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Abstract
The G-expectation framework, motivated by problems with uncertainty, is a new generalization
of the classical probability framework. Similar to the Choquet expectation, the G-expectation
can be represented as the supremum of a class of linear expectations. In the past two decades,
it has developed into a complete stochastic structure connected with a large family of nonlinear
PDEs. Nonetheless, to apply it to real-world problems with uncertainty, it is fundamentally
necessary to build up the associated statistical methodology.

This thesis explores the computation, simulation, and estimation of the G-normal distri-
bution (a typical distribution with variance uncertainty) by constructing a new substructure
called the Semi-G-normal distribution which provides the transition from classical normal to
G-normal distribution. Interestingly, it also gives an efficient iterative scheme to stochastically
solve the nonlinear Black-Scholes-Barenblatt equation with volatility uncertainty. This thesis is
the theoretical and technical preparation for the future industrial application of G-framework.

Keywords: Uncertainty, G-expectation framework, Semi-G-normal distribution, Sublinear
expectation, Statistical theory, Black-Scholes-Barenblatt equation
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Chapter 1

Introduction

1.1 Background of the G-framework

Figure 1.1: Overview of the Background and the Position of My Current Research
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2 Chapter 1. Introduction

1.1.1 A simple story: What is Uncertainty?
For general readers, let us start from a very simple example (which is taken from Ellsberg
(1961)). Here we have an urn (called Urn I) containing 30 red balls and 60 black balls. One ball
will be randomly drawn from the urn, then the colour of the ball will decide the money you get.
Give you two gambles to consider (Table 1.1).

Table 1.1: The two gambles (Urn I)

Gamble Red (30) Black (60)

A $100 $0
B $0 $100

Gamble A or B, which one do you prefer? I bet it should not take you even a second to
choose Gamble B or “a bet on black” (as long as you do not hate money). I also believe most
readers (who prefer $100 to $0) will give me this obvious reason: Since the ball is more likely
to be black, why not bet on black to get that $100 with higher chance?

In fact, this is one of the common senses in gambling strategies, which appeared even far
before the notion called probability. The requirements of making better strategies in gambling
practice has actuallymotivated the early study of probability. To systematically describe stochas-
tic phenomena in a more rigorous way, Kolmogorov (1956) constructed the axiomatic system
of probability theory (which we call the classical probability framework) based on the additive
Lebesgue measure. As we know, this classical framework gives a complete construction of the
random variables and expectation. We can actually use the language of the classical probability
framework (which should not be hard for any students with elementary probability knowledge)
to explain and describe people’s preference in the scenario of Urn I (which is shown as follows).

In the classical probability space (Ω, F , P), let X : Ω → {0, 100} be a random variable
representing your income after the experiment. Since each ball in the urn has equal chance to
be drawn, in Gamble A, the distribution of X can be described by the following probability law
mapping PA: (

X 100 0
PA 1/3 2/3

)
. (1.1)

Hence, the expected income in Gamble A can be expressed by the classical expectation of X
under the law PA, namely, EA[X] = 100 × PA(X = 100) + 0 × PA(X = 0) = 100/3. Similarly,
for Gamble B, we have the probability law PB:(

X 0 100
PB 1/3 2/3

)
. (1.2)

Then the expected income from Gamble B is EB[X] = 200/3. In most people’s mind, in order
to maximize their “expected income”, they prefer Gamble B to A because of the underlying
quantified relation EB[X] > EA[X]. This is also a simplified version of the expected utility theory
(established by Von Neumann and Morgenstern (1945)) through defining a utility function
U : {0, 100} → R to show people’s preference on the income (in our case, we can define a U
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such thatU (100) > U (0)). In general, people choose one strategy if and only if it can maximize
their expected utility. In the setting of Urn I, people prefer B to A if and only if B has larger
expected utility or explicitly, EB[U (X )] > EA[U (X )] (if they are equal, people should not have
any preference over these two gambles), which is equivalent to PB (X = 100) > PA(X = 100).
Considering the probability regarding the colors the ball we draw might be and the rules in
Table 1.2 (Gamble B is “a bet on black” and Gamble A is “a bet on red”), people prefer B to A
if and only if P(draw a black ball) > P(draw a red ball) (they believe it is more likely to draw
a black ball than a red one), which is consistent with the common gambling intuition.

Let us do one step further and turn to another urn (called Urn II) containing 30 red balls and
60 balls that are black and yellow (in some fixed but unknown proportion). Suppose we have x
black balls and 60− x yellow balls where x is some unknown integer in [0, 60]. Again, one ball
is to be randomly drawn from the urn, the colour of which determines the money you get. You
are provided with two gambles to reflect on, illustrated by Table 1.2.

Table 1.2: The first pair of gambles (Urn II)

Gamble Red (30) Black (x) Yellow (60 − x)

A $100 $0 $0
B $0 $100 $0

Gamble A is “if the ball is red, you get $100, otherwise you get nothing” where we know
there are 30 red balls. Gamble B is “if the ball is black, you get $100, otherwise nothing” where
we only know there are [0, 60] black ones. Do you prefer Gamble A or B? In other words, do
you prefer “a bet on red” or “a bet on black”?

Now consider another pair of gambles C and D (Table 1.3).

Table 1.3: The second pair of gambles (Urn II)

Gamble Red (30) Black (x) Yellow (60 − x)

C $100 $0 $100
D $0 $100 $100

Gamble C is a bet on “not black” and Gamble D is a bet on “not red”. Which of them do
you prefer? (Take your time!)

According to the results from Ellsberg (1961), we have two common responses:
1. Response i (very frequent): Gamble A is preferred to B and Gamble D is preferred to C;

2. Response ii (less frequent): Gamble B is preferred to A and Gamble C is preferred to D.
Usually you may fall into one of these two types. Before thinking about what was in your

mind several minutes ago, let us try some probabilistic ways to explain these common responses.
Since the third column in Table 1.2 has equal two entries (so is Table 1.3), “whether the

ball is yellow or not” is irrelevant in both comparisons (“A versus B” and “C versus D”). Based
on the intuition of the classical expected utility which works perfectly well for Urn I, from
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Response i, people prefer Gamble A to B if and only if they believe drawing a red ball is
more likely than drawing a black one (“Reds are more than Blacks”). However, they also prefer
Gamble D to C which is equivalent to their belief that it is more likely to draw a black ball than
a red one (“Blacks are more than Reds”). This leads to a contradiction.

To better show the contradiction, if we apply the theory of classical expected utility theory,
again, we first need to set a utility functionU : 0, 100→ R such thatU (100) > U (0) intuitively
meaning people prefer $100 to $0. For instance, let

U (x) = I{x=100} B



1 x = 100
0 x = 0

.

We still use X to denote your income after the experiment, based on the unknown x and letting
y B x/90(∈ [0, 2/3]) which is the proportion of black balls. The distribution of X and U (X ),
under different gambles, can be summarized by the following probability laws:

*.........
,

X 0 100
U (X ) 0 1

PA 2/3 1/3
PB 1 − y y

PC y 1 − y

PD 1/3 2/3

+/////////
-

. (1.3)

Associated with the law (1.3) we also have, under probability P, EP[U (X )] = EP[I{X=100}] =
1 × P(I{X=100} = 1) = P(X = 100). Then according to the theory of expected utility, people’s
preferences are characterized by maximizing the expected utility. Response i showing Gamble
A is preferred to B indicates EA[U (X )] > EB[U (X )], which, by the probability law (1.3), can
be expressed as PA(X = 100) > PB (X = 100) which is equivalent to 1/3 > y. We know y can
be treated as the unknown proportion of black balls so “A is preferred to B” can be explained
by

the proportion of black balls < 1/3.

Meanwhile, Response i also says Gamble D is preferred to C then ED[U (X )] > EC[U (X )],
which means PD (X = 100) > PC (X = 100) implying 2/3 > 1 − y or

the proportion of black balls > 1/3.

This leads to an obvious contradiction! (Noting that Urn II is not in some quantum world,
although the number of black balls in Urn II is unknown, it should be some fixed one.) Readers
can check Response ii also gives a logically similar contradiction. Both of them violate the
theory of classical expected utility.

Wait a moment. I know perhaps you were not really doing this kind of computation, since
the proportion of black balls is unknown, how can we “pre-define” the threshold of y to compare
the expected utility of two gambles? If not this, what kind of struggling was happening in your
mind just now to make the strategy?

Actually, people (who give Response i and ii) usually tend to treat the proportion of black
balls not a certain number y, but an uncertain one varying in a range ([0, 2/3]), which is the
uncertainty interval they do care about, especially the two bounds (corresponding to the worst
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and best cases). The unknown proportion of black balls is the uncertainty here since we do not
have information about this. In this spirit, the probability law (1.3) should be changed to a new
version with “uncertainty”:

*......
,

Gamble P(X = 100)
A 1/3
B [0, 2/3]
C [1/3, 1]
D 2/3

+//////
-

. (1.4)

In Gamble A versus B, some people prefers Gamble A because they worry about the lower
bound of the uncertainty interval given by B; (“what if there is no black balls, then I have
no chance to get the money in B, at least Gamble A has 1/3 win rate.”) This kind of worry
makes them they hate the uncertainty in B. This type of people have the so-called uncertainty
aversion, then they will be in favour of D in the comparison between Gamble C and D to avoid
the uncertainty in Gamble C (especially the lower bound).

Explicitly speaking, people with uncertainty aversion actually think about the “worst case”
of all possible scenarios. For instance, in Gamble B, their “expected utility” in the worst case is
actually the minimum of expected income in all possible settings of y, motivating us to reflect
on a set of distributions or probability laws, namely, QB B {PB : PB (X = 0) = 1 − y, PB (X =
100) = y, y ∈ [0, 2/3]}, rather than the single distribution of X in Urn I governed by the law (1.1)
or (1.2). Then the “expected utility” can be written as

ÊB[U (X )] B min
PB∈QB

EPB [U (X )] = min
y∈[0,2/3]

y = 0. (1.5)

For Gamble A, since we only have one probability law for X (with no uncertainty), the set of
distributions QA B {PA : PA(X = 0) = 2/3, PB (X = 100) = 1/3} degenerates to a singleton,
so the expected income is

ÊA[U (X )] B EPA[U (X )] = 1/3.

Therefore, we have
ÊA[U (X )] > ÊB[U (X )], (1.6)

which describes the preference of people with uncertainty aversion in Gamble A versus B.
Similarly, when people considering “the worst case” meet with Gamble C and D, since QC B
{PC : PC (X = 0) = y, PB (X = 100) = 1 − y, y ∈ [0, 2/3]}, the expected income is

ÊC[U (X )] B min
PC∈QC

EPC [U (X )] = min
y∈[0,2/3]

1 − y = 1/3,

while the expected gain of Gamble D is

ÊD[U (X )] B EPD [U (X )] = 2/3,

so we have
ÊD[U (X )] > ÊC[U (X )]. (1.7)

The inequalities (1.6) and (1.7) are consistent with the preference of people with uncertainty
aversion and able to describe their strong worry about the worst case under uncertainty.
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Meanwhile, there are another type of people (perhaps less frequent) preferring Gamble B to
seek the uncertainty in it especially its upper bound; (“what if there is 60 black balls, then I have
2/3 chance, doubling the rate I get from A.”) This inclination will also drive them to choose
C when comparing Gamble C and D. These type of people have the feature called uncertainty
seeking, whose expected utility can be expressed by the maximum of all possible cases since
they are looking for the “best income”, so we only need to change the minimum to maximum
in Equation (1.5) to mathematically describe their preference.

Actually, the expectation Ê in Equation (1.5) can be treated as the Choquet expectation (so
is the one replacing min with max), which is a nonlinear expectation able to be represented as
the supremum (or equivalently, infimum, by adding a minus sign before the random variable) of
a class of linear expectations under additive probability measures. Choquet (1954) generalizes
the Lebesgue integral to non-additive measures so as to get the Choquet expectation.

1.1.2 Literature review: How do we deal with Uncertainty?
I will briefly review the historic development of the methodology to deal with uncertainty (also
shown in Figure 1.1), in which the order and meaning of events partially refers to the survey by
Peng (2017).

Knight (1921) gave the notion of Knightian Uncertainty (also known as Ambiguity in
finance) to distinguish it from risk in his work Risk, Uncertainty, and Profit by saying:

“Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk,
fromwhich it has never been properly separated.... The essential fact is that ’risk’ means in some
cases a quantity susceptible of measurement, while at other times it is something distinctly not
of this character.”

After the journey we have in Section 1.1.1, you may notice that the unknown proportion
of black balls in Urn II exactly brings us the uncertainty in the distribution of the income X ,
forcing us to consider a set of distributions to characterize or cover this uncertainty. In fact, what
we played with Urn II is the famous Ellsberg Paradox which is a mind experiment proposed by
Ellsberg (1961), showing the violation of von Neumann-Morgenstern expected utility theory
in the scenario with uncertainty and strongly motivating the construction of the new theory of
expected utility under the Choquet expectation by Schmeidler (1989) later on.

However, the methods based on Choquet expectation cannot deal with the uncertainty in
dynamic situations (especially with continuously changing time) because it is difficult to define
the conditional Choquet expectation (conditional on the filtration until time t), but the real
world we are facing has fundamental dynamic features. Fortunately, Chen and Epstein (2002)
efficiently made progress in this problem in the setting of a sublinear expectation defined
through the BSDE (Backward Stochastic Differential Equation) called g-expectation (initially
developed by Peng (1997)), which nicely borrows the dynamic property of BSDEs to define its
conditional expectation.

In principle, g-expectation can deal with any set of probability measures {Pθ }θ∈Θ dominated
by a reference probability P. Nonetheless, g-expectationwill fail when stepping into the singular
scenario (that is, there exists an event A such that P(A) = 0 but Pθ (A) > 0), which is common
in practice like the problem with volatility uncertainty.

It looks like in classical probability framework, we cannot handle the uncertainty both
with singularity and in dynamic situations (no matter using the Choquet’s design or the g-
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expectation governed by BSDEs). It took researchers many years to realize that it is necessary
to jump out of the Kolmogorov’s system (Ω, F , P), start from scratch and directly construct a
new generalized probability framework to describe the uncertainty, which was established by
Peng (2004, 2007a, 2008) and further developed by the academic group led by him, called the
G-expectation framework (Ω,H , Ê).

In the past two decades (since its establishment in 2000s), the G-expectation framework
has developed into a complete probabilistic structure with its own stochastic calculus and
connection with a large family of nonlinear PDEs. It starts from the G-expectation (or sublinear
expectation) Ê to redefine what are independence and identical distribution, from which it
induces the nonlinear version of “constants” (Maximal distribution with mean-uncertainty) and
“normal distribution” (G-normal distribution with variance uncertainty). The independence in
this framework has the sequential order which usually can not be reversed. Intuitively, this kind
of design partially comes from the spirit of backward analysis similar to the analysis in BSDEs.
From the starting axioms of (Ω,H , Ê), we are able to completely and systematically construct all
the basic and important results in probability, stochastic analysis and statistical theory, which
actually give a brand-new understanding of those stochastic concepts under the uncertainty
setting and also generalize the classical results in a non-trivial way with much weaker and more
general conditions. Specially speaking, the G-framework has its own probabilistic inequalities,
Central Limit Theorem (CLT) (Peng (2007b), Hu and Zhou (2015)) with convergence rate by
Song (2017), Law of Large Numbers (LLN) (Chen et al. (2013)) and also G-Itô-stochastic
calculus based on the construction of G-Brownian motion (Denis et al. (2011)), in which
there are diffusion processes driven by G-Brownian motion including the BSDEs, the so
called G-BSDEs. More complete collection of results can be found in Peng (2007a, 2008).
Furthermore, similar to the counterparts in classical framework, Hu et al. (2014) shows that the
G-BSDEs are connected by the Feynman-Kac formula inG-frameworkwith a large class of fully
nonlinear PDEs (able to be applied to control problems with uncertainty, especially in financial
background). If we can numerically solve the G-BSDEs, it is very promising that we will be
able to stochastically solve the high-dimensional fully nonlinear PDEs (whose nonlinearity and
curse of dimensionality make most classical numerical PDE methods fail).

However, problems are arising from both the academy and industry:
1. If the G-framework intends to deal with the problems with uncertainty, given a real

problem with dataset, how can we do the estimation of those parameters to fit into the
setting of G-framework?

2. If the G-Brownian motion and the G-BSDE are able to cover or capture the volatility
uncertainty (especially solving those nonlinear PDEs), is it possible to simulate the G-
Brownian motion (or the G-normal distribution) as well as the G-BSDE, and how do we
compute the corresponding G-expectation of those G-itô integral?

Before answer the questions above, we need to consider a crucial one:

How do we statistically and numerically deal with the distributions in the G-framework?

Typically, how canwe better understand and handle theG-normal distribution?Actually, another
key problem hidden here is the sequential independence attached with the distributions.Wemay
also notice that, in general, for this new framework, the associated computation and statistics is
the fundamentally unavoidable and necessary bridge connecting the G-framework with those
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industrial problems with uncertainty and the implementation of the new stochastic nonlinear
PDE methods based on the diffusion processes in the G-framework. This thesis is exactly
trying to explore the computational and statistical methodology in the G-framework, especially
starting from the G-normal distribution (a typical one with variance uncertainty).

The computation of the G-expectation based on a given parameter setting has been de-
veloped for several years like the numerical schemes by Dolinsky (2012) to approximate the
G-expectation. In fact, due to the nonlinearity of the expectation and the uncertainty intrinsically
included in the distributions, the statistical theory in the G-framework is not easy or trivial to
develop. So far there are already some attempts like the Max-mean estimation by Jin and Peng
(2016) aimed at estimating the parameters or the sublinear expectations from dataset but it still
requires the context of real data to offer more information about how to do the grouping and
decide the test function. (In this thesis, sometimes we stress “real” data to distinguish from the
artificial data generated by ourselves.)

To summarize, Table 1.4 shows the existing objects and results in the G-expectation (or
sublinear expectation) framework compared with the counterparts in classical probability
framework (with linear expectation), where the concepts in G-frame will be further explained
in Section 2.1.

Table 1.4: Summary of G-frame compared with Classical frame

Linear Sublinear
Space (Ω, F , P) with linear E (Ω,H , Ê) with sublinear Ê
X d
= Y ∀ϕ, E[ϕ(X )] = E[ϕ(Y )] ∀ϕ, Ê[ϕ(X )] = Ê[ϕ(Y )]

Indep. Symmetric Asymmetric
LLN 1

n
∑

Xi
d
→ µ 1

n
∑

Xi
d
→ M[µ, µ]

CLT 1√
n

∑
Xi

d
→ N (0, σ2) 1√

n

∑
Xi

d
→ N (0, [σ2, σ2])

BM Bt
d
= N (0, σ2t) Bt

d
= N (0, [σ2t, σ2t])

d〈B〉t = dt d〈B〉t , dt
Itô Itô formula G-Itô formula
Est. E[X] ≈ 1

N
∑N

i=1 Xi Ê[X] ≈ max1≤i≤m
∑m

j=1 Xi j

−Ê[−X] ≈ min1≤i≤m
∑m

j=1 Xi j

Let us start our exploration and adventure beginning with the G-normal distribution
N (0, [σ2, σ2]), one of the basic objects in the G-framework, based on some existing theoretical
work by the pioneers, to design and construct a new basic substructure, the semi-G-normal
distribution, in order to provide statistical tools for the whole framework and also the larger
community to better understand and study the variance uncertainty. Hope you will see some
interesting, inspiring and delicate designs (such as the semi-G-normal distribution with its nice
properties and extension) and enjoy the scenery during this journey.
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1.2 Overview of my research

Figure 1.2: My Current Research and Future Development



10 Chapter 1. Introduction

The main content of this thesis, aimed at exploring the computation, simulation and esti-
mation of G-normal distribution, consists of four chapters:

• Chapter 2: the distributions and independence in the G-framework;
• Chapter 3: the estimation of variance uncertainty;
• Chapter 4: the pseudo simulation of variance uncertainty;
• Chapter 5: concluding remarks and future development.
Although theG-framework has strong potential to theoretically deal with ambiguity, because

of the sub-additivity of G-expectation Ê[·], it is hard to develop the statistical or computational
version of G-framework, which is the bridge to real data analyses and industrial problems.
This is especially true for the G-normal distribution X ∼ N (0, [σ2, σ2]), as its G-expectation
Ê[ϕ(X )] does not have an explicit expression if ϕ is neither convex nor concave. In order to
compute the Ê[X2n+1], previously we needed to use special PDE and ODE techniques to solve
the G-heat equation (Hu (2012)).

Chapter 2 mainly investigates the distributions and independence in the G-framework and
establishes a substructure (Section 2.3) based on a new concept called the semi-G-normal
distribution like a transition from classical normal toG-normal distribution to fill in the thinking
gap between these two objects to get better intuition and do the computation and simulation of
G-normal distribution. It actually gives a probabilistic method (based on the G-framework) to
compute theG-expectation ofG-normal distribution. This is a great extension allowing us to deal
with the G-expectation of a larger class of functions of G-normal distribution. Interestingly, this
substructure gives an efficient iterative scheme to stochastically solve, by Monte-Carlo method,
the G-heat equation (which is fully nonlinear PDE, also known as the Black-Scholes-Barenblatt
equation with volatility uncertainty). Section 2.3 has also been written as a preprint paper (Li
and Kulperger (2018), which is mainly done bymyself under the supervision of Prof. Kulperger)
we intend to publish in the near future.We also explore the independence (Section 2.4) regarding
G-normal and semi-G-normal distribution, showing that one annoying property of G-normal
distribution is that it not easy to construct multivariate G-normal distribution from univariate
objects. Can we find a path to construct the multivariate G-normal distribution from univariate
objects? We will give a positive answer by showing how to start from the univariate semi-G-
normal objects, with its special design of independence, to approach the multivariate G-normal
distribution.

Then we come to the side of dataset including estimation (Chapter 3) and simulation
(Chapter 4) which require and apply both the theory and intuition we have learned in Chapter 2.
One important question regarding the real data analysis with variance uncertainty is, if treated
as G-normal distribution, how to estimate the variance interval. Although the established Max-
mean method by Jin and Peng (2016) gives a theory of this kind of estimation, it still relies on
the information from the practical background to decide the group size and test function.

Chapter 3 provides two heuristic data-driven rules (Section 3.2) for Max-mean estimation
to appropriately select the group size so as to robustly capture the true variance interval, which
turns out to numerically workwell.Wewill further work onmore practice of this improvedMax-
mean estimation and more theory to support it. Meanwhile, we also try to put the estimation
method into practice so as to get more designing ideas from the application background.

Chapter 4 designs a simulation procedure centering around the semi-G-normal distribution,
and starting from the pseudo simulation of maximal distribution to the approximate simulation
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of the G-normal distribution. The simulation is essentially important for the numerical testing
the estimation methods in Chapter 3.

Finally, Chapter 5 summarizes the whole thesis and discuss about the future development
especially about the future industrial practice of the G-framework.

Throughout the thesis, we have many statements or sentences labelled as a “Remark” and
“Comment”. For readers’ information, a “Remark” refers to the statements including some
technical details explained by mathematical expressions (especially displayed ones) while a
“Comment” refers to those sentences only consisting of words to give a general description or
explanation.



Chapter 2

The Distributions and Independence in
the G-framework

2.1 Preliminaries
TheG-expectation or sublinear expectation framework (also called theG-framework),motivated
by the problems with ambiguity or uncertainty, is a generalization of the linear probability
framework. Similar to the Choquet expectation, the sublinear expectation can be represented as
the supreme of a class of linear expectations. Intuitively, the linear expectation mainly considers
the “average”, while the sublinear expectation focuses on the “bound” to create a interval to
cover the uncertainty which is hard to be described by a certain distribution. Please turn to Peng
(2004, 2007a, 2008, 2010) for more details.

