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Abstract
Modern industrial systems are increasingly based on computer networks. Network- 

based control systems connect the devices at the field level of industrial environments 
together and to the devices at the upper levels for monitoring, configuration and 
management purposes. Contrary to traditional industrial networks which axe con­
sidered stand-alone and proprietary networks, modern industrial networks are highly 
connected systems which use open protocols and standards at different levels. This 
new structure of industrial systems has made them vulnerable to security attacks. 
Among various security needs of computer networks, data integrity protection is the 
major issue in industrial networks. Any unauthorized modification of information 
during transmission could result in significant damages in industrial environments.

In this thesis, the security needs of industrial environments are considered first. 
The need for security in industrial systems, challenges of security in these systems and 
security status of protocols used in industrial networks are presented. Furthermore, 
the hardware implementation of the Secure Hash Algorithm (SHA) which is used 
in security protocols for data integrity protection is the main focus of this thesis. 
A scheme has been proposed for the implementation of the SHA-1 and SHA-512 
hash functions on FPGAs with fault detection capability. The proposed scheme is 
based on time redundancy and pipelining and is capable of detecting permanent as 
well as transient faults. The implementation results of the proposed scheme on Xilinx 
FPGAs show small area and timing overhead compared to the original implementation 
without fault detection. Moreover, the implementation of SHA-1 and SHA-512 on 
Wireless Sensor Boards has been presented taking into account their memory usage 
and execution time. There is an improvement in the execution time of the proposed 
implementation compared to the previous works.

Keywords: Industrial Networks, Data Integrity Protection, Hash Function, Secure 
Hash Algorithm, Fault Detection, Wireless Sensor Boards.
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Chapter 1 
Introduction
Modern industrial systems are based on computer networks. Network-based control 
systems are being used in various industries. From the very top level where man­
agement, configuration and monitoring data exist to the field level where sensors, 
actuators and controllers such as PLCs (Programmable Logic Controllers) are lo­
cated, the date is transferred through the networks. While general IT networks are 
used in the top levels of industrial systems, the bottom levels utilize special kinds 
of networks designed based on the needs of industrial environments. These networks 
usually transfer real time data among the devices and require stringent timing and 
high reliability. The network-based structure of modern industrial systems has made 
them vulnerable to security attacks as opposed to the traditional industrial systems 
which were considered stand-alone networks and security was not an issue in them. 
This thesis is concerned with the security needs of industrial networks.

1.1 Security in Communication Systems
Talking about network security, several issues should be taken into account. The need 
for security in a network stems from the fact that it can be vulnerable to security 
attacks. An attack is any action that compromises the security of a network and takes 
advantage of the information transferred through the network either by accessing the 
confidential data or modifying the critical data etc. On the other hand, a security



2

service is any action that decreases the vulnerability of a network against security 
attacks. The security objectives vary depending on the network and the application 
in which it is being used. The security objectives can be categorized as follows:

Confidentiality: This objective deals with the protection of the data transmitted 
in a network from an attacker. Using confidentiality services, an unauthorized person 
would not have access to the data transferred through the network. Other than the 
content of a message transmitted, the source, destination, frequency, length or the 
time of transmission might be required to be kept secret. Encryption and decryption 
mechanisms are usually used for confidentiality purposes.

Integrity: Integrity services deal with the prevention of data from modification 
during transmission. The purpose of this service is to make sure that the data is 
transmitted correctly and without unauthorized modification. It should also prevent 
delay in the transmission of the message, message injection or message replication. 
This service is very important in industrial systems where crucial information is trans­
ferred through the network. In some cases, violating the integrity may cause safety 
issues.

Authentication and Authorization: The purpose of authentication services 
is to make sure that the message received by a recipient is from the source it claims 
to be from. This service is concerned with the true identity of the communication 
parties. By using authentication services, authorization mechanisms limit the access 
to the network. Using this service, no unauthorized person can have access to the 
host system of a network.

Nonrepudiation: This service is concerned with the accountability and liability 
of the system. It prevents the sender from denying a transmitted message. It also 
prevents the recipient from denying a received message. Using this service, the recip­
ient can prove that the message was sent by the alleged source and vice versa. Digital 
signatures are examples of this service.

Availability: The aim of this service is to make sure that the system is accessible 
by an authorized person all the time. There are several kinds of attacks which target 
the availability of the system. They aim to cause the system to stop working. The
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availability is very important in industrial networks which are used for crucial appli­
cations. Any stop in the operation of these systems can result in a lot of damages.

The services mentioned above are the main objectives of the security mechanisms 
used in communication networks. Depending on the application, some of these ser­
vices may be used to provide the system with the security required. For example, in 
the field level of industrial networks, the confidentiality of the data transmitted is not 
a big issue while the data integrity is very important. Any unauthorized modification 
in the information transferred among sensors, actuators and controllers may result in 
severe damage to the system.

An attacker violates one of these security services to take advantage of the system. 
Depending on the type of services being violated, there are several kinds of attacks. 
For example, Denial-of-Service (DoS) attacks violate the availability of the system. 
This can be done by flooding fake messages to the network. Eavesdropping attacks vi­
olate the confidentiality of the system while a man-in-the-middle attack violates both 
confidentiality and data integrity. Other kinds of attacks such as viruses and trojan 
horses can violate authentication, authorization, confidentiality and also availability 
of the system.

Cryptographic algorithms are used to provide a system with the security services 
mentioned above against the security attacks. Although they can not satisfy all kinds 
of security objectives, they are the main countermeasures against security attacks. 
They can provide confidentiality, data integrity, authentication and non-repudiation. 
For authorization and availability issues, some other issues other than cryptography 
should be taken into account. Cryptographic algorithms fall into three main cate­
gories:

Secret K ey Cryptographic algorithms use a single key for encryption and de­
cryption of the messages. The key should be transferred securely between sender and 
receiver. Secret key algorithms are fast algorithms used to encrypt and decrypt large 
amount of information. Block ciphers and stream ciphers are two kinds of secret key 
algorithms. Block ciphers encrypt and decrypt the messages in blocks of data while 
stream ciphers process the messages byte-by-byte or bit-by-bit. Advanced Encryption
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Standard (AES) and Data Encryption Standard (DES) are examples of block ciphers 
and RC4 is a byte-wise stream cipher.

The second type of cryptographic algorithms are public key algorithms. Public 
key algorithms use two different keys to encrypt and decrypt messages. A public 
key is used to encrypt (decrypt) the message and a secret key is used to decrypt 
(encrypt) the transferred message. Using public key algorithms, there is no need 
to transfer a key between communication parties thus removing the key distribution 
problem existing in secret key cryptography. By their nature, public key algorithms 
are mathematically complex algorithms that require a large amount of processing. 
This makes their implementation very slow and resource consuming. They are used 
to transmit the “secret key” in secret key cryptography and also in digital signature 
schemes. RSA and ECC (Elliptic Curve Cryptography) are examples of public key 
algorithms.

Message A uthentication  Codes (MACs) and One-way Hash Functions
are the other types of cryptographic protocols which are used for integrity protection 
purposes. They usually convert an arbitrary size message into a fixed-size data block 
and are used as cryptographic checksums to provide the integrity of the message. 
Message authentication codes use a key for this purpose while there is no key involved 
in hash functions. The MD5 and SHA (Secure Hash Algorithm) are examples of hash 
functions used extensively in security protocols.

Secret key and public key algorithms are used to encrypt/decrypt messages for 
confidentiality purposes and digital signature schemes. On the other hand, hash 
functions and message authentication codes are used for data integrity purposes. As 
mentioned previously, confidentiality of messages transferred in an industrial envi­
ronment are not very important compared to their integrity. Data integrity is one 
of the main security issues in industrial environments. Therefore, hash functions 
and message authentication codes are the main cryptographic protocols that must be 
considered in these environments.
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1.2 Data Integrity and Hash Functions
Hash functions are used for data integrity purposes in communication systems. Data 
integrity or message authentication services prevent unauthorized modification in the 
content of the messages, timing of messages, sequence of messages etc. There are three 
general methods to provide a system with message authentication or data integrity: 
Encryption, Message Authentication Codes and Hash Functions. In encryption, the 
ciphertext of a message serves as the authenticator; the sender en,crypts the message 
with a shared key and the receiver uses the same key to decrypt the message. If the 
recipient can retrieve the original message from the received one, he/she can make 
sure that the message has not been altered during transmission. This is only true 
when the transmitted message follows a certain pattern. Otherwise, the recipient can 
not differentiate between the original message and the altered one.

Message Authentication Code is another method of providing data integrity. The 
sender calculates the MAC of the message using a secret key and appends it to the 
message. The message and its MAC are sent through the network. The recipient 
receives the message, calculates the MAC of the message using the same secret key. 
If the calculated MAC and the received MAC are identical, the recipient can be sure 
that the message has been sent correctly and without modification. If an attacker 
modifies the message during transmission, the calculated MAC at the receiving side 
would not be the same as the received MAC and the receiver would find out that the 
message has been modified during transmission. This is because of the fact that a 
secret key is used to calculate the message authentication code and the attacker does 
not have access to the key.

Another cryptography algorithm which is used for integrity purposes is hash func­
tion. Hash functions are public functions that map an arbitrary-length input to a 
fixed-length output which is used as the authenticator. Hash functions are usually 
used with encryption/decryption algorithms to provide message authentication ser­
vices. The way a hash function can be used along with encryption/decryption algo­
rithms to provide a message authentication scheme is shown in Figure 1.1. Figure 1.1
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Figure 1.1: Message Authentication using Hash Functions

shows that the hash value of the message is encrypted and appended to the message 
by the sender. The receiver calculates the hash value of the received message. He/she 
also decrypts the received hash value and compares it to the calculated hash value. 
If these two hash values are identical, the receiver makes sure that the message has 
not been altered during transmission. In this method, because only the hash value 
of the message is encrypted and decrypted, it reduces the processing burden required 
to encrypt the whole message.

A cryptographic hash function should have certain properties:

• It should be easy to calculate the output.

• Given the output, it should be computationally difficult to calculate the input.

• A single bit change in the input should result in a significant change (more than 
half of the bits) in the output of the function.

Hash functions are the building blocks of many cryptographic algorithms and are 
used in a lot of security protocols.

Current most widely used hash functions are different versions of the the Secure 
Hash Algorithm (SHA) recommended by NIST [2]. The SHA-1 [2] hash function 
has a 160-bit output, whereas SHA-2 [2] has three different outputs of 256, 384 and 
512 bits denoted by SHA-256, SHA-384 and SHA-512 respectively. The SHAs are 
currently used in several security protocols such as IPSec [3] and Secure Socket Layer 
(SSL) [1],
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1.3 Hash Function Implementation
Like other cryptographic functions, the hardware implementation of hash functions 
is of great importance. Because of their speed, FPGAs are suitable platforms for 
the implementation of cryptographic algorithms. To improve the performance of the 
SHA hash functions in terms of speed, area utilization and power consumption, several 
techniques have been used in the literature [4], [5], [6], [7], [8], [9], [10], [11]. These 
techniques mainly include using Carry-Save-Adders (CSAs), unrolling, pipelining and 
operation rescheduling.

