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ABSTRACT

Coordinated differentiation of the enamel organ is essential to enamel deposition 

and mineralization. This process is likely governed by Cx43-based gap junctional 

intercellular communication as oculodentodigital dysplasia (ODDD) patients harboring 

Cx43 mutants exhibit enamel defects. To assess the role of Cx43 in tooth development 

we employ an ODDD mouse model, Gjal /+, which harbors a G60S Cx43 mutant and 

exhibits tooth abnormalities mimicking the human disease. Total Cx43 gap junction 

plaques were reduced in Gjal /+ mouse incisors compared to wild-type littermate 

controls. Disorganized GjalJrt/+ mouse ameloblasts and abnormal distribution of 

amelogenin were observed. A thin enamel layer became more apparent after tooth 

eruption suggesting enamel integrity is compromised. Mutant mouse incisors were 

longer with a thicker dentin layer, reflecting a mechanical stress response to the depleted 

enamel layer. Together, these data suggest that Cx43 gap junctions play a role in enamel 

organ function.

Keywords:

Ameloblast differentiation, amelogenesis, connexin, Cx43, enamel organ development, 

oculodentodigital dysplasia, mouse model of human disease
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LITERATURE REVIEW

1.1 Introduction

Multicellular organisms form networks of cells that share distinct and specialized 

traits. These specialized cells are organized into tissues and further into organs within a 

system. Most cells are able to communicate with their neighbours to coordinate their 

activities and maintain the survival of the organism through specialized intercellular 

channels collectively known as gap junctions. Gap junctions permit the passage of 

secondary messengers, ions, nutrients and metabolites between contacting cells (Cottrell 

and Burt, 2005; Neijssen et ah, 2007). Gap junctional intercellular communication 

(GJIC) has multiple and diverse roles that include the regulation of cell signaling, 

communication, differentiation, proliferation, polarity and development (Evans and 

Martin, 2002; Neijssen et ah, 2007; Vinken et ah, 2006). For example, gap junctions 

have known roles in embryonic development (see Section 1.5) (Caveney, 1985; Elias and 

Kriegstein, 2008; Levin, 2002), and the differentiation and function of organs and tissues 

including the bone (reviewed in Section 1.9) (McLachlan et ah, 2008; Stains and 

Civitelli, 2005), vasculature (Figueroa and Duling, 2009), brain (Bruzzone and 

Dermietzel, 2006), heart (Rohr, 2004; van Veen et ah, 2001), and skin (Kelsell et ah, 

2001). Defects in gap junction structure and function are therefore implicated in a 

number of human pathologies and diseases (Cronier et ah, 2009).
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1.2 Connexins

The basic protein subunits of vertebrate gap junction are connexins (Cxs). There 

are 21 connexins in the human genome and 20 in the mouse, most of which can be paired 

as sequence orthologs (Table 1.1) (Cruciani and Mikalsen, 2005; Sohl and Willecke, 

2004). The most common naming system of connexins is based on the molecular weight 

of the protein (Sohl and Willecke, 2003). For example, the Cx43 protein is named based 

on its predicted molecular weight of 43 kilodaltons (kDa).

There is much variation in the tissue expression of connexins. For example, 

keratinocytes within the human epidermis express Cx26, 30, 30.3, 31, 31.1,32, 37, 40, 

43, and 45 (Di et al., 2001) while neurons and supporting cells of the rodent nervous 

system express Cx26, 32, 36, 37, 40, 43, 45, and 46 (Rozental et al., 2000). In contrast to 

the broad expression of connexins in these tissues, liver hepatocytes express only Cx26 

and Cx32 (Vinken et al., 2008). Connexin protein levels in these connexin-expressing 

tissues also vary during organ development (Evans and Martin, 2002).

Together, site-directed antibodies, electron microscopy and crystallography have 

been used to reveal the membrane topology and quaternary structure of connexins, as 

well as the arrangement of connexins within gap junctions (Figure 1.1) (Evans and 

Martin, 2002; Maeda et al., 2009; Pantano et al., 2008; Unger et al., 1999; Yeager and 

Harris, 2007). Each connexin contains four hydrophobic transmembrane regions, two 

extracellular loops, and one cytoplasmic loop, where both amino and carboxyl tails are 

exposed to the cytoplasm (Goodenough et al., 1996).
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Table 1.1 Connexin orthologs in human and mouse. The human genome encodes 21 

connexins while the mouse genome encodes 20 connexins. Dashed boxes indicate where 

orthologous connexins have not been identified. Modified from Cruciani and Mikalsen, 

2006.

Human Connexins Mouse Connexins
23 23

25 —
26 26

30 30

30.3 30.3

31 31

31.1 31.1

31.3 29

31.9 30.2

32 32

— 33

36 36

37 37

40 40

40.1 39

43 43

45 45

46 46

47 47

50 50

59 —

62 57



Figure 1.1 Gap junction structure. Each connexin contains four membrane-spanning 

hydrophobic domains, two extracellular and one intracellular loop, and cytoplasmic 

amino and carboxyl ends (A). Six connexins oligomerize to form a single connexon (B). 

At the plasma membrane, one connexon docks with another from a neighboring cell to 

form a gap junction channel (C), allowing for cytoplasmic continuity between cells.



A Connexin

B Connexon



All members of the connexin family share structural similarity and amino acid 

sequence homology which is conserved across species (Goodenough et al., 1996; Sohl 

and Willecke, 2004). Connexin members vary mostly in the length of the carboxyl 

terminus, and the size of the cytoplasmic loops, both of which are thought to regulate the 

properties of the channel (John and Revel, 1991; Sohl and Willecke, 2004). Three 

cysteine residues in each extracellular loop are also highly conserved and interloop 

disulfide bonds are thought to play a role in protein docking between contracting cells 

(John and Revel, 1991).

1.3 Connexons and channel diversity

Six connexin subunits oligomerize to form a transmembrane (connexon) channel. 

Additionally, two connexons from apposing cells align and dock across the intercellular 

space to form a pore between cells. This 1.5 nm pore allows for selective continuity of 

ions, metabolites, and secondary messengers all of which are less than 1 kDa in size 

(Alexander and Goldberg, 2003). The connexin isoform composition of the channel can 

differ creating gated channels that allow for variation in the selective passage of 

molecules (Willecke et al., 2002).

Gap junctions of mixed connexin content can have intriguing functional 

consequences owing to the selective passage of transjunctional molecules (Brink et al., 

2000; Cottrell and Burt, 2005; Valiunas et al., 2000; White et al., 1994). As most cell 

types express more than one connexin, different connexins may co-oligomerize within a 

connexon to form a mixed channel, as reviewed by Brink et al. (2000). Connexons 

composed of more than one connexin are termed heteromeric, while a connexon

7



Figure 1.2 Connexon and gap junction channel types. Homomeric connexons are 

composed of one connexin isoform and heteromeric connexons are composed of two or 

more different connexin isoforms. Homotypic gap junction channels are formed by two 

identical connexons and heterotypic channels are composed of two different connexons.



Connexon:

Gap
Junction
Channel:
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composed of only one connexin type is homomeric (Figure 1.2). Heterotypic channels 

are composed of two different connexons from apposing cells, while homotypic channels 

are composed of identical connexons for each apposing cell. Thus, the overall 

complexity of GJIC is dramatically affected by the assembly of both heteromeric and 

heterotypic channels (Brink et al., 2000).

1.4 Gap junctions

In mammals, almost all cells express connexins with the exception of fully 

differentiated spermatozoa, most circulating blood cells, skeletal myocytes, and some 

neurons (Bruzzone et al., 1996). By means of electron microscopy, the gap junction was 

originally characterized as a close apposition of the plasma membranes where the 

intercellular space narrows from 25 nm to 2-4 nm (Revel and Karnovsky, 1967). It was 

later revealed that each of these regions of close apposition, termed plaques, contained up 

to thousands of intercellular channels (Goodenough and Revel, 1970; Loewenstein, 1981; 

Makowski et al., 1977). Further biochemical analysis has led to a widely accepted model 

of gap junctions as transmembrane structures where each cell contributes connexons 

which connect with apposing connexons across the intercellular space (Figure 1.1) 

(Goodenough and Revel, 1970; Makowski et ah, 1977; Unger et al., 1999).

1.5 GJIC in physiology and development

Gap junctions can be regulated by many factors such as pH, phosphorylation, 

voltage, calcium, and other molecular signals (Levin, 2002). Because of the potential for 

the regulation of information flow, GJIC can play a key role in cell physiology and
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embryonic development. GJIC is known to play a role in rapid syncitial communication 

in cardiac tissue (Kimura et al., 1995; Severs, 1999) and in the brain (Budd and Lipton, 

1998), as well as synchronizing hormonal secretion in glands (Meda, 1996).

During embryonic patterning, GJIC has a known role in regulating the flow of 

molecular determinants into distinct cellular compartments (Bruzzone et al., 1996; Levin, 

2002). Antibodies, antisense oligonucleotides, and connexin knock-out mice have been 

used as molecular tools and animal models to determine the functional roles of connexins 

in embryonic development (Becker and Davies, 1995; Becker et al., 1992; Lee et al., 

1987). Aberrant expression of connexins can lead to developmental defects, such as 

cardiac structural and functional abnormalities (Liu et al., 2006), and even embryonic 

lethality (Levin, 2002), revealing a critical role of connexins during these developmental 

processes.

1.6 Connexin knock-out mouse models

Connexin knock-out mice reveal the importance of GJIC in tissue development, 

differentiation, and function, as recently reviewed by Dobrowolski and Willecke (2009). 