Definition 2.1.1. A sublinear expectaion space is defined as a triple (Ω,H , Ê). Ω is a given
set (also known as a sample space). H is a linear space of real valued functions defined on Ω
satisfying c ∈ H for each constant c and |X | ∈ H if X ∈ H , which can be regarded as the
space of random variables. Ê is a sublinear expectation which is a functional Ê : H → Rd

satisfying:
1. Monotonicity: Ê[X] ≥ Ê[Y ] if X ≥ Y ;

2. Constant preserving: Ê[c] = c for c ∈ Rd;

3. Sub-additivity: For each X,Y ∈ H , Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

4. Positive homogeneity: Ê[λX] = λÊ[X] for λ ≥ 0.
If only monotonicity and constant preserving are satisfied, Ê is called a nonlinear expectation
and (Ω,H , Ê) is called a nonlinear expectation space.

In this thesis, since we will not deal with nonlinear expectation (without sub-additivity and
positive homogeneity), we will not strictly distinguish between “sublinear” and “nonlinear.”
Therefore, in some casual context of the description of theG-framework,wemay use “nonlinear”
and“sublinear” interchangably, as they are both distinguished from the word “linear”, which is
the difference we mostly care about.

In fact, similar to Choquet expectation (for readers familiar with its setting), the sublinear
expectation defined in Definition 2.1.1 can also be expressed as the supreme of a class of linear

12
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expectations corresponding to a family of probability measures (Theorem 2.1.2). Choquet
expectation is a special case of the sublinear expectation.

Theorem 2.1.2 (Representation of sublinear expectation). Let Ê denote a sublinear expectation
on H . Then there exists a family of probability measures Q which correspondingly induces a
collection of linear expectation {EP, P ∈ Q} onH such that for each X ∈ H ,

Ê[X] = sup
P∈Q

EP[X].

Remark 2.1.2.1. Meanwhile, for each X ∈ H , there exists θX ∈ Q satisfying Ê[X] = EθX [X].
In the following context, we often use capital letters like X B (X1, X2, . . . , Xd), d ∈ N+ to

denote the random variables (or vectors) inH . Meanwhile, if X ∈ H , we also have ϕ(X ) ∈ H
for every ϕ in Cl .Lip(Rd) which is the linear space of functions satisfying the locally Lipchistz
property:

|ϕ(x) − ϕ(y) | ≤ Cϕ |1 + |x |k + |y |k | |x − y |,

for x, y ∈ Rd , some k ∈ N and Cϕ > 0 depending on ϕ. If not specified, we will always stay in
the sublinear expectation space (Ω,H , Ê) and the function space Cl .Lip(Rd) (or Cl .Lip in short,
which can be replaced by other spaces). Our computation in this space is usually different from
the linear expectation E mainly because of the sub-additivity and positive homogeneity of Ê.
Here are some useful tools to understand and deal with Ê.

In general, for any X ∈ H , we must have −Ê[−X] ≤ Ê[X] because 0 = Ê[X + (−X )] ≤
Ê[X] + Ê[−X]. Whether it is a strict inequality tells us whether X has “uncertainty” or not,
which is better illustrated by Definition 2.1.3.

Definition 2.1.3 (Moments-uncertainty). For each X ∈ H , we say X has the k-th moment-
uncertainty if −Ê[−X k] < Ê[X k] < ∞ for k = 1, 2, . . . , n. X has the k-th moment-certainty if
−Ê[−X k] = Ê[X k] < ∞. Specifically, we have

1. X has mean-uncertainty (or mean-certainty, respectively) if it has the 1-st moment-
uncertainty (or 1-st moment-certainty, respectively);

2. When X satisfies 0 = −Ê[−X] = Ê[X], X has the variance-uncertainty (or variance-
certainty, respectively) if it has the 2-nd moment-uncertainty (or 2-nd moment-certainty,
respectively).

Proposition 2.1.4. If X has the mean-uncertainty: µ < µ with µ B −Ê[−X] and µ B Ê[X],
for λ ∈ R, we will have

Ê[λX] =



λÊ[X] λ ≥ 0
−λÊ[−X] λ < 0

= λ+µ − λ−µ,

where λ+ B max{λ, 0} and λ− B max{−λ, 0}.

Proposition 2.1.5. If X has the mean-certainty: µ = µ C µ namely −Ê[−X] = Ê[X] = µ, for
λ ∈ R, we will have

Ê[λX] = λÊ[X](= λµ),

and furthermore,
Ê[Y + λX] = Ê[Y ] + λÊ[X].
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Proof. The first one is directly from the mean-certain-1. For the second one, firstly we have

Ê[Y + λX] ≤ Ê[Y ] + Ê[λX] = Ê[Y ] + λÊ[X].

Secondly since Ê[Y ] = Ê[Y − X + X] ≤ Ê[Y − X]+ Ê[X] implies Ê[Y − X] ≥ Ê[Y ]− Ê[X], we
have

Ê[Y + λX] = Ê[Y − λ(−X )] ≥ Ê[Y ] − Ê[λ(−X )] = Ê[Y ] + λÊ[X].

Combining the two inequalities, we get Ê[Y + λX] = Ê[Y ] + λÊ[X]. �

In general, without any requirements like the mean-certainty of the random variables, we
have the following probability inequalities (Proposition 2.1.6 and Proposition 2.1.7).

Proposition 2.1.6 (Hölder inequality). For p, q > 0, 1
p +

1
q = 1, we have

Ê[|XY |] ≤ (Ê[|X |p])1/p(Ê[|Y |q])1/q.

Proposition 2.1.7 (Minkowski inequality). For p ≥ 1, we have

(Ê[|X + Y |p])1/p ≤ (Ê[|X |p])1/p + (Ê[|Y |p])1/p.

We will use Ê to redefine distributions and independence.

Definition 2.1.8 (Distributions). We give the notions of distribution, identical distribution and
convergence in distribution as follow.

1. FX is called the distribution of X , which is a functional: FX [ϕ] B Ê[ϕ(X )] : ϕ ∈
Cl .Lip(Rd) → R.

2. X and Y are identically distributed, denoted by X d
= Y , if for any ϕ ∈ Cl .Lip,

Ê[ϕ(X )] = Ê[ϕ(Y )],

namely, FX [ϕ] = FY [ϕ].

3. A sequence {Xn}
∞
n converges in distribution to X , denoted as Xn

d
→ X , if for any

ϕ ∈ Cl .Lip,
lim
n→∞
Ê[ϕ(Xn)] = Ê[ϕ(X )].

Definition 2.1.9 (Independence). Y is independent from X , denoted by X d Y , if for any
ϕ ∈ Cl .Lip,

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x,Y )]x=X ].

Remark 2.1.9.1. For readers’ convenience, the notation Ê[Ê[ϕ(x,Y )]x=X ] means two steps of
computation:

1. for any fixed x, compute Ê[ϕ(x,Y )] which becomes a function of x denoted as H (x);

2. replace x with X to compute Ê[H (X )] where H (X ) is a transformation of X .
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Comment 2.1.9.1. Intuitively, X d Y means that any realization of X will have no effect
on Y ’s uncertainty set of distributions. X d Y does not mean Y d X . In other words, this
independence has its order. In the scenario of linear expectation, the notion of independence
in Definition 2.1.9 becomes the classical one. The sequential independence is one of the
most important notions in the G-framework, about which, more exploration can be found in
Section 2.4.

Definition 2.1.10 (i.i.d.). {Xi}
∞
i=1 is i.i.d. if Xi+1

d
= Xi and (X1, X2, . . . , Xi) d Xi+1 for each

i ∈ N+.

Let X̄ be an independent copy of X , which means X̄ d
= X and X d X̄ .

Definition 2.1.11 (Maximal distribution). X followsMaximal Distribution if, for any indepen-
dent copy X̄ , we have

aX + bX̄ d
= (a + b)X ∀a, b ≥ 0,

which is equivalent to
X + X̄ d

= 2X .

This is the sublinear version of a constant. A more specific definition with representation is
given by Definition 2.1.12.

Definition 2.1.12 (Maximal distribution with representation). X follows the maximal distri-
bution M (Γ) if there exists a bounded, closed and convex set Γ ⊂ Rd such that for any
ϕ ∈ Cl .Lip(Rd),

FX [ϕ] = Ê[ϕ(X )] = max
v∈Γ

Eδv [ϕ(X )] = max
v∈Γ

ϕ(v),

where δv is the Dirac measure with respect to v ∈ Rd . For d = 1, we have X ∼ M[µ, µ] with
mean-uncertainty: µ B −Ê[−X] and µ B Ê[X].

Definition 2.1.13 (G-normal distribution). X follows G-normal Distribution if, for any inde-
pendent copy X̄ , we have

aX + bX̄ d
=

√
a2 + b2X, ∀a, b ≥ 0,

which is equivalent to
X + X̄ d

=
√
2X .

For d = 1, we have X ∼ N (0, [σ2, σ2]) (0 ≤ σ ≤ σ) with variance-uncertainty: σ2 B

−Ê[−X2] and σ2 B Ê[X2].

The Proposition 2.1.14 is a good practice for general readers to work on the new operator Ê.

Proposition 2.1.14 (The scaling property of G-normal distribution). Let X ∼ N (0, [σ2, σ2]),
then for any given constant c ∈ R, we have cX ∼ N (0, [c2σ2, c2σ2]) which, by using the
simplified notation c[σ, σ] B [ca, cb], can be written as

cX ∼ N (0, c2[σ2, σ2]).
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Proof. Firstly, we need to show Y B cX is also G-normal distributed. For any independence
copy Ȳ , it can be equivalently written as cX̄ (readers can prove the two deductive directions),
where X̄ is also an independent copy of X . Then we have

Y + Ȳ = cX + cX̄ = c(X + X̄ ) d
= c
√
2X =

√
2Y .

Secondly, compute the two bounds of variance interval of Y :

Ê[Y 2] = Ê[(cX )2] = Ê[c2X2] = c2Ê[X2] = c2σ2,

and
−Ê[−Y 2] = −Ê[−(cX )2] = −Ê[c2(−X2)] = −c2Ê[−X2] = c2σ2.

Therefore, Y = cX ∼ N (0, [c2σ2, c2σ2]). �

Let Sd denote the set of all real-valued d × d symmetric matrices and S+d (⊂ Sd) represent
the set of non-negative definite symmetric matrices.

Theorem 2.1.15 (G-normal distribution characterized by the G-heat Equation). X follows the
d-dimensional G-normal distribution, iff u(t, x) B Ê[ϕ(x +

√
1 − tX )] is the (unique viscosity)

solution to the G-heat Equation defined on [0,∞) × Rd:

ut + G(D2
xu) = 0, u|t=1 = ϕ,

where G(A) B 1
2 Ê[〈AX, X〉] : Sd → R, which is a sublinear function characterizing the

distribution of X . For d = 1, we have G(a) = 1
2 (σ2a+ − σ2a−) and when σ2 > 0, this is also

called the Black-Scholes-Barenblatt equation with volatility uncertainty.

Remark 2.1.15.1. We can use the function G(A) B 1
2 Ê[〈AX, X〉] to characterize the definition

of G-normal distribution. In fact, G(A) can be further expressed as

G(A) =
1
2
sup
V∈V

tr[AV],

whereV = {BBT : B ∈ Sd } is a collection of non-negative definite symmetric matrices which
can be treated as the uncertainty set of the covariance matrices.
Comment 2.1.15.1. In Theorem 2.1.15, we use the notion of viscosity solution as a replacement
of the classical onewhen lacking smoothness because of the nonlinearity of theG-heat equation.
The definitions and more details of viscosity solution can be found in Crandall et al. (1992).
From Peng (2010), when G is non-degenerate, the viscosity solution becomes a classical C1,2

solution. Since this thesis has not touched or stressed a lot on the differences between the
viscosity and classical solutions yet, readers who are not familiar with viscosity solutions can
simply treat this notion as the classical ones in the following context.
Remark 2.1.15.2 (A direct origin and application of the G-heat equation, Avellaneda and Paras
(1996)). In fact, the form of the G-heat equation is not some brand-new design but was actually
well-established in 1990s to consider the volatility uncertainty in many financial scenarios such
as trading, risk management, option pricing, portfolio design and so on. The famous Uncertain
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Volatility Model (UVM) is well-worth mentioning here. Consider a model valuing a contingent
claim based on an underlying asset with volatility uncertainty. Suppose the spot price of the
underlying asset follows a stochastic differential equation:

P :
dSt

St
= µt dt + σt dZt,

with µt = rt − dt (where rt is the spot domestic riskless rate and dt is the dividend rate). The
volatility process is assumed to fluctuate within a band

σ ≤ σt ≤ σ, 0 ≤ t ≤ T .

Consider an agent that must deliver a stream of cash-flows F1(Sti ), i = 1, 2, . . . , N where Fj (·)
are payoffs due at settlement dates t1 < t2 < . . . < tN . The worst case scenario present value is

V (St, t) = sup
P∈Q

EP




N∑
j=1

exp(−r (t j − t))Fj (St j )


.

Actually, V (S, t) satisfies the nonlinear programming equation (similar to the G-heat equation):

Vt +
1
2
σ2(VSS) · VSS + µSVS − rV = 0,

where

σ2(VSS) =



σ2 if VSS ≥ 0
σ2 if VSS < 0

.

Another equivalent form is easier for us to treat it as a PDE in control theory (HJB equation):

Vt + sup
σ2∈[σ2,σ2]

(
1
2
σ2VSS) + µSVS − rV = 0.

Definition 2.1.16 (G-normal distribution with characterization). Let X be any d-dimensional
G-normal distributed random vector. To be specific, we say X ∼ N (0,V ) with the set of
covariance matricesV if its distribution is characterized by the G-heat equation with

G(A) B
1
2
Ê[〈AX, X〉] =

1
2
sup
V∈V

tr[AV].

In other words,V is the set corresponding to the G function characterizing the distribution of
X . In order to show the covariance-uncertainty of N (0,V ), we can expand the details ofV as

V B


V =

(
ρi jσiσ j

)
d×d

: σ2
i ∈ [σ

2
i , σ

2
i ],

ρi j = ρ ji =



1 i = j
∈ [ρ

i j
, ρi j] i , j

, such that V ∈ S+d


.

When d = 1, we say X ∼ N (0, [σ2, σ2]) with the variance interval [σ2, σ2] if its distribution is
characterized by the G-heat equation with

G(a) B
1
2
Ê[aX2] =

1
2

(σ2a+ − σ2a−).
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Based on the G-version of “constant” and “normal” distribution, we have the respective
Law of Large Numbers (LLN) and Central Limit Theorem (CLT) in the G-framework.

Theorem 2.1.17 (Law of Large Numbers, Peng (2010)). Consider a sequence of i.i.d. {Zi}
∞
i=1

with mean-uncertainty characterized by a (unique) bounded, closed and convex set Γ ⊂ Rd in
the sense that

max
v∈Γ
〈p, v〉 = Ê[〈p, Z1〉], p ∈ Rd .

Then for any ϕ ∈ Cl .Lip,

lim
n→∞
Ê[ϕ(

1
n

n∑
i=1

Zi)] = Ê[ϕ(Z )],

where Z is a maximal distributed random variable characterized by the set Γ:

Ê[ϕ(Z )] = max
v∈Γ

ϕ(v).

For d = 1, Γ becomes a closed interval [µ, µ] with µ B −Ê[−Z1] and µ B Ê[Z1]. Then we
have 1

n
∑n

i=1 Zi) converges in distribution to Z ∼ M[µ, µ].

Theorem 2.1.18 (Central Limit Theorem, Peng (2010)). Consider a sequence of i.i.d. {Xi}
∞
i=1

with mean-certainty Ê[X1] = −Ê[−X1] = 0. Let X be a G-normal distributed random variable
characterized by the function G(A) B 1

2 Ê[〈AX1, X1〉]. Then for any ϕ ∈ Cl .Lip,

lim
n→∞
Ê[ϕ(

1
√

n

n∑
i=1

Xi)] = Ê[ϕ(X )].

For d = 1, let σ2 B −Ê[−X2
1 ] and σ2 B Ê[X2

1 ]. Then we have 1√
n

∑n
i=1 Xi converges in

distribution to X ∼ N (0, [σ2, σ2]) .

We will call Theorem 2.1.18 the nonlinear CLT. We also have the convergence rate of
nonlinear CLT.

Theorem 2.1.19 (The convergence rate of nonlinear CLT by Song (2017)). Under the setting
of Theorem 2.1.18 when d = 1, for bounded and Lipschitz continuous ϕ (i.e. for any x, y ∈ R,
|ϕ(x) | ≤ M and |ϕ(x) − ϕ(y) | ≤ Cϕ |x − y |), there exist α ∈ (0, 1) depending on σ and σ, and
Cα,G > 0 depending on α, σ and σ such that

sup
Cϕ≤1

������
Ê[ϕ(

1
√

n

n∑
i=1

Xi)] − Ê[ϕ(X )]
������
≤ Cα,G

Ê[|X1 |
2+α]

n
α
2

= O(
1

n
α
2

).

2.2 Motivation: How canwe better understand theG-normal
distribution?

For the academic community concerning the G-framework, there is a long existing thinking
gap between classical normal and G-normal distribution.
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For instance, according to the comparison theorem of parabolic PDEs given by Crandall
et al. (1992), it is not hard to show

Ê[ϕ(N (0, [σ2, σ2]))] ≥ sup
σ∈[σ,σ]

E[ϕ
(
N (0, σ2))],

which indicates that the uncertainty set ofG-normal distribution ismuch larger that a class of lin-
ear normal distributions with σ ∈ [σ, σ] (so what else is in the G-normal set of distributions?).
Especially, Hu (2012) shows the strict inequality that when ϕ(x) = x3,

Ê[
(
N (0, [σ2, σ2])

)3] > 0.

According to Proposition 2.1.14, let X d
= N (0, [σ2, σ2]) then we have −X d

= N (0, [σ2, σ2]),
namely,

X d
= −X, (2.1)

which indicates that theG-normal distribution should have some “symmetry”. However, exactly
due to this identity in distribution shown in Equation (2.1), from Definition 2.1.8, we have

Ê[−X3] = Ê[(−X )3)] = Ê[X3](> 0),

which directly implies, (letting E and N (0, σ2) respectively denote the classical expectation
and normal distribution,)

Ê[
(
N (0, [σ2, σ2])

)3] > 0 = E[
(
N (0, σ2)

)3] > −Ê[−(N (0, [σ2, σ2])
)3].

telling us that the “skewness” of G-normal distribution becomes uncertain so its “symmetry”
is uncertain, which somehow looks like a “contradiction” with Equation (2.1) and is quite
counter-intuitive for a “normal” distribution.

Is it possible to understand the G-normal distribution from our familiar classical normal
distribution? In other words, is it possible to use the linear expectation of linear normal dis-
tribution (or the heat equation) to approach the sublinear expectation of G-normal distribution
(or the G-heat equation)? This section gives positive answers to both of these questions by
providing a ladder from the ground of N (0, σ2) to approach the peak of N (0, [σ2, σ2]): the
Semi-G-normal distribution N̂ (0, [σ2, σ2]), which is a classical normal distribution scaled by
a sublinear “constant” (the maximal distribution).

2.3 The semi-G-normal distribution and G-normal distribu-
tion

2.3.1 The 1-dimensional situation
Definition 2.3.1 (The Semi-G-normalDistribution). W follows the Semi-G-normal distribution,
denoted as, W ∼ N̂ (0, [σ2, σ2]), if there exist Y ∼ N (0, [1, 1]) and Z ∼ M[σ, σ], σ ≥ σ ≥ 0
with independent relation Z d Y , such that

W = Z · Y,

where “·” is the numbermultiplication (which can be omitted) and the direction of independence
here cannot be reversed.



20 Chapter 2. The Distributions and Independence in the G-framework

Remark 2.3.1.1. Y ∼ N (0, [1, 1]) can be regarded as the classical standard normal distribution
N (0, 1) since the corresponding G-heat equation will reduce to the classical heat equation when
σ and σ coincide.
Remark 2.3.1.2 (the mean and variance of W ). It is not hard to show that it has a certain zero
mean:

Ê[W ] = Ê[ZY ] = Ê[Ê[zY ]z=Z ] = Ê[E[zY ]z=Z ] = 0,
and −Ê[−W ] = 0. For the variance, we have

Ê[W2] = Ê[Z2Y 2] = Ê[Ê[z2Y 2]z=Z ] = Ê[E[z2Y 2]z=Z ] = Ê[(z2 · 1)z=Z ] = max
z∈[σ,σ]

z2 = σ2,

and similarly,

−Ê[−W2] = Ê[−Z2Y 2] = −Ê[E[−z2Y 2]z=Z ] = − max
z∈[σ,σ]

(−z2) = min
z∈[σ,σ]

z2 = σ2.

Theorem 2.3.2 (The Integral Representation of the Semi-G-normal Distribution). Let W ∼

N̂ (0, [σ2, σ2]) then for any ϕ ∈ Cl .Lip(R), we have

Ê[ϕ(W )] = max
z∈[σ,σ]

E[ϕ(N (0, z2))] = max
z∈[σ,σ]

∫ ∞

−∞

1
√
2π

e−y
2/2ϕ(zy) dy.

Proof. This is quite straightforward because:

Ê[ϕ(W )] = Ê[ϕ(Y Z )] = Ê[Ê[ϕ(Y z)]z=Z ] C Ê[G(Z )],

where G(z) B Ê[ϕ(Y z)] = E[ϕ(N (0, z2))] can be proved to be in Cl .Lip based on ϕ ∈ Cl .Lip .
Specifically, we have

|G(x) − G(y) | = |E[ϕ(x · Z ) − ϕ(y · Z )]|
≤ E[Cϕ(1 + |xZ |k + |yZ |k ) |Z | · |x − y |]
= Cϕ · E[|Z | + |Z |k+1 |x |k + |Z |k+1 |y |k]|x − y |

≤ CG (1 + |x |k + |y |k ) |x − y |,

where CG = Cϕmax{E[|Z |], E[|Z |k+1]}. Therefore,

Ê[ϕ(W )] = Ê[G(Z )] = max
z∈[σ,σ]

G(z)

= max
z∈[σ,σ]

E[ϕ(N (0, z2))]

= max
z∈[σ,σ]

∫ ∞

−∞

1
√
2π

e−y
2/2ϕ(zy) dy. �

Remark 2.3.2.1 (Why is it called a “semi” one?). The comparison theorem of parabolic PDEs
(in Crandall et al. (1992)) tells us that

Ê[ϕ(N (0, [σ2, σ2]))] ≥ max
v∈[σ,σ]

E[ϕ(N (0, v2))] = Ê[ϕ(N̂ (0, [σ2, σ2]))],

whose inequality is mostly strict (like ϕ(x) = x3) and becomes equal when ϕ is convex or
concave. From the representation theorem of Ê: Ê[ϕ(X )] = supP∈Q EP[ϕ(X )], we have the in-
tuition that QSemi-G-normal ⊂ QG-normal where QSemi-G-normal consists of measures corresponding
to classical normal distributions with σ ∈ [σ, σ].
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Remark 2.3.2.2. Intuitively, the G-normal distribution is more “uncertain” than the semi-G-
normal distribution. Explicitly speaking, we already have the following representation for the
G-normal distributed X ∼ N (0, [σ2, σ2]) (Denis et al. (2011) and Li (2015)) which is consistent
with the spirit of the uncertain volatility model mentioned in Remark 2.1.15.2:

Ê[ϕ(X )] = sup
θ∈AΘ

EP[ϕ(
∫ 1

0
θsdBs)],

where Θ = [σ, σ], AΘ B {θ : θt ∈ Θ, for t ∈ [0, 1]}, the set of all processes valuing in [σ, σ] in
the time range [0, 1] and B is the classical Brownian motion in (Ω, F , P). Meanwhile, from the
integral representation (Theorem 2.3.2), we can show that for W ∈ N̂ (0, [σ2, σ2]),

Ê[ϕ(W )] = sup
θ∈AΘ

EP[ϕ(
∫ 1

0
θ̄dBs)],

where θ̄ =
∫ 1
0 θsds(∈ [σ, σ]), the average of the process θ over the time interval [0, 1].

