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Abstract 

Bumblebees exposed to neonicotinoid pesticides collect less pollen on foraging trips. Exposed 

bumblebees are also slower to learn to handle flowers, which may account for reduced pollen 

collection. It is unclear, however, why neonicotinoid exposure slows learning to handle flowers. 

I investigated the effect of imidacloprid, a neonicotinoid pesticide, on bumblebee motor learning 

using a lab model of flower handling. Bumblebees learned to invert inside a narrow tube and lift 

a petal-shaped barrier to reach a reward chamber. Imidacloprid-exposed bumblebees showed a 

dose-dependent delay to solve the task, which resulted from reduced switching between 

behavioural strategies and a subsequent delay in use of the successful strategy. This effect was 

consistent in colonies exposed at 10 but not 2.6 ppb, suggesting a variable effect on individuals 

at lower doses. These results help to explain why exposed bumblebees are slow to learn to 

handle flowers and collect less pollen on foraging trips. 
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Chapter 1 

1. Introduction  

 

1.1 The importance of bees 

 Bees diverged from the apoid wasps over 100 million years ago in the mid-Cretaceous 

period at roughly the same time as the early angiosperm radiation (Danforth et al., 2013; Doyle, 

2012). In the millions of years that followed, bees and flowering plants became intimately linked 

(Grimaldi, 1999; Hu et al., 2008; Willmer, 2011). Flowering plants evolved to offer nectar and 

pollen rewards to bees and other pollinators in exchange for their unwitting pollination services. 

Bees evolved to exploit these nectar and pollen rewards, which not only made them more 

efficient foragers, but more efficient pollinators from the plant perspective. Foods from 

flowering plants are central to the human diet (Şerban et al., 2008), and the age-old reliance of 

many flowering plant species on animal pollinators remains paramount to our success in food 

production. There are many animal pollinators (Rader et al., 2016). No pollinator group is more 

important to the success of human agriculture and wild plant populations, however, than bees 

(Calderone, 2012; Delaplane & Mayer, 2000; Forup et al., 2008; Klein et al., 2007; Mallinger & 

Gratton, 2015).  

 It is difficult to overstate the ecological and economic importance of animal pollination. 

Ollerton and colleagues (2011) estimated that 87.5% of flowering plants are animal-pollinated. 

In addition, the extent to which animal pollination benefits agriculture is substantial. Thirty-nine 

of the fifty-seven most commonly grown crops for human consumption either depend on or 

benefit from animal pollination and account for 35% of agricultural food production (Klein et al., 

2007). These crops include blueberry, apple, almond, avocado, tomato, coffee, cocoa, and many 

others that make our diets diverse and enjoyable. Global pollination services – the vast majority 

of which are performed by bees – have been valued at approximately 217 billion USD per year 

(Gallai et al., 2009; Rader et al., 2016). 

 If asked to think of bees, most people would think first of the European honey bee (Apis 

mellifera). This is no coincidence. Humans have exploited honey bees for honey and beeswax 

since at least the Neolithic period (Dams & Dams, 1977; Roffet-Salque et al., 2015) and have 

long marveled at their complex social organization (Seeley, 2010; von Frisch, 1967). It is the 
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contribution of honey bees to crop pollination, however, that makes them invaluable. By sheer 

number, the ease with which colonies can be managed, and the variety of plants they are able to 

pollinate, the honey bee is the single greatest contributor to overall crop pollination (Calderone, 

2012; Gallai et al., 2009; Klein et al., 2007; Moritz et al., 2010; Rader et al., 2016). They are also 

major pollinators of wild plants (Hung et al., 2018).   

 While the honey bee is clearly important, its success too often casts a shadow over the 

importance of the other 16,000 or more bee pollinators (Batra, 1995; Michener, 2007; Smith et 

al., 2016). Other managed bee species, including bumblebees (Bombus spp.), mason bees (Osmia 

spp.), the alfalfa leafcutter bee (Megachile rotundata), and the alkali bee (Nomia melanderi) are 

viable alternatives and often more effective pollinators than honey bees (Horth & Campbell, 

2018; Richards, 1993, 2016; Vergara & Fonseca-Buendía, 2012; Westerkamp, 1991). For 

example, bumblebees are used regularly in greenhouses to pollinate the tomato plant (Solanum 

lycopersicum) which requires floral sonication (the extraction of pollen from flowers by buzzing) 

for effective pollination; bumblebees, but not honey bees, are capable of sonication (Morgan et 

al., 2016; Rick, 1950). Perhaps most important, however, is the diverse population of wild bees 

that play an enormous role as pollinators behind the scenes and often outperform managed bees 

overall (Garibaldi et al., 2013; Rader et al., 2016; Winfree et al., 2008). 

 The human need for crop pollination is clear. Managed honey bees are not increasing 

along with the demand for pollination required to feed the growing human population (Aizen & 

Harder, 2009). Therefore, to maximize pollination, a flourishing, diverse population of wild and 

managed pollinators is required. It is thus concerning that wild and managed bee populations 

have been undergoing widespread declines (Cameron et al., 2011; Goulson et al., 2008; National 

Research Council, 2007; Potts et al., 2010a; Potts et al., 2010b).  

 

1.2 Bee declines and underlying causes  

 Evidence for bee declines is widespread but generally differs by species and location. 

While managed honey bees have increased globally over the past half-century, they have not 

increased at the same rate as demand for pollination, and several important regional declines 

have been observed (Aizen & Harder, 2009). For example, managed honey bee colonies have 

declined sharply in the USA (by 59% between 1947 and 2005; National Research Council, 2007) 

and central Europe (by 25% between 1985 and 2005; Potts et al., 2010b). While much less is 
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known about wild honey bees, limited evidence suggests that they are almost non-existent in 

areas with managed colonies (De la Rúa et al., 2009; Jaffé et al., 2010).  

  Among wild bees, bumblebee (Bombus spp.) populations have been best documented, 

and it is clear that widespread declines in abundance and diversity have occurred (Potts et al., 

2010a). At least 50% of British bumblebee species are in decline, and these tend to be specialists 

with narrow foraging ranges (Biesmeijer et al., 2006; Goulson et al., 2008; Williams & Osborne, 

2009). Similar declines have been documented across western and central Europe by Kosior and 

colleagues (2007). Only 20% of bumblebee species were considered not threatened in all 11 

countries studied, while 80% were threatened in at least one. In North America, reports of 

decline have come from Ontario and across the United States (Colla & Packer, 2008; Grixti et 

al., 2009; Jacobson et al., 2018). Importantly, the relative abundance of four once common 

species has decreased by up to 96% (Cameron et al., 2011). Unfortunately, much less is known 

about the status of bee populations other than Apis and Bombus (Brown & Paxton, 2009), though 

a recent review suggests that flying insects have decreased overall during the past few decades 

(Hallman et al., 2017).  

 What is driving these declines? Several anthropogenic factors have been identified and 

are likely interacting to stress bee populations (Goulson et al., 2008; Potts et al., 2010a). Land-

use change is a primary cause; agricultural intensification and urban development have reduced 

and fragmented the natural habitats bees rely on for forage and nesting (Kremen et al., 2007; 

Ricketts et al., 2008; Winfree et al., 2009), and resultant genetic isolation increases the risk of 

inbreeding (Zayed, 2009). In addition, warming associated with climate change is compressing 

the natural range limits of bumblebees by pushing their southern range limits northward (Kerr et 

al., 2015). The introduction of invasive species, such as the Varroa destructor mite and Nosema 

spp., has severely impacted wild and managed bees (Dainat et al., 2012; Otti & Schmid-Hempel, 

2008), and it is increasingly clear that the use of commercially bred bumblebee colonies in 

greenhouses is facilitating pathogen spread to wild bee populations (Graystock et al., 2014; 

Mallinger et al., 2017; Otterstatter & Thomson, 2008). Agrochemicals affect bees both directly 

and indirectly, with pesticides affecting bee health via consumption and topical application 

(Godfray et al., 2016; Nuyttens et al., 2013; Wood & Goulson, 2017) and herbicides affecting 

bee nutrition by reducing forage (Holzschuh et al., 2008). It has also been shown that pesticides 
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can exacerbate the effect of pathogens on bee populations (Doublet et al., 2015; Pettis et al., 

2012; Prisco et al., 2013). 

 Clearly many interacting stressors underlie bee declines. One pesticide class, however, 

has been singled out as an important culprit: neonicotinoids (Goulson, 2013). The European 

Food Safety Authority (EFSA) was commissioned to produce risk assessments for the three most 

widely used neonicotinoids – imidacloprid, thiamethoxam and clothianidin – and on the basis of 

these reports, a temporary moratorium on the three compounds was implemented in the EU in 

2013 (EFSA, 2013a, b, c). Ontario subsequently regulated neonicotinoid usage in 2015 with the 

goal to reduce neonicotinoid-treated seed applications by 80% before 2017 (Ministry of the 

Environment and Climate Change, 2015). Neonicotinoid pesticides and their risk to bees will be 

discussed in the following section.   

 

1.3 Neonicotinoids: usage, mode of action, and routes of exposure to bees  

 Neonicotinoid pesticides were introduced to the market in the early 1990s and have since 

become the fastest growing pesticide class, overtaking organophosphates, methylcarbamates and 

pyrethroids (Jeschke et al., 2011; Wood & Goulson, 2017). Several neonicotinoid compounds 

exist – of which the most commonly used are imidacloprid, thiamethoxam and clothianidin – and 

all of these function by mimicking acetylcholine and binding to nicotinoic acetylcholine 

receptors (nAChRs) in the insect nervous system (Jeschke et al., 2011; Matsuda et al., 2001). 

High-affinity binding of neonicotinoids to insect nAChRs can cause rapid overstimulation and 

block normal acetylcholine function; this results in paralysis and death at sufficiently high 

concentrations, and a suite of cognitive and motor deficits at sub-lethal concentrations (Godfray 

et al., 2015; Scott-Dupree et al., 2009; Sgolastra et al., 2016; Tomizawa & Casida, 2005).  