To date, most of the 20 connexin family members have been individually ablated in mice 

(Dobrowolski and Willecke, 2009). The phenotype of a connexin knock-out with tissue- 

restricted expression is generally less severe than a knock-out of a connexin with a wider 

endogenous tissue distribution. For example, Cx50 has a confined expression to the lens 

of the eye. Cx50 knock-out mice develop cataracts, indicating that this connexin is 

necessary for lens homeostasis (White and Paul, 1999). In contrast, when the widely- 

expressed Cx43 is ablated, the phenotype includes severe cardiac defects which lead to
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lethality at birth (Reaume et ah, 1995). To circumvent lethal Cx43 knock-out 

phenotypes, conditional knock-outs have been generated to examine tissue-specific Cx43 

function. Cx43-targeted knock-outs have been generated in endothelial cells (Liao et al., 

2001), smooth muscle cells (Liao et ah, 2007), Sertoli cells (Sridharan et ah, 2007), 

neural crest and neural tube cells (Liu et ah, 2006; Xu et ah, 2006), to name a few. Each 

conditional Cx43 knock-out revealed a tissue-specific role of Cx43 in development and 

differentiation.

1.7 Connexin gene mutations in human disease

Mutations in the genes encoding connexins are known to cause several diseases. 

Deafness and skin disease are caused by mutations in Cx26, Cx30, Cx30.3, Cx31, and 

Cx43 (Kelsell et ah, 2001; Kelsell et ah, 1997; Richard et ah, 2003; van Steensel, 2004). 

X-linked Charcot-Marie Tooth Disease is correlated with over 300 mutations in the gene 

encoding Cx32, leading to the demyelination of peripheral nerves (Bergoffen et ah, 1993; 

Scherer et ah, 1995; White and Paul, 1999). Congenital cataracts can occur as a 

consequence of mutations in the genes encoding Cx46 and Cx50 (Mackay et ah, 1999; 

Shiels et ah, 1998). Currently 62 mutations in the gene encoding Cx43 are known to 

cause oculodentodigital dysplasia (ODDD) (Paznekas et ah, 2009). At the cellular level, 

many of these connexin mutants traffic inefficiently, but nevertheless can assemble into 

non-functional channels or channels that are severely compromised (Krutovskikh and

Yamasaki, 2000; McLachlan et ah, 2005; Zhou and Griffin, 2003).
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1.7.1 Oculodentodigital dysplasia

Not surprisingly given the widespread expression of Cx43 within multiple tissues, 

ODDD affects multiple developmental processes. The diagnostic phenotype of ODDD 

involves craniofacial abnormalities, including narrow nose and nostrils, defects of the 

digits including syndactyly of the fourth and fifth fingers, ocular defects including small 

eyes and glaucoma, and dental defects (detailed in Section 1.7.2) (Paznekas et al., 2009). 

In later life, neurologic defects including spastic gait, hyperretlexia and incontinence are 

often reported in patients (Loddenkemper et al., 2002). Further neurologic phenotypes 

are noted as the patient reaches the second decade of life, including weakness of the 

speech muscles, bladder disturbances, spastic weakness of the lower extremities, ataxia, 

and seizures (Loddenkemper et al., 2002). Conductive hearing loss and poor hair growth 

are also characteristics of this disease (Paznekas et al., 2009).

ODDD is typically of autosomal-dominant inheritance although a few autosomal- 

recessive cases (Paznekas et al., 2003; Richardson et al., 2006) and sporadic cases 

(Debeer et ah, 2005) have been reported. The disease has been mapped to the GJA1 gene 

which encodes Cx43 (Paznekas et ah, 2003). Currently, 62 mutations in the GJA1 gene 

have been identified in patients with ODDD (Figure 1.3). These mutations typically 

manifest as amino acid missense substitutions in the polypeptide backbone of Cx43, 

although frame-shifts occur at two mutation sites (van Steensel et ah, 2005; Vreeburg et 

ah, 2007).

In vitro studies on many ODDD-linked mutations have revealed defects in mutant Cx43 

transport and channel function (Beahm et ah, 2006; Flenniken et ah, 2005; Gong et ah, 

2007; Gong et ah, 2006; Lai et ah, 2006; McLachlan et ah, 2005; Roscoe et ah, 2005;
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Seki et al., 2004; Shibayama et al., 2005). In general, ODDD-linked Cx43 mutants are 

able to transport to the cell membrane and assemble into gap junction plaques (Roscoe et 

al., 2005; Seki et al., 2004), however in many cases populations of the mutants are 

trapped in the Golgi apparatus and endoplasmic reticulum and fail to properly traffic to 

the cell membrane (Gong et al., 2006; McLachlan et al., 2005). Despite the fact that a 

large fraction of most Cx43 mutants reach the cell membrane, they frequently exhibit 

reduced channel function or no function at all (Beahm et al., 2006; Lai et al., 2006; 

Shibayama et al., 2005). Furthermore, all Cx43 mutants tested in vitro, as well as in vivo 

studies of the G60S mutant, have been dominant-negative to the function of wild-type 

Cx43 (Beahm et al., 2006; Flenniken et al., 2005; Gong et al., 2007; McLachlan et al., 

2005; Roscoe et al., 2005). This suggests that, despite a presumed 50% expression of 

wild-type Cx43 in patients, these individuals are likely functioning with much less than 

50% of normal GJIC.

1.7.2 Tooth phenotype of ODDD

The principal dental anomalies associated with ODDD include enamel hypoplasia 

in both the primary (deciduous) and permanent dentition, often resulting in many cavities 

and early tooth loss (Paznekas et al., 2003). Because these defects occur in both sets of 

human dentition, it is evident that the mechanism of the ODDD tooth phenotype is 

underlying the entire development of the tooth and is not due to a temporary disturbance 

in the development process. We will further investigate the mechanisms behind the

ODDD dental disturbance in this thesis.



Figure 1.3 Location of Cx43 mutations associated with ODDD. To date, 62 

mutations have been linked to ODDD. Red balls represent the amino acids in the Cx43 

polypeptide sequence that are affected by dominant mutations in the GJA1 gene. Purple 

balls represent the two known amino acids that are affected by autosomal recessive 

mutations. Grey balls represent the amino acid origin of two frame-shifts that are 

affected by dominant mutations. The green ball at position 60 represents the amino acid 

substitution found in the Gjal' /+ mouse model of ODDD. Adapted from Laird, 2006.
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Another common dental phenotype in ODDD patients is smaller teeth 

(microdontia) (Paznekas et ah, 2003). As dentin comprises the bulk of the tooth our 

studies look further at the development of this tissue in the presence of an ODDD-linked 

mutant protein. Additional but less common dental issues in ODDD patients include 

missing teeth, pulp stones, delayed tooth development, and abnormal patterning of teeth 

(Paznekas et al., 2009).

1.8 Connexin43 mutant mouse models of ODDD

Several Cx43 disease-linked mutant mice have been generated to study the role of 

Cx43 in ODDD. These mice include G60S (Flenniken et al., 2005), I130T (Kalcheva et 

al., 2007) and G138R (Dobrowolski et al., 2008) missense mutations. All Cx43 mutant 

mice generated to date show reduced levels of endogenous Cx43 and a reduction in 

overall Cx43 function (Dobrowolski et al., 2008; Flenniken et al., 2005; Kalcheva et al., 

2007). Thus, in addition to these mice representing models of human ODDD they also 

represent mouse models where Cx43 is selectively reduced.

Through a random Wethyl-A-nitroso urea mutagenesis screen performed by the 

team headed by Dr. Janet Rossant (Toronto, Canada) a Gjal /+ mutant mouse was 

identified that harbors a G60S mutation in the Cx43 polypeptide sequence. While this 

mutation is not specifically matched to a known human patient mutation, it lies in close 

proximity to reported human mutations in the first extracellular loop of the protein 

(Figure 1.3). This mutant mouse is used extensively in the current study.

The GjalJr'/+ mouse has a phenotype that is similar to the clinical presentation of 

patients with ODDD. GjalJrt/+ mice exhibit syndactyly in the limbs, craniofacial
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abnormalities, and enamel defects as well as ocular defects, cardiac dysfunctions, and 

skeletal abnormalities (Flenniken et al., 2005). The G60S mutation is autosomal- 

dominant with a 1:1 ratio of mutant to wild-type Cx43, matching the genetics of most 

ODDD patients. Initial study of the Gjal Jrt/+ mouse by Flenniken et al. (2005) revealed 

Cx43 localized to the plasma membrane as well as within the Golgi apparatus and 

endoplasmic reticulum compartments. Cx43 gap junction plaques were greatly reduced 

by over 50% in the mutant mouse myocardium and granulosa cells (Flenniken et al., 

2005), indicating a dominant-negative function of the mutant protein. In vitro functional 

studies of this mutant in granulosa cells revealed reduced electrical conductance and 

minimal dye transfer compared to normal cells (Flenniken et al., 2005).

The GjaJJrt/+ mouse has been used to examine the role of Cx43 within cells and 

tissues including cardiomyocytes (Manias et al., 2008), keratinocytes (Langlois et al., 

2007), mammary gland (Plante and Laird, 2008), and bone (previously reviewed in 

section 1.6) (McLachlan et al., 2008). This mouse matches the mutant protein dosage of 

patients and will continue to be an important knock-down model for the study of Cx43 in 

other tissues affected by this mutation.

Since the generation of the GjaJJrt/+ mouse, other mouse models of naturally 

occurring human ODDD-linked mutations have been generated. The human Cx43 

cytoplasmic loop mutant I130T was introduced into the mouse genome using gene 

targeting by the team of Glenn Fishman (Kalcheva et al., 2007). More recently, a cre- 

recombinase mediated introduction of the human cytoplasmic loop Cx43 G138R 

mutation was generated by the team of Klaus Willecke (Dobrowolski et al., 2008). Both 

of these mutant mouse models appear to reliably mimic the phenotype of ODDD;
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however, the mice that harbor these mutations may also exhibit additional morbidities not 

related to ODDD. For example, the Cx43 I130T mouse presents with spontaneous and 

induced ventricular tachyarrhythmias (Kalcheva et al., 2007) which are rarely seen in 

ODDD patients. Similarly, the Cx43 G138R mouse carries a high heart-related mortality 

(Dobrowolski et al., 2008) which is not observed in the human population. The GjalJ,t/+ 

mouse used in our studies, although not a mutation reported in the human population, 

exhibits few morbidities not associated with ODDD.

