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Abstract 

Differential migration timing between distinct classes of individuals is commonly 

observed in songbirds, however, the underlying behavioural mechanisms of differential 

timing are still uncertain for most species. My research applied a suite of advanced 

techniques to examine differential migration timing (between the sexes and between the 

genetically distinct white-striped and tan-striped morphs) and its underlying behavioural 

mechanisms (refuelling rate, stopover duration, and wintering latitude) in spring 

migrating White-throated Sparrows (Zonotrichia albicollis) at a key stopover site. 

Protandry was the only form of differential migration timing observed, with males 

arriving at stopover on average 11 days earlier than females. Males and females had 

similar refuelling rates, stopover durations, and wintering latitudes, and morph did not 

influence any migratory behaviours examined. This study adds to the mounting evidence 

that differential migration timing does not result from differences in stopover behaviour. 

 

 

 

 

 

 

Keywords 

Avian, Migration, White-throated Sparrow, Stopover, Refuelling, Wintering Latitude, 

Stopover duration, Behaviour, Mechanism, Body condition, Spring, Stable isotopes, 

Plumage morph, Protandry 

  



   

ii 

 

Acknowledgements 

First and foremost, I would like to thank my supervisors Dr. Yolanda Morbey and Dr. 

Chris Guglielmo for their support during my M.Sc. research. I truly believe their support, 

guidance, and enthusiasm for my research has been fundamental to the completion of this 

thesis. I would also like to thank my advisors, Dr. Keith Hobson and Dr. Beth 

MacDougall-Shackleton for their valued input into this project. 

I would like to extend my gratitude to my fellow lab mates and graduate students: 

Jessica Deakin, Christian Therrien, Olivia Colling, Kevin Young, Yanju Ma, Dylan 

Baloun, Jackson Kusack, Dean Evans, Sean McElaney, Leanne Grieves, and Tosha Kelly 

for contributing to an excellent work environment, and for any assistance, guidance, or 

support throughout my master’s research. Additionally, I would like to thank Kim Loney, 

Tessa Plint, and Chad Seewagen for their assistance. 

I am grateful for those who assisted with field data collection for this project. 

Particularly my superb field assistants, Alain Parada and Sarah Bonnet. I would also like 

to thank Luke Currin, Anita Morales, Anthony Zerafa, and Samuel Stratchan for 

volunteering to assist with field data collection.  

I am indebted to the staff and volunteers of the Long Point Bird Observatory and 

Bird Studies Canada, whose cooperation and assistance was critical to the successful 

completion of my field research. In particular, the assistance of both Mark Conboy and 

Stu Mackenzie was crucial for the realisation of this thesis. 

Finally, I would like to extend my thanks to my partner and fellow graduate 

student Chlöe Carter, for whom I am truly privileged to share this experience with, and to 

my parents Thomas and Jennifer Beauchamp. Their encouragement and support 

throughout the completion of this degree has been invaluable.  

  



   

iii 

 

Co-Authorship Statement 

All work presented in this thesis was completed under the supervision of Dr. Yolanda E. 

Morbey and Dr. Christopher G. Guglielmo at the University of Western Ontario. All 

work was done in collaboration with Dr. Yolanda E. Morbey and Dr. Christopher 

G.Guglielmo, who helped develop the study objectives and methodology. Data collection 

and analysis was completed by Andrew T. Beauchamp. This thesis has been written by 

Andrew T. Beauchamp and will be published with Yolanda E. Morbey and Christopher 

G. Guglielmo. 

  



   

iv 

 

  

Abstract ............................................................................................................................... i 

Acknowledgements ........................................................................................................... ii 

Co-Authorship Statement ............................................................................................... iii 

List of Tables .................................................................................................................... vi 

List of Figures .................................................................................................................. vii 

List of Appendices ............................................................................................................ ix 

List of Abbreviations .........................................................................................................x 

Introduction ........................................................................................................................1 

1.1 Avian migration ..................................................................................................2 

1.2 Differential migration in an avian context .......................................................5 

1.4 Mechanisms of differential migration timing ..................................................8 

1.4.1 Differential migration speed .............................................................. 8 

1.4.2 Differential migration distance ........................................................ 10 

1.4.3 Differential migration initiation date ............................................... 11 

1.5 Methodological approaches to studying migration .......................................12 

1.5.1 Stopover refuelling rate determination ............................................ 12 

1.5.2 Stopover duration determination ...................................................... 13 

1.5.3 Estimation of migratory origin using stable isotope analysis .......... 14 

1.5.4 Body composition analysis .............................................................. 15 

1.6 Study Species .....................................................................................................16 

1.7 Study objective and overview ..........................................................................21 

Methods .............................................................................................................................23 

2.1 Study site ...........................................................................................................23 

2.2 Assessment of stopover refuelling performance ............................................24 

2.3 Assessment of stopover duration .....................................................................27 

2.4 Stable isotope analysis ......................................................................................29 

2.4.1 Assessment of wintering latitude ..................................................... 29 

2.4.2 Assigning birds to geographic origin ............................................... 30 



   

v 

 

2.5 Genetic analysis ................................................................................................31 

2.5.1 DNA extraction from red blood cell ................................................ 31 

2.5.2 DNA extraction from feathers.......................................................... 31 

2.5.3 DNA amplification ........................................................................... 32 

2.6 Statistical analysis .............................................................................................33 

2.6.1 Capture timing and body composition analysis ............................... 33 

2.6.2 Refuelling rate analysis .................................................................... 33 

2.6.3 Stopover duration analysis ............................................................... 34 

2.6.4 Wintering latitude analysis............................................................... 35 

Results ...............................................................................................................................37 

3.1 Migration timing ...............................................................................................37 

3.2 Body Composition ............................................................................................42 

3.3 Stopover refuelling rate....................................................................................44 

3.4 Stopover duration .............................................................................................48 

3.5 Wintering latitude ............................................................................................53 

Discussion ..........................................................................................................................55 

4.1 Migration timing ...............................................................................................55 

4.2 Stopover refuelling rate....................................................................................58 

4.3 Stopover duration .............................................................................................61 

4.4 Wintering latitude ............................................................................................63 

4.5 Assumptions and limitations ...........................................................................64 

4.6 Future directions ..............................................................................................65 

4.7 Conclusions .......................................................................................................68 

References .........................................................................................................................70 

Appendices ........................................................................................................................85 

Cirriculum Vitae ..............................................................................................................97 

 

  



   

vi 

 

List of Tables 

Table 1. Parameter coefficients ( SE) for the general linear models of total body mass   

(n = 106), fat mass (n = 103), and lean mass (n = 103) for White-throated Sparrows 

(Zonotrichia albicollis) during a stopover at Long Point Ontario during the spring of 

2017. Total mass was measured using an electronic mass balance. Fat and lean mass were 

measured using quantitative magnetic resonance. ............................................................ 43 

Table 2. The average ± standard deviation (SD) of the coefficient of variation (CV) for 

each plasma metabolite assay. .......................................................................................... 45 

Table 3.  Parameter coefficients (  SE) for the general linear model of stopover 

refuelling rate index (RI) in White-throated Sparrows (Zonotrichia albicollis) during a 

stopover at Long Point Ontario during the spring of 2017. .............................................. 47 

Table 4. Average stopover duration ± standard error at Long Point, Ontario for each 

White-throated Sparrow sex-morph class during the spring of 2017. .............................. 49 

Table 5. Parameter coefficients (± SE) of the Cox regression model of stopover duration 

in White-throated Sparrows during a stopover at Long Point, Ontario, during the spring 

of 2017. Also shown are the chi-squared values, p-values, and hazard ratios (HR)......... 52 

 

  



   

vii 

 

List of Figures 

Figure 1. Range map of the White-throated Sparrow (Zonotrichia albicollis). Although 

breeding and wintering ranges overlap, all populations are migratory (Falls and 

Kopachena 2010). Provided by Birdlife International. ..................................................... 20 

Figure 2. Lotek NTQB-1 radio transmitter tag affixed to the back of a White-throated 

Sparrow using a leg-loop harness. .................................................................................... 28 

Figure 3. Distribution of first capture date at the Long Point Bird Observatory, Long 

Point, Ontario, Canada, for male (N = 50) and female (N = 62) White-throated Sparrows 

(Zonotrichia albicollis) during spring migration 2017. .................................................... 38 

Figure 4. Distribution of first capture date at the Long Point Bird Observatory, Long 

Point, Ontario, Canada, for white-stiped (N = 54) and tan-striped (N = 58) White-throated 

Sparrows (Zonotrichia albicollis) during spring migration 2017. .................................... 39 

Figure 5. Distribution of first capture date at the Long Point Bird Observatory, Long 

Point, Ontario, Canada, for adult (after-second-year) (N = 54) and juvenile (second-year) 

(N = 62) White-throated Sparrows (Zonotrichia albicollis) during spring migration 2017

 ........................................................................................................................................... 40 

Figure 6. Model residuals by predicted values (A), and residual quantile-quantile plot (B) 

for the general linear model of capture date for White-throated Sparrows (Zonotrichia 

albicollis) migrating through Long Point, Ontario, Canada, during the spring of 2017. .. 41 

Figure 7. Stopover refuelling index (RI) by sex-morph class for White-throated Sparrows 

(Zonotrichia albicollis) at Long Point, Ontario, Canada, during the spring of 2017. Solid 

line indicates the median value, with the filled box represents the first and third quartile. 

Whiskers indicate the minimum and maximum values, and points represent outliers 

beyond 1.5  * the inter- quartile range. ............................................................................. 46 

Figure 8. Kaplan-Meier survival estimates showing the probability of remaining at 

stopover at Long Point, Ontario, Canada for White-throated Sparrows (Zonotrichia 

albicollis) during the spring of 2017. Males (N= 22) are represented by the dashed line, 

and females (N= 30) are represented by the solid line. ..................................................... 50 



   

viii 

 

Figure 9. Kaplan-Meier survival estimates showing the probability of remaining at 

stopover at Long Point, Ontario, Canada for White-throated Sparrows (Zonotrichia 

albicollis) during the spring of 2017. Tan-striped birds (N= 25) are represented by the 

solid line, and white-striped birds (N= 27) are represented by the dashed line. ............... 51 

Figure 10. The geographic distribution of assigned wintering location for White-throated 

Sparrows (N=64) sampled at Long Point, Ontario, Canada, during the spring of 2017. 

Assignments are based on a likelihood-based comparison between head feather isotopes 

values and predicted isoscape from Bowen et al. (2005). Colour represent the proportion 

of individual in the sex or morph class that can be assigned to each cell in the raster 

isoscape, with darker colour representing a higher proportion of that class being assigned 

to that region. .................................................................................................................... 54 

 

  



   

ix 

 

List of Appendices 

Appendix 1a. University of Western Ontario, Council on Animal Care, Animal Use 

Protocol 2010-020. Issued to Christopher Guglielmo…………………………………...85 

Appendix 1b. Environment Canada scientific capture permit 10169 BU, issued to 

Christopher Guglielmo.…………………………………...……………………………...86 

Appendix 1c. Environment Canada, Canadian Wildlife Service scientific permit CA 

0255. Issued to Christopher Guglielmo. …………………………………...……………88 

Appendix 2. Banding data for spring 2017 for individuals included in analyses of 

migration timing, stopover duration, and/or refuelling rate. Trap type abbreviations: m = 

mist nets, g = ground traps. Sex and morph were determined genetically unless indicated 

by an asterisk. ……………………………….....…………………………………..…….89 

Appendix 3. Plasma metabolite concentrations from White-throated Sparrows sampled at 

the Long Point bird observatory during the spring of 2017………………………..…….94 

 

 

  



   

x 

 

List of Abbreviations 

ADP - adenosine-5’-diphosphate 

AFAR - Advanced Facility for Avian Research  

ANOVA - Analysis of variance 

ASY - After second year (Adult) 

ATP - adenosine-5’-triphosphate 

CV - Coefficient of variation 

DNA - Deoxyribonucleic acid 

dNTP -  Deoxynucleoside triphosphate 

EDTA - Ethylenediaminetetraacetic acid 

EPC - Extra-pair copulation 

ESPA - sodium N-ethyl-N-(3-sulfopropyl) m-anisidine 

G-1-P - glycerol-1-phosphate  

GIS - Global information system 

GK - glycerol kinase  

GPO - glycerol phosphate oxidase  

GPS - Global positioning system 

INT - iodonitrotetrazolium chloride  

LPBO - Long Point Bird Observatory 

LSIS - Laboratory for Stable Isotope Science 

NAD - nicotinamideadenine dinucleotide 

PC - Principal component 

PCA - Principal component analysis 



   

xi 

 

PCR - Polymerase chain reaction 

POD - Peroxidase 

QMR - Quantitative magnetic resonance 

RFLP - Restriction fragment length polymorphism 

RI - Refuelling index 

SD - Standard deviation 

SDS - Sodium-dodecyl-sulfate 

SE - Standard error 

SY - Second year 

TC-EA - Temperature conversion – elemental analyser  

TNES - TRIS-NaCl-EDTA-SDS 

TRIS - Trisaminomethane 

VSMOW - Vienna standard mean ocean water 

δ2H – Stable hydrogen isotope  

δ2Hf - Feather stable hydrogen isotope 

δ2Hp- Precipitation stable hydrogen isotope 

4-AAP - 4-aminoantipyrine 

 

 



1 

 

 

Introduction 

Animal migration is a fascinating ecological phenomenon, involving all biological levels 

of organisation from genetic to population (Dingle and Drake 2007). The complexity of 

migration is mirrored only by its ubiquity across taxa, occurring in a wide diversity of 

animals from Monarch Butterflies (Danaus plexippus) (Urquhart and Urquhart 1978) to 

Humpback Whales (Megaptera novaeangliae) (Rasmussen et al. 2007). Migration is a 

specialised type of movement that takes an animal away from its immediate home range, 

usually as a pre-emptive response to local resource decline. Specialised behavioural and 

physiological adaptations are often exhibited in relation to the triggering, 

commencement, energy allocation during, and cessation of migration (Dingle 2014). The 

expression of these attributes can vary across taxa, between species, and within a species 

between individuals, resulting in substantial diversity in migratory behaviours across the 

animal kingdom. Likely the most familiar form of migration is to-and-fro migration 

between two discrete locations, as exhibited by numerous vertebrate species. However, 

migration can also occur as a loop between several sites (Willemoes et al. 2014) or as a 

series of one-way trips undertaken by multiple generations, as in the Monarch Butterfly 

and Painted Lady Butterfly (Vanessa cardui ) (Urquhart and Urquhart 1978, Stefanescu 

et al. 2013). 

Temporal and spatial heterogeneity in resource abundance and environmental 

conditions likely drives the evolution of migration as a life history strategy to maximise 

survival and reproductive success (Dingle 2014). Selective pressures imposed by the 

environment that migratory animals inhabit has shaped the evolution of behavioral, 

physiological, morphological, and other life history traits that control individual 

migration (Dingle 2006, Dingle and Drake 2007, Åkesson and Hedenström 2007). In the 

era of global climate change, predicting how migratory animals will adapt to changes in 

the environment is fundamental to forecasting the consequences of the coming change on 

migratory species. This will require a thorough understanding of migration through all 

biological levels of organisation (from the underlying genome to the resultant population 

level movement patterns), how these levels interact with the environment, and the 

interrelation between migration and other critical life history events. The diverse variety 
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of migration exhibited in birds provides an excellent model system to study migration at 

all organisational levels. Additionally, multiple studies have shown that migratory avian 

populations are already responding to climate change (Visser et al. 1998, 2004; Root et 

al. 2003, Both et al. 2006, Hedenström et al. 2007, Charmantier et al. 2008). By studying 

avian migration, we can both develop our understanding of animal migration and provide 

information to help predict how avian populations may respond to a changing 

environment.  

In this introduction, I will briefly introduce avian migration, covering some of the 

behavioural aspects of North American bird migration leading to the phenomenon of 

differential migration timing. After summarising the leading hypotheses for why 

differential migration occurs, I will explain three key behavioural mechanisms believed 

to result in differential migration timing and how these mechanisms can be studied in free 

living songbirds. I will then introduce the focal species of this study, and what is known 

about differential migration in this species, before moving into specific hypotheses and 

predictions. 

1.1 Avian migration  

The seasonal migration of birds is a spectacular phenomenon that is estimated to involve 

over 50 billion birds around the globe (Berthold 2001). Migration is a behaviour 

exhibited by nearly 2000 species across a diverse variety of avian taxa (Birdlife 

International 2018). Many migratory bird species exhibit the classic to-and-fro migration 

pattern, travelling thousands of kilometers between temperate breeding grounds and 

tropical overwintering areas during alternate times of the year (Dingle 2014). Temperate 

avian communities are largely composed of migratory species (Newton and Dale 1996), 

of which a substantial number are songbirds (order Passeriformes). These small-bodied 

birds often migrate thousands of kilometers each way during migratory seasons. In North 

America, many species migrate from temperate breeding areas in boreal Canada to 

overwintering areas in Central and South America. To accomplish these often-lengthy 

journeys, migratory songbirds exhibit many specialised behavioural and physiological 

adaptations. Many North American songbird species shift from a primarily diurnal 

activity pattern, to a pattern of diurnal foraging and nocturnal migratory flight. This 
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behaviour allows migrants to maximise daylight foraging, but may also be related to 

favourable flight conditions and nocturnal orientation cues (Alerstam 2009). The body 

shape, wing shape, and skull size of migratory bird species often differs compared to 

similar non-migratory species (Winkler and Leisler 2005, Dingle 2014). Body 

composition and organ size can also change during migration (Guglielmo and Williams 

2003), likely as an adaptation to reduce flight costs (Piersma 1998). Most migratory birds 

also increase food intake, becoming hyperphagic prior to and during migratory periods 

(King and Farner 1965). Fat is the primary fuel of migration, and migratory songbirds 

exhibit a number of adaptations which result in extreme proficiency in both the storage 

and use of fat (Guglielmo 2018). Despite possessing a complex suite of adaptations, most 

migratory species do not complete migration in a single flight, often requiring multiple 

stops to rest and replenish depleted energy stores during the course of migration. 

Somewhat counterintuitively, evidence suggests that a greater proportion of time and 

energy are spent at stopover locations during the course of migration (Hedenström and 

Alerstam 1997, Alerstam and Hedenström 1998, Wikelski et al. 2003), indicating that 

birds spend less time flying than in other activities over the course of migration. 

