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Abstract

This thesis consists of two projects on the behaviour of a novel vibrating-wire rheometer

and a third project studying the gelation dynamics of aqueous solutions of Pluronic F127. In

the first study, we use COMSOL to perform two-dimensional simulations of the oscillations of

a wire in Newtonian and shear-thinning fluids. Our results show that the resonant behaviour of

the wire agrees well with the theory of a wire vibrating in Newtonian fluids. In shear-thinning

fluids, we find resonant behaviour similar to that in Newtonian fluids. In addition, we find that

the shear-rate and viscosity in the fluid vary significantly in both space and time. We find that

the resonant behaviour of the wire can be well described by the theory of a wire vibrating in a

Newtonian fluid if the viscosity in the theory is set equal to the viscosity averaged over the cir-

cumference of the wire and over one period of the wire’s oscillation at the resonant frequency.

In the second study, we present the design and operation of our vibrating-wire rheometer and

use it to measure the properties of Newtonian and viscoelastic fluids. We find that our de-

vice can accurately measure small viscosities. In homogeneous polymer solutions, we find

that the viscoelastic moduli measured using our device are consistent with measurements at

lower frequencies using a shear rheometer. In addition, we find that our device can measure

the microrheological properties of an aging Laponite clay suspension that is heterogeneous on

the micron scale. In the third project, we study the gelation dynamics of aqueous solutions of

Pluronic F127. Using shear rheometry we find that when slowly heating the solutions, they un-

dergo a transition from sol to gel around room temperature, followed by a gel to sol transition

at a higher temperature. Our results show that these transitions take place over a temperature

range of a few degrees. When cooling the solutions, the reverse transitions occur over a larger

range of temperature and the width in temperature of the gel phase is larger. At temperatures

near the phase transitions, we find that the rheological relaxation time becomes very long.
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Chapter 1

Introduction

Rheology is the study of how materials flow or deform. Materials of interest to rheology

range from simple Newtonian fluids like water or vegetable oil, to viscoelastic polymeric ma-

terials like plastics used in injection moulding, to asphalt used to pave our streets. Even the

mantle of our planet can be described as a viscoelastic material [1]. Studying how materials

behave when deformed is essential for fundamentally understanding what they are made of and

how to manipulate their properties for industrial and commercial use. In this chapter we will

build up the physical framework used in studying the rheological behaviour of materials.

1.1 Fluids

A diagram depicting the deformation of a two-dimensional cross-section of a region of

material is shown in Fig. 1.1 [2]. With the bottom edge held stationary, the material will

deform in response to an applied shear stress

τ =
F
A
, (1.1)

1
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where F is the applied shearing force and A is the surface area. The deformation, or the shear

strain, is

γ =
dl
l
, (1.2)

where l is the height of the fluid region and dl is the deformation length. For small shear strains,

γ is approximately the angle shown in the figure. For ideal elastic materials, the constitutive

Figure 1.1: A cross-section segment of a material subject to a shear stress τ, with the bottom
edge held stationary. The material will experience a strain γ = dl/l.

relationship, i.e., the relationship between stress and strain, is given by

τ = Gγ, (1.3)

where G is the elastic modulus. As long as the applied shear stress (or shear strain) is small,

the material will return to its original position when the applied stress is removed. This is the

2-dimensional form of Hooke’s law. For large strains, irreversible deformation like stretching

or fracture may occur, in which case Eq. 1.3 no longer applies and the relationship between

stress and strain is nonlinear.

For Newtonian fluids, the shear stress is related to the rate of deformation, i.e., the shear

rate

γ̇ =
dγ
dt
, (1.4)
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through Newton’s law of viscosity

τ = ηγ̇, (1.5)

where η is the dynamic (shear) viscosity. Even for a very small stress, a Newtonian fluid will

deform irreversibly, i.e., it will flow.

The discussion above is a simple two-dimensional view of stresses and strains. In general,

constitutive relationships are three-dimensional and stress, strain and related quantities are de-

scribed by tensors [3]. A complete discussion of tensorial constitutive relationships is beyond

the scope of this work, and we will restrict our discussion to simple two-dimensional models.

The constitutive relationships described above apply only to a small subset of materials.

Solid materials such as ceramics and metals will obey Hooke’s law for small strains, but frac-

ture when the strain is too large [3]. Many simple fluids such as water, honey, or vegetable

oil obey Newton’s law of viscosity [4]. There are, however, many materials, called complex

fluids, that behave somewhere between ideal viscous or ideal elastic materials, i.e., they are

viscoelastic. We will begin our discussion of complex fluids by discussing non-Newtonian

viscous behaviour.

1.1.1 Shear Thinning and Shear Thickening

For Newtonian fluids at constant temperature and pressure, viscosity is independent of

shear stress or shear rate. For many fluids this is not the case, and viscosity depends on the

shear rate. A simple constitutive model that illustrates this non-Newtonian behaviour is the

power-law model:

τ = Kγ̇n, (1.6)

where K is the fluid consistency index and n is the power-law index. The viscosity of a power-

law fluid is the ratio of the shear stress to the shear rate:

η = τ/γ̇ = Kγ̇n−1. (1.7)
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For n = 1 the fluid is Newtonian; the viscosity is independent of shear rate. For 0 < n < 1 the

fluid is shear-thinning, i.e., the viscosity decreases with increasing shear rate. Many polymeric

solutions and particle dispersions exhibit shear-thinning behaviour[3]. A few examples are

blood, ketchup, and paint. Blood, a complex fluid consisting of different types of cells in solu-

tion, forms aggregates of red blood cells when at rest [5]. These aggregates give blood a rigid

structure that must be broken apart before the material will flow, i.e., the material possesses a

yield stress, as discussed below. Break-up of the aggregates when the blood is sheared results

in shear-thinning [5, 6]. Ketchup is a complex suspension of tomato matter, i.e., cell wall frag-

ments and cellular material in a mixture of water, vinegar, and other additives. The suspended

cellular particles aggregate when at rest, forming a rigid structure that gives ketchup a yield

stress [7]. Shear-thinning arises then from the break-up of that structure when the ketchup

sheared. The previous two fluids are examples of colloidal suspensions. Colloidal suspensions

may also exhibit shear-thickening, as discussed below. Shear-thinning is also found in polymer

solutions. In dilute polymer solutions, shear-thinning is due to a reduction in the drag on a

polymer chain when it is stretched in the flow direction [3]. Ultimately the mechanism behind

shear-thinning is the rearrangement of micro-structure in the fluid when it is sheared.

If n > 1 in Eq. 1.7, viscosity increases with increasing shear rate; the fluid is shear-

thickening. Shear-thickening is found most prevalently in concentrated dispersions of par-

ticles, although some polymer systems have been observed to shear thicken under specific

conditions [8]. One example of a shear-thickening dispersion is cornstarch in water. At the

microscopic scale, cornstarch is irregularly shaped particles with a diameter of approximately

5 − 20 µm [9]. Shear-thickening in cornstarch dispersions arises from the jamming together

of cornstarch particles in response to an applied force, giving them the ability to resist motion

and dissipating energy. This mechanism is common among all shear-thickening dispersions of

particles [8]. Shear-thickening fluids can be exploited in a number of different ways, such as

in liquid body armour when integrated with ballistic fabric [10], and shock absorption when

sandwiched between composite materials [11].
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The power-law model given by Eq. 1.7 is unphysical for many fluids in both the high and

low shear-rate limits. In the shear-thinning case, it suggests that as γ̇ → 0, η → ∞, and as

γ̇ → ∞, η → 0. Although for yield-stress fluids, which will be discussed below, the viscosity

is infinite at zero shear rate, it approaches a constant value at high shear rates. In addition,

for shear-thinning polymer solutions, at very low and very high shear rates the viscosity is

constant [3].

An alternative model that incorporates the plateau viscosities at high and low shear rates is

the Carreau model,

η = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

](n−1)/2
, (1.8)

where η∞ is the viscosity at infinite shear rate, η0 is the viscosity at zero shear rate, and λ is

the relaxation time [4]. The relaxation time determines the location of the crossover between

the low shear-rate Newtonian plateau and the intermediate shear-rate power-law behaviour, as

shown in Fig. 1.2. The Carreau model and the power-law model are compared in Fig. 1.2. For

both models shown, the shear-thinning index is n = 0.5. The Carreau model exhibits power-law

shear-thinning behaviour over a limited range of shear rate.

1.1.2 Yield Stress

Some materials cannot flow unless the applied stress exceeds a critical value known as

the yield stress. At an applied stress greater than the yield stress, the material behaves like a

viscoelastic liquid and will flow. Below the yield stress the material behaves like an elastic

solid. The simplest model of a yield stress fluid is the Bingham model [12]. For an applied

stress that exceeds the yield stress,

τ = τy + ηpγ̇, (1.9)

where τy is the yield stress and ηp is the infinite shear-rate ‘plastic’ viscosity. Once yielded, the

Bingham model describes a fluid with a viscosity that shear-thins and approaches ηp at high

shear-rates.
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Figure 1.2: Comparison of the viscosity vs. shear rate predicted by the Carreau model and the
power-law model. For both models, n = 0.5, while for the Carreau model, η∞ = 10−3 Pa·s,
η0 = 1 Pa·s, λ = 10−4 s.

The next simplest model is the Herschel-Bulkley model [13], which describes a yield-stress

fluid that allows for a nonlinear increase of stress with shear rate. For this model, again, when

the applied stress is less than the yield stress the fluid does not flow (γ̇ = 0). For an applied

stress greater than the yield stress,

τ = τy + kγ̇n, (1.10)

where k is the fluid consistency index, similar to the power-law model. Indeed, the second

term in this constitutive model is simply the power-law model. In many cases, the behaviour of

real yield-stress fluids is better described by the Hershel-Bulkley model then by the Bingham

model.

Yield stress fluids are very common in our day-to-day life. They are often found in our

bathroom cabinets — shaving gel, toothpaste, or cosmetic creams — or in our refrigerators

— mayonnaise, whipped cream, or ketchup. Tooth paste will flow out of the tube when you

squeeze it, but it will retain its shape on your toothbrush due to its intrinsic yield stress. Sim-
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ilarly, mayonnaise will flow when you spread it on a sandwich, but it retains its shape in its

container, even if it is tilted. An understanding of what causes the yield stress, and how to

tune it, is important from a practical perspective when designing consumer products. Yield

stress fluids are also prevalent in industry. One example arises in the transport of waxy crude

oil through pipelines. Waxy crude oil exhibits a yield stress [14], and understanding how the

yield stress influences pressure-driven flow in a pipe is of importance to oil transport and re-

covery [15].

1.1.3 Viscoelasticity

The discussion so far has been about how the steady-shear viscosity of non-Newtonian flu-

ids can differ from that of Newtonian fluids. We have mentioned that non-Newtonian flow be-

haviour arises from the presence of structure within the fluid. This structure may also contribute

elasticity to the fluid. Materials that exhibit both viscous and elastic-like behaviour are called

viscoelastic. One of the simplest models of a viscoelastic fluid is the Maxwell model. This

Figure 1.3: Graphical schematic of the Maxwell model of a viscoelastic fluid, consisting of
a viscous dashpot and an elastic spring connected in series. λM = η/G is the characteristic
relaxation time of the model.

model was erroneously [3] proposed by James Clerk Maxwell in 1867 to describe gases [16],

but it has since been adopted in rheology to describe simple viscoelastic fluids. The Maxwell

model incorporates viscous and elastic behaviour into one constitutive equation. The model

can be graphically represented by a viscous dashpot and an elastic spring connected in series

as shown in Fig. 1.3. The stress-strain relationships for the individual elements have already

been introduced in Eqs. 1.3 and 1.5. When subject to a stress, the total strain in a Maxwell

material is the sum of the viscous strain due to the dashpot γD and the elastic strain due to the
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spring γE, i.e., γ = γD + γE. The stress acting on each element is the same, i.e., τ = τD = τE.

To obtain a relationship between stress and shear rate we differentiate both sides of the strain

relation with respect to time

γ̇ = γ̇D + γ̇E. (1.11)

The shear rate from the dash-pot is related to stress through Eq. 1.5, while the shear rate from

the elastic spring can be calculated from the time-derivative of Eq. 1.3, yielding

γ̇ =
τ

η
+

1
G

dτ
dt

(1.12)

or, after rearranging and defining the relaxation time λM = η/G,

τ + λM
dτ
dt

= GλMγ̇. (1.13)

This model describes a material with only one relaxation time. Real materials typically have

more than one relaxation time [4]. To account for this, many Maxwell elements can be com-

bined in parallel into the Generalized Maxwell Model [4], where Eq. 1.13 represents the stress

and strain in one element, and the total stress in the material is the sum of the stresses in all of

the elements.

1.1.4 Small-Amplitude Oscillatory Shear

A common experimental method for studying viscoelastic materials is to apply an oscil-

latory shear strain (or stress) and measure the resulting stress (or strain). For this discussion

we will consider an applied strain. We assume here that the amplitude of the applied strain is

sufficiently small that the response of the material is linear. We consider an oscillatory shear

strain of the form

γ(t) = γ0 sin(ωt), (1.14)
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where γ0 is the strain amplitude and ω is the angular frequency. If this strain is applied to an

elastic material that obeys Hooke’s law (Eq. 1.3), the resulting stress is

τ(t) = Gγ0 sin(ωt), (1.15)

i.e., the stress is sinusoidal and in phase with the applied strain. If the strain is applied to a

viscous fluid that obeys Newton’s Law of Viscosity (Eq. 1.5), the resulting stress is

τ(t) = ηωγ0 cos(ωt), (1.16)

i.e., the stress is sinusoidal and 90◦ out of phase with the applied strain. In general, for a

viscoelastic fluid, the phase difference φ between the applied strain and resulting stress will

be somewhere between 0 and 90◦ [17], i.e., τ(t) = τ0 sin(ωt + φ). This can be expanded into

in-phase and out-of-phase components:

τ(t) = τ0
[
cos(φ) sin(ωt) + sin(φ) cos(ωt)

]
. (1.17)

The amplitude of the in-phase and out-of-phase components divided by the strain amplitude are

known as the elastic modulus G′(ω) and the viscous modulus G′′(ω), respectively. In general,

the moduli depend on frequency. Eq. 1.17 can therefore be written as

τ(t)
γ0

= G′(ω) sin(ωt) + G′′(ω) cos(ωt). (1.18)

Comparing this form to Eqs. 1.15 and 1.16, we can identify the viscoelastic moduli for elastic

solids and Newtonian liquids as

G′(ω) = G (1.19)

G′′(ω) = 0 (1.20)
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for an elastic solid, and

G′(ω) = 0 (1.21)

G′′(ω) = ηω (1.22)

for a Newtonian liquid. For viscoelastic fluids, the dependence of the moduli on frequency is
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Figure 1.4: G′ and G′′ vs. ω for the Maxwell model with λM = 0.1 s and η = 105 Pa·s. The
crossover frequency ω = λ−1

M is indicated with an arrow.

more complicated. For the Maxwell model presented above, the viscoelastic moduli are [4]

G′(ω) =
ηλMω

2

1 + λ2
Mω

2
, (1.23)

G′′(ω) =
ηω

1 + λ2
Mω

2
. (1.24)

The moduli for the Maxwell model are plotted in Fig. 1.4 with λM = 0.1 s and η = 105 Pa·s. G′

and G′′ cross over at ω = 1/λM, allowing for an easy determination of the relaxation time of a

Maxwell material from experimental measurements of the viscous and elastic moduli.
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1.1.5 Shear Rheometry

One of the more common experimental tools used in rheology is the shear rheometer. Shear

rheometers work by confining a fluid within a geometry, applying a strain, and measuring the

stress (or applying a stress and measuring the strain). Three common geometries used for shear

rheometry are shown in Fig. 1.5. For all three of the geometries shown, one component of the

geometry is typically held fixed, e.g., the bottom plate in the Cone-and-Plate or Parallel Plate

geometries is held fixed while the top plate is rotated. Most of the shear rheometry done in

this thesis used the Couette cell geometry, with the outer cylinder held fixed while the inner

cylinder was rotated.

Figure 1.5: Common geometries used for shear rheometry. (a) Cone-and-Plate, (b) Parallel
Plate, and (c) the Couette, or concentric cylinder, geometry. [2]

The rheometer used in this thesis was an Anton-Paar MCR-302 shear rheometer. The rhe-

ological parameters extracted from an experiment are the shear stress and shear strain, which

are then related to material properties such as the viscous and elastic moduli as outlined in

the previous section. Rheometers do not directly measure these quantities, however. Instead,

they measure the torque M on the tool and the angular displacement θ of the tool, then relate

these quantities to the shear stress and shear strain, respectively. The relations between these

quantities depend on the geometry being used. For an ideal Couette cell in the small gap limit,

the stress is related to the torque through [3]

τ =
M

2πR2
i L
, (1.25)
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where Ri is the radius of the inner cylinder and L is its length. The shear strain is related to the

angular displacement by

γ = θ
Ro + Ri

2(Ro − Ri)
, (1.26)

where Ro is the radius of the outer cylinder.

There are a few experimental limitations that restrict the range of moduli and frequencies

that a shear rheometer can probe [18]. Rheometers have both high and low frequency limits.

The low frequency limit is more a limit of practicality, as the measurement time per point at

low frequency gets very long. Most shear rheometers, including the one used in this thesis,

are restricted to frequencies less than 100 Hz [19]. In addition, the inertia of the instrument

and the sample limit the high-frequency operation of the rheometer, causing the instrument to

report a quadratic increase in the moduli with frequency at high frequencies [18]. In addition,

the capabilities of the instrument put a limit on the smallest and largest torques that can be

measured. For the MCR-302 rheometer used in this work, the minimum measurable torque

is 0.01 µN·m and the maximum measurable torque is 200 mN·m [19]. This sets upper and

lower limits on the magnitude of the moduli the rheometer can measure. The lower limit also

helps motivate the development of the vibrating-wire rheometer discussed in Chap. 2, since it

prevents the study of low-viscosity fluids with shear rheometers.

1.2 Summary of Present Work

1.2.1 Overview

The majority of the work presented in this thesis focusses on the development of a novel

rheometer based on a vibrating wire that allows for the measurement of viscoelastic moduli

at high frequencies and low viscosities, both regimes which are inaccessible to conventional

shear rheometers. This was investigated both experimentally through the construction and

testing of a device, and numerically through the 2-dimensional simulation of a vibrating-wire
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in Newtonian and shear-thinning fluids using COMSOL Multiphysics.

1.2.2 Numerical Simulations of the Forced Oscillations of a Wire in a

Fluid

In Chap. 2 we use COMSOL Multiphysics software to numerically study the two-dimensional

forced oscillations of a wire vibrating in Newtonian fluids and shear-thinning fluids described

by the Carreau model. When the wire is subject to a sinusoidal driving force, it exhibits reso-

nant behaviour that depends on the viscosity of the fluid it is in. The simulations of the wire

vibrating in a Newtonian fluid were extremely well described by the theory for a wire vibrating

in a Newtonian fluid developed by Retsina et al. [20, 21]. Our simulations of a wire vibrating

in a Carreau fluid revealed resonant behaviour similar to the behaviour of the wire vibrating

in Newtonian fluids. We find that the shear rate and viscosity in the fluid vary significantly in

both space and time. The theory of a wire vibrating in a Newtonian fluid could describe the

behaviour of a wire vibrating in a Carreau fluid if the viscosity in the theory is set equal to

the viscosity averaged spatially around the circumference of the wire and over one period of

oscillation.

1.2.3 Vibrating-wire Rheometry

In Chap. 3 we describe the design and operation of a novel vibrating-wire rheometer. Our

device consists of a tungsten wire under tension and immersed in a fluid in a magnetic field.

When an alternating current is passed through the wire it vibrates at the driving frequency,

and we measure the voltage induced across the wire as a function of frequency. The resonant

frequency of the wire is of order 1000 Hz, and can be tuned by varying its length and the

applied tension. We modify an analytic expression for the induced voltage, previously derived

for Newtonian fluids, to include a complex viscosity, and determine the viscous and elastic

moduli of complex fluids by fitting this expression to our data. Our device gives excellent
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results for the viscosity of Newtonian fluids and the viscoelastic moduli of aqueous polymer

solutions, at frequencies higher than those accessible using a conventional shear rheometer.

Because the amplitude of the wire’s vibrations is on the order of a few microns, it can be used

to probe the microrheology of fluids that are heterogeneous on that scale. We illustrate this by

measuring the micron-scale moduli of a viscoplastic suspension of Laponite clay as it gels.

