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ABSTRACT 

With increasing world population and urbanization, the depletion of natural resources and 

generation of waste materials is becoming a considerable challenge. As the number of humans has 

exceeded 7 billion people, there are about 1.1 billion vehicles on the road, with 1.7 billion new 

tires produced and over 1 billion waste tires generated each year. In the USA, it was estimated in 

2011 that 10% of scrap tires was being recycled into new products, and over 50% is being used 

for energy recovery, while the rest is being discarded into landfills or disposed. The proportion of 

tires disposed worldwide into landfills was estimated at 25% of the total number of waste tires, 

which represents fire hazards and grounds for breeding of disease carrying mosquitoes. Moreover, 

waste generated during construction and demolition in the United States in 2014 was about 353.6 

million tons. This is expected to increase worldwide with ageing civil infrastructure. Recycling 

tire rubber and demolition concrete as recycled concrete aggregate (RCA) poses technological 

challenges. Tire rubber tends to float during concrete mixing and placing due to its lower density, 

while RCA tends to absorb mixing water, causing loss of workability and shrinkage stresses. 

 In the present study, tire rubber and tire steel-wire along with RCA can be preplaced in the 

formwork, eliminating the problems above. Subsequently, a flowing grout is injected to fill inter-

granular voids. This preplaced aggregate concrete (PAC) offers multiple sustainability advantages. 

It incorporates about 50% more coarse aggregate than normal concrete, thus reducing the demand 

for cement and the associated greenhouse gas emissions from cement production. The dense 

granular skeleton of PAC has a unique stress transfer mechanism, which better resists shrinkage 

and thermal contraction stresses due to the physical contact between granular particles. Moreover, 

the mixing and pumping energy of concrete and the associated labour are greatly reduced since 

only the smaller grout fraction is mixed and injected. 

 In this experimental study, 21 eco-efficient preplaced aggregate concrete mixtures were made 

with recycled concrete aggregate, along with 10%, 20%, 30%, 40% and 50% of scrap tire rubber, 

and 0%, 0.25%, 0.5% and 1.0% of tire steel-wire fibre.  The mechanical properties of specimens 

from each mixture were explored, including compressive, tensile and flexural strengths, elastic 

modulus, post-crack behaviour, and impact resistance. While tire rubber decreased the mechanical 
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strength and elastic modulus, combined tire rubber and steel-wire fibres provided the preplaced 

aggregate concrete with superior post-crack behaviour, higher toughness and better impact 

resistance. The Weibull distribution was found to be an effective tool for predicting the impact 

resistance of PAC mixtures. It is believed that the proposed sustainable technology of preplaced 

recycled aggregate concrete incorporating recycled tire rubber and tire steel-wire fibres can offer 

an eco-efficient construction procedure for pavements, sidewalks, road barriers, and other non-

structural concrete. Further refinements, including the use of effective supplementary cementitious 

materials or geo-polymer grout can further enhance the mechanical strength and overall eco-

efficiency of this technology. 

Key Words 

Preplaced aggregate concrete; recycled concrete aggregate; two stage concrete; sustainability; 

natural aggregate; recycling; tire rubbers; steel-wire; cement; grout; flowability; mechanical 

properties; dynamic; impact resistance; ductility; toughness; sustainability; eco-efficient; 

construction. 
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Chapter 1 

1. RUBBERIZED AND STEEL-WIRE FIBRE-REINFORCED 
PREPLACED RECYCLED AGGREGATE CONCRETE  

1.1. INTRODUCTION 

The dramatic worldwide increase in waste tire stockpiles is a subject of major environmental 

concern. It has led to initiating substantial research on sustainable approaches to valorize such 

huge amounts of discarded tire wastes in various applications. Recycling wasted tire rubber and 

steel-wire cord components in construction applications can be implemented in green construction 

technology with potential applications in pavements, sidewalks, and many other non-structural 

concrete infrastructures.   

Several studies have been conducted to create alternative and ecofriendly methods to recycle tire-

rubber wastes. The unique properties of rubber make it a promising material that could be used in 

construction. Its various applications in the civil engineering realm are increasingly being 

explored. In particular, the application of using tire rubber as an aggregate and tire steel-wire as 

fibre reinforcement in concrete is promising. Rubber is considered a high strain capacity material 

that could help improve the ductility of concrete and prevent the initiation and propagation of 

micro-cracks (e.g. Turatsinze et al., 2005; Topcu, 1995). However, higher rubber content can 

compromise the compressive strength and workability of concrete (Taha et al., 2008).  

The utilization of waste tire steel-wire fibers can significantly improve the tensile strength of 

concrete (e.g. Altun and Aktas, 2013; Mohammadi et al., 2008), as well as inhibit micro-crack 

formation and growth (Aslani 2013; Naghibdehi et al., 2014). Furthermore, waste tire steel-wire 

fibers have higher strength and stiffness when compared to waste tire chips or crumb rubber (Li et 

al., 2004; Neocleous, et al., 2006; Ghailan 2005). Steel fibre-reinforced concrete typically displays 

higher toughness and enhanced post-crack behavior when compared to normal concrete. Thus, 

recycled steel-wire fibers could impart similar benefits.   

Using recycled tire rubber and steel-wire in preplaced aggregate concrete (PAC), also known as 

two-stage concrete, is of particular interest (Najjar et al., 2016). The PAC technique produces a 
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different form of concrete than conventional concrete. It consists of preplacing a higher amount of 

coarse aggregate in the formwork, which is closely in contact with one another, hence the 

alternative name, “skeleton concrete” (Abdelgader, 1996). The aggregate skeleton is then injected 

with a highly flowable grout to fill inter-granular voids.  

The mechanical properties of preplaced, aggregate concrete are affected by the properties of the 

preplaced aggregates and the grout used (Abdul Awad, 1988; Abdelgader, 1999). The mechanism 

of resisting external loads by PAC is different from that of conventional concrete. In the latter, the 

entire concrete matrix resists the load. In preplaced aggregate concrete, the aggregate absorbs and 

transfers the stress throughout its contact points and gets bonded to the cementitious matrix 

(Nowek et al., 2007). Additional advantages of this functioning characteristic of preplaced 

aggregate concrete include the following: less shrinkage strain and cracking, better resistance to 

thermal contraction, possibility to produce enhanced mechanical and durability performance, and 

resistance to harsh exposure conditions (Abdelgader et al., 2015). However, substantial research 

needs to be conducted on the PAC technology in order to capture the emerging techniques that can 

make the process more sustainable, while deploying advances in concrete technology in PAC 

design and production (Abdelgader and Gorski, 2003).  

1.2. RESEARCH OBJECTIVES 

The primary objectives of this thesis are to develop eco-efficient preplaced recycled aggregate 

concrete including scrap tire granules and steel wire fibres with precise focus on sustainable 

pavement and sidewalk construction. The specifics objectives include:  

1) Elevating the awareness on the negative environmental impact of disposing tire waste and 

 the potential of valorizing it in construction engineering applications. 

2) Introducing green concrete technology having superior ability to use large volumes of 

 recycled concrete aggregate (from demolition waste) and recycled tire waste.  

3) Exploring key engineering properties of the eco-efficient concrete produced in order to 

 motivate the construction industry to implement it, while having confidence in its 

 mechanical strength and durability. 
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4) Making such concrete highly eco-efficient, not only in terms of its very high recycled 

 content, but also via achieving substantial gains in reducing the energy and labour 

 required for its production. 

5) Deploying statistical tools, such as analysis of variance (ANOVA) and Weibull 

 distribution to predict key engineering properties of this material.  

1.3. THESIS OUTLINE  

This thesis has been created based on the integrated article format and established through the 

thesis command guide of Western University’s School of Graduate and Postdoctoral Studies. The 

thesis consists of five core chapters representing its rationale and findings. 

Chapter 1 presents a concise introduction of the study, while delivering the main objectives of 

conducting this research. 

Chapter 2 exhibits an overview of literature on the existing evidence and rationale of the study, 

emphasizing global and environmental concerns that led to the recent research motivations. The 

need for introducing tire waste materials in various Portland cement concrete applications, as part 

of sustainable and green project goals is described by displaying its effects on concrete properties 

and reviewing positive and negative outcomes of using recycled coarse aggregates and recycled 

tire waste combinations in concrete manufacturing. This chapter also highlights the PAC mixture 

proportions and its effects on the overall PAC functioning. 

Chapter 3 provides a detailed description of the investigated preplaced aggregate concrete and its 

mixture proportioning with specific volume fractions of recycled granulated tire rubber particles 

and steel-wire cord dispersed within a recycled concrete aggregate skeleton. The chapter describes 

the mixing of grout, casting of specimens, curing procedure, test methods used, collected test data, 

and mechanical strength performance of test specimens.  

Chapter 4 explores the dynamic properties of specimens from the produced eco-efficient concrete 

through conducting an experimental impact resistance test using a standard drop weight method, 

while evaluating failure mechanisms. The beneficial effects of recycled steel-wire fibre on the 

impact behavior of rubberized and non-rubberized TSC specimens are also discussed. The chapter 



4 

 

captures statistical analysis of variance (ANOVA) and Weibull distribution function of the impact 

test data in order to statistically analyze the results and possibly develop statistical predictive tools 

of impact test results.  

Chapter 5 summarizes the findings of the study, advocates specific recommendations, and 

discusses the need for future research. 
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Chapter 2 

2. OVERVIEW ON SUSTAINABLE DEVELOPMENT OF 
PREPLACED AGGREGATE CONCRETE TECHNOLOGY 
CONTAINING RECYCLED TIRE WASTE  

2.1. Background 

The dramatic increase in tire waste stockpiles worldwide has caused substantial environmental 

damage and harmful impacts on human health and natural resources. Since landfilling and burning 

of tire releases potentially hazardous substances from these tires, the soil and groundwater can 

become polluted (Thomas and Gupta 2015; Gesoglu and Güneyisi,2011; Yung et al., 2013; Eldin 

and Senouci,1994). This negative outcome accelerates the need for inventing efficient methods for 

discarding tire waste, such as recycling and utilizing it in concrete construction, geotechnical 

works, pavements, and marine reef projects (Segre and Joekes, 2000), instead of disposing it in 

landfills. The outcome of the incorporation of recycled tire rubber particles in concrete has shown 

some promising features. These include the ability to provide sound, heat, and waterproofing 

insulation, benefiting various construction and building applications.  

In addition, the performance of rubberized concrete can be improved significantly in terms of its 

toughness, brittleness, crack resistance, deformation, energy absorption capacity, and freeze-thaw 

resistance as compared to that of conventional concrete. In addition to rubber waste, the inclusion 

of recycled steel fibers obtained from steel-wire cords of tires can enhance concrete toughness, 

tensile and flexure strength, thus delaying cracks and better resisting failure. Of particular interest 

is integrating these waste materials into concrete constituents using the preplaced aggregate 

concrete technique. The PAC technique can also use recycled concrete aggregate (demolition 

concrete turned into aggregates), thus expanding on the innovation of green concrete technology 

with better physical and mechanical properties, while having positive environmental footprint, and 

cost-efficient engineering impacts. 
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2.2. Problem Context  

The rapid development of the automobile production and transportation industries increased tire 

consumption, resulting in a massive amount of tire waste needing to be discarded annually. By 

2030, the total number of discarded tires annually in the world is expected to reach 1.2 billion tires 

(Al-Mutairi et al., 2010). In the last 20 years, many developed countries with large population have 

issued several governmental policies that aim to reprocess landfilling treatments due to the tire 

landfill sites being hazardous to human health as well as to the environmental with negative 

economic impacts. Disposing used tires in landfills is no longer acceptable, as the number of 

available landfill sites is becoming limited. Consequently, recycling scrap tires in a safe way that 

guarantees no negative impact on the environment has also been a challenge. The complexity of 

rubber chemical composition delays its degradation process, causing harm to natural resources 

surrounding the landfills and tire fires that could damage neighboring facilities (Fadiel et al., 

2011).  

As reported by many studies, the worldwide production of waste tires is nearly 1 billion tons. This 

makes recycling tire wastes extremely necessary. The same studies show that the United States 

and Japan have almost 290 and 110 million waste tire rings, respectively. The study also illustrated 

that 30% of waste tires in Canada and the US were transferred to landfill sanitary centers, which 

causes environmental and health issues due to possible fires and infestation with mosquitos and 

rats (Shafabakhsh et al., 2014). India has been experiencing a huge environmental and social crisis 

as a result of the rapid growth of waste materials disposed into the air, water, and the ground from 

industrial sources such as power houses, colliery pits and demolition. Also, the government of 

India has been working on green concepts to reuse waste materials. For example, the use of such 

materials has doubled the production of cement. These materials are used in the construction of 

road pavements, aggregate production, and as fillers in concrete (Kolisetty and Chore, 2013).  

The European Union reacted to the environmental crisis regarding tire stockpiles by banning the 

landfilling of whole tires in July 2003. They also banned shredded tires in July 2006 (Evans and 

Evans, 2006). The government of China also developed a green plan, “Twelfth Five-Year Plan”, 

directed at the construction industry. The policy was based on reusing the recycled rubber as solid 

waste, as part of the Chinese building evaluation standard, in order to protect the environment by 
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reducing pollution (Lijuan et al., 2014). With the help of this policy, tire waste rubbers were used 

in asphaltic concrete mixes and road construction as a fill material (Eldin and Senouci, 1992; 

McQuillen et al., 1988).  

The civil engineering research field has found that the recycling process and inclusion of tire waste, 

including rubber particles and steel fibres, is suitable and can be an efficient part of green concrete 

production. This process has promising environmental and economical benefits as it reduces 

natural resource consumption and the cost of construction. Tire rubber waste can also be recycled 

as a waterproofing and insulation material. Concrete is considered as the most useful construction 

material, although it has some limitations in its mechanical and physical properties, which are 

related to hardening and curing, low tensile strength, ductility, energy absorption, high shrinkage, 

and cracking. In this regard, several studies have highlighted the use of recycled tire rubber in the 

improvement of some of these weak characteristics of concrete (Wang et al., 2000). However, 

incorporating these materials in construction requires rigorous studies of both the materials’ 

intrinsic and extrinsic properties, in order to achieve safe and optimal use. The use of crumb rubber 

as a modified material, such as in asphalt, has been investigated in many studies and is implicated 

in increasing pavement life, reducing maintenance cost, traffic noise and environmental pollution 

(Shafabakhsh et al., 2014). 

2.3. Tire Waste Incorporation Objectives 

Reusing and recycling waste materials provide protection for the environment, while reducing the 

cost of the projects and creating additional jobs in various industries. The reuse of waste materials 

can be applied to residential and industrial sectors where the consumption of original construction 

materials is high. These sectors participate in providing a productive, efficient and sustainable 

future. The main aim of recycling waste materials is to reduce damage to the Earth’s crust and 

green lands by relieving the waste load in disposal sites. The construction industry plays an 

important role in environmental protection by reusing recycled concrete stones and bricks in its 

projects. The reuse of waste materials can create innovative design by varying the resources and 

cost of materials used in construction to move toward a sustainable environment. This provides 

environmental protection from hazardous and solid waste products (Kolisetty and Chore, 2013).    



9 

 

Compared to conventional concrete, the properties of rubberized concrete are promising in terms 

of cost effectiveness, sound and thermal insulation, water absorption reduction, protection against 

acid, and resistance to load and temperature changes, as well as being efficient in impact and tensile 

strength. In addition, rubberized concrete has various uses in highway projects, as it has been found 

that adding rubber contents in concrete mixtures reduces plastic cracking and shrinkage, absorb 

sound and earthquake waves (Kumaran et al., 2008). Rubber-modified concrete has been widely 

used in various applications as major elements of buildings, such as in precast sidewalk panels, 

non-load bearing walls, and precast roofs for green buildings (Tomosawa et al., 2005). 

Furthermore, it can be used in developing roadways, recreational courts, pathways, and skid-

resistance ramp projects (Kamil et al., 2005). In architectural applications, rubberized concrete can 

perform in low strength structures, such as nailing concrete and wall panels, while fixing the 

ground of railroads (Topcu, 1995). Furthermore, concrete with rubber content can replace normal 

concrete for its use in lightweight architectural units, such as lightweight concrete walls and 

building facades (Khatib and Bayomy, 1999). Rubberized concrete has a high resistance to harsh 

weather where it can be used in areas with occurrence of freezing and thawing cycles. It can also 

be placed in larger sheets than conventional concrete (Kumaran et al., 2008). When using a single 

slab of rubberized concrete in tennis courts for example, the courts no longer have section lines 

after the curing process. Rubberized concrete can also be involved in many lightweight structures, 

such as roofing tiles, and can be poured in airport runways, industrial floorings and in some 

structural elements (Kaloush et al., 2004). 

Over the last 20 years, researchers have been rigorously exploring effective ways to recycle used 

tires. One such breakthrough is to crush these tires to achieve the rubber aggregates’ size, as well 

as use them and their steel fibres in cement-based materials and concrete (Garrick, 2005; 

Hernández et al., 2007; Khatib and Bayomy, 1999; Sukontasukkul and Chaikaew, 2006). Many 

studies conducted in the civil engineering field have explored the use of rubber aggregates as an 

important part in producing concrete to help avoid poor deformation capacity, while improving 

the tensile strength performance and the energy absorption capacity of the concrete (Ozbay et al., 

2011). Furthermore, tire rubber particles play an important role in enhancing the deformation and 

energy absorption capacity of concrete (Eldin and Senouci, 1993; Khatip and Bayomy, 1999; 

Topcu, 1995). Many projects have been conducted in the civil engineering field to potentiate the 
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sustainable use of environmentally-friendly raw materials and solid waste materials as an 

aggregate part of cement concrete (Shu and Baoshan, 2014). Accordingly, the use of tire rubber is 

being explored in different engineering applications such as geotechnical works, pavements, fuel 

for cement kilns, reefs in marine environments, and aggregates in cement-based products (Segre 

and Joekes, 2000). Using concrete with the addition of rubber material is advantageous in 

increasing skid resistance during freezing conditions, improving flexibility and crack resistance, 

while reducing traffic noise (Lijuan et al., 2014). 

2.4. Environmental and Sustainability Motivation 

Disposing waste tires can hardly be achieved because tires are not biodegradable, not to mention 

how burning them affects air quality, the soil and vegetation in that area. Huge amounts of water 

mixed with oil are often generated leading to pollution of soil and ground water; hence, developing 

an innovative and efficient plan for tire disposal is paramount. This green plan can include reusing 

tire rubber waste in asphalt concrete pavements, which eventually starts producing different types 

of plastic and rubber components, adding waste rubber materials as fuel for cement kilns, and 

using tire rings to create artificial reefs in marine environments (Fadiel et al., 2011). In addition, 

one of the possible solutions to recycling tire rubber and fibers is their use as an aggregate or filler 

in concrete components. This process is deemed to be environmentally and economically 

favorable, since it turns this waste into a valuable resource (Kumaran et al., 2008). Thus, using 

rubber concrete promises to reduce pollution and save natural resources that will lead to positive 

economic and social impacts (Liu et al., 2013). 