Addition is the main operation in the SHA structure. Any improvement in the 
design of adders can result in a significant improvement in the SHA design. Carry- 
Save-Adders increase the speed of the addition operation when three or more operands 
are to be added. They have been used in many structures to improve the speed of 
SHA-1 and SHA-512 functions [4], [5], [6]. The unrolling method is used to unroll 
multiple rounds of the SHA function into one round [7], [8]. The speed improvement 
in the unrolling method stems from the fact that the delay of the unrolled K  rounds of 
the SHA structure would be less than K  times the delay of the single-round structure. 
Moreover, the pipeline method can be used to make the SHA implementations running 
at higher clock frequencies [9], [10], [12], [13]. Because of the iterative structure of 
SHA hash functions, the pipeline method can efficiently increase the speed of the 
circuit. The combination of pipelining and loop-unrolling has also been used in the 
SHA implementation [12]. Operation rescheduling is another method of increasing 
the speed of SHA implementations [11]. In these implementations, part of the round 
computation is performed in the previous round leading to a decrease in the critical 
path of the round.

1.4 Thesis Outline
In this thesis, hardware implementation of the Secure Hash Algorithm (SHA) which 
is the most widely used hash function in security protocols will be considered for
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industrial applications. The thesis contains three main chapters:

1.4.1 Security in Industrial Networks
C hapter 2 is a of about the security in industrial networks. It discusses the main 
reasons that have made security issues important in modern industrial networks as op­
posed to the traditional industrial networks in which security was not an issue. Mod­
ern industrial networks are moving towards a Complete CIM (Computer Integrated 
manufacturing) model in which devices of different layers are connected together. 
This large interconnection of devices and also using IP-based and wireless protocols 
in industrial networks has made them vulnerable to security attacks which was not 
the case for old industrial systems. This chapter also discusses the differences between 
industrial networks and the general IT networks from the security point of view and 
mentions the challenges of providing industrial networks with security mechanisms. 
The issues such as the real-time requirements of control networks, high reliability 
and resource limitations of embedded devices used in industrial environments are re­
viewed. Because security was not an issue when the protocols for industrial networks 
were designed, they do not have strong security mechanisms. This chapter also dis­
cusses the security status of the protocols currently used in industrial networks and 
shows their weaknesses compared to the security needs of modern industrial networks.

1.4.2 A Fault Detection Scheme For the FPG A implementa­
tion of SHA-1 and SHA-512 Hash Functions

Because data integrity is crucial in industrial networks, hash functions are very impor­
tant in these environments. C hapter 3 is concerned with the FPGA implementation 
of the Secure Hash Algorithm (SHA). The Secure Hash Algorithm recommended by 
NIST is the most widely used hash function in current security protocols. The SHA-1 
hash function has a 160-bit output, whereas SHA-2 has three different outputs of 
256, 384 and 512 bits. The SHAs are currently used in several security protocols 
such as IPSec and Secure Socket Layer (SSL). Like other cryptographic functions,
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the hardware implementation of hash functions is of great importance. To improve 
the performance of the SHA hash functions in terms of speed, area utilization and 
power consumption, several techniques have been used in the literature. In this chap­
ter, a method is introduced for the implementation of SHA-1 and SHA-512 hash 
functions which has the fault detection capability. Because of the iterative struc­
ture of hash functions, a single error in their hardware implementation could result 
in a large number of errors in the final hash value. In this chapter, we propose a 
fault detection scheme for the FPGA implementation of SHA-1 and SHA-512 round 
computation. The proposed fault detection scheme is based on time redundancy for 
involutional functions. It can detect permanent as well as transient faults as opposed 
to the normal time redundancy technique which is only capable of detecting transient 
errors. We use the pipelining method along with time redundancy to overcome the 
timing overhead created by the time redundancy technique. The proposed design 
does not impose significant timing overhead on the original implementation of SHA-1 
and SHA-512 round computation. We have implemented the proposed scheme on 
Xilinx FPGAs to evaluate our design in terms of area and timing overhead.

1.4.3 Implementation of SHA Hash Functions on Wireless 
Sensor Board

C hap ter 4 deals with the implementation of SHA hash functions on wireless sen­
sor boards. Wireless sensor networks are extensively used in different applications. 
Industrial systems use wireless sensor networks for monitoring and configuration pur­
poses. Because of the wireless communication in these kinds of networks, they are 
vulnerable to security attacks. On the other hand, due to the hardware constraints ex­
isting in the sensor nodes, it is usually very challenging to apply security mechanisms 
to wireless sensor networks. Sensor nodes usually suffer from limited computational 
power, limited memory and limited power supply. Cryptographic algorithms which 
are used in security mechanisms are usually complex algorithms which require a sig­
nificant amount of memory and processing power. This makes it quite challenging
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to implement cryptography algorithms on wireless sensor boards. In this chapter, 
we implement the SHA-1 and SHA-2 hash functions on sensor boards and compare 
their implementations in terms of memory requirements and execution time. This 
comparison will be helpful in choosing these hash functions for a specific application.

1.5 Contributions
The contributions of this thesis can be briefly described as follows:

• A new fault detection scheme for the FPGA implementation of SHA-1 and 
SHA-512 is introduced in this thesis. The main feature of this scheme is that 
although it is based on time redundancy, it is capable of detecting permanent 
faults as well as transient faults.

• To the best of our knowledge, this is the first FPGA implementation of the SHA- 
1 hash function which has the fault detection capability. Because of using the 
pipelining method, the proposed design has a very small (3%) timing overhead.

• There is an improvement in the timing overhead of the proposed scheme for 
SHA-512 compared to the previous works. The timing overhead of the proposed 
design is 10 percent while two previous works show 11.6 percent and 73 percent 
timing overhead.

• This fault detection scheme is capable of detecting any kind of faults as opposed 
to the parity-based schemes which only detect faults with an odd number of 
erroneous bits.

• The sensor board implementation of SHA-1 done in this thesis shows execution 
time and ROM usage improvement compared to the previous work.

• To the best of our knowledge, this is the only implementation of SHA-512 on 
sensor boards.
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Figure 2.1: CIM(Computer Integrated Manufacturing Architecture)

toring and configuration workstations and carries the control data among them. The 
top level which is called the management level is used for higher level management of 
different sections of the network and can be viewed as a plantwide local area network 
linking office workplaces. Figure 2.2 shows a realization of this hieraxchy. Depend­
ing on the application, control and field level may be merged together and directly 
connected to the management level. The management level could be connected to 
the Internet for web-based applications. While general IT protocols such as LAN and 
WAN protocols are used in the management level of control networks, the control 
level and field level of these networks have special protocols. Contrary to traditional 
control networks which usually used vendor specific protocols and mechanisms, mod­
ern control networks have been moving towards standardization of protocols used at 
different levels of the network. Standard protocols are widely used at the field level 
and control level of current control networks.

Traditional control networks were considered isolated networks. They were usually 
small networks in which there was not a large amount of interconnectivity in the 
devices inside the network and also there was no connection to the outside world. This 
is not the case for modern control networks as depicted in Figure 2.2. Although this 
architecture facilitates the easy communication of devices at different levels, remote 
configuration and monitoring of devices, easier maintenance etc, it has created some 
other issues, one of the most important of which is security. As a matter of fact, 
whenever there is a great amount of interconnection in a system, security issues come
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out. There are some specific features such as the stringent timing requirements which 
make it difficult to apply general security mechanisms used in general IT networks to 
industrial networks. These requirements should be taken into account when designing 
a security mechanism for industrial environments. This paper aims to look into 
the security issues and challenges in industrial networks. The rest of this paper is 
organized as follows: In Section 2, the need for security in modern control networks is 
studied. Section 3 discusses the challenges in providing the industrial networks with 
security mechanisms. The status of current protocols used in industrial networks in 
terms of security are studied in Section 4 and the paper concludes in Section 5.

2.2 The Need for Security in Industrial Control 
Networks

There are many reasons which verify the need for security measures in modern control 
networks: Firstly, as mentioned before, the amount of interconnection available in 
such networks has made them vulnerable to security attacks. Contrary to traditional 
control networks, many devices from different levels of the network and also from 
outside networks can get connected to the systems inside the network. Without 
proper security strategies such as authentication and access control, they can make 
modifications in the devices which might result in an incident and cause a great 
damage to the entire network. Security vulnerabilities in industrial environments 
could also cause safety issues.

On the other hand, standard protocols used in different layers of modern industrial 
networks, even in the field level, have made them more vulnerable in terms of security. 
Control industry used to use proprietary devices and protocols which made the control 
devices vendor specific. As a result, only few people had the technical knowledge of 
the system and the communication mechanism among the devices. This made those 
systems more immune to security incidents because except for a few people, nobody 
knew about the technical details of the system and could not take advantage of any
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Figure 2.2: CIM(Architecture of Modern Control Networks)

vulnerability in the system. It is always said that traditional control networks had 
the “security by obscurity” policy. They were secure because they were obscure. This 
policy can no longer be effective in control networks. To benefit from interoperability, 
easy maintenanace etc. current industrial networks are using standard protocols and 
mechanisms which are public and everybody can be aware of them. That’s the reason 
why “security by obscurity” policy can not be used in modern control networks.

Furthermore, because of the ubiquity of the Internet Protocol and its widespread 
use in different applications, control networks are moving towards using IP based 
protocols. The top level of control networks in the CIM pyramid is a general IT 
network which is usually a kind of TCP/IP network such as LAN or WAN. TCP/IP- 
based protocols are used in the control level of current control networks as well. 
These protocols use TCP/IP as their transport layer and their application layer sits 
above the TCP or UDP. Foundation Fieldbus HSE is a good example of this kind 
of protocols. TCP/IP based protocols are even getting into the field level of control 
networks. ProfiNet is an example of such protocols which is an IP-based version of the
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PROFIBUS [3] network. Using TCP/IP-based protocols in control networks makes 
them more vulnerable to security attacks because:

1. TCP/IP protocol stack is renowned for its security vulnerabilities and there are 
lots of known attacks on IP networks.

2. TCP/IP is a widely used network and there are lots of people and organizations 
who are familiar with its vulnerabilities and therefore, successful attacks are 
much more likely in these kinds of networks.

These facts make the control networks vulnerable to the general IP attacks and cause 
security issues to gain importance in them.