1.2.4 Gelation Dynamics of Aqueous Solutions of Pluronic F127

In Chap. 4 we study the gelation dynamics of solutions of Pluronic F127, a triblock copoly-

mer, using oscillatory rheometry. As a sufficiently concentrated solution is slowly and contin-

uously heated from 10 to 85 ◦C, it undergoes a transition from sol to gel around room tempera-

ture, followed by a gel-sol transition at a higher temperature. The sol-gel transition temperature

decreases and the width in temperature of the gel phase broadens with increasing concentra-

tion. The transitions occur over a temperature range of a few degrees, over which the viscous

and elastic moduli change by more than 5 orders of magnitude. On cooling, the width in tem-

perature of the gel phase is larger and the transitions themselves extend over a larger range of

temperature. Near the phase transitions, the rheological relaxation time becomes very long —

up to of order 104 s. Gelation in Pluronic solutions is due to the arrangement of micelles into

clusters that grow in size to form a large-scale lattice, and our results indicate that changes in

microstructure that accompany the equilibration of these clusters happen very slowly.

1.2.5 Appendices

In App. A we present additional measurements using our vibrating-wire rheometer. We

study the influence of temperature on the resonant frequency of the wire and the measured vis-

cosity in water. We find that although the resonant frequency of the wire changes significantly

with temperature, by allowing it to be a free parameter in our curve fitting routine, the viscosity

of water can still be accurately determined. In addition, we investigate how the shape of the

resonant curves of the wire depends individually on G′ and G′′.
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In App. B we present measurements of the viscoelastic properties of aqueous solutions of

Pluronic made using our vibrating-wire rheometer. Allowing for the difference in frequency,

our results are fully consistent with measurements of the viscoelastic properties of Pluronic

using a shear rheometer presented in Chap. 4.
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Chapter 2

Numerical Simulations of the Forced

Oscillations of a Wire in a Fluid

2.1 Introduction

In the previous chapter we presented the experimental realization of a vibrating-wire device

for measuring the viscosity of Newtonian fluids and the viscoelastic moduli of viscoelastic

fluids. Here we present numerical simulations of a wire vibrating in Newtonian and non-

Newtonian fluids. Simulations of the wire vibrating in Newtonian fluids allow for a numerical

test of the theory of a vibrating-wire viscometer presented by Retsina et al. [1, 2]. Simulations

in non-Newtonian fluids may help us to better understand the behaviour of our new device and

provide some guidance in the interpretation of data on non-Newtonian fluids that are obtained

experimentally.

There are many studies in the literature concerning the flow of Newtonian fluids around a

stationary body; see, for example, the reviews in Refs. [3, 4]. Under appropriate conditions, a

periodic wake forms downstream of the object from the shedding of vortices [3]. This vortex

shedding exerts a periodic force on the body, and if the body is flexible it will oscillate. This is

seen, for example, in air flow around chimneys, transmission lines, and suspension bridges [3]

18
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and in water flow around underwater cables, pipelines, and off-shore oil rig risers [5]. Flow-

induced vibrations are a major cause of structural fatigue and failure [6, 5] and considerable

effort has gone into developing damping mechanisms to counteract the vibrations [7].

There are also many computational studies of Newtonian flow around a moving body. Ex-

amples include the flow past a cylinder vibrating parallel to the flow [8], the flow past a rotating

cylinder [9], the flow-induced vibrations of a rotating cylinder [10], and the flow past a cylinder

vibrating with a prescribed displacement perpendicular to the flow [11, 12]. The focus of these

studies has been on how the motion of the cylinder affects the wake or the lift and drag forces

on the cylinder. There are similar studies of non-Newtonian flows around objects. Examples

include studies of the steady flow of shear-thinning and shear-thickening power-law fluids past

a cylinder [13] and the flow of Boger fluids past a cylinder [14], among others [15, 16, 17].

The focus of these studies was on understanding the effects of non-Newtonian fluid properties

on the drag force on the cylinder and the steady flow.

To the best of our knowledge, there are no numerical studies in the literature concerning

forced transverse oscillations of a cylinder in the absence of an externally imposed flow in

either Newtonian nor non-Newtonian fluids.

In this chapter we used the commercial software COMSOL Multiphysics version 5.1 (COM-

SOL Inc.), referred to below simply as COMSOL, to simulate the resonance behaviour of a

wire vibrating in Newtonian and non-Newtonian fluids. COMSOL is a finite-element software

package that can be used to study a variety of scientific and engineering problems [18]. It in-

cludes a number of different pre-built physics “packages,” that include implementations of the

equations, numerical solvers, and meshing and boundary condition programming relevant to

the problem of interest. In the work described in this chapter, we used COMSOL’s Structural

Mechanics and Fluid Flow packages. Stresses in the Structural Mechanics package are de-

scribed by the Piola-Kirchoff stress tensor [19]. Fluid Flow is described by the Navier-Stokes

equations [20]. COMSOL specializes in what they refer to as “multiphysics” simulations, i.e.,

it natively allows for the coupling of different physics packages. The Fluid-Structure Interac-
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tion module used in this chapter allows for the simulation of the effects of the fluid on a solid

object and vice versa, as discussed more fully below.

2.2 Theory

The systems in the literature mentioned above simulate the behaviour of a cylinder im-

mersed in a flowing fluid. Some of these papers concerned forced oscillations of the cylinder,

but the vibrational resonance of the cylinder was not investigated. In this chapter, we numeri-

cally study the forced oscillations of a cylinder, which from here on we will refer to as a wire,

immersed in a fluid that is initially at rest and with no externally imposed flow. This problem

was first studied theoretically by Stokes in 1850 [21]. Stokes’ work was applied by Tough et

al. in 1964 in their realization of a vibrating-wire viscometer [22]. More recently, in 1987,

Retsina et al. expanded upon Stokes’ work and developed a more complete theory of how the

steady, transverse oscillations of a wire in a Newtonian fluid could be used as the basis for a

viscometer [1, 2]. They considered the transverse motion of a long wire with circular cross-

section clamped at both ends. The wire was immersed in a fluid in a cylindrical container.

They assumed that the wire was significantly longer than its radius so that axial effects could

be neglected. This effectively reduces the problem to one where the transverse oscillations of

the wire drive motion of the fluid. They considered a two-dimensional cross-section of the

wire immersed in a Newtonian fluid and analytically solved the Navier-Stokes equations in

polar (r, θ) coordinates when the wire is forced to oscillate in the r − θ plane. They determined

that, when subject to a sinusoidal driving force at frequency f , the wire will oscillate at the

driving frequency with an amplitude that depends on f and the physical properties of the wire

and fluid. They showed that the amplitude of the wire’s velocity as a function of f is given by

v( f ) =
f Fi

π2ρwR2
[
f 2
0 − (1 + β) f 2 + (β′ + 2∆0) f 2i

] , (2.1)
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where 2F is the amplitude of the applied force per unit length on the wire, i =
√
−1, ρw is the

density of the wire, R is its radius, f0 is the resonant frequency of the wire in a vacuum, β is

the added mass arising from fluid displacement, β′ is a viscous damping term, and ∆0 is the

self-damping of the wire. β and β′ depend on the density and viscosity of the fluid and their

full functional forms are given in Chap. 3. Eq. 2.1 describes the resonance behaviour of the

wire. In Chap. 3 we will demonstrate that the resonance can be experimentally measured by

measuring the voltage induced across an alternating-current-carrying wire placed in a magnetic

field. In this case, the force that drives the oscillations is the Lorentz force on the wire. In this

chapter, we numerically simulate the motion of such a wire, first in Newtonian fluids to provide

a confirmation of the theory, and second in shear-thinning fluids to investigate how the variation

of viscosity with shear rate influences the frequency-dependent motion of the wire.

2.3 Geometry

Figure 2.1: (a) The simulation geometry. Fluid space is coloured blue. The tungsten wire is
shaded gray. (b) The simulation mesh. (c) A magnified view of the mesh near the wire. The
region shown in (c) is approximately square, with side length 16Rw.

We performed two-dimensional simulations of a wire vibrating in Newtonian and non-

Newtonian fluids. The simulation domain consisted of a circle, representing the wire, contained

within a larger, initially concentric circle representing the fluid. While the fluid volume could

be chosen to have any shape, we used a circle for meshing simplicity, symmetry, and so that
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we were simulating the same system as studied theoretically by Retsina et al. The geometry

used is shown in Fig. 2.1 (a). The outer boundary of the simulation space is a circle with radius

Rc = 3 mm. The inner circle shown in Fig. 2.1 is the tungsten wire, with radius Rw = 0.075

mm. We can estimate the size of the region of fluid affected by the motion of the wire from

the characteristic viscous length d =
√
ηt/ρ, where η is the dynamic viscosity and ρ is the

density of the fluid. If the time-scale t is taken to be the period of oscillation, then for t = 1

ms ( f = 1000 Hz) and η = 10−3 Pa·s, we find d ∼ 0.3 mm, and for t = 1 ms and η = 1 Pa·s,

d = 1 mm. For longer periods, d will be larger. The influence of the wall on the simulations

was greatest for higher viscosities. For simulations of a wire vibrating in a Newtonian fluid

with Rc = 1 mm, for η < 0.1 Pa·s, the qualitative properties of the resonance curves for our

simulations, discussed in Sec. 2.5.1, deviated from the theoretical predictions of Retsina et

al. [1, 2] by less than 0.5%, but for η = 1 Pa·s, it deviated by 28%. For our simulation of a wire

vibrating in a Newtonian fluid with η = 1 Pa·s and Rc = 3 mm, the percentage deviation was

4%, therefore we conclude that Rc = 3 mm was large enough for wall effects to be negligible.

The computational mesh used in our simulations is shown in Fig. 2.1 (b) and (c). The

equations presented in the next section are evaluated at each node of the mesh. The most

important region for the simulation is near the interface between the tungsten wire and the

surrounding fluid, where changes in the shear rate are greatest. With that in mind, the mesh

elements in the annular portion of the computational domain lying in the range Rw ≤ r ≤ 2Rw

were chosen to be smaller than in the surrounding fluid, as shown in Fig. 2.1 (c). The details

of the mesh in each region, including the predefined mesh setting selected and imposed by

COMSOL, the resulting minimum and maximum mesh element sizes emin and emax, number of

triangular elements Ne, and mesh density ρe, are listed in Table 2.1. The average mesh quality,

as defined in [18], was 0.973, which is close to optimal. To confirm that the mesh size had

no effect on the solution, we manually decreased emin and emax to increase the number of mesh

elements and ran test simulations of the wire vibrating in a Newtonian fluid. We observed no

noticeable difference between simulations performed with the finer mesh and those performed
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using the mesh detailed in Table 2.1. The total number of degrees of freedom, i.e., the number

of dependent variables solved for times the number of mesh nodes, was 20941.

For all simulations, convergence at a given time was reached when the root mean square

difference (as defined in [18]) between the solutions before and after an iteration, across all

degrees of freedom, was less than 1%. To confirm that this convergence criterion was sufficient,

we manually decreased it to 0.01% and ran test simulations of the wire vibrating in a Newtonian

fluid. We observed no significant difference between simulations performed with convergence

criteria of 1% and 0.01%.

Table 2.1: Details of the simulation meshes. Symbols are defined in the text.

Domain COMSOL Setting emin (mm) emax (mm) Ne ρe (elements/mm2)
Wire General Physics 4 × 10−5 0.02 240 13667

Extremely Fine
High mesh density Fluid Dynamics 4 × 10−5 0.0134 1018 19193
Fluid Extremely Fine
Bulk fluid Fluid Dynamics 0.0024 0.17 5118 182

Fine

To account for the displacement of the wire, we used the Fluid-Structure Interaction module

in COMSOL, which allows free deformation of the mesh in response to a load acting on the

fluid or structure in the simulation [18]. This allows for two-way coupling between the structure

and the fluid. If the structure moves, the fluid is displaced and the mesh is updated for the new

system. Similarly, if the fluid displaces or deforms the structure, the mesh is updated.

2.4 Model

The motion of the simulated fluids was described by the Navier-Stokes equations [23],

which are an expression of the conservation of momentum for the fluid, along with an equation

for the conservation of mass. Conservation of mass is given by

∂ρ

∂t
+ ∇ · (ρufluid) = 0, (2.2)
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where ufluid is the velocity vector of the fluid. Conservation of momentum is given by

ρ
∂ufluid

∂t
+ ρ(ufluid · ∇)ufluid = ∇ · [−pI + τ], (2.3)

where p is pressure, I is the identity matrix, and τ is the viscous stress tensor. The pressure

in the simulation was taken to be 1 atm and did not vary. In general, the conservation of

momentum equation could include an additional body force term on the right hand side of

Eq. 2.3, but since we will not be considering such forces in our simulations, it was not included.

The viscous stress tensor incorporates the constitutive model for the fluid. For a Newtonian

fluid,

τ = ηγ̇ −
2
3
η(∇ · ufluid)I, (2.4)

where γ̇ = ∇ufluid + (∇ufluid)T is the strain-rate tensor [23]. Combining Eq. 2.4 with Eq. 2.3

yields the full conservation of momentum equation,

ρ
∂ufluid

∂t
+ ρ(ufluid · ∇)ufluid = ∇ · [−pI + ηγ̇ −

2
3
η(∇ · ufluid)I]. (2.5)

Although we expect the fluid velocity to be small enough that the flow is incompressible, and

Retsina et al. imposed the incompressibility condition when developing their theory [1, 2], the

incompressibility condition was not explicitly imposed in our simulations. To check whether

compressibility had an influence on the results, we ran simulations of the wire vibrating in a

Newtonian fluid with η = 1 Pa·s with and without imposing the incompressibility condition.

No significant difference was observed between the two simulations.

At the boundary between the wire and the fluid, COMSOL’s “Fluid-Structure Interface”

boundary condition was used. This boundary condition ensures that a no-slip condition is

imposed at the boundary between the wire and the fluid, i.e., the velocity of the fluid equals

the velocity of the wire at the interface, and also that the fluid exerts a force on the wire [18].
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Mathematically, the first condition states that at each point on the boundary,

ufluid =
∂rsolid

∂t
, (2.6)

where rsolid is the displacement of the wire. The second condition is

σ · n = Γ · n, (2.7)

where σ is the stress on the wire and

Γ =

[
−pI + ηγ̇ −

2
3
η(∇ · ufluid)I

]
(2.8)

is the sum of the pressure and the viscous stress.

At the outer boundary of the simulation domain, COMSOL’s “Open Boundary” condition

was used. This condition allows for free convective inflow and outflow at the boundary, and

ensures that mass is conserved if fluid flows into or out of the simulation domain [20]. Mathe-

matically, at the boundary,

Γn = 0. (2.9)

For all fluids simulated, ρ was taken to be 1000 kg/m3 and η was varied between simula-

tions. The Carreau model, described in Chap. 1, was used to simulate shear-thinning fluids. In

this model, the dynamic viscosity is given by

η = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

](n−1)/2
, (2.10)

where η∞ is the infinite shear-rate viscosity, η0 is the zero shear-rate viscosity and η0 > η∞

for shear-thinning, λ is a characteristic relaxation time, and n is a power-law index [23]. The

shear rate 1/λ characterizes the cross-over between the low shear-rate Newtonian plateau and

the power-law shear-thinning region at intermediate shear rates. Fig. 2.2 shows that increasing
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Figure 2.2: Plots of viscosity vs. shear rate for the Carreau model with η0 = 1 Pa·s η∞ = 10−3

Pa·s, and several different values of λ and n.

λ shifts the shear-thinning region to lower shear rates, while decreasing n decreases its slope.

To simulate the forced oscillatory motion of and the restoring force on the wire, what COM-

SOL refers to as a “Body Load” was applied to the simulated wire. We applied a sinusoidal

driving force of the form F1 = F0 sin(2π f t)x̂ with amplitude F0 = 5.4 × 10−5 N, chosen to

match typical forces applied in the experiments discussed in Chap. 3. The amplitude of the

driving force was held constant for each simulation. A force of the form F2 = −krsolid was

imposed on the wire to approximate the elastic restoring force that would arise due to its ten-

sion. The constant k was chosen to be equal to 10957 N/m so that the resonant frequency of

the simulated wire, determined using COMSOL’s Solid Mechanics Eigenfrequency Study, was

1000 Hz. Despite this, simulations of the wire vibrating in a fluid suggest a vacuum resonance

frequency f0 of approximately 940 Hz. Summing these two contributions to the force on the

wire gives

Fa = (F0 sin(2π f t) − kx)x̂ − (ky)ŷ, (2.11)

where x and y are the components of rsolid in the x̂ and ŷ directions.

The driving frequency used in the simulations was increased from 20 to 1400 Hz in 20
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Hz steps using COMSOL’s Parametric Sweep Study. At each frequency, a time-dependent

simulation was run until the motion of the wire reached a steady state. A simulated time of

500/(25 f ) was sufficient to achieve this in most cases, but simulations involving low viscos-

ity fluids required longer. For all simulations, the maximum time step was stipulated to be

1/(25 f ), although the solver was programmed to use smaller time steps when necessary to

ensure convergence.

The time-dependent simulations used COMSOL’s implementation of the generalized-α

time-stepping algorithm. This algorithm was first described by Chung et al. for solving struc-

tural dynamics problems [24]. It was then adapted for fluid dynamics by Jansen et al. [25]. The

generalized-α algorithm is unconditionally stable and provides an optimal combination of high-

and low-frequency numerical dissipation [24]. We present here a simplified one-dimensional

discussion of the algorithm, based on that of Jansen et al. [25]

Suppose the variable of interest is y, and its time-derivative is ẏ. For a model problem of

the form

ẏ = λy, (2.12)

where λ is the complex-valued eigenvalue associated with the solution of the problem, the

generalized-α algorithm integrates the model problem from tn to tn+1 using the following equa-

tions:

ẏn+αm = λyn+α f , (2.13)

yn+1 = yn + (tn+1 − tn)ẏn + (tn+1 − tn)γ(ẏn+1 − ẏn), (2.14)

ẏn+αm = ẏn + αm(ẏn+1 − ẏn), (2.15)

and

yn+α f = yn + α f (yn+1 − yn), (2.16)

where αm, α f , and γ are currently free parameters. By defining a solution vector at tn as
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yn =
[
yn, (tn+1 − tn)ẏn

]T , the above system of equations can be written in matrix form as

yn+1 = cyn, (2.17)

where c is called the amplification matrix and is given by

c =
1
d

αm − (α f − 1)γΛ αm − γ

Λ αm − 1 + α f Λ(1 − γ)

 . (2.18)

Here Λ = λ(tn+1 − tn), and d = αm − α fγΛ. Eq. 2.17 has the solution

yn+1 = trace(c)yn − det(c)yn−1. (2.19)

This formulation is second-order accurate in time as long as

γ =
1
2

+ αm − α f (2.20)

and

αm ≥ α f ≥
1
2
. (2.21)

The values of the parameters γ, αm, and α f are automatically controlled by COMSOL.

The simulations were run on the “goblin” contributed cluster on the Shared Hierarchical

Academic Research Computing Network (SHARCNET). The cluster has 648 processors with

speeds ranging from 2.0 to 2.6 GHz. A set of simulations at a fixed value of η (for a Newtonian

fluid) or fixed values of λ and n (for a shear-thinning fluid), covering the full frequency range

mentioned above, took approximately 4 real-time days to run.
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Figure 2.3: The x-components of the (a) position, (b) velocity, and (c) acceleration of the center
of the wire as a function of time for a simulation of a wire vibrating in a Newtonian fluid with
η = 3 × 10−3 Pa·s and f = 900 Hz. The lines connect the data points to aid the eye. Note the
difference in units between the plots. The simulation time extends to 0.089 s, but only the first
0.04 s are plotted here to emphasize the early-time transient.

.