Migration is also hazardous, and birds face a number of elevated risks during migration, 

including: predation, disease, exhaustion, starvation, and inclement weather (Newton 

2008). These risks likely contribute to the elevated mortality rate associated with the 

migratory period (Sillett and Holmes 2002, Klaassen et al. 2013, Lok et al. 2015).  

Evidence suggests that many songbirds migrate following a strategy aimed at 

reducing the amount of time spent in migration (Lindström and Alerstam 1992, 

Hedenström 2008). Minimising the time spent during migration may be beneficial for a 

variety reasons. Migration can constitute a large portion of a birds’ annual life cycle, and 

reducing the time spent migrating may provide more time for other life cycle stages. For 

birds breeding in temperate areas, reproductive activities (display, courtship, nest-

building, incubation, raising young to independence) and moult must be completed in the 

limited time during which breeding area conditions are favourable (McNamara et al. 

1998). Faster migration may also minimise the time spent in hazardous unfamiliar 

territory, acting to reduce the risks. Migration speed may also be a limiting factor in total 

migration distance after accounting for the time required for reproduction and other 
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behaviours such as moult. A faster migration speed may enable birds to exploit suitable 

habitat greater distances away from overwintering areas. Finally, faster migration may 

enable earlier arrival at breeding areas. Migration must be completed before reproduction 

and being present at breeding areas at an earlier date may allow for the synchronisation of 

reproduction to early season peaks in resource abundances thereby resulting in increased 

individual fitness (Perrins 1970, Smith and Moore 2005). Additionally, earlier nesting 

may improve offspring condition and post-fledging survival (Mitchell et al. 2011).  

As periodic stopover bouts are required over the course of migration, the optimal 

strategy to minimise migration time must consider both the flight speed and the time 

spent in migratory stopover. The relationship between lift, drag, weight, and flight costs 

results in diminishing returns on potential flight range gained for each additional unit of 

fat added, allowing for predictions to be made about optimal departure fuel load, stopover 

duration, and flight speed in response to the pressure to minimise total migration time 

(Alerstam and Lindström 1990). The departure fuel load under a time minimisation 

strategy is expected to relate positively to refuelling rate, with migrants departing from 

stopover with a higher fuel load when refuelling rates at that location are high. Variation 

in refuelling rate could potentially result from extrinsic factors such as site quality 

(Lindström and Alerstam 1992), or from intrinsic differences in individual refuelling 

ability (Heise and Moore 2003). Time motivated migrants are expected to depart from 

stopover when the marginal rate of gain in potential flight distance drops to the expected 

average speed of movement for the entire migratory journey (Alerstam and Lindström 

1990). The negative relationship between fat mass and potential flight distance suggests 

that birds with greater fat mass (whose gain in potential flight distance is low due to high 

transport costs) should continue migration, rather than remain at a stopover site to forage 

while only increasing potential flight range marginally. Together, this relationship 

suggests that the duration of stopover for time-selected migrants should depend on the 

rate of fuel deposition. Theoretically, rapid refuelling will result in a faster decrease in the 

potential flight distance gained for each unit of fuel added, resulting in shorter optimum 

stopover durations when refuelling rate is high (Alerstam and Lindström 1990).  
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Besides refuelling rate, wind assistance may alter departure fuel load and stopover 

duration. With a tailwind, migrants may advantageously depart from stopover earlier and 

with lower fuel loads than under calm conditions (Weber et al. 1998). The amount of 

time spent in non-fuelling stopover behaviours could also influence the duration of 

stopover. Time spent searching for food, settling in a suitable patch, or regenerating 

digestive organs adds to the total duration of stopover, with longer settling times resulting 

in a longer stopover duration. Finally, flight speed under a time minimisation strategy 

should also be higher than flight speed under an energy minimisation strategy (Alerstam 

and Lindström 1990).  

1.2 Differential migration in an avian context  

In many songbird species, different sex and age classes will migrate on different time 

schedules or overwinter at different locations. This phenomenon, known as differential 

migration, can formally be defined as “the situation in which migration in some 

distinguishable classes of individuals (ages, sexes, races) differs with respect to timing, 

distance, or both” (Terrill and Able 1988). Differential migration timing is found in many 

songbird species, often occurring between sexes with males and females migrating on 

different schedules (Oring and Lank 1982, Francis and Cooke 1986, Reynolds et al. 1986, 

Morbey et al. 2012). Protandry, where males arrive before females at all locations up to-

and including the breeding sites, has been reported numerous times in multiple migratory 

bird species (Francis and Cooke 1986, Morbey and Ydenberg 2001 and references 

therein, Kissner et al. 2003, Rubolini et al. 2004, Morbey et al. 2012 and references 

therein). In a review of eight comparative studies, Morbey et al. (2012) found evidence of 

migratory protandry in 71 species, with males preceding females by an average of 5.2 

days. Protogyny, where females precede males, occurs less frequently but is exhibited in 

several bird species with reversed sex-roles, such as the Spotted Sandpiper (Actitis 

macularius) (Oring and Lank 1982, Reynolds et al. 1986). Differential migration timing 

can also occur between age classes. In general, it is more common for older birds to 

migrate to breeding sites earlier than younger birds (Francis and Cooke 1986, Lozano et 

al. 1996, Stewart et al. 2002, McKinnon et al. 2014). For example, adult male American 
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Redstarts (Setophaga ruticilla) arrive at migratory stopover areas and breeding areas well 

in advance of younger males in the spring (Lozano et al. 1996, Stewart et al. 2002).  

The ecological and evolutionary implications of differential migration are far 

reaching for migratory bird species. The timing of migration can affect the environmental 

and ecological conditions encountered during migration and can affect the costs 

associated with migration (Wikelski et al. 2003, Robson and Barriocanal 2008, Klaassen 

et al. 2013, Lok et al. 2015). For example, early spring migrants may be more likely to 

encounter inclement weather conditions, which can result in decreased body condition 

(Robson and Barriocanal 2008). Severe weather events can even result in mortality 

among early season migrants (Whitmore et al. 1977, Møller 1994). Therefore, there must 

be benefits associated with earlier arrival that differ between individuals.  

1.3 Hypotheses for differential migration  

Multiple non-mutually exclusive hypotheses have been posited regarding the adaptive 

significance of sex-specific differential migration timing. These hypotheses are often 

framed in regard to protandry, however, most can also be applied to birds with sex-role 

reversed mating systems. Competition between males for high quality territory was 

previously believed to be a major driver behind the evolution of protandry. Termed the 

‘rank advantage hypothesis’, earlier arriving males were thought to receive a ‘rank 

advantage’ in the competition to secure a high-quality breeding territory. Owners of a 

high quality territory then received ‘priority benefits’ associated with high quality 

territory (Kokko 1999, Morbey and Ydenberg 2001). Prior occupancy is advantageous 

during competition for territory (Krebs 1982, Tobias 1997), suggesting that earlier arrival 

aids in territory acquisition and retention. Additionally, later arriving birds can be in 

poorer condition (Møller et al. 2009), which may reduce the ability of later arriving birds 

to supplant earlier arriving territory owners (Nyström 1997).  

While initially popular, the rank advantage hypothesis has drawn criticism 

because reproduction in a high-quality territory can provide fitness advantages for both 

sexes. Competition between females for males occupying high quality territories could 

also select for earlier migration by females, reducing the degree of protandry exhibited in 
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a population. Developing the rank advantage hypothesis further, the “mate opportunity 

hypothesis” considers why males should arrive earlier relative to females (Morbey and 

Ydenberg 2001, Kokko et al. 2006). By being present at breeding sites prior to the arrival 

of females, males have more opportunities to mate with early arriving high quality 

females, and have the potential to mate with other partners outside of their social pairing 

as the season progresses. For example, Reudink et al. (2009) found that earlier arriving 

American Redstarts achieved greater polygyny, siring more extra-pair offspring than later 

arriving birds. Møller et al. (2009) found that earlier arriving male Barn Swallows 

(Hirundo rustica) sired more offspring and had less extra-pair offspring in their nest 

compared to later arriving males. In addition, pairs formed of later arriving males and 

earlier arriving females (i.e., a lower degree of protandry within the pair) had more extra-

pair offspring in their nests, providing additional selection pressure for earlier male 

arrival. Other benefits, such as a reduction in mate acquisition time, earlier clutch 

initiation (Rowe et al. 1994), and increased time available to re-nest (Townsend et al. 

2013) can provide further benefits associated with earlier arrival relative to females 

(Kokko et al. 2006).   

Other hypotheses for differential migration timing include the ‘susceptibility’ and 

‘constraint’ hypotheses. Under the susceptibility hypothesis, protandry occurs because 

larger males, which are generally larger than females, are better able to tolerate adverse 

weather conditions, allowing for earlier migration (Morbey and Ydenberg 2001). In both 

the rank advantage and mate opportunity hypothesis, the cost of early migration can 

manifest through exposure to inclement environmental conditions (Kokko 1999). 

Selection may then favour larger male body size in protandrous species (Kissner et al. 

2003). The constraint hypothesis states that protandry results from a limitation on 

migration timing imposed by some other trait. For example, sex-segregation on the 

wintering grounds may result in differential arrival timing at the breeding grounds if both 

sexes initiate migration at the same time and migrate at the same speed. The constraint 

hypothesis is non-adaptive however, and can be confounded by other adaptive 

hypotheses. For example, selection for protandry may favour males that winter further 

north when the rate of migration and migration initiation date does not differ between 

males and female (Morbey and Ydenberg 2001).  
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The selective pressures driving sex-specific migration may also contribute to age 

specific migration, taking components from rank advantage, mate opportunity, 

susceptibility, and constraint hypotheses. In many bird species, juveniles are sub-

dominant to adults (Piper and Wiley 1989, Carpenter et al. 1993, Yong et al. 1998, 

Cristol et al. 1999) and likely have a lower chance of obtaining a territory when 

competing with adults (Tobias 1997). The reduced benefit of early arrival for less 

competitive individuals should result in a shift in the optimal arrival time to a later date 

(Kokko et al. 2006).  

Juvenile birds may also face physiological constraints which may increase the 

cost associated with migration. Juveniles generally have shorter wing spans, which can 

increase the cost of flight (Åkesson and Hedenström 2007). Juveniles are also less 

selective of wind while migrating, resulting in reduced migration speed and increased 

cost per distance flown (Mitchell et al. 2015). More expensive migratory flight likely 

necessitates the need for frequent refuelling stops (McKinnon et al. 2014), which can 

further act to constrain juvenile arrival timing. Altogether, the increased cost of migration 

and reduced benefits of earlier migration may select against early arrival in juveniles, 

resulting in differential migration timing by age.   

1.4 Mechanisms of differential migration timing 

To further examine hypotheses regarding the evolution of differential migration timing, 

additional knowledge is required regarding how individual behaviours result in 

population level movement patterns. Coppack and Pulido (2009) suggested three main 

non-mutually exclusive behavioural mechanisms that could underlie differential arrival 

timing to breeding areas. These are differential migration speed, differential migration 

distance, and differential initiation timing of migration.  

1.4.1 Differential migration speed 

Differences in migration speed could promote differential arrival timing to breeding 

areas. Hypothetically, groups of migratory birds departing for migration from the same 
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location at the same time could become stratified in their arrival timing if some 

individuals migrate faster. Migration speed can be affected by the speed of migratory 

flight, however, the amount of time spent at inter-flight stopover locations likely a greater 

determinant of overall migration speed (Alerstam and Lindström 1990, Hedenström 

2008, McKinnon et al. 2016). Optimal migration theory, supported by some empirical 

evidence, suggests that individual departure decisions will depend on body condition, and 

that individuals able to replenish fat stores (refuel) faster will have a shorter stopover and 

a faster overall migration (Moore and Kerlinger 1987, Alerstam and Lindström 1990, 

Åkesson and Hedenström 2007, Schaub et al. 2008, Dossman et al. 2016). Group specific 

stopover refuelling rate may then contribute to differential migration timing. Refuelling 

performance can vary based on multiple interrelated factors including; predation risk, 

arrival condition, physiology, local food availability, and competition (Dunn 2000, 

Schmaljohann and Dierschke 2005, Salewski et al. 2007, Schaub et al. 2008, Seewagen et 

al. 2013, Smith et al. 2015), but behaviour may also influence refuelling rate. Behavioural 

traits related to social dominance and competitive ability, often related to sex and age in 

birds, can provide greater access to food and enable dominant individuals to refuel faster 

(Caraco 1979, Piper and Wiley 1990, Woodrey and Moore 1997, Yong et al. 1998, 

Seewagen et al. 2013, Brown et al. 2014). The general dominance hierarchy of males 

over females, and older over younger often corresponds well to spring stopover and 

breeding ground arrival timing in many species (Ketterson 1979, Piper and Wiley 1989, 

Marra 2000, Moore et al. 2003). Despite this, empirical evidence that stopover refuelling 

performance varies among sex and age classes is still scant and contradictory. Seewagen 

et al. (2013) found that males had a higher stopover refuelling rate in two protandrous 

warbler species during spring migration, supporting the notion that males arrive on the 

breeding grounds earlier through faster refuelling at migratory stopover sites. Other 

studies have failed to find a similar pattern (Morris et al. 2003, Smith et al. 2015, Morbey 

et al. 2018). The extent to which sex-specific stopover refuelling rate affects migration 

timing, and how common this phenomenon is among songbird species, is currently 

uncertain.  

Additional factors may influence the duration of migratory stopover, with 

potential implications for migration speed. Birds may advantageously depart from 
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stopover on nights with a tailwind, reducing flight costs through wind assistance and 

reduced crosswind drift (Sjöberg et al. 2015, Mitchell et al. 2015). Mitchell et al. (2015) 

found that juvenile Savannah Sparrows (Passerculus sandwichensis) were less selective 

of favourable tailwinds during fall migration, resulting in slower flight speeds and less 

energetically efficient migration. Air temperature is another environmental variable that 

may influence migratory stopover duration. Air temperature is known to affect migratory 

restlessness (a behaviour characterised by extensive movement and correlated to 

migration patterns of free-living birds) in birds (Metcalfe et al. 2013), and may act as an 

environmental cue encouraging departure from stopover. Additionally, air temperature 

may influence stopover duration by affecting thermoregulatory cost (Bowlin et al. 2005). 

Excessive energy used for thermoregulation during cooler periods may prolong the length 

of time required to accumulate a sufficient departure fuel load, resulting in delayed 

departure from stopover. Finally, the frequency of stopover bouts over the course of 

migration is another factor that could influence overall migration speed. McKinnon et al. 

(2014) found that juvenile Wood Thrush conducted stopover bouts more frequently 

during the course of migration, resulting in a slower overall migration speed. 

Morphological (Yong and Moore 1994, McKinnon et al. 2014) or behavioural (Mitchell 

et al. 2015) differences between individuals could influence flight energetics, and 

contribute to differences in the number of stopover bouts required during migration. For 

example, the advantageous use of tailwind by adult Savannah Sparrows during migration 

(Mitchell et al. 2015) may enable greater distances to be traversed on a given fuel load 

(Alerstam and Lindström 1990), reducing the number of stopover bouts required between 

wintering and breeding areas. 

1.4.2 Differential migration distance 

Differential migration distance is another behavioural mechanism that can underlie 

protandry. Hypothetically, if the initiation date and speed of migration are similar for 

both males and females, overwintering closer to breeding areas would enable males to 

arrive earlier at breeding areas in the spring. Latitudinal sex segregation on the wintering 

grounds is known to occur in many bird species, especially in granivores like sparrows 

and finches (Cristol et al. 1999, Newton 2008). In a survey of literature regarding sex-
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based differential migration, Cristol et al. (1999) reported that males wintered closer to 

breeding areas than females in 41 of 53 species examined. They also identified a further 

93 species that likely exhibit differential migration distance, most of which exhibited the 

typical pattern where males wintered closer to breeding areas. Differences in migration 

distance could also affect other types of group-specific differential migration timing. 

Age-specific migration was also reported by Cristol et al. (1999) in 20 of the 53 species 

identified as differential migrants. In all cases, younger birds migrated a greater distance 

than adults. 

Differential migration distance may result from behavioural or morphological 

differences between the groups. During the non-breeding season, dominant individuals 

usually outcompete subordinates for high quality habitat and resources (Piper and Wiley 

1989, Choudhury and Black 1991, Marra 2000, Catry et al. 2004). The cost of 

competition for limited resources at more northerly wintering latitudes could potentially 

result in subordinate individuals electing to winter further south where resources may be 

more plentiful. Physical differences between groups may also contribute to differential 

migration distance. Larger individuals may be better able to tolerate colder conditions at 

more northern wintering latitudes, allowing for a short migration (Ketterson and Nolan 

1976, Jenkins and Cristol 2002). 

1.4.3 Differential migration initiation date 

Differential initiation timing of migration is another behavioural mechanism that can 

result in differential migration timing (Coppack and Pulido 2009, Jahn et al. 2013, 

Schmaljohann et al. 2016, McKinnon et al. 2016). The initiation of migration may be 

controlled endogenously, or by cues such as photoperiod (Gwinner 1996, Coppack et al. 

2008, Maggini and Bairlein 2012). Among protandrous species, captive males have been 

demonstrated to exhibit nocturnal migratory restlessness at an earlier date compared to 

females. This pattern holds true when birds are exposed to simulated natural light cycles 

(Terrill and Berthold 1990) and light regimes of equal length day and night (Coppack and 

Pulido 2009, Maggini and Bairlein 2012) suggesting that the endogenous circannual 

mechanisms controlling migration timing differs between males and females. Conditions 

on the wintering ground can also have carry-over effects on the initiation of migration. 
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Marra et al. (1998) showed that American Redstarts overwintering in higher quality 

mangrove habitat initiated vernal migration earlier. In this species, a higher proportion of 

birds in high quality mangrove habitat were dominant adult males, suggesting that winter 

habitat selection is mediated partly by behaviour (Marra et al. 1993). Migration initiation 

can also differ between age classes. Mckinnon et al. (2014) found that juvenile Wood 

Thrush departed the wintering grounds later than adults. No age-related differences in 

body mass were found during late winter, suggesting that the differential departure 

resulted from endogenous programs or age-specific responses to photoperiod. 