2.5. Tire Waste Concrete Common Proportioning  

2.5.1. Recycled Tire Waste Materials  

Recycled tire rubber granules are obtained by shredding scrap tires in relation to the required 

particle sizes, terminologies (Table 2.1a) and properties (Table 2.1b), as recycled waste tire 

particles, defined by ASTM D-6270, has a standard practice for the use of scrap tires in civil 

engineering applications. The weight of these tires generally ranges from 9.071 kg to 45.359 kg 

(Siddique and Naik, 2004). Manufacturing tires requires major materials that include natural & 

synthetic rubber (14%), carbon black (28%), steel (14%-15%), fabric, filler, accelerators and anti-
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ozonants (16%-17%) (Table 2.1c). The major chemical composition of waste tire rubber consists 

of carbon black (29%) and additives (13%), as introduced in Error! Reference source not found., 

complex chemical mixtures including extender oil (1.9%), elastomers, polyisoprene, 

polybutadiene and styrene butadiene (Black and Shakoor, 1994; Benda, 1995). Different tires can 

have different intrinsic compositions. Automobile tires, for example, have a significantly different 

composition than truck tires. This difference is most significant in the contents of natural and 

synthetic rubber. In general, recycled rubber can be classified into the three following main 

categories:  

(a) Shredded rubber, also known as chipped rubber, is used to partially replace gravel. 

Manufacturing this category requires the tire to be shredded in two stages. The first stage produces 

rubber with a length of 300-430 mm and a width of 100-230 mm. The second stage cuts the length 

to 100-150 mm. Shredded particles can be acquired by continuing the process of shredding, which 

leads to the production of rubber particles with a size around 13-76 mm.  

(b) Crumb rubber has particles with a size of 0.425-4.75 mm and can be used to substitute the sand 

portion in concrete production. This type of rubber is produced by turning the big rubbers into 

smaller particles, where the variety of rubber particle size is mainly dependent on the mills used 

and the temperature level.  

(c) Ground rubber particles are manufactured through the micro milling process, which produces 

a particle size that ranges from 0.075 to 0.475 mm. The size of equipment plays an important role 

in reducing the size of particles. The process is subjected to magnetic separation and screening. 

This type of recycled tire rubber can be used as a filler to partially replace cement in concrete 

production (Ganjian et al., 2008).  

2.5.2. Ordinary Portland Cement  

Ordinary Portland Cement (OPC) is generally produced by mixing and burning clay with limestone 

(Calcium Carbonate, CaCO3) at a high temperature (1400-1450°C) in a kiln to separate carbon 

dioxide molecules from the calcium carbonate molecules and produce calcium oxide (CaO) or 

lime. This can be regarded as a part of the calcination process. Lime must be mixed with silicates 

(SiO2) and various chemical compounds to produce a hard substance known as cement “clinker”. 
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Clinker is then ground with gypsum into a fine powdery material containing hydraulic calcium 

silicates to finally produce OPC. The production of different types of cement is almost similar; 

however, they are basically manufactured to meet several chemical and physical requirements 

(Table 2.2) for specific measures and applications with accordance to ASTM C150 (Standard 

Specification for Portland Cement). Cement type I with an approximate specific gravity and 

surface area of 3.15 g/cm3 and 371 m2/kg, respectively, has been commonly considered in most 

of the concrete research industry because it provides excellent durability and strength. The quality 

of cement binding refers to the chemical reaction between cement and water, also known as cement 

hydration. The process significantly controls the porosity of the cement paste and affects the 

strength of concrete. In fact, the hydration process begins with the mix of cement, water, and four 

cement chemical compositions that include tricalcium silicate (𝐶3S), dicalcium silicate (𝐶2S), 

tricalcium aluminate (𝐶3A) and tetra calcium aluminoferrite (𝐶4AF). These chemical compositions 

intensify the mass and hydration stages by moderating the setting and gaining of strength 

properties of cement paste (Neville, 1996). Consequently, the strength of concrete reflects the 

bonding quality of the hydrated cement paste structures.  

2.5.3. Silica Sand 

Sand is considered as one of the purest natural fine aggregates among the concrete constituent 

materials (Orchard, 1979). Silica sand is made of silicon and oxygen, which happen to be the most 

available elements in the Earth’s crust, given the chemical formula SiO2. Silica consists of a high 

percentage of quartz grains, which is the second most common mineral on the Earth’s surface. 

Hence, silica sand, commonly known as industrial sand, differs significantly from construction 

sand due to its high silica content of up to nearly 99.5% of SiO2. These factors provide promising 

physical and chemical properties (Table 2.3) (British Geological Survey, 2009).The wide varieties 

of silica inclusions refer to its high durability, heat and chemical attack resistance that support its 

utilization in glass and ceramic industries (Kerai and Vaniya, 2015), not to mention its valuable 

incorporation in cement mortars. However, considering the physical characteristics, including 

grain size gradations as shown in Table 2.4 and Figure 2.1, is such an important step to achieve 

industrial requirements. Ottawa silica sand’s mining process began around the 1860s (US Silica) 

and is considered as one of the most useful types of sand in North America. The largest silica 
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production plant is in Ottawa, Illinois, annually producing 2.2 million tons. Its soft round grains, 

low consolidation, high chemical resistance and consistency are factors of being considered in 

concrete production under ASTM C778 (standard specification for standard sand).  

Table 2.1:Typical terminologies, properties and compositions of tire wastes 

(a) Terminology for recycled waste tire particles 
referring to ASTM D-6270 

(b) Recycled tire materials Properties  
(Bdour and Al-Khalayleh,2010) 

Classification Lower Limit 
(mm) 

Upper Limit 
(mm) 

Material Tire chips 
(%) 

Crumb rubber 
(%) 

Steel cords 
(%) 

Chopped Tire Unspecified 
dimensions 

Unspecified 
dimensions 

 
Rubber 
volume 

 
95-99 

 
99-100 

 
35-75 

Rough Shred 50×50×50 762×50×100 

Tire Derived Aggregate 12 305  
Steel 

volume 

 
1.5-8 

 
0 

 
35-75 Tire Shreds 50 305 

Tire Chips 12 50 

Granulated Rubber 0.425 12  
Density 
(g/c𝑚3) 

 
0.8-1.6 

 
0.7-1.1 

 
1.5-3.9 Ground Rubber - <0.425 

Powdered Rubber - <0.425 

(c) Essential compositions of tires (Rubber 
Manufacturers’ Association, 2000) 

(d) Chemical compositions of waste tire rubber 
(Bekhiti et al.,2014) 

Composition 
weight (%) 

Automobile 
Tire (wt%) 

Truck 
Tire (wt%) 

 

 
Material 

Mass 
Percentage (%) 

Natural Rubber 14 27 Rubber 54 

Synthetic Rubber 27 14 Textile 2 

Carbon black 28 28 Carbon black 29 

Steel 14-15 14-15 Oxidize zinc 1 

Fabric, Filler, Accelerator, 
and Antiozonants 

16-17 16-17 Sulfur 1 

Additive 13 
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Table 2.2: Chemical composition and physical properties of OPC (ASTM C150) 

 
Compounds  

(%) 

 
Formula 

 
Short 
form 

 
Cement  
(% Wt) 

Main 
compounds 

(Borgue’s 
equation) 

 
Short form 

 
%Wt 

 

 
Function 

Lime CaO  
(Calcium oxide) 

C 64.35  
Tricalcium 

silicate 

 
C3S 

 
63.5 

Initial set and 
early strength 

gain Silica SiO2  
(Silicon dioxide) 

S 20.08 

Alumina 
 

Al2O3 
(Aluminum oxide) 

A 4.63  
Dicalcium 

silicate 

 
C2S 

 
 

8.92 

 
Strength gain 
beyond 7 days Iron Oxide Fe2O3 

(Iron/ferric oxide) 
F 2.84 

Magnesia MgO 
(Magnesium oxide) 

M 2.07  
Tricalcium 
aluminate 

 
C3A 

 
 

6.69 

Moderate 
sulfate 

resistance Sulfite SO3  
(Sulfur trioxide) 

S 2.85 

Potassium 
Oxide 

K2O K ---  
 

Tetra calcium 
alumino-ferrite 

 
 
 

C4AF 

 
 
 

12.9 

 
 

Hydration 
gain 

Sodium 
Oxide 

Na2 O N --- 

Physical Properties of OPC 

Loss of ignition (%) = 2.56 

Surface area (m2/kg) = 371 

Specific gravity (g/cm3)= 3.15 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

Table 2.3:Chemical and Physical analysis of silica sand (US Silica) 

Chemical Compositions of Silica Sand 

Compounds (%) Formula Short form Silica sand (% Wt) 

Silica SiO2 (Silicon dioxide) S 99.7 

Iron Oxide Fe2O3 (Iron/ferric oxide) F 0.020 

Alumina Al2O3 (Aluminum oxide) A 0.06 

Lime CaO (Calcium oxide) C <0.01 

Magnesia MgO (Magnesium oxide) M <0.01 

Sodium Oxide Na2O (Sodium Oxide) N <0.01 

Potassium Oxide K2O K <0.01 

Physical Properties of Silica Sand 

Color  White Grain shape Round 

Melting point  
(ºC) 

1704.4 Fineness  
modulus 

1.47 

Loss of  
Ignition 

1 Absorption 
capacity (%) 

0.28 

Bulk density 
(g/cm3) 

1.56 Minimum Dry 
Density (kg/m3) 

1446  

Specific  
Gravity 

2.65 Maximum Dry 
Density (kg/m3) 

1759  

 

Table 2.4: Typical Ottawa silica sand particle size gradation (US Silica) 

U.S  
Mesh 

Sieve size 
(mm) 

%Retained % Passing 

Individual Cumulative Cumulative 

No.16 1.180 0 0 100 

No.30 0.600 2 2 98 

No.40 0.425 28 30 70 

No.50 0.300 45 75 25 

No.100 0.150 23 98 2 

Pan -- 2 100 0 
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Figure 2.1: Detailed particle size distribution of cement and silica sand. 

2.5.4. Recycled Concrete Aggregates  

The major depletion of natural resources over the last 20 years directed interest toward using 

recycled concrete aggregates (RCA), which are collected from buildings demolishing or 

renovating. It is then separated from the existing concrete to be reused as a replacement of the 

natural or conventional aggregates. The recycling concrete aggregates was found to be 

advantageous since these recycled aggregates provide a cost-effective construction material and a 

remarkable saving of virgin natural aggregate resources and energy (ECCO, 1999). Additionally, 

the use of RCAs can significantly improve some concrete properties according to Huoth et al. 

(2014). The study found that concrete mixtures (w/c=0.40) with the use of RCA achieved a higher 

compressive strength than that of mixtures (w/c=0.49) having natural aggregates by nearly 26%, 

24% and 17% at 7,14 and 28 days of age, respectively.   

The incorporation of recycled aggregates in new concrete production provides similar or better 

durability, carbonation, permeability and freeze/thaw resistance. This could be due to the recycled 

aggregates generally having higher absorption and lower specific gravity properties than normal 

aggregates (Design and Control of Concrete Mixtures-EB001). However, distinguishing the 

aggregate types, contents and gradations, as in Table 2.5 (which also shows the recycled stone 
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aggregates’ 19-38 mm size range used in the experimental part of this dissertation), is needed to 

advance in identifying the aggregates’ influences on the concrete behaviors because coarse 

aggregates occupy almost one third of the concrete volume. In fact, the overall strength of high 

strength concrete, for instance, relies on its aggregates’ strength and all over compatibility with 

the surrounding cementitious matrix (Kozul and Darwin, 1997). Therefore, careful selection of 

recycled coarse aggregates, according to ASTM C33 (Standard Specification for Concrete 

Aggregates), ensures its adequate quality. This is crucial in order to avoid issues that could cause 

an increase in fine particles due to the coarse aggregate breakage during mixing, which can result 

in a less workable concrete (Mahla and Mahla, 2015). 

Table 2.5: Grading limits and sieve analysis for fine and coarse aggregates 

Fine Aggregates 

Sieve Size Cumulative Percentage Passing (%) Reference 

U.S 
Mesh 

mm Grading (1) Grading (2) Grading (3) 

No.4 4.75 ---- 100 ----  
 
 

(ACI 304.1,2005; ACI 
304,2005) 

No.8 2.36 100 90-100 ---- 

No.16 1.18 95-100 80-90 ---- 

No.30 0.60 55-80 55-70 ---- 

No.50 0.30 30-55 25-50 ---- 

No.100 0.15 10-30 05-30 ---- 

No.200 0.075 00-10 00-10 ---- 

Fineness Modulus 1.3-2.1 1.6-2.45  

Coarse Aggregates 

Sieve Size Cumulative Percentage Passing (%) Reference 

U.S 
Mesh 

mm Grading (1) Grading (2) Grading (3) 

1½ inch 37.5 95-100 ---- 0.5  
(ACI 304.1,2005; ACI 

304,2005) 
1 25.0 40-48 ---- ---- 

¾ in 19.0 25-40 0-10 ---- 

½ in 12.5 0-10 0-02 ---- 

3/8 in 9.50 0-02 0-01 ---- 

6 in 150 100 ---- ----  
(Neville and Brooks, 

2010) 
3 in 75.0 67 100 ---- 

1½ in 37.5 40 62 97 

¾ in 19.0 06 04 09 

½ in 12.5 01 01 01 
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2.5.5. Superplasticizer Chemical Admixture 

Concrete substructures and superstructures have suffered extreme damages that affected their 

physical and mechanical performance. These damages could be the reason behind the significant 

changes and improvements in the cement and concrete industry foyer the last 100 years (Zayed et 

al., 2016). Concrete durability has drawn the attention of many concrete researchers in recent years 

(Kumar and Singh, 2015). As a result, chemical admixture development is critical, as the 

enhancement imparted by such supplementary chemical substances is a key factor in improving 

the quality of concrete and achieving modern structure standards (Kanitkar, 2013). These standards 

are initially designed to overcome the environmental challenges and the complexity of structural 

behaviors. Significant developments achieved with the inclusion of admixtures in the cementitious 

proportions include moderating the water content, accelerating concrete strength at early ages, and 

improving the mechanical strength and impact resistance (ACI 212.4R, 1998). 

High-range water reducing admixtures (HRWRA), typically known as super-plasticizers, super-

fluidizers and super-water reducers (Mihai and Bogdan, 2008), are classified in different Types 

according to ASTM C494 (Standard Specification for Chemical Admixtures for concrete). The 

chemical liquid admixture used in this dissertation is commonly identified in the chemical market 

industry as Master Glenium7700. HRWRA has provided such promising workable and flowable 

concrete features that ease concrete placement and pumpability in construction, so it is highly 

recommended to be part of concrete production for water retaining structures (Chan et al., 1999). 

2.6. Tire Waste Effects on Concrete Durability and Strength 
Performance 

2.6.1. Effects of Tire Rubber Waste 

In recent years, several findings have illustrated the effects of tire waste materials, including rubber 

and steel cord particles, as partial substitute for natural aggregates on the durability and strength 

performance of concrete. Generally, whether shredded (2-20) mm, crumbed (4.75-0.425) mm or 

grounded (≤ 0.425) mm, tire rubber waste has influenced concrete properties differently. The 

methodology of incorporating tire waste, whether mixed with the cementitious materials or laid 

and distributed on coarse aggregates (as in preplaced or two-stage concrete technology), has also 
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produced different concrete properties. In fact, the durability and strength of rubberized concrete 

mainly depends on the ability of its tire waste proportion to bond with the cementitious matrix. 

Usually, the finer the rubber particles are, the higher is the workability that concrete tends to 

achieve (Khaloo et al., 2008).  

In terms of higher bonding criteria, rough particles tend to provide better bond with the 

cementitious matrix, which has a positive impact on the compressive strength of rubber concrete 

(Nehdi and Khan, 2001). Furthermore, rubberized concrete showed better durability 

(Mavroulidoum and Figueiredo, 2010), higher energy absorption capacity, and is considered to be 

tougher than conventional concrete. In terms of failure behavior, concrete utilizing rubber 

exhibited more brittle and plastic failures than that of normal concrete (El-Gammal et al., 2010). 

However, the motivation to implement rubberized concrete in structural engineering applications 

has not been considered, due to the non-suitable compressive strength that rubber concrete 

displayed (Balaha et al., 2007). This barrier limits the current rubber concrete applications in 

structures where high vibration, energy absorption, and impact load resistance are needed such as 

in-machinery and railway foundations (Fatuhi and Clark, 1996). 

2.6.3. Effects of Tire Steel-Wires Cord Waste 

Concrete’s toughness has attracted much concern due to recent significant development of 

engineering applications that highly require concrete structures with extraordinary toughness and 

ductility. Although the addition of rubber improved certain concrete properties, the soft 

characteristic of rubber particles concentrates the applied stress and causes rapid internal crack 

development in the cementitious matrix. Many studies have agreed that the addition of a high 

proportion of rubber in concrete results in a notable reduction of the compressive strength, but not 

as much of a decrease when concrete contains steel fibres. The Batayneh et al. (2007) study 

illustrates that a reduction in concrete compressive strength of nearly 50% occurred after 

increasing the proportion of rubber to 40%. However, the same study reported a remarkable effect 

after adding 2% and 4% of steel cords in concrete, showing that the compressive strength of 

concrete reinforced with tire steel waste gained an overall improvement. On the other hand, 

ductility behavior performance (stress-strain) was enhanced significantly by 15%. Hence, the 

major purpose of utilizing steel cord fibre components is to develop ductility and toughness (Bdour 
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and Al-Khalayleh, 2010) that can highly resist crack growth, improve post-crack behavior, and 

gain high deformation capacity without complete failure. As a result, these properties support the 

possible implementation of tire waste concrete, reinforced with steel fibres, in various structural 

applications. 

2.7. Preplaced Aggregate Concrete Technology 

 2.7.1. The Introduction of Preplaced Aggregate Concrete (PAC) 

According to the ACI 304.1 (Guide for the Use of Preplaced Aggregate Concrete for Structural 

and Mass Concrete Applications), PAC technology was developed in the United States in 1937 by 

Lee Turzillo and Louis S. Werts. Its goal was to rehabilitate a Santa Fe railroad tunnel close to 

Martinez, California. The outcome of using this concrete technique was promising, as the 

consumption of grout was low due to the large spaces being filled with coarse aggregates and 

followed by grouting these aggregates. Even though the applications of preplaced concrete (PC) 

were limited to repairing bridges and tunnel linings, the use of preplaced concrete technology can 

be widely extended. In 1946, coarse aggregate was used as a back filler of 1.8-m precast concrete 

slabs attached in an upstream face of the 52m height during 10 days of grout pumping, as part of 

the resurfacing process of the Barker Dam (Figure 2.2) in Colorado, USA. In 1950, Japanese 

companies began owning the rights to use TSC in their projects. In Australia, PAC was used by 

“The Snow Mountains Authority” for turbine scroll cases and daft tubes’ embedment in the Bull 

Shoals Dam powerhouse (Figure 2.3) as part of their hydroelectric power construction project 

(ACI 304.1, 2005). Further projects in which PAC technology was used are shown in Table 2.6. 

