
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2009

Belief-Desire-Intention in RoboCup Belief-Desire-Intention in RoboCup

Thopik Adianto

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Adianto, Thopik, "Belief-Desire-Intention in RoboCup" (2009). Digitized Theses. 3805.
https://ir.lib.uwo.ca/digitizedtheses/3805

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3805?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3805&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Belief-Desire-Intention in RoboCup

(Thesis Format: Monograph)

by

Thopik Adianto

Graduate Program in Computer Science

Submitted in partial fulfillment
of the requirements for thé degree of

Master of Science

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Thopik Adianto 2009

Abstract

The Belief-Desire-Intention (BDI) model of a rational agent proposed by Bratman

has strongly influenced the research of intelligent agents in Multi-Agent Systems

(MAS). Jennings extended Bratman’s concept of a single rational agent into MAS in

the form of joint-intention and joint-responsibility. Kitano et al. initiated RoboCup

Soccer Simulation as a standard problem in MAS analogous to the Blocks World

problem in traditional AI. This has motivated many researchers from various areas of

studies such as machine learning, planning, and intelligent agent research. The first

RoboCup team to incorporate the BDI concept is ATHumboldt98 team by Burkhard

et al.

In this thesis we present a novel collaborative BDI architecture modeled for

RoboCup 2D Soccer Simulation called the TA09 team which is based on Bratman’s

rational agent, influenced by Cohen and Levesque’s commitment, and incorporating

Jennings’ joint-intention. The TA09 team features observation-based coordination,

layered planning, and dynamic formation positioning.

K eyw ords: Belief-Desire-Intention, Rational Agent, Multi-Agent System, RoboCup,

Soccer Simulation.

m

Acknowledgements

I would like to thank my supervisor, Dr. Mercer, for his guidance, patience, and

encouragement throughout the journey of my studies which resulted in this thesis.

Imbued with qualities of wisdom and judgment, Dr Mercer to me is a model mentor,

and an embodiment of professionalism. Dr Mercer has taught me how to work inde­

pendently and pragmatically in the noetic realm of artificial intelligence. He gave me

confidence in myself as an academic researcher and as a professional.

My sincerest appreciation is extended to my parents for their support, wisdom,

encouragement, and for instilling the importance of education and excellence in my

life. I am thankful to my aunts for their support, kindness and good counsel. Finally,

I am deeply thankful to Bora for her emotional support and for being the driving

force that moves me forward.

IV

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Background Works 4
2.1 Belief-Desire-Intention (B D I)... 4
2.2 RoboCup ... 7
2.3 Other Agent Features.. 14

3 TA09 Implementation 16
3.1 Layered Architecture.. 17
3.2 M ode.. 18

3.2.1 C h a s e ... 20
3.2.2 Dribble .. 20
3.2.3 P a s s 20
3.2.4 Shoot 21
3.2.5 D efend... 21
3.2.6 P os ition .. 21
3.2.7 Cover ... 22

3.3 P l a n .. 22
3.4 Form ation.. 25
3.5 Belief-Desire-Intention... 25
3.6 Observation-based Coordination . .. 29
3.7 Situation Analysis.. 30
3.8 Decision Process ... 31

4 Evaluations 34
4.1 Comparative E valuation .. 34

4.1.1 CMUnited99 vs CM United99/.. 34
4.1.2 TA09 vs CMUnited99 35
4.1.3 TA09 vs FCPortugal2001 ... 36

4.2 Subjective Evaluation.. 37
4.2.1 Belief-Desire-Intention... 37
4.2.2 Planning and R easoning... 39

v

4.2.3 Role, Formation, and Coordination... 41
4.2.4 Design and Architecture... 43
4.2.5 Conclusion... 43

5 Discussion 44
5.1 Design and Im plem entation... 44
5.2 Testing and Evaluations.. 44
5.3 L im itations.. 45

6 Conclusions and Future Work 48

A Source codes 50
A .l TA09 team 50
A.2 CMUnited99 t e a m 50
A. 3 FCPortugal2001 team .. 50

B RoboCup Simulation Server configuration 51
B. l server.conf.. 51

Bibliography 64

Vita 67

vi

List of Figures

2.1 Fields markers from [7] • • 10
2.2 Match screenshot... 11

3.1 Layered architecture... 18
3.2 Mode diagram.................... 19
3.3 Plan Library diagram... 23
3.4 Plan Library sample.. 23
3.5 Plan Definition format and sample.. 24
3.6 Specialized Plan format and sample... 24
3.7 Formation format and sample... 25
3.8 BDI diagram.. 26
3.9 Desires matrix of each mode... 28
3.10 Observation-based coordination.. 30
3.11 Decision process diagram... 32
3.12 Decision path example. ... 33

4.1 CMUnited99 vs CMUnited99/ results.. 35
4.2 TA09 vs CMUnited99 results.. 35
4.3 TA09 vs FCPortugal2001 results.. 36

vu

1

Chapter 1

Introduction

The Belief-Desire-Intention (BDI) model of a rational agent [3] has been established

as the most studied model for practical reasoning agents in Artificial Intelligence (AI).

Recent interest in Multi-Agent Systems (MAS), particularly the concept of intelligent

agents collaborating with other agents, have motivated many research works in Dis­

tributed Artificial Intelligence (DAI). In 1997, the RoboCup Soccer Simulator [18, 19]

formalized the standard problem in a MAS. RoboCup, or Robot World Cup, is an

attempt to foster AI and intelligent robotic research using a standard problem and

a dynamic real-time soccer game for a wide range of AI and robotics research. The

first RoboCup competition was held at IJCAI-97 Nagoya, Japan. Since the inception

of the competition, many universities from around the world have been participat­

ing in the RoboCup annual competition representing various research areas such as

real-time reasoning, machine learning, real-time planning, etc.

Although there are several generic BDI toolkits available such as Procedural Rea­

soning System (PRS)[?] and dMARS variant[?], none has been implemented in

RoboCup. The first attempt to incorporate BDI in RoboCup was Burkhard et al.

[5, 6] with their ATHumboldt98 team for the RoboCup 2D Simulation league. The

BDI implementation in ATHumboldt98 is loosely modeled on Bratman’s rational

agent and focuses more on ad hoc low-level short-term planning purposes like ball

kicking, ball intercepting, and kick direction (shoot or pass). Long-term planning is

presented by intention fixing on a specific goal by repeatedly executing a short-term

goal. The lack of cooperation has limited ATHumboldt98’s BDI implementation to a

single agent’s perspective. The BDI architecture in ATHumboldt98 interacts mainly

2

with RoboCup specific functionalities. The RoboCup specific functionalities make the

architecture harder to be generalized for implementation into other real-time MAS

applications.

In this thesis we present a novel implementation of Belief-Desire-Intention (BDI)

in a RoboCup 2D Simulation team based on Bratman’s [3] rational agent, influenced

by Cohen and Levesque’s [8] commitment, and incorporating Jennings’ [16, 15, 17]

joint-intention. Our BDI-based RoboCup team is named TA09. Existing source codes

and research works, such as CMUnited99 [26] and FCPortugal2001 [20], are used as

a foundation for TA09 to reduce development time.

A novel BDI architecture— with its related components such as decision pro­

cess, mode, plan, commitment, and observation-based intention recognition—is im­

plemented onto a stripped-down version of CMUnited99 to form TA09. The BDI

layer is designed according to Bratman’s philosophical approach of rational agent.

Beliefs, desires, and intentions are governing a decision process in selecting which

action is to be executed. Bratman’s concept of partial planning is reflected in the

form of mode and plan. Mode is an agent’s state of mind when executing a series

of low-level actions sent to the RoboCup Simulation Server. A sequence of modes

forms a plan and a set of plans is stored in a plan library which is specialized into a

role. Commitment to an adopted plan and persistency in executing the plan's mode

are directly influenced by Cohen and Levesque’s [8] concept of intention and commit­

ment. Jennings’ joint-intention [16] has inspired a novel teammate observation-based

coordination via intention recognition in TA09. This novel BDI architecture with

its related components allows emergent behaviours of a rational agent described by

Bratman.

Non-BDI functionality such as goalkeeper, roles, and formations are added to

TA09 to form a fully functional RoboCup team. A basic version of goalkeeper is

included in FCPortugal2001 and is adopted in TA09. Similar to a real soccer team,

each player in TA09 is assigned to a specific role such as defender, midfielder, and

3

striker. Each role will carry a set of plans specialized for that role. A team formation

and positioning system similar to Lau and Reis’ [20] SBSP (Situation Based Strategic

Positioning) is added to TA09. Depending on ball direction, velocity, and position,

TA09 players position themselves strategically.

BDI and non-BDI components are the internal machinery in decision making and

planning of rational agents forming TA09. The glue for BDI and non-BDI components

is the configurable elements such as the plan library, loadable parameters governing

mode’s behaviours, and dynamic goals which as a whole enable intelligent behaviours

of rational agents to emerge from TA09.

The remainder of this thesis is comprised of:

• Chapter 2 that summarizes various research works from BDI, RoboCup, and

agent related areas.

• Chapter 3 that discusses all aspects of BDI and non-BDI components imple­

mentation in TA09.

• Chapter 4 that discusses comparative and subjective evaluations performed to

measure TA09’s design and performance against CMUnited99, FCPortugal2001,

and ATHumboldt98.

• Chapter 5 that discusses TA09’s design and implementation, testing and eval­

uations, and future directions to overcome TA09’s current limitations.

• Chapter 6 that concludes this thesis with our closing thoughts.

4

Chapter 2

Background Works

Central to this thesis the concept of Belief-Desire-Intention (BDI) influenced by Brat-

man [3] and other researchers is summarized in the next section. RoboCup initiated

by Kitano et al. [19] along with RoboCup champions CMUnited99 by Stone et al.

[19, 26, 27, 28] and FCPortugal2001 by Lau and Reis [20] are outlined in the RoboCup

section along with BDI-based ATHumboldt98 by Burkhard et al. [5, 6]. Other re­

search works related to plan recognition and machine learning are also discussed in

Section 2.3.

2.1 Belief-Desire-Intention (BDI)

Bratman [3] in his book Intention, Plans, and Practical Reason, develops a plan­

ning theory of intention, a philosophical approach to intention as part of practical

reasoning by desire-belief reasoning of action, future-directed intention, and partial

plans. Bratman’s ideas have spurred interest in the so-called Belief-Desire-Intention

(BDI) model of intelligent agent. The four main theses presented as the foundation

of BDI model are: 1) the methodological priority of intention in action, 2) the desire-

belief theory of intention in action, 3) the strategy of extension, and 4) a reduction of

future-directed intention to appropriate desires and beliefs. The main idea of practical

rationality is that an agent’s desires and beliefs at a certain time provide reasons for

acting in various ways at that time. The agent’s intentional action has to be at least as

strongly supported by these desire-belief reasons as any of its supposed alternatives.

A plan is typically partial, has a hierarchical structure, resists reconsideration, and

5

eventually controls conduct in which the connection between deliberation and action

is systematically extended over time. Bratman suggests the phenomena of partial

plans and reasoning aimed at filling in such plans are central to our understanding of

intentions. An agent’s plans have to be both internally consistent and consistent with

the agent’s belief; in addition, agent’s plans should be means-end coherent, i.e. filling

the plan with means, preliminary steps, actions, and specification of ends that are

globally consistent. Bratman’s approach has motivated us in applying an extended

version of his BDI model of intelligent agent in RoboCup 2D Soccer Simulation.

Although Bratman’s philosophical approach is taken from a single agent per­

spective, it does not restrict its extension to a multi-agent platform. Jennings [17,

16, 15] extended the commitment of a rational agent with joint-intention and joint-

responsibility in a Multi-Agent Systems (MAS) domain. Jennings introduced the

joint responsibility model to specify a novel high-level architecture for cooperative

problem solving. The mental notions of belief, desire, intention, and joint-intention

play a central role in individual and group problem solving behaviour. This archi­

tecture has been implemented for the real-world domain of electricity transportation

management and the CERN Proton Synchrotron. Jennings pointed out limitations

with the individualistic approach: joint action is more than just the sum of individual

action even with coordination and there is a difference between individual and group

commitment. Joint-intention is defined by Jennings as joint commitment to perform

collective actions during a period of shared mental state. Thus collaboration is not

an intrinsic property of the actions but rather is dependent on the mental state of

the participants. Features of shared mental states are: agents must agree on common

goals, agree they wish to collaborate to achieve their shared aim, agree a common

means (plan) of reaching their objective, acknowledge that actions performed by dif­

ferent agents are related, have criteria for tracking rationality of their commitments,

and have behavioural rules which define how to behave locally and towards others

both when joint action is progressing as planned and when it runs into difficulty.

6

Joint-responsibility extends the ideas of joint intention to include plan states. Re­

sponsibility means each individual should remain committed to achieving a common

objective by the commonly agreed solution until one of these becomes true: the de­

sired outcome of a plan step is achieved; following the agreed upon action sequence

does not achieve the desired consequence; or one of the specified actions cannot be

carried out.