Another important issue is using wireless protocols in industrial environments. 
With the success of wireless technology in data and voice communication systems, 
control networks are moving towards the wireless technology as well. Although it 
is not a long time that wired control networks have gained a widespread attention 
and they are the first choice in industrial environments, it seems that they will be 
superseded by wireless control networks in the near future. The success of wireless 
communication in other areas such as data and media transmission accelerates this 
process. The idea of connecting sensors, actuators and controllers through a wire­
less link motivates the automation companies to consider wireless technology very 
seriously. There are inherent benefits in a wireless industrial system. Removing ca­
ble from the plants makes the installation of devices much easier and decreases the 
setup time. It also simplifies the maintenance of the plant compared to the wired 
technologies. Easier access to the field level for diagnostic and maintenance purposes 
will be possible in wireless technology. Handheld devices can be remotely connected 
to the field devices temporarily; this reduces the fault detection and correction time. 
Whether or not current wireless technologies can be applied to fieldbus systems is 
the main concern of wireless control networks. Fieldbus networks have some tim­
ing and reliability requirements which cannot be provided using the current wireless 
technologies. To do this, some modifications and special investigations are required.

Although fieldbus networks are moving towards the wireless fieldbuses, because
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of the widespread use of wired fieldbus technology in various automation industries 
it cannot be superseded by wireless technology in a short time. Some middle stages 
are required to perform this transition completely. So a combination of current wired 
fieldbus systems and wireless technology is usually used in the field level of industrial 
networks [4], There has been some research on wireless fieldbuses in recent years [5], 
[4] and a few have been implemented [5]. By their nature, wireless systems are more 
vulnerable to the threats and attacks and strict security measures should be taken in 
wireless environments. It is evident that physical access to the network in a wireless 
system is much easier than a wired network and therefore, a security attack to a 
wireless network would be simpler.

The issues mentioned above are the main reasons why security has become so 
important in current industrial networks. The security incidents reported in recent 
years justify this claim. In January 2003, the Slammer worm penetrated the network 
of Ohio’s Davis-Besse nuclear power plant and affected its safety monitoring system 
and caused it to be shut down for about 5 hours [6]. The communication system of 
a USA transportation company was infected by a virus in August 2003 and caused 
the freight and passenger transportation system to be halted and made difficulties in 
the morning commuter traffic [7]. An Australian man was sent to prison accused of 
hacking into the Maroochy Shire, Queensland’s waste management system in March 
2000. He caused millions of litres of sewage to spill out in the surrounding areas 
[8]. These incidents show that the security threats to control networks are real and 
they can cause severe problems. There are some other reported incidents such as 
the Washington gasoline pipeline failure in 1999 and the Northeast power blackout 
in 2003. The British Columbia Institute of Technology (BCIT) maintains a database 
called Industrial Security Incident Database (ISID) which keeps record of security 
incidents in industrial environments. According to this database, the number of 
recorded security incidents between 1982 and 2006 is depicted in Figure 2.3 [9]. This 
diagram indicates a rapid increase in the number of security incidents from 2001 
which reaches its highest point in 2003 and 2004. This implies the importance of 
security in current industrial networks. The decrease in the number of incidents in
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2005 and 2006 is probably because of the awareness of the industry of the importance 
of security and taking some countermeasures in these years.

Figure 2.3: Number of Security Incidents by Year [9]

2.3 Challenges of Security in Industrial Networks
Unlike industrial control networks, security has always been an issue in general IT 
systems and several mechanisms and strategies have been used in various information 
networks. Considering security in control networks, one might think of applying the 
general security strategies used in IT systems to the industrial networks. Unfortu­
nately this is not a viable solution. There are major differences between IT networks 
and industrial control systems which make it so difficult to use security strategies of 
IT networks in industrial control systems. These differences stem from the nature of 
control networks and industrial environments. The amount of reliability, safety and 
availability, timing constraints etc have made control networks much different from 
other kinds of networks such as the Internet. Some of the differences between control 
and IT networks are as follows:

Industrial control systems need a high degree of availability. Because control 
networks are usually used in critical industries such as process control industries, 
they need to be highly reliable. An unscheduled shutdown of the system is not 
accepted in such networks. Responses such as rebooting the system which is common
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in IT networks are not acceptable in industrial networks. This level of availability 
necessitates a very strict testing of any security measure which is supposed to be 
deployed in the system.

Performance requirement is another difference between these two kinds of sys­
tems. Industrial systems usually require real time communication in which the pack­
ets should be sent and received at exact time intervals and time delay or packet loss 
is not accepted in these systems. These timing requirements and real time communi­
cations are not so stringent in many other kinds of networks. Because of their nature, 
cryptographic algorithms used in various security applications usually need a large 
amount of processing time and cause some delay in the communication of the data 
in the network which may not be acceptable in control networks.

High reliability is another feature of control networks which makes them distinct 
from IT networks. Industrial networks are usually used in critical environments such 
as petrochemical plants, power plants etc. and any failure in these systems could 
result in huge financial losses or even damage to the people and environment. This 
is not the case in general networks. Therefore, any security measure designed for 
industrial control networks should not decrease the reliability of the system. For 
example a password-based authentication system should not get in the way of the 
normal operation of the system in the case of an emergency.

Another difference which should be considered in designing security strategies for 
control networks is the component lifetime. Due to the rapid evolution of technology, 
typical IT networks have a lifetime of 3 to 5 years. For control networks, because of the 
types of application they are being used for and the costs of changing components, 
the lifetime goes up to 15 to 20 years which makes it more difficult to adopt an 
appropriate security mechanism for this lifetime.

Unlike IT systems, components of control networks such as sensors, actuators and 
controllers are usually implemented in embedded systems which do not have lots of 
processing power and resources such as memory and power supply. Because of the 
complexity of cryptographic algorithms in terms of processing power and memory 
requirements, this resource constraint is a very important issue in applying security
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mechanisms to control networks.
As the final point, it should be mentioned that security objectives in control 

networks and IT networks could be different. For example, confidentiality of data 
transmitted is the major point in many IT networks while this can not usually be an 
issue in control networks. In contrast, integrity of data transmitted and resistance to 
Denial of Service attacks (DoS) is of greatest importance in control networks.

The issues mentioned above imply that there are some major differences between 
IT networks and control networks which make it impossible to directly apply the secu­
rity strategies of IT networks to control networks. The differences in the requirements 
of these two kinds of networks and also the limitations available in industrial networks 
should be seriously taken into consideration for adopting a security mechanism for 
such networks.

2.4 Security Status of the Protocols Used in In­
dustrial Control Networks

Security in industrial networks can be viewed from two standpoints:

• Security in control and management level

• Security in the field level

There are several mechanisms and standards in the control and management level 
of industrial networks. Some of these mechanisms and standards are: OPC [10], 
MMS [11], IEC 61850 [12] and ICCP [13]. The security status of these standards are 
described as follows [1]:

1. OPC Security: OPC is a standard interface for data communication among 
components of an automation network. It is a high level standard by which the 
communication of devices will be independent of their lower layers’ architecture. Field 
devices in an automation networks can use OPC to transfer data to the operation 
workstations. They contain an optional access control mechanisms based on Access
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Control Lists (ACLs). There is not any confidentiality or integrity support in the 
OPC Standarad.

2. MMS is an application layer standard for communication between field devices 
and PLCs. It is mainly used in manufacturing automation systems. It is usually 
implemented over TCP/IP and it has a password based access control mechanism 
with no confidentiality or integrity.

3. IEC 61850: This Standard is used in electric power networks. It does not have 
any network security mechanism and relies on the security measures of lower layers 
such as IPSec.

4. ICCP: ICCP is another application layer data communication standard which 
is used in power plants. Because it is usually implemented over TCP/IP, it uses SSL 
sessions for security purposes. It also uses an SSL-Based mechanism in non-TCP/IP 
implementations. The security vulnerabilities of ICCP have been discussed in [14].

On the other hand, whether to apply security mechanisms in the field level is 
an issue in industrial networks. The current status of the protocols used in the 
field level of control networks shows some weak security mechanisms in them. In
[15], current state of the main fieldbus systems used in modern control networks in 
terms of security has been studied. According to this study, Foundation fieldbus has 
password and access group mechanisms in its application layer (FMS in HI protocol 
and FDA in HSE protocol stack). Although there exists an authentication mechanism, 
it seems to be more for QoS services rather than security purposes. Similarly, The 
Profibus system (Profibus PA, Profibus DP and Profinet) has a basic access protection 
mechanism. ControlNet has a password based authentication in its data link layer 
which is used only locally and is not transmitted over the network. Its application 
layer also has an authentication mechanism for identifying devices. World-FIP and 
Interbus have access rights and also 8 bit plain-text passwords and P-Net shows a 
simple write protection mechanism. These mechanisms are weak compared to the 
requirements of current systems because:

They do not use any encryption or protection mechanisms for the passwords
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• Length of passwords is very short and easy to break

• They only provide authentication mechanisms and confidentiality which may 
be necessary in some applications has been ignored completely

• The mechanisms are not mandatory to be implemented in the standard.

It is evident that security has not been taken into consideration seriously in the 
design of these protocols and they need some add-on services and procedures to be 
considered as secure systems. This lack of security is mainly because of the fact that 
security was not an important issue when these protocols were designed. This is not 
true for all fieldbus protocols. The protocols used in Building Automation Systems 
(BAS) such as Lon Works, EIB and BACNet do usually have more efficient security 
strategies. Especially BACNet contains a DES-based security system which seems to 
be the only fieldbus protocol which has used a serious security mechanism.

Because of the increasing importance of security for control networks, there have 
been some field level security implementations in recent years. [16] has developed a 
secure fieldbus protocol. This protocol is based on DES to encrypt and decrypt the 
fieldbus messages. It uses automatic key exchange and key refresh mechanisms to 
provide the field devices with the appropriate keys. [17] has proposed using IPSec for 
IP based fieldbus networks. This approach has some advantages. First, using IPSec 
which operates at the IP layer, there would be no need to make any modification 
in the fieldbus protocol. Besides, IPSec has already been used in other applications 
and this could reduce the amount of time and effort required to make the fieldbus 
network secure. The BACNet standard mentioned before is another example of using 
security in the field level. It contains the confidentiality and data integrity services 
which are based on the DES cryptographic algorithm and a trusted key server. [18] 
has extended this approach and offered an AES-based cryptography mechanism for 
building automation systems.
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2.5 Conclusion
Network-based control systems are widely used in industrial environments. The in­
creasing interconnection of devices at the different levels of control networks make 
them vulnerable to security attacks. Using standard protocols in modern industrial 
networks as opposed to the proprietary protocols used in old networks, using IP-based 
protocols at different layers in the CIM hierarchy and also wireless communication 
in the field level of these networks are the main reasons that security has become 
important in industrial control networks.

Industrial networks usually require stringent real-time communication and also a 
high degree of reliability which make it difficult to apply IT security mechanisms to 
them. Therefore, some modifications are needed to provide the industrial networks 
with general IT security mechanisms. On the other hand, field devices used in in­
dustry are usually implemented in embedded systems which are limited in terms of 
memory and processing power. These limitations make it challenging to implement 
security mechanisms in field devices.