1.5 Methodological approaches to studying migration 

1.5.1 Stopover refuelling rate determination 

Past studies have relied on the analysis of morphometric data taken at capture to 

determine fuel deposition rate. The change in body mass between captures for birds 

captured multiple times is one method that has been widely employed to estimate 

stopover fuel deposition rate (Cherry 1982, Yong and Moore 1997, Yong et al. 1998). 

This method is complicated by the challenge of recapturing individuals, and may be 

biased by stress resulting from repeated captures and by the increased probability of 

recapturing low-quality individuals that may remain at stopover sites longer. Regression 

analysis of single-capture total body mass against time of day is another method that has 

been used to assess refuelling performance, relying on the general trend that songbirds 

gain mass during daytime foraging (Winker et al. 1992, Dunn 2000, Wilson et al. 2008). 

Detecting the relationship between time of day and mass can be difficult however, 

requiring large sample sizes to control for intraspecific variability in body size that is 

unrelated to fuel deposition. Plasma metabolite profiling offers a physiological means to 

obtain an individualistic measure of instantaneous refuelling performance from a single 

capture (Jenni-Eiermann and Jenni 1994, Guglielmo et al. 2005, Zajac et al. 2006). 

Plasma metabolite profiling is based on the physiological principle that the circulating 

concentration of the blood plasma metabolites triglyceride and β-OH butyrate reflect 

recent food consumption (Zajac et al. 2006). Triglyceride (triacylglycerol) is an ester 

composed of three fatty acids bound to a glycerol backbone. During feeding and fat 
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deposition, plasma triglyceride concentrations rise as lipids are absorbed in the intestines 

or synthesised in the liver (Jenni-Eiermann and Jenni 1994). β-OH-butyrate (β-

hydroxybutyrate, 3-hydroxybutyrate) is a ketone body synthesised by the liver during the 

catabolism of stored fat. During fasting and fat use, plasma β-OH-butyrate concentration 

increases as lipids are catabolised (Jenni-Eiermann and Jenni 1994, Guglielmo et al. 

2005). Plasma triglyceride and β-OH-butyrate are negatively correlated, and 

concentrations can be combined into an index of refuelling (RI) (Guglielmo et al. 2005) 

useful for exploring questions about stopover physiology and ecology.  

1.5.2 Stopover duration determination 

As highly mobile animals, tracking migratory birds is a challenging task. Multiple 

methods are available to track animals, including geographic positioning system (GPS) 

tags, light level geolocators, and radio transmitter tags (Bridge et al. 2011). In small 

bodied songbirds, size generally prohibits the use of GPS tags. Most light level 

geolocators require retrieval, and generally have low spatial resolution. As a result of 

recent technological advancements, radio telemetry currently offers the best solution to 

the problems of size, cost, and positional precision for the study of regional scale avian 

migration ecology.   

Radio tags emit a signal that can be detected by a receiver, allowing researches to 

follow or infer the location of a tagged animal. In the past, individual radio telemetry tags 

were programmed to emit a simple pulse on a specific frequency. To track multiple 

individuals, multiple tags emitting pulses at different frequencies were required. This 

limited the number of tags that could be deployed to the available bandwidths, and 

required the receiver frequency to be tuned to specific tags. This made it difficult to track 

large numbers of animals simultaneously. The development of encoded very-high-

frequency radio transmitter tags solved this issue. Coded radio tags are designed to emit a 

unique pulse of radio signals, analogous to an “audio-barcode”. The combination of 

unique pulses transmitted at known set time intervals allow individual tags to be 

distinguished while operating on the same frequency (Taylor et al. 2017). 
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Coded radio tags enabled the development of large-scale automated radio receiver 

networks, such as the Motus Wildlife Tracking System (henceforth: Motus) (Taylor et al. 

2017). Motus is a coordinated array of over 300 automated radio receiver stations located 

throughout southern Canada and along the east coast of the United States of America. 

Motus receiver stations generally consist of a tower with one to five nine-element Yagi 

directional radio antennae affixed to the mast. Under ideal conditions, Motus towers can 

detect a signal from a radio transmitter over 15 km away, although terrain and weather 

may influence the detection distance (Taylor et al. 2017). Each time a signal is received 

from a radio transmitter tag, the transmitter identification number, time, location of 

receiver tower, antenna number, and signal strength are recorded. The local and regional 

scale movements of tagged animals can then be tracked by examining the sequence of 

detections at different receiver stations.  

1.5.3 Estimation of migratory origin using stable isotope analysis 

Stable hydrogen isotope analysis of feathers and other keratinaceous tissues has been 

applied by numerous studies to answer questions about migratory connectivity and 

geographic origins of birds and other migratory animals (Chamberlain et al. 1996, 

Hobson and Wassenaar 1996, Rubenstein et al. 2002, Bridge et al. 2014, Sullins et al. 

2016). The utility of stable hydrogen isotopes (δ2H) for determining the geographic origin 

of animals is derived from two main factors: 1) biogeochemical processes create 

geographic variation in food web isotope signatures, and 2) the isotopic signature of 

metabolically inert feather tissue reflects the isotopic signature of the local food web 

where it is formed. Geographic variation in food web isotope signatures results largely 

from climatic and meteorological processes that effect equilibrium and temperature-

related kinetic processes governing the ratio of hydrogen isotopes in precipitation (Taylor 

1974). In North America, this results in a general decrease of the stable hydrogen isotope 

deuterium in precipitation with increasing distance from the equator, creating latitude 

specific hydrogen isotope signatures (Hobson and Wassenaar 2008). The average local 

growing-season precipitation hydrogen isotope (δ2Hp) signature is incorporated through 

the food chain into the tissues of birds feeding in the area (Yapp and Epstein 1982, 

Hobson and Wassenaar 1996). During feather moult, dietary δ2H values are translated 
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into newly-formed feather tissues (Hobson and Wassenaar 2008). Because feathers are 

metabolically inert after formation, the feather hydrogen isotopic signature (δ2Hf) 

permanently reflects the isotopic signature of the diet of the individual during the feather 

growth period. These feathers can then act as an intrinsic marker of moulting latitude. For 

example, some bird species replace body feather on the wintering grounds prior to spring 

migration. The δ2H values of the body feather collected at non-wintering sites will 

closely correlate with the average growing season δ2Hp signature of the wintering site 

(Hobson and Wassenaar 1996). Therefore, with the knowledge of moult timing and 

characteristics, the analysis δ2Hf can provide information on migratory origin.  

The absolute masses of each stable hydrogen isotope in a sample is difficult to 

measure precisely, however, minute difference in the ratio of heavy and light isotopes can 

be measured precisely (Hobson and Wassenaar 2008). Because of this, isotope 

measurements are generally presented as a value relative to an international standard 

using “δ” notation. For hydrogen, values are calculated as the measured ratio of 

deuterium/protium isotopes in a sample, divided by the measured ratio of the 

deuterium/protium of the standard -1, all multiplied by 1000 (Hobson and Wassenaar 

2008).  

1.5.4 Body composition analysis 

Precise information on fat load is crucial to assessing factors that may govern migratory 

behaviour. Quantitative magnetic resonance (QMR) can be used to measure the fat and 

lean mass of captured birds (Guglielmo et al. 2011). QMR is a non-invasive method that 

uses magnetic resonance to quantify the mass (±0.01 g) of fat, lean wet tissue, free water, 

and total water in a specimen. During a QMR scan, a magnetic field is used to orient the 

spin of hydrogen nuclei in a subject. Antennae are then used to apply alternating 

magnetic fields at characteristic resonance frequencies to perturb the spin of the hydrogen 

nuclei into a higher energy state. When the magnetic field transmission is turned off, the 

spin of the hydrogen nuclei relax back into an equilibrium state, releasing energy at the 

same frequency as the initial stimulating frequency. The signal amplitude and the 

characteristics of the T1 and T2 relaxation curves provide information about the 
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physiochemical properties of the sample tissue, providing a method to distinguish and 

quantify fat mass, wet lean tissue mass, and free water (Taicher et al. 2003).   

1.6 Study Species 

The White-throated Sparrow (Zonotrichia albicollis) is an excellent species with which to 

examine differential migration timing and its underlying mechanisms with respect to sex, 

age, and behaviour. The White-throated Sparrow is a short distance migrant that breeds in 

the temperate and boreal forests of Canada and the northern United States (Figure 1) 

(Falls and Kopachena 2010). In addition to sex and age, a unique dimorphism exhibited 

by the White-throated Sparrow may also influence migration. In alternate breeding 

plumage, the colour of the median crown stripe and eyebrow stripe of both sexes can be 

used to distinguish birds as either a white-striped, or tan-striped morph (Lowther 1961). 

This dimorphism results from a difference in the second autosomal chromosome between 

morphs. Tan-striped birds have homologous acrocentric second chromosomes, whereas 

white-striped birds have one acrocentric and one metacentric second chromosome 

(Thorneycroft 1966, 1975). The dimorphisms in the second chromosome is thought to 

have resulted from multiple large-scale inversion mutations, consisting of around 1000 

genes. These inversions suppress recombination during meiosis (Thomas et al. 2008), 

allowing for the divergence of distinct morphs and creating an additional class of 

individuals within this species.  

Sex, morph, and age influence dominance and aggression in the White-throated 

Sparrow, with some evidence suggesting that these behavioural differences affect 

competitive ability. Males and white-striped birds exhibit greater aggression and social 

dominance than females and tan-striped birds of the same sex during the spring 

(Harrington 1973, Ficken et al. 1978, Watt et al. 1984, Kopachena and Falls 1993). In 

antagonistic interaction observed at feeding stations during spring migration, white-

striped birds were more often the aggressor (Ficken et al. 1978). On the breeding 

grounds, white-striped males vocalise more often than tan-striped males (Collins and 

Houtman 1999, Falls and Kopachena 2010) and are more likely to engage in aggressive 

territorial behaviours (Kopachena and Falls 1993). Female white-striped birds engage in 
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territorial defence around the same level as tan-striped males, with tan-striped females 

not participating in antagonistic territorial interaction (Kopachena and Falls 1993).  

White-throated Sparrows mate disassortatively with respect to morph, with almost 

every breeding pair consisting of either a white-striped male mated to a tan-striped 

female, or a tan-striped male mated to a white-striped female (Lowther 1961, 

Thorneycroft 1975, Tuttle 2003). This disassortative mating likely helps to maintain the 

polymorphisms exhibited in this species, as offspring of the homozygous tan-striped birds 

and heterozygous white-striped birds have an equal chance of being either a white-

striped, tan-striped, male, or female. Reproductive behaviour also differs by morph. 

White-striped males are more likely to intrude into neighbouring territories and attempt 

extra-pair copulations, while tan-striped males invest a greater amount of time in mate 

guarding and parental care (Tuttle 2003).  

During spring migration, White-throated Sparrows exhibit a high degree of 

migratory protandry (Knapton et al. 1984, Mills 2005, Caldwell and Mills 2006, 

Mazerolle and Hobson 2007). Using a 24-year banding data set, Mills (2005) found that 

males arrived at the Long Point Bird Observatory (Long Point, Ontario, Canada) around 

10 days earlier than females. Mazerolle and Hobson (2007) observed a similar pattern at 

the Delta Marsh Bird Observatory (Portage la Prairie, Manitoba, Canada) using a nine-

year data set, with males arriving around one week earlier than females. The pattern of 

protandry observed at migratory stopover sites is also reported at breeding sites in 

Algonquin Provincial Park (Ontario, Canada) (Knapton et al. 1984). Male White-throated 

Sparrows generally winter further north than females (Odum 1958, Jenkins and Cristol 

2002, Mazerolle and Hobson 2005, 2007), although this difference is not discrete (Piper 

and Wiley 1989). Spring migration initiation timing may also differ between sexes. 

Odum (1949) reported that male White-throated Sparrows departed wintering areas 

around two weeks earlier than females. Sexing was conducted on some individuals using 

wing chord and plumage colouration, however, the plumage dimorphism exhibited by the 

White-throated Sparrow had yet to be recognized at this time and this may have 

influenced the findings of their study. For example, the misclassification of white-striped 
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females as males could have potentially accentuated the difference in average departure 

date between males and females. 

Migration timing appears to differ between morphs within each sex, although to a 

lesser and more variable degree compared to sex. Using six years of banding data 

Caldwell and Mills (2006) found that white-striped birds arrived around two days earlier 

than tan-striped birds, however, this pattern was only significant in females when sexes 

were considered separately. A similar pattern was observed at breeding sites in 

Algonquin Provincial Park (Ontario, Canada) (Knapton et al. 1984). Mazerolle and 

Hobson (2007) report a greater difference in migration timing between the morphs at 

Delta Marsh, Manitoba, with white-striped birds arriving around five days earlier than 

tan-striped morphs. Differences in migration speed between white-striped and tan-striped 

morphs have not been examined during spring migration, however, Brown et al. (2014) 

found that refuelling rate was significantly higher in the white-striped birds during fall 

stopover. Migration distance does not appear to differ between white-striped and tan-

striped birds based on stable isotope analysis (Mazerolle and Hobson 2007).   

There is little evidence suggesting that differential migration timing by age occurs 

in the White-throated Sparrow. In the fall, Brown et al. (2014) found no significant 

difference in arrival timing at the Long Point Bird Observatory. Some evidence suggests 

that age classes differ in total migration distance. Odum (1958) reported that all birds 

killed by collisions with a television tower located near Tallahassee, Florida, USA, were 

immature birds. Tallahassee is located in the southern portion of the White-throated 

Sparrow wintering range. Assuming adults and juveniles are equally susceptible to tower 

strike mortality, the absences of adults among the tower kills could suggest that juveniles 

are overwintering at lower latitudes compared to adults. 

White-throated Sparrows exhibit no sexual dichromatism, preventing the 

assignment of sex using plumage characteristics. Previous studies conducted on White-

throated Sparrows have generally relied on morphometric based methodologies to 

determine sex. This could potentially introduce bias into the analyses as often these 

methods cannot mutually exclude males from females. Numerous studies have shown 
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that male White-throated Sparrows arrive earlier than females. However, discrepancy 

exists between studies in the number of days males precede females, which may result 

from methodological differences in assigning sex. Mills (2005) excluded individuals with 

wing chords within the male-female overlap range, whereas Mazerolle and Hobson 

(2007) used a less stringent criteria for wing length that allowed for the inclusion of more 

individuals. 

Mis-sexing or excluding birds with intermediate wing chords may potentially bias 

analyses of sex-specific migration timing and wintering location. Wing chord is one of 

the many factors that can influence flight energetics (Alerstam and Hedenström 1998, 

Åkesson and Hedenström 2007) with potential ramifications for overall migration speed 

and timing. Excluding birds with intermediate wing chords may artificially inflate the 

difference in migration timing between sexes. Males and females with intermediate wing 

chords may have intermediate flight costs, migration speeds, and migration timing 

compared to smaller females and larger males. This could ultimately result in an outward 

shift between male and female mean migration date and a larger than true difference in 

migration timing. Mis-sexing birds based on wing chord may artificially reduce the 

within-sex variance in migration timing, resulting in an accentuated difference between 

the sexes. For example, females with longer wing chords could arrive earlier due to 

reduced flight costs. However, using a wing chord based sexing criteria, these females 

may be wrongfully sexed as males. If this pattern were to occur with males, the combined 

reduction in variance between groups could result in the incorrect conclusion of group-

specific migration timing. This problem could also confound the analysis of wintering 

latitude. Wing chord is often correlated to body size. As body size is a key component in 

the susceptibility hypothesis, separating males and females by wing chord may confound 

the effect of sex and body size on wintering latitude. For example, if large bodied females 

overwintering at more northern latitudes are misclassified as males, an effect of sex on 

wintering latitude may be found when the underlying mechanisms is in fact body size. 
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Figure 1. Range map of the White-throated Sparrow (Zonotrichia albicollis). Although 

breeding and wintering ranges overlap, all populations are migratory (Falls and 

Kopachena 2010). Provided by Birdlife International.  
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 1.7 Study objective and overview 

The objective of my thesis was to study differential spring migration timing in White-

throated Sparrows. To approach this objective, I applied a suite of advanced techniques to 

examine differential migration timing (by sex, age, and morph) and its underlying 

behavioural mechanisms (refuelling rate, stopover duration, and wintering latitude). 

Migration timing at stopover was determined using capture data; plasma metabolite 

analysis and quantitative magnetic resonance was used to examine stopover refuelling 

rate and body condition; automated radio telemetry was used to determine stopover 

duration; wintering latitude was estimated using isotopic analysis of head feathers; and 

genetics was used to verify the sex and morph of individuals. By comparing migration 

timing, stopover refuelling rate, stopover duration, and winter latitude in the same season 

and at the same site, I hoped to explore how each behavioural mechanism contributed to 

the observed migration timing pattern. 

Protandry is known to occur in the White-throated Sparrow, therefore I 

hypothesised that the behavioural mechanisms of migration timing would differ between 

the sexes. I expected that males would have a higher stopover refuelling rate and shorter 

stopover duration than females, which would result in males having a faster overall 

migration speed compared to females. Complementing this, I expected males to have a 

more northern wintering latitude, indicating a shorter overall migratory distance.  

Morph-specific stopover ecology has not been examined during the spring, but in 

the fall, morph-specific refuelling rate has been demonstrated (Brown et al. 2014). 

Additionally, behavioural traits exhibited by white-striped plumage morphs may 

influence the competition for resources at stopover locations. Because of this, I expected 

that white-striped birds would have a higher refuelling rate than their same sex tan-

striped counterparts. As higher refuelling rate may result in faster overall migration, I 

also expected white-striped birds to arrive earlier than tan-stiped birds of the same sex.  

While latitudinal segregation by morph has not been demonstrated, other morph-

specific migration behaviours do exist (Brown et al. 2014). The behavioural differences 

between the morphs, while not as prevalent during the non-breeding season, could 

potentially influence wintering latitude. Dominant white-striped individuals may 
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competitively exclude subordinate birds from more northern wintering areas, resulting in 

morph specific migration latitude within each sex. Additionally, molecular morphing and 

sexing techniques could help to reveal previously unrecognized patterns.  

Differences in stopover refuelling rate between age classes are generally not 

observed in spring migrating songbirds, (Morris and Glasgow 2001, Morris et al. 2003, 

Morbey et al. 2018). As such, I expected no difference in refuelling rate to be observed 

between age classes. Several studies have demonstrated a difference in stopover duration 

between adult and juvenile songbirds. However, given a limited supply of radio 

transmitters, I elected to focus on adult birds only to increase the power to detect an 

effect of sex and morph. Finally, I expected juvenile White-throated Sparrows to 

overwinter at more southern latitudes. Dominant adults may competitively exclude 

subordinate juveniles from more northern wintering areas within each sex-morph class. 

