
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-15-2018 10:30 AM 

Computing, Modelling, and Scientific Practice: Foundational Computing, Modelling, and Scientific Practice: Foundational 

Analyses and Limitations Analyses and Limitations 

Filippos A. Papagiannopoulos, The University of Western Ontario 

Supervisor: Myrvold, Wayne, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Philosophy 

© Filippos A. Papagiannopoulos 2018 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Logic and Foundations of Mathematics Commons, and the Philosophy of Science 

Commons 

Recommended Citation Recommended Citation 
Papagiannopoulos, Filippos A., "Computing, Modelling, and Scientific Practice: Foundational Analyses and 
Limitations" (2018). Electronic Thesis and Dissertation Repository. 5660. 
https://ir.lib.uwo.ca/etd/5660 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 











14 Chapter 1. Introduction

Figure 1.3: The two articles appeared in the Notices. Both models claim to offer a foundation
for scientific computing.

But another purpose for both approaches is to formalise the concept of ‘algorithm’. In
the tradition of logic and computer science, effective computation of a function was always
understood as computation by following an algorithm. But numerical analysis, being a centuries
old field —concerned with mechanical methods for tackling various problems such as, solving
linear or differential or integral equations, data interpolation, optimization problems, etc.— also
has the notion of ‘algorithm’ at its core. Therefore, although the task of choosing among the
various theories of real computation is important on its own, I think that the very existence of
such diverse approaches can offer us some insights into our intuitive notion of ‘algorithm’ itself.



Chapter 2

Algorithms

As we have said, ‘algorithm’ is a central concept in numerical analysis, as a long-standing
field concerned with methods for numerical problem solving. No wonder then that a formal
theory aiming to offer a foundation for the field would also claim that it formalises the notion of
‘algorithm’:

The situation in numerical analysis is quite the opposite. Algorithms are primarily
a means to solve practical problems. There is not even a formal definition of
algorithm in the subject. [..]

[But a]s long as the computer is seen simply as a finite discrete object, it will be
difficult to systematize numerical analysis. We believe that the Turing machine as
a foundation for real number algorithms can only obscure concepts. (Blum et al.,
1997, 23)

And, after having sketched the BSS model, Blum et al. continue:1

Now formulating a theory of computation [over a field K and choosing K to be
the real numbers R..], we are able to obtain a setting that provides a foundation
of numerical analysis. The notion of an algorithm over R becomes well-defined
as a mathematical object in its own right. So we have developed an extension of
the classical theory to a new theory which can be specialized to the study of real
number algorithms. (Blum et al., 1997, 30, emphasis in original)

The contrast of this “opposite situation”, in the first quote, is with the case of classical com-
putability theory. As we have already mentioned earlier (p.4), the Church-Turing thesis is almost
universally accepted as a foundational principle for computer science. The groundbreaking

1See, also, the quotes on p.5.

15



16 Chapter 2. Algorithms

work by logicians back in the 30s, and later, successfully captured (extensionally) the notion of
an ‘effective procedure’. But saying that ‘a function is effectively computable’ can be translated
as ‘there is a sequential algorithm for computing this function’. So, it is generally asserted
that the aforementioned logicians’ work successfully captured (extensionally) the notion of ‘a
sequential algorithm such that..’.

But, this formal work is just as naturally extended to real function computability by the
effective approximation approaches. So it seems equally natural to consider that the notions
of ‘effective computation of a real function’ and ‘sequential algorithm for computing a real
function’ are suitably explicated by some strand from the effective approximation cluster of
approaches, say, Type-2 Turing machines. And, indeed, EA is widely accepted as the correct
framework for formalising real computability, within certain fields such as logic, theoretical
computer science, physics, and also philosophy.2

Nevertheless, Blum et al. are by no means the only mathematicians complaining about
how unnatural the effective approximation models are for providing a foundation for certain
mathematical fields. Researchers from the area of computational geometry have expressed
similar complaints and one of the ground-laying texts in the subject (Preparata and Shamos,
1985) uses the Real-RAM model as a formal foundation of geometric algorithms.3

Even more, information-based complexity uses Real-RAM as the standard model of com-
putation for the analysis of algorithms. Hopefully, the reader will excuse a brief digression, in

2For an insightful defence of EA as the appropriate framework to formalise effectivity, see Pégny (2016).
3Here is a rather long but very characteristic quote, distilling the attitude of researchers in computational

geometry towards effective approximation (emphasis in original):

Most (classical) results in computational geometry are heavily tied to issues in combinatorial
geometry, for which assumptions about coordinates being integral or algebraic are (at best) irrelevant
distractions. Speaking as a native, it seems completely natural to consider arbitrary points, lines,
circles, and the like as first class objects when proving things about them, and therefore equally
natural when designing and analyzing algorithms to compute with them.

For most (classical) geometric algorithms, this attitude is reasonable even in practice. Most algo-
rithms for planar geometric problems are built on top of a very small number of geometric primitives:
Is point p to the left or right of point q? Above, below, or on the line through points q and r? Inside,
outside, or on the circle determined by points q,r,s?

[...] For similar reasons, when most people think about sorting algorithms, they don’t care what
they’re sorting, as long as the data comes from a totally ordered universe and any two values can be
compared in constant time.

So the community developed a separation of concerns between the design of real geometric al-
gorithms and their practical implementation; [...] TTE, domain theory, Ko-Friedman, and other
models of “realistic” real-number computation all address issues that the computational geometry
community, on the whole, just doesn’t care about.

From: Jeffε (https://cstheory.stackexchange.com/users/111/jeff%ce%b5), What are the reasons that re-
searchers in computational geometry prefer the BSS/real-RAM model?, URL (version: 2010-10-13):
https://cstheory.stackexchange.com/q/2124



2.1. The BSS/Real-RAM in other areas of mathematics 17

order to discuss how the Real-RAM model is employed in those disciplines (the latter using the
name ‘real number model’).

2.1 The BSS/Real-RAM in other areas of mathematics

Computational geometry. Computational geometry is concerned with the study of algo-
rithms for solving geometrical problems, which, in a sense, are the computational counterparts
of rule-and-compass constructions of classical geometry. The latter field had been profoundly
influenced by developments in real analysis, for example, metric spaces and convexity theory.
Due to these developments, the treatment of classically geometrical notions, such as distance or
convexity, was transformed to treatment of analytic notions, such as metrics or properties of
finite subsets. Accordingly, the objects considered in the descendant field of computational ge-
ometry commonly are sets of points (x1, x2, ..., xk), where xi real, in an n-dimensional Euclidean

space with metric (
∑n

i=1 x2
i )1/2.

Computational geometry involves two fundamental elements, algorithms and data structures.
The formulation and analysis of the algorithms —e.g. their cost— is with respect to some specific
computation model. Data structures are ways of organizing the complex objects manipulated by
the algorithms —most commonly, sets, ordered and unordered— by means of the simpler data
types directly representable by the computer.4

In order for an appropriate model of computation for a mathematical domain to be chosen, the
nature of problems dealt with in the domain is essential. Generally speaking, in computational
geometry most problems can fit into one of the following categories.5 (a) Subset selection: given
a collection of objects, find a subset that satisfies a certain property (e.g., the two closest ones in
a set of n points). (b) Computation: Compute the value of some geometric parameter of a given
set of objects (e.g., the distance between a pair of points). (c) Decision: with any instance of the
above two categories, we can also associate a decision problem, with a YES/NO answer (e.g.,
does a specific subset S satisfy property P? Is the distance between points A and B greater or

4Data structures can be classified according to what operations they involve. For example, if S is a subset of A,
represented in a data structure, and u an arbitrary member of A, the fundamental operations are:
MEMBER(u, S ): Decide whether u ∈ S
INSERT(u, S ): Add u to S .
DELETE(u, S ): Remove u from S .
Assuming now a collection of disjoint sets S 1, S 2, ..., S k, more complex operations can be:
FIND(u): Report i : u ∈ S i

MIN(S ): Report the minimum element of S (S is totally ordered).

Accordingly, data structures are classified on the basis of supported operations. For example, a Dictio-
nary, is a data structure supporting MEMBER, INSERT, DELETE, and a Priority queue is a data structure
supporting MIN, INSERT, DELETE (Preparata and Shamos, 1985).

5See, Preparata and Shamos (1985, 27).



18 Chapter 2. Algorithms

equal to a fixed constant k?).

The adopted model is, as we have said, Real-RAM, which is essentially equivalent to BSS in
the finite-dimensional case. A real-RAM machine is a register machine, but capable of storing
the exact value of a real number in each memory cell (register).6 The inputs to the machine
are unanalysed entities in an algebra A, making it an algebraic approach, similarly to BSS.
Thus, the four arithmetical operations (±,×,÷) as well as comparisons between any two real
numbers (<,6,=) are primitive and available at unit cost. Relative to specific applications,
several analytical functions, such as n-root, trigonometric ones, etc., can be taken as primitive
and built into the model.