The Current status of protocols used in various layers of industrial networks show 
that security issues were not taken into account when these protocols were designed. 
There is a need to modify these protocols to meet the security requirements of modern 
industrial networks.
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Chapter 3
A Fault Detection Scheme For 
SHA-1 and SHA-512 Hash 
Functions

3.1 Introduction
Message authentication is one of the most important security requirements of network 
security protocols. While Confidentiality services prevent the disclosure of data to an 
attacker, message authentication mechanisms deal with the modification (content, se­
quence, time, etc.) of the messages transmitted in a network. Message authentication 
also serves as a source repudiation countermeasure to verify that received messages 
come from the alleged source [1]. There are three types of mechanisms which can 
provide the authentication service [1]: Encryption, Message Authentication Codes 
(MACs) and Hash Functions. Using encryption, the encrypted message can be used 
as the authenticator. Message Authentication Codes are functions which produce a 
fixed-length output from the message and a secret key. This output can serve as 
the authenticator. Hash functions are public functions that map an arbitrary-length 
input to a fixed-length output which is used as the authenticator. Hash functions are 
usually used with encryption to provide message authentication services. The way
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of using a hash function along with an encryption algorithm for authentication pur­
poses has been described in [1]. A cryptographic hash function should have certain 
properties:

• It should be easy to calculate the output.

• Given the output, it should be difficult to calculate the input.

• A single bit change in the input should result in a significant change (more than 
half of the bits) in the output of the function.

Current most widely used hash functions are different versions of the Secure Hash 
Algorithm (SHA) recommended by NIST [2]. The SHA-1 [2] hash function has a 160- 
bit output, whereas SHA-2 [2] has three different outputs of 256, 384 and 512 bits 
denoted by SHA-256, SHA-384 and SHA-512 respectively. The SHAs are currently 
used in several security protocols such as IPSec [3] and Secure Socket Layer (SSL) [1]. 
Like other cryptographic functions, the hardware implementation of hash functions is 
of great importance. To improve the performance of the SHA hash functions in terms 
of speed, area utilization and power consumption, several techniques have been used 
in the literature [4], [5], [6 ], [7], [8], [9], [10] and [11]. These techniques mainly include 
using Carry-Save-Adders (CSAs), unrolling, pipelining and operation rescheduling.

Addition is the main operation in the SHA structure. Any improvement in the 
design of adders can result in a significant improvement in the SHA design. Carry- 
Save-Adders have been used in [4], [5] and [6] to increase the speed of SHA-1  and 
SHA-2 functions. The unrolling method is used in [7] and [8 ] to unroll multiple 
rounds of the SHA function into one round. The speed improvement in the unrolling 
method stems from the fact that the delay of the unrolled K  rounds of the SHA struc­
ture would be less than K  times the delay of the single-round structure. Moreover, 
the pipeline method has been used in [9], [10], [12] and [13J to make the structures 
running at higher clock frequencies. Because of the iterative structure of SHA hash 
functions, the pipeline method can efficiently increase the speed of the circuit. The 
combination of pipelining and loop-unrolling has been used in [12]. The high-speed
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Figure 3.1: SHA-1 Architecture

implementations of the SHA-1 and SHA-2 which are based on operation rescheduling 
have been introduced in [11]. In these implementations, part of the round computa­
tion is performed in the previous round leading to a decrease in the critical path of 
the round.

Complexity of cryptographic algorithms makes their hardware implementations 
vulnerable to faults. There are various sources of faults such as temperature, white 
light, X-rays etc. which can cause a malfunction in a hardware implementation [14], 
Concurrent Error Detection (CED) schemes have been extensively used in the im­
plementation of cryptographic algorithms such as Advanced Encryption Standarad 
(AES) [17], [18] and [19]. Because of the inherent characteristics of hash functions 
mentioned above, a single fault in the round operation of hash functions will result 
in multiple error bits in the output hash value. Therefore, designing a reliable hash 
function in hardware is very important. In [15], an error analysis of the SHA-512 
hash function has been done by injecting a fault at different stages of the hash value 
execution and investigating the propagation of such errors to the output. This has 
been done by introducing an error to the input of a single operation, input of a single 
round and the input of a block round. The frequency of output bit errors has been 
analyzed for each of the above cases. A parity based CED scheme for the SHA-512 
hash function is also proposed and implemented in [15]. Several schemes have been in­
troduced in [16] to apply error detection and correction to SHA-2 hash family. These 
techniques are mainly based on Hamming codes.

In general, there are three methods to provide a digital design with fault detection 
schemes: hardware redundancy, time redundancy and information redundancy. In 
the hardware redundancy techniques, two separate pieces of hardware are used to
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Figure 3.2: SHA-1 and SHA-512 round computations

perform the same function and the outputs are compared to detect a fault in the 
design. This technique can detect both permanent and transient faults and provides 
100 percent fault coverage. But it has a 100 percent resource overhead which is not 
suitable for many applications. In time redundancy techniques, a single hardware is 
reused at a different time to perform the same function. This technique is suitable 
for detecting transient faults and it has a 100 percent timing overhead. Information 
redundancy techniques use some additional information such as parity bits and other 
error detection codes to detect some kinds of faults in a system.

In this paper, we present a fault detection scheme for the implementation of the 
SHA-1 and SHA-512 hash functions. For this purpose, we use the time redundancy 
technique with different inputs to detect the faults in our design. Contrary to the 
normal time redundancy technique which performs the same function at different 
times, the proposed scheme performs the reverse of the SHA round computation for 
redundancy purposes. Therefore, this technique will be able to detect any transient or 
permanent faults in the SHA round computation design. It will also be able to detect 
arbitrary multiple-bit faults as opposed to [15] which is only capable of detection of an 
odd number of errors. Implementing the proposed design on FPGA shows that there
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in Figure 3.1. The input message is split and padded into blocks of 512 bits. The block 
expansion unit generates 80 x 32-bit WjS from each block, one 32-bit for each round. 
The block diagram of the round computation has been shown in Figure 3.2(a). The 
round computation of the SHA-1 comprises of the addition, logical rotation and the 
function f i . The round computation will be performed 80 times. As shown in Figure 
3.2(a), A,B,C,D and E are 32-bit operands with constant initial values. The output 
of the last round will be added to the output of other blocks to generate the final 
hash value. All the additions are performed in modulo 232. There are four different 
functions fi and four constants Ki, each for every 20 rounds. Theses functions and 
constants have been defined in Appendix A. The 80 WiS for each block of the input 
message are obtained from:

Wi = Mi
RotL1 (Wi-3 ©  Wi_8 ©  Wi_i4 ©  Wi-lfl)

0 < i < 16, 
16 < i < 80.

(3.1)

where Mj denotes the ith 32-bit word of the input data block, RotL1 is the one-bit 
circular shift to the left and © is the bit-wise XOR operation.

3.2.2 SHA-512

The SHA-512 is one of the three versions of the SHA-2 hash functions which gener­
ates a 512-bit hash value. The general structure of SHA-512 is the same as SHA-1  
which is shown in Figure 3.1. The data sizes and the internal structure of units are 
different from SHA-1. The data blocks are 1024 (16 x 64 ) bits long and the the block 
expansion generates 64-bit WjS which are fed into the round computation. The round 
computation unit has been shown in Figure 3.2(b). Like the SHA-1 hash function, 
the round function for SHA-512 mainly consists of addition operations which are per­
formed in modulo 2 64 instead of modulo 232 in SHA-1. Similarly, the A,B,C,...H and 
the Ki constants are 64-bit words. The round computation is performed 80 times in
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Figure 3.4: SHA-1 and SHA-512 inverse round computation

SHA-512 and the 64-bit VF,s are obtained from:

Wi = Mi 0  < % < 16,
ax(Wi-2) + Wi-j + <To(Wi_i5) + Wi-16 16 < i < 80

(3.2)

The + denotes the arithmetic addition operation performed in modulo 264 and ao 
and <7 i functions are defined in Appendix A.

3.3 A Fault Detection Scheme For SHA-1 and SHA- 
512 Round Computations

In this section, we present fault detection schemes for the SHA-1 and SHA-512 hash 
functions. We propose a time redundancy technique for the round computation of 
SHA-1 and SHA-512 to detect their transient and permanent faults. For this purpose, 
their round computation is broken into two parts and a pipeline stage is inserted 
between these two parts. Each part is computed twice and the results are compared 
together for fault detection. Because of the pipeline stage added to the round, the
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Ta jle 3.1: Sequence of Operations for the proposed design
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maximum frequency will be doubled thus making the throughput almost the same as 
the original round without fault detection capability.

As seen from Figure 3.2, the most important operation in both SHA-1 and SHA- 
512 is the addition operation. We propose a time redundancy technique for the 
addition operations in these hash functions. Figure 3.3(a) shows a normal time re­
dundancy technique applied to a single adder. C{t\) in this figure is the output of 
adding the operands A and B  at time t\. Similarly, A and B  are added at time ¿2 
to result in C(t2). C(t\) and C(t2) are compared to detect any transient faults in 
the adder. Obviously, this method is not able to detect permanent faults because 
any permanent fault would result in the same faulty C{t\) and C(t2) thus would be 
undetected by this method. To overcome this problem, we use the method shown 
in Figure 3.3(b). As shown in this figure, A and B  are added at time t\. C and B 
are subtracted at time t2 to result in A{t2). A(t\) and A(t2) are then compared to 
detect the faults in the adder. Because different inputs are used at time t\ and t2, this 
method would be able to detect permanent as well as transient faults. This method 
requires using an adder/subtractor instead of an adder which will be shown that it 
would not impose significant overhead in the design of SHA round computations.

To apply this time redundancy technique to the round computation of SHA-1 
and SHA-512, we use the their inverse round computation. As shown in Figure 
3.4, the inverse round computation uses subtraction instead of addition. The same 
circuit with minor modification can be used to perform both addition and subtraction, 
thus this method does not impose a significant overhead to the original circuit. The 
modification mainly includes replacing the adders with adders/subtractors.

Figure 3.5 shows the way the proposed time redundancy technique can be used in 
the SHA-1 structure. The round function for both SHA-1 and SHA-512 is performed
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80 times to process a single block. The critical path of the round operation has been 
broken into two halves and a pipeline register has been added to the round function. 
There are four 160-bit registers in Figure 3.5. The input register (IR) and the pipeline 
register (PR) hold the input and intermediate values of the round computation while 
the R and CED register are used for comparison. The way these registers are loaded 
in each clock cycle to perform the round operation and fault detection is depicted in 
Table 3.1. First, the message block is fed into the input register. In the first two clock 
cycles (i =  1 , 2 ), the input message goes through the first round of the hash function. 
The second round starts with the third clock cycle. In the fourth clock cycle, while 
the second half of the round computation is processing the second round, the first 
half starts the reverse computation. The first round of inverse computation ends in 
the fifth clock cycle which contains the first comparison. The third round of the hash 
function computation starts at the same clock cycle. The R and CED registers are 
used to store the input value of each round to be compared with the output of the 
inverse round computation. Table 3.1 indicates that:

• The input register is loaded in odd clock cycles. The previous value o f this 
register is used in even clock cycles.