To summarize, the G-normal distribution has the uncertainty set consisting of all processes
valuing in Θ, while the semi-G-normal distribution only has the set made up of all constant
processes valuing in Θ.

Corollary 2.3.2.1 (the connectionwith theG-normal distribution). When ϕ is convex or concave
and ϕ ∈ C2(R), for X ∼ N (0, [σ2, σ2]) and W ∼ N̂ (0, [σ2, σ2]), we have

Ê[ϕ(X )] = Ê[ϕ(W )].

Proof. The proof consists of two parts: first show the sublinear expectation of G-normal distri-
bution and then gives the expectation of semi-G-normal distribution to prove their coincidence.

The sublinear expectation of G-normal distribution: Under convexity (or concavity), the
integral representation ofG-normal distribution directly comes from the solution of the classical
heat equation because u(t, x) will be convex (or concave, respectively) to x then uxx ≥ 0 (or
≤ 0, respectively) (more details can be found in Peng (2010)), giving us

Ê[ϕ(X )] =



E[ϕ(N (0, σ2))] ϕ is convex
E[ϕ(N (0, σ2))] ϕ is concave

,

for which we give a scratch proof here to general readers with interests. According to Theo-
rem 2.1.15, the sublinear expectation of G-normal distribution can be treated as the solution
of a nonlinear PDE called the G-heat equation (or sometimes in one dimension called the
Black-Scholes-Barenblatt equation with volatility uncertainty). Explicitly speaking, after a time
transformation, for X ∼ N (0, [σ2, σ2]), u(t, x) B Ê[ϕ(x +

√
tX )] becomes the (unique viscos-

ity) solution of the G-heat equation defined on [0,∞) × Rd:

ut −
1
2

(σ2u+xx − σ
2u−xx) = 0, u|t=0 = ϕ,

or equivalently,
ut − sup

σ∈[σ,σ]
{
1
2
σ2uxx } = 0, u|t=0 = ϕ. (2.2)
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When ϕ is convex, (that is, for any x, y ∈ R and a ∈ [0, 1], ϕ(ax + (1 − a)y) ≤ aϕ(x) +
(1 − a)ϕ(y)), we can check that u(t, x) is also convex with respect to x: for any x, y ∈ R and
a ∈ [0, 1],

u(t, ax + (1 − a)y) = Ê[ϕ(ax + (1 − a)y +
√

tX]
= Ê[[ϕ(ax + (1 − a)y +

√
tc]c=X ]

= Ê[[ϕ(a(x +
√

tc) + (1 − a)(y +
√

tc)]c=X ]
≤ Ê[[aϕ(x +

√
tc) + (1 − a)ϕ(y +

√
tc)]c=X ]

= Ê[aϕ(x +
√

tX ) + (1 − a)ϕ(y +
√

tX )]
≤ aÊ[ϕ(x +

√
tX )] + (1 − a)Ê[ϕ(y +

√
tX )]

= au(t, x) + (1 − a)u(t, y).

As mentioned in Comment 2.1.15.1, under some non-degenerate conditions, the viscosity
solution u(t, x) is C1,2. Then we have uxx ≥ 0 so that u−xx = 0 and Equation (2.2) degenerates to
a classical one:

ut −
1
2
σ2uxx = 0, u|t=0 = ϕ,

which is a Cauchy problem of the classical heat equation with a nice explicit unique solution
in terms of the Gaussian (or normal) kernel:

u(t, x) =
1√

2πσ2t

∫
R
ϕ(y) exp(−

(y − x)2

2σ2t
) dy = E[ϕ(x +

√
tN (0, σ2))], (2.3)

where E represents the linear expectation and N (0, σ2) is the classical normal distribution.
Hence, in terms of the connection between u(t, x) and the G-normal distribution, we have

Ê[ϕ(X )] = u(1, 0) =
1√
2πσ2

∫
R
ϕ(y) exp(−

(y − x)2

2σ2 ) dy = E[ϕ(N (0, σ2))].

Since we already have the result under convexity, namely, Equation (2.3) with variance taken
as σ2, when ϕ is concave, symmetrically speaking, we can guess the solution may be the one
with the same form taking the other extreme σ2:

û(t, x) =
1√

2πσ2t

∫
R
ϕ(y) exp(−

(y − x)2

2σ2t
) dy = E[ϕ(x +

√
tN (0, σ2))]. (2.4)

We will prove Equation (2.4) is the (unique) solution of the G-heat Equation (2.2). In the convex
case, u(t, x) expressed by Equation (2.3) is the unique solution. Meanwhile, it isC1,2 and convex
with respect to x. Note that

−û(t, x) =
1√

2πσ2t

∫
R

(−ϕ(y)) exp(−
(y − x)2

2σ2t
) dy,

where −ϕ is convex, then, borrowing the properties of the solution with the same form as
Equation (2.3), −û(t, x) must also be a C1,2 function convex with respect to x, that is, û(t, x)



2.3. The semi-G-normal distribution and G-normal distribution 23

is a concave C1,2 function. Hence, ûxx ≤ 0 or û+xx = 0. When we plug û(t, x) into the G-heat
Equation (2.2), for the left hand side, we have

ût − sup
σ∈[σ,σ]

{
1
2
σ2ûxx } = ût −

1
2
σ2ûxx,

which belongs to a form of classical heat equation. Meanwhile, we know for sure û(t, x) shown
in Equation (2.4) is the exact solution of the classical heat equation with a Cauchy condition:

vt −
1
2
σ2vxx = 0, v |t=0 = ϕ.

Therefore, û(t, x) must solve the G-heat Equation (2.2):

ût − sup
σ∈[σ,σ]

{
1
2
σ2ûxx }(= ût −

1
2
σ2ûxx) = 0, û|t=0 = ϕ.

Actually, due to the uniqueness of the solution of G-heat equation (Crandall et al. (1992)),
û(t, x) becomes the unique solution of the G-heat Equation (2.2). Thus we have

Ê[ϕ(X )] = û(1, 0) =
1√
2πσ2

∫
R
ϕ(y) exp(−

(y − x)2

2σ2 ) dy = E[ϕ(N (0, σ2))].

The sublinear expectation of semi-G-normal distribution: For the semi-G-normal distribu-
tion, by using its representation with G(z) B E[ϕ(zY )](z ∈ [σ, σ]) and Y ∼ N (0, 1), we only
need to prove that

Ê[ϕ(W )] = max
z∈[σ,σ]

G(z) =



G(σ) ϕ is convex
G(σ) ϕ is concave

.

First of all, ϕ has the Taylor expansion

ϕ(x) = ϕ(0) + ϕ(1) (0)x + ϕ(2) (ξx)
x2

2
,

where ξx ∈ (0, x).
1. When ϕ is convex, ϕ(2) (ξx) ≥ 0. The Taylor expansion tells us that:

G(z) = E[ϕ(zY )]

= E[ϕ(0) + ϕ(1) (0)zY + ϕ(2) (ξzY )
z2

2
Y 2]

= ϕ(0) +
1
2

E[ϕ(2) (ξzY )(zY )2],

where ξzY ∈ (0, zY ) is a random variable depending on Y . Let M B zY ∼ N (0, z2), then

K (z) B E[ϕ(2) (ξzY )(zY )2] = E[ϕ(2) (ξM )M2] =
∫

1
√
2π

exp(−
m2

2z2
)ϕ(2) (ξm)m2 dm.
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In order to consider the monotone property of K (z), work on its derivative:

K′(z) =
d
dz

∫
1
√
2π

exp(−
m2

2z2
)ϕ(2) (ξm)m2 dm

=

∫
1
√
2π

[
d
dz

exp(−
m2

2z2
)
]
ϕ(2) (ξm)m2 dm

=

∫
1
√
2π

[
m2

z3
exp

(
−

m2

2z2

)]

︸                 ︷︷                 ︸
≥0 for z∈[σ,σ]

ϕ(2) (ξm) m2︸        ︷︷        ︸
≥0

dm ≥ 0.

This tells us K (z) is increasing with respect to z ∈ [σ, σ], then K (z) reaches its maximum at
z = σ. Hence,

Ê[ϕ(W )] = max
z∈[σ,σ]

G(z) = max
z∈[σ,σ]

(ϕ(0) +
K (z)
2

) = G(σ).

2. When ϕ is concave, then −ϕ is convex. replace the ϕ above with −ϕ and repeat the same
procedure, we have

−G(z) = −E[ϕ(zY )]
= E[(−ϕ)(zY )]

= (−ϕ)(0) +
z2

2
E[(−ϕ)(2) (ξzY )Y 2]︸                  ︷︷                  ︸

K (z)≥0

,

and
K′(z) =

∫
1
√
2π

[
m2

z3
exp

(
−

m2

2z2

)]

︸                 ︷︷                 ︸
≥0 for z∈[σ,σ]

(−ϕ)(2) (ξm) m2︸             ︷︷             ︸
≥0

dm ≥ 0,

Hence, −G(z) is increasing with respect to z, that is, G(z) is decreasing according to z.
Therefore,

Ê[ϕ(X )] = max
z∈[σ,σ]

G(z) = G(σ). �

The initial motivation of the semi-G-normal distribution is that we want to create a tool or
ladder to help us better understand and handle the G-normal distribution, especially based on
what we already know about the classical normal distribution, which turns out to be feasible
from the nice properties of semi-G-normal distribution and thanks to the constructed theory
in G-framework (like the nonlinear CLT by Peng). In this thesis, we will further explore the
semi-G-normal distribution by considering its independence, its multivariate version (with the
construction from univariate objects) and the semi-G-Brownian motion (with its connection
to the G-Brownian motion. For the statistical side, we also provide a pseudo approach to
simulate the semi-G-normal distribution and the estimation method for the variance interval of
N̂ (0, [σ2, σ2]). The semi-G-normal distribution N̂ (0, [σ2, σ2]) behaves like the transition from
the linear normal distribution N (0, σ2) to the sublinear G-normal distribution N (0, [σ2, σ2]).
The following result is one of the exciting results from the semi-G-normal distribution to better
understand and compute the expectation of the G-normal distribution.
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Lemma 2.3.3 (General connection between the Semi-G-normal and the G-normal distribu-
tion). In a sublinear expectation space (Ω,H , Ê), consider a sequence of nonlinear i.i.d.
{Wi}i=1 ∼ N̂ (0, [σ2, σ2]) and X ∼ N (0, [σ2, σ2]), then for any ϕ ∈ C(R) satisfying linear
growth condition, we have

Ê[ϕ(
1
√

n

n∑
i=1

Wi)]→ Ê[ϕ(X )],

as n → ∞. In other words, 1√
n

∑n
i=1 Wi converges in distribution to the G-normal distributed X .

Proof. Since it is easy to check that W1 has the zero mean and variance uncertainty: Ê[W1] =
−Ê[−W1] = 0, Ê[W2

1 ] = σ
2, and −Ê[−W2

1 ] = σ
2, applying the nonlinear CLT with zero-mean,

we get the required result. �

Comment 2.3.3.1. For a large N , the distribution of 1√
N

∑N
i=1 Wi will be approximately identical

with X ∼ N (0, [σ2, σ2]) (they have the same distribution uncertainty). In some sense, this
actually provides us with oneway to useW to approximately generate theG-normal distribution.
At least, we can use Ê[ϕ( 1√

N

∑N
i=1 Wi)] to approximate Ê[ϕ(X )].

Theorem 2.3.4 (The Iterative Approximation of the G-normal Distribution). Consider a G-
normal distributed random variable X ∼ N (0, [σ2, σ2]). For any ϕ ∈ Cl .Lip(R) and integer
n ≥ 1, consider the series of iteration functions {ϕi,n}

n
i=1 with initial function ϕ0,n(x) B ϕ(x)

and iterative relation:

ϕi+1,n(x) B max
v∈[σ,σ]

E[ϕi,n(N (x, v2/n))], i = 0, 1, . . . , n − 1.

The final iteration function for a given n is ϕn,n. As n → ∞, we have ϕn,n(0) → Ê[ϕ(X )].

Proof. Set the initial function ϕ0,n(x) B ϕ(x) and the iteration

ϕi,n(x) B max
v∈[σ,σ]

E[ϕi−1,n(N (x,
v2

n
))].

In order to use the integral representation of the Semi-G-normal distribution (Theorem 2.3.2) in
the next stage, wewant each iteration function to be in the function spaceCl .Lip. For convenience,
we omit the subscript n for a while and let ϕi B ϕi,n. We also know that the optimal v will be
some value in [σ, σ] depending on x, i.e.

ϕi (x) = E[ϕi−1(N (x,
v2x
n

)], vx ∈ [σ, σ].

By induction, we only need to show that given ϕi−1 ∈ Cl .Lip, we also have ϕi ∈ Cl .Lip, for
i = 1, 2, . . . , n. Suppose for ϕi−1 we have a constant Ci−1 and an positive integer k such that

|ϕi−1(x) − ϕi−1(y) | ≤ Ci−1(1 + |x |k + |y |k ) |x − y |.
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Let Z ∼ N (0, 1) and consider

|ϕi (x) − ϕi (y) | = |E[ϕi−1(N (x,
v2x
n

)] − E[ϕi−1(N (y,
v2y

n
)]|

= |E[ϕi−1(x +
vx
√

n
Z )] − E[ϕi−1(y +

vy
√

n
Z )]|

≤ E |ϕi−1(x +
vx
√

n
Z ) − ϕi−1(y +

vy
√

n
Z ) |

≤ E[Ci−1(1 + |x +
vx
√

n
Z |k + |y +

vy
√

n
Z |k ) |(x + Z ) − (y + Z ) |]

= Ci−1 |x − y |(1 + E |x +
vx
√

n
Z |k + E |y +

vy
√

n
Z |k ).

For given ω ∈ Ω, let z B Z (ω), we have

|x +
vx
√

n
z |k = |(x +

vx
√

n
z)k | ≤

k∑
j=1

(
k
j

)
|x | j |

vx
√

n
z |k− j

≤

k∑
j=1

(
k
j

)
max{|x |k, |

vx
√

n
z |k } ≤ 2k ( |x |k + |

vx
√

n
|k |z |k ) ≤ 2k ( |x |k + |

σ
√

n
|k |z |k ).

Then |x + vx√
n

Z (ω) |k ≤ 2k ( |x |k + | σ√
n
|k |Z (ω) |k ); taking expectation on both sides, we have

E |x +
vx
√

n
Z |k ≤ 2k (|x |k + |

σ
√

n
|k E |Z |k ).

Therefore,

|ϕi (x) − ϕi (y) | ≤ Ci−1 |x − y |(1 + E |x +
vx
√

n
Z |k + E |y +

vy
√

n
Z |k )

≤ Ci−1 |x − y |(1 + 2k+1 |
σ
√

n
|k E |Z |k + 2k |x |k + 2k |y |k )

≤ Ci (1 + |x |k + |y |k ) |x − y |,

where Ci B Ci−1 ·max{1 + 2k+1 | σ√
n
|k E |Z |k, 2k }.

Considering a sequence of nonlinear i.i.d. {Wi}i=1 ∼ N̂ (0, [σ2, σ2]) and Wi,n B
1√
n
Wi, since

ϕi ∈ Cl .Lip, we can apply the integral representation of the Semi-G-normal distribution at each
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step. Then we have

Ê[ϕ(
1
√

n

n∑
i=1

Wi)] = Ê[ϕ0,n(
n∑

i=1
Wi,n)]

= Ê
[
Ê[ϕ0,n(

n−1∑
i=1

wi,n +Wn,n)]wi,n=Wi,n i=1,2,...,n−1
]

= Ê
[ [

max
vn∈[σ,σ]

E[ϕ0,n(
n−1∑
i=1

wi,n + N (0,
v2n
n

))]
]
wi,n=Wi,n, i=1,2,...,n−1

]

= Ê
[ [

max
vn∈[σ,σ]

E[ϕ0,n(N (
n−1∑
i=1

wi,n,
v2n
n

))]
]
wi,n=Wi,n, i=1,2,...,n−1

]

= Ê[ϕ1,n(
n−1∑
i=1

Wi,n)].

By continue extracting the last component and doing the iteration, we have

Ê[ϕ1,n(
n−1∑
i=1

Wi,n)] = Ê
[ [

max
vn−1∈[σ,σ]

E[ϕ1,n(N (
n−2∑
i=1

wi,n,
v2n−1

n
))]

]
wi,n=Wi,n i=1,2,...,n−2

]

= · · · = Ê
[ [

max
v2∈[σ,σ]

E[ϕn−2,n(N (w1,n,
v22
n

))]
]
w1,n=W1,n

]

= Ê[ϕn−1,n(W1,n)] = max
v1∈[σ,σ]

E[ϕn−1,n(N (0,
v21
n

))] = ϕn,n(0).

According to Lemma 2.3.3, we have

Ê[ϕ(X )] = lim
n→∞
Ê[ϕ(

1
√

n

n∑
i=1

Wi)] = lim
n→∞

ϕn,n(0). �

Remark 2.3.4.1. From the proof, we note that the iteration function can also be expressed as
the sublinear expectation of the semi-G-normal distribution (letting W0 B 0):

ϕi,n(x) = Ê[ϕ(x +
i∑

j=0

Wn− j
√

n
)] = Ê[ϕ(x +

i∑
j=0

W j
√

n
)],

for i = 0, 1, . . . , n.
Corollary 2.3.4.1. Consider the G-heat equation defined on [0,∞) × R:

ut + G(uxx) = 0, u|t=1 = ϕ,

where G(a) B 1
2 Ê[aX2] = 1

2 (σ2a+−σ2a−) and ϕ ∈ Cl .Lip(R). Then for the iterations {ϕi,n}
n
i=0

in Theorem 2.3.4, for each p ∈ (0, 1], there exists α ∈ (0, 1) such that,

|u(1 − p, x) − ϕbnpc,n(x) | = |Ê[ϕ(x +
√

pX )] − Ê[ϕ(x +
bnpc∑
i=0

Wi
√

n
)]| = Cϕ(1 + |x |k )O(

1
(np)α/2

).

where bnpc is the floor (or integer) part of np. When p = 0, we have u(1, x) = ϕ(x) = ϕ0,n(x).
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Proof. For each p ∈ (0, 1), consider the error when approximating u(1 − p, x), which can be
approximated by

u(1 −
bnpc

n
, x) = Ê[ϕ(x +

bnpc∑
j=0

X j
√

n
)] ≈ Ê[ϕ(x +

bnpc∑
i=0

Wi
√

n
)] = ϕbnpc,n(x).

Specifically speaking, we intend to work on the error

|u(1 − p, x) − ϕbnpc,n(x) | ≤ |u(1 − p, x) − u(1 −
bnpc

n
, x) |︸                                 ︷︷                                 ︸

(1)

+ |u(1 −
bnpc

n
, x) − ϕbnpc,n(x) |︸                                ︷︷                                ︸

(2)

.

Before diving into these two parts, we can prepare the converging property of pn B
bnpc

n .
Actually, the inequality

pn =
bnpc

n
≤

np
n
≤
bnpc + 1

n
= pn +

1
n
,

tells us that
|pn − p| <

1
n
.

Part (1) involves the continuity of u on the time dimension specified by doing the Taylor
expansion:

(1) ≤ |ut (1 − p, x) | |pn − p| +O( |pn − p|2)︸         ︷︷         ︸
O( 1

n2
)

.

We are looking for bound of |ut |. Fortunately, according to the properties of the solution to the
G-heat equation (ref), there exist constant C > 0 and β > 0, such that

|ut (t, x) − ut (s, x) | ≤ C |t − s |
β
2 .

By letting s = 0 and cx B |ut (0, x) |, we have

|ut (t, x) | ≤ |ut (t, x) − ut (0, x) | + |ut (0, x) | ≤ C |t |
β
2 + cx .

Therefore, for a fixed x, we have

(1) ≤ (C |1 − p|
β
2 + cx) |pn − p| +O(

1
n2

) = cxO(
1
n

).

Part (2) can be rewritten as follows:

(2) = |Ê[ϕ(x +
1
√

n

bnpc∑
j=0

X j )] − Ê[ϕ(x +
1
√

n

bnpc∑
j=0

W j )]|

= |Ê[ϕ(x +

√
bnpc

n
1√
bnpc

bnpc∑
j=0

X j )] − Ê[ϕ(x +

√
bnpc

n
1√
bnpc

bnpc∑
j=0

W j )]|.
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By letting Xnp B
1√
bnpc

∑bnpc
j=0 X j andWnp B

1√
bnpc

∑bnpc
j=0 W j , we have

(2) = |Ê[ϕ(x +
√

pnXnp)] − Ê[ϕ(x +
√

pnWnp)]|
≤ |Ê[ϕ(x +

√
pnXnp)] − Ê[ϕ(x +

√
pXnp)]|

+ |Ê[ϕ(x +
√

pnWnp)] − Ê[ϕ(x +
√

pWnp)]|
+ |Ê[ϕ(x +

√
pXnp)] − Ê[ϕ(x +

√
pWnp)]|

B (2)1 + (2)2 + (2)3.

where (2)1 + (2)2 involves the continuity of ϕ and the shrinking speed of |pn − p| and (2)3 is
exactly fitted into the convergence rate of nonlinear CLT. In (2)1 or (2)2, we do not need to
worry about the random variables since Xnp

d
= X d

= N (0, [σ2, σ2]) and Wnp
d
→ X as n → ∞

from nonlinear CLT. Hence, let us work on a general expression by replacing Xnp and Wnp by
Zn satisfying Zn

d
→ X . We know ϕ ∈ Cl .Lip satisfying, for x, y ∈ R,

|ϕ(x) − ϕ(y) | ≤ Cϕ(1 + |x |k + |y |k ) |x − y |,

with Cϕ > 0 and k ∈ N. When k = 0, ϕ is uniformly Lipschitz, then

(2)1or(2)2 = |Ê[ϕ(x +
√

pn Zn)] − Ê[ϕ(x +
√

pZn)]|
≤ Ê[|ϕ(x +

√
pn Zn) − ϕ(x +

√
pZn) |]

≤ Ê[Cϕ |
√

pn −
√

p| |Zn |] = Cϕ |
√

pn −
√

p|Ê[|Zn |].

For the expectation part in the last line, since Zn
d
→ X , we can make n large enough so that

Ê[|Zn |] ≤ Ê[|X |] + 1 C K0.

For the pn part, the Taylor expansion of
√

x at x = p tells us that

|
√

pn −
√

p| ≤
1

2√p
|pn − p| +O(|pn − p|2) = O(

1
n
√

p
).

Hence, when k = 0,
(2)1or(2)2 ≤ C1O(

1
n
√

p
),

with C1 = CϕK0. When k ≥ 1, we have

(2)1or(2)2 ≤ Ê[|ϕ(x +
√

pn Zn) − ϕ(x +
√

pZn) |]
≤ Ê[Cϕ(1 + |x +

√
pn Zn |

k + |x +
√

pZn |
k ) |
√

pn −
√

p| |Zn |]

≤ CϕÊ
[(
1 + 2k+1 |x |k + 2k |Zn |

k (|
√

pn |
k + |
√

p|k︸            ︷︷            ︸
≤2

)
)
|Zn |

]
|
√

pn −
√

p|.