A major reason for the market success of neonicotinoids is that they can be applied to 

crops easily as a seed coating (Elbert et al., 2008; Jeschke et al., 2011). Neonicotinoids are 

water-soluble and systemic; thus, they can be taken up by the plant via roots and integrated into 

the tissues of the growing plant (Sur & Stork, 2003). In this way, neonicotinoids provide plants 

protection from herbivorous insects for months with no need for repeated applications (Jeschke 

et al., 2011). Reduced application frequency does minimize the risk of topical pesticide exposure 

across the growing season. Two concerning routes of neonicotinoid exposure to bees, however, 

have been identified.  
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One form of exposure is via dust emitted by pneumatic drilling machines used during the 

sowing of neonicotinoid-coated seeds (Nuyttens et al., 2013). Drilling machines often abrade the 

seed coatings and emit toxic particulates which are then encountered by foraging bees. Reports 

of mass honey bee die-offs via contaminated dust in the early 2000s stimulated a great deal of 

concern and risk assessment (Bartolotti et al., 2009; Chauzat et al., 2010; Nuyttens et al., 2013). 

Early research suggested that the risk posed by contaminated dust was low (Schnier et al., 2003), 

but several follow-up studies contradicted this, showing that contaminated dust contains 

neonicotinoid concentrations lethal to honey bees and bumblebees (Girolami et al., 2012; 

Girolami et al., 2013; Godfray et al., 2015; Scott-Dupree et al., 2009). While exposure via dust is 

a concern, exposure risk is relatively brief and air deflector use during sowing can reduce toxic 

particulate emissions by up to 95% (Manzone et al., 2016).  

The second, more insidious form of neonicotinoid exposure is via the consumption of 

nectar and pollen of treated plants. While concentrations in nectar and pollen vary widely based 

on several factors (including neonicotinoid compound, treatment method, plant species and soil 

type), they typically range from <1 to 10 ppb (parts per billion) and are higher in pollen than in 

nectar (Blacquière et al., 2012; Bonmatin et al., 2015; Godfray et al., 2015; Wood & Goulson, 

2017). These concentrations occur in both treated crops and nearby wildflowers; since crops 

treated via seed coating only take up about 5% of the active ingredient (Sur & Stork, 2013), the 

remainder is left to persist in soil and water where it is commonly taken up by non-target plants 

(Botías et al., 2015; David et al., 2016; Long & Krupke, 2016; Morrissey et al., 2015; 

Radonlinksi et al., 2016). Neonicotinoids are clearly prevalent in nectar and pollen, but these 

levels are well below lethal. The honey bee 48-h LD50 following oral exposure for imidacloprid, 

clothianidin and thiamethoxam ranges from 3.7 to 5 ng/bee (>160 ppb), and for bumblebees 

appears higher despite variation (Godfray et al., 2015; Sgolastra et al., 2016). Evidence points 

instead to sub-lethal effects of neonicotinoids that impair bee functioning on an individual and 

colony level. Sub-lethal exposure can negatively affect reproductive success (Laycock et al., 

2012; Rundlöf et al., 2015; Whitehorn et al., 2012; Woodcock et al., 2017), foraging success 

(Feltham et al., 2014; Gill et al., 2012; Gill & Raine, 2014; Stanley et al., 2016), navigation 

(Henry et al., 2012; Matsumoto, 2013), learning and memory (Decourtye et al., 2004a; 

Decourtye et al., 2004b; Han et al., 2010; Phelps et al., 2018; Samuelson et al., 2016; Stanley et 

al., 2015a; Williamson and Wright 2013), motor function (Williamson et al., 2014), 
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thermoregulation (Tosi et al., 2016), and even the quality of pollination provided by bees 

(Stanley et al., 2015b). This accumulation of sub-lethal effects represents a clear threat to bee 

populations and global pollination services.  

Much of this work, however, has focused on the honey bee (Cresswell et al., 2011; 

Lundin et al., 2015), and it has become increasingly clear that extrapolating these results to other, 

often vastly different, bee species is inappropriate (Piiroinen & Goulson, 2016; Rundlöf et al., 

2015; Sgolastra et al., 2016; Stoner, 2016). The present study investigates sub-lethal effects of a 

neonicotinoid on bumblebees, and therefore the remainder of the introduction will focus on what 

is known about the genus Bombus exclusively.  

 

1.4 The case of bumblebees  

 Bumblebees are clearly among the most important wild pollinators in the temperate zone 

(Corbet et al., 1991; Goulson, 2009; Plowright & Laverty, 1987). The large body, thick hair and 

thermogenic ability of bumblebees makes them highly cold-tolerant, and able to forage across a 

wider range of climatic conditions than honey bees (e.g. at low temperatures and during rainfall; 

Corbet et al., 1993; Heinrich, 2004). Bumblebees are primitively eusocial, with three castes 

(queens, workers and drones), workers that can perform a variety of tasks in the colony (e.g. 

foraging and tending to larvae) and an annual life cycle (Goulson, 2009). It is crucial to 

understand this life cycle, as well as the behaviour and cognition of bumblebee foraging, in order 

to understand how neonicotinoids may affect bumblebees at the individual and group level.    

  

1.4.1 The bumblebee life cycle: periods of vulnerability to neonicotinoids 

 Queen bumblebees emerge from diapause between late winter and early spring each year 

to search for a nesting site. Once a site is chosen, the queen must forage for pollen to provision 

the nest with. She then lays her first batch of 8-16 eggs within the pollen and begins incubation 

(Goulson, 2009). This stage of the life cycle is incredibly precarious; if the queen fails to locate a 

high quality nest site, collect resources or lay and incubate her first batch of eggs, the colony is 

likely to collapse. This is the first stage at which neonicotinoids likely affect bumblebees, by 

reducing the ability of queens to initiate a colony.  

 It takes approximately 4-5 weeks for the brood to become adult workers (Alford, 1975). 

At this point, the workers take over foraging duties, the queen continues to lay eggs, and if all 
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goes well, the colony grows rapidly and switches from producing workers to reproductives (i.e. 

queens and drones) that will mate and initiate colonies the following year (Goulson et al., 2002; 

Müller & Schmid-Hempel, 1992). Unfortunately, all rarely goes well. While over 50% of 

colonies produce drones, fewer than 25% grow large enough to produce queens, which are far 

more resource-costly (Cumber, 1953; Müller & Schmid-Hempel, 1992; Owen et al., 1980). Of 

these queen-producing colonies, it is typical for the very largest to produce the vast majority of 

queens (>60 queens) and the smallest to produce few (Müller & Schmid-Hempel, 1992). The fate 

of the following year’s bumblebee population therefore hinges on a tiny fraction of colonies that 

grow large enough to produce queens. This strategy is vulnerable to any factors that reduce 

colony growth, which is heavily reliant on worker bees collecting sufficient resources (i.e. pollen 

and nectar) to feed the queen and developing offspring (Duchateau & Velthuis, 1988; Vogt et al., 

1998). This period of colony growth is the second stage at which neonicotinoids are likely to 

affect bumblebee colonies, by affecting the foraging success of workers.  

What does it take for foraging bumblebees to be successful? The following section will 

review key behavioural and cognitive aspects of bumblebee foraging that can be affected by 

neonicotinoid exposure.    

 

1.4.2 What does it take to forage successfully?   

Bumblebees feed exlcusively on pollen and nectar. Pollen is the main protein source for 

bumblebees, and critical to the development of offspring, while nectar provides the energy they 

require to function. Bumblebees are generalist foragers, meaning that they are able to forage 

upon a wide array of flowers (Goulson, 2009; Waser et al., 1996). Despite this, individuals tend 

to develop preferences for rewarding flower types by associating rewards with floral features 

such as colour, scent and shape (Chittka, 1998; Dukas & Real, 1991; Goulson, 2009; Kulahci et 

al., 2008). With many flower types to choose from, it is crucial that bumblebees rapidly learn 

which are rewarding and preferentially forage on them. Indeed, colonies with faster-learning 

workers tend to collect resources at a higher rate (Raine & Chittka, 2008; but see Evans et al., 

2017).  

It is not enough, however, for bumblebees to learn which flowers are rewarding – they 

must also be able to extract pollen and nectar from them. Flowers are morphologically diverse; 

while pollen and nectar are exposed and easily accessible in some, they are concealed in others, 
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hidden in atypical locations or behind petals (Laverty, 1980; Ronse De Craene, 2010). To 

efficiently collect pollen and nectar, bumblebees must learn how to handle flowers of varying 

morphological complexity (Heinrich, 1976, 1979; Laverty, 1980; Laverty & Plowright, 1988).  

The importance of learning in flower handling has been well-documented. Naïve bumblebees 

make frequent errors when handling novel flowers, but with experience these errors dissapear  

almost completely and the speed with which bumblebees extract resources increases manyfold 

(Heinrich, 1979; Laverty, 1980). This learning process is brief when flowers are morphologically 

simple, but can take much longer for complex flowers, especially when petal manipulation is 

necessary (Heinrich, 1979; Laverty, 1980, 1994a). There appears, however, to be a strong innate 

component to flower handling as well. For example, bumblebees are commonly directed to land 

on particular regions of flowers via visual nectar guides, and probe in central locations (Laverty, 

1980; Lunau, 1991). Recent work suggests that bumblebees handling novel flowers may employ 

an innate behavioural repertoire and fine-tune performance through associative learning, with 

successful motor patterns being reinforced by floral rewards (Strang, 2018).  

  

1.4.3 Neonicotinoids and bumblebees: what is known?   

While most risk assessments of neonicotinoids to bees have focused on the honey bee, 

bumblebees are the second most commonly studied (Lundin et al., 2015). The current state of 

knowledge will be summarised with focus on two highly vulnerable life cycle stages: colony 

initiation and colony growth.  

As discussed, colony initiation by queens is a highly demanding and precarious stage of 

the bumblebee life cycle. Studies have indicated that sub-lethal neonicotinoid exposure can delay 

and reduce both colony initiation and brood emergence (Baron et al., 2017a; Wu-Smart & 

Spivak, 2018). Even a slow start could mean the difference between a colony producing queens 

or not. In addition, Baron and colleagues (2017b) found that exposed queens developed smaller 

oocytes, which could negatively affect egg-laying. These studies are informative, but more work 

must be done to determine neonicotinoid effects on queens during this stage – particularly on 

how exposure affects foraging and nutrition (Stoner, 2016).  

