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made in a predictable and deterministic way. As Monte Carlo simulations call for many 

random numbers, the pseudo-random numbers are better to be generated quickly and 

satisfy some statistical tests of randomness.  

Additionally, psedo-random number generators (PRNG) all eventually repeat themselves, 

with the period being the length of the unrepeated sequence. The output of a good PRNG 

is a sequence, u1, u2, …, that  

• has a long period 

• is generated efficiently  

• satisfies uniformity properties. That is, want 𝑢1, 𝑢2, …, to be iid uniform[0,1] 

random variables. A battery of statistical tests is used to check the uniformity 

properties. See [2] for example, for further information. 

Sometimes it is necessary to use the same sequence of random numbers in the simulation 

process such as when estimating differences in the function at different parameter 

settings. As such, it is necessary to control the seed used in the PRNG to be able to 

reproduce the same sequence of random numbers. Applying parallel processing 

computing technique is a fantastic benefit of the Monte Carlo method. To use this 

technique it is important to be able to skip ahead to another part of the sequence. This 

allows independent sequences of random numbers to be used by the different parallel 

processes. Finally a random number generating algorithm should be able to run on all 

computing platforms.  

The output of random number generators are uniform [0,1] random numbers but most 

Monte Carlo simulations require sampling from non-uniform distributions. Methods for 

generating observations from non-uniform distribution include inverse transform and 

acceptance-rejection. See [2] for more details.  

For many financial applications, the simulation of standard normal random variables is 

required. If Z~N(0,1) , then this can be transferred to X~N(μ, σ2) using X = μ + σZ, thus 

normal random variables with arbitrary mean and variance can be simulated from N(0,1) 

random variables and then transforming. 



5 

 

The Mersenne-Twister random number generator has been used in this thesis. This is a 

twisted generalized feedback shift register generator with a very long period of 219937 −

11. This PRNG is k-distributed to 32-bit accuracy for every 1 ≤ k ≤ 623 and passes 

numerous tests for statistical randomness.  

1.2.2 Monte Carlo Estimate 

Suppose we are interested in computing  

 
𝑓 = E[g(X)] = ∫g(x)h(x)dx (1.6) 

where g is some function and X is a random variable having probability density h. The 

Monte Carlo estimator of f is  

 

𝑓𝑀̂ =
1

M
∑g(xi

∗)

M

i=1

 (1.7) 

where x1
∗, x2

∗ , … , xM
∗  are iid simulated values from the probability density h.  

It is easily seen that E[𝑓𝑀̂] = f and that var[𝑓𝑀̂] =
var(g(x))

M
=
σ2

M
. 

The estimated standard error of 𝑓𝑀̂ is then 

 σ̂

M
, (1.8) 

where σ̂ is the standard deviation of the simulated values g(x1
∗), … , g(xM

∗ ). A 95% 

confidence interval for f is easily constructed as 

 
𝑓𝑀̂ −

1.96σ̂

√M
< 𝑓 < 𝑓𝑀̂ +

1.96σ̂

√M
. (1.9) 

This shows that the uncertainty of simulation is inversely related with the square root of 

the number of paths. So to improve the accuracy by a factor of 5, the number of trials 

should increase by a factor of 25. 
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In this setting, the Monte Carlo Estimator is unbiased, that is  

bias(fM̂, f) ≡ E[fM̂] − f = 0. 

Additionally, fM̂ is a consistent estimator of f, that is, for any ε > 0, lim
M→∞

P(|fM̂ − f| >

𝜀) = 0. In what follows, MC estimators for early-exercise options generally yield price 

estimators that are biased yet consistent for the true price.  

1.2.3 Simulation of sample paths 

Another important concern in Monte Carlo simulation is generating appropriate sample 

paths. Usually in quantitative finance applications, geometric Brownian motion (GBM) is 

used as the stochastic process. Geometric Brownian motion is the product of 

exponentiating Brownian motion (BM) and as a result the methods for simulating BM are 

methods for simulating GBM as well. Let's take a random process continuous in time, a 

function W(t) which for each time t ≥ 0 is a random variable. The standard Brownian 

motion process is a stochastic process W(t), for t ≥ 0, with the following properties: 

1) Each increment W(t)−W(s) over any time period of length t-s is normally 

distributed with mean 0 and variance t-s,  

 W(t) −W(s)~N(0, t − s) 
(1.10) 

2) The increments  W(tm) −W(tm−1), … ,W(t1) −W(t0),  are independent for 

all 0 ≤ 𝑡0 ≤ ⋯ ≤ 𝑡𝑚 ≤ 𝑇. 

