results, 46%

and 43%, respectively, for the top-20, are slightly lower than the best LDA classifier’s

performance of 52%. Also, the worst LDA classifier’s performance, 19%, is significantly

poorer than the worst classifiers in the case of VSM and LSI of 46% and 43%,

respectively. The same insight can be inferred from the MAP performance results. This

can be considered an indication that the LDA technique is not suitable for the LL recall

problem. This indication can be useful for practitioners and researchers who plan to work

on similar problems in the future. Also, we advise the consideration of employing the tf-

idf or sublinear tf-idf weighting method together with the cosine similarity method, as

this combination showed the best classifiers’ top-20 and MAP results for both the VSM

and LSI techniques.

Since the results indicate that the configurations and the selected IR techniques do matter,

we recommend considering different configurations and IR techniques, and to be careful

when deciding on the LL classifier to be applied to the problem and dataset in hand.

Figure 5-15 MAP Statistical Test Results for LDA (Number of Topics)

82

5.5 Threats to Validity

In this section, we discuss two validity threats for the empirical study we conducted.

These threats involve the gold set, as well as the dataset representation and context.

Gold set validity. In this study, we have relied in the classifier validation on the collection

constructed of the queries-relevant LL records mapping. As this mapping collection can

be subjective and may cause a threat to the validity of the case study and conclusions, we

have taken two mitigation steps. First, as a trial to eliminate any bias, we involved two

practitioners in the discussion and construction of this mapping collection. Second, after

reaching a consensus from the two practitioners regarding this mapping collection, the

collection was baselined. So, even if the collection has flaws, such as positive or negative

false, the baseline guarantees that the same collection is used to evaluate all the classifiers

considered using all the three IR techniques. So, the classifiers were evaluated under the

Figure 5-16 MAP Statistical Test Results for VSM (Preprocessing Method)

83

same comparison factors and within the same context.

Dataset representation. Although in this empirical study we were keen to consider a

significant dataset, including both significant LL records and query records, the dataset

considered does not represent all of the LL records in the world or even in the

organization. In addition, we were limited to the dataset provided by our industrial

partner, which was out of our control because of data confidentiality restrictions. Since

this is a common challenge in the context of empirical studies seeking real industrial data,

we did our best to come up with solid conclusions by including LL and queries from a

variety of projects, domains, and regions. Due to this limitation in the dataset

representation, the results and conclusions are not necessarily valid for other contexts.

Although our experiment cannot be reproduced, since we cannot share the dataset, due to

the non-disclosure agreement limitation, we provide the details of the case study design

to encourage researchers and practitioners to proceed with similar methodologies and

case studies regarding their different datasets.

Figure 5-17 MAP Statistical Test Results for LSI (Preprocessing Method)

84

5.6 Case Study Challenges

We faced multiple challenges while conducting this empirical case study. We share here

some of the challenges, hoping this can support future researchers and practitioners who

plan to conduct similar empirical studies.

 The main challenges can be summarized as follows:

 Data collection challenge: the major challenge was convincing an industrial

partner to provide us with the data that was required for the study, including both

the LL repository and the project artifacts data. The main problem was related to

the confidentiality of our partner’s data, which made it difficult to obtain their

approval. To overcome this challenge, we had to communicate with a decision

maker or senior management staff to convince them of the importance and the

Figure 5-18 MAP Statistical Test Results for LDA (Preprocessing Method)

85

value of the study, so that they would release the data required for the study. Of

course, this cost us time and effort.

 Evaluation process: to evaluate the LL classifiers that were provided, we had to

compare the retrieved LL records to a reference map or gold set. This gold set

should define the expected relevant LL records for each of the study queries, i.e.,

issue or risk records for the case study. It was challenging to ask our industrial

partner PMs to be involved in constructing this gold set from scratch. Fortunately,

the main researcher, the PhD candidate in this case, had extensive project

management experience, so he took over the responsibility for constructing the

gold set. Then, we asked one of the industrial partner PMs to simply review and

validate the gold set, which was more achievable.

5.7 Scalability of the Automatic LL Recall Solution

Although the automatic LL classifiers have been constructed and the performance has

been examined based on the dataset considered, our solution can be extended and applied

to other organizations and datasets. In order to achieve that, practitioners can follow our

process that is wrapped up as an inspiring framework as follows:

1- Construct the gold set based on the new dataset considered. As a hint, a method

similar to that used in our study can be employed, where the judgements of

multiple practitioners have been considered, then the baselined gold set has been

based on the discussion and consensus of all the involved practitioners (please

refer to Section 5.1.2).

2- Define the IR models considered. As a hint, as per our conclusion, the VSM and

LSI models are more suitable than the LDA model for the LL recall context.

Accordingly, practitioners can save the effort of examining the LDA model and

directly proceed with constructing the IR classifier using VSM and LSI.

3- Define the experiment parameters. This includes defining the IR model parameter

configurations, data preprocessing steps and performance metrics used.

4- Consider the new dataset. Practitioners should construct the IR classifiers,

following the same method used in our experiment. This includes considering all

86

the combinations of the IR models, preprocessing steps, and parameter

configurations. As a hint, practitioners can follow our observations and

conclusions of the best performance configurations recorded for our study.

Finally, benchmark the constructed LL classifiers and compare them according to the

gold set, record the performance metrics, and choose the best achiever classifier to

consider and deploy within the organization and dataset context.

5.8 Summary

Improving the awareness of a software organization’s LL records can reform the decision

making and project management processes. Providing an automatic process to support

PMs in obtaining relevant LL records can improve the PMs’ awareness of the

organization’s historical experiences. This is crucial for leveraging any potential

opportunities and for mitigating any previous mistakes. We proposed a new automatic LL

recall solution in Chapter 4. In this solution, we employed IR techniques for the first time

within the software LL retrieval context.

In this chapter, we evaluated the effectiveness of the proposed solution, and sought

answers to the research questions by conducting an empirical case study on a real dataset

of industrial software projects. In the case study, we considered three state-of-the-art IR

techniques, VSM, LSI and LDA, as well as the existing project artifacts, including the

project issue and risk records. In addition, we verified statistically, using the Tukey’s

statistical test, the impact of considering different LL classifier parameter configurations

on the classifiers’ performance results. The impact of applying different preprocessing

steps on the data records before constructing the LL classifiers was studied as well.

The case study results confirmed the effectiveness of the proposed solution and its ability

to provide PMs with relevant LL in an automatic way and, thus, to eliminate the burden

of the time and effort required to manually get the LL. The summary of our main findings

is as follows:

 The best top-20 and MAP performance results were recorded for the VSM and LSI

classifiers, while the LDA classifiers came next.

87

 Regarding the top-20, the best VSM classifier was configured using tf-idf for the term

weight, cosine for the similarity, and stemming for the preprocessing steps of the LL

and the queries. For the best LSI classifier, the configuration was the same for both

term weight and similarity parameters, there were no preprocessing steps for the data

records, and the number of topics was set to “128.”

 Regarding the MAP performance results, the best classifiers for both VSM and LSI

were configured using sublinear tf-idf for the term weight, cosine for the similarity,

stemming and stopping for the preprocessing steps, as well as setting the number of

topics to “128” for the LSI classifier.

 The statistical analysis of the different classifier configurations indicated the high

impact of the configurations on the classifier performance. This was elicited from the

significant difference between the performance of the best configured classifiers and

the worst classifiers. As an example, for the VSM classifiers, the relative

improvement between the best and worst classifiers was about 50% for the top-20 and

more than 100% for MAP.

Moreover at the end of this chapter, we shared the threats to validity and some of the

major challenges from our industrial case study regarding the data collection and the

industrial partner’s involvement. By sharing this, we aim to support practitioners in the

industrial and software engineering community who would like to conduct similar studies

in the future.

88

Chapter 6

6 Can Hybridization Improve the Accuracy of Lessons
Learned Recall: An Empirical Study Extension

In the previous empirical study in Chapter 5, we evaluated our automatic lessons learned

(LL) recall solution using a real dataset from industry. The results of the case study

proved the effectiveness of the solution by achieving an accuracy rate of about 70% in

the case of top-k. In that study, we relied on some of the most popular information

retrieval (IR) models from the literature to construct the LL classifiers. In addition, since

our focus was limited to project management LL records, we relied on two of the existing

and most influential project management artifacts, namely issues and risks, to actively

invoke the constructed classifiers. Since these artifacts are already associated with the

software development project lifecycle, there is no need for the manual involvement of

project managers.

In this chapter, we will present an extension of the case study in Chapter 5.4 In this

extension, we considered one more research question RQ4, in addition to the three main

research questions in Chapter 4 (See Section 4.2):

RQ4: Can hybridization improve the LL recall accuracy?

