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Abstract
In this work, the author presents a platform for the modeling of mold filling and 

solidification of binary alloys with properties similar to Mg alloys. A volume-of-fluid 

(VOF) based method to capture the interface between solid and liquid in a solidification 

process on a fixed 2D non-uniform grid, developed for implementation in a co-located 

finite volume framework, is presented. Contrary to other works, to update the volume 

fraction of fluid in the field, a link between source-based type of energy equation and 

VOF algorithm is described and implemented. A new approximation to the pressure 

gradient is presented to remove all “Spurious Currents” [1] resulting from pressure jumps 

in the vicinity of the interface.

Based upon the work presented, it is summarized that the present combination of 

the equations are not only computationally simple to implement and upgrade to a 3D 

problem, but also provides an excellent platform to capture the interface between 

constituents in a die-casting process including solidification and mold filling process. 

This will lead to a better understanding of the die-casting process.

Keywords: Mg Solidification modelling, binary alloy solidification modelling, 

Solidification, Volume of fluid, VOF, Die-casting modelling, Heat Transfer, 

incompressible flow, finite volume method
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Chapter 1____________________________________________

1. Introduction

1.1- Motivation of studying the solidification of Mg Die-Casting

The past years have witnessed a significant growth in utilization of magnesium 

(Mg) alloys in the automotive industry. Due to the excellent fluidity of molten Mg alloys 

and low specific weight of Mg, along with their excellent machinability and a good 

recycling potential, this group of alloys is a good candidate not only to be used in 

automobile industry in order to reduce the total weight of vehicles and meet stringent fuel 

economy standards, but also be suitable for the manufacture of other thin section die 

castings. These capabilities increase the global interest of using Mg more and more [2, 3].

Although auto industries have been using Mg alloys dramatically due to their 

excellent potential, they are still not used to the same extent as competing material such 

as aluminum and plastics due to two main barriers [2, 3]:

1. The increased cost relative to aluminum and steel

2. The inability to control as-cast microstructure to the level required for optimized 

mechanical properties.

Industrial products are directly influenced by the mechanical properties of the 

material from which they are processed, and furthermore, the mechanical properties of 

the materials are closely associated with their solidification microstructure. Mg die­

casting, due to the extreme flow and solidification rates inherent in the process, makes 

equilibrium solidification theories inapplicable. Furthermore, the relationship between
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casting parameters, microstructure and mechanical properties of die-casting Mg alloys 

are not well understood [2, 3].

Most of the previous work related to mechanical properties in Mg die-casting has 

focused on the casting of test bars under controlled Lab conditions. The results are 

predictable and have consistent mechanical properties [4]. However, for more complex 

components, the dynamic nature of the die-casting process combined with the complex 

geometries of castings may cause variation in the filling pattern, cooling rate and feeding 

conditions during solidification. In other words, some characteristic features may exist in 

the microstructure of this die casting that may not be present in cast test bars [4].

The need to achieve consistent and predictable properties is becoming increasingly 

important as applications move to components that require a higher level of structural 

integrity [4]. Therefore, a better understanding of the development of microstructure 

during the die-casting process and the correlation between mechanical properties and 

microstructure are required to ensure high quality for die cast Mg components.

The present work is a small part of a larger project that focuses on techniques of die­

casting and the use of numerical simulation to improve the die-casting process. 

According to the flow chart shown in Figure 1-1, the ultimate goal is to develop tools to 

predict local mechanical properties of a thin-walled magnesium die-casting based on

numerical simulation.



—
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Figure 1-1, Flow chart of necessary sections to achieve ultimate goal

The aim of this research, as a small part of the whole project, is to provide a 

platform for future modeling of mold filling processes as well as being able to simulate a 

simplified solidification process of binary alloys, preferably, those which have properties 

similar to Mg alloys, at the same time.

In the following section, phase change phenomenon will be explained in the most 

relevant way to the current work to give the reader an idea about the crucial issues related 

to the modeling of solidification processes.

1.2- An introduction to phase- change problems

Phase change refers to the change of state, vapor-liquid or liquid-solid or solid- 

vapor, which a substance undergoes in response to an energy extraction/input. The most 

relevant example is the liquid-solid transition or solidification that happens during the 

casting of a multi-component metal alloys. Significant work has been done on the 

solidification of metal alloys in different specific areas; however, a critical aspect in 

much of this work is the development and application of computational heat and mass
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transfer models. Having this in mind, the objective of this section is to outline some 

theoretical groundwork required for the development of metal alloy solidification models.

1.2.1- Requirement of Numerical simulation

In early years, analytical methods were the only way available to make 

mathematically an understanding of physical processes involving phase change 

phenomena. Although analytical methods offer an exact solution and are mathematically 

compact, due to their limitations, they are mainly only suitable for one-dimensional cases 

of infinite or semi-infinite regions with simple initial and boundary conditions and 

constant thermal properties [5].

In practice, solidification or any phase change problems are hardly ever one­

dimensional; initial and boundary conditions are usually complex, and the variation of 

thermo-physical properties are significant [6]. Mathematical modeling and computer 

simulation have become more popular and the most economical and fastest way to 

provide a broad understanding of the practical processes involving phase change with the 

rise of high speed digital computers [6].

1.2.2- Solidification Process

Numerical modeling of phase change problems, particularly, the solidification of 

alloys is very challenging. A perfect model requires consideration of the heat and mass 

transfer phenomena that happen across a wide range of time and length scales. For

example, the time scale can vary from 10-4 - 102 (s) associated with nucleation kinetics 

and an industrial solidification process, respectively. The length scale can also range from 

submicron, associated with solid-liquid interface, to industrial process scale with a length
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scale of meters [7]. Understanding how the process of solidification happens may give 

individuals the motivation and insight to remove modeling difficulties.

1.2.2.1- Nucléation

The crystallization of a large amount of material from a single point of nucléation 

results in a single crystal. In engineering materials, single crystals are produced only 

under carefully controlled conditions. The expense of producing single crystal materials 

is only necessary for special applications, such as turbine engine blades, solar cells, and 

piezoelectric materials. Normally, when a material begins to solidify, multiple crystals 

begin to grow in the liquid and a polycrystalline (more than one crystal) solid forms.

The moment a crystal begins to grow is known as nucléation and the point where 

it occurs is the nucléation point. At the solidification temperature, atoms of a liquid, such 

as melted metal, begin to bond together at the nucléation points and start to form crystals. 

The final sizes of the individual crystals depend on the number of nucléation points. The 

crystals increase in size by the progressive addition of atoms and grow until they impinge 

upon adjacent growing crystals [8]. See Figure 1-2.

A crystal is usually referred to as a grain in engineering materials. A grain is 

simply a crystal without smooth faces because its growth is impeded by contact with 

another grain or a boundary surface. The interface formed between grains is called a 

grain boundary. The atoms between the grains (at the grain boundaries) have no 

crystalline structure and are said to be disordered [8].
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Figure 1-2, a) Nucléation of crystals b) crystal growth c) irregular grains form as crystals grow 
together d) grain boundaries as seen in a microscope [8]

Grains are usually large enough to be visible under an ordinary light microscope 

or even to the naked eye. The spangles that are seen on newly galvanized metals are 

grains. Rapid cooling generally results in more nucléation points and smaller grains (a 

fine grain structure). Slow cooling generally results in larger grains which will have 

lower strength, hardness and ductility [8].

1.2.2.2- Dendrites

The shape and size of crystallized grains depend on the conditions of their growth 

during solidification, mainly on the rate and direction of heat removal, the temperature of 

molten metal and the concentration of impurities [8]. In most metals, the crystals that 

form in the liquid during freezing generally follow a pattern consisting of a main branch 

with many appendages. A crystal with this morphology slightly resembles a pine tree and 

is called a dendrite, which means branching. It has been established that crystals grow
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with the highest rate along the planes and directions where the atoms are packed most 

closely. Thus, long branches grow first, which are called the first-order dendritic axes. 

Then secondary dendrite arms branch off the primary arm, and tertiary arms off the 

secondary arms, etc. [8],Figure 1-3 shows how a cubic crystal can grow in a melt in three 

dimensions, which correspond to the six faces of the cube. For clarity of illustration, the 

adding of unit cells with continued solidification from the six faces is shown simply as 

lines.

During solidification of a polycrystalline material, many dendritic crystals form 

and grow until they eventually become large enough to impinge upon each other. 

Eventually, the inter-dendritic spaces between the dendrite arms crystallize to yield a 

more regular crystal. If there is not enough liquid material to fill these spaces, some 

crystals may retain the dendritic shape. The original dendritic pattern may not be apparent 

when examining the microstructure of a material. However, dendrites can often be seen 

in solidification voids that sometimes occur in castings or welds [8].

Figure 1-3, Dendrite growth direction [8]
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1.2.2.3- Micro-Macrosegregation

When two constituents of an alloy have the same type of crystal lattice and their 

atomic diameters differ but slightly from each other, they can be mutually soluble in the 

solid state [8].

Consider a constitutional diagram for alloys with complete mutual solubility of 

constituent in the liquid and solid states. Figure 1-4.

Figure 1-4, Constitutional diagram for alloys with complete solubility of constituents in the liquid
and solid states

A diagram of this type should consist of the liquidus and solidus lines, which 

intersect at the points of solidification of pure constituents A and B. Now consider the 

solidification of an alloy of this system with composition xc . As temperature drops to tl , 

solidification begins in the liquid solution. Although it might be supposed that the 

crystals frozen out of liquid solution have the same composition as the liquid, actually,
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the crystals freezing out of the liquid solution of the composition xc at temperature tx are 

strongly enriched with the constituent having a higher melting point, i.e. with B. With 

further cooling to temperature t2the liquid of composition^, i.e. enriched with

constituent A, will be in equilibrium with the solid solution of composition^. During 

slow cooling, the constituent A diffuses from the liquid into crystals of composition xe, 

and this changes the composition toxb. At the end of the solidification at temperature^, 

all crystals will have the same composition xc [8].

After solidification, a single-phase structure is observed in an alloy. If the 

solidification occurs with fast cooling condition, as is usually the case in practical 

applications, there is no time for diffusion equalization of the composition of crystals 

freezing out at the temperature above f3. As the result the composition may vary from

crystal to crystal and in an individual crystal itself. Inner portion or layer of a crystal will 

be richer in constituent A. This phenomenon of inhomogeneous composition in crystals is 

called microsegregation. Crystals which have solidified first at the surface of for example 

an ingot will be rich in constituent B, while the last-to-solidify crystals in inner part of the 

ingot will be rich in constituent A. The result is what is called macrosegregation [8].

Segregation usually plays a negative part, particularly, when harmful impurities 

are unevenly distributed in the metal. A high concentration of impurities can cause 

premature failure of machine elements they are made of [8].

1.2.2.4- Industrial Solidification Process

An industrial solidification process can be simplified as the casting of a molten 

alloy in a rectangular mold. By setting the temperature of walls to below the equilibrium
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liquidus temperature of the alloy, a solid layer forms on the mold and grows into the 

molten alloy. At the equilibrium liquidus temperature a sharp interface will exist between 

the solid and liquid phase if the growth of the solid layer is perfectly controlled.

Due to the kinetics, curvature and compositional effects, the temperature of liquid 

at the interface can fall below the liquidus temperature -under-cooling condition- causing 

an interface perturbation of the solid into the liquid, and creating a suitable region for 

growth. This kind of unstable solid growth behavior leads to a breakdown in the solid- 

liquid interface resulting formation of a “mushy” region consisting of a mixture of solid 

and liquid [7]. See Figure. 1-5

Figure 1-5, Schematic of a solidification system

1.2.3- Issues in modelling of a solidification Process

1.2.3.1- Mushy Region Modeling

One of the central issues in the modeling of alloy systems is the treatment of the 

mushy region. The solid fractions in the mushy region can have different morphologies 

base on the condition of heat removal during solidification. A sharp interface between 

solid-liquid can be recognized only at the microscopic length scale. What exactly 

happens in the mushy region is; as explained in section 1.2.2, at very early stages of
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solidification, the solid parts in the mushy region form a fixed arrangement of columnar 

crystals attached to the fully solid layer on the mold wall. The reason behind the 

columnar growth is that crystals grow preferably in the direction opposite to those of heat 

removal. And for this reason, oriented heat removal results in the formation of stretched 

(columnar) crystals. In most general cases, after the columnar growth phase, free crystals, 

so called equiaxed crystals, form in the mushy region. Equiaxed crystals are formed if 

heat is removed from a growing crystal roughly with the same intensity in all directions. 

These types of crystals are not attached to any solid layer and can be moved by the 

motion of the surrounding molten alloy [7, 9]. See Figure 1-6.

Based on the type of the material, there are different ways to look at this region. 

In a general system with randomly equiaxed nucleated grains, the solid is located 

throughout the liquid. In this case both liquid and solid phases have distinct velocities. 

(See Figurel-7)

Figure 1-6, Schematic of the phenomena in mushy region
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Figure 1-7, Schematic of a general equiaxed mushy region

The analysis of such a system requires a two-phase modeling approach [10]. 

