
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2009

Data Integrity Protection For Security in Industrial Networks Data Integrity Protection For Security in Industrial Networks

Mohsen Bahramali

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Bahramali, Mohsen, "Data Integrity Protection For Security in Industrial Networks" (2009). Digitized
Theses. 3808.
https://ir.lib.uwo.ca/digitizedtheses/3808

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3808?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3808&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

D ata Integrity Protection For Security in
Industrial Networks

(Thesis Format: Integrated Article)

by

Mohsen Bahramali

Faculty of Engineering Science
Department of Electrical and Computer Engineering

/
Submitted in partial fulfillment

of the requirements for the degree of
Master of Engineering Science

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada
December, 2009

© Mohsen Bahramali 2009

Abstract
Modern industrial systems are increasingly based on computer networks. Network-

based control systems connect the devices at the field level of industrial environments
together and to the devices at the upper levels for monitoring, configuration and
management purposes. Contrary to traditional industrial networks which axe con­
sidered stand-alone and proprietary networks, modern industrial networks are highly
connected systems which use open protocols and standards at different levels. This
new structure of industrial systems has made them vulnerable to security attacks.
Among various security needs of computer networks, data integrity protection is the
major issue in industrial networks. Any unauthorized modification of information
during transmission could result in significant damages in industrial environments.

In this thesis, the security needs of industrial environments are considered first.
The need for security in industrial systems, challenges of security in these systems and
security status of protocols used in industrial networks are presented. Furthermore,
the hardware implementation of the Secure Hash Algorithm (SHA) which is used
in security protocols for data integrity protection is the main focus of this thesis.
A scheme has been proposed for the implementation of the SHA-1 and SHA-512
hash functions on FPGAs with fault detection capability. The proposed scheme is
based on time redundancy and pipelining and is capable of detecting permanent as
well as transient faults. The implementation results of the proposed scheme on Xilinx
FPGAs show small area and timing overhead compared to the original implementation
without fault detection. Moreover, the implementation of SHA-1 and SHA-512 on
Wireless Sensor Boards has been presented taking into account their memory usage
and execution time. There is an improvement in the execution time of the proposed
implementation compared to the previous works.

Keywords: Industrial Networks, Data Integrity Protection, Hash Function, Secure
Hash Algorithm, Fault Detection, Wireless Sensor Boards.

m

Statement of Co-Authorship
I herby declare that this thesis incorporates two original papers one of which were

published in a conference proceeding and the second one is to be submitted for publi­
cation in a peer reviewed journal. These papers were co-authored by my supervisors,
Dr.Jin Jiang and Dr. Arash Reyhani Masoleh and the collaboration is covered in
Chapters 2 and 3 of the thesis. In all cases, the key ideas, primary contributions,
experimental designs, data analysis and interpretation, were of the author, and the
contribution of the co-author was primarily through the provision of the research
problem, reviews, supervision, and guidance throughout the project.

I am aware of the University of Western Ontario policies on authorship and I
certify that I have properly acknowledged the contribution of all co-authors to my
thesis. I certify that, with the above qualification, this thesis, and the research to
which it refers, is the product of my own work.
The papers included in this thesis are as follow:

- Chapter 2: M. Bahramali, J. Jiang, A. Reyhani Masoleh, “Security Issues in Indus­
trial Control Systems,” NPIC-HMIT 2009 - Nuclear Plant Instrumentation, Control, and
Human-Machine Interface Technologies, April 5-9, 2009

- Chapter 3: M. Bahramali, J. Jiang, A. Reyhani Masoleh, “A Fault Detection Scheme
For SHA-1 and SHA-512 Hash Functions,” Submitted to: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2010.

IV

Contents
Certificate of Examination ii
Abstract iii
Statement of Co-Authorship iv
Dedication v
Acknowledgements vi
Contents vii
List of Tables ix
List of Figures x
1 Introduction 1

1.1 Security in Communication Systems.. 1
1.2 Data Integrity and Hash F unctions.. 5
1.3 Hash Function Implementation .. 7
1.4 Thesis Outline.. 7

1.4.1 Security in Industrial N etw orks.. 8
1.4.2 A Fault Detection Scheme For the FPGA implementation of

SHA-1 and SHA-512 Hash Functions....................................... 8
1.4.3 Implementation of SHA Hash Functions on Wireless Sensor Board 9

1.5 Contributions.. 10
2 Security in Industrial Networks 13

2.1 Introduction... 13
2.2 The Need for Security in Industrial Control Networks........................ 15
2.3 Challenges of Security in Industrial Networks....................................... 19
2.4 Security Status of the Protocols Used in Industrial Control Networks 21
2.5 Conclusion.. 24

vii

3 A Fault Detection Scheme For SHA-1 and SHA-512 Hash Functions 27
3.1 Introduction... 27
3.2 SHA-1 and SHA-512 Hash F unctions... 31

3.2.1 SH A -1.. 31
3.2.2 SHA-512... 32

3.3 A Fault Detection Scheme For SHA-1 and SHA-512 Round Computations 33
3.3.1 SH A -1.. 36
3.3.2 SHA-512... 41

3.4 Experimental R esults.. 43
3.5 Conclusion.. 46

4 Implementation of SHA Hash Functions on Wireless Sensor Boards 51
4.1 Introduction... 51
4.2 Structure of Wireless Sensor Networks .. 55
4.3 TinyOS and NesC Language.. 55
4.4 The SHA Hash Functions ... 57
4.5 Implementation of SHA Hash Functions on Wireless Sensor Boards . 60
4.6 Conclusion.. 63

5 Conclusions 66
5.1 Contributions.. 67
5.2 Future W ork... 68

A Functions and Constants used in SHA-1 and SHA-512 69
A.0.1 SH A -1.. 69
A.0.2 SHA-512... 69

Vita 71

List of Tables
3.1 Sequence of Operations for the proposed d e s ig n 34
3.2 Implementation results of SHA-1 on x c v 2 p 7 45
3.3 Implementation results of SHA-512 on xcv2p7 45
3.4 Comparison of results for fault detection methods in SHA-512 46
4.1 Comparison of Crossbow Sensor Boards.. 55
4.2 Implementation results SHA-1 and SHA-512 on Micaz sensor board . 62
4.3 Implementation results SHA-1 and SHA-512 on Micaz sensor board . 62

IX

List of Figures
1.1 Message Authentication using Hash Functions.................................... 6
2.1 CIM(Computer Integrated Manufacturing Architecture)..................... 14
2.2 CIM(Architecture of Modern Control Networks)................................. 16
2.3 Number of Security Incidents by Year [9] ... 19
3.1 SHA-1 Architecture... 29
3.2 SHA-1 and SHA-512 round computations... 30
3.3 Time redundancy in an adder: (a) Normal time redundancy, (b) The

proposed time R edundancy... 31
3.4 SHA-1 and SHA-512 inverse round com putation................................. 33
3.5 Time Redundancy for SHA-1 Hash Functions 36
3.6 Carry-Save-Adder tree for SHA-1 round operation (operands are 32

bits long) .. 37
3.7 32-bit Pipelined Carry Propagate A d d e r ... 39
3.8 Pipelined SHA-1 Round and Inverse-Round Computation.................. 40
3.9 Carry-Save-Adder tree for SHA-512 round computation..................... 41
3.10 Pipelined SHA-512 Round and Inverse-Round C om puta tion 44
4.1 The Structure of Wireless Sensor B o ard s... 54
4.2 SHA-1 Architecture... 58

1

Chapter 1
Introduction
Modern industrial systems are based on computer networks. Network-based control
systems are being used in various industries. From the very top level where man­
agement, configuration and monitoring data exist to the field level where sensors,
actuators and controllers such as PLCs (Programmable Logic Controllers) are lo­
cated, the date is transferred through the networks. While general IT networks are
used in the top levels of industrial systems, the bottom levels utilize special kinds
of networks designed based on the needs of industrial environments. These networks
usually transfer real time data among the devices and require stringent timing and
high reliability. The network-based structure of modern industrial systems has made
them vulnerable to security attacks as opposed to the traditional industrial systems
which were considered stand-alone networks and security was not an issue in them.
This thesis is concerned with the security needs of industrial networks.

1.1 Security in Communication Systems
Talking about network security, several issues should be taken into account. The need
for security in a network stems from the fact that it can be vulnerable to security
attacks. An attack is any action that compromises the security of a network and takes
advantage of the information transferred through the network either by accessing the
confidential data or modifying the critical data etc. On the other hand, a security

2

service is any action that decreases the vulnerability of a network against security
attacks. The security objectives vary depending on the network and the application
in which it is being used. The security objectives can be categorized as follows:

Confidentiality: This objective deals with the protection of the data transmitted
in a network from an attacker. Using confidentiality services, an unauthorized person
would not have access to the data transferred through the network. Other than the
content of a message transmitted, the source, destination, frequency, length or the
time of transmission might be required to be kept secret. Encryption and decryption
mechanisms are usually used for confidentiality purposes.

Integrity: Integrity services deal with the prevention of data from modification
during transmission. The purpose of this service is to make sure that the data is
transmitted correctly and without unauthorized modification. It should also prevent
delay in the transmission of the message, message injection or message replication.
This service is very important in industrial systems where crucial information is trans­
ferred through the network. In some cases, violating the integrity may cause safety
issues.

Authentication and Authorization: The purpose of authentication services
is to make sure that the message received by a recipient is from the source it claims
to be from. This service is concerned with the true identity of the communication
parties. By using authentication services, authorization mechanisms limit the access
to the network. Using this service, no unauthorized person can have access to the
host system of a network.

Nonrepudiation: This service is concerned with the accountability and liability
of the system. It prevents the sender from denying a transmitted message. It also
prevents the recipient from denying a received message. Using this service, the recip­
ient can prove that the message was sent by the alleged source and vice versa. Digital
signatures are examples of this service.

Availability: The aim of this service is to make sure that the system is accessible
by an authorized person all the time. There are several kinds of attacks which target
the availability of the system. They aim to cause the system to stop working. The

3

availability is very important in industrial networks which are used for crucial appli­
cations. Any stop in the operation of these systems can result in a lot of damages.

The services mentioned above are the main objectives of the security mechanisms
used in communication networks. Depending on the application, some of these ser­
vices may be used to provide the system with the security required. For example, in
the field level of industrial networks, the confidentiality of the data transmitted is not
a big issue while the data integrity is very important. Any unauthorized modification
in the information transferred among sensors, actuators and controllers may result in
severe damage to the system.

An attacker violates one of these security services to take advantage of the system.
Depending on the type of services being violated, there are several kinds of attacks.
For example, Denial-of-Service (DoS) attacks violate the availability of the system.
This can be done by flooding fake messages to the network. Eavesdropping attacks vi­
olate the confidentiality of the system while a man-in-the-middle attack violates both
confidentiality and data integrity. Other kinds of attacks such as viruses and trojan
horses can violate authentication, authorization, confidentiality and also availability
of the system.

Cryptographic algorithms are used to provide a system with the security services
mentioned above against the security attacks. Although they can not satisfy all kinds
of security objectives, they are the main countermeasures against security attacks.
They can provide confidentiality, data integrity, authentication and non-repudiation.
For authorization and availability issues, some other issues other than cryptography
should be taken into account. Cryptographic algorithms fall into three main cate­
gories:

Secret K ey Cryptographic algorithms use a single key for encryption and de­
cryption of the messages. The key should be transferred securely between sender and
receiver. Secret key algorithms are fast algorithms used to encrypt and decrypt large
amount of information. Block ciphers and stream ciphers are two kinds of secret key
algorithms. Block ciphers encrypt and decrypt the messages in blocks of data while
stream ciphers process the messages byte-by-byte or bit-by-bit. Advanced Encryption

4

Standard (AES) and Data Encryption Standard (DES) are examples of block ciphers
and RC4 is a byte-wise stream cipher.

The second type of cryptographic algorithms are public key algorithms. Public
key algorithms use two different keys to encrypt and decrypt messages. A public
key is used to encrypt (decrypt) the message and a secret key is used to decrypt
(encrypt) the transferred message. Using public key algorithms, there is no need
to transfer a key between communication parties thus removing the key distribution
problem existing in secret key cryptography. By their nature, public key algorithms
are mathematically complex algorithms that require a large amount of processing.
This makes their implementation very slow and resource consuming. They are used
to transmit the “secret key” in secret key cryptography and also in digital signature
schemes. RSA and ECC (Elliptic Curve Cryptography) are examples of public key
algorithms.

Message A uthentication Codes (MACs) and One-way Hash Functions
are the other types of cryptographic protocols which are used for integrity protection
purposes. They usually convert an arbitrary size message into a fixed-size data block
and are used as cryptographic checksums to provide the integrity of the message.
Message authentication codes use a key for this purpose while there is no key involved
in hash functions. The MD5 and SHA (Secure Hash Algorithm) are examples of hash
functions used extensively in security protocols.