Table 2.6: List of Projects where PAC technology was applied 

Project Date of 
Construction 

Reference 

Prefacing of Barker Dam at 
Nederland in Colorado 

1946 (Davis et al.,1948) 

Scroll case at Bull Dam 
Powerhouse 

1951 (ACI 304.1,2005) 

Piers of Mackinac Bridge 1954-1955 (Davis and 
Haltenhoff,1956) 

Plugs in gold mine in South 
Africa 

2001-2006 (Littlejohn and 
Swart,2006) 

Auxiliary dam in China 2006 (Huang et al.,2008) 
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Figure 2.2: Barker Dam during refacing process in 1946 (ACI 304.1, 2005). 

 

Figure 2.3: The use of Preplaced aggregate concrete in Bull Shoals Dam powerhouse in 

Australia (ACI 304.1, 2005). 
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2.7.2. PAC Characteristics 

Preplaced aggregate concrete (PAC), commonly known as “two-stage concrete” (TSC), has been 

defined by the American Concrete Institute (ACI 116R) as a concrete product made by firstly 

placing coarse aggregate stages in a formwork, followed by injecting cementitious grout mixed 

with chemical admixtures to fill in the voids, as shown in Figure 2.4. In addition to the 

international definitions of the two-stage concrete listed in Table 2.7, ACI 304.1 also defined this 

type of concrete as Naturbeton, Arbeton, and injected aggregate concrete. PAC has been useful in 

both superstructures and substructures, such as underwater construction, spaced reinforcement, 

concrete and masonry repairs for stress distribution purposes, high lift monolithic sections, and 

where low-volume change is required. Significant transformations in concrete technology in 

utilizing tire waste materials have generated new methods of green concrete productions with 

different standards, properties and applications. In addition to rubber concrete, PAC has also 

shown notable and homogeneous characteristics with the inclusion of tire rubber waste. This 

technology differs from conventional concrete in which waste rubber is combined in the concrete 

mixture and then poured in the formwork. In preplaced concrete, the coarse aggregates are first 

placed in the formwork and then filled with a special cementitious grout (Najjar et al., 2014). 

Hence, PAC provides an exceptional concrete function that is almost 40% more cost-effective than 

normal concrete since it contains mostly prepacked coarse aggregates and the need of cement 

content is reduced by up to 30% in overall PAC production (Abdelgader, 1995).   

Table 2.7: Different TSC historical definitions (Najjar et al.,2014) 

TSC Definition Reference 

Preplaced concrete Baumann, 1948; Abdul-Awal, 1984; 
Tang, 1977 

Colcrete Manohar, 1967; Abdelgader, 1996 

Polcrete Abdelgader, 1996; ACI 304.1, 2005 

Grouted aggregate concrete Champion and Davies, 1958; ACI 
304.1,2005) 

Naturbeton  
ACI 304.1, 2005 Arbeton 

Preplaced aggregate concrete 

Injected aggregate concrete 

Rock filled concrete Huang et al., 2008 
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Figure 2.4: Schematic design of interior compositions of Preplaced aggregate concrete 

(PAC). 

2.7.3. PAC Recent Research Interest Objectives 

PAC technology was mainly applied for bridge repairing purposes owing to its high amount of 

different sizes of recycled stone coarse aggregates, which provides great filling ability in an 

existing damaged structure. However, there is need to advance the applications of PAC by 

improving its durability and strength in order to be better qualified for construction. In fact, the 

remarkable advancement in concrete technology over the years has not widely developed the 

applications of PAC, which is a reason behind the necessity to boost the discovery of this concrete 

technology. Therefore, enhancing studies on the quality and flowability of the injected 

cementitious grout, containing different types of sands and chemical admixtures in the preplaced 

coarse aggregates, should be highly considered, as grout constituents play a significant role in 

filling and reducing the voids efficiently among the coarse aggregate stages in the formwork. As 

a result, the injected grout produces durable and high strength PAC. Furthermore, studies agree 

that there is need to explore the effects of recycled stone aggregates and tire waste, including tire 

rubber and steel fibre waste, on PAC static and dynamic properties. The development of these 

properties can elevate the implementation of PAC and its applications and paves the path to 

generate more sustainable concrete methods. 
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2.7.4. PAC Implementation in Construction 

2.7.4.1. PAC Utilization Effects in Construction 

Concrete placement has always been considered a critical stage in construction due to its major 

impact on concrete quality (Neville, 1981; Neville and Brooks, 1987). The challenge of concrete 

placement varies upon the shape, complexity and position of formworks, for instance whether they 

are attached in a high-rise building, underwater tunnel, or artificial water channel. PAC technology 

was applied for various construction and repair purposes in tunnel lines, dams, bridge piers as well 

as underwater construction (Davis, 1960; Troxell et al., 1969; Baumann,1948, Davis and 

Haltenhoff, 1956; ACI 304.1, 1997).  

PAC has shown promising placement and repair compatibility with existing structures (Neville 

and Brooks, 1987; King, 1959; ACI 304, 1997), considering that the proportions of PAC 

technology differ from normal concrete when regarding the high amount of coarse aggregates 

typically ranging from 60% (Abdelgader, 1996) to up to 65%-70% (Ganaw, 2012) by volume of 

concrete. This high proportion of coarse aggregates does not compromise workability, even when 

recycled aggregates having high water absorption capacity are used, since aggregates are preplaced 

in the formwork. In addition, the high quantity of aggregates in PAC reduces the need to use high 

cement content; therefore, reducing shrinkage cracking and making concrete more cost effective 

and more eco-efficient. Additionally, the common segregation issue encountered in concrete is 

eliminated in PAC since the aggregates are first placed in the formwork, followed by the injection 

of mortar with no need for compaction due to the high homogeneity of the preplaced aggregates 

(Mehta, 1986; Neville, 1995). This technique was found to be more favorable than the traditional 

concrete casting and is particularly suitable for submerged and underwater concrete structures 

(Warner, 2004; and Neville, 1995) where high compressive strength, durability, flowability and 

self-compaction are required (Abdelgader et al., 2009). 

2.7.4.2. Recommended Placement Of PAC 

In construction sites, the prepared formwork such as plywood formworks or steel sheet piling, 

should be strongly impermeable for underwater construction in order to prevent possible grout 

leakage and resist lateral pressure during pumping. After placing the coarse aggregates in the 
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formwork, the aggregates should be saturated with the injected grout through inserted injection 

pipes. Additionally, the PAC technique can be applied through steel reinforcements where coarse 

aggregates fill the spacing between rebar. Prior to incorporating coarse aggregates and grouting, it 

is important to install 20 to 30 mm diameter grouting pipes (for normal structural concrete) or 40 

mm diameter (for mass concrete) properly in the selected locations. The positions of pipes can be 

moved accordingly to provide enough space for the grout to flow. These pipes can be doubled for 

deep placements (Beeby, 1995), and can be placed 150 mm in the vertical direction from the 

bottom of the installed aggregates or in the horizontal direction for repair purposes. Grout should 

be injected at a very slow velocity (0.6-1.2) m/sec, as this low penetration of grouting prevents 

segregation and line blockage. However, in cold joints, the grout pumping should be stopped prior 

to reaching the upper surfaces of aggregate (i.e. 300mm under the aggregate surface). The 

hardened PAC should be properly cured to achieve the expected compressive strength (ACI 304.1, 

2005; ACI 304, 2005). The relation between the grouting level and the spacing between the 

grouting pipes can be described through a typical propagation curve (Figure 2.5). The grout 

propagation slope (vertical: horizontal) is also reported as 1:4 ratio for dry conditions and 1:6 ratio 

for underwater placements (ACI 304.1, 2005). The propagation curve also describes the shape of 

grout flow among the preplaced coarse aggregate particles, and this shape can be affected by grout 

mixture proportions, intensity of mixing, and the shape and size of the coarse aggregates 

(Abdelgader, 1995). The equation of the propagation curve of grout in coarse aggregates can be 

illustrated as: 

y =
𝛂

√ 
𝛄

𝐭
− 

𝟏

𝛃
+𝟏

(𝛃𝐱𝟐+𝟏)
                                            Eq. 2.1 

Where; 𝑦 = grout mixture level in coarse aggregate (m), 𝑥 = spacing between grout insert pipes 

(m), 𝛼 = thickness of stone layer (m), 𝑡 = time (min), 𝛽 = (𝑎 × 𝑏 × 𝑓), 𝑎 = parameter dependent of 

the mixture fluidity, 𝑏 = parameter dependent of stone: shape, size, type of grain, surface texture, 

and coarse aggregate fraction, 𝑓 = parameter dependent of the environment of construction, 𝛾 =  

(𝑐 × 𝑑 × 𝑒), 𝑐 = parameter dependent of efficiency of flushing pipe (𝑚3/min), 𝑑 = parameter 

dependent of perforation, 𝑒 = parameter dependent of the type of excavation bottom. 
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Figure 2.5: Propagation curve of PAC grout mixture in coarse aggregates (Abdelgader, 

1995). 

2.8. PAC Proportioning Elements Properties 

The high amount of coarse aggregates and low content of cement in PAC have extended the 

investigations on the proportioning materials of this concrete technology. PAC requires a higher 

amount of coarse aggregates than that in normal concrete, which can result in higher strength 

properties when compared to conventional concrete. This can be explained by the fact that PAC 

properties rely mainly on the strength of skeleton structure of coarse aggregates. Furthermore, the 

strength of the injected cementitious grout affects the mechanical properties of PAC since it 

ensures the bond between the granular skeleton. 

2.8.1. PAC Cementitious Grout Properties 

Unlike normal concrete, coarse aggregates are preplaced in PAC and are not involved in the mixing 

process, which includes only the grout, thus providing energy savings and logistics advantages. 

The process escalates the need to ensure high quality of the injected grout, as it has a significant 

impact on the mechanical properties of PAC (Abdelgader, 1996; Abdelgader and Górski, 2002). 

Referring to ASTM C938 (Standard Practice for Proportioning Grout Mixtures for Preplaced 

Aggregate Concrete), the grout mixture proportions for PAC can be selected through flowability 

and bleeding measurements. The grout mixture proportions of PAC are varied based on the 

required applications and specifications. Additionally, careful consideration of the water/binder 
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ratio (w/b) and sand/binder ratio (s/b) is important since these parameters play a crucial role in 

controlling the rheological and mechanical properties of the PAC grout (Najjar et al., 2014).  

Grout ingredients including chemical admixtures are factors, which regulate the flowability and 

penetrability of the grout throughout the coarse aggregates’ voids. The grout is penetrated 

depending on the gravity penetration concept recommended by Abdul-Awal (1984) to be used for 

a sectional depth of not more than 300mm, which is the same as cylindrical plastic molds’ depth 

used in the experimental part of this thesis. Yet, grout could also be pumped through injection 

pipes in the formwork. PAC grout is prepared by mixing the cement, sand and water using a 

suitable mixer with the addition of chemical admixtures to enhance the grout flow properties as 

recommended by different studies and standards (Abdelgader, 1995; Neville, 1995; Newman and 

Choo, 2003; ASTM C937 and ASTM C938, 2002).   

The cleanness and particle size and shape properties affect the grout flow through the voids 

between preplaced aggregates (ACI 304.1R, 1997). In engineering applications: a s/b ratio of 1.0 

for beams, columns and thin concrete sections, 1.5 for massive concrete elements (ACI 

304.1,2005), and 1-2 for underwater PAC applications is usually recommended (Orchard,1973). 

In addition, superplasticizer admixtures enhance the grout workability (Witte and Backstrom, 

1954). They are also recommended to reduce the water requirement of the binder, thus improving 

the PAC compressive strength (Domone and Jefferis, 1994; ACI 304.1R, 1997).  

2.8.2. Chemical Admixture Effects on PAC Properties 

The incorporation of chemical fluidifier admixtures under ASTM C937 (Standard Specification 

for Grout fluidifier for Preplaced-Aggregate Concrete), with the physical requirements shown in 

Table 2.8, provides an essential property to the grout. The incorporation can aim to improve the 

grout flowability, reduce the water content, delay the setting time, and operate as a chemical 

moderator and expanding agent (ACI 304.1,2005; ASTM C937). The recommended fluidifier 

admixtures dosage in the grout is usually 1% by weight of the grout’s cementitious materials 

according to ACI 304.1 (2005) but can vary depending on the type of admixture.  

Integrating a superplasticizer with a viscosity-modifying admixture can enhance the flowability of 

the grout and its stability by resisting bleeding and segregation of the PAC grout (Christianto, 
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2004). For instance, adding 1% of aluminum powder by weight of the cement improved the PAC 

compressive strength by 46% (Abdul-Awal, 1984), while incorporating 2% of aluminum powder 

by weight of cement increased the compressive strength of PAC by only 20% (Abdelgader and 

Elgalhud, 2008), showing the negative impact of adding more than 1% of fluidifier admixture as 

reported in ACI 304.1. The benefit of including air entraining admixtures in the grout is enhancing 

the durability of the PAC to freeze/thaw cycles (ASTM C260, 2006). However, air voids decrease 

mechanical strength and moderating the dosage of air entraining admixtures can strike a 

compromise with mechanical strength of PAC (Najjar et al., 2014). In 1943, a study conducted by 

Menzel showed that adding an excessive quantity of aluminum powder admixture increased the 

PAC porosity. This caused reductions in compressive strength. Moreover, excessive dosage of a 

superplasticizer can result in bleeding and lead to possible sand segregation in the grout mixture 

(Tang, 1977).  

Table 2.8: Recommended physical criteria of PAC grout chemical admixture (ASTM C937, 

2002) 

Physical Requirements Limit 

Min reduction in mixing water 
Expansion after 3 hrs. from mixing 
relative to cement alkali content: 
0.80 or more 
0.40 to 0.79 
0.39 or less 

3% 
 
 

7 to 14% 
5 to 12% 
3 to 9% 

Max bleeding after 3 h from mixing 2% 

Min increase in water retentively 60% 

Min initial setting time 4 hrs. 

Max final setting time 24 hrs. 

 

2.8.3. Recycled Stone Coarse Aggregates Effects On PAC 

The fundamental difference between PAC and conventional concrete is the quantity, size and 

placement method of coarse aggregates, which represent the major proportional component of 

PAC. The coarse aggregate skeleton occupies the majority of the concrete volume (ACI 304.1, 

1997; King and Wilson, 1988; Colle, 1992). Hence, the mechanical performance of PAC is directly 

affected by the properties of coarse aggregates (Nowek et al., 2007). In fact, coarse aggregates in 

PAC provide an exceptional feature due to the concentration of applied load on aggregates and 
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transfer of stress via aggregate contact points. Consequently, the compressive strength and 

modulus of elasticity of PAC exhibited high values, compared to that of conventional concrete 

with similar water to binder ratio (Abdelgader and Górski, 2002; Abdul-Awal, 1988; Abdelgader 

and Górski, 2003). However, this mechanical performance depends on the strength of aggregates, 

size, particle gradation, stiffness, surface texture, mineralogy and cleanness (O’Malley and 

Abdelgader, 2009). Additionally, the extensive point-to-point contact through the aggregate 

skeleton is a factor that leads to lowering drying shrinkage in PAC compared to that in normal 

concrete. 

Clean coarse aggregates with angular shapes and rough texture surfaces, under the ASTM C33 

standard, are factors that highly boost PAC mechanical properties. The ease of movement of the 

cementitious grout through the aggregate skeleton is an indication of producing PAC with lower 

voids and better bond between the cementitious matrix and the coarse aggregates, leading to higher 

mechanical strength.  

The recommended nominal selected coarse aggregate particle size in PAC should range between 

10 mm (Orchard, 1973) and 38 mm (Champion and Davis, 1958) reduce air void cavities in the 

aggregate skeleton. This also helps lowering the consumption of grout and ensuring bonding points 

between the aggregates and the cementitious matrix. Fine aggregate with adequate properties (ACI 

304.1) can be utilized as a supportive aggregate proportional filler to reduce air voids throughout 

coarse aggregates and help reducing segregation issues. 

2.9. PAC Physical Properties 

2.9.1. Shrinkage 

Concrete shrinkage is a reduction of the concrete volume with time related to its physical loss of 

adsorbed water in the cement paste (Mehta and Monteiro, 2006). Concrete shrinkage can be 

classified into drying shrinkage, autogenous shrinkage and carbonation shrinkage (Nehdi and 

Soliman, 2011). Shrinkage in PAC is usually significantly lower than that in conventional concrete 

(ACI 304.1, 2005; Abdelgader and Elgalhud, 2008; Abdelgader and Ben-Zeitun, 2005). For 

instance, drying shrinkage of PAC and conventional concrete were found to be about 330 and 600 

micro strains, respectively (Davis, 1960). Low shrinkage in PAC refers to its lower proportion of 
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cement paste, and higher proportion of coarse aggregates compared to that in conventional 

concrete. The addition of a superplasticizer and/or expanding admixtures are also a factor in 

lowering PAC shrinkage (Abdul-Awal, 1984). However, PAC mixtures containing 

superplasticizer showed lower drying shrinkage than PAC with expanding admixtures since a 

superplasticizer generally reduces the water demand in PAC (Abdul-Awal, 1984). The drying 

shrinkage of concrete is represented for instance by Lyse (1959) as: 

𝑆𝑡 = 𝑆0 (1 − e−St ) 𝜌                                                    Eq.2 

Where; 𝑆𝑡 = shrinkage after time of drying (t), 𝑆0 = final shrinkage in relation to the percentage of 

cement paste in the concrete, 𝑆 = rate of shrinkage depending on the relative humidity of the 

ambient atmosphere, and 𝜌 = percentage of cement paste in the concrete. 

2.9.2. Heat of Hydration 

The hydration process of cementitious materials leads to temperature rise, which is mainly 

dependent on the type of cement (i.e. cement composition and fineness), concrete mixture 

proportions (e.g. Cement dosage) (Chefdeville, 1963), the geometry of the concrete member, and 

the surrounding temperature. PAC technology is known to have been applied in massive concrete 

structures, such as dams, owing to its lower cement content. The low cement content leads to 

reducing both the heat of hydration and thermal cracking (Bayer, 2004). However, thermal 

cracking occurs when the exterior surface cools faster than the interior surface. This can lead to 

tensile strains and stresses in massive concrete specimens (ACI 207, 1996). To avoid the 

development of thermal cracking, it is recommended that the maximum temperature difference 

between the concrete core and its exterior surface not exceed 20C (Portland Cement Association, 

1997). Moreover, it is found that incorporating mineral admixtures (Table 2.9), such as rock 

powder, fly ash, and GGBFS as partial replacement for cement, significantly supports lowering 

the temperature differences between surface and core of PAC. 

 



31 

 

Table 2.9: PAC peak temperature differences incorporated with various mineral 

admixtures (Bayer, 2004) 

Specimen 
No. 