Additionally, high proportion of juveniles in tower kills in the southern portion of the 

wintering range (Odum 1958) suggests that differential migration distance by age may 

occur in the White-throated Sparrow. 
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Methods 

2.1 Study site 

I studied White-throated Sparrows during migratory stopover on the Long Point 

peninsula located in Ontario, Canada (42°34'58.5"N 80°23'54.5"W). Long Point is 

situated between the Mississippi and Atlantic flyways, and possesses many 

characteristics that make it an ideal stopover site for migratory birds. Originating on the 

north shore of Lake Erie and extending eastward for over 25 km into the lake, Long Point 

is a likely location for birds traversing the lake to make landfall in the spring. Radar 

observations have shown that birds crossing the Great Lakes reorient towards the nearest 

land mass at dawn (Diehl et al. 2003), and this behaviour likely contributes to the high 

number of migratory birds concentrating in the Long Point area. A variety of habitat 

types that may attract migratory birds are present on the Long Point peninsula, including 

woodlands, sand dunes, marshes, ponds, meadows, beaches, and lakeshore (UNESCO). 

Indicators of habitat quality such as forest structure may be used by migrants to fine tune 

stopover habitat selection, with forest and riparian habitat (Bonter et al. 2009, Buler and 

Moore 2011, McCabe and Olsen 2015). Furthermore, the predominantly agricultural 

landscape of the north shore of Lake Erie may concentrate birds in the Long Point area, 

as it is thought that many songbirds actively avoid agricultural areas during migration 

(Bonter et al. 2009). Positive mass changes have been documented in birds stopping over 

in the Long Point area (Dunn 2000), indicating that Long Point provides suitable stopover 

habitat for many migratory bird species. 

I captured White-throated Sparrows at the Long Point Bird Observatory’s “Old 

Cut” banding station 42°34'58.5"N 80°23'54.5"W, located near Port Rowan, Ontario, 

between 9 April 2017 and 15 May 2017. The Old Cut banding station is situated in a 

small woodlot located near the base of the Long Point peninsula. Vegetation cover is a 

mix of medium density cottonwoods (Populus deltoides), and dense Red Pine (Pinus 

resinosa). Habitat surrounding the banding station includes highly vegetated medium 

density housing, and wet areas dominated by shrubs (e.g. red osier dogwood [Cornus 

stolonifera]) (Dunn 2000). Birds were captured following the Long Point Bird 



24 

 

 

Observatory Migration Monitoring Protocol (LPBO 2005). An array of 15 mist nets was 

opened 30 minutes before sunrise, and remained open for six hours each day (weather 

permitting). All birds captured at Old Cut, either by myself of the bird observatory staff, 

had a standard Canadian Wildlife Service aluminium leg band affixed around the tarsus. 

Weight and un-flattened wing chord were measured, and age (SY= second year 

[juvenile]; ASY = after second year [adult]), sex, and morph were provisionally assigned 

using plumage characteristics (Piper and Wiley 1991, Pyle 1997, Caldwell and Mills 

2006) and later validated the field assignments using genetic analysis (described below). 

Sex was provisionally assigned following Piper and Wiley (1991), with birds possessing 

an un-flattened wing chord greater than 70 mm assigned as males and all other birds 

assigned as females. This sexing criteria allows for the assignment of sex to all birds and 

is approximately 90% accurate. Some birds were processed by the Old Cut banding 

station, and I attempted to collect data on as many of these birds as possible by retrieving 

them after they had been processed by the banding station. To avoid repeated sampling, I 

did not sample any birds that were captured with a leg band. Crown stripe feathers (0.7 g) 

and one of the innermost rectrices were taken, placed in labelled envelopes, and frozen 

for isotopic and genetic analysis (described below). Prior to release, I used quantitative 

magnetic resonance to measure body composition (Guglielmo et al. 2011). Birds were 

scanned in an Echo-MRI-B (Echo-Medical Systems, Houston, TX, USA). The QMR 

scanner was calibrated once daily using a 94 g canola oil standard. Exposure to strong 

magnetic fields during QMR does not negatively affect stopover duration or post 

departure movement (Kennedy et al. 2016). All birds were scanned once on the “small” 

bird and two accumulation software settings, and fat and lean mass were corrected using 

equations in Guglielmo et al. (2011) prior to analysis. Field work was conducted under 

Canadian Wildlife Service permit number CA-0255 with the approval of the University 

of Western Ontario’s animal care committee (protocol # 2010-020) (Appendix 1).  

2.2 Assessment of stopover refuelling performance 

Plasma metabolite analysis was used to assess stopover refuelling performance in a 

subset of White-throated Sparrows. Starting one hour after local sunrise, mist nets were 

monitored, and sparrows observed entering a mist net were selected for blood sampling.  
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A timer was used to measure the elapsed time between capture and the beginning of 

blood extraction (bleed time), with all bleed times being less than 11 minutes. Blood 

samples were taken immediately following capture to best reflect the profile of a feeding 

bird, as plasma metabolite concentrations can be rapidly affected by behavioural changes 

(Guglielmo et al. 2002, Zajac et al. 2006). Up to 300 µl of blood (approximately 10% 

total blood volume) was sampled from the brachial vein into a heparinized microvettes 

(Sarstedt Microvette CB 300, 16.443.100). Immediately following, blood samples were 

centrifuged at 2000 g for 10 minutes to separate plasma. Plasma was then transferred into 

screw-top cryogenic tubes and stored in a liquid nitrogen dry shipper (Taylor-Wharton 

CX 100). Samples were transported bi-weekly to the University of Western Ontario and 

were stored at -80°C for three months until analysis.  

Metabolites were measured using colorimetric assays following Guglielmo et al. 

(2002, 2005). Assays were conducted on a microplate spectrophotometer (Biotec 

Powerwave X 340) in 400 µl flat-bottom microplates (Nunc, Roskilde, Denmark). 

Plasma β-OH Butyrate concentration was determined using kinetic endpoint assay (R-

Biopharm, kit number 10907979035). This assay uses nicotinamideadenine dinucleotide 

(NAD) to oxidise β-OH Butyrate to acetoacetate in the presence of the enzyme 3-

hydroxybutyrate dehydrogenase. Reduced NAD from this reaction then converts 

iodonitrotetrazolium chloride (INT) to a formazan dye which is measured at 492 nm. To 

conduct the assay, five µl of plasma and 200 µl of a working solution containing NAD, 

diaphorase, and INT in a potassium phosphate/triethanolamine buffer were added to each 

well, and ΔA/min was measured for 2 minutes at 492 nm to check for a high background 

reaction rate. Four µl of B-OH-butyrate dehydrogenase suspension was then rapidly 

added to each well using a positive displacement repeat pipette (Eppendorf). ΔA/min was 

then measured for the next 40 minutes at 492nm. Background was adjusted for by 

subtracting three times ΔA 30-40 min from ΔA 0-30 min. Final concentrations were 

calculated against the linear standard curves constructed using standards ranging from 

0.15-3.17 mmol*L-1 concentrations of β-OH Butyrate (Stanbio 2450-604).   
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Plasma gylcerol and triglyceride concentration were determined using sequential 

endpoint assay (SIGMA, Trinder reagent A and B). This assay measures the 

concentration of triglyceride through the enzymatic production of glycerol from 

triglyceride, followed by a series of reactions that produce a quinoneimine dye absorbed 

at 540 nm (Trinder 1969, Barham and Trinder 1972, Bucolo and David 1973). The 

reaction involves the glycerol kinase (GK) mediated phosphorylation of glycerol by 

adenosine-5’-triphosphate (ATP) to produce glycerol-1-phosphate (G-1-P) and 

adenosine-5’-diphosphate (ADP). G-1-P is then oxidised by glycerol phosphate oxidase 

(GPO) to produce dihydroxyacetone phosphate and hydrogen peroxide (H2O2). 

Peroxidase (POD) then catalyses a reaction between H2O2, 4-aminoantipyrine (4-AAP), 

and sodium N-ethyl-N-(3-sulfopropyl) m-anisidine (ESPA) to produce quinoneimine dye. 

The absorbance at 540 nm is proportional to the glycerol concentration of the sample. To 

measure triglyceride concentrations, free glycerol concentrations are measured, followed 

by the addition of lipoprotein lipase to hydrolyse triglyceride to glycerol and free fatty 

acids. The difference between the initial free glycerol and final total triglyceride 

corresponds to the true triglyceride concentration.  Five µl of plasma, and 240 µl of 

reagent A (containing the GK, ATP, GPO, POD, 4-AAP, and ESPA) was added to each 

well and incubated at 35° C for 10 minutes. Afterwards, absorbance was measured at a 

primary wavelength of 540 nm to determine the plasma free glycerol concentration. Next, 

60 µl of solution B (containing the lipoprotein lipase) was added to each well and 

incubated for 10 minutes, following which absorbance was measured at the same 

wavelengths to determine the plasma triglyceride concentration. Final concentrations 

were calculated against the linear standard curves constructed using standards ranging 

from 0.176 – 5.64 mmol*L-1 concentrations of glycerol (Sigma G7793). Most samples 

were assayed in duplicate with undiluted plasma, and the average concentration was used 

for analysis. Duplicates with a coefficient of variation (CV) greater than 15% were 

assayed a third time to improve estimate accuracy. Samples with low plasma volumes 

were diluted with 0.09% saline and in four cases were run without duplicate. True 

triglyceride was calculated by subtracting the measured glycerol from total triglyceride.  
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2.3 Assessment of stopover duration 

To determine stopover duration, I deployed radio tags on birds while attempting to 

balance the number of tags by sex, morph, and date. To increase the power to detect an 

effect of sex and morph given a limited supply (N= 59) of radio transmitters, I elected to 

focus on adult birds only. Birds were captured and processed following the above 

methods, and tagged with digitally encoded radio transmitter tags (model NTQB-1, Lotek 

Wireless, www.lotekwirelss.ca) set to emit a uniquely encoded radio pulse every 12.7 s. 

Tags weighed approximately 0.29 g (< 2% body weight) and were affixed using a leg 

loop harness (Rappole and Tipton 1991) (Figure 2). Harnesses were constructed out of 

elastic thread (Dritz, 11345W), which was glued to the radio tag using cyanoacrylate glue 

(Bob Smith Industries Inc. Instacure +, www.bsi-inc.com). Total harness length was 

determined based on mass at capture, and ranged between 41 mm and 47 mm. Birds 

selected for radio tagging did not have blood samples taken.  

Stopover duration was measured using the Motus Wildlife Telemetry System 

(Taylor et al. 2017). The detection of a tagged birds radio signal on Motus towers within 

the stopover landscape was used to indicate that bird was still on stopover. To 

accommodate for short distance relocations known to occur during stopover (Taylor et al. 

2011, Dossman et al. 2016), any site within 20 km of Old Cut was considered within the 

stopover landscape. Departure night from stopover was considered as the last night a bird 

was detected on a tower within the stopover landscape. Stopover duration was calculated 

as (departure night – capture day + 1), providing the minimum duration of the stopover 

bout (Dossman et al. 2016).  
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Figure 2. Lotek NTQB-1 radio transmitter tag affixed to the back of a White-throated 

Sparrow using a leg-loop harness. 
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2.4 Stable isotope analysis  

2.4.1 Assessment of wintering latitude 

To examine the influence of sex, age, and morph on wintering latitude, stable hydrogen 

isotopes analysis was conducted on collected head feather samples (Wassenaar and 

Hobson 2003, Mazerolle and Hobson 2007). White-throated Sparrow undergo a partial 

moult (pre-alternate moult) on the wintering grounds prior to spring migration, which 

includes body and head feathers (Pyle 1997). Head feathers sampled during spring 

migration therefore act as a tracer of wintering latitude. Analysis of feather stable 

hydrogen isotopes (δ2Hf) was conducted using continuous flow-isotope ratio mass 

spectrometry (Mazerolle and Hobson 2007, Hobson 2011). Feathers were washed with a 

2:1 chloroform: methanol solution to remove surface oil contamination, and allowed to 

air dry overnight. Prior to weighing, the calamus was removed from all head feathers to 

ensure that there was no hydrogen input from remnant feather follicles. Head feathers 

were weighed (0.35 ± 0.03 mg) into silver capsules (Elemental Microanalysis D2000). 

Prior to analysis, feather samples and standards were passively co-equilibrated with 

ambient laboratory air for around two weeks to control for hydrogen exchange between 

feathers and ambient water vapour (Wassenaar and Hobson 2003).  

Analysis was conducted at the LSIS-AFAR stable isotope laboratory at Western 

University, Ontario, Canada. Pyrolysis of feather samples was conducted using a Thermo 

Finnigan High-temperature Conversion-Elemental Analyser (TC-EA) with a chromium 

packed reactor. Chromium reactors reduce the error in the measured δ2Hf  values by 

preventing the formation of hydrogen cyanide during pyrolysis of nitrogen rich feathers 

(Reynard and Tuross 2016). Measurement of δ2Hf values was carried out using a Thermo 

Delta V Plus mass spectrometer. Measured δ2Hf values were normalised to VSMOW 

(Vienna Standard Mean Ocean Water) international standard scale, and are expressed in 

parts per thousand (‰) (Hobson and Wassenaar 2008). Environment Canada keratin 

reference standards CBS (Caribou hoof: -197‰) and KHS (Kudu horn : -54.1‰) were 

used to calibrate measured δ 2Hf  values. 
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2.4.2 Assigning birds to geographic origin 

The geographic origin of sampled birds was assigned using the likelihood method (Royle 

and Rubenstein 2004, Van Wilgenburg and Hobson 2011), using an R script provided by 

Environment and Climate Change Canada in  R version 3.4.3 (R Core Team 2017). A 

GIS-based map of mean growing season precipitation stable hydrogen isotopes (δ2Hp) 

(Bowen et al. 2005) was first calibrated to produce a map (isoscape) of expected feather 

stable hydrogen isotope (δ2Hf) values for ground foraging short distance migrants, using 

the equation δ2Hf = -22.9808 + 0.9527 δ2Hp (Hobson et al. 2012). The feather isoscape 

was then cropped to include only known wintering location of White-throated Sparrows 

(BirdLife International) using the mask function in the ‘raster’ R package (Hijmans 

2017).  

To depict the likely migratory origin of each sex, morph, and age group, each bird 

was assigned to the base map one at a time. First, the probability of each bird originating 

from each cell in the raster feather isoscape was determined using a normal probability 

density function. Individual δ2Hf  values were compared to each cell in the raster feather 

isoscape, considering the estimated standard deviation of 18.4‰ for short distance 

ground foraging birds growing head feathers in the same location (Hobson et al. 2012). 

Next, a 2:1 odds ratio was used as a threshold to assess if a bird had originated from each 

cell in the raster feather isoscape. The resulting range represented areas where the 

likelihood of origin was greater than 67% for that individual. Cells within this range were 

coded as one, while cells that did not meet the likelihood threshold were coded as a zero. 

Once this process was completed for all birds, cell values were summed for all 

individuals, providing the number of individual with a 67% likelihood of originating 

from each cell in the feather isoscape. This value was standardised to the total number of 

individuals in the data set, to provide a raster map of the percent of measured individuals 

with a 67% likelihood of originating from each cell. 
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2.5 Genetic analysis 

2.5.1 DNA extraction from red blood cell 

Packed erythrocytes (5 µl) were placed in 300µl of TNES buffer (50 mM Tris-HCl pH 

8.0, 25 mM EDTA, 100 mM NaCl, 2% SDS) with 100 µg of proteinase-K (P2308 

Sigma), and incubated at 55°C for 3 hours. Lysis mixture was then mixed vigorously 

with 300 µL of 25:24:1 phenol/chloroform/isoamyl alcohol saturated with EDTA (P2069 

Sigma), and centrifuged at 5000 g for 5 minutes. DNA containing supernatant was 

collected into 1.5 ml centrifuge tubes. DNA was then precipitated by adding 25 µl of 

sodium acetate (3 M, pH 5.2) and 300 µl of chilled ethanol, and incubating at -20 for 18-

24 hours. The DNA mix was then centrifuged at 15000 g for 30 minutes at 4°C to form a 

solid pellet of DNA. Ethanol was discarded from each tube, and DNA pellets were 

washed by adding 1 mL of 70% ethanol, inverting the tubes ten times, and then 

centrifuging at 15000 g for 5 minutes. Pellets were then washed again following the same 

process, following which residual ethanol was aspirated. DNA was solubilized with 50 µl 

of DNAase free water and DNA concentration was determined. DNA was then diluted to 

a final concentration of 20 ng/µl.  

2.5.2 DNA extraction from feathers 

To extract genomic DNA from tail feathers, sterile razor blades were used to separate the 

calamus 15 mm from the base of the feather, and bisected longitudinally to expose 

interior pulp cells. Feather sections were placed in 300 µl of TNES buffer (50 mM Tris-

HCl pH 8.0, 25 mM EDTA, 100 mM NaCl, 2% SDS) with 100 µg of proteinase-K 

(P2308 Sigma), and incubated at 55°C for 18 hours. Lysis mixture was then mixed 

vigorously with 300 µl of 25:24:1 phenol:chloroform:isoamyl alcohol [saturated with 

EDTA] (P2069 Sigma), and centrifuged at 5000 g for 5 minutes. DNA containing 

supernatant was collected into 1.5 ml centrifuge tubes. DNA was then precipitated by 

adding 25 µl of sodium acetate (3M, pH 5.2), 250 µl of chilled isopropanol, 2 µl of 

Glycoblue (AM9515, ThermoFisher), and incubating at -20 for 18-24 hours. DNA was 

solubilized with 25 µl of DNase free water and DNA concentration was determined using 
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a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific). DNA was then diluted 

to a final concentration of 20 ng/µl.  