Voller et al. [11], however, noted that there are two limiting cases under which the 

general model shown in Figure 1-7 can be reduced to situations for which a one-phase 

model can be developed based on mixture properties.

Casel: “A mushy fluid”. In this case, it is assumed that the solid phase is fully 

dispersed in the liquid phase and both phases velocities are equal [11]. See Figure 1-8. 

Waxy materials have shown a reasonable compatibility with this case [10].

Case2: “A columnar zone”. In this case, the solid phase has a dendrite shape and 

its matrix is distinct from the liquid. The solid matrix is either fixed or moves with a 

prescribed velocity. Reasonably compatible cases occur in static or continuous casting of 

alloys [10]. See figure 1-9.

Figure 1-8, Schematic of a Mushy Fluid
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Figure 1-9, Schematic of a Columnar Zone

The only difference in above cases is in the velocity set for the solid or liquid. For 

example, for a mushy fluid model, u = ui = us and for a columnar zone, in a static 

casting, w h e r e =0,  the velocity for the liquid will look like u = //w /[11]. One can 

base the type of process chose on these models.

1.2.3.2 - Shrinkage

Another difficulty in the modeling of a solidification problem is one associated 

with shrinkage. Usually material densities are different in their solid and liquids states. 

Changes in densities cause a change in volume which is referred to shrinkage. Shrinkage 

may be positive if the solid has a higher density and negative if the solid has lower 

density than the liquid state. When shrinkage is positive, during the solidification process, 

the difference between densities necessitates the melt to move toward the solidifying 

front. In the case of having negative shrinkage, the opposite scenario happens. Either 

way, flow is induced in the melt. This flow may have strong impact on the solidified 

composition and contribute to macrosegregation in the cast alloy, even though the
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magnitude of the velocities produced by shrinkage is small, particularly in the dendrite 

and mushy zone [12].

Shrinkage can sometimes cause cracking to occur in the component as it 

solidifies. Since the coolest area of a volume of liquid is where it contacts a mold or die, 

solidification usually begins first at this surface [12]. As the crystals grow inward, the 

material continues to shrink. If the solid surface is too rigid and will not deform to 

accommodate the internal shrinkage, the stresses can become high enough to exceed the 

tensile strength of the material and cause a crack to form [12].

1.3- Summary

In this chapter, a general phase change phenomenon and related modeling issues 

including mushy region and shrinkage were explained. This brief summary of the critical 

features of modeling provides the physical background for this study and is important for 

the survey of modeling methods used.

1.4- Outline of thesis

The remainder of the thesis is structured as follows:

■ Chapter 2: a background and literature review related to the numerical techniques 

and methods used in the current work is presented. At the end of chapter the scope 

of current work is introduced.

■ Chapter 3: in this chapter, the concept of conservation laws which are used to 

construct the governing equation is introduced. Then, a finite volume 

discretisation scheme is used for the discretization of the governing equations. 

The discretized form of governing equation is presented.
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■ Chapter 4: VOF method is explained in details. The VOF reconstruction 

algorithm is summarized in steps. Finally, the solution procedure for a 

solidification problem is presented in this chapter.

■ Chapter 5: this chapter includes all validation cases. To validate, the developed 

code is applied to three groups of problems. The first, only a coupled mass- 

momentum set for a virtual stationary liquid-solid interface defined by different 

values of f  in the domain using VOF method is solved. The second, consisting of 

solving a linked energy equation-VOF reconstruction algorithm for a simple heat 

transfer without phase change. The last group includes a set of solidification 

problems.

■ Chapter 6: The thesis is summarized, and the main conclusions and 

recommendations for future research are given.
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Chapter 2 |

2. Background and Literature Review

In the following section the main intention is to present a literature review on 

three important aspects of numerical modeling of any phase change problem. At the 

beginning, a brief overview of fixed grids versus transformed grids approaches is 

presented, followed by differences between two popular interface treatment methods. At 

the end, a summary of the literature review is presented on the method which is chosen to 

treat the solidification interface in the present work.

2.1- Fixed grids versus Transformed grids

To solve two-phase problems with immiscible fluids, the incompressible Navier- 

Stokes equations need to be solved. The presence of moving sharp interfaces or fronts 

where pressure and velocity derivatives may have jump discontinuities cause the most 

difficulties in such problems. As the result, the central problem in the numerical 

modeling of phase change processes is the treatment of the heat and mass flow conditions 

that happen at the moving solid-liquid interface. A number of methods have been 

developed in recent years for the solution of problems involving moving interfaces in 

multiphase systems. These methods can be divided into two main classes depending on 

the type of grids used [5]: Transformed grids approach and fixed grids approach.

2.1.1- Transformed grids approach

In this approach, the governing equations and their boundary conditions are 

considered in a generalized curvilinear coordinate system. The equations can then be 

solved on a rectangular and uniform space grid, which remains fixed in space and time.
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For example, in a simple ID isothermal solidification problem, one can use the 

so-called Landau transformation, that is [13, 14],

x
S(t)

( 1- 1)

to fix the physical front S(t)on the line £  for all timet. In more complex systems such 

as 2D problems, for instance, one can transfer the original coordinate system (x, y) into a 

new system (^ ,7 ) which is called body-fitted coordinate (BFC) [13,14]. Then this 

fixed (<̂ ,77) mesh, corresponding to the physical moving {x,y) mesh, can be used 

throughout the calculation. Basically, the movement of the interface and of the mesh 

points in the original region appears only as changes in the x and y at the corresponding, 

fixed points at each time step [13, 14]. By using this approach the moving interface 

between solid and liquid is essentially immobilized [15] and is treated as a boundary 

between elementary domains. This approach allows a precise representation of the 

interfacial jump conditions, at least in principle [16,17].

2.1.2- Fixed grids approach

In this approach a fixed grid is applied directly in the real problem domain. This 

approach uses fixed grids to describe the velocity field but requires specific advection 

schemes and source terms in order to preserve the sharpness of the interfacial front [15]. 

Lacroix and Voller, [15], compared the results of using these two approaches in a 

solidification problem. The authors mentioned that the major advantage of a transformed 

grid over a fixed grid approach is that; the governing flow and heat equations are solved 

on a simple fixed rectangular and uniformly spaced computational grid with no loss of 

accuracy in discretization near curved boundaries. However, the simplicity in the
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numerical grids comes at the expense of much more complex governing equations in 

transformed grids.

The results of transformed and fixed grids approach were also compared to some 

experimental results by [15]. Both approaches give predictions in very close agreement 

[15]. With regard to CPU usage, the fixed grid method requires less CPU time at smaller 

time steps, however, at large time steps; the CPU minutes per time step for both 

approaches are similar [15].

One of the major drawbacks of fixed grid is, in some cases, accurate fixed-grid 

predictions can only be obtained with fine grids that are much denser than the mesh used 

in transformed grids.

Using fixed or transformed grids in a case like an isothermal phase change 

problem can depend on the availability of codes, expertise and personal preference. 

However, in cases involving complex problems that require resolution, one may consider 

the advantage and drawback of each approach and then decide. It was suggested by [15], 

and successfully applied by [18, 19], for problems that involve multiple fronts, i.e. 

solidification of binary alloys, the complexity of the problem is such that individuals 

prefer fixed grids over transformed grids approach. Furthermore, moving boundaries in 

the solidification case, may undergo large deformations and for this reason fixed grid 

techniques are advantageous and used in current work.

2.2-Treatment of the interface using fixed grids approach

As it was mentioned, choosing a fixed grid system requires preserving the 

sharpness of interface using special advection schemes. These advection schemes may in 

turn be divided into two groups, either implicitly or explicitly representing the interface.
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Excellent overviews of the interface treatment methods are given by Hyman [20], 

Unverdi and Trygvason [21], Sussman and Smereka [22], Rider and Kothe [23], and 

Rudman [24, 25]. There are two popular methods used to approximate interfaces [26], 

Detailed descriptions of the two methods follow next.

2.2.1- Interface Tracking Methods

Methods in which the interface is treated as a sharp interface, whose motion is 

followed, are labeled front (interface) “tracking” methods [26]. These methods explicitly 

track the interface either by marking it with special marker points, (See Glimm et al. [27], 

Daly [28], and Popinet and Zaleski [1], Hyman [20]), or by attaching it to a mesh surface 

which is forced to move with the interface. See Figure 2-1.

Figure 2-1, Schematic results of interface tracking method

For the case of using markers on the interface, the position of the interface is 

approximated by interpolation between these points, usually piecewise polynomial [20]. 

There are several ways of marking the interface, two of which will be explained here.
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1) Particles on interface

Daly [28] presented a method to track an interface explicitly on a fixed grid by 

marking the interface with a group of connected mass-less marker particles. The local 

velocities are used to advect the mass-less particles in a lagrangian manner.

This method is sensitive to the spacing between the marker particles. If the markers 

are too close, then local fluctuation in the new positions of the particles can increase to a 

very high interface curvature resulting in strong surface tension forces. If they are far 

apart from each other, the interface is not well resolved. In this method, the interface 

particles do not retain their spacing throughout the calculation as the interface is moving 

and it is necessary to add or delete marker particles dynamically. Also, for the calculation 

of the interface curvature the order of the particles needs to be sequential along the 

interface [28, 29].

The idea of having sequential fixed particles is a major disadvantage of this method 

because it limits the prediction of merging or rupturing interfaces. Furthermore, in three 

dimensions, bookkeeping of the particles becomes almost impossible [29].

2) Height Function

Nichols & Hirt [30] extend the idea of setting markers on the interface by relating the 

reference points on the interface to points on a certain plane. The location of the interface 

is then approximated by its height or distance from the reference plane [30]. Figure 2-2 

gives a schematic of the height function implementation for open interfaces.
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ed

Figure 2-2, Schematic of height function for open interfaces

A major limitation of this approach is that every reference coordinate can 

represent only one interface value. Therefore, it is not possible to predict the situation 

where the reference coordinate can be multi valued See Figure 2-2. However, this method 

is efficient in terms of computer storage and suitable for non-complex interfaces in a 

three dimensional space [30].

Having talked about marker points, also, various techniques have been developed 

to attach the interface to a mesh surface during past decades including Interface (surface) 

fitted method. (Ferziger & Peric [26], Dervieux & Thomasset [31], Glimm et al. [32, 33]) 

These methods are mainly created to reduce computer storage needed for the 

interface markers method and to ensure the existence of a sharp interface [26]. These 

methods are limited to problems where the interface is not subjected to large 

deformations, because these lead to significant distortion of the mesh. If one uses these 

methods in a problem with a high level of deformation happening at the interface, it is 

necessary to re-mesh continuously, which brings more complexities to the problem [26].
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2.2.2- Interface Capturing Methods

The second category of interface approximation is so called “front-capturing- 

methods” in which the location of the interface is not defined as a sharp boundary [26]. 

The computation is usually performed on the fixed grid and the shape of the interface is 

determined by computing the fraction of each near-interface cell that is partially filled.

For example, this can be achieved by (1) a level-set-method which relies on an 

implicit description of the interface, given through a distance function [34], or 

introducing a set of mass-less particles at the interface and following their motion, (2) 

marker and cell, (MAC), a method proposed by Harlow and Welch [35], Alternatively 

this can be achieved by solving a transport equation for the (3) fraction of the cell filled 

by the liquid-gas or any other constituent (VOF), a method that proposed by Hirt and 

Nichols [36]; See figure 2-3. Below is more detail about each of these methods:

Figure 2-3. Schematic result of Interface capturing schemes 

1) Level-set method

In this approach, a continuous function, known as a level-set function is introduced 

over the whole computational domain. At each point, the value of level-set function is 

defined as the shortest distance between that point and the interface [22]. Where this
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function has the value of zero, the interface is defined. To make a distinction between the 

two constituents on either side of interface a negative sign is set to the distance function 

for one of the constituents [22], The level-set method has been initially used for the 

modelling of flame advection [37]. Sussman et al. [38] used this approach to model the 

motion of bubbles and droplets. Although this approach is applied in different problems, 

the significant drawback of the method is the existence of a steep gradient in the level set 

function when two interfaces are merging together [38]. The difficulties caused by using 

this method have been removed partially in past years, particularly by Sussman et al. 

[38].

These methods are somewhat complex to implement, but give the precise location 

and geometry of the interface [26].

2) Particles in fluid or Marker and Cell (MAC)

In the MAC method due to Harlow and Welch (1965), [35], as it was mentioned, a set 

of mass-less marker particles are spread over the volume occupied by one of the 

constituents, usually the one with the free surface. A cell with no markers is considered to 

be empty. A cell adjacent to empty cells contains a segment of the interface. All other 

cells with marker particles are considered to be filled by another constituent.

The marker particles are used to distinguish between the two constituents and do not 

participate directly in the calculation. These particles move according to the velocity 

components in their vicinities and serve as a flow identification aid. Later, Daly [28] 

extended the MAC method of Harlow and Welch [35] to deal with a two fluid problem.
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In Daly’s method, the marker particles are not only used to distinguish between the 

two fluids or constituents but also to determine the density and viscosity of the mixture in 

each cell. Figure 2-4 shows a schematic of the MAC method.