When a real-RAM executes an algorithm for a decision problem,7 the overall computation
may be viewed as a path in a rooted binary tree, whose particular nodes involve either a
calculation, or a branching based on the result of a comparison. Such a tree corresponds to
another computational model, the “algebraic decision tree”. This is an important fact, because
the worst-case running time of a real-RAM program will be at least proportional to the length
of the longest path from the root (representing the initial step of the computation) to a leaf
(representing a last step and containing a possible answer YES/NO output), in the respective
algebraic decision tree. Thus, the Real-RAM model and its connection to algebraic decision
trees are very useful for analysing algorithms in terms of lower bounds of their costs.

Information-based complexity (IBC). Information-based complexity is the branch of
computational complexity that studies the complexity of problems in which information is
partial, noisy, and priced. ‘Information’ in this context is not meant in the same sense as in
Claude Shannon’s information theory. It rather is about what we know about the problem whose
complexity and solution we’re interested in. More often than not, information is limited in a
variety of problems, from science and engineering to economics and mathematical finance, to
control theory, to computer graphics and vision, etc. Assume, as a toy example, that we need
to compute

∫ 1

0
f (x)dx. Very often, we cannot apply the fundamental theorem of the calculus,

and we have to numerically approximate the solution (Traub et al., 1988). All we can do is to
input in the computation the value of f at certain points (perhaps, obtained by some program
calculating f (x)) and this is the available information. It is partial, since there is in general an
infinite number of integrands having the same values at these points, and our case cannot be
distinguished from any of those; we have limited knowledge only. If we also have round-off or
representation errors (e.g., owing to use of a digital computer), then the information is noisy or
contaminated. Both incompleteness and contamination of information bring about an intrinsic

6‘RAM’ stands for ‘Random Access Machine’, which is another name for register machines.
7Recall that both subset-selection and computation problems can be transformed to a decision problem.



2.2. The problem about algorithms 19

uncertainty in the answer, say ε. In addition, it is assumed that information is priced: there
is a cost for every piece of information we obtain (e.g., in the previous example, for every
value of f (x) at a point). All such cases are contrasted with problems studied in combinatorial

complexity where information is complete, exact, and free, such as the travelling salesman
problem. Typically, the way this problem is studied in combinatorial complexity is by assuming
that all the cities and all the distances between them are known completely, exactly, and with no
cost.

Similarly to combinatorial complexity,8 information-based complexity deals with the study
of all possible algorithms for solving a problem, in order to evaluate its complexity, in a way
that the latter will be a problem invariant, that is, independent of any particular algorithm used.
Since problems studied in IBC ex hypothesi can only be solved approximately, it is required that
a solution will not have error greater than a threshold ε. Then, the ε-complexity of a problem
is the minimal cost among all algorithms which solve the problem with error at most ε (Traub
et al., 1988, 3). Accordingly, the cost and error of algorithms are defined according to three
different settings: a worst case, an average, and a probabilistic setting.

The model of computation used in IBC, in order to analyse algorithm costs and, hence,
complexity of problems, is called ‘Real number model’ and it’s equivalent to BSS/Real-RAM.
The crucial assumption is, again, that the four arithmetic operations and comparisons between
real numbers are primitive and that they can be performed exactly and at unit cost.

Other fields Finally, besides numerical analysis, computational geometry and information-
based complexity, the Real-RAM/BSS model has been used in the field of computer algebra

and mainly in algebraic complexity. The concern here is with algorithmic problems which can
be solved by means of algebraic algorithms (Bürgisser et al., 2013).

2.2 The problem about algorithms

So it becomes apparent that although ‘algorithm’ is the central notion in various areas of
mathematics, it is however treated and formalised differently. Nevertheless, if all mathematicians
sat around a table, so to speak, they would all agree, at an informal level, about what kind of
routines qualify as algorithmic ones and what features such routines should have. And, in a
sense, this is what has been done for centuries, when the intuitive notion of ‘algorithm’ was
taken as clear and unproblematic and with no actual need for further formalisation. But, then,

8Very often and in many contexts, what we refer to here by ‘combinatorial complexity’ is just called ‘compu-
tational complexity’ with no risk of confusion. However, we here stick to a terminological distinction between
‘information complexity’ and ‘combinatorial complexity’, because it matters in this context.



20 Chapter 2. Algorithms

despite any intuitive consensus, mathematicians from different fields actually end up explicating

the informal idea in not only different but actually incompatible ways. How can this be so?

2.2.1 Three levels of formalisation

Smith (2013, 44-45) distinguishes three levels of conceptualisation in play, when we come to
formalise intuitive concepts. I will adopt his scheme for the purposes of this work and with
respect to the notions of ‘computation’ and ‘algorithm’.

First, we can say that there is a pre-theoretic level, at which the basic notion of ‘computa-
tion’ is actually a vague, rough idea, stemming mainly from paradigmatic cases of algorithmic
procedures in the mathematical practice (e.g., the sieve of Eratosthenes or Euclid’s algorithm).
The ideas are still inchoate at this level and we rather have to do with a cluster of notions instead
of a simple one. There’s not one definite idea of ‘computation’ (or ’calculation’) but various
distinct cases: effective computation, machine computation, analog computation, geometric
constructions, etc. All these are not excluded by any pre-theoretical talk of computation or of
mechanical procedures.

Second, at a next, proto-theoretic, level, things become more specific. This is the level at
which we “tidy up” the notion by means of certain abstractions and idealisations. It is important
to stress that there may be an element of decision here, in the sense that we choose to pick up
certain strands from the pre-theoretic hodgepodge of ideas and sharpen the particular notion.9

So, what the founding fathers of computability did, back in the 30s, was to pick out the strand
of ‘effective computation’ (i.e., computation by following a sequential algorithm) and abstract
away from limitations of time and space.

It is not clear whether there is also an element of choice about exactly what idealisations to
employ when sharpening intuitive notions; when Church, Turing, et al., for example, idealised
from matters of feasibility in order to formulate effective computation. After all, there are
other notions of computability as well and it seems reasonable that a different mathematical
community could have set, say, some fixed upper bounds to how fast a function grows, in order to
be regarded as ‘computable’, such as to be calculable in at most exponential or hyperexponential

9I should emphasize from the outset that, by saying that there is an element of decision in the above procedure,
I do not mean that the whole process of sharpening the concepts is an arbitrary one. Rather, I mean something
along similar lines to Carnap’s (1962) views on explication; namely that before we go on with our attempt to
provide a satisfactory explicatum of the concept in hand, we need to make clear what is meant by the explicandum.
That is, we need to provide explanations of what is and what is not the intended use of the intuitive concept to
be explicated; what is intended to be included and what to be excluded. For example, by wanting to explicate
‘truth’, e.g. in a Tarskian way, we specify that we mean ‘truth’ as, say, used in the sense of ‘correct’, as applied to
statements, and not as used in phrases such as ‘true democracy’, ‘true love’, etc.



2.2. The problem about algorithms 21

time, etc. See Shapiro (2013) for arguments in favour of such a view. In all those cases, functions
such as Ackermann’s would not qualify as computable (and there were voices at the time arguing
to that effect). On the other hand, Gödel seemed to hold that —at least in some cases— there
is only one correct way of formalising an intuitive concept; we only need to gain “the correct
perspective”:

If we begin with a vague intuitive concept, how can we find a sharp concept to
correspond to it faithfully? The answer is that the sharp concept is there all along,
only we did not perceive it clearly at first. This is similar to our perception of an
animal first far away and then nearby. We had not perceived the sharp concept of
mechanical procedures before Turing, who brought us to the right perspective. And
then we do perceive clearly the sharp concept.

If there is nothing sharp to begin with, it is hard to understand how, in many cases,
a vague concept can uniquely determine a sharp one without even the slightest
freedom of choice. (quoted in Wang 1997, 232-3)

We need not settle this issue here. But we will have some relevant discussion further on.

Finally, the third, fully-theoretic, level is when we have come to formulate rigorous and definite
concepts, such as those of ‘Turing computability’, ‘µ-recursiveness’, etc. The concepts now in
play are rigorously defined and precise, and little (if anything) is left to intuition. In our case, for
example, it seems reasonable to assume that were a new function (on the natural numbers) to be
discovered tomorrow, there would be a definitive answer whether it is, say, Turing-computable
or not (even if it was extremely difficult in practice to find that answer).

So, in the case of computability, the Church-Turing thesis links the extensions of the
sharpened notions at the second level (i.e., ‘effective computation’) with those of the rigorous
mathematical concepts of the third level (e.g., ‘recursive functions’). And what it does is to
identify these extensions. And since effective computation is understood as computation by
following an algorithm, the CTT can be seen as explicating the idea of ‘algorithmic computation’
by means of ‘Turing computation’, (or ‘recursiveness’, or whichever your preferred model is).

2.2.2 Three possible interpretations

Now, how are we to interpret the fact that although arguably all mathematicians would agree
about the proto-theoretic characterisation of ‘algorithm’, they end up formalising it, at the third
level, in incompatible ways, according to which mathematical area they come from? I suggest
that there are three possible ways to see these apparently inconsistent practices.