2.5.3 DNA amplification 

All PCR reactions were performed in 20 µl volumes in a 200 µl PCR tube using a Rotor-

Gene Gene-DiscTM 6000 (Corbett Research). PCR reaction mixture consisted of 3 µl of 

genomic DNA, 1x PCR buffer, 2 mM MgCl2, 0.2 mM dNTP (Each), 0.2 μM forward and 

reverse primers, and 1 unit of Taq DNA polymerase. PCR thermal cycle conditions were 

94°C for 1 minute (initial denaturing), 40 cycles of; 94°C for 30s, 48°C for 45s, and 72°C 

for 45s, and 72°C for 5 minutes (final extension). PCR products were separated on a 3% 

agarose gel pre-stained with Sybersafe (S33102 Thermofisher Scientific) in 1x TAE 

buffer. Molecular sexing was conducted using the P2/P8 (Griffiths et al. 1998) and 

CHID-W/CHID-Z (Morbey et al. 2018) primer sets. Both the P2/P8 and CHID-W/CHID-

Z primers target sequences associated with chromobox-helicase-DNA-binding gene, and 

simultaneously amplify sequences located on the avian W and Z sex chromosomes. The 

amplified sequences produced from the W and Z chromosomes differ in length. P2/P8 

produce a single (~350 bp band) for homozygous ZZ males and pair of bands (~350 bp 

and ~400 bp) for heterozygous WZ females. CHID-W/CHID-Z (forward, 5’- 

GTATCGTCAATTTCCATTTCAGGT-3’; reverse, 5’-CCATCAAGTCTCTAAAGA-

GATTGA-3’) produce a single band (520 bp) for males and pair of bands (520 bp and 

319 bp) for females. Molecular morph determination was conducted using the DraI RFLP 

genotype assay (Michopoulos et al. 2007). A 285 bp sequence was first amplified using 

the primer set described by Michopoulos et al. (2007) (forward, 5’-

CAGAGCTATGGAACATGAAC-AAC-3’; reverse, 5’-

AACTGTAGCTCCTGCACATTCTC-3’). Ten µl of PCR product was then digested for 

2 hours at 37°C using 20 units of DraI in 1x of CutsmartTM buffer (New England 

Biolabs). Digested and undigested PRC products were run in parallel on 3% agarose gel. 

The sequence amplified by the primers contains the recognition sequence required for 

cleavage by DraI in white-striped birds only, resulting in bands at 200 bp and 85 bp. Tan-

striped birds yield a single band at 285 bp. 
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2.6 Statistical analysis  

2.6.1 Capture timing and body composition analysis 

To examine differential migration timing, I analysed a general linear model of capture 

date with sex, morph, age. To test for differences in body condition between groups of 

birds, separate general linear models were conducted for total body mass, fat mass, and 

lean mass using sex, morph, and age as factors with day of year and time since sunrise 

included as covariates. Time since sunrise was calculated as the difference between 

capture time and civil sunrise. The inclusion of two-way interactions between the factors 

sex, morph, and age were considered using likelihood ratio tests (Myers 1990) between 

the model containing all single variable terms, and the model including all single variable 

terms and a two-way interaction with a critical value of 0.05. If model fit was not 

significantly improved by the inclusion of a two-way interaction term, the interaction was 

not included when assessing the effects of the single term variables. Model assumptions 

were examined visually by plotting model residual by predicted values and with a 

residual quantile-quantile plot. Variance homogeneity and residual normality were tested 

using Levene’s tests and a Shapiro-Wilk test respectively. 

2.6.2 Refuelling rate analysis 

Metabolite concentrations were log10 ([metabolite]) +1 transformed to satisfy normality 

assumptions, and to conform to previous studies. Principal component analysis was used 

to create a refuelling index (RI) useful for comparative analysis (Guglielmo et al. 2005). 

Triglyceride and β-OH butyrate values were examined for correlation between each 

other, and with bleed time. A general linear model was used to test for the effect of sex, 

morph, and age on RI. Fat mass, lean mass, day of year, time since sunrise, and daily 

White-throated Sparrow abundance (henceforth competitor abundance) was included in 

the model as a covariate and was estimated from total daily sightings and captures by 

LPBO personnel. Competitor abundance was included in the model to test if the 

abundance of White-throated Sparrows at Old Cut may have influenced refuelling rate. 

The inclusion of two-way interactions between the factors sex, morph, and age were 

considered following the method described above. Model assumptions were examined 
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visually by plotting model residual by predicted values and with a residual quantile-

quantile plot. Variance homogeneity and residual normality were tested using Levene’s 

tests and a Shapiro-Wilk test respectively. 

2.6.3 Stopover duration analysis 

To test for differences in stopover duration, Cox semiparametric hazard regression was 

applied in a proportional hazard modelling framework using SAS software’s PHREG 

procedure (Dossman et al. 2016, Morbey et al. 2018). Proportional hazard analysis 

provides a method to examine how factors and covariates affect the length of time that 

passes before the occurrence of an event. Covariates that shorten the time elapsed before 

the occurrence of an event are said to increase the “risk”.  In the context of avian 

migration and migratory stopover, departure from stopover is the event of concern. High 

departure “risk” indicates a higher probability of leaving a stopover site and a shorter 

stopover duration. Conversely, lower “risk” of departure translates to a low probability of 

leaving, and a longer stopover duration. Hereafter, “risk” will refer to the probability of 

departure. Procedure PHREG allows for the inclusion of time-dependent covariates, 

providing a method to explicitly examine how temporally variable environmental 

conditions affect the risk of departure. Tailwind, temperature, and competitor (i.e. White-

throated Sparrow) abundance were included as time dependent covariates in the model of 

departure risk. Several studies have found a positive association between tailwind and 

departure from stopover (Kemp et al. 2010, Sjöberg et al. 2015, Dossman et al. 2016, 

Morbey et al. 2018), and temperature is known to influence migratory restlessness in 

captive White-throated Sparrows (Metcalfe et al. 2013).  Competitor abundance was 

included to test if the density of White-throated Sparrows at Old Cut may have influenced 

departure risk.  

Tailwind values were assigned for each day a bird was at risk of departure 

following Morbey et al. (2018). Wind data was obtained from the NCEP/DOE Reanalysis 

2 data set (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html) which 

provides meteorological data four times each day at 2.5° x 2.5° spatial resolution. Wind 

speed in m∙s-1 in the easterly and northerly direction was extracted using the RNCEP 

package in R (Kemp et al. 2012), and interpolated for Old Cut (lat = 42.583°, lon = -
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80.397°) using the function NCEP.interpol with the option for linear interpolation. Wind 

was interpolated for 1000 mb pressure level at sunset (https://www.nrc-

cnrc.gc.ca/eng/services/sunrise/ index.html). Tailwind component was estimated as 

Vw*cos(β), where Vw is wind speed (m·s-1) and β is the difference between flight bearing 

and wind direction. Flight bearing was assumed to be North (0°). Temperature for each 

day a bird was at risk of departure was represented as the average daily temperature over 

a 24-hour period from midnight. Temperature data was recorded during the field season 

every five minutes using a temperature sensor (Onset S-THB-M002) connected to an 

Onset Hobo Micro Station (H21 -002) located in the Old Cut woodlot. During the spring, 

tailwind and temperature likely show strong correlation, with warmer southern tailwinds 

and cooler northern headwinds. To control for multicollinearity between tailwind and 

temperature, I first tested for correlation between tailwind and temperature, following 

which I conducted a principal component analysis on tailwind and temperature using the 

PRINCOMP procedure in SAS.  

Proportional hazard analysis was conducted using a model containing sex and 

morph as factors, with fat mass, lean mass, and day of year included as covariates. The 

first component of a PCA of tailwind and temperature was included as time-dependent 

covariates to account for environmental variability. Competitor abundance was also 

included in the model as a time-dependent covariate. The exact method was specified to 

handled tied stopover durations between individuals. This method calculates the 

probability of departure as the sum of the probabilities of all potential order combinations 

between tied individuals, and provides a more precise estimate of departure risk. 

Difference in stopover duration between sex and morph classes was visualised using 

separate Kaplan-Meier survival estimator plots. 

2.6.4 Wintering latitude analysis 

Wintering latitude was examined using head δ2Hf values, with lower values indicating a 

more northern wintering latitude. Because a small percentage of head feathers can be 

retained during the pre-alternate moult, samples with δ2Hf values less than those expected 

within the known winter range of the White-throated Sparrow ( –85‰) were excluded 

from the analysis (Mazerolle et al. 2005). A general linear model of δ2Hf values was 
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analysed to test if wintering latitude was influenced by the factors sex, morph and age. 

The inclusion of two-way interactions between the factors sex, morph, and age were 

considered using a likelihood ratio test as described previously. Model assumptions were 

examined visually by plotting model residual by predicted values and with a residual 

quantile-quantile plot. Variance homogeneity and residual normality were tested using 

Levene’s tests and a Shapiro-Wilk test respectively. All statistical analyses were 

performed in SAS v. 9.4. (SAS Institute 2015) or R v. 3.4.3 (R Core Team 2017).  
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Results 

A total of 421 birds were sampled between 9 April 2017 and 15 May 2017, consisting of 

83 birds sampled for plasma metabolite analysis, 53 birds radio tagged, with the 

remaining 285 birds feather sampled only. Difficulties conducting genetic analysis using 

DNA extracted from feathers precluded the assignment of sex and morph of some birds. 

Sex was determined for 141 birds and morph was determined for 239 birds, with sex and 

morph confirmed for 119 birds using genetic analysis. Age was confidently determined in 

the field for 112 of these 119 birds. Validation of the provisional field assignment of sex 

and morph yielded an accuracy of 91% for sex, and 89% for morph. 

3.1 Migration timing  

First capture date was modelled for 112 birds with positively confirmed sex, morph, and 

age. Likelihood ratio tests indicated that none of the two-way interactions between sex, 

morph, and age increased model fit (all p > 0.05). A general linear model containing sex, 

morph, and age was highly significant (F3,108 = 24.29, p < 0.0001). Sex signficantly 

influenced first capture date (F1,108= 70.72, p < 0.001), with males preceeding females by 

11 ± 1.3 days (Figure 3). First capture date was unaffected by morph (F1,108 = 0.01, p > 

0.5), with equal mean first capture dates between white-striped and tan-striped birds 

(Figure 4). Age did not have a signficant influence on migration timing (F1,108 = 0.01, p > 

0.5) (Figure 5).While Levene’s tests indicated that the assumption of variance 

homogenity was met (all p > 0.05), a Shapiro-Wilk test suggested that the distribution of 

the model residuals departed from normaility (W = 0.96, p = 0.006). Inspection of the 

model diagniostic plots (Figure 6) suggested that this may have resulted from a few late 

arriving individuals, and likely does not constitue a major violation of a model 

assumption given the sample size of 112. 
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Figure 3. Distribution of first capture date at the Long Point Bird Observatory, Long 

Point, Ontario, Canada, for male (N = 50) and female (N = 62) White-throated Sparrows 

(Zonotrichia albicollis) during spring migration 2017. 
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Figure 4. Distribution of first capture date at the Long Point Bird Observatory, Long 

Point, Ontario, Canada, for white-stiped (N = 54) and tan-striped (N = 58) White-throated 

Sparrows (Zonotrichia albicollis) during spring migration 2017.  
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Figure 5. Distribution of first capture date at the Long Point Bird Observatory, Long 

Point, Ontario, Canada, for adult (after-second-year) (N = 54) and juvenile (second-year) 

(N = 62) White-throated Sparrows (Zonotrichia albicollis) during spring migration 2017 
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Figure 6. Model residuals by predicted values (A), and residual quantile-quantile plot (B) 

for the general linear model of capture date for White-throated Sparrows (Zonotrichia 

albicollis) migrating through Long Point, Ontario, Canada, during the spring of 2017. 
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3.2 Body Composition 

Individuals of different age and sex classes differed in body mass, fat mass, and lean 

mass. Total body mass was modelled for 106 individuals. Likelihood ratio tests indicated 

that none of the two-way interactions between sex, morph, and age increased model fit 

(all p > 0.05). The model of total mass containing sex, morph, age, day of year, and time 

since sunrise was highly significant (F5,100 = 10.41, p < 0.0001, R2= 0.34). Total body 

mass was significantly different between sexes (F1,100 = 36.65, p < 0.0001), ages (F1,100 = 

4.57, p = 0.035), and depended on the day of year (F1,100= 13.38, p < 0.001) and time 

since sunrise (F1,100 = 2.19, p = 0.025). Total body mass did not differ between morphs (p 

> 0.1). Total body mass of males was 3.45 ± 0.6 g greater than females, 0.93 ± 0.4 g 

higher in adults compared to juveniles and increased 0.1 ± 0.03 g with each day of the 

year and 0.004 ± 0.002 g with every minute since sunrise (Table 1). 

 Fat mass was modeled for 103 individuals. The model of fat mass containing sex, 

morph, age, day of year, and time of day was highly significant (F5,97 = 9.87, p = 0.0001, 

R2= 0.34), and was not improved by the inclusion of interaction terms (all p > 0.05). Fat 

mass differed between the sexes (F1,97 = 19.04, p < 0.001), and depended on the day of 

year (F1,97 = 47.88, p < 0.001.) Fat mass did not differ between morph (p = 0.9) or age 

classes (p = 0.3) and did not depend on the time of day (p = 0.5). Fat mass was 1.60 ± 0.4 

g higher in males, and increased by 0.14 ± 0.02 g for each day of the year (Table 1).  

 Finally, lean mass was modeled for 103 individuals. The model of lean mass 

containing sex, morph, age, day of year, and time of day was highly significant (F5,97 = 

19.34, p = 0.0001, R2= 0.50), and was not improved by the inclusion of interaction terms 

(all p > 0.05). Lean mass differed between the sexes (F1,97 = 39.09, p < 0.001) and 

depended slightly on time since sunrise (F1,97 = 8.58, p = 0.004). Lean mass did not differ 

between morph (p = 0.9) or age classes (p = 0.07), and did not depend on the day of year 

(p = 0.9). Lean mass was 1.83 ± 0.3 g higher in males compared to females, and 

increased 0.003 g with every minute since sunrise (Table 1). Model assumptions were 

satisfied in all body composition analyses. 
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Table 1. Parameter coefficients ( SE) for the general linear models of total body mass (n 

= 106), fat mass (n = 103), and lean mass (n = 103) for White-throated Sparrows 

(Zonotrichia albicollis) during a stopover at Long Point Ontario during the spring of 

2017. Total mass was measured using an electronic mass balance. Fat and lean mass were 

measured using quantitative magnetic resonance. 

 

  

Model Variable (reference level)    SE F – statistic  p – value 

T
o

ta
l 

m
as

s 

Sex (Males) 3.45  0.6 36.65 < 0.0001 

Morph (White-striped)  -0.31  0.30 0.06 0.8 

Age (Adult, ASY) 0.93  0.4 4.57 0.35 

Day of year 0.1  0.03 13.38 0.07 

Time since sunrise 0.004  0.002 2.19 0.005 

F
at

 m
as

s 

Sex (Males) 1.60  0.37 19.04 < 0.0001 

Morph (White-striped)  0.04  0.27 0.03 0.87 

Age (Adult, ASY) 0.27  0.28 0.91 0.34 

Day of year 0.14  0.02 47.88 < 0.0001 

Time since sunrise 0.0009  0.001 0.40 0.53 

L
ea

n
 m

as
s 

Sex (Males) 1.82  0.29 39.09 < 0.0001 

Morph (White-striped)  -0.01  0.22 0.001 0.95 

Age (Adult, ASY) 0.41  0.22 3.28 0.07 

Day of year 0.0002  0.02 0.001 0.99 

Time since sunrise 0.003  0.001 8.58 0.005 
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3.3 Stopover refuelling rate 

Triglyceride and β-OH butyrate concentrations were measured in 82 birds. Table 2 shows 

the average CV of each metabolite assay and the measured metabolites concentrations 

can be found in appendix 3. Three birds were captured in baited ground traps and were 

excluded from analysis. Triglyceride and β-OH butyrate were negatively correlated (r = -

0.48, p < 0.001), and principal component analysis was applied to generate a refuelling 

index. Principal component one (PC1) accounted for 74% of the variance, with 

triglyceride loading positively into PC1 and β-OH butyrate loading negatively. Higher RI 

values therefore signify higher refuelling rate.  

Average bleed time was 6 minutes and 35 seconds, with a standard error of 15 

seconds. No correlation was found between bleed time and triglyceride (r = 0.08, p = 

0.520) or β-OH butyrate (r = 0.06, p = 0.652) in this study, indicating that the time 

elapsed between capture are blood sampling did not influence the measurement of 

refuelling rate. 

Several birds were either missing data associated with competitor abundance (3), 

age (7), or QMR data (2), and were excluded from analysis. One bird was excluded as an 

outlier, likely resulting from low plasma volume. The model of refuelling rate sex, 

morph, age, fat mass, lean mass, day of year, time since sunrise, and competitor 

abundance was significant (F8,56 = 2.64, p = 0.015, R2= 0.27), and was not improved by 

inclusion of any two-way interactions between factors. RI increased with each minute 

since sunrise (F1,56  = 8.76, p = 0.005), and was positively associated with fat mass at 

capture (F1,56  = 4.31, p = 0.04, Table 3).  Neither sex nor morph influenced refuelling 

rate (Figure 7) although females tended to have a higher RI than males (F1,56  =3.62, p = 

0.06). RI also tended to decrease with day of year (F1,56  = 3.19, p = 0.07). The remaining 

variables did not significantly influence refuelling rate (all p > 0.2, Table 3). All model 

assumptions were satisfied in this analysis. 
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Table 2. The average ± standard deviation (SD) of the coefficient of variation (CV) for 

each plasma metabolite assay. 

Assay Average CV ± SD 

Glycerol 2.2 ± 2.1 

Triglyceride 2.6 ± 2.8 

Β-OH Butyrate 3.9 ± 3.3 
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Figure 7. Stopover refuelling index (RI) by sex-morph class for White-throated Sparrows 

(Zonotrichia albicollis) at Long Point, Ontario, Canada, during the spring of 2017. Solid 

line indicates the median value, with the filled box represents the first and third quartile. 

Whiskers indicate the minimum and maximum values, and points represent outliers 

beyond 1.5  * the inter- quartile range. 
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Table 3.  Parameter coefficients (  SE) for the general linear model of stopover 

refuelling rate index (RI) in White-throated Sparrows (Zonotrichia albicollis) during a 

stopover at Long Point Ontario during the spring of 2017. 