Figure 2-4, Schematic of MAC method

The MAC method is readily expandable to three-dimensional computations and also 

can handle complex phenomena like wave breaking. However, in three-dimensional 

calculations, since the motion of a large number of particles needs to be followed in 

addition to solving the equations governing the flow, a significant increase in 

computational effort is required [26].

3) Volume-fraction

In this method, to distinguish between two different constituents in the domain, a 

scalar indicator function between zero and one, known as the volume fraction /  is used.

The value of unity indicates one constituent and zero another. A value between zero 

and unity in a computational cell indicates the presence of an interface in that cell and the 

value itself indicates the relative proportions of the constituents occupying the cell 

volume. If one uses, for example, volume fraction of fluid as the base of calculations, the 

method is called Volume-of- Fluid method. Since in volume-fraction methods only one
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value needs to be assigned to each cell, this method is much more economical than MAC. 

The Volume-fraction method suffers from smearing of the interface over meshes due to 

using common convective differencing schemes.

Many multiphase flow problems of interest involve constituents with very high ratios 

of density and viscosity. In such problems, surface tension effects or/and pressure jump 

effects are usually large compared with viscous damping. In these cases, the effect of the 

unbalanced forces acting on the interface not only reduces the accuracy but also can lead 

to “spurious currents” [1]. Figure 2-5 shows the spurious current reported by Popinet and 

Zaleski [1] due to large surface tension effects. Currents similar to this are created at 

solid-liquid interface.

Figure 2-5, Spurious current around a stationary bubble. The method used for the interface 
advection is a VOF method explained in [1]

In general, implementation of front capturing methods on fixed grids is less 

complex than front-tracking methods, however, one has to remove the numerical artifacts 

like “spurious currents”, that may result from inconsistent modeling of surface tension, in 

case of gas-liquid or liquid-liquid phases in the domain, and the associated pressure jump

[!]•
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In this work a Volume-of-Fluid based method is used to capture the interface 

between the liquid and solid phases. The next section is basically an overview of 

techniques that have been developed to maintain a well defined interface within the 

volume-fraction framework and particularly for the Volume-of Fluid method.

2.3- An overview on Volume-of-Fluid (VOF) methods

Volume-of-Fluid methods have been in use for several years. Volume-of-fluid 

methods automatically handle changes in the global topology of the front, such as fronts 

that break up into droplets or fronts that collide with themselves and merge. This 

eliminates the algorithmic complexity that can occur when the front is modeled by a 

collection of line segments or polygons. Furthermore, the logical structure of the 

algorithm is not significantly more complicated in three dimensions than in two. The 

most well-known volume-of-fluid algorithm is the VOF algorithm of Hirt and Nichols 

[36]. Several codes based on this VOF algorithm, namely SOLA-VOF [36, 39], NASA- 

VOF2D [40], RIPPLE [41, 42] have been, and continue to be, widely used by researchers 

to model interfaces in industrial applications. The Volume-of-Fluid methods in all of 

these cases are built on a relatively crude interface reconstruction algorithm that relies on 

a piecewise constant representation [43] of the interface, or piece-wise linear 

approximation using the constituent volume fraction evolution equation [44, 23].

Generally, a Volume-of-Fluid algorithm evolves the constituent volumes by 

initializing and updating a volume fraction field that identifies the constituent contained 

in each computational cell, and the interface is reconstructed from this volume-fraction 

field, as required. The reconstructed interface is not unique, as it depends on the 

reconstruction techniques.
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DeBar [45] was one of the earliest persons who implemented a Volume-of-Fluid 

algorithm in a two-dimensional Eulerian method with a low accuracy, essentially first- 

order accurate, piecewise constant reconstruction technique, to model compressible 

multi-phase flow. A simple Line Interface Calculation (SLIC) technique was one of the 

early methods for defining geometrical approximation to the fluid interface, which was 

used by Noh and Woodward [43]. The SLIC method has been used very widely in shock 

wave refraction at a gas interface [46, 47]. The original SLIC method of Noh and 

Woodward approximates the interface in each cell as a line parallel to one of the 

coordinate axes and assumes different fluid configuration in that cell for the horizontal 

and vertical movement respectively. Their version of SLIC is a strictly one-dimensional 

method in which one uses the information in a 3 x 1 block of cells. In other words, for the 

x-sweep the volume fraction values on the left and right side of a cell are used to 

approximate the fluid or constituent distribution within the mesh cell. Values of above 

and below the cell are used for the y-sweep in a manner similar to the x-sweep. More 

details about SLIC can be found in [48], Chorin [49] improved on SLIC method by using 

all the direct neighbors for the approximation of the fluid distribution in an interface 

(mixed) cell and by introducing a fifth type of building block, namely a comer element.

This approach, similar to the original SLIC method, also takes the direction of 

motion into account and gives different fluid distribution in a cell for different sweeps 

directions [49].

Youngs [50] introduced a useful refinement to the SLIC method with the use of 

oblique lines to approximate the interface in a cell, also known as Piecewise-Linear 

Interface Calculation (PLIC), (Figure 2-6). An improvement of Poo and Ashgriz [51], the
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Flux-line-segment Model for Advection and Interface reconstruction (FLAIR), is also 

considerable.

0 0 0

0 0.3 0.5

0.5 0,9 1

(b) Volume Fractions

_ pillili

<d> Piecewise Linear 
Approximation

Figure 2-6, Schematic of different reconstruction schemes

Later, Pilliod and Puckett [48] demonstrated that a sufficient condition for a 

Volume-of-Fluid interface reconstruction algorithm to be second-order accurate on 

smooth interfaces is for the algorithm to reproduce linear interfaces exactly.

They proposed two interface reconstruction algorithms; the Least Squares 

Volume-of-Fluid Interface Reconstruction Algorithm (LVIRA) and the Efficient Least 

Squares Volume-of-Fluid Interface Reconstruction Algorithm (ELVIRA) both have this 

property.

These second-order accurate piecewise-linear interface reconstruction algorithms 

have been used widely to model a variety of compressible and incompressible flows [52, 

36]. In the present work the LVIRA method is used to reconstruct the interface. The 

details of this method will be explained later in section 4-4.
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As was previously mentioned, one of the crucial elements in VOF methods is how 

to accurately update the volume-fraction field so as to match the evolution of the fluids or 

constituents. In general, in VOF methods the interfaces are tracked by evolving fluid 

volumes forward in time with solutions of an advection equation [23, 34, 50-53]. See 

Appendix A for details.

In a general Volume-of-Fluid method, as was mentioned before, interface 

geometry must result from the local volume data and the assumption of a particular 

algorithm, before the interface can be reconstructed. Then, the reconstructed interface is 

used to compute the volume fluxes necessary to integrate the volume evolution equations.

All works in which a VOF method has been used, so far, were related to cases in 

which either two immiscible fluids were considered[21,23-25,29,34,38,43,47], or a fluid 

and gas comprised the full domain [1,16,20,22,23,27,28,30,36,46], and the objective of 

the problem was to capture the interface between the two fluids or capture a free surface 

to be able to manage interface changes. In such problems, the flow field was strong and 

rarely involved a phase change problem. As a result, using an advection equation for the 

evolving volume fraction of the constituent using the fluid velocity field was reasonable.

However, in the current work, the solidification process involves solid-liquid as 

the two constituents in the domain, and much of the solidification process takes place 

after the high-speed shot into the mold has occurred. Thus, the fluid motion is due mainly 

to convection currents and to the shrinkage that occurs during solidification. The 

evolving volume fraction of melted alloy based on this weak flow velocity in the cavity 

may not produce a terribly accurate update of the volume-fraction of the fluid. Instead,
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here a different approach is presented. The author has attempted to create a robust, 

accurate and easy platform to be upgraded to three-dimensional or axisymmetric cases.

2.4- Summary

At this point, the author has chosen a fixed grid approach and a VOF method for 

interface capturing. To meet these requirements, the present algorithm comprises the 

following:

• A VOF in-house code is developed and implemented for the LVIRA 

reconstruction algorithm for a solid-liquid phase change problem

• A new pressure approximation is presented to overcome the existence of 

“spurious currents” near the interface due to pressure jumps.

• A link between the source based energy equation of Voller et al. [54] and VOF 

reconstruction method is described and implemented.
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Chapter 3

3. Mathematical Model

Due to the absorption or release of latent heat and the presence of a complex 

interfacial structure that characterizes the phase change of most materials, exact solutions 

describing this process are not yet possible [55].

Most of the numerical works used to date use either a multiple region or a single 

region formulation, depending on the type of grid used; Transformed or Fixed. In a 

majority of the works in which a transformed grid is implemented, the focus is on 

applying the multiple region formulation in which independent conservation equations 

are utilized for each phase. In this method, the mesh is continuously updated so that it 

always coincides with the phase change interface. These methods are generally easy to 

apply to pure materials involving one or two phases in one space dimension. It is a very 

difficult task, however, to apply the multiple region formulation to a case with fluid flow 

involved in a two dimensional problem. This is even more difficult in three dimensional 

cases [6],

The alternative is to come up with a form of equation, which applies over the entire 

region of a fixed domain. On the basis of the approach chosen herein, this is the method 

used. These methods are called single region formulations in which a system of 

conservation equations is utilized to be applied equally to both phases [6], In these 

methods, no explicit conditions on the interface are required and the numerical solution 

can be carried out on a fixed grid [6], Single region formulations are well suited for
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modeling the phase change of mixtures where the latent heat is evolved over a range of 

temperature. The major advantage of single region formulations is that their solution can 

be obtained by conventional numerical methods. One must notice that, however, in order 

to predict the complex interfacial structures, particular attention must be directed to the 

handling of the latent heat evolution associated with phase change, as well as the 

numerical scheme utilized in the solution of the equations. Since a large number of 

articles have been published in this area, and also this kind of formulation is used in the 

current work, in this section, three prevalent methods are reviewed and then a comparison 

that leads to the final formulation is presented.

• Apparent heat capacity method

In this technique the latent heat is included in the specific heat of the material. An 

apparent heat capacity is defined in the range of temperature that phase change happens, 

so it accounts for the entire enthalpy change, including sensible and latent heat.

For the case of a pure material or an alloy of eutectic composition, an artificial phase 

change temperature range must be used. In this range, the latent heat is assumed to be 

released. One can review [56, 57] for more information.

According to Saludean, and Abdullah, [58], an important drawback of this method is 

that if, for a solidification problem, a nodal temperature in one time step falls from above 

the liquidus temperature to below solidus temperature, then for this particular node the 

latent heat released is not accounted for. Poirrier and Salcudan [59] showed that this issue 

happens in melting processes too. Saludean and Abdullah [58] show that, in order to 

solve this issue, a large mushy region has to be assumed, which results in destroying the 

physics of the problem.
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• Enthalpy method

The enthalpy method has a lot more popularity than the apparent heat capacity 

method. Many authors used this method in different applications [60-64]. The basic 

method includes writing the transient part of the energy equation in terms of enthalpy 

instead of temperature. Then, based on the latent heat release characteristics of the phase 

change material, a variation between the total enthalpy and temperature is defined. This 

variation in the case of isothermal solidification is a step function and in case of binary 

alloy phase change, is usually assumed to be a piecewise linear function within the 

mushy region and a step function at the solidus temperature. The best detailed 

information can be found in [65]. The enthalpy method is reasonably accurate for 

materials solidifying over a range of temperature [59]. The solution is independent of the 

range of temperature and the time steps; however, it is more complex and more expensive 

than other methods along with the fact that the computational cost rapidly increases with 

mesh refinement. This model also performs poorly close to the interface for cases of 

isothermal solidification [62-64].

• Source-based method

A substitute to setting up a non-linear coefficient in the form of a specific heat, 

similar to the apparent heat capacity method, is to develop a non-linear source term in the 

energy transport equation. This technique is called a ‘Source-based’ technique [54]. This 

method can deal with a general liquid fraction curve, unlike the apparent heat capacity 

method which requires introducing a temperature range to ensure that the relation 

between the constituent volume fraction and temperature is at least piecewise continuous 

throughout the temperature domain. This technique also has certain similarity to the
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enthalpy formulation. The latent heat appears as a source term in the energy equation and 

in this way the latent heat is directly coupled to the nodal temperature, which produces 

fairly accurate results, particularly for non-isothermal solidification. In this technique, the 

source term includes the unknown constituent volume fraction along with enthalpy or 

temperature in the governing equation. This problem can be removed by performing 

appropriate iteration [54],

• Source based method versus Apparent heat capacity method

A general understanding of the differences between source based methods and 

apparent heat capacity methods can lead one to the best choice of methods. To compare 

these two methods, it is best to consider a matrix form of the formulation used for the 

Source-based method and apparent heat capacity method. Considering a general 

discretized energy equation:

aPTp +bPTpU + VpM P( f , f  - / ,)

nb

(3-la)

For the case of a source-based method, the general matrix form can be written as:

(C + AtK)T = CT0ld + M ( f i ° ld - f i )  (3' lb )

where M is a diagonal matrix with elements
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M PP = Vp5HP 

My = 0 if i * j
(3-lc)

and the relationship between matrix and final discretized form scheme are

(3-Id)

and in case of apparent heat capacity :

(C + AtK)T = CTold (3-2)

In the apparent heat capacity method, the source term is dropped and the diagonal 

element of C is given by

If F(T) , a liquid-fraction temperature relationship, is steep then the apparent heat 

capacity can be large and this will stabilize the iterative solution of the discrete equation 

due to slower change in temperature in cells where phase change is occurring. The 

stability can be considered an advantage of the apparent heat capacity method over the 

source-based method. However, whenF(T) is relatively steeper or contains a jump, the 

apparent heat capacity method fails. Corrective schemes and modification are necessary 

to overcome such problems. Such modification and remedial schemes are not required in

r  dT )
(3-3)
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Source-based methods, which, though, suffer from convergence problems. To overcome 

these convergence problems, a new source-based method was introduced by Voller and 

Swaminathan [66]. The motivation of the new source based method of Voller was to 

retain all of advantageous of the apparent heat capacity and previous source-based 

methods without incurring any of the disadvantageous. The energy equation used in the 

present work is similar to the source-based energy equation proposed by Voller and 

Swaminathan [66].The derivation of the source-based energy equation is outlined in the 

following sections.

