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Abstract 

G protein coupled receptors (GPCRs) promote G protein heterotrimer (Gα•GDP/Gbg) 

activation. GPCR signalling is limited via G protein GTPase activity and b-arrestin-receptor 

interactions. G Protein Signalling Modulators (GPSMs) are proteins that may influence receptor 

signalling through G protein activity. GPSM3 modulates their activity by binding to Gai-GDP, 

limiting nucleotide exchange and preventing its re-association to Gbg. The impact of GPSM3 on 

signalling is unknown. I	hypothesize	that	GPSM3 will decrease Gai-dependent signalling while 

promoting Gbg-dependent signalling in Gi-coupled GPCRs.  

GPSM3 significantly inhibited b-arrestin recruitment to α2A-adrenergic and µ-opioid 

receptors via a Gbg-dependent mechanism, with no effect to Gs- and Gq/11-coupled GPCRs. N-

terminal truncation and single point mutations in three distinct regions of GPSM3 decreased the 

inhibitory effect of GPSM3 on b-arrestin recruitment to α2A-adrenergic and µ-opioid receptors.  

Thus, my data suggest that GPSM3 negatively regulates b-arrestin-Gi-coupled GPCR 

interactions, which could serve as a potential therapeutic target for future pharmaceuticals.  

Keywords 

G Protein-coupled receptor (GPCR), G Protein Signalling Modulator 3 (GPSM3), cyclic 5’- 

monophosphate (cAMP), inhibition, b-arrestin, adenylyl cyclase, complementation-based 

bioluminescence, selective agonist, human embryonic kidney cells, pharmacology  
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Chapter 1  
 

1.1 INTRODUCTION 

1.1.1 DRUG-RECEPTOR INTERACTIONS 

 Many drugs exert their effects by binding to specific receptors within the human body. 

Drug efficacy is often proportionally related to the amount of a drug at the site of action and can 

be modeled by examining the relationship between drug concentration and its overall effect 

(Hryniuk et al. 1990). Furthermore, these effects can be quantified using parameters like 

molecular efficacy and potency (Figure 1-1) Molecular efficacy refers to the ability of an 

agonist, once bound to a receptor, to initiate a maximal response or effect (Emax), whereas 

potency is reflected in the concentration of drug that simulates (EC50) or inhibits (IC50) the 

maximum effect by 50% and correlates inversely with these parameters (i.e. high potency drugs 

produce their effects at low concentrations) (Luk et al. 2009, Kim et al. 2018) . The continued 

use of an agonist may reduce its effectiveness over time. This phenomenon is referred to as 

tolerance and may be influenced by pharmacokinetic factors, especially metabolism, which may 

decrease the overall bioavailability of the drug at the site of action (Ferguson et al. 2001, 

Marchant et al. 1981). Alternatively, decreases in drug efficacy and/or potency may also occur 

via changes in the receptor involved, its signalling partner proteins, or upstream or downstream 

components of the signalling pathway that mediates the effects of the drug. Finally, in vivo 

responsiveness to the effectiveness of a drug can be muted by the activation of physiological 

processes that counter its effects. Overall, clinicians need to be aware of pharmacokinetic, 

pharmacodynamics and physiological factors in order to prescribe and maintain optimal 
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Figure 1-1 Effects of ligand activation on G Protein Coupled Receptor activity. Ligand 

binding can lead to either stimulation (A) or inhibition (B) of receptor activity. Moreover, 

activation of a receptor can also lead to a negative response (e.g. inhibition of cAMP production 

by Gi-coupled GPCR activation) (B). Furthermore, different ligands can modulate receptor 

effects by exhibiting different binding affinities to the receptor, which in turn alters agonist 

potency (C) but can also alter overall receptor activity or efficacy (D).  
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drug therapies that will maximize drug efficacy while minimizing potential toxicity and adverse 

effects. 

 

 
1.2 G PROTEIN COUPLED RECEPTORS 
 
1.2.1 OVERVIEW 

 
G-protein coupled receptors (GPCR) are the largest family of cell surface receptors 

encoded by the mammalian genome and play a wide range of important roles in physiological 

processes, such as metabolism, endocrine function, olfaction, vision, neuromuscular regulation 

and central nervous system function (Duc et al. 2015). As a result, GPCRs are widely exploited 

as targets for drugs to treat many diseases. Over 30% of current pharmaceuticals modulate 

GPCR activity by mimicking or inhibiting endogenous ligand activity (Santos et al. 2017, Rask-

Anderson et al. 2014, Hauser et al. 2017).  

GPCRs are heptahelical structures predominantly expressed in the plasma membranes of 

eukaryotes, including yeast and mammals. Approximately 800 GPCRs that have been identified 

in humans with different sensory and signalling functions (McCudden et al. 2005, Palczewski et 

al. 2006). Structurally, GPCRs are comprised of a single polypeptide chain with an extracellular 

amino terminus, seven hydrophobic alpha-helical transmembrane domains and an intracellular 

carboxyl terminus. The seven transmembrane domains are held together by three extracellular 

loops (ECL1-3) and three intracellular loops (ICL1-3) (Zhang et al. 2015). The N terminus, 

ECL1-3, and usually a pocket formed by the outer halves of the transmembrane domains are 
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collectively responsible for ligand recognition, binding and modulation of ligand access to the 

extracellular surface of the receptor. Two cysteine residues found on the extracellular loops of 

GPCRs, specifically Class A receptors (discussed in the next section), are highly conserved 

between species and confer stability when oxidized to form disulfide bonds (Tuteja et al. 2009). 

Intracellular loops are vital for modulation of GPCR signalling. The cytoplasmic domains 

contain serine and threonine residues, which can be phosphorylated by G protein receptor 

kinases (GRKs). This phosphorylation initiates a sequence of events, which may desensitize the 

receptor from further agonist stimulation and target the GPCR for degradation, recycling or 

endosomal signalling.  

GPCRs are activated by a multitude of ligands including hormones, neurotransmitters, 

photons, ions, chemokines, lipids and other molecules that can range in size from small 

molecules to peptides and even large glycoproteins (Tyndall et al. 2005). Evidence shows that 

various GPCRs may also be responsive to mechanical stimuli, such as fluid shear stress, tension 

and compression (Dela Paz et al. 2017, Scholz et al. 2016). GPCRs have strong affinities for 

specific ligands making them desirable drug targets (Schoneberg et al. 2004). While many 

GPCRs have been identified and paired up with their biological activators, there are still 

approximately 100 of these receptors (named orphan receptors) for which no endogenous ligand 

has been confirmed (Atwood et al. 2011). 
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1.2.2 CLASSIFICATION OF G PROTEIN-COUPLED RECEPTORS  

 

 Based on the structural and sequence similarities among receptors, the GPCR superfamily 

can be divided into six different families: Family A, rhodopsin-like; Family B, secretin-like; 

Family C, metabotropic glutamate; Family D, fungal pheromone receptor; Family E, 

Dictyostelium cAMP receptor; and Family F, Frizzled/Smoothened and lastly, Adhesion 

receptors (Davies et al. 2007, Hu et al. 2017, Horn et al. 2003). Family A is the largest group, 

comprising nearly 85% of the known GPCR-encoded genes. This family largely encodes for a 

variety of small molecule (e.g. acetylcholine, noradrenaline), peptide (e.g. angiotensin, 

endothelin), glycoprotein (e.g. follicle stimulating hormone) and olfactory receptors, which 

exhibit sequence homology to rhodopsin (Atwood et al. 2011). On the other hand, there are 15 

Family B1 secretin-like receptor genes and many family B2 adhesion receptors genes encoded 

within the human genome. The secretin-like receptors respond to peptide ligands that are 

structurally similar to each other. Furthermore, Family C GPCRs consist of GABA, calcium-

sensing receptors as well as several taste receptors abundantly present in rodents but absent in 

humans. Family D and E are largely absent in vertebrates, while family F receptors 

predominantly signal independently of heterotrimeric G proteins (Attwood et al. 1994, 

Bjarnadottir et al. 2006, Fredriksson et al. 2003). Despite the large variety of GPCRs known 

today, only a fraction of these receptor have been studied as therapeutic agents.  
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1.2.3 G PROTEIN-COUPLED RECEPTOR SIGNALLING   

 

GPCRs are bound to intracellular heterotrimeric G Proteins (Ga•GDP/Gβγ) in their 

inactive state. Activation typically occurs when an agonist binds to the extracellular and/or 

transmembrane region of the GPCR and induces a conformational change in the receptor. This 

change causes the receptor to function as a guanine nucleotide exchange factor (GEF) to promote 

the exchange of guanosine diphosphate (GDP) to guanosine triphosphate (GTP) at the Ga 

subunit (Hepler et al. 1992, McCudden et al. 2005). The Ga•GTP/Gβγ complex subsequently is 

thought to dissociate into Ga•GTP and Gβγ dimer, which then go on to activate their respective 

downstream signalling pathways (Figure 1-2) (Wall et al. 1998). Signalling persists until GTP is 

hydrolyzed back to GDP by the Ga subunit, which has intrinsic GTPase function (Hepler et al. 

1992). In G proteins other than Gs, this GTPase function can be accelerated by Regulators of G 

Protein Signalling (RGS) and other GTPase Activating Proteins (GAPs), which are further 

discussed in section 1.2.7. As a result, the GDP-bound Ga subunit re-associates with the Gβγ 

dimer thereby returning the heterotrimer to its inactive state (Gilman et al. 1987). 
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Figure 1-2. G protein-coupled receptor activation. Schematic diagram represents the process 

of receptor activation. Agonist binding to the G protein-coupled receptor induces a 

conformational change that stimulates guanine nucleotide exchange factor (GEF) activity within 

the receptor. This activity then promotes the exchange of GDP for GTP at the Ga subunit. 

Consequently, Ga and Gbg subunits dissociate from the complex and activate their respective 

downstream signalling processes. 
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1.2.4 G PROTEIN DIVERSITY 

 

 As of today, 23 Ga, 7 Gb and 12 Gg subunit isoforms have been identified (Smrcka et al. 

2015, Khan et al. 2013). Multiple combinations of isoforms can exist in any given cell type 

(Brann et al. 1987, Betty et al. 1998, Straiker et al. 2002). Despite the variety of G protein 

isoforms, there are three main G protein-dependent signalling pathways mediated by four 

members of Ga subunits: Gai/o, Gas, Gaq/11 and Ga12/13 (Figure 1-3, Bockaert et al. 2003). Each 

subtype has different modulatory properties on downstream effectors, despite being activated by 

a similar mechanism. The downstream effector shared by both Gai/o and Gas subclasses is 

adenylyl cyclase, which is an enzyme responsible for the conversion of adenosine triphosphate 

(ATP) to 3’,5’-cyclic adenosine monophosphate (cAMP) and pyrophosphate. The Gai/o family 

(Gai1, Gai2, Gai3, Gao, Gaz, Gat) directly inhibits adenylyl cyclase from producing cAMP, 

whereas Gas (Gas, Gaolf) directly stimulates cAMP production. Cyclic AMP is an essential 

second messenger that is capable of activating further downstream targets, such as activation of 

cyclic nucleotide-gated ion channels and members of the protein kinase A family (Weinstein et 

al. 2004), as well as the small G protein exchange factor called Exchange Protein directly 

Activated by cAMP (EPAC) (Jeevaratnam et al. 2018, Xiao et al. 2018). On the other hand, the 

Gaq/11 subunit (Gaq, Ga11, Ga14, Ga15, Ga16) activates the effector phospholipase C-b (PLCb) 

that initiates the cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol-1,4,5-

triphosphate (IP3) and diacylglycerol (DAG). Both PIP2 and DAG serve as second messengers to 

stimulate calcium release from the endoplasmic reticulum and activate some isoforms of protein 

kinase C (PKC), respectively. Additionally, the Gaq/11 subunit can also activate the effector 

protein Rho via p64RhoGEF (Kamato et al. 2015). Similarly, the Ga12/13 subclass can activate 
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three RhoGEF subtypes: PDZ-RhoGEF, p115-RhoGEF and LARG. The Ga12/13-RhoGEF 

complex activates small GTPase, Rho, in an allosteric manner, which serves as a second 

messenger to activate various downstream proteins, often involved in cytoskeletal regulation.   

The other important heterotrimeric G protein component in signalling cascades is the Gbg 

subunit, which functions as a dimer. The complex is composed of a tight association between 

one Gb and one Gg subunit and it collectively dissociates from the Ga subunit shortly after 

receptor stimulation. Prior to G protein activation, the inactive GDP-bound form of Ga is 

stabilized by the binding of Gbg to the heterotrimeric complex (Brandt et al. 1985). Gbg 

signalling is diverse and functional activity depends on the interaction of different Gbg isoforms 

with different effector proteins. One example of the established effects of Gbg signalling is 

through its interactions with different isoforms of adenylyl cyclases (Table 1.1) (Tang et al. 

1992, Sunahata et al. 2002, Sabbatini et al. 2016). Furthermore, the Gbg dimer also modulates 

the activities of voltage-dependent Ca2+ channels, phospholipase C production and 

phosphatidylinositol-3-kinase activity (Lotersztajn et al. 1992, Stephens et al. 1994). In addition, 

the Gbg dimer serves as a negative regulator of Ga when it is bound to it by increasing the 

affinity of Ga for GDP and has also been shown to foster interactions of Ga with appropriate 

receptors (Im et al. 1988, Kisselev et al. 1994). Notwithstanding this inhibitory effect on 

nucleotide exchange, Gbg is required for GPCR-promoted nucleotide exchange on Ga (Oldham 

et al. 2006, Gilman et al. 1987).  
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Heterotrimeric G proteins are naturally found anchored to the plasma membrane via post-

translational lipid modifications on cysteine residues that target these proteins to the plasma 

membrane for signal transduction (Gilman et al. 1987, Casey et al. 1994). There are three types 

of lipid modifications: palmitoylation, myristoylation and prenylation (Kinsella et al. 1994). 

Palmitoylation and myristiolation occur predominantly on Ga subunits near the amino terminus 

and are essential for appropriate coupling of Ga subunits to their respective effectors (Linder et 

al. 1993, Parenti et al. 1993). The g subunit undergoes prenylation and carboxylmethylation 

shortly after binding to the Gb subunit. These modifications are essential for facilitating 

interactions between the Gbg subunit with Ga proteins, the receptor but also effectors 

(Wedegaertner et al. 1995, Lindorfer et al. 1996). Interestingly, the b subunit is not subject to 

lipid modifications; however, it remains anchored to the plasma membrane via binding 

interactions with the g subunit (Casey et al. 1994). 
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Figure 1-3. G-protein dependent signalling. Ligand-induced GPCR activation promotes 

nucleotide exchange and subsequent dissociation of G protein heterotrimers (Ga•Gbg) into free 

Ga and Gbg subunits.  These subunits can then go on to activate their downstream signalling 

pathways. Ga-mediated signalling can be divided accordingly to protein subtype: i) Gas 

stimulates the activity of effector adenylyl cyclase, which catalyzes the conversion of ATP to 

cyclic 5’-adenosine monophosphate (cAMP), ii) Gai inhibits adenylyl cyclase, iii) Gaq/11 

activates the enzyme phospholipase Cb, which catalyzes the conversion of phosphatidylinositol 

4,5-bisphosphate (PIP2) into inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG), which 

promotes the release of Ca2+ from the endoplasmic reticulum and activates the protein kinase C 

(PKC), respectively, and iv) Ga12/13 promotes the nucleotide exchange at RhoA by activating 

RhoGEF.  
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Table 1.1. Regulatory properties of different isoforms of adenylyl cyclases 

AC 

Isoforms 

Gai Gas Gbg Forskolin Protein Kinase 

Group I: 

ACI 

ACIII 

ACVIII 

 

- 

- 

- 

 

+ 

+ 

+ 

 

- 

- 

- 

 

+ 

+ 

+ 

 

(+, PKCa) 

(+, PKCa) 

= 

Group II: 

ACII 

ACIV 

ACVII 

 

= 

= 

= 

 

+ 

+ 

+ 

 

+ 

+ 

+ 

 

+ 

+ 

+ 

 

(+, PKCa) 

(+, PKC),(-, PKCa) 

(+, PKCd) 

Group III: 

ACV 

ACVI 

 

- 

- 

 

+ 

+ 

 

+ 

+ 

 

+ 

+ 

 

(-, PKAt),(+,PKCa/z) 

(-,PKAt, PKCd, e) 

Group IV: 

ACIX 

 

- 

 

+ 

 

= 

 

Weak + or = 

 

(-, novel PKC) 

ACX = = = = = 

(-): inhibition of AC; (+): stimulation of AC; (=): no effect on AC 

Adapted from Sunahara et al. 2002 
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1.2.5 RECEPTOR-DEPENDENT REGULATION OF GPCR SIGNALLING  

 GPCR signalling is regulated through many different mechanisms, one of which is the 

process of receptor internalization. Upon ligand activation, the receptor is phosphorylated by G 

protein-coupled receptor kinases (GRKs), which initiates a series of signalling cascades that may 

result in signal termination (Fig. 1.4). GRKs phosphorylate serine and threonine residues located 

on the third intracellular loop and/or cytoplasmic tail of the GPCR (Tobin et al. 2008). 

Phosphorylation promotes the recruitment and binding affinity of a family of scaffolding proteins 

called b-arrestins, which bind to the second and third intracellular loops but also the C-terminal 

tail of the GPCR (Kohout et al. 2003, Luttrell et al. 2002). Interactions between receptor and b-

arrestin facilitate recruitment of additional adaptor proteins, such as clathrin and assembly 

protein complex 2 (Gaidarov et al. 1999, Goodman et al. 1996). Furthermore, GPCR-b-arrestin 

interactions quench G protein signalling by sterically inhibiting further G protein activation and 

ultimately, their re-association to the receptor (Szczepek et al. 2014). As a result, this turns off 

activity of G protein-dependent secondary messenger pathways.  

 The discovery of GRK proteins stemmed from studies performed in the 1970s and 1980s 

that focused on understanding the mechanisms behind the loss of rhodopsin and b-adrenergic 

receptor (bAR) signalling after prolonged stimulation. Studies have shown that prolonged 

agonist stimulation resulted in a mobility shift change along SDS PAGE, when compared with 

an unstimulated b-adrenergic receptor (Stadel et al. 1982). This shift in mobility was later 

attributed to the addition of multiple phosphate groups along the C-terminal region of the 

receptor (Stadel et al. 1983). Subsequent studies have established that this phosphorylation was 

directly related to the activity of protein kinases, such as cAMP dependent protein kinase  
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Figure 1-4. b-arrestin-mediated receptor internalization. (A) Shortly after agonist-induced 

receptor activation, serine and threonine residues on the C-terminal portions of the receptors are 

phosphorylated via G Protein Receptor Kinases (GRKs). (B) Phosphorylation increases the 

recruitment and binding affinity of b-arrestins to the receptor. Interactions between receptor and 

b-arrestin facilitates recruitment of additional adaptor proteins, such as clathrin and assembly 

protein complex 2, which target the receptor to clathrin-coated pits. This complex promotes 

internalization via endosomal formation. 
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called protein kinase A (PKA) and more commonly by GRKs, which facilitate the attenuation of 

receptor coupling to heterotrimeric G proteins (Sibley et al. 1984, Benovic et al. 1985). This 

phenomenon was eventually termed receptor desensitization and has been a useful tool in 

understanding receptor activity.  