• The R and CED registers are loaded in even clock cycles to store the input 
value for comparison.

• The pipeline register is loaded in all clock cycles.
From Table 3.1, one can also find that the half round operations in Figure 3.5 should 
switch between addition and subtraction every other clock cycle. The first comparison 
will be done in the fifth clock cycle where the input to the first round is compared 
to the output of the first inverse round operation. This procedure will run 163 clock 
cycles to perform all 80 rounds of the hash function along with the redundancy check.
The same architecture can be applied to the SHA-512 structure. The registers would 
be 512-bit registers instead of 160-bit registers for SHA-1. The next two sections will 
present the detailed structure of adding a pipeline stage to the round operation of 
SHA-1 and SHA-512 respectively.
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Figure 3.5: Time Redundancy for SHA-1 Hash Functions

3.3.1 SHA-1
The SHA-1 round function was shown in Figure 3.2(a). According to this figure, the 
round equations are:

Ei = Di-, i 
Di = Q _!
Ci =  ROTL30(Bì- i) (3.3)
Bi =  Ai—i
Ai = ROTL5(Aì- i ) + fi(B i-i, Ci-1, Di-1) + Ei-\ +  Ki +  Wi

where +  is the addition operation performed in mod 232, ROTL  denotes the left 
circular shift operation and i e {1,2, ...,80} is the round number. To add a pipeline 
register in the SHA-1 round, we split the computation of (3.3) into two parts. To 
double the maximum frequency, the two parts should have the same delay in their 
critical path. From Figure 3.2(a) and also (3.3), it can be seen that the longest path in 
the SHA-1 round computation is from E  to A which contains four addition operations. 
Thus, this path should be broken into two identical parts to add a pipeline stage in 
the round computation.
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To accelerate the round computation in SHA, a chain of Carry-Save-Adders (CSAs) 
is usually used along with a Carry-Propagate-Adder (CPA) at the end to perform the 
addition operation. The five-operand CSA chain for SHA-1 round is shown in Fig­
ure 3.6(a). The CSA has a delay of one Full-Adder (FA) regardless of the operands’ 
size. Depending on the type of the CPA used in Figure 3.6(a), we will have differ­
ent values for the critical path delay. For instance, a n-bit Ripple-Carry-Adder has 
the propagation delay of n * delay(FA) which would be 32 * delay(FA) in this case. 
Thus, the total delay of the SHA-1 round computation using a Ripple Carry Adder 
would be 35 * delay(FA) (ignoring the delay required for function /¿). Therefore, 
the pipeline register should be inserted inside the CPA structure. The exact location 
of the pipeline register in the SHA structure will depend on the the type of Carry- 
Propagate-Adder used. Ideally, the pipeline stage should be added in a way that the 
critical path of the SHA round computation be broken into two identical parts which 
will double the maximum frequency of the design.

The pipeline stage is used for the time redundancy purpose. In time redundancy 
schemes, each message is processed twice to detect the transient faults. As mentioned 
before, the inverse of the round computation for the SHA hash functions can be used 
for this purpose. To do so, the first half round operation shown in Figure 3.5 should be 
able to switch between the addition and subtraction operations. The addition would 
be based on the the last part of (3.3). The subtraction should perform inversely to



38

calculate E ^ i  as follows:

Et-1 = A -  ROTL5(Ai-i) -  f iB i .u C i.u D i-1) - K t - W i
= Ai -  ROTL5(Bi) -  f(R O T R 30(Ci), Du Et) -  K t -  (3.4)

Four negative operands are needed to implement the equation (3.4). Using the two’s 
complement representation of negative numbers, (3.4) would be:

Ei-i =  A,- -  ROTL5(Bi) -  f(R O T R 30(Ci),Du Et) - K x- W t
= Ai +  ROTL5(Bi) +  f(R O T R 30(Ci), A , Et) +  A* +  W  +  4 (3.5)

where the x  is the bitwise complement of the operand x. Using the CSA tree shown in 
Figure 3.6(a), the computation of (3.5) can be implemented as shown in Figure 3.6(b). 
Compared to Figure 3.6(a), one more CSA is required in Figure 3.6(b). However, the 
delay of their critical paths are the same.

The same circuit can be used for the addition and subtraction operations. The 
inputs to the CSAs would be different for addition and subtraction operations. There­
fore, some multiplexors are required to select between the five operands and their 
counterparts for round and inverse-round computation respectively. The sixth operand 
should be switched between 0 and 4 for addition and subtraction, respectively. This 
structure is shown in Figure 3.8. All the CSAs are depicted by a block called CSAs 
in this figure. From Figure 3.6(a), one can find that the inputs to the CSAs block for 
SHA-1 round computations are Wu Ki, E i-u ROTL5(Ai^i) and /¿(5j_i, Cj_i, A -i)- 
On the other hand, the inputs to the CSAs block in the inverse-round computation 
are A*, Wt, A it ROTL5(Bi) and fi(ROTR30(Ci), Dl,E l). The first five multiplex­
ors select between these values for the round and inverse-round computation. There 
is also another multiplexor which chooses between 0 and 4. This is because five 
operands are added in the round computation while the inverse-round computation 
contains six operands. There are also another three multiplexors which select between 
A^ ROTL30(Bt) and C, in the round computation and ROTR30(Ci), Di and Ei in
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the inverse-round computation. Ap, Bp, Cp, Dp, Ep, Kp and Wp are the pipeline 
registers which store the values of input variables. Before the pipeline stage, the 
first input of each multiplexor is used in the round computation and the second in­
put is used in the inverse round. This is opposite to the second half of the round 
computation which is after the pipeline stage. This results from the fact that while 
the first half of the circuit is performing the round computation, the second half is 
performing the inverse-round computation and vice versa. The two multiplexors af­
ter the pipeline stage select between the CPA output and the Ap and Ep registers. 
For example, the output value of A would be the CPA output in the round compu­
tation (A» = f?OTL5(Aj_i) +  f(B i-i,C i-i,D i-i)  + £ ¿ -1  + K{ + W<) and in the 
inverse-round (Aj_ 1 = Bj) which comes from the Ap register. The “select” input of 
all multiplexors (before and after pipeline stage) are connected together. (This input 
has not been shown in Figure 3.8)

The pipeline stage goes through the Carry-Propagate-Adder as well. The location 
of the pipeline registers inside the CPA depends on the type of CPA used in the 
design and also on the implementation limitations. The critical path of SHA-1  round 
computation contains the CSA tree and the CPA. Considering the delay of the the 
CSA and the CPA, the pipeline stage should be inserted inside the the CPA. For 
example, a pipelined 32-bit adder is shown in Figure 3.7. In this figure, a 32-bit 
adder (which is the case for SHA-1) has been broken into two m-bit and n-bit adders 
such as m +  n = 32 and pipeline registers have been added between the two adders.
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It takes two clock cycles for this adder to add two operands. At the first clock cycle, 
the n low-significant bits of the two inputs are added by the n-bit CPA. The result 
of this adder is stored in one n-bit register and a 1-bit carry flip-flop at the second 
clock cycle. Meanwhile, the m high-significant bits are stored in two m-bit registers 
added by the m-bit adder using the carry stored in carry register. The output of the 
n-bit register and m-bit CPA are combined together to constitute the 32-bit output. 
This structure has been used in Figure 3.8. To speed-up the addition operation, a 
carry-look-ahead adder has been used as the CPA. Implementing the design on FPGA 
shows that the values of m and n should be 28 and 4 respectively to have two almost 
identical delays before and after the pipeline registers.

Two separate pieces hardware have been used in the implementation of function 
/¿. One for round computation and the other one for inverse round computation. 
This makes the design capable of detecting the faults inside the function /¿.
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Figure 3.9: Carry-Save-Adder tree for SHA-512 round computation

3.3.2 SHA-512
The idea introduced in the previous section can also be applied to the SHA-512 to 
insert a pipeline stage to the round computation for the time redundancy purpose. 
According to Figure 3.2(b) the round equations for SHA-512 are as follows:

Ai = Hi-! +  ( ^ - i )  + C hiE i-^F i-uG i-!) + Ki + Wi+ J 2  ( ^ - 1)
1 o

+  M aj(Ai-i, Bi-i,Ci-i)

E, =  Di. !  + Hi_i +  Y ,  +  CK Ei-i, Fi-uGi-x) + Kt + Wi
l

Bi = Ai—i 
Ci = Bi. !
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A  = Ci-x (3.6)
Fi = Ei- 1

Gi = Fi_!
A  = A - i

where all the operands are 64 bits long and ]T)0, Ch and M aj are defined in 
Appendix A. From (3.6), one can find that the longest path in the SHA-512 round 
computation is from H  to A which contains six addition operations. There are also 
five addition operations from D to E. The structure of the CSA tree for these addition 
operations is shown in Figure 3.9(a). Seven operands are added in one path and six 
are added in the other path. The equations for the inverse round computation can 
be obtained from Figure 3.4(b):

Hi-i = At — 5 3  (Aj_i) — A -ii A -i)  ~ 5 !  ̂ (A - i )o 1
-  C hiE i-uF i-uG i-x) -  K i- W i

= A i -  (A) ~ M a m ,  CitDi) -  £  (Fi) -  Ch(F,  Gi, Hi)
o 1

- K i - W i
= Ai+ (Bi) + Maj(Bi ,Ci ,Di)+ (F) + Ch(F, Git A )

o 1
+ Ki +  Wi +  6

A-i = Ei — A-i
= Ei — Ai + 

=  Ei +  Ai +

- Ch(F, Gi, Hi) -  J ;  (F) - K i - W i
i

5 3  (Bi) + Maj(Bi, Ci, Di)
o

5 3  (Bi) + M aj(Bi,Ci,D i) + 1 
o

(3.7)

The same idea of Figure 3.6(b) can be applied to Figure 3.9(a) to implement (3.7). 
This is shown in Figure 3.9(b). According to Figure 3.9, the same circuit with some
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modifications could be used to implement the addition and subtraction operations. 
This circuit is shown in Figure 3.10. Figure 3.10 is similar to Figure 3.8; all the 
signals and registers in this figure are 64 bits long. The multiplexors are used to 
select between the inputs of CSA adders, the pipeline registers and the output values 
in the round and inverse-round operation. Two blocks of CSAs and two blocks of CPA 
have been used in the design. Like SHA-1, Carry-Look-Ahead adders have been used 
as the CPA. The idea of Figure 3.7 have been used to implement a 64-bit pipelined 
adder. The best values for m  and n to have two identical critical path delay before 
and after the pipeline registers are 56 and 8 respectively. Separate hardware have 
been used to implement ^ 0, Ch and M aj functions to make the design capable 
of detecting errors inside these functions.