1.9 GJIC in differentiation and mineralization

By means of connexin mutant and knock-out mouse studies, GJIC has been 

implicated in the regulation of tissue differentiation. ODDD-linked Cx43 mutants have 

been used to study the role of Cx43 in many tissues including the differentiation of the 

mammary gland (McLachlan et al., 2007; Plante and Laird, 2008) and the bone 

(McLachlan et al., 2008). For example, Cx43 is expressed in bone cells including 

osteoblasts, osteocytes, and osteoclasts (Jones et al., 1993; Stains and Civitelli, 2005). 

McLachlan et al. (2005) found that when dominant-negative Cx43 mutants G21R, 

G138R, and G60S were expressed in neonatal calvarial osteoblasts they failed to impede 

differentiation, as assessed by alkaline phosphatase activity levels, or the state of 

mineralization. It was suggested that the lack of mutant Cx43 effect in vitro in 

osteoblasts already committed to differentiation may not accurately reflect in vivo 

embryonic bone development or the abnormalities observed in ODDD patients and 

mouse models. In other studies a clear requirement for Cx43 in bone development was 

shown as the Cx43 null mouse exhibits delayed ossification in many bones (Lecanda et
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al., 2000). In addition, osteoblast-specific deletion of Cx43 leads to reduced bone mass 

and osteoblast dysfunction (Castro et al., 2002; Castro et al., 2003). The difference in 

these in vitro and in vivo studies may reflect the time of the Cx43 mutant being 

introduced into cells that are part of the osteoblast lineage.

McLachlan et al. (2008) went on to study the skeletal abnormalities of ODDD by 

looking in vivo at osteoblast differentiation in cells isolated from calvaria of the Cx43 

G60S mutant mouse, which shows decreased bone density, mineral content, and 

mechanical strength, as well as delayed ossification of the craniofacial bones (Flenniken 

et al., 2005). Late stage differentiation markers osteocalcin and bone sialoprotein were 

inhibited in osteoblasts differentiated from the G60S mouse, where GJIC measures were 

decreased by over 60% (McLachlan et al., 2008). Thus, it seemed that the severity with 

which Cx43 mutations affect osteoblast differentiation is dependent on the developmental 

time frame when the mutation is present. Similarly to these studies on Cx43 in 

embryonic bone mineralization, we chose to look at ameloblast cells that were derived 

from the G60S mouse lineage. In our studies, we wished to gain knowledge of the ability 

of mutant Cx43 expressing cells to differentiate to form and mineralize enamel.

1.10 Mammalian tooth development

Mammalian tooth development has generally been divided into three distinct yet 

overlapping stages: initiation, morphogenesis and cell differentiation (Kollar and 

Lumsden, 1979; Thesleff and Hurmerinta, 1981). During the initiation phase of tooth 

development, the tooth regions within the jaw and tooth type are established. The 

determination of tooth identity as incisor, canine, premolar or molar occurs at this stage
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and is suggested to be pre-specified by the origin of neural crest cells (Ruch, 1995; 

Sharpe, 1995). The human deciduous tooth set contains six teeth in each quadrant, two 

molars, one premolar, one canine and two incisors, while the mouse dentition is more 

simplified with only two types of teeth, one incisor and three molars on each quadrant of 

the jaw (Figure 1.4).

Initiation of tooth development involves determination of the dental mesenchyme 

and formation of the epithelial dental lamina. The dental lamina of mammalian teeth is 

derived from the ectoderm, whereas the mesenchymal component of the teeth derives 

from cranial neural crest in the midbrain region (Imai et al., 1996; Kontges and Lumsden, 

1996).

During the morphogenesis phase of tooth development, the shape of each tooth is 

established. Morphogenesis of the tooth depends on epithelium-mesenchymal 

interactions (Thesleff and Hurmerinta, 1981), much like the formation of other epithelial 

appendages, such as hair and glands. Epithelial-mesenchyme interactions involve bone 

morphogenetic proteins, fibroblast growth factors, and sonic hedgehog signalling 

molecules (Maas and Bei, 1997). It is now evident that the mesenchymal tissue directs 

the development of the enamel organ. Transplants of dental mesechyme were able to 

induce formation of enamel epithelium in non-dental epithelia including the foot pad. 

Further, these epithelial cells differentiated into ameloblasts to secrete enamel matrix 

(Caton and Tucker, 2009; Harada and Ohshima, 2004).

Morphogenesis is accompanied by differentiation of the tooth-specific cells, the 

odontoblasts from mesenchyme and ameloblasts from inner enamel epithelium. These 

differentiation processes result in the production of the dentin and enamel matrices,



Figure 1.4 Mouse and human mandibular dentition. The human deciduous tooth

layout is shown with six teeth is each quadrant: two incisors (I), one canine tooth (C), 

premolar (P) and two molars (M). The mouse tooth pattern is less complex with one 

incisor and three molars per quadrant, separated by a toothless gap. Tooth shape also 

varies between human and mouse. Modified from Tucker and Sharpe, 2004.

one
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respectively. Differentiation of the mesenchymal tissue precedes the epithelial tissue. 

Mesenchymal odontoblasts polarize and begin secreting predentin, the organic matrix of

dentin. The ameloblasts of the epithelium differentiate shortly after, occurring at the time 

that initial mineralization is seen in the dentin layer.

Unlike those of other mammals, rodent incisors are continuously growing 

throughout adult life, with a highly active ameloblast layer positioned at the labial incisor 

surface (Figure 1.5) (Fleischmannova et al., 2008; Thyagarajan et al., 2003). This unique 

rodent characteristic allows us to evaluate all stages of amelogenesis in a single mouse 

incisor at various time points during development. For our studies we chose to focus on 

three developmental time points in mouse incisor development, 7 days, 21 days, and 2 

months postnatal. The mouse incisor erupts from the gum line at approximately 7 days 

after birth. At this time point, incisors have not been significantly exposed to the oral 

environment of the mouth, which includes digestive enzymes and occlusive forces. At 21 

days after birth the pup is weaned from its mother and begins eating solid foods. At this 

time point the tooth has not been significantly exposed to the additional forces involved 

in chewing. Finally at two months after birth, the tooth has been exposed to the oral 

environment and the effect of this exposure on the enamel layer over time can be 

analyzed.

1.11 Enamel Structure and Function

Dental enamel is the external covering of the tooth crown which overlays and protects the 

dentin and pulp layers (Figure 1.5). Enamel is the hardest tissue in the body, composed 

mostly of calcium salts. Enamel is composed of microscopic rods formed by



Figure 1.5 The mouse incisor anatomy. When sectioned longitudinally through the 

incisor, all anatomical regions of the tooth can be viewed. The main compartments of the 

tooth are the central pulp cavity, dentin comprising the bulk of the tooth, and the outer 

enamel layer. In the mouse incisor, enamel is found only on the facial side of the tooth. 

External to the developing enamel are the ameloblast and the stratum intermedium and 

papillary cell layers.
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ameloblasts. In cross sections, enamel rods are roughly key-hole in shape and run 

parallel to each other and perpendicularly through the enamel matrix. Individual rods are 

composed of organized hydroxyapatite crystals, which require enamel matrix proteins to 

influence their orientation within a lattice. The proteins in enamel are unique to the 

tissue, including amelogenin and enamelin (Hu et al., 2001). As the crystals grow longer 

and wider, the organic protein is digested by enzymes and removed from the developing 

matrix. The resulting fully formed enamel is acellular and almost completely (95%) 

mineralized, with small traces of protein and water (Smith, 1998). Thus, enamel is well 

suited to withstand the mechanical forces involved in chewing, and to protect the 

underlying dentin.

1.12 Amelogenesis

Amelogenesis, the differentiation of ameloblasts to form dental enamel, is a complex 

process involving enamel matrix protein deposition and subsequent mineralization 

(Figure 1.6) (Smith, 1998). Differentiation of ameloblasts is thought to be dependent on 

interactions between odontoblasts and ameloblasts. The process of amelogenesis is 

remarkably constant among mammalian species (Aoba and Moreno, 1987; Gibson et al., 

2005). In mammals, the ameloblast exhibits a unique life cycle characterized by 

progressive phenotype changes that reflect its primary activity during the various stages 

of enamel formation (Zeichnerdavid et al., 1995). The ameloblast can be described as 

sequentially differentiating from the inner enamel epithelium through three main and 

exclusive functional stages: pre-secretory, secretory and maturation (Smith, 1998). 

During the pre-secretory stage, differentiating ameloblasts acquire their



Figure 1.6 The process of amelogenesis. Ameloblasts form an epithelial cell layer 

external to the developing enamel. Ameloblasts transition from a pre-secretory stage to 

secretory, and finally to a maturation stage of differentiation. At the secretory stage 

ameloblasts secrete enamel matrix proteins to form the full thickness of the enamel. 

Cells of the stratum intermedium and stellate reticulum surround the secretory 

ameloblasts. Ameloblasts at the maturation stage resorb much of the broken down 

organic constituent of the matrix to favour enamel mineralization. Cells of the papillary 

layer surround and support the maturation stage ameloblasts.
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phenotype, develop an extensive protein synthesis apparatus and prepare to secrete the 

organic matrix of enamel (Zeichnerdavid et al., 1995).

For the duration of the secretory stage, tall columnar ameloblasts secrete enamel- 

specific proteins into the enamel matrix. The majority of these proteins consist of 

amelogenins, as well as ameloblastin, enamelin and tuftelin (Begue-Kim et al., 1998; 

Fukumoto et al., 2005; Lee et al., 2003). As early as mouse embryonic day (E) 13, 

ameloblast specific tuftelin is expressed (Zeichnerdavid et al., 1995). Ameloblastin is 

next expressed (Krebsbach et al., 1996), followed by amelogenin (Couwenhoven and 

Snead, 1994; Kallenbach, 1971) by E14 in the mouse (Figure 1.6). Cells of the outer 

dental epithelium, the stratum intermedium and stellate reticulum, are also thought to 

provide factors to aid in the differentiation of ameloblasts at this stage (Matthiessen and 

Romert, 1980), although their precise role in amelogenesis remains unknown.