 GRKs are protein kinases that specifically phosphorylate serine and threonine residues on 

agonist-occupied receptors. As of today, seven different GRKs have been identified: GRK1 

(rhodopsin kinase), GRK2 (b-adrenergic receptor kinase-1 or bARK1), GRK3 (bARK2), GRK4 

(IT-11), GRK5 (23,24), GRK6 (25) and GRK7. GRKs are classically grouped into one of three 

subfamilies based on similarities in sequence homology: visual (GRK1, GRK7), GRK2 (GRK2, 

GRK3) and GRK4 (GRK4, GRK5, GRK6) (Komolov et al. 2018). With the exception of the 

visual subfamily, GRKs are ubiquitously expressed within the human body (Pitcher et al. 1998). 

All members are comprised of two domains: a central catalytic domain and a Regulator of G-

protein Signalling Homology (RH) domain. The catalytic core resides within the RH domain and 

is responsible for kinase activity. On the other hand, the RH domain facilitates interactions that 

promote the inactive conformation of the catalytic domain (Lodowski et al. 2006). GRKs are 

regulated via post-translational modifications on C-terminal regions, which differ between 

subfamilies. Visual GRKs are modified via prenylation whereas GRK2 and GRK4 subfamilies 

are modified via direct lipid binding through the pleckstrin homology (PH) domain and via 

palmitoylation, respectively (Komolov et al. 2018). Interestingly, there is evidence that certain 

GRKs could also interact with other proteins potentially implicated in receptor desensitization. 

Crystallography experiments have shown that some GRKs, specifically GRK2, can complex 

with Gaq/11 and Gbg (Tesmer et al. 2005).  
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 As these studies continued, arrestin, a protein initially discovered in the visual system 

became identified as an attenuator of phototransduction. This led to an interest in identifying 

non-visual arrestin proteins capable of mediating desensitization. Studies by Lefkowitz and his 

team have discovered proteins with similar roles as the aforementioned arrestins in desensitizing 

b-adrenergic receptor signalling following phosphorylation by receptor kinases and as such, have 

called these proteins b-arrestins (Stadel et al. 1982, Stadel et al. 1983). Currently, there are four 

arrestins expressed in mammalian tissues: visual (arrestins 1 and 4) and non-visual (arrestins 2 

and 3; b-arrestin-1 and -2, respectively) (Freedman et al. 1996, Luttrell et al. 2010).  

 b-arrestin proteins are ubiquitously expressed within mammalian cells and often exist in a 

constitutively phosphorylated state within the cytosol. b-arrestin-1 proteins can be 

phosphorylated by GRK5 and Erk1/2 kinases on residue Ser412 while b-arrestin-2 proteins are 

phosphorylated by casein kinase II on residues Thr276, Ser361 and Thr383 (Lin et al. 1997, Cassier 

et al. 2017, Shenoy et al. 2011). The mechanism behind b-arrestin dephosphorylation remains 

elusive; however, it has been reported that protein phosphatase PP2A and Mitogen-activated 

protein kinase kinase (MEK) may play an important role (Xiao et al. 2007, Beaulieu et al. 2005, 

Shenoy et al. 2011). Phosphorylation of receptors by GRKs recruits b-arrestin proteins to these 

receptors at the plasma membrane. GRK-induced phosphorylation is an essential step in receptor 

desensitization and is also the rate-limiting step within the entire process. Upon binding, b-

arrestin proteins become dephosphorylated and can initiate desensitization and subsequent 

internalization. Furthermore, b-arrestins can regulate a myriad of different signalling pathway, 

such as second messenger degradation, cytoskeletal rearrangement, transcriptional regulation via 

nuclear translocation and ubiquitination (Luttrell et al. 2002).    
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 b-arrestin proteins target receptors to a clathrin-dependent endocytic pathway where 

receptors are internalized via endosomal formation. Once internalized, the receptor can be sorted 

to recycling endosomes, which shuttle the receptor back to the plasma membrane, or to 

multivesicular late endosomes, which target these GPCRs for lysosomal degradation. In addition, 

internalized receptors can also engage in cell signaling by modulating activity of multiple 

effectors, such as adenylyl cyclase, from within the endosome (Fig.1.5) (Calebiro et al. 2009, 

Feinstein et al. 2012, Ferrandon et al. 2009).  

Two patterns of b-arrestin recruitment have been characterized according to receptor 

class. Class A receptors exhibit weak and transient binding to b-arrestin proteins after ligand 

activation. Thus, they are rapidly recycled back to the plasma membrane after they have been 

internalized. On the other hand, Class B receptors exhibit strong and prolonged binding to b-

arrestin proteins and as a result, are recycled back to the plasma membrane more slowly after 

internalization (Thomsen et al. 2016, Luttrell et al. 2002). Class A receptors include but are not 

limited to a2A-adrenergic, adenosine-A1, muscarinic type-1, b2-adrenergic and µ-opioid, while 

Class B receptors include parathyroid hormone type-1 (Alexander et al. 2017). 

 

1.2.6 OTHER RECEPTOR INTERACTIONS THAT INFLUENCE SIGNALLING 

GPCR activity can be directly modulated through additional binding interactions with 

other receptors, agonists and GPCR-interacting proteins (GIPs) (Abramow-Newerly et al, 2006, 

Magalhaes et al. 2011). Receptor activity can be directly influenced by receptor-receptor 

interactions. These interactions can facilitate the formation of homo or hetero-oligomeric 

complexes, which can then change conformational states by increasing or decreasing affinity of 
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ligands to receptor sites (Chidiac, 2016). Furthermore, the extent of GPCR signalling can be 

affected by different classes of receptor-binding ligands, such as full, partial and inverse 

orthosteric agonists, as well as positive and negative allosteric modulators. Highly efficacious 

agonists exhibit strong preferences for binding to activated receptors, whereas weakly efficacious 

agonists have relatively less selectivity towards active as compared to inactive receptor 

conformations. Highly efficacious agonists, once bound, tend to prevent isomerization of the 

receptor back to its inactive state and thus, more readily initiate signalling (Onaran et al. 1997, 

Chidiac, 2016). Inverse agonists favour inactive conformations and thus promote a response 

opposite to that of an agonist. Moreover, activating ligands can differ based on where they bind 

on the receptor. Orthosteric refers to the primary binding site on the receptor whereas, allosteric 

refers to a site different from the endogenous binding site (Wang et al. 2018, Kim et al. 2018).  

Allosteric modulators alter receptor conformation, which can then alter ligand binding 

affinity, potency and efficacy of downstream signalling. Lastly, GIPs can alter GPCR 

conformational properties by directly binding to the receptors. GIP-induced conformational 

changes may result in: i) changing receptor affinities and therefore selectivity for different 

agonists and ii) alter G protein binding interactions with the receptor (Hay et al. 2006, Morfis et 

al. 2008).  

As alluded to above, GPCRs can also spontaneously isomerize between inactive and 

active conformations. It is now widely accepted that these receptors can assume multiple 

different conformations and as such, can signal pleiotropically (Chidiac et al. 2016, Onaran et al. 

1997, Kenakin et al. 2010, Park et al. 2012).  
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Figure 1-5. Fates of G protein-coupled receptor (GPCR) after endosomal formation. Within 

seconds of GPCR activation, G protein-coupled receptor kinases (GRKs) are recruited to the 

receptor where they phosphorylate the C-terminal domain. This phosphorylation initiates the 

recruitment of b-arrestin scaffolding proteins, which target the receptor for clathrin-coated pits. 

Subsequently receptors are internalized and can therefore: i) continue signalling from within the 

endosome, ii) become targeted for degradation via the ubiquitin proteasome pathways, and/or iii) 

become recycled back to the plasma membrane for additional signalling. 
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1.2.7 RECEPTOR-INDEPENDENT REGULATION OF GPCR SIGNALLING 

 GPCR activity can be directly regulated through G protein activation states. 

Heterotrimeric G proteins belong to a superfamily of GTPases. This superfamily also includes 

small signalling G proteins (e.g. Ras, Rho), initiation and elongation factors, signal recognition 

particle GTPases, dynamin and tubulin (Bourne et al. 1991, Daumke et al. 2016). These proteins 

have the intrinsic ability to self-deactivate by irreversibly hydrolyzing the g phosphate of GTP 

into GDP and inorganic phosphate. In heterotrimeric G proteins, this process promotes the GDP-

bound state while fostering its re-association to Gbg. Thus, within the heterotrimeric complex, 

Ga functions as a GTPase to control the duration of activation. Additionally, the Gbg dimer can 

also aid in GPCR signal termination by directly interacting with the 125-amino acid, carboxyl-

terminal portion of GRK proteins, specifically GRK2 and GRK3 (Komolov et al. 2018). GRK 

recruitment to the plasma membrane is markedly enhanced and is dependent upon g subunit 

isoprenylation (Pitcher et al. 1998). This physical interaction helps to enhance the rate of 

phosphorylation of agonist-activated receptors (Haga et al. 1990, Haga et al. 1992, Pitcher et al. 

1992). Stoichiometric ratios between Gbg and GRK are fundamental in initiating both the 

maximal rate and extent of enzymatic activity and deviations from optimal ratios may alter 

recruitment and enzymatic kinetics. One study has demonstrated that a molar ratio of 10:1 for 

Gbg and GRK, respectively, significantly enhanced receptor phosphorylation when compared 

with absence of Gbg; however, addition of Ga with free Gbg has been shown to negate this 

effect of the latter (Pitcher et al. 1992).  

 GPCR signalling can be further modulated by three classes of G protein accessory 

proteins or G protein auxiliary proteins, called GTPase activating proteins (GAPs), guanine 
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nucleotide exchange factor (GEFs) and guanine nucleotide dissociation inhibitors (GDIs). These 

proteins are distinct from GPCRs, G proteins and classical effectors. G protein accessory 

proteins regulate the strength of G protein-mediated signalling by directly influencing G protein 

activity (Siderovski et al. 2005, Cismowski et al. 2006). These proteins can directly bind to G 

proteins in the presence or absence of receptor activation, regulate their activation state by 

altering nucleotide binding or hydrolysis properties, and some also can interfere with signal 

transfer between the receptor and respective G proteins (Sato et al. 2006) or between G proteins 

and effectors (Abramow-Newerly et al. 2006). As previously mentioned, Ga proteins have 

intrinsic GTPase activity which enables them to hydrolyze GTP into GDP in order to return back 

to the inactive state. This intrinsic GTPase activity can be markedly enhanced by GAPs (De 

Vries et al. 2000, Berman et al. 1996). These regulatory proteins contain a Regulator of G 

Protein Signalling (RGS) domain and as such, are called RGS proteins (Woodard et al. 2015, 

Kehrl et al. 1998, Kach et al. 2012). They function by binding to active GTP-bound Ga subunits 

and accelerating hydrolysis activity by stabilizing the GTP to GDP transition state (Figure 1-6, 

Lin et al. 2014). RGS proteins may also exhibit other functional roles apart from their 

established effects on G protein activation, such as scaffolding or mediation of other effectors 

(Sato et al. 2006). Aside from RGS proteins, there are other effectors that exhibit GAP activity, 

specifically PLCb, G12/13-activated RhoGEFs but also some GRKs, which contain an RGS-like 

domain that may have limited activity (Ross et al. 2000, Siderovski et al. 2005).  

 Furthermore, the nucleotide-binding ability of Ga proteins can be influenced by non-

receptor GEFs, which function by directly promoting the dissociation of GDP and consequently 

the binding of GTP. These include but are not limited to Activator of G Protein Signalling 1 

(AGS1), Ric-8 proteins, b-APP, GAP-43 and PBP/RKIP, a Raf kinase inhibitor protein (Sato et 
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al. 2006, Zhao et al. 2013). Lastly, GDI proteins, which have only been discovered in the last 

two decades, influence nucleotide binding by reducing the exchange of GDP for GTP at Ga 

proteins both in the presence or absence of receptor activation (Cismowski, 2006). Additionally, 

these proteins have also been shown to modulate signal transmission by serving as alternative 

binding partners for Ga and Gbg subunits. Examples include Nucleobindin 1 and Group II 

Activators of G Protein Signalling, such as GPSM3 (Kapoor et al. 2010, Cismowski, 2006). 

Additional GPCR regulation by these accessory proteins will be discussed in section 1.3.   

 The presence of certain toxins is known to disrupt GPCR signalling. One tool widely 

used in experimental research is pertussis toxin, a protein-based exotoxin initially discovered in 

Bordetella pertussis bacteria. Pertussis toxin is the main cause of the respiratory tract symptoms 

associated with pertussis infection such as whooping cough. The exotoxin is comprised of a six-

protein complex: subunit A, which conveys enzymatic activity and five B subunits, which are 

collectively responsible for receptor-binding and initiating pathway for subunit A entry into the 

cell cytosol (Iwaki et al. 2015). The subunits are released from the bacteria in their inactive state 

and become functional after reformation of the active A-B complex within the cytosol (Plaut et 

al. 2016). This complex ADP-ribosylates Gai proteins and thus, prevents interaction and signal 

transmission between the GPCR and heterotrimeric G proteins (Carbonetti et al. 2015, Chishiki 

et al. 2017). Therefore, pertussis-treated Gai proteins remain in their inactive GDP-bound form 

and lose their ability to initiate downstream signalling.  

 Another toxin that works in a similar manner is cholera toxin (CTX), a protein complex 

produced and secreted by Vibrio cholerae bacterium. CTX is the culprit responsible for causing 

uncontrollable watery diarrhea in patients with cholera infection. The oligomeric toxin is 
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composed of six protein subunits, denoted as AB5: one A subunit, with enzymatic activity, and 

five B subunits, with activities responsible for receptor binding. The five B subunit complex 

binds to target cells via GM1 gangliosides, a glycosphingolipid, which causes endocytosis of the 

entire toxin complex (Magnani et al. 1980). Endocytosis promotes a series of steps, which 

ultimately result in the release of subunit A from the oligomeric toxin by the reduction of 

disulfide bonds. The free subunit then catalyzes the ADP-ribosylation of the Gas subunit, 

rendering it incapable of GTP hydrolysis and thus, maintaining it a constitutively active state 

(Cassel et al. 1977, Gill et al. 1978). Therefore, both PTX and CTX lead to increased cAMP 

production, albeit via different mechanisms. 

 In contrast to cholera toxin, which promotes G protein signalling via Gas, the mastoparan 

toxin, derived from wasp venom interferes with G protein activity by stimulating GTPase 

activity of G protein subunits, thereby reducing their lifespan (Higashijima et al. 1988). By the 

same token, mastoparans promotes GTP binding to the Ga subunit by facilitating its dissociation 

of GDP (Weingarten et al. 1990). This mechanism of action by which this peptide toxin works 

follows from the fact that resembles an activated GPCR under certain conditions (i.e. within a 

phospholipid environment) (Jones et al. 2006).   

 In summary, G protein signalling can be modified through a myriad of different 

mechanisms. G protein activity can be altered through direct interactions with GAPs, GEFs and 

GDIs, which could accelerate or promote the inhibition of G protein activation. These binding 

interactions can alter proportions of free Ga and Gbg subunits, which in turn, could conceivably 

affect GRK activity by altering recruitment to the plasma membrane. Additionally, modulating 

the interaction between Gbg and b-arrestins could influence b-arrestin-mediated signalling  
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Figure 1-6. G protein regulation by accessory proteins. Guanine nucleotide exchange factors 

(GEFs), guanine nucleotide dissociation inhibitors (GDIs) and GTPase accelerating proteins 

(GAPs) modulate G protein signalling via nucleotides. GEFs and GDIs, specifically Group II 

AGS proteins, alter the rate of nucleotide exchange, whereas GAPs accelerate the rate of GTP 

hydrolysis.  

Adapted from Lin et al. 2014 
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(Pitcher et al. 1992, Pitcher et al. 1998, Seitz et al. 2014). Moreover, G protein activation may 

also be influenced by biotoxins, such pertussis, cholera and mastoparans. 

 

1.3 ACTIVATORS OF G PROTEIN SIGNALLING  

1.3.1  DISCOVERY OF AGS PROTEINS 

 Several observations characterizing activation and inactivation states of G proteins have 

led to the finding that G protein signalling can occur independently of receptor activation. This 

implied that there could be third-party proteins mediating this effect. Various methods, such as 

protein interaction screens and biochemical assays, have been used to classify these intracellular 

regulators of G protein activity; however, out of the methods tested, a yeast-based screening 

assay designed within Saccharomyces cerevisiae was the most successful in isolating these 

signal regulators. This high throughput-screening assay developed by Lanier and colleagues took 

advantage of the endogenous GPCR-based pheromone mating pathway within S. cerevisiae yeast 

cells, which is canonically driven by Gbg, subsequent to receptor activation (Cismowski, 2006). 

This pathway was modified by deleting the endogenous yeast GPCR in lieu for a pheromone-

responsive reporter (Cismowski et al. 1999, Klein et al. 1998). To account for the fact that 

mammalian proteins probably interact better with mammalian rather than yeast G proteins, yeast 

Ga (e.g. Gas, Gai2, Gai3, Ga16) proteins were replaced with either human or rat counterparts, 

which proficiently couple to yeast Gbg. Then, a variety of mammalian cDNA libraries were 

screened and selected based on their ability to activate this reporter via a simple growth assay. 

Proteins found to have the ability to activate this pheromone-responsive pathway were termed 

Activators of G protein Signalling (AGS) (Cismowski et al. 1999, Cismowski et al. 2006).   
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1.3.2  CLASSIFICATION OF AGS PROTEINS  

Three groups of AGS proteins have been identified and divided according to their 

postulated mechanisms of action (Table 1.2) (Blumer et al. 2003, Blumer et al. 2005, 

Cismowski, 2006). Group I contains only a single member (AGS1, aka DexRas), which has been 

shown to exhibit GEF activity, similar to that of a GPCR, by increasing GTP binding to free 

Gai2 (Cismowski et al. 1999, Cismowski et al. 2000). Group II proteins are characterized as 

guanine nucleotide dissociation inhibitors (GDI) by the presence of G Protein Regulatory (GPR) 

or GPSM domains. These proteins influence nucleotide exchange at the level of the G protein. 

Lastly, members of Group III modulate the Gabg complex by directly binding to Gbg. 

 

1.3.3 GUANINE NUCLEOTIDE DISSOCIATION INHIBITORS  

The GDIs that make up AGS group II are GPSM-containing proteins that can alter the 

lifetime of G protein activity. They contain one or more highly conserved 20-25 amino acid 

GPSM repeats that can modulate the heterotrimeric G protein complex via their interactions with 

GDP-bound Gai proteins. Even though there is a general consensus regarding the biochemical 

nature of this repeat, there is no unanimity on its nomenclature (Zhao et al. 2013). The first 

protein ever discovered to contain this repeat was an RGS12 homologue called Loco, originally 

discovered in Drosophila melanogaster (Granderath et al. 1999). RGS12 contained a region that 

directly interacted with Gai apart from its RGS domain, which led to classification of this region 

as Gai/o-Loco motif or for simplicity, GoLoco (Siderovski et al. 1999). In addition, the function 

of these domains as receptor-independent activators of the pheromone pathway in yeast led to the 

name G protein regulatory (GPR) domains (Takesono et al. 1999, Cismowski et al. 1999). While 
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GPR domain is sufficiently informative, it is also widely used in naming orphan GPCRs. 