Mineral Admixture as Partial 
Replacement for Cement (%) 

Peak Temperature 
Difference (ºC) 

1 20% Rock Powder 8.5 

2 50% Rock Powder 8.0 

3 25% Fly Ash and 25% Rock Powder 8.0 

4 50% GGBFS 13.0 

5 50% Fly Ash 9.5 

6 50% Brick Powder 7.0 

7 25% Brick Powder and 25% Fly Ash 9.5 

2.9.3. Durability 

Concrete durability refers to its ability to resist harmful mechanical and environmental loading 

effects during its service life. Concrete durability can be affected by some harmful substances 

including chloride and sulphate ions and carbon dioxide; their penetration rate mainly depends on 

the existence of porosity and micro-cracks in concrete (Mehta, 1988). PAC containing air 

entraining chemical admixtures showed remarkable durability against tough environmental 

weathering, which is similar to that of conventional concrete (ACI 304.1, 2005; Tynes and 

McDonald, 1968). In Australia, the PAC piles of the Tasman Bridge in Hobart were investigated 

to evaluate its condition after 48 years of service. It was found that PAC technology produced 

dense and durable concrete in a marine environment. The levels of chloride and sulphate ions in 

PAC piles were reported to be low (1.3% and 3.8% by weight of cement) considering that the PAC 

piles were placed in severe exposure marine conditions for long time (Berndt, 2012). However, 

such sulphate concentrations were still considered low  

2.10. PAC Mechanical Strength  

2.10.1. Compressive Strength 

The high content of preplaced coarse aggregates in Ruiz’s (1966) study produced PAC with high 

compressive strength, as the strategy of reducing the existing voids by incorporating aggregates 

density was found to be remarkably affect the compressive property. This is similar to the 

Carrasquillo et al. (1981) study, in which the compressive strength reached up to 62 MPa (9,000 
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psi). The characteristics of the coarse aggregates, preferably rough texture and angular aggregates, 

is one of the factors that regulate the bonding with the cementitious matrix and development of 

compressive strength. 

Moreover, there is no disagreement regarding the critical influence of the water-to-cement (w/c) 

and sand-to-cement (s/c) ratios on the compressive strength of both conventional concrete and 

PAC. Studies have shown that increasing the s/c ratio negatively impacted the flowability of the 

PAC grout, causing partial complex binding and honeycombing due to difficult ability of grout 

penetration through the aggregate skeleton, leading to lower compressive property. Even though 

increasing the w/c enhances the grout workability, it can lead significant decrease in the overall 

mechanical strength of PAC. Therefore, the utilization of chemical admixtures, such as 

superplasticizers, helps reducing the water content and adapt the flowability of the grout.  

The PAC compressive strength reported in the Davis et al. (1955) study was 22.30 MPa. The w/c 

and s/c of PAC were 0.44 and 1.50, respectively, without adding any chemical admixture, while a 

significant increase in the compressive strength by 28% (30.71Mpa) at 28-days was reported by 

Abdelgader (1996), who used similar w/c and s/c to that in Davis et al. (1955), but with added 2% 

of superplasticizer and 35% of the air entraining admixture. In addition, the 28-day compressive 

strength obtained by Abdelgader and El-Baden (2015) for PAC having w/c=0.55, s/c=1 and a 2% 

superplasticizer was increased by 43% compared to that of PAC with 0% of admixture and similar 

w/c and s/c ratios.  

2.10.2. Splitting Tensile Strength 

There is a general agreement that the correlation between the PAC compressive and tensile strength 

is that a high PAC compressive property exhibits a reasonable tensile strength (Abdul-Awal, 1984; 

Abdelgader and Ben-Zeitun, 2005). Accordingly, the high proportion of coarse aggregate creates 

interconnected coarse aggregate particles, resulting in a uniform aggregates shell structure, where 

the applied tensile stress is distributed and restricted until interfacial splitting occurs between the 

aggregates and the cementitious matrix.  

Moreover, studies revealed the influence of increasing the w/c ratio with accordance to the tensile 

strength performance of PAC. For instance, in the Abdelgader and Elbaden (2014) study, the mean 
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tensile strength at 28-days decreased by 15% after increasing the w/c from 0.45 to 0.55. However, 

adding a superplasticizer in the cementitious mixture of the PAC grout overcame the tensile 

strength reduction resulting from the w/c ratio increase. Remarkable improvements in the average 

tensile strength of PAC were displayed in various studies after utilizing chemical admixture, as 

shown in Abdelgader et al. (2015). The average tensile strength of the 28-day PAC specimens 

continued increasing by 18% due to the addition of superplasticizer, although the w/c was raised 

from 0.38 to 0.8 with the same s/c ratio of 1:1. Furthermore, the PAC tensile strength increased 

for specimens utilizing a superplasticizer with a w/c of 0.55 than that for specimens having a w/c 

of 0.45 by nearly 24.5% with the same c/s of 1:0.5 and a curing period of 28 days. This result 

indicates the notable effect the superplasticizer in improving the tensile strength of PAC, even with 

a high w/c ratio. 

2.10.3. Modulus of Elasticity 

The stiffness and elastic deformation functions of PAC have been investigated and compared with 

that of conventional concrete. The type of aggregates in these concretes play a key role in their 

stiffness (McNeil and Kang, 2013). Generally, for both types of concrete, the modulus of elasticity 

is related to the compressive strength. The stress-strain correlations of PAC and normal concrete 

appeared to be similar, according to various findings, such as those of Akatsuka and Moriguchi 

(1967), who revealed that the coarse aggregates in PAC can be the main factor for the increased 

modulus of elasticity. This is also supported by Neville (1995), who indicated the critical effect of 

the high coarse aggregates content on increasing the modulus of elasticity of PAC at almost all 

ages from 7 to 365 days. This is ascribed to be the physical contact among coarse aggregate 

particles in PAC. In addition, studies designated the major effect of decreasing the s/c ratio with 

accordance to the PAC modulus of elasticity. Abdelgader and Górski (2003) study indicate the 

important impact of keeping the s/c ratio high, which provides higher modulus of elasticity. 

Increasing the s/c ratio from 0.80 to 1.50 at a w/c ratio of 0.55, utilizing the same superplasticizer 

dosage of 2%, improved the overall 28-day PAC modulus of elasticity by 13%. Furthermore, the 

effect of keeping the s/c ratio as high as 1.50 prevented the occurrence of reduction in the PAC 

modulus of elasticity in the Abdul-Awal (1984) investigation. This indicates a remarkable impact 
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of using a high s/c ratio and chemical admixture on enhancing the modulus of the elasticity of 

PAC. 

2.11. PAC Failure Mechanisms 

Certain factors affect the failure mechanisms of normal concrete and PAC. The high coarse 

aggregate content in PAC alters the failure behaviour of PAC. The failure characteristic of both 

types of concrete are commonly affected by the bond between the aggregates and cementitious 

matrix. The bond resists applied stresses until reaching the peak load, then severe interfacial cracks 

through the aggregates matrix occur (Carrasquillo et al., 1981). Moreover, Bayasi and Zhou (1993) 

demonstrated the crucial role of the high aggregates content with relation to the concrete 

mechanical strength, especially on the flexure strength performance and the aggregates function 

as a crack arrestor. As a result, the possibility of a sudden failure in PAC is less probable than it 

would be in normal concrete (Abdul-Awal, 1984, 1988a) due to the high content of aggregates in 

PAC, and the consideration of the effect the aggregates strength has on the overall flexure strength 

performance (Giaccio et al., 1992). Furthermore, the higher proportion of aggregates significantly 

delays the propagation of cracks by highly interlocking the aggregate matrix (Perdikaris and 

Romeo, 1995). This evidence is also supported by Abdelgader (1995), who verified that PAC 

failure occurs initially through the coarse aggregates and secondly by the failure of the cement 

matrix. 

2.12. Conclusions 

• This overview illustrates the potential of innovating green concrete production by taking 

advantage of tire stockpiles via the process of recycling tire waste in concrete along with 

replacing natural virgin aggregates with recycled aggregates. 

• Studies describe the positive engineering, environmental and economical impacts of creating 

cost-effective projects by introducing a high coarse aggregates content concrete, such as PAC, 

as well as concrete incorporating recycled tire waste and recycled concrete aggregate. 

• Studying the physical characteristics of tire rubber waste transformed to shredded, chipped, 

crumb, granulated or ground rubber particles, supports the understanding of its effects on the 

workability and strength of rubberized concrete. 
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• PAC or two-stage concrete is shown to be a very promising green concrete technology owing 

to its high coarse aggregates content and effective ability to be placed in hard placement sites, 

such as underwater applications.  

• Even though the grout proportion in PAC is considered low, the injected cementitious grout 

which flows throughout the coarse aggregate skeleton plays an important role in controlling 

the PAC engineering properties.  

• Proper formulation of the grout using chemical admixtures and adequate control of its rheology 

via the use of admixtures such as superplasticisers and viscosity-modifying admixtures can 

produce grout with effective flow properties and strong bond to preplaced aggregates. 

• The dense coarse aggregate skeleton feature in PAC provides higher overall mechanical 

strength and stiffness, better deformation properties and lower shrinkage compared to that of 

conventional concrete owing to its high one-to-one aggregate contacts skeleton, which highly 

distributes stresses and resists applied loads. Its notable bonding with the cementitious matrix 

can results in durable and low shrinkage PAC characteristics. 
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Chapter 3 

3. ECO-EFFICIENT PREPLACED RECYCLED AGGREGATE 
CONCRETE INCORPORATING RECYCLED TIRE RUBBER 
GRANULES AND STEEL-WIRE  

3.1. Introduction and Background 

Millions of scrap tires are discarded or buried annually worldwide. This represents a stern 

environmental threat in view of its flammability, non-biodegradability and history of becoming 

breeding grounds for disease carrying mosquitoes. For instance, the United States dispose about 

4.7 million tons of waste tires each year (Thomas and Gupta, 2016). An economically and 

ecologically viable solution for scrap tires is to recycle it in concrete mixtures towards greener 

construction. 

The use of scrap tires in producing sustainable concrete has gained increased attention owing to 

its lightweight, elasticity, energy absorption, and heat and sound insulating properties. A typical 

tire consists of approximately 47% rubber, 22% carbon black, 17% steel cords, 5% fabrics, and 

additional minor additives (Sengul, 2016). In scrap tire recycling, steel-wires are usually pulled 

out where the rubber is then shredded. Scrap tire rubber is generally classified as chipped, crumb 

and ground, based on the size of the produced rubber particles, which in turn depends on the type 

of grinder used and temperature generated. While granulated tire rubber is commonly used in 

concrete mixtures as partial substitute for coarse and fine aggregates, steel-wires from scrap tires 

are rarely used for concrete reinforcement as a replacement for commercial steel fibers. 

Rubberized concrete has been used in various applications, such as pavements, sidewalks and road 

barriers. Several studies (e.g. Turatsinze et al., 2005; Guneyisi, 2010; Torgal et al., 2012; Yung et 

al., 2013; Gesoglu et al., 2014; Thomas et al., 2014; Aslani, 2015) have reported that rubberized 

concrete mixtures exhibit increased resistance to freezing-thawing cycles, acid attack and chloride 

ions penetration. In addition, while ordinary concrete has a brittle behavior, rubber particles offer 

high-strain capacity inclusions in concrete. They can also act as crack arresters to control the 

initiation and propagation of cracks with ability to increase the overall ductility and toughness of 

https://en.wikipedia.org/wiki/United_States
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concrete. It was also reported that various factors can affect the compressive, tensile and flexural 

strengths of rubberized concrete, including the size, proportion, and surface texture of the tire 

rubber particles. It was found that the workability, compressive and tensile strengths of concrete 

are negatively affected by the addition of rubber particles, especially at a high dosage. However, 

using adequate supplementary cementitious materials in the mixture can help minimize strength 

loss and enhance the abrasion resistance, as well as increasing the durability in acid, sulfate and 

chloride ions environments. Extensive literature review on the mechanical properties of rubberized 

concrete can be found in Siddique and Naik (2004), and Thomas and Gupta (2016). 

Because of their lower cost when compared to that of commercial steel fibers, several studies have 

investigated the use of steel-wires recovered from scrap tires in concrete technology (e.g. Wang et 

al., 2000; Neocleous et al., 2006; Graeff et al., 2012; Sengul, 2016). Such steel-wires generally 

have irregular undulations and inherent variance in its geometrical characteristics (diameter and 

length), unlike commercial steel fibers that are often manufactured with optimized and consistent 

shape. Tire steel-wire usually has circular cross-section and diameter ranging between 0.1 and 2 

mm. Previous studies concluded that using scrap tire steel-wire fibres generally enhanced the 

mechanical properties of rubberized concrete as compared to that of a control rubberized fibreless 

concrete, owing to its crack-bridging effect. Some studies also compared the effects of the 

mechanical properties of concrete on steel-wires recovered from scrap tires and commercial steel 

fibers. For instance, Sengul (2016) reported that tire steel-wires did not affect the compressive 

strength, flexural strength and splitting tensile strength of concrete as much as commercial steel 

fibers did. 

Preplaced aggregate concrete (PAC), also known as Two-Stage Concrete (TSC), is a special type 

of concrete distinguished by its higher coarse aggregate content and unique placement technique, 

whereby aggregates are first pre-placed in the formwork and then injected with a cementitious 

grout to fill intergranular voids. The rheological properties of the cementitious grout are a key 

factor in achieving the desired mechanical strength and durability. PAC has an additional 50% 

coarse aggregate content than that of conventional concrete (Abdelgader, 1999). Thus, it has a 

characteristic stress distribution mechanism whereby stresses are transferred through contact areas 

between aggregate particles. Such stresses can be responsible for the fracture and/or tearing of 
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aggregate particles from the grout (Abdelgader and Gorski, 2003). Using recycled solid waste 

materials, such as recycled concrete aggregate, can further increase the sustainability of PAC while 

saving natural resources and providing a cost-effective alternative to virgin natural aggregates. 

Moreover, such concrete can have superior resistance to shrinkage and thermal cracking, 

considering its dense particle packing granular skeleton. Producing PAC with notable 

homogeneous inclusion of tire rubber waste materials has already been proven feasible (Najjar et 

al., 2014). 

3.2. Research Significance and Objectives 

While numerous studies have been conducted on concrete mixtures incorporating rubber and/or 

steel-wires recovered from scrap tires, there is an inadequacy of data on the combined use of these 

waste materials in the pre-placed aggregate concrete technology, particularly when recycled 

concrete aggregate is used as the basic granular skeleton. Recently, Nehdi et al. (2017) proposed 

the green PAC technology in utilizing tire rubber granules and recycled stone aggregate as a partial 

replacement for virgin coarse aggregates, along with scrap tire steel-wire as fibre reinforcement. 

They injected his granular system with sustainable grout, incorporating high-volume recycled 

supplementary cementitious materials. They reported the feasibility of producing durable and cost-

effective concrete that could be suitable for sidewalks and pavements, offering ease of placement 

and superior sustainability features. However, the mechanical properties of PAC, prepared using 

100% recycled concrete aggregate along with scrap tire rubber and steel-wire materials, still needs 

investigation and quantification of its engineering properties to open the door for full-scale 

construction implementation. Accordingly, the present study aims at filling this knowledge gap by 

exploring the effects of rubber and steel-wire content, recovered from scrap tires, has on the 

mechanical properties and post-cracking behavior of preplaced recycled aggregate concrete. 

3.3. Experimental Program 

Various eco-efficient, rubberized and steel-wire, reinforced, preplaced, recycled aggregate 

concrete mixtures were prepared. The properties of the ingredients used, the mixture proportions, 

specimen preparation, and mechanical testing procedures are described below. 
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3.3.1. Material Properties  

Recycled concrete aggregate, having 19-38 mm in particle size, was used in this study as a full 

replacement for natural stone coarse aggregates. Its specific gravity and water absorption were 

2.60 and 2.0%, respectively. Recycled granulated tire rubber with a particle size ranging from (6-

12) mm, recycled tire steel-wires with length ranging from 20-35 mm, and a mean diameter of 0.2 

mm and tensile strength of 2000 MPa (made from high strength steel) were used. The tire rubber 

and steel-wires were obtained from a scrap tire recycling plant in London, Ontario, Canada. Tire 

rubber was recovered using a shredding process of waste tires, with the separation of steel-wires 

via an electromagnetic process. The selected steel-wires had consistent, relatively geometrical 

properties and were free from rubber and textile inclusions. The density of the scrap tire rubber 

obtained, according to ASTM C127 (2007), was 0.97 g/cm³. For the grout mixture, CSA A3001 

GU (general use) cement with chemical properties, reported in Error! Reference source not found., 

was used. It has a specific gravity and surface area of 3.15 g/cm3 and 371 m²/kg, respectively. 

Uniformly graded standard Ottawa sand, with the commercial name of “Barco 49”, having round 

to sub-round particle shape was also used. The saturated surface dry specific gravity of the sand 

was 2.65 with a fineness modulus of 1.47, providing high strength and excellent permeability. It 

should be noted that sand used in pre-placed aggregate concrete grouts is finer than of that used in 

normal concrete, to ensure adequate flow and filling of inter-granular space. A poly-carboxylate 

based High Range Water Reducing Admixture (HRWRA) was used to adjust the flow-ability and 

stability of the grout, as per ACI 304.1 (2005) requirements (efflux time = 35-40 ± 2 s). It has a 

specific gravity of 1.06 and a solid content of 34%. Figure 3.1 exhibits ingredients utilized in the 

experimental program of this study. 
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Figure 3.1: Illustration of ingredients used in producing various mixtures: (a) recycled 

rubber tire; (b) recycled stone aggregate (c) recycled steel-wires. 

3.3.2. Mixture Proportions  

An identical grout mixture for all eco-efficient, preplaced, recycled aggregate concrete mixtures 

was prepared with a water-to-binder ratio (w/b) of 0.45 and sand-to-binder ratio (s/b) of 1, using a 

100% OPC without adding supplementary cementitious materials (SCMs). Exploring the effects 

of various SCMs will be explored in a subsequent study. For all mixtures, a superplasticizer dosage 

of 0.4% by the weight of cement was adequate to ensure the recommended efflux time. It should 

be noted that the flow cone method is the most commonly used for assessing the grout flow-ability 

for PAC. This flow cone test consists of measuring the time of efflux of 1725 ml of grout through 

a specific cone having a 12.7 mm discharge tube, according to ASTM C939 “Standard Test 

Method for Flow of Grout for Preplaced-Aggregate Concrete”. Previous research has shown that 

grout with a time of efflux between 20 and 24 s is ideal for TSC (ACI 304.1, 2005; ASTM C939, 

2010). However, grout with a time of efflux of 35 to 40 s was recommended to achieve higher 

mechanical strength (ACI 304.1, 2005). The grout mixture composition is outlined in Table 3.1. 

The recycled concrete aggregate was partially replaced by mass using 10%, 20%, 30%, 40%, and 

50% of the recycled granulated tire rubber. The volume fraction of recycled tire steel-wire was 

0%, 0.25%, 0.5%, and 1%. A total of 21 different mixtures were investigated. From each mixture, 

(b) (c) 

(a) (b) (c) 
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standard specimens were made to evaluate the compressive, tensile, and flexural strengths and 

modulus of elasticity. A summary of mixture proportions is provided in Table 3.2. 