Finally, during the maturation stage, ameloblasts become significantly shortened 

and act to modulate, transport and reabsorb specific ions required for the mineralization 

of enamel (Nanci and Ten Cate, 2003; Zeichnerdavid et al., 1995). The cells of the outer 

dental epithelium undergo hypertrophy and morphological changes to reorganize into a 

papillary layer during this maturation stage of amelogenesis (Matthiessen and Romert, 

1980; Smith, 1998). As protein is broken down and reabsorbed from the enamel matrix, 

enamel crystals grow in width and achieve enamel’s final hardened form (Smith, 1998). 

When the tooth erupts into the oral cavity, around post natal day 7 in the mouse or 6 

months in the human, the ameloblast layer is lost and enamel is exposed to the 

environment of the mouth (Nanci and Ten Cate, 2003).
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1.13 Enamel developmental defects

All enamel defects result from disturbances in the process of amelogenesis. This 

is not surprising given that amelogenesis involves strict regulation of the enamel matrix 

constituents. Amelogenesis imperfecta represents a group of developmental defects in 

enamel which affect the structure and clinical appearance of all teeth of the affected 

individual in an equal manner (Aldred et al., 2003; Crawford et al., 2007). The enamel 

may be hypoplastic (thinner), hypomineralized, or both and the affected teeth may be 

discoloured, sensitive, or prone to disintegration. These two distinct types of 

amelogenesis imperfecta are related to the two phases of amelogenesis (Aldred et al., 

2003; Crawford et al., 2007). Some of the genes encoding specific enamel proteins 

important in amelogenesis have been implicated in amelogenesis imperfecta. Mutations 

in the amelogenin gene (AMELX) cause X-linked amelogenesis imperfecta, while 

mutations in the enamelin gene (ENAM) cause autosomal-inheritance forms of 

amelogenesis imperfecta (Stephanopoulos et al., 2005).

Enamel hypoplasia has long been known to be due to an ameloblast disturbance 

during matrix secretion. In general, enamel hypoplasia refers to a deficiency in the 

amount or thickness of enamel (Suckling, 1989). These defects may range from single or 

multiple pits to deep and wide troughs of decreased enamel thickness, and ultimately to 

complete lack of the tissue. However, in distinctive enamel hypoplasia, even the thin 

enamel is completely mineralized during enamel maturation. Similarly, enamel 

hypocalcification is known to be due to a disturbance in enamel maturation. 

Hypocalcification involves the change of colour and opacity of enamel, indicating 

differences in hardness or opacity of enamel (Clarkson and Omullane, 1989).
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1.14 Connexins in the tooth

Gap junction plaques are present between all cells of the enamel organ, including 

the inner enamel epithelium and ameloblasts (Inai et al., 1997; Sasaki et al., 1983), 

suggesting that intercellular communication may in fact be necessary during all phases of 

enamel development. Information transferred across gap junctions could potentially 

control ameloblast cell proliferation or cell death and coordinate the activation and 

subsequent regulation of protein matrix deposition and mineralization through ameloblast 

differentiation.

Cx43 is the most ubiquitously expressed and has been found in the cells forming 

the human tooth during development, including the ameloblast, stratum intermedium, 

stellate reticulum and differentiating odontoblasts (About et al., 2002; Sasaki et al.,

1985). Cx43 appears to be downregulated in the mature adult tooth, but can be seen in 

carious teeth localized to odontoblast processes (About et al., 2002; Ibuki et al., 2002). 

Likewise, the presence of Cx43 has been demonstrated in ameloblasts and stratum 

intermedium of the enamel organ in rats (Fried et al., 1996; Joao and Arana-Chavez, 

2003) as well as the rat preodontoblast and odontoblast (Joao and Arana-Chavez, 2003; 

Murakami et al., 2001). Given its broad distribution in the enamel organ, Cx43 and GJIC 

may play an important role in the coordinated events that lead to the differentiation of 

ameloblasts during enamel development.

Cx32 has also been observed in the preameloblast, ameloblast and stratum 

intermedium of the embryonic rat, while the presence of Cx26 was not noted in these 

cells (Fried et al., 1996). Connexin expression in the mouse enamel organ has not been 

investigated in the literature to date and is one of the topics investigated in this thesis.
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1.15 Hypothesis

We hypothesize that mice harboring an autosomal-dominant mutation in the gene 

encoding Cx43 will have fewer Cx43 gap junctions in the developing tooth resulting in a 

dysfunctional enamel organ, thin enamel layer, and undersized incisors.

1.16 Objectives

1. Localize connexins and the frequency of Cx43 plaques in the enamel 

organ of wild-type and Gjal /+ mice harboring an autosomal-dominant 

Cx43 mutant.

2. Assess enamel organ morphology, development and differentiation in 

GjalJrt/+ mice.

3. Characterize incisor dentin and enamel development in GjalJrt/+ mice.
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Decreased levels of Cx43 gap junctions result in ameloblast dysrégulation and

I r ienamel hypoplasia in Gjal /+ mice

2.0 Rationale

In this chapter, we wanted to examine the role of Cx43 on enamel organ 

differentiation and disease. We hypothesized that amelogenesis is governed by Cx43- 

based gap junctional intercellular communication as oculodentodigital dysplasia (ODDD) 

patients harboring autosomal-dominant mutations in Cx43 exhibit enamel defects 

typically resulting in early adulthood tooth loss. To assess the role of Cx43 in tooth 

development we employed a mouse model of ODDD that harbors a G60S Cx43 mutant, 

GjalJrt/+, and appears to exhibit tooth abnormalities that mimic the human disease.

Using the Gjal /+ mouse as a knock-down model of Cx43, we tested the hypothesis that 

Cx43 mutation results in enamel organ dysfunction and that this may account for the 

enamel hypoplasia displayed by ODDD patients.

A version o f  this chapter was submitted for publication and is currently in revision 
Toth K, Shao Q, Laird DW. 2009. Decreased levels of Cx43 gap junctions result in 
ameloblast dysregulation and enamel hypoplasia in GjalJrt/+ mice.
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2.1 Introduction

Tooth development follows patterning, morphogenesis, and cell differentiation 

pathways programmed into odontoblasts and ameloblasts that are responsible for the 

formation of dentin and enamel, respectively. It is predicted that gap junctions play a 

critical role in the differentiation of these cells leading to their ability to deposit the 

mineralized components of the developing tooth.

Gap junctional intercellular communication (GJIC) has multiple and diverse roles 

regulating aspects of signaling, communication, differentiation, proliferation, polarity and 

development (Neijssen et al., 2007). A gap junction is formed when two contacting cells 

each contribute a connexon (hemichannel) which dock to form a pore connecting their 

cytoplasms. These cell-cell channels allow for ionic and metabolic coupling (Evans and 

Martin, 2002). Each connexon consists of six connexin (Cx) proteins of the same or 

different type. There are 21 connexins expressed in humans and 20 in mouse, all of 

which share similar transmembrane topologies (Evans and Martin, 2002). Cx43 is the 

most ubiquitously expressed and has been found in the cells forming the human tooth 

during development, including the ameloblast, stratum intermedium, stellate reticulum, 

papillary layer and differentiating odontoblasts (About et al., 2002; Sasaki et al., 1985). 

Cx43 appears to be downregulated in the mature adult tooth, but can be seen in carious 

teeth localized to odontoblast processes (About et al., 2002; Ibuki et al., 2002). In rats, 

Cx43 immunoreactivity has been found in the ameloblasts of the enamel organ (Fried et 

al., 1996; Joao and Arana-Chavez, 2003) as well as the preodontoblast and odontoblast 

(Joao and Arana-Chavez, 2003; Murakami et al., 2001). In addition to Cx43, Cx32 and 

Cx26 have been found localized to the developing enamel organ and mature odontoblasts
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in rats, respectively (Fried et al., 1996; Inai et al., 1997). Given the broad distribution of 

Cx43 in the developing enamel organ, we postulate that GJIC is required to coordinate 

the differentiation of ameloblasts during enamel development.

Humans with mutations in the Cx43-encoding gene, GJA1, exhibit 

oculodentodigital dysplasia (ODDD), an autosomal-dominant disorder defined by 

skeletal, ocular and tooth abnormalities (Paznekas et al., 2003). Patients with this disease 

display enamel hypoplasia and multiple cavities resulting in early tooth loss (Paznekas et 

al., 2003). To date, 62 Cx43 mutations have been linked to the pleiotropic symptoms of 

ODDD. Many of these mutant proteins have been shown in vitro to act as dominant- 

negatives to co-expressed wild-type Cx43 and reduce GJIC far below 50% and in some 

cases to as little as 15% of normal levels (Flenniken et al., 2005; McLachlan et al., 2005; 

Shibayama et al., 2005). A mouse harboring a G60S mutation in the Cx43 protein 

(Gjal /+) mimics the human symptoms of ODDD including craniofacial abnormalities 

and syndactyly (Flenniken et al., 2005). Preliminary characterization of this mouse also 

revealed defects in the enamel of mutant mouse incisors (Flenniken et al., 2005), 

indicating that this mouse mimics the enamel defect found in human ODDD patients.