Furthermore, this repeat was found to be shared among LGN proteins, which contain Leu-Gly-

Asn-enriched motifs, and thus the name LGN repeat has also been used (Mochizuki et al. 1996, 

Ponting et al. 1999). The term GPSM is used by the Human Genome Organization (HUGO) 

Gene Nomenclature Committee (HGNC) to denote multiple genes that encode proteins within 

this conserved GDI domain, specifically GPSM1 (AGS3), GPSM2 (AGS5, LGN) GPSM3 

(AGS4, G18) and GPSM4 (Purkinge Cell Protein 2, L7) (Bruford et al. 2018). Thus, based on 

the HGNC dictates, we prefer to use the term GPSM domain to describe these conserved motifs 

(Zhao et al. 2013) 

This selective binding promotes stability of the GDP-bound conformation and at the same 

time, impedes the exchange of GDP for GTP (Figure 1-7). In addition, GDIs can compete with 

the Gbg subunit for the Gai subunit (Dirac-Svejstrup et al. 1997). For that reason, the Gbg 

subunit can be considered as a GDI by stabilizing GDP-Ga and preventing the activation of free 

Ga proteins (Neer et al. 1995, Tang et al. 2006).  

 The GPSM motif binds to the GDP-bound form of Gai/o with a higher affinity when 

compared to GTP-bound (Kimple et al. 2002). As a result, they can promote G protein 

heterotrimer dissociation from the initial preformed complex independently of receptor 

activation (Blumer et al. 2005, Bernard et al. 2001, Natochin et al. 2001). Furthermore, this 

GDI-binding induces a conformational change in the switch region of Ga subunit, thereby 

preventing re-association of Gbg to the Ga subunit (Natochin et al. 2001, Bernard et al. 2001, 

Siderovski et al. 2005). This phenomenon has been elucidated with a GPSM-containing peptide 

derived from AGS3. It has been shown that this peptide prevents Ga re-association to the Gbg 
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dimer with 10 times greater potency than a Gbg-specific peptide, called Gbg hot spot-binding 

peptide (SIGK) (Ghosh et al. 2003). Moreover, observations with this peptide were also able to 

support the idea that GDIs can promote G protein subunit dissociation, as it increased the rate of 

Gbg dissociation from Ga by 13-fold when compared to the intrinsic rate of heterotrimer 

dissociation (Ghosh et al. 2003). 

 

1.3.4  MOLECULAR BASIS FOR FUNCTIONAL ACTIVITY OF GDI 

 The binding interaction between the GPSM motif of RGS14 and Gai1 has been 

structurally resolved using crystallography. This structural information reinforces the importance 

of the highly conserved Asp/Glu-Gln-Arg triad in GPSM motifs and the switch II region of Gai 

proteins (Kimple et al. 2002a). The N-terminal domain of the GPSM motif forms an a helix 

which positions itself between the a3 helix and switch II regions of Gai. This binding displaces 

the switch II region of the Gai protein away from the a3 helix, thereby deforming of the Gbg-

binding site. Moreover, the triad region within the GPSM domain is part of an arginine finger 

motif, which directly interacts with the nucleotide binding pocket within Gai via a and b 

phosphates along the bound GDP (Peterson et al. 2000, Kimple et al. 2002a). An arginine to 

phenylalanine substitution mutation within this triad leads to a complete loss of function. 

Interestingly, an arginine substitution to a less bulky hydrophobic residue allows for partial GDI 

function (Peterson et al. 2000, Kimple et al. 2002, Takesomo et al. 1999, Bernard et al. 2001). 

This suggests that the triad is a significant, but not a necessarily essential determinant of GDI 

activity (Willard et al. 2004). Furthermore, the glutamine residue preceding the arginine residue 

also contributes to activity by facilitating important interactions with the Gai subunit for proper  
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Table 1.2. Classes of AGS proteins and their associated properties   

AGS Families Structure Ga-subtype 

selectivity  

Alternative  

Names 

Group I (GEF) 

AGS1 

 

Ras-related 

 

Gai2, Gai3 

 

Dexras1, RASD1 

Group II (GDI) 

AGS3  

AGS4  

AGS5  

AGS6  

 

Four GPSM motifs 

Three GPSM motifs 

Three GPSM motifs 

One GPSM motif 

 

Gai2, Gai3 

Gai2, Gai3 

Gai3 

Gai3 

 

GPSM1 

GPSM3 

GPSM2, LGN 

RGS12 

Group III 

AGS2 

AGS7 

AGS8 

 

Binds bg 

Binds bg 

Binds bg 

 

Gai2, Gai3, Gas, Gai16 

Gai2, Gai3, Gas, Gai16 

Gai2, Gai3, Gas, Gai16 

 

Tctex-1, DYNLT1 

TRIP13 

KIAA1866, FNDC1 

Adapted from Cismowski et al. 2006 
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GPSM-nucleotide binding activity. Mutating this residue leads to loss of GDI activity. Finally, 

the acidic residues within the triad are necessary to structurally support the glutamine residue 

(Willard et al. 2004). 

The binding of the GPSM domain to Ga subunits additionally displaces Arg178, which is 

located within the switch I region of GaI. This binding allows for direct interaction with the 

phosphate group, resulting in a newly formed contact with the GDP ribose group. This contact is 

thought to underlie the molecular basis of GPSM GDI activity (Kimple et al. 2002a). The helical 

domains of Ga subunits and core GPSM motifs collectively contribute to the selectivity among 

different G proteins and GPSM-containing proteins.  

 

1.3.5  REGULATION OF GDI ACTIVITY  

A large proportion of GPSM-motif containing proteins contain serine and threonine 

residues within the N-terminal region. These residues can be subject to phosphorylation by 

protein kinases, which in turn can alter protein functional activity. Phosphorylation of RGS14 at 

residue Thr-494 by PKA significantly increases its GDI activity (Hollinger et al. 2003). On the 

other hand, phosphorylation of GPSM2 (Thr-450) by liver kinase b1 (LKB1) significantly 

decreases its ability to bind with Gai proteins (Blumer et al. 2003). This suggests that 

phosphorylation is one post-translational modification that is able to regulate GDI activity and 

the primary outcomes of such changes strongly depends on the type of GPSM protein and the 

cellular environment (Blumer et al. 2007). Furthermore, whether or not such phosphorylation 

directly affects activity or disrupts the interaction between Gai proteins and the GPSM motif is 

poorly understood (Willard et al. 2004). 
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Besides phosphorylation, the interaction between GPSM-containing proteins and Gai can 

be influenced by GPCR activation and by the Gbg dimer. Activation of Gai-coupled receptors, 

a2-adrenergic and µ-opioid, led to a reduction in the measured BRET signal between GPSM1 

and Gai. This decrease was reversed by overexpression of RGS4, which rapidly hydrolyzes GTP 

to GDP at the Ga subunit, implying that the GPSM1 binds more favourably to the GDP-bound 

form of Gai rather than the GTP-bound form. This strongly suggests that nucleotide exchange 

and hydrolysis could potentially mediate this effect (Oner et al. 2010a). Correspondingly, 

coupling behavior between GPSM3 and Gai/o was reduced shortly after a2 adrenergic receptor 

activation, which could be related to which nucleotide is bound to the G protein; however, the 

mechanism and significance of this effect is poorly understood (Oner et al. 2010a, Oner et al. 

2010b). 

Biochemically, GDI proteins reduce receptor-induced nucleotide exchange, as indicated 

by decreases in steady-state GTPase assays and also pre-steady state GTPgS binding assays 

(Natochin et al. 2000, Kerov et al. 2005, Zhao et al. 2010). Depending on the cellular context, 

receptor type and GPSM protein being studied, the GDI activity may also be weakened by slow 

GTP hydrolysis (rate limiting step in G protein activation) (Hepler et al. 2005, Zhao et al. 2013). 

 

1.4 G PROTEIN SIGNALLING MODULATOR-3  
 

GPSM3, also known as G18 and AGS4, is a small 160-amino acid long protein. GPSM3 

is structurally comprised of a short proline-rich N-terminal domain and three tandem GPSM 

motifs. GPSM3 was the fourth protein discovered in the early yeast-based screening assays for 
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the detection of GPSM domain-containing proteins (Cismowski et al. 2006, Zhao et al. 2010). In 

the yeast-based screen for AGS proteins, cDNA libraries from human heart and prostate 

leiomyosarcoma (GPSM3-expressing tissues) were used in the sets of experiments from which 

GPSM3 was identified (Cismowski et al. 1999). The GPSM3 gene is encoded within the major 

histocompatibility complex class III region of human chromosome 6 (Kimple et al. 2004, Cao et 

al. 2004). Its expression within the body occurs mainly in immune cells involved in 

inflammation, but has also been found elsewhere, such as vascular smooth muscle cells, 

placenta, heart, liver, lung and within podocytes of the kidney (Zhao et al. 2015, Giguere et al. 

2013, Cao et al. 2004).  

 

1.4.1 MODULATION OF GPCR SIGNALLING  

GPSM3 is a GDI that functions to decrease the rate nucleotide exchange at the G protein. 

It binds to GDP-bound forms of Gαi via its GPSM motifs.  In this manner, GPSM3 bears the 

potential to inhibit Gαi activation by slowing down the rate of GDP dissociation from the Gαi 

subunit. At the same time, this interaction impedes association between Gαi to its Gβγ 

counterpart by occluding the Gβγ binding site. This in turn, could promote Gβγ-mediated 

signalling within the cell (Cismowski et al. 2006, Zhao et al. 2013, Siderovski et al. 2005). 

The binding interactions between GPSM3 and Gαi proteins could potentially serve 

multiple functions. Evidence derived from a series of yeast-two-hybrid assays suggest that 

GPSM3 can bind to all conventional Gαi proteins: Gαi1, Gαi2, Gαi3 (Giguere et al. 2012). Similar 

studies suggest that full length GPSM3 can bind to fluoroaluminate-activated forms of Gαi1 and 

Gαo (Zhao et al. 2010), in addition to its established binding to inactive GDP-bound form of Gαi1. 
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The binding of the GPSM motifs to the Ga proteins reduces the rate of nucleotide exchange 

from Gai proteins (Kimple et al. 2004, Zhao et al. 2010), whereas the N-terminal domain serves 

as a GEF for Gαi1 (Zhao et al. 2010). There is also evidence that the N-terminal has weak GDI 

activity on Gao but with very low potency. Furthermore, the GEF activity exhibited by the N-

terminus does not require functional GPSM motifs, at least in the case of Gao (Zhao et al. 2010). 

Studies examining local energy transfer between proteins have proposed that GPSM/Gai binding 

interaction can contribute to GPCR signalling by positioning Gα subunits to proximal regions of 

receptors for activation (Oner et al. 2010b).  

In light of research performed in our lab, there is evidence suggesting that GPSM3 could 

have additional biochemical activity apart from its GDI function. A series of GTPgS binding 

assays have been conducted to determine the rate of nucleotide exchange among G proteins 

(Willard et al. 2008, Zhao et al. 2010). A previous study from our lab showed that the N-

terminal region of GPSM3 exhibits GEF activity for Gai1 (Zhao et al. 2010). Therefore, GPSM3 

would appear to have the capacity to simultaneously inhibit and activate Gαi/o signalling while 

indirectly promoting Gβγ signalling (Blumer et al. 2012, Guiguere et al. 2012). 

 Despite the well-established binding interactions between GPSM3 and Ga proteins, there 

is still some uncertainty about whether or not GPSM3 can also bind to Gbg. Co-

immunoprecipitation studies published by Siderovski and his team suggest that GPSM3 can 

directly bind to all four isoforms of Gb (Gb1, Gb2, Gb3, Gb4) via an interaction independent of 

the established GPSM/Gai binding (Giguere et al. 2012). Interestingly, GPSM3 was not found to 

bind to the Gg subunit. Moreover, there is evidence that ectopic GPSM3 expression within THP-

1 cells negatively influences GPCR signal transduction via PLCb. In these experiments, 
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Figure 1-7. GPSM3 binds to and inhibits GaI-dependent signalling while prolonging Gbg-

dependent signalling. GPSM3 binds to the GDP-bound form of GaI proteins via its GPSM 

motifs and prevents nucleotide exchange from GDP to GTP. Furthermore, the complex formed 

by GPSM3 and GaI prevents re-association of the Gbg dimer to the GaI subunit, thereby 

prolonging Gbg-dependent signalling.  

 

 

 

 

 

 

GPSM3 has been reported to decrease IP3 production indirectly by binding to Gbg and 
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preventing its activation of PLCb. In addition, this effect was reversed by overexpressing free 

Gb1g2 subunits and using a version of GPSM3 bearing a loss of function mutation within the 

leucine-rich region that appears to be responsible for Gb-binding (Giguere et al. 2013). 

However, this basic finding has not been reported by other labs and we were unable to reproduce 

it within our lab as well (Wallace, D, 2017, MSc thesis, University of Western Ontario). 

Furthermore, GPSM3 plays a role in downstream signalling via GPCR/Gbg-mediated activation 

of PI3K within immune cells (Easton et al. 2007, Barberis et al. 2008). Studies indicate that low 

GPSM3 expression levels have been linked to diminished survival in monocytic THP-1 cells 

(Giguere et al. 2013).  

GPSM3 has been shown to interact with a variety of other proteins, including receptors, 

separate from the heterotrimeric G protein complex. There is evidence that some RGS and 

GPSM-containing proteins can directly and indirectly bind to GPCRs (Abramow-Newerly et al. 

2006, Oner et al. 2010a). A study by Zhao et al. 2015 has identified RGS5 as a novel binding 

partner for GPSM3, and that both the GPSM domain-containing portions of GPSM3 are crucial 

for its ability to facilitate this interaction. In contrast, there was no evidence for interactions 

between GPSM3 and RGS2, RGS4 or RGS16 in the same study. An additional study by Giguere 

et al. 2012 carried out a series of yeast two-hybrid screening assays using a cDNA library from 

human leukocytes. In these experiments, GPSM3 was shown to interact with several isoforms of 

14-3-3, a conserved eukaryotic protein that regulates function of diverse signalling molecules, 

such as kinases, phosphatases and RGS proteins (Fu et al. 2000). 
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As previously mentioned, GPSM3 consists of three GPSM domains; however, conflicting 

data exists regarding whether or not all three domains are functionally active. Studies by Willard 

et al. 2004 and Kimple et al. 2004 attributed biochemical activity of GPSM3 specifically to the 

first and third GPSM motifs through a series of co-immunoprecipitation pull down assays with 

different Gai isoforms. They have ruled out the activity of the second motif due to discrepancy 

within the critical Asp/Glu-Gln-Arg triad that is normally conserved among all GPSM motifs 

(Giguere et al. 2011). On the other hand, a study examining the interactions of GPSM3 with Gai 

using BRET has reported that all three GPSM motifs exhibit GDI activity (Oner et al. 2010a).  

Despite the established binding interactions of GPSM3, it is still unclear how this protein 

modulates GPCR signalling pathways. Effects on signalling have been theoretically proposed; 

however, little functional data exists on GPSM3 activity. One way to examine how the 

interaction between GPSM3 and Gai proteins influences GPCR signalling is to analyze changes 

in adenylyl cyclase activity via direct measurements of cAMP production. Moreover, there is 

virtually no knowledge on whether or not GPSM3 can impact the processes of receptor 

desensitization or G protein-independent signalling. Given that GPSM3 can sustain the inactive 

conformation of Gai and also simultaneously activate Gbg, it is possible that this interaction 

would affect signal transduction pathways, perhaps by altering Gbg or b-arrestin signalling.  

 

1.4.2 CELLULAR FUNCTIONS OF GPSM3 

 Little is known regarding how GPSM3 affects GPCR signalling. To date, we know that 

GPSM3 functions as a GDI by selectively interacting with GDP-Gai via its GPSM domains and 
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as a GEF by selectively interacting with Gao via its N-terminus, respectively, in vitro (Giguere et 

al. 2013, Zhao et al. 2010). In addition, there is conflicting evidence regarding whether GPSM3 

overexpression affects the activity of PLCb via a Gbg-dependent mechanism. In a series of 

Bioluminescence Resonance Energy Transfer (BRET) experiments conducted by Oner et al. 

2010a, GPSM3 was tagged with Renilla luciferase (RLuc), while Gai1 and a2-adrenergic 

receptor were tagged with yellow fluorescent protein (YFP) and venus, respectively, to measure 

interactions between each other. The study reported that the BRET signal between GPSM3 and 

Gai1 after receptor activation with the agonist UK 14,304 was reduced, and subsequently 

blocked with pertussis toxin. In addition, the BRET signal between GPSM3 and a2-adrenergic 

receptor was also reduced by agonist. These two observations collectively suggest that the 

complex formed by GPSM3 and Gai is likely to be receptor-proximal, with an ability to directly 

couple to the GPCR. Furthermore, the GPSM3-Gai complex could also potentially serve as a 

substrate for agonist-induced activation of Gai, with GPSM3 substituting for Gbg in the 

heterotrimeric G protein complex (Oner et al. 2010b). 

 It is widely recognized that GPSM3 is a cytosolic protein that can localize to the plasma 

membrane (often co-localized with Gai proteins) and less often, to the nucleus (Cao et al. 2004, 

Giguere et al. 2012, Zhao et al. 2015). In addition to its established binding interactions with Gai 

family proteins, the GPSM3-Gai complex may directly couple to GPCRs, specifically the a2-

adrenergic and µ-opioid receptors (Oner et al. 2010b). Other evidence suggests that GPSM3 

interacts with RGS5 and regulates its GAP activity (Zhao et al. 2015). Furthermore, complex 

interactions with NOD-like receptor family, heat shock A8 protein and pyrin domain containing 

protein 3 have been observed (Giguere et al. 2014). Interestingly, GPSM3 interactions with 14-3-
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3 proteins appears to stabilize the structure of GPSM3, potentially by influencing various 

phosphorylation sites along the protein (Giguere et al. 2012, Bian et al. 2014).  

 

1.4.3 PHYSIOLOGICAL FUNCTIONS OF GPSM3 

GPSM3 has been implicated in multiple human diseases, specifically inflammation and 

autoimmune disorders, such as rheumatoid arthritis, dermatitis, systemic lupus, ulcerative colitis 

and ankylosing spondylitis (Barcellos et al. 2009, Pathan et al. 2009, Giguere et al. 2013). 

Additionally, GPSM3 expression has been linked to other diseases, specifically prostate 

leiomyosarcoma and polycystic kidney disease (Gall et al. 2016, Lenarczyk et al. 2015). 

Furthermore, there is recent evidence for its role in the formation of mitotic spindles during cell 

division (Wallace, D, 2017, MSc thesis, University of Western Ontario). GPSM3 expression is 

primarily restricted to leukocytes, myeloid-derived cells and lymphoid organs, such as the 

spleen, where expression levels appear to be somewhat dependent on external stimuli (Gall et al. 

2016). Its role within these cells has been studied by several labs and their work has collectively 

shown the link between GPSM3 to autoimmune and inflammatory diseases (Giguere et al. 2013, 

Giguere et al. 2014, Billard et al. 2014, Gall et al. 2016, Robichaux et al. 2017). 

Recent research on GPSM3 has focused on its underlying function in immune cells. 

Monocyte and macrophage differentiation is important in inflammatory responses and recent 

evidence demonstrates that expression of GPSM3 is tightly regulated during these steps. In vitro 

and in vivo studies have shown that GPSM3 deficiency significantly decreases monocyte 

number, survival and slows down migration to specific chemokines (Giguere et al. 2013, 

Sunderkotter et al. 2004). This strongly suggests that GPSM3 regulates GPCR signalling at some 
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level, although the underlying mechanisms have not been investigated. This phenomenon has 

been shown using Ly6ChighCD11b+ monocytes, a subset population of inflammatory cells that 

rapidly mobilize to sites of infection. Additionally, GPSM-/- mice have been shown to exhibit a 

higher resistance to a monocyte-driven model of acute inflammatory arthritis when compared 

with wildtype control mice. Collectively, these observations suggest that GPSM3 could be 

involved in promoting differentiation and survival of specific myeloid-derived cells, which could 

in turn promote inflammatory processes.  