A greater volume of work has focused on the stage of colony growth. Importantly, many 

studies have shown reduced reproductive success in exposed colonies, with exposed colonies 

growing to a lesser degree and often producing fewer queens (Laycock et al., 2012; Rundlöf et 
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al., 2015; Whitehorn et al., 2012; Woodcock et al., 2017; but see Stanley & Raine, 2017). How 

are neonicotinoids limiting colony growth? A possible explanation is that exposed bumblebees 

are collecting fewer resources, which would limit nutrient availability for developing offspring. 

This explanation has been well-supported, with several studies documenting pollen foraging 

deficits in exposed bumblebees (Feltham et al., 2014; Gill et al., 2012; Gill & Raine, 2014; 

Stanley et al., 2016; Whitehorn et al., 2017). Pollen is the key bumblebee protein resource, and 

crucial for the nutrition of developing bumblebees.  

How might neonicotinoid exposure reduce the foraging success of bumblebee workers? 

The answer to this question is less clear. Past work has shown neonicotinoid-induced delays in 

associative learning using colours and scents as reward cues (Phelps et al., 2018; Stanley et al., 

2015a), however, the evidence appears mixed (Piiroinen & Goulson, 2016, Piiroinen et al., 

2016). In one study it was found that neonicotinoids induced spatial memory deficits, which may 

have implications for homing and avoidance of depleted flowers (Samuelson et al., 2016).  

Flower handling, however, which is a crucial component of bumblebee foraging, has not 

been given much attention. Reduced learning and execution of sonication behaviour has been 

well-documented in exposed bumblebees (Switzer & Combes, 2016; Whitehorn et al., 2017), and 

recent work by Stanley and Raine (2016) has shown that exposed bumblebees take more trials to 

efficiently obtain pollen from novel, morphologically complex flowers (Lotus corniculatus and 

Trifolium repens). However, the precise mechanism underlying this learning delay in exposed 

bumblebees remains unclear, and more detailed behavioural analysis is required.  

 

1.5 The current study  

Strong evidence suggests that neonicotinoid exposure reduces bumblebee reproductive 

success by limiting foraging performance. In previous work, I showed that neonicotinoid 

exposure slows learning about which food sources contain the highest concentrations of sucrose 

(Phelps et al., 2018). Exposed bumblebees are also slower to learn how to handle 

morphologically complex flowers but the cause remains unclear. The goal of this thesis was 

twofold: (1) to assess the effects of neonicotinoid exposure on bumblebee motor learning, and 

(2) to isolate the cause of delays in motor learning for flower handling. A lab model of flower 

handling developed by Strang (2018) was used to accomplish these goals. Using this model it 

was possible to assess the performance of bumblebees exposed to imidacloprid, a common 
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neonicotinoid, on a motor task analogous to petal manipulation in flower handling. Bumblebees 

were required to manipulate a petal-shaped barrier in order to receive a sucrose reward. As with 

actual flowers, this task had only one effective solution. Testing occurred across three 

consecutive days for a total of 30 trials (10 trials per day) to assess between- and within-day 

learning. Importantly, while past research has identified deficits in motor learning, behavioural 

output was quantified here with the precision necessary to explain deficits mechanistically.  

Based on previous research (Stanley & Raine, 2016), I hypothesized that imidacloprid 

exposure delays motor learning in bumblebees. Specifically, I predicted that bumblebees 

exposed to imidacloprid would take longer to solve the motor task across trials, and that this 

effect would be dose-dependent. It is plausible that neonicotinoid-induced overstimulation and 

blockage of nAChRs could result in learning and motor decicits that could together disrupt the 

process of motor learning. I predicted that imidacloprid-exposed bumblebees would be slower to 

acquire the motor strategy necessary to solve the task (i.e. they would spend a lower proportion 

of time engaging in the successful strategy across trials), which could explain a delay to solve the 

task in exposed bumblebees.   
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Chapter 2 

2. Methods  

 

2.1 Subjects  

Nine queenright Bombus impatiens colonies of approximately 50 to 100 bumblebees 

were obtained from a commercial supplier (Biobest Canada Ltd., Leamington, ON). Colonies 

were randomly assigned to one of three conditions: chronic imidacloprid exposure at 0, 2.6 or 10 

ppb. Three colonies were therefore assigned to each condition. Data were collected from a total 

of 75 bumblebees: 25 from unexposed colonies, 25 from colonies exposed at 2.6 ppb, and 25 

from colonies exposed at 10 ppb. Data were collected from a similar number of bumblebees in 

each colony (M = 8.33, SD = 1.22). Colonies were kept on a 12-h light: 12-h dark schedule 

(onset 0700 h) and housed in hive boxes (30.5(l) x 24(w) x 20(h) cm) connected to flight cages 

(104(l) x 64(w) x 92(h) cm) by a 2 cm diameter Perspex® tube. Control and exposed colonies 

were housed in separate rooms to prevent contamination of control bumblebees with 

imidacloprid. Flight cages contained four artificial flower patches with four artificial flowers 

each. Patches were rectangular sections of Styrofoam (20 x 32 cm) and artificial flowers were 

clear 1.7-ml microcentrifuge tubes (Axygen Inc., Union City, CA) with 5 cm wide clear, plastic 

corollas. Bumblebees foraged ad libitum for 20% sucrose solution from artificial flower patches. 

Sucrose solution was replenished using 5-ml syringes (VWR International Co.). The floor of the 

flight cage was covered in disposable surface protector (Whatman Benchkote®). Pollen was 

given ad libitum to colonies directly in the hive box. Bumblebees were given unique markings on 

the thorax with Posca paint markers (Mitsubishi Pencil Co.) for identification.  

 

2.2 Testing apparatus 

 The testing apparatus consisted of a Perspex® reward chamber (6.4 cm3) connected to the 

flight cage by a 2 cm diameter Perspex® tube (Fig. 2.1). The apparatus was elevated 35 cm 

above the floor of the flight cage. An artificial flower was placed at the tube entrance and three 

1.7-ml microcentrifuge tube lids were placed in the reward chamber; each of these could be 

baited with 40% sucrose solution. The reward chamber had a hinged lid which was securely 

fastened by a magnetic closure. Six 3 mm diameter holes were drilled into the reward chamber 
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for ventilation. There were two 1 cm deep slots in the tube 6.5 cm apart. Plastic and metal 

barriers were placed through these slots during testing. Each barrier (25 x 13 mm) was 

rectangular but rounded at the bottom. The bottom of each barrier fit the shape of the tube, but 

not perfectly; there was slight gap beneath each barrier through which a bumblebee could insert 

its forelegs to lift it. The plastic (rewarded) barrier was light enough for bumblebees to lift and 

blocked access to the reward chamber. The metal (non-rewarded) barrier was too heavy to be 

lifted and blocked access to the flight cage.  

 

2.3 Preparation and provision of sucrose solution  

Imidacloprid was obtained in dry powder form (Imidacloprid PESTANAL Fluka 37894, 

Sigma-Aldrich). Stock solutions of 1 ppm (part per million) imidacloprid were made by mixing 1 

mg of imidacloprid in 1 L of distilled water using a vortex mixer. Fresh 300 mL 2.6 and 10 ppb 

imidacloprid sucrose solutions were created by further diluting stock solution in fresh 20 and 

40% sucrose solutions. Undosed 20 and 40% sucrose solutions were also made in 300 mL 

batches. Sucrose concentration was verified using a refractometer. Solutions were stored away 

from sunlight in amber tinted glass bottles to prevent imidacloprid breakdown caused by UV 

light exposure (Soliman, 2012).  

Three colonies were unexposed, three were chronically exposed to 2.6 ppb imidacloprid, 

and three were chronically exposed to 10 ppb imidacloprid. All sucrose solution collected by 

exposed colonies from artificial flowers and the reward chamber contained that colony’s 

imidacloprid treatment. A chronic method of exposure was chosen to simulate the experience of 

bumblebees repeatedly foraging on imidacloprid-treated crops.  

 

2.4 Behavioural task  

 

2.4.1 Pre-training  

 Colonies were given a minimum of one week for imidacloprid exposure and habituation 

to foraging in the flight cage prior to testing. Bumblebees could move freely between the flight 

cage and the testing apparatus during this time. The artificial flower outside the tube and three 

microcentrifuge tube lids inside the apparatus were baited frequently, and bumblebees learned 

that these contained highly rewarding 40% sucrose solution. Only bumblebees foraging inside 
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the apparatus were colour marked and tested.  

 

2.4.2 Testing procedure  

 The learning task used in the present study was originally described by Strang (2018). 

Bumblebees were individually tested across three consecutive days for a total of 30 trials (10 

trials per day). The apparatus was baited with 40% sucrose solution before testing to attract 

bumblebees and to ensure they developed an association between apparatus entry and reward. 

Prior to testing, all bumblebees were cleared from the apparatus and sucrose solution remaining 

in the artificial flower by the tube entrance was depleted.  

During testing, a single marked bumblebee was allowed to enter the tube from the flight 

cage. The plastic barrier was inserted through the slot closest to the reward chamber and blocked 

the bumblebees’ path to the reward. Once the bumblebee was inside, the metal barrier was 

placed through the slot behind it to prevent it from leaving and other bumblebees from entering. 

Trials were video recorded using a GoPro camera (GoPro® Hero3+ Silver camera, GoPro Inc., 

San Mateo, CA). The trial ended when the bumblebee removed the plastic barrier or when five 

minutes had passed. Bumblebees that were successful in removing the plastic barrier entered the 

reward chamber to consume 40% sucrose solution to satiation. If a bumblebee failed to remove 

the plastic barrier, the barrier was removed by the experimenter and the bumblebee was allowed 

to enter the reward chamber to consume 40% sucrose solution to satiation. Care was taken to 

ensure that unsuccessful bumblebees were not facing or interacting with the plastic barrier when 

it was removed. Once satiated, bumblebees were allowed to exit and return to the hive to deposit 

sucrose solution. Sucrose solution was replenished between trials. The next trial began when the 

marked bumblebee returned to the testing apparatus. Inter-trial interval (i.e. the time between the 

beginning of the previous trial and the beginning of the current trial) was recorded. Only a subset 

of worker bumblebees from each colony were tested. For inclusion, bumblebees had to return to 

the reward chamber frequently and participate in all 30 trials; it is thus likely that the most highly 

motivated bumblebees in each colony were selected. Because bumblebees self-initiated trials it 

was not possible to standardize inter-trial interval; for this reason, inter-trial intervals were highly 

variable. Data collection occurred for approximately 20 days for each colony, and this duration 

was similar across conditions.   
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2.4.3 Video analysis  

 Videos were imported from the GoPro to an external hard drive (My Book 4TB, Western 

Digital Co.) after each testing session. A total of 2,250 videos were collected (75 bumblebees, 30 

trials each). Latency to remove the plastic barrier and measures of behaviour were obtained by 

video analysis. Video analysis was conducted using the Noldus Observer XT software (Noldus 

Information Technology, Wageningen, Netherlands).  