3) W(0)=0 

4) W(t) is continuous for all t 

 

Discretizing time, sample paths of W can be generated by taking Z1 , … , Zm  iid N(0,1) 

random variables and starting from W(0)=0,  

 W(ti+1) = W(ti) + √∆t Zi+1    ,i=0,…,m−1 . (1.11) 



7 

 

where ∆𝑡 =
T

Number of exercise opportunities
. Now a process with drift and different variance 

can be made using constants μ and σ and setting X(t) = μt +  σW(t). The parameter μ is 

the drift parameter and σ is the volatility. So the dynamics of this process are 

 dX(t) = μdt +  σdW(t) (1.12) 

and path values may be generated using the starting value X(0) and the Euler 

discretization  

 X(ti+1) = X(ti) + μ(∆𝑡) + √∆𝑡Zi+1 (1.13) 

for i= 1, ..., m. In general the drift and diffusion can be functions of time and the current 

value of the process. That is X, follows the SDE starts at X(0) and  

 dX(t) = μ(t, X(t))dt + σ(t, X(t))dW(t). (1.14) 

With the starting value X(0), sample paths of X can be simulated using 

 X(ti+1) = X(ti) + μ(ti, X(ti))(∆𝑡) + σ(ti, X(ti))√∆𝑡Zi+1. (1.15) 

With μ(t, x) = μ̃x and σ(t, x) = σ̃x, where μ̃ and σ̃ are constants, X is GBM, with 

dynamics 

 dX(t) = μ̃X(t)dt + σ̃X(t)dW(t) (1.16) 

or 

 dX(t)

X(t)
= μ̃dt + σ̃dW(t) (1.17) 

The solution of the above stochastic differential equation with initial value of X(0) could 

be found by using Ito's lemma as 

 
X(t) = X(0)exp((μ̃ −

1

2
σ̃2) t + σ̃W(t)) (1.18) 
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and the path can be simulated by using the recursive relation  

 
X(ti+1) = X(ti)exp ((μ̃ −

1

2
σ̃2) (∆𝑡) + σ̃√∆𝑡Zi+1) (1.19) 

where Z1 , … , Zm  are iid N(0,1) random variables. 

1.3 Monte Carlo for European Options 

A European option is an option that can be exercised only at the maturity time. Pricing of 

European options is less complicated compared to pricing American options because the 

option holder has no opportunity to exercise before maturity. A European call option is a 

contract between two parties that gives the buyer the right to purchase a stock at the 

future maturity time (T) at a determined strike price (K) agreed in the contract. If the 

buyer decides to exercise the option at maturity time, the seller has to sell the stock at a 

price K to the buyer. The holder’s payoff function is  

 f(ST) = max(ST − K, 0) (1.20) 

Equation (1.20) presents the value of the call option at time T because if S(T) >K, the 

holder makes a profit of S(T)-K. On the other hand if S(T)<K, the holder does not 

exercise the option hence it expires worthless. 

Using Risk-neutral valuation, the price of the option is given by  

 C = e−rTE[f(ST)] (1.21) 

where r is the continuously compounded risk-free rate. The price can be estimated by 

Monte Carlo using 

 

Ĉ = e−rT(
1

M
∑f(ST

j
)

M

j=1

) (1.22) 

where ST
1 , ST

2, … , ST
M are iid simulated observations from the risk-neutral distribution of 

the underlying asset. Like other methods, simulation-based methods such as Monte Carlo 
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Figure 2.2 Section of a forest of trees with N and N-1 number of rights remaining 

Figure 2.2 is a schematic diagram in a forest that illustrates the node in the tree with N 

remaining rights which decides to exercise one right and move to the other tree with N-1 

rights left.  

 

2.4 Detailed Description of ICLS for Multiple Exercise 
Options 

In this section the inequality constrained least squares Monte Carlo (ICLS) method for 

multiple exercise options is discussed. As reviewed before, the Longstaff and Schwartz 

method uses regression to obtain an estimate for the hold value of option in the next time 

step. Letourneau and Stentoft [42] suggested imposing structure in the regression part of 

the method leading to more accurate prices. Dynamic programming valuation of multiple 

exercise option using ICLS is similar to LSMC but the regression part is different.  