In order to answer this question, we constructed hybrid LL classifiers by combining

multiple LL classifiers from the previous case study. The main motive for conducting

such an extension was that although several domains studied the hybridization of

classifiers [42][64], it was not studied in the LL recall context. In the extension study, we

4
 The work in this chapter is published in the First International Workshop on Professional Search

(ProfS18), Co-located with ACM SIGIR 2018.

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Searching for Relevant Lessons

Learned Using Hybrid Information Retrieval Classifiers: A Case Study in Software Engineering,” in Joint

Proceedings of the First International Workshop on Professional Search (ProfS2018); the Second

Workshop on Knowledge Graphs and Semantics for Text Retrieval, Analysis, and Understanding (KG4IR);

and the International Workshop on Data Search (DATA:SEARCH’18), Co-located with (ACM SIGIR

2018), 2018, Ann Arbor, Michigan, USA, pp. 12–17.

89

employed two popular hybridization methods and studied their impact on the

performance of different classifier combinations.

6.1 Classifiers Hybridization

Different classifiers can perform in different ways in relation to the same dataset and

inputs. This means that different classifiers can exhibit different errors and advantages.

Thus, combining multiple classifiers together can lead either optimistically to better

performance as they complement each other to avoid individual errors, or negatively to

worse performance by distracting each other. This depends heavily on the chosen

classifiers. Based on this information, we aim, in our case study, to combine multiple

classifiers from the previous work to construct a hybrid classifier, and then study the

impact of this combination on performance. We will compare the performance of the

hybrid classifier to the performance of each combined classifier. The case study goal is to

examine if we can achieve better performance by combining more than one classifier

versus depending on each of the classifiers separately.

The hybridization calculation process is illustrated in Figure 6-1. As shown in the figure,

the individual scores of the retrieved list—including the corresponding score for each LL

record within the list—for each of the combined classifiers are forwarded to a hybrid

technique. Based on the hybrid technique, the new hybrid score for each record, i.e., LL

record in our case, is calculated. Then, the newly retrieved hybrid list is constructed by

reordering the retrieved records according to the new hybrid scores. This retrieved hybrid

list can be thought of as a retrieval list from a classifier, different than the original

combined classifiers, which is constructed by combining the results of each combined

classifier.

In order to evaluate the impact of hybridization on performance, the performance of the

constructed hybrid classifier is compared to the performance of the highest performer

classifier within the combined classifiers, as shown in Figure 6-1. The comparison is

conducted by calculating the value of the relative performance improvement (RI) which

will be described in detail in Section 6.4.

90

From the hybridization calculation process, it is clear, as described, that there are two

main factors that affect the performance of hybridization: the employed hybrid technique

and the selection of the combined classifiers. For this reason, in the following

subsections, we will clarify both the hybrid techniques that we used to combine the

classifiers and the selection criteria that we used to choose the classifiers that we

combined.

Figure 6-1 Hybridization Calculation Process

Obs:

LLij: is the jth retrieved lessons learned record by the ith combined classifier, where j is

the rank of this record within the retrieved list based on the given score.

Score ij: is the given score for the jth retrieved record by the ith combined classifier.

The hybrid classifier is considered as the classifier number H

91

6.2 Hybridization Techniques

In this study, we employed two popular hybridization methods from the software

literature [42] namely Borda and Score Addition. We will describe the calculation of both

methods in the following subsections.

6.2.1 Borda

The Borda technique is a rank-based technique. This means that it relies on the rank, (i.e.,

the order in the retrieved list of the retrieved item, the relevant LL in our case), within the

classification results list from each individual classifier, to assign this item a rank-based

score. So, for each retrieved LL item, the final rank or order within the hybrid retrieval

list is the summation of the item ranks from each individual classifier retrieval list. Each

of the item ranks is adjusted to the total number of items with non-zero rank score within

each classifier retrieval list. This results in assigning the items with the highest Borda

score an early appearance or low order in the final hybrid retrieval list. The Borda count

can be calculated as stated in [42] as:

𝐵𝑜𝑟𝑑𝑎 (𝑑𝑘) = ∑ 𝑀𝑖 − 𝑟(𝑑𝑘 | 𝐶𝑖) + 1𝐶𝑖 𝜖 𝐶 , [42]

where 𝑑𝑘 is the retrieved list item for which the Borda count is calculated, 𝐶 is the

collection of the hybrid classifiers, 𝐶𝑖 is the ith classifier within the 𝐶 collection, 𝑀𝑖 is the

number of retrieved items that received a non-zero score in the list retrieved by the

classifier 𝐶𝑖, and 𝑟(𝑑𝑘 | 𝐶𝑖) is the 𝑑𝑘 rank or order within the 𝐶𝑖 retrieved list [42].

6.2.2 Score Addition

The score addition technique relies on the item’s weight, i.e., the score given by the

individual classifiers. The total hybrid score of each retrieved item is calculated as the

summation of the individual score of this item from each of the combined classifiers [42].

In order to avoid any mistaken bias to a certain classifier due to the weighting scale, the

items’ weights in each of the combined classifiers list are scaled to be within the same

range of [0-1]. Accordingly, the individual item’s score addition can be calculated as

follows:

92

𝑆𝑐𝑜𝑟𝑒𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛(𝑑𝑘) = ∑ 𝑠(𝑑𝑘 | 𝐶𝑖) 𝐶𝑖𝜖 𝐶 [42]

where 𝑠(𝑑𝑘 | 𝐶𝑖) is the score of 𝑑𝑘 given by the classifier 𝐶𝑖 [42]. Finally, the items are

placed in a descending order, based on their total score.

6.3 Hybrid Classifiers Selection

The selection of the combined classifiers has a crucial impact on the performance of the

constructed hybrid classifier. For this reason, we tried to choose the classifiers that could

positively complement each other. Thus, we chose the classifiers that had been exposed

to different formats of the input data, because such classifiers would have a higher chance

of coming up with different insights and conclusions regarding the dataset at hand, which

we thought could improve their combined performance. That said, we decided to proceed

with the classifiers that were constructed by applying the different input preprocessing

step combinations.

As clarified in Chapter 4 (Section 4.3.1), the previous case study considered four

different classifier subspaces or groups according to the preprocessing step combinations

applied to the input data before it was forwarded to the IR model and before constructing

the LL classifier. These preprocessing step combinations included applying none of the

preprocessing steps, applying the stemming step, applying the stopping step, and

applying both the stemming and stopping steps together. So, for each IR model, we

considered a top performer classifier from each of the four classifier subspaces. This

resulted in the selection of four classifiers from each of the VSM, LSI, and LDA models.

The four selected classifiers included the top classifier when none of the preprocessing

steps were applied, the top classifier when the stemming step was applied, the top

classifier when the stopping step was applied, and finally the top performer classifier

when both the stemming and stopping steps were applied together. In this experiment, we

examined the performance of the hybrid classifiers constructed by combining the four

selected classifiers of each IR model in pairs. In addition to studying these pairs of

classifier combinations, we studied the performance of the combination of the four

selected classifiers in each IR model as well. Finally, we combined all of the selected

93

classifiers from all IR models together (four classifiers from each of the three IR models

considered). All the classifier combinations are shown in Table 6-1.

6.4 Results

Since the goal of this case study extension is to investigate the impact of constructing a

hybrid LL classifier by combining multiple LL classifiers from the previous study on

performance, we constructed the hybrid classifiers following the selection criteria

described in Section 6.3. The performance results for each of the constructed hybrid

classifiers were recorded. Then, the relative performance improvement (RI) percentage

was calculated. This was done by comparing the result of the hybrid classifier to that of

the classifier with the highest performance among the individual classifiers within the

combination set. The RI calculation is formulated as follows:

𝑅𝐼 =
𝑃(𝐻𝐶) − 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠)

𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠)

where 𝑃(𝐻𝐶) is the value of the performance metric 𝑃 for the hybrid classifier 𝐻𝐶, and

𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃() method returns the highest performance metric value among the

performance values of the combined classifiers [42].

 Since we considered two performance metrics in this study, top-20 and MAP, the results

regarding each of these two metrics will be illustrated separately in the following

sections.