 The onset of each trial was defined as a bumblebee crossing the slot through which the 

metal barrier was placed. At that point, video scoring began and continued until the plastic 

barrier was removed or until five minutes had passed. Latency to remove the plastic barrier was 

recorded in seconds for each trial. Bumblebees that failed to remove the plastic barrier were 

given a latency score of 300 seconds. Strang (2018) found that bumblebees attempted to remove 

the plastic barrier using two dominant strategies: inverting inside the tube to lift the barrier and 

pushing the barrier. These behaviours were thus selected for quantification. Inverting to lift was 

operationally defined as a bumblebee exerting pressure on the barrier with its head or forelegs 

while inverted at least 90° to the left or right in the tube. Pushing was operationally defined as a 

bumblebee exerting pressure on the barrier with its head or forelegs while in an upright position 

(i.e. inverted less than 90°). Inverting to lift and pushing were quantified separately at each 

barrier. Four behaviours were quantified overall: (1) inverting to lift the rewarded (plastic) 

barrier, (2) pushing the rewarded (plastic) barrier, (3) inverting to lift the non-rewarded (metal) 

barrier and (4) pushing the non-rewarded (metal) barrier. The proportion of time bumblebees 

engaged in these behaviours was obtained by dividing the time spent engaging in each by latency 

to remove the rewarded barrier. The rate at which bumblebees switched between behaviours was 

obtained by dividing the number of switches by latency to remove the rewarded barrier.  

 

2.5 Measuring body size 

Head width (i.e. the distance between the lateral margin of the compound eyes) and 

thorax width (i.e. the distance between the lateral margin of the tegulae) were obtained from 60 

of the bumblebees tested (19, 21 and 20 from colonies exposed at 0, 2.6 and 10 ppb respectively) 

using a caliper (EZ-Cal IP54 Digital Caliper, iGaging Precision Instruments®, San Clemente, 

California) with 0.01 mm precision. Measurements of head and thorax width were taken twice 

for each bumblebee on separate days.  
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2.6 Statistical analysis 

All analyses were conducted using SPSS (Version 24, IBM Corp.) with an alpha level of 

.05. Greenhouse-Geisser corrections were used when the sphericity assumption of analysis of 

variance (ANOVA) was violated. Post hoc tests were conducted using a Bonferroni correction.  

Two Pearson correlations were used to analyze the relationship between latency to 

remove the rewarded barrier and proportion of time engaging in the two dominant behaviours 

(inverting to lift and pushing) at the rewarded barrier.  

A repeated measures ANOVA was used to analyze (1) latency to remove the rewarded 

barrier, (2) behavioural profile (proportion of time engaged in each of the four behaviours), (3) 

proportion of time inverting to lift the rewarded barrier, (4) proportion of time pushing the 

rewarded barrier, (5) proportion of time inverting to lift the non-rewarded barrier, (6) proportion 

of time pushing the non-rewarded barrier, (7) proportion of time inverting to lift or pushing 

overall, (8) behaviour switching (number of times a bumblebee switched between behaviours 

divided by latency) and (9) inter-trial interval. Behavioural profile was analyzed once across all 

30 trials to provide a general description of behavioural change between conditions. Because 

behaviour sometimes changed substantially across trials within a day, and because this pattern of 

change sometimes differed on successive days, other measures were analyzed using a series of 

four tests (trials 1-30, 1-10, 11-20 and 21-30) to examine within- and between-day differences.  

For analyses of latency, proportion of time inverting to lift the rewarded and non-

rewarded barrier, proportion of time pushing the rewarded and non-rewarded barrier, proportion 

of time inverting to lift or pushing overall and behaviour switching, a between-subjects factor of 

imidacloprid concentration (0, 2.6 and 10 ppb) and a within-subjects factor of trial (1-30, 1-10, 

11-20 and 21-30 for each of four tests) were used.  

For behavioural profile, a between-subjects factor of imidacloprid concentration (0, 2.6 

and 10 ppb), and within-subjects factors of behaviour (inverting to lift the rewarded barrier, 

pushing the rewarded barrier, inverting to lift the non-rewarded barrier, pushing the non-

rewarded barrier) and trial (1-30) were used. 

For inter-trial interval, a between-subjects factor of imidacloprid concentration (0, 2.6 

and 10 ppb) and within-subjects factor of interval were used. Four tests were performed: one for 

all 27 within-day inter-trial intervals, one for intervals 1-9 on the first day, one for intervals 10-

18 on the second day and one for intervals 19-27 on the third day. Only the 27 within-day inter-
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trial intervals were included in this analysis; overnight inter-trial intervals were much longer and 

are not included. Four additional Pearson correlations were used to examine the relationship 

between mean within-day inter-trial interval and latency to remove the rewarded barrier in each 

condition and overall. A composite latency score for each bumblebee was generated for these 

analyses by summing latency across all 30 trials.  

A Pearson correlation was used to examine the relationship between head and thorax 

measurements taken on days one and two. These were similar for head width (r = .98, p < .001) 

and thorax width (r = .99, p < .001), and thus measurements were combined for each as a mean 

value. A Pearson correlation was then used to examine the relationship between head and thorax 

width. These were also similar (r = .94, p < .001), and therefore only thorax width was used 

subsequently. Four Pearson correlations were used to examine the relationship between thorax 

width and composite latency to remove the rewarded barrier for bumblebees in each condition 

and overall. A one-way ANOVA with the between-subjects factor of imidacloprid concentration 

(0, 2.6 and 10 ppb) was used to confirm there were no differences in bumblebee thorax width 

between conditions. 

A one-way ANOVA with the between-subjects factor of imidacloprid concentration (0, 

2.6 and 10 ppb) was used to confirm that there was no difference in colony exposure duration 

prior to testing (i.e. the number of days the colony was exposed prior to a bumblebee starting 

testing) for bumblebees between conditions. Four Pearson correlations were used to examine the 

relationship between exposure duration prior to testing and composite latency to remove the 

rewarded barrier for bumblebees in each condition and overall.  

A repeated measures ANOVA was used to assess colony differences within each of the 

three imidacloprid exposure levels in latency to remove the rewarded barrier. A between-subjects 

factor of colony (1, 2 and 3) and a within-subjects factor of trial (1-30) were used for each.  
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Figure 2.1. The testing apparatus consisted of a 2 cm diameter Perspex® tube connected to the 

flight cage at one end and to a 6.4 cm3 Perspex® reward chamber on the other. During trials, the 

plastic (rewarded) barrier was placed in the slot closest to the reward chamber and the metal 

(non-rewarded) barrier was placed in the slot closest to the flight cage. Bumblebees learned to 

invert and lift the plastic barrier to receive a sucrose reward. Microcentrifuge tube lids in the 

reward chamber contained 40% sucrose solution.  
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Chapter 3 

3. Results 

 

3.1 Effectiveness of inverting to lift and pushing  

 There was a strong, negative correlation between proportion of time inverting to lift the 

rewarded barrier and latency to remove it (r = -.62, p < .001), and a positive correlation between 

proportion of time pushing the rewarded barrier and latency to remove it (r = .25, p < .001). 

Overall, bumblebees that maximized inverting to lift and minimized pushing were fastest to 

remove the rewarded barrier.  

 

3.2 Latency to remove the rewarded barrier  

3.2.1 Trials 1-30 

There was a significant interaction between trial and imidacloprid concentration, 

(F(22.23, 800.22) = 2.408, p < .001, ηp
2 = .06). Bumblebees from all groups became faster to 

remove the rewarded barrier across trials, but those exposed to imidacloprid improved more 

slowly and in a dose-dependent fashion (Fig. 3.1). A significant main effect of imidacloprid 

concentration was found (F(2, 72) = 5.972, p = .004, ηp
2 = .14). Post hoc tests revealed that 

unexposed bumblebees were faster to remove the rewarded barrier than those exposed at 10 ppb 

(p = .004), but the difference between unexposed bumblebees and those exposed at 2.6 ppb fell 

just short of significance (p = .058) and bumblebees exposed at 2.6 and 10 ppb did not differ (p = 

1.000). A significant main effect of trial was found (F(11.11, 800.22) = 54.056, p < .001, ηp
2 = 

.43), indicating that bumblebees became faster to remove the rewarded barrier across trials. Post 

hoc tests revealed no difference in latency to remove the rewarded barrier between trial 10 and 

11 (following overnight retention interval one), but bumblebees were slower to remove the 

rewarded barrier on trial 21 than on trial 20 (following overnight retention interval two; p = 

.033).  

 

3.2.2 Trials 1-10 

A significant main effect of imidacloprid concentration was found (F(2, 72) = 14.072, p < 

.001, ηp
2 = .28). Post hoc tests revealed a dose-dependent effect of imidacloprid on latency to 
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remove the rewarded barrier, such that unexposed bumblebees were faster than those exposed at 

2.6 (p = .035) and 10 ppb (p < .001), and bumblebees exposed at 2.6 ppb were faster than those 

exposed at 10 ppb (p = .008). A significant main effect of trial was found (F(6.14, 442) = 65.413, 

p < .001, ηp
2 = .48), indicating that bumblebees became faster to remove the rewarded barrier 

across trials. There was no significant interaction between trial and imidacloprid concentration 

(F(6.14, 442) = 0.997, p = .451, ηp
2 = .03).  

 

3.2.3 Trials 11-20 

A significant main effect of imidacloprid concentration was found (F(2, 72) = 3.195, p = 

.047, ηp
2 = .08). Post hoc tests revealed no significant differences at p < .05, but the difference 

between unexposed bumblebees and those exposed at 10 ppb was close to significant (p = .058). 