 Despite its well-established expression within monocytes, GPSM3 is also present in 

prostatic cancer cells. A study by Lapan et al. has shown that when prostate cancer cells are 

grown in an environment mimicking tumorigenesis or angiogenesis, GPSM3 levels increase two-

fold. Although the mechanism by which this occurs is unclear, this suggests that GPSM3 could 

not only influence migratory potential of cancer cells but also alter cellular responses to different 

survival or angiogenic stimuli released by cancer-causing cells.  

 In recent years, genome-wide association studies have uncovered several genetic 

polymorphisms within the GPSM3 gene that suggest it may be linked to prevalence of certain 

diseases. GPSM3 polymorphisms rs204989 and rs204991 have been characterized to decrease 

the incidence of certain autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, 

multiple sclerosis and systemic lupus erythematosus (Wellcome Trust Case Control Consortium 

et al. 2007, Sirota et al. 2009, Corona et al. 2010, Gall et al. 2016). A recent study has reported 

allele frequencies for GPSM3 polymorphisms rs204989 and rs204991 of 23% within a cohort of 

patients studied with rheumatoid arthritis while only 18% in disease-free controls (Gall et al. 

2016). Conversely, these polymorphisms have also been shown to increase prevalence of type I 

diabetes, autoimmune thyroid disease and chronic inflammation, often seen in childhood obesity 
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and atopic dermatitis (Comuzzie et al. 2012, Chang et al. 2012).  

 Current treatment for inflammatory diseases focuses on neutralizing pro-inflammatory 

molecules by decreasing chemokine production and monocyte migration. Additional research 

must be centered on targeting these inflammatory pathways and preventing their exacerbation. 

One possible way to study this is by examining similarities between these cells types and 

determining which factors promote their actions. Given that GPSM3 expression occurs mainly 

within hematopoietic tissues, it makes sense to posit that its role within these tissues is important. 

Studies show that viability and chemotaxis appear to be decreased in THP-1 monocyte 

populations devoid of GPSM3 in the presence of chemokine, CCL3, CX3CL1 and chimerin 

(Giguere et al. 2013). Furthermore, GPSM3-deficient mice appear to be protected from acute, 

collagen antibody-induced arthritis (CIA) and exhibit less synovial damage, bone erosion and 

inflammation when compared with their wildtype counterparts. Additionally, when wildtype 

mice were treated with dexamethasone, they appeared to have reduced levels of GPSM3 

(Schmidt et al. 2012). Interestingly, it has been reported that agonists, specifically Interleukin-6 

and Interleukin-1b, and chemokine receptor expression are both reduced in GPSM3 knockout 

mouse models (Giguere et al. 2013). This in turn has been shown to correlate to severity of 

autoimmune diseases by directly reducing monocyte chemotaxis towards specific chemokines 

(CCL2, chimerin, CX3CL1). Therefore, we need a better understanding of GPSM3 signalling to 

determine whether this protein could serve as a therapeutic target for patients with autoimmune 

disorders.  
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1.5 RATIONALE 

 Canonically, GPSM3 should be able to modulate G protein activity by binding to and 

inhibiting Gai signalling, while concurrently promoting Gbg signalling. There is evidence that 

the Gbg dimer can interact with multiple effector proteins as well as GRK and b-arrestin 

proteins, and the latter two play key roles in b-arrestin-mediated receptor internalization.  

Therefore, prolonged Gbg signalling via GPSM3 could influence receptor desensitization by 

fostering interactions with GRKs and b-arrestins.  

 

1.5.1 OBJECTIVES 

Objective 1: To determine whether GPSM3 alters b-arrestin recruitment to Gai-, Gas- or Gaq/11-

coupled receptors after stimulation with receptor-specific agonists 

Objective 2: To ascertain which protein domains of GPSM3 are important for its effects on 

GPCR signalling  

Objective 3: To analyze whether GPSM3 alters the ability of Gi-coupled receptors to inhibit 

adenylyl cyclase activity  

 

1.5.2 HYPOTHESIS  

I hypothesize that G Protein Signalling Modulator-3 will decrease Gai-dependent 

signalling while promoting Gbg-dependent signalling in response to activation of Gi-coupled 

GPCRs, but not Gs- or Gq-coupled GPCRs. 
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The proposed studies aim to elucidate the role of GPSM3 on GPCR signalling in human 

cells. The study of how GPSM3 can influence receptor desensitization will help us further 

understand basic aspects of b-arrestin-mediated signalling and possibly discover another role for 

GPSM-containing proteins. It will also give us a better idea of how GPSM3 can regulate 

signalling and possibly uncover novel targeting sites for future therapeutic drugs.  
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Chapter 2  
 

2 MATERIALS AND METHODS 

2.1  MATERIALS AND SOLUTIONS   

Dulbecco’s Modified Eagle Medium (DMEM), heat-inactivated fetal bovine serum (FBS), 

antibiotic solution (10,000 U/mL penicillin, 10,000 µg/mL streptomycin), trypsin solution, 

minimum essential medium (MEM; without bicarbonate, and with or without phenol red), and 

Dulbecco’s phosphate-buffered saline (DPBS) were obtained from Thermo Fisher Scientific 

(Waltham, MA). X-tremeGENE9 Reagent was obtained from Roche Diagnostics (Laval, QC, 

Canada). GloSensor™ cAMP Reagent was obtained from Promega (Madison, WI). Bovine 

albumin (BSA) was obtained from MP Biomedicals (Solon, OH). 3-isobutyl-1 methylxanthine 

(IBMX) and UK 14,304 were obtained from Sigma-Aldrich (St. Louis, MO). D-luciferin sodium 

salt was obtained from Gold Biotechnology (St. Louis, MO). 2-Chloro-N(6)-

cyclopentyladenosine (CCPA) was purchased Sigma-Aldrich (St. Louis, MO. 7-Deacetyl-7-[O-

(N-methylpiperazino)-g-butyryl]-Forskolin Dihydrochloride (DMB-Forskolin) was purchased 

from Santa Cruz Biotechnology (Dallas, TX). [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin 

(DAMGO) was purchased from Tocris BioScience (Bristol, UK). Rat PTH (1-34) was purchased 

from Bachem (Bubendorf, Switzerland). Peptides were dissolved and diluted in Dulbecco's 

phosphate-buffered saline (DPBS), supplemented with 0.1% Bovine Serum Albumin (BSA). 
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Table 2.1 Plasmid constructs used 

Plasmid   Description  

pGloSensor-22F cAMP  

CMV6-hGPSM3wt 

CMV6-hGPSM3mGL 

 

CMV6-hGPSM3•dN•mGL 

 

CHRM1-linker20-PtGRC394 in pcDNA4 V5/His(B)  

 

ADRB2-linker 20-PtGRC394 in pcDNA4 V5/His(B) 

 

pcDNA3.1(+)- (empty vector) 

ADRA2A-PtGRC394 in pcDNA4 V5/His(B)  

 

hPTH1R-linker20-PtGRC394 Myc/His(B) in 

pcDNA3.1  

OPRm1-linker 20-PtGRC394 in pcDNA4 V5/His(B) 

 

 

Luciferase-based cAMP biosensor (#) 

Full length wildtype human GPSM3 (•) 

Full length human GPSM3 containing R  
to F mutations in the last amino acid of  
each GPSM motif (•) 
 

Human GPSM3 with an N-terminal  
truncation in addition to R to F mutations  
in the last amino acid of each GPSM motif (•) 
 

Full length wildtype rat muscarinic type 1  
receptor tagged with a C-terminal luciferase  
fragment (*) 
 

Full length wildtype human b2-adrenergic  
receptor tagged with a C-terminal luciferase  
fragment (*) 

Backbone vector used as a control 
 

Full length wildtype human a2A-adrenergic  
receptor tagged with a C-terminal luciferase  
fragment (*) 

Full length wildtype human parathyroid  
hormone type-1 receptor tagged with a  
C-terminal luciferase fragment (#) 

Full length wildtype human µ-opioid  
receptor tagged with a C-terminal luciferase  
fragment (*) 
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PtGRN415-ARRB1 in pcDNA3.1 Myc/His(B) 

 

pcDNA3-ratADCY3-QMP1 

 

pcDNA3-ratADCY4-QMP2 

 

pcDNA3.1(+)-hGb1-GNB00100000 

 

pcDNA3.1(+)-hGg2 

 

pcDNA3.1-PTHR1  

 
Full length wildtype human b-arrestin isoform 
type-1 tagged with an N-terminal luciferase  
fragment (*) 
 

Full length wildtype rat adenylyl cyclase 
isoform III (¨) 

 
Full length wildtype rat adenylyl cyclase 
isoform IV (¨) 

 
Full length wildtype human G protein b 
subunit isoform type-1 (¨) 

 
Full length wildtype human G protein g 
subunit isoform type-2 (¨) 

 
Full length wildtype human parathyroid  
hormone type-1 receptor (#) 
 

 

Plasmid sources: 

• Dr. David P. Siderovski (The University of North Carolina, Chapel Hill NC, USA) 

* Dr. Takeaki Ozawa (The University of Tokyo, Bunkyo, Tokyo, Japan) 

# Kim B et al. 2018 

¨cDNA Resource Center (Bloomsberg University of Pennsylvania, Pennsylvania, USA) 
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2.2 CELL CULTURE CONDITIONS   

 All experiments were conducted using HEK-293H (human embryonic kidney) cell line 

from Thermo Fisher Scientific (Gibcoâ 293-H). Cells were subcultured twice weekly in DMEM 

supplemented with 10% FBS and 1% antibiotic-antimycotic (10,000 U/mL penicillin, 10,000 

µg/mL streptomycin) solution and maintained at 37°C and 5% CO2. 

 

2.3 TRANSFECTION CONDITIONS   

 All transfections were conducted using X-tremeGENE 9 Reagent as per the 

manufacturer’s protocol. Each DNA transfection complex was prepared by mixing 97 µl of 

DMEM, 3 µl X-tremeGENE 9 Reagent, and a combination of plasmid vectors (total sum of 1 

µg). This complex was then incubated at room temperature for 20 mins. Next, cell suspensions 

were prepared by washing cells with PBS, lifting cells using trypsin and resuspension in fresh 

medium. The DNA transfection complex was then added directly to the suspension and 

thoroughly mixed before being plated into 96-well plates at a seeding density of 5.0 × 104 

cells/well (1.5 × 105 cells/cm2) as indicated for each experiment. Transfection efficiencies ranged 

between 70-80% in individual experiments.  

 

2.4 REAL-TIME cAMP MEASUREMENT  

 HEK293-H cells from Thermo Fisher Scientific (Gibcoâ 293-H) were co-transfected 

with three plasmids – GloSensor™-22F cAMP biosensor plasmid, a plasmid vector encoding a 

receptor of interest and pCMV6-FLAG-hGPSM3 (full length human wildtype GPSM3) or 
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pcDNA3.1(+) (empty control vector) – and seeded on solid white 96-well plates at a density of 

5.0 × 104 cells/well (1.5 × 105 cells/cm2). Cells were then incubated at 37°C/5% CO2 for 24 

hours. Following incubation, medium was aspirated and replaced with fresh MEM, 

supplemented with 2 mM D-luciferin, 20 mM HEPES and 0.1% BSA (w/v) (pH = 7.20 ± 0.02; 

300 ± 5 mOsmol/L).  

Gi-COUPLED GPCR 

 Following a two-hour incubation with fresh MEM, supplemented with 2 mM D-luciferin, 

20 mM HEPES and 0.1% BSA (w/v) (pH = 7.20 ± 0.02; 300 ± 5 mOsmol/L) at room 

temperature, cells were pre-treated with IBMX (500 µM) for 15 mins and receptor-specific 

agonist for 5 mins; cells co-transfected with adenosine-A1 receptor were stimulated with 2-

Chloro-N(6) cyclopentyladenosine (CCPA) (10 pM – 10 µM), whereas cells co-transfected with 

a2A-adrenergic and µ-opioid receptors were stimulated with UK 14,304 (10fM – 1nM) and [D-

Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) (100 pM – 100 µM), respectively. Then, cells 

were stimulated with DMB-Forskolin (final concentration of 2 µM), at room temperature.  

Gs-COUPLED GPCR 

Following a two-hour incubation with fresh MEM, supplemented with 2 mM D-luciferin, 

20 mM HEPES and 0.1% BSA (w/v) (pH = 7.20 ± 0.02; 300 ± 5 mOsmol/L) at room 

temperature, cells were pre-treated with IBMX (500 µM) for 20 mins and then stimulated with 

receptor-specific agonist, at room temperature; cells co-transfected with b2-adrenergic receptor 

were stimulated with adrenaline/epinephrine (100 pM – 100 µM) and cells co-transfected with 

parathyroid hormone type-1 receptor were stimulated with PTH (1-34) (1 pM – 1 µM), 

respectively.  
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 Luminescence was measured using an LMaxTMII384 for 45 mins at room temperature with 

an integration time of 1 second and interval of 1 minute.  

 

2.5 REAL-TIME b-ARRESTIN-1 RECEPTOR INTERACTION  

 A real-time complementation-based luminescence assay was used to examine changes in 

b-arrestin recruitment to Gi, Gs and Gq/11-coupled receptors in the presence or absence of 

GPSM3, following stimulation with a selective agonist (Misawa et al. 2010). All plasmids were 

generously provided by Dr. Takeaki Ozawa (University of Tokyo, Japan), with the exception of 

the parathyroid hormone type 1-based construct, which was made in our lab by Dr. Alexey 

Pereverzev (Kim et al. 2018). Cells were co-transfected with b-arrestin-1 (modified at its N-

terminus with amino acid residues of emerald click beetle luciferase) and receptor of interest 

(modified at its intracellular C-terminus by the addition of amino acid residues of emerald click 

beetle luciferase). Cells were co-transfected with both plasmids in the presence of GPSM3 or 

control vector.  In response to receptor activation by a selective agonist, the N-terminal click 

beetle luciferase-b-arrestin-1 is recruited to the click beetle luciferase complement encoded on 

the C-terminus of the receptor of interest. When both halves of the chimeric proteins come in 

close proximity to each other, the complementary luciferase fragments reconstruct the functional 

luciferase enzyme. 

 HEK-293H cells were co-transfected with the following plasmids: b-arrestin-1, receptor 

of interest (a2A-adrenergic, µ-opioid, b2-adrenergic, parathyroid hormone type-1 or muscarinic 

type-1 receptors) and GPSM3 or control vector plasmids (1:1:2 molar ratio) in suspension and 

plated at a seeding density of 5 x 104 cells/well (1.5 x 105 cells/cm2) on solid white bottom 96-
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well plates (Corning). After a 24-hour incubation period at 37°C and 5% CO2, old medium was 

aspirated and replaced with 90 µl of fresh phenol red-free MEM (supplemented with 3.2 mM D-

luciferin, 20 mM HEPES, and 0.1% BSA; pH = 7.20 ± 0.02; 300 ± 5 mOsmol/L). Cells were 

then incubated for one hour at 37°C. Following incubation, cells were stimulated with agonist 

selective for receptor of interest at time 0; a2A-adrenergic receptor was stimulated with UK 

14,304, µ-opioid receptor was stimulated with DAMGO, b2-adrenergic receptor was stimulated 

with adrenaline/epinephrine, parathyroid hormone type-1 receptor was stimulated with PTH (1-

34) and muscarinic type-1 receptor was stimulated with carbachol. Luminescence was measured 

using LMaxTMII384 for 80 mins at 37°C with an integration time of 2 seconds and interval of 2 

minutes.  

 

2.6 GPSM3 MUTANT CONSTRUCTS  

 Flag-tagged human GPSM3 wildtype (full length GPSM3), GPSM3mGL containing an 

arginine to phenylalanine single point mutation in the last amino acid of each GPSM motif) and 

DN•GPSM3mGL (lacking the first 60 amino acid N-terminal domain in addition to the single 

point mutations in each GPSM motif) were generated by Dr. Peishen Zhao, a previous PhD 

student in our lab. Mutations in each GPSM motif were generated using a Site-Directed 

Mutagenesis Kit and then subclonded into the pCMV6a/b vector to generate Flag-tagged proteins 

as described in Zhao et al. 2010.  

 



50 

 

 

 

Figure 2-1. GPSM3 wildtype and mutant constructs. An arginine to phenylalanine single 

point mutation (represented as an “X”) was induced in the last amino acid of each GPSM motifs. 

These mutations are denotated by mGL (mutated GoLoco or GPSM). In addition, the first 60 

amino acids of the N-terminal domain were truncated and the mutation is labelled as DN as 

described in Materials and Methods.  
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2.7 Gai INACTIVATION VIA PERTUSSIS TOXIN 

cAMP MEASUREMENT 

 HEK-293H cells were transiently transfected with GloSensorTM cAMP biosensor, a2A-

adrenergic receptor and Flag-GPSM3 or Mock Vector plasmids as described under Transfection 

Conditions. Cells were then plated at a seeding density of 5 x 104 cells/well (1.5 x 105 cells/cm2) 

on solid white bottom 96-well plates (Corning) and incubated at 37°C and 5% CO2 for 4 hours to 

allow cells to sufficiently attach to well bottoms. Following this incubation period, 10 µl of 

medium was removed from each well and substituted with 10 µl of pertussis toxin at a 

concentration of 200 ng/ml or vehicle for 18 hours. The following day, medium was aspirated 

and replaced with 70 µl of fresh phenol red-free MEM, supplemented with 2 mM D-luciferin, 20 

mM HEPES and 0.1% BSA (w/v) (pH = 7.20 ± 0.02; 300 ± 5 mOsmol/L). Cells were pretreated 

with 400 mM of IBMX and then treated with UK 14,304 (10 fM-1 nM) or vehicle (0.05% 

DMSO in PBS) 15 mins later. After a 5-min incubation with UK 14,304, cells were stimulated 

with DMB-Forskolin (final concentration of 2 µM). Luminescence intensity, which equates to 

the level of cytosolic cAMP, was measured from live cells every 90s.  

b-ARRESTIN RECRUITMENT 

 HEK-293H cells were transfected with modified forms of a2A-adrenergic receptor and b-

arrestin-1 in the presence and absence of Flag-GPSM3, as described under Transfection 

Conditions.  Cells were then plated at a seeding density of 5 x 104 cells/well (1.5 x 105 cells/cm2) 

on solid white bottom 96-well plates (Corning) and incubated at 37°C and 5% CO2 for 4 hours to 

allow cells to sufficiently attach to well bottoms. Following this incubation, 10 µl of medium 
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was removed from each well and substituted with 10 µl of pertussis toxin at a concentration of 

200 ng/ml or vehicle for 18 hours. The following day, medium was removed and replaced with 

90 µl of fresh phenol red-free MEM (supplemented with 3.2 mM D-luciferin, 20 mM HEPES, 

and 0.1% BSA; pH = 7.20 ± 0.02; 300 ± 5 mOsmol/L). Cells were then incubated for one hour at 

37°C. Following incubation, cells were stimulated with UK 14,304 (10 fM – 10 µM). 

Luminescence was measured using LMaxTMII384 for 80 mins at 37°C with an integration time of 

2 seconds and an interval of 2 minutes. 