Table 3.1: Grout mixture proportions 

Grout Mixture 

 

OPC 

(kg/m3) 

Sand 

(kg/m3) 

Water 

(kg/m3) 

HRWRA 

Dosage (%) 

 

(w/b) 

 

(s/b) 

Proportion 874 874 393 0.4 0.45 1.0 

Specific gravity 3.15 2.65 1.0 1.064   

 

Table 3.2: Eco-efficient preplace recycled aggregate mixture proportions 

Mixture ID Coarse Aggregate (%) Recycled Tire Steel-wires 
(% by Concrete Volume) Recycled Aggregate Tire rubber Particles 

C-R0-W0 100 0 0 
C-R10-W0 

C-R10-W0.25 
C-R10-W0.5 
C-R10-W1.0 

90 
90 
90 
90 

10 
10 
10 
10 

0 
0.25 
0.5 
1.0 

C-R20-W0 
C-R20-W0.25 
C-R20-W0.5 
C-R20-W1.0 

80 
80 
80 
80 

20 
20 
20 
20 

0 
0.25 
0.5 
1.0 

C-R30-W0 
C-R30-W0.25 
C-R30-W0.5 
C-R30-W1.0 

70 
70 
70 
70 

30 
30 
30 
30 

0 
0.25 
0.5 
1.0 

C-R40-W0 
C-R40-W0.25 
C-R40-W0.5 
C-R40-W1.0 

60 
60 
60 
60 

40 
40 
40 
40 

0 
0.25 
0.5 
1.0 

C-R50-W0 
C-R50-W0.25 
C-R50-W0.5 
C-R50-W1.0 

50 
50 
50 
50 

50 
50 
50 
50 

0 
0.25 
0.5 
1.0 
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3.3.3. Specimen Preparation  

Cylindrical specimens (150 mm x 300 mm) were prepared to evaluate the compressive strength, 

static modulus of elasticity, and splitting tensile strength for each mixture, while prismatic 

specimens (150 mm x 150 mm x 550 mm) were prepared to evaluate the flexural strength at 28 

days. The recycled concrete aggregates were first washed and dried to remove fine particles from 

its surface. Figure 3.2 illustrates a schematic diagram of the specimen preparation process where 

steel molds were filled in approximately three equal layers. Initially the recycled stone aggregates 

were preplaced in the bottom of the molds, and then covered with the specified amount of recycled 

tire rubbers and steel-wires as per each design mixture to form the first reinforced aggregate layer. 

The second and third layers were placed in a similar sequence. The final top layer consisting of 

recycled stone aggregate was then placed. This methodology prohibited higher rubber and steel-

wire concentration at the top layer, which is a common problem in the preplaced aggregate, to 

prevent their upward movement and floating during the cement grout injection process. 

The cement grout was mixed for 6 minutes using a high-speed mixer, according to ASTM C938 

(standard practice for proportioning grout mixtures for preplaced aggregate concrete), and then 

injected to fill voids in the specimens. The mixing and flow-ability measurements were conducted 

at room temperature (23 ± 2ᵒ C). The amount of accumulated bleeding water at the surface of the 

fresh grout was evaluated. To ensure proper consolidation, the molds were placed on a vibrating 

plate device. No problems were encountered during the injection process and self-compacting was 

achieved. Figure 3.3 illustrates the casting process of cylindrical and prismatic specimens. After 

casting, the specimens were covered with wet burlap to prevent surface drying. At age of 24 hours, 

the specimens were demolded and cured in a moist room at a temperature of 25 ᵒC with a relative 

humidity of 98% until testing. Figure 3.4 illustrates the grouting process. The compressive 

strength of the grout was tested on 50 mm cubic specimens at ages of 7 and 28 days.  
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Figure 3.2: Schematic diagram of homogeneous distributions of recycled materials in prism 

and cylindrical formwork. 

 

 

Figure 3.3: Preparation of cylindrical and beam specimens. 

300mm 

150mm

550mm 

150mm
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Figure 3.4: Schematic diagram of cementitious grouting process throughout the recycled 

stone aggregate and recycled tire waste stages.  

3.3.4. Experimental Procedure 

Figure 3.5 illustrates the test setup for the various tests. Compressive strength testing was 

conducted as per ASTM C943-2010 (Standard Practice Method for Making Test Cylinders and 

Prisms for Determining Strength and Density of Preplaced-Aggregate Concrete in the Laboratory). 

Tests were performed using an automated 2000 kN capacity testing machine. Splitting tensile 

strength testing was conducted in accordance with ASTM C496-2011 (Standard Test Method for 

Splitting Tensile Strength of Cylindrical Concrete Specimens). The maximum load sustained by 

the specimen is divided by geometrical factors (𝜋𝑙𝑑/2) to obtain the splitting tensile strength 

where l and d are the length and diameter of the specimen, respectively. The modulus of elasticity 

test was conducted in accordance to ASTM C469/C469M-2011 “Standard Test Method for Static 

Modulus of Elasticity of Concrete in Compression” using a Humboldt compressometer and a 

Forney calibrated load frame. The samples were tested to 40% of the ultimate compressive strength 

and the modulus was calculated as: 

                                                        𝐸 =  
(𝑆2−𝑆1)

(Ɛ2−0.000050)
                                                           Eq. 3.1 

where 𝑆2 is the stress corresponding to 40% of the ultimate load of the concrete; 𝑆1is the stress 

corresponding to a longitudinal strain of 𝜀1 at 50 millionths; and 𝜀2 is the longitudinal strain 
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Filled with 
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produced by 𝑆2. The flexural strength was measured using the three-point bending method in 

accordance with ASTM C1609-2010 “Standard Test Method for Flexural Performance of Fibre 

Reinforced Concrete Using Beam with Third-Point Loading”. Results are calculated as the 

modulus of rupture: 

𝑅 =  
𝑃𝐿

𝑏𝑑2
                                                               Eq. 3.2 

where 𝑃 is the maximum applied load; 𝐿 is the span length; and 𝑏 and 𝑑 are the average width and 

depth of a specimen at fracture, respectively. For all tests above, three specimens from each 

mixture were tested at 28-day age and the average value was recorded.  

  

  

Figure 3.5: Illustration of mechanical testing: (a) compressive strength; (b) splitting tensile 

strength; (c) modulus of elasticity; and (d) flexural strength. 

(a) (b) 

(c) (d) 
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3.4. Experimental Results 

Table 3.3 summarizes the results of mechanical properties of eco-efficient, preplaced, recycled 

aggregate concrete mixtures investigated in this study. Experimental results are discussed below. 

3.4.1. Compressive Strength  

Figure 3.6 illustrates the average compressive strength of the 21 tested mixtures. The compressive 

strength decreased with the increasing level of waste tire rubber. The reduction rate varied between 

9% and 28% depending on the replacement level. Incorporating waste steel-wires also decreased 

compressive strength likely due to the steel-wire obstructing the filling effect of the grout, leading 

to increased porosity. Interestingly, preplaced recycled aggregate concrete having a 25 MPa 

compressive strength could be achieved while incorporating up to 30% of tire rubber and 0.5% of 

tire steel-wire fibres, whereas a 20 MPa compressive strength could be achieved by incorporating 

up to 50% of tire rubber granules and 0.5% of steel-wires. This offers a highly eco-efficient option 

for the construction of multiple infrastructure works. 

 

Figure 3.6: Average compressive strength for 21 cylindrical mixtures incorporating 

different percentages of recycled concrete aggregate, scrap tire rubber and steel-wire 

fibres. 
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3.4.2. Splitting Tensile Strength  

Figure 3.7 illustrates the average tensile strength for the 21 tested mixtures. Splitting tensile 

strength also decreased with increasing percentages of waste tire rubber. The average splitting 

tensile strength of the control specimens was 5.12 MPa, and decreased to 4.75 MPa, 3.22 MPa, 

2.94 MPa, 2.58 MPa, and 2.24 MPa when 10%, 20%, 30%, 40%, and 50% rubber tire was 

incorporated in the mixture, respectively. The corresponding reduction rate varied between 7% 

and 56%, which is approximately double the corresponding reduction rate of compressive strength 

at the same percentage of tire rubber. However, significant improvement in tensile strength was 

achieved when steel-wires were incorporated in the mixture. For instance, the average tensile 

strength of specimens with a 10% tire rubber increased from 4.75 MPa with 0% steel-wire fibres 

to 5.72 MPa with 1% steel-wire addition (increase of about 20%). A similar increase rate was 

observed for specimens made with 20% tire rubber, whereas specimens having 30%, 40%, and 

50% tire rubber exhibited a rate of increase in tensile strength through a steel-wire addition of 

25%, 38%, and 52%, respectively.  

 

Figure 3.7: Average splitting tensile strength results for 21 cylindrical mixtures 

incorporating different percentages of recycled concrete aggregate, scrap tire rubber and 

steel-wire fibres. 
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3.4.3. Modulus of Elasticity 

Since the modulus of elasticity is primarily affected by the concrete compressive strength and 

stiffness of aggregates, it has decreased with an increasing percentage of waste tire rubber as 

expected. The average modulus of elasticity of the control specimens was 41 GPa. This is a high 

modulus due to the fact that PAC has about an increased 50% coarse aggregate content than normal 

concrete. The modulus decreased by about 4% to 20% with an increased rubber content. The 

inclusion of waste steel-wire fibres also decreased the modulus due to the reduced compressive 

strength discussed earlier. Figure 3.8 displays the average modulus of elasticity of the 21 tested 

mixtures. Preplaced recycled concrete aggregate with a 30 GPa modulus of elasticity could be 

produced while incorporating up to 50% of tire rubber and 0.25% of tire steel-wire fibres. 

 

Figure 3.8: Average modulus of elasticity results for 21 cylindrical mixtures incorporating 

different percentages of recycled concrete aggregate, scrap tire rubber and steel-wire 

fibres. 

 

 

0

5

10

15

20

25

30

35

40

45

50

M
o
d
u
lu

s 
o
f 

E
la

st
ic

it
y
 (

G
P

a)

Mixture ID



56 

 

3.4.4. Flexural Strength 

The average flexural strength for the 21 tested mixtures is portrayed in Figure 3.9. The flexural 

strength decreased with an increasing percentage of waste tire rubber. The average flexural 

strength of the control specimens was 10.61 MPa, but decreased to 10.14 MPa, 7.75 MPa, 7.14 

MPa, 6.32 MPa, and 4.46 MPa when 10%, 20%, 30%, 40%, and 50% of tire rubber tire was 

incorporated in the mixture, respectively, corresponding to a reduction of 4% to 58%. However, 

significant improvement in flexural strength was achieved when steel-wires were incorporated in 

the mixture. For instance, the average flexural strength of specimens with a 10% tire rubber content 

was increased from 10.14 MPa with 0% steel-wire fibres to 11.72 MPa with 1% steel-wire (about 

16% increase). For specimens made with 20%, 30%, 40%, and 50% tire rubber, the flexural 

strength was increased by 21%, 23%, 17%, and 39%, respectively due to 1% steel-wire addition.  

 

Figure 3.9: Average flexural strength results for 21 beam mixtures incorporating different 

percentages of recycled concrete aggregate, scrap tire rubber and steel-wire fibres. 
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Table 3.3: Mechanical properties of tested mixtures 

Mixture ID Compressive  
Strength (MPa) 

Splitting Tensile  
Strength (MPa) 

Modulus of  
Elasticity (GPa) 

Flexural 
Strength (MPa) 

C-R0-W0 34.05 5.12 41.01 10.61 
C-R10-W0 
C-R10-W0.25 
C-R10-W0.5 
C-R10-W1.0 

30.87 
28.63 
27.20 
26.16 

4.75 
5.40 
5.53 
5.72 

39.28 
37.93 
36.01 
32.43 

10.14 
10.86 
11.49 
11.72 

C-R20-W0 
C-R20-W0.25 
C-R20-W0.5 
C-R20-W1.0 

29.57 
27.61 
26.12 
25.48 

3.22 
3.48 
3.70 
3.88 

38.70 
36.36 
33.33 
31.43 

7.75 
8.27 
9.20 
9.36 

C-R30-W0 
C-R30-W0.25 
C-R30-W0.5 
C-R30-W1.0 

28.21 
26.57 
25.50 
24.42 

2.94 
3.29 
3.55 
3.68 

38.18 
35.01 
32.35 
30.56 

7.14 
7.85 
8.06 
8.79 

C-R40-W0 
C-R40-W0.25 
C-R40-W0.5 
C-R40-W1.0 

26.88 
24.91 
23.32 
23.01 

2.58 
2.92 
3.23 
3.58 

34.72 
31.57 
30.95 
30.01 

6.32 
6.64 
6.98 
7.41 

C-R50-W0 
C-R50-W0.25 
C-R50-W0.5 
C-R50-W1.0 

24.35 
22.81 
20.82 
19.67 

2.24 
2.64 
2.97 
3.40 

33.01 
30.95 
27.77 
25.01 

4.46 
5.12 
5.48 
6.22 

 

3.5. Discussion 

Figure 3.10 synthetises the effects of the incorporation of rubber and steel-wire fibres from scrap 

tires on the compressive strength, splitting tensile strength, modulus of elasticity, and flexural 

strength of the preplaced, recycled aggregate concrete mixtures investigated in this study. The 

effect of tire rubber is presented with the value of the average results for mixtures incorporating 

10%, 20%, 30%, 40%, and 50% tire rubber content without adding steel-wire fibres. The effect of 

incorporating steel-wire fibres is presented through the value of the average results for mixtures 

incorporating 0.25%, 0.5%, and 1% of steel-wire with different percentages of tire rubber.  
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The reduction in compressive strength, when tire rubber particles were added, can be attributed to 

the weak adhesion between rubber particles and the concrete matrix. It can also be attributed to the 

reduction of the load-carrying capacity due to the replacement of rigid recycled concrete aggregate 

by flexible granules. The elastic and thermal mismatch between the much softer rubber particles 

and the adjacent cementitious matrix enhances crack formation around the rubber particles, which 

induces premature failure (Nehdi and Khan, 2001; Zheng et al., 2008). Also, the high porosity and 

water absorption of the recycled concrete aggregate can enhance shrinkage stresses and decrease 

the effective water available for the cement hydration process. This consequently compromises the 

quality of the interfacial transition zone between aggregates and cement paste.  

Using recycled tire wire as fibres reduced the compressive strength loss of the eco-efficient 

concrete mixtures, induced by rubber addition, owing to the role of recycled tire wires in resisting 

crack formation and propagation (e.g. Farnam et al., 2010; Graeff et al., 2012). However, fibres 

typically do not alter the compressive strength of fibre-reinforced concrete, unless fibre clustering 

and balling leads to reduce flow and increased porosity. In the present study, steel-wire fibres were 

preplaced and the only negative effect they could have is obstructing grout flow and filling.  

However, the mechanical strength of the eco-efficient concrete can be further increased using 

effective supplementary, cementitious materials, as a partial replacement for cement and chemical 

treatment of rubber particles, to alter its hydrophobic nature. 

The negative effect of incorporating waste tire rubber in the cementitious matrix can be seen in the 

splitting tensile strength of the eco-efficient concrete that can be attributed to the weak bond 

between rubber particles and the cementitious matrix. This leads to the cracking and failure under 

the splitting tensile loading (Ganjian et al., 2009). However, the splitting tensile strength was 

significantly improved by incorporating steel-wires with some mixtures, exhibiting similar or 

higher tensile strength than that of the control mixture without rubber. The opening and 

propagation of micro-cracks can be controlled by steel-wire fibres along the fracture plane. Hence, 

energy absorption and toughness can be increased, making the eco-efficient concrete a strong 

contender for certain applications requiring high energy absorption (e.g. Graeff et al., 2012; 

Giedrius and Džigita, 2016). 
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As expected, implementing recycled tire rubber particles significantly reduced the modulus of 

elasticity as indicated in Figure 3.10. This is ascribed to be the very low elastic modulus of the 

added rubber particles (Turatsinze et al., 2005; Onuaguluchi and Panesar, 2014; Ganjian et al., 

2009). In addition, the stiffness of the recycled concrete aggregate, which is typically lower than 

that of stiff natural stone aggregates, further influenced the modulus of elasticity. The use of steel-

wire fibers reduced the drop in the modulus of elasticity imparted by rubber granules. As 

mentioned earlier, recycled tire wire fibres resist crack formation and arrest crack propagation, 

leading to improved stiffness. 

The reduction in the flexural strength when tire rubber particles were added can be attributed to 

the weak interfacial transition zone between hydrophobic rubber particles and the grout matrix, 

leading to initiation and propagation of cracks around rubber particles (Najim and Hall, 2010; Xie 

et al., 2015). In addition, relatively less angular recycled concrete aggregate has adverse effects on 

aggregate interlock, leading to weaker mechanical interlock. However, the addition of recycled 

tire steel-wires counterbalanced negative effects of tire rubber particles owing to their crack 

bridging mechanism. Thus, some mixtures exhibited similar to higher flexural strength than that 

of the control. 

Figure 3.11 illustrates compressive stress strain curves at 28 days and represents the effect of 

waste tire rubber and waste steel-wires exhibiting the difference in ductility between specimens 

with no rubber or steel-wires and with those that are rubberized, and steel-wire reinforced. Control 

specimens had brittle failure. The addition of up to 20% rubber content did not alter such sudden 

and brittle failure, whereas higher rubber levels and steel-wire induced ductility changes the mode 

of failure from brittle to more ductile. Specimens with no rubber shattered into small pieces when 

it reached its peak load, while rubberized and steel-wire fibre-reinforced specimens were able to 

sustain loads beyond the peak load. When rubber particles offered with high-strain capacity 

inclusions are combined with the cross-crack stress bridging effect induced by steel-wires, they 

can increase ductility and toughness of concrete.  

Figure 3.12 demonstrates the important role of incorporating waste tire rubber with steel-wires 

has on the failure mode of eco-efficient concrete specimens in compressive, tensile, modulus of 

elasticity, and flexural testing. Steel-wires increased the overall energy dissipation through arrested 
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micro-cracks initiation and propagation. Figure 3.13 illustrates displacement curves of specimens 

during flexural strength. Concrete specimens without rubber and steel-wires exhibited a sudden 

increase in deflection, accompanied by a reduction in load capacity after first crack. Conversely, 

rubberized and steel-wire reinforced specimens achieved a better post-crack flexural behaviour. 

Their enhanced load-deflection behaviour can be ascribed as rubber particles arresting cracks 

owing to its ability to sustain large elastic deformation, (Toutanji, 1996), and the crack bridging 

effect of steel-wire fibres can lead some mixtures to a strain hardening behaviour.   

Toughness was evaluated for the tested mixtures, as the area under the load-deflection curves up 

to 3 mm as per ASTM C1609/C1609M-10. Flexural toughness index, which are defined as the 

ratio between the absorbed energy up to a given deflection to that at the first crack, were evaluated 

based on ASTM C1018 (Standard Test Method for Flexural Toughness and First-Crack Strength 

of Fibre-Reinforced Concrete-Using Beam with Third-Point Loading). The toughness chart 

(Figure 3.14) displays that incorporating recycled tire rubber particles and recycled tire wire 

improved toughness. Toughness results (Table 3.4) display that the overall toughness increased 

with an increasing steel-wire dosage. For example, the average toughness of specimens 

incorporating 30% rubber and 1% steel-wire was 16 times that of specimens made with 30% rubber 

and 0% steel-wire, and 22 times that of specimens made solely with 100% recycled concrete 

aggregates. The higher the flexural toughness indices, the higher is the ability of concrete to absorb 

energy (Zhang et al., 2014). Generally, replacing recycled concrete aggregates with tire rubber 

particles enhanced energy absorption, owing to its elastic properties. The addition of recycled tire 

wire fibres further increased the required energy for crack growth, resulting in enhanced toughness 

(Graeff et al., 2012).  