For the expectation part in the last line, by letting n be large enough so that(
Ê[|Zn |

2]
)1/2
≤

(
Ê[|X |2]

)1/2
+ 1 =

(
E[|N (0, σ2) |2

)1/2
+ 1 = σ + 1 C K1,
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and(
Ê[|Zn |

2k]
)1/2
≤

(
Ê[|X |2k]

)1/2
+ 1 =

(
E[|N (0, σ2) |2k )1/2 + 1 = σk ((2k − 1)!!)1/2 + 1 C K2,

we have

Ê
[(
1 + 2k+1 |x |k + 2k+1 |Zn |

k ) |Zn |
]
≤

(
Ê[(1 + 2k+1 |x |k + 2k+1 |Zn |

k )2]
)1/2 (Ê[|Zn |

2]
)1/2

≤
(
1 + 2k+1 |x |k + 2k+1 (Ê[|Zn |

2k]
)1/2) (Ê[|Zn |

2]
)1/2

≤ C2(1 + |x |k ),

where C2 = K1 · max{1 + 2k+1K2, 2k+1}. Again, for the pn part, we have |pn − p| = O( 1
n
√

p ).
Therefore, when k ≥ 1, for a fixed x,

(2)1or(2)2 ≤ C3(1 + |x |k )O(
1

n
√

p
),

where C3 = CϕC2. In a word, for k ∈ N,

(2)1or(2)2 ≤ C4(1 + |x |k )O(
1

n
√

p
),

where C4 = max{C1,C3}.
In (2)3, we can directly apply the convergence rate of nonlinear CLT (Theorem 2.1.19):

(2)3 = |Ê[ϕ(x +
√

p
1√
bnpc

bnpc∑
j=0

X j )] − Ê[ϕ(x +
√

p
1√
bnpc

bnpc∑
j=0

W j )]|

= |Ê[ϕ̃(
1√
bnpc

bnpc∑
j=0

X j )] − Ê[ϕ̃(
1√
bnpc

bnpc∑
j=0

W j )] = Cϕ̃O(
1

(np)α/2
),

where ϕ̃(a) B ϕ(x +
√

pa), satisfying

|ϕ̃(a) − ϕ̃(b) | ≤ Cϕ(1 + |x +
√

pa |k + |x +
√

pb|k )
√

p|a − b|

≤ Cϕ(1 + 2k ( |x |k + |
√

pa |k ) + 2k (|x |k + |
√

pb|k ) |a − b|

≤ Cϕ(1 + 2k+1 |x |k + 2k (|a |k + |b|k )) |a − b|

≤ Cϕ̃(1 + |a |k + |b|k ) |a − b|,

in which Cϕ̃ = Cϕmax{1 + 2k+1 |x |k, 2k } ≤ Cϕ(1 + 2k + 2k+1 |x |k ). Hence,

(2)3 ≤ C5(1 + |x |k )O(
1

(np)α/2
),

where C5 = Cϕ2k+1. To summarize, with α ∈ (0, 1), for a given p and fixed x, the error is

|u(1 − p, x) − ϕbnpc,n(x) | ≤ (1) + (2)

≤ cxO(
1
n

) + 2C4(1 + |x |k )O(
1

n
√

p
) + C5(1 + |x |k )O(

1
(np)α/2

)

= M (1 + |x |k )O(
1

(np)α/2
).



2.3. The semi-G-normal distribution and G-normal distribution 31

Since p ∈ (0, 1), we only need to consider what happens when p approaches to 0, in order to
get a bound similar with a uniform bound, by letting qn B

1√
n
, we have

sup
p>qn
|u(1 − p, x) − ϕbnpc,n(x) | ≤ M (1 + |x |k )O(

1
(
√

n)α/2
).

�

2.3.2 The d-dimensional situation
The definition of semi-G-normal distribution can be naturally extended to multi-dimensional
situation. Intuitively speaking, the multivariate semi-G-normal distribution can be treated as an
analogue of the linear multivariate normal distribution: N (0,V) = V1/2N (0, Id), where Id is a
d × d identity matrix.

Definition 2.3.5 (the Semi-G-normal distribution in d dimension). Let a bounded, closed and
convex subsetV ⊂ S+d be the uncertainty set of covariance matrices, i.e.

V B


V =

(
ρi jσiσ j

)
d×d

: σ2
i ∈ [σ

2
i , σ

2
i ],

ρi j = ρ ji =



1 i = j
∈ [ρ

i j
, ρi j] i , j

, such that V ∈ S+d


,

and V1/2 := {V1/2 : V ∈ V} where V1/2 is the symmetric square root of V. We say a d-
dimensional random vector W : Ω → Rd will follow the Semi-G-normal distribution, denoted
as, W ∼ N̂ (0,V ), if there exist a d-dimensional G-normal distributed random vector

Y ∼ N (0, Id) : Ω→ Rd,

and a d × d-dimensional maximal distributed random matrix

Z ∼ M (V1/2) : Ω→ Rd×d,

as well as Y is independent from Z , such that

W = Z · Y,

where “·” is the matrix multiplication (which can be omitted) and the direction of independence
here cannot be reversed.

Remark 2.3.5.1. Y can be regarded as the classical multivariate normal distribution with identity
covariance matrix.

Corollary 2.3.5.1 (The Integral Representation of the Semi-G-normal distribution in d dimen-
sion). Consider a d-dimensional random vector W ∼ N̂ (0,V ), whereV is the uncertainty set
of covariance matrices. Then for any ϕ ∈ Cl .Lip(Rd), we have

Ê[ϕ(W )] = max
V∈V

E[ϕ(N (0,V))] = max
V1/2∈V1/2

E[ϕ(V1/2N (0, Id))]

= max
V1/2∈V1/2

∫
Rd

1
(2π)

d
2
exp(−

1
2
y′y)ϕ(V1/2y) dy.



32 Chapter 2. The Distributions and Independence in the G-framework

Similarly, we can obtain the iterative approximation in multi-dimensional case.

Theorem 2.3.6 (The Iterative Approximation of the G-normal Distribution in d dimension).
Consider a G-normal distributed random variable X ∼ N (0,V ). For any ϕ ∈ Cl .Lip(Rd)
and integer n ≥ 1, consider the series of iteration functions {ϕi,n}

n
i=1 with initial function

ϕ0,n(x) B ϕ(x) and iterative relation:

ϕi+1,n(x) B max
V∈V

E[ϕi,n(N (x,V/n))], i = 0, 1, . . . , n − 1.

The final iteration function for a given n is ϕn,n. As n → ∞, we have ϕn,n(0) → Ê[ϕ(X )].

2.3.3 Implementation
The 1-dimensional case

Consider a G-normal distributed random variable X ∼ N (0, [σ2, σ2]) with [σ, σ] = [0.5, 1].
For any ϕ ∈ Cl .Lip(R), in order to compute Ê[ϕ(X )], setting a fixed large n as the total number
of iterations, we implement the following procedure:

1. Start from
ϕ0,n(x) B ϕ(x);

2. Since we are iterating the functions on the infinite domain R, in practice, we need to set
up a finite grid to do interpolation at each step. Choose a large constant K to decide the
range of the numerical domain of x then set up the spatial grid:

−K = x0 < x1 < x2 < . . . < xL = K ;

3. At the iteration step i(= 1, 2, . . . , n − 1), for each x = x j , j = 0, 1, . . . , L, evaluate

ϕi+1,n(x j ) B max
v∈[σ,σ]

E[ϕi,n(N (x j,
v2

n
))],

where the linear expectation can be computed from integration or MC (Monte Carlo)
method (by generating a linearly i.i.d. standard normal sample: Z1, Z2, . . . , ZM ∼ N (0, 1)):

E[ϕi,n(N (x,
v2

n
))] =

∫ +∞

−∞

1
√
2π

√
n
v

exp(−(
√

nm
v

)2/2)ϕi,n(x + m) dm

≈
1
M

M∑
k=1

ϕi,n(x +
v
√

n
Zk ).

Then take maximum of E[ϕi,n(N (x, v
2

n ))] over v ∈ [σ, σ] to get ϕi+1,n(x) by doing
appropriate optimization: here we use a quasi-Newton method called the “L-BFGS-B”
by Byrd et al. (1995) which “allows box constraints, that is each variable can be given a
lower and/or upper bound”. Then use ϕi,n(x j ), j = 0, 1, . . . , L, to fit the function ϕi,n by
choosing proper splines to do both interpolation and extrapolation based on the type of
ϕ. For instance, for ϕ(x) = x3, we can use the “fmm” method by Forsythe et al. (1977):
“an exact cubic spline is fitted through the four points at each end of the data, and this is
used to determine the end conditions. ”
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Finally, we have
Ê[ϕ(X )] ≈ max

v∈[σ,σ]
E[ϕn−1,n(N (0, v2))] = ϕn,n(0).

Comment 2.3.6.1. In the step 3, we notice that it is necessary to use these values ϕi,n(x+ v√
n

Zk ),
k = 1, 2, . . . , M , with M points in the neighbourhood of one points x, to estimate the ϕi,n(x).
If we use a larger grid (with M i points) for ϕi,n to preserve the precision of ϕi,n on a smaller
grid (with M i−1 points), we will be stuck into the so-called “nested situation” unless we
are dealing with functions with bounded domain. As we increase n, namely, the number of
iterations, even if we only want to compute one point of the last iterative function with certain
precision, in the previous iterations, we will still need to prepare a series of grids which is
enlarged exponentially with respect to the iteration step. Therefore, one crucial step here is the
interpolation (and extrapolation) to avoid the nested dilemma, which can help us get a function
with continuous domain from a fixed discrete grid. The splines should be chosen based on the
type of ϕ (polynomial, periodic and so on). Meanwhile, we need to appropriately choose the
constant K to determine the numerical domain, to make the spline model able to capture the
pattern of the function so as to achieve the best extrapolation and interpolation performance.

Remark 2.3.6.1. When evaluating the linear expectation E[ϕi (N (x, v
2

n ))] (omitting n for a
while), to preserve the precision regardless of x, we can apply the MC with control variables.
One common problem ofMonte Carlomethod is that given a normal sample, the error of theMC
estimation will increase when x is farther from zero. Specifically, let h B 1

n and Z ∼ N (0, 1),
then

E[ϕi (N (x, v
2

n ))] ≈ 1
M

∑M
m=1 ϕi (x +

√
hvZi) =

1
M

∑M
m=1

(
ϕi (x) +

ϕ(1)
i (x)
1
√

hvZi +
ϕ(2)
i (x)
2 hv2Z2

i +
ϕ(3)
i (ξx,Zi )

6 h
3
2 v3Z3

i

)
.

Hence, the error can be expressed as,

1
M

∑M
m=1 ϕi (x +

√
hvZi) − E[ϕi (x +

√
hvZ )] ≈

ϕ(1)
i (x)
1
√

hv( 1
M

∑M
m=1 Zi − 0) +

ϕ(2)
i (x)
2 hv2( 1

M
∑M

m=1 Z2
i − 1).

Suppose ε1 B 1
M

∑M
m=1 Zi − 0 and ε2 B 1

M
∑M

m=1 Z2
i − 1, for a given sample {Zi}

M
i=1, ε1 and ε2

are fixed number, and even if we regenerate the {Zi}
M
i=1 each time, the random variable ε1 and

ε2 should also not have so much variation because we know

ε1 ∼ N (0,
1
M

), ε2 ∼
1
M
χ2(M),

thenVar[ε1] = 1
M andVar[ε2] = 2

M . However, for the case ϕ1(x) = x3, when x goes farther away
from zero, the values of |ϕ(1)

1 (x) | = 3|x |2 and |ϕ(2)
1 (x) | = 6|x | will become larger. Therefore,

without loss of generality, for a fixed normal sample, the error of the MC will increase as x
goes away from zero. This problem can not be overcome by simply increase the M (since the
|ϕ(1)

1 (x) | and |ϕ(2)
1 (x) | will always expand the small error anyway and these enlarged errors

will be cumulated as time goes further backward). Fortunately, we may try a type of variance
reductionmethod forMonte Carlomethod, called the control variables.We can use this method
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to preserve the consistent precision of MC method outside the neighbourhood of x. The idea is
that, after getting the ϕ(i)

1 (x), i = 1, 2, approximate the E[ϕ(x +
√

hvZ )] by

E[ϕ(x +
√

hvZ ) − ϕ(x) − ϕ(x) − ϕ(1) (x)
√

hvZ − ϕ(2) (x)
2 hv2Z2] + ϕ(x) + ϕ(2) (x)

2 hv2

≈ 1
M

∑M
i=1[ϕ(x +

√
hvZi) − ϕ(x) − ϕ(1) (x)

√
hvZi −

ϕ(2) (x)
2 hv2Zi] + ϕ(x) + ϕ(2) (x)

2 hv2

(= 1
M

∑M
i=1[

ϕ(3)
i (ξx,Zi )

6 h
3
2 v3Z3

i ] + ϕ(x) + ϕ(2) (x)
2 hv2).

In this way, because of the boundedness of ϕ(3) (x)(= 6) for ϕ(x) = x3, the error will not be
enlarged by ϕ(3)

i (ξx,Zi ) when x moves farther away zero.
Remark 2.3.6.2. Let X ∼ N (0, [σ2, σ2]). In the context of the 1-dimensional G-heat equation:

ut + G(∂2x u) = 0, u|t=1 = ϕ,

where G(a) B 1
2 Ê[aX2] = 1

2 (σ2a+ − σ2a−). We know there is a natural connection between
the G-heat equation and G-normal distribution:

u(t, x) = Ê[ϕ(x +
√
1 − tX )].

Then we can make a collection of the iterative functions with properties:
1. ϕn,n(0) ≈ Ê[ϕ(X )] = u(0, 0);
2. ϕn,n(x) ≈ u(0, x);
3. In general, ϕk,n(x) ≈ u(1 − k

n, x), for k = 0, 1, . . . , n.
This will actually give us a surface of the solution u(t, x) with t = 1 − k

n, k = 0, 1, . . . , n.
In the 2 × 2-layout Figure 2.1, for the first row (n = 50, K = 5), panel-(1, 1) is the approxi-

mated solution paths of the G-heat equation with ϕ(x) = x3 = ϕ0,n(x) (the black solid curve,
with y-axis showing the value of ϕi,n(x)) and the curves whose right branches are moving up
are the ϕi,n’s as the iteration proceeds. The panel-(1, 2) shows the approximated paths with
ϕ(x) = (1 − |x |)I(−1,1) (x) (which belongs to a class of functions that, previously, are hard to
deal with if not applying special PDE methods). The panel-(2, 1) is the pathwise comparison
plot (n = 100, K = 50, ϕ(x) = x3) with the explicit solution provided in Hu (2012) where
we can only notice the error (with absolute value ≤ 0.004) around x = 0 and we can see the
stable accuracy beyond the spatial grid [−K, K] (the black dashed lines).The panel-(2, 2) is the
approximation of Ê[X3] as n increases (K = 5) (where the horizontal line labels the true value;
here we use integration to compute E, if using MC, we will assign a variance for each point).

For curiosity, we can play with this algorithm (n = 50, K = 5) by changing the terminal
function to other ϕ ∈ Cl .Lip to produce the Figure 2.2: panel-(1, 1) (ϕ(x) = sin x), panel-(2, 1)
(ϕ(x) = cos x), panel-(1, 2) (ϕ(x) = sin x+cos x), and panel-(1, 1) (ϕ(x) = 1/(1+exp(−x2))).
From these plots, we can see that our method works well for these terminal function which
is neither convex nor concave. In fact, Corollary 2.3.4.1 guarantees the convergence of our
iterative functions to the respective solution paths in theory although for the sake of numerical
comparison, we still need to compare them with the solutions from numeric PDE methods.
Interestingly, from panel-(1, 1) of Figure 2.2, we can notice that the terminal function u(1, x) =
ϕ(x) = sin(x) is centrosymmetric around origin point but as the time goes backward, solution
paths gradually lose this symmetry. We can find the similar feature for the results of ϕ(x) = x3.
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Figure 2.1: Numerical solution paths of G-heat equation from our iterative method (Set I)

The d-dimensional case

For the multi-dimensional G-heat equation (with covariance uncertainty), the MC setting may
relieve the iterative algorithm from the curse of dimensionality.

Let x B (x1, x2, . . . , xd) ∈ Rd . Consider a d-dimensional G-normal distributed random
vector X ∼ N (0,V ), where V is the uncertainty set of covariance matrices. For any ϕ ∈
Cl .Lip(Rd), in order to compute Ê[ϕ(X )], similarly, set a large n as the total number of iterations,
then we need to do the procedure:

1. Start from
ϕ0,n(x) B ϕ(x);

2. We need to set up a grid in the domain Rd , to avoid the curse of dimensionality in the
sense that the rectangular grid points become sparser in higher dimension and much more
with exponential rate (L points in each dimension mean Ld points in total). Therefore,
here we use the Monte Carlo grid points sampling from a d-dimensional multivariate
normal distribution:

{x j }
L
j=0 ∼ N (0, σ2Id).

3. For i = 1, 2, . . . , n, and for each x = x j , j = 0, 1, . . . , L, let

ϕi+1,n(x) B max
V∈V

E[ϕi,n(N (x,
V
n

))],

where, again, to deal with the curse of dimensionality, the expectation can be computed
by Monte Carlo method which maintains its convergence rate regardless of the dimen-
sion by generating a linearly i.i.d. sample from standard multivariate normal N (0, Id):
Z1, Z2, . . . , ZM (and we can also apply the control variable method to protect the precision
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Figure 2.2: Numerical solution paths of G-heat equation from our iterative method (Set II)

from the variation of x):

E[ϕi,n(N (x,
V
n

))] ≈
1
M

M∑
k=1

ϕi,n(x +
V1/2
√

n
Zk ).

Take maximum of E[ϕi−1,n(N (x, Vn ))] over V ∈ V by appropriate optimization (here we
still use the “L-BFGS-B” method). Then use ϕi+1,n(x j ), j = 0, 1, . . . , L, to fit the function
ϕi+1,n by applying a proper spline model to do interpolation and extrapolation (here we
work on the setting of Generalized Additive Model after testing and design the structure
of splines based on the properties of ϕ).

Finally, we have

Ê[ϕ(X )] ≈ max
V1/2∈V1/2

E[ϕn−1,n(N (0,
V
n

))]

= ϕn,n(0).

Remark 2.3.6.3. Consider a 2-dimensionalG-normal distributed random variable X ∼ N (0,V )
where

V B

{
V =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
: σi ∈ [0.5, 1], i = 1, 2; ρ ∈ [−0.5, 0.5], such that V ∈ S+d

}
.

In the context of 2-dimensional G-heat equation:

ut + G(D2
xu) = 0, u|t=1 = ϕ,

where G(A) B 1
2 Ê[〈AX, X〉] : Sd → R, we also have the natural connection between the

G-heat equation and G-normal distribution,

u(t, x) = Ê[ϕ(x +
√
1 − tX )], (t, x) ∈ [0,∞) × R2.
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Figure 2.3: The numerical solution surface of the 2-dimensional G-heat equation with initial
function ϕ(x1, x2) = x31 + x32

Then these results have been verified:
1. we have ϕn,n(0) ≈ Ê[ϕ(X )] = u(0, 0) which repeats the above remark;
2. by replacing ϕ(X ) with a shifted version ϕ(x + X ), we directly get ϕn,n(x) ≈ u(0, x);
3. In general, we have ϕk,n(x) ≈ u(1− k

n, x), for k = 0, 1, . . . , n. In other words, the function
in each iteration step has its connection with the solution of G-heat equation.

Figure 2.3 is the solution surface (where the black surface is u(1, x) = ϕ(x) and the green
one is u(0, x),) with ϕ(x) = x31 + x32, the number of iteration steps n = 10, and

V B

{
V =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
: σi ∈ [0.5, 1], i = 1, 2; ρ ∈ [−0.5, 0.5], such that V ∈ S+d

}
.

I am still working on more details for this and also the Generalized Additive Model (GAM)
with control variable method. Since in general, we don’t have the exact solution for multi-
dimensional G-heat equation, we will try to compare with the solutions produced by numerical
PDE methods.

2.3.4 Assessment of the iterative method and future exploration
The strengths of this iterative method are well-worth mentioning:

1. It will work for any ϕ applicable in the nonlinear central limit theorem, including some
irregular ϕ which makes Ê[ϕ(X )] difficult to compute even by using classical numerical
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PDE methods. This property has been verified by Theorem 2.3.4 and has been checked
numerically for one dimension.

2. It will numerically solve the correspondingG-heat equation by not just giving one point or
one path but actually directly providing the whole surface of u(t, x), because the function
in each iteration step has its connection with the u(t, x) at one grid point t, as shown in
Corollary 2.3.4.1;

3. It will give us a great visualization and intuition about how the solution surface of G-
heat equation is evolved from the terminal function ϕ(x) by looking at the procedure of
iteration, and how the sublinear expectation of G-normal distribution is approached by
iterativelymaximizing the linear expectation of classical normal distribution. The inherent
bridge or ladder here is the Semi-G-normal distribution which helps us climb from the
stage of classical normal distribution to reach the stage of G-normal distribution. It
partially fills in the long-existing thinking gap between them, since we have the inequality:
Ê[ϕ(X )] ≥ supv∈[σ,σ] E[ϕ(N (0, v2))] (for various ϕ, especially when ϕ is neither convex
nor concave, the strict greater relation is much more frequent than equality), which, in
some sense, strictly separated the G-normal distribution with the classical one and made
us feel a little risky to connect them for a long time;

4. It can be naturally extended to higher dimension both in theory and algorithm, since
we already have the established multi-dimensional distributions in G-framework, as well
as the algorithm for computation of linear expectation of classical multivariate normal
distribution. Then it can solve the corresponding multi-dimensional G-heat equation
attached with covariance uncertainty;

However, for numerical practice, we still need to reflect on how to properly choose the
splines to achieve better interpolation and extrapolation performance. There are several points
well worth further exploring:

1. We may use design a set of nested grids for different iteration steps to avoid the extrapo-
lation;

2. For the infinite domain, consider the truncated terminal functions first, then enlarge the
truncation range;

3. For high dimension, start from bounded terminal functions (like the indicator functions);

4. We also need more delicate fitting model or spline design for different terminal functions
(especially according to the properties of the viscosity solutions of G-heat equation);

5. Investigate this result from the PDE side (the viscosity solution of the G-heat equations
can be expressed by a series of classical heat solution patches);

6. So far the numerical errors are better the theoretical errors (the CLT rate considers the
general variance-uncertain sequence but herewe use the semi-G-normal sequence), which
inspires us to do more careful theoretical error approximation;

7. We may attempt to numerically adapt the method to high dimensional situation then we
need to improve the optimization, grid setting and so on.
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2.4 The sequential independence in the G-framework
In order to study the simulation and more statistical models (like the time series) in the G-
framework, it is necessary for us to explore more about the (sequential) independence in the
G-framework (see Definition 2.1.9).

Since the independence in the G-framework has the sequential order (the latter will be
independent from the former), for convenience, we globally use the notation X d Y , to denote
the relation that “Y is independent from X”. The convenience of this notation is to write
X d Y d Z to briefly express this kind of sequential independence: X d Y and (X,Y ) d Z .
Recall the notion of i.i.d.(Definition 2.1.10),

X1 d X2 d . . . d Xn,

is defined as
(X1, X2, . . . , Xi) d Xi+1,

for any i = 1, 2, . . . , n − 1.
Theorem 2.4.1 coming from Hu (2011) tells us the special properties brought by the mutual

independence between two random variables in the G-framework.
Theorem 2.4.1 (Mutual independence, Hu (2011)). X d Y and Y d X imply that X and Y
are either linearly or maximally distributed.

How to numerically understand the phenomenon shown in Theorem 2.4.1 is worth more
exploration.
Question 2.4.1.1. Will X d Y and Y d Z imply X d Z?
Remark 2.4.1.1. The answer of question Question 2.4.1.1 is NO. The counterexample is quite
trivial and tedious. As shown in Theorem 2.4.1, it is possible that we have X d Y and Y d X .
In this case, if the answer is yes, we must have X d X which is an obvious contradiction.
However, if we force Z and X to be non-identical (also excluding the scaled version like Z = cX
with a real constant c), from the knowledge of author, the answer is still unknown.

To prepare for the statistical theory regarding multivariate objects, we can explore the
sequential independence for random vectors.
Theorem 2.4.2. For any increasing subsequences {ip}

k
p=1 and { jq}

l
q=1 satisfying 1 ≤ i1 < i2 <

. . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jl ≤ m, we have the general result that

(X1, X2, . . . , Xn) d (Y1,Y2, . . . ,Ym) =⇒ (Xi1, Xi2, . . . , Xik ) d (Yj1,Yj2, . . . ,Yjl ).