Cohen and Levesque [8] [13] explored and formalized principles governing the ra­

tional balance among an agent’s beliefs, goals, actions, and intentions. Cohen and

Levesque modelled intention as a composite concept specifying what the agent has

chosen (desire) and how the agent is committed to that choice (intention). The

agent’s commitment is reflected in the agent’s persistency to achieve its desire (goal)

over a period of time if the goal remains achievable. Cohen and Levesque proposed

a logic with four primary modal operations: BELief, GOAL, HAPPENS (what event

happens next), and DONE (which event has just occurred). Agents can be charac­

terized using those operators to perform actions that are intended to achieve their

goals. The world is modelled as a linear sequence of events and by adding GOAL

an agent’s intentions can be modelled. This world model includes courses of events

which consists of sequences of primitive events that characterized what has happened

and will happen in each possible world. Possible worlds can relate one to the other in

the semantics of BEL and GOAL. An agent is not guaranteed to execute a sequence

of events without events performed by other agents intervening.

Rao and Georgeff [22, 23] introduced a family of multi-modal branching-time

BDI logics with a semantics that is grounded in traditional decision theory and a

possible-worlds framework categorized with sound and complete axiomatizations with

constructive tableau-based decision procedures for satisfiability testing and formula

validation. Building BDI system information on the state of the environment is called

the system’s beliefs; such a system can be implemented as a variable, as a database, as

a set of logical expressions, or as some other data structure. Beliefs can be viewed as

7

the informative component of the system’s state. Information about the motivational

objectives to be accomplished with priorities or associated payoffs is the system’s

desires. The system representation of a chosen course of action is called the system’s

intentions. The intentions of the system are captured by the deliberative component

of the system. With possible-worlds semantics, Rao and Georgeff considered each

possible world to be a tree structure with a single past and a branching future. Each

tree structure denotes the optional courses of events that can be chosen by an agent

in a particular world. Evaluation of formulas is with respect to a world and a state.

Hence, a state acts as an index into a particular tree structure or world of the agent.

The belief-accessibility relation maps a possible world at a state to other possible

worlds. The desire-, and intention-accessibility relations behave in a similar fashion.

Rao and Georgeff’s possible world semantics [22] using decision trees is simple yet

elegant and has influenced the use of a similar decision tree structure in this thesis.

2.2 RoboCup

Kitano et al. [19] initiated Robot World Cup (RoboCup) in an attempt to foster

Artificial Intelligence (AI) and intelligent robotic research using a standard problem, a

dynamic real-time soccer game, for a wide range of AI and robotics research. The first

RoboCup competition was held at IJCAI-97 in Nagoya, Japan. Since that inception

many universities from around the world have been participating in the RoboCup

annual competition presenting various research areas such as real-time reasoning,

machine learning, and real-time planning. The RoboCup Official Site [9] categorized

five RoboCup competition leagues as Simulation, Small-size, Middle-size, Standard

Platform, and Humanoid. The simulation league consists of 2D, 3D, 3D development,

and Mixed Reality. 2D Simulation is the most common and popular league among all

simulation sub-leagues and adopts real-world soccer game rules. The small-size league

allows up to five robots with diameter maximum 18 cm playing with an orange golf ball

8

as the soccer ball in a field of 6.5x4.5 metres for two 10-minute matches. The middle-

size league allows up to six robots with diameter maximum 50 cm playing a real

orange colored soccer ball in a field of 12x18 metres for two 15-minute matches. The

standard platform used to use the Sony Aibo robotic dog and now uses the standard

humanoid robot called Aldebaran Nao [21]. The humanoid league is introduced in

2002 using biped autonomous humanoid robots competing to perform challenges like

penalty kicking and goal keeping.

Chen et al. [7] wrote an extensive RoboCup 2D Simulation Users Manual. RoboCup

simulation is packaged with three components: Server, Monitor, and Logplayer.

Server is a soccer game simulator with all clients of both teams being connected

to it via UDP/IP client-server communication. A team can have up to 11 players

including a goal keeper. Each player on a team is a separate process and connects

to the server on a specified port. The players send requests to the server on actions

they want to perform. The server receives those requests and updates the simulation

world. Independent of this player-server communication, the server sends real-time

sensory information to all connected players in discrete time intervals or cycles. For

realistic simulation, noise is added to real-time sensory information by the server in

such as way that the further an object away from the observer the more inaccurate

the distance and the angle reported by the server. Monitor is a visualization tool

that allows an observer to see what is happening to the simulation in the server dur­

ing a game match. The information shown includes team names, score, positions of

all players, and the ball. Monitor is not needed to run a game on the server and

multiple monitors can be connected to a single server at the same time. Logplayer

is a replay tool that allow the monitor to view pre-recorded simulation games using

various features such as play, stop, fast forward, rewind, and jump to specific time in

the game. To enforce real soccer game rules RoboCup 2D Simulator game is being

judged by an automated referee and a human referee. The automated referee is built

in the server and will enforce and regulate kick-off, goal, ball out of field, player clear­

9

ance, play-mode control, half-time, and full time. A human referee is watching using

Monitor to ensure that there are no rule violations not caught by automated referee

such as flooding the server with messages, obstruction, blocking, and inappropriate

behaviours. A player connected to the server can be either a regular player, goal

keeper, offline coach (trainer), or on-line coach. A regular player is allowed to request

for all actions except catch-ball() which is reserved for the goal keeper. Coaches are

privileged clients used to provide assistance to the players. The trainer has extra

capabilities such as announce play-mode (e.g. kick-off, corner kick, etc.), broadcast

audio message, move players and balls to any location on the field including their

directions and velocities, and receive noise-free information on a movable object from

the server. The online coach is used during a match to observe the game and provide

advice to the players. The online coach has more limited capabilities than the trainer

and is only able to communicate with players and receive noise-free information from

the server. Figure 2.1 shows the virtual markers on simulation field announced by the

server to connected players and Figure 2.2 shows a kick-off screenshot of Monitor.

Further collaboration with Stone et al [19, 26, 27, 28] resulted in a new RoboCup

2D Simulation soccer client called CMUnited99. A stripped-down version of CMU-

nited99 source code has been made publicly available to foster research in RoboCup

2D Soccer Simulation. Novel concepts such as layered learning and flexible team struc­

ture are introduced in CMUnited99. Layered learning consists of two layers where the

first layer utilizes a Neural Network (NN) for low-level individual skills such as ball

interception, ball kicking, obstacle avoidance, and the second layer utilizes a Decision

Tree (DT) for higher level “social” skills involving multiple agents such as passing ball

to a teammate. Layered learning using a NN proved to be a successful method in im­

proving low-level individual skills in the RoboCup environment where noise is added

in the perception sensors from the server for realism. Flexible team structure centered

around teamwork structuring and Periodic Team Synchronization (PTS). Teamwork

structure consists of: flexible agent roles with protocols for switching among them, a

10

(Itagli50) (flag il 30) (flauti 10) (flajtO) (flagtrlQ) (flag ir») (itagli»)

(flagri 30)

(flag r 120)

(flggrt 10)

(flagri

(flag r b 10}

(flag rb 20)

(flag rb 30)

Figure 2.1: Fields markers from [7]

collection of roles built into team formations, and multi-step, multi-agent plans for

execution in specific situations called set-plays. This role concept allows better group­

ing of different individual skills depending on the need of a particular agent on a team.

An aggressive team will need more offensive players than defensive one. Similar mixes

of roles are required for dealing with corner kicks or free kick close to the penalty box.

PTS allows agents to periodically synchronize in a full-communication setting in a

low communication environment. This communication allows agents to switch forma­

tions, roles, and set-plays whenever possible such as free-kick, corner-kick, and when

within audio range. PTS is quite effective in distributing information in noisy and

unreliable environments like the RoboCup Simulation Server. The main requirement

of PTS is that the agents are within audio range. This limitation becomes important

during game play when agents can be scattered over the field. During half-time, free

kick, or penalty kick, most agents are positioned closer to each other and PTS can

11

Figure 2.2: Match screenshot

be utilized effectively.

Based on the CMUnited99 source code Lau and Reis [20] implemented Situation

Based Strategic Positioning (SBSP) and Dynamic Positioning and Role Exchange

(DPRE) for formation and positioning as a whole team in FCPortugal2001. SBSP

utilizes various policies to determine the best position for a player in a particular

situation. DPRE allows players to switch roles and positions dynamically based on

the adopted team formation during a match. Formation changes are triggered when

the team adopts a new tactic. The tactic contains a set of predefined formations

and each formation contains a set of roles. Roles define FCPortugal2001 players’

behaviours. FCPortugal2001’s SBSP is similar to CMUnited99 set-plays which re­

lies on predefined roles associated with a set of behaviours along with the strategic

12

positioning of involved agents to coordinate or interact on the basis of behaviour.

This can be seen as a loose coupling of layered behaviours such as low-level skills,

behaviours in roles, formation, and an overall group’s convention in which SBSP’s

policies which determines actions to be executed. Like CMUnited99, Lau and Reis

released a stripped-down FCPortugal2001 source code which does not include the

SBSP and DPRE features due to competitive reasons.

Burkhard et al. [5, 6] incorporated BDI in their ATHumboldt98 team for the

RoboCup 2D Simulation league. ATHumboldt98 has a World Model storing an

agent’s beliefs of its world based on information provided by the RoboCup Sim­

ulation Server (RCSS). Belief in the BDI approach matches the World Model of

ATHumboldt98 where each player maintains its own world based on information

provided by the RCSS. The World Model also projects future situations and tracks

historical events. Desires in ATHumboldt98 are goals which are selected from a fixed

goal library which is comparable to a decision tree selection. Goal selection has to

be fast and Burkhard et al. discussed the trade-off between long-term reasoning and

the speed of short-term reaction. ATHumboldt98 has active options that are used

when the ball is in possession and passive options that are used when the ball is not

in possession. Active options are GoalKick, DirectPass, ForwardPass, and Dribbling

while passive options are InterceptBall, GoToHomePosition, and DefendGoal. All op­

tions are constrained by ConserveStamina and AvoidOffside. The last aspect of BDI,

Intention, is divided into two stages of planning called layered planning. The first

stage is choosing the best possible goal and fixing on it as the intention. This goal is

a coarse long-term plan. It is prior to a more precisely defined execution and can be

considered as partial planning. The second stage is the execution of a goal by select­

ing appropriate finer steps that fit into the selected goal. Burkhard et al. showed that

the layered learning fits the criteria of bounded rationality where the second stage is

short-term and reactive to the world’s changes while still guided by the first stage.

Burkhard et al. stated the commitment to intention is shown by both implicit and

13

explicit persistence of goals and intentions in the ATHumboldt98 implementation.

Hexmoor and Zhang [12] examined the concepts of norms and roles in a multi­

agent system for RoboCup soccer simulation. The definition of norms includes be­

havior constraint on agents, goals, and obligations. Hexmoor and Zhang formally

defined norm as Norm = (0 , R, G, U) where 0 is the content of the norm set, R is

the sanction that may result from not following the norm, G is the agent’s goal that

invokes the norm set when the agent chooses to consider other agents, U is a utility

function that considers the agent’s gains and losses in terms of G. General utilitarian

norm adoption that is based on maximizing goal achievement utilities can be used in

single or multiple goal selection. The definition of roles ranges from the abstract rep­

resentation of an agent function, service or identification, part of what an individual

agent chooses to play, to service + policy. Hexmoor and Zhang defined role as Role

= (A, C, 0, G, Ab, U) where A is the adopting agent, C is the social context of A,

0 is the content of the role, G is the agent’s goal that invokes consideration of other

agents, Ab is the set of capabilities that are required for A, and U is a utility function

that considers the agent’s gains and losses in terms of G. Role adoption is similar

to norm as it attempts to maximize goal achievement utilities. Hexmoor and Zhang

discussed that a reciprocal relationship can exist between goal-based role selection

and role-based goal selection where in the latter, a problem-solving agent selects the

goal that maximizes fulfillment of its role. In the relation to RoboCup, a positional

role tree is a hierarchy of decisions where the tree leaves are specific positions that

can be occupied by an agent and the arcs “specialize” from general to more specific.

The role of a player in a RoboCup team changes based on the formation decided

as a whole team. Each role is associated with different abilities which follow similar

specialization concept. A group role is a specialization shared by a group of agents

that will also share a group norm. A group role is adopted by individuals in a role to

maximize the group’s utility as a whole.

14

2.3 Other Agent Features

Rao and Murray [24] provided algorithms for performing reactive plan recognition

within the framework of agent’s beliefs, desires, and intention with limited resources

and in a continuously changing environment. This mental-state recognition and in­

tegrated reactive plan execution and plan recognition is applied to air-combat mod­

elling to enable pilots to infer the mental-state of their opponents and choose their

own tactics accordingly. The approach is based on using plans as recipes and Belief-

Desire-Intention (BDI) to guide and constrain the reasoning processes of agents.