94

Table 6-1 Hybrid Classifiers

Top-20 Hybrid Classifiers MAP Hybrid Classifiers

LDA Top

Classifiers

LDA_T1:LDA+32+None

LDA_T2:LDA+32+Stopping

LDA_T3:LDA+32+Stemming

LDA_T4:LDA+32+Stemming and

stopping

LDA Top

Classifiers

LDA_M1: LDA+32+None

LDA_M2: LDA+32+Stopping

LDA_M3: LDA+32+Stemming

LDA_M4: LDA+32+Stemming and

stopping

ID Combined Classifiers ID Combined Classifiers

CT1 LDA_T1, LDA_T2 CM1 LDA_M1, LDA_M2

CT2 LDA_T2, LDA_T3 CM2 LDA_M2, LDA_M3

CT3 LDA_T1, LDA_T4 CM3 LDA_M1, LDA_M4

CT4 LDA_T2, LDA_T4 CM4 LDA_M2, LDA_M4

CT5 LDA_T3, LDA_T4 CM5 LDA_M3, LDA_M4

CT6 LDA_T1, LDA_T3 CM6 LDA_M1, LDA_M3

CT7 LDA_T1, LDA_T2, LDA_T3, LDA_T4 CM7 LDA_M1, LDA_M2, LDA_M3,

LDA_M4

LSI Top

Classifiers

LSI_T1: LSI+TF-

IDF+Cosine+128+None

LSI_T2: LSI+Sublinear+Cosine+

64+Stopping

 LSI_T3: LSI+Sublinear+Cosine+

256+Stemming

LSI_T4: LSI+TF-IDF+Cosine+128+

Stemming and stopping

LSI Top

Classifiers

LSI_M1: LSI+TF-

IDF+Cosine+256+None

LSI_M2: LSI+TF-

IDF+Cosine+64+Sopping

LSI_M3: LSI+Sublinear+Cosine+64+

Stemming

LSI_M4: LSI+Sublinear+Cosine+128+

Stemming and stopping

ID Combined Classifiers ID Combined Classifiers

CT8 LSI_T2, LSI_T3 CM8 LSI_M1, LSI_M3

CT9 LSI_T3, LSI_T4 CM9 LSI_M3, LSI_M4

CT10 LSI_T1, LSI_T2 CM10 LSI_M1, LSI_M4

CT11 LSI_T1, LSI_T3 CM11 LSI_M2, LSI_M4

CT12 LSI_T1, LSI_T4 CM12 LSI_M2, LSI_M3

CT13 LSI_T2, LSI_T4 CM13 LSI_M1, LSI_M2

CT14 LSI_T1, LSI_T2, LSI_T3, LSI_T4 CM14 LSI_M1, LSI_M2, LSI_M3, LSI_M4

VSM Top

Classifiers

VSM_T1:VSM+Sublinear+Cosine+None

VSM_T2: VSM+Sublinear+Cosine+

Stopping

VSM_T3: VSM+TF-IDF+Cosine+

Stemming

VSM_T4: VSM+Sublinear+Cosine+

Stemming and stopping

VSM Top

Classifiers

VSM_M1: VSM+TF-IDF+Cosine+None

VSM_M2: VSM+TF-IDF+

Cosine+Stopping

VSM_M3: VSM+TF-

IDF+Cosine+Stemming

VSM_M4: VSM+Sublinear+Cosine+

Stemming and stopping

ID Combined Classifiers ID Combined Classifiers

CT15 VSM_T1, VSM_T2 CM15 VSM_M1, VSM_M4

CT16 VSM_T1, VSM_T4 CM16 VSM_M2, VSM_M4

CT17 VSM_T2, VSM_T4 CM17 VSM_M3, VSM_M4

CT18 VSM_T1, VSM_T3 CM18 VSM_M1, VSM_M2

CT19 VSM_T2, VSM_T3 CM19 VSM_M1, VSM_M3

CT20 VSM_T3, VSM_T4 CM20 VSM_M2, VSM_M3

CT21 VSM_T1, VSM_T2, VSM_T3, VSM_T4 CM21 VSM_M1, VSM_M2, VSM_M3,

VSM_M4

CT22 CT7, CT14, CT21 CM22 CM7, CM14, CM21

95

6.4.1 Top-K Results

The results for the hybrid classifiers that we considered and the impact on the top-20 are

shown in Table 6-2. In the case of using the score addition method, the hybrid classifier

results show either an improvement or no effect against the individual classifiers in about

77% of the cases considered. In other words, the score addition combination has led to a

decrease in the performance in only five cases. Regarding the Borda method, there is an

improvement or no effect in about 59% of the cases. The maximum improvement is 15%

for the score addition method and 24% for the Borda method.

An important additional observation is that the combination performance has exceeded

the 70% top-20, which was the top performance recorded among all the individual

classifiers in the previous experimental work. For score addition, this is recorded in four

cases where top-20 performance accuracies of 74% and 72% are recorded. In the case of

Borda, this has been achieved in three cases where a top-20 of 72% is recorded. Also, it is

important to highlight that the combination of the selected classifiers of all the IR models

considered has led to an RI where the score addition results outperform or are comparable

to the Borda results in most of the cases, at approximately 73%.

96

Table 6-2 Top-20 Hybrid Classifiers Results

Combination

 ID

Top Individual

Performance

(%)

Score

Addition

RI

(%)

Borda

Count

RI

(%)

CT1 46 50 8 56 20

CT2 46 52 12 57 24

CT3 52 50 -4 50 -4

CT4 52 54 4 56 7

CT5 52 46 -11 44 -14

CT6 41 46 14 44 9

CT7 52 48 -7 48 -7

CT8 69 69 0 70 3

CT9 69 70 3 72 5

CT10 70 67 -5 70 0

CT11 70 72 3 69 -3

CT12 70 74 5 69 -3

CT13 69 69 0 69 0

CT14 70 70 0 70 0

CT15 61 61 0 59 -3

CT16 61 70 15 65 6

CT17 61 61 0 59 -3

CT18 70 65 -8 63 -11

CT19 70 70 0 70 0

CT20 70 72 3 72 3

CT21 70 70 0 65 -8

CT22 70 72 3 72 3

Although the hybridization has not proven to be an improvement in all cases within this

experiment, the number of the improved cases, especially the 77% of cases for score

addition, is considered satisfactory and encourages the consideration of hybrid classifiers

within the scope of LL retrieval context.

97

6.4.2 MAP Results

Table 6-3 shows the RI results in the case of the MAP performance metric. The results

demonstrate either an improvement or no effect in the RI for about 81% of the cases

using score addition. On the other hand, the improvement is not satisfactory in the case of

the Borda method since the RI is negative for about 60% of the cases.

Table 6-3 MAP Hybrid Classifiers Results

Combination

ID

Top

Individual

Performance

(%)

Score

Addition
RI (%)

Borda

 Count
RI (%)

CM1 0.082 0.095 16 0.085 4

CM2 0.096 0.096 0 0.106 10

CM3 0.089 0.094 5 0.098 10

CM4 0.089 0.090 1 0.084 -6

CM5 0.096 0.103 7 0.089 -8

CM6 0.096 0.102 6 0.114 18

CM7 0.096 0.114 18 0.100 4

CM8 0.175 0.182 4 0.172 -2

CM9 0.198 0.207 4 0.197 -1

CM10 0.198 0.200 1 0.186 -6

CM11 0.198 0.198 0 0.190 -4

CM12 0.194 0.199 3 0.196 1

CM13 0.194 0.189 -3 0.199 3

CM14 0.198 0.199 0 0.199 0

CM15 0.189 0.193 2 0.164 -13

CM16 0.189 0.169 -11 0.156 -18

CM17 0.189 0.194 3 0.186 -2

CM18 0.131 0.149 14 0.130 -1

CM19 0.156 0.151 -4 0.142 -9

CM20 0.156 0.175 12 0.156 0

CM21 0.189 0.190 0 0.163 -14

CM22 0.198 0.195 -2 0.160 -19

98

Similar to the top-20 results, the same insight regarding the number of cases where the

score addition outperformed or was comparable to the Borda, applies for the MAP results

in about 81% of the cases.

6.5 Summary

In this chapter, we provided an extension of our previous empirical study regarding the

construction of an automatic software management LL recall system. In this extension,

we sought an answer for a research question, in addition to the questions answered

in Chapter 5, that examined the impact of the hybridization of LL classifiers on

performance. We relied on the existing LL classifiers from the previous study in Chapter

5 in constructing the hybrid classifiers. In the extension, we employed two combination

techniques from literature in constructing the hybrid classifiers. A comparison was

conducted between the performance of each hybrid classifier and the performance of the

top performer from the combined individual classifiers.

Both top-K and MAP performance metrics were employed to measure the retrieval

accuracy of the classifiers that were considered. The study results showed a relative

improvement, or no effect, of the hybrid classifiers’ performance against the individual

classifiers’ performance in about 77% of the cases of top-20 using the score addition

method. On the other hand, the results regarding the MAP metric showed an

improvement in about 81% of the cases when using score addition. Although, the

improvement was not satisfactory in some cases, such as the MAP results in the case of

using the Borda method, the overall results were encouraging and provided positive

insights regarding employing IR classifiers hybridization within the LL recall context.