3.4 Experimental Results
To evaluate the error detection capability of the proposed design, it was simulated 
for SHA-1 using the programming C language. Then, different cases of single-bit and 
multiple-bit faults were injected to the design. The faults were injected at the input, 
adders’ outputs, functions’ outputs and registers’ outputs in the design. Stuck-at 
faults (both stuck-at- 0  and stuck-at-1 ) were inserted as single-bit and multiple-bit 
faults in the design. For each fault case, the round computation was tested using 
1000000 different random inputs. In all of these cases, the error was detected by the 
design and 1 0 0 % error coverage was achieved.

Adders are the most important elements of SHA-1 and SHA-512 round computa­
tions. The time redundancy method proposed in this paper was designed to detect 
errors which occur in the addition operation. Any fault in the adders would be de­
tected using this design. Besides adders, there are some other parts in the SHA-1 and 
SHA-512 round computation. SHA-1 contains function /  while SHA-512 has 
Ch and M aj functions. The inputs to these functions in the round and inverse-round 
computations are the same. Thus if we use the same hardware to implement these 
functions, the errors inside these functions would be undetected. To overcome this
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Input Registers

problem, we used hardware redundancy to implement these functions. Two separate 
pieces of hardware were used to implement each function, one for round computation 
and one for the inverse-round computation. This hardware is shown in Figure 3.8 
and Figure 3.10. This makes the proposed design capable of detecting the faults in­
side these functions as well as other parts of the design. Because of the simplicity of 
these functions compared to the entire round computation, this hardware redundancy 
technique does not impose significant overhead to the proposed structure.

The proposed designs for SHA-1 and SHA-512 were implemented on FPGA to 
verify the results discussed in the previous section. The target platform was a Xilinx
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Table 3.2: Implementation results of SHA-1 on xcv2p7
SH A -1 rou nd C o m p u ta tio n

Frequ en cy

(M H z)

T h ro u g h p u t

(M b it/ s)
N um ber o f S lices

W ith o u t E rro r  D e te ctio n 66 422 341
W ith  E rro r  D e te ctio n 130 408 539

Table 3.3: Implementation results of SHA-512 on xcv2p7
S H A -512  round C o m p u ta tio n

Frequ en cy

(M H z)

T h ro u g h p u t

(M b it/ s)
N u m ber o f  S lices

W ith o u t E rro r  D ete ctio n 41 524 158 4
W ith  E rro r  D e te ctio n 76 477 2062

VirtexII Pro FPGA. Two structures were implemented for each of SHA-1 and SHA- 
512 round computations. The first structure is without error detection and the second 
implementation is with the fault detection for SHA-1 and SHA-512 round computa­
tions. The message padding and the message scheduler for both implementations are 
the same and the fault detection method is only applied to the round computation. 
To compare the implementation results of two structures, the round computation for 
both implementations was synthesized, mapped, placed and routed separately. Tables 
3. 2  and 3.3 show the results of these two implementations for SHA-1 and SHA-512 
respectively.

As seen from Tables 3.2 and 3.3, the maximum frequency of the implementations 
without error detection is slightly less than twice the frequency of first implementa­
tion. This is because of the fact that the critical path of the SHA-1 and SHA-512 
implementations cannot be split into two parts with exactly the same delay in prac­
tice. The multiplexors added to the second implementation are another reason for 
this difference. The throughput is obtained from the following equation:

Throughput = blocksize x frequency 
ftclockcycles (3.8)

In SHA-1, the messages are processed in 512-bit blocks. Thus, the number of bits 
in SHA-1 would be 512. The number of clock cycles for the implementation without 
fault detection is 80 while it takes 163 clock cycles to process each block of data in 
the implementation with fault detection. Table 3.2 shows that there is a 3 percent 
degradation in the throughput of the proposed design for SHA-1 and also a 58 percent
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Table 3.4: Comparison of results for fault detection methods in SHA-512
F a u lt D e te ctio n  D esign T h ro u g h p u t O verh ead A re a  O verh ead

f!5] 11 .6% 2 1%
[16] (H C M ain R eg s) W o Io o %

prop osed m W o

increase in the number of slices used compared to the original implementation of the 
SHA-1 hash function. Similarly, Table 3.3 shows that the SHA-512 implementation 
with fault detection takes 10 percent more time and requires 30 percent more resources 
compared to the original implementation.

Table 3.4 shows the timing and area overhead comparison of the proposed design 
for SHA-512 with two similar works. The work presented in [15] has used parity bits 
to detect faults in SHA-512. The timing overhead of this design is almost the same 
as our proposed design while its area overhead is less than ours. But because of using 
parity bits for fault detection, the design proposed in [15] is only capable of detecting 
faults with odd number of erroneous bits while our proposed design is able to detect 
any kind of faults and errors. Table 3.4 also shows the results of the work presented 
in [16]. In this work, several fault detection method for SHA-2 hash family has been 
proposed best of which has been shown in Table 3.4 for SHA-512 hash function. This 
table indicates that our design has much better performance in terms of timing and 
area overhead compared to [16].

3.5 Conclusion
A fault detection scheme based on time redundancy and pipelining has been proposed 
for the hardware implementations of the SHA-1 and SHA-512 round computations. 
Because the SHA hash functions mainly include addition operations in their critical 
path, the subtraction operation has been used as the inverse function for the redun­
dancy purpose. This makes our scheme capable of detecting permanent as well as 
temporary faults as opposed to normal time redundancy techniques which are only 
capable of detecting transient faults. Because of using the pipelining method, this 
time redundancy technique does not add significant timing overhead to the original
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design. The FPGA implementations of the proposed designs for SHA-1 and SHA- 
512 show that there is a low overhead in the throughput and the area utilization 
of the this scheme as compared to the traditional double-modular redundancy-based 
scheme. The timing overhead of this design is less than the parity-based redundancy 
schemes.
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Chapter 4
Implementation of SHA Hash 
Functions on Wireless Sensor 
Boards

4.1 Introduction
There has been an increasing growth in the use of WSNs (wireless sensor networks). 
A wireless sensor network consists of a large number of distributed nodes called sensor 
nodes which monitor the physical conditions such as temperature, pressure, humid­
ity, vehicular movements etc. Sensor nodes consist of sensing, data processing and 
communication components. Because of their low cost and low power structure, hun­
dreds of sensor nodes can be deployed for a special purpose to make a wireless sensor 
network. There are so many potential applications for wireless sensor networks. They 
can be used in different application areas such as military, industry, home, agricul­
ture etc. In military applications, they are used to detect special kinds of weapons 
such as nuclear and chemical weapons. They can be used in commercial buildings to 
monitor and control their temperature, light, alarms, etc. Agriculture applications 
of wireless sensor networks include the monitoring of the physical conditions such as 
temperature and soil conditions.
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Industrial environments are one of the main application areas of wireless sensor 
networks. They can be used for monitoring and surveillance of different components of 
an industrial environment. For example, [1] describes the use of WSNs in monitoring 
oil pipelines near the Arctic Circle. The temperature of the pipes should be controlled 
to prevent them from bursting. The pipes need to be heated if their temperature gets 
too low. For this purpose, the wired sensors which cost thousands of dollars to 
install were replaced by sensor nodes which are less expensive and proved to have 
more reliable reading performance compared to the wired sensors. They can also be 
used for inventory management purposes in chemical plants. They enable instant 
access to the real-time tank inventory data which makes it easier to manage and 
schedule them to have a constant supply of raw materials [2]. Pulp and paper mills 
are another industrial application of wireless sensor networks. They are attached 
to the rolling machines of pulp and paper mills to monitor the temperature, speed, 
pressure or vibration of different parts of the machine or the process line. Wireless 
sensor networks can also be used as a heat tracing solution in oil refinery systems. A 
large number of sensor nodes can be distributed in the pipes which makes it possible 
to have global monitoring as opposed to the local wired monitoring systems. Nuclear 
power plants are another area which can use wireless sensor networks for radiation 
monitoring purposes.

As can be seen from the above examples, there are so many potential areas in 
which WSNs can be utilized to improve performance and reduce the cost of the system 
compared to traditional wired sensor networks. There are two main features which 
make wireless sensor networks suitable for various applications. First, they are small 
in size which enables them to be deployed in different environments and secondly, 
their wireless communication makes their installation easier and more cost-efficient. 
Therefore, the cost of a sensor node and its installation is much less than a typical 
wired sensor and large numbers of them can be deployed for a single application.

Because of the wireless communication in sensor networks, They are vulnerable to 
security attacks. Therefore, in almost every application area, wireless sensor networks 
require security measures to be résistent to security attacks. There are several kinds



53

of attacks that can threaten a wireless sensor network:

• Denial-of-Service Attacks: These kinds of attacks threaten the service avail­
ability of the system. This can be done by jamming the signals at the physical 
layer of the network or by flooding messages at the data link layer. The spec­
ifications of the MAC protocol used by the wireless sensor networks can be 
exploited to perform DoS attacks. DoS attacks could result in the waste of 
power which is a major issue in sensor nodes.

• Eavesdropping: This kind of attack threatens the confidentiality of the mes­
sages transmitted by the sensor nodes. It is usually performed at the application 
layer of the network where the application data exist. Encryption and decryp­
tion techniques are the best countermeasures for eavesdropping attacks.

• Message M odification: This is one of the main types of attacks in wireless 
sensor networks. These types of attacks threaten the integrity of transmitted 
messages. They aim to modify the messages transmitted through the network 
which might result in major damage especially in critical applications. Chang­
ing the values read by the sensor or corrupting the routing information in the 
packets could drastically affect the performance of the network.

The attacks mentioned above are the main types of attacks in WSNs. There are 
some other types of attacks which can be considered as one of the above categories. 
For example, creating false packets and sending them to the network which threatens 
the authenticity of the messages can be categorized as a message modification at­
tacks. Message authentication and integrity protection are closely related in security 
terminology.

These attacks indicate the vulnerability and the need for security in wireless sensor 
networks. The security issues in wireless senor networks has been recently studied in 
literature [4], [5], [6 ]. Because of the hardware constraints existing in sensor nodes, it 
is usually very challenging to apply security mechanisms to wireless sensor networks. 
Because of their structure, sensor nodes usually suffer from limited computational
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Figure 4.1: The Structure of Wireless Sensor Boards

power, limited memory and limited power supply. On the other hand, cryptographic 
algorithms which are used in security mechanisms are usually complex algorithms 
which require a significant amount of memory and processing power. This makes it 
quite challenging to implement cryptography algorithms on wireless sensor boards.