2.8 DATA ANALYSES AND STATISTICS  

 Data shown are represented as means ± SEM. Differences between two groups were 

assessed using a Student’s t-test. Differences between more than two groups were determined 

using One-Way or Two-Way ANOVA, followed by a Bonferroni multiple comparisons test. 

Live cell cAMP measurements and b-arrestin-1-receptor interactions were collected as 

luminescence versus time curves. Average slope was calculated from each curve by calculating 

the mean of five consecutive data points and then normalizing each slope to the highest overall 

slope within that experiment, as described by Kim et al. 2018 (Figure 2-2). Concentration dose-

response data was fitted using GraphPad Pad Prism 6.2 software (La Jolla, CA) to a 3-parameter 

sigmoidal equation using a consecutive non-linear regression analysis of multiple data sets. 

Three-parameters (minimum signal, EC50 or IC50, and maximum signal) were analyzed 

individually to establish differences between curves. An extra sum-of-squares F-test was used to 

analyze the effect of GPSM3 on all three parameters studied. A p value of less than 0.05 was 

accepted as statistically significant.  
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Figure 2-2. Determination of maximal b-arrestin recruitment and adenylyl cycle activity 

from luminescence vs time data. HEK-293H cells were transiently transfected with either 

GloSensorTM cAMP biosensor plasmid for cAMP detection or co-transfected with plasmids 

encoding N-terminal luciferase fragment-b-arrestin-1 and C-terminal luciferase fragment GPCR 

for detection of b-arrestin-1 recruitment to the receptor, as described in Materials and Methods. 

Panel (A) illustrates luminescence intensity, which corresponds to either the level of b-arrestin-

1-receptor interaction or cAMP measured in a time-dependent manner. b-arrestin-1-receptor 

interaction or adenylyl cyclase activity was determined from each curve by measuring the 

greatest slope of each individual curve. Data was then normalized and represented as a fraction 

of the greatest rate of luminescence within each experiment, as shown in panel (B). 

Concentration dependence curves were fitted to a 3-parameter sigmoidal equation using 

nonlinear regression. Data points corresponding to the slopes shown in panel (A) are indicated 

with black circles in panel (B).  
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Chapter 3  

3 RESULTS 

3.1  GPSM3 REDUCES BINDING OF b-ARRESTIN-1 TO a2A-ADRENERGIC AND  

µ-OPIOID RECEPTORS 

 

 I first investigated the effect of GPSM3 overexpression on the recruitment of b-arrestin-1 

to Gi-coupled receptors including a2A-adrenergic and µ-opioid receptors. The recruitment of b-

arrestin-1 to each receptor was monitored in real-time using a luciferase complementation assay 

(Misawa et al. 2010). HEK293H cells, a human embryonic kidney cell line that does not express 

GPSM3 endogenously (The Human Protein Atlas, 2018), were transiently transfected with 

plasmids encoding the biosensor in addition to Flag-GPSM3 or control. The following day, cells 

transfected with a2A-adrenergic receptor were stimulated with the agonist UK 14,304 (10 pM – 

10 µM or vehicle) and cells with µ-opioid were stimulated with the agonist DAMGO (100 pM – 

100 µM or vehicle). Luminescence was measured over 80 mins. The rate of luminescence 

increase is proportional to the rate of b-arrestin-1 recruitment. 

 Results indicate that basal and maximal rates of b-arrestin-1 recruitment to a2A-

adrenergic receptor are reduced with wild type Flag-GPSM3 by 48.9% and 42.0%, respectively, 

when compared with control vector. Additionally, there was no change to EC50 when compared 

with control vector (Fig 3-1A). Conversely, basal and maximal rates of b-arrestin-1 recruitment 

to µ-opioid receptor are reduced with wild type Flag-GPSM3 by 27.1% and 54.4%, respectively, 

when compared with control vector. Additionally, there was no change to EC50 when compared 

with control vector (Fig 3-1B). 
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Fig. 3-1. GPSM3 reduces agonist-stimulated recruitment of b-arrestin-1 to Gi-coupled, a2A-

adrenergic and µ-opioid receptors. HEK293H cells were co-transfected with plasmids encoding 

N-terminal luciferase fragment-b-arrestin-1 and C-terminal luciferase fragment a2A-adrenergic (A) 

or µ-opioid receptor (B) plus either GPSM3 (pink line) or control vector (dashed line). Cells were 

stimulated with indicated concentrations of UK 14,304 (A) or DAMGO (B). Values are 

represented as means ± SEM (n=3 independent experiments, each performed in duplicate), and 

fitted and compared as described under Materials and Methods. (A) LogEC50 for UK 14,304 was 

equivalent between cells co-transfected either Flag-GPSM3-encoding plasmid (-7.6 ± 0.1) or 

Mock Vector (-7.43 ± 0.08), respectively. Upper asymptotic values differed significantly between 
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cells transfected with Flag-GPSM3-encoding plasmid (0.54 ± 0.01) vs. Mock Vector (0.94 ± 0.02) 

(p < 0.0001). Lastly, lower asymptotic values differed significantly between cells co-transected 

with Flag-GPSM3-encoding plasmid (0.13 ± 0.01) vs. Mock Vector (0.24 ± 0.01) (p < 0.0001) (B) 

LogEC50 for DAMGO was equivalent between cells co-transfected with either Flag-GPSM3-

encoding plasmid (-6.3 ± 0.2) or Mock Vector (-6.28 ± 0.08). Upper asymptotic values differed 

significantly between cells transfected with Flag-GPSM3-encoding plasmid (0.44 ± 0.03) vs. 

Mock Vector (0.97 ± 0.02) (p < 0.0001). Lastly, lower asymptotic values did not differ 

significantly between cells co-transected with Flag-GPSM3-encoding plasmid (0.12 ± 0.01) vs. 

Mock Vector (0.17 ± 0.01). All statistical values were based on extra sum of squares F-tests. 
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3.2 GPSM3 HAS NO EFFECT ON THE BINDING OF b-ARRESTIN-1 TO Gs- OR 

 Gq/11-COUPLED RECEPTORS 

 

Next, I evaluated whether GPSM3 selectively targeted Gi-coupled receptors. In order to 

do so, HEK293H cells were transiently transfected with b-arrestin-1 and either Gs-coupled 

receptors, b2 adrenergic (b2-AR) and parathyroid hormone type-1 (PTH1R), or the Gq/11-coupled 

muscarinic type-1 (M1) receptor together with either Flag-GPSM3 or control vector. Cells were 

then stimulated with receptor specific agonists and time-dependent changes in luminescence 

were measured as described above. Maximal rates were calculated for individual curves and then 

normalized as a percentage of the highest value in each individual experiment. The rates were 

measured in Relative Luminescent Units (RLU) per min of b-arrestin-1 recruitment to Gs- and 

Gq/11-coupled receptors did not differ significantly between GPSM3 and control-transfected cells. 

Thus, it appears that GPSM3 selectively reduces b-arrestin-1 recruitment to Gi-coupled 

receptors, with no effect on Gs- or Gq/11-coupled GPCRs. 
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Fig. 3-2. GPSM3 does not affect agonist-stimulated recruitment of b-arrestin-1 to Gs-coupled 

b2-adrenergic and parathyroid hormone type-1 nor Gq/11-coupled muscarinic type-1 

receptors. HEK293H cells were co-transfected with plasmids encoding N-terminal luciferase 

fragment-b-arrestin-1 and C-terminal luciferase fragment b2-adrenergic (A) parathyroid hormone 

type-1 (B) or muscarinic type-1 (C) plus either Flag-GPSM3 (pink line) or control vector (dashed 

line). Cells co-transfected with b2-adrenergic receptor were stimulated with increasing 

concentrations of adrenaline/epinephrine or vehicle, whereas cells co-transfected with PTH1R 

were stimulated with PTH (1-34) or vehicle. Lastly, cells co-transfected with muscarinic type-1 
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receptor were stimulated with carbachol or vehicle. Values are represented as means ± SEM (n=3 

independent experiments, each performed in duplicate). (A) LogEC50 for adrenaline/epinephrine 

in cells expressing Flag-GPSM3 was -5.26 ± 0.04 and in control cells was -5.35 ± 0.06; these two 

values did not differ significantly, based on extra sum-of-squares F-test. (B) LogEC50 for PTH (1-

34) in cells co-transfected with Flag-GPSM3 was -7.2 ± 0.1 while in cells co-transfected with 

Mock Vector the LogEC50 for PTH (1-34) was -7.3 ± 0.1; these two values did not differ 

significantly, based on extra sum-of-squares F-test. (C) The LogEC50 for carbachol in cells co-

transfected with Flag-GPSM3 was -5.06 ± 0.16 whereas in cells co-transfected with Mock Vector 

the fitted value was -5.37 ± 0.16; these two values did not differ significantly. All statistical values 

were based on extra sum of squares F-tests. 
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3.3 N-TERMINAL REGION AND GPSM MOTIFS ARE BOTH REQUIRED FOR THE 

REDUCTION OF b-ARRESTIN-1 BINDING TO a2A ADRENERGIC RECEPTOR 

  

 I have established that GPSM3 can selectively decrease b-arrestin-1 recruitment to Gi-

coupled receptors, with no measurable effect on Gs- or Gq/11-coupled GPCRs. As a result, I 

wanted to test which protein domains within GPSM3 are important for its effects on GPCR 

signalling. Structurally, GPSM3 is comprised of an N-terminal domain and three GPSM regions 

that are highly conserved among group II AGS proteins. A series of mutant GPSM3 constructs 

developed by Dr. Peishen Zhao were used to examine changes in b-arrestin-1 recruitment to a2A-

adrenergic receptor when compared with wild-type protein and control. HEK293H cells were 

transfected with plasmids encoding Flag-GPSM3, Flag-GPSM3mGL, Flag-DN•GPSM3mGL or 

control. Flag-GPSM3mGL contains single point mutations (Arg à Phe) in each of the three 

GPSM motifs whereas Flag-DN•GPSM3mGL is a quadruple mutant that lacks the N-terminal 

domain in addition to the aforementioned GPSM mutations.  

 Results indicate that basal and maximal rates of b-arrestin-1 recruitment to a2A-

adrenergic receptor are reduced with wild type Flag-GPSM3 by 43.2% and 46.9%, respectively, 

but only 24.5% and 21.9%, respectively, with the mutant Flag-GPSM3mGL. Furthermore, there 

was no measurable difference between cells co-transfected with Flag-DN•GPSM3mGL and 

control. This strongly suggests that the N-terminal domain and GPSM motifs both contribute to 

inhibition of b-arrestin-1 recruitment.  
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Fig. 3-3. N-terminus and GPSM motifs are both essential for reduced interaction between b-

arrestin-1 and a2A adrenergic receptor. HEK293H cells were co-transfected with plasmids 

encoding N-terminal luciferase fragment-b-arrestin-1 and C-terminal luciferase fragment a2A-

adrenergic receptor in the presence of wildtype (pink line), mutated versions of GPSM3; 

GPSM3mGL in panel A and DN•GPSM3mGL in panel B and Mock Vector (dashed line). Cells 

were stimulated with increasing concentrations of UK 14,304 or vehicle. Values are represented 

as means ± SEM (n=3 independent experiments, each performed in duplicate), and fitted and 

compared as described under Materials and Methods. (A) LogEC50 for UK 14,304 was equivalent 

between cells co-transfected either Flag-GPSM3-encoding plasmid (-7.21 ± 0.09), Flag-

GPSM3mGL-encoding plasmid (-7.65 ± 0.08) and Mock Vector (-7.64 ± 0.07). Upper asymptotic 

values differed significantly between cells transfected with Flag-GPSM3-encoding plasmid (0.51 
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± 0.02), Flag-GPSM3mGL-encoding plasmid (0.75 ± 0.01), vs. Mock Vector (0.96 ± 0.01) (p < 

0.0001). Lower asymptotic values differed significantly between cells co-transected with Flag-

GPSM3-encoding plasmid (0.18 ± 0.01), Flag-GPSM3mGL-encoding plasmid (0.24 ± 0.01) vs. 

Mock Vector (0.33 ± 0.01) (p < 0.0001) (B) LogEC50 for UK 14, 304 was equivalent for cells 

transfected with either Flag-GPSM3-encoding plasmid (-6.98 ± 0.13), Flag-DN•GPSM3mGL-

encoding plasmid (-7.66 ± 0.07) and Mock Vector (-7.60 ± 0.08). Upper asymptotic values differed 

significantly between cells transfected with Flag-GPSM3-encoding plasmid (0.43 ± 0.01) vs. 

Mock Vector (0.98 ± 0.02) (p < 0.0001) but not with Flag-DN•GPSM3mGL-encoding plasmid 

(0.96 ± 0.01) vs. Mock Vector. Lastly, lower asymptotic values differed significantly between cells 

transfected with Flag-GPSM3-encoding plasmid (0.14 ± 0.01) vs. Mock Vector (0.29 ± 0.01) (p < 

0.0001), but not between Flag-DN•GPSM3mGL-encoding plasmid (0.30 ± 0.01) vs. Mock Vector. 

All statistical values were based on extra sum of squares F-tests. 
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3.4 ACTIVATION OF Gai IS NOT NECESSARY FOR INHIBITORY GPSM3 EFFECT ON b-

ARRESTIN-1 BINDING TO a2A-ADRENERGIC RECEPTOR 

 

 My next goal was to evaluate the process through which GPSM3 functions. Canonically, 

GPSM3 binds to and promotes the GDP-bound form of Gai, while subsequently preventing Gbg 

re-association to the heterotrimeric complex. To assess whether Gai protein activation is a 

necessary step for GPSM3 to reduce b-arrestin-1 recruitment, I decided to pre-treat cells with 

pertussis toxin, a potent biotoxin that inactivates Gai proteins. 

 To test the viability of pertussis toxin, HEK293H cells were first transfected with a 

plasmid encoding a luciferase-based cAMP biosensor, a2A-adrenergic receptor and Flag-GPSM3 

or control. Cells were then pre-treated with pertussis toxin (200 ng/ml) or vehicle for 18-hours 

until sequential addition of IBMX (400 mM), UK 14,304 (1 fM – 1 nM) and DMB-forskolin  

(2 µM final) as described in Materials and Methods. It is well established that cells treated with 

pertussis toxin lose their ability to inhibit adenylyl cyclase activity (Mangmool et al. 2011), and 

indeed pertussis toxin treatment unmasked the ability of a2A-adrenergic receptor to activate Gs 

signalling (Figure 3-4A) as demonstrated previously by (Eason et al. 1992). Conversely, in a2A-

adrenergic receptor-expressing cells treated with vehicle rather than PTX, the ability of UK 14, 

304 to inhibit cAMP production was maintained. This confirms that the toxin was in fact viable 

and successfully inhibited activation of Gai proteins. 

 I then assessed whether Gai inactivation via pertussis toxin could affect the ability of 

GPSM3 to reduce b-arrestin-1 recruitment to the a2A adrenergic receptor. Cells were transfected 

with plasmids encoding b-arrestin-1, a2A-adrenergic receptor and Flag-GPSM3 or control vector, 
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and subsequently treated cells with pertussis toxin (200 ng/ml) or vehicle for 18-hours. The 

following day, cells were stimulated with UK 14,304 (10 pM – 10 µM). There was no 

measureable change in b-arrestin-1 recruitment to the a2A-adrenergic receptor in cells 

(transfected with Flag-GPSM3) treated with pertussis toxin as compared to vehicle. Furthermore, 

there was no change b-arrestin-1 recruitment in cells (transfected with control) treated with 

pertussis toxin and vehicle. This observation implies that activation of Gai is not required for the 

inhibitory effect of GPSM3 on the recruitment of b-arrestin-1to the receptor. 
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Fig. 3-4. Pertussis toxin does not affect GPSM3’s ability to inhibit b-arrestin-1 recruitment 

to a2A-adrenergic receptor. (A-B) HEK293H cells were transfected with GloSensorTM cAMP 

biosensor, a2A-adrenergic receptor and Flag-GPSM3 or Mock Vector plasmids. Cells were treated 

with pertussis toxin (PTX) (200 ng/ml) for 18 hours prior to the addition of agonist as discussed 

in Materials and Methods. (A) Illustrates dose-response curves of cells treated with pertussis toxin 

(dotted line) or vehicle (dashed line). Data were normalized as a fraction of the greatest value of 

cyclase activity in each experiment. Values are represented as means ± SEM (n = 3 independent 

experiments, each performed in triplicate). (B) HEK293H cells were co-transfected with plasmids 

encoding N-terminal luciferase fragment-b-arrestin-1 and C-terminal luciferase fragment a2A-

adrenergic receptor in the presence and absence of GPSM3. Cells were pretreated with pertussis 
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toxin or vehicle for 18 hours and then stimulated with UK 14,304 (10fM – 10µM) or vehicle. 

Maximal rate of b-arrestin-1-receptor interaction was determined and normalized as previously 

discussed. Values are represented as means ± SEM (n=3 independent experiments, each performed 

in duplicate). LogEC50 values for UK 14,304 did not differ between PTX-treated cells transfected 

with Flag-GPSM3 (-7.619 ± 0.16) vs. Mock Vector (-7.730 ± 0.1), nor did values for vehicle-

treated cells transfected with Flag-GPSM3 (7.562 ± 0.17) vs. Mock Vector (7.678 ± 0.08). Upper 

asymptotic values differed significantly for PTX-treated cells transfected with Flag-GPSM3 

(0.5016 ± 0.01) vs. Mock Vector (0.9110 ± 0.02) (p < 0.001) and for vehicle-treated cells 

transfected with Flag-GPSM3 (0.4643 ± 0.01) vs. Mock Vector (0.9753 ± 0.02) (p < 0.001). In 

addition, differences between PTX and vehicle groups were not significant. Lastly, lower 

asymptotic values differed significantly for PTX-treated cells transfected with Flag-GPSM3 

(0.1608 ± 0.01) vs. Mock Vector (0.2364 ± 0.01) (p < 0.001) and for vehicle-treated transfected 

with Flag-GPSM3 (0.1440 ± 0.01) vs. Mock Vector (0.2432 ± 0.01) (p < 0.001). In addition, 

differences between PTX and vehicle groups were not significant. All statistical values were based 

on extra sum of squares F-tests. 
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3.5 Gb1g2 OVEREXPRESSION REDUCES b-ARRESTIN-1 BINDING TO a2A-

ADRENERGIC RECEPTOR  

 

 To further interrogate the mechanism by which GPSM3 impedes b-arrestin recruitment,  

I evaluated the impact of Gb1g2 overexpression. In addition to binding to and inhibiting activity  

of Gai, GPSM3 promotes Gb1g2 signalling by preventing its re-association to Gai. At the same  

time, GPSM3 and Gb1g2 compete with each other for binding to Gai. To study the impact of  

Gb1g2 signalling, HEK293H cells were transfected with plasmids encoding b-arrestin-1 and a2A- 

adrenergic receptor fusion proteins (modified to include complementary luciferase domains), as  

well as Flag-GPSM3 or control vector, and Gb1g2 or control vector. Maximal rates of recruitment  

were calculated from raw time course data.  