A significant main effect of trial was found (F(5.25, 377.78) = 5.591, p < .001, ηp
2 = .07), 

indicating that bumblebees became faster to remove the rewarded barrier across trials. There was 

no significant interaction between trial and imidacloprid concentration (F(10.49, 377.78) = 

1.101, p = .36, ηp
2 = .03).  

 

3.2.4 Trials 21-30 

 A significant main effect of trial was found (F(4.35, 313.09) = 5.569, p < .001, ηp
2 = .07), 

indicating that bumblebees became faster to remove the rewarded barrier across trials. There was 

no significant main effect of imidacloprid concentration (F(2, 72) = 1.329, p = .271, ηp
2 = .04) or 

interaction between trial and imidacloprid concentration (F(8.70, 313.09) = 0.718, p = .687, ηp
2 = 

.02).  

 

3.3 Behavioural profile  

 There was a significant interaction among imidacloprid concentration, behaviour and 

trial, indicating that bumblebees in the three exposure conditions differed in which behaviours 

they engaged in across trials (F(34.63, 1246.59) = 1.879, p = .002, ηp
2 = .05). Exposed 

bumblebees were slower across trials to shift from using the pushing strategy to using the 

inverting to lift strategy, and this occurred in a dose-dependent fashion (Fig. 3.2). A significant 

interaction between behaviour and trial was also found (F(17.31, 1246.59) = 34.884, p < .001, 
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ηp
2 = .33), indicating that bumblebees behaved differently across trials regardless of imidacloprid 

exposure. There was a significant main effect of imidacloprid exposure (F(2, 72) = 6.016, p = 

.004, ηp
2 = .14). Post hoc tests revealed that bumblebees exposed at 10 ppb differed 

behaviourally across trials from unexposed bumblebees (p = .008) and those exposed at 2.6 ppb 

(p = .016), but that unexposed bumblebees and those exposed at 2.6 ppb did not differ (p = 

1.000). There were significant main effects of behaviour (F(2.30, 82.76 = 292.169, p < .001, ηp
2 

= .80) and trial (F(16.38, 1179.16) = 6.898, p < .001, ηp
2 = .09), indicating that bumblebees did 

not engage in behaviours equally, and that behaviour changed across trials. There was no 

significant interaction between imidacloprid concentration and trial (F(32.75, 1179.16) = 1.437, 

p = .053, ηp
2 = .04) or imidacloprid concentration and behaviour (F(2.30, 82.76) = 1.835, p = 

.160, ηp
2 = .05).  

 

3.4 Proportion of time inverting to lift the rewarded barrier 

3.4.1 Trials 1-30 

 There was a significant interaction between trial and imidacloprid concentration 

(F(26.30, 946.73) = 2.776, p < .001, ηp
2 = .07). Bumblebees increased the proportion of time 

inverting to lift the rewarded barrier across trials, but this increase was slower for those exposed 

to imidacloprid (Fig. 3.3). There was a significant main effect of trial (F(13.15, 946.73) = 

50.840, p < .001, ηp
2 = .41), indicating that bumblebees increased in proportion of time inverting 

to lift the rewarded barrier across trials. Post hoc tests revealed that bumblebees spent a lower 

proportion of time inverting to lift the rewarded barrier on trial 11 than on trial 10 (following 

overnight retention interval one; p = .012) and a lower proportion on trial 21 than on trial 20 

(following overnight retention interval two; p < .001). There was no significant main effect of 

imidacloprid concentration (F(2, 72) = 1.334, p = .270, ηp
2 = .04).  

 

3.4.2 Trials 1-10 

 A significant main effect of imidacloprid concentration was found (F(2, 72) = 7.275, p = 

.001, ηp
2 = .17). Post hoc tests revealed that unexposed bumblebees spent a greater proportion of 

time inverting to lift the rewarded barrier than bumblebees exposed at 10 ppb (p = .001), but that 

bumblebees exposed at 2.6 ppb did not differ significantly from unexposed bumblebees (p = 
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.417) or those exposed at 10 ppb (p = .075). A significant main effect of trial was found (F(4.64, 

333.98) = 45.798, p < .001, ηp
2 = .39), indicating that bumblebees increased in proportion of time 

inverting to lift the rewarded barrier across trials. There was no significant interaction between 

imidacloprid concentration and trial (F(9.28, 333.98) = 1.606, p = .110, ηp
2 = .04).  

 

3.4.3 Trials 11-20 

A significant main effect of trial was found (F(7.48, 538.34) = 10.350, p < .001, ηp
2 = 

.13), indicating that bumblebees spent a greater proportion of time inverting to lift the rewarded 

barrier across trials. There was no significant main effect of imidacloprid concentration (F(2, 72) 

= 1.916, p = .155, ηp
2 = .05) or interaction between trial and imidacloprid concentration (F(14.95, 

538.34) = 1.466, p = .113, ηp
2 = .04). 

 

3.4.4 Trials 21-30 

A significant main effect of trial was found (F(7.42, 533.99) = 6.620, p < .001, ηp
2 = .08), 

indicating that bumblebees spent a greater proportion of time inverting to lift the rewarded 

barrier across trials. There was no significant main effect of imidacloprid concentration (F(2, 72) 

= 2.042, p = .137, ηp
2 = .05) or interaction between trial and imidacloprid concentration (F(14.83, 

533.99) = 0.971, p = .485, ηp
2 = .03). 

 

3.5 Proportion of time pushing the rewarded barrier  

3.5.1 Trials 1-30 

A significant main effect of trial was found (F(12.40, 893.12) = 19.379, p < .001, ηp
2 = 

.21), indicating that bumblebees differed in the proportion of time they spent pushing the 

rewarded barrier across trials. Bumblebees spent an increasing proportion of time pushing the 

rewarded barrier from trial one to trial six, and a generally decreasing proportion of time across 

remaining trials (Fig. 3.4). There was no significant main effect of imidacloprid concentration 

(F(2, 72) = 2.687, p = .075, ηp
2 = .07) or interaction between trial and imidacloprid concentration 

(F(24.81, 893.12) = 1.311, p = .142, ηp
2 = .03).  

 

3.5.2 Trials 1-10 
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 A significant main effect of imidacloprid concentration was found (F(2, 72) = 5.041, p = 

.009, ηp
2 = .12). Post hoc tests revealed that unexposed bumblebees spent a lower proportion of 

time pushing the rewarded barrier than did bumblebees exposed at 10 ppb (p = .011), however, 

the difference between bumblebees exposed at 2.6 and 10 ppb fell short of significance (p = 

.059) and unexposed bumblebees did not differ from those exposed at 2.6 ppb (p = 1.000). A 

significant main effect of trial was found (F(6.38, 459.41) = 20.955, p < .001, ηp
2 = .22). 

Bumblebees increased in proportion of time pushing from trial one to six, but generally 

decreased across remaining trials. There was no significant interaction between trial and 

imidacloprid concentration (F(12.76, 459.41) = 1.137, p = .325, ηp
2 = .03).  

 

3.5.3 Trials 11-20 

A significant main effect of trial was found (F(7.09, 510.83) = 4.410, p < .001, ηp
2 = .06), 

indicating that bumblebees spent a lower proportion of time pushing the rewarded barrier across 

trials. There was no significant main effect of imidacloprid concentration (F(2, 72) = 2.241, p = 

.114, ηp
2 = .06) or interaction between trial and imidacloprid concentration (F(24.81, 893.12) = 

1.327, p = .185, ηp
2 = .04).  

 

3.5.4 Trials 21-30 

A significant main effect of trial was found (F(7.54, 543.26) = 4.713, p < .001, ηp
2 = .06). 

Bumblebees spent a lower proportion of time pushing the rewarded barrier across trials, though 

bumblebees exposed at 2.6 ppb showed an increase from trial 25 to trial 29. There was no 

significant main effect of imidacloprid concentration (F(2, 72) = 1.035, p = .361, ηp
2 = .03) or 

interaction between trial and imidacloprid concentration (F(15.09, 543.26) = 1.188, p = .276, ηp
2 

= .03).  

 

3.6 Proportion of time inverting to lift the non-rewarded barrier 

3.6.1 Trials 1-30 

A significant main effect of trial was found (F(8.52, 613.35) = 17.858, p < .001, ηp
2 = 

.20), indicating that bumblebees spent a lower proportion of time inverting to lift the non-

rewarded barrier across trials (Fig. 3.5). There was no significant main effect of imidacloprid 
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concentration (F(2, 72) = 2.238, p = .114, ηp
2 = .06) or interaction between trial and imidacloprid 

concentration (F(17.04, 613.35) = 1.046, p = .405, ηp
2 = .03). 

 

3.6.2 Trials 1-10 

A significant main effect of trial was found (F(4.76, 342.43) = 18.762, p < .001, ηp
2 = 

.21), indicating that bumblebees spent a lower proportion of time inverting to lift the non-

rewarded barrier across trials. There was no significant main effect of imidacloprid concentration 

(F(2, 72) = 1.080, p = .345, ηp
2 = .03) or interaction between trial and imidacloprid concentration 

(F(9.51, 342.43) = 1.101, p = .361, ηp
2 = .03). 

 

3.6.3 Trials 11-20 

There was no significant main effect of trial (F(5.35, 385.48) = 0.684, p = .646, ηp
2 = .01) 

or imidacloprid concentration (F(2, 72) = 1.864, p = .163, ηp
2 = .05), and no interaction between 

trial and imidacloprid concentration (F(10.71, 385.48) = 0.830, p = .607, ηp
2 = .02). 

 

3.6.4 Trials 21-30 

There was no significant main effect of trial (F(2.63, 189.73) = 1.780, p = .159, ηp
2 = .02) 

or imidacloprid concentration (F(2, 72) = 1.403, p = .252, ηp
2 = .04), and no interaction between 

trial and imidacloprid concentration (F(5.27, 189.73) = 1.139, p = .341, ηp
2 = .03). 