Ameloblasts form an epithelial cell layer external to the enamel of the developing 

tooth (Bei, 2009). These cells differentiate from the inner enamel epithelium sequentially 

through stages which reflect their primary functions during enamel development which 

include inductive, secretory and maturation phases (Bei, 2009; Smith, 1998). At the 

cervical loop, the pre-ameloblasts are induced to differentiate into ameloblasts (Bei, 

2009). The tall, columnar secretory ameloblasts actively produce and secrete enamel 

proteins into the matrix to form the thickness of the enamel layer (Bei, 2009). The
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majority of these proteins consist of amelogenin, as well as ameloblastin, and enamelin 

(Bei, 2009; Fukumoto and Yamada, 2005; Lee et al., 2003). Ameloblasts then transition 

into a maturation state to secrete proteases which break down enamel matrix proteins and 

then resorb much of the water and organic matrix to favor mineralization of the tissue (Lu 

et al., 2008). Ameloblasts finally commit to a quiescent state external to the developed 

enamel until the tooth erupts from the gum line whereupon this cell layer is lost (Nanci 

and Ten Cate, 2007). External to the differentiating ameloblasts are supporting cells 

consisting of the stratum intermedium, stellate reticulum and outer enamel epithelium at 

the secretory stage of differentiation, and the papillary layer at the maturation stage of 

differentiation (Harada et al., 2006). The enamel organ supporting cell layers have been 

proposed to provide factors critical for ameloblast differentiation and survival (Kawano 

et al., 2004; Satokata et al., 2000; Tompkins, 2006). The process of amelogenesis is 

remarkably constant among mammalian species (Gibson et al., 2005). However, unlike 

those of other mammals, rodent incisors are continuously growing throughout adult life, 

with a highly active ameloblast layer positioned at the labial incisor surface (Boran et al., 

2009; Fleischmannova et al., 2008; Thyagarajan et al., 2003). This unique rodent 

developmental characteristic allows us to evaluate all stages of amelogenesis in a single 

longitudinal section of the mouse incisor.

To date, the function of Cx43 in the enamel organ is still unknown. In other 

mineralized tissues such as bone, Cx43 has been shown to play a role in cell 

differentiation as well as respond to physiologic signals and mechanical stresses (Castro 

et al., 2002; Donahue, 2000; Jiang et al., 2007; McLachlan et al., 2008; Watkins et al.,
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2006). To investigate the biological importance of Cx43 in the tooth, we used the 

GjalJrt/+ mouse as a Cx43 knock-down model that leads to disease.

2.2 Materials and Methods

2.2.1 Animals

GjalJrt/+ mice were bred with a mixed genetic background of C3 and C57BL/6J 

to carry a heterozygous mutation in the Gjal gene (Flenniken et al., 2005). All mice used 

in this study were from the second, third, or fourth generation of back-crossing to 

C57BL/6J mice. Mice were maintained ad libitum on a high fat diet of chow and ground 

meal (Harlan Laboratories). Mice were sacrificed using CO2 and C^at 7 days, 21 days, 

or 2 months postnatal. Mouse genotype was determined by polymerase chain reaction 

(PCR) as previously described (Flenniken et al., 2005). Experimental procedures used 

were approved by the Animal Care Committee at the University of Western Ontario and 

followed the guidelines of the Canadian Council on Animal Care.

2.2.2 Tissue collection and treatment

Upper and lower incisors were collected from Gjal /+ and wild-type littermate 

mice at 7 days, 21 days, or 2 months postnatal. Teeth and control liver sections were 

fixed overnight in 10% neutral buffered formalin (NFB) (BDH, West Chester, PA, USA). 

Teeth were additionally demineralized for up to 7 days in 10% formic acid (Fluka, 

Steinheim, Germany), and embedded in paraffin. Paraffin-embedded tissues were 

sectioned longitudinally at 5 pm intervals and used for immunofluorescent labeling or 

staining with hematoxylin and eosin.



49

2.2.3 Radiography

Upper and lower incisors were collected from Gjal /+ and wild-type littermate 

mice 2 months postnatal, fixed, and radiographed using a Belmont 096 Belray Dental X- 

ray machine (70kVp, 10mA, 0.02s exposure; Takara Belmont Corporation, Osaka,

Japan).

2.2.4 Immunohistochemistry and confocal microscopy

Demineralized paraffin sections cut longitudinally through the incisors were 

stored in 10% NFB before immunolabelling. Sections were deparaffinized with xylene 

then subjected to rehydration in descending grades of ethanol baths followed by 

microwave antigen retrieval using citric acid solution. Detection of Cx43 was performed 

using a monoclonal mouse antibody (1:500; Chemicon International). Detection of Cx32 

was performed by using a polyclonal rabbit antibody (1:2000; Sigma, Saint Louis, MI, 

USA). Detection of Cx26 required the use of a polyclonal rabbit antibody (1:100;

Zymed, Carlsbad, CA, USA). Amelogenin expression was assessed by using a rabbit 

polyclonal antibody (1:500; Santa Cruz Biotecnologies, Santa Cruz, CA, USA). 

Secondary Alexa Fluor 488 or 555-conjugated anti-mouse or anti-rabbit antibodies were 

used at a 1:500 dilution (Molecular Probes, Eugene, OR, USA). Nuclei were stained with 

Hoechst 33342 (1:10,000; Molecular Probes, Eugene, OR, USA). Tissue sections were 

imaged on a Zeiss LSM 510 inverted confocal microscope as previously described 

(Thomas et al., 2005). In cases where protein expression levels and patterns were
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J  A # #
compared between wild-type and Gjal /+ tissue sections, imaging conditions were kept 

constant between matched samples.

2.2.5 Quantification

Enamel organ images used in our assessments were delineated as supporting cells 

(SC), including stratum intermedium, stellate reticulum or papillary cell layers and 

ameloblast (Am), based on their well-described morphological appearances (Nanci and 

Ten Cate, 2003). The number of gap junction plaques was counted under conditions 

where the investigator was blinded to whether the sample was from wild-type or mutant 

mouse. The resulting gap junction counts per field of view were normalized to the 

number of cells in the area as defined by Hoechst-stained nuclei. A gap junction plaque 

was defined as a discemable Cx43-labelled bright fluorescent structure of at least 0.5pm 

in length located at sites of cell-cell apposition. Supporting cell and ameloblast areas 

were counted separately, and combined for a total enamel organ assessment. Statistical 

analysis included the calculation of standard error and unpaired Student’s t-test where 

data from wild-type and mutant mice were compared.

2.2.6 Histology

To assess the histology of the mouse incisor, 5pm paraffin-embedded sections of 

wild-type and GjalJrt/+ incisors were stained with hematoxylin and eosin. Briefly, 

paraffin-embedded incisor sections were deparaffinised in xylene, rehydrated in 

descending grades of ethanol baths, and stained with 1% hematoxylin (5 min) and 1% 

eosin (5 min). Sections were dehydrated in ascending grades of ethanol and xylene baths
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and mounted with Cytoseal. The enamel organ and overall tooth were imaged under 

63X, 40X, or 5X objective lenses mounted on a Zeiss Axioscope microscope workstation 

equipped with a Sony PowerHAD camera and Axiovision LE imaging software (Carl 

Zeiss Vision). Images of secretory and maturation stages of enamel organ were selected 

based on their well-described anatomical region within the tooth (Nanci and Ten Cate, 

2003). Linear measurements were made either perpendicularly through the mature 

enamel layer (enamel thickness), mature dentin layer (dentin thickness), or from the 

enamel organ cervical loop to the enamel tip (incisor length) using imaging software. 

Statistical analysis included standard error calculations and comparisons between wild- 

type and mutant measures with a Student’s t-test.

2.3 Results

2.3.1 Connexin expression in the enamel organ

Cx43 is present in many tissues and organs in the body, and it has been reported to be 

localized to the developing tooth (About et al., 2002). However, little information has 

been published on its cellular and subcellular localization during the differentiation of the 

mouse enamel organ. To that end, we first evaluated fully developed murine incisors for 

the presence of Cx43. Cx43 staining was noted primarily in the cells of the stratum 

intermedium and stellate reticulum at presecretory and secretory stages and in the 

papillary cell layer at maturation stages of differentiation as punctate fluorescence 

between apposing cell borders (Figure 2.1). Cx43 was found in low levels in the 

ameloblast cell layer at these stages, but appeared to be transiently upregulated in the 

ameloblasts transitioning from secretory to maturation stages of differentiation (Figure



Figure 2.1 Cx43 expression is predominant in the murine enamel organ. Cx43 (A), 

Cx32 (B), and Cx26 (C) immunofluorescence were imaged in the 7d lower incisor at 

secretory and maturation stages of ameloblast differentiation. Nuclei were stained with 

Hoechst (blue). (A) Punctate Cx43 structures at cell-cell interfaces were visible in the 

enamel organ at both stages of ameloblast differentiation, particularly in the supporting 

cell layers. At the transition point between secretory and maturation stages of 

differentiation, Cx43 became more evident between ameloblasts (insert). (B&C) Cx32 

and Cx26 were not observed in the enamel organ of the murine incisor but were detected 

in liver sections prepared under standard conditions (inserts, arrowheads). Similar results 

were found for 21 day and 2 month sections (data not shown). Am, ameloblast layer; SC, 

supporting cells (stratum intermedium and stellate reticulum at the secretory stage and 

papillary layer at the maturation stage). Bars = 20pm.
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2.1 A, insert). Cx26 and Cx32 have been reported in cells of ectodermal origin (Evans 

and Martin, 2002). However, we did not detect Cx26 or Cx32 in the murine 

differentiating enamel organ using antibodies that could identify these connexins in liver 

sections prepared under standard conditions (Figure 2.1 B & C, inserts). These data 

suggest that Cx43 is the main gap junction protein in the developed enamel organ.

2.3.2 Altered dental phenotype in a mouse model of ODDD

GjaJJrt/+ mice have white, chalky incisors while wild-type incisors appear yellow 

due to enamel staining (Figure 2.2A). Consistent with the first report on these mutant 

mice (Flenniken et al., 2005), this finding suggests that there is a lack of enamel on the 

GjalJr,/+ incisors resulting in the underlying white dentin layer being visible. The 

Gjal Jrt/+ mice incisors appear smaller, although the overall size of the mutant mice is 

also smaller which is taken into consideration in later experiments (Figure 2.2B). Using 

x-ray imaging, a dense enamel layer was visible on the facial surface of 2 month incisors 

from wild- type mice while this layer appears absent in litter-matched Gjal /+ mouse 

incisors (Figure 2.2C, arrowheads). The gross anatomical defects of mouse incisors from 

GjalJrt/+ mice led us to examine further the nature of this defect.