2.5 Results

2.5.1 Newtonian Fluids

We first present the results for the frequency-dependent behaviour of the wire vibrating in

Newtonian fluids with a range of viscosities. These results will be compared with the theoreti-

cal predictions of Eq. 2.1.
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At the start of each simulation, the wire is at rest with its center at the origin and the velocity

in the fluid is zero everywhere. The sinusoidally varying applied force given by Eq. 2.11 drives

oscillations of the wire. The amplitude of the oscillations initially increases, then approaches

a constant value over a transient time that depends on the viscosity of the fluid. For each

simulation, we recorded the time evolution of the position x(t), velocity v(t), and acceleration

a(t) of the center of the wire at each time step. An example of these quantities from a simulation

of a wire vibrating in a Newtonian fluid with viscosity ηsim = 3×10−3 Pa·s and driving frequency

f = 900 Hz are shown in Fig. 2.3. In this case, the amplitude of the oscillations has reached

its steady state value of 0.95 µm after approximately 0.03 s of simulated time, corresponding

to approximately 30 oscillations. In Fig. 2.4 we plot the velocity of the wire vs. dimensionless

time f t for simulations of a wire vibrating in Newtonian fluids with η = 3× 10−3, 3× 10−2, and

3× 10−1 Pa·s at driving frequencies f = 900, 840, and 660 Hz, respectively. These frequencies

are close to the resonance frequency for each simulation. Fig. 2.4 illustrates that the amplitude

saturates in fewer oscillations for higher viscosities.

To facilitate comparison of the results of our simulations with the predictions of Eq. 2.1,

we fit eight periods of v(t) in the steady-state of each simulation to a sinusoid with the form

v(t) = v0 sin(2π f t + φ), (2.22)

where the velocity amplitude v0, the phase angle φ, and the frequency f were all treated as fit

parameters. In all cases the fitted frequency was equal to the driving frequency within ±0.1 Hz.

A fit of Eq. 2.22 to the data plotted in Fig. 2.3(b) is shown in Fig. 2.5, and describes the data

extremely well.

Plots of v0 vs. f obtained from simulations of a wire vibrating in Newtonian fluids with

viscosities ranging from 10−3 Pa·s to 1 Pa·s are shown in Fig. 2.6. For ηsim = 10−3 Pa·s, i.e.,

the viscosity of water, the resonance curve is sharply peaked at a resonant frequency fr = 900

Hz, slightly lower than the vacuum resonance frequency f0 = 940 Hz. As the viscosity is
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Figure 2.4: The velocity in the x direction of the center of the wire vs. normalized time f t
for simulations of a wire vibrating in a Newtonian fluid at a frequency near the resonance
frequency with a) ηsim = 3 × 10−3, b) ηsim = 3 × 10−2, and c) ηsim = 3 × 10−1 Pa·s. The
early-time transient damps out faster for higher viscosities.

increased, fr shifts to lower frequency and the resonance peak broadens due to the higher

viscous dissipation, as expected. The resonance curves for the simulations with the largest

viscosities are magnified in the inset of Fig. 2.6.

We quantitatively describe the resonance curves by three parameters: the resonance fre-

quency fr, the full width at half maximum ∆ f , and the quality factor Q = fr/∆ f . fr was

calculated by fitting three points spanning the peak to a quadratic equation in vertex form,

v = a( f − fr)2 + vmax. The values of fr, ∆ f , and Q obtained from the simulations of the wire
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Figure 2.5: Example fit of Eq. 2.22 (red curve) to the late-time velocity data from Fig. 2.3 (b).
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Figure 2.6: The velocity resonance curves for the Newtonian-fluid simulations with viscosities
shown in the legend. The inset is a magnified view of the smaller-amplitude resonance curves
obtained at higher viscosities. The lines connect the data points to aid the eye.

vibrating in Newtonian fluids are plotted as functions of ηsim in Fig. 2.7. Theoretical predic-

tions determined by applying the same analysis to resonance curves calculated from Eq. 2.1

with f0 = 940 Hz are shown as the black curves in Fig. 2.7. The simulation and theory agree

extremely well.
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Figure 2.7: (a) The resonant frequency fr, (b) the full width at half maximum ∆ f , and (c) the
quality factor Q vs. η for simulations of a wire vibrating in a Newtonian fluid. The curves in
each plot are theoretical predictions calculated using Eq. 2.1.
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Figure 2.8: (a) Real and imaginary components, and (b) magnitude and phase of the simulated
velocity of a wire vibrating in a Newtonian fluid with η = 10−2 Pa·s plotted vs. frequency. The
lines are fits of Eq. 2.1 to the data.

The resonance curves were also analysed by fitting Eq. 2.1 to the simulated data. To remain

consistent with the procedure used in Chap. 3, F, f0 and η were treated as fit parameters,

although all three parameters are actually set in the simulation. For all simulations, the fits

return values for F and f0 that are within 10% of their expected values. We focus now on

the fitted viscosity, which we refer to as η f it. Since Eq. 2.1 is complex, we can compare its

predictions for the real component, imaginary component, magnitude, and phase of the velocity

to the corresponding simulation results. These quantities, determined from simulations of a

wire vibrating in a Newtonian fluid with ηsim = 10−2 Pa·s, are plotted in Fig. 2.8, along with
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Figure 2.9: (a) η f it vs. ηsim from fits of the real component of Eq. 2.1 to the real component
of the resonance curves for simulations of a wire vibrating in a Newtonian fluid. (b) The
magnitude of the % difference between η f it and ηsim vs. ηsim.

independent fits of Eq. 2.1 to each quantity. The quality of the fits shown in Fig. 2.8 is excellent,

and Fig. 2.9 shows that the viscosity η f it extracted from the four independent fits agree with

each other to within a few percent. For all simulated viscosities ηsim, the magnitude of the

difference between η f it and ηsim is always less than 10%.

2.5.2 Shear-thinning fluids

For simulations of a wire vibrating in shear-thinning fluids, the fluid space shown in Fig. 2.1(a)

was defined to be a Carreau fluid described by Eq. 2.10 with η∞ = 10−3 Pa·s and η0 = 1 Pa·s.

n and λ were varied to investigate how the strength of the shear-thinning (determined by n)

and the crossover shear rate 1/λ — as illustrated in Fig. 2.2 — affect the motion and resonant

behaviour of the wire. We performed simulations using five values of n, linearly spaced from

0.5 to 0.9, and five values of λ, logarithmically spaced from 100 to 104 s.

The motion of the wire produces a flow in the fluid that varies in both space and time. This

is true for both Newtonian and non-Newtonian fluids, but for Newtonian fluids the viscosity

of the fluid is independent of shear rate and so remains constant under all conditions. For

shear-thinning fluids, however, the spatio-temporal variation of the shear rate implies that the
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viscosity of the fluid also varies in both space and time. This will affect the motion of the wire

in the shear-thinning case.

A series of snapshots of the velocity of the fluid taken from a simulation of a wire vibrating

in a Carreau fluid with n = 0.5 and λ = 102 s are shown in Fig. 2.10. The frequency used in this

simulation was 660 Hz, which was slightly above the wire’s resonant frequency, as discussed

below. At the time shown in Fig. 2.10 (a), the wire is moving in the −x direction with a speed

near its maximum value. Because of the no-slip boundary condition, the fluid everywhere

along the wire’s surface is moving with the same velocity as the wire: it is being pushed to the

left, pulled from the right, and dragged to the left above and below the wire. The velocity of

the fluid rapidly decreases with distance away from the wire and circulates above and below

the wire.

Snapshots of the shear rate in the fluid corresponding to the velocity data plotted in Fig. 2.10

are shown in Fig. 2.11. The spatial variation of the shear rate takes the shape of a dumbbell

oriented along the direction of the wire’s motion, i.e., along the x axis. For the simulation

shown, the shear rate in the fluid varies spatially by 5 orders of magnitude. With the exception

of the time shown in Fig. 2.11 (c), the shear rate is highest near the wire and, in general,

decreases with distance away from the wire. In the y direction, the velocity decreases over

a relatively short distance, as shown in Fig. 2.10 (a), which results in a high shear rate near

the wire. The velocity of the fluid decreases over a longer distance in the x direction, which

contributes to the length of the shear-rate lobes in the x direction. The lobes extend in the y

direction due to circulation of the fluid above and below the wire.

At the time shown in subplot (c), the shear rate is small near the wire because the wire

and fluid are moving in the same direction with approximately the same velocity, as shown in

Fig. 2.10 (c). γ̇ is larger in a region away from the wire due to the decrease in the velocity

of the fluid with increasing distance from the wire. In subplot (d), although the fluid velocity

is small near the wire (Fig. 2.10 (d)), the wire is moving to the right, against the flow, which

contributes to the high shear rate near the wire shown in Fig. 2.11 (d).
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Figure 2.10: Snapshots from a simulation of a wire vibrating in the x direction in a shear-
thinning fluid described by Eq. 2.10 with n = 0.5 and λ = 102 s. The wire was driven at
f = 680 Hz, which was close to its resonant frequency. (a) - (g) show the spatial variation of
the velocity of the fluid near the wire at times covering a half-period of the wire’s oscillation.
The magnitude of the velocity is given by the surface plot, while the arrows show velocity
direction and logarithmic magnitude. (h) v(t), the velocity of the vibrating wire. The labelled
time points in (h) indicate the times of the corresponding velocity plots. The coordinate system
is explicitly labelled in subplot (a). A video showing the full domain and all times for this
simulation is included in the supplementary media.
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Figure 2.11: Snapshots from a simulation of a wire vibrating in the x direction in a shear-
thinning fluid described by Eq. 2.10 with n = 0.5 and λ = 102 s. The wire was driven at
f = 680 Hz, which was close to its resonant frequency. (a) - (g) show the spatial variation of
the shear rate near the wire at times covering a half-period of the wire’s oscillation. (h) v(t), the
velocity of the vibrating wire. (i) γ̇r̄(t), the shear rate averaged around the circumference of the
wire, as described in the text. The labelled time points in (h) and (i) indicate the times of the
corresponding shear rate plots. The coordinate system is explicitly labelled in subplot (a). A
video showing the full domain and all times for this simulation is included in the supplementary
media.
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Figure 2.12: Snapshots from a simulation of a wire vibrating in the x direction in a shear-
thinning fluid described by Eq. 2.10 with n = 0.5 and λ = 102 s. The wire was driven at
f = 680 Hz, which was close to its resonant frequency. (a) - (g) show the spatial variation of
the viscosity near the wire at times covering a half-period of the wire’s oscillation. (h) v(t), the
velocity of the vibrating wire. (i) ηr̄(t), the viscosity averaged around the circumference of the
wire, as described in the text. The labelled time points in (h) and (i) indicate the times of the
corresponding viscosity plots. The coordinate system is explicitly labelled in subplot (a). A
video showing the full domain and all times for this simulation is included in the supplementary
media.
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Since the viscosity of the fluid depends on shear rate according to Eq. 2.10, it will also

vary with position and time. Snapshots of the viscosity variation corresponding to the shear

rate and velocity data plotted in Figs. 2.10 and 2.11 are shown in Fig. 2.12. As with the shear

rate, the spatial variation of the viscosity takes the form of a dumbbell with lobes that extend

away from the wire in the direction of its motion, the x direction. The shear rate and viscosity

along the line y = 0 at the time corresponding to Fig. 2.12 (a) are shown as red and black

curves, respectively, in Fig. 2.13 (a). The shear rate is small near the surface of the wire and

initially increases rapidly with distance away from the wire in the x direction before gradually

decreasing again. Since λ = 102 s for this simulation, the characteristic cross-over shear rate

between the low shear-rate Newtonian region and the intermediate shear-thinning region is

1/λ = 10−2 s−1. Along the line y = 0, within |x| < 1 mm, the shear rate is greater than 10−2.

As a result, the viscosity is appreciably less than 1 Pa·s close to the wire and is smaller where

the shear rate is higher. The viscosity and shear rate along the line x = 0 show a more complex

dependence on distance from the wire, as plotted in Fig. 2.13 (b). In this direction, the shear

rate is large at the surface of the wire, decreases rapidly to a minimum, then shows another

maximum further from the wire. The viscosity is correspondingly smallest near the surface of

the wire where the shear rate is highest, then passes through a maximum and a local minimum

before increasing to its low-shear-rate value far from the wire.

To facilitate comparison with the single value of viscosity that will be obtained by fitting

Eq. 2.1 to the velocity resonance curves, it is useful to define an average viscosity appropriate

to our simulation results. At each point in time we average the shear rate and viscosity around

the circumference of the wire and denote the resulting spatial averages as γ̇r̄(t) and ηr̄(t). These

quantities are plotted in Figs. 2.11 and 2.12 (i), respectively. At the time corresponding to

subplots (c), γ̇r̄(t) reaches a minimum and ηr̄(t) a maximum. We then evaluate the time average

of ηr̄(t) over one period of the late-time, steady-state oscillations of the wire. The resulting

spatiotemporally averaged viscosity, which is a function of frequency as well as the shear-

thinning parameters, is denoted η̄( f ). The dependence of η̄( f ) on the shear-thinning parameters
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Figure 2.13: Fluid viscosity and shear rate as a function of (a) x, along the line y = 0, and (b)
y, along the line x = 0, at the time of Fig. 2.12 (a). The gap in the data in the center of each
plot corresponds to the location of the wire.

is discussed below.

As was found in the simulations using a Newtonian fluid, the sinusoidally-varying force

applied to the wire results in steady-state oscillatory motion following an initial transient. In

Fig. 2.14 we plot the velocity of the wire vs. f t for simulations of a wire vibrating in shear-

thinning fluids described by the Carreau model (Eq. 2.10) with different n and λ values. As

above, the duration of the transient depended on the viscosity of the fluid. In the shear-thinning

case, however, the viscosity was not constant, and the oscillations took longer to reach steady

state for lower n and/or greater λ. The amplitude of the velocity-time curves was again de-

pendent on frequency and showed resonant behaviour similar to that seen in the simulations

of the wire vibrating in Newtonian fluids. For the most part, the steady-state oscillations were
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Figure 2.14: The velocity in the x direction of the center of the wire vs. normalized time f t
for simulations of a wire vibrating in a shear-thinning fluid described by the Carreau model
(Eq. 2.10) with (a) n = 0.7, λ = 103 s, (b) n = 0.5, λ = 103 s, (c) n = 0.7, λ = 104 s, and (d)
n = 0.5, λ = 104 s. Note that for the simulation in subplot (d), the simulation time extends to
f t = 40, but only the first 20 oscillations are plotted here to emphasize the early-time transient.

.

sinusoidal. In a few cases slight deviations from sinusoidal behavior were observed. Despite

this, Eq. 2.22 was fit to v(t) for every simulation performed to determine the amplitude and

phase of the velocity.

The velocity resonance curves for the wire vibrating in the shear-thinning fluids were cal-

culated in the same manner as for the Newtonian case. The resonance curves and η̄( f ) for all of

the shear-thinning fluids simulated are plotted in Fig. 2.15. In this figure, n decreases from top

to bottom and λ increases from left to right. The resonance curves show the same general trend

as a function of average viscosity as was seen the simulations with Newtonian fluids. This

can be seen, for example, in the bottom row of Fig. 2.15. As λ decreases from right to left,

the average viscosity seen by the wire increases and as a result the resonance shifts to lower

frequency and broadens. Similarly, for a given value of λ, the average viscosity increases and
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Figure 2.15: Velocity resonance curves (black curves) and the spatiotemporal average viscosity
η̄( f ) (gray curves), for the full parameter space covered by our shear-thinning simulations. Note
the difference in velocity scale between subplots.

the peak broadens as n increases. Although the data for λ = 100 s and 101 s look very similar,

there are in fact subtle differences in the velocity and viscosity curves that are difficult to see

by eye in Fig. 2.15.

The effect of shear-thinning on η̄( f ) is most evident for λ = 104 s, the highest value of λ

studied. These results are plotted in the right-most column of Fig. 2.15. For n = 0.9, which cor-

responds to weak shear thinning, the average viscosity decreases only slightly with increasing

frequency. As n is decreased and the fluid becomes more strongly shear-thinning, the variation

in η̄( f ) becomes more pronounced, and η̄( f ) shows a clear minimum at the resonant frequency.

In fact, this minimum is present for all values of λ > 100 s, although it is difficult to discern in

the figure in most cases. For λ = 100 s, η̄( f ) deviates only very slightly from η0 = 1 Pa·s at

all frequencies and for all values of n. As the onset of shear-thinning is moved to higher rates,

i.e., as 1/λ is increased, the viscosity at a given shear-rate will be larger. The dependence of

the spatiotemporal average viscosity at the resonant frequency η̄( fr) on n and 1/λ is shown in
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Figure 2.16: η̄( fr) plotted against 1/λ for simulations of a wire vibrating in shear-thinning
fluids.

Fig. 2.16. At a fixed n, as 1/λ is increased, η̄( fr) increases. Similarly, at a fixed 1/λ, as n is

increased, η̄( fr) increases.

The velocity resonance curves plotted in Fig. 2.15 were analyzed in the same way as the

results obtained for Newtonian fluids. The dependence of the resonant frequency fr, the full

width at half maximum ∆ f , and the quality factory Q on n and 1/λ is shown in Fig. 2.17.

At a fixed n, as 1/λ is increased, i.e., as the onset of shear thinning is moved to higher rates,

fr decreases, ∆ f increases, and Q decreases. For 1/λ = 10−1 s−1, fr depends weakly on n,

which suggests that the maximum shear rate in the fluid is close to the cross-over shear rate

1/λ; the fluid shear thins slightly, but the shear rate is not high enough for the viscosity to

decrease significantly. For 1/λ = 100 s−1, fr is independent of n. The apparent scatter in ∆ f at

1/λ = 10−1 and 100 s−1 is probably an approximation issue since the full width of the resonance

curves extends beyond the simulated frequency range. For the simulation with 1/λ = 100 s−1,

the lack of dependence of fr on n suggests that the shear rate in the fluid is always less than

1/λ and that shear thinning does not occur.

In Fig. 2.18 we plot fr, ∆ f , and Q as functions of η̄( fr), the spatially-averaged viscosity at
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Figure 2.17: (a) The resonant frequency fr, (b) the full width at half maximum ∆ f , and (c) the
quality factor Q plotted against 1/λ for the simulations of a wire vibrating in shear-thinning
fluids.
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Figure 2.18: (a) The resonant frequency fr, (b) the full width at half maximum ∆ f , and (c) the
quality factor Q for the simulations of a wire vibrating in shear-thinning fluids plotted against
η̄( fr) and compared to the theoretical predictions calculated from Eq. 2.1 (black curves).

the resonant frequency. We also compare the results to the theoretical prediction for a Newto-

nian fluid calculated from Eq. 2.1, taking the constant viscosity in Eq. 2.1 to be η̄( fr). Using

η̄( fr) as an effective viscosity results in good agreement between the simulation results and the

theory.

We also fit Eq. 2.1 to the shear-thinning resonance curves, allowing F, f0, and η f it to be

fit parameters as before. Independent fits of Eq. 2.1 to the real component, imaginary com-

ponent, magnitude, and phase of the simulated resonance curve for the wire vibrating in a
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Figure 2.19: (a) Real and imaginary components, and (b) the magnitude and phase of the of
the velocity vs. frequency with fits of Eq. 2.1 to each component for the simulation of a wire
vibrating in a shear-thinning fluid with n = 0.5 and λ = 103 s.
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Figure 2.20: (a) η f it vs. η̄( fr) for the simulations of a wire vibrating in shear-thinning fluids.
Results with the same n are plotted with the same colour, and the same λ are plotted with the
same symbol. (b) The magnitude of the % difference between the two viscosities vs. η̄( fr). The
error bars are the standard deviation between the η f it values determined by independent fits of
the components of the resonance curves to Eq. 2.1.

shear-thinning fluid with n = 0.5 and λ = 103 s are shown in Fig. 2.19. While the quality of the

fits is reasonable, they do not accurately reproduce the resonance curves over the full frequency

range of the simulations. The largest discrepancies occur at frequencies below the resonance

peak, at which the fits underestimate the real and imaginary components and magnitude of

the simulated data while overestimating the simulated phase. As was the case when fitting

to the resonance curves of the wire vibrating in Newtonian fluids, the values of η f it obtained
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from independent fits to the real part, imaginary part, magnitude, and phase of v were similar.

The fitted viscosity η f it is plotted against η̄( fr) for each of the non-Newtonian simulations in

Fig. 2.20 (a). The data points are the average of the values of η f it extracted from the four inde-

pendent fits and the error bars are the standard deviation. As shown in Fig. 2.20 (b), η f it and

η̄( fr) agree to within 20% when the degree of shear thinning is large, i.e., for large λ or small

n. At intermediate values for λ and n, η f it and η̄( fr) disagree up to approximately 50%. When

the shear thinning is weaker, i.e., for small λ or large n, η f it and η̄( fr) agree to within 10%.