 

3.7 Proportion of time pushing the non-rewarded barrier 

3.7.1 Trials 1-30 

A significant main effect of trial was found (F(11.29, 813.02) = 35.502, p < .001, ηp
2 = 

.33), indicating that bumblebees spent a lower proportion of time pushing the non-rewarded 

barrier across trials (Fig. 3.6). There was no significant main effect of imidacloprid concentration 

(F(2, 72) = 0.240, p = .787, ηp
2 = .01) or interaction between trial and imidacloprid concentration 

(F(22.58, 813.02) = 1.067, p = .377, ηp
2 = .03). 

 

3.7.2 Trials 1-10 

A significant main effect of trial was found (F(5.55, 399.64) = 60.904, p < .001, ηp
2 = 
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.46), indicating that bumblebees spent a lower proportion of time pushing the non-rewarded 

barrier across trials. There was no significant main effect of imidacloprid concentration (F(2, 72) 

= 0.255, p = .775, ηp
2 = .01) or interaction between trial and imidacloprid concentration (F(11.10, 

399.64) = 1.289, p = .228, ηp
2 = .03). 

 

3.7.3 Trials 11-20 

 There was no significant main effect of trial (F(5.74, 413.41) = 2.004, p = .067, ηp
2 = .03) 

or imidacloprid concentration (F(2, 72) = 0.693, p = .503, ηp
2 = .02), and no interaction between 

trial and imidacloprid concentration (F(11.48, 413.41) = 1.330, p = .202, ηp
2 = .04). 

 

3.7.4 Trials 21-30 

A significant main effect of trial was found (F(5.98, 430.93) = 4.530, p < .001, ηp
2 = .06), 

indicating that bumblebees spent a lower proportion of time pushing the non-rewarded barrier 

across trials. There was no significant main effect of imidacloprid concentration (F(2, 72) = 

0.706, p = .497, ηp
2 = .02) or interaction between trial and imidacloprid concentration (F(11.97, 

430.93) = 0.532, p = .894, ηp
2 = .01). 

 

3.8 Overall proportion of time inverting to lift or pushing  

3.8.1 Trials 1-30 

A significant main effect of imidacloprid concentration was found (F(2, 72) = 6.016, p = 

.004, ηp
2 = .14; Fig. 3.7). Post hoc tests revealed that bumblebees exposed at 10 ppb spent a 

greater proportion of time pushing or inverting to lift than unexposed bumblebees (p = .008) and 

those exposed at 2.6 ppb (p = .016) overall, but that unexposed bumblebees and those exposed at 

2.6 ppb did not differ (p = 1.000). There was a significant main effect of trial (F(16.38, 1179.16) 

= 6.898, p < .001, ηp
2 = .09), indicating that bumblebees increased in proportion of time pushing 

or inverting to lift on day one and declined slightly thereafter, though bumblebees exposed at 10 

ppb did not decline. An interaction between imidacloprid concentration and trial fell short of 

significance (F(32.75, 1179.16) = 1.437, p = .053, ηp
2 = .04).  

 

3.8.2 Trials 1-10 
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A significant main effect of trial was found (F(6.49, 467.15) = 15.436, p < .001, ηp
2 = 

.18), indicating that bumblebees spent a greater proportion of time pushing or inverting to lift 

across trials. There was no significant main effect of imidacloprid concentration (F(2, 72) = 

0.431, p = .652, ηp
2 = .01) or interaction between trial and imidacloprid concentration (F(12.98, 

467.15) = 1.223, p = .259, ηp
2 = .03).  

 

3.8.3 Trials 11-20 

A significant main effect of imidacloprid concentration was found (F(2, 72) = 5.657, p = 

.005, ηp
2 = .14). Post hoc tests revealed that bumblebees exposed at 10 ppb spent a greater 

proportion of time pushing or inverting to lift than unexposed bumblebees (p = .009) and those 

exposed at 2.6 ppb (p = .024) overall, but that unexposed bumblebees and those exposed at 2.6 

ppb did not differ (p = 1.000). There was no significant main effect of trial (F(7.15, 514.96) = 

0.852, p = .547, ηp
2 = .01) or interaction between trial and imidacloprid concentration (F(14.30, 

514.96) = 1.269, p = .221, ηp
2 = .03).  

 

3.8.4 Trials 21-30 

A significant main effect of imidacloprid concentration was found (F(2, 72) = 9.017, p < 

.001, ηp
2 = .20). Post hoc tests revealed that bumblebees exposed at 10 ppb spent a greater 

proportion of time pushing or inverting to lift than unexposed bumblebees (p < .001) and those 

exposed at 2.6 ppb (p = .012) overall, but that unexposed bumblebees and those exposed at 2.6 

ppb did not differ (p = .790). There was no significant main effect of trial (F(7.43, 535.04) = 

1.062, p = .387, ηp
2 = .01) or interaction between trial and imidacloprid concentration (F(14.86, 

535.04) = 0.570, p = .897, ηp
2 = .02).  

 

3.9 Behaviour switching  

3.9.1 Trials 1-30 

A significant main effect of imidacloprid concentration was found (F(2, 72) = 6.859, p = 

.002, ηp
2 = .16; Fig. 3.8). Post hoc tests revealed that unexposed bumblebees switched between 

behaviours at a higher rate than bumblebees exposed at 2.6 (p = .006) and 10 ppb (p = .006), but 

that bumblebees exposed at 2.6 and 10 ppb did not differ (p = 1.000). There was a significant 
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main effect of trial (F(17.91, 1289.90) = 2.334, p = .001, ηp
2 = .03). Bumblebees showed a high 

rate of switching on trial one which generally decreased until it rose again following trial seven. 

There was no significant interaction between trial and imidacloprid concentration (F(35.83, 

1289.90) = 1.231, p = .166, ηp
2 = .03).  

 

3.9.2 Trials 1-10 

A significant main effect of imidacloprid concentration was found (F(2, 72) = 10.783, p < 

.001, ηp
2 = .23). Post hoc tests revealed that unexposed bumblebees switched between behaviours 

at a higher rate than bumblebees exposed at 2.6 (p = .005) and 10 ppb (p < .001), but that 

bumblebees exposed at 2.6 and 10 ppb did not differ (p = .719). There was a significant main 

effect of trial (F(17.16, 515.40) = 6.663, p < .001, ηp
2 = .08). Bumblebees showed a high rate of 

switching on trial one which generally decreased across trials on day one but rose following trial 

seven. There was no significant interaction between trial and imidacloprid concentration 

(F(14.32, 515.40) = 0.968, p = .486, ηp
2 = .03).  

 

3.9.3 Trials 11-20 

There was no significant main effect of trial (F(7.84, 564.79) = 0.253, p = .979, ηp
2 = .01) 

or imidacloprid concentration (F(2, 72) = 1.864, p = .162, ηp
2 = .05), and no interaction between 

trial and imidacloprid concentration (F(15.69, 564.79) = 1.479, p = .103, ηp
2 = .04). 

 

3.9.4 Trials 21-30 

 A significant main effect of imidacloprid concentration was found (F(2, 72) = 3.705, p = 

.029, ηp
2 = .09). Post hoc tests revealed that unexposed bumblebees switched between behaviours 

at a higher rate than bumblebees exposed at 2.6 (p = .028), but that those exposed at 10 ppb did 

not differ from unexposed bumblebees (p = .237) or those exposed at 2.6 ppb (p = 1.000). There 

was no significant main effect of trial (F(7.38, 531.56) = 1.085, p = .372, ηp
2 = .01) or interaction 

between trial and imidacloprid concentration (F(14.76, 531.56) = 0.977, p = .478, ηp
2 = .03).  

 

3.10 Inter-trial interval 

3.10.1 Intervals 1-27 
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There was a significant interaction between trial and imidacloprid concentration  

(F(19.79, 712.35) = 1.686, p = .031, ηp
2 = .04). Inter-trial interval was generally longer for 

bumblebees exposed at 10 ppb across the first 10 trials, but similar for bumblebees in all 

conditions thereafter (Fig. 3.9). A significant main effect of trial was found (F(9.89, 712.35) = 

4.619, p < .001, ηp
2 = .06), indicating inter-trial interval decreased across trials. There was no 

significant main effect of imidacloprid concentration (F(2, 72) = 1.010, p = .369, ηp
2 = .03).  

 

3.10.2 Intervals 1-9 

 A significant main effect of imidacloprid concentration was found (F(2, 72) = 9.312, p < 

.001, ηp
2 = .20). Post hoc tests revealed that inter-trial interval was longer for bumblebees 

exposed at 10 ppb relative to unexposed bumblebees (p = .001) and those exposed at 2.6 ppb (p 

= .001), but similar between unexposed bumblebees and those exposed at 2.6 (p = 1.000). There 

was a significant main effect of trial (F(3.03, 218.00) = 8.653, p < .001, ηp
2 = .11), indicating 

inter-trial interval decreased across trials. There was no significant interaction between trial and 

imidacloprid concentration (F(6.06, 218.00) = 1.279, p = .268, ηp
2 = .03).  

 

3.10.3 Intervals 10-18 

There was no significant main effect of trial (F(4.06, 292.40) = 1.913, p = .107, ηp
2 = .03) 

or imidacloprid concentration (F(2, 72) = 0.193, p = .825, ηp
2 < .01), and no interaction between 

trial and imidacloprid concentration (F(8.12, 292.40) = 1.072, p = .383, ηp
2 = .03). 

 

3.10.4 Intervals 19-27 

There was no significant main effect of trial (F(4.72, 340.13) = 0.423, p = .823, ηp
2 = .01) 

or imidacloprid concentration (F(2, 72) = 1.273, p = .286, ηp
2 = .03), and no interaction between 

trial and imidacloprid concentration (F(9.45, 340.13) = 1.414, p = .177, ηp
2 = .04). 

 

3.10.5 Inter-trial interval and latency to remove the rewarded barrier 

 There was a positive correlation between inter-trial interval and latency to remove the 

rewarded barrier (r = .44, p < .001), indicating that bumblebees with shorter inter-trial intervals 

were faster to remove the rewarded barrier overall. The relationship was close to significance for 

unexposed bumblebees (r = .39, p = .054), significant for those exposed at 2.6 ppb (r = .56, p = 
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.004) and non-significant for those exposed at 10 ppb (r = .28, p = .173; Fig. 3.10) 

 

3.11 Body size 

Bumblebees did not differ in thorax width by condition (F(2, 59) = 2.004, p = .144, ηp
2 = 

.07). Thorax width and latency to remove the rewarded barrier were not related in unexposed 

bumblebees (r = -.31, p = .200), those exposed at 2.6 ppb (r = -.26, p = .247), those exposed at 10 

ppb (r = .05, p = .834) or overall (r = -.05, p = .681; Fig. 3.11).  