3.1- The Governing Transport Equations

Problems under consideration are those of fluid flow and heat transfer in a domain 

consisting of fluid, mushy, and solid regions. The behavior of a phase change system can 

be described by the conservation equations for mass, momentum and energy in the solid, 

liquid and mushy zones. In addition, appropriate relations are required for determining 

the portion of solid or liquid in each computational cell as a function of temperature.

Also, this is necessary for representing the variation of mixture properties in the 

mushy region.

In the following sections, under the assumption of Newtonian laminar flow, 

constant densities except for the buoyancy terms, negligible shrinkage-caused flow, local 

thermodynamic equilibrium and negligible species diffusion in the solid, the details of the 

flow and heat transfer governing equations will be introduced.

3.1.1- Mass and Momentum Equations

In Cartesian notation the continuity and conservation of momentum equations

may be written as
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Continuity:

(3-4)

x-y-momentum:

-f-(pu) + v.(prn) = + W.(pWu) + Su
dt ox

(3-5a)

-f - (pv) + V.(pwv) = -  ̂  + V.(//Vv) + Sb + Sv
dt dx

(3-5b)

Or in more general form of:

+ V.(puu) = -V .P  + V.(pVu) + S  (3-6)
dt

where P is pressure, p  is the density, p  is the dynamic viscosity, u -  (u,v) and SU,SV are 

source terms which will be defined later. Sb is the volumetric source term, assuming the

Boussinesq treatment to be valid, i.e., density is constant in all terms except in the gravity 

source term, then natural-convection effects can be accounted for by defining the 

buoyancy source term to be

Sb = pg/}(T-Tref) (3-7)

where /? is the volumetric thermal expansion of the material.

Volume tracking, particularly, interface capturing methods, use a characteristic 

function, F, associated with the portion of the cell that is occupied by one of the 

constituents, which is fluid in the current work ; i.e., in a cell with the dimension of,

Axx Ay,



38

/ .  jAxAy = Volume of fluid in cell (i, j)

The number/. . is called the volume fraction (of fluid) in the (i, j)  th cell, 

where 0 < f . . < 1 . The volume fraction of the other material, which is solid in the currentJ lJ

work, is (1 — . The discretization of the characteristic function associated with the

fluid considers the fact that,

f u AxAy « ¡¡f(x,y)dxdy , is f ( x ,y )  =
i jc e ll

[l if there is fluid at point (x, y) 
I 0 if there is solid at point(x, y)

Any value of /  between zero and one indicates a mixed cell and a mushy region 

in the domain.

The density and dynamic viscosity in the momentum equations are related to the 

individual constituent’s properties via the characteristic functions:

P = fPl+Q-~f)Ps  (3_8)

P = fPi+Q-~f)Ps (3-9)

where the subscripts l and s refer to liquid and solid phase, respectively and jus can be 

set to a large number.

The condition that all velocities in solid regions are zero must be accounted for, 

somehow, in the momentum equation. The basic principle is to gradually reduce the 

velocities from a finite value in the liquid zone to zero in the pure solid zone, over the 

computational cells that are changing phase. To define a source term in momentum 

equations, one has to decide about the model for the mushy region formed in the domain.
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In the current work, since a “columnar zone” model works best for most of alloys, 

it is assumed that the mushy region follows a “columnar zone” shape. Then, it can be 

assumed that the mushy region behaves as a porous media [67]. As a result, the source 

term must be defined so that the momentum equations are forced to mimic the Carman- 

Kozeny equation for flow in a porous media [10]:

u (3-10)VP = -K (i -eY

Here,f,w are porosity and the field velocity, respectivly. /r is related to the 

medium permeability and is accounting for the mushy region morphology in the current 

work. In order to achieve such behavior, an appropriate definition of the source term (for 

example for u-momentum) will be:

— k u (3-11)

where A is merely a computational constant introduced to avoid division by zero. As it 

can be understood, the effect of source term would be as follows:

In full liquid cells, where// =1.0, Su is zero and has no influence; in cells that

are changing phase, the value of Su dominates over the transient, convective and 

diffusive components of the momentum equation, thereby the Carman-Kozeny law is 

satisfied; in total solid cells, where /  = 0.0, the resulting large value of Su will swamp

out all terms in the momentum equations and force any velocity predictions effectively to 

zero. It is worth mentioning that the validity of this model was experimentally



40

investigated and showed comparable results to numerical results [65]. A similar source 

term can be defined in y-momentum equation.

3.1.2- Energy Equation

Ni and Beckermann[68] derived an appropriate form of the governing energy 

equation using a local volume averaged model of the two phase solid and liquid region. 

To derive the equation, a small ‘representative elementary volume’, REV, was chosen 

and microscopic balances were performed on the enthalpy transport in distinct liquid and 

solid parts within the REV. Assuming a constant REV temperature T = TS =Tn  thermal 

equilibrium, and small local velocity variations, averaged equations were obtained,[3,55]

! - ( / , » , )  + v r )  -  (interface terms), (3-12)
ot

— (f ,H , )  + V.(/z/ / ; ill) = V.(/z£zV r) + (interface terms)! (3-13)
dt

Since the REV is assumed to be isothermal, specific enthalpies of solid and liquid, 

H s an d ///, can be defined as:

H s =\  PsCsdO•*ref (3-14)

Hi ~ jT Pi^idd  + PiLfi ̂ref (3-15)

where, Cs and Cf  are the specific heats of solid and liquid, respectively, and Lp is the

latent heat of phase change. On assuming that only two phases are present, meaning that 

void formation and such similar phenomenon are neglected, f s = 1 -  / z.
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It is convenient to combine equations (3-12) and (3-13) by adding them together 

[54, 66] to attain a single energy equation. By adding these two equations, interface terms 

will cancel out and a single governing equation results:

+ = v . f i ^ v r )  (3-16)
8t

On the other hand, integrating (3-14) and (3-15) will result in

H  = pC, (1 -  / ,  ) ( r  -  T„t ) + pf,C, (T -  ) + rt,L„ (3-17)

and on using equation (3-17),

^  = + / f ,C ,} ^ + lp ( C , - C ,W - T r„) + p L „ } ^  (3-18)

Defining C as a mixture specific heat capacity,

C„«=Cs( l - f , )  + C ,fl (3-19)

and

SH = \p (C ,-C ,) (T -T ^ )  + pL/, \  (3-20)

the form of the energy equation, assuming, Tref = 0, will be derived as:

p C ^  + V JJ 'H 'Z , + = V.(kmixVT) -SH ^L  (3-21)

where,

k mix = (i -  y, )k s + / ,* , (3-22)
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Considering the fact that velocity in the solid region is zero and substituting 

equation (3-15), the final form of the energy equation will be:

One of the key features in the solution of this kind of energy equation (3-23) is the 

definition of the local volume fraction. In general, the local liquid volume fraction 

depends on the nature of solidification [66]. The local volume fraction could be a 

function of temperature, cooling rate, speed of solidification and the rate of nucléation if 

the kinetics of liquid-solid transformation is such that under-cooling is considerable 

[69,70]. In a system of multi-component alloys, solutal transport (macro-segregation) will 

also influence the local liquid volume fraction field [11]. For simplification, however, it 

is convenient to assume the liquid volume fraction is only a function of temperature [66].

Authors of [66] demonstrated different possible forms for liquid fraction variation 

versus temperature functions including: linear function, linear eutectic function, power 

function and Scheil equation in their work. In the current work, the fraction of liquid in 

the mushy region is estimated by the Scheil equation, which assumes perfect mixing in 

the liquid and no solid diffusion. With the liquidus and solidus having constant slopes, / ,

p c  m ix  +  ^ i p C i u T )  =  V . ( k m ix V T )  +
d t

(3-23)

where, ST, is a source term defined as:

(3-24)

can be expressed as [66, 71]:
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F{T) = f
T
TyJm

- t ')
l

kp -1

~Ti)
(3-25)

where Tm is the melting point, 7} is the liquidus temperature and kp is the equilibrium 

partition ratio.

A schematic of the Scheil equation, which illustrates the liquid fraction variation 

versus temperature, is shown in Figure 3-1.

Regarding this graph, one may notice

1. a temperature range associated with a non-linear change of f  in the mushy 

region.

2. a step discontinuity at the mush/ solid interface that can be associated with an 

eutectic phase change [54]; and also

3. a step discontinuity at the mushy/liquid, which can be associated with under­

cooling at the dendrite tips [54],

Figure 3-1, Schematic of liquid volume fraction VS. Temperature
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3.2- Discrete Governing Equations

A summary of the proposed discretization of the governing equations is presented 

in this section. The discretization is carried out with using a co-located finite volume 

method (FVM) [26, 72] implemented on an orthogonal rectilinear grid. A portion of this 

grid is shown in Figure3-2.

The calculation domain is first sub-divided into rectangular control volumes, or 

cells, and the grid points (nodes) are placed at the centers of the cells. All dependent 

variables are stored at the nodes of the computational mesh.

Figure 3-2, A portion of the grid and related nomenclature used in the FVM 

3.2.1- Mass and Momentum equations

In order to attain the discretized form of the governing equations presented in the 

previous section for solution in a collocated finite volume framework, these equations 

must be integrated over a typical control volume, and time. Considering a volume V 

bounded by N  faces and centered about a node P, the partially discretized forms of
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Equations (3-4) and (3-6) are given, respectively, for a fully implicit discretization as 

[72]:

(3-26a)

-Old
pVP\ up -u p  

At
+ 2  thf ( u i - u p ) =  -Vp (VP )p  + Y j Mma

i i

+ SbVp +SVp

r .d PA —
V 8 n di

(3-27)

In Equations (3-26a) and (3-27), terms with the subscript i, i = 1, 2,..., N, are 

evaluated at the integration point located at the centroid of face i. Note that Equation (3-

27) is in fact obtained by subtracting Equation (3-26a), multiplied by up, from the 

discretized form of Equations (3-6). This is done to' ensure a conservative method. The 

values of the advected properties «¡may be determined in the interior of the region from 

any convenient numerical scheme, as may the velocity gradients and the cell-centered 

pressure gradient. The mass flow rate is given by:

(3-26b)

where the advecting velocity \Ui.hj appearing in the mass flow rate expression for the CV 

faces is adopted in accordance with the co-located variable method of Rhie and Chow 

[73] to avoid check-board pressure distributions.

As an example, consider center node (P) of the simple grid illustrated in Figure 3-

2, and consider the advecting velocity ue at the integration point e located on the east 

face of the volume associated with that node. It must be noticed that upon using
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appropriate approximations for the face velocity gradients and advected velocities, the 

component of Equation (3-27) in the x-direction may be written as [72]:

aPuP = Y Ja„bunb+bp - vl
nb

dP
ÔX

T/ dP -U p  -  VP —  
ox (3-28)

Using the same analogy, a similar equation can be obtained at the E  node:

a EuE ~ UE ~ (3-29)

Then, an estimate for ue is attained by constructing an approximate momentum 

equation in the form of Equation (3-29) about the integration point e.

apue = u„ -  Ve
ÔP
ÔX

(3-30)

Here,

Ue
1 ~ . 1 , -  -  dP

i — ( U p  +uE) = —(aPup + ü e u e  H---------
2 2 dx

dP I
p ^p +~z~\e ^e )ox

(3-31)

More approximations ae &aP »aE and Ve ~ VP » VE are employed and note that 

here, aE is the active coefficient for the node (E) in its own momentum equation. Finally, 

this leads to:

ue =■
Up + u f Va

a0
ÔP
dx

dP 
2 dx

> + -— I
dx2

(3-32)
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The first pressure gradient term in Equation (3-32) is a centered-difference 

approximation based on the values surrounding the e integration point and is treated 

implicitly in Equation (3-26b), while the second is the approximation based on the 

cell-centered values at P and E. In the y direction, all terms are similarly derived and cast 

in a form akin to that of Equations (3-29 to 3-32).