2.6 Discussion

Our simulations of a wire vibrating in a Newtonian fluid showed resonant behaviour, as

expected. We found good agreement between the resonant frequency fr, full width at half

maximum ∆ f , and quality factor Q determined from our simulations and theoretical predic-

tions based on Eq. 2.1 for all viscosities simulated. Eq. 2.1 described the simulated resonance

curves extremely well, and the viscosities obtained by fitting the theoretical equation to the sim-

ulated resonance curves agreed within 10% with the viscosities used in the simulations. We

verified that our numerical solutions were not affected by changes to the computational mesh

or convergence criterion. The good agreement between our simulations and the theory gives

us confidence that the vibrating-wire rheometer studied in Chap. 3 should accurately measure

viscosities up to approximately 1 Pa·s.

Our simulations of a wire vibrating in shear-thinning Carreau fluids showed that the shear

rate and viscosity of the fluid vary significantly both spatially throughout the computational

domain and in time over the period of the vibrations. Since the motion of the wire depends on

fluid viscosity, this spatiotemporal variation in the viscosity will modify the behaviour of the

wire. Our simulations also showed that the velocity of the wire exhibits resonant behaviour that

can be understood fairly well in terms of an effective viscosity η̄( f ) determined by averaging the

viscosity around the circumference of the wire and over one period of oscillation. Our results
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showed that η̄( f ) depended non-trivially on the driving frequency and reached a minimum at

the resonant frequency, when the average shear rate in the fluid near the wire was highest. We

attempted to model the shear-thinning fluids by using the spatiotemporal average viscosity at

the resonant frequency η̄( fr) in Eq. 2.1, which was derived for a Newtonian fluid. Our results

showed that the predictions of fr, ∆ f , and Q from using η̄( fr) in Eq. 2.1 agree reasonably well

with the results from the simulations. For η̄( fr) ≤ 0.4 Pa·s, fr at a given effective viscosity

is slightly larger than the resonant frequency of a wire vibrating in a Newtonian fluid with

η = η̄( fr). For η̄( fr) > 0.4 Pa·s, fr is smaller than the Newtonian prediction. Similarly, for

η̄( fr) ≤ 0.1 Pa·s, ∆ f is slightly smaller and Q is slightly larger than the Newtonian values, and

for η̄( fr) > 0.1 Pa·s ∆ f is slightly larger, and Q is slightly smaller, than the Newtonian values.

Fitting the Newtonian theory to the velocity resonance curves gave a fitted viscosity that agreed

well with the spatiotemporally averaged viscosity obtained from the simulations for strong and

weak shear thinning, however for intermediate values of shear thinning, the agreement was not

as good.

Our comparison between the simulated behaviour of the wire vibrating in shear-thinning

fluids to the theory of a wire vibrating in a Newtonian fluid has some implications for the

physical vibrating-wire rheometer. Although we have shown that using a constant effective

viscosity η̄( fr) in Eq. 2.1 gives a reasonable description of the wire’s resonance behaviour in

shear-thinning fluids, we found that fits of Eq. 2.1 to the resonant curves did not accurately

reproduce the details of their full shape. The systematic deviations from the shape predicted

by Eq. 2.1 observed here may be measurable using our vibrating-wire rheometer and if so,

could be used as a qualitative indication or measure of shear-thinning. Our results showed that

the shear rate and viscosity in the shear-thinning fluid depend on the velocity of the vibrating

wire. Increasing the amplitude of the wire’s velocity by increasing the amplitude of the driving

force will change the degree of shear thinning in the fluid, and thus the effective viscosity

seen by the wire. This could be investigated further by simulating the behaviour of the wire

vibrating in a shear-thinning fluid as a function of the amplitude of the driving force. It could
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also be studied experimentally with the vibrating-wire rheometer by measuring the viscosity of

a shear-thinning fluid as a function of the driving current. This also suggests the possibility of

observing the transition from the low-shear-rate constant-viscosity regime to the intermediate-

shear-rate shear-thinning regime using our vibrating-wire rheometer.

Although in this chapter we have focused the vibration of a wire in Newtonian and shear-

thinning fluids, the simulation we have described could easily be modified to study shear-

thickening fluids. This would be an interesting topic for future work. Many complex fluids

are not only shear-thinning, but also elastic. A more complete understanding of the behaviour

of our vibrating wire rheometer in complex fluids could therefore be gleaned from simulations

of a wire vibrating in viscoelastic fluids, however simulating viscoelastic fluids may require

different software.

2.7 Conclusion

In this chapter we studied the driven transverse oscillations of a wire in Newtonian and

shear-thinning fluids by means of two-dimensional numerical simulations using COMSOL.

The results of simulations of a wire vibrating in a Newtonian fluid agree well with the theory

developed by Retsina et al. [1, 2]. Our simulations of a wire vibrating in a shear-thinning fluid

described by the Carreau model showed resonant behaviour similar to that in Newtonian fluids,

but with resonant behaviour that depended on the shear-thinning parameters n and λ. We found

that the shear rate and viscosity in the shear-thinning fluid varied significantly in both space

and time over a period of the wire’s oscillation. We defined an effective viscosity by averaging

around the circumference of the wire and over one period of oscillation. A greater degree of

shear-thinning, resulting from a lower value of n or a higher value of λ, led to a lower value of

the effective viscosity. We found that for a simulation at fixed n and λ, the effective viscosity

reached a minimum at the resonant frequency. We found that the resonant behaviour of the

wire in shear-thinning fluids could be reasonably well described by the theory developed for a
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wire vibrating in a Newtonian fluid if the viscosity was set equal to the effective viscosity at

the resonant frequency.
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Chapter 3

Vibrating-wire Rheometry

3.1 Introduction

The viscoelastic properties of complex fluids are commonly measured using rotational

shear rheometers. These instruments are typically limited to frequencies . 100 Hz due to

the inertia of the rheometer tool [1, 2]. Knowledge of the rheological properties of com-

plex fluids at higher frequencies is important for understanding their dynamical properties,

microstructure, and interactions between the components of the fluid. For example, the high-

frequency behaviour of the viscoelastic moduli contains information about inter-particle forces

in a concentrated colloidal suspension [3]. Very fast relaxation processes in polymer solutions

can only be measured using high-frequency methods [4]. In some cases, the high-frequency

properties can be inferred by employing time-temperature superposition or time-concentration

superposition [5], but there are many fluids for which these techniques cannot be applied due

to effects such as evaporation or freezing of the solvent or temperature-induced phase transi-

tions. There is thus a need for new experimental methods that will enable the exploration of

the high-frequency dynamics of complex fluids.

Devices based on the vibrations of a wire in a fluid have frequently been used to measure

viscosity and density. A brief review is provided in Ref. [6]. Viscosity damps the vibrations. It

52
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can be determined either in the time domain, by measurements of the damping time, or in the

frequency domain, through measurements of the wire’s resonance curve [6]. In 1850, Stokes

analysed the problem of an infinite cylinder oscillating perpendicular to its axis in an infinite

fluid [7]. In 1964, Tough et al. [8] constructed a vibrating-wire viscometer which they used

to measure the viscosity of liquid helium. Retsina et al. [9] solved the Navier-Stokes equa-

tions for a finite cylindrical rod vibrating in an infinite Newtonian fluid. They developed a set

of working equations that relate the motion of the wire to the fluid properties and discussed

the effects of the physical dimensions of the device on the accuracy of the viscosity measure-

ments. Kandil and Marsh [10] constructed a vibrating-wire device to measure the viscosity

of a range of Newtonian fluids. Forced oscillations were produced by passing an alternating

current through a wire under tension in a constant magnetic field. They expanded upon the

theory of Retsina et al. [9] to derive an expression for the voltage induced in the wire due to its

motion in the magnetic field and its dependence on fluid properties. Many other devices of this

type have been reported, for use in applications ranging from the petroleum industry to bedside

measurements of blood viscosity and under a broad range of environmental conditions [6].

Vibrating objects have been used for rheometrical measurements in non-Newtonian flu-

ids in the past. A patent for a vibrating-wire rheometer was issued in 1996 [11], but we are

unaware of any published description of this instrument, nor of any results obtained using it.

Fritz et al. [1] explored the high frequency dynamics of several complex fluids using torsional

resonators. They used cylindrical and double-dumbbell-shaped torsional resonators to perform

measurements at discrete frequencies on the order of 10 kHz. Using a simple model of me-

chanical resonators and comparing measurements in the fluid to reference measurements in air,

the properties of several complex fluids were determined. Although Fritz et al. successfully

measured viscous and elastic moduli using this method, it requires calibration of the device,

operates at a single discrete frequency, and the geometry is too complex for a complete theoret-

ical description. Wang et al. recently introduced a method for performing measurements over

a range of frequencies around the resonance peak of a torsional oscillator [12] and applied it to
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determine the viscoelastic moduli of polymer solutions at frequencies from 0 to 400 Hz [13].

Measurements at higher frequencies require smaller devices with higher resonant frequen-

cies. Lemaire et al. have investigated the use of vibrating microstructures to measure density

and complex viscosity [14]. They fabricated two devices, a microcantilever and a U-shaped

vibrating wire, which operated at frequencies in the range from 103 to 105 Hz. By estimat-

ing the hydrodynamic force on the structures and taking the fluid viscosity to be complex (see

Eq. 3.8), they were able to measure the viscous modulus G′′ to within 20% of the accepted

value. Using nanofabrication techniques, Riesch et al. fabricated a viscometer consisting of a

suspended plate 100 × 100 µm in size with a resonance frequency of 16 kHz [15]. While this

device was successfully used to measure viscosity, its use was not extended to complex fluids.

In this chapter we describe a novel vibrating-wire rheometer for the measurement of vis-

coelastic moduli in low- to moderate-viscosity fluids at frequencies around 1 kHz. The con-

struction of the device, experimental setup, and data analysis method are discussed. Measure-

ments in Newtonian fluids and a homogeneous viscoelastic polymer solution are presented to

demonstrate the efficacy and accuracy of the device. We also show how the device can be used

to probe the time-dependent changes in microstructure of an aging suspension of Laponite clay

[16, 17].

3.2 Theory

3.2.1 Newtonian fluids

Theoretical descriptions of the motion of a wire vibrating in a Newtonian fluid have been

presented in [7, 8, 9, 10]. This earlier work was extended by Kandil [18] to consider the voltage

induced in a current-carrying wire vibrating in a viscous Newtonian fluid in a magnetic field as

a function of fluid parameters and vibration frequency. The amplitude of the wire’s oscillation,

and therefore the induced voltage, is a maximum at a resonance frequency. The induced voltage
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is given by [18]

V = a + b f + ci + d f i +
Λ f i

f 2
0 − (1 + β) f 2 + (β′ + 2∆0) f 2i

, (3.1)

where the first four terms are due to the electrical impedance of the stationary wire and any

background voltage; a, b, c, and d are adjustable parameters determined by curve fitting. The

last term is the motional electromotive force and is a function of the fluid properties. i is

the imaginary number
√
−1, Λ is the voltage amplitude, f0 is the resonance frequency of the

vibrating wire in vacuum, ∆0 is the self-damping of the wire, β is the added mass arising from

fluid displacement, and β′ is the viscous damping term.

The density and viscosity of the fluid are contained within β and β′. Retsina et al. [9] stud-

ied the fluid mechanics of a vibrating wire of density ρw in a fluid of density ρ and determined

β and β′ to be given by

β = k
ρ

ρw
, (3.2)

and

β′ = k′
ρ

ρw
, (3.3)

respectively, where k and k′ are

k = −1 + 2=(A), (3.4)

and

k′ = 2<(A). (3.5)

Here = and < represent the imaginary and real components, respectively. A is a complex

quantity given by

A =

1 +
2K1(

√
Ωi)

√
ΩiK0(

√
Ωi)

 i, (3.6)

where

Ω =
2π fρR2

η
. (3.7)
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K0 and K1 are the modified Bessel functions of zeroth and first order, and Ω is a dimensionless

quantity related to the Reynolds number which characterizes the flow around a cylindrical wire

of radius R in a fluid with viscosity η. η is determined by fitting the experimentally-measured

voltage across the vibrating wire to Eq. 3.1. For Ethanol at T = 20 ◦C, with f = 1000 Hz,

Ω = 23. The Reynolds number based on the displacement of the wire is given by Re= εΩ

where ε = y/R is the dimensionless amplitude of the wire’s oscillations [9]. The amplitude

of the wire’s oscillations is . 1 µm, yielding Re. 2.3 for Ethanol. For the more viscous

Newtonian fluids and the viscoelastic fluids studied in this chapter, Re� 1.

3.2.2 Viscoelastic fluids

To extend the above theory to viscoelastic fluids, we replace the Newtonian viscosity η in

Eq. 3.7 by a complex viscosity η∗ [5]:

η→ η∗ = η′ − iη′′ =
G′ + iG′′

iω
, (3.8)

where G′ and G′′ are the elastic and viscous moduli respectively and ω = 2π f is the angular

frequency. This substitution is exact in the limit of linear response [5]. In general G′ and G′′

will be functions of frequency, although we will assume them to be constant over the limited

frequency range of our experiments, as discussed below. In our experiments, described below,

we measure the induced voltage V( f ) and determine G′ and G′′ by fitting our data to Eq. 3.1

with this substitution.

3.3 Experiment

3.3.1 Vibrating-wire rheometer

We constructed several vibrating-wire devices designed to have different resonant frequen-

cies; they differ only in the active length of the wire. One is shown in the left panel of Fig. 3.1
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1cm

1cm

Figure 3.1: Photographs of the vibrating-wire rheomter (left) and the temperature-controlled
housing and magnets (center), and a schematic diagram of the instrument as seen looking
through the face of the magnet (right). Colour online.

and drawn schematically in the right panel. The operation of the device is similar to that de-

scribed by Kandil [10, 18]. A tungsten wire is held under tension by two stainless steel clamps.

The steel clamps are mounted on a borosilicate glass backbone. This wire holder is placed

inside a vial containing the sample fluid, and the vial is immersed in a temperature controlled

housing as shown in the center panel of Fig. 3.1.

To ensure wall effects are negligible, the ratio of the radius of the fluid container Rc to the

radius of the wire R must be large. Retsina et al. determined that a ratio Rc/R = 33 contributes

an error of less than ±0.05% to the measured viscosity [9]. In our case the distance to the glass

backbone yields a ratio of 67, while the fluid vial yields a ratio greater than this.

Two permanent magnets are mounted on the sides of the housing to produce a magnetic

field. An alternating current of frequency f and amplitude ∼ 1 mA is passed through the wire,

and the resulting Lorentz force causes the wire to vibrate at the driving frequency.
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Tungsten wire of diameter 0.15 mm (Goodfellow, Huntingdon, UK) was chosen for the

vibrating wire because of its relatively high Young’s modulus, E ≈ 411 GPa, and density,

ρw ≈ 19300 kg m−3. The high Young’s modulus gives a stable resonance and the high den-

sity relative to the fluids studied provides more sensitivity through the density ratios in Eqs. 3.2

and 3.3. Borosilicate glass (Specialty Glass Products, Willow Grove, PA) was used as the back-

bone of the wire holder because its thermal expansivity is closely matched to that of tungsten,

ensuring that the tension in the wire remains constant as temperature is varied. The magnetic

field is produced by two NdFeB, Grade N52 magnets with dimensions 4” × 2” × 1” (K & J

Magnetics, Pipersville, PA) which are mounted to the sides of the brass holder as illustrated

in Fig 3.1 (center). Each magnet has a surface field strength of 0.42 T, and the two together

produce a homogeneous magnetic field at the location of the vibrating wire of roughly 0.8 T.

The exact field strength is not important, but should be high enough that the current through

the wire can generate a Lorentz force large enough to drive the oscillations while limiting Joule

heating. In our case, the amplitude of the alternating current I ≈ 1 mA. The temperature of the

experimental fluid is controlled by circulating fluid from a temperature controlled bath through

the internal cavity of the brass housing shown in Fig. 3.1(center). A calibrated thermistor

placed in the circulating fluid is used to measure its temperature and to ensure that steady-state

has been reached after the bath temperature is changed.

The wire was installed in the device with a controlled tension by clamping the top of the

vibrating section of the wire and suspending a mass from it. After waiting approximately 24

hours for any torsional oscillations to damp out, the bottom of the wire was then carefully

clamped in place. The resonant frequency of the vibrating wire depends on the tension as [19]

f0 ≈
1

2L

√
mg

ρwπR2 , (3.9)

where m is the suspended mass, mg is the tension force, and L is the length of the wire. We

used wires of length L = 4, 5, and 6 cm, and m = 600 g, which resulted in resonant frequencies
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f0 ≈ 1600, 1300, and 1100 Hz, respectively. With this value of m, the stress applied to the

wire was in the range of 20−50% of its tensile strength, which is approximately 720 MPa [10].

From the equations of motion for the wire found in Refs. [9, 10, 18], we estimate the amplitude

of our wire’s oscillation to be . 1 µm. This is an order of magnitude smaller than the wire’s

diameter, suggesting that the assumption of linear response implicit in our use of the complex

viscosity is justified.

Dual-Phase

Lock-in Amplifier

Personal

Computer

Oscillator

Reference

Signal in
Wire

Figure 3.2: A schematic diagram of the experimental setup.

Fig. 3.2 shows the circuit used to drive the oscillations and measure the voltage induced

across the wire as it moves in the magnetic field. The vibrating wire, which has a resistance

. 1 Ω, is one arm of a Wheatstone bridge. A dual-phase lock-in amplifier (Model 7230, Signal

Recovery, Oak Ridge, TN) is used to drive the circuit and to detect the error signal across the

bridge. At the beginning of an experiment, a 1 kΩ potentiometer in another arm of the bridge is

adjusted to null the voltage across the bridge far from resonance. The lock-in amplifier detects

the in- and out-of-phase components of the signal as the frequency is swept through the wire’s

resonance. Data are recorded by a personal computer for later analysis.

3.3.2 Rheometric Measurements

Conventional shear rheometric measurements were done using an Anton Paar MCR 302

shear rheomter. The linear viscoelastic properties of the HEC solution were measured using

a parallel-plate geometry with a gap of 1 mm. A strain amplitude of 1% was used to ensure
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measurements were preformed in the linear viscoelastic regime. For the Laponite suspension,

a Couette geometry was used due to its low initial viscosity. The temperature of the samples

was controlled using a Peltier system with an environmental hood that enclosed the rheometer

tool.

Microrheological measurements were done using dynamic light scattering [20, 21]. We

used an ALV/CGS-3 Compact Goniometer (ALV, Langen, Germany). Measurements were

performed at a single scattering angle, chosen to maximize the strength of the signal due to

light scattered by small tracer particles suspended in the fluid of interest. A digital correlator

computes the autocorrelation function of the scattered light intensity as a function of delay

time, from which the mean-squared displacement of the tracer particles can be determined.

The viscoelastic moduli can then be calculated using the generalized Stokes-Einstein relation

[22, 23].

3.3.3 Sample Preparation

Reagent-grade ethanol and a silicone oil with a viscosity of 20 mPa·s at 25 ◦C (Clearco

Products, Bensalem, PA) were used to verify the device’s operation in Newtonian fluids. As

sample viscoelastic fluids, we used aqueous solutions of 2-hydroxyethyl cellulose (HEC). HEC

with an average molecular weight of Mv ∼ 1, 300, 000 was purchased from Sigma Aldrich

Canada. An HEC solution with a similar concentration as studied in this chapter has been

characterized by Yiu et al. in Ref. [24]. Milli-Q deionised and distilled water was filtered

through 0.2 µm filters, then heated to 90 ◦C on a hotplate. HEC powder was then added slowly

to the water and mixed in using a magnetic stirrer. Sufficient time was allowed for the polymer

to dissolve completely. The solution was then covered and allowed to sit overnight.

We also used our vibrating-wire device to study the gel transition in a 1 wt% aqueous

suspension of Laponite RD (Southern Clay Products, Gonzales, TX). Laponite is a synthetic

clay consisting of disk-shaped particles approximately 30 nm in diameter and 1 nm thick.

Laponite and 10−3 mol/l NaCl were added to room temperature Milli-Q water that had been
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passed through a 0.2 µm filter. The addition of salt controls the ionic strength of the suspension

and screens long-range electrostatic interactions between the Laponite particles [16]. This

results in attractive van der Waals forces dominating the interaction between particles, leading

to the formation of a gel structure [25]. The solution was thoroughly mixed overnight using

a propeller-blade mixer. NaOH was then added to raise the pH value to 10 to inhibit the

sedimentation of the clay particles [26]. For light scattering measurements, polystyrene latex

spheres with a diameter of 220 nm (Thermo Scientific, Freemont, CA) were added to the

Laponite suspension at a volume fraction of 1 × 10−5. Immediately after mixing, samples of

the suspension were transferred into the Couette cell of the shear rheometer, the sample vial of

the vibrating-wire rheometer, and a test tube for use in DLS measurements.