 Results indicate that basal and maximal rates of b-arrestin-1 recruitment to a2A- 

adrenergic receptor are reduced with Gb1g2 overexpression alone by 37.1% and 47.5%,  

respectively, when compared with control vector. This change was comparable to that of Flag- 

GPSM3, which reduced basal and maximal rates of b-arrestin-1 recruitment to a2A-adrenergic  

receptor by 37.0% and 41.3%, respectively, when compared with control. Moreover, Gb1g2 co- 

transfected with Flag-GPSM3 had an additive effect and reduced basal and maximal b-arrestin-1  

recruitment to a2A-adrenergic receptor by 64.7% and 66.6%, respectively, when compared with  

control. Additionally, there was no change to EC50 of UK 14,304 in cells transfected with Gb1g2  

alone, Flag-GPSM3 alone or cells co-transfected with both Gb1g2 and Flag-GPSM3 when  

compared with control vector (Fig 3-5). 
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Fig. 3-5. Overexpression of Gb1g2 reduces recruitment of b-arrestin-1 to a2A-adrenergic 

receptor in the presence or absence of GPSM3. HEK293H cells were co-transfected with 

plasmids encoding N-terminal luciferase fragment-b-arrestin-1, C-terminal luciferase fragment 

a2A adrenergic, Flag-GPSM3 or control vector in the presence or absence of Gb1g2 in each group. 

Cells transfected were stimulated with UK 14,304 (10pM – 10µM) or vehicle (0.05% DMSO in 

PBS). Values are represented as means ± SEM (n=3 independent experiments, each performed in 
duplicate). LogEC50 values for UK 14,304 for cells co-transfected with Flag-GPSM3 and Mock 

Vector transfected with Gb1g2 were -7.63 ± 0.18 and -7.37 ± 0.13, respectively (p>0.05). 

Conversely, LogEC50 values for UK 14, 304 did not differ between cells transfected with Flag-
GPSM3 (-7.47 ± 0.09) vs. Mock Vector (-7.23 ± 0.08) (p<0.05). Upper asymptotic values differed 

between cells transfected with Flag-GPSM3 + Gb1g2 (0.32 ± 0.01) vs. Mock Vector + Gb1g2 (0.51 
± 0.01) (p < 0.0001). Conversely, LogEC50 values for UK 14,304 differed between cells transfected 
with Flag-GPSM3 + control (0.57 ± 0.01) vs. Mock Vector + control (0.97 ± 0.02) (p < 0.0001). 

Lastly, bottom asymptotic values differed between cells transfected with Flag-GPSM3 + Gb1g2 

(0.08 ± 0.01) vs. Mock Vector + Gb1g2 (0.14 ± 0.01) (p < 0.0001). Furthermore, bottom asymptotic 

values differed between cells transfected with Flag-GPSM3 + control (0.14 ± 0.01) vs. Mock 
Vector + control (0.23 ± 0.01) (p < 0.0001). All statistical values were based on extra sum of 
squares F-tests. 
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3.6 REDUCTION OF b-ARRESTIN-1 BINDING TO a2A-ADRENERGIC RECEPTOR WITH 

GPSM3 IS RESCUED WITH GRK2CT 

 

 As shown in Figure 3-5, Gb1g2 overexpression alone was capable of reducing  

recruitment of b-arrestin-1 to a2A-adrenergic receptor. Moreover, the reduction seen with  

GPSM3 was exacerbated by the further addition of Gb1g2. I next investigated whether  

treatment with GRK2ct could reverse these effects. GRK2ct is the C-terminal portion of GRK2  

that binds to the Gb subunit within the Gbg dimer. As a result, GRK2ct is frequently used as a  

Gbg inhibitor to study Gbg-dependent signalling pathways (Nadella et al. 2010). HEK293H cells  

were transfected with plasmids encoding b-arrestin-1 and a2A-adrenergic receptor fusion proteins  

(modified to include complementary luciferase domains), together with either Flag-GPSM3 or  

control vector plus either GRK2ct or additional control vector. GRK2ct alone did not affect b- 

arrestin-1 recruitment to a2A-adrenergic receptor when compared with control. However, the  

reduction in b-arrestin-1 recruitment seen with GPSM3 was reversed in cells additionally  

expressing GRK2ct. Thus, the rescue effect observed with GRK2ct, a Gbg-specific inhibitor,  

strongly suggests that the mechanism by which GPSM3 functions is through a Gbg-dependent  

mechanism.  
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Fig. 3-6. GRK2ct rescues the reduction of b-arrestin-1 binding to a2A adrenergic receptor by 
GPSM3. HEK293H cells were co-transfected with plasmids encoding N-terminal luciferase 

fragment-b-arrestin-1 and C-terminal luciferase fragment a2A-adrenergic receptor, together with 

Flag-GPSM3 or control vector and also GRK2ct (Gb1g2 inhibitor), or its control vector. Cells 

transfected were stimulated with UK 14,304 (10pM – 10µM) or vehicle (0.05% DMSO in PBS). 

Values are represented as means ± SEM (n=3 independent experiments, each performed in 
duplicate). LogEC50 values for UK 14,304 did not differ between cells transfected with GRK2ct + 
Flag-GPSM3 (-7.70 ± 0.05) vs. GRK2ct + control (-7.54 ± 0.05). Conversely, LogEC50 values for 
UK 14,304 did not differ between cells transfected with control + Flag-GPSM3 (-7.66 ± 0.05) vs. 
control + control (-7.69 ± 0.08). In addition, differences in LogEC50 values for 14, 304 were not 
significant between GRK2ct and vehicle groups. Upper asymptotic values differed between cells 
transfected with GRK2ct in the presence (0.90 ± 0.01) and absence (0.96 ± 0.01) of GPSM3 (p < 
0.0001). Upper asymptotic values also differed between cells lacking GRK2ct in the presence 
(0.445 ± 0.005) and absence (0.96 ± 0.02) of Flag-GPSM3 (p < 0.0001). Lastly, lower asymptotic 
values did not differ between cells transfected GRK2ct in the presence (0.185 ± 0.009) and absence 
(0.18 ± 0.01) of Flag-GPSM3. Finally, basal fitted values differed between cells lacking GRK2ct 
in the presence (0.108 ± 0.004) and absence (0.21 ± 0.01) of Flag-GPSM3 (p < 0.0001). All 
statistical values were based on extra sum of squares F-tests.  
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3.7 INHIBITION OF cAMP BY GaI-COUPLED RECEPTORS IS ALTERED IN THE 

PRESENCE OF GPSM3 

 I next investigated the potential effect of GPSM3 on the abilities of Gi-coupled GPCRs  

to inhibit adenylyl cyclase activity. To do this, I studied the effects using three different  

receptors: adenosine A1, a2A-adrenergic and µ-opioid. HEK293H cells were transfected with a  

luciferase based cAMP biosensor and receptor of interest in the presence or absence of GPSM3.  

To prevent cAMP degradation, cells were treated with cAMP phosphodiesterase inhibitor, 3- 

isobutyl-1-methylxanthine (IBMX). Cells were then treated with a receptor-specific agonist or  

vehicle; cells transiently expressing adenosine A1 were treated with 2-chloro-N(6)  

cyclopentyladenosine (CCPA) (10 pM – 10 µM) whereas cells with a2A-adrenergic and µ-opioid  

were treated with UK 14,304 (10 fM – 1 nM) and [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin  

(DAMGO) (100 pM – 100 µM), respectively. Finally, cells were stimulated with 7-Deacetyl-7- 

[O-(N-methylpiperazino)-g-butyryl]-Forskolin Dihydrochloride (DMB-Forskolin) (2 µM final),  

which directly stimulates adenylyl cyclase activity.  

 In the absence of agonist, cells overexpressing adenosine A1, a2A-adrenergic and µ- 

opioid receptors all exhibited a marked reduction in basal DMB-forskolin-stimulated cAMP  

production when transfected with GPSM3 by 24.7%, 26.3% and 21.8%, respectively.  

Furthermore, there was no change in IC50 values between GPSM3 and control groups in all  

receptors except µ-opioid, which had a rightward shift with GPSM3 (LogIC50=-7.49) compared  

to control (LogIC50=-7.91). Lastly, bottom asymptotic values did not differ between GPSM3 and  

control groups in all receptors, except for µ-opioid, which had a marked increase in inhibition by  
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16.26% with GPSM3 compared to control. Therefore, presence of GPSM3 significantly reduces  

basal forskolin-stimulated cAMP production in Gi-coupled GPCR, although the mechanism by  

which this occurs is unknown.  
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Fig. 3-7. GPSM3 decreases basal forskolin-stimulated cAMP production.  
HEK293H cells were co-transfected with GloSensorTM cAMP biosensor plasmid and either  
adenosine A1 (A), a2A-adrenergic (B), or µ-opioid (C) receptor plasmids in the presence (pink  
line) or absence (dashed line) of GPSM3. Cells were pretreated with 400 mM IBMX and then  
treated with CCPA (A), UK 14,304 (B), DAMGO (C) or their vehicles 15 mins later. After a 5- 
min incubation with agonists, cells were stimulated DMB-Forskolin (final concentration of 2  
µM). Luminescence intensity, which equates to the level of cytosolic cAMP, was measured from  
live cells every 90s. Data were normalized as a fraction of the greatest value of cyclase activity  
in each experiment as described in materials and methods. Values plotted are means ± SEM (n =  
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3 independent experiments, each performed in duplicate). (A) LogEC50 for CCPA was equivalent  
between cells co-transfected with either Flag-GPSM3-encoding plasmid (-7.2 ± 0.2) or Mock  
Vector (-7.51 ± 0.16) (p=0.47). Upper asymptotic values differed significantly between cells  
transfected with Flag-GPSM3-encoding plasmid (0.72 ± 0.02) vs. Mock Vector (0.96 ± 0.02)  
(p < 0.0001). Lastly, lower asymptotic values did not differ significantly between cells co- 
transected with Flag-GPSM3-encoding plasmid (0.32 ± 0.03) vs. Mock Vector (0.29 ± 0.04)  
(p=0.61). (B) LogEC50 for UK 14,304 was equivalent between cells co-transfected with either  
Flag-GPSM3-encoding plasmid (-11.00 ± 0.13) or Mock Vector (-10.99 ± 0.10) (p=0.95). Upper  
asymptotic values differed significantly between cells transfected with Flag-GPSM3-encoding  
plasmid (0.69 ± 0.01) vs. Mock Vector (0.93 ± 0.02) (p < 0.0001). Lastly, lower asymptotic  
values did not differ significantly between cells co-transected with Flag-GPSM3-encoding  
plasmid (0.32 ± 0.02) vs. Mock Vector (0.28 ± 0.02) (p=0.10). (C) LogEC50 for DAMGO  
differed between cells co-transfected with either Flag-GPSM3-encoding plasmid (-7.49 ± 0.17)  
or Mock Vector (-7.91 ± 0.11). Upper asymptotic values differed significantly between cells  
transfected with Flag-GPSM3-encoding plasmid (0.75 ± 0.01) vs. Mock Vector (0.96 ± 0.02)  
(p < 0.0001). Lastly, lower asymptotic values differed significantly between cells co-transected  
with Flag-GPSM3-encoding plasmid (0.45 ± 0.01) vs. Mock Vector (0.54 ± 0.01) (p < 0.0001).  
All statistical values were based on extra sum of squares F-tests.  
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3.8 GPSM3 HAS NO EFFECT ON THE STIMULATION OF cAMP PRODUCTION BY Gs-

COUPLED RECEPTORS 

 

 To further explore the potential effects of GPSM3 on adenylyl cyclase regulation, I  

examined the effect of GPSM3 on Gs-coupled b2 adrenergic and parathyroid hormone type-1  

receptors. Endogenous b2-adrenergic receptor activity was studied in HEK293H cells, while the 

parathyroid hormone type-1 receptor was transiently transfected. To prevent cAMP degradation,  

cells were treated with cAMP phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX).  

Cells were then treated with a receptor-specific agonist or vehicle; cells co-transfected with b2  

adrenergic receptor were treated with adrenaline/epinephrine (100 pM – 100 µM) and cells co- 

transfected with parathyroid hormone type-1 receptor were treated with PTH (1-34) (1 pM – 1  

µM). As predicted from its established G protein selectivity (Giguere et al. 2013, Kimple et al.  

2004, Zhao et al. 2015), GPSM3 showed no measureable influence on Gs-coupled GPCR  

activation of adenylyl cyclase, with agonist dose-response curves being virtually superimposable  

in cells expressing GPSM3 vs mock vector controls. This result is consistent with GPSM3’s  

ability to selectively bind to Gai proteins but not Gas proteins.  
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Fig. 3-8. Lack of GPSM3 effect on b2-adrenergic and parathyroid hormone type-1 receptor-

stimulated adenylyl cyclase activity. HEK293H cells were transfected with GloSensor™ cAMP 

biosensor as described in Materials and Methods. Receptor activity was measured with 

endogenous b2-adrenergic receptor (A) or with transfected PTH1R (B) in the presence of GPSM3 

or control. Cells were treated with IBMX (400 µM) for 20 mins and then stimulated with 

adrenaline/epinephrine (100 pM – 100 µM) or PTH (1-34) (1 pM – 1 µM). Data were normalized 

as a fraction of the greatest value of cyclase activity in each experiment. Values plotted are means 

± SEM (n = 3 independent experiments, each performed in duplicate). (A) LogEC50 values for 

epinephrine did not differ between cells transfected with Flag-GPSM3 (-7.92 ± 0.06) vs. control 

(-8.09 ± 0.08) (p=0.1239). Upper asymptotic values did not differ between cells transfected with 

Flag-GPSM3 (0.95 ± 0.02) vs. control (0.96 ± 0.02) (p=0.9452). Lastly, lower asymptotic values 
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did not differ between cells transfected with Flag-GPSM3 (0.07 ± 0.02) vs. control (0.07 ± 0.03) 

(p=0.79). (B) LogEC50 values for PTH(1-34) did not differ between cells transfected with Flag-

GPSM3 (-9.13 ± 0.09) vs. control (-9.07 ± 0.07) (p=0.59). Upper asymptotic values did not differ 

between cells transfected with Flag-GPSM3 (0.96 ± 0.03) vs. control (0.93 ± 0.02) (p=0.35). 

Lastly, lower asymptotic values did not differ between cells transfected with Flag-GPSM3 (0.02 

± 0.02) vs. control (0.05 ± 0.02) (p=0.27). All statistical values were based on extra sum of squares 

F-tests.  
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3.9 FORSKOLIN POTENCY ON ENDOGENOUS ADENYLYL CYCLASE ACTIVTY IS 

 DECREASED IN HEK293H CELLS OVEREXPRESSING GPSM3 

 

 Next, I wanted to investigate the mechanism of GPSM3-medicated reduction in basal  

forskolin-stimulated but not Gs-stimulated adenylyl cyclase activty. To do this, I 

examined the effect of GPSM3 on endogenous adenyly cyclase activity within HEK293H cells.  

As in previous experiements, cells were co-transfected with a cAMP biosensor plus either  

control vector or GPSM3. In this experiment, cells were stimulated with various concentrations  

of DMB-forskolin (100 pM – 100 µM) or its vehicle (PBS + 0.1% BSA). Adenylyl cyclase  

acitivity was determined from time course data as a fraction of the maximal slope in each  

indepdendent experiment. In the presence of GPSM3, the DMB-forskolin concentration  

dependence curve was shifted to the right (LogEC50 = -5.26 ± 0.03) when compared to the curve  

with control (LogEC50 = -5.92 ± 0.04). This corresponds to an approximate 4.6-fold decrease in  

the measured potency.  
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Fig. 3-9. GPSM3 decreases potency of DMB-forskolin on endogenous adenylyl cyclase 

activity in HEK293H cells. HEK293H cells were transfected with GloSensor™ cAMP biosensor 

as described in Materials and Methods. Receptor activity was measured with endogenous adenylyl 

cyclase activity in the presence of GPSM3 (pink line) or control (dashed line). Cells were treated 

with IBMX (400 µM) for 20 mins and then stimulated with DMB-Forskolin (100 pM – 100 µM) 

or vehicle. Data were normalized as a fraction of the greatest value of cyclase activity in each 

experiment. Values shown are means ± SEM (n = 3 independent experiments, each performed in 

duplicate). LogEC50 values for DMB-forskolin in the presence and absence of Flag-GPSM3 and 

control were -5.26 ± 0.03 and -5.92 ± 0.04, respectively; representative curves demonstrate that 

GPSM3 reduces the potency of DMB-forskolin when compared with control (p < 0.001). All 

statistical values were based on extra sum of squares F-tests. 
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3.10 GPSM3 ALTERS ADENYLYL CYCLASE ISOFORMS III AND VI BY SELECTIVELY 

 INHIBITING GaI ACTIVITY WITH NO EFFECT TO GaI-INSENSITIVE ISOFORM VI 

 

 As previously mentioned, GPSM3 reduces DMB-forskolin stimulated adenylyl cyclase 

activity in HEK293H cells (Figure 3-9). Since HEK293H cells express multiple adenylyl cyclase 

isoforms with different Ga and Gbg sensitivities, I next sought to perform experiments to 

investigate effects of GPSM3 on individual isoforms of adenylyl cyaclase. HEK293H cells 

endogenously express adenylyl cyclase isoforms I, III, V, VI, VII and IX, which are divided into 

four groups based on their selectivity for G proteins (Table 1.1, Tang et al. 1992, Sabbatini et al. 

2016). With that in mind, I decided to overexpress one adenylyl cyclase isoform from each group 

in the presence or absence of GPSM3. For Group I, I studied adenylyl cyclase III, which is 

stimulated by Gas and forskolin but inhibited by Gai and Gbg. In the presence of GPSM3, there 

was a 34.8% increase in maximal DMB-forskolin activity when compared to control (p < 0.05). 

This is consistent with the ability of GPSM3 to inhibit Gai-mediated signalling, whereas it 

would not appear to reflect any GPSM3-induced enhancement of Gbg-mediated inhibition.    

 Next, I investigated the effect of GPSM3 on adenylyl cyclase VI from Group II, which is 

insensitive to Gai and stimulated by Gas, Gbg and forskolin. Results indicate that presence of 

GPSM3 has no effect on the forskolin concentration dependence curve when compared to 

control. Again, this neutral finding suggests that the stimulatory effect of Gbg is unaltered by 

GPSM3 while any effect on Gai signalling would be without consequence on the activity of this 

adenylyl cyclase subtype.  
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 Finally, to examine the effect on Group III adenylyl cyclases, I overexpressed isoform 

IV, which is naturally inhibited by Gai and stimulated by Gas, Gbg and forskolin. Co-tranfection 

with GPSM3 increased efficacy by 21.6% when compared to control (p < 0.05). Similar to 

observations with adenylyl cyclase subtype III, this is indicative of a GPSM3-induced decrease 

in Gai-mediated signalling with no appreciable effect on Gbg. Taken together, these results 

suggest that GPSM3 works on different isoforms of adenylyl cyclases via an inhibitory effect on 

Gai-mediated signalling. Canonically, GPSM3 promotes Gbg-mediated signalling; however, 

there is no clear effect of such signalling within these adenylyl cyclase-based experiments.  