In the valuation process of a multiple exercise option having both call and put rights, 

there are 3 possibilities at each time step for any Monte Carlo path; 
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I. Exercise one call right (assuming at least one call right remains and spot price is 

above strike price) then jump to another tree with one less call rights remaining. 

II. Exercise one put right ( assuming at least one put right remains and spot price is 

below strike price) then jump to another tree with one less put right remaining. 

III. Do not exercise any rights and stay on the same tree. 

Figure 2.3 shows a schematic plot of a call option. The curve of call option has some 

characteristics including positive convexity and slope between 0 and 1at all prices. 

Imposing this structure to the regression leads to a better estimation for option price at 

each time. 

 

 

Figure 2.3 Schematic of constraints which ICLS applies to American call options 

On the other hand, the curve of price for put option has positive convexity and slope 

between -1 and 0 at all prices. Figure 2.4 presents these constraints schematically.  
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Figure 2.4 Schematic of constraints which ICLS applies to American put options 

When there are both call and put rights remaining, for each path there is possibility of 

exercising one put right or one call right, depends on the price related to that path. 

Consequently at each time step constraints displayed in Figure 2.3 would be applied to 

paths that are in the money for call rights and constraints displayed in Figure 2.4 would 

be applied to paths that are in the money for put rights. Assuming the strike prices is the 

same for both call and put rights implies that the sets of ITM paths for call rights and 

ITM paths for put rights are disjoint. 

As with the ICLS method for American-style options, high- and low-biased estimators 

for multiple exercise options can be similarly constructed. Additionally, with independent 

repeated valuations, confidence intervals for the high- and low-biased estimators can 

easily be computed. Using the upper and lower confidence limits for the high- and low-

biased estimators, respectively, a conservative confidence interval for the true price is 

obtained.  
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Chapter 3  

3 Pricing Multiple Exercise Options 

In the previous chapters, we have provided an introduction to the ICLS and LSMC 

methods of pricing multiple exercise options. In this chapter, we use ICLS and LSMC 

methods to price some multiple exercise options using the forest of trees technique.  

In the first section, we use our valuation method and compare results to those obtained in 

other studies to verify our methodology. In the second section, some numerical results 

and the effects of different parameters on the option value are discussed. The last section 

presents the processing time required for pricing along with root mean squared errors 

(RMSE). 

The multiple exercise options can be exercised at discrete times up to expiry. In this 

thesis the volume choices given are constant and don't change. This means that the holder 

could exercise one of the rights at any time which is chosen from a limited list.  

3.1 Verification with Binomial and Other Studies 

This section presents verification of our pricing methodology by comparing with prices 

obtained from different methods.  

Figure 3.1and Figure 3.2 show the price of a multiple exercise option using regression 

polynomials order of 2 and 6 respectively. Figure 3.1 illustrates the effect of sample size 

on the high and low biased estimators of both ICLS and LSMC when polynomial of 

second order is chosen as the basis functions for regression. As predicted, increasing the 

sample size from 20 to 10000 paths leads the high and low biased estimators to converge 

to the price of binomial method. Prices shown are the average of 100 repetitions of the 

given sample size. The option has 1 put right and 1 call right. Option prices are computed 

using the out-of-sample and in-sample LSMC and ICLS methods, ATM options are 

priced for maturities of 3 years with yearly exercise opportunities. The underlying asset 

follows a geometric Brownian motion with dividend=10%, r= 5%, σ=20%, K=$40 and 

S0=$40, number of paths = 1000. All options are priced using polynomial of order 2 and 
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the regressions are done using the paths that are ITM at the current time step. Both ICLS 

and LSMC converge to 10.08 which is in agreement with Marshall[54].  

 

Figure 3.1 Multiple exercise option price versus sample size. The option has 1 put 

right and 1 call right. Prices are computed using the out-of-sample and in-sample 

LSMC and ICLS methods, ATM options are priced for maturities of 3 years with 

yearly exercise opportunities. The underlying asset follows a geometric Brownian 

motion with dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are 

priced using polynomial of order 2 and the regressions are done using the paths that 

are ITM at the current time step. The mean prices of 100 repetitions are shown and 

the benchmark prices are obtained with the binomial model. 