  

Variable (reference level)    SE F – statistic 1,56   p - value 

Sex (Males) -0.98  0.51 3.62  0.06 

Morph (White-striped)  -0.31  0.30 1.02 0.32 

Age (Adult, ASY) -0.34  0.36 0.89 0.35 

Fat Mass (g) 0.24  0.12 4.31 0.04 

Lean Mass (g) 0.21  0.18 1.43 0.24 

Day of year -0.05  0.03 3.19 0.08 

Time since sunrise 0.006  0.002 8.76 0.005 

Competitor abundance -0.0007 0.004 0.03 > 0.5 
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3.4 Stopover duration 

Temperature and tailwind were significantly positively correlated (r = 0.41, p < 0.001), 

and principal component analysis was applied to generate an index of weather condition 

(see methods). Principal component one (PC1) accounted for 70% of the variance, with 

both tailwind and temperature loading positively into PC1. Therefore, I interpret PC1 as a 

weather index representing the favourability of environmental conditions in regard to 

temperature and tailwind.  

I deployed 53 radio tags on White-throated Sparrows during the spring of 2017. 

Attempts to balance radio tag deployment between the sexes by date were unsuccessful 

due to site level protandry. Of the 53 radio tagged birds, I was able to confirm the sex of 

37, and the morph of 30. Using the sexing criteria from Caldwell and Mills (2006), and 

assuming the morph assigned in the field is correct, 15 of the remaining 16 birds can be 

assigned a sex. I believe the assumption of field assigned morph matching genetic morph 

is valid. Among the radio tagged birds that were successfully morphed using genetics, all 

matched the field assigned morph. Radio tags were deployed on 22 males and 30 females. 

Of these, 25 birds were white-striped, and 27 birds were tan-striped (Table 4). 

Stopover duration ranged from 1- 23 days (median of 7 days) with all birds 

departing before 21 May 2017. In the Cox proportional hazard model of stopover 

duration, the hazard for departure was influenced primarily by the weather index, and by 

day of year, and was unaffected by sex (Figure 8), morph (Figure 9), fat mass, lean mass, 

and competitor abundance (Table 5). After controlling for covariates, the hazard for 

departure increased by 117% for each unit of tailwind and temperature, and 8.5% for 

each day of year.  
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Table 4. Average stopover duration ± standard error at Long Point, Ontario for each 

White-throated Sparrow sex-morph class during the spring of 2017. 

Sex-morph class N Stopover duration (days) ± standard error 

White-striped male 11 8.8 ± 2 

White-striped female 14 9.3 ± 1.4 

Tan-striped male 11 5.5 ± 1.4 

Tan-striped female 16 7.3 ± 1.4 
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Figure 8. Kaplan-Meier survival estimates showing the probability of remaining at 

stopover at Long Point, Ontario, Canada for White-throated Sparrows (Zonotrichia 

albicollis) during the spring of 2017. Males (N= 22) are represented by the dashed line, 

and females (N= 30) are represented by the solid line.  
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Figure 9. Kaplan-Meier survival estimates showing the probability of remaining at 

stopover at Long Point, Ontario, Canada for White-throated Sparrows (Zonotrichia 

albicollis) during the spring of 2017. Tan-striped birds (N= 25) are represented by the 

solid line, and white-striped birds (N= 27) are represented by the dashed line.  
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Table 5. Parameter coefficients (± SE) of the Cox regression model of stopover duration 

in White-throated Sparrows during a stopover at Long Point, Ontario, during the spring 

of 2017. Also shown are the chi-squared values, p-values, and hazard ratios (HR). 

 

  

Variable   SE Chi-square p-value HR 

Sex (Females) -0.73  0.60 1.51  0.22 0.49 

Morph (Tan-striped)   0.36  0.32 1.23 0.26 1.43 

Fat Mass (g) 0.24  0.14 2.90 0.09 1.27 

Lean Mass (g) 0.19  0.17 0.93 0.33 1.18 

Day of year 0.08  0.04 5.35 0.02 1.09 

Weather index (PC1) 0.77  0.16 23.11 <0.001 2.17 

Competitor abundance -0.003  0.004 0.52 0.47 0.99 
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3.5 Wintering latitude 

Head feather δ2H values were compared for 64 birds using a general linear model. Age 

was omitted from the model as several morph-sex-age classes had less than 6 individuals, 

and because the differences between sex and morph classes were of primary concern. A 

likelihood ratio test indicated that the inclusion of a sex by morph interaction improved 

model fit. Despite this, the model of head feather δ2H values containing sex, morph, and a 

sex by morph interaction was not significant (F3,60 = 1.49, p = 0.23). Head feather δ2H 

values did not differ between sex (F1,60 = 3.03, p = 0.09) or morph (F1,63 = 0.90, p = 0.35) 

classes, and the sex by morph interaction was not significant (p = 0.61). Males tended to 

have a more negative δ2Hf value than females indicating a more northern wintering 

latitude. This pattern is generally reflected in the maps of likely origin, with a greater 

proportion of males and adults assigned to the northern part of the wintering range 

(Figure 10). All model assumptions were satisfied in this analysis. 
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Figure 10. The geographic distribution of assigned wintering location for White-throated 

Sparrows (N=64) sampled at Long Point, Ontario, Canada, during the spring of 2017. 

Assignments are based on a likelihood-based comparison between head feather isotopes 

values and predicted isoscape from Bowen et al. (2005). Colour represent the proportion 

of individual in the sex or morph class that can be assigned to each cell in the raster 

isoscape, with darker colour representing a higher proportion of that class being assigned 

to that region. 
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Discussion 

Differential migration timing is commonly observed in songbirds, however, the 

underlying mechanisms are still uncertain for many species. Three key behavioural 

mechanisms thought to influence migration timing are migration speed, migration 

distance, and migration initiation date (Coppack and Pulido 2009). In this thesis, I 

examined aspects of migratory stopover ecology pertaining to migration speed, and 

migration distance between the sexes, morphs, and age classes of the White-throated 

Sparrow using a suite of advanced techniques. Plasma metabolite analysis and automated 

radio telemetry were used to measure stopover refuelling rate and stopover duration; two 

aspects of migration ecology believed to influence migration speed. Migration distance 

was inferred using stable isotope analysis. Because protandry is known to occur in the 

White-throated Sparrow, I tested the hypothesis that males would have a higher stopover 

refuelling rate and shorter stopover duration than females. This could theoretically 

contribute to a faster overall migration speed in males compared to females as less time 

would be spent at stopover sites during migration. I also expected males to overwinter at 

more northern latitudes, indicating a shorter overall migration distance. Morph-specific 

migration timing has been observed in the White-throated Sparrow (Knapton et al. 1984, 

Caldwell and Mills 2006, Mazerolle and Hobson 2007), however, little is known about 

morph-specific spring stopover ecology. Behavioural traits exhibited by white-striped 

birds may influence resource competition at stopover, and so I expected white-striped 

birds to refuel faster, and depart stopover sooner. I also tested for morph specific 

wintering latitude. 

4.1 Migration timing 

White-throated Sparrows showed significant protandry in their arrival date at Old Cut, 

with males arriving around 11 days earlier than females. There was no discernable 

difference in the arrival date between morphs. The degree of protandry is similar to the 

findings of Mills (2005), who found that males arrive around 10 days earlier than females 

using a 24-year LPBO banding dataset. White-throated Sparrows migrating through Long 

Point exhibit a degree of protandry slightly higher than the seven days reported for 
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White-throated Sparrows migrating through the Delta Marsh Bird Observatory 

(Mazerolle and Hobson 2007), and could represent a population difference between birds 

breeding in Ontario and Manitoba. The degree of protandry exhibited by White-throated 

Sparrows appears to be high relative to many other migratory songbird species. Among 

18 wood warbler species captured during migratory stopover at Prince Edward Point, 

Ontario, protandry values ranged from two to five days (Francis and Cooke 1986). 

Examining a multi-decadal banding dataset of 30 protandrous North American songbird 

species, Kissner et al. (2003) found that protandry ranged from 0.5 to 12.7 days, with an 

average protandry value of five days. Among eight common migratory European 

songbirds species, Tøttrup and Thorup (2008) found an average degree of protandry of 

only three days. 

Higher degrees of protandry are expected when operational sex ratios are male-

biased, and there are high levels of extra-pair mating (Kokko et al. 2006). Past studies 

focusing on White-throated Sparrows migrating through Long Point have found a male 

bias in sex ratios (Mills 2005), suggesting that access to females may be limited during 

the breeding season. Extra-pair mating is also known to occur in the White-throated 

Sparrow, although mainly between white-striped males and tan-striped females (Tuttle 

2003). Around 30% of the nestlings in white-striped male and tan-striped female nests 

were the result of an extra pair fertilization, compared to only 4.4% of nestlings in tan-

striped male and white-striped female nests (Tuttle 2003). White-striped males appear to 

employ a reproductive strategy focused on maximising fitness through extra-pair 

copulations (EPC), whereas tan-striped males focus on maximising fitness through mate 

guarding (Tuttle 2003, Falls and Kopachena 2010). If the level of EPC differs between 

the sex-morph pairings, why is there no major difference in the degree of protandry 

exhibited by each sex-morph pair? With greater rates of EPC, the protandry exhibited in 

the white-striped male and tan-striped female pairings should theoretically be greater. 

Hypothetically, this could manifest as the earlier arrival of white-striped birds, either 

exclusively in males or within each sex. Differences in arrival timing between morphs 

was reported by Mazerolle and Hobson (2007) for White-throated Sparrows migrating 

through the Delta Marsh Bird Observatory, with white-striped birds arriving around 4.8 

days earlier than tan-striped birds. However, other studies have reported only a slight 
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difference in migration timing between morphs, both at stopover sites and on the 

breeding grounds. At breeding areas in Algonquin Provincial Park, Knapton et al. (1984) 

compared the distribution of arrival dates for each morph within each sex, and found that 

white-striped birds arrived slightly earlier, but the difference between morphs was only 

significant within females.  

Caldwell and Mills (2006) found morph-specific arrival timing in White-throated 

Sparrows using banding data collected by the LPBO, with white-stiped birds arrive 

around two days earlier than tan-striped birds. Further examining morph specific 

migration timing within each sex, Caldwell and Mills (2006) found a significant 

difference within females, with white-striped birds arriving around 1.3 days earlier than 

tan-stiped birds. These studies suggest that the protandry between tan-striped males and 

white-striped females may be lower than white-striped male and tan-striped female 

pairings, however, these reported differences are small compared to the overall degree of 

protandry exhibited by both sex-morph pairings of the White-throated Sparrow. One 

possible explanation is that both the mate guarding strategy of the tan-striped male and 

the EPC strategy of the white-striped males have benefits associated with early arrival. 

For example, Møller et al. (2008) observed higher rates of extra-pair young in the nest of 

late arriving male Barn Swallows. Another potential explanation is that the selection for 

earlier male arrival resulting from the reproductive strategy of the white-striped male 

results in earlier arrival timing in males of both morphs. Perhaps the genetic mechanism 

underlying the mating strategy is morph-specific, but the selective pressures associated 

with the mating strategy of the white-striped male acts on the traits associated with earlier 

migration in males of both morphs.  

I did not observe any difference in first capture timing between ages. Age-specific 

migration schedules are known to occur among many migratory songbirds (Francis and 

Cooke 1986, Stewart et al. 2002). Stewart et al. (2002) examined age-specific spring 

migration timing using a 14-year LPBO banding dataset. Comparing age-specific 

migration within each sex, adult males migrated significantly earlier than juvenile males 

in 16 of 20 species examined, and adult females migrated significantly earlier than 

juvenile females in 8 of 12 species examined; adults preceded juveniles by 2-3 days.  
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White-throated Sparrows, nor any other sparrow species, were not included in their study. 

Juveniles might be at a disadvantage when competing for territories due to their lower 

competitive ability or social dominance (Sherry and Holmes 1989), suggesting that their 

optimal arrival date on the breeding grounds might be later than adults (Kokko et al. 

2006). In overwintering flocks, juvenile White-throated Sparrows are generally sub-

dominant to adults (Piper and Wiley 1989), however, it is unclear if this pattern holds 

true during migration.  

4.2 Stopover refuelling rate 

My study adds to the mounting evidence suggesting that sex classes can refuel equally 

well, and that differential stopover refuelling ability is not a general mechanism that 

contributes to protandry in migratory songbirds. While not significant, the refuelling rate 

model indicated a tendency for females to have a higher refuelling than males, strongly 

suggesting that differences in refuelling rate do not underlie the migratory protandry 

observed in White-throated Sparrows. Past studies have provided mixed conclusions 

regrading how sex differences in stopover refuelling rate contribute to migratory 

protandry across multiple avian taxa. In Seewagen et al. (2013), sex-specific refuelling 

rates were found in two protandrous warbler species during spring migration stopover 

bouts in parks surrounding the New York Metropolitan area. Schmaljohann et al. (2016) 

found that male Northern Wheatears (Oenanthe oenanthe) of the leucorhoa subspecies 

refuelled faster than females, and, using modelling, predicted that the difference in 

refuelling rate would result in a degree of protandry near observed values. Other studies 

have failed to find an effect of sex on refuelling rate (Morris et al. 2003, Smith et al. 

2007, Macdade et al. 2011, Hays et al. 2018, Morbey et al. 2018), suggesting that sex-

specific stopover refuelling rate is not an important contributor to protandry. 

I observed no effect of morph on refuelling rate, suggesting that behavioural 

differences known to exist between the morphs do not influence stopover refuelling 

during spring stopover at Long Point. This finding contradicts the pattern found in fall 

migrating White-throated Sparrows, where white-striped birds had a higher stopover 

refuelling index than tan-striped birds (Brown et al. 2014). Seasonal differences in 

behaviour and physiology may explain why morph influenced refuelling rate during 
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stopover in the fall but not during spring. Higher refuelling rates have been observed 

during the spring in some songbird species (Seewagen et al. 2013). One possible 

explanation for the absence of morph-specific refuelling rate during the spring is that any 

intrinsic changes associated with increased spring refuelling rate may not occur evenly in 

white-striped and tan-striped birds. Tan-striped birds may have a considerably higher 

refuelling rate in the spring, whereas the spring and fall refuelling rate of white-striped 

birds may be comparable. Comparison of spring and fall refuelling rate in captivity may 

provide some insight into this question.  

Age-specific stopover refuelling rate is generally not observed in spring migrating 

songbirds, and the findings of my study concurs with this pattern (Morris et al. 2003, 

Seewagen et al. 2013, Morbey et al. 2018). Behavioural differences related to competitive 

ability, social status, foraging skills, and physiological differences regarding the digestive 

system have been suggested to influence refuelling ability (Woodrey 2000, Moore et al. 

2003, Stein et al. 2005). These differences are likely greatest in the fall, when juvenile 

birds are migrating for the first time. Given that Brown et al. (2014) found no effect of 

age on stopover refuelling rate in fall migrating White-throated Sparrows, it is not 

surprising that no effect of age was found in the spring. 

One possible explanation for the absence of an effect of sex, morph, and age on 

refuelling rate is that food resources are not limited during spring stopover at Old Cut, 

potentially reducing the amount of intraspecific competition for resources, or reducing 

the negative impact of resource competition on refuelling rate below a detectable level. 

During the fall when resources are less abundant, competition for scarce resources may 

have a greater impact on refuelling rate, contributing to the morph-specific refuelling rate 

found by Brown et al. (2014). Although I did not specifically examine resource 

abundance at Old Cut, greater food availably and higher refuelling rates in the spring 

compared to the fall has been reported at other sites. Smith (2013) found a non-

significant trend for White-throated Sparrows to have a higher refuelling rate in the 

spring compared to the fall at the Braddock Bay Bird Observatory (Hilton, NY, USA). 

Although not specifically examined, Seewagen et al. (2011) reported higher leaf litter 

invertebrate biomass during the spring than in the fall at several stopover sites 
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surrounding New York City (NY, USA). Behaviourally based differences in stopover 

refuelling rate may then have some aspect of site quality dependence, with poorer 

competitors having a lower refuelling rate when food resources are scarce. Examining the 

occurrence of class-specific refuelling rate between sites of varying quality, perhaps 

under controlled conditions, may provide further insight into this question. 

Stopover refuelling rate was significantly influenced by fat mass at capture, and 

the time elapsed since sunrise. Previous studies examining refuelling rate using plasma 

metabolite analysis have found an effect of condition or mass on refuelling, with greater 

condition and mass positively influencing metabolite concentrations (Schaub and Jenni 

2001, Guglielmo et al. 2002, Macdade et al. 2011, Smith 2013). There are several 

possible explanations for this finding. Birds with higher fat mass may be in a higher 

energetic condition, enabling more efficient foraging and refuelling. Alternatively, birds 

with a higher refuelling rate may be less likely to be captured with low fat mass. To 

ensure that the relationship between fat mass and refuelling rate was not biasing the RI 

model, I removed the fat mass, and re-examined the influence of the remaining variables. 

The direction and significance of the remaining effects were unchanged. Time of day also 

significantly influenced refuelling. A gradual increase in refuelling index throughout the 

day is likely the result of the turnover in metabolite profile from an overnight fasting to a 

daytime refuelling state, and has been observed in multiple studies (Guglielmo et al. 

2005, Seewagen et al. 2011, 2013; Brown et al. 2014, Morbey et al. 2018). A potential 

confounding factor related to studying granivorous White-throated Sparrows at Old Cut 

is the use of bird feeders and baited ground traps. The artificial supplementation of food 

in and around the Old Cut banding station could theoretically affect refuelling rate and 

overall stopover duration. One direct consequence of this would be a higher refuelling 

rate observed in birds captured shortly after feeding at or around bird feeders and baited 

ground traps.  

If the primary mechanism underlying sex or age differences in refuelling rate is 

competitive ability, with better competitors securing more resources and thus refuelling 

faster, high food availability could potentially reduce the observable contrast between 

individuals. Additionally, the consequences of being a less competitive individual might 



61 

 

 

be negated when resources are highly abundant, as another patch with high food 

availability is readily available. Supporting this notion, White-throated Sparrows were 

often observed feeding at baited ground traps and bird feeders located throughout the Old 

Cut banding stations.  

4.3 Stopover duration  

Stopover duration did not differ between males and females, nor between white-striped or 

tan-striped birds. This finding is unsurprising given that neither sexes nor morphs 

differed in stopover refuelling rate. Despite the clear evidence of protandry in the White-

throated Sparrow, the similarity in stopover duration between sexes may suggest that the 

overall speed of migration does not differ, however, additional information about other 

aspects contributing to migration speed is required before drawing further conclusions. 