 

 

 

 

 

 

 

 

 

 

 



82 

 

 

 
 
Fig. 3-10. GPSM3 increases the efficacy of DMB-forskolin on adenylyl cyclases III and VI 
with no effect on IV. HEK293H cells were co-transfected with GloSensor™ cAMP biosensor and 
one of three different isoforms of adenylyl cyclase (III, IV, VI), in the presence or absence of 

GPSM3 as described in Materials and Methods. Cells were treated with IBMX (400 µM) for 20 

mins and then stimulated with DMB-Forskolin (1 nM – 1 mM) or vehicle. Data were normalized 
as a fraction of the greatest value of cyclase activity in each experiment. Values shown are means 
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± SEM (n = 3 independent experiments, each performed in triplicate). (A) GPSM3 significantly 
increased potency and efficacy of exogenous ACIII when compared with control. LogEC50 values 
for Flag-GPSM3 and control were -4.67 ± 0.03 and -4.83 ± 0.06, respectively; differences were 
statistically significant (p < 0.05). Maximal fitted values indicative of efficacy for data acquired in 
the presence and absence of Flag-GPSM3 were 1.00 ± 0.01 and 0.65 ± 0.01, respectively; 
differences were statistically significant (p < 0.0001). (B) GPSM3 has no effect on fitted LogEC50, 
upper and lower asymptotic values of ACIV (p = 0.5282, 0.5148, 0.4820, respectively). (C) 
GPSM3 significantly increased the maximal effect of DMB-forskolin on exogenous ACVI. 
LogEC50 values for DMB-forskolin acquired in the presence and absence of Flag-GPSM3 were -
5.13 ± 0.02 and -5.20 ± 0.03, respectively; differences were not statistically significant (p = 
0.0821). Maximal fitted values for DMB-forskolin in the presence and absence of Flag-GPSM3 
were 1.00 ± 0.01 and 0.787 ± 0.009, respectively; differences were statistically significant (p < 
0.0001). All statistical values were based on extra sum of squares F-tests.  
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Chapter 4 

4 DISCUSSION  

4.1 SUMMARY OF FINDINGS  

 

 In recent years, novel accessory proteins for GPCRs and G proteins have been discovered 

(Cismowski, 2006, Sato et al. 2006); however, their abilities to modulate receptor signalling 

have yet to be fully understood. Thus, studies in this thesis have focused on one particular 

accessory protein called GPSM3 (also known as AGS4 or G18). The overall objective of this 

research was to evaluate how GPSM3 could regulate GPCR signalling. The specific aims of this 

research were as follows: 

 

1. To characterize the effects of GPSM3 on b-arrestin recruitment to Gas, GaI and Gaq/11-

coupled receptors after agonist stimulation 

2. To evaluate which protein domains within GPSM3 are important for GPCR signalling 

3. To determine the effect of GPSM3 on GPCR-regulated adenylyl cyclase activity  

 

 The studies presented herein reveal valuable aspects of how a GPSM domain-containing 

protein may influence GPCR signalling within a cellular context. Studying how G protein 

activation states may be altered through nucleotide exchange by cytosolic proteins not only 

allows us to further understand G protein regulatory potential but also helps us get a better idea 

of how GPCR signalling may be influenced under normal and pathophysiological environments.  
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 The present studies extend the role of GPSM3 as a protein capable of selectively 

modulating Gi/o-coupled GPCR signalling. Specifically, the effect of GPSM3 on b-arrestin 

recruitment to Gi/o-coupled receptors manifests as a decrease in signal amplitude, which 

corresponds to a decrease in b-arrestin-receptor interaction, with no observable change in 

potency. The selective reduction in b-arrestin recruitment to Gi/o-coupled receptors suggests that 

GPSM3 could: i) directly influence b-arrestin recruitment by occluding the binding site on the 

receptor and/or ii) indirectly decrease recruitment by interfering with downstream signalling 

molecules, resulting in decreased b-arrestin localization to the receptor. The data presented in 

this thesis show that GPSM3 not only decreases agonist-stimulated b-arrestin recruitment but 

also decreases basal signal. This suggests that GPSM3 can exert its effects without the presence 

of an agonist, which is consistent with its ability to bind to Gai proteins independently of 

receptor activation.  

 GPSM3 failed to exert any measurable effect on b-arrestin recruitment to Gs- or Gq/11- 

coupled GPCRs. This implies that the mechanism by which GPSM3 acts is specific towards Gai 

proteins and their associated receptors. The key difference between Gi-, Gs- and Gq/11-receptor 

signalling complexes is the Ga protein subtypes (i.e Gai/o vs Gas vs Gaq/11) they couple to. It is 

possible that differences in tertiary structure and amino acid sequence can in part, impact the 

degree of binding of GPSM3 to these G proteins, which could then influence the ability of 

GPSM3 to carry out its function as a GDI (Kimple et al. 2004, Giguere et al. 2012). The 

characterized binding interactions between GPSM3 and GDP-Gai and the lack of binding to 

other G protein subfamilies, may in part reflect why GPSM3 was found to solely affect Gi-

coupled signalling (Giguere et al. 2012, Willard et al. 2008). In addition, it is possible that the 
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GPSM3/GDP-Gai interaction could promote Gbg-mediated signalling, thereby depleting or re-

routing the following processes: i) phosphorylation of the C-terminal portion of the receptor by 

GRK, ii) b-arrestin recruitment to the phosphorylated receptor and/or iii) interfering with other 

proteins that contribute to receptor internalization, such as clathrins and other adaptor proteins. 

 My findings suggest that both the N-terminus and GPSM motifs of GPSM3 contribute to 

reducing the interaction between b-arrestin and receptors in both the presence and absence of 

agonist. It appears that the arginine to phenylalanine amino acid substitution in part of the 

conserved Asp/Glu-Gln-Arg triad within each GPSM motif reduces the affinity between GPSM3 

and GDP-Gai and it is conceivable that such mutations may modify the tertiary structure in a 

way that disrupts the stability of GPSM3, thus decreasing the amount of available protein able to 

bind to Gai proteins. Additionally, reduced interactions due to these mutations could promote the 

reconstitution of the Ga•bg heterotrimeric complex, thereby altering G protein-mediated 

signalling by either promoting Gai or impeding Gbg. Physiologically, this phenomenon may 

contribute to the differences in susceptibility to autoimmune diseases seen in a subset of single-

nucleotide polymorphisms of GPSM3, as reported in Sirota et al. 2009 and Corona et al. 2010. 

Compelling genome-wide association studies have discovered protective single nucleotide 

polymorphisms (rs204989 and rs204991) on allele C within the locus gene of GPSM3 to be less 

prevalent among autoimmune disease patients (Gall et al. 2016). These alleles have been 

associated with a reduced incidence of rheumatoid arthritis, which could be attributable to altered 

GPCR signalling within cells involved in this disease (Sirota et al. 2009, Corona et al. 2010). 

GPSM3 has been positively associated with the migration of cells involved in inflammation, 

therefore it is possible that these SNPs protect individuals from rheumatoid arthritis by reducing 

GPSM3 function and thus, decreasing inflammatory cell migration and subsequent infiltration to 
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sites of action (e.g. joints). Moreover, the N-terminal domain could also contribute to the effects 

seen by facilitating binding between Gai and GPSM3 but also interactions within the protein 

itself. Thus, besides the three GPSM motifs, GPSM3 contains an additional Ga protein binding 

domain on the N-terminus for both Gai and Gao subtypes, which could also be important for its 

regulation in GPCR signalling. Research in our lab shows that the N-terminal domain acts as a 

GEF for Gαi1, while conversely acting as a weak GDI on Gαo (Zhao et al. 2010). This supports 

the finding in Figure 3-3 that both N-terminus and GPSM motifs may be necessary to facilitate 

appropriate binding interactions with Gαi/o proteins to carry out its function in GPCR signalling. 

Future studies using co-immunoprecipitation may help to elucidate whether the reduction of b-

arrestin recruitment as seen with GPSM3 is attributable to its binding interactions with Gai/o.  

 The prevailing view of the b-arrestin-dependent pathway has been that signal termination 

is largely G protein-independent (Rajogopal et al. 2010, Shenoy et al. 2016, Grundmann et al. 

2018). Although the aforementioned results do not directly indicate how GPSM3 may be 

decreasing the ability of b-arrestin to bind to Gi-coupled receptors, a study by Grundmann et al. 

2018 suggests that the presence of active G proteins may be crucial for arrestin-dependent 

signalling. In these experiments, Gas and Gaq/12 proteins were knocked out in HEK293 cells 

using CRIPSPR/Cas9 technology, while the Gai/o family was inactivated using pertussis toxin. 

Cells lacking functional G proteins exhibited a large reduction in ERK1/2 phosphorylation, a 

well-known b-arrestin-dependent signalling pathway. Notwithstanding the fact that ERK1/2 

cascade is well downstream of the GPCR and G protein as well as the fact that such signalling 

could occur possibly without the need for Ga proteins, it is possible that G protein activation 

may still be necessary for receptor signalling termination. This idea has been supported by the 
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observation in this thesis that overexpression of Gb1g2 mimics the effects of GPSM3 by reducing 

the interaction between b-arrestin-1 and Gi-coupled GPCRs, specifically a2A-adrenergic and µ-

opioid receptors (Figure 3-5). Moreover, my data illustrating that co-transfection with a GRK2ct, 

a Gbg inhibitor, rescues the inhibition of b-arrestin-1 recruitment by GPSM3 further supports the 

idea that G protein activation, specifically the liberation of Gbg, may be important in b-arrestin-

mediated receptor desensitization (Figure 3-6).  

 In the absence of Gai activation due to treatment with pertussis toxin, GPSM3 was still 

capable of reducing the GPCR/b-arrestin binding interaction. This observation is consistent with 

the fact that GPSM3 can bind to Gai independently of receptor activation and foster the sequence 

of events leading to a reduction in b-arrestin binding. Moreover, this interaction could promote 

the dissociation and subsequent release of Gbg, supporting the idea that nucleotide exchange 

may not be required for G protein activation, specifically in the case for Gbg. Precedent studies 

argue that Gbg can cultivate GRK mobilization towards the plasma membrane and thereby, 

increase the rate of receptor phosphorylation and subsequent binding of arrestins (Touhara et al. 

1994, Boekhoff et al. 1994); however, my findings as reported here suggest that the real situation 

at the cellular level may be more complicated than originally thought. Increased levels of Gb1g2 

seem to mimic the effect of GPSM3, which falls in line with the idea that Gbg activity is 

promoted directly via GPSM3/Gai binding interaction. What is perhaps even more interesting is 

that inhibiting Gbg activity with a short Gbg-binding peptide appears to restore b-arrestin 

recruitment to Gi-coupled receptors in the presence of GPSM3. This strongly suggests that Gbg 

activation may be necessary for b-arrestin recruitment under certain conditions. Thus, it is 

possible that GPSM3 could function by altering stoichiometric ratios of free G proteins, 
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specifically Gbg, which in turn can modulate receptor desensitization pathways. This could be 

tested by carrying out a series of co-immunoprecipitation assays with subsequent 

immunoblotting to measure the amount of Gbg in cells co-transfected with GPSM3 or control 

vector. In addition, another way to test this Gbg-mediated effect is by overexpressing Gbg or 

control vector in a Gs or Gq/11-coupled GPCR system and examine the differences in interactions 

between b-arrestin and receptor. My prediction is that Gbg will have an effect similar to that seen 

in Gi-coupled GPCRs as shown in Figure 1-1. The rationale for this expectation is that in a Gi-

coupled GPCR system, GPSM3 can free up Gbg by binding to Gai/o and displacing Gbg, but can 

also prevent Gbg re-association back to Gai/o by occluding the Gbg-binding site. This is not seen 

in my results for Gs or Gq/11-coupled receptors, perhaps because GPSM3 cannot bind to the Ga 

subtypes and therefore release free Gbg through the aforementioned mechanism. 

 In contrast to the present findings which suggest that GPSM3 competes with Gbg for 

Gai/o, a study by Giguere et al. 2012 has reported that GPSM3 can bind directly to all four Gb 

subunits via a leucine-rich region proximal to the N-terminus of the first GPSM motif, thereby 

storing a potential to decrease Gbg-mediated signalling; however, this has not been reproduced 

by other labs, including ours (Zhao et al. 2010, Wallace, D, 2017, MSc thesis, University of 

Western Ontario). Although the role of Gbg in these studies is confusing, the idea that GPSM3 

could act as chaperone for Gb is not unreasonable. In addition, while it could be true that 

GPSM3 binds to both Gai/o and Gbg subunits, it would be necessary to know whether it forms a 

quaternary complex with all three subunits or whether it binds to either Gai/o or Gbg at any given 

time. To do so, it would be necessary to carry out experiments solving for the molecular structure 

of GPSM3 complexed with the heterotrimeric G protein.  
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 Although the present findings do not directly speak to how exactly GPSM3 produces its 

effects within the cell, my observations are consistent with the idea that the complex formed by 

GPSM3 and GDP-Gai could be potentially occluding the serine and threonine residues on C-

terminal regions of the receptor (Oner et al. 2010b). This occlusion could then prevent the ability 

of GRK to phosphorylate those residues, which would inevitably lead to a decrease in 

phosphorylation (Figure 4-1). This in turn, could subsequently decrease the rate and affinity of b-

arrestin recruitment, which would fall in line with our observations. However, this theoretical 

mechanism seems very unlikely given that overexpression with a Gb1g2 inhibitor reverses the 

effect of GPSM3, which seems to point to a mechanism associated with increased free Gbg at or 

near the receptor due to the presence of GPSM3. Furthermore, the GPSM3-GDP-Gai complex 

could also block interactions between the receptor and other proteins (e.g. b-arrestins) by directly 

coupling to the receptor, perhaps even after receptor phosphorylation (Oner et al. 2010b).  

 Some possible interpretations of the present findings are suggested by functional studies 

on Gbg and its binding interactions with proteins involved in signal termination, specifically 

GRKs and b-arrestins. There is evidence that Gbg plays an integral role in bringing both GRKs 

and b-arrestins to the receptor, shortly after receptor activation (Boekhoff et al. 1994, Ferguson 

et al. 1996); however, increasing the amount of free Gbg via GPSM3 could disrupt the balance in 

GPCR signalling, ergo GRK or b-arrestin binding could be decreased. Therefore, Gbg dimer 

could alter signalling by: i) directly binding to a subset of Gbg-sensitive GRKs (mainly GRK2 

and GRK3) and preventing their localization to the C-terminal portions of receptors (Figure 4-2), 

ii) directly binding to b-arrestins and slowing down the rate of recruitment to phosphorylated 

residues on the receptor (Figure 4-3) and/or iii) indirectly activating/repressing downstream 
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effectors involved in signal termination. One way to distinguish between these possibilities 

would be via the evaluation of the effects of GPSM3 on receptor phosphorylation states. This can 

be achieved for example via co-immunoprecipitation and/or immunoblotting experiments using 

receptor-specific phospho-antibodies. A decrease in phosphorylation would be consistent with a 

decrease in GRK2/3 function due to liberation of Gbg by GPSM3 to a position that does not 

facilitate productive GRK/GPCR contact. Conversely, an increase in phosphorylation partnered 

with a decrease in b-arrestin-receptor interaction would be indicative of a problem on the level of 

b-arrestin recruitment. This could also be in part ascribed to the increase in free Gbg by GPSM3, 

which could directly alter b-arrestin activity. Despite enormous advances in our understanding of 

G protein- and arrestin-mediated processes, their interplay with one another remains 

incompletely understood. This could be in part accredited to the lack of sufficient tools to 

measure connections between the two proteins.  

 I also examined the potential influence of GPSM3 on adenylyl cyclase activity and the 

inhibition thereof by Gi/o-coupled receptors. Given the biochemical ability of GPSM3 to bind to 

and inhibit nucleotide exchange on Gai, I initially decided to examine its effects on the Gi/o-

coupled adenosine A1, a2A-adrenergic and µ-opioid receptors, via changes in cAMP production. 

I predicted that GPSM3 would reduce the degree and/or agonist potency of Gai-mediated 

inhibition on forskolin-stimulated adenylyl cyclase activity; however, in these sets of 

experiments, I observed that GPSM3 significantly reduced basal cAMP production. In addition, 

there was a slight increase in the percentage inhibition of adenylyl cyclase activity due to the 

activation of µ-opioid receptor in the presence of GPSM3 when compared to control (Figure 3-

7). This suggests that GPSM3 is increasing inhibition on adenylyl cyclase activity.  
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Figure 4-1 Presence of GPSM3 may decrease receptor phosphorylation by blocking activity 

of GRKs. The complex formed by GPSM3 and Gai-GDP could potentially occlude the serine 

and threonine residues on C-terminal region of GPCR, which would sterically block the ability 

of G protein receptor kinases (GRKs) to phosphorylate those sites. Decreased phosphorylation 

by GRKs will lead to an inevitable decrease in b-arrestin recruitment, thereby reducing the 

amount of receptor being removed from the plasma membrane.  
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Figure 4-2 Liberation of Gbg by GPSM3 may decrease GRK2/3 activity. When GPSM3 

binds to GDP-bound forms of Gai proteins, the interaction may promote the dissociation of the 

Gbg dimer and at the same time may delay its re-association to the heterotrimeric G protein 

complex. Gbg can therefore bind to and slow down recruitment of GRK proteins to the C-

terminal region of GPCR, thus preventing receptor phosphorylation. 
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Figure 4-3 GPSM3 decreases b-arrestin recruitment to Gi/o-coupled receptors via a Gbg-

dependent mechanism. The complex formed by GPSM3 and GDP-bound Gai facilitates Gbg-

mediated signalling. The Gbg dimer could alter signalling by binding to and inhibiting 

recruitment of b-arrestin to the phosphorylated C-terminal region of GPCR. As a consequence, 

these interactions prevent receptor desensitization and other b-arrestin signalling pathways (not 

shown above). 
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Since GPSM3 is inhibiting GaI protein activity, it seems unlikely that this increase in inhibition 

is coming from this G protein. GPSM3 also promotes the liberation of free Gbg, which is known 

to have inhibitory potential on certain isoforms of adenylyl cyclase, so it is possible that this 

increase in inhibition could be a direct result of this (Sunahara et al. 2002) On the other hand, 

GPSM3 had no apparent effect on adenylyl cyclase activity when cells were transfected with the 

Gs-coupled b2-adrenergic and parathyroid hormone receptors. This lack of effect is consistent 

with the ability of GPSM3 to selectively bind to and alter Gai proteins. In addition, the ability of 

GPSM3 to reduce DMB-forskolin-stimulated cAMP production in the absence of any agonist 

reinforces the notion that GPSM3 can mediate its effects independently of receptor activation. 

The ability of GPSM3 to reduce basal DMB-forkolin-stimulated (but not Gs-stimulated) adenylyl 

cyclase activity is consistent with the observed ability of GPSM3 to decrease DMB-forskolin 

potency on endogenous adenylyl cyclase activity (Figure 3-9); however, the underlying 

mechanism for these observations is not obvious. One likely reason behind these findings is 

modulation of G protein activity. We know that GPSM3 can bind to and impede Gai-mediated 

signalling but this effect was not present in our results, as shown by inhibition of adenylyl 

cyclase (Figure 3-7). GPSM3 can promote Gbg release, which can in turn directly activate or 

inhibit different isoforms of adenylyl cyclase activity (Sunahara et al. 2002, Table 1.1). Thus, it 

is possible that Gbg could have a net inhibitory, stimulatory or neutral effect on cAMP 

production, depending upon the type and expression of adenylyl cyclase isoforms present. HEK-

293 cells endogenously express adenylyl cyclase isoforms I, III, V, VI, VII and IX at varying 

levels (Atwood et al. 2011). Based on the reported sensitivities of these isoforms (Table 1.1), it is 

possible that this particular combination of endogenous adenylyl cyclases would exhibit a net 

inhibitory response to GPSM3-promoted Gbg activity. Therefore, in order to further understand 
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how GPSM3 might be mediating its observed inhibitory effect (as implied by the observed 

decrease in DMB-forskolin activity), it might be helpful to know the relative proportions of these 

isoforms and be able to overexpress them in the presence and absence of GPSM3.  