Huber and Durfee [14] developed plan recognition for coordination in a multi­

agent environment. Their approach was to have agents infer the plans of each other

by observing the actions or behaviours of the other agents without communication.

A discrete time, two-dimensional, simulated grid world where an agent can only do

basic motion of moving one grid north, south, east, west, or no motion is being used.

There were two types of agents installed in the simulation: the observed agent and

the observing agent. The observed agent was placed on the initial starting location,

given a goal location, and that agent would plan the shortest straight-line path to the

goal and then start moving toward it. Once the observed agent arrived at the goal

location it will remain static. The observing agent using a belief network would em­

ploy several heuristics using observations of the observed agent to chase the observed

agent. Several parameters being adjusted to find the best belief level threshold are

average end time, average last move time, and average total moves. Huber and Durfee

discussed the trade off of early or late commitment resulting in a trade-off between

time and effort for the observing agent to reach its goal. The implication of their

experiments is that an agent will have to be able to recognize certain characteristics

of the environment and an agent’s particular situation to be able to determine the

relative cost of acting (chasing) versus perceiving (observing).

Guerra-Hernandez et al. [2] incorporated a learning capability into a BDI multi­

agent system. The agents learn the context of their plans in order to know how and

15

when to use it. The learning capability is using a first order method called Induction

of Logical Decision Trees. Four components of the generic learning agent architecture:

1) A learning component responsible for making improvements by executing a learning

algorithm; 2) A performance component responsible o f taking actions; 3) A critic

component responsible for providing feedback; and 4) A problem generator responsible

for suggesting actions that will lead to informative experiences.

Ahmadi and Stone [1] introduced an instance-based action model for action plan­

ning by capturing arbitrary distributions of action effects. They used RoboCup 4-

legged goal scoring scenario using AIBO robots as a test bed. In a dynamically

changing environment such as RoboCup Ahmadi and Stone implemented an on-line

incremental re-planning method that modifies the transition model to account for

the effects of other agents and then re-plans only for the affected states. A Markov

Decision Process (MDP) is a model chosen to represent the planning problem. An

MDP transition function is built with the help of the learned action model. A reward

maximizing plan is generated using value iteration with state aggregation. In a static

environment, the value iteration algorithm can be run offline and in a dynamic one it

must be executed on-line. Ahmadi and Stone compared their instance-based model

with parametric action model in their experiment. The instance-based approach uses

each action effect from experiments, called a sample action effect, and stores it in the

model. In a dynamically changing environment the transition value of MDP and the

value function for the new MDP needs to be computed on-line. Ahmadi and Stone

presented a fast re-planning algorithm using pre-computed learning values (Q-values)

for a static environment. This resulted in a fast re-planning algorithm and the robot

can distribute the value iteration steps over several decision cycles without missing

any action opportunities.

16

Chapter 3

TA09 Implementation

A stripped-down version of CMUnited99 [26] without the layered learning and flexible

team structure modules is publicly available. The stripped-down version of CMU-

nited99 has all the necessary modules required to build a more complex implementa­

tion. We decided to use CMUnited99 as the code base for the TA09 implementation.

Following the same layered architecture in CMUnited99 [27], a novel BDI layer is

added on top of CMUnited99. Other supporting functionalities are added to the base

CMUnited99 to complement the BDI layer. Lau and Reis [20] also publish their FC-

Portugal2001 source code albeit without full SBSP and DPRE functionalities. The

FCPortugal2001 basic formation functionality is being adopted in our implementa­

tion along with a novel positioning algorithm. FCPortugal2001 source code is used

to gain insights on how to use the base CMUnited99 code effectively and how to add

new layers of complexity on top of CMUnited99.

CMUnited99 source code does not come with a goalkeeper while FCPortugal2001

provides a stripped down version of a goalkeeper. A goalkeeper is the last line of

defence and an important factor in winning the game. Only the goalkeeper role is

allowed to use the catch(') command. Additionally, the goalkeeper’s movement is

configured and focused around and within the penalty box area. We used the FCPor-

tugal2001 goalkeeper in TA09 to focus more on the BDI aspects of non-goalkeeper

players. We adopted FCPortugal2001’s formations, conf file and file loading mecha­

nism into TA09.

RoboCup 2D Soccer Simulator (RCSS) version 11.1.0 which consists of rcssbase,

rcsslogplayer, rcssmonitor, and rcssserver is used for this implementation on PowerPC

17

based OS X 10.4 and 10.5. Other software libraries used to compile RoboCup Soccer

Simulator are Boost version 1.33, X l l library, and GCC 3.3 compiler that comes

with OS X 10.4/10.5 SDK. Python[10] programming language is used for an initial

prototyping of a simple RoboCup client. Subversion [11] is used as the main source

control repository system. In the next few sections we will discuss in-depth TA09’s

BDI and non-BDI components.

3.1 Layered Architecture

Like the Stone et al. [26, 27] layered approach, the TA09 architecture sits on top of

the base CMUnited99 implementation. The TA09 general architecture diagram is

shown in Figure 3.1. RoboCup 2D Simulation Server (RCSS) will send sensory infor­

mation intermittently to each player connected to the server. Each player will parse

sensory information to reconstruct player’s perception of the world. Any changes to

the player’s world through sensory updates will influence the BDI layer that drives

decision process which decides what plan to adopt and which plan’s mode to execute.

Mode will determine a series of actions-, mode translates the actions into commands

RCSS will understand. RCSS executes the commands in its simulation and sends

back sensory information as a result of those commands. Parameters are variable

values that influence the behaviour of each mode. A list of parameters is loaded from

the configuration file independently when each player is initialized. The plan library

is a collection of plans which consist of a series of modes. Like parameters, the plan

library is loaded independently when each player is initialized. Formations are a set

of x and y coordinates for each player on a team to form the team formation for

positioning during game play. The formations file is loosely adopted from Lau and

Reis [20] FCPortugal2001 team with TA09’s unique positioning system.

18

Player Server

Figure 3.1: Layered architecture.

3.2 Mode

Mode is an agent’s present state-of-mind reflecting the agent’s intention. Currently,

there are seven modes: chase, dribble, pass, shoot, defend, position, and cover. These

modes form a basic working RoboCup team player in TA09. A mode consists of

execution preconditions, a list of desired modes i.e. preferred modes to be considered

for the next execution step after the executing current mode, a series of actions to be

executed, and goals to be reached. A diagram of the mode architecture is shown in

Figure 3.2.

Adoption of a mode means commitment to execute that mode until its goals axe

achieved or its commitment is dropped. If the preconditions are not met, the agent

19

will not adopt that mode. When the agent commits to a mode, the agent will keep

executing the mode until that mode’s goals are reached as long as the preconditions

continue to be met prior to each execution of that mode. Section 3.8 will elaborate

how a mode is chosen and executed in TA09’s decision process.

MODE

PRECONDITIONS

DESIRED MODES

ACTIONS

GOALS

Figure 3.2: Mode diagram.

Each mode execution will generate a list of desired modes to be selected for the

next execution in decision process and will be discussed in detail in Section 3.5.

Actions are a series of commands recognizable by RCSS such as dash, kick, turn,

etc. grouped in a logical way to form a collective functional action.

The behaviours of each mode are defined by parametersloaded from configuration

files independently by each player. The parameters file allows players’ behaviours to

be defined according to a player’s role on a team e.g. the defender role will have

parameters influencing defend mode to have a wider and deeper defensive zone com­

pared to other roles. All of the modes in TA09 will be described in detail in the next

few paragraphs.

20

3.2.1 Chase

Chase is using geLballQ from CMUnited99 [26] for obstacle avoidance and stamina

conservation functionalities. The precondition for chase is the number of teammates

closest to the ball. This configurable number is set to avoid stealing the ball from a

dribbling teammate and to prevent players from swarming the ball. The main action

of chase, is get-ball() alone and the mode’s goal is reached when the ball is within

dribbling distance.

3.2.2 Dribble

Similar to chase, dribble consists of get-ball() but with the additional basic action

kickQ. kickQ will kick at a low power to ensure that the ball stays within dribbling

distance. Preconditions of dribble are: the ball is kickable, within kicking range, or

the ball is within a configurable dribbling distance. The dribble action is to dribble to

strategic areas in the opponent’s field— such as the goal line, penalty box corners, and

field corners— by considering the number of opponents in the vision cone between the

player and these strategic areas. Dribble’s goal is reached when the ball is dribbled

into the opponent’s penalty box, or is past the opponent’s penalty kick point, or is

past beyond the player’s positioning range.

3.2.3 Pass

Pass will pass the ball to the best teammate with the precondition of having the ball

within the dribbling distance. pass-ball() from CMUnited99 [26] is used in the actual

passing; passJ>all() calculates the angle and power of the basic action kick() to target

the teammate position at the desired velocity. A finer decision mechanism in pass is

the algorithm to prefer the least congested and the least unobstructed teammates in a

forward position before falling back to teammates behind the ball i. e. pass backward.

The last resort of pass is to kick to the opponent’s left or right corner field. The

21

goal of pass is to have the ball leave the dribbling distance to ensure that there is

no passing failure or ball is not stolen by a near-by opponent. On an unsuccessful

attempt, pass will chase the ball using CMUnited99 [26] get-ball().

3.2.4 Shoot

Shoot will shoot the ball at the opponent’s goal with the precondition that the ball is

within the dribbling distance. The action of shoot is to shoot at the least obstructed

angle between the shooter and the goal line. The goal of shoot is attained when the

goal is scored or the ball strays out of the penalty box or the offensive zone.

3.2.5 Defend

Defend acts similarly to pass by trying to clear the ball from the defensive zone to

the least congested and the least unobstructed teammate. There is no precondition

for defend mode and can be executed at any time. Defend will persist on chasing the

ball and clearing the ball until the ball is out of the defensive zone. The last resort

of defend is to kick to the closest side line or mid-field side line.

3.2.6 Position

Position does not have any preconditions and can be executed at any time. The

action in position is to move to the player’s formation position and is successful when

the player reaches the positioning zone. The positioning zone is calculated based on

a configurable extraction and retraction distance from the formation’s position. The

positioning zone allows the whole team to retain a relative formation positioning to

cover the field.

22

3.2.7 Cover

Cover does not have any preconditions and can be executed at any time. During

execution cover will chase the ball if the ball enters the covering zone of the player’s

current position. Chasing will not happen if the ball is being dribbled by the player’s

teammate. The goal of cover is reached when the ball, which entered the covering

zone, is secured within a dribbling distance.

3.3 Plan

A plan is a sequence of modes and an ordered list of plans forms a plan library used

by an agent’s decision process. Each plan carries a numerical weight associated for

defence and offense. The numerical weight will influence a player’s preference of one

plan over the others depending on the player’s analysis of the situation. A plan li­

brary is a list of plan definitions stored in the plans, conf file and loaded upon the

start of each player. Figure 3.3 and 3.4 show plan library diagram and sample library

respectively. Figure 3.5 shows the plan definition format along with samples. Similar

to the parameters file, plan library is used in skills specialization for a specific role.

Each player has a subset of plans from the defined plans in the plan library. This

plans specialization allows a player to adopt behaviours according to its role. Spe­

cialized plan format and samples can be seen in Figure 3.6. In our implementation

plans-defense, conf is used by the defender role, plans-midfield.conf for the mid-field

player role, and plans-forward, conf for the striker role.

PLAN LIBRARY

Figure 3.3: Plan Library diagram.

strategies.conf

Position ---------►

f -------------------------- *
Cover _____ ►

f ...

Pass
- J 1

Position
....>

Cover
"----------------------------

Defense
s ,J - J L___________________)

Position Chase Shoot

Chase

P---s

Chase
t J

— ►

#---*

Dribble
i. ^

f- ■*

Shoot
L 0

f \ f >

Defense

Figure 3.4: Plan Library sample.

24

<Name> <Mood> <ModeCount> <Model> <Mode2> . . .

I n i t i a l : Position, Cover, Chase, Pass
P-PCCP 4 6 7 0 3
Cover, Chase, Dribble, Shoot
P-CCDS 4 7 0 2 4
Position: Position, Chase, Shoot
P-PCS 3 6 0 4

Figure 3.5: Plan Definition format and sample.

Complement plan is a loose coordination method that allows a player to execute a

predetermined plan when a player recognizes a plan being executed by a teammate.

This association allows a player to adopt a complement plan upon detection of a team­

mate’s plan. A plan may have one or more complement plans. If visual observation of

another teammate suggests to a particular plan in plan library then its complement

will be adopted as a means of recognizing the teammate’s intention. This can be used

to construct more complex coordinations while retaining the loosely coupled way of

planning. Adopting a complement plan results in a strategic coordination where a

player adopts a strategic plan depending on a teammate’s active plan. Complement

plan format and a sample are shown in Figure 3.6.

<Namel> <Weight> <ComplCount> <ComplPosl> <ComplNamel> . . .