Furthermore, the residual strength factor charts (Figure 3.15) show that specimens contained 0.5% 

and 1.0% steel-wire fibre achieved almost a higher residual strength. The residual strength values 

obtained from Table 3.4 demonstrate the notable effect the specimens utilized with recycled tire 

waste obtained in the overall residual strength factors. For example, the R5−10 value increased 

significantly after adding 10% recycled tire rubber and 1.0% of recycled steel-wire content (C-

R10-W1.0), which was found to be higher than that of the control specimen (C-R0-W0) by nearly 

25.82%. The residual strength factor R10−20 in mixture 50% rubber and 1.0% steel wire (C-R50-



61 

 

W1.0) achieved higher value than that of the mixture made with 10% rubber with the same steel 

content (1.0%) by 58.13%. By adding 1.0% recycled steel-wire in a 50% rubber mixture, the 

R20−30 factor has improved by 38.13%. This improvement ascribed to incorporating a higher 

percentage of steel-wire dosage absorbed higher energy. As a result, this exhibited higher residual 

strength due to the delay task in the early first crack (Yap et al., 2014). 

 

Figure 3.10: Effect of incorporating waste tire rubber and steel-wires on the mechanical 

properties of preplaced concrete mixtures using recycle concrete aggregate. 
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Figure 3.11: Stress-strain curves for cylindrical specimens incorporating different 

percentages of recycled concrete aggregate, scrap tire rubber and steel-wire fibres. 
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Figure 3.12: Failure mode of specimens with and without waste steel-wires in: (a) 

compressive testing; (b) modulus of elasticity testing; (c) splitting tensile testing; and (d) 

flexural testing. 
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Figure 3.13: Load-deflection curves for beam specimens incorporating different 

percentages of recycled concrete aggregate, scrap tire rubber and steel-wire fibres. 
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Table 3.4: Toughness of tested beam mixtures 

Mixture ID 
First Crack  
Toughness 
(kN.mm)   

Toughness Indices Residual Strength Factors 

𝐼5               𝐼10            𝐼20           𝐼30 𝑅5−10 𝑅10−20 𝑅20−30  

C-R0-W0 1.302 5.594 9.783 12.884 16.090 83.787 31.008 32.054 
C-R10-W0 2.489 6.740 10.042 14.118 17.218 66.046 40.758 31.001 
C-R10-W0.25 3.999 7.777 11.378 15.892 18.580 72.035 45.135 26.878 
C-R10-0.5 7.053 8.020 13.352 16.551 19.487 106.634 31.991 29.361 
C-R10-W1.0 28.041 9.188 14.836 18.090 20.774 112.958 32.533 26.846 
C-R20-W0 3.383 7.078 11.370 16.027 18.303 85.843 46.564 22.768 
C-R20-0.25 1.421 8.198 12.604 16.821 19.149 88.117 42.164 23.287 
C-R20-W0.5 8.468 9.011 14.117 18.393 20.206 102.121 42.763 18.126 
C-R20-W1.0 25.854 10.098 15.637 19.579 21.831 110.768 39.424 22.519 
C-R30-W0 1.789 9.692 13.585 16.824 19.965 77.852 32.394 31.406 
C-R30-0.25 1.204 10.874 14.589 17.662 20.260 74.300 30.737 25.973 
C-R30-W0.5 10.390 11.638 15.079 19.267 21.427 68.812 41.887 21.597 
C-R30-W1.0 28.052 12.335 17.014 20.744 22.598 93.591 37.300 18.539 
C-R40-W0 1.115 10.143 14.801 21.117 22.527 93.161 63.152 14.106 
C-R40-0.25 1.425 11.890 15.524 21.621 24.138 72.669 60.969 25.176 
C-R40-W0.5 10.284 12.743 17.326 23.302 25.083 91.665 59.759 17.808 
C-R40-W1.0 26.398 14.607 18.482 23.972 28.729 77.499 54.896 47.578 
C-R50-W0 1.232 10.757 15.654 24.740 27.330 97.956 90.853 25.902 
C-R50-0.25 2.358 12.706 16.474 25.329 28.385 75.350 88.547 30.560 
C-R50-W0.5 11.782 14.319 18.740 26.373 28.998 88.411 76.336 26.244 
C-R50-W1.0 24.630 15.795 18.801 27.939 32.126 60.131 91.379 41.870 
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Figure 3.14: Toughness indices charts of tested beam mixtures. 
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Figure 3.15: Residual strength factors charts of tested beam mixtures. 
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3.6. Concluding Observations 

• This study explored the performance of eco-efficient, preplaced, recycled aggregate concrete 

incorporated with scrap tire rubber granules and tire steel-wire fibres. This material is intended 

to create ecological construction technology for sidewalks, pavements, crash barriers, building 

exteriors and partition walls that offer minimal material mixing and placement energy with a 

very high recycled content, minimal cementitious material dosage, and overall substantial labor 

and energy savings. 

•  Aggregates are preplaced and are not involved in materials mixing. The volume of preplaced 

aggregates is 50% higher than that in normal concrete, which reduces the need for cement, 

limiting green house gas emissions from cement production.  

•  The preplaced aggregate consists of recycled concrete aggregate and scarp tire granules, thus 

saving virgin aggregates. A self-leveling grout is injected with no need for mechanical 

vibration or compaction effort, which saves labour and energy.  

• The preplacement technique eliminates the well-known negative effects of recycled concrete 

aggregate and tire rubber on the rheology and flow of concrete.  

• Results indicate that incorporating tire rubber particles significantly decreased the mechanical 

properties as expected. The addition of steel-wire from scrap tires enhanced the tensile and 

flexural behaviour, limiting the drop in compressive strength and modulus of elasticity due to 

rubber inclusion, and improved the overall toughness and post-crack behaviour. 

•  Not only does this technology offer energy and cost savings, but also superior volume stability 

through high resistance to shrinkage and thermal cracking, owing to the dense skeleton of 

preplaced aggregates.  

• Accordingly, the proposed eco-efficient technology can be implemented for making durable 

and sustainable concrete. Yet, there is still a need for further research to improve the strength 

of this eco-efficient concrete; for instance, through addition of effective cementitious materials.  
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Chapter 4 

4. EXPLORING BEHAVIOUR OF ECO-EFFICIENT 
PREPLACED AGGREGATE CONCRETE UNDER IMPACT 
LOADING 

4.1. Introduction and Background 

Concrete is the world’s most widely used construction material. Over the past decades, reinforced 

concrete structures have been subjected to various extreme loading conditions, including impacts, 

explosions and earthquakes, which instigated several unexpected structural failures. This has 

escalated the impact load design requirements of concrete structures to mitigate such catastrophic 

failures (Adhikary et al.,2016; Alhadid et al.,2014; Remennikov and Kaewunruen,2006). 

Accordingly, the dynamic properties of concrete structural elements have to be investigated in 

order to acquire needed knowledge and data for structural safety specifications (Kennedy,1976; Li 

et al.,2005; Luccioni,2004).  

The impact resistance of concrete is of utmost importance in infrastructure and underground design 

and construction (Murali et al.,2014). Concrete is naturally a brittle material that can be damaged 

by sudden impact, which could compromise the life span of concrete elements (Murnal and 

Chatorikar,2015). The brittle characteristic of concrete generally restricts its use in dynamic 

applications (Chen and May, 2009). 

The concept of using fibers to reinforce brittle materials has been utilized for thousands of years. 

For instance, sunbaked straw-fiber-reinforced bricks were used to build the 57-m high hill of Aqar-

Quf in Iraq (Hannant, 1995). Cement-based matrices have also been reinforced with asbestos and 

cellulose fibers over the past ninety years (Macvicar et al.,1999). Metallic, glass, and synthetic 

polymer fibers have also been used in reinforcing cementitious products for over seventy years 

(Hannant, 1995).   

Many studies have demonstrated significant improvements in the impact resistance of concrete 

with the addition of metallic fibers (Ali et al.,2017). Fibre-reinforced concrete exhibited 

extraordinary advantages pertaining to impact resistance from the initial crack to final failure 
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stages (Nili and Afroughsabet, 2010; Yildirim et al.,2010; Nia et al.,2012). Metallic fiber addition 

also enhanced fatigue, toughness and energy absorption capacity (Ali and Nehdi, 2017). Such 

benefits primarily emanate from the ability of fibers to arrest the initiation and propagation of 

cracks in cementitious matrices (Ali et al.,2017; Rao et al.,2012). Interest in the impact behaviour 

of fibre-reinforced concrete escalated rapidly, due to its increased ductile behaviour when 

compared to that of conventional concrete (Adhikary and Fujikake, 2015; Swamy and Jojagha, 

1982). It is now well established that the process of concrete failure under stress depends on the 

fiber-matrix and aggregate-matrix bond, which control the crack pattern and mode of failure 

(Murali et al., 2014; Yew et al.,2011). 

On the other hand, recycled rubber from scrap tires and other sources has provided promising 

properties to concrete under static and dynamic loading (Khalil et al., 2015). For instance, it was 

shown that rubberized concrete incorporating up to 20% of rubber content, as partial replacement 

for sand or cement, achieved adequate engineering properties (Al-Tayeb et al. 2012). It was also 

observed that incorporating 50 to 75% of crumb or chipped rubber, by volume of aggregate, 

enhanced the energy absorption properties in concrete (Reda-Taha et al., 2008).  

Moreover, sources of natural aggregate have been depleting in many countries, and rock extraction 

has led to environmental damage worldwide (Vadivel et al., 2014). High demand of natural 

aggregate resources has contributed to the rise in cost of concrete construction (Abdullah et al., 

2016). Hence, utilising recycled concrete aggregate and recycled rubber in concrete, as a full or 

partial replacement for natural aggregate, is an essential step towards the sustainability and eco-

efficient management of by-products (Yehia et al., 2015).  

Preplaced aggregate concrete (also known as two-stage concrete, referred to as TSC in the 

remainder of the text) has existed for several decades. Yet, its sustainability features have only 

been captured recently (Nehdi et al., 2017). TSC can be made by first placing the coarse aggregate, 

then injecting a cementitious grout to fill voids between aggregates. Recycled concrete aggregate 

and scrap tire rubber granules can be used as full or partial replacement for the coarse aggregate. 

This results in less mixing energy (only the grout is mixed), ease of placement and a minimal 

desire for pumping. Workability problems associated with the loss of slump due to the high 

absorption of recycled aggregate, buoyancy of lighter rubber granules, honeycombing and 
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segregation are all prevented since the recycled aggregate and rubber granules are preplaced in the 

formwork. This results in a sustainable and low-cost construction (Nehdi et al., 2017). 

Yet, there is still ongoing controversy regarding the efficiency of using recycled rubber granules 

in concrete production with regards to the associated drop in mechanical strength (Ismail and 

Ramli, 2016). Although various studies explored TSC in terms of its performance under static 

loading (Nehdi et al., 2017; Liu et al., 2012), there is a dearth of information on its performance 

under impact loads. Hence, in the present study, the impact resistance of sustainable TSC mixtures 

incorporating high recycled content (recycled concrete aggregate, scrap tire rubber granules and 

steel fibers from scrap tires) have been investigated. The main thrust of this study is to define 

sustainable concrete, not only in terms of its composition, but its eco-efficient placement technique 

as a green, minimal cost. Superior resistance to impact loading with a focus on developing novel 

alternative construction for pavements, road barriers, and other pertinent civil infrastructure is just 

one of the many features sustainable concrete can offer. 

4.2. Experimental Program 

4.2.1. Materials and Mixture Proportions 

Type I Portland cement (OPC) with a surface area and specific gravity of 371 m2/kg and 3.15 

g/cm3, respectively, in accordance to ASTM C150 (Standard Specification for Portland Cement), 

was used in the production of TSC. The chemical composition of the cement is given in Error! 

Reference source not found.. Micro-silica sand (SS) with maximum particle size and specific 

gravity of 200 µm and 2.65 g/cm3, respectively, was also utilized. The laser diffraction particle 

size distribution curves for the OPC and SS are displayed in Error! Reference source not found.. 

Recycled concrete aggregate having 19-38 mm particle size with specific gravity measured as 2.60 

g/cm3 and water absorption of 2.0% was also used. Recycled granulated tire rubber was also 

utilized with a particle size ranging from (0.6-1.2) mm. Different TSC mixtures were prepared 

using the recycled granulated tire rubber with different percentages of 0%, 10%, 15%, and 20% 

by volume fraction. The different TSC mixtures were reinforced with recycled tire steel-wires 

having 20-45 mm in length and a mean diameter of 0.2 mm. The volume fraction of the utilized 

recycled tire steel-wires was 0%, 0.5%, 1%, and 1.5%. A poly-carboxylate high-range water 
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reducing admixture (HRWRA) as per specifications of ASTM C494 (Standard Specification for 

Chemical Admixtures for Concrete) was added by the percentage of cement weight to control the 

workability of the different TSC mixtures. Table 4.1 displays the proportions of the tested TSC 

mixtures with a target of 28-days compressive strength of 25 MPa. The first number in the mixture 

abbreviation relates to the recycled granulated tire rubber content, while the second shows the 

recycled tire steel-wire content. For example, TSC20-0.5 refers to a preplaced aggregate (two-

stage) concrete incorporating 20% of recycled granulated tire rubber and 0.5% recycled tire steel-

wires by volume fraction. 

Table 4.1: Mixture proportions of TSC cylindrical mixtures 

Mixture Cement 
Silica 
sand 

w/cm HRWRA 
Tire 

rubber 
(%Vf) 

Steel-
wires 
(%Vf) 

TSC0-0 1.00 1.00 0.45 0.0004 0.00 0.00 

TSC0-0.5 1.00 1.00 0.45 0.0004 0.00 0.50 

TSC0-1 1.00 1.00 0.45 0.0004 0.00 1.00 

TSC0-1.5 1.00 1.00 0.45 0.0004 0.00 1.50 

TSC10-0 1.00 1.00 0.45 0.0004 10.00 0.00 

TSC15-0 1.00 1.00 0.45 0.0004 15.00 0.00 

TSC20-0 1.00 1.00 0.45 0.0004 20.00 0.00 

TSC10-0.5 1.00 1.00 0.45 0.0004 10.00 0.50 

TSC15-0.5 1.00 1.00 0.45 0.0004 15.00 0.50 

TSC20-0.5 1.00 1.00 0.45 0.0004 20.00 0.50 

TSC10-1 1.00 1.00 0.45 0.0004 10.00 1.00 

TSC15-1 1.00 1.00 0.45 0.0004 15.00 1.00 

TSC20-1 1.00 1.00 0.45 0.0004 20.00 1.00 

TSC10-1.5 1.00 1.00 0.45 0.0004 10.00 1.50 

TSC15-1.5 1.00 1.00 0.45 0.0004 15.00 1.50 

TSC20-1.5 1.00 1.00 0.45 0.0004 20.00 1.50 

 

4.2.2. Mixture and Specimen Preparation 

Premixed recycled concrete aggregate, recycled tire rubber and tire steel-wires were first placed at 

the bottom of the 150 mm x 300 mm cylinders as displayed in Figure 4.1 and Figure 4.2. An 

electric cement mixer was used to dry mix grout solid ingredients including cement and silica sand 

for one minute. The mixing water and HRWRA were gradually added to the dry mixture over three 

minutes of mixing until a homogeneous mixture was achieved. Finally, the cementitious grout was 
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injected into the forms and vibrated in order to fill gaps between granules. All specimens were 

demolded after 24 h and then placed in a 20 ± 2 °C curing room with a relative humidity of 95% 

for 28 days. All reported test results represent average values obtained on identical triplicate 

specimens. 

  

  

Figure 4.1: TSC specimen preparation. 
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Figure 4.2: Overview of preplaced recycled concrete aggregate with scrap tire rubber 

granules and steel-wire TSC. 

4.2.3. Test Procedures 

For each TSC mixture, three 150 mm diameter by 300 mm in height cylindrical specimens were 

tested at the age of 28 days to determine the compressive strength, as per ASTM C39 (Standard 

Test Method for Compressive Strength of Cylindrical Concrete Specimens), using a standard MTS 

compression testing machine with a capacity of 2000 kN. Similarly, three cylindrical specimens 

of 150 mm x 300 mm from each TSC mixture were tested at 28 days in order to evaluate the elastic 

modulus, according to ASTM C469 (Standard Test Method for Static Modulus of Elasticity and 

Poisson’s Ratio of Concrete in Compression). The elastic modulus for all TSC mixtures was 

calculated using: 

𝐸 =  
(𝑄2−𝑄1)

(Ɛ2−0.000050)
     Eq. 4.1 

Where E is the elastic modulus in GPa, Q2 and Q1 are stresses in MPa corresponding to 40% of 

the ultimate compressive load and a longitudinal strain of 50 millionths, respectively. Ɛ2, is the 

longitudinal strain produced by stress Q2. Furthermore, three cylindrical specimens of 150 mm x 

300 mm from each TSC mixture were tested at 28 days to obtain the splitting tensile strength, as 

per ASTM C496 (Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete 

Specimens). The splitting tensile strength was calculated as follows: 
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𝑇 =  
2∗𝑃

𝜋∗𝑙∗𝑑
       Eq. 4.2 

Where T is the splitting tensile strength in MPa, P is the maximum applied load in Newton, l and 

d are the length and diameter of the cylinder in mm, respectively.  

 

Drop weight impact testing was applied in compliance with guidelines of the American Concrete 

Institute (ACI) Committee 544. Each test specimen was adjusted in the testing setup and subjected 

to an impact loading in a 28-day period induced by a 4.5-kg impactor, dropped from a height of 

457 mm above the cylindrical TSC specimen.  This produced an impact energy of 20.167 J per hit, 

as shown in Figure 4.3. The number of applied impacts load to induce a first visible crack (N1) 

and failure (N2), respectively were recorded. The impact energy for each TSC specimen was 

evaluated according to ASTM D5628 (Standard Test Method for Impact Resistance of Flat, Rigid 

Plastic Specimens by Means of a Falling Dart) guidelines in the following equation: 

𝐼𝐸 = 𝑁𝑖. ℎ. 𝑤. 𝑓     Eq. 4.3 

Where IE is the sustained impact energy in Joule, Ni is the number of blows, h is the falling height 

of the steel mass in mm, w is the mass of the steel hammer in kg, and f is a constant with a value 

of 9.806 x 10-3.  



79 

 

45
7 

m
m

100 mm Diameter x 50 mm Depth

 Cylindrical ECC Specimen

50 mm Diameter Steel Ball

50 mm Diameter Steel Pipe

Steel Base Plate

Vertical Guide

4.5 kg Steel Mass

Stop and Release Guide

Lifting Handle

 

Figure 4.3: Schematic diagram of drop weight impact testing system. 

4.3. Results and Discussion 

4.3.1. Compressive Strength 

Figure 4.4 a, b and c exhibit the variation in compressive strength for the different TSC mixtures 

at 28 days, which ranged from 25 to 34 MPa. Generally, steel fiber addition induced a slight 

decrease in the TSC’s compressive strength due to a decreased efficiency of grout filling by fibre 

obstruction. For instance, the compressive strength of TSC0-0.5, TSC0-1, and TSC0-1.5 decreased 

by 5.1%, 6%, and 6.4%, respectively, as compared to that of the control TSC0-0 specimen. 