Proof. For any test function ϕ ∈ Cl .Lip(Rk+l ), define another function ψ ∈ Cl .Lip(Rn+m) which
is a larger space by

ψ(x1, x2, . . . , xn, y1, y2, . . . , ym) B ϕ(xi1, xi2, . . . , xik , y j1, y j2, . . . , y jl ),

then

Ê[ϕ(Xi1, Xi2, . . . , Xik ,Yj1,Yj2, . . . ,Yjl )] = Ê[ψ(X1, X2, . . . , Xn,Y1,Y2, . . . ,Ym)]
= Ê[Ê[ψ(x1, x2, . . . , xn,Y1,Y2, . . . ,Ym)]xi=Xi,i=1,...n]
= Ê[Ê[ϕ(xi1, xi2, . . . , xik ,Yj1,Yj2, . . . ,Yjl )]xip=Xip ,p=1,...,k].

�
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Theorem 2.4.2 gives a very general and useful result rigorously telling us the sequential
independence between two random vectors implies the independence between their sub-vectors.

Corollary 2.4.2.1. (X,Y ) d Z =⇒ X d Z and Y d Z .

Corollary 2.4.2.2. (X1, X2) d (X3, X4) =⇒ (X1, X2) d X3 and (X1, X2) d X4.

Corollary 2.4.2.3. For any increasing subsequences {ip}
k
p=1 satisfying 1 ≤ i1 < i2 < . . . <

ik ≤ n, we have the result that

X1 d X2 d . . . d Xn =⇒ Xi1 d Xi2 d . . . d Xik .

Proof. Our goal is to prove
(Xi1, Xi2, . . . , Xi j−1) d Xi j,

holds for any j = 2, . . . , k. For any j = 2, . . . , k, since the definition of i.i.d. of the full sequence
{Xi}

n
i=1 tells us that,

(X1, X2, . . . , Xi j−1) d Xi j .

From Theorem 2.4.2, we directly have the sequential independence for the sub-vectors:

(Xi1, Xi2, . . . , Xi j−1) d Xi j .

�

2.4.1 Independence regarding G-normal distributions
Theorem 2.4.3 (Peng (2010)). Suppose X1 d X2 and X1

d
= X2

d
= N (0, [σ2, σ2]), for X B

(X1, X2), we have
1. 〈a, X〉 is G-normal distributed for any a ∈ R2;

2. X is not G-normal distributed.

Proof. 1. 〈a, X〉 = a1X1 + a2X2
d
=

√
a2
1 + a2

2X1 ∼ N (0, (a2
1 + a2

2)[σ2, σ2]).

2. The rigorous proof will use the theory of G-heat equation (more details can be found in
Bayraktar and Munk (2015)). Here we give the intuitive reasoning to show why “we will
fail to show X is G-normal”. Consider X̄ B (X̄1, X̄2) a independent copy of X , satisfying
X̄1 d X̄2 and X d X̄ , namely, (X1, X2) d (X̄1, X̄2). This will imply (X1, X2) d X̄1
(obviously from the above section) and (X1, X2, X̄1) d X̄2: ∀ϕ ∈ Cl .Lip(R4),

Ê[ϕ(X1, X2, X̄1, X̄2)] = Ê
[
Ê[ϕ(x1, x2, X̄1, X̄2)]x=X

]

= Ê
[
Ê

[
Ê[ϕ(x1, x2, x̄1, X̄2)]x̄1=X̄1

]
x=X

]

(1)
= Ê

[
Ê[ϕ(x1, x2, x̄1, X̄2)](x1,x2,x̄1)=(X1,X2,X̄1)

]
,

where (1) is due to (X1, X2) d X̄1 . In summary, we will have

X1 d X2 d X̄1 d X̄2.
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Consider ∀ϕ ∈ Cl .Lip(R2),

Ê[ϕ(X + X̄ )] = Ê[ϕ(X1 + X̄1, X2 + X̄2)]

= Ê
[
Ê[ϕ(x1 + X̄1, X2 + X̄2)]x1=X1

]

=



Ê
[
Ê[ϕ(x1 + X̄1, x2 + X̄2)]x=X

]
correct

Ê
[
Ê[ϕ(x1 + x̄1, X2 + X̄2)](x1,x̄1)=(X1,X̄1)

]
?

,

where the question mark comes from the fact that we do not have (X1, X̄1) d (X2, X̄2)
which will indicate X̄1 d X2, reversing the existed relation X2 d X̄1.

�

Remark 2.4.3.1. The reasoning in the proof of Theorem 2.4.3 also leads us to a conclusion that

X1 d X2 d X̄1 d X̄2,

is equivalent to
(X1, X2) d (X̄1, X̄2), and X1 d X2, X̄1 d X̄2.

Comment 2.4.3.1. Theorem 2.4.3 also tells us that it is hard to construct bivariate G-normal
distribution from two univariate G-normal distributed random variables. Even under a straight
forward sequential independence setting (mutual independence is impossible here according
to Theorem 2.4.1), we are still strictly unable to achieve this, not to mention other linear
transformations of the random vector (X1, X2) (more details about this difficulty can be found
in Bayraktar and Munk (2015)).

Can we find a path to construct the multivariate G-normal distributed random vector from
univariate objects? The answer is YES, given by the new concept Semi-G-normal distribution
with its own independence setting (please see the following Section 2.4.2).

2.4.2 Independence regarding semi-G-normal distributions
In the following context, we will mainly consider two identically semi-G-normal distributed
random variables W (= ZY ) and W̄ (= Z̄Ȳ ), with Z d

= Z̄ ∼ M[σ, σ] and Y d
= Ȳ ∼ N (0, [1, 1]).

Their relation will be more delicate because of the complexity involving the four objects:
Z,Y, Z̄, Ȳ .

Definition 2.4.4. There are several typical relations between W and W̄ :
1. W̄ is semi-sequentially independent from W (denoted as W

S
d W̄ ) if :

Z d Z̄ d Y d Ȳ ; (2.5)

2. W̄ is sequentially independent from W (denoted as W d W̄ ) if:

Z · Y d Z̄ · Ȳ ; (2.6)

3. W̄ is fully-sequentially independent (denoted as W
F
d W̄ ) from W if :

Z d Y d Z̄ d Ȳ . (2.7)
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Comment 2.4.4.1. Intuitively, the semi-sequential independence can be interpreted as “first
setting all the parameters then drawing from the standard normal distributions to create the semi-
G-normal sequence” (or “drawing from the linear normal distribution with preset parameters”).

Remark 2.4.4.1. The semi-sequential independence (W S
d W̄ ) is equivalent with

(Z, Z̄ ) d (Y, Ȳ ) and Z d Z̄ and Y d Ȳ .

Remark 2.4.4.2. Since we already have Z d Y and Z̄ d Ȳ by definition, the full-sequential
independence (W F

d W̄ ) is equivalent with

(Z,Y ) d (Z̄, Ȳ ).

Remark 2.4.4.3. It is quite straightforward that

W
F
d W̄ =⇒ W d W̄ .

However, W
F
d W̄ (or W d W̄ ) does not necessarily imply W

S
d W̄ since Equation (2.5)

actually reverses the order of independence for Y and Z̄ in Equation (2.7).

Theorem 2.4.5. For any W̄ satisfying W̄ d
= W and W

S
d W̄ , we have

W + W̄ d
=
√
2W .

Proof. Since W = ZY and W̄ = Z̄Ȳ , for any ϕ ∈ Cl .Lip, consider

Ê[ϕ(ZY + Z̄Ȳ )] = Ê[Ê[ϕ(zY + z̄Ȳ )]z=Z, z̄=Z̄ ]

= Ê[Ê[ϕ(
√

z2 + z̄2Y )︸              ︷︷              ︸
H

(√
z2+z̄2

) ]z=Z, z̄=Z̄ ]

= Ê
[
H

(√
Z2 + Z̄2

)]

= Ê
[
Ê[H (

√
z + Z̄ )]z=Z

]

= max
w∈[σ,σ]

max
v∈[σ,σ]

H (
√
v2 + w2),

where H (v) B Ê[ϕ(vY )] can be proved to be in Cl .Lip based on ϕ ∈ Cl .Lip.
Since {

√
v2 + w2; v,w ∈ [σ, σ]} = [

√
2σ,
√
2σ] = {

√
2z; z ∈ [σ, σ]} (for this step, the

independence may not be necessary since we only need z and z̄ will have mass point at (a, a)
and (b, b)), we have

Ê[ϕ(ZY + Z̄Ȳ )] = max
w∈[σ,σ]

max
v∈[σ,σ]

H (
√
v2 + w2)

= max
z∈[σ,σ]

H (
√
2z)

= Ê[H (
√
2Z )]

= Ê[Ê[ϕ(
√
2zY )]z=Z ]

= Ê[ϕ(
√
2ZY )].

Hence, W + W̄ d
=
√
2W . �
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The following definition extends the relations in Definition 2.4.4 to n variables.

Definition 2.4.6. For a sequence of semi-G-normal distributed random variables {Wi}
n
i=1(=

{ZiYi}
n
i=1), we also have the corresponding typical relations:

1. {Wi}
n
i=1 are semi-sequentially independent (denoted as W1

S
d W2

S
d . . .

S
d Wn) if :

Z1 d Z2 d . . . d Zn d Y1 d Y2 d . . . d Yn; (2.8)

2. {Wi}
n
i=1 are sequentially independent (denoted as W1 d W2 d . . . d Wn) if:

Z1Y1 d Z2Y2 d . . . d ZnYn; (2.9)

3. {Wi}
n
i=1 are fully-sequentially independent (denoted as W1

F
d W2

F
d . . .

F
d Wn) if:

Z1 d Y1 d Z2 d Y2 d . . . d Zn d Yn. (2.10)

The semi-sequential independence will preserve some of the intuitive properties we have in
classical situation.

Theorem 2.4.7. For a sequence of semi-G-normal distributed random variables {Wi}
n
i=1 satis-

fying Wi
d
= Wi+1, i = 1, 2, . . . , n − 1 and

W1
S
d W2

S
d . . .

S
d Wn,

we have
n∑

i=1
Wi

d
=
√

nW1.

Lemma 2.4.8. For a sequence of (nonlinearly) i.i.d. random variables {Yi}
n
i=1 ∼ N (0, [1, 1])

(namely, Y1 d Y2 d . . . d Yn), we have

(Y1,Y2, . . . ,Yn)T ∼ N (0, I2n),

where In is the n × n identity matrix. It also further implies that {Yi}
n
i=1 are actually linearly

independent.

Proof. Denote the probability density function of classical multivariate normal distribution
N (0, I2n) as φn. Inductively speaking, starting from n = 1, it is not hard to show thatY1

d
= N (0, 1)

since the G-heat equation is reduced to the classical one when σ and σ coincide. Suppose for
n = k (≥ 1), we already have Y k B (Y1,Y2, . . . ,Yk )T ∼ N (0, I2k ). When n = k + 1, first of all,
Y k d Yk+1, then

Ê[ϕ(Y1,Y2, . . . ,Yk+1)] = Ê[ϕ(Y k,Yk+1)] = Ê
[
Ê[ϕ(yk,Yk+1)]yk=Y k

]
C Ê[G(Y k )],

where
G(yk ) = E[ϕ(yk,Yk+1)] =

∫
ϕ(yk, yk+1) fYk+1 (yk+1) dyk+1,
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with fYk+1 = φ1. Then

Ê[ϕ(Y k,Yk+1)] = Ê[G(Y k )] = E[G(Y k )]

=

∫
Rk

G(yk ) fY k
(yk ) dyk

=

∫
Rk+1

ϕ(yk, yk+1) fYk+1 (yk+1) fY k
(yk ) dyk+1 dyk

=

∫
Rk+1

ϕ(yk, yk+1)φ1(yk+1)φk (yk ) dyk+1 dyk

= E[ϕ(N (0, I2k+1))] = Ê[ϕ(N (0, I2k+1))],

where we apply the independence between N (0, 1) and N (0, I2k ) to produce N (0, I2k+1) (namely,
φ1φk = φk+1). Therefore, (Y1,Y2, . . . ,Yk+1) d

= N (0, I2k+1). Finally, we have

(Y1,Y2, . . . ,Yn)T ∼ N (0, I2n),

in which the covariance matrix with zero off-diagonal entries indicates that {Yi}
n
i=1 are linearly

independent. �

Theorem 2.4.9. For a sequence of semi-G-normal distributed random variables {Wi}
n
i=1, sat-

isfying Wi ∼ N̂ (0, [σ2
i , σ

2
i ]) for i = 1, 2, . . . , n, and

W1
S
d W2

S
d . . .

S
d Wn,

we have
(W1,W2, . . . ,Wn)T ∼ N̂ (0,V ),

whereV ⊂ S+d is the uncertainty set of covariance matrices defined as

V B



V =

*..
,

σ2
1

. . .

σ2
n

+//
-
: σ2

i ∈ [σ
2
i , σ

2
i ], i = 1, 2, . . . , n, such that V ∈ S+d



,

and
V1/2 B

{
V1/2 : V ∈ V

}
.

Proof. LetW B (W1,W2, . . . ,Wn)T . Then

W = (Z1Y1, Z2Y2, . . . , ZnYn)T = ZY,

where Z = Zn×n B diag(Z1, Z2, . . . , Zn) and Y = Y n×1 = (Y1,Y2, . . . ,Yn)T . The semi-sequential
independence implies that Zn×n d Y n×1. Also from the sequential independence of Zi part, we
know that for any H ∈ Cl .Lip(Rn×n):

Ê[H (Z)] = max
zi∈[σi,σi ],i=1,...,n

Ê[H (diag(z1, . . . , zn))] = max
V1/2∈V1/2

Ê[H (V1/2)].

In other words, Z ∼ M (V1/2). Meanwhile, the Lemma 2.4.8 shows that Y ∼ N (0, I2n). There-
fore, by the definition of d-dimensional semi-G-normal distribution,

W = Zn×nY ∼ N̂ (0,V ).

�
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Then we can use a sequence of W ∼ N̂ (0,V ) to approach the multivariate G-normal
N (0,V ) (defined in Definition 2.1.16) by nonlinear CLT. First, we give the definition of the
G-normal distribution N (0,V ). Let Sd denote the set of all real-valued d × d symmetric
matrices.

Theorem 2.4.10. Consider a sequence of i.i.d. {Wi}
∞
i=1 ∼ N̂ (0,V ) . Let X be a G-normal

distributed random vector following N (0,V ). Then for any ϕ ∈ Cl .Lip,

lim
n→∞
Ê[ϕ(

1
√

n

n∑
i=1

Wi)] = Ê[ϕ(X )].

Proof. This is a direct result from the nonlinear central limit theorem (Theorem 2.1.18). We
only need to check the validity of the conditions.

First of all, The sequence {Wi}
∞
i=1 has the mean-certainty Ê[X1] = −Ê[−X1] = 0.

Secondly, the distribution of X is characterized by the function G(A) = 1
2 supV∈V tr[AV].

We only need to prove that G(A) = 1
2 Ê[〈AW1,W1〉] for any A ∈ Sd . By the representation of

semi-G-normal distribution, letting Z ∼ N (0,V), we have

Ê[〈AW1,W1〉] = sup
V∈V

E[〈AZ, Z〉] = sup
V∈V

E[(AZ )T Z]

= sup
V∈V

E[ZTAZ] = sup
V∈V

E[tr[ZTAZ]]

= sup
V∈V

E[tr[AZ ZT ]] = sup
V∈V

tr[E[AZ ZT ]]

= sup
V∈V

tr[AE[Z ZT ]] = sup
V∈V

tr[AV].

Therefore, by applying the nonlinear CLT, we prove the limiting result. �

Since the semi-G-normal distribution preserves the multivariate property of the linear
normal distribution, we can further play with it and produce more counterpart properties like
the linear transformation of N̂ (0,V ).

Corollary 2.4.10.1. Let W n×1 ∼ N̂ (0,V ). For any constant matrix A ∈ Rr×n with r ≤ n, we
have

AW ∼ N̂ (0,AVAT ),

where
AVAT B

{
AVAT : V ∈ V

}
⊂ Rr×r .

Proof. First of all,Ar×nW n×1 = Ar×nZn×nY n×1. withZ ∼ M (V1/2). For any H ∈ Cl .Lip(Rr×n),
we have

Ê[H (AZ)] = max
V1/2∈V1/2

E[H (AV1/2)] = max
B∈AV1/2

E[H (B)],

so AZ ∼ M (AV1/2), which can be treated as the scaling property for the n × n-dimensional
maximal distribution. Therefore,

AW d
= M (AV1/2)N (0, I2n) ∼ N̂ (0,V′),
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where

V
′

B
{
BBT : B ∈ AV1/2

}

=
{
(AV1/2)(AV1/2)T : V1/2 ∈ V1/2

}

=
{
AVAT : V ∈ V

}
.

In other words,
AW ∼ N̂ (0,AVAT ).

�

Next diagram shows the relations among linear, semi-G- and G-normal distributions.

As we know in Theorem 2.4.3, it is not clear how to construct multivariate G-normal dis-
tribution from univariate objects. For two identically one-dimensional G-normal distributed
random variables X1 and X2 with X1 d X2, we know that (X1, X2) does not follow the bivari-
ate G-normal distribution. Since the semi-G-normal distribution has smaller uncertainty set,
it partially preserves the properties of the classical normal distribution and with the variance
uncertainty, it is also able to approach the multivariate G-normal distribution. Therefore, as
shown in the diagram above, we can start from the univariate objects (semi-G-normal distribu-
tion), and construct its multivariate version under semi-sequential independence, then approach
the multivariate G-normal distribution, which gives us a feasible way from “univariate” to
“multivariate” and becomes another reason we want to study the semi-G-normal distribution.

2.4.3 Future attempts regarding G-Brownian motion
For identically distributed, sequentially independent semi-G-normal sequence {Wi}

n
i=1 each of

which follows N̂ (0, [σ2, σ2]), in the iterative approximation part, we have already proved that,
letting X ∼ N (0, [σ2, σ2]), for any p ∈ (0, 1], we have

1
√

n

bnpc∑
i=1

Wi
d
→
√

pX d
= Bp,

where B is the G-Brownian motion (to be explained in the preliminaries of my future work).
Furthermore, for 0 < p1 < p2 ≤ 1, let W m B

1√
n

∑m
i=1 Wi, then we should have W bnp1c d

W bnp2c −W bnp1c and

(W bnp1c,W bnp2c −W bnp1c )
d
→ (Bp1, Bp2 − Bp1 ).
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In Chapter 2, we have explored the theory of the distributions and independence in G-
framework and built up the substructure to better deal with these objects with uncertainty. Then
we will come to the side of dataset including estimation (Chapter 3) and simulation (Chapter 4)
which will apply both the theory and intuition we have learned in Chapter 2.



Chapter 3

The Estimation of Variance Uncertainty

3.1 Thenecessity of the statisticalmethods in theG-framework

In order to give readers some taste about the background, we will start from an inspiring
practical example of the so-called black-box situation:

Suppose a company (the data provider) provides us (the data analysts) with a time-index
dataset W1,W2, . . . ,WN (N = 104), sampling from the random variable W (with known mean
parameter equal to zero), without offering any further information about the structure behind
the dataset, the generation procedure is a black box for us. (This situation might be unlikely
in practice but data analytics often fail to obtain critical information about how the data were
generated.) Simply providing the dataset, they ask us to estimate the expected value of W2.

Since we do not have any background information about the structure of the dataset (except
the mean parameter is known as zero), we can only start from some initial visualization of
this dataset. In addition, at this stage, it is not sensible to directly apply statistical tests usually
requiring assumptions on the probabilistic structure (like the distribution or independence) of
the dataset which still need investigation. Therefore, the following analysis is not a complete
statistical investigation and is only aimed at giving readers some feelings about the dataset. Most
statements can only be treated as “guesses” rather than strict conclusions, which are definitely
required to have further testing.

Figure 3.1 (the time-index plot of the dataset) and Figure 3.2 (the values of the autocorrela-
tion function against different lags) indicate that the data points are stationary and uncorrelated,
which is consistent with the pattern of white noise.

We have mentioned the notion called the variance-uncertainty several times in previous
chapters. We intend to show that this dataset actually has variance-uncertainty. To better see
this, one graphical tool is to group the dataset into smaller groups then draw the box-plot of
each successive group. In Figure 3.3, the box-plot of the dataset, we can see that the means
of groups are relatively stable, which is consistent with the known information that the mean
parameter of W is zero (if we generate a dataset with certain zero mean, its box-plot should
have a similar pattern), but there exists variability in the spread-out of different groups, which
might come from the inconsistent variance parameter of the dataset. This observation can be
further illustrated by Figure 3.4, the box-plot of the square of the dataset, where the variability
is enlarged by the square transformation. However, we try not to read too much into these initial

48
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Figure 3.1: The time-index plot of the first 1000 points of the dataset

Figure 3.2: The autocorrelation function plot of the dataset to investigate possible linear auto-
correlation

visualization plots before doing relatively strict statistical tests on the dataset.
At least, the observation (or guess) of the existence of inconsistent variance tells us the

possibility that the data have the variance-uncertainty. The reason we call it “uncertainty”’
is that we do not have any (prior) information about how the variance parameter changes as
time goes along; otherwise, we may have a sensible reason to use a classical stochastic model
(corresponding to one single probability measure) to describe the changing variance; in this
sense, there is almost no uncertainty (corresponding to a set of more than one probability
measures) for us.

Another potential evidence of the existence of variance-uncertainty is to show the failure
of the classical law of large number under the i.i.d. assumption. To estimate the expected value
of W2, one natural way is to compute the linear expectation E[W2], which can be estimated
by the sample variance 1

n
∑n

i=1 W2
i , since according to the classical law of large numbers, if its

assumptions hold here, the sample mean should converge to E[W2] as n increases. However,
Figure 3.5 tells us a different story.

When plotting the sample mean of W2 against different sample size, we can see that as
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Figure 3.3: The boxplot of the first 30 groups with size 100 for the dataset

Figure 3.4: The boxplot of the first 30 groups with size 100 for the square of the dataset

Figure 3.5: The sample variances against increasing sample size n
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the sample size increases from 5 × 103 to 104 (which already reaches the size of the whole
dataset), the sample mean seems not to converge to some value (at least, the sample mean does
not really fluctuate around one certain value), instead, it is still fluctuating within some range
(rises up to 2.8 at n = 7 × 103, then drops down to 2.5 at n = 9 × 103, then tends to increase
again). From this draft plot, we can hardly find a converging pattern for large n. If this sequence
of random variables is independent, one possible explanation of the failure of LLN is that
random variables are not identically distributed and the dataset has distribution uncertainty, in
particular, the variance-uncertainty.

Meanwhile, we do not know any information about the structure behind the data generation
so we can hardly apply a certain distribution model to describe W .

For readers’ interest, the above-mentioned dataset W1,W2, . . . ,WN actually comes from the
pseudo simulation of N̂ (0, [1, 4]) (more details can be found in Chapter 4).

Figure 3.6: Black-box situation: the data provider vs the data analyst

Figure 3.6 is the big picture of the current situation and also the structure of our remaining
content. From the view of the data provider, this dataset only has the pseudo distribution
uncertainty but from the prospective of the data analyst, the dataset has the true distribution
uncertainty.

3.2 Improved max-mean estimation in practice

If we directly apply the traditional statistical methods based on linear expectation, the assump-
tions are usually invalid here. What we know about the dataset is that it has zero mean and
variance uncertainty, reminding us of the conditions attached to the CLT (Theorem 2.1.18
for 1√

n

∑n
i=1 Wi) and LLN (Theorem 2.1.17 for 1

n
∑n

i=1 W2
i ) in sublinear expectation space. We

already have the max-mean estimation for maximal distribution (see Jin and Peng (2016) for
more details).