22 Chapter 2. Algorithms

A) The first possibility is that only one approach is in fact proper (or, acceptable). The proto-
theoretical notion of ‘algorithm’ is as precise as it gets for an informal concept and, despite
some vagueness in the sense of the term —what is meant by ‘small steps’ in an algorithm, for
example?—, we should always pick out the same class of algorithmically computable functions,
under any reasonable sharpening. This was the case with the numerical functions over the
non-negative integers, and it’s also the case (for the most part) with the different models within
the cluster of effective approximation. Thus, effective approximation gets it right, whereas
BSS/Real-RAM or other unrealistic models of computation actually miss the point.

B) The second possibility is to say that we in fact use the notion of ‘algorithm’ in mathematics
in more than one way. To make this idea more precise, let’s say that a concept is poly-vague if
our informal talk about it fails to pick out a single mathematical “natural kind”.10 A poly-vague
term, then, can legitimately be disambiguated in more than one way, though consistently with
the implicit rules we’d mastered for applying the concept to ordinary cases.

So, following that route, we can say that in the traditions of numerical analysis and geometry
the term ‘algorithm’ picks out different classes of routines from those of computer science
(though each class might be precisely bounded).

C) The third possibility is that, although already a proto-theoretical concept (that is, some
theoretic tidying has already taken place), ‘algorithm’ is a concept with open texture. This means
that the concept itself has some open-ended character in the sense that the so far established use
of the language is not adequate to delimit it in all possible directions.

The term ‘open texture’ is due to Waismann (1945), who, at the time, was arguing against verifi-

cationism, on the grounds that most (though not all) empirical concepts cannot be exhaustively
and precisely defined; there can always exist some unforeseen situations or instances falling
under their extension. This, as a fact, prevents us from conclusively verifying most of our
empirical statements. Assuming that a term is considered defined when the sort of situations in
which it is to be used are defined, empirical concepts can never be completely defined, due to an
open horizon of possible situations that any empirical description might leave out. Nevertheless,
for Waismann, mathematical terms do not suffer from any similar incompleteness of definition,
because a definition of, say, a geometrical term, such as a triangle, in a sense includes already
all sorts of situations in which it can be used. The description of the term is already complete.

Despite that, Stewart Shapiro, in two related articles (2006; 2013), has argued that open
texture can be a property of some mathematical terms as well; ‘number’ and ‘computable’, for
example, being cases in point.

10I borrow the term and the idea of ‘poly-vagueness’ from Smith (2013).



2.2. The problem about algorithms 23

Now, in terms of the three-level schema, described in the previous section (2.2.1), it is
safe to assume that pre-theoretic concepts may exhibit open texture. The different notions of
‘computation’ not excluded from the pre-theoretic idea is a good example of this. What is more
contentious, though, is the claim that the proto-theoretic concept of ‘algorithm’ may still have
some open texture too.

Supporters of all three interpretations (explicitly or implicitly) can be found both in philoso-
phy and mathematics/Computer Science. But before we attempt a more thorough discussion
about their plausibility, we need a more ‘precise’ formulation of the informal idea of ‘algorithm’.

2.2.3 Algorithm: the informal concept

Although informal, ‘algorithm’ has always been taken as a clear and unproblematic notion.
Virtually all mathematicians would agree on something like the following features as being the
essential ones:11

1. An algorithm is a general step-by-step procedure, prescribing a sequence of operations
for solving a type of problem. It must be expressed as a set of instructions of finite size.

2. An algorithm has a set (perhaps empty) of inputs and a (set of) output(s).

3. For any given input, the computation is carried out in a discrete stepwise fashion (that is,
without use of any continuous methods or analog devices). Alternatively put, an algorithm
proceeds in discrete time, so that at every given moment the state of the computation is
obtained from the state at the previous moment of time.

4. For any given input, the computation is carried out deterministically, without resort to any
random methods. The computation state at any given step/moment is uniquely determined
by the state in the preceding step/time and the list of instructions.

5. The list of instructions that make up the algorithm are to be followed by a computing
agent (human or otherwise) which carries out the computation.

6. Each step of an algorithm must be specified to the smallest detail, precisely and unam-
biguously, such that no acumen or ingenuity or any semantic interpretation is required by
the computing agent. Steps should be of a bounded complexity.

11The characterisation I provide here is distilled by relevant descriptions in the classic works of Knuth (1997),
Rogers (1987), and Malc’ev (1970).



24 Chapter 2. Algorithms

Computations possessing feature (1) are sometimes called ‘sequential-time’ (as opposed,
e.g., to parallel or distributed computations). Computations with features 1 and 6 are sometimes
called ‘sequential’. Sequential algorithms are a subspecies of sequential-time ones.

The above 1-6 features are almost universally accepted as necessary. There is also the
requirement of finiteness:

7. An algorithm must always terminate after a finite number of steps.

But, although many texts explicitly pose this requirement (Rogers, 1987; Knuth, 1997),
some authors may accept non-terminating procedures satisfying the above criteria as algorithms
too.12 The concern with finiteness arose in the context of effectively computing and is explicitly
expressed in Hilbert’s 10th problem, posed in 1900 at the International Congress of Mathemati-
cians in Paris: “Given a Diophantine equation [..] devise a process according to which it can be
determined in a finite number of operations whether the equation is solvable in rational integers”
(emphasis added). It is trivial, however, that not all processes which clearly are algorithmic
can be carried out in a finite number of steps; consider the calculation of the quotient of two
incommensurable numbers, for example.

In practice, though, the process always terminates when it reaches some previously agreed
stage. Additionally, for every function which qualifies as computable, in the sense of the
existence of an algorithm for computing its values, the corresponding algorithm must, obviously,
be terminating.

2.2.4 The problem reformulated

Given the above features, a main question pursued in this chapter is this:
12For example, (Hermes, 1969, 2):

There are terminating algorithms, whereas other algorithms can be continued as long as we like.
The Euclidean algorithm for the determination of the greatest common divisor of two numbers
terminates; [..] The well-known algorithm of the computation of the square root of a natural number
given in decimal notation does not, in general, terminate. We can continue with the algorithm as
long as we like, and we obtain further and further decimal fractions as closer approximations to the
root.

Or, (Gurevich, 2015, 189):

In general algorithms perform tasks, and computing functions is a rather special class of tasks. Note
in this connection that, for some useful algorithms, non-termination is a blessing, rather than a curse.
Consider for example an algorithm that opens and closes the gates of a railroad crossing.

The finiteness condition needs also be adjusted accordingly in the case of Type-2 Theory of Effectivity, as we
already saw in sect.1.3.2.



2.3. Historical context 25

Does the above informal characterisation have enough shape to pick out always

a precisely bounded class of routines/computable functions?13

If the answer is ‘yes’, then something like the (A) possibility from the previous section (2.2.2)
must be the case; if ‘no’, then either (B) or (C).

Of course, the case of classical computability theory gives strong evidence in favour of
the first option. The informal notion has throughout the history of mathematics been taken as
clear, precise, and unproblematic, and when the need for formalisation arose —in order to prove
non-existence results about algorithms—, all formal models (all attempted explicata, that is)
turned out to be equivalent. Hence, despite any ‘vagueness’ in the informal characterization
of ‘algorithms’, the latter does have enough shape to pick out always, under any reasonable
sharpening, the same class of routines/functions, when we are in the domain of the non-negative
integers. And this is also in accord with Gödel’s view in the quoted passage (sec.2.2.1).

Nevertheless, crucially, computations do not only pertain to denumerable domains, and
we saw areas of mathematics with the notion of algorithm at their heart already. So, before
attempting an answer to the question above, we need to examine the concept of ‘algorithm’ as
occurs in such domains too. We attempt an investigation within both a historical and theoretical
context.

2.3 Historical context

The word ‘algorithm’ comes from the medieval term ‘algorism’. The latter is derived from
‘Algoritmi’, the latinised version of the name of the Persian Muslim mathematician al-Khwārizmı̄
(c.780–850AD) who lived and worked in the House of Wisdom in Baghdad.14 Al-Khwārizmı̄’s
work is, among others, responsible for the spread of the decimal positional number system
across Europe, mainly through the translations of his books on (a) arithmetic: Kitāb al-Jam’

wat-Tafrı̄q bi-H, isāb al-Hind (The Book of Addition and Subtraction According to the Hindu

Calculation) and (b) algebra, that is, on finding the positive roots of quadratic equations: Al-

kitāb al-mukhtas, ar fı̄ h, isāb al-ğabr wag’l-muqābala (The Compendious Book on Calculation

by Completion and Balancing).15 From the time that al-Khwārizmı̄’s work became known in
Europe (around the 12th century), a conflict between the advantages of using the new positional

13By ‘computable’ here, we only refer to those functions whose value can be computed by following an algorithm,
in the above sense.

14The shift from ‘algorism’ to ‘algorithm’ is, according to one interpretation, due to a mistaken etymological
rooting when European scholars had lost track of the correct root and attributed a Greek root connected possibly
with the Greek word ‘arithmos’ (number). Another interpretation has been that ‘algorism’ comes from ‘Algorismi’
and ‘algorithm’ from ‘Algoritmi’, both latinised versions of ‘al-Khwārizmı̄’.