Likewise, recycled tire rubber addition decreased the compressive strength of the different TSC 

specimens. For example, the compressive strength of TSC10-0, TSC15-0, and TSC20-0 decreased 

by 10.4%, 12.5%, and 14.1%, respectively, when compared to that of the control TSC0-0. This 
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can be attributed to the deformability of rubber granules. Incorporating a combination of recycled 

tire rubber and steel fibers in the TSC mixtures also induced reduction in the compressive strength 

observed in Figure 4.4.  

  

 

Figure 4.4: Compressive strength of different TSC specimens: a) steel-wires b) tire rubber, 

and c) steel-wire and tire rubber. 

4.3.2. Elastic Modulus 

The elastic modulus test results of TSC mixtures at 28 days are displayed in Figure 4.5 a, b and 

c. As expected, incorporating recycled tire rubber in TSC mixtures led to a significant reduction 

in elastic modulus when compared to that of the control TSC0-0 mixture. A similar trend was 

observed due to the combined rubber granules and steel fiber addition. For instance, the elastic 
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modulus of TSC10-0.5, TSC15-0.5, TSC20-0.5, TSC10-1, TSC15-1, TSC20-1, TSC10-1.5, 

TSC15-1.5, and TSC20-1.5 specimens was reportedly lower than that of the control TSC0-0 

specimens by about 21%, 23%, 24.5%, 24.2%, 24.5%, 26%, 25.1%, 26%, and 27.4%, respectively. 

The overall reduction in the elastic modulus of the TSC mixtures is ascribed to the low stiffness 

of rubber, and the reduced compressive strength is caused by increased porosity due to fiber 

addition. 

  

 

 

 

 

Figure 4.5: Elastic modulus of different TSC specimens: a) steel-wires b) tire rubber, and c) 

steel-wire and tire rubber. 
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4.3.3. Splitting Tensile Strength 

Variation in the 28-day splitting tensile strength of the different TSC specimens are displayed in 

Figure 4.6 a, b and c. It ranged from 3.8 to 6 MPa, depending on the fiber type and dosage. It can 

be observed that the tensile capacity of the TSC specimens was enhanced due to scrap tire steel-

wire fiber addition. For instance, the tensile capacity of the mixtures incorporating 0.5%, 1%, and 

1.5% of steel fibre content increased by 44.7%, 50.8% and 60.5%, respectively, when compared 

to that of the control TSC0-0 mixture. This enhancement in tensile capacity is ascribed to the fiber-

matrix interfacial bond, which enhanced the load transfer across cracks with increasing fiber 

content, thus improving the overall tensile load carrying capacity.  

  

 

 

 

 

Figure 4.6: Tensile strength of different TSC specimens: a) steel-wires b) tire rubber, and 

c) steel-wire and tire rubber. 
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Conversely, recycled tire rubber addition induced reduction in splitting the tensile capacity of TSC 

specimens. For example, the tensile capacity of TSC10-0, TSC15-0, and TSC20-0 specimens 

decreased by 14%, 19.7%, and 26.3% as compared to that of TSC0-0, respectively. Yet, TSC 

specimens which incorporated a combination of recycled tire rubber and steel fiber exhibited 

superior tensile capacity when compared to that of TSC control specimen. For instance, the tensile 

capacity of TSC10-0.5, TSC15-0.5, TSC20-0.5, TSC10-1, TSC15-1, TSC20-1, TSC10-1.5, 

TSC15-1.5, and TSC20-1.5 specimens increased by about 32.5%, 19.7%, 3.7%, 36.8%, 25.8%, 

5.7%, 43.9%, 33.7%, and 7.5% when compared to that of the control specimens, respectively. 

4.3.4. Impact Behaviour 

The behaviour of TSC specimens under impact load was determined through evaluating its 

resistance to a drop weight impact with accordance to ACI 544 guidelines. The impact energy 

sustained by the different TSC specimens up to first crack and up to failure is illustrated in Figure 

4.7. Specimens from the fibreless control mixture (TSC0-0) failed after only one hit by the drop 

weight and split into multiple fragments, which reflects its brittle nature under impact loading. 

Similarly, TSC specimens, which incorporate tire rubber alone, followed a similar trend under 

impact loading, as shown in Figure 4.7 b. Conversely, steel fiber addition significantly enhanced 

the TSC’s behaviour under impact loading by up to 40 times as compared to that of the fibreless 

and tire rubber TSC specimens. For instance, incorporating 0.5%, 1%, and 1.5% steel fiber in TSC 

specimens increased its impact resistance to reach first crack and failure by about 3, 4 and 5 in 

TSC0-0.5, TSC0-1 and TSC0-1.5 and 22,25 and 40 times than that of the fibreless TSC specimens  

TSC10-0, TSC15- and TSC20-0, respectively (Figure 4.7 a).This is attributed to the ability of 

steel fibers to restrain crack propagation in TSC specimens under impact loading, thus altering the 

mode of failure from brittle to more ductile. Furthermore, incorporating a combination of recycled 

tire rubber and scrap tire steel-wire fiber in TSC production only led to a slight increase in impact 

resistance up to first crack as compared to that of the fibreless TSC specimens (Figure 4.7 c).  

However, significant improvement in the failure impact energy of TSC specimens was achieved 

owing to the incorporation of tire rubber granules and scrap tire steel-wire fiber. For instance, the 

energy sustained up to the failure of TSC10-0.5, TSC15-0.5, TSC20-0.5, TSC10-1, TSC15-1, 

TSC20-1, TSC10-1.5, TSC15-1.5, and TSC20-1.5 specimens was improved by about 600%, 
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600%, 500%, 1000%, 700%, 700%, 1100%, 900%, and 800%, compared to that of the TSC control 

specimen, respectively (Figure 4.7 c). 

  

 

Figure 4.7: Impact energy sustained by different TSC cylindrical specimens: a) steel-wires, 

b) tire rubber, and c) combined steel-wire and tire rubber. 
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Generally, the tested specimens under impact loading suffered different failure patterns as 

displayed in Error! Reference source not found.. For instance, fibreless TSC control specimens 

exhibited brittle and sudden failure under a single impact. Incorporating tire rubber in TSC 

specimens led to a similar trend. Conversely, scrap tire steel-wire addition changed the mode of 

failure from brittle, characterised by a single crack, to ductile failure with the appearance of 

multiple cracking, as shown in Figure 4.8 b, c, and d. The number of cracks increased with an 

increasing steel-wire volume fraction within the mixture. This can be attributed to the crack 

arresting capability of steel-wires, which enhanced the ductile behavior of the TSC specimens 

under impact loading.  

  

  

Figure 4.8: Failure pattern of TSC cylindrical specimens under impact loading: a) control, 

b) 0.5% steel-wire, c) 1% steel-wire, and d) 1.5% steel-wire. 

a) b) 

c) d) 
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4.4. Statistical Analysis 

4.4.1. Analysis of Variance of Test Results 

Experimental test results of concrete have been widely analyzed using different probabilistic 

models. Specifically, the analysis of variance (ANOVA) has been widely utilized (Ali et al.,2017; 

Ahmad and Alghamdi, 2014; Soliman and Nehdi, 2012). According to ANOVA, in order to 

investigate whether an experimental variable, such as steel fiber addition, is statistically 

significant, an Fo value is estimated and compared to a standard F value of an F-distribution density 

function, obtained from statistical tables based on the significance level (α1), and the degrees of 

freedom of error, determined from an experiment using the number of variables and observations. 

Exceeding the critical value of an F-distribution density function indicates that the tested variable 

significantly affects the mean of the results (D.C. Montgomery, 2012).  The Fo value can be 

calculated after estimating the sum of the squares of test results as follows:  

   𝑆𝑆𝑇 = [∑ ∑ 𝑦𝑖𝑗
2 ] − [

𝑦𝑛
2

𝑁

𝑛
𝑖=1

𝑎
𝑖=1 ]                           Eq. 4.4 

𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = [
1

𝑛
∑ 𝑦𝑖

2] − [
𝑦𝑛

2

𝑁
]𝑎

𝑖=1                        Eq. 4.5 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠                          Eq. 4.6 

 

Where SST is the total corrected sum of squares, SSTreatments is the sum of squares due to reinforcing 

the specimens (e.g. different steel fiber reinforcement ratios), SSE is the sum of squares due to error 

(using replicates rather than testing only one specimen), a is the number of treatments (variables), 

n is the number of observations (specimens), yij is the jth observation taken under factor level of 

treatment i, and N is the total number of observations. The mean square of test data can be 

calculated as follows:  

𝑀𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 =
𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠

𝑎−1
                              Eq. 4.7 
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       𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑁−𝑎
                                        Eq. 4.8 

Where MSTreatment and MSE are the mean square due to treatments and error, respectively. The Fo 

value can be determined as the ratio of the mean square due to treatments to that obtained due to 

error as follows:  

𝐹𝑜 =
𝑀𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠

𝑀𝑆𝐸
                                               Eq. 4.9 

ANOVA at a significance level α1 = 0.05 indicated that the variation in the dosage of recycled 

steel-wire fiber had an insignificant effect on the mean value of the compressive strength of the 

TSC concrete. The obtained Fo value for the compressive strength results was 3.96, which is lower 

than that of the corresponding critical F value of 4.46 (F0.05,2,8). Conversely, variation in the 

addition level of steel-wire fiber showed a significant effect on the splitting tensile strength and 

impact resistance of the TSC concrete. The determined Fo values for the splitting tensile strength 

and impact resistance were 31.87 and 117.6, respectively. On the other hand, incorporating tire 

rubber granules in TSC specimens indicated an insignificant effect on the mean value of the 

compressive strengths, splitting tensile strengths and the impact resistance of the TSC specimens 

with corresponding Fo values of 1.52, 2.1 and 2, respectively, which is lower than the 

corresponding critical F0.05,2,8 value.  

4.4.2. Weibull Distribution 

Different probabilistic models have been utilized to statistically analyze the impact test data of 

concrete materials, among which the two-parameter Weibull distribution was widely utilized by 

many researchers for estimating the impact performance of concrete (Li et al., 2007; Sakin and 

Ay,2008; Bedi and Chandra, 2009). The Weibull distribution function is determined by a 

probability density function f (n) as follows: 

     𝑓(𝑛) =
𝛼

𝑢
(

𝑛

𝑢
)

𝛼−1

𝑒−(
𝑛

𝑢
)

𝛼

          Eq. 4.10 
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Where α is the shape parameter (i.e. Weibull slope), u describes the scale parameter, and n is the 

specific value of the random variable N (i.e. N1 and N2 in this study).  By integrating Eq. 4.10, Eq. 

4.11 can be determined as: 

𝐹𝑁(𝑛) = 1 − 𝑒−(
𝑛

𝑢
)

𝛼

     Eq. 4.11 

Where FN (n) describes the cumulative distribution function. The probability of survivorship 

function is estimated using Eq. 4.12 according to Saghafi et al. (2009): 

𝐿𝑁 = 1 − 𝐹𝑁(𝑛) = 𝑒−(
𝑛

𝑢
)

𝛼

    Eq. 4.12 

Equation 4.12 can be rewritten by taking the natural logarithm twice on both sides as follows: 

       𝑙𝑛 [𝑙𝑛 (
1

𝐿𝑁
)] = 𝛼𝑙𝑛(𝑛) − 𝛼𝑙𝑛(𝑢)               Eq. 4.13 

In order to graphically estimate Eq. 4.13, the empirical survivorship function, LN, for impact test 

data is determined from the following relation (Bedi and Chandra, 2009): 

                       𝐿𝑁 = 1 −
𝑖−0.3

𝑘+0.4
                 Eq. 4.14 

Where i is the failure order number, and k represents the number of data points. According to 

Figure 4.9 and Figure 4.10, a linear regression analysis was applied to the ln [ln (1/LN)] and ln 

(impact energy) values. The linear trend is established by drawing the best fit line between data 

points using the method of least squares. The slope of the line provides an estimate of the shape 

parameter (α) and the scale parameter (u), which can be determined by calculating the value at 

which the line intersects the ln [ln (1/LN)] axis. The shape parameter (α), scale parameter (u) and 

the coefficient of determination (R2) for the TSC specimens are presented in Table 4.2. 
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Figure 4.9: Weibull distribution of steel-wires for TSC cylindrical specimens. 

 

Figure 4.10: Weibull distribution of steel-wires and tire rubber for TSC cylindrical 

specimens. 
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Table 4.2: Shape, scale parameters and coefficient of determination of TSC specimens 

Specimen ID α u R2 

TSC0-0.5 16.632 -102.06 0.8179 

TSC0-1 24.071 -150.2 0.9949 

TSC0-1.5 17.447 -117.1 0.8801 

TSC10-0.5 6.7033 -33.594 0.9983 

TSC15-0.5 6.7033 -33.594 0.9983 

TSC20-0.5 5.731 -27.89 0.9988 

TSC10-1 10.575 -57.553 0.9968 

TSC15-1 7.6731 -39.425 0.9978 

TSC20-1 7.6731 -39.425 0.9978 

TSC10-1.5 7.1142 -39.266 0.9809 

TSC15-1.5 9.6084 -51.415 0.9971 

TSC20-1.5 4.6243 -22.566 0.9997 

The estimated impact energy values for TSC specimens at the failure stage are displayed in Table 

4.3 and Table 4.4 based on reliability analysis. The first crack impact energy of TSC0-0.5, TSC0-

1, and TSC0-1.5 specimens was approximately equal to or higher than 68.633, 89.147, and 109.544 

J with R2 of 0.9998, 0.9999, and 0.9994, respectively. Furthermore, the impact energy at failure of 

TSC0-0.5, TSC0-1, and TSC0-1.5 was approximately equal to or higher than 462.36, 513.64, and 

820.585 J with R2 of 0.8179, 0.9949, and 0.8801, respectively. As indicated by others (Rahmani 

et al., 2012; Chen et al.,2011), a coefficient of determination R2 of 0.7 or higher is sufficient for a 

reasonable reliability model. Since all impact test data had R2 equal to or higher than 0.8179, a 

two-parameter Weibull distribution can be used to estimate the statistical distribution of impact 

test results for TSC concrete. In addition, the developed reliability curves provide a useful tool to 

determine the impact resistance of TSC at first cracking and failure, without the need for costly 

and time-consuming additional impact testing.  
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Table 4.3: Weibull distribution for impact energy of steel-wires reinforced TSC specimens 

Reliability Level TSC0-0.5 TSC0-1 TSC0-1.5 

0.99 350.647 424.295 630.411 

0.90 403.857 467.803 721.298 

0.80 422.496 482.616 753 

0.70 434.579 492.112 773.516 

0.60 444.067 499.511 789.607 

0.50 452.292 505.885 803.542 

0.40 459.945 511.784 816.499 

0.30 467.558 517.623 829.378 

0.20 475.79 523.902 843.291 

0.10 486.146 531.756 860.781 

0.01 506.835 547.291 895.667 

 
 

Table 4.4: Weibull distribution for impact energy (J) of various TSC specimens 

Reliability 
Level 

TSC0-0.5 TSC10-0.5 TSC20-0.5 TSC0-0.5 TSC10-0.5 TSC20-0.5 TSC0-0.5 TSC10-0.5 TSC20-0.5 

0.99 
75.5889 75.5889 58.1972 149.5097 93.5563 93.5563 130.682 130.619 48.6716 

0.90 
107.324 107.324 87.6937 186.7112 127.078 127.078 181.828 166.807 80.9016 

0.80 
120.037 120.037 99.9621 200.4421 140.134 140.134 202.056 180.357 95.1556 

0.70 
128.736 128.736 108.487 209.5320 148.967 148.967 215.826 189.379 105.313 

0.60 
135.823 135.823 115.504 216.7714 156.106 156.106 227.003 196.593 113.819 

0.50 
142.15 142.15 121.822 223.1190 162.441 162.441 236.954 202.938 121.585 

0.40 
148.194 148.194 127.902 229.0859 168.458 168.458 246.434 208.919 129.149 

0.30 154.355 154.355 134.143 235.0780 174.561 174.561 256.076 214.942 137.005 

0.20 
161.185 161.185 141.112 241.6197 181.29 181.29 266.74 221.534 145.88 

0.10 
170.031 170.031 150.212 249.9428 189.953 189.953 280.513 229.947 157.627 

0.01 
188.554 188.554 169.524 266.8744 207.911 207.911 309.219 247.148 183.117 
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4.5. Concluding Remarks 

An experimental research was carried out to investigate the behaviour of sustainable preplaced 

aggregate concrete (TSC) under static and impact loading. The TSC concrete was made with 

recycled concrete aggregate and 0%, 10%, 15%, and 20% of recycled tire rubber granules, along 

with 0%, 0.5%, 1% and 1.5% (by volume fraction) of recycled steel-wire fibers from scrap tires. 

The Weibull distribution function was used to develop a reliability-based model for predicting the 

impact behaviour of the sustainable TSC. The conclusions below can be drawn: 

• As expected, the compressive strength of TSC specimens decreased due to tire rubber addition. 

Steel-wire fiber addition did not have a significant effect on compressive strength. 

• Generally, the tensile strength of the sustainable TSC specimens was significantly enhanced, 

owing to the recycled steel-wire fiber addition. ANOVA confirmed that incorporating steel 

fiber in the TSC mixtures had a significant positive effect on the tensile capacity of the TSC. 

Among all tested specimens, TSC incorporating no tire rubber and 1.5% of steel fibre content 

achieved highest tensile capacity.  

• The behavior of TSC specimens subjected to impact loading was enhanced by 22 to 40 times 

compared to that of the fibreless TSC specimens owing to the addition of steel fiber. However, 

incorporating tire rubber granules in TSC decreased its impact performance.  

• The Weibull distribution function achieved an adequate capability of representing the impact 

test data of TSC with a linear correlation between the numbers of impacts, which initiated 

ultimate failure for all TSC specimens. 

• The behavior of sustainable TSC under impact loading demonstrates the need for further 

research to develop sustainable concrete with superior tensile properties and impact resistance 

for the protection of infrastructures in the event of unexpected severe loading conditions.   

 

 



93 

 

4.6. References 

 Abdullah, S. R., Zainal-Abidin, W. R.W., and Shahidan, S. (2016). “Strength of Concrete 

 Containing Rubber Particle as Partial Cement Replacement.” MATEC Web of 

 Conferences,47, 01009, The 3rd International Conference on Civil and Environmental 

 Engineering for Sustainability, 1st April, Johor, Malaysia,1-4. 

 doi:10.1051/matecconf/20164701009 

 ACI Standard 544.2R-89 (Reapproved 2009) “Measurement of properties of fiber reinforced 

 concrete.” Farmington Hills, MI 48331-3439, U.S. 