Secret key and public key algorithms are used to encrypt/decrypt messages for
confidentiality purposes and digital signature schemes. On the other hand, hash
functions and message authentication codes are used for data integrity purposes. As
mentioned previously, confidentiality of messages transferred in an industrial envi­
ronment are not very important compared to their integrity. Data integrity is one
of the main security issues in industrial environments. Therefore, hash functions
and message authentication codes are the main cryptographic protocols that must be
considered in these environments.

5

1.2 Data Integrity and Hash Functions
Hash functions are used for data integrity purposes in communication systems. Data
integrity or message authentication services prevent unauthorized modification in the
content of the messages, timing of messages, sequence of messages etc. There are three
general methods to provide a system with message authentication or data integrity:
Encryption, Message Authentication Codes and Hash Functions. In encryption, the
ciphertext of a message serves as the authenticator; the sender en,crypts the message
with a shared key and the receiver uses the same key to decrypt the message. If the
recipient can retrieve the original message from the received one, he/she can make
sure that the message has not been altered during transmission. This is only true
when the transmitted message follows a certain pattern. Otherwise, the recipient can
not differentiate between the original message and the altered one.

Message Authentication Code is another method of providing data integrity. The
sender calculates the MAC of the message using a secret key and appends it to the
message. The message and its MAC are sent through the network. The recipient
receives the message, calculates the MAC of the message using the same secret key.
If the calculated MAC and the received MAC are identical, the recipient can be sure
that the message has been sent correctly and without modification. If an attacker
modifies the message during transmission, the calculated MAC at the receiving side
would not be the same as the received MAC and the receiver would find out that the
message has been modified during transmission. This is because of the fact that a
secret key is used to calculate the message authentication code and the attacker does
not have access to the key.

Another cryptography algorithm which is used for integrity purposes is hash func­
tion. Hash functions are public functions that map an arbitrary-length input to a
fixed-length output which is used as the authenticator. Hash functions are usually
used with encryption/decryption algorithms to provide message authentication ser­
vices. The way a hash function can be used along with encryption/decryption algo­
rithms to provide a message authentication scheme is shown in Figure 1.1. Figure 1.1

6

Figure 1.1: Message Authentication using Hash Functions

shows that the hash value of the message is encrypted and appended to the message
by the sender. The receiver calculates the hash value of the received message. He/she
also decrypts the received hash value and compares it to the calculated hash value.
If these two hash values are identical, the receiver makes sure that the message has
not been altered during transmission. In this method, because only the hash value
of the message is encrypted and decrypted, it reduces the processing burden required
to encrypt the whole message.

A cryptographic hash function should have certain properties:

• It should be easy to calculate the output.

• Given the output, it should be computationally difficult to calculate the input.

• A single bit change in the input should result in a significant change (more than
half of the bits) in the output of the function.

Hash functions are the building blocks of many cryptographic algorithms and are
used in a lot of security protocols.

Current most widely used hash functions are different versions of the the Secure
Hash Algorithm (SHA) recommended by NIST [2]. The SHA-1 [2] hash function
has a 160-bit output, whereas SHA-2 [2] has three different outputs of 256, 384 and
512 bits denoted by SHA-256, SHA-384 and SHA-512 respectively. The SHAs are
currently used in several security protocols such as IPSec [3] and Secure Socket Layer
(SSL) [1],

7

1.3 Hash Function Implementation
Like other cryptographic functions, the hardware implementation of hash functions
is of great importance. Because of their speed, FPGAs are suitable platforms for
the implementation of cryptographic algorithms. To improve the performance of the
SHA hash functions in terms of speed, area utilization and power consumption, several
techniques have been used in the literature [4], [5], [6], [7], [8], [9], [10], [11]. These
techniques mainly include using Carry-Save-Adders (CSAs), unrolling, pipelining and
operation rescheduling.

Addition is the main operation in the SHA structure. Any improvement in the
design of adders can result in a significant improvement in the SHA design. Carry-
Save-Adders increase the speed of the addition operation when three or more operands
are to be added. They have been used in many structures to improve the speed of
SHA-1 and SHA-512 functions [4], [5], [6]. The unrolling method is used to unroll
multiple rounds of the SHA function into one round [7], [8]. The speed improvement
in the unrolling method stems from the fact that the delay of the unrolled K rounds of
the SHA structure would be less than K times the delay of the single-round structure.
Moreover, the pipeline method can be used to make the SHA implementations running
at higher clock frequencies [9], [10], [12], [13]. Because of the iterative structure of
SHA hash functions, the pipeline method can efficiently increase the speed of the
circuit. The combination of pipelining and loop-unrolling has also been used in the
SHA implementation [12]. Operation rescheduling is another method of increasing
the speed of SHA implementations [11]. In these implementations, part of the round
computation is performed in the previous round leading to a decrease in the critical
path of the round.

1.4 Thesis Outline
In this thesis, hardware implementation of the Secure Hash Algorithm (SHA) which
is the most widely used hash function in security protocols will be considered for

8

industrial applications. The thesis contains three main chapters:

1.4.1 Security in Industrial Networks
C hapter 2 is a of about the security in industrial networks. It discusses the main
reasons that have made security issues important in modern industrial networks as op­
posed to the traditional industrial networks in which security was not an issue. Mod­
ern industrial networks are moving towards a Complete CIM (Computer Integrated
manufacturing) model in which devices of different layers are connected together.
This large interconnection of devices and also using IP-based and wireless protocols
in industrial networks has made them vulnerable to security attacks which was not
the case for old industrial systems. This chapter also discusses the differences between
industrial networks and the general IT networks from the security point of view and
mentions the challenges of providing industrial networks with security mechanisms.
The issues such as the real-time requirements of control networks, high reliability
and resource limitations of embedded devices used in industrial environments are re­
viewed. Because security was not an issue when the protocols for industrial networks
were designed, they do not have strong security mechanisms. This chapter also dis­
cusses the security status of the protocols currently used in industrial networks and
shows their weaknesses compared to the security needs of modern industrial networks.

1.4.2 A Fault Detection Scheme For the FPG A implementa­
tion of SHA-1 and SHA-512 Hash Functions

Because data integrity is crucial in industrial networks, hash functions are very impor­
tant in these environments. C hapter 3 is concerned with the FPGA implementation
of the Secure Hash Algorithm (SHA). The Secure Hash Algorithm recommended by
NIST is the most widely used hash function in current security protocols. The SHA-1
hash function has a 160-bit output, whereas SHA-2 has three different outputs of
256, 384 and 512 bits. The SHAs are currently used in several security protocols
such as IPSec and Secure Socket Layer (SSL). Like other cryptographic functions,

9

the hardware implementation of hash functions is of great importance. To improve
the performance of the SHA hash functions in terms of speed, area utilization and
power consumption, several techniques have been used in the literature. In this chap­
ter, a method is introduced for the implementation of SHA-1 and SHA-512 hash
functions which has the fault detection capability. Because of the iterative struc­
ture of hash functions, a single error in their hardware implementation could result
in a large number of errors in the final hash value. In this chapter, we propose a
fault detection scheme for the FPGA implementation of SHA-1 and SHA-512 round
computation. The proposed fault detection scheme is based on time redundancy for
involutional functions. It can detect permanent as well as transient faults as opposed
to the normal time redundancy technique which is only capable of detecting transient
errors. We use the pipelining method along with time redundancy to overcome the
timing overhead created by the time redundancy technique. The proposed design
does not impose significant timing overhead on the original implementation of SHA-1
and SHA-512 round computation. We have implemented the proposed scheme on
Xilinx FPGAs to evaluate our design in terms of area and timing overhead.

1.4.3 Implementation of SHA Hash Functions on Wireless
Sensor Board

C hap ter 4 deals with the implementation of SHA hash functions on wireless sen­
sor boards. Wireless sensor networks are extensively used in different applications.
Industrial systems use wireless sensor networks for monitoring and configuration pur­
poses. Because of the wireless communication in these kinds of networks, they are
vulnerable to security attacks. On the other hand, due to the hardware constraints ex­
isting in the sensor nodes, it is usually very challenging to apply security mechanisms
to wireless sensor networks. Sensor nodes usually suffer from limited computational
power, limited memory and limited power supply. Cryptographic algorithms which
are used in security mechanisms are usually complex algorithms which require a sig­
nificant amount of memory and processing power. This makes it quite challenging

10

to implement cryptography algorithms on wireless sensor boards. In this chapter,
we implement the SHA-1 and SHA-2 hash functions on sensor boards and compare
their implementations in terms of memory requirements and execution time. This
comparison will be helpful in choosing these hash functions for a specific application.

1.5 Contributions
The contributions of this thesis can be briefly described as follows:

• A new fault detection scheme for the FPGA implementation of SHA-1 and
SHA-512 is introduced in this thesis. The main feature of this scheme is that
although it is based on time redundancy, it is capable of detecting permanent
faults as well as transient faults.

• To the best of our knowledge, this is the first FPGA implementation of the SHA-
1 hash function which has the fault detection capability. Because of using the
pipelining method, the proposed design has a very small (3%) timing overhead.

• There is an improvement in the timing overhead of the proposed scheme for
SHA-512 compared to the previous works. The timing overhead of the proposed
design is 10 percent while two previous works show 11.6 percent and 73 percent
timing overhead.

• This fault detection scheme is capable of detecting any kind of faults as opposed
to the parity-based schemes which only detect faults with an odd number of
erroneous bits.

• The sensor board implementation of SHA-1 done in this thesis shows execution
time and ROM usage improvement compared to the previous work.

• To the best of our knowledge, this is the only implementation of SHA-512 on
sensor boards.

11

Bibliography
[1] W. Stallings, Cryptography and network security, Prentice Hall Upper Saddle

River, NJ, 2003.

[2] National Institute of Standards and Technology, “Secure Hash Standard (SHS),
FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION,
FIPS PUB 180-3” , (2008).

[3] RFC 2401, “The Security Architecture for the Internet Protocol”, (1998).

[4] L. Dadda, M. Macchetti and J. Owen, “The design of a high speed ASIC unit for
the hash function SHA-256 (384, 512),” in Proc. Design, Automation and Test
in Europe Conference and Exhibition, 2004.

[5] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T. Lehman
and B. Schott, “Comparative Analysis of the Hardware Implementations of Hash
Functions SHA-1 and SHA-512,” in Proc. 5th International Conference on In­
formation Security, ISC, 2002, pp. 75-89.

[6] M. Macchetti and L. Dadda, “Quasi-pipelined hash circuits,” in Proc. IEEE
Symposium on Computer Arithmetic, 2005, pp. 222-229.

[7] F. Crowe, A. Daly, T. Kerins and W. Marnane, “Single-chip FPGA implemen­
tation of a cryptographic co-processor,” in Proc. IEEE International Conference
on Field-Programmable Technology, pp. 279-285, 2004.

12

[8] R. Lien, T. Grembowski, and K. Gaj, “A 1 Gbit/s Partially Unrolled Architecture
of Hash Functions SHA-1 and SHA-512,” Springer J. CT-RSA, pp. 324-338,
2004.

[9] N. Sklavos, G. Dimitroulakos and O. Koufopavlou, “An ultra high speed archi­
tecture for VLSI implementation of hash functions,” in Proc. 10th IEEE Inter­
national Conference on Electronics, Circuits and Systems, ICECS, 2003, vol. 3,
pp. 990-993.

[10] A.P. Kakarountas, G. Theodoridis, T. Laopoulos and C.E. Goutis, “High-Speed
FPGA Implementation of the SHA-1 Hash Function,” in Proc. IEEE Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applica­
tions, IDAACS, 2005, pp. 211-215.

[11] R. Chaves, G. Kuzmanov, L. Sousa and S. Vassiliadis, “Cost-Efficient SHA Hard­
ware Accelerators,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol.16, no.8, pp.999-1008, 2008.

[12] H. Michail, A.P. Kakarountas, O. Koufopavlou and C.E. Goutis, C.E., “A low-
power and high-throughput implementation of the SHA-1 hash function,” in
Proc. IEEE International Symposium on Circuits and Systems, ISCAS 2005.
Vol. 4, pp. 4086-4089.

[13] G. Wang, “An Efficient Implementation of SHA-1 Hash Function,” in Proc. IEEE
International Conference on Electro/information Technology, 2006, pp.575-579.

14

Figure 2.1: CIM(Computer Integrated Manufacturing Architecture)

toring and configuration workstations and carries the control data among them. The
top level which is called the management level is used for higher level management of
different sections of the network and can be viewed as a plantwide local area network
linking office workplaces. Figure 2.2 shows a realization of this hieraxchy. Depend­
ing on the application, control and field level may be merged together and directly
connected to the management level. The management level could be connected to
the Internet for web-based applications. While general IT protocols such as LAN and
WAN protocols are used in the management level of control networks, the control
level and field level of these networks have special protocols. Contrary to traditional
control networks which usually used vendor specific protocols and mechanisms, mod­
ern control networks have been moving towards standardization of protocols used at
different levels of the network. Standard protocols are widely used at the field level
and control level of current control networks.