Figure 3.1 shows that when sample size is small using ICLS improves the estimation 

giving in- and out-of-sample estimators that are closer to the true price. By increasing the 

sample size, both LSMC and ICLS methods converge to the binomial method and the 

differences between the estimators vanishes. 

Figure 3.2 presents the pricing of the same instrument as in Figure 3.1 but using a 

regression polynomial of order 6. Figure 3.2 shows that in LSMC method, increasing the 

polynomial order hurts the approximation a result over fitting. On the other hand, in the 
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ICLS method increasing the polynomial order leads to tightening the spread between 

high-biased and low-biased estimators then ICLS does not suffer from over fitting. 

 

Figure 3.2 Multiple exercise option price versus sample size. The option has 1 put 

right and 1 call right. Prices are computed using the out-of-sample and in-sample 

LSMC and ICLS methods, ATM options are priced for maturities of 3 years with 

yearly exercise opportunities. The underlying asset follows a geometric Brownian 

motion with dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are 

priced using polynomial of order 6 and the regressions are done using the paths that 

are ITM at the current time step. The mean prices of 100 repetitions are shown and 

the benchmark prices are obtained with the binomial model. 

3.2 Numerical Results 

In this section additional numerical results are presented, mostly focused on the 

comparison of LSMC and ICLS methods under parameter settings such as number of 

rights, number of exercise opportunities and volatility of underlying asset.  

Figure 3.3 a) and b) presents multiple exercise option and relative values respectively, 

compared to a basket of American put options for 1 to 5 put rights using the out-of-

sample and in-sample LSMC and ICLS methods. ATM options are priced for maturities 
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of 1 year with weekly exercise opportunities. The underlying asset follows a geometric 

Brownian motion with dividend=0%, r= 5%, σ=20%, K=$40, S0=$40 and number of 

paths = 1000. All options are priced using polynomial of order 2 and the regressions are 

done using the paths that are ITM at the current time step. The mean prices of 100 

repetitions are shown and the benchmark prices are obtained with the binomial model. 

Obviously increasing the number of rights widens the range between high-biased and 

low-biased estimators.   

a) 

 

b) 

 

Figure 3.3 Multiple exercise option pricing including 1 to 5 put rights using the out-

of-sample and in-sample LSMC and ICLS methods, ATM options are priced for 

maturities of 1 year with weekly exercise opportunities a) option value b) relative 

value of option compare to basket of American put options. The underlying asset 

follows a geometric Brownian motion with dividend=0%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40, 

S0=$40 and number of paths = 1000. All options are priced using polynomial of 

order 2 and the regressions are done using the paths that are ITM at the current 

time step. The mean prices of 100 repetitions are shown and the benchmark prices 

are obtained with the binomial model. 

 

Figure 3.4 presents the effect of increasing number of exercise opportunities and 

compares the LSMC and ICLS methods. This figure presents pricing of multiple exercise 

option with 5 put rights using the out-of-sample and in-sample LSMC and ICLS  

methods, ATM options are priced for maturities of 1 year with different number of 

exercise opportunities from 10 to 100. The underlying asset follows geometric Brownian 

motion with no dividend, r= 5%, σ = 20%, K=$40, S0=$40, and number of paths 1000 

and 100 respectively. All options are priced using polynomial of order 2 and the 
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regressions are done using the paths that are ITM at the current time step. The mean 

prices of 100 repetitions are shown. The price of both methods increases monotonically 

although for large number of exercise opportunities the curves tend to get flat and the 

effect of changing the number of exercise opportunities diminishes. Interestingly for low 

exercise opportunities ICLS and LSMC methods are closer and the more exercise 

opportunities brings in more chance of choosing not optimal decision by LSMC, so the 

difference of these methods increases by exercise opportunities. 

a) 

 

b) 

 

Figure 3.4 Multiple exercise option pricing 5 put rights using the out-of-sample and 

in-sample LSMC and ICLS methods. ATM options are priced for maturities of 1 

year with different number of exercise opportunities from 10 to 100. The underlying 

asset follows a geometric Brownian motion with no dividend, r= 5%, 𝝈 = 𝟐𝟎%, 

K=$40, S0=$40 and number of paths a) 1000 and b) 100. All options are priced using 

polynomial of order 2 and the regressions are done using the paths that are ITM at 

the current time step. The mean prices of 100 repetitions are shown. 