15The modern word ‘algebra’ stems from the word ‘al-ğabr’ in the title of this book.



26 Chapter 2. Algorithms

notation calculation methods over the older abacus and counting table methods appeared in
the Latin texts of the Middle Ages. See, figure 2.1. Since the new methods were referred to as
‘algorisms’ or ‘algorismus’, the word itself came to refer to the use of specific routine arithmetic
procedures.16 In this context, clearly, the concept referred to a process of symbol manipulation.

Figure 2.1: Calculating-Table by Gregor Reisch: Margarita Philosophica, 1503. The wood-
cut shows Arithmeticae instructing an algorist and an abacist (represented as Boethius and
Pythagoras) during a competition.

Later on, however, the meaning of the term became extended, so that it came to signify any
given routine of mechanical calculation. Thus, d’Alembert wrote in the Encyclopédie about the
term ‘algorithm’:

Arab term, used by several authors [..] to mean the practice of algebra. It is also
sometimes taken to mean arithmetic by digits [..] The same word is taken to mean,
in general, the method and notation of all types of calculation. In this sense, we say
the algorithm of the integral calculus, the algorithm of the exponential calculus, the
algorithm of sines, etc. [emphasis added].17

16See, also, Chabert (1999).
17I take the quotation and the translation from Chabert (1999, 2).



2.3. Historical context 27

This generalised meaning has been around in mathematics for a long time, and in parallel with
the more restricted sense of symbolic manipulation. The latter has been more prominent within
the tradition that led to the development of logic. More specifically, besides al-Khwārizmı̄,
Gottfried Wilhelm Leibniz’s idea of a characteristica universalis is based on ultimately reducing
computations to manipulations over an alphabet as well:

In philosophy I found some means to do, what Descartes and others did via Algebra
and Analysis in Arithmetic and Geometry, in all sciences by a combinatorial
calculus [..] By this, all composed notions of the world are to few simple parts
as their Alphabet, and from the combination of such alphabet a way is opened
to find again all things, including their truths, and whatever can by found about
them, with a systematic method in due time. (Letter to Duke Johann Friedrich of
Braunschweig-Lüneburg).18

Furthermore, Charles Babbage, in his (1826), wrote about the importance of symbolic notation,
so that algebraic symbols could be used mechanically in mathematical reasoning (as opposed,
e.g., to the less safe geometrical reasoning). George Boole applied methods from symbolic
algebra to logic, and Charles S. Peirce extended Boole’s work to the theory of de Morgan
relations, introducing also the method of truth tables, which arguably is symbolic as well. This
tradition culminates in Turing’s work which is about symbolic computation too.

On the other hand, the use of ‘algorithm’ in the more general meaning of ‘calculation method’
can be found in several mathematical areas, spanning through the whole history of mathematics.
For example, most of Sumerian, Babylonian, and Egyptian mathematics we know of today seems
algorithmic in nature; methods for multiplying, dividing, calculating inverses, etc.19 But these
are cases of denumerable domains, so they don’t help illuminate our investigation here. Thus,
it might be more promising to focus on uncountable domains, that is, calculation methods over R.

Geometry: Greek mathematics was a huge step towards the notion of proof and the devel-
opment of mathematical theories. Euclid’s Elements is largely devoted to proofs of certain
theorems within Euclid’s axiomatic system. But, a good deal is computational too, in the
sense of showing that certain constructions exist and can be carried out. And, in the words
of two mathematicians: “[t]he Euclidean construction satisfies all of the requirements of an
algorithm: it is unambiguous, correct, and terminating.” (Preparata and Shamos, 1985, 1).
Another important characteristic of Euclidean constructions is that they specify a universe of

18Quoted and translated in Thomas (2015, 31-32).
19Does it really make sense to distinguish these cases from the symbolic computations described in the previous

paragraph? Perhaps not really, since we’re still in denumerable domains; we discuss this more later in sec.(2.6).



28 Chapter 2. Algorithms

entities on which the computor operates (points, lines, etc.), a collection of permitted instru-
ments (ruler and compass) and a collection of permitted operations on them (produce the line
through two existing points, produce the circle through one point with centre at another point,
iterations of those, etc.). Taking the permitted operations as primitive, it then makes sense
to say —in somewhat anachronistic terms— that a main computational concern in Euclidean
geometry was the closure of the Euclidean entities computed (constructed) under the Euclidean
primitives and composition. Nevertheless, other “computational models” were considered too,
and many geometers, along the history of the subject, were concerned with investigating the
“computational power” of, e.g., compass-only models, or ruler-and-scale models (Hilbert), etc.

Algebra: A big part of algebra has also been concerned with developing algorithms for comput-
ing solutions of (systems of) polynomial equations with real or complex coefficients. Babylo-
nians, Egyptians, Diophantus, al-Khwārizmı̄, Niccolò Ludovico, Ferrari Tartaglia, Gerolamo
Cardano et al. are all major stages and figures in the long quest for algorithms for calculating
analytic solutions. Recall, for example, the quadratic formula20

x =
−b ±

√
b2 − 4ac

2a

for computing the real roots of the quadratic equation ax2 + bx + c = 0, whenever b2 − 4ac > 0
and a , 0. The cubic and quartic equations have similar methods, but for centuries no such
method could be found for the quintic. And it was only after the exact requirements were
precisely specified —or, again in somewhat anachronistic terms: what the permitted primitive
operations are— (viz., a solution obtained by means only of the coefficients and a finite number
of arithmetical operations and nth roots, for any n), that Abel was able to show that no such
computation algorithm exists (Abel’s Impossibility Theorem). An additional example of compu-
tational method in algebra is Gaussian elimination; a method for computing solutions of systems
of linear equations.

Numerical analysis: More often than not, solutions of equations cannot be computed exactly.
In those cases, root-finding algorithms are developed for computing approximate (numerical)
solutions. As we have already discussed, the BSS model purports to formalise this practice;
nevertheless, the subject goes several centuries back in mathematical history. Typical algorith-
mic methods here include the bisection method, liner interpolation, Newton’s method, etc. (for

20One should not think that our characterization of the quadratic formula as an algorithm is just loose talk. The
same assertion can even be found in computability textbooks; for one, see Epstein and Carnielli (2008, 63).



2.3. Historical context 29

computing approximations to roots of functions), and Euler’s method (for computing approxi-
mations to ordinary differential equations, with given initial value).

Analysis and calculus: Analysis has also had an algorithmic flavour in the past (i.e., before its
developments in the 19th century onwards). In the early 1600’s, Cavalieri, Fermat, Pascal et. al.
developed methods for computing areas of regions bounded by curves (see, Avigad and Brattka
2014). Even the very name ‘calculus’ indicates the algorithmic nature (at least in the early
stages) of the field. The word ‘calculus’ is of Latin origin, meaning originally ‘small pebble’ as
those used on abaci (‘calculation’, of course, stems from the same root). As a toy example, the
high school routine for differentiating polynomials is typically purely mechanical in nature21

(Rogers, 1987).

The argument from history and practice

It becomes apparent then that the history and practice of mathematics has been significantly
concerned with the development of mechanical routines for computing solutions to (families of)
problems.22 But some of the above examples of methods in fact may not be of the sort that admits
of implementation by a Turing machine; certain functions computed by ruler-and-compass
constructions, for example (see, Gurevich, 2014, 4). Additional examples could be Gaussian
elimination, bisection algorithms, or even the simple decision problem to decide whether a
quadratic equation ax2 + bx + c = 0 has real roots, by determining whether b2 − 4ac > 0. All
these cases involve arithmetical operations and equality comparisons between real numbers,
and so they are not always computable; if the left-hand part in the latter instance, for example,
is very close to zero.23 But, even Euclid’s algorithm, which has been applied —in theory and
practice— to the lengths of segments of a straight line, may allow the computation of a partial
function24 which is not Turing computable; this is so because arbitrary lengths cannot in general
be put on the tape of a Turing machine25 (Gurevich, 2014, 4).

In actual practice, of course, we are able and do approximate such functions and routines.

21This is not to say, of course, that all functions and processes used in analysis, even before the 19th century
were computable in the modern sense of computable analysis. Euler, for example, did use piecewise functions
which are discontinuous and so non (Turing- or TTE-)computable.

22Even Chabert (1999) for example, although a book on the history of algorithms, is to a great extent concerned
with the development of methods used in numerical analysis.

23The equality relation ‘=’ is not Turing computable. But, even certain arithmetical operations may not be
Turing computable either. For instance, there’s no Type-2 Turing machine, in the way specified earlier (sect.1.3.2),
that computes the product of an infinite decimal fraction (say, 0.333...) and 3 (see Weihrauch, 2000, 18).

24The function here is the multivariable d = gcd(a, b) and it’s partial because if the two lengths a and b are
incommensurable, then the algorithm does not terminate.

25As it should be clear by now, in this context, I mean ‘Turing computable’ in the broadest sense, including both
Type-1 and Type-2 Turing machines.