Traditional control networks were considered isolated networks. They were usually
small networks in which there was not a large amount of interconnectivity in the
devices inside the network and also there was no connection to the outside world. This
is not the case for modern control networks as depicted in Figure 2.2. Although this
architecture facilitates the easy communication of devices at different levels, remote
configuration and monitoring of devices, easier maintenance etc, it has created some
other issues, one of the most important of which is security. As a matter of fact,
whenever there is a great amount of interconnection in a system, security issues come

15

out. There are some specific features such as the stringent timing requirements which
make it difficult to apply general security mechanisms used in general IT networks to
industrial networks. These requirements should be taken into account when designing
a security mechanism for industrial environments. This paper aims to look into
the security issues and challenges in industrial networks. The rest of this paper is
organized as follows: In Section 2, the need for security in modern control networks is
studied. Section 3 discusses the challenges in providing the industrial networks with
security mechanisms. The status of current protocols used in industrial networks in
terms of security are studied in Section 4 and the paper concludes in Section 5.

2.2 The Need for Security in Industrial Control
Networks

There are many reasons which verify the need for security measures in modern control
networks: Firstly, as mentioned before, the amount of interconnection available in
such networks has made them vulnerable to security attacks. Contrary to traditional
control networks, many devices from different levels of the network and also from
outside networks can get connected to the systems inside the network. Without
proper security strategies such as authentication and access control, they can make
modifications in the devices which might result in an incident and cause a great
damage to the entire network. Security vulnerabilities in industrial environments
could also cause safety issues.

On the other hand, standard protocols used in different layers of modern industrial
networks, even in the field level, have made them more vulnerable in terms of security.
Control industry used to use proprietary devices and protocols which made the control
devices vendor specific. As a result, only few people had the technical knowledge of
the system and the communication mechanism among the devices. This made those
systems more immune to security incidents because except for a few people, nobody
knew about the technical details of the system and could not take advantage of any

16

workplaces

In te rn e t

workplaces rfjj ¡g
o ffic e o r c o rp o ra te
n e tw o rk

Figure 2.2: CIM(Architecture of Modern Control Networks)

vulnerability in the system. It is always said that traditional control networks had
the “security by obscurity” policy. They were secure because they were obscure. This
policy can no longer be effective in control networks. To benefit from interoperability,
easy maintenanace etc. current industrial networks are using standard protocols and
mechanisms which are public and everybody can be aware of them. That’s the reason
why “security by obscurity” policy can not be used in modern control networks.

Furthermore, because of the ubiquity of the Internet Protocol and its widespread
use in different applications, control networks are moving towards using IP based
protocols. The top level of control networks in the CIM pyramid is a general IT
network which is usually a kind of TCP/IP network such as LAN or WAN. TCP/IP-
based protocols are used in the control level of current control networks as well.
These protocols use TCP/IP as their transport layer and their application layer sits
above the TCP or UDP. Foundation Fieldbus HSE is a good example of this kind
of protocols. TCP/IP based protocols are even getting into the field level of control
networks. ProfiNet is an example of such protocols which is an IP-based version of the

17

PROFIBUS [3] network. Using TCP/IP-based protocols in control networks makes
them more vulnerable to security attacks because:

1. TCP/IP protocol stack is renowned for its security vulnerabilities and there are
lots of known attacks on IP networks.

2. TCP/IP is a widely used network and there are lots of people and organizations
who are familiar with its vulnerabilities and therefore, successful attacks are
much more likely in these kinds of networks.

These facts make the control networks vulnerable to the general IP attacks and cause
security issues to gain importance in them.

Another important issue is using wireless protocols in industrial environments.
With the success of wireless technology in data and voice communication systems,
control networks are moving towards the wireless technology as well. Although it
is not a long time that wired control networks have gained a widespread attention
and they are the first choice in industrial environments, it seems that they will be
superseded by wireless control networks in the near future. The success of wireless
communication in other areas such as data and media transmission accelerates this
process. The idea of connecting sensors, actuators and controllers through a wire­
less link motivates the automation companies to consider wireless technology very
seriously. There are inherent benefits in a wireless industrial system. Removing ca­
ble from the plants makes the installation of devices much easier and decreases the
setup time. It also simplifies the maintenance of the plant compared to the wired
technologies. Easier access to the field level for diagnostic and maintenance purposes
will be possible in wireless technology. Handheld devices can be remotely connected
to the field devices temporarily; this reduces the fault detection and correction time.
Whether or not current wireless technologies can be applied to fieldbus systems is
the main concern of wireless control networks. Fieldbus networks have some tim­
ing and reliability requirements which cannot be provided using the current wireless
technologies. To do this, some modifications and special investigations are required.

Although fieldbus networks are moving towards the wireless fieldbuses, because

18

of the widespread use of wired fieldbus technology in various automation industries
it cannot be superseded by wireless technology in a short time. Some middle stages
are required to perform this transition completely. So a combination of current wired
fieldbus systems and wireless technology is usually used in the field level of industrial
networks [4], There has been some research on wireless fieldbuses in recent years [5],
[4] and a few have been implemented [5]. By their nature, wireless systems are more
vulnerable to the threats and attacks and strict security measures should be taken in
wireless environments. It is evident that physical access to the network in a wireless
system is much easier than a wired network and therefore, a security attack to a
wireless network would be simpler.

The issues mentioned above are the main reasons why security has become so
important in current industrial networks. The security incidents reported in recent
years justify this claim. In January 2003, the Slammer worm penetrated the network
of Ohio’s Davis-Besse nuclear power plant and affected its safety monitoring system
and caused it to be shut down for about 5 hours [6]. The communication system of
a USA transportation company was infected by a virus in August 2003 and caused
the freight and passenger transportation system to be halted and made difficulties in
the morning commuter traffic [7]. An Australian man was sent to prison accused of
hacking into the Maroochy Shire, Queensland’s waste management system in March
2000. He caused millions of litres of sewage to spill out in the surrounding areas
[8]. These incidents show that the security threats to control networks are real and
they can cause severe problems. There are some other reported incidents such as
the Washington gasoline pipeline failure in 1999 and the Northeast power blackout
in 2003. The British Columbia Institute of Technology (BCIT) maintains a database
called Industrial Security Incident Database (ISID) which keeps record of security
incidents in industrial environments. According to this database, the number of
recorded security incidents between 1982 and 2006 is depicted in Figure 2.3 [9]. This
diagram indicates a rapid increase in the number of security incidents from 2001
which reaches its highest point in 2003 and 2004. This implies the importance of
security in current industrial networks. The decrease in the number of incidents in

19

2005 and 2006 is probably because of the awareness of the industry of the importance
of security and taking some countermeasures in these years.

Figure 2.3: Number of Security Incidents by Year [9]

2.3 Challenges of Security in Industrial Networks
Unlike industrial control networks, security has always been an issue in general IT
systems and several mechanisms and strategies have been used in various information
networks. Considering security in control networks, one might think of applying the
general security strategies used in IT systems to the industrial networks. Unfortu­
nately this is not a viable solution. There are major differences between IT networks
and industrial control systems which make it so difficult to use security strategies of
IT networks in industrial control systems. These differences stem from the nature of
control networks and industrial environments. The amount of reliability, safety and
availability, timing constraints etc have made control networks much different from
other kinds of networks such as the Internet. Some of the differences between control
and IT networks are as follows:

Industrial control systems need a high degree of availability. Because control
networks are usually used in critical industries such as process control industries,
they need to be highly reliable. An unscheduled shutdown of the system is not
accepted in such networks. Responses such as rebooting the system which is common

20

in IT networks are not acceptable in industrial networks. This level of availability
necessitates a very strict testing of any security measure which is supposed to be
deployed in the system.

Performance requirement is another difference between these two kinds of sys­
tems. Industrial systems usually require real time communication in which the pack­
ets should be sent and received at exact time intervals and time delay or packet loss
is not accepted in these systems. These timing requirements and real time communi­
cations are not so stringent in many other kinds of networks. Because of their nature,
cryptographic algorithms used in various security applications usually need a large
amount of processing time and cause some delay in the communication of the data
in the network which may not be acceptable in control networks.

High reliability is another feature of control networks which makes them distinct
from IT networks. Industrial networks are usually used in critical environments such
as petrochemical plants, power plants etc. and any failure in these systems could
result in huge financial losses or even damage to the people and environment. This
is not the case in general networks. Therefore, any security measure designed for
industrial control networks should not decrease the reliability of the system. For
example a password-based authentication system should not get in the way of the
normal operation of the system in the case of an emergency.

Another difference which should be considered in designing security strategies for
control networks is the component lifetime. Due to the rapid evolution of technology,
typical IT networks have a lifetime of 3 to 5 years. For control networks, because of the
types of application they are being used for and the costs of changing components,
the lifetime goes up to 15 to 20 years which makes it more difficult to adopt an
appropriate security mechanism for this lifetime.

Unlike IT systems, components of control networks such as sensors, actuators and
controllers are usually implemented in embedded systems which do not have lots of
processing power and resources such as memory and power supply. Because of the
complexity of cryptographic algorithms in terms of processing power and memory
requirements, this resource constraint is a very important issue in applying security

21

mechanisms to control networks.
As the final point, it should be mentioned that security objectives in control

networks and IT networks could be different. For example, confidentiality of data
transmitted is the major point in many IT networks while this can not usually be an
issue in control networks. In contrast, integrity of data transmitted and resistance to
Denial of Service attacks (DoS) is of greatest importance in control networks.

The issues mentioned above imply that there are some major differences between
IT networks and control networks which make it impossible to directly apply the secu­
rity strategies of IT networks to control networks. The differences in the requirements
of these two kinds of networks and also the limitations available in industrial networks
should be seriously taken into consideration for adopting a security mechanism for
such networks.

2.4 Security Status of the Protocols Used in In­
dustrial Control Networks

Security in industrial networks can be viewed from two standpoints:

• Security in control and management level

• Security in the field level

There are several mechanisms and standards in the control and management level
of industrial networks. Some of these mechanisms and standards are: OPC [10],
MMS [11], IEC 61850 [12] and ICCP [13]. The security status of these standards are
described as follows [1]:

1. OPC Security: OPC is a standard interface for data communication among
components of an automation network. It is a high level standard by which the
communication of devices will be independent of their lower layers’ architecture. Field
devices in an automation networks can use OPC to transfer data to the operation
workstations. They contain an optional access control mechanisms based on Access

22

Control Lists (ACLs). There is not any confidentiality or integrity support in the
OPC Standarad.

2. MMS is an application layer standard for communication between field devices
and PLCs. It is mainly used in manufacturing automation systems. It is usually
implemented over TCP/IP and it has a password based access control mechanism
with no confidentiality or integrity.

3. IEC 61850: This Standard is used in electric power networks. It does not have
any network security mechanism and relies on the security measures of lower layers
such as IPSec.

4. ICCP: ICCP is another application layer data communication standard which
is used in power plants. Because it is usually implemented over TCP/IP, it uses SSL
sessions for security purposes. It also uses an SSL-Based mechanism in non-TCP/IP
implementations. The security vulnerabilities of ICCP have been discussed in [14].

On the other hand, whether to apply security mechanisms in the field level is
an issue in industrial networks. The current status of the protocols used in the
field level of control networks shows some weak security mechanisms in them. In
[15], current state of the main fieldbus systems used in modern control networks in
terms of security has been studied. According to this study, Foundation fieldbus has
password and access group mechanisms in its application layer (FMS in HI protocol
and FDA in HSE protocol stack). Although there exists an authentication mechanism,
it seems to be more for QoS services rather than security purposes. Similarly, The
Profibus system (Profibus PA, Profibus DP and Profinet) has a basic access protection
mechanism. ControlNet has a password based authentication in its data link layer
which is used only locally and is not transmitted over the network. Its application
layer also has an authentication mechanism for identifying devices. World-FIP and
Interbus have access rights and also 8 bit plain-text passwords and P-Net shows a
simple write protection mechanism. These mechanisms are weak compared to the
requirements of current systems because:

They do not use any encryption or protection mechanisms for the passwords

23

• Length of passwords is very short and easy to break

• They only provide authentication mechanisms and confidentiality which may
be necessary in some applications has been ignored completely

• The mechanisms are not mandatory to be implemented in the standard.