First choose a group size n. Without loss of generality, suppose n is a divisor of N such
that we have an integer m B N/n as the number of groups. Let Y B W2 and Yl B W2

l with
l = 1, 2, . . . , N and group the dataset as follows:
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(
Yi j

)
m×n
=

*.....
,

Y11 Y12 · · · Y1n
Y21 Y22 · · · Y2n
...

...
...

Ym1 Ym2 · · · Ymn

+/////
-

,

where Yi j B Yl (i, j) with l (i, j) = (i − 1)n + j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
For each group, Ȳi B

1
n
∑n

j=1 Yi j , i = 1, 2, . . . ,m will converge to M[σ2, σ2] as n increases;
meanwhile, the minimum (maximum) of a sequence of M[σ2, σ2] will approach its bounds as
the sample size increases.

The idea can be explained in this way

min
1≤i≤m

1
n

n∑
j=1

Yi j
n→∞
−−−−→
LLN

min
1≤i≤m

M[σ2, σ2]
m→∞
−−−−→ σ2,

and

max
1≤i≤m

1
n

n∑
j=1

Yi j
n→∞
−−−−→
LLN

max
1≤i≤m

M[σ2, σ2]
m→∞
−−−−→ σ2.

The problem is that we have the constraint N = m · n from the limited data. If the group
size n is too small, the group average cannot really achieve its convergence to the maximal
distribution; conversely, if the group size is too large, although we have the group averages
close to M[σ2, σ2], they are only a small sample of the maximal distribution and we can hardly
expect them to reach the boundaries.

3.2.1 How to decide the pair (m, n)

If we force m and n to increase at the same time, for instance, let m = n, then make n increase
from 1 to [

√
N] and for each n, get the pair of max-mean estimations, shown in Figure 3.7 (to

better show the further trend, we ask the data provider to artificially enlarge the dataset using
the same simulation scheme), from which we can see that the estimated interval is shrinking
as n increases and appears significant undercoverage (compared with the true one drawn as the
two horizontal dashed lines) when n is too large (greater than around 400), indicating the poor
performance of this decision rule of n, although it seems reasonable in theory (the two-stage
convergence in Section Section 3.2). In addition, when n is far from reaching

√
N , this rule

actually wastes a lot of information of the dataset.
If we fix a big n, to make the average have the distribution close enough to the M[σ2, σ2],

and let m = [N/n]. We hope that this m will also be generous so that the averages can vary
much in the interval to touch the extremes. However, we do not know how big n should be at
first so this plan does not really push forward in the decision (e.g. when n is close to N , the pair
of estimations will almost meet each other at some point in [σ2, σ2]).

In order to choose the optimal pair (m, n) (or design a data-driven stopping rule for n) to
do the trade-off and make the most of information then narrow down the variance interval, let
us think more about what really happens when we increase the group size n. This is only the
intuition behind our methods, not a rigorous proof (for which we are still struggling on it and
will need more theories to back up).
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Figure 3.7: The change of max-mean estimations when n = 1, 2, . . . ,
√

N .

For a given group size n, define the range between the groups [L(n), R(n)] as follows:

[L(n), R(n)] B [ min
1≤i≤m

1
n

n∑
j=1

Yi j, max
1≤i≤m

1
n

n∑
j=1

Yi j].

Meanwhile, we know the range within each group is, for i = 1, 2, . . . ,m,

[ min
1≤ j≤n

Yi j, max
1≤ j≤n

Yi j].

Let Yi(1) B min1≤ j≤n Yi j and Yi(n) B max1≤ j≤n Yi j , we will need some functions H : Rm → R

and H : Rm → R, to describe the overall level of the range within each group [l (n), r (n)] in
this way:

[l (n), r (n)] := [H (Y1(1),Y2(1), . . . ,Ym(1)), H (Y1(n),Y2(n), . . . ,Ym(n))].

For the range between groups, when n = 1, we have

[L(1), R(1)] = [ min
1≤i≤N

Yi, max
1≤i≤N

Yi],

which is the largest range and should cover the [σ2, σ2]. As n increases, since we have the
inequality like

min{c, d, e, f } ≤ min{
c + d
2

,
e + f
2
} ≤ max{

c + d
2

,
e + f
2
} ≤ max{c, d, e, f },

the range between the groups will shrink, i.e. R(n) − L(n) will decrease.
For the range within each group, for n = 1, since we have Yi(1) = Yi(n), we want to choose

proper functions to make l (1) = r (1) and they also falls around the center of [σ2, σ2].When
n increases, since the group size is enlarged, the length of each range Yi(n) − Yi(1) is expected
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to increase for most i. Hence, for the overall level of the range within the group, r (n) − l (n) is
expected to increase. By setting a proper function H , for n not very large, usually we want to
achieve the following subset relation,

[l (n), r (n)] ⊂ [σ2, σ2] ⊂ [L(n), R(n)], (3.1)

which implies that we want the [l (n), r (n)] and [L(n), R(n)] to squeeze the [σ2, σ2] as n
increases like a sandwich.

Our intuitive idea is that the optimal n0 will be reached when

[l (n0), r (n0)] ≈ [L(n0), R(n0)],

which means the shrinking range of the group averages meets with the expanding range within
each group. Meanwhile, when we do the group average under the optimal n0 (close to the true
“blocking size”), we should have some groups average able to estimate the bounds of [σ2, σ2]
which implies [L(n0), R(n0)] ≈ [σ2, σ2]. We also want to construct appropriate H to make
[l (n), r (n)] identical with (or approximately equal to) some group averages, such that when the
test group size equal to n0, we have [l (n0), r (n0)] ≈ [σ2, σ2]. Therefore, we expect to have the
approximate equality

[l (n0), r (n0)] ≈ [σ2, σ2] ≈ [L(n0), R(n0)].

In other words, the n0 is big enough to make the group means converge to M[σ2, σ2] and the
number of these maximal samples (that is m ) is not so small that [L(n), R(n)] ≈ [σ2, σ2],
while each group has enough variation within it so that it can absorb the extra variation caused
by randomness to prevent the group average from falling out of the [σ2, σ2]. This approximated
equality seems to imply a kind of self-similarity here.

The next step is about how to choose an appropriate H to make the relation (Equation (3.1))
happen (I do not expect H to have a explicit form but I do want to make the relation hold, which
is the guideline).

Wewill provide two data-driven rules to achieve the trade-off so as to improve themax-mean
estimation in practice.

3.2.2 Rule 1: Choosing the central group
For n = 1, m = N , since Yi(1) = Yi(n) for i = 1, 2, . . . ,m, we can let the overall level l (1) = r (1),
we want to make them fall into [σ2, σ2], a possible choice is the l (1) = r (1) = Y B 1

N
∑

i, j Yi j .
For n = 2, m = [N/2], we only have two points for each group, then in ideal situation,
{{Yi(1)}

m
i=1, {Yi(2)}

m
i=1} should divide the dataset approximately uniformly into two groups then

the difference between these two values should not be too large, then we should set up a pair
of values, which should also fall in [σ2, σ2]. A possible choice is to make a “central group”
centering around the Y with size n = 2, (as long as the Y is not so far away from the midpoint
of [σ2, σ2]), then select its two bounds. Let

l (2) = H (Y1(1),Y2(1), . . . ,Ym(1)) B max{Yi(1) : Yi(1) ≤ Y, i = 1, 2, . . . ,m},
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and
r (2) = H (Y1(2),Y2(2), . . . ,Ym(2)) B min{Yi(2) : Yi(2) ≥ Y, i = 1, 2, . . . ,m}.

Then we should have l (2) ≤ Y ≤ r (2). Furthermore, since the division

{{Yi(1)}
m
i=1, {Yi(2)}

m
i=1},

actually provides enough many points in the neighborhood of Y , we should have

σ2 ≤ l (2) ≤ Y ≤ r (2) ≤ σ2,

As n increases, for n = k, we follow the same design before. By letting

l (k) = H (Y1(1),Y2(1), . . . ,Ym(1)) B max{Yi(1) : Yi(1) ≤ Y, i = 1, 2, . . . ,m},

and
r (k) = H (Y1(k),Y2(k), . . . ,Ym(k)) B min{Yi(k) : Yi(k) ≥ Y, i = 1, 2, . . . ,m}.

we will have [l (k), r (k)] expanding gradually as k increases. Explicitly, let I B {i : Y ∈
[Yi(1),∞) ∪ (−∞,Yi(k)]}, then

[l (k), r (k)] =
⋂
i∈I

[Yi(1),Yi(k)].

We can apply this method to the data problem raised up at the beginning of this chapter
(Section Section 3.1) with the true variance interval [σ2, σ2] = [1, 4].
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Figure 3.8: Central group estimation
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In Figure 3.8, the (black, red) lines are the (L(n), R(n)) and the (blue, green) lines are the
(l (n), r (n)). There are two intersections here (R(n1) ≈ r (n1) and l (n2) ≈ L(n2)). The brown
lines are the true values [1, 4] of [σ2, σ2] offered by the data providers. We can see that the
estimated interval [0.58, 4.51] (got from the y-axis of two intersections) can capture the true
interval [1, 4], indicating that our method provides a feasible rule to choose the group size n
based on the dataset itself without relying on any distributional information.

In order to check whether our result is a fortunate accident, we can replicate this estimation
procedure to get the sampling distribution of the pair of estimators of [σ2, σ2].

Figure 3.9: Sampling distribution of the central group estimators

With the true interval [σ2, σ2] = [1, 4], in these 1000 replications, Figure 3.9 shows most
of the estimated interval can cover the true one (which is good enough for our purpose: to cover
the uncertainty): in fact, all of the estimations of σ2 are below the true value (and not very far
away from it), and only 24% estimations of the right points “underestimate” the σ2. The average
and standard deviations of the two estimated estimators can be expressed in this interval form:
[0.56 ± 0.13, 4.41 ± 0.58], so we can see that the estimated intervals can roughly cover the true
interval and they are not very “wide”.

3.2.3 Rule 2: Combining time and value ordering
Another approach is simply designed to efficiently achieve the squeezing relation (Equa-
tion (3.1)), but it seems not so relevant with the idea about “the variation between groups
versus within groups”.

Let us order the Y1, . . . ,YN by values to get Y(1), . . . ,Y(N ) then similarly, group it into get
{Y(i j)}m×n .

Let n increases from 1 to N/2, (in our example, for convenience, N is a large even number)
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(L(n), R(n)) uses the value ordering group methods,

[L(n), R(n)] B [ min
1≤i≤m

1
n

n∑
j=1

Y(i j), max
1≤i≤m

1
n

n∑
j=1

Y(i j)].

(l (n), r (n)) uses the time ordering group methods,

[l (n), r (n)] B [ min
1≤i≤m

1
h(n)

h(n)∑
j=1

Yi j, max
1≤i≤m

1
h(n)

h(n)∑
j=1

Yi j],

where h(n) is a reverse version of the n sequence, which is defined as h(n) B N+2
2 − n so that

{h(n) : n = 1, 2, . . . , N/2} = {N/2, N/2 − 1, . . . , 1}, only to force the [l (n), r (n)] to expand
pointwise as [L(n), R(n)] shrinks.

Set true parameter interval [σ2, σ2] = [1, 4], then by implementing this method, we get
Figure 3.10.

0
10

20
30

Par.true=[1,4], TimValOrd.est=[0.319,4.69]

es
tim

at
io

n 
* 

1

TimOrd.min  

TimOrd.max  

ValOrd.min  

ValOrd.max  

par.true

500 400 300 200 100 1
n.rev

1 100 200 300 400 500
n

Figure 3.10: Time-value ordering estimation

In Figure 3.10, the brown lines are the true values ([1, 4]) and the method gives an estimation
at the intersection, which is [0.32, 4.69]. We can see that as n increases until to the very end,
the blues lines ([L(n), R(n)]) can cover the [σ2, σ2] and the red lines ([l (n), r (n)]) can stay
within the [σ2, σ2]. The relation (Equation (3.1)) holds until meeting the intersections, which
capture the variance interval and provide us with a good pair of estimation.

Replicate this estimation procedure to get the sampling distribution shown in Figure 3.11.
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Figure 3.11: Sampling distribution of the time-value ordering estimators

Figure 3.11 shows that the estimations of σ2 are far smaller than the true ones, implying the
time-value ordering estimation has too strong “underestimation” on the left points, which is not
good for classical statistical purpose but it does not violate our purpose (to cover the uncertainty
interval). 79% of the right-point estimations are greater than the true σ2. The average estimated
interval (with standard deviation) [0.31 ± 0.04, 4.32 ± 0.41] shows that the intervals from the
time-value ordering rule have been quite narrowed down and can roughly cover the true interval.

From the results in Figures 3.9 and 3.11, you may notice that the central group estimation
methods outperforms the time-value ordering approach especially on the left point σ2. In fact,
for the estimations of σ2, 98.2% of the time-value ordering are smaller than those from the
central group rule and their average difference is −0.24 ± 0.13. Their performances on the
estimation of σ2 are similar.

Since so far we still do not have a rigorous theoretical backup for our heuristic data-driven
rules, we definitely need to do more testing on these two estimation methods. Please turn to
Section A.1 for current testing results.

3.2.4 More discussion about the theory of estimation
Let us reflect on why we have challenges to develop the statistical theory in the G-framework.
From our knowledge, one typical reason is that in general, it is not very easy to directly apply
the CLT and LLN in the G-framework to study the property of the estimators. For instance,
similar to the results in Jin and Peng (2016), we can show that the order statistics of the maximal
distribution M[µ, µ] are actually identically distributed as M[µ, µ], which exactly comes from
the uncertainty intrinsically included in the G-framework’s distributions whose parameters
only describes the extremes rather than the center. For readers’ interest, this idea can be better
illustrated by Theorem 3.2.1, 3.2.2 and 3.2.3.
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Theorem 3.2.1 (Jin and Peng (2016)). Let X1, X2, . . . , Xn be a (nonlinearly) i.i.d. sample from
maximal distribution M[µ, µ]. Then we have

max{X1, X2, . . . , Xn}
d
= min{X1, X2, . . . , Xn}

d
= M[µ, µ].

Proof. For each ϕ ∈ Cl .Lip, we have

Ê[ϕ(max{X1, X2, . . . , Xn})] = max
(x1,x2,...,xn )∈[µ,µ]m

ϕ(max{x1, x2, . . . , xn})

= max
x∈[µ,µ]

ϕ(x) = Ê[ϕ(X1)],

whichmeansmax{X1, X2, . . . , Xn}
d
= M[µ, µ]. Similarly,we can prove thatmin{X1, X2, . . . , Xn}

d
=

M[µ, µ] �

Remark 3.2.1.1 (Jin and Peng (2016)). In general, we can actually prove that for continuous
function we have f ∈ C(Rm), we have

f (X1, X2, . . . , Xn) d
= M[µ

f
, µ f ]

where

µ
f
B min

(x1,x2,...,xn )∈[µ,µ]m
f (x1, x2, . . . , xn), µ f B max

(x1,x2,...,xn )∈[µ,µ]m
f (x1, x2, . . . , xn).

To further explore properties of the order statistics, in the following context, we will use the
common notation for order statistics. Let X(k) denote the k-th order statistic of the sequence
X1, X2, . . . , Xn.

Theorem 3.2.2. Let X1, X2 be an i.i.d sample from M[µ, µ] with independence X1 d X2. Then
for the random vector of order statistics (X(1), X(2)), we have

(X(1), X(2))
d
= M (S2)

where S2 is the simplex in the rectangular [µ, µ]2, or explicitly, the set of points

{(v,w) : µ ≤ v ≤ w ≤ µ}.

Proof. Since (X(1), X(2)) has an intrinsic constraint that X(1) ≤ X(2), in order to consider a
function ϕ ∈ Cl .Lip(R2) of this random vector, we actually need to restrict its domain on the
simplex S2. Introduce the bivariate function g(x1, x2) := (min{x, y}, max{x, y}) = (x (1), x (2)).
Then for any function ϕ ∈ Cl .Lip(S2), consider

Ê[ϕ(X(1), X(2))] = Ê[ϕ(g(X1, X2))]
= max

(x1,x2)∈[µ,µ]2
ϕ(g(X1, X2)),

where we use the definition of Maximal distribution for the random vector (X1, X2) following
M ([µ, µ]2) and ϕ · g ∈ Cl .Lip . Meanwhile, we can naturally prove that

{(x (1), x (2)) : (x1, x2) ∈ [µ, µ]2} = {(v,w) ∈ [µ, µ]2 : v ≤ w},
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due to the inequality µ ≤ min{x, y} ≤ max{x, y} ≤ µ if x, y ∈ [µ, µ]. In other words, we have
{g(x1, x2) : (x1, x2) ∈ [µ, µ]2} = S2. Hence,

Ê[ϕ(X(1), X(2))] = max
(x1,x2)∈[µ,µ]2

ϕ(g(X1, X2))

= max
(v,w)∈S2

ϕ(v,w),

which holds for any ϕ ∈ Cl .Lip(S2). In conclusion, we have

(X(1), X(2))
d
= M (S2).

�

Remark 3.2.2.1. This result tells us that the maximal distribution shows nothing more feature
about the random variable but the range of its variation. (X(1), X(2)) follows M (S2) because
its range is exactly S2. It will be not hard to generalize our results to n − dimensional case by
applying the similar technique.

Theorem 3.2.3. Let Xi, i = 1, · · · , n be nonlinear i.i.d random variables in sublinear ex-
pectation space (Ω,H , Ê) following M[µ, µ]. Then for the random vector of order statistics
(X(1), · · · , X(n)), we have

(X(1), · · · , X(n))
d
= M (Sn),

where Sn is the simplex in the n − dimensional rectangular [µ, µ]n, specifically, written as

Sn := {(x1, · · · , xn) : µ ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ µ}.

Remark 3.2.3.1. Actually, to be consistent, we can use this general result about the joint
distribution to retrieve the known properties for the marginal distribution (Theorem 3.2.1). In
n − dim case, given the joint distribution, we can show that X(1)

d
= M[µ, µ] since

Ê[ϕ(X(1))] = Ê[ϕ(min{X(1), · · · , X(n)})]
= max

(x1,··· ,xn )∈Sn
ϕ ·min(x1, · · · , xn)

= max
(x1,··· ,xn )∈Sn

ϕ(x1)

= max
x1∈[µ,µ]

ϕ(x1),

where [µ, µ] is exactly the trajectory on the first dimension when the (X(1), · · · , X(n)) varying
all over the simplex Sn. Furthermore, we can show the joint distribution for lower-dimensional
random vector. For example,

Ê[ϕ(X(1), X(n))] = Ê[ϕ(h(X(1), · · · , X(n))]
= max

(x1,··· ,xn )∈Sn
ϕ · h(x1, · · · , xn)

= max
(x1,xn )∈S2

ϕ(x1, xn)
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where h : (x1, · · · , xn) ∈ Sn → (x1, xn) and the range is nothing mysterious but the S2 =
{(x1, xn) : µ ≤ x1 ≤ xn ≤ µ}. Therefore, we prove that (X(1), X(n))

d
= M (S2). Generally

speaking, for any subsequence 1 ≤ i1 ≤ · · · ≤ ik ≤ n, we actually have (X(i1), · · · , X(ik ))
d
=

M (Sk ), by using the same idea in the proof of (X(1), X(n)). This reminds us again that the
Maximal distribution is exactly attached with the range of variation of the random vector.

Here we give some further attempts and ideas about the estimation method in the G-
framework:

1. We need to think about this trade-off: the linear version of converging or distributional
properties of the G-estimators may require more information of the (linear) distribution,
which may come from the application background;

2. Nonlinear assumptions may only lead us to the nonlinear-version properties of G-
estimators, but we will not rule out the possibilities to get some surprisingly interest-
ing results (which may be useful in a brand-new sense) by redefining a new notion of
convergence which is more tractable in statistical sense.

3. For instance, we might apply the conditional expectation or distribution in the G-
framework. In the context of order statistic, we can show that Y(k) |Y(k−1) = y ∼ M[y, µ]
then we can use the length of the uncertainty interval (µ − y) as the “distance” from
the estimator to the true value. It will give a guideline or frame of the description of
convergence for general theoretical analysis which will become more delicate once added
more distributional information.

4. Another way to think about the theory of estimation is to start from a simplified version of
a model describing both the simulation and estimation scheme. A recent progress is that
we can look at the histograms of all max-mean estimators (at one side) to find actually
the true value is very close to the tail part (tending to reach a relatively stable quantile
regardless of the blocking size in the simulation), which motivates us to reflect on a
theoretical model trying to explain this pattern. If we can do that, this model will actually
be capable of explaining more similar patterns in future real data analysis involving the
max-mean estimation.

5. Actually, coming back to the basic ideas of the max-mean estimation, if we take into
account the convergence rate of the group average to the Maximal distribution, when
n is large enough (n ≥ n0), we should we the group average approximately becomes a
sample point from the M[σ2, σ2]. In this way, for the group averages with even larger n,
we should also preserve this property. Then all we need to do is to collect these maximal
sample points, for which we can directly consider the maximum and minimum because
of the Dirac-type uncertainty of maximal distribution (we only need one sample point for
a Dirac distribution). The threshold n0 may come from the exploration on the dataset or
some previous numerical experiments.



Chapter 4

The Pseudo Simulation of Variance
Uncertainty

First of all, when it comes to the simulation in theG-framework, readers need to understand why
we call it the pseudo simulation. Frankly speaking, from the view of data providers, it is almost
impossible for us to truly generate the distribution uncertainty based on a certain algorithm (no
matter how chaotic the system is, or how quantized the generator is). From my perspective, we
can clearly see the barriers from the diagram below.

(In the diagram above, the traditional computers exclude the machines that have chipsets
with a hardware random number generator that can produce true random sequence based on
some physical phenomena.)

For the hierarchical settings, if we know all the prior distribution and the relations, then
after some efforts of deduction, we can get the posterior distribution or prove its existence and
uniqueness. For the iterative algorithms, in general, suppose it is written as Xn = f (Xn−1, εn−1)
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where f is the iterative function and εn−1 represents the random part, then

Xn = f (Xn−1, εn−1)
= f

(
f (Xn−2, εn−2), εn−1

)
= f1(Xn−2, εn−2, εn−1) = · · · = fn(X0, ε0, . . . , εn−1).

For each Xn, actually we can get a certain fn which is a function of X0 (usually a constant)
and (ε0, . . . , εn−1) with known distributions. Therefore, we do not really have any distribution
uncertainty here.

I would like to clarify that I did not deny the possibility that future technology advancement
can make it happen. My point is so far it is hard to break the barriers to step from the stage of
truly sampling from a certain distribution to the stage of generating from uncertain distributions
based on a certain procedure.

However, we can do the pseudo simulation of distribution uncertainty, that is, generating
some data which can hardly be described by the analysts (who do not know the generating
scheme) using a certain distribution model. Under this spirit, by borrowing the notations from
the G-framework, we will follow the following routine to do the simulation:

M[0, 1]
·(σ−σ)+σ
=======⇒ M[σ, σ]

·N (0,1)
=====⇒ N̂

(
0, [σ2, σ2]

) NL. CLT
======⇒ N

(
0, [σ2, σ2]

)
.

The N̂ (0, [σ2, σ2]) is the new concept semi-G-normal distribution which is formally defined
in Section 4.2.