The main difference of LSMC and ICLS methods is the regression of the estimated value 

of the option which LSMC uses regular regression but ICLS uses constrained regression, 

as explained before. The effect of moneyness on the fitted regression value is displayed 

in Figure 3.5 to Figure 3.8. Additionally, the impact of the polynomial order on 

constrained versus unconstrained regression and the number of exercise opportunities is 

also displayed in these figures. The curves illustrate the regions that holding the option is 

beneficial. Wherever the fitted regression value is above the intrinsic value, one should 

hold the option but if the fitted regression value is less than the intrinsic value, one should 
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exercise the option because the payoff is more than the discounted expected value of the 

option at the next time step.  

Figure 3.5 illustrates the influence of moneyness and time to maturity parameters on the 

fitted regression values for LSMC method using polynomial of order 2 as the set of basis 

functions. In Figure 3.5 the prices of multiple exercise options including a) 1 put right 

and b) 5 put rights using LSMC method are presented. ATM options are priced for 

maturities of 1 year. The underlying asset follows a geometric Brownian motion with 

dividend=0%, r= 6%, σ = 20%, K=$40, S0=$40 and number of paths = 1000. All options 

are priced using polynomial of order 2 and the regressions are done using the ITM paths 

at the current time step. Regression values are presented for different remaining time to 

maturity. Note that moneyness is the relative position of the current price of the 

underlying asset with respect to the strike price of the option which is (𝐾 − 𝑆)+ for a put 

option.  

Options with longer time to maturity are farther from the exercise boundary than the 

near-to-expiry options when the moneyness is low. That means when the moneyness is 

low and you are close to expiry, there is low possibility of getting higher payoff by 

holding the option, compared to the case when the option is farther away from expiry. 

Figure 3.5 illustrates that when moneyness is low, better to hold the option. Similarly, 

when time-to-maturity is considerable, there is no reason to exercise the option and again 

should keep the right. When the time is passed enough, there is a middle region which 

LSMC method recommends to exercise the right. By increasing the moneyness, LSMC 

would imply an incorrect exercise decision which is the major drawback for this method. 

For instance, in Figure 3.5 at time step 30 LSMC methods implies no exercise for 

moneyness more than $13 and only suggests exercising the right between $7 and $13. 
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a) 

 

b) 

 

Figure 3.5 Multiple exercise option pricing including a) 1 put right b) 5 put rights 

using LSMC methods. ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 2 and the regressions are done using the paths are ITM at the 

current time step. Regression values are presented for different remaining time to 

maturity. 

 

Figure 3.6 presents multiple exercise option pricing including a) 1 put right and b) 5 put 

rights using ICLS methods. ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

σ=20%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 2 and the regressions are done using the ITM paths at the current 

time step. Regression values are presented for different remaining time to maturity. Fitted 

regression values of ICLS method are displayed in Figure 3.6 for polynomial of order 2. 

Comparison of Figure 3.6 against Figure 3.5 shows that ICLS fixes the drawback of 

LSMC and for large moneyness (after enough time steps), exercising the option is 

recommended because fitted regression values lie under the intrinsic value.   
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a) 

 

b) 

 

Figure 3.6 Multiple exercise option pricing including a) 1 put right b) 5 put rights 

using ICLS methods, ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 2 and the regressions are done using the paths are ITM at the 

current time step. Regression values are presented for different remaining time to 

maturity. 

 

Figure 3.7 presents multiple exercise option pricing of a) 1 put right and b) 5 put rights 

using LSMC method. ATM options are priced for maturities of 1 year. The underlying 

asset follows a geometric Brownian motion with dividend=0%, r= 6%, σ = 20%, K=$40, 

S0=$40 and number of paths = 1000. All options are priced using polynomial of order 6 

and the regressions are done using the ITM paths at the current time step. Regression 

values are presented for different remaining time to maturity. Figure 3.7 presents the 

same curves as Figure 3.5 but for polynomial of order 6. The fitted regression values for 

t=1 is not logical which is because simulated paths are not enough diffused and most of 

the paths have small moneyness. Still for all moneyness at t=10 and large moneyness at 

t=20, LSMC implies to hold the option which are incorrect exercise decisions. 