3.4 Results

3.4.1 Newtonian fluids

We validated our vibrating-wire device by using it to determine the viscosities of ethanol

and a silicone oil at temperatures T from 5 to 60 ◦C. A representative set of raw data is plotted

in Fig. 3.3, which shows the in- and out-of-phase components of the voltage measured across

the bridge circuit for a vibrating wire in ethanol at T = 9.7 ◦C. Independent fits of Eq. 3.1 to the

two components of the voltage are shown as curves through the data in Fig. 3.3. There are very

slight systematic deviations from the fits in some regions of the resonance curve, but the overall

agreement between the theoretical expression and the data is excellent. In the case plotted in

Fig. 3.3, the expected viscosity is η = 1.40 mPa·s [27]. The viscosity determined from the

fit to the in-phase component was η = 1.36 mPa·s, while the out-of-phase component yielded

η = 1.39 mPa·s. In both cases, the viscosities determined from our vibrating-wire device are

within 3% of the expected value. While in this example the out-of-phase component agrees

more closely with the expected value, neither component gave significantly better results than

the other on average. Results presented below are determined from fits to the out-of-phase
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component of the induced voltage.
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Figure 3.3: Voltage induced in the vibrating wire as a function of frequency for ethanol at
9.7 ◦C. The curves are independent fits the real and imaginary parts of Eq. 3.1 to each compo-
nent.

Figure 3.4 compares the viscosity measured with the vibrating-wire device with the ex-

pected viscosity for ethanol and silicone oil over a range of temperatures. Ethanol data are

compared with values tabulated in Ref. [27], while the viscosity of silicone oil was measured

in our laboratory with an Anton Paar MCR 302 shear rheometer. The inset to Fig. 3.4 shows the

deviation between the measured and expected values. Over the range of viscosities and tem-

peratures studied, the viscosities determined with our vibrating-wire device were consistently

within ±3% of the accepted values.

3.4.2 Viscoelastic polymer solutions

We demonstrated the ability of our device to determine the viscous and elastic moduli of

non-Newtonian fluids using a variety of aqueous polymer solutions. Here we present results

obtained using a 3.5 wt% aqueous solution of HEC, although similar results were obtained

with other concentrations of HEC and with other polymers.

Fig. 3.5 shows the voltage induced in the vibrating-wire rheometer in the 3.5 wt% HEC

solution at T = 20 ◦C. The curves are fits to the data of Eq. 3.1 with a complex viscosity, as in
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Figure 3.4: The viscosity determined from fits to vibrating-wire data as in Fig. 3.3, η f , plotted
against expected viscosity, ηe. The solid line is η f = ηe. The fluids were ethanol and silicone oil
at temperatures ranging from 5 to 60 ◦C. Uncertainties in the measured viscosities are smaller
than the size of the symbol. Inset: Difference between the measured and expected values.

Eq. 3.8. Only every 10th data point is displayed for clarity and to make the fit lines visible. The

theoretical expression provides an excellent description of the data. The viscoelastic moduli

measured using the vibrating-wire rheometer are compared to data obtained with the Anton

Paar rheometer in Fig. 3.6. The shear rheometer was used to measure G′( f ) and G′′( f ) for

0.15 ≤ f ≤ 32 Hz at a strain amplitude of 1% and temperatures ranging from 1 to 20 ◦C.

Using time-temperature superposition, master curves for the viscous and elastic moduli were

generated at a reference temperature of 20 ◦C. The longest characteristic relaxation time λ

for the 3.5 wt.% HEC solution can be approximated by the frequency where the moduli cross

over by λ = 1/2π fc [28]. The crossover frequency is fc = 1.2 Hz, yielding λ = 0.13 s.

Measurements with vibrating-wire rheometers having wire lengths L = 5 and 6 cm were also

performed at 20 ◦C. Although the two vibrating-wire devices had different vacuum resonance

frequencies (1300 and 1100 Hz respectively), the high viscosity of the HEC solution broadened

the resonance curves to the extent that the frequency ranges probed by the two wires overlapped

significantly. The frequency of the vibrating-wire rheometers is an order of magnitude higher

than that obtainable with the shear rheometer. Comparing the two sets of data indicates that

the moduli measured by the vibrating-wire device are consistent with those measured at lower
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frequencies by the shear rheometer.

800 1000 1200 1400 1600 1800

-2

-1

0

1

2

3

4

5

Figure 3.5: In-phase and out-of-phase components of the measured voltage for a 3.5 wt%
aqueous solution of HEC. The black lines are independent fits of the real and imaginary parts
of Eq. 3.1 to the components with the complex viscosity substitution, Eq. 3.8. Only every 10th
data point is plotted for clarity.
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Figure 3.6: Viscoelastic moduli for a 3.5 wt% solution of HEC in water. The data spanning
1−100 Hz (open symbols) were obtained from a shear rheometer using time-temperature super-
position. The data at approximately 1000 Hz (solid symbols) were obtained with vibrating-wire
rheometers with lengths L = 5 and 6 cm, as described in the text.

Fitting the complex-viscosity version of Eq. 3.1 to the data is difficult due to the fact that

the expression contains eight fitting parameters. We assume that G′ and G′′ are constant over
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the limited range of frequency spanned by the resonance curve of our device. Allowing the

moduli to vary with, for example, a power-law dependence on frequency did not improve the

quality of the fits, and, in fact, had the opposite effect. We found the fit parameters to vary by

±15%, depending on the range of frequencies included in the fit.

We incorporated this range-dependence into the reported uncertainty in the moduli as fol-

lows. Starting with a small frequency range centred on the resonance frequency, we iterated the

fitting routine over increasing ranges of frequency, using the parameter values determined from

the previous iteration as the starting point for the next. The moduli plotted in Fig. 3.6 are the

means of the several values obtained by this process, and the error bars indicate the standard

deviation. The error bars in frequency indicate the full width at half maximum of the resonant

peak (the in-phase component of the measured voltage) with the background removed.

3.4.3 Aging and gelation of a clay suspension

The above data demonstrate that our vibrating-wire rheometer gives results in good agree-

ment with conventional rheometric measurements on a homogeneous polymer solution. Since

the amplitude of the wire’s oscillation is . 10 µm, however, we would expect it to give results

that differ from bulk measurements in complex fluids that are heterogeneous on that length

scale. In other words, our device probes the microrheology of such materials [20] in the sense

that it measures the local properties of the fluid at the 10 µm scale rather than the bulk proper-

ties.

To demonstrate this, we studied the viscoelastic moduli of a suspension of 1 wt% Laponite

clay in water as a function of aging time τ using the vibrating-wire rheometer, and compared

our results with data obtained using conventional shear rheometry and dynamic light scattering

microrheology. Depending on ion concentration [25], a Laponite suspension can undergo a

transition for a liquid to a gel phase as it ages. Previous work has shown that the viscoelastic

properties of the gel-forming Laponite suspension depend on the length scale being probed [16,

17]. These groups used particle-tracking microrheological techniques to measure the micron-
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Figure 3.7: Viscoelastic moduli of a 1 wt% Laponite suspension vs. frequency after approx-
imately 4 h of aging. Data in (a) were measured using a shear rheometer. Data in (b) were
determined from dynamic light scattering (open symbols) and with the vibrating-wire rheome-
ter (solid symbols).

scale viscous and elastic moduli of the Laponite. Immediately after mixing, they found the

microrheological response of the suspension to be primarily viscous, with G′′ > G′. Over

time, the suspension undergoes a gel transition, evolving into a viscoplastic material with a bulk

yield stress and G′ > G′′. The gel transition, at which G′ = G′′, occurred much earlier in bulk-

scale measurements made with a shear rheometer than in the microrheological measurements

[16, 17].
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Figure 3.8: The in-phase component of the voltage measured with the vibrating-wire rheometer
for an aging Laponite clay suspension. From largest to smallest amplitude, the curves corre-
spond to aging times of 40 min, 22 h, 52 h, and 144 h.
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Figure 3.9: Viscoelastic moduli of the 1% Laponite suspension measured with the vibrating-
wire rheometer plotted as a function of aging time. Error bars are not shown for clarity, but are
similar to those plotted in Fig. 3.6.

At τ = 0, our Laponite suspension was very fluid. Figure 3.7 shows data taken using

all three experimental methods when the suspension had aged for 4 h. Data from the shear

rheometer are shown in Fig. 3.7(a). These data show that, on the mm length scale probed by

the rheometer, the suspension had already gelled by this time: G′ is an order of magnitude

larger than G′′, and both are approximately independent of frequency. Very different behavior
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is seen in the DLS data, shown in Fig. 3.7(b). These data, which probe the properties of

the material on the scale of the 200 nm tracer particles, show viscoelastic behavior. At low

frequencies the fluid is primarily elastic, with G′ > G′′. There is a crossover frequency around

f = 0.1 Hz, above which G′′ > G′. The solid symbols in Fig. 3.7(b) are the values of G′ and

G′′ measured with the vibrating-wire rheometer at f = 1000 Hz. The vibrating-wire results

also show G′′ > G′ and are consistent with the microrheological measurements obtained by

DLS.

Fig. 3.8 shows the effect of aging of the Laponite suspension on the resonance curve of

the vibrating wire. The in-phase component of the induced voltage is shown as a function of

frequency for aging times ranging from 40 min to 6 days. 20 min after mixing the viscosity of

the suspension is approximately 30 times that of water. As the material ages over the course of a

week, both the viscosity and elasticity increase significantly. The increase in viscosity broadens

the resonance curve, while the increase in elasticity that accompanies the gel formation shifts

the resonance to higher frequency.

Fig. 3.9 shows the viscoelastic moduli of Laponite determined with the vibrating-wire

rheometer plotted as a function of aging time τ. At early times, the solution exhibits vis-

cous, fluid-like behaviour, with G′′ > G′. At τ ≈ 2 × 105 s, however, the elastic modulus

becomes greater than the viscous modulus. This crossover point corresponds to the gel transi-

tion as measured on the scale of the amplitude of the vibrating wire. For comparison, the data

from the shear rheometer plotted in Fig. 3.7(a) indicate that bulk-scale gelation occurred before

τ = 1.4 × 104 s. These results are in agreement with previous microrheological measurements

of Laponite suspensions [16, 17], and confirm that our vibrating-wire device can be used as a

microrheological probe.
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3.5 Discussion and Conclusion

We have described the design and operation of a novel vibrating-wire rheometer, and

demonstrated its use on homogenous polymer solutions and a viscoplastic clay suspension.

The voltage induced across the wire when it vibrates in a magnetic field is measured as a

function of frequency using a bridge circuit and two-phase lock-in detection. The viscoelastic

moduli of the fluid of interest are determined by fitting a theoretical expression to the data.

As a simple viscometer, our device functions very well, giving viscosities within ±3% of the

expected value. The viscous and elastic moduli of a homogeneous aqueous polymer solution

are consistent with those measured at lower frequencies by a shear rheometer. In an aging

Laponite clay suspension, which is heterogeneous on the micron scale, our device was used to

monitor the variation in time of the viscous and elastic moduli as the suspension gelled, and to

determine the micron-scale gel time. Our data were consistent with previous results [16, 17].

Our vibrating-wire device has some advantages over conventional shear rheometers. The

operating frequency is higher than those easily obtained with a rotational rheometer, and can

be tuned by varying the length, diameter, and tension of the wire. In addition, our device can

easily measure very low viscosities, a task that is difficult with rotational rheometers. The

present instrument allows operation over a rather limited range of temperatures and with any

non-corrosive fluid with low to moderate viscosity. The first of these limitations could be

overcome by modifying the design of the device to dynamically control the tension in the wire

to allow operation at different temperatures, and the second by careful choice of construction

materials. The behaviour of our device as a function of temperature is investigated in App.

A. This work demonstrates the potential of the vibrating-wire rheometer for characterizing

complex fluids and for microrheological studies.
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Chapter 4

Gelation Dynamics of Aqueous Solutions

of Pluronic F127

4.1 Introduction

Pluronic F-127, referred to below simply as Pluronic, is a commercially available linear

ABA triblock copolymer with the A group being poly(ethylene oxide) (PEO) and the B group

being poly(propylene oxide) (PPO). Its chemical formula is [H-(EO)x(PO)y(EO)x-OH], where

x and y are not given by Sigma Aldrich, but the molecular weight Mw = 12.6 kDa. Due to their

biocompatibility, Pluronics have been investigated extensively for pharmaceutical applications,

and in particular for drug delivery; reviews can be found in [1, 2, 3]. At concentrations above

approximately 12.5 wt. % [4], aqueous solutions of Pluronic will gel at a transition temperature

that is close to room temperature. Below this transition temperature, water is a good solvent for

both PEO and PPO. In this case, solutions of Pluronic contain mainly non-interacting unimers

[4] and exhibit a Newtonian response to steady shear [5]. As the temperature T is increased, the

hydrophobicity of the PPO block increases and its solubility decreases, leading to the forma-

tion of micelles consisting of PPO cores surrounded by a PEO shell [4]. The micelles are made

up of aggregates of approximately 50 PEO-PPO-PEO chains and have a core radius of approxi-

73
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mately 4.4 nm, independent of concentration and temperature [4]. At low concentrations these

micelles are physically separated and do not interact, but above a certain concentration they

organize themselves into a lattice and form a soft solid that is generally referred to as a gel.

Using small angle neutron scattering (SANS) on Pluronic dissolved in D2O, Prud’homme et

al. [4] found that in the gel state, the micelles pack into a simple cubic lattice with a degree of

micelle overlap that depends on concentration. On the other hand, small angle X-ray scattering

(SAXS) measurements by Wu et al. [6] suggested face-centred cubic packing of the micelles.

Using SANS on Pluronic in the gel state, Wanka et al. [7] observed a smooth correlation ring,

indicative of nearest-neighbour order, along with high intensity spikes superimposed irregu-

larly on the ring, suggesting the additional presence of large crystalline domains.

A comprehensive study of the steady-shear rheology of Pluronic solutions at varying con-

centration c, temperature T , and strain-rate γ̇ was recently reported by Jalaal et al. [5]. At

temperatures below the gel transition, the solutions were found to be Newtonian, with a vis-

cosity that increased with c. In the gel state, the material was a shear-thinning yield-stress fluid

with a flow curve (shear stress as a function of strain rate) accurately described by the Herschel-

Bulkley model [4, 5]. At a temperature well above the sol-gel transition temperature, the flow

curves were found to be irreproducible [5]. The authors speculated that the irreproducibility

may be due to degradation of the gel structure [5]. The breakup of the gel structure and the

return of the material to a Newtonian fluid state at high temperatures have been attributed to in-

creasing dehydration of the PEO shells of the micelles as the temperature increases [4]. Hyun et

al. carried out a large-amplitude oscillatory shear study of Pluronic [8]. At low temperature

they identified a Newtonian sol state. In agreement with past work, they found that the mate-

rial undergoes a transition to a gel state around room temperature. The gel state, which they

refer to as a hard-gel state, consists of micelles packed into a cubic lattice with strong entan-

glements between the PEO chains in overlapping micelles, consistent with past studies of the

structure of Pluronic [4]. At temperatures between the Newtonian sol and the hard-gel states, a

so-called soft-gel state was identified. This was described as consisting of clusters of micelles
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dispersed in the solvent, with the size of the clusters increasing as the temperature is increased

towards the hard-gel state [8, 9]. V( f ) There have been many studies of the low-temperature

sol-gel phase transition of Pluronic F127 solutions. These have typically been based on rhe-

ological measurements, scattering, or a vial-tilting method. In previous rheological studies,

the low-temperature sol-gel transition point has been defined to be the temperature at which a

measurable yield-stress can be determined from the flow curve [5], or the temperature at which

a sharp increase in shear viscosity is observed [10, 11]. Using scattering techniques, the transi-

tion to the gel phase has been identified by the appearance of anisotropic spikes superimposed

on the correlation rings in SANS studies [12, 4, 7], by the appearance of Bragg diffraction peaks

in SAXS studies [6], and by an increase in the hydrodynamic radius measured using dynamic

light scattering [6]. A form of the vial-tilting method in which the temperature is increased and

then the sample holder is inverted has been used; if no fluidity was observed after a given time

then the material was considered to be a gel [13, 14]. Gel permeation chromatography and

self-diffusion experiments were used to determine the gel point in Ref. [15]. While the above

studies all cite the usage of Pluronic F127, the actual chemical formula quoted differs from

study to study: Jalaal et al. [5] and Prud’homme et al.[4] used [H-(EO)100(PO)65(EO)100-OH],

Wu et al. [6] used [H-(EO)99(PO)69(EO)99-OH], Jalaal and Stoeber [10] and Stoeber et al. [11]

used [H-(EO)106(PO)70(EO)106-OH], Mortensen et al. [12] and Malmsten et al. [15] used [H-

(EO)99(PO)65(EO)99-OH], and Pandit et al. [13] do not explicitly state the chemical formula,

only that it follows a 2:1 EO:PO monomer number ratio. This suggests that individual samples

of Pluronic F127 may differ in their chemical composition. This may have a significant in-

fluence on the phase transition temperatures of the solutions and should be taken into account

when directly comparing these works.

The present study was motivated by the question of the thermoreversibility of the gelation

process and by the irreproducibility of the flow curve at high temperature recently observed by

Jalaal et al. [5] Previous work has focused on the properties of the sol and gel states themselves.

Here we perform a detailed study of both the high- and low-temperature transitions between
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the sol and gel phases. We investigate the thermoreversibility and hysteresis of the phase tran-

sitions, and the rheological equilibration of the system following a change in temperature. We

interpret the results in terms of the physical processes involved in the formation and breakup

of the gel state. Understanding these processes may be significant in biomedical applications,

since it is important to understand how the gel and the micelles respond to changes in temper-

ature for controlling drug delivery. From a more fundamental perspective, we develop a better

understanding of the kinetics of the formation and dissolution of micelles and the gel structure

as a function of temperature.

4.2 Materials and Methods

Pluronic F127 with a molecular weight of 12.6 kDa was obtained from Sigma Aldrich

Canada and was used without any further modification. The chemical formula is approxi-

mately [H-(EO)100(PO)65(EO)100-OH] [5]. Aqueous solutions with polymer concentrations of

5, 10, 14, 16, 18, and 20 wt. % were prepared by mixing the polymer into de-ionized water at

4 ◦C. The water was passed through a 0.2 µm nylon filter before the polymer was added. The

temperature was held at 4 ◦C while the solution was mixed with a rotary mixer for 24 hours.

The solutions were then allowed to sit for at least 48 hours in a refrigerator before use and were

typically used within a few weeks.

Rheological measurements were performed using an Anton-Paar MCR302 shear rheometer

in strain-controlled mode with a Couette-cell geometry. The Couette cell consists of a rotating

inner cylinder with radius 13.328 mm and height 39.984 mm, and a fixed outer cylindrical cup

with radius 14.459 mm. This geometry is well-suited for the measurement of low-viscosity

fluids and allows for management of evaporation at high temperatures. Solutions were loaded

directly from the refrigerator into the cup of the Couette cell, which was held at a temperature

of 10 ◦C, and the measurement bob was immediately lowered into the fluid. This temperature

was chosen to ensure that the fluid remained in the sol state during the loading procedure. A
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thin layer of 20 cSt silicone fluid (Clearco Products) was then placed on top of the solution to

prevent evaporation. No mixing between the oil and the Pluronic solutions was observed, and

we confirmed that the oil had no noticeable influence on the measurements. To further limit

evaporation, a custom environmental housing containing a small reservoir filled with water

covered the sample.

Strain amplitude sweeps and frequency sweeps were carried out as a function of tempera-

ture from 10 to 85 ◦C in 5 ◦C steps. In addition, to obtain measurements at the phase transition

temperatures, the temperature was increased from below the transition in a linear ramp (as

described below) until a dramatic change in G′ and G′′ was observed, at which point the tem-

perature was fixed. After a change in temperature, the system was allowed to equilibrate for 30

minutes before measurements were taken. The strain amplitude γ was then swept from 0.01%

to 100% at a fixed angular frequency of ω = 1 rad/s. Frequency sweeps were then performed

at a strain amplitude of γ = 0.2% from 300 to 0.01 rad/s. This is within the linear viscoelastic

regime, as discussed below.