It is evident that security has not been taken into consideration seriously in the
design of these protocols and they need some add-on services and procedures to be
considered as secure systems. This lack of security is mainly because of the fact that
security was not an important issue when these protocols were designed. This is not
true for all fieldbus protocols. The protocols used in Building Automation Systems
(BAS) such as Lon Works, EIB and BACNet do usually have more efficient security
strategies. Especially BACNet contains a DES-based security system which seems to
be the only fieldbus protocol which has used a serious security mechanism.

Because of the increasing importance of security for control networks, there have
been some field level security implementations in recent years. [16] has developed a
secure fieldbus protocol. This protocol is based on DES to encrypt and decrypt the
fieldbus messages. It uses automatic key exchange and key refresh mechanisms to
provide the field devices with the appropriate keys. [17] has proposed using IPSec for
IP based fieldbus networks. This approach has some advantages. First, using IPSec
which operates at the IP layer, there would be no need to make any modification
in the fieldbus protocol. Besides, IPSec has already been used in other applications
and this could reduce the amount of time and effort required to make the fieldbus
network secure. The BACNet standard mentioned before is another example of using
security in the field level. It contains the confidentiality and data integrity services
which are based on the DES cryptographic algorithm and a trusted key server. [18]
has extended this approach and offered an AES-based cryptography mechanism for
building automation systems.

24

2.5 Conclusion
Network-based control systems are widely used in industrial environments. The in­
creasing interconnection of devices at the different levels of control networks make
them vulnerable to security attacks. Using standard protocols in modern industrial
networks as opposed to the proprietary protocols used in old networks, using IP-based
protocols at different layers in the CIM hierarchy and also wireless communication
in the field level of these networks are the main reasons that security has become
important in industrial control networks.

Industrial networks usually require stringent real-time communication and also a
high degree of reliability which make it difficult to apply IT security mechanisms to
them. Therefore, some modifications are needed to provide the industrial networks
with general IT security mechanisms. On the other hand, field devices used in in­
dustry are usually implemented in embedded systems which are limited in terms of
memory and processing power. These limitations make it challenging to implement
security mechanisms in field devices.

The Current status of protocols used in various layers of industrial networks show
that security issues were not taken into account when these protocols were designed.
There is a need to modify these protocols to meet the security requirements of modern
industrial networks.

25

Bibliography
[1] D. Dzung, M. Naedele, T. P. Von Hoff, M. Crevatin, “Security for Industrial

Communication Systems”,Proceedings of the IEEE , vol.93, no.6, pp.1152-1177,
June 2005.

[2] Fieldbus Foundation, “ff-581-1.3, foundation specification: System architec­
ture”, 2003.

[3] PROFIBUS International, “iec 61158, digital data communication for measure­
ment and control - Fieldbus for use in industrial control systems”, 1999.

[4] Dong-Hyuk Choi; Jung II Lee; Dong-Sung Kim; Woo Chool Park, “Design and
Implementation of Wireless Fieldbus for Networked Control Systems,” SICE-
ICASE International Joint Conference , 2006. vol., no., pp.1036-1040, 18-21
Oct. 2006

[5] Willig, A., Matheus, K.; Wolisz, A., “Wireless Technology in Industrial Net­
works,” Proceedings of the IEEE , vol.93, no.6, pp.1130-1151, June 2005

[6] K Poulsen. Slammer worm crashed ohio nuke plant net, August 2003.
[7] Computer virus strikes csx transportation computers-freight and commuter ser­

vice affected, August 2003.
[8] T Smith. Hacker jailed for revenge sewage attacks, October 2001
[9] Keith Stouffer, Joe Falco, and Karen Scarfone. Guide to industrial control sys­

tems (ics) security. Technical report, National Institute of Standards and Tech­
nology, September 2007.

26

[10] F. Iwanitz and J. Lange, OLE for Process Control. Heidelberg, Germany: Hthig,
2 0 0 1 .

[11] Industrial Automation SystemsManufacturing Message Specification(MMS), ISO
9506-1:2003, 9506-2:2003, 9506-5:1999, 9506-6:1994, 2003

[12] Communication Networks and Systems in Substations, Int. Std. IEC61850, 2003.

[13] Inter Control Centre Protocol (ICCP), Std. IEC 60 870-6 TASE.2,1997.
[14] ICCP (TASE.2) security enhancements, Electric Power Res. Inst.,Tech. Rep.,

Sep. 2003.

[15] Treytl A, Sauter T, and Schwaiger C. “Security measures for industrial fieldbus
systems - state of the art and solutions for ip-based approaches”. IEEE Inter­
national Workshop on Factory Communication Systems, pages 201-209. IEEE,
2004.

[16] P Swaminathan, K Padmanabhan, S Ananthi, and R Pradeep. “The secure field-
bus (secfb) protocol - network communication security for secure industrial pro­
cess control” . IEEE Region 10 Conference, TENCON, pages 1-4. IEEE, Novem­
ber 2006.

[17] A Treytl, T Sauter, and C Schwaiger. “Security measures in automation systems-
a practice-oriented approach”, IEEE Conference on Emerging Technologies and
Factory Automation, volume 2, pages 847-855, Sept 2005.

[18] W Granzer, W Kästner, G Neugschwandtner, and F Praus. “Security in net­
worked building automation systems”, IEEE International Workshop on Factory
Communication Systems, pages 283-292, June 2006.

27

Chapter 3
A Fault Detection Scheme For
SHA-1 and SHA-512 Hash
Functions

3.1 Introduction
Message authentication is one of the most important security requirements of network
security protocols. While Confidentiality services prevent the disclosure of data to an
attacker, message authentication mechanisms deal with the modification (content, se­
quence, time, etc.) of the messages transmitted in a network. Message authentication
also serves as a source repudiation countermeasure to verify that received messages
come from the alleged source [1]. There are three types of mechanisms which can
provide the authentication service [1]: Encryption, Message Authentication Codes
(MACs) and Hash Functions. Using encryption, the encrypted message can be used
as the authenticator. Message Authentication Codes are functions which produce a
fixed-length output from the message and a secret key. This output can serve as
the authenticator. Hash functions are public functions that map an arbitrary-length
input to a fixed-length output which is used as the authenticator. Hash functions are
usually used with encryption to provide message authentication services. The way

28

of using a hash function along with an encryption algorithm for authentication pur­
poses has been described in [1]. A cryptographic hash function should have certain
properties:

• It should be easy to calculate the output.

• Given the output, it should be difficult to calculate the input.

• A single bit change in the input should result in a significant change (more than
half of the bits) in the output of the function.

Current most widely used hash functions are different versions of the Secure Hash
Algorithm (SHA) recommended by NIST [2]. The SHA-1 [2] hash function has a 160-
bit output, whereas SHA-2 [2] has three different outputs of 256, 384 and 512 bits
denoted by SHA-256, SHA-384 and SHA-512 respectively. The SHAs are currently
used in several security protocols such as IPSec [3] and Secure Socket Layer (SSL) [1].
Like other cryptographic functions, the hardware implementation of hash functions is
of great importance. To improve the performance of the SHA hash functions in terms
of speed, area utilization and power consumption, several techniques have been used
in the literature [4], [5], [6], [7], [8], [9], [10] and [11]. These techniques mainly include
using Carry-Save-Adders (CSAs), unrolling, pipelining and operation rescheduling.

Addition is the main operation in the SHA structure. Any improvement in the
design of adders can result in a significant improvement in the SHA design. Carry-
Save-Adders have been used in [4], [5] and [6] to increase the speed of SHA-1 and
SHA-2 functions. The unrolling method is used in [7] and [8] to unroll multiple
rounds of the SHA function into one round. The speed improvement in the unrolling
method stems from the fact that the delay of the unrolled K rounds of the SHA struc­
ture would be less than K times the delay of the single-round structure. Moreover,
the pipeline method has been used in [9], [10], [12] and [13J to make the structures
running at higher clock frequencies. Because of the iterative structure of SHA hash
functions, the pipeline method can efficiently increase the speed of the circuit. The
combination of pipelining and loop-unrolling has been used in [12]. The high-speed

29

Constant Values

Input Input Block W;
P adding

Unit
W ,

Generator
32

3k
Round

Computation

Block Hash
“ I Value —

&
Final Output

Addition

Final Hash
T Value

160

Figure 3.1: SHA-1 Architecture

implementations of the SHA-1 and SHA-2 which are based on operation rescheduling
have been introduced in [11]. In these implementations, part of the round computa­
tion is performed in the previous round leading to a decrease in the critical path of
the round.

Complexity of cryptographic algorithms makes their hardware implementations
vulnerable to faults. There are various sources of faults such as temperature, white
light, X-rays etc. which can cause a malfunction in a hardware implementation [14],
Concurrent Error Detection (CED) schemes have been extensively used in the im­
plementation of cryptographic algorithms such as Advanced Encryption Standarad
(AES) [17], [18] and [19]. Because of the inherent characteristics of hash functions
mentioned above, a single fault in the round operation of hash functions will result
in multiple error bits in the output hash value. Therefore, designing a reliable hash
function in hardware is very important. In [15], an error analysis of the SHA-512
hash function has been done by injecting a fault at different stages of the hash value
execution and investigating the propagation of such errors to the output. This has
been done by introducing an error to the input of a single operation, input of a single
round and the input of a block round. The frequency of output bit errors has been
analyzed for each of the above cases. A parity based CED scheme for the SHA-512
hash function is also proposed and implemented in [15]. Several schemes have been in­
troduced in [16] to apply error detection and correction to SHA-2 hash family. These
techniques are mainly based on Hamming codes.

In general, there are three methods to provide a digital design with fault detection
schemes: hardware redundancy, time redundancy and information redundancy. In
the hardware redundancy techniques, two separate pieces of hardware are used to

30

K, W, Kj w,
(a) SHA-1 (b) SHA-512

Figure 3.2: SHA-1 and SHA-512 round computations

perform the same function and the outputs are compared to detect a fault in the
design. This technique can detect both permanent and transient faults and provides
100 percent fault coverage. But it has a 100 percent resource overhead which is not
suitable for many applications. In time redundancy techniques, a single hardware is
reused at a different time to perform the same function. This technique is suitable
for detecting transient faults and it has a 100 percent timing overhead. Information
redundancy techniques use some additional information such as parity bits and other
error detection codes to detect some kinds of faults in a system.

In this paper, we present a fault detection scheme for the implementation of the
SHA-1 and SHA-512 hash functions. For this purpose, we use the time redundancy
technique with different inputs to detect the faults in our design. Contrary to the
normal time redundancy technique which performs the same function at different
times, the proposed scheme performs the reverse of the SHA round computation for
redundancy purposes. Therefore, this technique will be able to detect any transient or
permanent faults in the SHA round computation design. It will also be able to detect
arbitrary multiple-bit faults as opposed to [15] which is only capable of detection of an
odd number of errors. Implementing the proposed design on FPGA shows that there

32

in Figure 3.1. The input message is split and padded into blocks of 512 bits. The block
expansion unit generates 80 x 32-bit WjS from each block, one 32-bit for each round.
The block diagram of the round computation has been shown in Figure 3.2(a). The
round computation of the SHA-1 comprises of the addition, logical rotation and the
function f i . The round computation will be performed 80 times. As shown in Figure
3.2(a), A,B,C,D and E are 32-bit operands with constant initial values. The output
of the last round will be added to the output of other blocks to generate the final
hash value. All the additions are performed in modulo 232. There are four different
functions fi and four constants Ki, each for every 20 rounds. Theses functions and
constants have been defined in Appendix A. The 80 WiS for each block of the input
message are obtained from:

Wi = Mi
RotL1 (Wi-3 © Wi_8 © Wi_i4 © Wi-lfl)

0 < i < 16,
16 < i < 80.

(3.1)

where Mj denotes the ith 32-bit word of the input data block, RotL1 is the one-bit
circular shift to the left and © is the bit-wise XOR operation.

3.2.2 SHA-512

The SHA-512 is one of the three versions of the SHA-2 hash functions which gener­
ates a 512-bit hash value. The general structure of SHA-512 is the same as SHA-1
which is shown in Figure 3.1. The data sizes and the internal structure of units are
different from SHA-1. The data blocks are 1024 (16 x 64) bits long and the the block
expansion generates 64-bit WjS which are fed into the round computation. The round
computation unit has been shown in Figure 3.2(b). Like the SHA-1 hash function,
the round function for SHA-512 mainly consists of addition operations which are per­
formed in modulo 2 64 instead of modulo 232 in SHA-1. Similarly, the A,B,C,...H and
the Ki constants are 64-bit words. The round computation is performed 80 times in

33

(a) SHA-1 (b) SHA-512
Figure 3.4: SHA-1 and SHA-512 inverse round computation

SHA-512 and the 64-bit VF,s are obtained from:

Wi = Mi 0 < % < 16,
ax(Wi-2) + Wi-j + <To(Wi_i5) + Wi-16 16 < i < 80

(3.2)

The + denotes the arithmetic addition operation performed in modulo 264 and ao
and <7 i functions are defined in Appendix A.