3.2.2- Energy equation

The generic discretization equation corresponding to the governing Equation (3- 

23), based on the fully-implicit time integration, subject to appropriate boundary and 

initial conditions, can be written as

pc„
rpOld 

~  L P

At V p + Y ,  ™i (7; ~ Tp ) = Y  kmix
f a s t

V dn J
+ 1S7 (3-3 3 a)

In a more general form:

cipTp = anbTnb + bPTpld + VP5H p(f™ d -  f i P) + (convection Source term' (3-33b)
nb

Note that to ensure a conservative method, Equation (3-33) is obtained the same 

way as momentum equations. Only differences appear in source term treatments.

There are two important factors that one may notice about the new source-based energy 

equation, (3-23):

1- The source term includes a transient term and a convective term.

2- The energy equation has two unknown variables, the liquid volume fraction, f t ,

along with the temperature, T.
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One of the principles behind the source-based method is to understand that the nature 

of the phase change process is characterized by the local liquid fraction field f t .

Basically, the nodal values off l keep track of the solid-liquid-mushy region as they 

change. An iterative solution strategy based on Equation (3-33) can be written as

nm+1 V  i '  i z. rp O ldaPTp+ -  ^  anbTnb + bPTP + ST
nb

(3-34)

where,

ST = VpSHP(fi° ld -  f i P+h) + (convection Source term) x VP
T ransien t S ou rce  term  S p . sTc

(3-35)

Term f™+l causes non-linearity to equation (3-34). By using a truncated Taylor

series expansion for this term;

rm +1
J lp

f m . dF [TP*' - F - ( / ,” )]1 r r m 1

f l p
(3-36)

where F  is a function that characterizes the relation between T and f t , and in the current 

work follows Equation (3-25). Using this linearization, only the transient source term 

looks like;

S Tf = Q P + R P x TP l+] =

■SHpxVp
At

x s r  m r  O ld
J l p  ~ J lp

O u i dF_
dT f l p

x ( f _1 (//?)) M — 5H P x Vp dF m+\
X i p

At dT

(3-

37)
R P

One may notice now, how the discontinuities in Figure 3-lcan cause difficulties 

in calculating the transient term of the energy equation.
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Jump discontinuities in the F(T) curve, Figure 3-1, are dealt with by setting
f  dF} 
yd T j

to an

arbitrarily large value. This will have the effect of forcing the solution to the phase 

change temperature as required in cells that are changing phase.

Equation (3-36), is used to update the value of the liquid fraction; however, the 

author of [66] found that for a smooth transition it is the best to be used only at the

transition points from a fully-liquid phase to a phase change state where f f  < 1 . The 

liquid-fraction correction of Voller [74], Equation (3-38), works best at nodes 

where f f  = 1. This gives:

rtn +1 _ rm
J l p  -  J l p  +

n +l- F - \ f r P)\

VpdH%+X +aP x 1 (3-38)
(dF/dT)

where —  is evaluated at f lp = . For nodes at the eutectic temperature, Equation (3-

25) is used to update the value of f t in the current time steps.

The only state that may potentially cause oscillations is when the F(T) curve is 

dFshallow and as a result—  « 1 .  In such a case, it is possible that f™  = 0, while Tp lies
dT p

in the phase change region. To overcome this problem the direct update of Cross et al.

[75] suggested by [61] is used in the current work and that is:

If//p  = Oand

rnffl + X
1 P \fliquidus ’ 1 eutectic ] (3-39)
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Then

f r ; x =F{Tr l) (3-4o>

For the convection source term, STc = V.(pLj-su) , recall that the velocity is defined

in the case of a mushy fluid by u = ui = us and in the case of a columnar zone by 

u = /¡u i, [11]. One may notice the differences between these two models more clearly 

by looking at the convective component of the source term in the energy equation of each 

model STc = W.(pLfsu)in the columnar zone model versus STc = V.(pfiLj-su)m  the 

mushy fluid model.

In the mushy fluid model the solid fraction is a function of space. The mass flow 

of liquid is thus not necessarily conserved across a given control volume, and the latent 

heat is convected with the flow since it is associated with the liquid phase. In the case of 

a columnar zone, however, the solid flow is zero, and no net latent heat is convected. This 

is more clear by noting that, due to the continuity equation, the convective

term, STc = V.(pLfsu) , is zero.

To retain the positive elements of the mushy fluid model and, on the other hand, 

keeping the assumption of the porous media type mushy zone, a “mixed model” was 

proposed and applied by Voller et al. [10] in which the convective source term in the 

energy equation is given by the one proposed in the mushy fluid model. In this way the 

required nature of the flow is achieved by specifying the Carman-Kozeny source term as 

well as retaining the elements of the mushy fluid model.
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Now, the convective term in the source term of the energy equation can also be 

treated analogously to other convective terms in the governing equations including any 

higher order schemes such as QUICK or even Upwind Scheme. One must notice that in 

this case the variable is /¡L js instead of usual variables such as temperatine or velocity.

• Diffusion terms

The only remaining terms are the diffusion coefficients and fluxes at the CV faces in 

the momentum and energy equations. Consider a general diffusive balance for an 

independent variable continuous at the face between two CVs of the form:

where Ti and Y2 are diffusion coefficients such as jumix, kmix. Using one-sided estimates

to the derivatives at the faces, the requirement of Equation (3.41) for the east face of 

volume P may be discretized as follows:

An estimate for the face value of the dependent variable <j) can be obtained in the

form:

Inserting Equation (3-43) in either side of Equation (3-42), the estimate to the

(3-41)

diffusive flux is given as:
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r, rd$_
Kdn

J d f
\ d n j 2 kXpe

r,
+ eE

r 2

(3-44)

Note that Equation (3-44) is a local resistance analogy, or the harmonic mean 

formulation of Patankar [72].

3.3- Summary

To summarize, in the first section of this chapter the formulation used in the 

current work, including mass, x-y-momentum, and source-based energy transport 

equations, is explained. The volume fraction update is made in the mushy region by using 

Scheil’s equation and a set of correlations.

In the second section, the discretized equation corresponding to the transport 

equations, based on the fully-implicit time integration, was presented. For each 

discretized transport equation the key points of implementation were outlined.

Next chapter introduces the VOF method and the solution methodology used in

the current work.
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Chapter 4 |

4. VOF technique and solution methodology

As it was explained in Chapter 2, the VOF method is one of the most popular 

methods in capturing interfaces. However, there are no sources in which the algorithm 

and the method are explained in detail in one paper or article. In this chapter, details of 

the VOF method applied in the current work are outlined. The basis of the method used 

in this work is mostly the one proposed by Pilliod and Puckett [48] and implemented by 

[50, 51, 53, and 76]. Nevertheless, in the current work, there are some parts of the 

algorithm, at which methods used by other authors, have been implemented.

To be able to explain the method of VOF, one has to make an initial guess for 

values of /  in the domain. This can be done either at the beginning of the solution 

algorithm or where an update to the value of /  is applied to the solution procedure. For 

example, in the current work, the update to the value of /  is made right after updating the 

temperature field by one of the equations (3-36 to 3-40) implicitly and an initial guess 

for /  distribution is made at the beginning of the solution’s algorithm.

Knowing the value of /  in a cell, a set of actions must be done to construct and 

reconstruct the interface in only mixed cells. In the following sections, 4.1-4.4 a detail of 

these procedures is explained. At the end of this chapter, section 4.5, a solution algorithm 

is presented.
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4.1.1-Normal to the interface

In vector calculus, the gradient of a scalar field is a vector field which points in 

the direction of the greatest rate of increase of the scalar field, and whose magnitude is 

the greatest rate of change.

In the original method of Youngs et al.[50] an approximation to V/ is taken to 

point the direction normal to the approximate interface. V / can be calculated with the 

following difference scheme :

, Of fE  ~ fw
x dx 2
, df_ /y  ~ f s
y 8y 2

(4-1)

The approximate values of /  in the E, W, N and S control volumes, considering 

Figure 3-2, are calculated as bellow[50]:

fE ~ ® fi+l,j fi+l,j+l)2 + a  J

fw  = ~E~ (/i'-lj'-l + a  fi~\,j fi-\,j+\)2 + a  J

/ y  = 2 + a  (fi-Uj+i + a  fi,j+i + fi+\,j+ii)

f s  =lT——(fi~i,j-i +ccf j - \  + /i+ lj-1) 2 + a  J J

(4-2)
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where a is a free parameter. Pilliod and Puckett [51] report that a -  2 will produce 

best results.

A modification of Youngs [50] idea has been used widely in recent works 

including [53]. This modification was made to somehow consider the effect of the 

different length and width of a computational cell in a non-uniform grid and also get rid 

of the free parameter a. The modified formulation to approximate the normal is written 

bellow:

 ̂f j , j -1 ~  f i , j  ~  +  f i , j  ~  f i - h j  +  f i , j +1 +

x i , j -1 "  x i - h j -1 x i , j  ~  x i J  ~  x i - h j  x i , j +1 -

f i + \ , j - \  ~  f i , j -1 | f i + l ,  j  ~  f i , j  | f i + i , j  ~  f i , j  | f ;+ ij'+ i ~  f i , j +1

■ ^i+ lj-l — Xi , j - l  X i+Uj ~  X i J  X i + l J  ~  X h j  X i+\ , j+\  ~  X i , j +1 y

(4-3)

~  f | f i j  ~  | /¿ -1 J+ 1  ~  f i - h j  | / i,y+l ~  f i , j  |

T m j  — T i - i j - i  T i j  “ T / j - l  T i-i,y + l Ti,y+i “ T i j

f i , j  ~  , f i + h j  ~  f i + h j - i  , A y + i  ~  f i , j  , f i + U j + i  ~  f i + h j----------------1--------------------- 1----------------- 1--------------------
y t j  T/+ij — Ti+ij-i yi,j+i~xi,j y i+\j+\ ~ y i+\j ;

(4-4)

Basically, the values of /  initially approximated at the four comers of each 

mixed cell , i.e. North-East, North-West, South-East and South-West of each control 

volume, using values of /  in neighboring cell’s center, as shown in Figure 4-1,

1 1
= — x — 

2 4y

1 1
m r =  — x — 

* 2 4
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i-lj+i c a
**hj

y-i i+lj-l

Figure 4-1, Normal approximation, stepl

The final value of /  at the cell center is the average value of these four comer 

values, see Figure 4-2.

Figure 4-2, Final normal approximation

Hence nx and ny components of the unit normal vector n are

n x =
my

MX + my

ny =
!

m ,

m2x +m2y

(4-5)
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In the current work, the normal vector in a mixed cell always points to the partial

solid region of the cell. Once the normalized vector n is calculated, a straight line can be 

positioned perpendicular to it in such a way that, it matches with the value of/ .  Pilliod 

and Puckett [48] show that this method does not construct all linear interfaces exactly, 

and is at best first-order accurate. In addition, to have a higher order fit one needs to use a 

reconstruction algorithm. For this reason, in the present work, this method is used only as 

an initial guess for the interface reconstruction algorithm and, instead the LVIRA (Least 

square Volume of Fluid Interface Reconstruction Algorithm) scheme is used to determine

final approximation of the normal to the interface n .

4.1.2- mixed cell’s identity

Knowing an estimate of the normal can facilitate information to flag each 

computational cell based on the direction of the normal to the interface. In the current 

work the flagging method of Shirani et al. [53] is used to flag each mixed cell.

Figure 4-3, Cell identity [53]

Depending upon the position of the interface and the value of /  in a mixed cell, 

Figure 4-4 shows 24 possible mixed cells out of 26 possible cases. The other cases exist
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when the interface is parallel to x-y axes. The normal vector angle, 0, can take any value 

between zero and I n  ,and create any of the 24 cases shown in Figure 4-4. Figures 4-3 

and 4-4 show that the area filled with fluid can be triangle, quadrilateral or pentagon, 

depending on the value of f ,  nx and ny in that cell. The limiting value of f  , see Figure 4-

3, for the cases when n is in the first octant and nx > ny are:

fim,\ 2 ny
(4-6)

and for a general case where n is arbitrary are:

f  _ ^min 
71im,l ? (4-7)

where

«min = mm

«max = max

(4-8)
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Figure 4-4, Different interface configuration

Base upon the magnitude of normal vectors in x and y direction and their values, 

the location of the cell in each octant of Figure 4-4 can be found and depending on the 

values of /hm;1 and f lim 2, different possibilities of having a triangle, pentagon or

quadrilateral can be obtained.

4.2- Interface intercept or line constant

Knowing the normal to the interface gives the angle of the interface. To identify 

the exact location of the interface in a 2D simulation, the interface line intercept is 

necessary. Determining the constant of the line is the most difficult task in the 

reconstruction algorithm. The constant must be calculated in such a way that the resulting 

line passing through the origin of the system of coordinates, passes through the cell with 

a truncation volume equal to the cell’s material volume, i,e. fluid volume in the mixed 

cell [23].

This task can be completed by creating a Volume (distance) or a V (d) relation, in 

which V can vary linearly, quadratically, or cubically with ‘distance’. This relation
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depends on the coordinate system and the shape of the truncated control volume formed 

by the interface segment.