2.3.3 Impaired GjalJrt/+ mouse enamel organ morphology

Histological assessment of the enamel organ from wild-type mice revealed a tall, 

columnar ameloblast epithelial cell layer and overlying stratum intermedium and 

papillary cell layers in both the secretory and maturation components of the enamel 

organ, respectively (Figure 2.3). In contrast to the wild-type littermate control, the



Figure 2.2 The GjalJrt/+ mouse displays an altered dental phenotype. Upper and

Irtlower Gjal /+ and wild-type mouse incisors were analyzed at 2 months of age. (A) The 

Gjal /+ incisors appear white and chalky compared to the yellow, enamel stained, wild- 

type incisors. (B) Mutant incisors appear smaller in size than wild-type when not 

corrected for body weight. (C) X-ray images reveal the mineralized content of incisors 

from wild-type and Gjal' /+ mice, including the enamel layer (arrowheads). Bars = 

1 m m .
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Figure 2.3 Enamel organ morphology was found to be severely altered in GjalJrt/+ 

mice. Representative demineralized paraffin sections of the enamel organ are shown of 

7d wild-type (upper panels) and GjalJrt/+ mice (lower panels). Sections were stained 

with hematoxylin and eosin to denote the columnar ameloblasts (Am) between the 

supporting cells (SC) and the enamel at secretory and maturation stages of differentiation. 

Ameloblasts from GjalJrt/+ mutant mice revealed an accumulation of eosinophilic- 

stained amorphous protein within the epithelial cell layer (insert) as well as disorganized 

cell shape and polarity, and additional misplaced cells between the ameloblasts and 

enamel matrix (~70% prevalence). Similar results were found for 21 day and 2 month 

sections (data not shown). Bars = 50pm.
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ameloblast layer from both the secretory and maturation regions of the enamel organ 

from Gjal Jr,/+ mutant mice exhibited a massive accumulation of eosinophilic-stained 

amorphous protein material within the ameloblast cell layer (Figure 2.3, insert). In 

addition, ameloblasts from mutant mice revealed no evidence of cell polarity and the 

columnar profile of this epithelial cell layer was lost. A further accumulation of cells 

were often found between the ameloblast layer and enamel matrix. Thus, in mutant mice, 

it was clear that the integrity of the ameloblast was grossly disturbed which may result in 

their inability to deposit enamel.

2.3.4 GjaJJr,/+ mutant mice have fewer Cx43 gap junction plaques in the enamel 

organ in comparison to wild-type littermate controls

Previous studies where the G60S Cx43 mutant was co-expressed with wild-type 

Cx43 in reference cell models revealed that the mutant is functionally dominant and 

reduces GJIC well below 50% (McLachlan et ah, 2005). Moreover, cardiomyocytes, and 

osteoblasts obtained from GjalJrt/+ mice exhibited greatly reduced gap junction 

coupling, suggesting that the G60S mutant is also dominant to the co-expressed Cx43 in 

GjalJrt/+ mice (Manias et ah, 2008; McLachlan et al., 2008). In the enamel organ of 

mutant mice, the Cx43 localization pattern did not appear significantly different from 

wild-type mice (Figure 2.4A). However the total level of Cx43 protein in the enamel 

organ, as assessed by the prevalence of gap junction plaques, was decreased at all stages 

of ameloblast differentiation (Figure 2.4). Thus, the Gjal Jrt/+ mouse is essentially a 

knock-down model of Cx43 in the enamel organ. However, while the level of total Cx43 

gap junction plaque knock-down in the enamel organ was evident at all stages of



Figure 2.4 Cx43 plaques were less frequent in the GjalJrt/+ mouse enamel organ 

compared to wild-type mice. (A-C) Cx43 gap junctions were frequently found in the 

enamel organ obtained from the lower incisors of 7d wild-type mice. Similar results 

were found for 21 day and 2 month sections (data not shown). Cx43 was most evident in 

the supporting cells including the stratum intermedium and stellate reticulum at the 

secretory stage and papillary cell layer at the maturation stage of differentiation. The 

frequency of total Cx43 gap junctions in the enamel organ of mutant mice was halved. 

Bars = 20pm. Quantification of Cx43 gap junctions per cell was delineated in both 

ameloblast and supporting cell layers at inductive (A), secretory (B), and maturation (C) 

stages of differentiation. Total Cx43 gap junction plaques were significantly reduced in 

incisors obtained from Gjal /+ mice at all stages of differentiation compared to wild- 

type littermates. (*p < 0.05; **p < 0.005; n > 6 animals).
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Figure 2.5 Amelogenin production and localization is altered in GjalJrt/+ mice. 

Seven day lower incisor demineralised sections were immunofluorescently labelled for 

the secretory protein amelogenin. Wild-type ameloblasts displayed low levels of 

amelogenin at the apical region of the ameloblast layer at the secretory stage and 

maturation stage. Amelogenin was found throughout the ameloblasts at the secretory 

phase and accumulated within and near ameoloblasts at the maturation stage in GjalJrt/+ 

mice. Frequently, cysts were found between the ameloblast layer and maturing enamel 

(between dotted lines). Similar results were found for 21 day and 2 month sections (data 

not shown). Bars = 20pm.
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differentiation, this was not equally evident in all regions of the enamel organ (Figure

2.4) .

2.3.5 Impaired cell differentiation in the enamel organ of GjalJrt/+ mice

Amelogenin is an extracellular matrix protein produced by ameloblasts and thus, 

it is often used as an index of ameloblast differentiation (Hu et al., 2001). Under normal 

circumstances this protein is typically localized to the most apical regions of ameloblasts 

as it is secreted to become part of the enamel matrix. In wild-type mice, amelogenin was 

visible at the apical secreting surface of the ameloblast during enamel secretion (Figure

2.5) . In contrast, in Gjal Jrt/+ mice excessive amounts of amelogenin were localized 

throughout the ameloblast layer in secretory regions of differentiation suggesting that this 

protein was produced but may not be properly secreted. In addition, visible cysts 

between the ameloblast layer and developing enamel were observed in 80% of mutant 

incisors (Figure 2.5, between dotted lines) suggesting that contact with the enamel 

surface is lost and ameloblasts exhibit a defect in the mineralization of enamel.

2.3.6 Reduction of the enamel layer in GjalJr,/+ mice

We sought to quantify the difference in enamel thickness through histological 

measures of the enamel layer at different stages of tooth maturation and aging. At 7 days 

postnatal, Gjal' /+ enamel thickness was less than wild-type incisors (Figure 2.6A). 

When enamel thickness was normalized to mouse body weight this trend remained the 

same (Figure 2.6B). This difference was amplified at 21 days and two months postnatal, 

after the teeth had erupted from the gum line. These data suggest that upon exposure to



Figure 2.6 Reduced lower incisor enamel thickness in the GjalJrt/+ mouse compared 

to wild-type. (A) Enamel thickness was less in 7d, 2 Id and 2 month mutant mice 

compared to littermate controls. Enamel measures were taken longitudinally through the 

fully developed enamel layer of GjalJrt/+ and wild-type mouse incisors and wild-type 

values were set to 100%. (B) When measures were normalized to the body weight of the 

mouse, enamel thickness of the GjalJrt/+ mouse was less than wild-type at all stages of 

development. Bars represent average relative enamel thickness ±SEM. (*p < 0.05 ; **P< 

0.005; n > 7 animals).
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Figure 2.7 Secondary effects in the GjalJr,/+ mouse lower incisors. (A) GjalJrt/+

mouse mandibular incisor length was less than that found in wild-type mice. Incisor 

length measures were taken linearly from the cervical loop to the enamel tip of GjalJrt/+ 

mice and wild-type incisors and wild-type values were set to 100%. (B) When 

normalized to the body weight of the mouse, the Gjal')rl/+ mouse mandibular incisor 

length was greater than that found in wild-type mice. Bars represent average relative 

lower incisor length ±SEM. (*p < 0.05; **p < 0.005; n > 7). (C) GjalJrt/+ mouse lower 

incisor dentin thickness was less than wild-type mice. Dentin thickness measures were 

taken longitudinally through the dentin layer of Gjal'Jrt/+ and wild-type mouse incisors 

and wild-type values set to 100%. (D) When corrected for body weight, the GjalJrt/+ 

mouse lower incisor dentin thickness was greater than wild-type mice. Bars represent 

average relative lower incisor dentin thickness ±SEM. (*p < 0.05; **p < 0.005; n > 7 

animals).
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the oral cavity, the enamel layer of the Gjal Jrl/+ mouse incisors rapidly and prematurely 

degrades. Thus it seems likely that the integrity of the matrix secreted by the ameloblast 

has altered organic constituent and/or inferior mineralization.

2.3.7 Secondary effects of thin enamel are seen in GjalJrt/+ mice

Murine incisors are continually growing and erupting into the oral cavity 

(Moinichen et al., 1996). While mutant mouse mandibular incisors are smaller than wild- 

type (Figure 2.7A), when normalized to body weight the lower incisors of mutant mice 

are in fact significantly longer than their wild-type counterparts (Figure 2.7B). In weaned 

littermate control mice, characteristic gnawing wears teeth down to maintain a consistent 

length. We suspect that due to the reduction in enamel the mutant mice avoid gnawing 

and chewing due to tooth tenderness resulting in an increase in tooth length as the mice 

age. This effect may also result in an overall reduction in food intake and total body 

weight which is commonly observed in these mutant mice. Finally, it is well understood 

that dentin comprises the bulk of the tooth, and we suspected that it might also be subject 

to changes in the mutant mice. As Gjal' /+ incisors are smaller than wild-type, the 

thickness of the dentin layer is less in these mice (Figure 2.7C). At all stages of 

development, the lower incisor dentin of the Gjal /+ mice was thicker than wild-type 

when normalized to mouse body weight (Figure 2.7D).

2.4 Discussion

Normal tooth development requires highly coordinated events between the 

mesenchyme-derived odontoblasts and the ectoderm-derived ameloblasts (Bei, 2009).
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The tooth phenotype of ODDD is apparent in both the primary and permanent dentition 

in almost all documented patients (Paznekas et al., 2009), suggesting that there is a 

developmental defect in the enamel layer. We hypothesized that this defect may be a 

result of abnormal protein deposition, poor mineralization and/or loss of enamel 

architecture as a consequence of loss-of-function mutations in Cx43. We chose to use a 

Gjal /+ mutant mouse that harbors a G60S Cx43 mutant as a model of human ODDD. 