3.3 A Fault Detection Scheme For SHA-1 and SHA-
512 Round Computations

In this section, we present fault detection schemes for the SHA-1 and SHA-512 hash
functions. We propose a time redundancy technique for the round computation of
SHA-1 and SHA-512 to detect their transient and permanent faults. For this purpose,
their round computation is broken into two parts and a pipeline stage is inserted
between these two parts. Each part is computed twice and the results are compared
together for fault detection. Because of the pipeline stage added to the round, the

34

Ta jle 3.1: Sequence of Operations for the proposed design
C lock C y cle (i) R e g isters O p eratio n s

R ou n d

O p era tio n 1

R o u n d

O p e ra tio n 2

1 = 1 I R (i) •$= I n p u t Add -

i = 2 , 4 ,6 , • • •
R (i) <= I R (i - 1)

C R { i) •*= R (i - 1)
S u b tra c t A dd

i = 3 ,5 , 7, ■ - • I R (i) <= O u tp u t (i — 1)" A dd S u b tra c t

maximum frequency will be doubled thus making the throughput almost the same as
the original round without fault detection capability.

As seen from Figure 3.2, the most important operation in both SHA-1 and SHA-
512 is the addition operation. We propose a time redundancy technique for the
addition operations in these hash functions. Figure 3.3(a) shows a normal time re­
dundancy technique applied to a single adder. C{t\) in this figure is the output of
adding the operands A and B at time t\. Similarly, A and B are added at time ¿2
to result in C(t2). C(t\) and C(t2) are compared to detect any transient faults in
the adder. Obviously, this method is not able to detect permanent faults because
any permanent fault would result in the same faulty C{t\) and C(t2) thus would be
undetected by this method. To overcome this problem, we use the method shown
in Figure 3.3(b). As shown in this figure, A and B are added at time t\. C and B
are subtracted at time t2 to result in A{t2). A(t\) and A(t2) are then compared to
detect the faults in the adder. Because different inputs are used at time t\ and t2, this
method would be able to detect permanent as well as transient faults. This method
requires using an adder/subtractor instead of an adder which will be shown that it
would not impose significant overhead in the design of SHA round computations.

To apply this time redundancy technique to the round computation of SHA-1
and SHA-512, we use the their inverse round computation. As shown in Figure
3.4, the inverse round computation uses subtraction instead of addition. The same
circuit with minor modification can be used to perform both addition and subtraction,
thus this method does not impose a significant overhead to the original circuit. The
modification mainly includes replacing the adders with adders/subtractors.

Figure 3.5 shows the way the proposed time redundancy technique can be used in
the SHA-1 structure. The round function for both SHA-1 and SHA-512 is performed

35

80 times to process a single block. The critical path of the round operation has been
broken into two halves and a pipeline register has been added to the round function.
There are four 160-bit registers in Figure 3.5. The input register (IR) and the pipeline
register (PR) hold the input and intermediate values of the round computation while
the R and CED register are used for comparison. The way these registers are loaded
in each clock cycle to perform the round operation and fault detection is depicted in
Table 3.1. First, the message block is fed into the input register. In the first two clock
cycles (i = 1 , 2), the input message goes through the first round of the hash function.
The second round starts with the third clock cycle. In the fourth clock cycle, while
the second half of the round computation is processing the second round, the first
half starts the reverse computation. The first round of inverse computation ends in
the fifth clock cycle which contains the first comparison. The third round of the hash
function computation starts at the same clock cycle. The R and CED registers are
used to store the input value of each round to be compared with the output of the
inverse round computation. Table 3.1 indicates that:

• The input register is loaded in odd clock cycles. The previous value o f this
register is used in even clock cycles.

• The R and CED registers are loaded in even clock cycles to store the input
value for comparison.

• The pipeline register is loaded in all clock cycles.
From Table 3.1, one can also find that the half round operations in Figure 3.5 should
switch between addition and subtraction every other clock cycle. The first comparison
will be done in the fifth clock cycle where the input to the first round is compared
to the output of the first inverse round operation. This procedure will run 163 clock
cycles to perform all 80 rounds of the hash function along with the redundancy check.
The same architecture can be applied to the SHA-512 structure. The registers would
be 512-bit registers instead of 160-bit registers for SHA-1. The next two sections will
present the detailed structure of adding a pipeline stage to the round operation of
SHA-1 and SHA-512 respectively.

36

Input

C E D
R R e g is te r R e g is te r(C R)

Figure 3.5: Time Redundancy for SHA-1 Hash Functions

3.3.1 SHA-1
The SHA-1 round function was shown in Figure 3.2(a). According to this figure, the
round equations are:

Ei = Di-, i
Di = Q _!
Ci = ROTL30(Bì- i) (3.3)
Bi = Ai—i
Ai = ROTL5(Aì- i) + fi(B i-i, Ci-1, Di-1) + Ei-\ + Ki + Wi

where + is the addition operation performed in mod 232, ROTL denotes the left
circular shift operation and i e {1,2, ...,80} is the round number. To add a pipeline
register in the SHA-1 round, we split the computation of (3.3) into two parts. To
double the maximum frequency, the two parts should have the same delay in their
critical path. From Figure 3.2(a) and also (3.3), it can be seen that the longest path in
the SHA-1 round computation is from E to A which contains four addition operations.
Thus, this path should be broken into two identical parts to add a pipeline stage in
the round computation.

37

W, K | B w *O T L s (A M) f , (B j. 1.C |_l ,D w)LL.1,
ITJl.

CSA
cT i ■
C PA

(a) A i = E i - i +
Figure 3.6: Carry-Save-Adder tree for SHA-1 round operation (operands are 32 bits
long)

To accelerate the round computation in SHA, a chain of Carry-Save-Adders (CSAs)
is usually used along with a Carry-Propagate-Adder (CPA) at the end to perform the
addition operation. The five-operand CSA chain for SHA-1 round is shown in Fig­
ure 3.6(a). The CSA has a delay of one Full-Adder (FA) regardless of the operands’
size. Depending on the type of the CPA used in Figure 3.6(a), we will have differ­
ent values for the critical path delay. For instance, a n-bit Ripple-Carry-Adder has
the propagation delay of n * delay(FA) which would be 32 * delay(FA) in this case.
Thus, the total delay of the SHA-1 round computation using a Ripple Carry Adder
would be 35 * delay(FA) (ignoring the delay required for function /¿). Therefore,
the pipeline register should be inserted inside the CPA structure. The exact location
of the pipeline register in the SHA structure will depend on the the type of Carry-
Propagate-Adder used. Ideally, the pipeline stage should be added in a way that the
critical path of the SHA round computation be broken into two identical parts which
will double the maximum frequency of the design.

The pipeline stage is used for the time redundancy purpose. In time redundancy
schemes, each message is processed twice to detect the transient faults. As mentioned
before, the inverse of the round computation for the SHA hash functions can be used
for this purpose. To do so, the first half round operation shown in Figure 3.5 should be
able to switch between the addition and subtraction operations. The addition would
be based on the the last part of (3.3). The subtraction should perform inversely to

38

calculate E ^ i as follows:

Et-1 = A - ROTL5(Ai-i) - f iB i .u C i.u D i-1) - K t - W i
= Ai - ROTL5(Bi) - f(R O T R 30(Ci), Du Et) - K t - (3.4)

Four negative operands are needed to implement the equation (3.4). Using the two’s
complement representation of negative numbers, (3.4) would be:

Ei-i = A,- - ROTL5(Bi) - f(R O T R 30(Ci),Du Et) - K x- W t
= Ai + ROTL5(Bi) + f(R O T R 30(Ci), A , Et) + A* + W + 4 (3.5)

where the x is the bitwise complement of the operand x. Using the CSA tree shown in
Figure 3.6(a), the computation of (3.5) can be implemented as shown in Figure 3.6(b).
Compared to Figure 3.6(a), one more CSA is required in Figure 3.6(b). However, the
delay of their critical paths are the same.

The same circuit can be used for the addition and subtraction operations. The
inputs to the CSAs would be different for addition and subtraction operations. There­
fore, some multiplexors are required to select between the five operands and their
counterparts for round and inverse-round computation respectively. The sixth operand
should be switched between 0 and 4 for addition and subtraction, respectively. This
structure is shown in Figure 3.8. All the CSAs are depicted by a block called CSAs
in this figure. From Figure 3.6(a), one can find that the inputs to the CSAs block for
SHA-1 round computations are Wu Ki, E i-u ROTL5(Ai^i) and /¿(5j_i, Cj_i, A -i)-
On the other hand, the inputs to the CSAs block in the inverse-round computation
are A*, Wt, A it ROTL5(Bi) and fi(ROTR30(Ci), Dl,E l). The first five multiplex­
ors select between these values for the round and inverse-round computation. There
is also another multiplexor which chooses between 0 and 4. This is because five
operands are added in the round computation while the inverse-round computation
contains six operands. There are also another three multiplexors which select between
A^ ROTL30(Bt) and C, in the round computation and ROTR30(Ci), Di and Ei in

39

à L J l ±
nhbit Register m-tit Register

✓ ✓

m-bit CPA Carry?0H n-bit CPA

✓ /

— -n-bit Register -

Carry ?
pe linenage

Figure 3.7: 32-bit Pipelined Carry Propagate Adder

the inverse-round computation. Ap, Bp, Cp, Dp, Ep, Kp and Wp are the pipeline
registers which store the values of input variables. Before the pipeline stage, the
first input of each multiplexor is used in the round computation and the second in­
put is used in the inverse round. This is opposite to the second half of the round
computation which is after the pipeline stage. This results from the fact that while
the first half of the circuit is performing the round computation, the second half is
performing the inverse-round computation and vice versa. The two multiplexors af­
ter the pipeline stage select between the CPA output and the Ap and Ep registers.
For example, the output value of A would be the CPA output in the round compu­
tation (A» = f?OTL5(Aj_i) + f(B i-i,C i-i,D i-i) + £ ¿ -1 + K{ + W<) and in the
inverse-round (Aj_ 1 = Bj) which comes from the Ap register. The “select” input of
all multiplexors (before and after pipeline stage) are connected together. (This input
has not been shown in Figure 3.8)

The pipeline stage goes through the Carry-Propagate-Adder as well. The location
of the pipeline registers inside the CPA depends on the type of CPA used in the
design and also on the implementation limitations. The critical path of SHA-1 round
computation contains the CSA tree and the CPA. Considering the delay of the the
CSA and the CPA, the pipeline stage should be inserted inside the the CPA. For
example, a pipelined 32-bit adder is shown in Figure 3.7. In this figure, a 32-bit
adder (which is the case for SHA-1) has been broken into two m-bit and n-bit adders
such as m + n = 32 and pipeline registers have been added between the two adders.

40

Input Registers

wriVJ
12 E -

^ A-
B — ►

« I—Hrotl3!

P B-
C -D rf. H x ^

0 -
4 -

CSAs

A
C
B
D

C
E

D

Pipeline Registers

-> ROTR30b-
-Hrotl30(—

--- ►

CPA

-> A

-* ■ B

-*• D

► E

Figure 3.8: Pipelined SHA-1 Round and Inverse-Round Computation

It takes two clock cycles for this adder to add two operands. At the first clock cycle,
the n low-significant bits of the two inputs are added by the n-bit CPA. The result
of this adder is stored in one n-bit register and a 1-bit carry flip-flop at the second
clock cycle. Meanwhile, the m high-significant bits are stored in two m-bit registers
added by the m-bit adder using the carry stored in carry register. The output of the
n-bit register and m-bit CPA are combined together to constitute the 32-bit output.
This structure has been used in Figure 3.8. To speed-up the addition operation, a
carry-look-ahead adder has been used as the CPA. Implementing the design on FPGA
shows that the values of m and n should be 28 and 4 respectively to have two almost
identical delays before and after the pipeline registers.

Two separate pieces hardware have been used in the implementation of function
/¿. One for round computation and the other one for inverse round computation.
This makes the design capable of detecting the faults inside the function /¿.

41

D S,(E) Q i(E,F,G) w , K, H S0(A) Maj(A.B.C)

■ 1 1 1
C SA ~ r CSA | | C SA

s c

1 { - s 1 1
r C SA 1 | C SA □

W ' Is fe
i C SA J | C SA 1

$ c

C PA1E

C SA
s c

CPA

(a) addition
6 Chili C, Ĥj iT W, IiW) *|S0(B,) M«j(B„C,.D1) E, ̂ .(B,) 1

' 1 1 1 1 1 1 M l
c|— i r c.. r ~1 CSA | 1 e« 1

,, ,, + i
1 1 1 CSA |

i ,, .__ C1 T -,
1 “A 1 CPA

i f8* I-1. I-.
L

U
(b) subtraction

Figure 3.9: Carry-Save-Adder tree for SHA-512 round computation

3.3.2 SHA-512
The idea introduced in the previous section can also be applied to the SHA-512 to
insert a pipeline stage to the round computation for the time redundancy purpose.
According to Figure 3.2(b) the round equations for SHA-512 are as follows:

Ai = Hi-! + (^ - i) + C hiE i-^F i-uG i-!) + Ki + Wi+ J 2 (^ - 1)
1 o

+ M aj(Ai-i, Bi-i,Ci-i)

E, = Di. ! + Hi_i + Y , + CK Ei-i, Fi-uGi-x) + Kt + Wi
l

Bi = Ai—i
Ci = Bi. !