Note that fitted values for small times highly depend on the generated random paths and 

could change dramatically if the seed of the random number generator changes.  
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a) 

 

b) 

 

Figure 3.7 Multiple exercise option pricing including a) 1 put right b) 5 put rights 

using LSMC method. ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 6 and the regressions are done using the ITM paths at the 

current time step. Regression values are presented for different remaining time to 

maturity. 

 

On the other hand ICLS implies correct and consistent exercise decisions if only paths are 

enough diffused. Figure 3.8 presents the fitted regression curves for polynomial order 6 

ICLS method. In this case the exercise boundary moves toward the lower moneyness 

when the time passes. For example at times 20 and 45, ICSL implies exercising the 

option if moneyness is larger than $7 and $2.5 respectively.  

In Figure 3.7, the fitted regression values are not increasing, convex functions of 

moneyness, ICLS fixes this and the effect is clearly shown in Figure 3.8. Note that blue 

curves in Figure 3.8 are not monotonic when moneyness is close to zero because no 

sample path is in that area in the first time step. 
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a) 

 

b) 

 
 

 

Figure 3.8 Multiple exercise option pricing including a) 1 put right b) 5 put rights 

using ICLS method. ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 6 and the regressions are done using the ITM paths at the 

current time step. Regression values are presented for different remaining time to 

maturity. 

 

 

3.3 Processing Time and RMSE 

This section discusses the processing time and root mean square error of the examples 

presented in Sections 3.1 and 3.2. All simulations in this section were completed on the 

same computer with Intel Core i7-6700 and 3.4 GHz processors. 

Equation (1.8) simply explains that the standard error monotonically decreases for higher 

sample paths of Monte Carlo simulation, subsequently equation (1.9) indicates for very 

large number of sample paths, confidence interval of estimation reaches the exact 

solution.  

Figure 3.9 and Figure 3.10 present the root mean squared error of option values showed 

in Figure 3.1 and Figure 3.2 respectively. These figures present the root mean squared 

error (RMSE) of multiple exercise option pricing including 1 put right and 1 call right 

using the out-of-sample and in-sample LSMC and ICLS methods. ATM options are 
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priced for maturities of 3 years with weekly exercise opportunities. The underlying asset 

follows a geometric Brownian motion with dividend=10%, r= 5%, σ = 20%, K=$40 and 

S0=$40. The number of paths varies from 20 to105. All options are priced using 

polynomial of order 2 and the regressions are done using the ITM paths at the current 

time step. As expected increasing the sample size decreases the RMSE for both ICLS and 

LSMC methods, both in-sample and out-of-sample estimators and any polynomial order 

of fitted regression function. Apparently the polynomial order of the fitted regression 

does not affect the RMSE but interestingly, increasing the sample size from 1000 to 104 

(10 times larger), diminishes the RMSE by half.  

 

Figure 3.9 Root mean squared error of multiple exercise option pricing including 1 

put right and 1 call right using the out-of-sample and in-sample with LSMC and 

ICLS methods. ATM options are priced for maturities of 3 years with weekly 

exercise opportunities. The underlying asset follows a geometric Brownian motion 

with dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are priced 

using polynomial of order 2 and the regressions are done using the ITM paths at the 

current time step.  
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Figure 3.10 Root mean squared error of multiple exercise option pricing including 1 

put right and 1 call right using the out-of-sample and in-sample LSMC and ICLS 

methods. ATM options are priced for maturities of 3 years with weekly exercise 

opportunities. The underlying asset follows a geometric Brownian motion with 

dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are priced using 

polynomial of order 6 and the regressions are done using the ITM paths at the 

current time step.  

Obviously increasing the number of sample paths size is a tradeoff between RMSE and 

processing time. Although increasing the sample size decreases the RMSE (which is 

favorable), it also increases the processing time (which is not a favorable event).  

Referring to Figure 3.2, estimator precision (bias) depends on the sample size. On the 

other hand standard error can be controlled through independent repeated valuations. 

Therefore we can fix bias by choosing a sample size and then control the standard error 

by doing independent repeated valuations.  
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Figure 3.11 presents the processing time of multiple exercise option pricing including 1 

put right and 1 call right using the out-of-sample and in-sample LSMC and ICLS 

methods. ATM options are priced for maturities of 3 years with weekly exercise 

opportunities. The underlying asset follows a geometric Brownian motion with 

dividend=10%, r= 5%, σ=20%, K=$40 and S0=$40. All options are priced as the mean of 

100 repetitions using a) polynomial of order 2 and b) polynomial of order 6, while the 

regressions are done using the ITM paths at the current time step. Figure 3.11 illustrates 

that the increase of polynomial order slightly increases the processing time but sample 

size has a significant effect on the processing time. Increasing the sample size from 1000 

to 10000 (10 times larger) leads to a processing time with roughly 13 times slower and 

half RMSE (see Figure 3.9 and Figure 3.10). 