30 Chapter 2. Algorithms

Approximation nevertheless is different from exact computation.26

Now, if the existence of the broader generalised meaning of ‘algorithm’ as ‘calculation method’
in mathematics is granted, we could use this as evidence against the (A) interpretation from
above, and in favour of one of (B) or (C). That is, against the view that the informal notion of
‘algorithm’ is as precise as it gets, and so any explicatory formalisation, in a given domain of ap-
plication, ought to pick out the same precise class of routines as its extension. According to this
line of thought then, the history and practice of mathematics indicates that Turing computability
is not enough to capture all instances of the notion of ‘algorithmic computability’. Rather, it
shows that either the informal notion is actually used in more than one way in mathematics
—the interpretation (B), that is—, or that it is an open-ended term, a term exhibiting open texture
—that is, the third interpretation (C).

Nevertheless, someone could object that most of the above talk about algorithms is not
really literal. In other words, the broader sense of ‘algorithm’ as ‘calculation method’ is rather
loose talk by mathematicians, convenient and harmless for most practical purposes, even if not
necessarily theoretically justified.27 In this respect, we should not really speak about algorithms
in numerical analysis or geometry but we should preserve other terms for generally referring
to such processes, such as ‘method’, ‘construction’, ‘general procedure’, etc. Only when a
straightforward way is available of how to fix the details and turn the routine to one that proceeds
at each step in an unambiguous manner, so that it is translatable to a Type-2 Turing machine
program, only those procedures would be worthy of the name ‘algorithm’. Note here, though,
that most methods presented as algorithms in mathematical practice (from Gaussian elimination,
to computing the integral of rational functions by decomposing to partial fractions, etc.) are in
general too vaguely expressed to reach the required standard of exactness. But even ignoring
that —since it seems clear that in such cases any missing instructions can, in principle at least,
be supplemented to make a complete specification— such a restrictive use of the concept would

26Actual computers generally work with floating-point arithmetic. Floating-point numbers make up a finite set,
with though some unexpected properties: addition is generally not associative or distributive, the set is not closed
under addition and it is neither a field, nor a ring or a group. Nevertheless, significant effort has been put in to
develop satisfactory representation systems so that the accumulation of round-off and representation errors will be
held at a minimum. IEEE Standard 754 double-precision is such a system guaranteeing some desirable properties.
For more information, see, for example, Corless and Fillion (2013).

27Here’s one more example, from a numerical analysis textbook, in a context of talking about numerical
properties of algorithms:

There are many variants on the definition of an algorithm in the literature, and we will use the term
loosely here. [..] we will count as algorithms methods that may fail to return the correct answer, or
perhaps fail to return at all, and sometimes the method may be designed to use random numbers, thus
failing to be deterministic. The key point for us is that the algorithms allow us to do computation
with satisfactory results... (Corless and Fillion, 2013, 29)



2.4. Theoretical context 31

rule out cases so intuitively unproblematic as even calculating the product 0.333... × 3 (see,
fn.23).

So, is the above objection adequate to block the argument from the history and practice
of mathematics? That is, is the appeal to just loose but harmless talk by mathematicians
enough to block the argument that the history and practice give more support to the (B) and (C)
interpretations than to (A)? I think that in order to answer this, we also need to examine whether
dispensing with the generalised meaning of ‘algorithm’ could be theoretically motivated too.
This is the subject of the next section.

2.4 Theoretical context

So we need to examine whether the proto-theoretical idea of ‘algorithm’ is indeed as clear
as it gets. Or, in Gödel’s words (p.21), whether ‘mechanical procedure’ is a sharp concept
which has been there all along. If so, then, the fact that —despite the apparent vagueness
in the informal characterisation of ‘algorithm’— every reasonable sharpening gives rise to
extensionally equivalent formalisations should also arise with respect to computability over the
reals; meaning that BSS/Real-RAM models just miss the point.

To this end, it seems useful to examine what ‘reasonable sharpening’ amounts to. I attempt
to make this idea more precise by connecting it to conceptual analysis, in the sense of the
term as first articulated by Demopoulos (2000), with respect to mathematical frameworks, and
further extended by DiSalle (2012) to physical theories. That is, in the sense of “recovering a
central feature of a concept in use by revealing the assumptions on which our use of the concept
depends” (Demopoulos, 2000, 220). Or:

[C]onceptual analysis finds the interpretation of a theoretical concept by an investi-
gation of the presuppositions under which it is used in some practice of scientific
reasoning [..] and the roles that they play in the theoretical framework as a whole.28

(DiSalle, 2012, 13)

However, this is not to say that all cases where logicians offered models explicating the notion
of ‘effective computation’ were instances of conceptual analysis. Recall, for example, how
Church’s (1936) definition of ‘effectivity’ as ‘λ-definability’ famously failed to convince Gödel
(as well as others). I here regard only specific cases of foundational work as instances of
conceptual analyses; namely, the work of Turing, Kolmogorov and Uspensky, Moschovakis,
and Gurevich.

28Two examples of such conceptual analyses are (a) Frege’s analysis of numerical identity by characterising
Hume’s principle as its implicit basis (Demopoulos, 2000) and (b) Poincaré’s (1905) analysis of our notion of
space by identifying the free mobility of rigid bodies as its conceptual base (DiSalle, 2012).



32 Chapter 2. Algorithms

2.4.1 Turing

In contrast to most modern presentations, Turing in (1936) did not focus on computation
over denumerable domains only, but over all reals. Interestingly, he does not use the term
‘algorithm’ in his analysis, although he was primarily interested in processes instead of functions.
Nevertheless, he focuses on the restricted sense of calculation, that is, symbol processing (1936,
249):29

The real question at issue is “What are the possible processes which can be carried
out in computing a number?”

And:

Computing is normally done by writing certain symbols on paper.

Turing was also interested in analysing computation as the lowest level, that is, the level of
the most elementary operations:

Let us imagine the operations performed by the computer to be split up into “simple
operations” which are so elementary that it is not easy to imagine them further
divided.

Crucially for our purposes here, by restricting the scope of his analysis to effective processes
implemented by symbolic manipulations, Turing’s analysis is not affected by the examples of the
non-Turing implementable algorithms we have discussed (ruler-and-compass methods, Euclid’s
algorithm applied to lengths of segments of a straight line, etc.). But, his choice to restrict the
computer’s working space to a one-dimensional tape, and the permitted operations to the most
elementary ones, did not make completely obvious that his model could capture all examples of
algorithms (though it did capture all effectively computable functions). A. Kolmogorov saw that
and set out, together with his student V. Uspensky, to give a more general account, about what it
is to follow an algorithm.

2.4.2 Kolmogorov and Uspensky

As mentioned in the footnote of the title of their work, the main purpose in Kolmogorov and
Uspenskii (1963) was to give the broadest story possible, about the notions of ‘algorithm’ and
‘computable function’. The rationale was to examine these notions from the point of view of
mathematicians, and make it obvious that “there is no concealed possibility of extending the

29The same was true of Post’s independent and strikingly similar analysis, in the same year (1936).



2.4. Theoretical context 33

range of [these] notion[s]”, beyond what is captured by Turing computability and the other
equivalent models.

Space limitations do not allow a satisfactory presentation of the K&U account of computation.
But what is of interest for us is what K&U take as the essential aspects of an algorithm. Besides
a symbolic representation (“[w]ithout fixing a standard way of writing numbers, to speak of the
algorithm computing m = φ(n) from n would not make sense”30 [p.218, fn.2]), an algorithm for
computing m = φ(n) requires:

...the existence of a uniquely determined sequence of operations “transforming” [..]
the value n into the value m = φ(n).

And:

...division of the computing process into elementary steps of limited complexity

(p.219).

Although these constraints may initially seem very similar to Turing’s, our interpretation is
that they constitute an important step towards the generalisation of the concept. Where Turing
would only allow the most elementary basic operations as steps, K&U allowed for broader steps.
Here is a very brief and informal summary of the KU model.

A KU computing agent computes over symbols. The work-space can be understood, instead
of a tape, as a directed graph, whose vertices correspond to the Turing machine squares. Each
vertex is connected to a bounded number of neighbouring ones; the number being fixed in
advance, but possibly different for different algorithms. All vertices, and arrows connecting
them, have a colour from a fixed finite palette, so that all arrows to and from a vertex have
different colours.31

At every stage of a particular computation, only a bounded number of nodes —a certain
patch— is active. The bounded size of the active patch is fixed in advance but can differ for
different algorithms. For some fixed number k of edges, it is the region of the workspace that
contains all vertices being reachable from some certain focal vertex by a directed path of length
not greater than k. k is called the locality constant or radius of the active part, and any property
depending only upon k-neighbourhoods is called ‘k-local’. The next step of the computation is
always restricted within the active patch. This captures the intuition that the attention span of
the computing agent is limited and fixed (the agent’s cognitive capacities do not change during
a particular computation). Any actions must also be k-local.