42

A = Ci-x (3.6)
Fi = Ei- 1

Gi = Fi_!
A = A - i

where all the operands are 64 bits long and]T)0, Ch and M aj are defined in
Appendix A. From (3.6), one can find that the longest path in the SHA-512 round
computation is from H to A which contains six addition operations. There are also
five addition operations from D to E. The structure of the CSA tree for these addition
operations is shown in Figure 3.9(a). Seven operands are added in one path and six
are added in the other path. The equations for the inverse round computation can
be obtained from Figure 3.4(b):

Hi-i = At — 5 3 (Aj_i) — A -ii A -i) ~ 5 ! ̂ (A - i)o 1
- C hiE i-uF i-uG i-x) - K i- W i

= A i - (A) ~ M a m , CitDi) - £ (Fi) - Ch(F, Gi, Hi)
o 1

- K i - W i
= Ai+ (Bi) + Maj(Bi ,Ci ,Di)+ (F) + Ch(F, Git A)

o 1
+ Ki + Wi + 6

A-i = Ei — A-i
= Ei — Ai +

= Ei + Ai +

- Ch(F, Gi, Hi) - J ; (F) - K i - W i
i

5 3 (Bi) + Maj(Bi, Ci, Di)
o

5 3 (Bi) + M aj(Bi,Ci,D i) + 1
o

(3.7)

The same idea of Figure 3.6(b) can be applied to Figure 3.9(a) to implement (3.7).
This is shown in Figure 3.9(b). According to Figure 3.9, the same circuit with some

43

modifications could be used to implement the addition and subtraction operations.
This circuit is shown in Figure 3.10. Figure 3.10 is similar to Figure 3.8; all the
signals and registers in this figure are 64 bits long. The multiplexors are used to
select between the inputs of CSA adders, the pipeline registers and the output values
in the round and inverse-round operation. Two blocks of CSAs and two blocks of CPA
have been used in the design. Like SHA-1, Carry-Look-Ahead adders have been used
as the CPA. The idea of Figure 3.7 have been used to implement a 64-bit pipelined
adder. The best values for m and n to have two identical critical path delay before
and after the pipeline registers are 56 and 8 respectively. Separate hardware have
been used to implement ^ 0, Ch and M aj functions to make the design capable
of detecting errors inside these functions.

3.4 Experimental Results
To evaluate the error detection capability of the proposed design, it was simulated
for SHA-1 using the programming C language. Then, different cases of single-bit and
multiple-bit faults were injected to the design. The faults were injected at the input,
adders’ outputs, functions’ outputs and registers’ outputs in the design. Stuck-at
faults (both stuck-at- 0 and stuck-at-1) were inserted as single-bit and multiple-bit
faults in the design. For each fault case, the round computation was tested using
1000000 different random inputs. In all of these cases, the error was detected by the
design and 1 0 0 % error coverage was achieved.

Adders are the most important elements of SHA-1 and SHA-512 round computa­
tions. The time redundancy method proposed in this paper was designed to detect
errors which occur in the addition operation. Any fault in the adders would be de­
tected using this design. Besides adders, there are some other parts in the SHA-1 and
SHA-512 round computation. SHA-1 contains function / while SHA-512 has
Ch and M aj functions. The inputs to these functions in the round and inverse-round
computations are the same. Thus if we use the same hardware to implement these
functions, the errors inside these functions would be undetected. To overcome this

44

Input Registers

problem, we used hardware redundancy to implement these functions. Two separate
pieces of hardware were used to implement each function, one for round computation
and one for the inverse-round computation. This hardware is shown in Figure 3.8
and Figure 3.10. This makes the proposed design capable of detecting the faults in­
side these functions as well as other parts of the design. Because of the simplicity of
these functions compared to the entire round computation, this hardware redundancy
technique does not impose significant overhead to the proposed structure.

The proposed designs for SHA-1 and SHA-512 were implemented on FPGA to
verify the results discussed in the previous section. The target platform was a Xilinx

45

Table 3.2: Implementation results of SHA-1 on xcv2p7
SH A -1 rou nd C o m p u ta tio n

Frequ en cy

(M H z)

T h ro u g h p u t

(M b it/ s)
N um ber o f S lices

W ith o u t E rro r D e te ctio n 66 422 341
W ith E rro r D e te ctio n 130 408 539

Table 3.3: Implementation results of SHA-512 on xcv2p7
S H A -512 round C o m p u ta tio n

Frequ en cy

(M H z)

T h ro u g h p u t

(M b it/ s)
N u m ber o f S lices

W ith o u t E rro r D ete ctio n 41 524 158 4
W ith E rro r D e te ctio n 76 477 2062

VirtexII Pro FPGA. Two structures were implemented for each of SHA-1 and SHA-
512 round computations. The first structure is without error detection and the second
implementation is with the fault detection for SHA-1 and SHA-512 round computa­
tions. The message padding and the message scheduler for both implementations are
the same and the fault detection method is only applied to the round computation.
To compare the implementation results of two structures, the round computation for
both implementations was synthesized, mapped, placed and routed separately. Tables
3. 2 and 3.3 show the results of these two implementations for SHA-1 and SHA-512
respectively.

As seen from Tables 3.2 and 3.3, the maximum frequency of the implementations
without error detection is slightly less than twice the frequency of first implementa­
tion. This is because of the fact that the critical path of the SHA-1 and SHA-512
implementations cannot be split into two parts with exactly the same delay in prac­
tice. The multiplexors added to the second implementation are another reason for
this difference. The throughput is obtained from the following equation:

Throughput = blocksize x frequency
ftclockcycles (3.8)

In SHA-1, the messages are processed in 512-bit blocks. Thus, the number of bits
in SHA-1 would be 512. The number of clock cycles for the implementation without
fault detection is 80 while it takes 163 clock cycles to process each block of data in
the implementation with fault detection. Table 3.2 shows that there is a 3 percent
degradation in the throughput of the proposed design for SHA-1 and also a 58 percent

46

Table 3.4: Comparison of results for fault detection methods in SHA-512
F a u lt D e te ctio n D esign T h ro u g h p u t O verh ead A re a O verh ead

f!5] 11 .6% 2 1%
[16] (H C M ain R eg s) W o Io o %

prop osed m W o

increase in the number of slices used compared to the original implementation of the
SHA-1 hash function. Similarly, Table 3.3 shows that the SHA-512 implementation
with fault detection takes 10 percent more time and requires 30 percent more resources
compared to the original implementation.

Table 3.4 shows the timing and area overhead comparison of the proposed design
for SHA-512 with two similar works. The work presented in [15] has used parity bits
to detect faults in SHA-512. The timing overhead of this design is almost the same
as our proposed design while its area overhead is less than ours. But because of using
parity bits for fault detection, the design proposed in [15] is only capable of detecting
faults with odd number of erroneous bits while our proposed design is able to detect
any kind of faults and errors. Table 3.4 also shows the results of the work presented
in [16]. In this work, several fault detection method for SHA-2 hash family has been
proposed best of which has been shown in Table 3.4 for SHA-512 hash function. This
table indicates that our design has much better performance in terms of timing and
area overhead compared to [16].

3.5 Conclusion
A fault detection scheme based on time redundancy and pipelining has been proposed
for the hardware implementations of the SHA-1 and SHA-512 round computations.
Because the SHA hash functions mainly include addition operations in their critical
path, the subtraction operation has been used as the inverse function for the redun­
dancy purpose. This makes our scheme capable of detecting permanent as well as
temporary faults as opposed to normal time redundancy techniques which are only
capable of detecting transient faults. Because of using the pipelining method, this
time redundancy technique does not add significant timing overhead to the original

47

design. The FPGA implementations of the proposed designs for SHA-1 and SHA-
512 show that there is a low overhead in the throughput and the area utilization
of the this scheme as compared to the traditional double-modular redundancy-based
scheme. The timing overhead of this design is less than the parity-based redundancy
schemes.

48

Bibliography
[1] W. Stallings, Cryptography and network security, Prentice Hall Upper Saddle

River, NJ, 2003.

[2] National Institute of Standards and Technology, “Secure Hash Standard (SHS),
FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION,
FIPS PUB 180-3” , (2008).

[3] RFC 2401, “The Security Architecture for the Internet Protocol” , (1998).

[4] L. Dadda, M. Macchetti and J. Owen, “The design of a high speed ASIC unit
for the hash function SHA-256 (384, 512),” Proc. Design, Automation and Test
in Europe Conference and Exhibition, 2004.

[5] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T. Lehman
and B. Schott, “Comparative Analysis of the Hardware Implementations of Hash
Functions SHA-1 and SHA-512,” Proc. 5th International Conference on Infor­
mation Security, ISC, 2002, pp. 75-89.

[6] M. Macchetti and L. Dadda, “Quasi-pipelined hash circuits,” Proc. IEEE Sym­
posium on Computer Arithmetic, 2005, pp. 222-229.

[7] F. Crowe, A. Daly, T. Kerins and W. Marnane, “Single-chip FPGA implementa­
tion of a cryptographic co-processor,” Proc. IEEE International Conference on
Field-Programmable Technology, pp. 279-285, 2004.

49

[8] R. Lien, T. Grembowski, and K. Gaj, “A 1 Gbit/s Partially Unrolled Architecture
of Hash Functions SHA-1 and SHA-512,” Springer J. CT-RSA, pp. 324-338,
2004.

[9] N. Sklavos, G. Dimitroulakos and 0. Koufopavlou, “An ultra high speed archi­
tecture for VLSI implementation of hash functions,” Proc. 10th IEEE Interna­
tional Conference on Electronics, Circuits and Systems, ICECS, 2003, vol. 3, pp.
990-993.

[10] A.P. Kakarountas, G. Theodoridis, T. Laopoulos and C.E. Goutis, “High-Speed
FPGA Implementation of the SHA-1 Hash Function,” Proc. IEEE Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applica­
tions, IDAACS, 2005, pp. 211-215.

[11] R. Chaves, G. Kuzmanov, L. Sousa and S. Vassiliadis, “Cost-Efficient SHA Hard­
ware Accelerators,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol.16, no.8 , pp.999-1008, 2008.

[12] H. Michail, A.P. Kakarountas, O. Koufopavlou and C.E. Goutis, C.E., “A low-
power and high-throughput implementation of the SHA-1 hash function,” Proc.
IEEE International Symposium on Circuits and Systems, ISCAS 2005. Vol. 4,
pp. 4086-4089.

[13] G. Wang, “An Efficient Implementation of SHA-1 Hash Function,” Proc. IEEE
International Conference on Electro/information Technology, 2006, pp.575-579.

[14] H. Bar, H. Choukri, D. Naccache, M. Tunstall and C. Whelan, “The Sorcerers
Apprentice Guide to Fault Attacks,” Proc. IEEE , vol. 94, no. 2, pp. 370-382,
2006.

[15] I. Ahmad, and A.S. Das, “Analysis and Detection Of Errors In Implementa­
tion Of SHA-512 Algorithms On FPGAs,” The Computer Journal, vol.50, no.6 ,
pp.728-828, 2007)

50

[16] M. Juliato, C. Gebotys and R. Elbaz, “Efficient fault tolerant SHA-2 hash func­
tions for space applications,” Proc. IEEE Aerospace conference, 2009, pp.1-16.

[17] G. Bertoni, L. Breveglieri, I. Koren and P. Maistri, “An efficient hardware-based
fault diagnosis scheme for AES: performances and cost,” Proc. 19th IEEE Inter­
national Symposium on Defect and Fault Tolerance in VLSI Systems, DFT’04,
2004, pp. 130-138.

[18] C.H. Yen and B.F. Wu, “Simple Error Detection Methods for Hardware Imple­
mentation of Advanced Encryption Standard,” IEEE Transaction on Computers,
vol. 55, pp. 720-731, 2006.

[19] K. Wu, R. Karri, G. Kuznetsov and M. Goessel, “Low Cost Concurrent Er­
ror Detection for the Advanced Encryption Standard,” Proc. International Test
Conference on International Test Conference, 2004, pp 427-435.