 My initial prediction was that GPSM3 would inhibit adenylyl cyclase III activity by 

promoting Gbg release, which has an inhibitory effect (Sunahara et al. 2002, Table 1.1). 

Contrary to this prediction, as compared to the mock vector control, the overexpression of 

GPSM3 together with adenylyl cyclase III increased the maximal effect of DMB-forskolin. This 

observation is not consistent with increased Gbg effects, but rather suggests that GPSM3 under 

these conditions serves to increase stimulation by DMB-forskolin by reducing the inhibitory 

effect of Gai. When adenylyl cyclase IV was overexpressed, I expected to see an increase in 

adenylyl cyclase activity when cells were co-transfected with GPSM3. This isoform is 

insensitive to Gai and stimulated by Gbg. My prediction was that since GPSM3 inhibits Gai/o 

while promoting Gbg, the next effect would be stimulation (Sunahara et al, 2002, Table 1.1). In 

contrast to these expectations, GPSM3 had no measureable effect on adenylyl cyclase IV activity 

when compared to control. Again, this observation is not consistent with increased Gbg effects, 

but is consistent with the interpretation that GPSM3 may have inhibited Gai/o under these 

conditions, an effect to which adenylyl cyclase IV would presumably be insensitive. Lastly, I 

decided to overexpress adenylyl cyclase VI, which is inhibited by Gai/o and stimulated by Gbg. 

Our initial prediction was that the presence of GPSM3 would increase adenylyl cyclase VI 

activity by inhibiting inhibition by Gai/o, while simultaneously increasing stimulation by 

promoting Gbg release. Yet again, the observed result is not consistent with increased Gbg 

effects, but rather suggests that GPSM3 under these conditions serves to increase stimulation by 
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DMB-forskolin by reducing the inhibitory effect of Gai/o on adenylyl cyclase VI activity. Taken 

together, the simplest explanation for these observed effects of GPSM3 on the various adenylyl 

cyclase subtypes tested is that the activation by GPSM3 of endogenous Gbg is not sufficient to 

produce measurable effects on the enzymes when overexpressed, whereas inhibition of 

endogenous Gai/o subunits by GPSM3 is sufficient to measurably obstruct their basal inhibitory 

effect on ectopically expressed adenylyl cyclases III and VI. Moreover, it could be difficult to 

observe endogenous Gbg protein effects on exogenously expressed adenylyl cyclases, especially 

after stimulation with a powerful cyclase specific agonist (e.g. forskolin). As well, it is possible 

that altering the stoichiometric ratios between G proteins and effectors by overexpressing the 

latter but not the former may obscure some of their biological interactions. While it is possible 

that Gbg may stimulate or inhibit these isoforms, perhaps endogenous levels of these G proteins 

are not sufficient to facilitate the adequate amount of activity on overexpressed adenylyl 

cyclases. Again, my findings fall in line with the idea that GPSM3 under such conditions is 

working to inhibit Gai/o-signalling, whereas its effects on Gbg are unclear.   

 

4.2 Contributions of research to current state of knowledge   

 There is still some ambiguity regarding whether or not GPCR signal termination is 

dependent on G protein activity (Rajogopal et al. 2010, Shenoy et al. 2016, Grundmann et al. 

2018). The classical paradigm purports that receptor phosphorylation and subsequent b-arrestin 

binding is independent of G proteins (Wei et al. 2003, Van Koppen et al. 2004); however, novel 

research suggests that “zero functional G” cells or cells with collectively eliminated or inactive G 

proteins exhibit diminished b-arrestin signalling, specifically phosphorylation of ERK1/2 in the 
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MAP kinase pathway (Grundmann et al. 2018). This finding introduces the idea that activation 

of G proteins may indeed be, in part, necessary for processes involved in receptor 

desensitization. The observations by Grundmann et al. 2018 are both complemented and 

contrasted by our findings, which largely suggest that G proteins (specifically Gbg) do in fact 

play a role in regulating the rate of b-arrestin recruitment. The study by Grundmann and co-

workers shows that complete knockout of Gas, Gaq/11 and Ga12/13 subtypes via CRISPR/Cas9 

technology simultaneously with a “knock down” of Gai/o using PTX is detrimental to the 

recruitment of b-arrestin. In direct contrast to this, my results suggest that activation of Gai/o is 

not necessarily required for recruitment, and that activation of Gbg under certain circumstances 

can reduce GPCR-b-arrestin binding. A potential shortcoming in their experimental design, 

which could account for the differences seen between results, is that they did not measure G 

protein activity at a proximal step (e.g. GTPase or cAMP measurement in the presence and 

absence of PTX) and they also did not test out whether Gai/o activation is necessary for b-arrestin 

recruitment, independently from Gbg activation or vice versa. Furthermore, they did not knock 

out endogenous Gbg, which could also be a contributing factor to the differences seen. Thus, 

their interpretations omit the influence of individual G proteins on b-arrestin recruitment in 

HEK293 cells. Even though the role of G proteins in this pathway is still unclear, these findings 

pave an avenue for future discoveries and could potentially be profitable within the 

pharmaceutical world.  

 Knowledge surrounding accessory proteins, such as RGS proteins and GRKs, has 

accumulated for more than two decades; however, information on AGS proteins, specifically 

GPSM3, has been limited. Even though an appreciable number of research articles have been 
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published on GPSM3 since its discovery in 2004, there is still some uncertainty as to how this 

protein functions within the cell (Cismowski et al. 2006, Oner et al. 2010, Giguere et al. 2012, 

Giguere et al. 2013). Studies have shown that cells lacking GPSM3 exhibit lower rates of 

monocyte and leukocyte migration to chemotactic agents (e.g. CCL19 and N-Formylmethionine-

leucyl-phenylalanine) and that expression is linked to inflammatory pathways (Giguere et al. 

2013, Sunderkotter et al. 2004); however, the mechanism underlying these events occur is still 

under investigation. There is some evidence that the Gbg-mediated pathway may be implicated 

in cell migration and if this were true, it would suggest a mechanism as to how GPSM3 may be 

altering GPCR signalling to promote cell migration. One supposition may be that GPSM3 is 

working by virtue of increasing free Gbg and thus, stimulating pathways associated with cell 

migration. Another possible interpretation may be that GPSM3 is decreasing inhibition of Gai/o-

mediated signalling and thereby, relieving any inhibitory pathways that decrease cell mobility. 

Furthermore, our results suggest that GPSM3 decreases b-arrestin recruitment to Gi-coupled 

GPCRs, which could include chemokine receptors. In theory, such decrease would prolong the 

longevity of the receptor at the plasma membrane and therefore prolong chemokine signalling, 

which involves cell migration. Lastly, there is some evidence of GPSM-containing proteins co-

localizing to the nucleus, which suggests that GPSM3 could potentially act as a transcription 

factor that regulates the production of mRNA genes involved in cell migration (Giguere et al. 

2012).  

 My observations contribute to the current state of knowledge by shedding new light on 

GPSM3 function. My findings imply that GPSM3 can inhibit Gai/o-mediated signalling through 

adenylyl cyclase activity. Furthermore, GPSM3 as shown here can indirectly inhibit b-arrestin 

recruitment to Gi-coupled receptors by promoting release and activity of Gbg. Although the 
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relationship between Gbg and cell migration is unclear, the ability of GPSM3 to promote Gbg 

and be associated with cell migration would be an interesting avenue for exploration. In addition, 

my results strongly suggest that GPSM3 can affect GaI protein activity independently of receptor 

activation and alter crucial stoichiometric ratios of free G proteins which could in turn alter the 

signalling cascades involved in receptor desensitization.  

 The ability of GPSM3 to decrease b-arrestin recruitment specifically to Gi-coupled 

receptors could be beneficial in promoting the lifetime of receptor signalling at the plasma 

membrane. For example, the evidence for GPSM3 in reducing µ-opioid receptor desensitization 

would, in theory, promote µ-opioid-related analgesic effects. If this were to be true, this would 

be a useful tool for pharmaceutical companies in generating a drug capable of mimicking the 

GPSM3 effect to promote these events. There is evidence that b-arrestin activity is increased 

after treatment with µ-opioid agonists, which can lead to undesirable symptoms often seen with 

opioid-use, such as gastrointestinal dysfunction (i.e. constipation) and respiratory depression 

(Madariaga-Mazon et al. 2017). My data suggests that GPSM3 may potentially carry out its 

function by binding directly to b-arrestins, which could then decrease any b-arrestin-mediated 

downstream signalling and side effects, such as the symptoms associated with opioid-use. 

Furthermore, the data presented in this thesis suggest that GPSM3 could function by altering the 

stoichiometry between free G proteins (i.e. Ga and Gbg), b-arrestins and/or GRKs, which could 

influence their associated signalling pathways. This strongly suggests that changes in protein 

stoichiometry may drastically alter the function and sequence of events. The study by Pitcher and 

colleagues suggests that stoichiometric ratios between Gbg and GRK proteins are fundamental in 

initiating optimal rates for receptor desensitization (Pitcher et al. 1992). This is consistent with 
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my results, which imply that disrupting this balance by overexpressing Gbg could impede the 

maximal rate for b-arrestin recruitment to the receptor (Figure 3-5). Although the importance of 

these ratios is still to be determined, it would be wise to take these stoichiometric ratios into 

more consideration when evaluating the sequelae of GPCR-mediated signalling pathways.  

 

4.3 Limitations of study 

 Data obtained in this thesis primarily utilized a live cell GloSensorTM assay for direct 

measurement of cAMP levels and a luminescence-based protein complementation assay for b-

arrestin recruitment. Collectively, these two assays both studied changes in bioluminescence 

over time. One evident limitation to this is that the results observed were not repeated using an 

alternative method in order to determine whether or not results seen were due to an artifact (i.e 

direct measurement of cAMP, co-immunoprecipitation, BRET, FRET); however, this is very 

unlikely given that I used appropriate positive and negative controls. Furthermore, it is unclear 

whether the protein complementation assay used is reversible. With several of the GPCRs tested, 

I found that bioluminescence, specifically in the case for the b-arrestin assay, continued to rise 

well beyond the given experimental timeline (e.g. 80 mins). Reversibility of b-arrestin-receptor 

binding could be experimentally tested by treating cells with a receptor-specific antagonist 

shortly after agonist stimulation. If cells show decreased luminescence in response to antagonist 

treatment and then are again able to produce luminescence after subsequent stimulation with 

dose-dependent concentrations of agonist, this would demonstrate that the complementation 

assay is indeed reversible.  
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 As with other cell-based studies, transfection efficiencies could potentially vary between 

different experiments. My transfection efficiency in HEK-293H cells usually ranged from 70-

80% as discussed in Materials and Methods. Likewise, the expression levels of transfected 

protein constructs could conceivably vary between conditions and within particular experiments, 

given the observed GPSM3-related changes in GPCR expression in some (but not all) studies 

(Giguere et al. 2013, Easton et al. 2007, Barberis et al. 2008); however, this seems unlikely 

considering the consistency between the results shown in Figures 3-2, 3-6 and 3-8. Moreover, the 

cytotoxic nature of the transfection reagent X-tremeGene and overexpression of various plasmids 

does not reflect what would happen under physiological conditions. Furthermore, not only could 

plasmids be expressed in different proportions, they could also produce a byproduct which could 

interfere with the natural cellular machinery. Lastly, there could be a relative excess of one or the 

other luciferase fragments in complementation-based experiments, which could also affect 

agonist concentration dependence.   

 Due to time constraints, the µ-opioid receptor construct that was used in the cyclase 

assays was the same construct used in the b-arrestin assay, which contained a fusion-protein 

(modified to include a complementary luciferase domain) at the C-terminal portion of the 

receptor. This tag could potentially interfere with G protein activation and therefore, the extent of 

adenylyl cyclase activity. Another limitation is that only one cell type was used and results found 

thus far cannot be generalized to other cells types. Furthermore, HEK-293H cells naturally lack 

GPSM3, so by transfecting this protein into this cell type we are creating an environment that is 

not naturally found under physiological conditions.  
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 It would be useful to examine whether the observations made here extend to in vivo 

situations. However, after many research attempts, I was unable to produce GPSM3 knockout 

mice, thus the focus of this research had to change from studying the role of GPSM3 in diabetic 

nephropathy to identifying the function of GPSM3 in GPCR signalling (Figure A-1, Figure A-3). 

Therefore, it is very difficult to translate effects seen in vitro to in vivo models. Furthermore, it is 

possible that certain drugs may have multiple target sites along the cell membrane. This could be 

a potential confounding variable when drugs have off target effects on different receptors. These 

off-target effects could alter the results seen within the cell and could be mistakenly attributed to 

GPSM3. For example, in one of the b-arrestin assays conducted, I stimulated cells transfected 

with muscarinic type-1 receptor with the agonist carbachol. Carbachol can also stimulate 

nicotinic receptors, also found in the plasma membrane of cells, including HEK-293H (Boksa et 

al. 1987). Despite these off-target effects seen under normal conditions, the signal received from 

that assay is solely attributable to the interaction between b-arrestin-1 and muscarinic type-1 

receptor because only the transfected constructs would contain the fusion-proteins (modified to 

include a complementary luciferase domain) capable of restoring the functional enzyme 

responsible for catalyzing the D-luciferin substrate into the bioluminescent oxy-luciferin. 

Therefore, these off-target drug effects would be more important to consider in the cAMP assays 

conducted. Furthermore, there is evidence that GPSM3 has multiple binding partners within the 

cell, such as 14-3-3 and RGS5, which on their own could affect GPCR signalling. In addition, it 

is possible that GPSM3 may be directly interacting with b-arrestin proteins, which on their own 

modulate various aspects of signalling, such as MAP kinase and Src activation (Lefkowitz et al. 

2006). Therefore, GPSM3 could alter activities of these intracellular proteins which could 

possibly produce cellular changes observed within these experiments.  
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4.4 Future directions 

 In future studies, the effects of GPSM3 on Gi–coupled signalling ought to be further 

characterized in vitro to define the GPSM3-dependent mechanisms that reduce the magnitude of 

b-arrestin recruitment. Thus, comprehensive expression and protein analysis of GPSM3 and 

additional binding interactors should be investigated. In order to further elucidate the mechanism 

underlying the ability of GPSM3 to reduce b-arrestin recruitment to Gi-coupled receptors, it is 

imperative that we study the phosphorylation state of the receptors. This should give us a better 

understanding of whether or not the observed decrease in b-arrestin recruitment to Gi/o-coupled 

receptors is due to a decrease in phosphorylation by GRK or due to a decrease in b-arrestin 

binding. Another way to study whether phosphorylation is an issue is by studying the effects of 

Gbg-sensitive and insensitive GRK isoforms. If GPSM3 is producing its inhibitory effects on 

GPCR-b-arrestin binding via a Gbg-dependent mechanism wherein preventing recruitment of 

GRK2/3 results in a lack of receptor phosphorylation, then overexpressing a Gbg-insensitive 

GRK, such as GRK4, ought to rescue the effect seen with GPSM3. If the GPSM3 effect persists, 

this would instead suggest that perhaps phosphorylation is not the issue and that the problem lies 

within the recruitment of b-arrestin or a different process within that pathway.  

 These investigations have solely focused on two bioluminescence-based assays to study 

the effects of GPSM3 on cellular signalling. Although my results are internally consistent and 

clearly point to a reduction in b-arrestin recruitment to Gi-coupled receptors mediated by the 

ability of GPSM3 to promote Gbg-related signalling, it would be helpful to extend and further 

confirm these findings by studying the same phenomenon using alternative methods, as 

mentioned in the previous section. In addition, the effects of GPSM3 must be studied with other 
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Gi-coupled GPCRs in different cell types, specifically cell types that naturally contain GPSM3 

(THP-1, rat vascular smooth muscle cells) in order to generalize the effects seen.  

 Results generated in this study solely relied on human cell-based models; however, 

additional studies would be helpful to further examine the effect of GPSM3 on cellular signalling 

in vivo. There is evidence that GPSM-/- mice exhibit protection against monocyte-driven model 

of acute inflammatory arthritis. Therefore, it would be interesting to determine whether these 

differences are a result of Gai-mediated inhibition or promotion of Gbg-mediated signalling. 

Furthermore, my data suggest that GPSM3 impedes desensitization of Gi-coupled receptors, 

notably µ-opioid receptor. Activation of this receptor type facilitates analgesia, sedation and 

euphoria and has been widely targeted by pharmaceutical companies for pain management. 

Given that GPSM3 reduces b-arrestin recruitment to this receptor, it is possible that GPSM3 

could prolong analgesic properties. Thus, it would be valuable to study whether GPSM3-/- mice 

exhibit lower pain thresholds when compared with wild types controls.  

 

4.5 Conclusions  

 In conclusion, I have identified that presence of GPSM3 decreases the recruitment of b-

arrestin proteins specifically to Gi-coupled receptors. Even though GPSM3 can bind to and 

inhibit Gai-mediated signalling, it seems that the primary mechanism by which GPSM3 is 

reducing b-arrestin binding is through a Gbg-dependent pathway. This effect was mimicked by 

Gb1g2 overexpression and rescued using a Gbg-specific inhibitor, GRK2ct/bARKct. In addition, 

GPSM3 exhibits a net inhibitory effect on endogenous adenylyl cyclase activity in HEK293 
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cells; however, the mechanism by which this occurs is poorly understood. A better understanding 

on how GPSM3 alters GPCR signalling is needed to understand its role in pathophysiological 

signalling and disease states, such as inflammation, rheumatoid arthritis and ankylosing 

spondylitis, in order to support new therapeutic interventions. 
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Appendices 

 

Figure A-1. Expression of AGTRII, GPSM3, CNR1 and CCR2 mRNA in E11 conditionally 

immortalized murine podocytes under normal and hyperglycemic conditions. Podocytes 

were treated with either normal (5.5mM) or high glucose (25mM) levels in medium for 48 hours. 

RNA was subsequently isolated using Trizol reagent and 1ug of cDNA was plated in triplicate 

for RT-qPCR analysis using SensiFASTTM SYBR No-ROX Kit. Means between groups were 

significant *p<0.01, **p < 0.001, ****p<0.0001. T test, n=3 
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Figure A-2. Expression of GPSM3, AGTRII, CNR1 and CCR2 mRNA in E11 conditionally 

immortalized murine podocytes over the course of differentiation. 1ug of cDNA was plated 

in triplicate for RT-qPCR analysis using SensiFASTTM SYBR No-ROX Kit. Means between 

groups were significant *p < 0.05, **p<0.001 ONE WAY-ANOVA with Bonferroni’s test, n=3-

6 
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Figure A-3. GPSM3 transcript expression in 2 and 8-week control and diabetic mouse 

kidney tissues. GPSM3 transcript expression relative to β-Actin in 2 and 8-week control and 

Streptozotocin-induced diabetic C57BL/6 mice (n=4). 1ug of cDNA was plated in triplicate for 

qPCR analysis using SensiFASTTM SYBR No-ROX Kit. Means between 2-week control and 

diabetic mice were not significant. Means between 8-week control and diabetic mice were 

significant *p<0.05, TWO WAY-ANOVA, n=4 
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Figure A-4. Hyperglycemia and β-hydroxybutyric acid reduce cell viability. (A) Cell 

viability was determined by the trypan-blue dye exclusion assay after treatment for 24 hours. 

Data are derived from two independent experiments carried out in duplicate. **p<0.01, 

***p<0.001, ****p<0.0001, ONE-WAY ANOVA with Bonferroni’s test, n=2. (B) Images are 

representative of the two independent experiments. 
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