99

Chapter 7

7 Summary and Future Work

In this thesis, we presented an innovative solution for improving the recall of software

lessons learned (LL). To the best of our knowledge, this is the first time that a solution

has employed information retrieval (IR) models within the LL recall context.

Furthermore, we have proven the validity of the solution through an empirical case study

using a real industrial dataset and performance metrics from the IR literature. In addition,

we clarified how we automated the LL recall by constructing the search query on-the-fly

using two of the existing project artifacts, issues and risks. We explained how our

solution addresses the limitations of other studies, available from the literature, and

eliminates the complication of manually searching LL repositories.

In Chapter 1, we described the context of the thesis and asserted the importance of the

exploitation of an organization’s knowledge. We clarified how the LL repository can be

considered as one of the most highly valuable sources of knowledge and applicable

analogs for an organization. In addition, we demonstrated the main motivation for the

study and formulated the research questions. The motivation has two axes. First, we

focused the solution, or research work, on supporting stakeholders other than software

developers. Second, we sought to improve the exploitation of the organization’s

knowledge. We also clarified how we had defined our motivation. This was based on the

insights from our comprehensive systematic literature review. Furthermore, we clearly

stated the problem, i.e., the lack of automatic LL recall and how this can lead to

overlooking existing LL records. That said, the main goal was to close this research gap

by providing an automatic solution for LL recall based on IR techniques. We translated

the problem statement to a research goal and formulated it into four research questions.

Also, we listed the main research contributions and their mapping to the research

questions in Section 1.3.

In Chapter 2, we explained in detail the protocol and methodology that we employed to

conduct the systematic literature review (SLR) of software analytics (SA). This included

100

the definition of the review questions, the search strategy, study selection, and data

extraction and analysis (See Section 2.2.1). In the search strategy, we explained how we

constructed the search query. We clarified the steps that we followed to improve this

query until we came up with the search terms. Also, we listed the electronic libraries

considered for the SLR. Regarding the studies selection, we defined the filtration criteria,

for both inclusion and exclusion, and the quality assessment. The search resulted in 135

unique studies which were filtered and narrowed down to a final list of 19 primary

studies. We extracted the needed data from these primary studies in order to come up

with answers to the review questions. The results of the SLR provided informative

insights and a vision of the SA state-of-the-art. We determined multiple research gaps,

especially regarding the analyzed artifacts. Most of the primary studies analyzed only one

artifact, which was source code in most cases. Furthermore, we defined some future

research opportunities such as focusing on serving different stakeholders rather than only

developers, as occurs in the majority of the existing studies. This can be beneficial to

practitioners when deciding on their future projects and research problems. This was the

first contribution of this thesis as we defined in the contribution list (See Section 1.3).

In Chapter 3, we clarified the main concepts and terms which were used in this thesis.

This included the definition of LL and the review of the current research state of the LL

recall. Also, we clarified the main concept of IR and provided some details regarding the

three employed models, namely Vector Space Model (VSM), Latent Semantic Indexing

(LSI), and Latent Dirichlet Allocation (LDA). The basic concepts regarding the

configuration parameters for each of these models and the data preprocessing steps were

provided.

We presented the research methodology in Chapter 4. We started by stating the problem

of LL overlooking and the scarcity of the available LL recall solutions. We addressed this

problem by articulating it in the research questions and goals. We clarified how we

defined the research methodology and designed the case study to get answers to the

research questions and validate the LL recall solution. In the research methodology, we

explained how we designed and constructed the solution based on the IR techniques.

Also, we demonstrated how the construction of the search queries was automated by

101

dynamically building the queries using two of the existing project artifacts. The

evaluation process, based on a real collected dataset from an industrial partner, was also

defined. This included the definition of the two performance metrics considered, namely

top-K and MAP. Also, we clarified the statistical test which we used to study the impact

of different classifier configurations on performance.

We illustrated the execution and results of the case study in Chapter 5. We provided a

description of the dataset used and how we constructed a gold set to use in the

benchmarking of the classifiers performance. Also, we described the different classifier

configurations and the applied data preprocessing steps combinations. The case study

results showed a significant top-20 accuracy of 70% in the cases of VSM and LSI and a

satisfactory MAP accuracy with the same models. In addition, an overall observation was

that both VSM and LSI outperformed the LDA model. The LDA results were

dissatisfactory and far away from the results of the other two models (See Sections 5.3

and 5.4). These results positively answered the first research question RQ1 by proving the

efficiency of employing IR models to automatically recall relevant LL (refer to

Section 1.2 for the list of the research questions). Also, the results proved the efficiency

of using both project management issues and risk register to dynamically construct the

search queries, which bypassed the need for manually searching the LL repository and

answered the second research question RQ2. The answer to the third research question

RQ3 was provided by the results of the statistical test which showed a high impact of the

classifier configurations on performance. In addition, at the end of this chapter, we shared

some of the case study threats to validity and challenges. We clarified how we dealt with

each of these threats and how we overcame the challenges.

In Chapter 6, we extended the study by examining the ability of hybridization to improve

the accuracy of classifiers. In order to achieve this, we sought an answer to the fourth

research question RQ4 by employing two of the hybridization techniques, namely Borda

count and Score Addition. We constructed hybrid classifiers by combining individual

classifiers, from the primary study in Chapter 5, using these two hybridization

techniques. Also, we clarified the selection criteria of the combined classifiers. In

choosing the selection criteria, our goal was to consider individual classifiers from

102

different subspaces in order to boost each other’s classification (See Section 6.3). Then,

we compared the performance of the hybrid classifiers to that of the individual classifiers

using relative performance improvement (RI). The results were significant, especially in

the case of using the score addition technique where there was a performance

improvement or no effect in about 77% of the cases for top-20 and 81% of the cases for

MAP. Also, a relative improvement—up to 24%— was recorded for the top-20 using the

Borda technique. Although, the results were not satisfactory in some cases, such as the

MAP results when using the Borda method, the overall hybridization results provide

positive insights and encouragement to employ hybridization in future IR studies within

the LL recall context. By answering the four research questions, we provided the core

contributions of this thesis as clarified in Section 1.3.

Since we conducted the first empirical study that considers applying IR techniques to

tackle the automatic recall of software LL records for PMs, the results represent a value

added to the state-of–the-art, and they can guide interested researchers, practitioners and

organizations through the context of automatic LL retrieval.

7.1 Future Work

Since this work is the first, to the best of our knowledge, to apply IR techniques within

the context of software LL retrieval, there are several promising avenues to extend the

research as follows:

1. Considering other state-of-the-art IR ranking functions and models, such as Pivoted

Length Normalization VSM [65], BM25F [66][67], and BM25+ [68]. This will

extend our insights and boost the empirical evidence on the feasibility of employing

those state-of-the-art functions within the software engineering domains, specifically

the LL recall context.

2. Examining other weighing and similarity techniques, from the software literature.

Regarding weighting techniques, they can include assigning different weights for

different Part of Speech (PoS) tags as in [47]. There is no strong evidence from the

literature that a specific part of speech can be more important than other parts in

software engineering problems [47], rather it depends on the problem at hand.

Therefore, it is important to examine the impact of considering PoS tags, such as

103

nouns and adjectives, on the performance of classifiers in the context of the problem

at hand, i.e., LL recall in our case. Regarding similarity methods, other methods from

the IR literature, such Manhattan distance can be examined as conducted by other IR

studies [69].

3. Analyzing natural language patterns in the LL and project artifacts to determine if the

patterns can be used to improve the retrieval accuracy.

4. Optimizing the selection of appropriate IR model configurations, based on the dataset

and problem at hand, can be examined. Currently, this is an open research topic,

especially regarding the optimization of the LDA model configurations. Recent

software engineering research has revealed that text extraction from software

engineering artifacts, such as source code, is more repetitive compared to the text

extraction from regular natural language documents [70]. Therefore, it is important to

examine the optimization of the IR model configurations based on the dataset at hand,

especially for the LDA model since it gave poor results using the ad hoc parameter

values recommended by the IR and natural language literature as shown in the case

study. Optimization techniques, such as genetic algorithms, can be used to optimize

the LDA parameters by maximizing an optimization function based on a similarity

score between the inferred clusters, i.e., topics, as in [71].