51

Chapter 4
Implementation of SHA Hash
Functions on Wireless Sensor
Boards

4.1 Introduction
There has been an increasing growth in the use of WSNs (wireless sensor networks).
A wireless sensor network consists of a large number of distributed nodes called sensor
nodes which monitor the physical conditions such as temperature, pressure, humid­
ity, vehicular movements etc. Sensor nodes consist of sensing, data processing and
communication components. Because of their low cost and low power structure, hun­
dreds of sensor nodes can be deployed for a special purpose to make a wireless sensor
network. There are so many potential applications for wireless sensor networks. They
can be used in different application areas such as military, industry, home, agricul­
ture etc. In military applications, they are used to detect special kinds of weapons
such as nuclear and chemical weapons. They can be used in commercial buildings to
monitor and control their temperature, light, alarms, etc. Agriculture applications
of wireless sensor networks include the monitoring of the physical conditions such as
temperature and soil conditions.

52

Industrial environments are one of the main application areas of wireless sensor
networks. They can be used for monitoring and surveillance of different components of
an industrial environment. For example, [1] describes the use of WSNs in monitoring
oil pipelines near the Arctic Circle. The temperature of the pipes should be controlled
to prevent them from bursting. The pipes need to be heated if their temperature gets
too low. For this purpose, the wired sensors which cost thousands of dollars to
install were replaced by sensor nodes which are less expensive and proved to have
more reliable reading performance compared to the wired sensors. They can also be
used for inventory management purposes in chemical plants. They enable instant
access to the real-time tank inventory data which makes it easier to manage and
schedule them to have a constant supply of raw materials [2]. Pulp and paper mills
are another industrial application of wireless sensor networks. They are attached
to the rolling machines of pulp and paper mills to monitor the temperature, speed,
pressure or vibration of different parts of the machine or the process line. Wireless
sensor networks can also be used as a heat tracing solution in oil refinery systems. A
large number of sensor nodes can be distributed in the pipes which makes it possible
to have global monitoring as opposed to the local wired monitoring systems. Nuclear
power plants are another area which can use wireless sensor networks for radiation
monitoring purposes.

As can be seen from the above examples, there are so many potential areas in
which WSNs can be utilized to improve performance and reduce the cost of the system
compared to traditional wired sensor networks. There are two main features which
make wireless sensor networks suitable for various applications. First, they are small
in size which enables them to be deployed in different environments and secondly,
their wireless communication makes their installation easier and more cost-efficient.
Therefore, the cost of a sensor node and its installation is much less than a typical
wired sensor and large numbers of them can be deployed for a single application.

Because of the wireless communication in sensor networks, They are vulnerable to
security attacks. Therefore, in almost every application area, wireless sensor networks
require security measures to be résistent to security attacks. There are several kinds

53

of attacks that can threaten a wireless sensor network:

• Denial-of-Service Attacks: These kinds of attacks threaten the service avail­
ability of the system. This can be done by jamming the signals at the physical
layer of the network or by flooding messages at the data link layer. The spec­
ifications of the MAC protocol used by the wireless sensor networks can be
exploited to perform DoS attacks. DoS attacks could result in the waste of
power which is a major issue in sensor nodes.

• Eavesdropping: This kind of attack threatens the confidentiality of the mes­
sages transmitted by the sensor nodes. It is usually performed at the application
layer of the network where the application data exist. Encryption and decryp­
tion techniques are the best countermeasures for eavesdropping attacks.

• Message M odification: This is one of the main types of attacks in wireless
sensor networks. These types of attacks threaten the integrity of transmitted
messages. They aim to modify the messages transmitted through the network
which might result in major damage especially in critical applications. Chang­
ing the values read by the sensor or corrupting the routing information in the
packets could drastically affect the performance of the network.

The attacks mentioned above are the main types of attacks in WSNs. There are
some other types of attacks which can be considered as one of the above categories.
For example, creating false packets and sending them to the network which threatens
the authenticity of the messages can be categorized as a message modification at­
tacks. Message authentication and integrity protection are closely related in security
terminology.

These attacks indicate the vulnerability and the need for security in wireless sensor
networks. The security issues in wireless senor networks has been recently studied in
literature [4], [5], [6]. Because of the hardware constraints existing in sensor nodes, it
is usually very challenging to apply security mechanisms to wireless sensor networks.
Because of their structure, sensor nodes usually suffer from limited computational

54

Figure 4.1: The Structure of Wireless Sensor Boards

power, limited memory and limited power supply. On the other hand, cryptographic
algorithms which are used in security mechanisms are usually complex algorithms
which require a significant amount of memory and processing power. This makes it
quite challenging to implement cryptography algorithms on wireless sensor boards.

There has been some research on the implementation of cryptographic algorithms
on sensor boards. In [3], TinyEcc has been introduced which is the implementation
of Elliptic Curve Cryptography (ECC) on senor boards. The SHA-1 and HMAC
hash functions have been implemented on sensor boards in [7]. In this paper, we
implement the SHA-1 and SHA-512 hash functions on sensor boards and compare
their implementations in terms of memory requirements and execution time. This
comparison will be helpful in choosing these hash functions for a specific applications.
Hash functions are used for integrity protection and message authentication which
are crucial in industrial applications in which the integrity of data transmitted is the
major security issue.

The rest of this paper is organized as follows: In Section 2, the structure of sensor
boards and the comparison of different sensor boards available will be presented.
Section 3 introduces the TinyOS and the NesC language used in programming the
sensor boards. The architecture of SHA-1 and SHA-512 is presented in Section 4.
In Section 5, the results of SHA-1 and SHA-512 implementations on a Micaz sensor
board is presented and finally the paper concludes in Section 5.

55

Tabie 4.1: Comparison of Crossbow Sensor Boards
S e n so r B o a rd M icro con tro ller frequen cy B a n d F la s h M em ory R A M

T e lo sB T I M S P 4 3 0 2 .4 -2 .4 8 G H z 4 8 K b 10K b
M icaz M P R 2 4 0 0 (A tm e g a l2 8 L) 2 .4 -2 .4 8 G H z 1 2 8 K b 4 K b

Iris X M 2 1 1 0 C A (A tm e g a l2 8 L) 2 .4 -2 .4 8 G H z 1 2 8 K b 8 K b

4.2 Structure of Wireless Sensor Networks
There are three parts in a sensor node. As shown in Figure 4.1, a sensor node
consists of the Sensor unit, the Data Processing unit and the Communication unit.
The Sensor unit is the collection of different sensors to measure temperature, pressure,
etc. There are many kinds of sensors which can be used for various applications. The
Data processing unit is a microcontroller which stores and processes the data read by
sensors and the data used for the communication of sensor nodes. The microcontroller
usually has an 8-bit or 16-bit RISC core and consists of RAM, flash memory and/or
EEPROM and operates at a frequency of a few MHz. The Communication unit is
the wireless transceiver used for the transmission and receiving of the data by the
sensor nodes. The technology used in this part is usually an IEEE 802.15.4/Zigbee-
compliant system. Table 4.1 shows a comparison of three famous sensor boards
provided by Crossbow Technology: Micaz, TelosB and Iris. This table shows the
type of microcontroller used in the board and the frequency, RAM, Flash Memory
available on them.

4.3 TinyOS and NesC Language
TinyOS [8] is an open-source operating system designed for sensor boards. The
philosophy behind TinyOS was to provide a framework for programming in embedded
systems which requires the code size and the execution time to be minimized. It
consists of a set of components which are used to develop custom applications on
sensor boards. Its component library includes the network protocols, sensor drivers
and data acquisition tools which can be refined for custom applications.

TinyOS has a component-based and event-driven programming model. The com­
ponents are organized into layers; The lower the layer, it is closer to hardware compo­

56

nents and vice versa. A TinyOS application is a collection of components connected
together. There are three computational concepts in TinyOS: Commands, Events
and Tasks. Commands and events are exchanged between components while tasks
are executed inside the components. Components use commands to ask for a service
from other components. The completion of a service requested by a command is sig­
nalled by events. For example, a component can request a timer component to start
a 1ms timer. This can be done by a command. The timer component would issue a
timer event each 1 milliseconds. Hardware interrupts are another kind of event which
can be signaled asynchronously. Tasks are functions executed inside the components
and they only access the information within a component. The commands and events
may return immediately while deferring the extensive computation to tasks. There
are two threads of execution in a TinyOS application, one for tasks and one for the
hardware event handlers. Hardware event handlers are executed in response to hard­
ware interrupts. Their execution may preempt the execution of a task or other event
handlers.

A TinyOS application is a set of components wired together to implement the
required service. The TinyOS applications and libraries are written in a component-
based language called NesC [9]. The NesC language is primarily intended for embed­
ded systems. It has a C-like syntax which supports the implementation and linking of
the components in the TinyOS environment. It is actually an extension to C designed
to support the component-based and event-driven architecture of TinyOS. There are
some basic concepts in the NesC language:
Application: An application is a set of components linked together to perform a
required service.
Component: Components are the building blocks of a TinyOS application written
in NesC. Components are linked together via interfaces. Through the interfaces, the
components can send commands and receive events from other components.
Interface: An interface is used to connect the components to each other. It specifies
a set of functions as the interface’s commands and a set of functions as their events.
The interfaces are bidirectional. For a component to call a command of an interface,

57

it must implement the event of that interface. The interfaces are the only point of
access to the components. A component can have multiple interfaces.
Module: A module is the implementation of one or more interfaces. Modules are
components that provide interfaces and implement the commands of the interfaces
they provide. The implementation of commands in NesC is similar to the implemen­
tation of function bodies in C.
Configuration: A configuration is a component that wires the other components
together. Wiring is performed by connecting the interfaces provided by a component
(module) to the interfaces used by other components. The relation between a mod­
ule and a configuration in NesC is similar to the relation between function definition
and function declaration in C. A configuration specifies the connection between the
components through interfaces while a module implements the functions provided by
one or more interface.

Based on the above concepts, each TinyOS application should contain a configu­
ration and a module. The configuration specifies the components that the application
uses and the module implements the commands that the application component pro­
vides. Similarly, NesC libraries contain interfaces and their modules which are used
by the applications.

4.4 The SHA Hash Functions
The SHA-1 hash function generates a 160-bit output from the arbitrary length in­
put message. The general structure of the SHA-1 hash value computation is shown
in Figure 4.2. It contains four main units: The message padding unit, the block
expansion unit, the round computation and the final hash computation unit. The

input message is split and padded into blocks of 512 bits. The block expansion unit
generates 80 x 32-bit Wls from each block, one 32-bit for each round. The SHA-1
round equations are as follows:

Ei = A - i

58

Constant Values

Input Input Block W:
Padding

Unit &
512

w ,
Generator ;£>

32

Final Hash
Value

Figure 4.2: SHA-1 Architecture

A = A-i
Ci = ROTL30(A - 1) (4.1)
A =
Ai = ROTL5(Ai-i) + /¿(A-i) A-i, A-i) + A-1 + A + IF)

where A, B ,C ,D and E are 32-bit operands, -I- is mod 232 addition and ROTL denotes
the left circular shift operation. From (4.1), one can see that the round computa­
tion of the SHA-1 is comprised of the addition, logical rotation and the function /¿.
The round computation will be performed 80 times with a constant initial value for
A, B, C, D and E. The output of the last round will be added to the output of the
other blocks to generate the final hash value. There are four different functions
and four constants A , each for every 20 rounds which are defined in Appendix A.
The 80 WjS for each block of the input message are obtained from:

(Mi 0 < * < 16 (4.2)

RotL1 (Wi_ 3 © Wi- 8 © W i-u © Wi_16) 16 < i < 80

where Mt denotes the ¿th 32-bit word of the input data block, RotL1 is the one-bit
circular shift to the left and © is the bit-wise XOR operation.

The SHA-512 is one of the three versions of the SHA-2 hash functions which
generates a 512-bit hash value. The general structure of SHA-512 is the same as
SHA-1 shown in Figure 4.2. The data sizes and the internal structure of units are
different from SHA-1. The data blocks are 1024 (16 x 64) bits long and the the block
expansion generates 64-bit W)s which are fed into the round computation. The round

59

computation equations have been shown in (4.3):

Ai = H i.i + ^ 2 (E i- 1) + Ch{Ei. 1,Fi.i ,G i-i) + K i + W i+ (A -i)
i o

+ M aj(Ai-i, Bi-i,Ci~i)
Et = Di-i + i + ^ 2 (Ei-i) + Ch(Ei-i, Fi_i, Gi-i) + Ki + W%

l
Bi = Ai—i
Ci = Bi-x
Di = Ci_! (4.3)
Fj = Ei-i
Gi = Fi-i
Hi = Gi-i

where all the operands are 64 bits long and ^)0, Ch and M aj have been defined
in Appendix A. Like the SHA-1 hash function, the round computation for SHA-512
mainly comprises of addition operations which are performed in modulo 2 64 arithmetic
instead of modulo 232 in SHA-1. Similarly, the A,B,C,...H and the Kt constants are
64-bit words. The round computation is performed 80 times in SHA-512 and the
64-bit WjS are obtained from:

Wi = Mi 0 < i < 16
axiWi-2) + Wi- 7 + cro(Wi-i5) + Wi-16 16 < i < 80

(4.4)

The + denotes the arithmetic addition operation performed in modulo 264 and oo
and functions have beenare defined in Appendix A.