We also measured the moduli as the temperature was varied in two ways: in a continuous

ramp, and in discrete steps. In both cases the temperature was controlled using Anton-Paar’s C-

PTD 200 Peltier control system, which is designed to minimize vertical temperature gradients

in the Couette cell [16]. For the continuous experiments, the temperature was raised from 10

to 85 ◦C at a constant rate of 6 ◦C per h, then lowered back to 10 ◦C at the same rate. In

experiments with discrete temperature steps, the temperature was increased or decreased by a

discrete amount ∆T and held at the new temperature for a time ∆t while data were recorded.

Approximately 300 seconds were required for the temperature to equilibrate after a step. When

the system was in the sol or gel state, far from any phase transition, ∆T was chosen to be 1 or

2 ◦C and ∆t was 15 or 30 min. Near a transition, ∆T was between 0.1 and 0.5 ◦C and ∆t ranged

from 1 to 8 h, depending on how long it took for the rheological properties of the material to

reach equilibrium. In both cases, γ and ω were fixed at 1% and 1 rad/s, respectively, and G′(t)

and G′′(t) were continuously recorded every 5 seconds.
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4.3 Results

4.3.1 Dynamic Rheology

The viscoelastic behaviour of the 18 wt. % Pluronic solution over the range of tempera-

tures studied is illustrated in Figs. 4.1 and 4.2, which show the dependence of G′ and G′′ on

strain amplitude γ and frequency ω, respectively. These figures show data recorded at six tem-

peratures that increase counter-clockwise from (a) to (f). We will discuss the data in order of

increasing temperature.

The amplitude dependence of the moduli atω = 1 rad/s is reported in Fig. 4.1. At the lowest

temperature studied (T = 10 ◦C, Fig. 4.1(a)), G′′ > G′ for all γ, G′ is too small to measure, and

G′′ is independent of γ. This is liquid-like behaviour, confirming that the material is in a sol

state at this temperature. The scatter at low strain is due to the fact that these measurements are

close to the lower torque limit of the rheometer. At a temperature within the sol-gel transition

(T = 24.3 ◦C, Fig. 4.1(b)), G′ and G′′ are approximately constant at low γ, with G′ slightly

larger than G′′. At approximately γ = 1.5%, the moduli cross over before decreasing at higher

strain amplitude. At T = 35 and 55 ◦C (Fig. 4.1(c) and (d)) G′ is constant at low γ before

starting to decrease at γ ≈ 0.4%. G′′ is also constant at low γ, then increases to a peak at

γ ≈ 2% before decreasing at higher γ. The moduli cross over at γ ≈ 4%. This behaviour is

characteristic of the gel state, with the linear viscoelastic regime extending up to γ ≈ 0.4%.

The scatter in G′′ at low γ increases as the temperature is increased within the gel state.

Within the high-temperature gel-to-sol transition (T = 66 ◦C, Fig. 4.1(e)), both moduli

decrease as γ increases from γ = 0.01% to γ ≈ 6%, with G′′ > G′. The moduli then increase as

γ is increased further to γ ≈ 20%. Above γ ≈ 30%, G′′ and G′ decrease. This is different from

the behaviour seen in (Fig. 4.1(b)), presumably due to the material being at a different stage

along the transition between sol and gel, as discussed later. This behaviour is very similar to

that observed previously [8], as discussed in Sec. 4.4.

At the highest temperature studied (T = 85 ◦C, Fig. 4.1(f)), the material is again in a
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Figure 4.1: G′ (filled symbols) and G′′ (open symbols) vs. strain amplitude γ at an angular
frequency ω = 1 rad/s for the 18 wt. % Pluronic solution at temperatures that increase counter-
clockwise from T = 10 ◦ C in (a), to T = 85 ◦C in (f). The data are at temperatures in: (a)
the low-temperature sol state, (b) the low-temperature sol-gel transition, (c) the gel state, a few
degrees warmer than the sol-gel transition, (d) the gel state, a few degrees cooler than the gel-
sol transition (e) the high-temperature gel-sol transition, and (f) the high-temperature sol state.
Data in rheologically similar states share the same row.

sol state and exhibits behaviour very similar to that seen in the low-temperature sol state

(Fig. 4.1(a)).

The extent of the linear viscoelastic regime varies with temperature, and within a phase

transition the moduli depend on strain amplitude down to the smallest values of γ studied. We

chose a value of 0.2% for the frequency sweeps presented below. For the temperature ramp

studies presented in Sec. 4.3.2 and C we chose γ = 1.0% to improve the signal-to-noise ratio

of the data.



Chapter 4. Gelation Dynamics of Aqueous Solutions of Pluronic F127 80

10
-3

10
-1

10
1

10
3

10
-2

10
0

10
2

10
4

10
-2

10
-1

10
0

10
1

10
2

10
3

10
0

10
2

10
4

10
6

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 4.2: G′ (filled symbols) and G′′ (open symbols) vs. angular frequency ω at a strain
amplitude γ = 0.2% for the 18 wt. % Pluronic solution at temperatures that increase counter-
clockwise from T = 10 ◦ C in (a), to T = 85 ◦C in (f). The data are at temperatures in: (a)
the low-temperature sol state, (b) the low-temperature sol-gel transition, (c) the gel state, a few
degrees warmer than the sol-gel transition, (d) the gel state, a few degrees cooler than the gel-
sol transition (e) the high-temperature gel-sol transition, and (f) the high-temperature sol state.
Data in rheologically similar states share the same row.

The frequency dependence of G′ and G′′ at the same six temperatures is shown in Fig. 4.2.

In the low-temperature sol state (Fig. 4.2 (a)), the viscosity of the fluid is small and it is difficult

to measure the moduli with our apparatus. At low frequency, G′′ appears flat and noisy due to

the low-torque limit of the rheometer. The measured values of G′ in this frequency range are

likely due to noise and not the material. For 1 . ω . 10 rad/s, G′′ ∼ ω1, consistent with the

material being in the sol state. At high frequency, G′′ ∼ ω2, which reflects the high-frequency

inertia limit of the rheometer and not the material properties [17].
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Within the low temperature sol-gel transition (T = 24.3 ◦C Fig. 4.2 (b)), the material is

viscoelastic, and at the temperature shown, G′′ is slightly larger than G′ at low frequencies.

The moduli cross over around ω = 5 rad/s, and G′ > G′′ at higher frequencies. The plots of G′

and G′′ are approximately parallel and both increase approximately as ω0.4, indicating that this

temperature is close to the gel point of the material [18].

In the gel state (Fig. 4.2 (c) and (d)), G′ is larger than G′′ over the full range of frequencies

studied. G′ increases slowly with frequency while G′′ has a weak minimum that depends on

temperature. This minimum is clearly visible at ω ∼ 30 rad/s for T = 55 ◦C (Fig. 4.2 (d)), but

it is less clear at T = 35 ◦C (Fig. 4.2 (c)). The low-frequency behaviour suggests the possibility

that the moduli may cross over at some frequency below the range studied. A similar crossover

may exist at much higher frequencies.

Within the high-temperature gel-sol transition (T = 66 ◦C, Fig. 4.2 (e)), the material is

viscoelastic, and at the temperature shown, G′′ > G′ at all frequencies. The plots of G′ and

G′′ are approximately parallel and both increase approximately as ω0.5, indicating that this

temperature is slightly higher than the gel point of the material during this transition.

At the highest temperature studied (Fig. 4.2 (f)), the material has returned to a sol state and

exhibits behaviour similar to that in the low-temperature sol state (Fig. 4.2(a)).

4.3.2 Phase Transitions

We studied the variation of the moduli at ω = 1 rad/s and γ = 1% as the temperature was

raised at a constant rate from the low-temperature sol state, through the gel state to the high-

temperature sol state and back. The heating and cooling curves for concentrations c = 16, 18,

and 20 wt. % are shown in Fig. 4.3. A strain amplitude of 1% was chosen to reduce the scatter

in the data; this choice did not qualitatively affect the results.

Initially, at low temperatures, the fluid is in a sol state, G′′ > G′, and G′ is too small to

measure with our apparatus. As T is increased, G′′ increases relatively slowly until a charac-

teristic temperature T1, at which both G′ and G′′ increase dramatically. We define T1 as the
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Figure 4.3: G′ (black) and G′′ (gray) measured atω = 1 rad/s and γ = 1% for aqueous solutions
of Pluronic with concentrations 16 wt. % (left), 18 wt. % (center) and 20 wt. % (right) while
heating (top) and cooling (bottom) at a rate of 6 ◦C per hour.

start of the sol-gel transition. The transition occurs over a temperature range ∆T1. The end

of the transition is marked by the sudden change in slope of the moduli as a function of tem-

perature, as indicated in Fig. 4.3 by the arrow at T1 + ∆T1. While G′′ > G′ at the start of the

transition, the moduli cross over partway through the transition, so that G′ > G′′ by the end.

The gel state, in which G′ > G′′ and the moduli depend weakly on temperature, persists up to

a second characteristic temperature T2 at which both G′ and G′′ begin to decrease significantly

as the material starts to transition to the high-temperature sol state. This transition occurs over

a temperature range ∆T2. We define the end of this transition to be the temperature at which

G′ is no longer measurable with our apparatus. In the high-temperature sol state, G′′ is again

greater than G′, which is too small to measure.

The reverse process is observed on cooling, but with some important differences. As the

temperature is lowered, G′ and G′′ begin to increase strongly at T = T3, which is greater than
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T2 + ∆T2, as the material starts to transition from the high-temperature sol state back to the gel

state. This transition occurs over a range ∆T3, where ∆T3 > ∆T2. Finally, at T = T4, which

is lower than T1 + ∆T1, G′ and G′′ start to decrease rapidly as the material transitions back to

the original low temperature sol state. The temperatures at which the transitions begin and end

when heating and cooling are not equal, and the gel phase exists over a wider temperature range

on cooling than on heating. The cooling transitions also span a larger range of temperature than

the corresponding heating transitions, i.e., ∆T3 > ∆T2 and ∆T4 > ∆T1.

The rate at which the moduli change with T varies across the transitions. Both cooling

transitions appear to involve two distinct steps, with distinct shoulders visible partway through

the transitions in the lower row of Fig. 4.3. The high-temperature gel-sol transition also occurs

in two steps, but the effect is subtle compared to the cooling transitions and is difficult to discern

in Fig. 4.3. No clear step is visible during the low-temperature sol-gel transitions seen in the

top row of Fig. 3, although a change of slope can be discerned partway through the transition.

In all cases the shoulder or change in slope occurs near the temperature at which the moduli

cross over.

The moduli of the 14 wt. % solution also increased and then decreased as the temperature

of the solution was increased, but G′′ remained larger than G′ at all temperatures and no gel

state was observed. On cooling, G′ did become larger than G′′ during the high-temperature

transition, and there was a small range of temperature over which both moduli did not change

substantially with temperature which we identified as a gel state. We observed no indication of

any phase transition for temperatures up to 45 ◦C for c = 10 wt. %, and up to 48 ◦C for c = 5

wt. %. The temperatures and temperature ranges of the phase transitions determined from these

temperature-ramp experiments are listed for all of the concentrations studied in Table 4.1(a).

4.3.3 Rheological Relaxation

We also studied how the moduli of the 16, 18, and 20 wt. % solutions change with time

following a step in temperature. During this experiment, small amplitude oscillations with
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Table 4.1: a) Temperatures Ti at the start of a phase transition and the corresponding width of
the transition ∆Ti measured from the continuous heating and cooling ramps shown in Fig. 4.3.
The uncertainties in Ti and ∆Ti are approximately ±0.01 ◦C. b) Temperatures Ti at which the the
rheological relaxation time becomes long, and the corresponding range of temperatures over
which long relaxation times ∆Ti are observed, obtained from the temperature-step experiments
shown in Figs 4.4-4.8. The uncertainties in the last digit of the entries in part (b) are given in
parentheses and depend on the step size used in the experiment, as discussed in Sec. 4.3.3.

c (wt. %) T1,∆T1 (◦C) T2,∆T2 (◦C) T3,∆T3 (◦C) T4,∆T4 (◦C)
(a) 14 38.87, 3.01 41.88, 5.53 38.98, 7.71 48.48, 7.84

16 28.51, 2.27 52.15, 6.87 67.00, 12.82 29.27, 5.54
18 24.25, 0.61 62.80, 5.44 78.27, 15.24 24.59, 3.03
20 21.93, 0.85 72.56, 8.41 83.73, 10.49 22.80, 3.80

(b) 16 26.5(5), 2.9(3) 50(1), 16(1) 73.8(3), 17.8(5) 30.5(5), 7.3(3)
18 24.1(1), 1.4(3) 61(1), 8.0(7) 81(1), 20(1) 31(1), 9.5(5)
20 21.25(5), 1.60(4) 67.5(5), 17.5(3) 85(0), 13.0(3) 23.5(0), 7.3(3)

Figure 4.4: (a) G′(t) (black) and G′′(t) (gray) measured at ω = 1 rad/s and γ = 1% during an
experiment in which the temperature of the 18 wt. % solution was changed in discrete steps.
(b) The temperature as a function of time. The steps indicated by the arrows in (a) correspond
to the relaxation curves shown in Fig. 4.7.
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Figure 4.5: G′(t) (black) and G′′(t) (gray) measured at ω = 1 rad/s and γ = 1% in the high
temperature regime of the discrete temperature study of the (a) 18 wt. % and (b) 20 wt. %
solutions. The temperature profile is the red step-like curve (see color figure online) using the
right axis. The vertical arrow indicates the change in behaviour discussed in the text. The
transition temperatures T2 and T3 determined from the continuous heating and cooling ramp
experiments are shown with the labelled arrows.

ω = 1 rad/s and γ = 1% were applied continuously and G′(t) and G′′(t) were recorded every

5 seconds. Figure 4.4(a) shows the moduli of the 18 wt. % solution corresponding to the

sequence of temperature steps shown in Fig. 4.4(b). The high-temperature potion of the same

data is shown in more detail in Fig. 4.5(a). Following a step in temperature, the moduli evolve,

eventually approaching a steady-state value corresponding to the new system temperature. As

noted above, approximately 300 seconds were required for the temperature controller to settle

at the new temperature. At temperatures within the sol or gel states, the moduli of the 18 wt.

% solution reach their new equilibrium values within this time, indicating that the rheological

relaxation of the material is at least as fast as the equilibration of the system temperature. As

seen in Fig. 4.5(a), however, the material relaxation time becomes significantly longer near
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the phase transitions, reflecting the time required for significant changes to the microstructure

of the material to occur and equilibrate. This is analyzed more quantitatively below. These

long relaxation times suggest that the Pluronic is not at rheological equilibrium at temperatures

within the phase transitions in the ramp experiments discussed above. This is discussed further

in Sec. 4.4.

The behaviour of the 16 wt. % solution was similar to that shown for the 18 wt. % solu-

tion in Figs. 4.4 and 4.5(a). The high-temperature behaviour of the 20 wt. % solution was

somewhat different, however, and is shown in Fig. 4.5(b). In contrast to what is seen at lower

concentrations and in the continuous-ramp experiment, the moduli of the 20 wt. % solution in

and above the high temperature phase transition remain roughly 1000 times larger than their

values in the other sol states. At the earliest times shown in Fig. 4.5(b), the temperature is in-

creasing towards the high-temperature gel-sol transition, and, as expected, the moduli decrease

with each step. At the step indicated by the vertical arrow in Fig. 4.5(b), however, the be-

haviour changes. Following a step increase in temperature, there is an initial rapid decrease in

the moduli followed by a slow increase. Once T has reached its maximum and cooling begins,

the moduli increase monotonically after each decrease in temperature as the material returns

to the gel state, in agreement with what is observed for the lower concentrations. During the

continuous-ramp experiment, in contrast, G′ and G′′ reached low values, consistent with those

in the other sol states, at high temperature. Given the long relaxation times observed in the

temperature-step experiments, however, these data were likely not at rheological equilibrium.

While we observe a low-viscosity sol state at high temperatures for the 16 and 18 wt. % so-

lutions, our data suggest that the equilibrium state at 20 wt. % is instead a viscoelastic liquid

with moduli a factor of 103 larger than at lower concentrations.

We define temperature ranges over which the relaxation of the moduli is slow in analogy

with the transition temperatures and ranges discussed in the context of the continuous-ramp

experiments. The uncertainties in the Ti in this case are taken to be half the size of the tem-

perature step. The results are given in part (b) of Table 4.1. The Ti determined from the step
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experiments differ slightly from the those determined from the continuous ramp experiments.

This difference can be seen, for example, in Fig. 4.5(a). The moduli increase significantly after

the temperature decreases to T = 80.00 ◦C, while the value of T3 obtained from the continuous

ramp experiments was 77.47 ◦C. This difference is more evident in Fig. 4.8, discussed below.

Figure 4.6: Temperature-concentration phase diagram for aqueous solutions of Pluronic F127.
The results of the present work are displayed as the hatched bars, as described in the legend.
For a given concentration, the left half of the bar shows the states observed when heating, while
the right half shows the states observed when cooling. The width of the bars has no physical
significance. Results from previous work are shown by the symbols, with corresponding refer-
ences given in the legend.

The temperature ranges at which long relaxation times were observed for the 16, 18, and 20

wt. % concentrations are listed in Table 4.1(b) and are plotted as a phase diagram in Fig. 4.6.

As the concentration is increased, the low-temperature transitions occur at lower temperatures,

and the high temperature-transitions occur at higher temperatures. Transition temperatures

reported in past work are also shown in Fig. 4.6. Our results for both the low-temperature

and high-temperature phase transition temperatures agree with previous results to within a few
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degrees, with a few exceptions. In particular, we observe a gel phase for c ≥ 14 wt. %. In

contrast, the results of Ref. [15] suggest that c = 18 wt. % is the lower concentration limit

for the existence of the gel, while several other studies observed a low-temperature sol-gel

transition for c < 14 wt. %.

At temperatures within the sol or gel states, the moduli equilibrate within the 300 second

equilibration time of the temperature controller. These data are therefore not considered fur-

ther. Within the phase transitions, however, the relxation times were substantially longer, as

mentioned above. In these cases, we found that the relaxation of the moduli could be described

by a decaying exponential function or the sum of two exponentially decaying terms in the form

G(t) = G∞ + G1e−t/τs + G2e−t/τ f , (4.1)

where t = 0 is chosen to be a time after the temperature controller reached equilibrium. G(t) is

either G′(t) or G′′(t), G∞ is the equilibrium viscous or elastic modulus at long times, τ f and τs

are ‘fast’ and ‘slow’ relaxation times, respectively, and G1 and G2 are coefficients that may be

negative or positive, depending on the sign of the change in G. Eq. 4.1 was fit to the measured

moduli using a standard nonlinear least squares fitting routine in Matlab [19]. In many cases,

only one exponential term was needed to accurately describe the data. When this was the case,

the fitted relaxation time was labeled as τs. In a few cases, such as the relaxation shown in

Fig. 4.7(c) below, the fast relaxation process was well defined, but the slow relaxation process

could not be constrained by the fit. In such cases, a constraint on G∞ was imposed manually to

force convergence. The resulting data points are shaded gray in Fig. 4.8 below.

Four typical relaxation curves measured in the 18 wt. % solution and corresponding to the

four steps indicated by letters in Fig. 4.4(a), are shown in Fig. 4.7, along with fits of Eq. 4.1 to

the curves. These curves illustrate the different types of relaxation behaviour observed within

the phase transitions. Fig. 4.7(a) shows the evolution of the moduli observed when the tem-

perature is increased from a temperature within the sol state to a temperature slightly above
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T1, at which point the moduli increase significantly over time. Following the step increase in

temperature, the moduli do not start to increase until about five minutes after the temperature

equilibrates. For all other steps within this and other transitions, there was no measurable de-

lay. After the delay, G′ and G′′ rapidly increase and overshoot their equilibrium values at the

new temperature, which are then approached by a subsequent very slow decrease. For this

measurement, the temperature was held constant for 5 hours after the initial step. The moduli

do not relax to a constant value in this time and G′′ remained larger than G′ for the duration of

the measurement. Independent fits of Eq. 4.1 to G′(t) and G′′(t) give similar relaxation times.

For G′(t), we find τ f = 939± 1 s and τs = (1.89± 0.01)× 104 s, while for G′′(t), τ f = 935± 1 s

and τs = (3.54 ± 0.04) × 104 s, where the uncertainties are ±1σ uncertainties calculated by the

curve fitting routine. For brevity, the average and standard deviation of τ f and τs determined

from fits to the two moduli will be given below. Relaxation behaviour similar to that shown in

Fig. 4.7(a) is also seen following subsequent temperature increases within the low-temperature

sol-gel transition. Note the difference in the scale of the time axis between Fig. 4.7(a) and the

other plots in this figure.