5. Contacting more software organizations to collect more datasets. The new collected

datasets can support an extension of our study for cross-organizational datasets. This

has two main benefits. First, we can examine the validity of our study’s overall

observations and insights within different circumstances and organizational dataset

contexts. Second, sampling techniques can be applied to construct a mixed dataset

from cross-organizational datasets, and the feasibility of constructing a cross-

organizational LL recall classifier based on this mixed data can be further studied.

6. Constructing a content-based recommender to serve long-term information needs of

users, especially that the efficiency of recommendation systems has been highly

examined for other software engineering problems and domains such as requirements

elicitations [72] and adapted recommenders based on context awareness [73]. We

designed our LL recall solution as an IR search engine based on the assumption that

the need for relevant LL records, for the project at hand, is an ad-hoc information

104

need. However, our solution can be transformed to a content-based recommender to

indicate the most relevant LL records based on the content similarity between the LL

records and a text profile, instead of the queries in our study, of the project at hand

[56].

7. Finally, conducting a utility study of the system usage, although it is challengeable, to

evaluate the adoption of practitioners for our LL recall solution. Techniques from the

IR domain, such as user interviewing [74] and studying the relationship between user

clicks and the satisfaction level [75], can be employed. In addition, involving user

feedback can support in transforming our solution into a collaborative-based

recommender system based on the similarity analysis between different users’

feedback [56].

105

References

[1] G. A. Klein, Sources of Power : How People Make Decisions. MIT Press, 1999.

[2] J. W. Mullins and R. Komisar, Getting to Plan B : Breaking Through to a Better

Business Model. Harvard Business Press, 2009.

[3] S. L. Pfleeger, “What Software Engineering Can Learn from Soccer,” IEEE Softw.,

vol. 19, no. 6, pp. 64–65, Nov. 2002.

[4] Project Management Institute, A Guide to the Project Management Body of

Knowledge (PMBOK Guide), 6th ed. Project Management Institute, 2017.

[5] M. B. Chrissis, M. Konrad, S. Shrum, and M. B. Chrissis, CMMI for

Development : Guidelines for Process Integration and Product Improvement.

Addison-Wesley, 2011.

[6] NASA, “NASA Public Lessons Learned System,” 2018. [Online]. Available:

https://llis.nasa.gov/. [Accessed: 28-Jun-2018].

[7] D. Zhang, Y. Dang, J. Lou, S. Han, H. Zhang, and T. Xie, “Software Analytics as a

Learning Case in Practice,” in Proceedings of the International Workshop on

Machine Learning Technologies in Software Engineering (MALETS ’11), 2011,

pp. 55–58.

[8] A. E. Hassan, A. Hindle, P. Runeson, M. Shepperd, P. Devanbu, and S. Kim,

“Roundtable: What’s Next in Software Analytics,” IEEE Softw., vol. 30, no. 4, pp.

53–56, Jul. 2013.

[9] T. Menzies and T. Zimmermann, “Software Analytics: So What?,” IEEE Softw.,

vol. 30, no. 4, pp. 31–37, Jul. 2013.

[10] T. Menzies and T. Zimmermann, “The Many Faces of Software Analytics,” IEEE

Softw., vol. 30, no. 5, pp. 28–29, Sep. 2013.

[11] T. Menzies and T. Zimmermann, “Goldfish Bowl Panel: Software Development

Analytics,” in Proceedings of the 34th International Conference on Software

Engineering (ICSE’12), 2012, pp. 1032–1033.

[12] B. Kitchenham and S. Charters, “Guidelines for Performing Systematic Literature

Reviews in Software Engineering,” Engineering, vol. 2, p. 1051, 2007.

[13] M. V. Brand, S. Roubtsov, and A. Serebrenik, “SQuAVisiT: A Flexible Tool for

Visual Software Analytics,” in Proceedings of the 13th European Conference on

Software Maintenance and Reengineering, 2009, pp. 331–332.

[14] A. Gonzalez-Torres, R. Theron, F. J. Garcia-Penalvo, M. Wermelinger, and Y. Yu,

“Maleku: An Evolutionary Visual Software Analysis Tool for Providing Insights

into Software Evolution,” in Proceedings of the 27th IEEE International

Conference on Software Maintenance (ICSM’11), 2011, pp. 594–597.

[15] E. Stroulia, I. Matichuk, F. Rocha, and K. Bauer, “Interactive Exploration of

Collaborative Software-Development Data,” in Proceedings of the EEE

International Conference on Software Maintenance, 2013, pp. 504–507.

106

[16] D. Reniers, L. Voinea, O. Ersoy, and A. Telea, “The Solid* Toolset for Software

Visual Analytics of Program Structure and Metrics Comprehension: From

Research Prototype to Product,” Sci. Comput. Program., vol. 79, pp. 224–240, Jan.

2014.

[17] R. Minelli and M. Lanza, “Software Analytics for Mobile Applications--Insights &

Lessons Learned,” in Proceedings of the 17th European Conference on Software

Maintenance and Reengineering, 2013, pp. 144–153.

[18] J. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie, “Software Analytics for

Incident Management of Online Services: An Experience Report,” in Proceedings

of the 28th IEEE/ACM International Conference on Automated Software

Engineering (ASE’13), 2013, pp. 475–485.

[19] C. Klammer and J. Pichler, “Towards Tool Support for Analyzing Legacy Systems

in Technical Domains,” in Proceedings of the Software Evolution Week - IEEE

Conference on Software Maintenance, Reengineering, and Reverse Engineering

(CSMR-WCRE), 2014, pp. 371–374.

[20] T. Taipale, M. Qvist, and B. Turhan, “Constructing Defect Predictors and

Communicating the Outcomes to Practitioners,” in Proceedings of the ACM / IEEE

International Symposium on Empirical Software Engineering and Measurement,

2013, pp. 357–362.

[21] O. Baysal, R. Holmes, and M. W. Godfrey, “Developer Dashboards: The Need for

Qualitative Analytics,” IEEE Softw., vol. 30, no. 4, pp. 46–52, Jul. 2013.

[22] P. M. Johnson, “Searching under the Streetlight for Useful Software Analytics,”

IEEE Softw., vol. 30, no. 4, pp. 57–63, Jul. 2013.

[23] J. Czerwonka, N. Nagappan, W. Schulte, and B. Murphy, “CODEMINE: Building

a Software Development Data Analytics Platform at Microsoft,” IEEE Softw., vol.

30, no. 4, pp. 64–71, Jul. 2013.

[24] J. Gong and H. Zhang, “BugMap: A Topographic Map of Bugs,” in Proceedings

of the 9th Joint Meeting on Foundations of Software Engineering - ESEC/FSE

2013, 2013, pp. 647–650.

[25] A. Miranskyy, B. Caglayan, A. Bener, and E. Cialini, “Effect of Temporal

Collaboration Network, Maintenance Activity, and Experience on Defect

Exposure,” in Proceedings of the 8th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement - ESEM ’14, 2014, pp. 1–8.

[26] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “CrashLocator: Locating Crashing

Faults Based on Crash Stacks,” in Proceedings of the International Symposium on

Software Testing and Analysis - ISSTA 2014, 2014, pp. 204–214.

[27] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance Debugging in the

Large via Mining Millions of Stack Traces,” in Proceedings of the 34th

International Conference on Software Engineering - ICSE 2012, 2012, pp. 145–

155.

[28] Y. Dubinsky, Y. Feldman, and M. Goldstein, “Where is the Business Logic?,” in

107

Proceedings of the 9th Joint Meeting on Foundations of Software Engineering -

ESEC/FSE 2013, 2013, pp. 667–670.

[29] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-miner: Mining

Informative Reviews for Developers from Mobile App Marketplace,” in

Proceedings of the 36th International Conference on Software Engineering - ICSE

2014, 2014, pp. 767–778.

[30] M. Mittal and A. Sureka, “Process Mining Software Repositories from Student

Projects in an Undergraduate Software Engineering Course,” in Companion

Proceedings of the 36th International Conference on Software Engineering - ICSE

Companion 2014, 2014, pp. 344–353.

[31] G. Robles, J. M. González-Barahona, C. Cervigón, A. Capiluppi, and D.

Izquierdo-Cortázar, “Estimating Development Effort in Free/Open Source

Software Projects by Mining Software Repositories: A Case Study of OpenStack,”

in Proceedings of the 11th Working Conference on Mining Software Repositories -

MSR 2014, 2014, pp. 222–231.

[32] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Predicting Delays in

Software Projects Using Networked Classification (T),” in Proceedings of the 30th

IEEE/ACM International Conference on Automated Software Engineering -

ASE’15, 2015, pp. 353–364.

[33] B. Snyder and B. Curtis, “Using Analytics to Guide Improvement During an

Agile–DevOps Transformation,” IEEE Softw., vol. 35, no. 1, pp. 78–83, Jan. 2018.