Differences in flight speed and the frequency of stopover bouts could also contribute to 

differences in overall migration speed. For instance, additional stopover bouts conducted 

by females White-throated Sparrows prior to arrival at Long Point could both explain the 

later arrival of female observed in this study, and the pattern of protandrous breeding 

ground arrival timing observed previously in this species. Interestingly, the similarity in 

stopover duration between sex and morph classes may suggest that other costs associated 

with stopover, such as searching and settling costs, may not differ between sex and 

morph classes. Prolonged time required for finding a suitable stopover location prior to 

refuelling may increase overall stopover duration. For example, if female White-throated 

Sparrows expend more energy or time searching and competing for a stopover patch prior 

to refuelling, this could theoretically result in an increased stopover duration (Alerstam 

and Lindström 1990).   

Higher average daily temperatures and greater tailwind assistance significantly 

increased the risk of departure. Evidence suggests that temperature can act as a direct 

departure cue for departure from stopover (Newton 2008, Metcalfe et al. 2013, Berchtold 

et al. 2017). Metcalfe et al. (2013) examined the effects of inclement weather on the 

nocturnal migratory restlessness of captive White-throated Sparrows during spring by 

manipulating barometric pressure and temperature. A decrease in migratory restlessness 

was observed following a decrease in temperature combined with an increasing pressure, 
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however, increased temperature and decreased pressure did not produce a corresponding 

increase in migratory restlessness over the unmanipulated control. The control 

temperature in Metcalfe et al. (2013) was 19° C, whereas the average daily temperature I 

recorded over the course of my study was 11° C. The control condition in Metcalfe et al. 

(2013) may correspond to favourable migratory conditions in a natural setting. This could 

explain why increasing temperature and decreasing pressure did not increase migratory 

restlessness compared to controls.  

During spring migration, warmer temperature may be associated with southerly 

tail winds. Many studies have demonstrated a correlation between favourable tailwinds 

and migratory behaviour (Erni et al. 2002, Eikenaar and Schmaljohann 2014, Dossman et 

al. 2016, Morbey et al. 2018). This behaviour likely reduces the cost per distance flown, 

and the amount of correction required for crosswind drift (Alerstam and Lindström 1990, 

Liechti 2006), and may positively influence both survival and productivity (Drake et al. 

2014). It is likely that both temperature and tailwind are important factors governing the 

decision to migrate, with rising temperature acting as an initial cue to initiate migration, 

with final departure decisions made after wind conditions have been assessed aloft. While 

there was a tendency for fat mass to increase departure risk, this effect was not 

significant. It is important to note that fat mass was measured at capture, and this may not 

correspond to departure fat mass. The effect of temperature, tailwind, and fat mass might 

suggest that the decision to depart from stopover follows a hierarchical process. Birds in 

good condition might be cued to migrate by warmer daily temperatures, with the final 

departure decision made after wind conditions have been assessed once airborne. A 

hierarchical departure decision process might help to explain the extended diel activity on 

departure nights observed in White-throated Sparrows, Magnolia Warblers (Setophaga 

magnolia), and Black-throated Blue Warblers (Setophaga caerulescens) by Morbey and 

Beauchamp (In review). We found later evening activity on departure nights relative to 

the previous night. Although the purpose of delayed quiescence is uncertain, it suggests 

that the decision to depart was made prior to the time when birds would cease normal 

diurnal activity. Temperature cues throughout the day of departure may prime birds to 

continue migration, producing this later activity.  
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Finally, day of year slightly but significantly increased departure risk, suggesting 

that later arriving birds had a shorter stopover duration. Shorter stopover duration later in 

the season may be a strategy employed by later migrating birds to “catch-up”. Favourable 

environmental conditions later in the migratory season may also contribute to this 

phenomenon, although this effect would have been achieved independently of stopover 

refuelling rate, as date did not influence refuelling. Perhaps reduced overnight 

thermoregulatory cost with warmer late season temperatures enable a larger net gain in 

energy storage per stopover day.  

4.4 Wintering latitude 

Overwintering at more northern latitudes has the potential to contribute to earlier arrival 

on the breeding grounds, as less distance needs to be traversed during the migratory 

season. I examined wintering latitude by conducting stable hydrogen isotope analysis on 

the head feathers. I found no significant effect of sex or morph on head feather δ2H 

values suggesting that there was little difference in wintering latitude between sex or 

morph classes. Past studies based on banding and museum specimens have found a 

latitudinal cline in winter sex ratios in the White-throated Sparrow (Jenkins and Cristol 

2002). Perhaps a gradual decrease in the proportions of males with decreasing wintering 

latitude does not translate into a statistically significant difference in head feathers δ2H 

values which are also inherently variable. A significant sex effect was observed by 

Mazerolle and Hobson (2007), who found that male head feather δ2H values were more 

isotopically negative, indicating a more northerly wintering latitude. One potential 

explanation for the discrepancy between this study and my own is that the birds migrating 

through Delta Marsh and Long Point may belong to different sub-populations of White-

throated Sparrows, and the population passing through Long Point may exhibit a lower 

degree of latitudinal sex segregation on the wintering grounds. Methodological 

differences in the assignment of sex between my study and previous studies may have 

also contributed to the discrepancy between my results and the results of previous studies. 

All birds included in my analysis were sexed using genetics, whereas Mazerolle and 

Hobson (2007) and Jenkins and Cristol (2002) relied on a measure of wing chord to 

assign sex. While these methods are can have and accuracy greater than 90% (Piper and 
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Wiley 1991), the use of genetics in my study to confirm sex prevented the exclusion or 

misclassification of individuals with intermediate wing lengths. Including intermediately 

sized individuals may have reduced the differences between males and females. Finally, 

my findings are based on a single year of data from a comparatively small number of 

individuals, inter-year variability in conditions on the wintering ground and sample size 

difference between my study and previous studies may have also contributed to the 

discrepancy between my findings and the findings of previous studies. Given that male 

White-throated Sparrows arrived at stopover significantly earlier than females, my 

finding of minimal difference in wintering latitude between the sexes suggests that 

differences in migration distance in relation to wintering latitude do not greatly influence 

arrival timing at breeding areas. No effect of morph was found on wintering latitude, 

echoing the findings of Mazerolle and Hobson (2007). My finding adds further evidence 

that latitudinal stratification by morph, mediated by behavioural or other morph related 

differences, does not appear to occur in the White-throated Sparrow. 

4.5 Assumptions and limitations  

Several assumptions were made during this study. Like most studies, I assumed that the 

birds I sampled are representative of the White-throated Sparrow population, or that all 

birds come from populations that exhibit similar patterns of migration timing. As 

sparrows were blood sampled opportunistically, I do not believe any sampling bias was 

introduced. I attempted to balance the birds selected for radio tagging by sex, morph, and 

date to reduce any effect of date on stopover duration. By recording the number of birds 

tagged in each sex-morph cohort, I could determine which group needed individuals to be 

tagged on a given day. By tagging the first White-throated Sparrow that fit this criterion, 

I do not believe any sampling bias was introduced. One critical assumption related to the 

measurement of stopover duration is that birds were captured near the beginning of their 

stopover bout. Because the true arrival date of each bird is unknown, the measured 

stopover duration is a conservative estimate of the true stopover duration. 

This study was limited to one year of data collection, and as a result, generalising 

the findings of this study requires the assumption that the migration season of 2017 

represented a typical migration season. The spring of 2017 had several high rainfall 
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events which may have influenced stopover behaviour. Years with less rainfall may have 

improved migratory conditions, which could potentially influence stopover duration. 

4.6 Future directions 

The findings of my study indicate that stopover refuelling rate and stopover duration does 

not contribute to the protandry observed in the White-throated Sparrow. Future studies 

attempting to determine the underlying mechanisms of migration timing should focus on 

other aspects of sparrow migration ecology. One aspect that should be focused on in 

particular is migration initiation timing. Initiating migration at an earlier date would 

promote protandry without requiring males to have shorter stopover durations, higher 

refuelling rates, or drastically shorter migration distances. Odum (1949) found that male 

White-throated Sparrows departed wintering areas two weeks earlier than females. 

Sexing was conducted via dissection on lethally collected birds, and using a combination 

of wing chord and plumage colouration on non-lethally trapped birds. However, one issue 

with this study is that the plumage dimorphism exhibited by the White-throated Sparrow 

had yet to be recognized at the time and was not expressly examined. This may have 

confounded their determination of sex. Odum (1949) also noted that birds lingering on 

the wintering grounds later in the season were “dull plumaged”, suggesting that these 

may have been tan-striped birds. Given our current understanding of the White-throated 

Sparrow’s plumage dimorphism, and our ability to use genetics to confirm sex and 

morph, differential migration initiation timing should be re-evaluated.  

Other studies have suggested that migration initiation date is an important 

mechanisms of differential migration timing in other species. Using light level 

geolocators, McKinnon et al. (2014, 2016) found that the later departure from 

overwintering areas contributed to later arrival at breeding areas in juvenile Wood Thrush 

and female Snow Bunting (Plectrophenax nivalis). Examining winter and early spring 

banding data, Catry et al. (2005) found that in protandrous Common Chiffchaffs 

(Phylloscopus collybita), males departed African overwintering areas earlier than 

females. Additionally, several studies that have examined migratory restlessness in 

protandrous species as an indicator of migration initiation timing have found that onset of 
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migratory restlessness occurs at an earlier date in males than in females (Terrill and 

Berthold 1990, Coppack and Pulido 2009, Maggini and Bairlein 2012).  

In addition to examining migration initiation timing, future studies should also 

examine if there is a relationship between social dominance, late winter body condition, 

and migration initiation timing in the White-throated Sparrow. Cristol et al. (2014) found 

that male White-throated Sparrows supplemented with food in late winter moulted earlier 

and initiated spring migration at an earlier date than non-supplemented birds. Access to 

food resources during winter is influenced by social dominance in White-throated 

Sparrows (Piper and Wiley 1990), and this could result in subordinate birds initiating 

migration later. A similar phenomenon is believed to occur in American Redstarts (Marra 

et al. 1998). This could contribute to differential departure timing from the wintering 

grounds in the spring. An interaction between late winter dominance status, late season 

environmental conditions, and migration initiation timing might also contribute to the 

slight effect of morph I observed on migration timing. In years with harsh late-winter 

conditions, a cascading interaction between food availability, social dominance, food 

access, moult timing, and the start date of migration might result in males and white-

striped birds initiating migration earlier than females and tan-striped birds. This cascade 

may not occur in years with favourable late season conditions, and may explain why I did 

not observe morph-specific migration timing. 

  Another aspect of migration ecology that warrants further investigation is the 

frequency of stopover bouts. Male White-throated Sparrows may be conducting fewer 

stopover bouts during the course of migration compared to females, and this could 

contribute to differential breeding ground arrival timing (McKinnon et al. 2014). 

Differences in wing morphology may influence flight energetics, allowing males to fly a 

greater distance on a given fuel load. Males may also depart stopover with a higher fuel 

load enabling longer flight bouts and reducing the number of stopovers required to reach 

the breeding grounds. Information on departure fuel load may help to clarify this 

question. Further development of the Motus Wildlife Tracking System, or global 

positioning system telemetry, 
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 could allow us to track the migration of White-throated Sparrows over the duration of 

the entire migratory season. With this information, flight distance, stopover frequency, 

stopover duration, and migration distance could be examined concurrently. The rate of 

energy use during sustained flight could also be measured in captive White-throated 

Sparrows using a wind tunnel to determine if flight energetics differ among sex, morph, 

and age classes. 

Repeating this study, both at Old Cut and at different sites would provide a 

variety of benefits. Repeating this study at Old Cut would test if foraging conditions 

during the spring of 2017 may have buffered sex differences in refuelling. Replicating 

this study at different sites would allow for an examination of site quality. I feel this is 

particularly important given the potential confounding effect of bird feeders and baited 

ground traps used in and around the Old Cut banding station. Replicating this study in a 

site with no artificial food sources available might yield a different pattern of sex, morph, 

or age-specific stopover behaviour. Removal of artificial food sources could increase 

competition for the remaining food sources available. This may accentuate differences in 

refuelling between individuals of differing competitive ability, revealing patterns of sex, 

morph, or age specific refuelling that are not present when food resources are plentiful. In 

turn, stopover duration could also be influenced via the relationship between refuelling 

rate and stopover duration. Assessment of food availability and habitat quality could also 

be incorporated during a replication of this study. Direct measurement of both refuelling 

rate and stopover duration on the same individual might help to further clarify the 

interdependence of departure decisions on stopover refuelling rate in White-throated 

Sparrows.  

Additionally, this study could be repeated during the fall. This would test if the 

findings of Brown et al. (2014) are repeatable between years. Another benefit would be 

the chance to examine the relationship between stopover duration and refuelling rate 

between groups known to differ in stopover refuelling rate. White-striped birds would be 

expected to have a shorter stopover duration in relation to their known higher refuelling 

rate.  
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4.7 Conclusions  

Differential migration timing is commonly observed in spring-migrating songbirds. 

Despite the ubiquity of differential migration, uncertainty still exists about the 

behavioural mechanisms that underlie this pattern. The intriguing plumage dimorphism 

exhibited by the White-throated Sparrow provided an opportunity to examine how 

behaviour influences migration ecology beyond sex and age. The findings of my study 

suggest that the high degree of protandry observed in spring White-throated Sparrow 

migration is unrelated to sex-specific stopover behaviours, corroborating well with the 

conclusions of other studies of protandrous songbird species. My results indicate that 

migration speed may not differ between males and females, although additional study on 

the other aspects of migration speed (e.g. flight speed and stopover frequency) is required 

before further conclusions can be made. In this study, I found no support for sex-

differences in wintering latitude as a behaviour underlying the high degree of protandry 

observed. Of the three behavioural mechanism of migration timing suggested by Coppack 

and Pulido (2009), my findings suggest that differential initiation of migration may have  

a greater contribution to sex-specific migration timing. The well-documented behavioural 

differences between morphs did not appear to influence any of the aspects of migration 

that I studied, suggesting that the differences in aggression and dominance do not directly 

translate into differences in migratory behaviour. Morph did not influence refuelling rate 

or stopover duration, indicating that individual behaviours related to competitive ability 

may not affect stopover behaviour. However, I believe that the influence of site quality 

should be considered before drawing further conclusions regarding this. Finally, my 

study further corroborates the role of environmental variables such as wind and 

temperature as important factors governing stopover departure decisions in migratory 

birds. 

The influence of extrinsic factors on stopover refuelling rate and stopover 

duration may reduce or prevent the selection for differential stopover behaviour as a 

behavioural mechanism to achieve differential migration timing. Variability in 

environmental conditions and stopover site quality, both within and among years, could 

influence both refuelling rate and stopover duration, resulting in a high variability in 

overall migration speed. This could yield a highly variable degree of differential 
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migration timing. For example, poor conditions may prevent males from refuelling faster 

or departing stopover sites earlier than females, resulting in equal migration speed and 

reducing the degree of protandry. Differences in stopover site use between individuals in 

the same population may cause additional extrinsic variability in overall migration speed. 

If subsets of a breeding population use different stopover sites of differing quality, 

variability in the stopover site quality may have a larger influence on refuelling rate than 

intrinsic differences in refuelling ability. Together, this may prevent consistent selection 

for faster refuelling on an individual level. Furthermore, a behavioural adaptation for 

shorter stopover durations could result in negative consequences if departure occurs 

before adequate refuelling or during unfavourable migratory conditions. Migration 

initiation date may be less susceptible to extrinsic factors, resulting in greater stability in 

the differential migration timing achievable through these behavioural mechanisms. 

Likewise, migration distance may depend more on individual decisions about where to 

cease migration in the fall, and may be less affected by short term environmental 

conditions. This may permit stable directional selection to act on migration initiation date 

and migration distance to produce migratory protandry.  

Migration is a fundamental behavioural component of the life history of many 

North American songbird species. Optimal migration timing can have profound impacts 

on population health and viability (Visser et al. 2004, Both et al. 2006), and the 

relationship between breeding ground arrival timing, courting, nesting, and the 

provisioning of young is likely adapted to best capitalise on ephemeral resource 

abundances. In the era of climate change, a robust understanding of avian migration will 

help us to better predict how birds may adaptively respond to the changes in resource 

phenology predicted to occur (Charmantier et al. 2008). Additionally, if migratory 

species are detrimentally affected by climate change, improved knowledge of migration 

may better inform conservation strategies to protect and conserve vulnerable bird 

populations during their migratory journeys.  
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Appendices 

Appendix 1a. University of Western Ontario, Council on Animal Care, Animal Use 

Protocol 2010-020. Issued to Christopher Guglielmo. 
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Appendix 1b. Environment Canada scientific capture permit 10169 BU, issued to 
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Appendix 1c. Environment Canada, Canadian Wildlife Service scientific permit CA 
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Appendix 2. Banding data for spring 2017 for individuals included in analyses of 

migration timing, stopover duration, and/or refuelling rate. Trap type abbreviations: m = 

mist nets, g = ground traps. Sex and morph were determined genetically unless indicated 

by an asterisk.  