 

3.12 Colony exposure duration prior to testing  

Colony exposure duration prior to testing for individual bumblebees did not differ by 

condition (F(2, 72) = 2.859, p = .064, ηp
2 = .07). Exposure duration prior to testing and latency to 

remove the rewarded barrier were not related in unexposed bumblebees (r = -.15, p = .467), those 

exposed at 2.6 ppb (r = -.09, p = .669), those exposed at 10 ppb (r = -.04, p = .847) or overall (r = 

-.09, p = .436; Fig. 3.12).  

 

3.13 Colony differences in latency to remove the rewarded barrier  

3.13.1 Colonies exposed at 0 ppb 

 There was a significant main effect of trial (F(7.45, 164.00) = 20.176, p < .001, ηp
2 = 

.48), indicating that bumblebees became faster to remove the rewarded barrier across trials 

overall. There was no significant main effect of colony (F(2, 22) = 0.741, p = .488, ηp
2 = .06) or 

interaction between trial and colony (F(14.91, 164.00) = 0.849, p = .621, ηp
2 = .07), however, 

indicating that colonies exposed at 0 ppb performed similarly (Fig 3.13a). 

 

3.13.2 Colonies exposed at 2.6 ppb 

 There was a significant main effect of trial (F(7.05, 155.13) = 11.064, p < .001, ηp
2 = 

.33), indicating that bumblebees became faster to remove the rewarded barrier across trials 

overall. There was also a significant main effect of colony (F(2, 22) = 8.278, p = .002, ηp
2 = .43), 

indicating colonies exposed at 2.6 performed differently (Fig. 3.13b). Post hoc tests revealed 

bumblebees from colony one and three performed similarly (p = 1.000), but that bumblebees 

from colony two were slower to remove the rewarded barrier than those from colony one (p = 
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.006) and three (p = .007). There was no significant interaction between trial and colony 

(F(14.10, 155.13) = 0.982, p = .475, ηp
2 = .08).   

 

3.13.3 Colonies exposed at 10 ppb 

There was a significant main effect of trial (F(7.17, 157.73) = 28.180, p < .001, ηp
2 = 

.56), indicating that bumblebees became faster to remove the rewarded barrier across trials 

overall. There was no significant main effect of colony (F(2, 22) = 0.813, p = .457, ηp
2 = .07) or 

interaction between trial and colony (F(14.40, 157.73) = 1.108, p = .354, ηp
2 = .07), however, 

indicating that colonies exposed at 10 ppb performed similarly (Fig. 3.13c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



 

 
 

30 

 

Figure 3.1. Latency to remove the rewarded barrier. Imidacloprid-exposed bumblebees showed a 

dose-dependent increase in latency to remove the rewarded barrier, but all bees performed 

similarly by trial 30. Vertical bars represent overnight retention intervals between days one and 

two and between days two and three. Bumblebees were slower to remove the rewarded barrier 

following the second overnight retention interval, but not the first. Error bars equal ± 1 standard 

error of the mean.  

 

 

 

 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L
a
te

n
c

y
 t

o
 R

e
m

o
v

e
 t

h
e

 R
e
w

a
rd

e
d

 
B

a
rr

ie
r 

(s
e

c
o

n
d

s
)

Trial

0 ppb

2.6 ppb

10 ppb



 

 
 

31 

 

Figure 3.2. Proportion of time engaging in four behaviours: inverting to lift the rewarded and 

non-rewarded barriers and pushing the rewarded and non-rewarded barriers. Unexposed 

bumblebees (a) and bumblebees exposed at 2.6 ppb (b) behaved similarly, but those exposed at 

10 ppb (c) took longer to shift to the strategy of inverting to lift the plastic barrier. Bumblebees 

in all conditions rapidly abandoned the non-rewarded barrier. Error bars equal ± 1 standard error 

of the mean.  
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Figure 3.3. Proportion of time inverting to lift the rewarded barrier. Bumblebees in all 

conditions spent a greater proportion of time inverting to lift the rewarded barrier across trials 

but this increase was slowest for bumblebees exposed at 10 ppb. Bumblebees showed reductions 

in inverting to lift the rewarded barrier after both overnight retention intervals. Error bars equal ± 

1 standard error of the mean.  
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Figure 3.4. Proportion of time pushing the rewarded barrier. Bumblebees increased in proportion 

of time pushing the rewarded barrier to trial six and decreased thereafter. Bumblebees exposed at 

10 ppb experienced the greatest increase up to trial six and decreased at the slowest rate. Error 

bars equal ± 1 standard error of the mean.  
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Figure 3.5. Proportion of time inverting to lift the non-rewarded barrier. Bumblebees in all 

conditions decreased in proportion of time inverting to lift the non-rewarded barrier on day one 

and rarely inverted to lift it thereafter. Errors bars equal ± 1 standard error of the mean.  
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Figure 3.6. Proportion of time pushing the non-rewarded barrier. Bumblebees in all conditions 

decreased in proportion of time pushing the non-rewarded barrier on day one and rarely pushed it 

thereafter. Errors bars equal ± 1 standard error of the mean.  
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Figure 3.7. Overall proportion of time inverting to lift or pushing either barrier. Bumblebees 

increased overall in proportion of time inverting to lift or pushing on day one and remained 

stable thereafter, with bumblebees exposed at 10 ppb spending a slightly greater proportion of 

time inverting to lift of pushing. Error bars equal ± 1 standard error of the mean.  
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Figure 3.8. Number of behaviour switches per second. Unexposed bumblebees switched 

between behaviours at a higher rate than did bumblebees exposed at 2.6 or 10 ppb during early 

trials. Errors bars equal ± 1 standard error of the mean.  
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Figure 3.9. Inter-trial interval in minutes. Bumblebees exposed at 10 ppb took longer between 

trials during day one than did unexposed bumblebees and those exposed at 2.6 ppb. Error bars 

equal ± 1 standard error of the mean.  
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Figure 3.10. Composite latency as a function of average within-day inter-trial interval duration. 

Bumblebees with longer within-day inter-trial intervals were slower to remove the rewarded 

barrier overall (r = .44). This relationship was significant for bumblebees exposed at 2.6 ppb (r = 

.56), close to significant for unexposed bumblebees (r = .39) and non-significant for those 

exposed at 10 ppb (r = .28). 
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Figure 3.11. Composite latency as a function of thorax width. There was no relationship 

between thorax width and composite latency (r = -.05). Bumblebee thorax width did not vary by 

condition.  
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Figure 3.12. Composite latency as a function of the day of colony exposure on which individual 

bumblebees began testing. There was no relationship between composite latency and colony 

exposure duration prior to testing (r = -.09). Colony exposure duration prior to testing did not 

vary by condition.   
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Figure 3.13. Latency to remove the rewarded barrier. Bumblebees from (a) unexposed colonies 

one (n = 7), two (n = 9) and three (n = 9) performed similarly. Bumblebees from (b) 2.6 ppb 

imidacloprid-exposed colony two (n = 9) were slower to remove the rewarded barrier than those 

from colony one (n = 6) and three (n = 10). Bumblebees from (c) 10 ppb imidacloprid-exposed 

colonies one (n = 8), two (n = 8) and three (n = 9) performed similarly. Error bars equal ± 1 

standard error of the mean. 
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Chapter 4 

4. Discussion 

  A model of flower handling was used to assess the effects of imidacloprid, a common 

neonicotinoid pesticide, on motor learning in bumblebees. As predicted, imidacloprid-exposed 

bumblebees showed a delay in learning to solve the motor task. Exposed bumblebees showed a 

strong dose-dependent delay to solve the task during the first day of testing. However, this dose-

dependent effect diminished over time. The effect was much less pronounced on day two and 

bumblebees performed similarly regardless of exposure by the end of testing on day three. These 

results are consistent with those of Stanley & Raine (2016), which showed that bumblebees 

chronically exposed to the neonicotinoid thiamethoxam at 10 ppb took more trials to learn to 

handle morphologically complex flowers. I also found some evidence for overnight forgetting on 

the task, though not as a function of imidacloprid exposure. Bumblebees were slower to solve the 

task following the second overnight retention interval but not the first. Chittka (1998) found no 

evidence for overnight forgetting in bumblebees on a motor learning task, but bumblebees in the 

present study were given fewer learning trials which may explain the discrepancy. Interestingly, 

bumblebees showed overnight forgetting following 277-354 flower visits on day one in a study 

by Raine and Chittka (2007). Consistent with Strang (2018), bumblebees improved significantly 

across trials. Increased efficiency of bumblebees on the task following experience parallels 

observations of bumblebees learning to forage on real flowers (Heinrich, 1979; Laverty, 1980; 

Peat & Goulson, 2005; Raine & Chittka, 2007).  

 A novel contribution of the present study was detailed analysis of the effect of 

imidacloprid on the behaviour of bumblebees engaged in motor learning. Bumblebees used two 

dominant behavioural strategies to solve the task: inverting in the tube to lift the rewarded barrier 

and pushing the rewarded barrier. Only inverting, however, was successful, which is consistent 

with Strang (2018). Bumblebees favoured the pushing strategy during early trials, likely because 

of its relative simplicity, but shifted to using the inverting to lift strategy after learning it was the 

most effective. As predicted, bumblebees exposed to imidacloprid at 10 ppb were much slower 

to shift from pushing to inverting to lift; they showed the strongest preference for pushing during 

early trials and spent much less time inverting to lift on day one than did bumblebees exposed at 

0 or 2.6 ppb. While unexposed bumblebees and those exposed at 2.6 ppb split time about evenly 
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between pushing and inverting to lift by the end of day one, bumblebees exposed at 10 ppb did 

not until midway through day two. Unexposed bumblebees showed a slightly stronger preference 

for inverting to lift than those exposed at 2.6 ppb across early trials, however, this difference was 

not statistically significant. The delay in exposed bumblebees to use the successful strategy is 

consistent with the delay in solving the task, indicating that exposed bumblebees were slower to 

solve the task as a direct result of delayed use of the successful strategy. Bumblebees spent a 

lower proportion of time inverting to lift following overnight retention intervals, which may 

explain why they were slower to solve the task following the second overnight retention interval.  