<Name2> <Weight> <0>

Attack: Chase & Pass then Position & Shoot

P-CP 0 1 0 P-PS

Position , Shoot

P-PS 0 0

Attack : Chase , Shoot

P-CS 0 0

Figure 3.6: Specialized Plan format and sample.

25

3.4 Formation

The stripped-down version of CMUnited99 [26] does not come with a formation fea­

ture; on the other hand, FCPortugal2001 [20] comes with a simple formation config­

urable in the formation file but without SBSP (Situation Based Strategic Positioning)

and DPRE (Dynamic Positioning and Role Exchange) features. Our implementation

follows the FCPortugal2001 approach by defining each formation in a formation file

loaded by every player on initialization. Formations used are popular formation types

found in a realistic soccer game such as 44% and 433. Figure 3.7 shows the TA09

formation format and a sample of the formations, conf file. Our implementation uses

dynamic extraction and retraction to allow players to move freely within the area of

each player’s position. This implementation is fairly simple compared to FCPortu-

gal2001’s SBSP but is usable for a fully functioning RoboCup team.

<Formation Name>
<Plx> <P2x> <P3x> <P4x> <P5x> <P6x> <P7x> <P8x> <P9x> <P10x> <Pllx>
<Ply> <P2y> <P3y> <P4y> <P5y> <P6y> <P7y> <P8y> <P9y> <P10y> <Plly>

4420PEN
-45 .0 -11 .0 -12 .0 -12 .0 -11 .0 8.0 2.0 2.0 8.0 20.0 20.0

0.0 18.0 7.0 - 7 . 0 -18 .0 25.0 10.0 -10 .0 -25 .0 10.0 -10 .0

Figure 3.7: Formation format and sample.

3.5 Belief-Desire-Intention

Belief-Desire-Intention (BDI) presented in TA09 is an abstract layer rather than a

definitive data structure or implemented algorithm. Figure 3.8 shows the BDI di­

agram consisting of the three main components of Beliefs, Desires, and Intentions.

The Beliefs, Desires, and Intentions are local to each player.

Beliefs are constructed from prior and run-time knowledge. Prior knowledge con­

sists of parameters, formations, plan definition library, and specialized plans. Run-

26

Figure 3.8: BDI diagram.

time knowledge is acquired from the RCSS, the player’s observation, and the role

which is derived from parameters, formation, and specialized plans. Compared to

real-world soccer, prior knowledge is static training or strategy knowledge acquired

prior to the match; on the other hand, run-time knowledge is acquired during the

match from within the player itself or through communication among teammates.

Desires are represented by modes suggested by a previously executed mode, goals

to achieve in the adopted mode, and observed teammates’ intentions. Suggested

modes are considered by the decision process in choosing the best suggested modes

27

for the next execution. Figure 3.9 shows the desires matrix listing all desired modes

suggested by each mode upon completion of a mode's execution. There are various

goals in each mode. A player’s desires are extended to the goals in the suggested

modes since the result of mode execution relies on its goals’ fulfillment. Observed

teammate intentions will also influence the player’s desires in the decision process

which will be discussed in detail in Section 3.8.

Intentions are reflected in a player’s commitment to a plan, assigned role, and

adopted formation. Commitment is reflected in player’s persistence in trying to ex-

ecute a mode until one of the goals of the mode is achieved. The role assigned to a

player is also considered as an intention. Similar to role, a formation is adopted from

a set of formations by all players in TA09. Both role and formation adoptions are

considered as a player’s intention and commitment to retain its role and formation

until there is a need to do otherwise.

28

Figure 3.9: Desires matrix of each mode.

29

3.6 Observation-based Coordination

In the noise-added environment such as RoboCup Soccer Simulator a timely yet accu­

rate communication is a challenge. Initially we looked into using direct audio commu­

nication and the announce-propose method for coordination but the result was neither

favourable nor realistic since it requires a player yell to announce its plan or intention

to other teammates periodically. This communication method can be easily eaves­

dropped although it can be seemed by using simple message encryption. The current

tested version of the RoboCup Simulator server does not drain a player’s stamina for

excessive audio communication use. Realistically a soccer player could lose stamina if

the player needs to yell constantly during the course of the game. Instead we used an

observation-based coordination approach to speculate for a teammate’s intention via

the teammate’s distance to the ball; this approach relies on visual features and has

greater range compared to audio communication approach, along with the benefit of

not having to deal with eavesdropping. On a period of server cycle, each player will

observe visible teammates and remember the distance to the ball in order to deduce

the observed teammate’s intention on the next observation. In a real soccer game

a strategy or set-play is often being initiated by a player on certain situations with

the implicit assumption that teammates will behave accordingly. During-training, a

coordinated strategy is being exercised repeatedly in a simulated situation in order

to avoid misunderstanding and to improve coordination. The knowledge gained from

training can be constructed as plans and associated complement plans in the plan li­

brary. If the distance between a teammate and the ball is within dribbling range then

most likely that teammate is in dribble or chase mode. When the distance between

the teammate and the ball is shrinking but greater than dribbling range then the

teammate’s possible modes are chase, cover, or position mode; when that distance

is growing then that teammate is probably going back to its position in position or

cover mode.

Figure 3.10 STEP 1 shows A, a midfield player, positioned around the center of

30

STEP 1 STEP 2 STEP 3

Figure 3.10: Observation-based coordination.

the field and B, a forward teammate, who has moved deep into the opponent’s field. A

has adopted chase-dribble-pass plan and executing dribble mode in STEP 1. Dribble

mode for a midfield player is set in parameters to dribble to opponent’s penalty box

area. B observed A and deduced that A is in dribble mode. B then searched the

plan library for a complement plan of any plan with dribble mode and found the

complement plan of position-cover-shoot. Then in STEP 2 B adopts position-cover-

shoot and positions itself to a strategic position as a forward player before entering

into cover mode. After reaching goal of dribble, A will execute pass and look for the

best teammate to pass to as shown in shown in STEP 3. Depending on the current

position of both players and distance between them, B may be the best candidate

for A to pass the ball to. If so, A will pass to B and B will chase the ball, as part

of cover mode, before proceeding to shoot in shoot mode as shown in STEP 3. This

coordination happens without any communication and relies solely on observation

and inference.

3.7 Situation Analysis

Mood is a distinct state of behaviour that a player adopts based on a situation during

the match. Ball position and direction are the driving factors in changing the mood

31

of a player. The three moods used in TA09 are defensive, offensive, and neutral

mood. Defensive mood is adopted when the ball is deep inside the home area and is

configurable by defensive line parameter. Offensive mood is set when the ball is inside

the opponent’s field and is configurable by the offensive line parameter. Outside those

two moods the player will default to neutral mood. The mood feature will influence a

player’s decision to prefer a certain plan over other plans in the plan library during

plan changing.

3.8 Decision Process

Decision process regulates the interaction of all TA09 components into a working

rational agent. Figure 3.11 shows decision process, the main component in the TA09

architecture for making decisions based on influences from BDI and non-BDI com­

ponents. Initially a default plan is selected by an agent and the first mode of the

selected plan is executed to produce a list of desired modes. For example, after chase

mode is executed, the logical desired modes are dribble, pass, kick. Desired modes

are tested for their preconditions and the first mode which passes its preconditions is

selected for execution.

Intention observation is handled in the intention explore stage by comparing every

mode of every plan in the plan library with the possible observed mode. If a mode

of a plan is matched with one of the possible observed modes then it means there

is a chance for a complement plan to coordinate with the observed teammate’s plan.

Each complement plan of the matched plan for a matching position is then checked. A

matched position implies that the observer can execute the complement plan expecting

the observed teammate to continue its current intended plan. This process is a loosely-

coupled observation-based coordination and only the observer needs to react or plan

to match with the observed teammate.

If there is no observed intention, decision process will check if the last mode was

32

Figure 3.11: Decision process diagram.

executed successfully. If execution of a mode returns false, i.e. the mode's goals have

not been reached, decision process will keep executing that mode until it returns a

true value. If a true value is returned, the next mode in the plan is selected for testing

and execution. Commitment will ensure that a mode in a plan is always executed as

long as it is still possible to execute it. If it is not possible by all means, the agent

will drop the commitment on that plan and find another plan from the plan library

for testing and execution. After the last mode in a plan is executed successfully the

33

plan is dropped and the next plan from the plan library is adopted.

Possibilities

-- ►
T i m e s t e p

Figure 3.12: Decision path example.

Figure 3.12 shows a decision path where the y axis is listing all possible modes

at that particular decision cycle and the x axis is listing all decision cycles. Possible

modes are shown as regular lines and the chosen mode is shown as an arrow line.

A disconnected line in the decision tree indicates the beginning of a new plan or

execution of a default mode when none of the desired modes are possible to execute.

34

Chapter 4

Evaluations

Comparative and subjective evaluations are used to determine the extént to which a

soccer simulation team is achieving its overall, predetermined BDI objectives. Com­

parative evaluation is used to compare the performance of one soccer simulation team

against another soccer simulation team whilst subjective evaluation assesses the BDI

and non-BDI aspects of TA09 team with respect to CMUnited99, FCPortugal2001,

and ATHumboldt98.

4.1 Comparative Evaluation

In this study, a comparative evaluation is used to measure the performance of TA09

against CMUnited99 [28] and FCPortugal2001 [25] teams. CMUnited99 is matched

against itself as a baseline experiment. Two 100 match experiments are performed for

each team, one without a goalkeeper (NG) and another with a goalkeeper (G). Each

match has two 300 second halfs with no extra halfs or penalty shootout. The goal­

keeper is the last line of defence and is distinctly different from other non-goalkeeper

roles such as defender, midfielder, or striker. Our thesis focus is on the non-goalkeeper

aspects of RoboCup but a soccer team is not complete without a goalkeeper so we

decided to use FCPortugal2001’s goalkeeper in all teams in G matches.

4.1.1 CMUnited99 vs CMUnited99/

Default CMUnited99 game play for every players is chase the ball and then shoot

(hard kickQ) at the opponent’s goal immediately without any passing or dribbling.

35

CMUnited99 Win Lose Draw Avg Goals For Avg Goals Against
Without Goalkeeper (NG) 46 38 16 6.52 6.43

With Goalkeeper (G) 34 41 25 1.19 1.37

Figure 4.1: CMUnited99 vs CMUnited99/ results.

In the NG experiment all players from both teams keep swarming around the ball

whenever the ball is moved by the player which is closest to the ball. Player congestion

is mostly in the mid-field and almost all the goals scored are from a stray ball during

heavy kicking from mid-field or near the penalty box area. CMUnited99 won slightly

more NG matches than CMUnited99/ but both teams have average goals scored close

to each others average.

In the G experiment a similar pattern is shown but goalkeepers from both teams

manage to save many balls shot intentionally or simply stray. The difference in num­

ber of goals between CMUnited99 teams in both NG and G experiments is fairly low

which shows that both teams performed equally after taking into account simulation

random variables such as wind factor. These baseline experiment results confirmed

that our comparative evaluation setup is suitable for contrasting the performance of

TA09 against CMUnited99 and FCPortugal2001 teams.

4.1.2 TA09 vs CMUnited99

TA09 Win Lose Draw Avg Goals For Avg Goals Against
Without Goalkeeper (NG) 67 22 11 4.72 2.66

With Goalkeeper (G) 49 23 28 1.11 0.63

Figure 4.2: TA09 vs CMUnited99 results.

In the NG experiment CMUnited99 players swarmed the ball and left many op­

portunities for the TA09 players to counter attack. Most goals from CMUnited99

were from stray ball shot as a result of congestion between CMUnited99 swarming

players and TA09 defenders. TA09 attacks mostly started by passing among team­

mates in a spread-out formation— dribbling toward the opponent’s area whenever

36

possible— and shooting for the goal in CMUnited99’s defensive zone. TA09 offen­

sive attacks were effective and resulted in almost triple the number of matches won

compared to CMUnited99 and almost double the average goals scored compared to

CMUnited99.

In the G experiment, the CMUnited99 chase & shoot algorithm is shown to be

quite effective scoring goals when used in the proximity of the penalty area. A sud­

den strong shot from one of CMUnited99 swarming players may sneak past TA09

defenders and leave TA09 goalkeeper incapable of catching the ball in time. Most

CMUnited99 goals were scored from this type of situation. TA09 goals came from

relentless attacks by forward players and “clever” passes from midfield players to

forward players away from the congested CMUnited99 players.

4.1.3 TA09 vs FCPortugal2001

TA09 Win Lose Draw Avg Goals For Avg Goals Against
Without Goalkeeper (NG) 43 38 12 2.64 2.77

With Goalkeeper (G) 33 13 54 0.77 0.55

Figure 4.3: TA09 vs FCPortugal2001 results.