We compared enamel organ tissue from GjalJrt/+ and wild-type littermates for connexin 

expression, enamel organ architecture, dentin thickness and state of differentiation. The 

enamel organ from wild-type mice displayed high levels of Cx43 in the supporting cells 

with more limited expression in ameloblasts. In the developed enamel organ of GjalJrt/+ 

mice we observed considerably lower levels of Cx43 gap junction plaques. The 

morphology and architecture of the enamel organ from GjalJrt/+ mice revealed a loss of 

cell polarity and organization with abnormal accumulation of amelogenin. Surprisingly, 

the teeth from mutant mice are not actually smaller when normalized to body weight but 

do have considerably less enamel and more dentin. Collectively, these studies reveal that 

the reduction of Cx43 gap junctions in the enamel organ has both direct consequences on 

enamel formation and indirect effects on dentin deposition and overall tooth constitution.

2.4.1 GjalJrt/+ mice as a model of human ODDD dental problems

ODDD is an autosomal-dominant disease of high penetrance resulting in ocular, 

craniofacial and dental abnormalities (Paznekas et al., 2003; Paznekas et al., 2009). 

Genetic studies have revealed 62 mutations in the Cx43 gene which result in ODDD with 

varying degrees of severity. Most ODDD patients incur tooth abnormalities including



71

enamel hypoplasia, leading to cavities and early tooth loss, and microdontia (Paznekas et 

al., 2003). In order to examine the cells and mechanisms associated with these clinical 

symptoms we employed the GjalJrt/+ mouse model which exhibits many of the 

symptoms of ODDD including tooth abnormalities (Flenniken et al., 2005). During the 

initial characterization of this mouse model, it was noted that the tooth defects of this 

mouse included an apparent enamel hypoplasia, and a smaller size of dentition 

(Flenniken et al., 2005). We sought to expand on the mechanisms of these initial findings 

here.

Importantly, the GjaJJrt/+ mouse shares genotype similarities with ODDD 

patients, with a 1:1 ratio of mutant to wild-type Cx43. The mouse has a single set of 

dentition where humans have a primary and permanent set, both of which are affected by 

ODDD (Debeer et al., 2005; Paznekas et al., 2009). Yet, amelogenesis is identical for 

both human and mouse dentition (Gibson et al., 2005). Thus, we believe that the 

GjalJrt/+ mouse is a useful model to study the dental abnormalities of ODDD and also to 

evaluate the consequence of Cx43 knock-down on enamel organ development and 

function. In cell types from other GjalJr'/+ mutant tissues, greatly reduced GJIC has 

been documented leading to various tissue abnormalities (Langlois et al., 2007; Manias et 

al., 2008; McLachlan et al., 2008). For example, previous studies investigating the 

consequence of mice harboring the G60S Cx43 mutant revealed impaired late-stage 

osteoblast differentiation (McLachlan et al., 2008) and impaired keratinocyte 

differentiation (Langlois et al., 2007) which is perhaps not surprising given the fact that 

Cx43 is expressed in over 35 distinct cell and tissue types (Laird, 2006). Flere, we sought
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to determine whether similar differentiation defects would be evident in the enamel organ 

of the GjalJrt/+ mouse.

2.4.2 Connexin expression during amelogenesis

Previous studies have localized Cx43 to the embryonic rat enamel organ (Fried et 

al., 1996; Inai et ah, 1997; Joao and Arana-Chavez, 2003). Specifically, immunolabeling 

studies localized Cx43 to the rat molar ameloblasts and stratum intermedium at a late 

stage of embryonic tooth development, with an increase in expression as differentiation 

proceeded (Joao and Arana-Chavez, 2003). Similar expression patterns were observed in 

rat upper incisor ameloblasts (Inai et ah, 1997) while connexins in ameloblasts from 

mouse incisors have not been significantly studied (Yamada et ah, 2007). It is rare for 

any cell type to express a single member of the connexin family as most tissues express 

two or more connexins (Laird, 2006). In the case of the enamel organ, a weak Cx32 

signal was previously detected at the apical surface of embryonic rat molar 

preameloblasts (Fried et ah, 1996), however a role for connexins at the enamel interface 

was not proposed and is not probable given the well documented role of connexins as gap 

junction proteins that function at intercellular interfaces. Cx32 has also been observed in 

the stratum intermedium during embryonic rat molar development, while other connexins 

such as Cx26 have not been detected in the enamel organ (Fried et ah, 1996). In our 

studies, staining for the most likely candidates to be found in the ectoderm-derived 

enamel organ, Cx26, Cx32 and Cx43, revealed only Cx43 which may in fact be the only, 

or primary, connexin expressed in the differentiating mouse enamel organ. In particular, 

Cx43 was enriched in the supporting cells including the stratum intermedium, stellate
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reticulum and papillary cell layers. The role of the supporting cells within the enamel 

organ remains poorly understood, but they have been proposed as regulators of 

ameloblast differentiation (Harada et al., 2006; Kawano et al., 2004; Satokata et al., 

2000). Our data would support this position as reduced supporting cell levels of Cx43 

were correlated with architectural and functional defects in ameloblast layers.

2.4.3 Decreased levels of Cx43 disrupt enamel organ differentiation and enamel 

development

ODDD enamel abnormalities could also be classified in a similar manner as 

amelogenesis imperfecta, which is defined as an enamel hypoplastic or hypomineralized 

disease caused by protein malfunctions in the enamel layer (Crawford et al., 2007). This 

condition causes teeth to be abnormally small, discolored, and prone to rapid wear and 

breakage (Crawford et al., 2007). Amelogenesis imperfecta has been linked to a variety 

of mutations in ameloblast genes encoding proteins that are critical for different aspects 

of enamel formation (Gibson et al., 2001; Hu et al., 2008; Lezot et al., 2008). Based on 

knock-out mouse studies, amelogenins play an important role in enamel mineralization 

(Gibson et al., 2001). In the AMELX"" mouse, the enamel layer was thinner, while 

ameloblast differentiation remained normal (Gibson et al., 2005; Gibson et al., 2001; 

Hatakeyama et al., 2009). Ameloblastin (AMBN) serves as a cell adhesion molecule for 

ameloblasts (Fukumoto et al., 2004). In AMBN null mice, ameloblasts differentiate 

properly, but at the secretory stage the cells detach from the matrix surface and lose 

polarity (Fukumoto et al., 2004). In our studies, we looked at the regulation of the 

predominant protein of the enamel layer, amelogenin. Our results revealed dysregulated
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amelogenin secretion and localization within the enamel layer in GjalJrt/+ mice. Enamel 

hypoplasia also arises when there are defects in the secretion of the enamel layer while 

enamel hypomineralization occurs when there is a deficiency in the maturation stage of 

enamel development (Wright et al., 2009). Amelogenin secretion in the GjalJrl/+ mouse 

incisor appeared dysregulated, with an abundance of amelogenin trapped in the 

ameloblast cells with lower than wild-type levels at the enamel interface. This situation 

could lead to an enamel hypoplasia, where the secreted enamel layer is thinner than 

normal as confirmed in mutant mice at 7 days postnatal, before tooth eruption.

During maturation of the enamel layer ameloblasts move calcium, phosphate, and 

bicarbonate ions into the matrix and remove water and cleaved proteins (Brookes et al., 

2001). It appears as though this maturation phase is altered in GjalJrt/+ mice and that 

full mineralization of the enamel layer is impaired. Thus, the architecture of the fully 

formed enamel layer would be expected to be softer with possibly more organic 

constituent than normal, and may be more prone to abrasion in the oral cavity. This is 

supported by the increased loss of enamel in older 21 day and 2 month mice when the 

teeth have been exposed to the oral cavity as compared to young animals. In the most 

extreme of cases involving an ENAM knock-out mouse the tooth is coated by a calcified 

material that cannot be classified as enamel, and is prone to severe abrasion and occlusal 

wear (Hu et al., 2008). Therefore, GjalJr,/+ mice exhibit symptoms of both enamel 

hypoplasia and hypomineralization, which are ultimately linked to the dysregulation of 

amelogenesis at all stages of ameloblast differentiation.

GjaJJr,/+ mice are up to 50% smaller than their wild-type littermates. It remains 

unknown as to whether this size deficiency is due to a smaller bone stature of the mutant
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mouse, or a lack of caloric intake. This deficiency seems unique to the mouse model, as 

such a severe defect has not been noted in the human ODDD population. In humans and 

primates, tooth size shows correlation to body weight, as found useful in anthropological 

studies (Anderson et al., 1977; Gingerich, 1977). In addition, enamel thickness has been 

correlated to the size of the tooth (Grine et al., 2005). As such, in order to account for the 

size difference of the mutant mouse compared to wild-type, we chose to normalize our 

measured parameters to the body weight of the mouse.

2.4.4 Secondary effects of enamel hypoplasia observed in the GjalJrt/+ mouse

Several reports suggest that the loss of enamel leads to secondary effects in the 

surrounding tissue and in animal feeding behavior. Consistently, we determined that the 

lower incisors of GjalJrt/+ mice were longer than their wild-type littermates when 

accounting for the body weight of the mouse. This finding was not reported in the 

original article describing the teeth of these mutant mice as no adjustment was made to 

account for the much smaller body size of the mutant mice (Paznekas et al., 2003). Mice 

have incisors which are normally continuously erupting at a constant rate and are 

regulated by characteristic gnawing behavior (Risnes et al., 1995). Due to a thin enamel 

layer in mutant mouse incisors, the mice may experience tooth sensitivity and fail to 

actively gnaw to regulate their incisor size. Interestingly, the Gjal' /+ mice had an 

aversion to chewing and were put on a powdered diet to stimulate caloric intake. Thus, 

tooth sensitivity may also be one of the contributing factors to the smaller size of the 

GjalJrt/+ mice.
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ODDD patients often display microdontia or a smaller tooth size (Paznekas et ah, 

2003). Since dentin is a porous mineralized tissue that underlies the enamel (Pashley and 

Carvalho, 1997) and comprises the bulk of the tooth we investigated its thickness in our 

mutant mice. Intriguingly, the thickness of dentin was greater in Gjal Jr,/+ mice 

compared to wild-type and normalized to mouse body weight. This may be due to the 

well-characterized secondary dentin deposition that occurs in sensitive teeth (Pashley and 

Carvalho, 1997). It is documented that when the overlying enamel layer is lost, dentinal 

tubules establish direct contact between the nerve endings of the pulp and stresses 

presented in the oral cavity such as heat and pressure (Pashley and Carvalho, 1997).