30All quotations and page numbers are from the English translation (Kolmogorov and Uspenskii, 1963).
31K&U’s original formulation posits undirected graphs as workspaces, in a way that for every edge 〈x, y〉 between

two vertices, there’s also a 〈y, x〉, of the same colour. But later work has shown both formulations to be equivalent,
in the sense that machines from both kinds can be simulated by machines from the other kind.



34 Chapter 2. Algorithms

A single computing step consists of a k-local operation. This means replacing vertices within
a bounded part of the active area as well as edges with a new collection (of bounded size) of
vertices and edges. Thus, with each computational step —i.e., a local operation transforming
the state of the algorithm— not only the vertices but also the topology of the workspace itself
can change locally.

An algorithmic process, according to Kolmogorov, is divided into steps of bounded com-
plexity, where each step is an immediate transformation Ω of the current state S into a (uniquely
determined) S ∗ = Ω(S ), based only on information about the bounded active part of S and
affecting only that. The algorithmic process is continued as a sequence of iterations of Ω over
states S i: First, the initial state S 0 is transformed into S 1 = Ω(S 0), then S 1 transforms into
S 2 = Ω(S 1), ..., S n into S n+1 = Ω(S n), and so on, until either a next step is impossible (i.e.,
Ω(S r) is undefined for r) or a signal indicating a reached solution is obtained. But it’s also
possible that the sequence 〈S i〉 is infinite.

The initial state is the input, belonging to some set (the domain of the algorithm), and the
final state (if it exists) is the output. The immediate transformation Ω, which is iterated many
times, is called ‘operator of immediate transformation’, and is determined by a finite list of

k-local actions. When in a state S i, the KU-computer looks at the list of actions to find the
(possibly existing) unique one that is applicable to S i.

An algorithm A has a set X of all allowed inputs and a set Y of allowed results. The
algorithm can be applied to any input x ∈ X; the subset of X with inputs for whichA terminates
with a result, is the domain of the algorithm. Any algorithm determines a (total) function defined
on its domain, whose value is the output y ∈ Y; this is the function computed byA.

2.4.3 Turing’s and K&U’s conceptualisations

KU-computable functions do not make up a wider class than the class of Turing computable
functions. KU-algorithms can compute up to partial recursive functions (if we consider as a
function’s domain the whole set of allowed inputs). Nevertheless, the K&U’s intention was
to provide a more general analysis of what an algorithmic procedure is. It is not to say that
any algorithm can be simulated by, or reduced to, a KU-algorithm. Rather, it is the stronger
claim, that any algorithm just is a KU-algorithm.32 Following Gurevich (1993), we can call
‘Kolmogorov-Uspensky thesis’ the following claim: any algorithmic computation performed by

means of only local actions at a time is a computation of a KU machine.

As we saw, K&U’s analysis admits of a broader notion of ‘computational step’, since a

32“We are convinced that an arbitrary algorithm process satisfies our definition of an algorithm. [.. I]t is not a
question here of the reducibility of any algorithm to an algorithm in the sense of our definition [..] but rather that
any algorithm is essentially subsumed under the proposed definition.” (p.231).



2.4. Theoretical context 35

k-local action can in fact involve changing huge chunks of workspace (how big can we take
the locality constant to be, in a given algorithm?). Therefore, the KU analysis is closer to the
broader meaning of ‘algorithm’ as used in common-or-garden mathematical parlance, and in
accordance with the authors’ goals. And, recall that, attempts to formalise the latter notion
include models which recognise arithmetical operations between any two numbers as unit
steps. Nevertheless, KU-algorithms perform still at a very low level of abstraction, since steps
involving non-local transformations of information are not of KU-type. Thus, Markov’s normal
algorithms or random access machines are not KU-type models (Uspensky and Semenov, 1993,
19). From that it follows that BSS-algorithms are a fortriori not KU-algorithms.

Conceptual Analysis in Turing and KU: Now, given the above discussion, could we attempt
to identify the implicit basis for the conceptual framework of algorithmic computation, in
the sense of Demopoulos (2000) and DiSalle (2012)? One could argue that a fundamental
assumption is that computation is always symbolic, since all analyses took the existence of a
given alphabet as essential.

Nevertheless, I think that this would be misleading. Rather, the symbolic constraint should
be understood as part of the theoretic tidying of the intuitive concept that takes place when we
move from the pre-theoretic to the proto-theoretic level of conceptualisation, as discussed above
(sec.2.2.1). Although these days we are so much used to computation by digital computers
that the symbolic assumption may not seem as much a restriction as essential, it is in fact a
choice of picking out one of the various strands of (algorithmic) computation. One can think,
for example, cases of analog computation of a function, such as use of a planimeter,33 or —if
one counters that analog computation is not algorithmic—, use of ruler and compass to compute
certain numbers (Plouffe, 1998), Euclid’s algorithm applied to lengths, etc.34

So what can be seen as implicit principles, analytic of all symbolic computation frameworks,
in the sense of posing constrains on any conceptual possibilities? I suggest something along
the following lines: computation involves step progression in time, in a way that between any
two steps of the computational process there must intervene only a finite number of actions.
Although this is more explicitly expressed in K&U’s analysis, by means of the locality constant
(any sum of locality constants, however big, will always be finite), it can be found implicitly
underlying Turing’s non-computability results, such as the unsolvability of the satisfactoriness

problem. This was the problem of deciding whether a given integer n encodes the description
of a Turing program that, starting from an empty tape, will eventually halt with only symbols

33See chapter 4 for a discussion on analog computation.
34Thus, it is, in my opinion, strictly speaking false when some authors make assertions like the following:

“Turing recognized that any algorithm is essentially a manipulation of symbols.” (Aberth, 1980, 6).



36 Chapter 2. Algorithms

of a certain kind on its tape (so n describes a circular machine and is unsatisfactory) or it will
keep printing digits of the same certain kind forever (so n describes a circle-free machine and is
satisfactory). In the unsolvability of this problem —as well as of the Entscheidungsproblem and
the halting problem— lies a diagonal argument, which can be seen as capturing the fundamental
fact that an agent trying to step-by-step compute these problems is doomed at some point to
fall into some infinity of actions before completion of some certain step (which happens, e.g.,
when a Universal Turing Machine tries to list every binary sequence and ends up simulating its
previous behaviour forever). In other words, a computing agent can only tame at most one level
of infinity: it can keep a computation going forever (e.g., one computing digits of π). But —to
put it fancifully— it cannot perform computations during which some rabbit hole of infinity
lurks in some step, further down the road.

2.4.4 The idealisations strike back: Moschovakis and Gurevich

So far everything seems to suggest that the (A) interpretation about the concept of ‘algorithm’ is
the most plausible one: although informal and vaguely characterised, ‘algorithm’ is actually as
precise as it gets and admits of only co-extensive explications. Any Real-RAM/BSS-like models,
which take arithmetical operations between any reals at unit cost, fall out of the conceptual
framework we just described, since adding, for example,

√
2 + π actually means going at least

two levels deep in infinity.

Nevertheless, a serious objection from the practice of mathematics remains. The way math-
ematicians use the term to refer to computational methods is not always limited to symbolic

computations. Computations are indeed necessarily symbolic when it comes to actual imple-
mentations by a physical computer (machine, human, or what have you)35 but there is nothing in
the way that algorithms are constructed by mathematicians in the first place to specify why and
how this should be so. For example, methods for deciding whether a polynomial equation (e.g.,
the method for the quadratic in sec.2.3) has real roots are understood as algorithms, but there’s
nothing in the way they are developed specifying how they are meant to be implemented. Even
more so, if we were to write down, say, the algorithm for the quadratic, we would formulate
it quite differently for different computational models/languages. Differently put, the way
mathematicians talk about algorithms is as if the latter are meant to operate over types, whereas
within logic and computability theory, algorithms are from the outset constructed with tokens

(read: symbolic representations) in mind.

35Of course, I restrict my attention here to digital computation, excluding other computing paradigms, such as
analog computation, since we are already at a proto-theoretical level of analysis here. I’ll discuss computation in a
broader sense, in chapter 4.



2.4. Theoretical context 37

Yiannis Moschovakis saw this and based his foundational work on algorithms —during the
late 80’s and 90’s— on the idea that ‘algorithm’ is an abstract entity, susceptible to various
implementations, within different computation models. The idea has succinctly been expressed
in an interview (1997) for the Greek edition of the Quantum magazine, with Sturm’s algorithm
as a particular example.36

Sturm’s algorithm is usually defined over the class of all polynomials with arbitrary
real coefficients, and there is nothing in its description or analysis of its implementa-
tion that requires those coefficients be integers or rationals. If we want to implement

the algorithm to some actual computer or abstract Turing machine, then, of course,
we need to approximate the real coefficients by means of rationals, and choose
certain symbolic representation. However, there are various ways to go about these
choices and none of these is essentially included in Sturm’s algorithm.37

Moschovakis’s point then is that we have one Sturm algorithm with many implementations in
different computation models, instead of distinct “Sturm’s algorithms” with different properties
in the different computation models. Thus, as an abstract object, an algorithm like Sturm’s
operates on the exact real numbers, whereas the various implementations manipulate symbolic
representations of their approximations. (Cf. the long quote in fn.3).