In the NG experiment, FCPortugal2001 players line up at the center line as their

default positioning and one forward player is sent forward to attack and kick as

hard as possible to the TA09 goal before returning to the center line. On defence

all FCPortugal2001 players form a two-level zagged line at the middle of their field

retracting from their default position from center line. If any ball passes the first line,

the second line players intercept. This lining up strategy has proven really effective to

block TA09 dribbling players and to nullify passes and even shots. TA09 kept trying

to spread out players and passes followed by dribbling but the ball is almost always

intercepted by FCPortugal2001 players. FCPortugal2001 offense was effective due

to the non-existent TA09 goalkeeper and spread-out TA09 players. TA09 came out

slightly better than FCPortugal2001 in the number of matches won but the average

37

goals is a bit less than FCPortugal2001.

In the G experiment, goalkeepers on both team managed to prevent many goals.

FCPortugal2001 goals came mostly from counter attacks when TA09 is all out attack­

ing leaving only the goalkeeper and a few defenders to defend. TA09 goals were scored

from successful passes from midfield to forward players and from a successful all-out

attack beating FCPortugal2001 defenders and goalkeeper. Effective goalkeeping from

both teams contributed to the high number of tied matches. FCPortugal2001 at­

tacks and counter attacks utilizing a single forward player detached from the zagged

line formation can be easily defeated by the TA09 goalkeeper. Most TA09 attacks

however are built from several players shooting in the FCPortugal2001 penalty box

area resulting in the higher number of won matches and average goals compared to

FCPortugal2001.

4.2 Subjective Evaluation

A subjective evaluation is taken to analyze key features of TA09 in comparison with

CMUnited99 [28], FCPortugal2001 [25], ATHumboldt98 [5, 6] and a typical human

soccer team. Criteria for subjective evaluation are: adherence to Bratman’s [3] philo­

sophical approach (four theses for BDI and planning in particular); planning and

reasoning; behaviours, roles and formations; coordination; and simplicity of overall

design. The BDI portion of subjective evaluation will compare TA09 with mostly

ATHumboldt98 team because ATHumboldt98 has an explicit BDI implementation.

Non-BDI based CMUnited99 and FCPortugal2001 are included in the comparison

whenever applicable.

4.2.1 Belief-Desire-Intention

Beliefs are presented in the World Model component of ATHumboldt98 [5, 6] in

which all RCSS sensors are processed to construct an agent’s world. TA09 differ­

38

entiates an agent’s knowledge or world model into prior knowledge and run-time

information. Prior knowledge is constructed from parameters, formations, a plans

definition library, and specialized plans. TA09 run-time information is exactly the

same as ATHumboldt98 World Model component; it is also similar to CMUnited99

and FCPortugal2001 implementations. The inherent design of RoboCup Simulation

requires each player to process periodic new sensor information and to construct a

player’s world which is used in planning and decision making. Practically all com­

petitive RoboCup simulation teams have similar types of world models constructed

which fit naturally into Bratman’s belief model.

In ATHumboldt98 desires are possible goals selected out of a fixed goal library.

These goals can be achieved by adopting an appropriate option which has its util­

ity estimation and planner. Available accessible options are essentially desires in

ATHumboldt98. The ATHumboldt98 concept of desire is similar to TA09 concept of

desire— presented in the desires matrix and decision process—due to their common

foundation on Rao and Georgeff [22] possible worlds semantics approach in which

desires are presented by possible worlds in a branching tree structure.

t

Commitment to intention is being regulated by the ATHumboldt98 BDI Reason­

ing Process by fixing on intended option until option's goal is reached. Once commit­

ted, ATHumboldt98 player will not plan on choosing another option. ATHumboldt98

intention is fixed on an option and TA09 intention is fixed on a plan as a series of

modes. In TA09 commitment to a mode is shown by persistency in executing that

mode until its goals are reached as long as the preconditions of that mode are fulfilled.

In addition, TA09 has a joint-intention feature, a concept of collaborative intention

introduced by Jennings [16], that does not exist in ATHumboldt98.

39

4.2.2 Planning and Reasoning

CMUnited99 [28] has low-level skills such as getJ>all(), pass-ball(), and HckJballQ

which can be considered as an agent’s state of mind because they are committed on

execution over a duration of time to achieve certain goals. FCPortugal2001 [25] has

various actions such as shoot, pass, dribble, and cover goal grouped into ball possession

and ball recovery modules of SBSP. These actions are committed and executed over

a period of time. In ATHumboldt98 [5, 6] the option selected to achieve desired goals

over a period of time is governed by Reasoning Process. In TA09, mode is similar to

CMUnited99 low-level skills, FCPortugal2001 actions, and ATHumboldt98’s options

except mode is at a more abstract level which can be linked in a series as a plan

to construct a plan library. TA09’s model of intention is aligned with Cohen and

Levesque’s [8] persistent goal which models an agent’s chosen and committed state of

mind to a course of events over a period of time. Goals are embedded in each mode

and collectively in the plan. TA09 mode is an agent’s state of mind constructed with

specific actions to achieve certain goals. Braubach et al. [4] classifies this type of goal

as an achievement goal where action is performed until a certain condition is reached.

CMUnited99 [28] uses a trained Decision Tree (DT) to choose various low-level

skills such as passing, dribbling, or kicking in appropriate situations. FCPortugal2001

[25] strategy information consists of several Tactics which activated and adopted by

players depending on various policies. ATHumboldt98 [5, 6] Planning component is

initiated whenever new sensor information is received by an ATHumboldt98 player

and is done in two stages. The first stage is to choose the best possible desired goal

and commits to it as the intention of the long term planning. In the second stage, the

Planning component will execute partial planning in the Advanced Skills component

to produce short-term planning that fits between two RCSS cycles. TA09 plan library

specifies a series of general steps to execute while CMUnited99’s DT relies on offline

training to choose is the best action to take depending on the players’ positioning and

distance. FCPortugal2001 Tactic is driven by preset Situations chosen by situation

40

analysis during the match.

The ATHumboldt98 [6, 5] BDI Reasoning Process is executed on every RCSS

cycle. The first stage is checking on the continuation of intention for an option.

If there is no commitment then constraints, desires, and intention determination

stages will be executed followed by planning and execution of the chosen intention.

If there is commitment to a particular intention, the reasoning process will skip the

determination stages and continue planning and executing the chosen intention. The

TA09 decision process will keep executing a mode until its goal is reached while still

checking the precondition of that mode prior to execution. Commitment to a plan is

dropped successfully when the last mode in the plan is executed successfully when its

goal is reached or dropped prematurely when the intended mode cannot be executed

due to its preconditions not met.

CMUnited99 [28] utilizes offline training with a Neural Network and a Decision

Tree for low-level skills and higher “social” skills, i. e. passing, respectively. FCPortu-

gal2001 [25] uses predefined strategy information in strategy, conf that will influence

player behaviours depending on the match situation. ATHumboldt98 [5, 6] uses pre­

defined parameter values in player’s decisions and skills. CMUnited99 offline training

is much more sophisticated and it can be trained against different RoboCup teams.

FCPortugal2001, ATHumboldt98, and TA09 rely on offline hand-crafted parameters

in fine-tuning player’s behaviours.

TA09 planning is partial at plan adoption time and complete when the last mode

in that plan is executed successfully. During the execution of a plan, a TA09 player

resists reconsideration of other modes suggested by the desire matrix as long as that

plan is still possible to be carried out according to the TA09 player’s beliefs. These

characteristics fit Bratman [3] description of planning by a rational agent and com­

mitment of Cohen and Levesque [8].

41

4.2.3 Role, Formation, and Coordination

Role and positioning are treated as a single component in CMUnited99 [29]. Each

role will have a different behaviour and will retain its relative position unless its

formation is changed. For example, upon formation change via Periodic Team Syn­

chronization (PTS), a midfielder player can switch to defender rolé or forward role.

Formation change can be initiated by any player which later propagates to the rest

of the team during the match. FCPortugal2001 [25] uses Situation Based Strategic

Positioning (SBSP) by dynamically adjusting individual positions depending on var­

ious policies during the game. On the other hand, Dynamic Positioning and Role

Exchange (DPRE) is used to calculate positioning based on role similar to CMU-

nited99. Both Lau and Reis [20] and Stone et al. [29] reported their success with

dynamic formation changes during the match. TA09 positioning is similar to CMU-

nited99 formation positioning and FCPortugal2001 SBSP: a player’s position in a

formation is the starting point and, depending on the ball position and direction, a

TA09 player extracts or retracts within its default formation position. The TA09 im­

plementation of role is implemented using parameters and a specialized plan library

to form defender, midfielder, and forward roles.

CMUnited99 uses a run-time formation-switching algorithm based on score differ­

ence and time left during the match. This allows CMUnited99 to switch formation

and role that will influence players’ behaviours. FCPortugal2001 analyzes various

match conditions, such as ball possession, ball position-velocity, and all players be­

liefs to assign one of the preset Situations that will activate Tactic. ATHumboldt98

[6, 5] relies on utility estimation in each option during planning. The utility estima­

tion analyzes the probability of a successful result from the option selection. TA09

uses ball position and direction to set the mood in each player to react to the situa­

tion. Mood will influence preference of plan selection in the decision process to adjust

players’ behaviours.

Periodic Team Synchronization (PTS) is used in CMUnited99 by utilizing direct

42

audio communication to propagate formation information, ball location, and other

useful information among teammates. FCPortugal2001 relies on mutual knowledge of

decision rules by all players to allow them to predict each other’s decision. In the role

exchange case, audio communication is used to avoid conflicting prediction due to an

agent’s local perspective. Burkhard et al. did not mention any specific communication

method for team coordination in ATHumboldt98. The TA09 observation-based coor­

dination feature is influenced by Jennings’ [16] specification of joint-intention where

an agent acknowledges that actions performed by other agents are related to its in­

tention. Although joint-intention can be done by collaborating agents all agreeing on

a common goal, we chose to implement one-sided or loosely-coupled joint-intention to

avoid communication overhead and complex negotiation.

Strategical positioning and coordination are key factors in winning a soccer game.

CMUnited99 set-plays are predefined coordination specifying position and role trig­

gered by specific situations typically announced by the referee such as corner kick,

free kick, etc. In a set-play situation, a player role will change to a specific role

to perform behaviours required for the set-plays. The set-play role is dropped after

the execution of the set-play. FCPortugal2001 SBSP uses preset Tactics containing

formations that determine players’ positionings and roles to strategically mobilize

players depending on various policies during the match. ATHumboldt98 does not

have specific predefined multi-player coordination. TA09 relies on complement plans

together with intention observation to execute a strategical plan. A complement plan

does not rely on predefined positionings and roles like in CMUnited99 nor does it

tie into Formation-Tactic found in FCPortugal2001. Teammate intention is the sole

factor in triggering a complement plan thus allowing the flexibility of being executed

at any time without complex coordination and communication.

43

4.2.4 Design and Architecture

CMUnited99 [29], FCPortugal2001 [25], and ATHumboldt98 [5, 6] are designed from

the ground-up for RoboCup 2D Simulation; hence none of those team architectures

can be easily adaptable to other real-time Multi-Agent System applications. On

the other hand, TA09 architecture for BDI components such as mode, plan, and

decision process can be generalized for other real-time MAS applications. The mode

concept is suitable as an abstraction of partial planning and can be replaced with a

specific target MAS implementation while still representing an agent’s state of mind.

Loosely coupled modes along with the desires matrix are components that would

require implementation changes according to the target MAS application. Both the

plan and the decision process concepts are generic enough to be used without much

change. Plan connects a string of modes together and combined with commitment to

a plan forms persistent planning. Commitment can be adjusted to be short-term or

reactive by committing only on mode or longer term by committing on plan. Intention

observation part can be omitted if joint-intention feature is not needed in target MAS

implementation.

4.2.5 Conclusion

We created a successful RoboCup 2D Simulation team as shown in the Comparative

Evaluation. In the Subjective Evaluation we showed that TA09 stays faithful to

Bratman’s model of rational agent with improvements from Jennings’ joint-intention

and Cohen and Levesque’s commitment. The flexibility in TA09 allows behaviour

modifications by simply changing configuration files. In the next chapter we will

discuss all other aspects beyond the evaluations we did in this chapter.

44

Chapter 5

Discussion

In this chapter we will discuss issues encountered during TA09 design, implementa­

tion, testing, and evaluations. We will point out some of TA09 limitations along with

suggested improvements for future work.

5.1 Design and Implementation

Existing works related to BDI, MAS, RoboCup, together with CMUnited99 [29] pub­

licly available source code, provided the foundation for this project. The TA09 imple­

mentation started with a simple RoboCup client prototype using Python [10]. This

prototype was replaced with an adaptation of CMUnited99 into basic TA09 with BDI

and non-BDI components added. We spent approximately three man-month time on

TA09 in BDI design, implementation, improvement, and testing. The bulk of the time

was spent on implementing mode, plan library, various improvements via parameters

adjustments during testing, and common features needed to compete in RoboCup

competition at a reasonable skill level such as formation, positioning and roles.