 Adhikary, S. D., Li, B., and Fujikake, K. (2015). “Residual resistance of impact-damaged 

 reinforced concrete beams.” Magazine of Concrete Research,67(7), 364-378. 

 doi:10.1680/macr.14.00312 

 Adhikary, S. D., Li, B., and Fujikake, K. (2016). “State-of-the-art review on low-velocity impact 

 response of reinforced concrete beams.” Magazine of Concrete Research,68(14), 701-

 723. doi:10.1680/jmacr.15.00084 

 Ahmad, S., and Alghamdi, S. A. (2014). “A Statistical Approach to Optimizing Concrete 

 Mixture Design.” The Scientific World Journal, 1-7. doi:10.1155/2014/561539 

 Alhadid, M. M., Soliman, A. M., Nehdi, M. L., and Youssef, M. A. (2014). “Critical 

 overview of  blast resistance of different concrete types.” Magazine of Concrete 

 Research,66(2), 72- 81. doi:10.1680/macr.13.00096 

 Ali, M.A.E.M., Soliman, A., and Nehdi, M. (2017). “Hybrid-fiber reinforced engineered 

 cementitious composite under tensile and impact loading.” Materials and Design,117, 

 139-149. doi:10.1016/j.matdes.2016.12.047 

 Ali, M.A.E.M. and Nehdi, M. (2017). “Innovative crack-healing hybrid fiber reinforced 

 engineered cementitious composite.” Construction and Building Materials,150, 689-702. 

 doi:10.1016/j.conbuildmat.2017.06.023 

 Al-Tayeb, M. M., Abu-Bakar, B. H., Ismail, H., and Akil, H. M. (2012). “Impact Resistance of 

 Concrete with Partial Replacements of Sand and Cement by Waste Rubber.” Polymer-

 Plastics Technology and Engineering,51(12), 1230-1236. 

 doi:10.1080/03602559.2012.696767 

 ASTM C150/C150M. (2015). “Standard specification for Portland cement.” American  

  Society for Testing and Materials, ASTM International, West Conshohocken, PA, USA. 

 ASTM D5628. (2018). “Standard test method for  impact resistance of flat, rigid plastic 

 specimens by means of a galling dart.” American Society for Testing and Materials, 

 ASTM International, West Conshohocken, PA, USA. 

 Bedi, R., and Chandra, R. (2009). “Fatigue-life distributions and failure probability for glass-

 fiber reinforced polymeric composites.” Composites Science and Technology,69(9), 

 1381-1387. doi:10.1016/j.compscitech.2008.09.016 

 Chen, Y., and May, I. M. (2009). “Reinforced concrete members under drop-weight 

 impacts.” Proceedings of the Institution of Civil Engineers - Structures and 

 Buildings,162(1), 45-56. doi:10.1680/stbu.2009.162.1.45 

 Chen, X., Ding, Y., & Azevedo, C. (2011). “Combined effect of steel fibres and steel rebars on 

 impact resistance of high performance concrete.” Journal of Central South University of 

 Technology,18(5), 1677-1684. doi:10.1007/s11771-011-0888-y 
 D.C. Montgomery, Design and analysis of experiments,  Eighth edition, Hoboken, New Jersey, USA, 

 John Wiley and Sons, 2012. 



94 

 

 Hannant, D. J. (1995). “Fibre reinforcement in the cement and concrete  industry.” Materials 

 Science and Technology,11(9), 853-862. doi:10.1179/mst.1995.11.9.853 

 Ismail, S., and Ramli, M. (2016). “Impact Resistance of Recycled Aggregate Concrete with 

 Single and Hybrid Fibers.” MATEC Web of Conferences,47, 02001, The 3rd International 

 Conference on Civil and Environmental Engineering for Sustainability, 1st April, Johor, 

 Malaysia, 1-7 doi:10.1051/matecconf/20164702001 

 Kennedy, R. (1976). “A review of procedures for the analysis and design of concrete structures 

 to resist missile impact effects.” Nuclear Engineering and Design,37(2), 183-203. 

 doi:10.1016/0029-5493(76)90015-7 

 Khalil, E., Abd-Elmohsen, M., and Anwar, A. M. (2015). “Impact Resistance of  Rubberized 

 Self-Compacting Concrete.” Water Science,29(1), 45-53. 

 doi:10.1016/j.wsj.2014.12.002  

 Li, H., Zhang, M., and Ou, J. (2007). “Flexural fatigue performance of concrete  containing 

 nano- particles for pavement.” International Journal of Fatigue,29(7), 1292-1301. 

 doi:10.1016/j.ijfatigue.2006.10.004 

 Li, Q., Reid, S., Wen, H., & Telford, A. (2005). “Local impact effects of hard missiles on 

 concrete targets.” International Journal of Impact Engineering,32(1-4), 224-284. 

 doi:10.1016/j.ijimpeng.2005.04.005 

 Liu, F., Chen, G., Li, L., and Guo, Y. (2012). “Study of impact performance of rubber reinforced 

 concrete.” Construction and Building Materials,36, 604-616. 

 doi:10.1016/j.conbuildmat.2012.06.014 

 Luccioni, B., Ambrosini, R., and Danesi, R. (2004). “Analysis of building collapse under blast 

 loads.” Engineering Structures,26(1), 63-71. doi:10.1016/j.engstruct.2003.08.011 

 Macvicar, R., Matuana, L., and Balatinecz, J. (1999). “Aging mechanisms in cellulose fiber 

 reinforced cement composites.” Cement and Concrete Composites,21(3), 189-196. 

 doi:10.1016/s0958-9465(98)00050-x 

 Murali, G., Santhi, A. S., and Ganesh, G. M. (2014). “Impact Resistance and Strength Reliability 

 of Fiber-reinforced Concrete in Bending under Drop Weight Impact Load.” International 

 Journal of Technology,5(2), 111. doi:10.14716/ijtech.v5i2.403 

 Murnal P. B. and Chatorikar R.N. (2015). “Impact resistance of steel fiber reinforced 

 concrete.” International Journal of Research in Engineering and Technology, 04(25): 

 241-246. doi:10.15623/ijret.2015.0425034 

 Nehdi, M. L., Najjar, M. F., Soliman, A. M., and Azabi, T. M. (2017). “Novel steel fibre-

 reinforced preplaced aggregate concrete with superior mechanical performance.” Cement 

 and Concrete Composites,82, 242-251. doi:10.1016/j.cemconcomp.2017.07.002 

 Nili, M., and Afroughsabet, V. (2010). “Combined effect of silica fume and steel fibers  on the 

 impact resistance and mechanical properties of concrete.” International Journal of 

 Impact Engineering,37(8), 879-886. doi:10.1016/j.ijimpeng.2010.03.004 

 Nia, A. A., Hedayatian, M., Nili, M., and Sabet, V. A. (2012). “An experimental and numerical 

 study on how steel and polypropylene fibers affect the impact resistance in fiber-

 reinforced concrete.” International Journal of Impact Engineering,46, 62-73. 

 doi:10.1016/j.ijimpeng.2012.01.009 

 Rao B.K., Ravindra V., and Rajagopal A. (2012). “Experimental investigation on impact strength 

 of steel fiber reinforced normal and self-compacting concrete.” International journal 

 of Civil Engineering and Architecture, 2(1): 495-505. 



95 

 

 Rahmani, T., Kiani, B., Shekarchi, M., and Safari, A. (2012). “Statistical and experimental 

 analysis on the behavior of fiber reinforced concretes subjected to drop weight 

 test.” Construction and Building Materials,37, 360-369. 

 doi:10.1016/j.conbuildmat.2012.07.068 

 Reda-Taha, M. M., El-Dieb, A. S., Abdel-Wahab, M. A., and Abdel-Hameed, M. E. (2008). 

 “Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete.” Journal 

 of Materials in Civil Engineering,20(10), 640-649. doi:10.1061/(asce)0899-

 1561(2008)20:10(640) 

 Remennikov, A. and Kaewunruen, S. (2006). “Impact resistance of reinforced concrete columns: 

 experimental studies and design considerations.” 19th Australasian Conference on the 

 Mechanics of Structures and Materials, Nov 29 - Dec 1, Christchurch, New Zealand, 

 817- 824. 

 Saghafi, A., Mirhabibi, A., and Yari, G. (2009). “Improved linear regression method for 

 estimating Weibull parameters.” Theoretical and Applied Fracture Mechanics,52(3), 

 180-182. doi:10.1016/j.tafmec.2009.09.007 

 Sakin, R., and Ay, I. (2008). “Statistical analysis of bending fatigue life data using Weibull 

 distribution in glass-fiber reinforced polyester composites.” Materials & Design,29(6), 

 1170-1181. doi:10.1016/j.matdes.2007.05.005 

 Soliman, A. M., and Nehdi, M. L. (2012). “Effect of Natural Wollastonite Microfibers on Early-

 Age Behavior of UHPC.” Journal of Materials in Civil Engineering,24(7), 816-824. 

 doi:10.1061/(asce)mt.1943-5533.0000473 

 Swamy, R., and Jojagha, A. (1982). “Impact resistance of steel fibre reinforced lightweight 

 concrete.” International Journal of Cement Composites and Lightweight Concrete,4(4), 

 209-220. doi:10.1016/0262-5075(82)90024-0 

 Vadivel T.S., Thenmozhi R., and Doddurani M. (2014). “Experimental behavior of waste tire 

 rubber aggregate concrete under impact loading.” IJST, Transactions of Civil 

 Engineering, 38(C1+): 251-259. 

 Yildirim, S. T., Ekinci, C. E., and Findik, F. (2010). “Properties of hybrid fiber reinforced 

 concrete under repeated impact loads.” Russian Journal of Nondestructive Testing,46(7), 

 538-546. doi:10.1134/s1061830910070090 

 Yehia, S., Helal, K., Abusharkh, A., Zaher, A., and Istaitiyeh, H. (2015). “Strength and 

 Durability Evaluation of Recycled Aggregate Concrete.” International Journal of 

 Concrete Structures and Materials,9(2), 219-239. doi:10.1007/s40069-015-0100-0 

 Yew, M. K., Othman I., Yew M.C., Yeo S.H, and Mahmud H. (2011). “Strength properties of 

 hybrid nylon-steel and polypropylene-steel fibre-reinforced high strength concrete at low 

 volume fraction.” International Journal of the Physical Sciences,6(33). 

 doi:10.5897/ijps11.736 
  



96 

 

Chapter 5 

5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1. Summary and Conclusions 

In view of the growing global demand for sustainable construction materials and “green” concrete 

structures, this study introduces preplaced, recycled aggregate concrete (PAC), also known as two-

stage concrete (TSC), a type of concrete made primarily of recycled concrete aggregate and tire 

waste materials. This dissertation explores the engineering properties of PAC with a view of 

determining opportunities of full-scale implementation.  

In Chapter 2, a review of recent developments of PAC has been provided, along with a discussion 

of scrap tire recycling practice. Interest in green concrete technology has recently escalated 

simultaneously with the need for recycling tire wastes worldwide. The main thrust is to contribute 

to reducing the colossal quantity of disposed tires, to preserve natural aggregate resources, and to 

attain impactful outcomes of utilizing waste materials in concrete production. Reusing recycled 

concrete aggregate has been highlighted in this chapter. Recycled concrete aggregate from 

demolished structures has gained noteworthy attention in recent years as a potential replacement 

for natural virgin aggregates to produce eco-efficient concrete. Indeed, recycled concrete aggregate 

and recycled tire wastes have shown great potential to produce PAC, which can be achieved by 

selecting adequate cementitious grout proportions.  

In Chapter 3, the experimental implementation of the vision identified in Chapter 2 has been first 

pursued by presenting the production procedure of 189 (150 ×300) mm cylindrical specimens and 

63 (150 × 150 × 550) mm prismatic beams of PAC containing recycled concrete aggregate (19-38 

mm in size) to meet the sustainability goals in this dissertation. The recycled aggregate was 

provided by a recycling firm which specializes in beneficiating construction materials from 

demolished or renovated landscapes and buildings. Moreover, recycled tire granulated rubber 

particles (size: 6-12 mm) were used in PAC at dosages of 10%, 20%, 30%, 40% and 50% by 

volume of coarse aggregate, along with recycled tire steel-wire cord as fibre reinforcement with 

dosage of 0.25%, 0.5% and 1.0% (wire fibre length: 20-45 mm, diameter: 0.2mm) by volume 

fraction.  A high flow-ability cementitious grout was developed and injected in the PAC formwork. 
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It incorporates ASTM C150 Type I ordinary portland cement (OPC), micro-silica sand, and a high-

range water-reducing admixture (HRWRA) added to the mixing water to adapt the flow and 

workability.  The sand to binder ratio (s/b) and water to binder ratio (w/b) were 1.0 and 0.45, 

respectively. The selected and injected cementitious grout proportions boosted flow-ability and 

effectively filled voids within the aggregate skeleton with the presence of high percentage of tire 

waste materials.  

The effects of recycled tire wastes on the mechanical behaviour of the eco-efficient concrete under 

static load were discussed in Chapter 3, including compressive strength, splitting tensile strength, 

modulus of elasticity and four-point bending flexural strength tests, stress-strain, load-deflection, 

toughness and failure mechanisms. The control specimens achieved highest average compressive 

strength of 34 MPa, reflecting grout properties and stiffness of the recycled concrete aggregate.  

By increasing the recycled rubber percentage from 0% to 50%, the reduction in the overall 

compressive strength reached 21%. The inclusion of recycled steel-wire fibres lowered this 

strength reduction effect caused by the rubber addition. Increasing the steel fibres from 0% to 

1.0%, rubberized PAC specimens showed lower reduction in their compressive strength, which 

ranged between 13.4% and 19.2%. These findings indicate that balancing rubber and steel-wire 

addition can lead to producing PC with adequate compressive strength. 

Also, increasing the rubber content up to 50% caused significant reduction in the splitting tensile 

strength of rubberized PAC specimens by up to 52.8%. This decline in strength was mitigated 

notably by the incorporation of 1.0% recycled tire steel-wire by volume fraction. In this case the 

splitting tensile strength of the 10%, 20%, 30%, 40% and 50% rubberized PAC specimens had 

decreased the splitting tensile strength by only 16.95%, 17%, 20.10%, 27.93% and 34.11%, 

respectively. The decrease in splitting tensile strength reflects the weak bonding characteristic 

between hydrophobic rubber particles and the cementitious matrix.  

The static modulus of elasticity of the tested PAC specimens exhibited gradual decrease due to 

rubber addition. The control PAC specimens without rubber achieved highest modulus of 41MPa. 

This reflects the much higher aggregate content in PAC when compared to that of normal concrete, 

and the stiffer nature of recycled aggregate concrete compared to rubber. The modulus of elasticity 

decreased by 19.5% due to the inclusion of 50% of rubber.  When recycled steel tire wire fibre 
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reinforcement of up to 1.0% was used, the mean modulus reduction of the 10% to 50% rubberized 

PAC specimens dropped by around 17.5% to 24.2%. Although rubber addition in the examined 

PAC caused modulus reductions, the modulus values remained in the acceptable range compared 

to normal concrete due to the dense granular skeleton.   

Incorporating recycled tire rubber and steel-wire fibres affected considerably the stress-strain 

behaviour of PAC in compression. The stress-strain curves reveal that the control PAC and PAC 

containing 20% rubber granules had brittle behaviour.  However, this changed after increasing the 

rubber content beyond this threshold to 30%, 40% and 50% with addition of 0.25%, 0.50% and 

1.0% of tire steel-wire fibres. Rubberized and steel-wire fibre reinforced cylinders incorporating 

rubber levels beyond 20% acquired a more ductile behaviour, as they displayed larger deformation 

and elastic capacity.  Rubber and steel-wire fibre helped in crack arresting and enhanced energy 

absorption capacity (area under stress-strain curve).  

Moreover, rubberized PAC beam specimens exhibited decreased flexural strength with rubber 

addition compared to that of the control PAC without rubber by up to 56%. However, this changed 

by incorporating recycled steel-wire fibres. The average flexural strength decline in the 10% to 

40% rubberized PAC beams reinforced with 1.0% steel fibre was nearly 16%.  The effect of steel 

fibre addition was more notable in 50% rubberized specimens, in which the flexure strength 

increased by 28.29%. Furthermore, unlike the case of compression and modulus of elasticity 

results in which the mean reductions rate among 10% to 50% rubberized cylinders were 

exacerbated when steel-wire fibre inclusion was used, as the fibres mitigated the drop in flexural 

strength. This shows the well-known positive effects of fibres in delaying crack growth and 

enhancing the overall toughness via fibre pull out across growing cracks. 

The load-deflection curves revealed the effects of recycled waste tire components on PAC 

toughness and ductility, indicating more ductility and higher toughness compared to that of control 

specimens. The brittle failure for the control PAC was gradually transformed to ductile behaviour 

with increased rubber and steel-wire fibre dosage. Observed failures were rather gradual than 

sudden and rubberized specimens gained larger elastic and post-peak deformation compared to 

that of control rubber-less specimens. In addition, specimens reinforced with a high percentage of 

steel-wire fibre content exhibited multiple micro-cracks instead of a single crack with a lower 
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crack width than that in the control beam specimens. Accordingly, the areas under load-deflection 

curves (toughness) displayed the characteristics of increased energy absorption mechanisms. The 

overall flexure energy absorption capacity and toughness were determined from evaluating 

standard test toughness indices, by estimating the total area under the load-deflection curves. Both 

first crack deflection and toughness were greatly enhanced with the increase of steel-wire dosage, 

and has gradually enhanced with increased rubber content. Also, the residual strength factors (post-

peak behaviour) displayed numerous improvements when recycled tire rubber and steel-wire were 

incorporated. 

In Chapter 4, the steel-wire effect was further explored by increasing its volume fraction up to 

1.5, considering the behaviour of rubberized and steel-wire reinforced PAC under impact loading. 

Drop weight impact resistance testing was conducted to investigate the dynamic behavior of PAC 

specimens. Control specimens of PAC without rubber failed in a splitting manner within one drop 

weight hit. Rubberized PAC specimens showed somewhat similar behaviour. However, by 

reinforcing PAC with 1.5% steel-wires, the first crack and failure impact resistance were improved 

by nearly 40 times compared to that of the control specimens. The efficiency of steel-wire and 

rubber addition in terms of its enhanced dynamic load behaviour of PAC was assessed statistically 

using analysis of variance (ANOVA) and was found to be significant. The impact performance of 

PAC was also assessed statistically using the Weibull distribution to statistically estimate the 

impact performance and reduce the need for laborious and costly tests. The obtained reliability 

curves support the efficiency of determining PAC impact resistance at first crack and failure using 

the Weibull distribution. 
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5.2. Recommendations for Future Study 

• There is need to develop new strategies regarding the replacement of natural virgin 

aggregates with recycled concrete aggregate and recycled tire rubber. This would create 

sustainable methods for promoting value engineering and sustainability.  

• Due to the limited utilization of rubberized concrete to the non-structural low strength 

applications, conducting more experimental research using high strength grout to produce 

higher strength PAC needs to be explored. 

• The present study did not investigate the sustainability of the grout. It is possible to produce 

entirely recycled PAC using a geo-polymer grout based on alkali-activated fly ash, along 

with recycled concrete aggregate, tire rubber and tire steel-wire fibre. This needs further 

study. 

• The applications of the eco-efficient PAC proposed in this study are non- structural and 

non-reinforced. If PAC is to be reinforced, then the study on permeability to chloride ions, 

corrosion, freeze-thaw and other durability performance criteria needs to be explored. 
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