Rider and Kothe, [23], attempted to construct an algorithm for determining the 

constant based on the direct solution of the V (d) relation. However, since this relation is 

often non-linear and varies in each mixed cell, the method was not efficient. Instead, 

Rider and Kothe [23] chose to create the V (d) relation iteratively in each mixed cell. 

Using this method, the resulting algorithm is independent of the mixed cell’s properties 

and data.

The distance, hereafter called d, can be found when the nonlinear Function (4-9) 

is satisfied; i.e.:

f ( d )  = V ( d ) - V  = 0 (4-9)

V (d) is the volume of the constituent in the cell bounded by the interface segment 

and the portion of the mixed cell edges within the constituent.

When these two volumes are equal, (to within some tolerance, 1 .OE-4), it means that the 

interface is declared and the reconstruction task is over, so the values of vector n and 

scalar d are correct.

One can also calculate the distance between the interface and the cell center; 

offset length, L, instead of calculating d, [77, 78, and 36]. This approach recently has 

been used widely and is used in the present work. Basically, given the value of /  from 

either volume fraction evolution equation, Equation (3-36) or (3-38) to (3-40), or an 

initial guess, and approximated normal to the interface, the task is finding the optimum 

value of L by finding the root of equation:
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( /  _ new ~ f  -  given) -  0 (4-10)

/  _ new is the resulted value of /  base on the first guess for value of L. In other 

words, starting with a guess for L, the task is minimizing the error between the given 

value of / ,  /  _ given , and the resulting f , f  _ new .

A host of root finding algorithms is available to determine the roots of any 

function [79]; herein, a Secant method is chosen to find the zero of Function (4-10) [77]. 

The Secant method requires less computational effort in comparison with Newton’s 

method and other similar methods because an evaluation of the derivative of V with 

respect to L is not required [77]. Hence, the Secant method needs two initial guesses. A 

good initial guess can increase the rate of convergence. The maximum possible distance 

of an interface from a mixed cell center with a dimension of Ax x Ay can be calculated 

easily;

ZI = nx.hx + nyAy

L2 = - n x.Ax + nyAy 

Maximum L = 0.5 x Max(Lx, L2)

(4-11)

Using a small index of this Maximum could be a good candidate for the first 

initial guess in the Secant method. The Second initial guess could be obtained by 

subtracting the initial value from the maximum L.

To find out what the value of f  _ new corresponding to the value of L is, one 

needs to calculate the volume of constituents in each mixed cell. Obviously, to be able to
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calculate the volume of fluid in each mixed cell, one needs to construct an interface 

segment in each mixed cell.

4.3- Line segment in mixed cells

To construct a line segment, one needs to calculate the endpoints of the interface 

in a mixed cell. The general idea of line segment construction used in this work comes 

from reference [23], however the details of the idea have not been presented completely 

in any articles or journals. Details are presented below.

4.3.1- Normal location on the interface and interface endpoints on the faces

Knowing the estimate of normal, approximated from either Youngs method, 

explained previously, or LVIRA scheme, will be explained later, and the value of L, the 

coordinates of the base point of the normal can be calculated in such a way that

Xbase Xcenter L x  nx (4-12a)

b̂ase ~ Ycenter ~ L x  ny (4-12b)

Figure 4-5, Line segment construction, Xb,Yb are the base point’s coordinates
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This point is taken as a point on the interface to help finding the end points of the 

interface. For storing purposes, one array that takes maximum two values is set to store 

the endpoints of the intersection, i.e.

-^int erf ace 0)» ^interface 0) 

-^int erf ace ( ^ )  > ^interface (^ )

Each face of a mixed cell is also numbered to identify which face intersects with 

the interface, i.e. “1” for the bottom face, “2” for the right face, “3” for the top and “4” 

for the left face of each mixed cell. So if, for example, ny « 0.0, assuming an interface

parallel to the x- axis, and Ybottom < Ybase < Ytop , the two intersection points are:

X in terface  0 )  ~  ^  right face  

■̂ int erf ace (X) ~  Ybase

face_number(Y) = 2

,and

X in te r f a c e  ( ^ )  ^ l e f t  fa c e

^ in t e r f  ace  ( ^ )  ~  Y b a se

face_number(2) = 4

The same procedure can be done for an interface parallel to the Y-axis.

For interfaces not parallel to the x-y axis, for sake of simplicity, one can define

- n y
two different slopes, one for cases that intersect the top and bottom faces, m = ------, and

n x
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— yi
one for cases that intersect right and left face, m! = — —. Then, by setting test points on

ny

each faces, interface points can be found easily. To clarify the above discussion, assume 

there is a mixed cell in the domain with an interface that is not parallel with the X-Y axis, 

and intersects with the top and bottom faces of the cell. A test point can be defined as:

I Yfest ^ to p —fa c e

\ X t e s t  ~  m  x  (^ t e s t  ~  ^ b a se  )  X b a s e

(4-13)

If X left-face * X  test * X right-face then,

* in t

T in t

X  test
= y1 test

(4-14)

The same test can be done for the other faces [23].

4.3.2-Polygon collection

Knowing the interface segment in a mixed cell leads to an examination of the 

vertices of the cell to see if they are located in the constituent of interest. A polygon can 

be constructed to calculate the volume of a constituent bounded by the faces of the mixed 

cell and the interface line.

To fulfill this task, test points are chosen to validate the region. For example, to

check the lower left comer, the test point can be the base point, Xtesf~ Xbase 
Y test~ b̂ase

and if

(X,efl X test) X tlx + (Xbottom t̂est) X ny — ®

then the vertex is in the constituent. The next step will be checking the bottom face to see 

if it is within the constituent and so on. It is worth mentioning that this task is done in
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counterclockwise order to be consistent with the line segment finding task. Having the 

vertices of a polygon, the area of the polygon can be calculated using:

where, (xv,yv)is the vertex of an n-sided polygon, collected in the counterclockwise 

order.

By constructing the polygon, enough information is available to find the value 

of /  _ new.

4.4-LVIRA (Least Square Volume of Fluid Interface Reconstruction 
Algorithm)

Having the estimated value of n from Youngs method and the offset length, gives 

us a first order approximation of the interface in each mixed cell. LVIRA was developed 

by Puckett [36] and is a second order accurate reconstruction method to reproduce linear 

interfaces. The advantage of the LVIRA method over the PLIC and similar reconstruction 

methods is in reproducing continuous interfaces across the cell boundaries.

The concept of the LVIRA scheme can be understood as a function which returns 

n, the orientation of the interface and L, the offset distance of interface from the cell 

center, given the volume fraction distribution of the complete domain.

In the LVIRA method the following G function

^  =  - X ( * v T v +1 - * v + l T v )
V=1

(4-15)

k,l=l
(4-16)
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is minimized for a block of 3><3 computational cells to approximate the interface in the 

cell center (z, j )  subject to the constraint at the cell center of 3x3 block of

cells f i j  = /(n ,Z ) ij(Tolerance=1.0E-8)./)j is the actual volume fraction of the cell 

(i, j ) and f ( n , L ) i j  is the function that plots the line with orientation n and offset length 

L into the cell (i, j ).

L is obtained by considering the constraint f ij = f { n , L ) ij ,  and Gy{n£) is

basically the squared deviation of the actual volume fraction from the volume fraction 

obtained by drawing the interface using the same line for the entire 3x3 block of cells 

centered at cell (i, j ).

Minimization of this function rotates and translates the line in such a way that 

ensures the drawing is exact for the center cell and in such a way that the straight line 

associated with this drawing is the best fit to the volume fractions for the eight 

surrounding cells [77]. The outcome of the whole minimization process is the calculation 

of the unit normal and the offset length (n, L) for the cell at the center of the 3X3 block. 

This calculation is performed for all the mixed cells, satisfying the constraints that the

drawing f (n ,L ) ij  returns the actual volume fraction [77].

4.5- Solution Procedure

4.5.1- Interface Reconstruction algorithm

Knowing the details of the reconstruction of the interface in a mixed cell, the VOF 

reconstruction algorithm can be summarized as below:

1) Given the distribution of / ;  only for cells that have value of /between zero and 

one, approximate a normal to the interface and identify the mixed cell
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2) Find the distance between the interface and the cell center.

3) Define a line segment and truncate the mixed cell with this line segment.

4) Find and assemble the N vertices of the polygon formed by those cell vertices 

inside the fluid and interface line/cell edges intersection points.

5) Compute the volume bounded by this polygon.

6) Determine if the polygon volume differs from the known fluid volume by some 

prescribed tolerance.

7) If the volume differs, find a new estimate for L and go back to step 3.

8) If the volumes do not differ, save the values of n and L in all mixed cells and 

calculate the angle that the interface makes with the x-axes.

9) Start LVIRA for the best fit of the interface in the center cell of a block of 3 by 3 

by rotating the interface with a small angle in positive and negative direction and 

minimizing equation (4-16).

10) Check if f i j =  f  (n,L)i j  with some prescribed tolerance. If it is satisfied then

the interface is declared reconstructed. If it is not, rotate the interface until the best 

fit results. The whole algorithm can be shown in a more compact form as shown

in Figure 4-6
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Figure 4-6, Flow chart of VOF algorithm

4.5.2- Solution procedure

To solve a complete solidification problem the following algorithm, which consists of 

three main elements, is chosen:
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1- Pre-processing:

• Domain definition

• Grid generation

• Set initial field variables (u,v, T,u,v).

• Guess an initial distribution of /  in the domain.

2- Processing and solving:

• Approximate normal to the interface using Youngs method and identify mixed 

cells

• Calculate T , will be explained in Chapter 5, to be able to approximate 

pressure gradient in the vicinity of the interface

• Update physical properties including p  and p  based on the value of / .

• Compute pressure gradient based on the initial values

• Initialize residual

o Begin the time-step loop (outer loop)

• Set old values of the field variables equal to the new values, 

o Begin the linearization loop (inner loop)

• Update all values of normal, T as well as cell identity based on the updated 

value of /

• Update physical properties including p  and p  based on the value of / .

• Compute active coefficients in Energy and mass-momentum equations

• Compute all source terms

• Read all the boundary conditions

• Add the pressure terms to the momentum equations
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• Check the residual against convergence criteria

• Solve descretized energy equation using WATSOL1 in WATSIT-B solver

• Update /  using equations (3-36 to 3-40)

• Call the interface reconstruction template.

• Solve descretized coupled mass-momentum equation

• Update pressure gradient and advecting velocities 

o End Linearization loop

o End the time-step loop

3- Post-processing:

o Domain geometry and grid display 

o Vector and contour plots

The matrix solver WATSIT-B includes two subroutines watsoll.f and watsoln.f. 

They are iterative sparse matrix solvers that operate on the system

Ax = b

where A is a banded N x N  sparse, non-singular matrix, and b and x are N-length vectors. 

The vector b is the source term (or right-hand side), and x is the solution vector [80]. 

W atsoll.f is created to operate on sparse matrices with scalars as the elements. In the 

current work this package is used to solve energy equation.

Watsoln.f is designed to take advantage of block structure in matrices and it is 

useful to solve a system of equations where several variables are being solved at each 

node at the same time. This package is used to solve the coupled mass momentum 

equation in the current work where pressure, x and y direction velocities are unknown



71

variables. The sparse matrix storage scheme in this solver is the one used in the Yale 

Sparse Matrix Package. One interested in details can find more information in [80].

4.5.3- Convergence criterion

Determining when to stop the iterative process is not a trivial problem. Depending 

on the size of the problem, each time step could consist of several nonlinear iterations. In 

the current work, the solution convergence is checked through normalized residuals. To 

make it clear, consider a discrete equation for a field variable q>. For each coefficient 

update in the linearization loop, the current values of the field variables are used to 

construct coefficients (Equation 4-17). Then, the discrete equations for the previous time 

step are solved (Equation 4-18).

dp (pp —aw (pÿr + aE (pp+api (pN +as <p$ +bp (4-1/)

„ m „ m  , „ m „ m  . „ m , „ m „ m  , -¡.m ( a i o \üp(pp — dyfrÇ)yy+dpÇp + d^jÇpj + d$ Çg + Up (4~lo)

After each coefficient update, the residual of the discrete equations can be easily 

checked:

d m m „ m  m „ m  m  „ m  m „ m  i m  ( a i q \RP -d p Ç p  - d w(pw - d Eç E -  dN(pN -  ds ç s - b p  (4-19)

The absolute value of Rp is the local residual. To get an indication of the 

convergence behavior across the whole flow field, a global residual can be defined as the 

maximum of the local residuals over all n control volumes. Then the size of this global 

residual is a reference of how closely the non-linear problem has been solved. The global 

residual will have a larger value in simulations where the flow variable tp has a larger
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magnitude, so a different truncation value is necessary fori?7". A normalized global 

residual can be defined to remove the effect of the magnitude of ̂ . In the current work 

the normalizing factor is defined as:

\Pnew V old\

E H (4-20)

Convergence of the linearization loop in the current work is estimated to have 

occurred when the normalized residuals for the discrete, linearized governing equations, 

in a solidification problem, were reduced to below the value 10'4 for each control volume.