60

4.5 Implementation of SHA Hash Functions on Wire­
less Sensor Boards

In this section, we describe the implementation of SHA-1 and SHA-512 hash functions
on a sensor board. The SHA-512 implementation will be described in detail. The
SHA-1 has a similar implementation.

As mentioned in the previous chapter, the Secure Hash Algorithm has four main
units: message padding, block expansion, round computation and final hash compu­
tation. Combining the block expansion and round computation units, these four units
have been implemented with three different functions. The SHA-512 hash function
has been implemented as an interface which has three commands called: PadMessage,
ComputeRound and ComputeFinalHash:

in te r f a c e SHA512
{

Command PadMessage (message);
Command ComputeRound ();
Command ComputeFinalHash () ;

}
This interface should have a module to implement these three commands. This mod­
ule is called SHA512M which contains the implementation of the units mentioned
above:
module SHA512M
{

p ro v id es in te r f a c e SHA512;
}
im plem en ta tion
{

Command PadMessage (m essage)

61

{
}
Command ComputeRound ()
{
}
Command ComputeFinalHash ()
{
}

}
There are some other functions in the implementation which are internal functions

of the module and they cannot be accessed from the other components. If a component
wants to find the hash value of a message it should be wired to the module SHA512M
through the interface SHA512. By calling the above three commands respectively,
the SHA512 interface calls their implementation to compute the hash value of the
input message.

To use and test the SHA512 interface we have implemented, we need to use
another component which uses this interface and calls its commands. For this purpose,
we implemented a component called testSHA512 to test the SHA512 interface and
measure its execution time. This component is used as the top component which is
compiled and downloaded on the sensor board. It uses the SHA512 interface and
calls its commands. It also uses some other interfaces which are used for testing and
measuring the execution time. These interfaces are: Leds which controls the LEDs
available on the sensor board and is used for debugging purposes and SysTime
which is used to measure the execution time of the SHA512 implementation. To
debug the implementation, the SHA512 commands are called in the body of the
testSHA512 module. A message is provided and the commands are called respectively
to pad and compute the hash value of the message. To measure the execution time

n

Table 4.2: Implementation results SHA-1 and SHA-512 on Micaz sensor board

62

H ash F u n ctio n T h ro u g h p u t (k b it /s) R O M -R A M (b y te s)

SH A -1 60 3 3 0 0 -2 0 7
SH A -512 30 2 0 8 5 4 -9 9 1

Table 4.3: Implementation results S IA-1 and SHA-512 on Micaz sensor board
SH A -1 Im p lem en ta tio n T im e (m s) R O M - R A M (b y tes)

M 35 3 5 0 4 -1 4 0
ours 8 .6 3 3 0 0 -2 0 7

of this procedure, the current time of the system is measured before and after the
SHA512’s command calls and their difference is computed. This is done using the
SysTime interface which provides commands to get the current time of the systems.
The commands are called by the testSHA512 module which uses the SHA512 as an
interface. The Pseudocode below shows the procedure of measuring the execution
time:
t l = ca l l SysTime . getTime32 ();
ca l l SHA512. SHA512PadMessage(message);
ca l l SHA512. ComputeRound ();
ca l l SHA512 . ComputeFinalHash ();
t2 = ca l l SysTime . getTime32 ();

¿2 — t\ is the execution time of the SHA512 implementation. This code is used to
measure the hash function computation time for input messages with different sizes.
The same method has been used to test and measure the execution time of the SHA-1
implementation. Like SHA-512, the SHA-1 has been implemented as an interface and
used by a top module for testing and debugging purposes.

The SHA-1 and SHA-512 were implemented on the Micaz sensor board. The
results of the implementations are shown in Table 4.2. This table shows that there
are 3300(207) bytes of ROM(RAM) required for the implementation of the SHA-1
hash function and it takes 20854(991) bytes of ROM(RAM) to implement the SHA-
512 on the Micaz sensor board. It also shows that it takes 8.6 milliseconds to compute
the hash value of a single block in SHA-1 resulting in a 60 kbits/sec throughput. The
throughput for SHA-512 is 30 kbits/sec.

63

To the best of our knowledge, the only work that has considered the implemen­
tation of hash functions on sensor boards is [7], In [7] the SHA-1 and HMAC hash
functions have been implemented on TelosB sensor board. The comparison results
of our SHA-1 implementation and [7] are shown in Table 4.3. This table shows that
our implementation has better performance in terms of execution time and ROM
required while spends more RAM compared to [7]. There has been no published
implementation of SHA-512 on wireless sensor boards.

4.6 Conclusion
Wireless Sensor Networks are going to be used in various applications. They are used
in industrial environments for configuration and monitoring purposes. Because of the
wireless communication of the nodes, security is an important issue in such networks.
Because of the resource limitations in terms of processing power, memory and power
consumption, implementation of cryptographic algorithms on sensor boards is quite
challenging. In this paper, we implemented the SHA-1 and SHA-512 hash functions
on sensor boards to measure the resource and timing requirements of these functions
and consider their suitability for different applications. For this purpose, we imple­
mented the SHA-1 and SHA-512 hash functions using NesC language in TinyOS and
downloaded it on Micaz sensor board. We measured the ROM, RAM required and
also the the execution time of the implementations. The results show that our SHA-
1 implementation has a better execution time and ROM required compared to the
previous work.

64

Bibliography
[1] N. Goh, “Wireless Sensor Networks Ubiquitous Watchdogs

of the Future?,” INTRO Newsletter, August 2003. URL
http: / / www. nus. edu. sg/intro/newsletter0311. shtml.

[2] X. Shen, Z. Wang, Y. Sun, “Wireless sensor networks for industrial applications,”
Proc. Fifth World Congress on Intelligent Control and Automation, WCICA
2004., 2004, vol.4, pp. 3636-3640.

[3] A. Liu, P. Ning, “TinyECC: A Configurable Library for Elliptic Curve Cryptog­
raphy in Wireless Sensor Networks,” Proc. International Conference on Infor­
mation Processing in Sensor Networks,IPSN ’08, 2008, pp.245-256.

[4] P. Traynor, R. Kumar, H. Choi, G. Cao, S. Zhu, and T. F. L. Porta, “Efficient hy­
brid security mechanisms for heterogeneous sensor networks,” IEEE Transaction
on Mobile Computing,, 2007 vol. 6, no. 6, pp.663-677.

[5] K. Lu, Y. Qian, M. Guizani, and H.-H. Chen, “A framework for a distributed key
management scheme in heterogeneous wireless sensor networks,” IEEE Transac­
tions on Wireless Communications, 2008, vol. 7, no. 2, pp. 639-647.

[6] R. Azarderakhsh, A. Reyhani-Masoleh, and Z.-E. Abid, “A key management
scheme for cluster based wireless sensor networks,” IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing“, 2008, vol.2, pp. 222-227.

65

[7] H. Li, Y. Choi, H. Kim, “Implementation of TinyHash based on Hash Algo­
rithm for Sensor Network,” Proc. World Academy Of Science, Engineering and
Technology,, 2005, voi. 10, pp. 135-139.

[8] http://www.tinyos.net/
[9] D. Gay, D. Culler and P. Levis, “nesC Language Reference Manual”, available

at http://webs.cs.berkeley.edu/tos/api/nesc/doc/ref.pdf, 2002

http://www.tinyos.net/
http://webs.cs.berkeley.edu/tos/api/nesc/doc/ref.pdf

66

Chapter 5
Conclusions
The widespread use of communication networks in industrial environments has led
to new issues in these systems. Network-based control systems are used in various
industries. Modern industrial systems have a hierarchical structure in which devices
at the different levels from management to field level communicate with each other.
Security is one of the issues that has become important in new industrial systems.
Traditional industrial networks were stand-alone networks with no or limited con­
nection to outside networks. This is not true for modern control systems in which
devices are connected together with standard communication networks. Security is­
sues in industrial networks has been the focus of this thesis.

The focus of this thesis is to implement cryptographic algorithms to be used in
industrial environments. Because the data integrity is the major issue in many indus­
trial networks, we implemented hash functions which are one of the main methods
of providing data integrity. Industrial devices are usually embedded devices with
limited resources such as processing power and memory requirements. We focused
on the reliable implementation of SHA hash functions on FPGAs and also wireless
sensor boards which are used in embedded systems for various industrial applications.
Reliable implementation is needed in critical applications in which any fault and error
in the devices might result in grave aftermaths.

We propose a fault detection method for the FPGA implementation of SHA-1 and
SHA-512 hash functions. This method which is based on time redundancy is capable

67

of detecting permanent as well as transient faults. The goal of this implementation
is to optimize the design in terms of the delay and area overhead that this time
redundancy method imposes on the design. The pipelining technique is used to
compensate for the the delay overhead that time redundancy induces to the design.
Using this technique we have decreased the delay overhead to as low as 3% for SHA-1
and 10% for SHA-2 while having acceptable area overhead.

Our goal in the sensor board implementation is to optimize the design in terms
of speed and ROM and RAM usage. We also aimed to have a comparison between
SHA-1 and SHA-512 implementations which is helpful in deciding between these two
hash functions in a specific application. Because of the minimal structure of the
TinyOS 1.1 and the programming environments, debugging the implementations has
been quite a challenge in sensor boards. These limitations in debugging tools have
been overcome in TinyOS 2.

5.1 Contributions
This section briefly describes the contributions of this thesis:

• A new fault detection scheme for the FPGA implementation of SHA-1 and SHA-
512 has been introduced in this thesis. The main feature of this scheme is that
although it is based on time redundancy, it is capable of detecting permanent
faults as well as transient faults.

• To the best of our knowledge, this is the first FPGA implementation of the SHA-
1 hash function which has the fault detection capability. Because of using the
pipelining method, the proposed design has a very small (3%) timing overhead.

• There is an improvement in the timing overhead of the proposed scheme for
SHA-512 compared to the previous works. The timing overhead of the proposed
design is 10 percent while two previous works show 11.6 percent and 73 percent
timing overhead.

68

• This fault detection scheme is capable of detecting any kind of faults as opposed
to the parity-based schemes which only detect faults with an odd number of
erroneous bits.

• The sensor board implementation of SHA-1 done in this thesis shows execution
time and ROM usage improvement compared to the previous work.

• To the best of our knowledge, this is the only implementation of SHA-512 on
sensor boards.

5.2 Future Work
In this thesis, the hardware implementations of SHA-1 and SHA-2 provided by NIST
has been studied. NIST has decided to develop one or more additional hash functions
through a public competition, similar to the development process of the Advanced
Encryption Standard (AES). To be selected as the final SHA-3 hash function, the
candidates have to go through a competition in terms of security and implementation
aspects. The final hash function will be announced in 2012. Like the AES, imple­
mentation issues are one of the major criteria for deciding the final hash function.
Implementing the candidates in software and hardware (FPGAs, ASIC, sensor boards
etc.) is of great importance. Whether or not the proposed fault detection method
can be applied to the SHA-3 candidates is one of the future works.

The proposed fault detection method has been applied to the round computation
of the SHA hash functions. It can be extended to the IT) generator unit of SHA-512
which contains addition operation as well. (The Wi generator unit in SHA-1 does not
contain addition, therefore this method is not suitable for it.)

Another future direction would be applying other fault detection methods such
as hardware redundancy and information redundancy for the implementation of SHA
hash functions.

69

Appendix A
Functions and Constants used in
SHA-1 and SHA-512
A .0.1 SHA-1

f i (x,y, z) =

K i =

A .0.2 SHA-512

(x A y) © (x A z)
x ® y ® z
(x A y) © (x A z) © (y
x (By © z

5a827999

6ed9ebal
8flbbcdc
ca62cld6

0 < i < 20,

20 < i < 40,

z) 40 < i < 60,

60 < * < 80.

0 < i < 20,

20 < i < 40,

40 < i < 60,

60 < i < 80.

Ch(x, y, z) = (x A y) © (x A z)

M aj(x, y, z) = (x A y) © (x A z) © (y A z)
J 2 (®) = ROTR28(x) © ROTR34(x) © ROTR39(x)

0
5 3 (x) = ROTRu {x) © ROTR13(x) © ROTR41(x)

1
a0(x) = R O T R \x) © ROTR*(x) © SH R 7(x)
<ti (x) = ROTR19(x) © ROTRei (x) © SH R 6(x)

	Data Integrity Protection For Security in Industrial Networks
	Recommended Citation

	tmp.1679685222.pdf.xQ1t0