[34] R. Weber, D. W. Aha, and I. Becerra-Fernandez, “Intelligent Lessons Learned

Systems,” Expert Syst. Appl., vol. 20, no. 1, pp. 17–34, Jan. 2001.

[35] R. O. Weber and D. W. Aha, “Intelligent Delivery of Military Lessons Learned,”

Decis. Support Syst., vol. 34, no. 3, pp. 287–304, Feb. 2003.

[36] W. Harrison, “A Software Engineering Lessons Learned Repository,” in

Proceedings of the 27th Annual NASA Goddard/IEEE Software Engineering

Workshop, 2002, pp. 139–143.

[37] C. Sary and W. Mackey, “A Case-based Reasoning Approach for the Access and

Reuse of Lessons Learned,” in Proceedings of the Fifth Annual International

Symposium of the National Council on Systems Engineering, 1995, vol. 1, pp.

249–256.

[38] R. Weber, D. W. Aha, K. Branting, J. R. Lucas, and I. Becerra-Fernandez, “Active

Case-Based Reasoning for Lessons Delivery System,” in Proceedings of the

Florida Artificial Intelligence Research Society Conference - FLAIRS 2000, 2000,

pp. 170–174.

[39] M. M. Richter and R. O. Weber, Case-Based Reasoning. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013.

[40] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information

Retrieval. Cambridge: Cambridge University Press, 2008.

[41] S. W. Thomas, A. E. Hassan, and D. Blostein, “Mining Unstructure Software

108

Repositories,” in Evolving Software Systems, T. Mens, A. Serebrenik, and A.

Cleve, Eds. Berlin, Heidelberg: Springer, 2014, pp. 139–162.

[42] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan, “The Impact of

Classifier Configuration and Classifier Combination on Bug Localization,” IEEE

Trans. Softw. Eng., vol. 39, no. 10, pp. 1427–1443, 2013.

[43] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen, “A

Topic-based Approach for Narrowing the Search Space of Buggy Files from a Bug

Report,” in Proceedings of the 26th IEEE/ACM International Conference on

Automated Software Engineering - ASE 2011, 2011, pp. 263–272.

[44] S. Rao and A. Kak, “Retrieval from Software Libraries for Bug Localization: A

Comparative Study of Generic and Composite Text Models,” in Proceedings of the

8th Working Conference on Mining Software Repositories - MSR 2011, 2011, pp.

43–52.

[45] M. Petrenko and V. Rajlich, “Concept Location Using Program Dependencies and

Information Retrieval (DepIR),” Inf. Softw. Technol., vol. 55, no. 4, pp. 651–659,

Apr. 2013.

[46] T. Chen, S. W. Thomas, and A. E. Hassan, “A Survey on the Use of Topic Models

When Mining Software Repositories,” Empir. Softw. Eng., vol. 21, no. 5, pp.

1843–1919, Oct. 2016.

[47] D. Falessi, G. Cantone, and G. Canfora, “Empirical Principles and an Industrial

Case Study in Retrieving Equivalent Requirements via Natural Language

Processing Techniques,” IEEE Trans. Softw. Eng., vol. 39, no. 1, pp. 18–44, Jan.

2013.

[48] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[49] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,

“Indexing by Latent Semantic Analysis,” J. Am. Soc. Inf. Sci., vol. 41, no. 6, pp.

391–407, 1990.

[50] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” J. Mach.

Learn. Res., vol. 3, no. Jan, pp. 993–1022, 2003.

[51] S. W. Thomas, “LSCP: A Lightweight Source Code Preprocessor,” 2012. [Online].

Available: https://github.com/doofuslarge/lscp. [Accessed: 28-Jun-2018].

[52] S. W. Thomas, “Mining Software Repositories with Topic Models,” Tech. Report,

Sch. Comput. Queen's Univ., 2012.

[53] A. K. McCallum, “Mallet: A Machine Learning for Language Toolkit,” 2002.

[Online]. Available: http://mallet.cs.umass.edu. [Accessed: 28-Jun-2018].

[54] S. W. Thomas, “Lucene-lda: Use Latent Dirichlet Allocation (LDA) in Apache

Lucene,” 2012. [Online]. Available: https://github.com/stepthom/lucene-lda.

[Accessed: 28-Jun-2018].

[55] X. Wei and W. B. Croft, “LDA-based Document Models for Ad-hoc Retrieval,” in

109

Proceedings of the 29th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, 2006, pp. 178–185.

[56] C. Zhai and S. Massung, Text Data Management and Analysis: A Practical

Introduction to Information Retrieval and Text Mining. New York, NY, USA:

Association for Computing Machinery and Morgan & Claypool, 2016.

[57] J. W. Tukey, “Comparing Individual Means in the Analysis of Variance,”

Biometrics, vol. 5, no. 2, pp. 99–114, 1949.

[58] J. W. Tukey, “The Philosophy of Multiple Comparisons,” Stat. Sci., vol. 6, no. 1,

pp. 100–116, 1991.

[59] J. W. Tukey, D. R. Brillinger, H. Braun, L. V Jones, and D. R. Cox, The Collected

Works of John W. Tukey: Multiple Comparions. Taylor & Francis, 1984.

[60] M. F. Porter, “An Algorithm for Suffix Stripping,” Program, vol. 14, no. 3, pp.

130–137, Mar. 1980.

[61] Apache, “Apache Lucene: Java-based Indexing and Search Technology,” Apache

Lucene: Java-based indexing and search technology, 2004. [Online]. Available:

https://lucene.apache.org/. [Accessed: 30-Jun-2018].

[62] R. Rehurek and P. Sojka, “Software Framework for Topic Modelling with Large

Corpora,” in Proceedings of the LREC 2010 Workshop on New Challenges for

NLP Frameworks, 2010, pp. 45–50.

[63] B. Cleary, C. Exton, J. Buckley, and M. English, “An Empirical Analysis of

Information Retrieval Based Concept Location Techniques in Software

Comprehension,” Empir. Softw. Eng., vol. 14, no. 1, pp. 93–130, Feb. 2009.

[64] E. Kocaguneli, T. Menzies, and J. Keung, “On the Value of Ensemble Effort

Estimation,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1403–1416, Nov. 2012.

[65] A. Singhal, C. Buckley, and M. Mitra, “Pivoted Document Length Normalization,”

SIGIR Forum, vol. 51, no. 2, pp. 176–184, Aug. 2017.

[66] S. Robertson, H. Zaragoza, and M. Taylor, “Simple BM25 Extension to Multiple

Weighted Fields,” in Proceedings of the Thirteenth ACM International Conference

on Information and Knowledge Management, 2004, pp. 42–49.

[67] S. Robertson and H. Zaragoza, “The Probabilistic Relevance Framework: BM25

and Beyond,” Found. Trends Inf. Retr., vol. 3, no. 4, pp. 333–389, Apr. 2009.

[68] Y. Lv and C. Zhai, “Lower-bounding Term Frequency Normalization,” in

Proceedings of the 20th ACM International Conference on Information and

Knowledge Management, 2011, pp. 7–16.

[69] J. Herrera, B. Poblete, and D. Parra, “Learning to Leverage Microblog Information

for QA Retrieval,” in Proceedings of the European Conference on Information

Retrieval, 2018, pp. 507–520.

[70] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the Naturalness of

Software,” in Proceedings of the 34th International Conference on Software

Engineering - ICSE’12, 2012, pp. 837–847.

110

[71] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshynanyk, and A. De Lucia,

“How to Effectively Use Topic Models for Software Engineering Tasks? An

Approach Based on Genetic Algorithms,” in Proceedings of the 35th International

Conference on Software Engineering - ICSE’13, 2013, pp. 522–531.

[72] C. Palomares, X. Franch, and D. Fucci, “Personal Recommendations in

Requirements Engineering: The OpenReq Approach,” in IProceedings of the

International Working Conference on Requirements Engineering: Foundation for

Software Quality, 2018, pp. 297–304.

[73] D. Bachmann, K. Grolinger, H. ElYamany, W. Higashino, M. Capretz, M. Fekri,

and B. Gopalakrishnan, “(CF)2 Architecture: Contextual Collaborative Filtering,”

Inf. Retr. J., May 2018.

[74] J. Garcia-Gathright, B. St. Thomas, C. Hosey, Z. Nazari, and F. Diaz,

“Understanding and Evaluating User Satisfaction with Music Discovery,” in

Proceedings of the 41st International ACM SIGIR Conference on Research &

Development in Information Retrieval - SIGIR ’18, 2018, pp. 55–64.