4.1 Pseudo simulation of maximal distribution
The motivation of M[0, 1] is to cover the distribution uncertainty (especially the mean uncer-
tainty) within [0, 1], regardless of any bizarre fluctuation in that interval. It will based on the
least conditions: as long as the data points is bounded in [0, 1], they can be regarded as a sample
from M[0, 1]. It will be clearer by looking at the definition: X ∼ M[0, 1] iff

Ê[ϕ(X )] = max
v∈[0,1]

ϕ(v) = max
v∈[0,1]

Eδv [ϕ(X )].

where δv is the dirac measure: δv (X = v) = 1. This means that when we have no idea about the
random patterns in [0, 1], we are making a concession that each data point is treated as a sample
point from the dirac distribution (i.e. almost surely equal to a constant), which seems totally
degenerated and boring but this will be an almost undoubtedly valid setting. In fact, because of
the concession, M[0, 1] can cover all linear distributions with support on [0, 1]. In other words,
considering the set

F B {F : the CDF of distribution with support [0, 1]},

then for any F ∈ F, we have the inequality that

EF[ϕ(X )] =
∫ 1

0
ϕ(x) dF (x) ≤

∫ 1

0
max

x∈[0,1]
ϕ(x) dF (x) = max

x∈[0,1]
ϕ(x),

which implies EF[ϕ(x)] ≤ Ê[ϕ(x)].
The data provider can do the pseudo simulation of M[0, 1] by doing general procedure:
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1. Generate the block length ni ∈ N+ from some discrete random rule A;

2. randomly choose one distribution Fi from F based on some random rule B;

3. simulate a block Z1, Z2, . . . , Zni from Fi;

4. put the block into the current dataset, then go back to step 1, until the data size reaches
N .

For the second step, in practice, since we cannot really run through all the elements in F, we can
choose Fi from a subset {Fi : i ∈ I} ⊂ F. There are many candidates of subsets we can choose.
Rule A can be any discrete random generator, some special sequences like the digit numbers
of some irrational number (e.g. π and e) or integer outcomes provided by quantum computers.
Rule B can be some Markov models or hierarchical models.

For the example used at the beginning of this chapter, we actually generate M[0, 1] from
this simple scheme:

1. Generate the block length ni ∼ Poisson(N/100), where i is the index of loop;

2. generate αi, βi ∼ Unif(0, 50); ci ∼ Beta(αi, βi) (the support of Beta distribution is [0, 1]);

3. generate a block of data Z1, Z2, . . . , Zni ∼ Fδci (which belongs to a family of dirac mea-
sures; in other words, they are all equal to ci)

4. put the block into the current dataset, then go back to step 1, until the total data size
reaches N .

The following theorem shows we can use the simulated M[0, 1] sequence to produce M[σ, σ]
for any σ, σ ∈ R.

Theorem 4.1.1 (Scaling and translating properties of M[0, 1]). In the sublinear expectation
space (Ω,H , Ê), let X ∼ M[0, 1], c ∈ R and a ∈ R+ , then we have

aX + c d
= M[c, a + c].

Proof. First we will show that aX + c will also follow the Maximal distribution. Let X̄ be an
independent copy of X (then accordingly, aX̄ + c will be an independent copy of aX + c), given
X + X̄ d

= 2X , we have

(aX + c) + (aX̄ + c) d
= 2aX + 2c d

= 2(aX + c).

Next we only need to check the Ê[aX + c] and −Ê[−(aX + c)], which can be directly obtained
from the positive homogeneity and cash translatability:

Ê[aX + c] = aÊ[X] + c = a + c,

and
−Ê[−(aX + c)] = −(Ê[a(−X )] − c) = a(−Ê[−X]) + c = c. �

Remark 4.1.1.1. This result reminds us that (σ − σ) · M[0, 1] + σ d
= M[σ, σ].
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Remark 4.1.1.2 (how to standardize M[µ, µ]). Given Y ∼ M[µ, µ], using the above theorem,
we want aX + c d

= Y d
= M[µ, µ̄], set c = µ, a + c = µ̄, then a = µ̄ − µ and we have

( µ̄ − µ)M[0, 1] + µ d
= M[µ, µ̄],

equivalently, (since it is safe to move the constants around the identical distributed relation)

1
µ̄ − µ

M[µ, µ̄] −
µ

µ̄ − µ

d
= M[0, 1].

To summarize this section, we can implement the pseudo simulation to produce a sample
sequence from M[1, 2]. Figures 4.1 and 4.2 visualize two simulated artificial datasets, in which
we can see that when the blocking size (in the simulation algorithm) is very small, the generated
sample actually change its “constant” value nearly in a pointwise way.

Figure 4.1: Simulated sample of M[1, 2] with large block length

Figure 4.2: Simulated sample of M[1, 2] with small block length
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4.2 Pseudo simulation of semi-G-normal distribution

First we can review the new concept of semi-G-normal distribution and its properties.

Definition 4.2.1 (the Semi-G-normal distribution in one dimension). In the sublinear expec-
tation space (Ω,H , Ê), we say W will follow the Semi-G-normal distribution, denoted as,
W ∼ N̂ (0, [σ2, σ2]), if there exist Y ∼ N (0, [1, 1]) , Z ∼ M[σ, σ], σ ≥ σ ≥ 0 and Y is
independent from Z , such that

W = Z · Y

where the direction of independence here cannot be reversed and Y can be regarded as the
classical standard normal distribution.

Remark 4.2.1.1 (the mean and variance of W ). It is not hard to show that it has a certain zero
mean:

Ê[W ] = Ê[ZY ]
= Ê[Ê[zY ]z=Z ]
= Ê[E[zY ]z=Z ] = Ê[(z · 0)z=Z ] = 0

similarly, −Ê[−W ] = 0. For the variance, we have

Ê[W2] = Ê[Z2Y 2]
= Ê[Ê[z2Y 2]z=Z ]
= Ê[E[z2Y 2]z=Z ]
= Ê[(z2 · 1)z=Z ] = max

z∈[σ,σ]
z2 = σ2

and similarly,

−Ê[−W2] = Ê[−Z2Y 2]
= −Ê[E[−z2Y 2]z=Z ]
= − max

z∈[σ,σ]
(−z2) = min

z∈[σ,σ]
z2 = σ2.

We are still working on the simulation of the sequential independence in this framework and
have some incomplete results, which show that to simulate Z d Y , as long as the realization
of Z have no effect on the distribution (or generation) of Y , we can achieve the sequential
independence (which is much weaker than the classical independence). Then we can simulate
the semi-G-normal sequence shown by Figure 4.3, the initial analysis of which is exactly the
work we have done at the beginning of this chapter in Section 3.1.
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Figure 4.3: A sample sequence from N̂ (0, [1, 4])

What we can do after getting the simulated semi-G-normal sequence? One attempt is to
directly estimate its sublinear expectation (like its variance interval). Figure 4.4 shows that
the estimated interval is able to describe the variance uncertainty of the sequence, indicating
that we actually have built up a procedure from simulation of the distribution to estimation
of its parameter interval. This procedure is beneficial to the validation of future candidates
of the estimation and also inspires us to think about how to apply the estimation methods in
G-framework into real dataset.
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Figure 4.4: Central group estimation of the variance uncertainty interval of N̂ (0, [1, 4])
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4.3 Approximate simulation of G-normal distribution

Review the central limit theorem in the G-framework.

Theorem 4.3.1 (General connection between the Semi-G-normal and the G-normal distri-
bution). In a sublinear expectation space (Ω,H , Ê), consider a sequence of nonlinear i.i.d.
{Wi}i=1 ∼ N̂ (0, [σ2, σ2]) and X ∼ N (0, [σ2, σ2]), then for any ϕ ∈ C(R) satisfying linear
growth condition, we have

Ê[ϕ(
1
√

n

n∑
i=1

Wi)]→ Ê[ϕ(X )],

as n → ∞. In other words, 1√
n

∑n
i=1 Wi converges in distribution to the G-normal distributed X .

After simulating the sequence of semi-G-normal random points (with the sequential non-
linear i.i.d.), we can group the sequence (with size n) to approximately simulate the G-normal
distribution.

Figure 4.5 shows a sample sequence from N (0, [1, 4]) which looks like independent sample
points and we need to know that, different from the semi-G-normal sequence, this is no longer
simply a sample from a mixture of samples of normal distributions with different variances.

Figure 4.5: A sample sequence from N (0, [1, 4])

Figure 4.6 implies that the central-groupmax-mean estimation is able to capture the variance
interval regardless of the degree of uncertainty of the nonlinear distribution (since N (0, [1, 4])
has much more uncertainty than N̂ (0, [1, 4]), as long as the sequence has certain zero mean and
variance uncertainty.
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Figure 4.6: Central group estimation of the variance uncertainty interval of N (0, [1, 4])



Chapter 5

Concluding Remarks and Future
Development

To begin with, I would like to share one aphorism I learned from Prof. Peng:

“Having some precaution before data analysis is even more important than mathematics.”

Actually, this thesis is the theoretical and technical preparation for future application of the
G-expectation framework. In general, I plan to examine whether we can build up a complete
data analysis procedure under ambiguity enhanced by theG-framework duringmy Ph.D. career.
Given a real dataset from an industrial problem, we will try to test the distribution uncertainty,
estimate the parameter uncertainty interval, compute the corresponding G-expectation using
the estimated parameters and finally give a robust strategy to control or cover the uncertainty. In
order to examine our data analysis procedure, we need to know the “true parameter intervals” so
it requires us to design a simulation scheme to provide the artificial dataset with known details
of its underlying structure. However, these details are only known by the data provider (or .
Without awareness of any information of these details, the data analyst will use the statistical
methods in the G-framework to analyze the dataset.

This thesis is also a summary of my thoughts on nonlinear expectation over the past two
years, in which readers may notice that there are many points and ideas still waiting for more
suggestions and discussion. For the remainder of this chapter, I would like to share with readers
some hopefully useful and heuristic comments to make some conclusions, plans, ambition and
also some dreams.

First of all, the newly-defined concept (Semi-G-normal Distribution) plays a central role
in the thesis. This is also an original substructure which provides a transition from classical
to G-normal distribution to fill in the thinking gap between these two basic concepts and, in
a more general sense, also between the linear and nonlinear expectation worlds. Meanwhile,
It offers a more feasible and intuitive way to think about, compute and simulate the G-normal
distribution. For the PDE side, the iterative method based on the semi-G-normal distribution
(Theorem 2.3.4) gives an new and interesting stochastic link inspiring more attempts to solve
the high-dimensional G-heat equation using a Monte-Carlo method.

Aswe can see in Chapter 2, the set ofmeasures of the semi-G-normal distribution, consisting
of a class of linear measures of N (0, σ2) with σ ∈ [σ, σ], is smaller than that of the G-
normal distribution. Hence, on the one hand, it has less unusual properties than the G-normal
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distribution and more similar properties to the linear normal distributions (e.g. its sublinear
“skewness” is equal to zero); on the other hand, it has strong connections with G-normal
distribution (e.g. the sublinear expectation with convexity and the nonlinear CLT). As a crucial
concept in this thesis, the semi-G-normal distribution is aimed for constructing a bridge between
the linear and the sublinearworld so that in the future,more tools on the land of linear expectation
framework can be transformed to the island of the sublinear expectation framework to help the
larger community in both the academy and industry to understand the intuition, learn the theory
or algorithms and apply them to the real world problems with uncertainty.

As a future continuation of Chapter 2, we intend to do more theoretical and numerical
practice about the G-normal distribution (such as the simulation of multivariate G-normal
distribution). Since we have also defined and studied the semi-sequential independence, in
the future, under this semi-version nonlinear independence, we can make the semi-G-normal
distribution into the Semi-G-Brownian motion which may also play as the semi-version of the
G-Brownian motion (as a transition from classical to G-Brownian motion). By approximately
simulating the G-Brownian Motion using the semi-G-Brownian Motion, we might be able
to simulate the backward stochastic differential equations (BSDEs) driven by G-Brownian
Motion which are also connected with a class of nonlinear PDEs, by appying the Feynman-Kac
Formula in the G-framework in Hu et al. (2014), in which by computing the G-expectation
of G-Brownian Motion using the corresponding iterative algorithm. In this way we may be
able to numerically solve the multi-dimensional nonlinear PDEs (which often make classical
numerical PDE methods fail) (similar ambition can be found in Beck et al. (2017)) and those
PDEs are connected with a large class of financial pricing formulas under ambiguity.

Based on the distributions and independence studied in Chapter 2 (especially the semi-
G-normal distribution N̂ (0, [σ2, σ2]) with its connection with N (0, [σ2, σ2]) and N (0, σ2)),
Chapters 3 and 4 explore the statistical scheme in the G-framework, consisting of estimation
and simulation, specially under variance uncertainty.

As shown in Chapter 3, the improved max-mean estimation methods with two data-driven
rules (Central group rule and Time-value ordering rule) are able to capture the true parameter
interval regardless of the underlying distributional setting on the uncertain parameter (especially
the central group rule). When we design these two heuristic rules, we do not really rely on or
assume any (explicit) prior distributional information on the varying parameter (although some
implicit requirements are waiting to be found out in the future). Meanwhile, since usually we are
unaware of the blocking design in the generation scheme of dataset (except in real application,
we may make some reasonable assumptions based on past experiences), we should not expect
the dataset is generated based on some changing parameters with equal blocking lengths. In this
sense, our data-driven rules are not really “guessing” some “true” blocking size but “choosing”
an optimal group size n to do the trade-off between the [L(n), R(n)] and [l (n), r (n)] because
we know that the true parameter interval should approximately appear at some places on the
max-mean and min-mean curves as n changes.

In the near future, we will need to do more examinations on the two data driven rules by
changing the data generation scheme, comparing with some existing classical statistical models
(such as those models based on Bayesian or Markov setting) and so on. By doing so, we want
to reflect on the reasons why our methods have these interesting and promising numerical
performances and also think about whether we can put these ideas into the context of data
analysis in our real world. Both of these directions may push us further to a more general
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statistical methodology associated with the G-framework. If possible, we intend to further think
about the theoretical backup (or at least, the existence of more complete statistical theory)
behind this estimation method, which will not only give more solid support on the method
but more chances for us to design the estimation method in general (e.g. the estimation for
time series in the G-framework). Meanwhile, we also need to put the max-mean estimation
into real-world scenario where we can do the trade-off on the grouping design based on some
application background, which is actually not only more sensible and reasonable but also more
practically useful. The estimation in theG-frameworkwill also be connectedwith some classical
statistical theory with similar spirits such as the Robust Statistics. The former will raise up more
interesting questions in situations under ambiguity for the latter as well as the larger statistical
world.

For the simulation, Chapter 4 has already worked on the pseudo simulation of the maximal
distribution then the simulation of semi-G-normal and G-normal distribution. The pseudo
simulation scheme of the maximal distribution is based on the idea about the “black-box”
situation involving two parties (the data analyst and the data provider), which is a quite general
and flexible design. It is a usually valid concession when, without making assumptions, the
pattern of dataset is hard to describe by a certain probabilistic model if the analyst is not
offered any crucial information about the generation scheme (in the simulated world) or the
data structure (in the real world). It is important to point out that the pseudo simulated sequence
can be treated as the maximal distribution only by the data analysts (which is a conservative
concession for them due to lack of prior information) but when provided with underlying
information about the random pattern, these pseudo generated sequence does not need to be
considered as the maximal sequence. Therefore, one cannot expect us to truly reproduce and
visualize the “mysterious“ uncertain pattern within the interval of M[µ, µ]. In other words,
if one day I show you the exact changing rule to describe the stochastic pattern of M[µ, µ],
then without loss of generality, it can be expressed by a certain probability measure P which
means its uncertainty set has degenerated to a singleton and it becomes a distribution in
classical framework. From my point of view, the simulation of uncertainty (or those nonlinear
distributions in the G-framework) should be discussed under the “provider-analyst” setting and
the black-box situation. The simulated artificial datasets are mostly used in the exploration and
design of the statistical methods in the G-framework, which will be further examined in real
data analysis.

In addition to the simulation of the distributions in the G-framework, another aspect which
is also an important and challenging question I plan to study in the future is how to understand
and simulate the asymmetric sequential independence: in the G-framework, usually “X is
independent from Y” does not imply “Y is independent from X”. Do we have this kind of
relations in real world and how can we further quantify them? Hu (2011) shows in the non-
degenerate case (staying in the G-framework but not in the linear framework), if X and Y
are mutually nonlinearly independent, they will be both maximally distributed. How can we
intuitively understand or numerically check this astonishing result? The numerical study of
sequential independence is also crucial to the future simulation of the G-Brownian motion.

For the statistics in theG-framework, besides the estimation and simulation, doing hypothesis
tests is always the additional crucial part I will reflect on during the future study of the previous
two parts, because I will need to give a reasonable test of the distribution uncertainty or
the asymmetric independence for the dataset before applying any tools in the G-framework.
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Meanwhile, the ideas of simulation and estimation are highly related with the intuition of
hypothesis tests in the G-framework. For instance, the idea of improved max-mean estimation,
to appropriately group the data, actually gives us a hint about how to test the parameter
uncertainty in the dataset.

Coming back to the aphorism at the beginning of chapter, the statistical methods and practice
of G-framework is aimed at encouraging the data analysts and statisticians to have the notion
of precaution in order to get closer to the reality (usually with uncertainty), and providing them
with tools in a generalized framework intrinsically including uncertainty so as to not simply
be restricted in the classical probability framework. The methods in the G-framework is not a
replacement of the classical ones but the supplement or pre-strategies before diving into the
delicate analysis of dataset with more underlying information (which usually will apply the
stochastic models in classical framework). With this spirit, I intend to explore the feasibility
and make the industrial attempts of the statistical methods of G-framework, which become one
of the important future research directions following this thesis.

Meanwhile, from the discussion with my supervisor, we plan to do data analysis in a typical
industrial world, which is a relatively independent project so far. During this new journey, if there
is any places (showing some uncertainty) potentially requiring the techniques in G-framework,
it will be really fantastic to combine these two directions and see what we can achieve and how
the precaution strategy from G-framework will be beneficial in application.

As the statistician George Box said, “all models are wrong but some are useful”. All models
are wrong but we do care about howwrong the model may be as long as it is useful. Nonetheless,
if the assumptions of the model are too strong, we should not take “this wrong” as granted and
assess it only based on its “usefulness”, because there is another aspect called the “danger”
(perhaps caused by the uncertainty brought by the lack of information). We need to worry about
not only the “risk control” but also the “uncertainty control”. We should never stop trying
to improve the model to make it closer to reality (of course, before it becomes useless). The
G-expectation framework actually gives us more space to explore to enhance the models with
more precaution to minimize the danger brought by the classical ones.

Acknowledgement: I would like to express my sincere gratitude to Prof. Kulperger and
Prof. Peng for their beneficial guidance and strong support all the time. Since I stepped into this
area in 2016, especially during the one-year thesis research, thanks to the fruitful discussion
with my supervisor, Prof. Peng, Prof. Davison, Prof. Yu, Prof. Huang and my fellow students, as
well as the valuable communication in the meetings and workshops (during the summer of 2017
and 2018), which is very necessary and important when studying the G-framework (a brand-
new comprehensive framework requiring the strengths from different areas), I have been able to
gradually build up a basic system of perspectives on the statistical and practical methodology of
G-framework. I treat this experience as an exploration or adventure full of curiosity, struggling
and excitements, which will be definitely further pushed forward and expanded in my future
career.
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Appendix A

More Technical Details

A.1 More testing of the estimation methods

A.1.1 Small true parameters
Set a relatively small true parameter interval as [σ, σ] = [0.1, 0.2] ([σ2, σ2] = [0.01, 0.04]),
then implement the central group rule, by replicating the experiment 1000 times, to get the
following results.

Figure A.1: Sampling distribution of the central group estimators with small true parameters

From Figure A.1, we can see that the central group method can still approximately capture and
cover the true parameters, indicating that the results from our estimation method do have the
potentials to move after the true parameters, rather than create some illusion (like randomly
staying around some values irrelevant with the true parameters). Similar to Figure 3.9, most of
the estimations of the left point are below and not too far away from the true one.

77
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Similarly, we have the following histograms (Figure A.2) for the estimation method based
on the time-value ordering.

Figure A.2: Sampling distribution of the time-value ordering estimators with small true param-
eters

Figure A.2 shows that when the left-point estimations are much smaller than the true value,
which is the similar pattern to Figure 3.11, indicating that when the true parameter is small, the
time-value ordering method still has the “biased” feature when estimating σ2.

A.1.2 Large true parameters

Consider a relatively large parameter interval [σ, σ] = [2, 3] ([σ2, σ2] = [4, 9]). We implement
the central group and time-value ordering rule, by replicating the experiment 1000 times, to get
the following ‘sampling distribution” of estimators. We can see that for large variance, since the
data points generally have much more “variation”, our estimators have larger variance around
the true parameters, but they still achieve our goal which is simply to let the estimators cover
the uncertainty interval with a relatively narrow range (compared with the most points on the
original max-mean curves).
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A.2 Some R codes we use in the thesis
This section will provide some useful R codes (mainly written as functions) as an inspiring
practical example for readers who are interested to apply them to reproduce and check some
results in this thesis even further explore and play with these algorithms.