 

a) 

 

b) 

 

Figure 3.11 Processing time of multiple exercise option pricing including 1 put right 

and 1 call right using the out-of-sample and in-sample LSMC and ICLS methods. 

ATM options are priced for maturities of 3 years with weekly exercise 

opportunities. The underlying asset follows a geometric Brownian motion with 

dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are priced a) 

polynomial of order 2, b) polynomial of order 6; while the regressions are done 

using the ITM paths at the current time step.  
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Figure 3.12 presents the processing time of multiple exercise option pricing including 5 

call rights using the out-of-sample and in-sample LSMC and ICLS methods. ATM 

options are priced for maturities of 3 years with 10 to 100 exercise opportunities. The 

underlying asset follows a geometric Brownian motion with dividend=10%, r= 5%, 

σ=20%, K=$40 and S0=$40. All options are priced as the mean of 100 repetitions using 

a) polynomial of order 2 and b) polynomial of order 6, while the regressions are done 

using ITM paths at the current time step. Figure 3.12 illustrates that processing time for 

multiple exercise opportunity including 5 call rights, increases exponentially with the 

number of exercise opportunities.  

a) 

 

b) 

 

Figure 3.12 Processing time of multiple exercise option pricing including 5 call 

rights using the out-of-sample and in-sample LSMC and ICLS methods. ATM 

options are priced for maturities of 1 year with number of exercise opportunities 

from 10 to 100. The underlying asset follows a geometric Brownian motion with 

dividend=0%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All 

options are priced a) polynomial of order 2, b) polynomial of order 6, while the 

regressions are done using the ITM paths at the current time step.  

 

Parallel processing uses multiple processors to divide large problems into smaller ones 

that are worked on in parallel to save time. The current problem is inherently suitable for 

applying parallel processing because each processor can perform an independent 

valuation. This can be as straightforward as doing serial farming of the independent 

repeated valuations. Few communications are needed between the processors as only the 

parameter setting at the beginning and the valuation results at the end need to be 

communicated. 
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As example, if we engage 64 processors, 64 independent valuations of an option can be 

performed in parallel by sending each processor a single valuation, have them work in 

parallel. Excluding the very tiny processes that should occur at the end to calculate the 

mean of all valuations, the computational time for the 64 repeated valuations would be 

the same as the computational time for a single valuation using a single processor. 

 

3.4 Conclusion 

This study employed Inequality Constrained Least Squares Monte Carlo (ICLS) method 

developed by Letourneau and Stentoft [42]. This is least squares Monte Carlo with 

inequality constraints for regression to price multiple exercise options. We numerically 

compared the results from ICLS to the LSMC for multiple exercise options and showed 

that imposing structure to the regression reduces estimator bias.  

The number of regressors is one important choice in both ICLS and LSMC methods. 

Increasing the number of regressors in LSMC leads to overfitting especially when the 

sample size is low. Unlike LSMC, constraints in the ICLS method prevent overfitting 

which leads to smaller estimator bias. We showed that to obtain the same bias for these 

methods, LSMC should use a sample size 10 times larger compared to ICLS which 

increases the processing time 13 times compare to ICLS.  

Pricing multiple exercise options is a computationally intensive problem and 

consequently takes considerable processing time compared to single-exercise options. 

Valuation methods used in this thesis are adaptable to the parallel processing technique 

because many independent valuations could be performed with different processors 

requiring minimum communication. As example, using 64 processors in parallel makes 

the processing time almost 64 times faster. 

Future work on this problem is to extend methodology presented here to allow for a 

multi-dimensional underlying. This extension has been explored by Letourneau and 

Stentoft [42] for the case of American style option (single exercise). Another potential 

avenue for future research is using independent sets of samples for each number of 

exercise rights. Imposing constraints across number of exercise rights could be another 
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extension for this work. As Figure 3.3a shows the value of multiple exercise option 

increases monotonically by number of exercise rights with negative convexity.   
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