[75] H. Lu, M. Zhang, and S. Ma, “Between Clicks and Satisfaction: Study on Multi-

Phase User Preferences and Satisfaction for Online News Reading,” in

Proceedings of the 41st International ACM SIGIR Conference on Research &

Development in Information Retrieval - SIGIR ’18, 2018, pp. 435–444.

111

Appendices

Appendix A: Examples of Lessons Learned, Issues and Risks

Note: sensitive information was removed from all of the following examples.

A) Lessons Learned Examples

Example 1

Problem Discussion in program review meetings was sometimes getting

too emotional and long-winded.

Recommendations Participants should understand their roles in the meeting, better

control by chairperson is also suggested.

Example 2

Problem Module X of System Y was not developed or published in

advance to the teams until the last minute, without sufficient

instruction.

Recommendations Instructions on Module X should be standardized and

disseminated throughout the organization early enough.

Example 3

Opportunity Completed version and training on Module Z with excellent

feedback from customers.

Recommendations This can be used as a model for future versions:

 - good planning sessions with customers prior to release, regular

dialogue to update status of preparation for the release, exchange

of test plan/cases/etc., readiness for the version from both sides.

Example 4

Problem Too much context switching amongst team members

Recommendations Since this is unavoidable due to attrition, separation, career

planning, etc., constant update to organization chart within tools

team is needed. Team members are to share domain knowledge,

back each other up as part of organization planning.

112

B) Issues Examples

Delay in signing requirement and design documents by client.

There is no availability of a technical writer.

Additional ramp up effort and constant re-clarification of roles and responsibilities due to

context switching.

Project Contract is not clear and has not been signed yet

C) Risks Examples

Source code is at client side with no remote access. If no appropriate backup and labeling

are processed, then an issue can happen or code loss can occur.

If there is delay in requirement document sign off by customer as planned on <date>, this

can lead to delay of schedule and can affect milestone dates and resources travel dates.

If roles of different stakeholders are not set clear, then this will impact the scoping and

requirements sign off.

If there is any issue in issuing an entry Visa for the team leader, then this can lead to

delay of schedule and can affect milestone dates and resources travel dates

D) Mapping Relevant Lessons Learned to a Query Example

Query Relevant Lessons Learned

Additional ramp up effort and

constant re-clarification of

roles and responsibilities due

to context switching.

Problem: Too much context switching amongst team

members.

Recommendations:

Since this is unavoidable due to attrition, separation,

career planning, etc., constant update to organization

chart within tools team is needed. Team members are to

share domain knowledge, back each other up as part of

organization planning.

113

Appendix B: Top-20 88 Classifiers Results

VSM:

Term weight Similarity method Preprocessing steps Top-20 (%)

tf-idf Cosine Stemming 70

Sublinear tf-idf Cosine Stemming 69

Sublinear tf-idf Cosine None 61

Sublinear tf-idf Cosine Stemming and stopping 61

tf-idf Cosine None 61

tf-idf Cosine Stemming and stopping 61

Boolean Cosine Stemming and stopping 57

Boolean Overlap Stemming and stopping 57

Sublinear tf-idf Overlap Stemming and stopping 57

tf-idf Overlap Stemming and stopping 57

Sublinear tf-idf Cosine Stopping 54

Sublinear tf-idf Overlap Stemming 54

tf-idf Cosine Stopping 54

tf-idf Overlap Stopping 54

Boolean Cosine Stopping 52

Boolean Overlap Stopping 52

Boolean Cosine Stemming 52

Sublinear tf-idf Overlap None 52

Sublinear tf-idf Overlap Stopping 52

tf-idf Overlap None 52

tf-idf Overlap Stemming 52

Boolean Overlap Stemming 50

Boolean Cosine None 46

Boolean Overlap None 46

LSI:

Term weight Similarity

method

Preprocessing steps Number of

topics

Top-20

(%)

tf-idf Cosine None 128 70

Sublinear tf-

idf

Cosine None

128 69

Sublinear tf-

idf

Cosine Stemming

256 69

tf-idf Cosine None 256 69

tf-idf Cosine Stemming 128 69

tf-idf

Cosine Stemming and

stopping 128 69

114

Sublinear tf-

idf

Cosine None

256 67

Sublinear tf-

idf

Cosine Stopping

64 67

Sublinear tf-

idf

Cosine Stemming

128 67

Sublinear tf-

idf

Cosine Stemming and

stopping 128 67

tf-idf Cosine Stopping 64 67

tf-idf Cosine Stemming 256 67

Sublinear tf-

idf

Cosine Stopping

128 65

tf-idf Cosine Stopping 128 65

Boolean Cosine Stopping 64 63

Sublinear tf-

idf

Cosine Stopping

256 63

Sublinear tf-

idf

Cosine Stemming and

stopping 64 63

tf-idf Cosine Stopping 256 63

tf-idf

Cosine Stemming and

stopping 64 63

Boolean

Cosine Stemming and

stopping 64 61

Sublinear tf-

idf

Cosine Stemming and

stopping 256 61

tf-idf Cosine Stemming 64 61

tf-idf

Cosine Stemming and

stopping 256 61

Boolean

Cosine Stemming and

stopping 128 59

Sublinear tf-

idf

Cosine None

64 59

Sublinear tf-

idf

Cosine Stemming

32 59

Sublinear tf-

idf

Cosine Stemming

64 59

tf-idf Cosine None 32 59

tf-idf Cosine None 64 59

Sublinear tf-

idf

Cosine None

32 57

tf-idf Cosine Stemming 32 57

Boolean Cosine Stopping 128 56

Boolean Cosine Stopping 256 56

Boolean Cosine Stemming 128 56

115

Sublinear tf-

idf

Cosine Stemming and

stopping 32 56

tf-idf

Cosine Stemming and

stopping 32 56

Sublinear tf-

idf

Cosine Stopping

32 54

tf-idf Cosine Stopping 32 54

Boolean Cosine None 256 52

Boolean Cosine Stemming 256 52

Boolean

Cosine Stemming and

stopping 32 52

Boolean

Cosine Stemming and

stopping 256 52

Boolean Cosine Stopping 32 50

Boolean Cosine Stemming 32 50

Boolean Cosine Stemming 64 50

Boolean Cosine None 128 48

Boolean Cosine None 64 44

Boolean Cosine None 32 43

LDA:

Preprocessing steps Number of topics Top-20 (%)

Stemming and stopping 32 52

Stopping 32 46

Stemming and stopping 64 46

None 32 41

Stemming 32 41

Stemming 64 39

None 64 35

None 128 35

Stopping 256 35

Stopping 64 28

Stopping 128 26

Stemming 128 26

Stemming and stopping 128 26

Stemming 256 22

None 256 19

Stemming and stopping 256 19

116

Appendix C: MAP 88 Classifiers Results

VSM:

Term weight Similarity method Preprocessing steps MAP

Sublinear tf-idf Cosine Stemming and stopping 0.189

tf-idf Cosine Stemming and stopping 0.188

tf-idf Cosine Stemming 0.156

Sublinear tf-idf Cosine Stemming 0.153

tf-idf Overlap Stemming and stopping 0.151

Sublinear tf-idf Overlap Stemming and stopping 0.150

Boolean Cosine Stemming and stopping 0.140

Boolean Overlap Stemming and stopping 0.140

tf-idf Cosine None 0.131

Sublinear tf-idf Cosine None 0.126

tf-idf Overlap Stemming 0.124

Sublinear tf-idf Overlap Stemming 0.122

tf-idf Cosine Stopping 0.121

Sublinear tf-idf Cosine Stopping 0.119

Sublinear tf-idf Overlap Stopping 0.118

tf-idf Overlap Stopping 0.117

Boolean Cosine Stopping 0.114

Boolean Overlap Stopping 0.114

Boolean Cosine Stemming 0.101

Boolean Overlap Stemming 0.101

tf-idf Overlap None 0.099

Sublinear tf-idf Overlap None 0.095

Boolean Cosine None 0.082

Boolean Overlap None 0.081

117

LSI:

Term weight Similarity method Preprocessing steps Number of topics MAP

Sublinear tf-idf Cosine Stemming and stopping 128 0.198

tf-idf Cosine Stemming and stopping 128 0.198

tf-idf Cosine Stopping 64 0.194

Sublinear tf-idf Cosine Stopping 64 0.194

Sublinear tf-idf Cosine Stemming and stopping 64 0.183

Boolean Cosine Stopping 64 0.181

tf-idf Cosine Stemming and stopping 256 0.180

tf-idf Cosine Stemming and stopping 64 0.179

Sublinear tf-idf Cosine Stopping 128 0.177

Sublinear tf-idf Cosine Stemming and stopping 256 0.176

Sublinear tf-idf Cosine Stemming 64 0.175

Sublinear tf-idf Cosine Stopping 256 0.174

tf-idf Cosine Stopping 256 0.174

tf-idf Cosine Stemming 64 0.171

Sublinear tf-idf Cosine Stemming 128 0.169

tf-idf Cosine Stopping 128 0.168

Sublinear tf-idf Cosine Stemming 256 0.167

tf-idf Cosine Stemming 256 0.167

tf-idf Cosine Stemming and stopping 32 0.167

Sublinear tf-idf Cosine Stemming and stopping 32 0.165

Boolean Cosine Stopping 128 0.164

Boolean Cosine Stemming and stopping 128 0.164

tf-idf Cosine Stemming 32 0.164

Sublinear tf-idf Cosine Stemming 32 0.163

tf-idf Cosine None 256 0.163

tf-idf Cosine Stemming 128 0.162

Sublinear tf-idf Cosine None 256 0.161

Sublinear tf-idf Cosine None 128 0.157

tf-idf Cosine None 128 0.157

Boolean Cosine Stemming and stopping 256 0.154

Sublinear tf-idf Cosine None 64 0.153

tf-idf Cosine None 64 0.153

Boolean Cosine Stopping 256 0.149

Boolean Cosine Stemming and stopping 64 0.144

tf-idf Cosine Stopping 32 0.135

Sublinear tf-idf Cosine Stopping 32 0.132

Boolean Cosine Stemming and stopping 32 0.130

Boolean Cosine Stopping 32 0.125

118

tf-idf Cosine None 32 0.124

Sublinear tf-idf Cosine None 32 0.119

Boolean Cosine Stemming 128 0.116

Boolean Cosine Stemming 256 0.115

Boolean Cosine None 256 0.111

Boolean Cosine Stemming 64 0.111

Boolean Cosine None 128 0.107

Boolean Cosine None 64 0.096

Boolean Cosine Stemming 32 0.086

Boolean Cosine None 32 0.085

LDA:

Preprocessing steps Number of topics MAP

Stemming 32 0.096

Stemming and stopping 32 0.089

None 32 0.082

Stopping 32 0.075

Stemming and stopping 64 0.066

Stemming 128 0.065

Stemming 64 0.059

Stopping 256 0.058

None 128 0.057

None 64 0.049

Stemming 256 0.049

Stopping 128 0.044

Stemming and stopping 128 0.040

Stopping 64 0.036

None 256 0.031

Stemming and stopping 256 0.030

119

Appendix D: Tukey’s HSD Statistical Test Results

Obs: the overall insights from the results in the case of 95% confidence level hold for

both 90% and 99% confident levels.

Note: for the following results, any difference than the results of 95% confidence level is

highlighted in red.

A) 90% Confidence Level

Top-20 Results:

VSM LSI LDA

Group Mean

 (%)

Preprocessing

steps

Group Mean

(%)

Preprocessing

steps

Group Mean

(%)

Preprocessing

 steps

A 59 Stemming and

stopping

A 60 Stopping A 36 Stemming

and stopping

A 58 Stemming A 60 Stemming

and stopping

A 34 Stopping

A 54 None A 60 Stemming A 32 None

A 53 Stopping A 58 None A 32 Stemming

Group Mean

 (%)

Similarity Group Mean

 (%)

Number of

topics

Group Mean

(%)

Number of

topics

A 58 Cosine A 63 128 A 45 32

B 53 Overlap A 61 256 AB 37 64

 AB 60 64 BC 28 128

 B 54 32 C 24 256

Group Mean

 (%)

Term weight Group Mean

(%)

Term weight

A 58 tf-idf A 63 tf-idf

A 57 Sublinear tf-idf A 63 Sublinear tf-

idf

A 52 Boolean B 53 Boolean

120

MAP Results:

VSM LSI LDA

Group Mean Preprocessing

steps

Group Mean Preprocessing

steps

Group Mean Preprocessing

steps

A 0.159 Stemming

and stopping

A 0.170 Stemming and

stopping

A 0.067 Stemming

B 0.126 Stemming A 0.164 Stopping A 0.056 Stemming and

stopping

B 0.117 Stopping AB 0.147 Stemming A 0.055 None

B 0.102 None B 0.132 None A 0.053 Stopping

Group Mean Similarity Group Mean Number of

topics

Group Mean Number of

topics

A 0.135 Cosine A 0.161 128 A 0.085 32

A 0.117 Overlap A 0.161 64 B 0.053 64

 AB 0.158 256 B 0.051 128

 B 0.133 32 B 0.042 256

Group Mean Term weight Group Mean Term weight

A 0.136 tf-idf A 0.167 Sublinear tf-

idf

A 0.134 Sublinear tf-

idf

A 0.166 tf-idf

A 0.109 Boolean B 0.127 Boolean

B) 99% Confidence Level

Top-20 Results:

VSM LSI LDA

Group Mean

 (%)

Preprocessing

steps

Group Mean

(%)

Preprocessing

steps

Group Mean

(%)

Preprocessing

 steps

A 59 Stemming and

stopping

A 60 Stopping A 36 Stemming

and stopping

A 58 Stemming A 60 Stemming

and stopping

A 34 Stopping

A 53 None A 60 Stemming A 32 None

A 53 Stopping A 58 None A 32 Stemming

Group Mean

 (%)

Similarity Group Mean

 (%)

Number of

topics

Group Mean

(%)

Number of

topics

A 58 Cosine A 63 128 A 45 32

A 53 Overlap AB 61 256 AB 37 64

 AB 60 64 AB 28 128

 B 54 32 B 24 256

Group Mean

 (%)

Term weight Group Mean

(%)

Term weight

A 58 tf-idf A 63 tf-idf

A 57 Sublinear tf-idf A 63 Sublinear tf-

idf

A 52 Boolean B 53 Boolean

121

MAP Results:

VSM LSI LDA

Group Mean Preprocessing

steps

Group Mean Preprocessing

steps

Group Mean Preprocessing

steps

A 0.159 Stemming

and stopping

A 0.170 Stemming and

stopping

A 0.067 Stemming

AB 0.126 Stemming AB 0.164 Stopping A 0.056 Stemming and

stopping

B 0.117 Stopping AB 0.147 Stemming A 0.055 None

B 0.102 None B 0.132 None A 0.053 Stopping

Group Mean Similarity Group Mean Number of

topics

Group Mean Number of

topics

A 0.135 Cosine A 0.161 128 A 0.085 32

A 0.117 Overlap A 0.161 64 B 0.053 64

 A 0.158 256 B 0.051 128

 A 0.133 32 B 0.042 256

Group Mean Term weight Group Mean Term weight

A 0.136 tf-idf A 0.167 Sublinear tf-

idf

A 0.134 Sublinear tf-

idf

A 0.166 tf-idf

A 0.109 Boolean B 0.127 Boolean

122

Curriculum Vitae

Name: Tamer Mohamed Abdellatif Mohamed

Post-secondary Western University

Education and London, Ontario, Canada

Degrees: 2014-2018 Ph.D. (GPA 95%)

Ain Shams University

Cairo, Egypt

2005-2011 M.Sc.

Ain Shams University

Cairo, Egypt

1999-2004 B.Eng.

Honours and Ontario Graduate Scholarship (OGS)

Awards: 2017-2018

Related Work Teaching and Research Assistant

Experience Western University

2014-2018

Project Manager

ITWorx, Hewlett-Packard (HP)

2010-2014

Technical Leader and Software Developer

Asset Technology Group

2004-2009

Thesis Related Publications and Presentations:

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Searching for

Relevant Lessons Learned Using Hybrid Information Retrieval Classifiers: A Case Study

in Software Engineering,” in Joint Proceedings of the First International Workshop on

Professional Search (ProfS2018); the Second Workshop on Knowledge Graphs and

Semantics for Text Retrieval, Analysis, and Understanding (KG4IR); and the

International Workshop on Data Search (DATA:SEARCH’18), Co-located with ACM

Special Interest Group on Information Retrieval (ACM SIGIR 2018), 2018, Ann Arbor,

Michigan, USA, pp. 12–17.

123

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Active Recall of

Software Lessons Learned for Software Project Managers,” Inf. Softw. Technol. (IST).

March 2018. (Under review)

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho, “Software

Analytics to Software Practice: A Systematic Literature Review,” in Proceedings of the

37th International Conference on Software Engineering (ICSE) Workshop on BIG Data

Software Engineering (BIGSE), 2015, Florence, Italy, pp. 30–36.

	Automatic Recall of Lessons Learned for Software Project Managers
	Recommended Citation

	ETD word template