5.2 Testing and Evaluations

Once the TA09 BDI components were implemented and tested, we started to add

non-BDI components during testing to the point that the TA09 team demonstrates

the play level of a typical RoboCup team and mimicks real soccer team play. Testing

on the TA09 components are done via various test case scripts that simulate specific

45

conditions, e.g. under attack or attacking, and with specific parameters and plan

setups, and player positionings. We observed test matches by watching Monitor and

verified the results from TA09 log outputs.

During TA09 vs CMUnited99 experiments, we adjusted parameters and plans to

be able to counter the CMUnited99 chase & shoot behaviour. Plans in defender and

midfielder roles are configured to pass more often in the defensive and neutral mood.

This change to passing effectively made TA09 players to spread-out based on their

formation positions to allow better congestion avoidance and strategical positioning,

which in turn enabled TA09 to play better than initially against CMUnited99. Like­

wise in the TA09 vs FCPortugal2001 experiments, we did similar tweakings with

TA09 parameters and plans to break FCPortugal2001’s strong defense. With simple

changes to plans and the configuring parameters, TA09 outperformed CMUnited99

and FCPortugal2001 teams.

5.3 Limitations

Although the TA09 implementation showed desirable results, there are limitations

that could be overcome by future improvements and competing at RoboCup compe­

titions. We believe that once these limitations are eliminated along with some further

improvements the TA09 team will be able to compete at the current RoboCup compe­

tition level. In the next few paragraphs we will point out the TA09 limitations along

with possible areas of improvements based on our experience during this research.

The chase, dribble, pass, shoot, defend, position, and cover modes can be enhanced

further for improved performance. A better trajectory calculation for ball interception

and obstacle avoidance could be beneficial to the chase, dribble, pass, and cover modes.

Shoot mode can use online machine learning during the match to learn to beat the

opponent’s goalkeeper. Pattern recognition can help the defend mode to detect attack

patterns or set-plays accurately. The position mode could be improved along with

46

better formation and positioning which will be discussed in the next few paragraphs.

Currently the plan library is static and it is loaded once upon the start-up of each

player. The plan library could be dynamic— i. e. player could add, change, or delete

plan library during run-time— to allow greater flexibility and extensibility compared

with the current offline configuration. Each specialized plan carries a weight assigned

to each mood. Plans with the same weight will be treated equally with prioritization

given to the listing order of the plans in the library. Real-valued weight values that

can be dynamically adjusted on the basis of the success of the plan execution could

improve the performance and accuracy of the decision process in selecting a plan.

A feedback-based or machine-learning approach can be used in assigning real-valued

weight values to each plan during the match or as a result of offline training. An

approach similar to Guerra-Hernandez et al. [2] machine learning in BDI can be

added to the decision process to learn the priority of a plan suitable for a given match

situation.

Both Lau and Reis [20] and Stone et al. [29] reported on their success with dynamic

formation changes during the match despite their differences in implementation. TA09

could use dynamic formation change based on match situation using various prede­

fined rules. Ideally formation change is initiated by the captain or coach— similar to

a real soccer game—and propagated to the rest of the team either via observation or

audio communication means.

Role switching is particularly useful when a player needs to switch roles because

the player is in a strategic position i.e. a defender is in an attacking position. Lau

and Reis [20] and Stone et al. [29] reported successful implementation of flexible

role assignment in their FCPortugal2001 and CMUnited99 respectively. Hexmoor

and Zhang’s [12] positional role tree could be implemented to allow a player skills

specialization depending on player’s position in a team formation. Role is typically

related to a position in a formation hence ideally role switching, implemented using

positional role tree would be coupled with dynamic formation change in TA09. The

47

intended role can persist until the player drops the current intention due to changing

preconditions, such as formation change or ball opportunities, that influenced the

player to adopt the different role.

Any implementation of the audio proposal is handicapped by a limited audio

range, a noisy environment, and the unrealistic periodical hollering of the player dur­

ing the game. Instead of using the audio proposal TA09 uses intention observation

for coordination. Auditory communication is an effective and precise method to use

in close range situations. Stone et al. [26, 29] reported great success in audio com­

munication in CMUnited99 PTS implementation. Information propagation via audio

means could be a great complement to the TA09 observation component. Obscur­

ing the message and error-checking method are needed to ensure messages are not

eavesdropped and are properly received by all of the intended teammates. The in­

tended plan, formation change, and role switching axe a few areas that could benefit

from close range audio communication. The use of audio should not be excessive and

should be limited to short-range communication only. In the current RCSS version

say command does not consume stamina but realistically it is hard for a player to

keep hollering during ball chasing. Say command could drain player’s stamina in the

future RCSS version for a more realistic simulation.

Observation could be improved by tracking more teammates and opponents in­

stead of just the ball position and direction. Plan prediction similar to Huber and

Durfee’s [14] plan recognition and Rao and Murray [24] reactive plan recognition could

be used to better predict a teammate’s plan compared to just the mode as in the cur­

rent TA09 implementation. TA09 observation also sets player’s mood as defensive,

neutral, and offensive. Non-discrete mood values coupled with the plan’s weight will

allow smoother mood transition. A risk factor could be added as part of the obser­

vation component for better plan selection in the decision process. The risk factor

will utilize system feedback via reward or penalty similar to Ahmadi and Stone’s [1]

instance-based action model for action planning.

48

Chapter 6

Conclusions and Future Work

In this paper, the Belief-Desire-Intention (BDI) approach— based on Bratman’s

belief-desire theory, influenced by Cohen and Levesque’s [8] commitment, and in­

corporating Jennings’ [16, 17, 15] joint-intention in a novel way—is implemented

successfully in the TA09 for RoboCup 2D Simulation. Our BDI implementation ad­

dressed various facets of belief-desire theory beyond ATHumboldt98 implementation

while extending single agent planning aspects into multi agent coordination via joint-

intention. Comparative evaluation results show moderate improvements in TA09 over

CMUnited99 and FCPortugal2001 in terms of won matches and average goal scored.

In the subjective evaluation we showed several advantages of the TA09 design in the

BDI and non-BDI components such as mode, plan, and observation-based coordina­

tion compared to ATHumboldt98, CMUnited99, and FCPortugal2001.

In order to compete at the RoboCup competition level TA09 requires further

fine-tuning in modes, a role switching functionality, and improvements in players’

observation; we considered those key areas to be the priority of the next iteration of

the TA09 team in the future. TA09 BDI architecture is not tied to just RoboCup

domain specifically but can also be implemented for real-time Multi-Agent Systems

(MAS) applications. Mode is a domain dependent abstraction of an agent’s state-

of-mind hence it should be implemented according to the target MAS application

along with a plan library for planning capabilities. Our future plan for TA09 BDI

improvements are: a time-sensitive decision process, a dynamic plan library, and a

feedback-based plan prioritization.

The performance of TA09 demonstrates that the BDI model of a rational agent

can excel in RoboCup competition. Furthermore, the BDI approach in TA09 can

adapted for other real-time MAS applications as a flexible rational agent design.

Appendix A

Source codes

A .l TA09 team

http://www.csd.uwo.ca/ mercer/TA09

A.2 CMUnited99 team

http://www.cs.cmu.edu/ pstone/RoboCup/CMUnited99-source.tar.

A .3 FCPortugal2001 team

http:// www.ieeta.pt / robocup / documents/FCPAgent .tgz

http://www.csd.uwo.ca/
http://www.cs.cmu.edu/
http://www.ieeta.pt

51

Appendix B

RoboCup Simulation Server configuration

B .l server.conf

1
2 /* server Configuration file */
3
4 ###
5 # TA09 simulation experiment configs change
6 # from stock config file in CMU package:
7 #
8 # server::drop_ball_time * 40 # Faster kick-off.
9 # server::vind.random * true # Set random wind factor.

10 #

11 ###
12
13 # server::catch_ban_cycle
14 server::catch_ban_cycle ■ 5
15
16 # server::clang_advice_win
17 server::clang_advice_win * 1
18
19 # server :: clang_def ine_win
20 server::clang_define.win * 1
21
22 # server::clang.del_win
23 server::clang_del_vin * 1
24
25 # server::clang_info_win
26 server::clang_info_win * 1
27
28 # server::clang_mess_delay
29 server::clang_mess_delay * 50
30

31 # server :: clang_mess_per_cycle
32 server : :clang„mess„per„cycle =

33
34 # server ::clang_meta_win

35 server : :clang_meta_win * 1

36
37 # server ::clang_rule„win

38 server : :clang_rule_win * 1

39
40 # server ::clang_win_size

41 server: :clang„win_size * 300
42

43 # server ::coach„port
44 server : :coach„port * 6001

45
46 # server ::connect_vait

47 server : :connect_wait ■ 300

48
49 # server ::drop_ball_time
50 # server ::drop_ball_time * 200

51 server : :drop_ball_time * 40

52
53 # server ::freeform_send_period

54 server : :freeform_send_period *

55
56 # server ::freeform_wait_period

57 server : :freeform_vait„period ■
58

59 # server ::game_log_compression

60 server: :game_log_compression *

61
62 # server ::game„log„version
63 server: :game„log„version * 3
64
65 # server ::game_over_wait

66 server : :game_over_vait * 100

67
68 # server ::goalie_max_moves

69 server: :goalie„max_moves * 2

70
71 # server ::half„time

72 server: :half„time ■ 300

73

53

74 # server::hear_decay
75 server::hear_decay * 2
76
77 # server::hear.inc
78 server::hear.inc = 1
79
80 # server::hear.maz
81 server::hear.max « 2
82
83 # server :: keepavay_start
84 server::keepaway_start * -1
85
86 # server::kick-off.wait
87 server::kick.Off.wait * 100
88

89 # server::max.goal.kicks
90 server::max.goal.kicks ■ 3
91
92 # server :: nr.extra_halfs
93 /* Number if extra-time periods in a game if it is drawn */
94 tserver::nr.extra.halfs - 2
95 server::nr.extra.halfs * 0
96
97 # server :: nr.normal.halfs
98 /* Number of normal halfs in a game */

99 server::nr.normal.halfs ■ 2
100
101 # server::olcoach.port
102 server::olcoach.port * 6002
103
104 # server :: pen.bef ore.setup.wait
105 server :: pen.bef ore.setup.wait * 30
106
107 # server::pen.max.extra.kicks
108 server::pen.max.extra.kicks ■ 10
109
110 # server :: pen.nr.kicks
111 server::pen.nr.kicks ■ 5
112
113 # server::pen.ready.wait
114 server::pen.ready.wait * 50
115
116 # server::pen.setup.wait

54

117 server::pen_setup_wait * 100
118
119 # server::pen_taken_wait
120 server :: pen„.taken_wait * 200
121
122 # server::point_to_ban
123 server::point_to_ban * 5
124
125 # server::point_to_duration
126 server::point_to_duration * 20
127
128 # server::port
129 server::port ■ 6000
130
131 # server::recv_step
132 server : :recv.step * 10
1 3 3

134 # server::say_coach_cnt_max
135 server::say_coach_cnt_max * 128
1 3 6

137 # server::say_coach_msg_size
138 server::say_coach_msg_size ■ 128
139
140 # server::say_msg_size
141 server::say_msg_size ■ 512 # CMU
142
143 # server::send.step
144 server::send.step « 150
145
146 # server::send.vi_step
147 server::send_vi_step * 100
148
149 # server::sense_body_step
150 server::sense_body_step « 100
151
152 # server::simulâtor.step
153 server::simulator_step « 100
154
155 # server::slov.down.factor
156 server::slow_dovn_factor ■ 1
157
158 # server::start_goal_l
159 server::start.goal.l * 0