Moschovakis’s exact formalisation of algorithms draws on the theory of recursive equations,
identifying algorithms with recursors; that is, monotone operators over partial functions whose
least fixed point includes the function computed by the algorithm. We do not need to go
into the details of this, highly technical, work. One can see his (1984; 1998; 2001; 2008).
What is important for us here is the “official claim”, this time by a logician, that there is a
broader understanding of ‘algorithms’ by mathematicians, as abstract mathematical entities,
non-symbolic and non-syntactic:

Finally, I should mention—and dismiss outright—various, vague suggestions in
computer science literature that algorithms are syntactic objects, e.g., programs.
[..] In the absence of a precise semantics, Pascal programs are just meaningless
scribbles; to read them as algorithms, we must first interpret the language—and
it is then the meanings attached to programs by this interpretation which are the
algorithms, not the programs themselves (Moschovakis, 1998, 3.6; emphasis in
original).

36Sturm’s algorithm is a method for determining the number of real roots of a polynomial anxn + an−1xn−1 + ... +
a1x1 + a0 with real coefficients in any given interval on the real line.

37Interview in Quantum (Greek), Vol.4 (4), 1997. Accessed from Y. Moschovakis’s webpage [Feb, 2018]
http://www.math.ucla.edu/∼ynm/. The translation from Greek is mine.



38 Chapter 2. Algorithms

Under this view then, Moschovakis sets out to provide a set-theoretic foundation for the
theory of algorithms; a framework within which set-theoretic constructions model (faithfully

represent) their mathematical properties. Thus, recursors model the mathematical structure of
algorithms, much like Dedekind cuts model (or “define”) the real numbers.

The view of algorithms as abstract entities was adopted by Yuri Gurevich as well, in a se-
ries of articles trying to define the notion. Gurevich follows the axiomatic route to founding the
theory of (sequential-time) algorithms. An algorithm is a state transition system that starts in
an initial state and transits from one state to the next until, if ever, it halts or breaks (Gurevich,
2014).

Gurevich formulates the following three axioms, in order to capture these features:38

1. Sequential time Any algorithmA is associated with a non-empty collection S (A) of states,
a sub-collection I(A) ⊆ S (A) of initial states and a (possibly partial) state transition map
τA : S (A)→ S (A).

2. Abstract state The states of an algorithm A can be faithfully represented by first-order
structures (that is, non-empty base sets equipped with relations and operations), all of the
same finite vocabulary, in such a way that

- τA does not change the base set of the state,

- collections S (A) and I(A) are closed under isomorphisms,

- any isomorphism from a state X to a state Y is also an isomorphism from τA(X) to
τA(Y).

3. Bounded exploration There exists a finite set T of terms (or expressions) in the vocabulary
ofA, such that ∆(X) = ∆(Y) whenever every term t ∈ T has the same value in any two
states X,Y ofA.

∆(X) is the set of updates from X to τA(X), solely dependent on the results of an exploration
within a bounded “active zone” of the state X. This is meant to formalise Kolmogorov’s locality
constraint, which Gurevich takes as constitutive of the notion of ‘algorithm’.

More precisely, a location l of a state X is given by a j-ary function F and a j-tuple
~a = (a1, ...a j) of elements of X. F is a vocabulary function, and its value F(~a) is the (new)
content of l. Consider a typical algorithm (e.g., Euclid’s) and assume that an instruction asks
for the replacement of the current content ai of l with b. This would then be an update of X,

38Reproduced here from Blass and Gurevich (2003) and Gurevich (2015).



2.4. Theoretical context 39

denoted (l, b). The set of all updates (i.e., the collection of all equations F(~a) = b), during a
given algorithm step, is ∆(X).

As an example, assume Euclid’s algorithm again, and a state X in which the parameters a, b

have values 6 and 9, respectively. Also, assume an instruction line requiring that in the next
state they change to a← (b mod a) and b← a.39 Then, ∆(X) = {(a, 3), (b, 6)}. However, if we
have a state X′ where a = 3 = b, then ∆(Y) = {(a, 0)}. Here only the a element is included in the
updates, because b does not change in this step and so (b, 3) is not an update. More formally:

∆(X) = {(l, b) : b becomes different from X to τA(X)}

Any change ∆(X) from a state X to τA(X) depends only on the explorations of the active
zone. The third axiom guarantees that there is a finite subset of A-terms (i.e., reached by a
bounded exploration) that determine any updates ∆(X) in a state X.

Finally, an algorithm is any entity that satisfies the above three axioms. We’ll call that
‘Gurevich’s thesis’.

Gurevich’s conceptualisation

Gurevich’s axiomatic approach was inspired by Gandy (1980). His work is meant to encompass
all sequential algorithms, symbolic and non-symbolic ones. However, the states, the list of
instructions, and the state transition mappings, are all expressed over a certain A-vocabulary.

Nevertheless, there is an important difference from Turing’s approach. Whereas Turing
explicitly required, in his definition of a ‘computable sequence’ in (1936), that the machine start
with a blank tape, in order to avoid trivialising the concept of ‘computable’,40 Gurevich’s notion
of ‘state’ (including the initial ones) is so broad, that it includes even non Turing-computable
states. Thus, even the satisfactoriness (or the halting) problem could be encoded in an initial
state.41 The reason for such a choice is that Gurevich aims to capture all sequential algorithms,
including any non Turing-implementable ones (e.g., ruler-and-compass, Gaussian Elimination,
bisection algorithms, etc.; see, Gurevich 2015, 2014). As a result, the Church-Turing thesis
is not immediately entailed by the above axioms; an extra, forth, axiom is required, to the
effect that only undeniably-computable operations are available as initial states (Dershowitz and
Gurevich, 2008).

39Recall that in computer science the ‘b mod a’ operation refers to finding the remainder of dividing b by a.
40If the machine could start with any sequence written on the tape, it could start with an uncomputable number

already there and then ‘compute’ this very number by running a program which just re-writes every symbol scanned
on the tape.

41For example, the initial state could be a structure whose base set is N and which includes, among its relations
and operations, a relation S (n) which is true iff n is a satisfactory number; that is, a description number of a
circle-free Turing machine (see, 2.4.3).



40 Chapter 2. Algorithms

So Gurevich, like Moschovakis, does accept a broader notion of ‘algorithm’ —maybe the
only similarity between the two approaches, though.

Gurevich’s central motto —and most important for our purposes here— is: every sequential

algorithm has its native level of abstraction (Gurevich, 2015, 203). And his basic goal is to
express an abstracted version of Kolmogorov’s locality constraint that will be valid on any such

level of abstraction. Now, we saw earlier (2.4.3) that the K&U analysis was already a step
further towards the mathematicians’ meaning of ‘algorithm’, by admitting a broader notion of
‘computational step’ —though still at the lowest level of abstraction. Gurevich extends this to
every level of abstraction.

Consider, for example, Euclid’s algorithm. There are actually two different versions of this
algorithm, one specifying subtractions at each step and another one divisions (the latter being
more efficient). Arguably, these two versions exhibit different levels of abstraction. However, if
they were to be implemented by Turing machines, which operate on, say, tallies or binary digits,
then they would probably end up as the same program. This is so because at this level we would
probably take as primary the operation of incrementing by one (e.g., by adding a tally at the
end), along with a couple others (e.g., erase or copy a digit) and then program subtractions —or
divisions— by means of nested iterations of the primary ones. Now, if we change computation
model (read: programming language) this may mean a different level of abstraction. Each such
level is determined every time by what operations are to be executed in one step, as well as by
the abstraction levels of the algorithm’s states (Gurevich, 2015, 204). In a nutshell, Gurevich
accepts a very broad notion of state, and requires that any possible structure isomorphic to
a state will also be a state (the set of states is closed under isomorphisms). This fulfils the
goal of axiomatising different abstraction levels. But every unit step operation must still be of
bounded complexity, and this is captured by the requirements that state transitions τ(X) respect
isomorphisms, that the exploration during a step be always within a finite “active” zone, and
that state updates ∆(X) depend only on the results of this exploration.

2.5 What the historical and theoretical investigations tell us

What the above considerations suggest is: limitations about what operations can be executed in
one step, and what counts as bounded complexity of it, are not always absolute but may also be
relevant to some model of computation.

This thesis, consistent —as I hope that I have showed— with the history and practice of
mathematics, is also consistent with the few important —though rather dissimilar— foundational
analyses of algorithms we examined.

Gurevich’s formalisation, for example, requires that steps be results of exploration within an



2.5. What the historical and theoretical investigations tell us 41

active zone (similarly to K&U), and that they do not alter the structure of the algorithm’s states
(dissimilarly to K&U). But the states themselves are quite broadly understood.