There has been some research on the implementation of cryptographic algorithms 
on sensor boards. In [3], TinyEcc has been introduced which is the implementation 
of Elliptic Curve Cryptography (ECC) on senor boards. The SHA-1 and HMAC 
hash functions have been implemented on sensor boards in [7]. In this paper, we 
implement the SHA-1 and SHA-512 hash functions on sensor boards and compare 
their implementations in terms of memory requirements and execution time. This 
comparison will be helpful in choosing these hash functions for a specific applications. 
Hash functions are used for integrity protection and message authentication which 
are crucial in industrial applications in which the integrity of data transmitted is the 
major security issue.

The rest of this paper is organized as follows: In Section 2, the structure of sensor 
boards and the comparison of different sensor boards available will be presented. 
Section 3 introduces the TinyOS and the NesC language used in programming the 
sensor boards. The architecture of SHA-1 and SHA-512 is presented in Section 4. 
In Section 5, the results of SHA-1 and SHA-512 implementations on a Micaz sensor 
board is presented and finally the paper concludes in Section 5.
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Tabie 4.1: Comparison of Crossbow Sensor Boards
S e n so r B o a rd M icro con tro ller frequen cy  B a n d F la s h  M em ory R A M

T e lo sB T I  M S P 4 3 0 2 .4 -2 .4 8 G H z 4 8 K b 10K b
M icaz M P R 2 4 0 0 (A tm e g a l2 8 L ) 2 .4 -2 .4 8 G H z 1 2 8 K b 4 K b

Iris X M 2 1 1 0 C A (A tm e g a l2 8 L ) 2 .4 -2 .4 8 G H z 1 2 8 K b 8 K b

4.2 Structure of Wireless Sensor Networks
There are three parts in a sensor node. As shown in Figure 4.1, a sensor node 
consists of the Sensor unit, the Data Processing unit and the Communication unit. 
The Sensor unit is the collection of different sensors to measure temperature, pressure, 
etc. There are many kinds of sensors which can be used for various applications. The 
Data processing unit is a microcontroller which stores and processes the data read by 
sensors and the data used for the communication of sensor nodes. The microcontroller 
usually has an 8-bit or 16-bit RISC core and consists of RAM, flash memory and/or 
EEPROM and operates at a frequency of a few MHz. The Communication unit is 
the wireless transceiver used for the transmission and receiving of the data by the 
sensor nodes. The technology used in this part is usually an IEEE 802.15.4/Zigbee- 
compliant system. Table 4.1 shows a comparison of three famous sensor boards 
provided by Crossbow Technology: Micaz, TelosB and Iris. This table shows the 
type of microcontroller used in the board and the frequency, RAM, Flash Memory 
available on them.

4.3 TinyOS and NesC Language
TinyOS [8] is an open-source operating system designed for sensor boards. The 
philosophy behind TinyOS was to provide a framework for programming in embedded 
systems which requires the code size and the execution time to be minimized. It 
consists of a set of components which are used to develop custom applications on 
sensor boards. Its component library includes the network protocols, sensor drivers 
and data acquisition tools which can be refined for custom applications.

TinyOS has a component-based and event-driven programming model. The com­
ponents are organized into layers; The lower the layer, it is closer to hardware compo­
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nents and vice versa. A TinyOS application is a collection of components connected 
together. There are three computational concepts in TinyOS: Commands, Events 
and Tasks. Commands and events are exchanged between components while tasks 
are executed inside the components. Components use commands to ask for a service 
from other components. The completion of a service requested by a command is sig­
nalled by events. For example, a component can request a timer component to start 
a 1ms timer. This can be done by a command. The timer component would issue a 
timer event each 1 milliseconds. Hardware interrupts are another kind of event which 
can be signaled asynchronously. Tasks are functions executed inside the components 
and they only access the information within a component. The commands and events 
may return immediately while deferring the extensive computation to tasks. There 
are two threads of execution in a TinyOS application, one for tasks and one for the 
hardware event handlers. Hardware event handlers are executed in response to hard­
ware interrupts. Their execution may preempt the execution of a task or other event 
handlers.

A TinyOS application is a set of components wired together to implement the 
required service. The TinyOS applications and libraries are written in a component- 
based language called NesC [9]. The NesC language is primarily intended for embed­
ded systems. It has a C-like syntax which supports the implementation and linking of 
the components in the TinyOS environment. It is actually an extension to C designed 
to support the component-based and event-driven architecture of TinyOS. There are 
some basic concepts in the NesC language:
Application: An application is a set of components linked together to perform a 
required service.
Component: Components are the building blocks of a TinyOS application written 
in NesC. Components are linked together via interfaces. Through the interfaces, the 
components can send commands and receive events from other components. 
Interface: An interface is used to connect the components to each other. It specifies 
a set of functions as the interface’s commands and a set of functions as their events. 
The interfaces are bidirectional. For a component to call a command of an interface,
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it must implement the event of that interface. The interfaces are the only point of 
access to the components. A component can have multiple interfaces.
Module: A module is the implementation of one or more interfaces. Modules are 
components that provide interfaces and implement the commands of the interfaces 
they provide. The implementation of commands in NesC is similar to the implemen­
tation of function bodies in C.
Configuration: A configuration is a component that wires the other components 
together. Wiring is performed by connecting the interfaces provided by a component 
(module) to the interfaces used by other components. The relation between a mod­
ule and a configuration in NesC is similar to the relation between function definition 
and function declaration in C. A configuration specifies the connection between the 
components through interfaces while a module implements the functions provided by 
one or more interface.

Based on the above concepts, each TinyOS application should contain a configu­
ration and a module. The configuration specifies the components that the application 
uses and the module implements the commands that the application component pro­
vides. Similarly, NesC libraries contain interfaces and their modules which are used 
by the applications.

4.4 The SHA Hash Functions
The SHA-1 hash function generates a 160-bit output from the arbitrary length in­
put message. The general structure of the SHA-1 hash value computation is shown 
in Figure 4.2. It contains four main units: The message padding unit, the block 
expansion unit, the round computation and the final hash computation unit. The 

input message is split and padded into blocks of 512 bits. The block expansion unit 
generates 80 x  32-bit Wls from each block, one 32-bit for each round. The SHA-1 
round equations are as follows:

Ei =  A - i
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Figure 4.2: SHA-1 Architecture

A = A-i
Ci = ROTL30(A - 1) (4.1)
A  =
Ai = ROTL5(Ai-i) + /¿(A-i) A-i, A-i) + A-1 + A + IF)

where A, B ,C ,D  and E  are 32-bit operands, -I- is mod 232 addition and ROTL  denotes 
the left circular shift operation. From (4.1), one can see that the round computa­
tion of the SHA-1 is comprised of the addition, logical rotation and the function /¿. 
The round computation will be performed 80 times with a constant initial value for 
A, B, C, D and E. The output of the last round will be added to the output of the 
other blocks to generate the final hash value. There are four different functions 
and four constants A , each for every 20 rounds which are defined in Appendix A. 
The 80 WjS for each block of the input message are obtained from:

(Mi 0  < * < 16 (4.2)

RotL1 (Wi_ 3 ©  Wi- 8 ©  W i-u  ©  Wi_16) 16 < i < 80

where Mt denotes the ¿th 32-bit word of the input data block, RotL1 is the one-bit 
circular shift to the left and © is the bit-wise XOR operation.

The SHA-512 is one of the three versions of the SHA-2 hash functions which 
generates a 512-bit hash value. The general structure of SHA-512 is the same as 
SHA-1 shown in Figure 4.2. The data sizes and the internal structure of units are 
different from SHA-1. The data blocks are 1024 (16 x 64 ) bits long and the the block 
expansion generates 64-bit W)s which are fed into the round computation. The round
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computation equations have been shown in (4.3):

Ai = H i.i +  ^ 2 ( E i- 1) + Ch{Ei. 1,Fi.i ,G i-i) + K i + W i+  (A -i)
i o

+ M aj(Ai-i, Bi-i,Ci~i)
Et = Di-i + i + ^ 2  (Ei-i) + Ch(Ei-i, Fi_i, Gi-i) + Ki + W%

l
Bi = Ai—i
Ci =  Bi-x
Di = Ci_! (4.3)
Fj = Ei-i 
Gi = Fi-i 
Hi = Gi-i

where all the operands are 64 bits long and ^ )0, Ch and M aj have been defined 
in Appendix A. Like the SHA-1 hash function, the round computation for SHA-512 
mainly comprises of addition operations which are performed in modulo 2 64 arithmetic 
instead of modulo 232 in SHA-1. Similarly, the A,B,C,...H and the Kt constants are 
64-bit words. The round computation is performed 80 times in SHA-512 and the 
64-bit WjS are obtained from:

Wi = Mi 0  < i < 16
axiWi-2) + Wi- 7 + cro(Wi-i5) + Wi-16 16 < i < 80

(4.4)

The +  denotes the arithmetic addition operation performed in modulo 264 and oo 
and functions have beenare defined in Appendix A.



60

4.5 Implementation of SHA Hash Functions on Wire­
less Sensor Boards

In this section, we describe the implementation of SHA-1 and SHA-512 hash functions 
on a sensor board. The SHA-512 implementation will be described in detail. The 
SHA-1 has a similar implementation.

As mentioned in the previous chapter, the Secure Hash Algorithm has four main 
units: message padding, block expansion, round computation and final hash compu­
tation. Combining the block expansion and round computation units, these four units 
have been implemented with three different functions. The SHA-512 hash function 
has been implemented as an interface which has three commands called: PadMessage, 
ComputeRound and ComputeFinalHash:

in te r f a c e  SHA512
{

Command PadMessage ( message );
Command ComputeRound ();
Command ComputeFinalHash () ;

}
This interface should have a module to implement these three commands. This mod­
ule is called SHA512M which contains the implementation of the units mentioned 
above:
module SHA512M
{

p ro v id es  in te r f a c e  SHA512;
}
im plem en ta tion
{

Command PadMessage (m essage)
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{
}
Command ComputeRound ()
{
}
Command ComputeFinalHash ()
{
}

}
There are some other functions in the implementation which are internal functions 

of the module and they cannot be accessed from the other components. If a component 
wants to find the hash value of a message it should be wired to the module SHA512M 
through the interface SHA512. By calling the above three commands respectively, 
the SHA512 interface calls their implementation to compute the hash value of the 
input message.