4.6- Summary

In this chapter, the method of VOF used in the present work was explained in 

detail. Also, a solution procedure for a solidification problem was outlined. Having all 

necessary information, in previous chapters, the author will validate the proposed 

formulation in the remaining chapters by solving a set of problems.
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Chapter 5______________________________________________

5. Validations and Discussion

Three case studies were considered to rigorously validate all components of the 

proposed computational model. The first was a coupled mass-momentum problem 

solved for a stationary liquid-solid interface set by manually defining the values of/  in 

the domain. The problem was then solved using the complete VOF code to demonstrate 

that the correct velocity and pressure fields are predicted adjacent to the interface.

The second case considered was a simple heat transfer problem in which the wall 

temperatures were set to be above the eutectic temperature. This case was also solved 

using the complete VOF code with the energy equation invoked and the result shows 

correctly that no solidification takes place and a simple thermal current is developed in 

the domain due to the differential wall temperatures.

The final case study includes three problems. The first problem considered is an 

Al-4.5%Cu cavity which has the left wall of an initially liquid domain set below the 

eutectic temperature, while the right wall is above the eutectic temperature and the upper 

and lower walls are insulated. In this case, the solution is a slowly moving solidification 

front that starts at the left wall and moves towards the right. The effect of convection in 

the mushy region is examined. Also, in this problem the link between the energy 

transport equation and VOF algorithm is validated. The second problem, which is for a 

quantitive comparison of this work to the validated work of Swaminathan and Voller 

[65], is a simplified solidification problem, i.e. the conduction dominant solidification 

problem of [65] without considering the convection effect in the mushy region. Finally,
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the third problem is a thermal cavity filled with Al-6%Mg, with physical conditions 

similar to the first problem, but without convection terms in the energy transport 

equation. Further discussions will be presented in the following sections.

5.1- Case study 1: Virtual stationary interface problem

In this problem, only the velocity vectors and pressure are of interest. More 

particularly, attention is focused on obtaining an accurate pressure gradient in the 

momentum equation in the vicinity of the solid-liquid interface. A careful treatment of 

pressure gradient adjacent to the interface is necessary to remove the possibility of 

spurious currents. To study this, a 0.5 by 0.1 (m) channel is chosen as the domain of the 

problem. A relatively weak flow, with Reynolds number of 2 is imposed at the inlet of 

the channel. A pre-defined interface which divides the domain into solid and liquid 

regions is imposed in the channel by manually defining a distribution of/  to create a 

channel with the shape illustrated in Figure 5-1 A.

*•

Figure 5-1A, Schematic showing the expected solid-liquid interface

By manually defining a distribution o f /  equal to 0.25 and 0.75 and 0.1 for 

chosen cells, a solid-liquid interface is defined at almost two-channel width from the 

entrance where the velocity profile has already obtained a parabolic shape. At this point, 

the VOF package with pre-defined values of /  was applied to check the agreement of the
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interface. It was found that the resulting interface was in agreement with the one shown 

in Figure 5-1A, see Figure 5-1B.

Figure 5-1B, Plot showing the solid-liquid interface in the domain by manually defining a 
distribution of /  and using the VOF method

Boundary conditions for pressure and velocity are defined on the channel edges as

below:

Pressures are set to be zero at the outlet (east face) and extrapolated at the north 

face, south face and west face of the channel:

^  *=0.5- 0-0 (5-la)

P y=o.o~ { P ( i J  +  \ ) - P { i J  +  2 ) ) x Y( j  + 1 ) - Y ( j )
7 (y + 2 ) - 7 0  + 1)

(5-lb)
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P y=o.i

P ^=0.0

( P ( i J - \ ) - P ( i , j - 2 ) ) x  

CP(i + l j ) - P ( i  + 2 J ) ) x

Y U ) - Y U - 1) 
7 0 - 1 )  - Y U -  2)

X ( i  +1) -  X ( i )  

X ( i  +1) -  X ( i  +  2)

(5-lc)

(5-Id)

Zero velocities are set at the north and south boundaries for x and y direction to 

enforce a no-slip impermeable condition on velocity. For the inlet only, the value of

Yflvelocity in the x direction is set to be 0.1— , and in the y direction equal to zero. At the
s

outlet, a zero gradient of velocity in the x direction is set and zero velocities in the y 

direction are implemented to mimic a typical fluid outlet; i.e.:

U , V \ x =q,5- 0 .0 ,  U , V \ y =q. i - 0.0, f / ,F |y=0.o-0 .0 , V |x=00- 0 .0

i/U=o.o=0.1-
s

(5-2)

Having the boundary conditions and values of /  defined, the coupled mass- 

momentum equations were solved.

Figure 5-1C illustrates the pressure-velocity field at the area adjacent to the 

interface.

Such a result was expected as the typical approximation used for the pressure 

gradient in pure fluid flows may not be terribly accurate due to the presence of solid and 

fluid in a single cell. This task is complicated by the fact that the advected velocity 

changes dramatically in the vicinity of the interface due to the flow restriction. As a 

result, a jump in dynamic pressure occurs. As it is shown in Figure 5-1C , the velocity



77

vectors are directed into the solid region resulting in the presence of a current similar to 

the “Spurious Currents” reported in [1] in the vicinity of the interface. Using the VOF 

method, the interface only exists numerically based on the definition o f /  .A s such, a 

boundary condition can not be applied at the interface to correct the velocity field.

Figure 5-1C, Plot showing the Pressure and velocity field with spurious current in the vicinity of
interface

To correct the spurious activity that results from inconsistent modeling of the 

pressure, a modification must be made to smooth the effect of the interface on the flow. A 

new approximation to the average pressure gradient terms appearing in momentum 

equation for cells that include an interface (mixed cell) is developed in this work to

overcome this issue.
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To obtain a suitable estimate for the pressure, consider the following sub-block of 

the domain, Figure 5-2, with a mixed cell surrounded by eight other control volumes.

Figure 5-2, New pressure approximation scheme

Based on the direction of the normal to the interface, the continuation of the 

normal vector intersects with the connecting line of one pair of surrounded cells 

at X exp, Texp. The use of inverse distance approximation gives us a suitable

approximation for the pressure gradient at the mixed-cell center:

Knowing that

|  ^ e x p  O ' )  =  Y p  0 )  +  P n y

\ X exp(i) = X p (i) + /3nx 1 ;

Start with setting

Y ^ U )  = YP ( j  + \) (5-4)

These result in
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So,

ya  PU ) - r p U )
(5-5)

X „ . p U )  =  P n + X p ( i ) (5-6)

Now, Based on the value of X exp, 7exp and using an inverse distance approximation,

exp(0 - x . ( « - i )
X p ( i ) - X P( i - \ )

(5-7)

dP_ ID
dx i j

= ( i - r  ( u ) h
dP
dx i,j+1+(r(;j))x dP

dx i-lj+l (5-8)

After applying this approximation into x-momentum equation, a similar 

approximation was made in the y-momentum, and the resulting pressure, /  and velocity 

fields are shown in Figure 5-3.

One might notice that how a correct estimate of normal to the interface can affect 

the approximation.
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Figure 5-3, Plot showing corrected pressure and velocity Field

5.2- Case study 2: Source based Energy equation problem

In this case, the source based energy equation formulated in Chapter3 is invoked 

and quantitively validated. Buoyancy-driven convection in a sealed cavity with vertical 

sides that are cooled and heated is a prototype of many industrial applications. The 

problem being considered is a two-dimensional flow and heat transfer in an upright 

square cavity of side 0.05 (m) filled with an Al-4.5% Cu binary alloy. The two horizontal 

walls are insulated and the vertical sides are at constant temperatures.
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The hot wall and cold wall are set to Th = 933K  andTc =913K , respectively, as 

shown in Figure 5-4.The property data of Al-4.5%Cu was retrieved from reference [81]

and is shown in Table 5-1.

Properties of Al-4.5%Cu Units Value

Specific heat Cs [ J  ] 
kgK1

958

Cs [ J  ] 
kgK

958

Thermal conductivity W
K s [ ] 

s mK
180

w
K d  ] 

1 mK
95

Density r kg , 
P [ 3] 

m
2460

Viscosity
P [Kg/ms] 1.17 x 10-4

Latent heat of fusion
L [J/kg] 3.9xl05

Eutectic temperature te [ K]
821.5

Melting temperature ^ [ K ]
933.5

Liquidus temperature Ti [K]
913

Thermal expansion /3[UK] 2.5xl0 ‘6

Table 5-1, Aluminum-Copper Data Properties of binary Al-4.5% Cu Alloy

The solution of the governing equations can lead to a complete understanding of the

velocity and temperature fields for natural convection in a square cavity .
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Figure 5-4, The differentially heated cavity used in the second case study

A two-dimensional non-uniform co-located grid system (40x40), shown in Figure 

5-5, was used. Note that the grid is condensed toward the walls where gradients in 

velocity and temperature were expected to be highest.

Results

It is generally known that fluid flow in a buoyancy-driven convection system is 

characterized by a single large re-circulating cell. The lighter fluid rises along the hot 

wall. The fluid then descends along the cold wall as it gets heavier.

As it can be observed from the plot shown in Figure 5-6, the fluid that is heated next to 

the hot wall (right), rises and replaces the cooled fluid next to the cold wall (left), which 

drops, thus giving rise to a CCW rotating vortex.
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Figure 5-6, Plot showing temperature contours and velocity vectors for a differentially heated cavity
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For small Grashof numbers, imposed by low differential heating, the flow is weak 

and the isotherms are essentially parallel to the vertical walls, indicating that heat is 

transferred primarily by conduction across the fluid. For large Grashof numbers, the flow 

becomes strong and the isotherms are no longer parallel to the vertical walls. This 

indicates that heat is transferred by convection and conduction. The result presented in 

Figure 5-6 shows that code responds properly to a general natural convection problem 

without solidification.

A quantitive validation has been done by checking the values of correlations 

given in reference [82]. These correlations are empirically derived and hold a range of 

uncertainty themselves. As the result, in the current work, having numerical values within 

0-15% deviation from the values obtained from these correlations satisfies the author. For 

aspect ratios (height divided by length) close to one, following correlations are suggested 

in [82]:

r
Nu = 0.18 Pr A

Ra
v0.2 + Pr j

0.29
(5-9)

Over the range of parameters:

1 < — <2 
L

10"3 < Pr < 105

103 < - Vr —  Ra 
0.2+ Pr

(5-10)

where, Pr is the Prandtl number, Ra is the Rayleigh number, Nu is the Nusselt

number and — is the aspect ratio which is one in this test problem.
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Considering the properties shown in Table 5-1 and having satisfied parameters (5-

i - = 'L
. Pr = 1.44x 10-2

— —— Ra = 9968.44 
0.2 + Pr

V

the resulting Nu number is shown in Table 5-2.

As it can be seen in Table 5-2, the numerical result is well matched with the 

experimental correlations proposed in [82] and has only 2.31% deviation.

1 0 ) :

Nit

Correlation (5-9) 2.600

Numerical Results 2.660

Percentage Error 2.31%

Table 5-2, Comparison between numerical and experimental Nusselt number

5.3- Case study 3: Solidification problems

The configuration for the first problem of this section is illustrated in Figure 5-7.

As explained previously, the main focus of this problem is on the validity of the 

linked VOF method and the source-based energy equation.

The basic features of the problem are explained as below:

Initially the Al-4.5% Cu in the cavity is above the eutectic temperature. At time t=0 the 

temperature at the surface x=0 is reduced and fixed at a temperature below the eutectic 

temperature so that as time proceeds a solid layer grows from this surface.
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Figure 5-7, Thermal Cavity used in the Solidification test problem 

Computational details

The proposed test problem is solved on a 40x40 non-uniform orthogonal grid. A 

fixed time step of At = 1.0(s)is used in all runs. The grid size of 40x40 was obtained 

from a grid refinement study. Wherein, the total fraction of solid at a certain time was 

recorded for non-uniform grid sizes 10x10, 20x20 and 40x40. The results of this study 

are summarized in table 5-3.

Size Fraction of solid at t =3 0

10x10 0.423
20x20 0.408
40<40 0.407

Table 5-3, Grid dependence

The permeability coefficient,*:, in the Carman-Kozeny source term as explained 

before depends on the morphology of the mushy region and has to be set to a value small 

enough to allow for significant flow in the mushy region at low local solid fraction
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whereas resulting a large value of Su to swamp out all terms in the governing equations 

and force any velocity predictions effectively to zero in case of having low local liquid 

fraction [83, 84, 85]. In the current work, the constraint set for the value of k can be

—3satisfied by all the values within a range between O (10) and 0 (1 0  ).

Results

Figure 5-8 shows the temperature contours near the beginning of the process, 

t=8(s). The solidus line, i.e. the temperature isotherm T  = 760AT, shows small 

deformation due to convection similar in shape to the deformation predicted in isothermal 

phase-change cases. The liquidus front, however, shows a bulge along the lower wall. 

This bulge is a direct effect of the convection term in the energy equation.