55

1 6 0

1 6 1 # s e r v e r : : s t a r t . g o a l . r

1 6 2 s e r v e r : : s t a r t . g o a l . r = 0

1 6 3

1 6 4 # s e r v e r : : s y n c h . m i c r o . s l e e p

1 6 5 s e r v e r : : s y n c h . m i c r o . s l e e p * 1

1 6 6

1 6 7 # s e r v e r : : s y n c h . o f f s e t

1 6 8 s e r v e r : : s y n c h . o f f s e t ■ 6 0

1 6 9

1 7 0 # s e r v e r : : t a c k l e . c y c l e s

1 7 1 s e r v e r : : t a c k l e . c y c l e s * 1 0

1 7 2

1 7 3 # s e r v e r : : t e x t . l o g . c o m p r e s s i o n

1 7 4 s e r v e r : : t e x t . l o g . c o m p r e s s i o n * 0

1 7 5

1 7 6 # s e r v e r : : a u t o . m o d e

1 7 7 s e r v e r : : a u t o . m o d e =* f a l s e

1 7 8

1 7 9 # s e r v e r : : b a c k . p a s s e s

1 8 0 s e r v e r : : b a c k . p a s s e s * t r u e

1 8 1

1 8 2 # s e r v e r : : c o a c h

1 8 3 s e r v e r : : c o a c h * f a l s e

1 8 4

1 8 5 # s e r v e r : : c o a c h . v . r e f e r e e

1 8 6 s e r v e r : : c o a c h . v . r e f e r e e * f a l s e

1 8 7

1 8 8 # s e r v e r : : f o r b i d . k i c k . o f f . o f f s i d e

1 8 9 s e r v e r : : f o r b i d . k i c k . o f f . o f f s i d e *

1 9 0

1 9 1 # s e r v e r : : f r e e . k i c k . f a u l t s

1 9 2 s e r v e r : : f r e e . k i c k . f a u l t s » t r u e

1 9 3

1 9 4 # s e r v e r : : f u l l s t a t e . l

1 9 5 s e r v e r : : f u l l s t a t e . l ■ f a l s e

1 9 6

1 9 7 # s e r v e r : : f u l l s t a t e . r

1 9 8 s e r v e r : : f u l l s t a t e . r * f a l s e

1 9 9

2 0 0 # s e r v e r : : g a m e . l o g . d a t e d

2 0 1 s e r v e r : : g a m e . l o g . d a t e d * t r u e

2 0 2

t r u e

56

2 0 3 # s e r v e r : : g a m e . l o g . f i x e d

2 0 4 s e r v e r : : g a m e . l o g . f i x e d * f a l s e

2 0 5

2 0 6 # s e r v e r : : g a m e . l o g g i n g

2 0 7 s e r v e r : : g a m e . l o g g i n g * t r u e

2 0 8

2 0 9 # s e r v e r : : k e e p a v a y

2 1 0 s e r v e r : : k e e p a v a y « f a l s e

211

2 1 2 # s e r v e r : : k e e p a w a y . l o g . d a t e d

2 1 3 s e r v e r : : k e e p a w a y . l o g . d a t e d * t r u e

2 1 4

2 1 5 # s e r v e r : : k e e p a w a y . l o g . f i x e d

2 1 6 s e r v e r : : k e e p a w a y . l o g . f i x e d = f a l s e

2 1 7

2 1 8 # s e r v e r : : k e e p a w a y . l o g g i n g

2 1 9 s e r v e r : : k e e p a w a y . l o g g i n g * t r u e

220
2 2 1 # s e r v e r : : l o g . t i m e s

2 2 2 s e r v e r : : l o g . t i m e s = f a l s e

2 2 3

2 2 4 # s e r v e r : : o l d . c o a c h . h e a r

2 2 5 s e r v e r : : o l d . c o a c h . h e a r * f a l s e

2 2 6

2 2 7 # s e r v e r : : p e n . a l l o w . m u l t . k i c k s

2 2 8 / * T u r n o n t o a l l o w d r i b b l i n g i n p e n a l t y s h o o t o u t s * /

2 2 9 s e r v e r : : p e n . a l l o w . m u l t . k i c k s * t r u e

2 3 0

2 3 1 # s e r v e r : : p e n . c o a c h . m o v e s . p l a y e r s

2 3 2 / * T u r n o n t o h a v e t h e s e r v e r a u t o m a t i c a l l y p o s i t i o n p l a y e r s f o r

2 3 3 p e a n l t y s h o o t o u t s * /

2 3 4 s e r v e r : : p e n . c o a c h . m o v e s . p l a y e r s * t r u e

2 3 5

2 3 6 # s e r v e r : : p e n . r a n d o m . v i n n e r

2 3 7 s e r v e r : : p e n . r a n d o m . v i n n e r ■ f a l s e

2 3 8

2 3 9 # s e r v e r : : p e n a l t y . s h o o t . o u t s

2 4 0 / * S e t t o t r u e t o e n a b l e p e n a l t y s h o o t o u t s a f t e r n o r m a l t i m e a n d e x t r a

2 4 1 t i m e i f t h e g a m e i s d r a w n .

2 4 2 T o h a v e t h e g a m e g o s t r a i g h t i n t o p e n a l t y s h o o t o u t s , s e t t h i s t o t r u e

2 4 3 a n d n r . n o r m a l . h a l f s a n d n r . e x t r a . h a l f s t o 0 * /

2 4 4 s e r v e r : : p e n a l t y . s h o o t . o u t s * f a l s e

2 4 5

57

2 4 6 # s e r v e r : : p r o f i l e

2 4 7 s e r v e r : : p r o f i l e ■ f a l s e

2 4 8

2 4 9 # s e r v e r : : p r o p e r . g o a l . k i c k s

2 5 0 s e r v e r : : p r o p e r . g o a l . k i c k s = f a l s e

2 5 1

2 5 2 # s e r v e r : : r e c o r d . m e s s a g e s

2 5 3 s e r v e r : : r e c o r d . m e s s a g e s * f a l s e

2 5 4

2 5 5 # s e r v e r : : s e n d . c o m m s

2 5 6 s e r v e r : : s e n d . c o m m s * f a l s e '

2 5 7

2 5 8 # s e r v e r : : s y n c h . m o d e

2 5 9 s e r v e r : : s y n c h . m o d e » f a l s e

2 6 0

2 6 1 # s e r v e r : : t e a m . a c t u a t o r . n o i s e

2 6 2 s e r v e r : : t e a m . a c t u a t o r . n o i s e * f a l l

2 6 3

2 6 4 # s e r v e r : : t e x t . l o g . d a t e d

2 6 5 s e r v e r : : t e x t . l o g . d a t e d * t r u e

2 6 6

2 6 7 # s e r v e r : : t e x t . l o g . f i x e d

2 6 8 s e r v e r : : t e x t . l o g . f i x e d * f a l s e

2 6 9

2 7 0 # s e r v e r : : t e x t . l o g g i n g

2 7 1 s e r v e r : : t e x t . l o g g i n g * t r u e

2 7 2

2 7 3 # s e r v e r : : u s e . o f f s i d e

2 7 4 s e r v e r : : u s e . o f f s i d e ■ o f f # C M U

2 7 5

2 7 6 # s e r v e r : : v e r b o s e

2 7 7 s e r v e r : : v e r b o s e “ f a l s e

2 7 8

2 7 9 # s e r v e r : : w i n d . n o n e

2 8 0 s e r v e r : : w i n d . n o n e ■ f a l s e

2 8 1

2 8 2 # s e r v e r : : w i n d . r a n d o m

2 8 3 # s e r v e r : : w i n d . r a n d o m = f a l s e

2 8 4 s e r v e r : : w i n d . r a n d o m ■ t r u e

2 8 5

2 8 6 # s e r v e r : : a u d i o . c u t . d i s t

2 8 7 s e r v e r : : a u d i o . c u t . d i s t * 5 0

2 8 8

58

2 8 9 # s e r v e r : : b a l l _ a c c e l _ m a x

2 9 0 s e r v e r : : b a l l . a c c e l . m a x * 2 . 7

2 9 1

2 9 2 # s e r v e r : : b a l l . d e c a y

2 9 3 s e r v e r : : b a l l _ d e c a y ■ 0 . 9 4

2 9 4

2 9 5 # s e r v e r : : b a l l . r a n d

2 9 6 s e r v e r : : b a l l . r a n d * 0 . 0 5

2 9 7

2 9 8 # s e r v e r : : b a l l . s i z e

2 9 9 s e r v e r : : b a l l . s i z e ■ 0 . 0 8 5

3 0 0

3 0 1 # s e r v e r : : b a l l . s p e e d . m a x

3 0 2 s e r v e r : : b a l l . s p e e d . m a x * 2 . 7

3 0 3

3 0 4 # s e r v e r : : b a l l _ s t u c k _ a r e a

3 0 5 s e r v e r : : b a l l . s t u c k . a r e a * 3

3 0 6

3 0 7 # s e r v e r : : b a l l . w e i g h t

3 0 8 s e r v e r : : b a l l . w e i g h t ■ 0 . 2

3 0 9

3 1 0 # s e r v e r : : c a t c h . p r o b a b i l i t y

3 1 1 s e r v e r : : c a t c h . p r o b a b i l i t y * 1

3 1 2

3 1 3 # s e r v e r : : c a t c h a b l e . a r e a . l

3 1 4 s e r v e r : : c a t c h a b l e . a r e a . l * 2

3 1 5

3 1 6 # s e r v e r : : c a t c h a b l e . a r e a . w

3 1 7 s e r v e r : : c a t c h a b l e . a r e a . w * i

3 1 8

3 1 9 # s e r v e r : : c k i c k . m a r g i n

3 2 0 s e r v e r : : c k i c k . m a r g i n * 1

3 2 1

3 2 2 # s e r v e r : : c o n t r o l . r a d i u s

3 2 3 s e r v e r : : c o n t r o l . r a d i u s * 2

3 2 4

3 2 5 # s e r v e r : : d a s h . p o w e r . r a t e

3 2 6 s e r v e r : : d a s h . p o w e r . r a t e * 0 . 0 0 6

3 2 7

3 2 8 # s e r v e r : : e f f o r t . d e c

3 2 9 s e r v e r : : e f f o r t . d e c « 0 . 0 0 5

3 3 0

3 3 1 # s e r v e r : : e f f o r t . d e c . t h r

59

3 3 2 s e r v e r : : e f f o r t . d e c . t h r * 0 . 3

3 3 3

3 3 4 # s e r v e r : : e f f o r t . i n c

3 3 5 s e r v e r : : e f f o r t . i n c ■ 0 . 0 1

3 3 6

3 3 7 # s e r v e r : : e f f o r t _ i n c _ t h r

3 3 8 s e r v e r : : e f f o r t . i n c . t h r ■ 0 . 6

3 3 9

3 4 0 # s e r v e r : : e f f o r t _ i n i t

3 4 1 s e r v e r : : e f f o r t _ i n i t * 1

3 4 2

3 4 3 # s e r v e r : : e f f o r t . m i n

3 4 4 s e r v e r : : e f f o r t . m i n ■ 0 . 6

3 4 5

3 4 6 # s e r v e r : : g o a l . w i d t h

3 4 7 / * T h e w i d t h o f t h e g o a l s * /

3 4 8 s e r v e r : : g o a l . w i d t h * 1 4 . 0 2

3 4 9

3 5 0 # s e r v e r : : i n e r t i a . m o m e n t

3 5 1 s e r v e r : : i n e r t i a _ m o m e n t * 5

3 5 2

3 5 3 # s e r v e r : : k e e p a w a y . l e n g t h

3 5 4 s e r v e r : : k e e p a w a y . l e n g t h * 2 0

3 5 5

3 5 6 # s e r v e r : : k e e p a w a y . w i d t h

3 5 7 s e r v e r : : k e e p a w a y . w i d t h = 2 0

3 5 8

3 5 9 # s e r v e r : : k i c k . p o w e r . r a t e

3 6 0 s e r v e r : : k i c k . p o w e r . r a t e * 0 .

3 6 1

3 6 2 # s e r v e r : : k i c k . r a n d

3 6 3 s e r v e r : : k i c k . r a n d * 0

3 6 4

3 6 5 # s e r v e r : : k i c k . r a n d . f a c t o r . 1

3 6 6 s e r v e r : : k i c k . r a n d . f a c t o r . 1 *

3 6 7

3 6 8 # s e r v e r : : k i c k . r a n d . f a c t o r . r

3 6 9 s e r v e r : : k i c k . r a n d . f a c t o r . r *

3 7 0

3 7 1 # s e r v e r : : k i c k a b l e . m a r g i n

3 7 2 s e r v e r : : k i c k a b l e . m a r g i n s 0 . '

3 7 3

3 7 4 # s e r v e r : : m a x m o m e n t

C M U

60

3 7 5 s e r v e r : : m a x m o m e n t ■ 1 8 0

3 7 6

3 7 7 # s e r v e r : : m a x n e c k a n g

3 7 8 s e r v e r : : m a x n e c k a n g * 9 0

3 7 9

3 8 0 # s e r v e r : : m a x n e c k m o m e n t

3 8 1 s e r v e r : : m a x n e c k m o m e n t ■ 1 8 0

3 8 2

3 8 3 # s e r v e r : : m a x p o v e r

3 8 4 s e r v e r : : m a x p o v e r * 1 0 0

3 8 5

3 8 6 # s e r v e r : : m i n m o m e n t

3 8 7 s e r v e r : : m i n m o m e n t * - 1 8 0

3 8 8

3 8 9 # s e r v e r : : m i n n e c k a n g

3 9 0 s e r v e r : : m i n n e c k a n g * - 9 0

3 9 1

3 9 2 # s e r v e r : : m i n n e c k m o m e n t

3 9 3 s e r v e r : : m i n n e c k m o m e n t ■ - 1 8 0

3 9 4

3 9 5 # s e r v e r : : m i n p o v e r

3 9 6 s e r v e r : : m i n p o v e r * - 1 0 0

3 9 7

3 9 8 # s e r v e r : : o f f s i d e . a c t i v e . a r e a . s i z e

3 9 9 s e r v e r : : o f f s i d e . a c t i v e _ a r e a . s i z e * 5 # C M U