#Chapter1: Iterate method based on the semi-G-normal distribution
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##1-dim
##function: Gheat.itn.int: using integration
##(can also be equivalently changed to MC method)
##gives the complete solution for u(t,x)
Gheat.itn.sol <- function(varphi.org, n=20,

T1=1, a=1, b=2,
x.step = .02,
x.range.scale = 2,
v.opt.mat=NULL, varphi.list=NULL,
splinefun.my = splinefun.my,
opt.my = opt.my.tri,
csv.name="test", save.ind=FALSE){

#MC.size = 2e3,
#"fmm" may not be good at extrapolation; but I checked that it works for x^n
varphi.list <- vector("list", n+1)
varphi.list[[1]] <- varphi.org
x.min <- -x.range.scale*b; x.max <- x.range.scale*b;
x.seq <- seq(x.min, x.max, x.step)
y.seq <- numeric(length(x.seq))
varphi.mat<- matrix(NA,nrow = length(x.seq), ncol = n+1)
varphi.mat[,1] <- varphi.list[[1]](x.seq)
#save each v.opt
v.opt.mat <- matrix(NA, nrow = (n-1)+2, ncol = length(x.seq)+2)
#also save the optimal v for the last x and last iteration,
#although it may not be very useful
v.opt.mat[,1] <- b
for (i in seq_len(n)){
#the iteration step i
temp <- varphi.list[[i]]
for (j in seq_along(x.seq)){
#the jth value of x.seq
#v.init <- v.opt.mat[i,j]
x1 <- x.seq[j]
#define the expt of N(x,v^2); x is fixed and v is the arg.
expt.v.fn <- function(v){
if(v==0){
return(x1)

} else {
f <- function(m) temp(x1+m)*(sqrt(n)/v)*dnorm(sqrt(n)*m/v)

integrate(Vectorize(f), -Inf, Inf)[[1]]
}

}
#opt.list <- opt.my(v.init, expt.v.fn, method = "L-BFGS-B",
lower = a, upper = b)
#y.seq[j] <- opt.list$value * (-1)
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#v.opt.mat[i,j]<- v.opt.mat[i,(j+1)] <- opt.list$par
opt.list <- opt.my(expt.v.fn)
y.seq[j] <- opt.list$value
v.opt.mat[i,j] <- opt.list$par
#update the v.opt at (i,j), guess the same for (i,j+1)

}
varphi.mat[,(i+1)] <- y.seq
varphi.list[[i+1]]<- splinefun.my(x.seq, y.seq)

}
if(save.ind){
#file.name <- paste0(csv.name, format(Sys.time(), "%Y-%m%d-%H%M%S"), ".csv")
file.name <- paste0(csv.name, ".csv")
write.csv(cbind(x.seq, varphi.mat), file = file.name)

}
u.tx <- varphi.list[[n+1]]
value <- varphi.list[[n+1]](0)
return(list(value=value,

varphi.mat = varphi.mat,
varphi.list = varphi.list,
v.opt.mat = v.opt.mat,
x.seq=x.seq,
u.tx = u.tx))

}

##function:summary.Gheat
##this will give all the visualization and numerical results we need.
##avoid assign the variable within the function environment
##t,x,n,a,b can be assigned in the arg list
summary.Gheat <- function(x.range.scale = 5, x.step = .02,

save.ind=FALSE,
save.global.ind = FALSE,
plot.ind=TRUE, plot.step=4, plot.x.range=3,
read.data = TRUE){

#if we do not have the result, create it
sd.name <- paste0("a",a.name,"b",b.name)
time.name <- paste0("time.",varphi.name,".",sd.name,".",as.character(n))
re.name <- paste0("re.",varphi.name,".",sd.name,".",as.character(n))
csv.name <- paste0(varphi.name,"-",sd.name,"-",as.character(n))
#delete the last -, we don’t need add the time for now.
if (!read.data){
#for many arguments, the order may be different,
so write x=x, to avoid the order problems
time <- system.time({re <- Gheat.itn.sol(varphi.org=varphi.org,

n=n, a=a, b=b,
x.range.scale=x.range.scale, x.step=x.step,
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save.ind=save.ind, csv.name=csv.name
)})

#method.spline = method.spline
if(save.global.ind){
assign(time.name,time, envir = .GlobalEnv)
assign(re.name, re, envir = .GlobalEnv)

}

} else {
file.name <- paste0(csv.name, ".csv")
re.data <- read.csv(file.name)
x.seq <- re.data$x.seq
varphi.mat <- re.data[,-c(1,2)]
n1 <- n+1
varphi.n1 <- splinefun(x.seq, varphi.mat[,n1],

method = method.spline)
re <- list(x.seq=x.seq, varphi.mat=re.data[,-c(1,2)],

value=varphi.n1(0))
}
#if we want to plot, plot it
if (plot.ind){
n1 <- n+1
x.seq <- re$x.seq
ind <- which(abs(x.seq)<plot.x.range)
ind.y <- unique(c(seq(1,n1,plot.step),n1))
matplot(x.seq[ind], re$varphi.mat[ind,ind.y], type = "l",

main=paste0("varphi=", varphi.name,
", sig.low=",a,", sig.up=",b),

xlab = "x", ylab = "varphi_i (x)")
abline(h=re$value, col="brown", lty=2)
abline(v=0, col="green",lty=3)

}
return(re$value)

}

#parameter setting
Nt=1e2;
dt <- T1/Nt
#grid points for t
t.seq <- seq(0,T1,dt)

#the range of x is range.x
#grid points for x
#Nx=5e3;
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#dx <- (range.x[2]-range.x[1])/Nx
#dt*b^2 #we want to keep it stable
dx <- 0.2
Nx <- (range.x[2]-range.x[1])/dx
x.seq <- seq(range.x[1], range.x[2], dx)

##An example
a <- 0.5; b <- 1;
n <- Nt
varphi.org <- function(x) x^3
varphi.name <- "x3"
a.name <- "05"; b.name <- "1"
summary.Gheat(x.range.scale = range.x[2]/b, x.step = dx,

save.ind = TRUE, plot.x.range = 2, plot.step = 8,
save.global.ind = TRUE,
plot.ind = TRUE, read.data = FALSE)

##2-dim
###parameters
dim = 2;
#correlation uncertainty, rou12
rou1 <- -1/2; rou2 <- 1/2;
#variance uncertainty sigx, sigy
sig1 <- c(1/2, 1/2); #(sigx.low, sigy.low)
sig2 <- c(1,1) #(sigx.up, sigy.up)
#e.g. rou = 0.5, sig = c(1,1) (sigx, sigy)
x.step = .1; v.step=.1
x.range.scale = c(5,5); MC.size = 1e4;
x.size = 1e3;
x.range.scale.test = c(8,8);
n=10 #number of iterations
T1=1 #terminal time point T
rou <- 1/10
sig <- c(1,1)/2

###basic functions

varphi.org <- function(x) sum(x^3)

make.cov.mat <- function(sig, rou){
#use rou, sig to create a cov matrix
dim <- length(sig)
corr.mat <- diag(rep(1,dim))
corr.mat[upper.tri(corr.mat)] <- rou
corr.mat[lower.tri(corr.mat)] <- t(corr.mat)[lower.tri(corr.mat)]
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diag(sig) %*% corr.mat %*% diag(sig)
}

#cov.mat <- diag(sig) %*% corr.mat %*% diag(sig)
sqrt.mat <- function(cov.mat){
e <- eigen(cov.mat)
V <- e$vectors
V %*% diag(sqrt(e$values)) %*% t(V)

}

create.x.mat <- function(x.range.sc, sig, x.step){
x.min <- -x.range.sc*sig; x.max <- x.range.sc*sig;

#we have x1,x2, ..., xd
#let d=2
x.seq1 <- seq(x.min[1], x.max[1], x.step)
x.seq2 <- seq(x.min[2], x.max[2], x.step)
len.x1 <- length(x.seq1)
len.x2 <- length(x.seq2)
x.mat <- cbind(rep(rep(x.seq1,each=len.x2), 1),

rep(rep(x.seq2,each=1), len.x1))
list(x.mat=x.mat, x.seq1=x.seq1, x.seq2=x.seq2)

}

##function: splinefun.d

splinefun.d <- function(x.mat, y){
#dim = 2
#Y.seq <- apply(x.mat,1,varphi.org)
xy.dat <- as.data.frame(cbind(x.mat, y))
#choose the spline function
spline.test <- gam(y ~te(V1,V2, bs = "tp"), data = xy.dat)
##spline.test <- gam(y ~s(V1,V2, bs = "tp"), data = xy.dat)
##spline.test02 <- gam(formula = paste0("Y.seq","~","s(V1,V2)"), data = X)
##spline.test1 <- gam(Y.seq ~s(V1, bs = "cr")+s(V2, bs = "cr"), data = X)
varphi.pred <- function(x){
x <- as.data.frame(t(x))
predict(spline.test, x)

}
return(list(varphi.pred=varphi.pred, values.fit=spline.test$fitted.values))
}

##write into a function
###function:Gheat.itn.sol.d
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Gheat.itn.sol.d <- function(dim = 2, rou1 = -1/2, rou2 = 1/2,
sig1 = c(1/2,1/2), sig2 = c(1,1),
varphi.org = function(x) sum(x^3),
x.step =.1,
x.range.scale = c(5,5),
MC.size = 1e3, x.size = 1e3,
n=10, T1=1,
xmat.input = FALSE, x.mat.user = NULL,
save.ind = TRUE, opt.method = "L-BFGS-B",
varphi.name = "x3", sd.name = "sig0501rou05"){

#Preparation
if(xmat.input){
#if x.mat is input by user, then use x.mat.user
#xmat.input = TRUE, user must specify the x.mat.user
x.mat <- x.mat.user

} else {
# x.mat <- rbind(rmvnorm(x.size, mean = rep(0,dim), sigma = diag(sig1)),
rmvnorm(x.size, mean = rep(0,dim), sigma = diag(2*sig2)))
#it may be too spread out
x.mat <- rmvnorm(x.size, mean = rep(0,dim), sigma = diag(sig2))

}

#y.seq
y.seq <- numeric(nrow(x.mat))

#list of varphi’s (for each iteration)
#varphi.list <- vector("list", n+1)
#varphi.list[[1]] <- varphi.org

#list of gam models
gam.list <- vector("list", n+1)

#arg-value matrix
varphi.mat<- matrix(NA,nrow = length(y.seq), ncol = n+1)
varphi.mat[,1] <- apply(x.mat, 1, varphi.org)

#save each v.opt
v.opt.mat <- array(NA, dim = c((n-1)+2, nrow(x.mat) +2,
length(sig1)+length(rou1)))

#main procedure
mc.sample <- rmvnorm(MC.size,

mean = rep(0,dim), sigma = diag(rep(1,dim)))
v.init1 <- c(sig2, rou2)
#set MC grid points
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#initialize the guess for the first x point at each iteration.
v.opt.mat[,1,] <- matrix(rep(v.init1, nrow(v.opt.mat[,1,])),
nrow = nrow(v.opt.mat[,1,]), byrow = TRUE)
i=1;
for (j in seq_len(nrow(x.mat))){
cat("i=", i," ", "j=", j,"\n")
#the jth value of x.seq
v.init <- v.opt.mat[i,j,]
x1 <- x.mat[j,]
#define the expt of N(x,v^2); x is fixed and v is the arg.
#mvnorm
expt.v.fn <- function(v){
sig <- v[1:dim]; rou <- v[-(1:dim)]
cov.mat <- make.cov.mat(sig=sig, rou = rou)
-mean(apply(x1 + mc.sample %*% (sqrt.mat(cov.mat=cov.mat)/sqrt(n)),

1, varphi.org))
}

opt.list <- optim(v.init, expt.v.fn, method = opt.method,
lower = c(sig1,rou1), upper = c(sig2,rou2))

y.seq[j] <- opt.list$value * (-1)
#update the v.opt at (i,j), guess the same for (i,j+1)
v.opt.mat[i,j,] <- v.opt.mat[i,(j+1),] <- opt.list$par
}

varphi.mat[,(i+1)] <- y.seq
xy.dat <- as.data.frame(cbind(x.mat, y.seq))
gam.list[[i+1]] <- gam(y.seq ~te(V1,V2, bs = "tp"), data = xy.dat)

for (i in seq_len(n)[-1]){
#the iteration step i
gam.temp <- gam.list[[i]]
for (j in seq_len(nrow(x.mat))){
#j=1
cat("i=", i," ", "j=", j,"\n")
#the jth value of x.seq
v.init <- v.opt.mat[i,j,]
x1 <- x.mat[j,]
#define the expt of N(x,v^2); x is fixed and v is the arg.
#mvnorm
expt.v.fn <- function(v){

sig <- v[1:dim]; rou <- v[-(1:dim)]
cov.mat <- make.cov.mat(sig=sig, rou = rou)
new.dat <- as.data.frame(x1 + mc.sample %*%
(sqrt.mat(cov.mat=cov.mat)/sqrt(n)))
-mean(predict.gam(gam.temp, new.dat))
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}
opt.list <- optim(v.init, expt.v.fn, method = opt.method,

lower = c(sig1,rou1), upper = c(sig2,rou2))
y.seq[j] <- opt.list$value * (-1)
#update the v.opt at (i,j), guess the same for (i,j+1)
v.opt.mat[i,j,] <- v.opt.mat[i,(j+1),] <- opt.list$par
}

varphi.mat[,(i+1)] <- y.seq
#store the spline.test object
xy.dat <- as.data.frame(cbind(x.mat, y.seq))
gam.list[[i+1]]<- gam(y.seq ~te(V1,V2, bs = "tp"), data = xy.dat)

}
result <- list(varphi.mat = varphi.mat,

gam.list = gam.list,
v.opt.mat = v.opt.mat,
x.mat=x.mat)

if(save.ind){
#re.name <- paste0("re.",varphi.name,".",sd.name,".",as.character(n))
list.name <- paste0(varphi.name,"-",sd.name,"-",as.character(n),"-")
file.name <- paste0(list.name, format(Sys.time(), "%Y-%m%d-%H%M%S"), ".Rdata")
list.save(result, file = file.name)

}
return(result)

}

###function:summary.Gheat.d

#run the whole function then test the time
#consider the time of each iteration if needed
summary.Gheat.d <- function(result = NULL,

x.sc.new = c(2,2), k.plot.seq = NULL,
sig.new = c(1,1),
x.step.new =.1,
varphi.org = function(x) sum(x^3),
result.plot = NULL,
plot.ind = TRUE, alpha = .75){

if(is.null(result.plot)){
gam.list <- result$gam.list
varphi.mat <- result$varphi.mat
x.mat <- result$x.mat

re.x <- create.x.mat(x.range.sc=x.sc.new, sig=sig2,
x.step=x.step.new)
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x.mat.new <- re.x$x.mat
x.seq1.new <- re.x$x.seq1
x.seq2.new <- re.x$x.seq2

varphi.mat.new <- matrix(NA,nrow = nrow(x.mat.new),
ncol = ncol(varphi.mat))

varphi.mat.new[,1] <- apply(x.mat.new, 1, varphi.org)
x.mat.new.dat <- as.data.frame(x.mat.new)
for (k in seq_len(ncol(varphi.mat))[-1]){
varphi.mat.new[,k] <- predict.gam(gam.list[[k]], x.mat.new.dat)
}
if(plot.ind){

k = 1;
alpha1 = alpha;
persp3d(x.seq1.new, x.seq2.new, varphi.mat.new[,k], col=k,
alpha = alpha1, xlab = "x1", ylab = "x2", zlab = "varphi_i(x1,x2)")
if(is.null(k.plot.seq)) k.plot.seq <- ncol(varphi.mat)
for (k in k.plot.seq){
persp3d(x.seq1.new, x.seq2.new, varphi.mat.new[,k], col=k,
alpha = alpha1, add = TRUE,xlab = "x1", ylab = "x2", zlab = "varphi_i(x1,x2)")
}
}
return(list(x.mat.new = x.mat.new,

varphi.mat.new = varphi.mat.new))
} else {
x.mat.new <- result.plot$x.mat.new
varphi.mat.new <- result.plot$varphi.mat.new
if(plot.ind){

k = 1;
alpha1 = alpha;
persp3d(x.seq1.new, x.seq2.new, varphi.mat.new[,k], col=k,
alpha = alpha1, xlab = "x1", ylab = "x2", zlab = "varphi_i(x1,x2)")
if(is.null(k.plot.seq)) k.plot.seq <- ncol(varphi.mat)
for (k in k.plot.seq){
persp3d(x.seq1.new, x.seq2.new, varphi.mat.new[,k], col=k,
alpha = alpha1, add = TRUE,xlab = "x1", ylab = "x2", zlab = "varphi_i(x1,x2)")
}
}
}

}

#Chapter2: Estimation of variance uncertainty
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##function: max.mean (time order)
max.mean <- function(y, n.guess){
m <- floor(length(y)/n.guess)
y <- y[1:(m*n.guess)]
y.mat <- matrix(y, ncol = n.guess, byrow = TRUE)
mean.seq <- apply(y.mat, 1, mean)
mu.low.est <- min(mean.seq)
mu.up.est <- max(mean.seq)
c(mu.low.est, mu.up.est)
}

##function: max.mean2 (value order)
max.mean2 <- function(y, n.guess){
m <- floor(length(y)/n.guess)
y <- y[1:(m*n.guess)]
y.mat <- matrix(y[order(y)], ncol = n.guess, byrow = TRUE)
mean.seq <- apply(y.mat, 1, mean)
mu.low.est <- min(mean.seq)
mu.up.est <- max(mean.seq)
c(mu.low.est, mu.up.est)
}

##Improvement: how to choose the group size
###function: CentralGroup.est
CentralGroup.est <- function(y, n.seq = NULL,

plot.ind=TRUE, par.true=c(1,4)){
center <- mean(y)
N <- length(y)
#y.ord <- y[order(y)]
#y.ord[N/2]
#y.ord[N/2+1]
#median(y.ord)
if(is.null(n.seq)){
n.seq <- seq(2,floor(N/2),2)

}
est.all.mat <- matrix(nrow = length(n.seq), ncol = 4)
#i <- 100
for (i in seq_along(n.seq)){
n <- n.seq[i]
m <- floor(N/n)
y.mat <- matrix(y[1:(m*n)], ncol = n, byrow = TRUE)
mean.seq <- apply(y.mat, 1, mean)
min.seq <- apply(y.mat, 1, min)
max.seq <- apply(y.mat, 1, max)
mu.low.est <- min(mean.seq)
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mu.up.est <- max(mean.seq)
est.all.mat[i,1:2] <- c(mu.low.est, mu.up.est)

l.gr <- max(min.seq[min.seq<=center])
r.gr <- min(max.seq[max.seq>=center])
est.all.mat[i,3:4] <- c(l.gr, r.gr)
}
L <- est.all.mat[,1]
R <- est.all.mat[,2]
l <- est.all.mat[,3]
r <- est.all.mat[,4]
ind1 <- min(which(R-r <= 0))
ind2 <- min(which(l-L <= 0))
n1 <- n.seq[ind1]; n2 <- n.seq[ind2]
a2.est <- L[ind2]
b2.est <- R[ind1]
if(plot.ind){
matplot(n.seq, est.all.mat, type = "l",

ylab = "values", xlab = "group size n",
main = "CentralGroup Estimation")

abline(h=par.true, col="brown", lty=2)
legend("top",

c("GroupMean.min", "GroupMean.max",
"CentralGroup.min", "CentralGroup.max",
"par.true"),

col=c(1:4,"brown"), lty=c(1:4,2),
lwd=2, cex=0.4, box.lty = 2, box.col = "grey",
pch = 25)

}
return(list(est.all.mat = est.all.mat, ab.est = c(a2.est, b2.est),

n.seq = n.seq))
}

###function: TimValOrd.est
TimValOrd.est <- function(y, step=10, plot.ind=TRUE,

min.n=1, min.m=2,
choprule="both.n",
par.true=c(0,5),
start=1, len.frac=1,
y.scale=1){

#time ordering
#c("both.n", "min.n", "max.n","fix.n")
#min.n
#min.m = min number of groups

y <- y*y.scale
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N <- length(y)
n.seq <- seq(min.n, N/min.m, step)
est.mat <- matrix(0, ncol=2, nrow=length(n.seq))
for (i in seq_along(n.seq)){
est.mat[i,] <- max.mean(y, n.seq[i])

}
est.mat2 <- matrix(0, ncol=2, nrow=length(n.seq))
for (i in seq_along(n.seq)){
est.mat2[i,] <- max.mean2(y, n.seq[i])

}
if(plot.ind){
len <- floor(length(n.seq)*len.frac)
ind <- start+seq_len(len)-1
n.seq1 <- n.seq[ind]
sum2 <- n.seq1[1]+n.seq1[length(n.seq1)]
n.lab <- seq(0, ceiling(N/(min.m*100))*100, step*10)
n.lab[1] <- 1
n.lab1 <- unique(floor(N/seq(min.m, N, 1)))
m.lab <- floor(N/n.lab1)
matplot(n.seq[ind],cbind(est.mat[rev(ind),], est.mat2[ind,]),

type = "l",
col = c(2,2,4,4),

ylab = paste("estimation *", y.scale), xlab = "",
main="Est for different group sizes",
xaxt=’n’)

#axis for the n.seq[rev(ind)]
legend("top",

c("TimOrd.min ", "TimOrd.max ",
"ValOrd.min ", "ValOrd.max ",
"par.true"),

col=c(2,2,4,4,"brown"), lty=1:5,
lwd=2, cex=0.4)

axis(1, at = sum2 - n.lab, labels = n.lab, line = 1,
col = 2, col.ticks = 2, col.axis = 2)

mtext("n.rev", 1, line = 1, at = -40, col = 2)
#axis for the n.seq[ind]
axis(1, at = n.lab, line = 3,

col=4, col.ticks=4, col.axis=4)
mtext("n", 1, line=3, at=-40, col=4)
#par.true
abline(h=par.true[1], col="brown", lty = 5)
abline(h=par.true[2], col="brown", lty = 5)

}
n1 <- n.seq[sum(est.mat2[,2] - est.mat[rev(seq_along(n.seq)),2] > 0)]
n2 <- n.seq[sum(est.mat[rev(seq_along(n.seq)),1] - est.mat2[,1] > 0)]
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n12 <- c(n1,n2); n12.ord <- n12[order(n12)]
min.n <- n12.ord[1]; max.n <- n12.ord[2]
n.fix <- n.seq[length(n.seq)]
if(choprule=="min.n"){
return(max.mean2(y, min.n)/y.scale)

} else if(choprule == "max.n"){
return(max.mean2(y, max.n)/y.scale)

} else if(choprule == "both.n"){
return(rbind(c(max.mean2(y, n1)/y.scale, n1),

c(max.mean2(y, n2)/y.scale, n2)))
} else if(choprule == "fix.n"){
return(max.mean2(y, n.fix)/y.scale)

}
}

#Chapter3: Pseudo simulation of variance uncertainty

##function: rmaximal
##(simulation of maximal distribution, several candidates)
rmaximal <- function(N, n=1e2, a = 1, b = 2, len.sd=3) {
result <- numeric(N)
count <- 0
while (count < N) {
#random decide the length
#len <- rpois(1, n)
len <- floor(rnorm(1, mean = n, sd = len.sd))
alpha <- runif(1, 0,50)
beta <- runif(1, 0,50)
c <- rbeta(1, alpha, beta) *(b-a) + a
#dirac distributions (constant)
newvals <- numeric(len)+c
result[count + seq_along(newvals)] <- newvals
#make some space for the newvals
count <- count + length(newvals)

}
result[seq_len(N)]

}

rmaximal1 <- function(n, a = 1, b = 2) {
result <- numeric(n)
count <- 0
while (count < n) {
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#random decide the length
lambda <- sample(1:1e3, 1, prob = rep(1,1e3)/1e3)
len <- rpois(1, lambda)
alpha <- runif(1, 0,50)
beta <- runif(1, 0,50)
c <- rbeta(1, alpha, beta) *(b-a) + a
#dirac distributions (constant)
newvals <- numeric(len)+c
result[count + seq_along(newvals)] <- newvals
#make some space for the newvals
count <- count + length(newvals)

}
result[seq_len(n)]

}

rmaximal2 <- function(n, a = 1, b = 2) {
result <- numeric(n)
count <- 0
while (count < n) {
#random decide the length
lambda <- sample(1:1e3, 1, prob = rep(1,1e3)/1e3)
len <- rpois(1, lambda)
alpha <- runif(1, 0,50)
beta <- runif(1, 0,50)
newvals <- rbeta(len, alpha, beta) *(b-a) + a
result[count + seq_along(newvals)] <- newvals
#make some space for the newvals
count <- count + length(newvals)

}
result[seq_len(n)]

}

rmaximal3 <- function(n, a = 1, b = 2) {
result <- numeric(n)
count <- 0
while (count < n) {
#random decide the length
lambda <- floor(1/runif(1))
#lambda has no upper bound
len <- rpois(1, lambda = lambda)
alpha <- runif(1, 0,50)
beta <- runif(1, 0,50)
c <- rbeta(1, alpha, beta) *(b-a) + a
#dirac distributions (constant)
newvals <- numeric(len)+c
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result[count + seq_along(newvals)] <- newvals
#make some space for the newvals
count <- count + length(newvals)

}
result[seq_len(n)]

}

rmaximal4 <- function(n, a = 1, b = 2) {
result <- numeric(n)
count <- 0
while (count < n) {
#random decide the length
lambda <- floor(1/runif(1))
#lambda has no upper bound
len <- rpois(1, lambda = lambda)
alpha <- runif(1, 0,50)
beta <- runif(1, 0,50)
newvals <- rbeta(len, alpha, beta) *(b-a) + a
result[count + seq_along(newvals)] <- newvals
#make some space for the newvals
count <- count + length(newvals)

}
result[seq_len(n)]

}

rf1 <- function(n) rnorm(n, mean = b2, sd = 2)
rf2 <- function(n) rexp(n, rate = 2/(a2+b2))
rf3 <- function(n) runif(n, min = a2, max = b2)
rmaximal.list <- function(n, a = 1, b = 4,

density.set = list(rf1, rf2, rf3)) {
result <- numeric(n)
count <- 0
L <- length(density.set)
#size of density.set
while (count < n) {
ind <- sample(1:L, 1)
#random decide the length
lambda <- floor(1/runif(1))
#lambda has no upper bound
len <- rpois(1, lambda = lambda)
newvals <- density.set[[ind]](len)
newvals <- newvals[a < newvals & newvals < b]
result[count + seq_along(newvals)] <- newvals
#make some space for the newvals
count <- count + length(newvals)
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}
result[seq_len(n)]

}
##function: rsemiGnorm
rsemiGnorm <- function(N, n, sig.low=1, sig.up=2,

rmaximal.k=rmaximal){
#choose the rmaximal function
#(pseudo sim of nl.iid maximal distn)
rnorm(n) * rmaximal.k(N=N, n=n, a=sig.low, b=sig.up)

}

##function: rGnorm
##from nl.CLT, generate in approximated sense
rGnorm <- function(n, sig.low=1, sig.up=2, group.size = 50,

rmaximal.k=rmaximal){
N <- group.size
replicate(n, {
w.seq <- rsemiGnorm(N, sig.low = sig.low, sig.up = sig.up,

rmaximal.k = rmaximal.k)
1/sqrt(N) * sum(w.seq)

})
}
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