Figure 5-9 shows the liquid volume fraction field and the related flow field at t= 

15(s). In the liquid portion of the cavity, the velocities are in qualitative agreement with 

other studies of natural convection in a thermal cavity, i.e. the one presented in the 

previous section of this chapter.
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Figure 5-8, Plot shows the isotherms at t=8(s)

Figure 5-9, Plot shows the flow field and volume fraction field at t=15(s)

Figure 5-10 shows the development of the mushy region for different times of the 

process. There appears to be some re-melting of the mushy region near the top of the
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cavity as the time approaches the steady state solution. Figure 5-IOC is essentially the 

steady state solution to the problem after about 90 minutes of CPU time, as not much 

change is noticed after that. Such re-melting behavior can be explained in terms of the 

transient modification of the velocity field. At initial time steps the velocity near the top 

wall is small due to the no-slip condition. At later time steps, the greater momentum of 

the fluid creates larger velocities near the top wall and re-melting occurs.

Figure 5-10, Plots show the progress of mushy region in different times, (a) t=8(s), (b) t=23(s) and (c)
t=46(s)
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The bulge in the mushy region is also noticeable at very early times. Since a 

mixed model is used for modeling the mushy region, the bulge created near the lower 

wall after a few time-steps shows the influence of the latent heat convection on the shape 

of the mushy region.

Although the results shown in Figures 5-8 to 5-10, are reasonable and are 

qualitatively comparable to other similar work in which the analogous transport equations 

have been used, [10, 83-85], to make sure the current developed in-house code is working 

properly, a complete comparison of the results with similar experimental results would be 

ideal. It is worth mentioning that experiments are being conducted by co-investigators in 

the University of Windsor as a part of group C210-CMG, but results are not yet available.

As a result, the author decided to simplify the problem further from a 

conduction/convection solidification problem to only a diffusion solidification problem 

and to validate the resulting temperature field in the mushy region with the result shown 

in reference [65]. The physical properties of the alloy used in reference [65] are 

analogous to what have been used in the prior problem of this section and shown in Table 

5-1. The conditions and volume fraction update scheme used in the mushy region of [65] 

is also similar to what has been used in the current work. To follow the work of [65], the 

solidification is confined to one quarter of a comer region of dimension 0.1x0.1 (m), and 

a convective boundary condition is assumed to prevail along the exposed edges

Wconsidering/i = 2000.0—-— and7]nf = 290.OAT as shown in Figure 5-11.
m1K
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\ / / / / / / / / / /
\

Figure 5-11, Problem specification for validation

The following tasks and changes have been made to compare the temperature fields of 

the current work and numerical results of reference [65]:

• A grid study has been conducted based on the value of /  for a particular control 

volume, x=y=0.01(m), to be able to choose appropriate size of the grid. Results 

are plotted in Figure 5-12A. It is found that a grid size of 20x20 is appropriate to 

u se ,

• At = 0.5 (s) is set instead of 1.0 (s) and

• A uniform grid is used instead of non-uniform grids.



Grid convergence study for case study 3-problero2 { f VS. time)

■ 40 by 40 
20 by 20 
10 by 10

Figure 5-12A, Grid study for the second problem of the third case study

Having made these changes the result of temperature at x=y=0.01(m) is shown 

Figure 5-12B.

Temperature VS time steps in Mushy Region

Figure 5-12B, Temperature field comparison between the current work and reference [80]
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As it can be seen from the graph shown in Figure 5-12B, the temperature field in 

the mushy region is well matched with the result obtained in previous work of 

Swaminathan and Voller [65] and this confirms that the code developed in the current 

work is accurate.

The author used the modified code of the second problem of this section to test a

case similar to the first problem of the current case study.

Properties of Al-6%Mg Units Value

Specific heat cs [ J ]kgK} 1097

Cs [ J ] 
* kgK1

992

Thermal conductivity WK s [ ]
s mK

130

w
K d  ] 

1 mK
92.6

Density „ rkSiP L 3 J 
m

2315

Viscosity A [Kg/ms] 1.17x 10-4

Latent heat of fusion
L [J/kg] 3.96x105

Eutectic temperature TE \K\ 723

Melting temperature Tm [ K]
933.5

Liquidus temperature Ti [K]
919

Thermal expansion 2.5xl0 '6

Partition coefficient KP 0.472

Table 5-4, Aluminum-Magnesium Data Properties of binary Al-6% Mg Alloy [81]
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The only differences are: a different binary alloy, Al-6%Mg, with properties 

shown in Table 5-4, is used in the cavity shown in figure 5-6, and the convection terms 

are dropped from the energy transport equation.

Figure 5-13 shows the result of this test problem. Because there is not any flow to 

drive the temperature field or value of f similar to the first problem of the third case 

study, it can be seen that the bulge created in Figure 5-10 due to the effect of convection 

terms does not exist any more in this case which is also another expected result.

Miuhy
Uhm*

Figure 5-13, Temperature contours and velocity vectors for a simple solidification problem wherein 
the domain is cooled from the left and heated from the right at t=48(s).

In this chapter the formulation of the solidification model and its implementation

have been validated.
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5.4- Summary

In summary the formulation used in the present study, the interface-capturing 

method selected, and the changes made to enable smooth pressure transition and interface 

movement are seen to give very good results. This code forms the basis for future work to 

be conducted on solidification problems with more complex geometry and filling 

processes. Author will summarize the current work and suggest a few future 

contributions in the next chapter.
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Chapter 6______________________________________________

6-Summary and Future contributions

6.1- Summary

The principle aim of this work was to develop a formulation that provides an 

excellent platform for simulation of solidification processes and filling processes. This 

motivated the development of a fixed grid approach along with retaining the basic form 

of the hydro-mechanical equations. The phenomena associated with the solidification 

were modeled by careful consideration of the essential physics. The driving source terms 

are Carman-Kozeny source terms in the momentum equations and the latent heat source 

terms in the energy equation. The choice of Carman-Kozeny source terms originated 

from the effect of the porosity of the mushy region on the flow field. The latent heat 

source term is a function of the liquid/solid fraction which is a function of temperature. In 

this work, the changes in volume fractions follow the Scheil equation. An in-house VOF 

based code was developed and added to the solution algorithm to be able to track the 

interface between constituents, attain the best normal approximation to the interface and 

create an excellent platform for future simulation of a filling process in which tracking 

the liquid-gas-solid interface in the domain is necessary. The overall formulation is 

simple to implement and upgrade to 3D, and can be compatible with most numerical 

packages available.

6.2- Present Contribution

• In this work, the author presents a formulation that creates not only a platform for

the modeling of mold filling and solidification of binary alloys, but also provides
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an excellent platform to capture the interface between constituents in a die-casting 

process including solidification and mold filling process.

• A volume-of-fluid (VOF) based method to capture the interface between solid and 

liquid in a solidification process on a fixed non-uniform grid, developed for 

implementation in a co-located finite volume framework, was presented.

• Differing from other works, to update the volume fraction of fluid in the field, a 

link between source-based type of energy equation and VOF algorithm is 

described and implemented.

• A new approximation to the pressure gradient in the momentum equation is 

presented to remove all “Spurious Currents” [1] in the vicinity of the interface.

6.2- Future contributions

There is a need for further studies to be made. In particular:

• An investigation into different approaches and models for flow in the mushy 

zone; the questions that researchers should be able to answer are; what is an 

appropriate form for the morphology- porosity relationship in the mushy zone? Is 

the Carman-Kozeny law appropriate to use? An investigation of this type could 

have a significant effect on applications of the current formulation to metal 

systems, where the flow in the mushy region is important.

• Some experimental studies are required. The work presented lacks experimental 

validation for solidification cases. After obtaining experimental results by co­

investigators at University of Windsor, the numerical results must be compared 

with these experimental results prior to further code modifications.
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• Researchers should consider the effects of shrinkage and macro-segregation in 

future modeling of solidification problems.

• Research needs to be conducted to find the most appropriate form of source terms 

in the transport equations. Indeed as it stands its framework makes it an ideal 

platform for the current understanding of the solidification process.
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Appendix A

The volume of fluid advection algorithm used in general VOF methods

The case is considered as a problem of advancing an interface in a known 

divergence-free velocity field« = (w,v) solved in the x- y- momentum equations. With 

each grid cell a volume fraction /  is associated that indicates the portion of the cell that 

is occupied by fluid; i.e.,

The number f tJ is called the volume fraction (of fluid) in the (i, j )  th cell. It is 

obvious that 0 < f tj <1 . The volume fraction of the other material is (1 -  f u ). The

discretization of the characteristic function associated with the fluid considering the fact 

that [49],

The characteristic function, also it is called color function, is passively advected

/ .  jAxAy = Volume of fluid in cell (i, j ) ( 1 )

i jc e ll

1 if  there is fluid at point (x, y) 
0 if there is solid at point(x, y)

with the flow because the fluid type does not change along particle path. It can be

concluded /  satisfies the advection equation,

f ,  + Uf X + yfy = 0 (2)

u satisfies equation (3) if the flow under consideration is incompressible.

V.w = 0 or ux + vv = 0* y (3)
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By multiplying the recent equation by /  and adding it to the advection equation, a 

conservation law for the characteristic function can be obtained [48];

ft + (« /) ,  + (Vf )y  = 0 (4)

This means that material volumes remain constant on streamlines. In other words, 

the incompressibility of the flow allows that the conservation of volume to be equal to the 

conservation of mass [48].

Integration of material volume evolution equation requires the evaluation of 

material volume fluxes at each cell face. These fluxes represent the volume of constituent 

passing through a face during the current time step. The sum of all material or constituent 

volume fluxes must be equal to the total volume flux, which for example for east face of 

a selected cell is [49]

~Vi+i/2j = (At.n,'+i/2j) x Ai+\/2,j (5)

where, u is the velocity field and A mixj is the edge area vector and in a 2D case 

is the width of a computational cell, Ay .

To compute VM/2 y., two main steps are required:

• Construction of the polygon bounding the volume swept by the velocity field

during time step

• Finding the amount of fluid or material inside this polygon.
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The first step can be easily accomplished by the reconstruction algorithm explained in 

details in Chapter 4; however, the second step needs some definitions.

Consider a mixed cell as shown in Figure A. Based on the face velocity at the east face of

the cell, a portion ( A i . U i + m j )  x Ay of the control volume can be calculated, whose fluid 

will be fluxed into the cell at the east of this mixed cell. The flux can be calculated as 

bellow [23];

r  -  ^ i + m j  XUi+1/2’J Vi+\l2,j X U i +l l 2 ’j  ^i+1/2,7JeUe — — ~ (6)
K e c ta n g le  W/+1/2J X A f  X A y  X 4 V

Figure A, Schematic of a computational cell to show fluid flux calculation

There are two types of advection algorithms which are used more often in recent 

works to update / .  One is the “Operator Split algorithm” and the other one is “Unsplit 

advection algorithm” [48]. The simplest of two advection algorithm is the former 

algorithm which is chosen to be explained bellow;
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Using the usual discretization scheme introduced in Patankar [72], Integrating

dt
+ V .(/u) = 0 over a cell associated with node P and over the time step At , the

discretized advection equation for /  is given by:

+ (feUeAe - f wuwA J  + ( f nunAn -  f susAs) = 0 

+ ( f eUe - f wuw)Ay + ( f nu„ -  f sus)Ax = 0

At
(/"+1 - f n)AxAy 

At
( r +1- r ) A x A y

At

At At
f  =  f "  + ( f w U w - f e Ue )  —  +  ( f s U s - f n U n) —  = 0

Ax

(7a)

(7b)

However, for an operator split time integration scheme, the original equation, (4) , 

must be integrated twice in two dimension (thrice in three dimension), one integration per 

each sweep and one sweep per dimension. So, equation (7) looks like [48, 51]

(8a)

(8b )

where /  is the intermediate volume fraction which is obtained by using equation (6) in 

(8). The vertical fluxes can be obtained with the same geometric construction that 

explained to attain equation (6) .  Rider and Kothe [23] showed that using a modified form 

of original conservation form of /  equation can overcome the overshoot and undershoot
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of /  during calculation. They suggested a new form of operator split scheme with 

“divergence correction”. Technically in this scheme the solution o f following equation

f + ( f r ) x = f r x  (9a)

ft  + ( fr)y = fry (9b)

is approximated instead of

f t + ( f r ) x = 0 (10a)

f + ( f r ) y = 0  (10b)

and in order to maintain conservation o f f , on the right hand side of equation (9) and 

(10),/ i s  necessary to be descretized implicitly and explicitly, respectively. The final 

form of descretized equation using modified operator split would be;

/« = ■
1 ~ { u e - U w )

At
Ax

(11a)

f T  = f r j  M 1 +  ( W« ~ U s ) - ^ \  +  ( f s U s -  f n U n ) — 1
At -  . At
Ay Ay

(lib )

To obtain second-order accuracy it is necessary to alternate the sweep directions 

at each time step, taking care that in the first sweep /  is differenced implicitly and in the 

second sweep /  is differenced explicitly. In other words, in the first time step equations 

(11) are applied and in the time step after, the following equations [23];



I l l

f u  =
/ û  +(/,«■

i r  ~ \ At1 — [Un - U s ) -----
Ay

/-Jl =  f i j  X jl + (Me -  «w)-̂ j +  (fwU" - f e Ue) ^Ax

(12a)

(12b)
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