Band  

number 

Capture  

time (yyyy- 

mm-dd hr:min ) 

Trap  

type 

Wing  

Chord 

(mm) 

Age Sex Morph 
Mass 

 (g) 

Fat  

mass  

(g) 

Lean  

mass  

(g) 

Harness  

size  

(mm) 
Tag 

# 

274169801 2017-04-16 9:00 m 73 s m w 25.3 2.56 20.85 NA NA 

274169802 2017-04-16 11:10 m 71 s m w 24.2 1.32 18.56 NA NA 

274169803 2017-04-16 11:50 m 73 a m t 25.5 0.96 21.04 NA NA 

274169804 2017-04-17 9:50 m 74 a m t 23.7 2.34 18.99 NA NA 

274169805 2017-04-18 7:05 m 71 s m w 23.6 2.27 17.89 NA NA 

274169806 2017-04-18 7:36 g 72 s m t 24.2 4.17 21.08 NA NA 

274169807 2017-04-18 8:20 g 75 a m t 23 2.59 20.66 NA NA 

274169808 2017-04-19 6:50 m 76 a m w 23.7 4.18 21.17 47 118 

274169809 2017-04-19 9:50 g 76 a m w 24.4 1.92 21.2 NA NA 

274169811 2017-04-20 8:30 m 78 a m t 23.1 3.21 19.47 NA NA 

274169812 2017-04-20 8:30 m 72 s m w 22.9 1.94 19.83 NA NA 

274169816 2017-04-21 8:10 m 75 a m t 23.6 4.59 21.92 47 154 

274169817 2017-04-21 8:20 m 76 s m w 23.7 2.05 20.76 NA NA 

274169818 2017-04-21 9:50 m 74 a m t 23.6 4.1 20.81 NA NA 

274169820 2017-04-22 8:10 m 72 s m t 23.9 3.14 19.96 NA NA 

274169821 2017-04-22 9:57 m 75 a m w 23.7 4.63 21.54 NA NA 

274169823 2017-04-22 11:42 m 74 s m w 24.4 3.14 20.43 NA NA 

274169825 2017-04-24 9:05 m 73 a m t 23.8 7.97 20.54 NA NA 

274169826 2017-04-24 10:43 m 72 s m w 24 4.99 20.01 NA NA 

274169828 2017-04-25 8:45 m 69 s f t 22.1 4.39 17.96 NA NA 

274169829 2017-04-25 9:30 m 69 a m w 23.3 6.61 20.37 45 112 

274169830 2017-04-25 10:05 m 76 a m t 23.5 4.59 21.81 47 156 

274169832 2017-04-26 8:20 m 72 s m t 24.4 4.81 20.13 NA NA 

274169833 2017-04-26 9:30 m 73 s m w 22.7 3.62 20.33 NA NA 

274169834 2017-04-26 9:50 m 74 a m t 23.4 5.1 19.1 46 157 

274169835 2017-04-26 10:10 m 75 s m w 23.3 5.27 19.46 NA NA 

274169837 2017-04-26 11:00 m 70 s m w 23.7 3.37 19.39 NA NA 
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274169838 2017-04-26 11:10 m 68 s f w 22.8 3.36 18.05 NA NA 

274169841 2017-04-27 7:50 m 74 a m w 24 NA NA NA NA 

274169843 2017-04-27 8:00 m 69 a f t 23.7 3.18 18.76 NA NA 

274169844 2017-04-27 8:00 m 68 a f t 22.9 1.33 16.07 45 116 

274169846 2017-04-27 8:40 m 66 s f w 24.6 0.63 18.3 NA NA 

274169847 2017-04-27 8:50 m 72 a m w 24.4 2.85 19.25 NA NA 

274169848 2017-04-27 8:55 m 65 ahy f NA NA 1.28 17.74 NA NA 

274169849 2017-04-27 9:10 m 69 s f t 24 3.94 18.54 NA NA 

274169850 2017-04-27 9:25 m 72 s m t 23.5 1.55 22.78 NA NA 

274169851 2017-04-27 10:50 m 69 a f t 23 3.15 18.83 NA NA 

274169852 2017-04-27 11:40 m 72 s m t 24.2 7.07 20.88 NA NA 

274169857 2017-04-28 8:45 m 68 s f w 24.3 0.36 18.23 NA NA 

274169858 2017-04-28 10:32 m 70 s m t 23.3 2.57 19.88 NA NA 

274169860 2017-04-28 10:50 m 68 s f w 21.9 2.2 18.09 NA NA 

274169862 2017-04-28 11:45 m 72 s f t 23.4 1.8 19.58 NA NA 

274169863 2017-04-28 11:45 m 71 s f t 23.2 0.71 18.53 NA NA 

274169864 2017-04-29 9:20 m 73 s m w 24.5 5.06 21.15 NA NA 

274169865 2017-04-29 10:30 m 66 a f t* 23.7 1.42 19.64 42 143 

274169866 2017-04-29 11:30 m 70 s f t 22.8 2.74 19.07 NA NA 

274169868 2017-05-01 6:10 m 75 a m NA 24.75 4.51 19.05 NA NA 

274169869 2017-05-01 6:10 m 74 a m w 23.8 3.37 19.17 46 138 

274169870 2017-05-01 6:10 m 67 a f w* 24.8 2.93 17.16 42 144 

274169871 2017-05-01 7:40 m 73 s m t 24.1 3.1 18.98 NA NA 

274169872 2017-05-02 7:50 m 68 s f w 23.5 4.01 20.24 NA NA 

274169873 2017-05-03 7:10 m 74 a f w 23.8 3.18 19.27 46 137 

274169874 2017-05-03 9:00 m 67 a f* t 22.3 3.13 18.6 42 147 

274169875 2017-05-02 9:10 m 68 s f t 23.4 2.83 19.3 NA NA 

274169876 2017-05-03 10:50 m 72 s m t 24.4 6.09 20.42 NA NA 

274169877 2017-05-03 10:45 m 74 a m t 24.7 3.04 22.43 47 126 

274169878 2017-05-03 11:50 m 76 s m w 23.7 2.94 19.71 NA NA 

274169881 2017-05-06 10:00 m 68 ahy f t 22.8 2.08 18.76 NA NA 

274169883 2017-05-06 11:00 m 68 s f w 23.42 5.45 19.55 NA NA 

274169884 2017-05-06 11:00 m 69 s f w 22.15 2.96 17.93 NA NA 

274169885 2017-05-07 8:15 m 74 s m t 24 5.24 21.54 NA NA 
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274169886 2017-05-07 9:41 m 72 a m t NA 4.35 19.45 NA NA 

274169887 2017-05-07 10:52 m 68 s f t 22.1 4.09 18.99 NA NA 

274169888 2017-05-08 8:50 m 64 s f t 22.8 2.81 17.35 NA NA 

274169889 2017-05-08 10:45 m 67 ahy f w 23 4.9 18 NA NA 

274169890 2017-05-08 11:30 m 72 s f t 21.3 NA NA NA NA 

274169891 2017-05-09 7:45 m 66 ahy f t 22.5 6.14 17.87 NA NA 

274169892 2017-05-09 8:16 m 72 a f w 23.3 3.56 17.45 NA NA 

274169893 2017-05-09 8:40 m 68 s f t 22 3.29 16.79 NA NA 

274169894 2017-05-09 9:30 m 69 ahy f w 24.2 2.63 20.05 NA NA 

274169895 2017-05-09 9:20 m 73 s f w 20.3 5.36 18.27 NA NA 

274169896 2017-05-09 9:45 m 67 a f* t* 22.6 7.03 18.7 43 161 

274169898 2017-05-10 8:30 m 68 a f* t* 23.2 4.96 17.43 43 163 

274169899 2017-05-10 8:30 m 69 a f t NA NA NA NA NA 

274169800 2017-05-10 9:25 m 70 s f w 23.12 6.56 19.24 NA NA 

277187301 2017-05-10 9:25 m 67 s f w 23.9 1.99 18.56 NA NA 

277187302 2017-05-10 10:40 m 74 a m w 24.8 6.64 21.62 NA NA 

277187303 2017-05-11 7:40 m 67 a f* t 24 3.19 18.27 43 164 

277187304 2017-05-11 6:30 m 68 a f t 22.89 4.71 18.65 NA NA 

277187306 2017-05-11 9:30 m 67 a f t 23.6 5.2 19.67 NA NA 

277187307 2017-05-11 11:20 m 67 a f w 23.6 3.58 20.03 NA NA 

277187308 2017-05-12 7:37 m 70 s f w 23.7 3.55 17.31 NA NA 

277187309 2017-05-12 8:20 m 69 s f t 23.71 6.32 19.38 NA NA 

277187311 2017-05-12 8:40 m 69 s f w 23.3 6.87 19.2 NA NA 

277187312 2017-05-12 8:40 m 68 s f w 23.4 4.8 17.87 NA NA 

277187313 2017-05-12 9:40 m 66 s f t NA 4.47 17.78 NA NA 

277187314 2017-05-12 10:00 m 72 s f w 21.56 7.68 18.76 NA NA 

277187315 2017-05-12 10:50 m 66 ahy f t 22.6 4.2 17.63 NA NA 

277187316 2017-05-12 11:00 m 68 a f t 22.14 2.84 19.72 NA NA 

277187324 2017-05-13 7:30 m 71 s m t 22.5 6.97 19.35 NA NA 

277187325 2017-05-13 8:00 m 69 s f w 22.7 4.65 17.89 NA NA 

277187326 2017-05-13 9:00 m 70 s f w 22.68 4.43 17.43 NA NA 

277187328 2017-05-13 9:35 m 71 s f w 22.9 3.28 17.82 NA NA 

277187329 2017-05-13 9:40 m 69 ahy f w 24.11 5.56 19.22 NA NA 

277187331 2017-05-13 10:30 m 68 ahy f NA 22.8 3.41 18.18 NA NA 
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277187332 2017-05-14 7:40 m 68 s f t 23.5 4.1 18.02 NA NA 

277187333 2017-05-14 7:40 m 68 a f t 23.5 4.93 18.79 NA NA 

277187336 2017-05-14 8:42 m 69 s f w 23.5 6.04 18.43 NA NA 

277187337 2017-05-14 9:01 m 69 s f t 22.7 6.89 18.57 NA NA 

277187338 2017-05-14 9:30 m 68 ahy f t 23 5.72 20.83 NA NA 

277187339 2017-05-14 11:00 m 70 a f w 22.95 5.15 17.99 NA NA 

277187341 2017-05-15 9:10 m 66 s f w 22.9 6.11 18.56 NA NA 

277187342 2017-05-15 9:20 m NA a m t NA NA NA NA NA 

277187343 2017-05-16 8:03 m 66 s f t 20.9 3.61 17.05 NA NA 

277137261 2017-04-15 8:20 m 73 a m t* 22.5 2.47 18.56 47 110 

277137266 2017-04-15 10:20 m 72 s m w 23.6 NA NA NA NA 

277137269 2017-04-16 6:30 m 76 a m w* 24.9 2.64 22.22 47 114 

277137272 2017-04-16 7:20 m 73 a m* w 25.4 2.68 19.71 46 109 

277137279 2017-04-16 9:10 m 75 a m w* 23.6 1.85 19.17 46 117 

277137280 2017-04-16 8:20 m 72 a m* t* 23.5 4.35 18.85 45 108 

277137292 2017-04-17 8:20 m 73 a m t 24.4 2.31 19.37 46 113 

277138203 2017-04-18 8:50 m 74 a m t 24.3 3.27 19.47 46 153 

277138206 2017-04-19 7:10 m 73 s m w 22.9 2.58 19.92 NA NA 

277138237 2017-04-21 9:50 m 74 a m* w* 24 2.78 18.7 46 120 

277138245 2017-04-22 10:00 m 75 a m* w 23.3 3.35 20.34 46 121 

277138255 2017-04-23 10:20 g 72 a m t 23.2 3.48 19.81 46 122 

274169901 2017-04-23 8:20 m 74 s m w 23.3 2.65 18.37 NA NA 

274169908 2017-04-26 11:00 m 75 a m* t* 23.9 2.76 20.17 46 123 

274169996 2017-04-27 9:20 m 68 a f w 23.7 4.25 17.8 45 130 

277187056 2017-04-29 6:40 m 68 a f* w 23.8 0.98 19.58 44 128 

277187055 2017-04-29 6:10 m 71 s f w 23.3 1.29 17.92 NA NA 

277187061 2017-04-29 7:00 m 67 a f w* 23.1 2.75 17.92 42 141 

277187064 2017-04-29 7:30 m 67 a f* w* 23.8 3.76 18.15 42 140 

277187068 2017-04-29 9:10 m 76 a m w* 24.3 2.44 20.01 46 124 

277187095 2017-05-01 6:10 m 69 s f t 24.5 0.95 18.66 NA NA 

277187094 2017-05-01 6:10 m 67 a f* t 23.2 1.97 18.44 42 145 

277187098 2017-05-01 6:40 m 68 a f* w 23.3 2.7 18.26 42 146 

277187105 2017-05-01 7:50 m 71 a m NA 23.2 1.74 20.56 NA NA 

277187133 2017-05-02 7:10 m 67 s f w 23 3.68 19.32 NA NA 
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277187136 2017-05-02 8:50 m 66 a f t* 23 2.02 18.66 41 150 

277187148 2017-05-03 6:10 g 66 a f t 23 3.52 17.94 41 151 

277187147 2017-05-03 7:00 g 66 a f w* 23.3 4.79 17.63 41 152 

277187152 2017-05-03 6:50 m 65 s f t 21.4 0.96 16.44 NA NA 

277187156 2017-05-03 9:10 g 68 a f t 23.9 3.82 18.35 43 139 

277187163 2017-05-06 6:10 m 68 a f t 22.8 2.38 17.33 NA NA 

277187165 2017-05-06 6:10 m 67 a f w* 25.42 3.59 17.71 43 142 

277187164 2017-05-06 6:20 m 68 a f t 23.06 3.37 18.46 43 148 

277187171 2017-05-07 6:00 m 72 a m w* 22.37 3.41 19.62 47 127 

277187175 2017-05-07 6:00 m 67 a f t* 21.7 3.8 17.95 42 149 

277187177 2017-05-07 6:00 g 75 a m t 23.89 5.13 20.93 46 111 

277187176 2017-05-07 6:40 m 68 a f w* 23.4 4.75 19.29 44 132 

277187184 2017-05-07 5:40 m 66 a f t 22.9 4.43 18.34 41 158 

277187185 2017-05-07 6:00 m 68 s f w 23.4 7.33 20.47 NA NA 

277187197 2017-05-09 6:40 m 67 a f w 22.6 3.91 17.33 43 160 

277187201 2017-05-09 6:40 m 74 a m w 22 5.15 20.56 45 133 

277187210 2017-05-09 8:40 m 67 a f* w 23.1 3.37 18.65 42 159 

277187226 2017-05-11 9:00 m 70 s f w 23.9 3.09 19.33 NA NA 

277187239 2017-05-11 9:30 m 69 ahy f NA 22.8 5.12 18.27 NA NA 

277187240 2017-05-11 9:30 m 68 ahy f NA 22 2.33 16.75 NA NA 

277187244 2017-05-11 9:40 m 68 a f w* 22.5 4.35 17.68 43 162 

277187256 2017-05-12 10:20 m 71 a f t 23.2 6.2 19.85 45 134 

277187269 2017-05-13 7:00 m 70 s f t 23.2 4.83 16.04 NA NA 

277187274 2017-05-13 7:00 g 63 s f w 21.3 4.19 14.9 NA NA 

277187279 2017-05-13 9:30 m 70 a f w* 22.8 5.7 18.66 45 135 

277187284 2017-05-13 10:40 m 71 a f t* 25 7.97 21.03 45 136 

277187291 2017-05-13 11:30 g 66 a f* t 22.5 3.92 16.67 43 155 

277187293 2017-05-13 12:20 g 72 a unk w* 24 4.36 19.28 47 115 
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Appendix 3. Plasma metabolite concentrations from White-throated Sparrows sampled at 

the Long Point bird observatory during the spring of 2017. 

Band number 
Glycerol concentration 

(mmol*L-1) 

True triglyceride concentration 

(mmol*L-1) 

β-OH Butyrate concentration 

(mmol*L-1) 

274169801 0.56 1.368 1.7567365 

274169802 0.54 0.929 0.617733 

274169803 0.587 2.019 0.536571 

274169804 0.607 1.277 1.8585805 

274169805 0.619 2.142 0.189378 

274169811 0.426 1.497 0.36086 

274169812 0.414 1.527 0.7326385 

274169817 0.642 1.282 0.895161 

274169818 0.282 2.097 0.3196045 

274169820 0.679 4.028 0.5544115 

274169821 0.638 1.692 1.1285535 

274169823 0.441 2.143 0.94057 

274169825 0.414 2.062 0.175851 

274169826 0.508 3.126 0.33694 

274169828 0.532 2.424 0.63126 

274169832 0.49 2.473 0.581287 

274169833 0.375 3.174 0.589629 

274169835 0.715 1.183 1.387407 

274169837 0.454 2.339 0.19074 

274169838 0.766 2.143 0.703404 

274169841 0.508 1.706 1.427158 

274169846 0.682 1.941 0.939425 

274169847 0.465 1.24 1.378955 

274169850 0.43 1.583 0.973944 

274169851 0.499 2.167 0.34591 

274169852 0.546 2.362 0.66584 

274169857 0.39 1.282 0.4920285 

274169858 0.247 1.606 0.604545 

274169860 0.267 2.341 0.4836865 
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274169862 0.445 3.359 0.52531 

274169864 0.624 1.677 0.68976 

274169866 0.619 4.035 0.4665675 

274169871 0.421 0.924 2.25652 

274169872 0.307 2.888 0.496417 

274169875 0.5 1.63 0.385941 

274169876 0.226 3.46 0.38179 

274169878 0.402 3.1 0.4469095 

274169881 0.486 1.987 0.75853 

274169883 0.674 4.093 0.536571 

274169884 0.494 4.809 0.369112 

274169885 0.528 2.328 1.282879 

274169886 0.961 2.232 0.691473 

274169887 0.351 3.198 0.467005 

274169888 0.52 0.966 0.9815905 

274169889 0.615 2.268 0.694447 

274169890 0.921 7.432 0.4509 

274169891 1.237 2.781 1.088925 

274169892 0.695 1.452 1.3238995 

274169893 0.957 1.081 1.173786 

274169894 0.619 2.036 1.2813195 

274169895 0.556 1.976 0.846735 

274169800 0.666 1.77 0.910818 

277187301 0.509 1.097 1.17115 

277187302 0.823 2.376 0.7466385 

277187304 0.666 2.486 0.6675715 

277187306 0.579 1.137 1.319155 

277187307 0.605 1.602 0.987265 

277187308 0.79 1.413 1.257418 

277187309 0.737 2.146 0.511208 

277187311 0.497 1.85 0.78544 

277187312 0.862 2.825 0.937596 

277187313 0.626 2.443 0.4750545 
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277187314 0.691 2.482 0.661355 

277187315 0.705 1.73 1.124455 

277187316 0.343 3.153 0.39674 

277187324 0.419 1.88 1.035105 

277187325 0.697 2.423 1.229128 

277187326 0.721 1.82 1.421355 

277187328 0.574 1.381 1.02464 

277187329 0.728 2.699 0.7524415 

277187332 0.661 0.869 4.0650555 

277187333 0.776 3.991 1.006161 

277187336 0.522 4.41 0.64491 

277187337 0.569 1.773 1.3655 

277187338 0.356 3.532 0.631455 

277187339 0.62 1.871 0.991492 

277187341 0.556 2.123 0.9418395 

277187343 0.547 1.977 0.739476 
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