4 0 0

4 0 1 # s e r v e r : : o f f s i d e . k i c k . m a r g i n

4 0 2 s e r v e r : : o f f s i d e . k i c k . m a r g i n * 9 . 1 5

4 0 3

4 0 4 # s e r v e r : : p e n . d i s t . x

4 0 5 s e r v e r : : p e n . d i s t . x * 4 2 . 5

4 0 6

4 0 7 # s e r v e r : : p e n . m a x . g o a l i e . d i s t . x

4 0 8 s e r v e r : : p e n . m a x . g o a l i e . d i s t . x ® 1 4

4 0 9

4 1 0 # s e r v e r : : p l a y e r . a c c e l . m a x

4 1 1 / * T h e m a x a c c e l e r a t i o n o f p l a y e r s * /

4 1 2 s e r v e r : : p l a y e r . a c c e l . m a x * 1

4 1 3

4 1 4 # s e r v e r : : p l a y e r . d e c a y

4 1 5 / * P l a y e r s s p e e d d e c a y r a t e * /

4 1 6 s e r v e r : : p l a y e r . d e c a y ■ 0 . 4

4 1 7

4 1 8 # s e r v e r : : p l a y e r . r a n d

4 1 9 / * P l a y e r r a n d o m m o v e m e n t f a c t o r * /

4 2 0 s e r v e r : : p l a y e r . r a n d * 0 . 1

4 2 1

4 2 2 # s e r v e r : : p l a y e r . s i z e

4 2 3 / * T h e s i z e o f t h e d e f a u l t p l a y e r * /

4 2 4 s e r v e r : i p l a y e r . s i z e * 0 . 3

4 2 5

4 2 6 # s e r v e r : : p l a y e r . s p e e d . m a x

4 2 7 / * T h e m a x s p e e d o f p l a y e r s * /

4 2 8 s e r v e r : : p l a y e r . s p e e d . m a x * 1 . 0 # C M U

4 2 9

4 3 0 # s e r v e r : : p l a y e r . w e i g h t

4 3 1 / * T h e w e i g h t o f t h e p l a y e r * /

4 3 2 s e r v e r : : p l a y e r _ w e i g h t « 6 0

4 3 3

4 3 4 # s e r v e r : : p r a n d . f a c t o r . 1

4 3 5 s e r v e r : : p r a n d . f a c t o r . l * 1

4 3 6

4 3 7 # s e r v e r : : p r a n d . f a c t o r . r

4 3 8 s e r v e r : : p r a n d . f a c t o r . r ■ 1

4 3 9

4 4 0 # s e r v e r : : q u a n t i z e . s t e p

4 4 1 s e r v e r : : q u a n t i z e . s t e p * 0 . 1

4 4 2

4 4 3 # s e r v e r : : q u a n t i z e . s t e p . 1

4 4 4 s e r v e r : : q u a n t i z e . s t e p . l * 0 . 0 1

4 4 5

4 4 6 # s e r v e r : : r e c o v e r . d e c

4 4 7 s e r v e r r e c o v e r . d e c * 0 . 0 0 2

4 4 8

4 4 9 # s e r v e r : : r e c o v e r . d e c . t h r

4 5 0 s e r v e r : : r e c o v e r . d e c . t h r * 0 . 3

4 5 1

4 5 2 # s e r v e r : : r e c o v e r . i n i t

4 5 3 / * T h e i n t i a l r e c o v e r y v a l u e f o r p l a y e r s * /

4 5 4 s e r v e r : : r e c o v e r . i n i t * 1

4 5 5

4 5 6 # s e r v e r : : r e c o v e r . m i n

4 5 7 s e r v e r : : r e c o v e r . m i n * 0 . 5

4 5 8

4 5 9 # s e r v e r : : s l o w n e s s . o n . t o p . f o r . l e f t . t e a m

4 6 0 s e r v e r : : s l o w n e s s . o n . t o p . f o r . l e f t . t e a m « 1

6 2

4 6 1

4 6 2 # s e r v e r : : s l o w n e s s . o n _ t o p _ f o r _ r i g h t . t e a m

4 6 3 s e r v e r : : s l o w n e s s _ o n _ t o p . f o r _ r i g h t . t e a m « 1

4 6 4

4 6 5 # s e r v e r : : s t a m i n a . i n c . m a x

4 6 6 / * T h e m a x i m u m p l a y e r s t a m i n a i n c r e a m e n t * /

4 6 7 s e r v e r : : s t a m i n a . i n c . m a x * 3 5 # C M U

4 6 8

4 6 9 # s e r v e r : : s t a m i n a . m a x

4 7 0 / * T h e m a x i m u m s t a m i n a o f p l a y e r s * /

4 7 1 s e r v e r : : s t a m i n a . m a x ■ 3 5 0 0 # C M U

4 7 2

4 7 3 # s e r v e r : : s t o p p e d . b a i l . v e l

4 7 4 s e r v e r : : s t o p p e d . b a l l . v e l * 0 . 0 1

4 7 5

4 7 6 # s e r v e r : : t a c k l e . b a c k . d i s t

4 7 7 s e r v e r : : t a c k l e . b a c k . d i s t * 0 . 5

4 7 8

4 7 9 # s e r v e r : : t a c k l e . d i s t

4 8 0 s e r v e r : : t a c k l e . d i s t * 2

4 8 . 1

4 8 2 # s e r v e r : : t a c k l e . e x p o n e n t

4 8 3 s e r v e r : : t a c k l e . e x p o n e n t * 6

4 8 4

4 8 5 # s e r v e r : : t a c k l e . p o w e r . r a t e

4 8 6 s e r v e r : : t a c k l e . p o w e r . r a t e « 0 . 0 2 7

4 8 7

4 8 8 # s e r v e r : : t a c k l e . w i d t h

4 8 9 s e r v e r : : t a c k l e . w i d t h * 1

4 9 0

4 9 1 # s e r v e r : : v i s i b l e . a n g l e

4 9 2 s e r v e r : : v i s i b l e . a n g l e « 9 0

4 9 3

4 9 4 # s e r v e r : : v i s i b l e . d i s t a n c e

4 9 5 s e r v e r : : v i s i b l e . d i s t a n c e * 3

4 9 6

4 9 7 # s e r v e r : : w i n d . a n g

4 9 8 s e r v e r : : w i n d . a n g * 0

4 9 9

5 0 0 # s e r v e r : : w i n d . d i r

5 0 1 s e r v e r : : w i n d . d i r * 0

502

5 0 3 # s e r v e r : : w i n d . f o r c e

server : :game.log.f ixed.name
server : :game.log.f ixed.name * ’rcssserver *

server::keepaway.log.dir
server::keepaway.log.dir * *./

server : :keepavay.log.f ixed.name
server::keepaway.log.fixed.name ■ ’rcssserver*

■■ ’ ; ; i i . . .

m ^

s e r v e r : : l a n d m a r k . f i l e

s e r v e r : : l a n d m a r k . f i l e ■ * • / . r c s s s e r v e r - l a n d m a r k . x m l 3

s e r v e r : : l o g . d a t e . f o r m a t

s e r v e r : : l o g . d a t e . f o r m a t ■ ’ Î S Y Î C n i y . d î C H Î l M - *

s e r v e r : : t e a m . l . s t a r t

s e r v e r : : t e a m . l . s t a r t « ’ ’

server::team_r_start
server::team.r.start * * *

s e r v e r : : t e x t . l o g . d i r

s e r v e r : : t e x t . l o g . d i r « * • / *

server : :text.log.fixed.name
server : :text.log.fixed.name ■ *rcssserver *

64

Bibliography

[1] Mazda Ahmadi and Peter Stone. Instance-based action models for fast action
planning. In RoboCup 2007: Robot Soccer World Cup XI, pages 1-16, Berlin,
Heidelberg, 2008. Springer-Verlag.

[2] Alejandro Guerra-Hernandez Amal, Ro Guerra-hernandez, and Amal El Fallah-
seghrouchni. Learning in BDI multi-agent systems. In In Proceedings of CLIMA
2003, pages 185-200. Springer-Verlag, 2004.

[3] Michael E. Bratman. Intention, Plans, and Practical Reason. Harvard University
Press, 1987.

[4] Lars Braubach, Er Pokahr, Daniel Moldt, and Winfried Lamersdorf. Goal rep­
resentation for BDI agent systems, pages 9-20. Springer, 2004.

[5] Hans-Dieter Burkhard, Markus Hannebauer, and Jan Wendler. At humboldt -
development, practice and theory. In RoboCup-97: Robot Soccer World Cup I,
pages 357-372, London, UK, 1998. Springer-Verlag.

[6] Hans-Dieter Burkhard, Markus Hannebauer, and Jan Wendler. Belief-Desire-
Intention deliberation in artificial soccer. A I Magazine, 19(3), 1998.

[7] Mao Chen, Ehsan Foroughi, Fredrik Heintz, ZhanXiang Huang, Spiros
Kapetanakis, Kostas Kostiadis, Johan Kummeneje, Itsuki Noda, Oliver Obst,
Pat Riley, Timo Steffens, Yi Wang, and Xiang Yin. RoboCup Soccer Server.
2001.

[8] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment.
Artif. Intell, 42(2-3):213-261, 1990.

[9] The RoboCup Federation. Robocup official site, http://www.robocup.org, Jan­
uary 2009.

[10] Python Software Foundation. Python, http://python.org, July 2009.

[11] GNU. Subversion, http://subversion.tigris.org/, July 2009.

[12] Henry Hexmoor and Xin Zhang. Norms, roles and simulated RoboCup. In In
Proceedings of the Second Workshop on Norms and Institutions in MAS, 5th
International Conference on Autonomous Agents, 2001.

[13] Marcus Huber and Edmund H. Durfee. Deciding when to commit to action
during observation-based coordination. In AAAI-90. AAAI Press, 1990.

http://www.robocup.org
http://python.org
http://subversion.tigris.org/

65

[14] Marcus Huber and Edmund H. Durfee. Deciding when to commit to action dur­
ing observation-based coordination. In In Proceedings of the First International
Conference on Multi-Agent -Systems (ICMAS-95, pages 163-170. AAAI Press,
1995.

[15] Nicholas R. Jennings. Cooperation in Industrial Multi-Agent Systems. World
Scientific, 1994.

[16] Nick Jennings. Specification and implementation of a belief-desire-joint-intention
architecture for collaborative problem solving. Journal of Intelligent and Coop­
erative Information Systems, 2:289-318, 1993.

[17] Nick R. Jennings. Commitments and conventions: The foundation of coordina­
tion in multi-agent systems, 1993.

[18] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
RoboCup: The Robot World Cup Initiative, 1995.

[19] Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Corade-
schi, Eiichi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The
RoboCup synthetic agent challenge 97. In In Proceedings of the Fifteenth Inter­
national Joint Conference on Artificial Intelligence, pages 24-29. Morgan Kauf-
mann, 1997.

[20] Nuno Lau and Luis Paulo Reis. FC Portugal 2001 team description: Flexible
teamwork and configurable strategy. In RoboCup 2001: Robot Soccer World Cup
V, pages 515-518, London, UK, 2002. Springer-Verlag.

[21] Bruno Maisonnier. Aldebaran robotics. http://www.aldebaran-
robotics.com/eng/index.php, July 2009.

[22] Anand S. Rao and Michael P. Georgeff. BDI agents: Prom theory to practice. In
IN PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON
MULTI-AGENT SYSTEMS (ICMAS-95, pages 312-319, 1995.

[23] Anand S. Rao and Michael P. Georgeff. Formal models and decision procedures
for multi-agent systems, 1995.

[24] Anand S. Rao and Graeme Murray. Multi-agent mental-state recognition and
its application to air-combat modelling. In IN PROCEEDINGS OF THE 13TH
INTERNATIONAL DISTRIBUTED ARTIFICIAL INTELLIGENCE WORK­
SHOP, pages 283-304, 1994.

[25] Luis Paulo Reis, Nuno Lau, and Eugenio Oliveira. Situation based strategic posi­
tioning for coordinating a team of homogeneous agents. In Balancing Reactivity
and Social Deliberation in Multi-Agent Systems, From RoboCup to Real-World

http://www.aldebaran-

66

Applications (selected papers from the E C A I2000 Workshop and additional con­
tributions), pages 175-197, London, UK, 2001. Springer-Verlag.

[26] Peter Stone, Patrick Riley, and Manuela M. Veloso. The cmunited-99 champion
simulator team. In RoboCup-99: Robot Soccer World Cup I l f pages 35-48,
London, UK, 2000. Springer-Verlag.

[27] Peter Stone and Manuela Veloso. A layered approach to learning client behaviors
in the robocup soccer server. APPLIED ARTIFICIAL INTELLIGENCE, 12,
1998.

[28] Peter Stone and Manuela Veloso. Using decision tree confidence factors for multi­
agent control. In AGENTS ’98: Proceedings of the second international confer­
ence on Autonomous agents, pages 86-91, New York, NY, USA, 1998. ACM.

[29] Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment,
and low-bandwidth communication for real-time strategic teamwork. ARTIFI­
CIAL INTELLIGENCE, 110(2):241-273, 1999.

	Belief-Desire-Intention in RoboCup
	Recommended Citation

	tmp.1679681656.pdf.nlut7