For example, a state could be a structure with only one binary relation; in this case it would
be a graph, and the algorithm would be one operating on graphs. And, if, in some machine
implementation, the nodes are binary numbers then any information details about these numbers
would be irrelevant implementation details, and the algorithm itself would know nothing, at its
native level of abstraction, about it.42

But, a state could also be a structure whose base set is R, equipped with the operations and
relations of a field. Then the algorithm would be a real number algorithm. Consider, for example,
Euclid’s algorithm, but now in its generalised version, as expressed by Euclid in his 10th book;
that is, for comparing ratios of magnitudes, and deciding on their (in)commensurability. The
goal is to identify a real number c, such that the two magnitudes, a and b, are integer multiples
of it: a = kc and b = nc, where k, n ∈ Z. So assume the algorithm is in state X, where the
parameters a, b have as values the lengths of the side (e.g., 6) and the diagonal of a square,
respectively. The next instruction would be that the parameters change as a ← (b mod a)
and b ← a. Then ∆(X) = {(a,

√
2), (b, 6)}.43 This would be an algorithm in a high level of

abstraction, since it assumes a computational step which, if implemented, would require either
an infinite amount of time to be completed or to be approximated by floating-point systems.
But, again, this would be implementation details, irrelevant to the algorithm itself.44

Although Gurevich’s analysis is not directly concerned with addressing the thorny prob-
lems of formulating a theory of real computation, there is nothing in his analysis precluding
algorithms like the above, as long as all three axioms are still satisfied. And, provided that any
relevant terms can be expressed in the (finite) vocabulary of the algorithm,45 the vocabulary
function F(a1, ..., a j) will still be the content of a location l. Thus, I believe that Gurevich’s
approach subsumes the kinds of things that Blum et al. mean as computation algorithms; that is,
routines specifying operations between exact values of real numbers in one step.

But Moschovakis wouldn’t disagree with our conclusion either. He would agree that what
processes qualify as algorithmic ones is dependent on what operations are taken as immediate;
but that is not a property holding tout court:

42See, e.g., Gurevich (2015, 202)
43In the generalised version of Euclid’s algorithm, the quotients of b mod a, at each step, are still integers,

whereas the remainders are now real numbers.
44As I take Gurevich’s conceptualisation to imply.
45We could, for example, assume a language LR with a constant symbol ṙ for each real number; e.g., 0̇, π̇,

˙√3
3 ,

and so on. Such languages were often considered within model-theoretic contexts. I thank Wayne Myrvold for this
observation.



42 Chapter 2. Algorithms

It is tempting to assume that the successor operation S (n) = n + 1 on the natural
numbers is “immediately computable,” an absolute “given,” presumably because of
the trivial nature of the algorithm for constructing the unary (tally) representation
of S (n) from that of n —just add one tally; if we use binary notation, however,
then the computation of S (n) is not so trivial, and may require the examination
of all log2(n) binary digits of n for its construction—while multiplication by 2
becomes trivial now–just add one 0. The point [.. is] that while there is one,
absolute notion of computability on N (by the Church-Turing Thesis), there is no
corresponding absolute notion of “algorithm” on the natural numbers—much less
on arbitrary sets. Algorithms make sense only relative to operations which we wish
to admit as immediately given on the relevant sets of data. Any set can be a data
set.. (Moschovakis, 1998, sec.8; emphasis in original).

But if “any set can be a data set”, then R, as an ordered field, can be a data set too, and the
“operations which we wish to admit as immediately given” on R can well be (±,×,÷,6, ), as
in BSS/Real-RAM models. Therefore, although Moschovakis is not directly concerned with
models of real computability either, his foundational approach also seems not to be in direct
conflict with BSS.

To summarise so far. My goal has been to examine whether the term ‘algorithm’ exists
in an informal-but-completely-precise manner in mathematics. I think that investigation into
history, practice, and foundational analyses is consistent with a negative answer. We don’t
have a sharp proto-theoretical idea of ‘algorithmic computation’; hence, the existence of the
two traditions of computation, reflected on the two different approaches to real computability.
Algorithmic computation over concrete entities of any kind (mathematical symbols, abacus
pebbles, cogwheels, electrical impulses, etc.) by an idealised agent (human or otherwise) is
naturally formalised by models in logic and computer science: Turing machines (Type I or
II), KU-machines, recursive equations, etc. Algorithmic computation in the mathematicians’
sense over abstract mathematical entities (real numbers, matrix rows, points and straight lines
of a plane, etc.) is captured by Real-RAM/BSS approaches. Gurevich’s axiomatisation can
encompass both.

2.6 Which of the three interpretations?

There are still a few points that need to be addressed. First, as we again mentioned when
we motivated the problem (p.19), all mathematicians at the informal level would agree about



2.6. Which of the three interpretations? 43

what features any algorithm should have; something along similar lines with the list we gave
in sec.2.2.3. And this conviction about their general agreement is also shared by themselves.
For example: “The intuitive concept of an algorithm, although it is nonrigorous, is clear to the
extent that in practice there are no serious cases when mathematicians disagree in their opinion
about whether some concretely given process is an algorithm or not”, (Malc’ev, 1970, 18-19).46

Hence, the need for actually formalising the concept arose only with the need for proving the
non existence of certain algorithms. But in the end, we do have incompatible formalisations, in
the domain of the reals. Where did things go wrong? Can we attempt a philosophical account of
the problem?

Second, if the existence of this phenomenon is granted, which of the three possibilities of
sect.2.2.2 would be a better account of it? Does the last paragraph of the previous section actually
suggest that the second interpretation (B) is correct? That is, we use the concept of algorithm in
more than one way? Is perhaps the first interpretation (A) —the informal concept is as precise
as it gets and every formalisation should pick out the same class of routines and functions as its
extension— still viable? Or, does ‘algorithm’ in fact have a more open character than expected
—something like an “open texture”, a property more commonly pertaining to empirical concepts?

I argue that the third interpretation is preferable, and that my account addresses both questions.
Recall the informal characterisation of ‘algorithm’, from sec.2.2.3. We have already pointed

out that despite some vagueness in the sense of the proto-theoretic concept, we always pick out
the same extension of the term under any reasonable sharpening, as long as we remain in the
discrete case.

Where is this vagueness exactly located? Positing a computing agent in feature 5 (sec.2.2.3)
is surely something not precise:

The list of instructions that make up the algorithm are to be followed by a
computing agent (human or otherwise) which carries out the computation.

But, arguably, the vaguer feature is the one that qualifies the algorithm as a mechanical process;
that is, what we framed as follows:

Each step of an algorithm must be specified to the smallest detail, precisely and
unambiguously, such that no acumen or ingenuity or any semantic interpretation is
required by the computing agent. Steps should be of a bounded complexity.

Phrases like ‘smallest detail’, ‘acumen’, ‘bounded complexity’ are vague. Nevertheless, this
vagueness is “harmless”, when we are dealing with a domain of entities as “coarse” as that of

46Statements of a similar flavour are plenty in mathematical texts, of course. This one here is just a randomly
picked instance. Recall also the quote by Gödel (p.21).



44 Chapter 2. Algorithms

the (non-negative) integers. Certain choices with respect to how to formalise these intuitions do
not pick out different classes of objects; however, they do when in richer domains, such as R.
So we need to examine some such formalisation choices more closely.

First, we said that, as part of a proto-theoretic tidying, Turing narrowed his analysis to symbolic
computations. Is this a restriction? Yes, if we are considering the general class of all computa-
tions. There are computations which are not symbolic, since ancient mathematics (ruler and
compass, analog, etc.) —see the discussions on p.35 and in ch.4. Nevertheless, it is virtually not
a restriction in the class of computations over integers. Not because computations over N are
exclusively symbolic, but because this distinction does not make a difference in this domain.
Consider the algorithm for Euclidean division, for example. We could think of it either as
concrete, operating on tokens/symbols/names of the numbers divided, or abstract, operating
on types/numbers/states-as-first-order-structures. In either case, there is no resulting difference
about computability, despite the conceptual difference.

Borrowing Moschovakis’s terminology (p.2.4.4), we could say that any algorithms (in
the mathematicians’ broader sense) in N cannot be distinguished from their implementations.
Therefore, machine-like models (Turing, Post, Markov, register machines, etc.) which involve
concrete operations concerned with pushing symbols around are co-extensive with more abstract
“mathematical” ones, such as (µ-)recursive functions, which do not have any vocabulary-specific
assumptions built into them.

But we can also draw an analogy with what Mostowski (1979) says about computability and
computation, as semantic and syntactic (‘linguistic’) objects respectively:

However much we would like to “mathematize” the definition of computability, we
can never get completely rid of the semantic aspect of this concept. The process
of computation is a linguistic notion (presupposing that our notion of a language
is sufficiently general); what we have to do is to delimit a class of those functions
(considered as abstract mathematical objects) for which there exists a corresponding
linguistic object (a process of computation).

In these terms, we can say that in so far as we are in the denumerable case, Mostowski’s
suggestion is doable: We find no discrepancy between our semantic (intuitive) concept and its
syntactic counterpart. But we are in a predicament in the uncountable case. Delimiting the class
of “those functions .. for which there exists a corresponding linguistic [i.e., syntactic] object”
leads to the class of TTE functions. But then semantics here splits with its syntactic counterpart,
given all those arguments by some authors to the effect that such ‘simple’ functions as the step
one should be computable in a good model.