Upon odontoblast stress, a layer of dentin is deposited, the thickness of which is 

dependent on the intensity and duration of the stimulus (Pashley, 1990; Tziafas, 1994). 

Thus, in mutant mice where the enamel is thin we suspect that dentin deposition is 

activated leading to the increase in dentin thickness and overall increase in tooth size.

2.4.5 Significance

in the present study, we demonstrate the importance of a full complement of Cx43 

in normal enamel organ differentiation and enamel development. Cx43 in the stratum 

intermedium and ameloblast layers allows the enamel organ to properly differentiate, 

secrete and mineralize enamel. Thus, through insights provided by the use of the 

GjalJrt/+ mutant mouse, we show that decreased Cx43 gap junctions lead to enamel 

organ morphological defects and enamel hypoplasia. Understanding the role of gap 

junctions in normal enamel development is critical to elucidating their function in 

amelogenesis imperfecta and diseases such as ODDD.
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Discussion

Cx43 is the most abundant gap junction protein in mammals. The expression of 

Cx43 is linked to the proper development and differentiation of many tissues (Cruciani 

and Mikalsen, 2006). Therefore, aberrant expression of Cx43 is implicated in morbidity 

and disease (Krutovskikh and Yamasaki, 2000; Laird, 2006). The overall goal of this 

thesis was to examine the role of Cx43 in enamel organ differentiation and disease. We 

chose to study the enamel organ as the human disease ODDD is linked to patients that 

harbor Cx43 mutations which ultimately lead to enamel dysfunction. In this section we 

will summarize some of our findings with respect to the role of Cx43 in tooth 

development as observed through the use of a mouse model of Cx43-linked disease and 

address possible future studies that could further assess the role of Cx43 in the tooth.

In the current study, we compared the enamel organ from GjalJrt/+ and wild-type 

mice. The GjalJrt/+ mice were used since they harbor an autosomal-dominant G60S 

mutant that rendered the total Cx43 functional level in these mice to between 15-40% as 

assessed in a number of tissues (Flenniken et al., 2005; McLachlan et al., 2005; Roscoe et 

ah, 2005). Specifically, the connexin expression within the enamel organ, enamel organ 

architecture and state of differentiation, as well as dentin thickness and tooth size were 

compared. Characterization of the enamel organ connexin levels in wild-type mice 

revealed high levels of Cx43 in the stratum intermedium and papillary layer with more 

limited expression in ameloblasts. Cx43 appeared to be the predominant gap junction 

protein in the differentiating enamel organ, as other epithelial connexins were not 

detected in the enamel organ at the postnatal stages of development we used in our 

studies. In general, the enamel organ of GjaJJr,/+ mice displayed considerably lower
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total levels of Cx43 gap junction plaques compared to wild-type. The enamel organ from 

GjalJrt/+ mice revealed defects in cell morphology and architecture, with a loss of cell 

polarity and organization and an abnormal intracellular accumulation of amelogenin. The 

differentiation defects in the GjalJrt/+ mouse led to a thin enamel layer, which was 

further depleted when the teeth were exposed to the oral cavity. While the mandibular 

incisors from mutant mice are smaller than their wild-type counterparts, when normalized 

to body weight these teeth were surprisingly longer than those found in wild-type mice, a 

finding attributed to a secondary effect of the thin enamel layer. The dentin layer of the 

Gjal ,rt/+ mouse incisor is thicker than wild-type when normalized to body weight, 

revealing what may be a secondary dentin deposition in response to the stress of thin 

enamel. Collectively, these studies demonstrate that the reduction of Cx43 gap junctions 

in the GjaJJrt/+ enamel organ has both direct consequences on enamel organ 

differentiation and enamel formation and indirect effects on dentin and tooth structure.

3.1 Cell-cell contacts in the enamel organ

As gap junctions require cells to come in close contact to one another, junction 

formation requires proper adhesive interactions between cells. Thus, gap, tight, and 

adherens junctions exist in close relationship within epithelial cells (Cotrina et al., 2008; 

Laird, 2006). Cx43 is known to interact with several proteins, including cytoskeletal and 

anchoring proteins, such as cadherins, caveolin-1, and ZO-1 (Laird, 2006). Comparative 

microarray studies on wild-type and Cx43 ablated mice revealed the differential impact 

of Cx43 expression on other genes, with a portion of these dysregulated genes being 

related to cell junctions, adhesion, and extracellular matrix proteins (Iacobas et al., 2004).
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The structural proteins involved in cell-cell contact are of interest during tooth 

development. For example, N- P- and E-cadherins are expressed spaciotemporally in 

various parts of the enamel organ prior to amelogenesis (Fausser et al., 1998; Obara et al., 

1998; Palacios et al., 1995). Cadherins are transmembrane glycoproteins which belong to 

the superfamily of calcium-dependent cell adhesion molecules of the adherens junction. 

Extracellular domains of cadherins are involved in homophilic cell-cell interactions, 

while the intracellular domain interacts with the cytoskeleton (Takeichi, 1995; Tsukita et 

al., 1992). The relationship between gap and adherens junctions has been well 

documented (Frenzel and Johnson, 1996; Jongen et al., 1991). Antibodies against E- 

cadherin and N-cadherin can alter the formation of gap junctions (Jongen et al., 1991; 

Meyer et al., 1992). Conversely, antibodies against Cx43 can also inhibit the assembly of 

adherens junctions (Meyer et al., 1992; Wei et al., 2005). In addition, Cx43 can complex 

with N-cadherin and the disruption of the expression of either protein of the complex 

affects the membrane localization of the other (Wei et al., 2005). It seems possible that 

reduced Cx43 gap junctions in the GjalJrt/+ enamel organ could affect the localization 

and assembly of adherens junctions in this tissue, accounting for the loss of cell-cell 

adhesions and tissue integrity in the mutant enamel organ. Additionally, desmosomes 

and hemidesmosomes provide mechanical integrity to tissues, and might be involved in 

tissue remodelling during development (Garrod et al., 1996; Green and Jones, 1996).

The desmosome protein desmoglein was detected at the basal pole of ameloblasts and 

between cells of the stratum intermedium during amelogenesis (Sasaki et al., 1984),
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while the hemidesmosome protein BP-230 accumulates at the secretory pole of 

differentiating ameloblasts (Fausser et al., 1998). As we have shown a major loss of 

ameloblast cell morphology and integrity in the Gjal' /+ mouse enamel organ, perhaps 

cell adhesions are altered to account for the observed disruption in the tissue architecture. 

In particular, this may account for the abnormal accumulation of cells between the 

ameloblast cell layer and the enamel matrix in GjalJrt/+ mouse enamel organ tissues.

Other epithelial junctional complexes known to be involved in amelogenesis are 

the tight junctions, which function as a barrier to regulate the paracellular transport of 

ions, small solutes, and water (Gumbiner, 1993). Tight junction proteins including 

claudins and occludins have been well documented in the enamel organ (Inai et ah,

2008). It is thought that tight junctions in ameloblasts act to regulate paracellular 

permeability to create a microenvironment suitable for enamel deposition and matrix 

maturation (Inai et ah, 2008). As there appears to be defects in both enamel matrix 

deposition and mineralization in the GjalJrt/+ mouse, perhaps the integrity of the enamel 

microenvironment is affected by the reduced level of Cx43 and their association with 

tight junctions.

3.2 Murine models of tooth abnormalities

Human teeth are classified as incisor, canine, premolar, and molar, all varying in 

size and shape. All human deciduous teeth undergo replacement by the permanent 

dentition. The mouse has a comparatively reduced dentition, with three molars and one 

incisor in each quadrant (Tucker and Sharpe, 2004). In mice, replacement teeth are 

unnecessary in the incisors, as they are able to grow continuously due to a stem cell niche
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located within the cervical loops at the apical part of the tooth (Harada and Ohshima, 

2004). The unique feature of detecting all stages of enamel organ development in rodent 

incisors provides an excellent experimental model for examining amelogenesis in the 

Cx43 knock-down GjalJrt/+ mouse model. However, the incisor may not be the best 

tooth to model the tooth size defect found in ODDD patients, as our data show that when 

normalized to size of mouse, the incisor of mutant mice are longer than their wild-type 

counterparts. However, the human phenotype of ODDD typically yields a smaller tooth 

size in patients with this disease (Paznekas et ah, 2003; Paznekas et al., 2009).

The size of the tooth is a factor of the mesenchyme (Cai et al., 2007), which 

differentiates into odontoblasts to form the dentin of the tooth (Lisi et al., 2003). After 

development, the dentin layer will form the size and shape of the tooth. The shape of the 

three mouse molars are thought to be analogous to that of the back three molars of the 

human dentition. Each of the three mouse molars in all quadrants of the dentition 

develop similarly to the human tooth during a single developmental time frame. Further 

characterization of the GjalJrt/+ mouse dentition should involve investigation into the 

development of the molars in this mutant mouse.

3.3 Conclusion

In summary, the results presented in this thesis suggest that Cx43 has an 

important role in enamel organ differentiation and formation of enamel. Cx43 likely 

plays a role in coordinating the differentiation of the ameloblasts involved in enamel 

matrix deposition and mineralization. Thus, the phenotype of ODDD patients with 

mutant forms of Cx43 results from enamel organ dysfunction and lack of appropriate
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differentiation. Further studies need to be completed in order to determine the effect of 

Cx43 on junctional complexes resulting in enamel organ disorganization, as well as on 

other aspects of tooth development such as tooth size.
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