Temperature steps within the high-temperature gel-sol transition result in the relaxation

behaviour plotted in Fig. 4.7(b). The increase in temperature results in a monotonic decrease

in G′ and G′′ that was accurately fit by a single exponential decay with, in this particular case,

τs = 392 ± 5 s.

The behaviour plotted in Fig. 4.7(c) is observed when cooling through the high-temperature

transition from sol to gel. Here a step decrease in temperature results in a monotonic increase

in both moduli. For the case shown, the moduli were accurately fit by a single exponential with

τs = 1100 ± 200 s. The relaxation time is sufficiently long in this case that the rheological

properties of the system had still not reached equilibrium by the end of the two-hour waiting

time used in the experiment. Finally, the relaxation behaviour observed within the gel-sol

cooling transition is plotted in Fig. 4.7(d). A single exponential decay with τs = 400 ± 100

accurately fit both moduli at this temperature.



Chapter 4. Gelation Dynamics of Aqueous Solutions of Pluronic F127 90

0 1 2

10
1

10
2

10
3

0 1 2

10
-1

10
0

10
1

0 1 2

10
3

0 1 2

10
1

Figure 4.7: Relaxation of the moduli of the 18 wt. % Pluronic solution following a step change
in temperature. The four subplots correspond to the steps labeled in Fig. 4.4. The red dashed
lines (see color figure online) are independent fits to G′(t) and G′′(t). a) T = 24.4 ◦C (warming),
b) T = 66 ◦C (warming), c) T = 76 ◦C (cooling), and d) T = 25 ◦C (cooling).

Figure 4.8 shows the relaxation times for the 16, 18 and 20 wt. % solutions measured

following discrete increases and decreases in temperature. For the most part, two exponential

terms in Eq. (4.1) were required to fit the relaxations recorded during the low-temperature

sol-gel transition, while the relaxations recorded within the two gel-sol transitions and the

high-temperature sol-gel transition were well-described by a single exponential decay. The

temperature ranges of the transitions determined from the continuous-ramp experiments are

also shown for comparison. Although the temperature steps used in the experiments on the 18

wt. % solution were larger than for the 16 and 20 wt. % solutions, the relaxation times measured

in the phase transition regions are similar. The temperature ranges over which the relaxation

times are long are shifted and broadened compared to the temperature ranges of the transitions

measured from the ramp experiments. As noted above, this suggests that the Pluronic falls out

of thermal equilibrium when the relaxation becomes slow compared to the time scale of the



Chapter 4. Gelation Dynamics of Aqueous Solutions of Pluronic F127 91

20 wt. %

21 22 23

10
1

10
2

10
3

10
4

10
5

70 80

70 75 80 8518 22

10
1

10
2

10
3

10
4

10
5

18 wt. %

23 24 25

10
1

10
2

10
3

10
4

10
5

65 70

60 70 8020 25 30

10
1

10
2

10
3

10
4

10
5

16 wt. %

26 28 30

10
1

10
2

10
3

10
4

10
5

50 60 70

50 60 70 8022 26 30

10
1

10
2

10
3

10
4

10
5

Figure 4.8: Slow and fast relaxation times, τs, and τ f respectively, determined by fitting G′ and
G′′ to Eq. 4.1 following a step in T while heating and cooling. Gray symbols indicate relaxation
times that are less reliable, as described in the text. The shaded regions show the temperature
range over which the transitions occur, as determined from the continuous temperature ramp
experiments.

temperature changes in the ramp experiments. While the relaxation times show some scatter,

some trends are apparent. For both cooling transitions, the relaxation times are long at high

temperatures and get shorter as the material is cooled through the transition. For the 16 wt.

% solution, the relaxation times during the high-temperature gel-sol transition start long, then

decrease as the solution is heated through the transition. For the same transition in the 20 wt.

% solution, it appears that the relaxation times are again long at low temperatures, decrease on

heating in the lower-temperature part of the transition, before then increasing again partway

through the transition. This suggests the appearance of a second process driving change in

the material and is probably related to the fact that the viscous and elastic moduli are much

higher in the high-temperature phase at this concentration than at lower c. This is discussed in
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more detail below. No obvious trend can be identified at the low-temperature sol-gel transition,

beyond the fact that the relaxations in this range cannot be described by a single exponential

decay. This suggests that more than one physical process is involved in the structural changes

that occur during this transition.

4.4 Discussion

For 14 < c < 20 wt. %, our Pluronic solutions exist in a low-viscosity sol state at low and

high temperatures, and are gels at temperatures in between. At c = 14 wt. %, no gel phase was

observed when heating the solution, but the material did gel over a small range of temperature

when cooling. At c = 20 wt. %, the high-temperature phase is a viscoelastic liquid with mod-

uli 103 times larger than in the high-temperature sol phase observed at lower concentrations.

Our results indicate that both the low-temperature sol state and the high-temperature sol state

observed for c < 20 wt. % are Newtonian fluids. Although it is known from previous work that

the microstructure in these two sol states is different [4], consisting of non-interacting unimers

at low temperature and dehydrated micelles at high temperature, this difference cannot be dis-

cerned from our rheological data. Our data show that rheological relaxation of the sols is at

least as fast as the relaxation of our temperature control system.

The strain amplitude dependence we observe in the gel phase is typical of that of soft yield-

stress fluids, including gels and glasses. Previous results have indicated that Pluronic’s gel

phase consists of a close-packed cubic array of micelles [4, 6, 7]. When subject to a small

strain, the microstructure does not change substantially, and G′ and G′′ remain constant. As

the strain amplitude increases, the moduli change, indicating that the response of the material

has become nonlinear. The decrease in G′ above γ = 0.5% indicates the breakup of the gel

microstructure (i.e., yielding) when the strain is large enough, and Hyun et al. suggested that

this behaviour can be attributed to the break-up of the cubic gel structure into layers which then

slide relative to each other [8]. The dependence of the viscoelastic moduli on frequency seen in
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Fig. 4.2(c) and (d) is also typical of gels and soft glassy materials. After a change in temperature

within the gel phase, the moduli relax over a time scale governed by the equilibration of the

rheometer’s temperature control system.

Over the range of temperatures spanned by the sol-gel and gel-sol phase transitions, the

rheological properties of the solutions change dramatically, with the moduli increasing by more

than five orders of magnitude over the transition from sol to gel. This large increase indicates

the development of an interconnected network of micelles that eventually grows to span the

sample. Hyun et al. have related the strain-amplitude dependence of the moduli within the low-

temperature sol-gel transition region to the aggregation of individual micelles into clusters that

grow in size until a homogeneous lattice spans the sample [8]. We have measured the rheology

at two temperatures between sol and gel that demonstrate how the rheology of Pluronic changes

during a transition. During the transition, the material displays a complex strain-amplitude and

frequency dependence that varies significantly over the transition. At the temperature plotted

in Figs. 4.1(e) and 4.2(e), the magnitudes of the moduli are closer to those measured in the sol

state than in the gel state. The rheological response is primarily viscous, however the similar

power-law frequency dependence of the moduli indicates that the temperature is slighly higher

than the material’s gel point [18]. At this temperature, the material is a viscoelastic liquid with

some elasticity. This implies the presence of interacting micelles whose structure is weaker

than in the gel state. The moduli’s dependence on strain amplitude at this temperature is similar

to that observed by Hyun et al. [8], which they argue is due to strain-induced alignment and

additional clustering of micelle clusters. In contrast, the moduli at the temperature plotted in

Figs. 4.1(b) and 4.2(b) are larger than in the previous case (subplots (e)) and close to each other

in magnitude. This suggests that the micelle clusters at this temperature are larger and interact

more strongly than the previous case. This is further supported by our observation that a small

applied strain does not alter the microstructure. The similar power-law frequency dependence

of the moduli indicates the material is close to its gel point at this temperature [18]. For large

enough strain, the moduli decrease due to strain-induced alignment of the clusters as before.
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The long relaxation times observed at temperatures within a phase transition indicate that

some aspect of the formation and break-up of the large clusters of partially-entangled mi-

celles in this material is extremely slow. When the temperature is increased within the low-

temperature sol-to-gel transition, G′ and G′′ first increase significantly before then decreasing

with a relaxation time of order 104 s. For most steps within this transition, two exponential

terms of opposite sign were needed to fit the data with Eq. 4.1. We attribute the initial increase

in moduli to a relatively rapid formation and growth of micelle clusters which overshoots the

equilibrium level applicable to the system’s new temperature. The subsequent slow decrease

of G′ and G′′ with time indicates the presence of a competing influence that weakens structure

in the fluid. This may be a slow reduction in cluster size or a slow reorganization of the mi-

crostructure within clusters. For all concentrations, there was a delay of several min after the

first step in temperature from the low-temperature sol state into the sol-gel transition before

the moduli began to increase. This may indicate that significant time is required for the initial

nucleation of micelles from the unimers in the solution.

When the material is cooled through the same transition, the process is reversed: the ma-

terial transitions from the gel state to a sol consisting of non-interacting unimers. After a step

decrease in temperature from within the gel state to within the gel-sol transition (Fig. 4.7(d)),

the moduli slowly decrease. For most steps within this transition, the relaxation of the moduli

was well described by a single exponential decay. This suggests that a single physical process

is involved in the breakup of the gel, and that this process involves a decrease in the size of the

micelle clusters.

The high-temperature gel-sol transition arises from dehydration of the PEO shells of the

micelles [4] and the resulting break-up of the gel lattice. After a step increase in temperature

within the gel-to-sol transition, the moduli gradually decrease towards an equilibrium state

(Fig. 4.7 (b)). This slow relaxation was accurately described by a single exponential decay for

the 16 wt. % and 18 wt. % solutions. The behaviour of the 20 wt. % solution is discussed below.

Our data suggest that as the temperature is increased within this transition, the equilibrium
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microstructure of the system shifts from large clusters with a few dehydrated micelles towards

more dehydrated micelles and smaller clusters, and that the decrease in cluster size is a slow

process.

When cooling through the high-temperature sol-gel transition (Fig. 4.7 (c)), a step decrease

in temperature results in a slow increase over a long time that is well described by a single expo-

nential relaxation. Since the hydration of the micelles is believed to be a very fast process [20],

the observed gradual increase in the moduli is likely related to changes in the microstructure

as the micelles aggregate into larger clusters.

As presented above, our data suggest that the equilibrium high-temperature phase of the 20

wt. % solution is a viscoelastic fluid with long rheological relaxation times and moduli much

larger than those of the Newtonian sol phase seen at lower concentrations. This suggests the

presence of some sort of phase transition as a function of concentration at high temperatures,

perhaps related to a change in the structure of the micelles that has previously been observed

at high temperature [12]. This viscoelastic phase was not seen in our temperature-ramp exper-

iments, presumably because the long relaxation times in this phase prevented the system from

equilibrating.

Many physical processes might be expected to influence the microstructural dynamics of

Pluronic and so contribute to the observed relaxation of the rheological moduli. The time

scales for the insertion of unimers into micelles and the subsequent equilibration of the micelle

size distribution have been measured to be of order 10 ms and 100 ms, respectively [21, 22].

Prud’homme et al. state that the characteristic relaxation time for a single micelle is on the

order of 1 ms [4]. Since the formation and relaxation of micelles are much faster than the time

scale of our experiments, and since the structure of the individual micelles does not change once

they have formed [4], none of these processes are likely to contribute to the slow rheological

relaxation observed in our experiments. The dehydration of PEO at high temperatures has

been measured using dielectric spectroscopy to be very fast — on the order of 10−11 s [20],

which is again to fast to be the relaxation we have observed. In dilute, non-gelling solutions
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of Pluronics with a range of molecular weights and PO:EO ratios, Kositza et al. identified

a relaxation process with a time scale on the order of 100 ms, which they attributed to the

the aggregation of micelles near the cloud point at which macrophase separation occurs [23].

This is again much faster than the relaxation we observe. The time scale characteristic of the

diffusion of individual micelles in the solution is similarly very short. The relaxation of the

moduli we observe is very much slower than all of the above processes, and therefore likely

involves structures very much larger than individual micelles.

In the low temperature sol phase, solutions of Pluronic consist of individual unimers. As the

temperature is increased, the unimers assemble into micelles, which results in a slight increase

in the viscosity of the solution. At a higher temperature the micelles begin to aggregate into

clusters, which increase in size as T continues to increase. The clustering leads to a dramatic

increase in both viscosity and elasticity. At some specific temperature the largest cluster of

micelles spans the size of the sample. This is the gel point, at which G′ becomes equal to G′′

and both moduli display a power-law dependence on frequency [18]. At higher temperatures,

the material is rheologically a gel, but it remains heterogeneous on the microscopic scale [24].

As micelles continue to add to the percolation cluster, the moduli continue to increase until

essentially all micelles are incorporated into the aggregate and the material is a homogeneous

gel. While the addition or removal of an individual micelle from a large cluster is a relatively

fast process [22], the clusters as they initially form are likely to be amorphous, with the spatial

arrangement of the micelles lacking any long-range order. We suggest that the annealing of

this amorphous structure into the crystalline arrangement of micelles observed by neutron and

X-ray scattering [6, 7] may be much slower, and is the reason for the slow relaxation of the

moduli seen in our experiments.

While past studies have observed the low and high temperature phase transitions in Pluronic

solutions, we have investigated the rheology of the material within the transitions in some de-

tail. We have shown that the transitions take place over a range of several degrees and that the

transitions observed on cooling occur at different temperatures and over a wider temperature
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range than when heating. For the most part, the transition temperatures we have measured

agree with previous results to within a few degrees. In contrast to some previous work, we did

not observe a gel phase for c < 14 wt. %. This may be due to slight differences in the molecular

weight or chemical formula of the Pluronic F127 used, differences in material preparation, or

differences in how the transition temperature is defined. Since, as we have observed, the rheo-

logical relaxation time of the Pluronic becomes very long near the phase transitions, it is also

possible that previous measurements near the phase transitions may not have been performed

on samples that were fully in equilibrium.

Jalaal et al. [5] reported irreproducibility in the measured flow curve of a concentrated

Pluronic solution at high temperature. Based on our results, it seems likely that their material

was near or within the high temperature gel-sol transition under the conditions for which ir-

reproducibility was observed. If so, the observed irreproducibility may be a result of the very

long rheological relaxation time of the material.

4.5 Conclusions

In this chapter we have studied the gelation dynamics of aqueous solutions of Pluronic

F127. For 14 < c < 20 wt. %, the solutions are Newtonian liquids at temperatures below room

temperature. When heated slowly and continuously, the solutions undergo a phase transition to

a gel state around room temperature. At a higher temperature, the solutions undergo a second

transition back to a Newtonian liquid. Both the sol-gel and gel-sol transitions take place over a

range of several degrees. On cooling, the reverse transitions occur at slightly different temper-

atures and over a larger temperature range, so that the gel phase exists over a broader range of

temperature on cooling than on heating. For c = 20 wt. %, the low-temperature behaviour is

the same, but the high-temperature phase is a viscoelastic fluid with a long rheological relax-

ation time rather than a Newtonian liquid. Following a discrete step in temperature, the viscous

and elastic moduli relax quickly in the sol and gel phases. At temperatures near the phase tran-
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sitions, however, the rheological relaxation time becomes very long. As the gel forms, large

aggregates of micelles form and grow, while in the gel-sol transitions these large aggregates

break up. The slow relaxation we have observed within the phase transitions may be due to

reorganization of the small-scale microstructure within these large aggregates.
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Chapter 5

Discussion, Conclusions, and Future Work

In this thesis we have presented the simulation, design, and operation of a novel vibrating-

wire rheometer. We have also presented a study of the gelation dynamics and long-time relax-

ation of aqueous solutions of Pluronic F127. In Chap. 2 we showed through two-dimensional

numerical simulations using COMSOL that the theory developed by Retsina et al. [1, 2] to

describe a wire vibrating in a Newtonian fluid accurately describes the simulated behaviour of

a wire vibrating in Newtonian fluids with viscosities in the range 10−3 ≤ η ≤ 100 Pa·s. We

demonstrated in Chap. 3 that our vibrating-wire device is capable of accurately measuring the

viscosity of Newtonian fluids with small viscosities in the range 3 × 10−4 . η < 3 × 10−2 Pa·s,

a task that is difficult using conventional shear rheometers. In Appendix A we showed that,

although the tension of the wire changes as a function of temperature, our device still accu-

rately measured the viscosity of water at temperatures from 10 to 85◦C. Together, these results

suggest that our device could serve as a versatile, inexpensive, and accurate viscometer for the

measurement of small viscosities.

Chap. 2 also included simulations of the resonant behaviour of a wire vibrating in a shear-

thinning fluid described by the Carreau model. Our simulations revealed complex spatial and

temporal variation of the shear rate and viscosity in the fluid. This spatiotemporal variation also

affected the resonant behaviour of the wire in a way that could be measurable experimentally
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and potentially used as a qualitative measure of shear thinning. We found that the theory of a

wire vibrating in a Newtonian fluid could describe the resonant behaviour of the wire vibrating

in a shear-thinning fluid reasonably well if the viscosity used in the theoretical expression is

set equal to the viscosity averaged spatially around the circumference of the wire and tempo-

rally over one period of oscillation. The shear rate in the fluid is proportional to the velocity

of the wire, which can be tuned by varying the amplitude of the driving force. A larger driv-

ing force would result in higher shear rates and therefore a smaller effective viscosity. Future

work could focus on amplitude-dependent simulations and experiments in shear-thinning flu-

ids. Such a study could serve to improve our understanding of the behaviour of our device and

perhaps allow for the experimental study of shear-thinning behaviour. In addition, the simula-

tion presented in Chap. 2 could easily be modified to simulate the behaviour of a wire vibrating

in shear-thickening fluids, which could also be an interesting topic for future research.

We used our new device to measure the viscous and elastic moduli of viscoelastic fluids, a

task which has not been done with a vibrating wire device until now. We replaced the dynamic

viscosity in the theory for a wire vibrating in a Newtonian fluid with the complex viscosity and

fit for the viscous and elastic moduli rather than the viscosity. In Chap. 3 we showed that this

modification allowed us to measure the viscous and elastic moduli of a homogeneous polymer

solution. Our results were consistent with measurements taken with a shear rheometer. In

addition, in App. B we used our device to measure the viscous and elastic moduli of aqueous

solutions of Pluronic F127 in both the sol and gel states. The measured viscoelastic moduli

in the gel state were again consistent with measurements taken with a shear rheometer. These

results demonstrate that in addition to being a good viscometer, our vibrating-wire rheometer is

an effective tool for the measurement of the viscoelastic moduli of homogeneous viscoelastic

liquids and gels at high frequency. There is a gap in frequency in the data shown in Chap. 3

and App. B between measurements taken using a shear rheometer and those made with our

vibrating-wire rheometer. An interesting focus for future research could be to modify the

design of our device to measure the viscoelastic moduli at a number of different frequencies
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higher than those accessible to standard rotational shear rheometers.

We measured the viscous and elastic moduli of an aging Laponite clay suspension in Chap.

2. Laponite clay suspensions are heterogeneous on the micron scale. Since the amplitude

of the wire’s oscillations is on the order of microns, our measurements were of the micron-

scale rheological properties of the suspension. Measurements of the viscoelastic moduli using

a shear rheometer showed that the gel time for the suspension on the macro-scale was on

the order of a few minutes, while measurements using our vibrating-wire rheometer revealed

a gel time of approximately 2 days. Our results were consistent with past results that used

dynamic light scattering and particle tracking methods to measure the gel time at variable

length scales [3]. These results show that our device can be used for microrheology. An

interesting avenue for future research could be to investigate the dependence of the gel time on

the amplitude of the driving force.