Why were exposed bumblebees slower to use the successful behavioural strategy? The 

reason is not that exposed bumblebees were less active. Indeed, bumblebees in all conditions 

spent a similar amount of time interacting with the two barriers. Further, it is not the case that 

exposed bumblebees spent more time interacting with the unrewarded metal barrier. Bumblebees 

in all conditions decreased equally in proportion of time interacting with the unrewarded barrier 

and rarely did after day one. Exposed bumblebees were probably slower to use the successful 

strategy because they were behaviourally rigid; they switched between behaviours at a lower rate 

than did unexposed bumblebees – particularly during day one – and were more likely to persist 

using one strategy for long periods. Past work has shown that naïve bumblebees make frequent 

errors foraging on novel flowers but quickly improve through trial and error (Laverty, 1980), 

learning associatively which behavioural strategies result in successful manipulation of flowers 

and subsequent reward. It seems reasonable, therefore, that a delayed process of trial and error 

limited opportunities for associative learning and delayed acquisition of the successful strategy. 

Reduced exploration demonstrated here is consistent with past work by Phelps and colleagues 

(2018), which showed that imidacloprid-exposed bumblebees were slower to learn which flowers 

are rewarding because of reduced flower sampling. These results are also consistent with work 

on problem solving more generally, which has demonstrated the importance of exploration in 

problem solving across a range of species and tasks (Auersperg et al., 2012; Benson-Amram & 

Holekamp, 2012; Thornton & Samson, 2012).  

Why did imidacloprid-exposed bumblebees show a reduction in behaviour switching but 

not in overall activity? While perhaps initially surprising, this result is consistent with previous 

findings. Williamson and colleagues (2014) found that honeybees exposed to thiamethoxam at 

field-realistic doses were not less active, but that they suffered coordination deficits such as 
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impaired performance of the righting reflex. Similarly, Whitehorn and colleagues (2017) showed 

that thiamethoxam-exposed bumblebees could not fine-tune buzz pollination to maximize pollen 

collection. While neonicotinoids at sufficiently high doses unsurprisingly cause major activity 

reduction and paralysis (Godfray et al., 2015; Moffat et al., 2016; Switzer & Combes, 2016; 

Williamson et al., 2014), effects at field-realistic levels are more subtle. The distribution of 

neonicotinoid-sensitive receptors in crucial motor control areas of the bee nervous system (e.g. 

the neuromuscular junctions and the ganglia of the ventral nerve cord) is less well understood 

than the distribution in learning and memory areas (e.g. the mushroom bodies and antennal 

lobes; Barbara et al., 2008; Deglise et al., 2002; Palmer et al., 2013). It was recently found, 

however, that honeybees exposed to imidacloprid at 10 ppb showed significant down-regulation 

of muscle-related genes (Wu et al., 2017). This down-regulation, in addition to the blockage of 

nAChRs, may underlie the subtle motor deficits observed here and elsewhere.  

While subtle imidacloprid-induced motor deficits were probably responsible for reduced 

behaviour switching, they may have acted in concert with associative learning deficits to cause 

delayed use of the successful motor strategy in bumblebees exposed at 10 ppb. Many studies 

have shown associative learning deficits in bees exposed to neonicotinoids at sub-lethal levels 

(Decourtye et al., 2004a; Decourtye et al., 2004b; Han et al., 2010; Phelps et al., 2018; Stanley et 

al., 2015a; Williamson and Wright 2013). Exposed bees often require more learning trials to 

form associations between stimuli. It may be the case, therefore, that exposed bumblebees not 

only gained experience with the successful motor strategy at a lower rate, but that they also 

required more experience using the strategy to form a strong association between it and the 

reward. More severe associative learning deficits in bumblebees exposed at 10 ppb than those 

exposed at 2.6 ppb may explain performance differences between these groups. 

Inter-trial interval on day one was longer for bumblebees exposed at 10 ppb than for 

unexposed bumblebees and those exposed at 2.6 ppb. This is partially because bumblebees 

exposed at 10 ppb spent longer engaging in the task on day one. However, it may also be that 

they took longer to deposit sucrose and prepare for subsequent foraging trips. Importantly, this 

effect on day one was variable: inter-trial interval was only longer for bumblebees exposed at 10 

ppb following trial one and between trials 6 and 10. Given this inconsistency, it is inappropriate 

to make claims about whether imidacloprid affects foraging rate. The relation between inter-trial 

interval and task performance was also variable: while inter-trial interval duration and latency to 
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remove the rewarded barrier were positively correlated overall, the effect was largely driven by 

bumblebees exposed at 2.6 ppb. It is unclear whether bumblebees with longer inter-trial intervals 

were slower to solve the task due to increased forgetting, or whether these bumblebees were less 

motivated. While longer inter-trial intervals during day one in bumblebees exposed at 10 ppb 

overall may have contributed to delayed improvement on the task, there was no relation between 

performance and inter-trial interval among bumblebees exposed at 10 ppb.  

Bumblebees were of similar size across conditions and task performance did not vary as a 

function of body size. This finding conflicts with past work showing that larger bumblebees are 

typically faster to learn across contexts (Laverty, 1994a; Stanley et al., 2015a; Worden et al., 

2009) and that memory in larger bees is more severely affected by neonicotinoid exposure 

(Samuelson et al., 2016; but see Stanley et al., 2015a). Bumblebees ranged widely in thorax 

width (3.62 to 5.41 mm) so it is interesting that there were no size-related differences. 

 Since bumblebees were exposed chronically to imidacloprid in a free-flight scenario it 

was not possible to precisely manipulate how long bumblebees were exposed prior to testing. 

Colonies were, however, exposed for at least one week. A post-hoc analysis of time colonies 

were exposed prior to testing shows that treatment duration was similar for bumblebees across 

conditions. There was no relation between exposure duration and performance. Most bumblebees 

were tested within weeks two and three of exposure. While it is possible that some bumblebees 

were exposed to imidacloprid during development, this did not manifest in worse performance. 

The exact age of bumblebees was not known, however, so it is not possible to speculate about 

differential effects of imidacloprid during development and across the life span.  

 Bumblebee colonies often differ in the degree to which they are affected by pesticides 

(Phelps et al., 2018; Whitehorn et al., 2017). While bumblebees from colonies exposed at 0 and 

10 ppb performed similarly across replicates, bumblebees from one colony exposed at 2.6 ppb 

performed significantly worse than those from the other two. Differences between bumblebees 

exposed at 0 and 2.6 ppb appear largely driven by the poor performance of bumblebees from this 

colony and should thus be interpreted with caution. Consistent performance in colonies exposed 

at 0 and 10 ppb, however, does point to a robust effect of imidacloprid on motor learning at the 

level of 10 ppb. The colony variation problem is sometimes avoided by removing bumblebees 

from a single colony and testing them at each exposure level. Removing bumblebees from a 

natural colony context, however, reduces ecological validity and is not possible in studies of 
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chronic pesticide exposure where bumblebees must return to the colony to deposit sucrose 

between trials.   

 Consistent motor learning delays in bumblebees exposed to imidacloprid at 10 ppb may 

help explain why neonicotinoid exposure limits colony growth (Rundlöf et al., 2015; Whitehorn 

et al., 2012; Woodcock et al., 2017). Pollen is the key bumblebee protein resource and it is often 

found that neonicotinoid-exposed bumblebees collect less of it in the field (Feltham et al., 2014; 

Gill et al., 2012; Gill & Raine, 2014; Stanley et al., 2016). Bumblebees must learn to handle 

flowers to collect pollen, and it therefore follows that neonicotinoid-induced motor learning 

delays may cause reduced pollen collection. Pollen foraging in bumblebees involves much more, 

however, than learning to handle flowers. Bumblebees must navigate to forage on a variety of 

flowers that differ not only in morphology but also in location, colour, scent and reward (Lawson 

et al., 2018; Muth et al., 2016; Nicholls & Hempel de Ibarra, 2014; Thomson, 1996). Recent 

work has shown that neonicotioids also impair learning of both colour- and scent-reward 

associations (Phelps et al., 2018; Stanley et al., 2015a) and spatial memory (Samuelson et al., 

2016). These effects are likely interacting to cause deficits in pollen foraging and, subsequently, 

reductions in reproductive success.  

 The model used here was designed to resemble handling of morphologically complex 

flowers. However, many flowers important to bees are morphologically simple and thus easier to 

handle (Laverty, 1980, 1994a; Strang, 2018). It would be valuable to test whether neonicotinoid 

exposure affects handling of morphologically simple flowers. It may be the case that exposed 

bumblebees can learn to handle simple flowers as effectively as unexposed bees but that subtle 

motor deficits reduce the efficiency with which they execute the motor pattern over the tens to 

hundreds of flower visits comprising a typical foraging bout in the wild (Brunet, 2009; Raine & 

Chittka, 2007). Importantly, individuals often visit more than one flower species during foraging 

bouts (Chittka et al., 1997; Heinrich, 1979) and must learn several associations between floral 

features and reward value simultaneously (Muth et al., 2015). Bumblebees switch between 

handling flower species with an impressively low interference cost (Laverty, 1994b; Strang, 

2018; Woodward & Laverty, 1992). It would be valuable to test whether neonicotinoid exposure 

exacerbates memory interference in bumblebees learning to handle multiple flowers.  

 In summary, imidacloprid exposure caused a dose-dependent delay in bumblebee motor 

learning. Reduced performance in exposed bumblebees resulted from delayed use of the 
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successful motor strategy, which itself may have resulted from reduced behaviour switching and 

impaired associative learning during early trials. This effect occurred consistently in colonies 

exposed at 10 ppb. At 2.6 ppb, however, the effect seems largely driven by bumblebees from one 

disproportionately affected colony. Results suggest, therefore, that imidacloprid exposure at 10 

ppb causes clear deficits in motor learning but that exposure at lower doses in the field-realistic 

range may have variable effects across individuals. It is crucial that bumblebees learn to handle 

flowers to efficiently collect pollen. These results may help explain why bumblebees exposed to 

neonicotinoids collect less pollen while foraging in the field.  
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