To use and test the SHA512 interface we have implemented, we need to use 
another component which uses this interface and calls its commands. For this purpose, 
we implemented a component called testSHA512 to test the SHA512 interface and 
measure its execution time. This component is used as the top component which is 
compiled and downloaded on the sensor board. It uses the SHA512 interface and 
calls its commands. It also uses some other interfaces which are used for testing and 
measuring the execution time. These interfaces are: Leds which controls the LEDs 
available on the sensor board and is used for debugging purposes and SysTime 
which is used to measure the execution time of the SHA512 implementation. To 
debug the implementation, the SHA512 commands are called in the body of the 
testSHA512 module. A message is provided and the commands are called respectively 
to pad and compute the hash value of the message. To measure the execution time
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Table 4.2: Implementation results SHA-1 and SHA-512 on Micaz sensor board
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H ash F u n ctio n T h ro u g h p u t (k b it /s) R O M -R A M (b y te s )

SH A -1 60 3 3 0 0 -2 0 7
SH A -512 30 2 0 8 5 4 -9 9 1

Table 4.3: Implementation results S IA-1 and SHA-512 on Micaz sensor board
SH A -1 Im p lem en ta tio n T im e (m s) R O  M  - R A  M  ( b y tes )

M 35 3 5 0 4 -1 4 0
ours 8 .6 3 3 0 0 -2 0 7

of this procedure, the current time of the system is measured before and after the 
SHA512’s command calls and their difference is computed. This is done using the 
SysTime interface which provides commands to get the current time of the systems. 
The commands are called by the testSHA512 module which uses the SHA512 as an 
interface. The Pseudocode below shows the procedure of measuring the execution 
time:
t l  = ca l l  SysTime . getTime32 (); 
ca l l  SHA512. SHA512PadMessage( message ); 
ca l l  SHA512. ComputeRound (); 
ca l l  SHA512 . ComputeFinalHash (); 
t2 = ca l l  SysTime . getTime32 ();

¿2 — t\ is the execution time of the SHA512 implementation. This code is used to 
measure the hash function computation time for input messages with different sizes. 
The same method has been used to test and measure the execution time of the SHA-1 
implementation. Like SHA-512, the SHA-1 has been implemented as an interface and 
used by a top module for testing and debugging purposes.

The SHA-1 and SHA-512 were implemented on the Micaz sensor board. The 
results of the implementations are shown in Table 4.2. This table shows that there 
are 3300(207) bytes of ROM(RAM) required for the implementation of the SHA-1 
hash function and it takes 20854(991) bytes of ROM(RAM) to implement the SHA- 
512 on the Micaz sensor board. It also shows that it takes 8.6 milliseconds to compute 
the hash value of a single block in SHA-1 resulting in a 60 kbits/sec throughput. The 
throughput for SHA-512 is 30 kbits/sec.
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To the best of our knowledge, the only work that has considered the implemen­
tation of hash functions on sensor boards is [7], In [7] the SHA-1 and HMAC hash 
functions have been implemented on TelosB sensor board. The comparison results 
of our SHA-1 implementation and [7] are shown in Table 4.3. This table shows that 
our implementation has better performance in terms of execution time and ROM 
required while spends more RAM compared to [7]. There has been no published 
implementation of SHA-512 on wireless sensor boards.

4.6 Conclusion
Wireless Sensor Networks are going to be used in various applications. They are used 
in industrial environments for configuration and monitoring purposes. Because of the 
wireless communication of the nodes, security is an important issue in such networks. 
Because of the resource limitations in terms of processing power, memory and power 
consumption, implementation of cryptographic algorithms on sensor boards is quite 
challenging. In this paper, we implemented the SHA-1 and SHA-512 hash functions 
on sensor boards to measure the resource and timing requirements of these functions 
and consider their suitability for different applications. For this purpose, we imple­
mented the SHA-1 and SHA-512 hash functions using NesC language in TinyOS and 
downloaded it on Micaz sensor board. We measured the ROM, RAM required and 
also the the execution time of the implementations. The results show that our SHA- 
1 implementation has a better execution time and ROM required compared to the 
previous work.



64

Bibliography
[1] N. Goh, “Wireless Sensor Networks Ubiquitous Watchdogs 

of the Future?,” INTRO Newsletter, August 2003. URL 
http: /  /  www. nus. edu. sg/intro/newsletter0311. shtml.

[2] X. Shen, Z. Wang, Y. Sun, “Wireless sensor networks for industrial applications,” 
Proc. Fifth World Congress on Intelligent Control and Automation, WCICA 
2004., 2004, vol.4, pp. 3636-3640.

[3] A. Liu, P. Ning, “TinyECC: A Configurable Library for Elliptic Curve Cryptog­
raphy in Wireless Sensor Networks,” Proc. International Conference on Infor­
mation Processing in Sensor Networks,IPSN ’08, 2008, pp.245-256.

[4] P. Traynor, R. Kumar, H. Choi, G. Cao, S. Zhu, and T. F. L. Porta, “Efficient hy­
brid security mechanisms for heterogeneous sensor networks,” IEEE Transaction 
on Mobile Computing,, 2007 vol. 6, no. 6, pp.663-677.

[5] K. Lu, Y. Qian, M. Guizani, and H.-H. Chen, “A framework for a distributed key 
management scheme in heterogeneous wireless sensor networks,” IEEE Transac­
tions on Wireless Communications, 2008, vol. 7, no. 2, pp. 639-647.

[6] R. Azarderakhsh, A. Reyhani-Masoleh, and Z.-E. Abid, “A key management 
scheme for cluster based wireless sensor networks,” IEEE/IFIP International 
Conference on Embedded and Ubiquitous Computing“, 2008, vol.2, pp. 222-227.



65

[7] H. Li, Y. Choi, H. Kim, “Implementation of TinyHash based on Hash Algo­
rithm for Sensor Network,” Proc. World Academy Of Science, Engineering and 
Technology,, 2005, voi. 10, pp. 135-139.

[8] http://www.tinyos.net/
[9] D. Gay, D. Culler and P. Levis, “nesC Language Reference Manual”, available 

at http://webs.cs.berkeley.edu/tos/api/nesc/doc/ref.pdf, 2002

http://www.tinyos.net/
http://webs.cs.berkeley.edu/tos/api/nesc/doc/ref.pdf


66

Chapter 5 
Conclusions
The widespread use of communication networks in industrial environments has led 
to new issues in these systems. Network-based control systems are used in various 
industries. Modern industrial systems have a hierarchical structure in which devices 
at the different levels from management to field level communicate with each other. 
Security is one of the issues that has become important in new industrial systems. 
Traditional industrial networks were stand-alone networks with no or limited con­
nection to outside networks. This is not true for modern control systems in which 
devices are connected together with standard communication networks. Security is­
sues in industrial networks has been the focus of this thesis.

The focus of this thesis is to implement cryptographic algorithms to be used in 
industrial environments. Because the data integrity is the major issue in many indus­
trial networks, we implemented hash functions which are one of the main methods 
of providing data integrity. Industrial devices are usually embedded devices with 
limited resources such as processing power and memory requirements. We focused 
on the reliable implementation of SHA hash functions on FPGAs and also wireless 
sensor boards which are used in embedded systems for various industrial applications. 
Reliable implementation is needed in critical applications in which any fault and error 
in the devices might result in grave aftermaths.

We propose a fault detection method for the FPGA implementation of SHA-1 and 
SHA-512 hash functions. This method which is based on time redundancy is capable
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of detecting permanent as well as transient faults. The goal of this implementation 
is to optimize the design in terms of the delay and area overhead that this time 
redundancy method imposes on the design. The pipelining technique is used to 
compensate for the the delay overhead that time redundancy induces to the design. 
Using this technique we have decreased the delay overhead to as low as 3% for SHA-1 
and 10% for SHA-2 while having acceptable area overhead.

Our goal in the sensor board implementation is to optimize the design in terms 
of speed and ROM and RAM usage. We also aimed to have a comparison between 
SHA-1 and SHA-512 implementations which is helpful in deciding between these two 
hash functions in a specific application. Because of the minimal structure of the 
TinyOS 1.1 and the programming environments, debugging the implementations has 
been quite a challenge in sensor boards. These limitations in debugging tools have 
been overcome in TinyOS 2.

5.1 Contributions
This section briefly describes the contributions of this thesis:

• A new fault detection scheme for the FPGA implementation of SHA-1 and SHA- 
512 has been introduced in this thesis. The main feature of this scheme is that 
although it is based on time redundancy, it is capable of detecting permanent 
faults as well as transient faults.

• To the best of our knowledge, this is the first FPGA implementation of the SHA- 
1 hash function which has the fault detection capability. Because of using the 
pipelining method, the proposed design has a very small (3%) timing overhead.

• There is an improvement in the timing overhead of the proposed scheme for 
SHA-512 compared to the previous works. The timing overhead of the proposed 
design is 10 percent while two previous works show 11.6 percent and 73 percent 
timing overhead.
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• This fault detection scheme is capable of detecting any kind of faults as opposed 
to the parity-based schemes which only detect faults with an odd number of 
erroneous bits.

• The sensor board implementation of SHA-1 done in this thesis shows execution 
time and ROM usage improvement compared to the previous work.

• To the best of our knowledge, this is the only implementation of SHA-512 on 
sensor boards.

5.2 Future Work
In this thesis, the hardware implementations of SHA-1 and SHA-2 provided by NIST 
has been studied. NIST has decided to develop one or more additional hash functions 
through a public competition, similar to the development process of the Advanced 
Encryption Standard (AES). To be selected as the final SHA-3 hash function, the 
candidates have to go through a competition in terms of security and implementation 
aspects. The final hash function will be announced in 2012. Like the AES, imple­
mentation issues are one of the major criteria for deciding the final hash function. 
Implementing the candidates in software and hardware (FPGAs, ASIC, sensor boards 
etc.) is of great importance. Whether or not the proposed fault detection method 
can be applied to the SHA-3 candidates is one of the future works.

The proposed fault detection method has been applied to the round computation 
of the SHA hash functions. It can be extended to the IT) generator unit of SHA-512 
which contains addition operation as well. (The Wi generator unit in SHA-1 does not 
contain addition, therefore this method is not suitable for it.)

Another future direction would be applying other fault detection methods such 
as hardware redundancy and information redundancy for the implementation of SHA 
hash functions.
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Appendix A
Functions and Constants used in 
SHA-1 and SHA-512
A .0.1 SHA-1

f i (x,y, z)  =

K i  =

A .0.2 SHA-512

(x A y) © (x A z) 
x ® y ® z
(x A y) © (x A z) © (y 
x (By © z

5a827999

6ed9ebal
8flbbcdc
ca62cld6

0 <  i < 20, 

20 < i <  40, 

z) 40 < i < 60,

60 <  * < 80.

0 < i < 20,

20 < i < 40,

40 <  i < 60,

60 <  i < 80.

Ch(x, y, z) =  (x A y) © (x A z)



M aj(x, y, z) = (x A y) © (x A z) © (y A z)
J 2  (®) = ROTR28(x) © ROTR34(x) © ROTR39(x)

0
5 3  (x ) = ROTRu {x) © ROTR13(x) © ROTR41(x)

1
a0(x) = R O T R \x )  © ROTR*(x) © SH R 7(x)
<ti (x) = ROTR19(x) © ROTRei (x) © SH R 6(x)
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