In addition to the studies mentioned above, future work could focus on improving the de-

sign of the vibrating-wire rheometer. One direction for improvement could be to allow for the

tension in the wire to be varied dynamically. In our device, the tension is currently applied by

hanging a mass from the wire and then clamping the wire. Once the tension in the wire is set,

it cannot be varied without removing it from the fluid and hanging a new mass from it. Our de-

vice could be modified to use an auto-tensioning mechanism to dynamically vary the tension in

the wire. This could allow for measurements at multiple resonant frequencies without the need

to remove the wire from the fluid. For the vibrating-wire rheometer with length L = 6 cm de-

scribed in Chap. 3, by dynamically varying the tension while maintaining that the tensile stress

is within 20-50 % of the tensile yield stress of tungsten, the vacuum resonant frequency could

span 720 < f0 < 1140 Hz. By decreasing the wire’s length to 5 cm, the upper limit could be

extended to 1370 Hz. Furthermore, by using a wire with a smaller radius and shorter length, for

example R = 0.025 mm and L = 1 cm, the resonant frequency of the wire could be increased

to 6800 Hz. By using an array of wires with different lengths, radii, and tensions, multiple

simultaneous measurements could be made at different resonant frequencies. At present our
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device requires vibrating-wire holders, a magnet and sample housing, a lock-in amplifier, and

a computer for data acquisition. A future iteration of our device could incorporate all of these

parts into a single device. Implementing all of the suggestions above into a future iteration of

the device should decrease its cost, streamline its operation, and increase the portability and

versatility of the vibrating-wire rheometer.

In Chap. 4 we studied the gelation dynamics of aqueous solutions of Pluronic F127 using

shear rheometry. For concentrations 14 < c < 20 wt.%, the solutions are Newtonian liquids at

high and low temperatures and are gels at intermediate temperatures. When the solutions are

slowly but continuously heated, they undergo a sol-to-gel transition around room temperature,

followed by a gel-to-sol transition at a higher temperature. When they are slowly cooled, the

reverse transitions take place over a larger range of temperature so that the width in temperature

of the gel phase is larger when cooling than when heating. The solutions gel due to the forma-

tion of micelles and subsequent aggregation and ordering of the micelles. We found that when

the temperature was changed in small steps near the phase transitions, the rheological relax-

ation time became very long, up to of order 104 s. The timescale for the aggregation of micelles

is much faster than this and the micelles likely initially pack into structures without long range

order. We suggest that the long relaxation time we observed may be due to the annealing of the

initial amorphous structure into a more ordered structure that makes up the gel phase. The long

relaxation time during the phase transitions could be investigated further through time-resolved

small angle neutron scattering, small angle X-ray scattering, and dynamic light scattering.

Overall, in this thesis we have presented a novel device based on the vibrations of a wire

under tension for use in viscometry and rheometry. We demonstrated its efficacy through mea-

surements of the viscosity of Newtonian liquids, the bulk-scale viscoelastic properties of ho-

mogeneous viscoelastic liquids and gels, and the micron-scale viscoelastic properties of an

ageing Laponite clay suspension that is heterogeneous on the micron scale. Our results were

consistent with measurements taken with a shear rheometer. Our device can be used in nu-

merous areas of interest in rheology. With careful design modifications, the versatility of our
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device could be improved further.
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Appendix A

Additional Measurements and Analysis

In this appendix we present additional experimental results and analysis of our vibrating-

wire rheometer.

A.1 Temperature Dependence

We investigated how temperature influenced the behaviour of the vibrating-wire rheometer

described in Chap. 2 by measuring the viscosity of de-ionized water at temperatures T from

10 to 85 ◦C using a vibrating wire with a length of 5 cm. The temperature was varied using

a temperature-controlled circulating bath and was measured using a thermistor placed in the

circulating fluid as described in Chap. 2. The temperature was increased in 5 ◦C steps with

a 30 min waiting time between steps. The rate of change of the temperature was limited by

the heating and cooling capacity of the circulating bath. The temperature measured in the fluid

circulating around the sample vial is shown in Fig. A.1. A single measurement of the resonance

curve of the vibrating wire took approximately 2 min, and the data points in Fig. A.1 are the

average time and temperature over each measurement. While heating, 30 min was sufficient

for the circulating bath to reach a steady temperature. While cooling, 30 min was sufficient

except at temperatures between 60 and 50 ◦C. In this range, the system had not reached thermal

equilibrium when the measurements were made.
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Figure A.1: The temperature measured in the fluid circulating around the vibrating wire vs.
time.
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Figure A.2: Fits of Eq. A.1 (red curves) to the real component of the measured voltage from
the wire vibrating in water at (a) T = 15, (b) 50, and (c) 75 ◦C.

The theoretical expression for the voltage induced in the wire as a function of frequency

and fluid properties is re-stated here for convenience:

V = a + b f + ic + id f +
Λ f i

f 2
0 − (1 + β) f 2 + (β′ + 2∆0) f 2i

. (A.1)

Fits of the real component of Eq. A.1 to the real component of the induced voltage in the

wire in water at T = 15, 50, and 75 ◦C are shown in Fig. A.2. For every fit, a, b, c, d, Λ,
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f0, and η were free parameters. The fluid density at each temperature was determined using

the NIST Chemistry WebBook [1]. As shown in Fig. A.2, the quality of the fits is excellent

at every temperature. As the temperature increases, the resonance curve narrows and shifts

to lower frequency. The measured resonant frequency fr is plotted against T in Fig. A.1.

As T increases from 10 to 85 ◦C, fr decreases by almost 300 Hz. On cooling, fr increases

again, but its value at 15 ◦C is approximately 10 Hz lower than its starting value prior to

heating. This disagrees with what is expected based solely on the properties of water. As T

increases, both the viscosity and density of water decrease; according to Eq. A.1 this should

narrow the resonance curve and increase the resonant frequency. This discrepancy indicates

that the tension in the wire, and therefore its resonant frequency in vacuum f0, changes with

temperature. Similarly, the difference between the initial and final values of fr suggests that

the heating-cooling cycle irreversibly changes the tension. The red curve in Fig. A.1 shows

the resonant frequency predicted by Eq. A.1, assuming that only the fluid density and viscosity

change with temperature. We used borosilicate glass as the backbone of our rheometer because

it has a coefficient of thermal expansion similar to that of tungsten. Despite this, Fig. A.3

indicates that we cannot assume that the tension in the wire is independent of temperature.
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Figure A.3: The measured resonant frequency fr and the resonant frequency predicted by
Eq. A.1 (red curve) vs. T when (a) heating, and (b) cooling. The theoretical predictions as-
sume that only the fluid density and viscosity change with temperature.

The viscosity η f it determined from the curve fitting is plotted vs. time in Fig. A.4. η f it is
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Figure A.4: The viscosity of water (black dots) determined from fits of the real component of
Eq. A.1 to the real component of the measured voltage and the temperature in the circulating
fluid around the vibrating wire (red dots) vs. time.

smaller at higher temperatures, as expected. The time evolution of the viscosity indicates that,

at least for water, the temperature of the fluid in the sample vial follows the temperature of the

circulating fluid closely.

The viscosity vs. T is plotted in Fig. A.5 (a) and (b). Each data point is the mean of 5

measurements at different times near the end of the 30 min waiting time at each step. As

mentioned above and shown in Figs. A.1 and A.4, the data are at thermal equilibrium except

for a few steps when cooling where the temperature did not reach steady state within the allotted

waiting time. For these temperatures, η f it varied more over the 5 measurements than at other

temperatures. This variation is reflected in the error bars in Fig A.5 (d) as discussed below. The

red curves in Fig. A.5 (a) and (b) show the expected viscosity vs. T , determined from the NIST

Chemistry WebBook [1]. The percentage difference between the fitted and expected viscosities

is shown in Fig. A.5 (c) and (d). The viscosities agree to within ± 1% at low temperatures. The

percentage difference is larger at higher temperatures but remains within ± 3% except for the

point at T = 10 ◦C after cooling, where it is closer to 4%. The relatively large error bars on the

data in Fig. A.5 (d) between 60 and 50 ◦C are due to the fact that, for these temperatures, the
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temperature and viscosity had not reached a steady state when the measurements were taken.
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Figure A.5: The mean of 5 measurements of η f it near the end of the 30 min waiting time at
each temperature plotted against T when (a) heating and (b) cooling. The standard deviations
are smaller than the symbols in all cases. The red curves are the expected viscosity determined
from the NIST Chemistry Webbook. (c) The percentage difference between the mean values
of η f it and the expected viscosity when heating, and (d) when cooling. For the most part, the
standard deviation of the percentage difference is smaller than the symbols.

Although the agreement between the fitted and expected viscosities becomes poorer at

higher temperatures, it is nonetheless quite good over the full range studied. This suggests

that our vibrating-wire device is an effective viscometer over the temperature range studied

here. The dependence of f0 on T indicates that our choice of materials for the construction of

the rheometer was not ideal, but since f0 is treated as a free parameter in our fits, this does not

have a significant affect on the results. This in turn validates our procedure of allowing f0 to be

a free parameter in our curve fitting routine.
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A.2 Dependence of the resonance curve on G′ and G′′

When we used Eq. A.1 to study viscoelastic fluids in Chap. 2, we replaced the dynamic

viscosity with a complex viscosity,

η→ η∗ =
G′ + iG′′

i2π f
. (A.2)

In Chap 3. we studied how η affected the resonant frequency fr, full width at half maximum

∆ f , and quality factor Q of the theoretical resonance curves. In this section we study how

the viscous and elastic moduli G′′ and G′ individually affect fr, ∆ f , and Q. We calculated

Figure A.6: Surface plots showing (a) the resonant frequency fr, (b) the full width at half
maximum ∆ f , and (c) the quality factor Q vs. G′ and G′′.

resonance curves from Eq. A.1 with a, b, c, and d = 0, f0 = 1000 Hz, and for values of both G′

and G′′ ranging from 10−3 to 106 Pa. Surface plots showing the dependence of fr, ∆ f , and Q on

G′ and G′′ are shown in Fig. A.6. Darker colours show lower values, and lighter colours show

higher values. As G′′ increases for fixed G′, fr decreases, reaches a minimum, then increases

again. This is easiest to see in Fig. A.6 (a) for G′ < 103 Pa, however G′′ reaches a minimum

for higher values of G′ as well. For G′ . 100 Pa, ∆ f decreases to a minimum as G′′ increases,

before increasing at higher G′′. For higher values of G′, ∆ f increases monotonically as G′′



Appendix A. AdditionalMeasurements and Analysis 112

is increased. Similarly, for G′ . 100 Pa, Q increases to a maximum before decreasing as G′′

increases. For higher values of G′, Q decreases monotonically. In contrast, for fixed G′′, fr

and ∆ f increase as G′ increases, while Q decreases. Although the surfaces for fr and ∆ f look

approximately symmetric about the line G′ = G′′ for larger values of G′ and G′′, the subtle

differences alluded to above are clearly visible in the plot of Q. These results suggests we

should, at least in principle, be able to uniquely determine G′ and G′′ from measurements of

the resonance curve of our vibrating-wire rheometer in a viscoelastic fluid.
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Figure B.1: Fits of the real and imaginary components of Eq. A.1 (black curves) to the real
and imaginary components of the measured voltage of the 6 cm wire vibrating in the 18 wt.%
Pluronic solution at (a) T = 20 ◦C and (b) T = 35 ◦C. (c) and (d) show the difference δV
between the data and the fit at the same temperatures as (a) and (b), respectively. The imaginary
component of the measured voltage, fit, and the resulting δV have been artificially shifted to
lower voltage for clarity. Note that in subplot (d) only the data for f < 3000 Hz are shown to
emphasize the low-frequency peaks.

In this Appendix we present measurements of the viscoelastic moduli of aqueous solutions

113
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of Pluronic F127 using the vibrating-wire rheometer described in Chap. 2. As in Chap. 4, we

studied Pluronic solutions with concentrations of 14, 16, 18, and 20 wt.% at temperatures from

10 to 85 ◦C. We measured the voltage resonance curves using a vibrating-wire rheometer with

a length of 6 cm. The temperature was varied using a temperature-controlled circulating bath

and measured using a thermistor placed in the fluid circulating around the sample vial. The

temperature was raised from 10 to 85 ◦C, and then lowered back to 10 ◦C, in 5 ◦C steps with a

waiting time of 60 min after each step. The amplitude of the alternating current passed through

the wire was I ∼ 2.5 mA and the driving frequency was increased from 100 to 6400 Hz in 4

Hz steps.

Example resonance curves and fits of the viscoelastic form of Eq. A.1, as described in Chap.

2, to the data are shown in Fig. B.1. Data at T = 20 ◦C, in the sol state, are shown in Fig. B.1 (a),

while Fig. B.1 (b) shows data at T = 35 ◦C, in the gel state. The data shown are representative

of the measured resonance curves and the quality of the fits obtained at all temperatures within

the sol and gel states. Details of the curve fitting procedure used for these data are discussed

in more detail below. At both of the temperatures shown in Fig. B.1 the quality of the fits is

excellent. At T = 20 ◦C, in the low-temperature sol state (Fig. B.1 (a)), the frequency of the

largest resonant peak is fr ∼ 770 Hz. At least two additional resonance peaks can be seen at

higher frequencies, however. These higher-frequency resonance peaks are seen more clearly in

Fig. B.1 (c), where we have plotted the difference between the measured data and the fit, δV .

The increase in δV seen for f > 6000 Hz may be the start of a fourth resonance that peaks at a

higher frequency. The second resonance peak occurs at approximately 2500 Hz, and the third

at approximately 4500 Hz. These frequencies are not exactly integer multiples of fr, but they

are close to 3 fr and 6 fr, respectively, suggesting that they may be due to higher harmonics of

the vibrating wire. The deviation from exact multiples of 3 fr and 6 fr may be a consequence

of the clamped ends of the wire. Although we did not analyze these additional resonances,

understanding their origin may be an interesting topic for future work. For example, they

could be used to measure the viscosity or viscoelastic moduli of a fluid at multiple frequencies
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using a single vibrating-wire rheometer.

At T = 35 ◦C, in the gel state (Fig. B.1 (b)), the fit captures the measured broad resonance

curve well, but there are significant deviations from the fit at lower frequencies. δV for these

data is plotted in Fig. B.1 (d). Fig. B.1 (d) shows that the low-frequency scatter is not random,

but is due to the presence of several small, narrow peaks superimposed on the broader reso-

nance curve. Since these peaks were only observed when the Pluronic was in the gel state, they

may be due to the elasticity of the gel. Again, we did not analyze these peaks in detail, and

they may be an interesting topic for future research.

We initially tried fitting Eq. A.1 to the measured voltage using the same procedure as de-

scribed in Chap. 2, but found that the curve fitting routine often returned unphysical results

that depended significantly on the initial guesses for G′ and G′′. To resolve this, we modi-

fied the fitting routine so that the values of G′ and G′′ were fixed, and fit for the other free

parameters listed in Chap 2. We refer to this process as a restricted fitting routine below. We

logarithmically varied G′ from 10−4 to 106 Pa, and G′′ from 10−2 to 106 Pa and calculated the

sum of the squared deviations χ2 between the fit and the data for each pair of G′ and G′′. Sur-

face plots of χ2 vs. G′ and G′′ for restricted fits of Eq. A.1 to the measured voltage resonance

curves for T = 15 to 85 ◦C are plotted in Fig. B.2. Darker blue indicates lower values of

χ2, while the lighter yellow indicates higher values of χ2. At temperatures within the low and

high-temperature sol states (T = 15, 20, and 70 – 85 ◦C), χ2 reaches a global minimum for

G′ = 10−4 Pa and G′′ ∼ 100 Pa, however there is a valley of low χ2 that extends in the direction

of increasing G′ but for relatively constant G′′. For T = 15 ◦C, the valley changes direction

and extends at relatively constant G′ ∼ 102 Pa to lower G′′. At the other temperatures, the χ2

surface shows similar features as in the T = 15 ◦C case; there is a valley that spans G′ ∼ 104

Pa and 10−2 < G′′ . 105 Pa, and G′′ ∼ 105 Pa and 10−4 < G′ . 104. The complex topography

of the χ2 surfaces makes finding the global minimum with the curve fitting routine difficult.

Poor initial guesses for G′ and G′′ may trap the fitting algorithm in a local minimum. For all

of the fits presented in this appendix, we first performed the restricted fitting routine and found
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Figure B.2: Surface plots showing χ2 vs. G′ and G′′ from the restricted fitting routine described
in the text of the imaginary component of Eq. A.1 to the imaginary component of the measured
voltage of the 6 cm wire vibrating in the 18 wt.% Pluronic solution at temperatures spanning
15 to 85 ◦C, as labeled in the figure. The global minimum in each plot is marked with a red
circle.

the global minimum. The values of G′ and G′′ at the global minimum were then used as initial

guesses in a subsequent unrestricted fit of Eq. A.1 to the data. In all cases, the value of χ2
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resulting from the unrestricted fitting process was less than or equal to the value of χ2 obtained

from the restricted fitting process.

Figure B.3: G′wire and G′′wire (symbols), measured using the vibrating wire as described in the
text, and G′shear and G′′shear (curves), measured using the shear rheometer as described in Chap
4, for aqueous solutions of Pluronic with concentrations 14, 16, 18, and 20 wt.%, increasing
from left to right, while heating (top) and cooling (bottom).

The viscoelastic moduli measured using the shear rheometer, G′shear and G′′shear, and the

moduli measured using the vibrating-wire as described above, which we now denote G′wire and

G′′wire, are plotted against temperature and compared in Fig. B.3. The shear rheometer data in

Fig. B.3 are the same data as presented in Chap. 4, with the addition of the data for 14 wt.%.

As described in Chap. 4, the 14 wt.% solution does not gel on heating. Some elasticity is

measured over a small range of temperature on cooling, but G′shear < G′′shear at all temperatures.

The moduli measured using the vibrating-wire rheometer show similar behaviour. On heating,

G′wire = 0 and G′′wire follows a similar temperature dependence as G′′shear. On cooling, G′wire = 0

except at temperatures similar to where G′shear > 0. At these temperatures, G′wire is a few orders

of magnitude larger than G′shear. For concentrations greater than 14 wt.% and at temperatures

where the Pluronic solutions are in the sol phase, G′shear is small and G′′shear > 0. For the most

part we find G′wire = 0 and G′′wire to be 3-4 orders of magnitude larger than G′′shear in these cases.

The difference between G′′shear and G′′wire is likely due to the frequency dependence of G′′ and
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is discussed more below. There is one exception to the above sol phase behaviour. For the 16

wt.% solution at T = 25 ◦C when heating, G′wire > G′′wire and both are smaller than in the gel

phase. This may indicate that the Pluronic is undergoing a transition from sol to gel at this

temperature, as discussed in Chap. 4. For the most part, at temperatures when the Pluronic

solutions are a gel, G′wire > G′′wire and G′wire > G′shear. For the 16 wt.% solution, G′′wire and G′′shear

are similar. For the 18 and 20 wt.% solutions, there is some scatter in G′′wire, but for the most

part the values are similar to G′′shear. The variability in G′′wire with temperature may be a fitting

problem, resulting from the large regions of low χ2 shown in Fig. B.2. The difficulty in finding

the global minimum may be further affected by the additional peaks in the measured voltage

when the Pluronic is a gel, as shown in Fig. B.1 (b) and (d).
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Figure B.4: G′ and G′′ vs. ω measured using the shear rheometer (data at ω < 103 rad/s) as
described in Chap. 4, and the vibrating-wire rheometer (data at ω > 103 rad/s) at temperatures
T = (a) 10, (b) 35, (c) 55, and (d) 85 ◦C. The error bars plotted for the high-frequency vibrating-
wire data show the full width at half maximum of the resonance curves. Except in Fig. B.4 (a),
the error bars are smaller than the data symbols. The dashed lines in (a) and (d) show G′′ ∼ ω1.

A comparison of the moduli measured using the vibrating-wire rheometer to the frequency

dependence of G′ and G′′ measured using the shear rheometer is shown in Fig. B.4 for T = 10,

35, 55, and 85◦C. The vibrating-wire data are plotted at the resonant frequency. The shear

rheometer data in Fig. B.4 is the same data shown in Chap. 4. As discussed in Chap. 4, the
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superlinear increase in G′′shear at higher frequency is due to the inertia limit of the rheometer and

not the material properties. At low and high temperature, Pluronic solutions are expected to be

Newtonian. For a Newtonian fluid, G′ = 0 and G′′ ∼ ω1. In Fig. B.4 (a) and (d), G′wire = 0 and

G′′wire is consistent with a linear dependence on frequency extrapolated from the low-frequency

shear rheometer data, which is plotted as a dashed line. In the gel phase (Fig. B.4 (b) and (c);

T = 35 and 55 ◦C,) G′wire is slightly larger than what we would expect if G′ was constant at

high frequencies, but both G′wire and G′′wire are consistent with what is expected based on an

extrapolation of G′shear and G′′shear to higher ω.
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