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Abstract 

Using a hierarchical approach across three studies, the aim of my thesis was to assess the 

relationship between exercise and cognition. In experiment one, based on a large, diverse 

sample, I found that regular exercise was positively associated with reasoning and verbal 

performance. In experiment two, I examined whether measures of strength and 

cardiovascular health were related to cognition. I found that the plank (a measure capturing 

aspects of both strength and aerobic capacity) was associated with performance on tasks 

relying on verbal and memory function in young adults. However, when aerobic or resistance 

exercise was introduced to a group of sedentary participants (experiment three), I found 

neither intervention had an effect on cognitive performance. Taken together, these results 

suggest that exercise benefits cognition when it is a regular part of an individual’s lifestyle, 

however, introducing exercise for a transient period, even to those who are sedentary, 

provides no benefit. 
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Chapter 1  

1 Introduction  

The importance of exercise to our overall well-being is well documented. Exercising 

regularly is important for sustaining a normal bodyweight, and can help in the 

maintenance of normal blood lipid levels and blood pressure (Fletcher et al., 1996) The 

benefits of exercise extend beyond physiological changes; exercise also benefits mental 

health, having been shown to improve self-esteem and self-confidence and to reduce 

symptoms of depression (Fletcher et al., 1996). The benefits of exercise are so systematic 

and profound that it is recommended in the prevention and management of various 

medical conditions including cardiovascular disease, metabolic syndrome, osteoporosis, a 

number of neoplastic diseases and various mental illnesses, such as anxiety (Fletcher et 

al., 1996). However, an often-overlooked aspect of exercise is the effect it has on 

cognition and the brain.  

1.1 Exercise and the Brain  

In fact, there is accumulating evidence that exercise can have drastic effects on almost all 

aspects of brain health, including improved learning and memory, reduced symptoms of 

depression, better outcomes associated with brain injury and delayed onset and 

magnitude of cognitive decline associated with various neurodegenerative diseases 

(Cotman, Berchtold, & Christie, 2007a). One of the most prominently researched avenues 

explaining these exercise dependent benefits to cognition is altered gene expression. 

Various growth factors have been shown to have exercise-induced expression, such as 

Vascular Endothelial Growth Factor (VEGF), Insulin Growth Factor-1 (IGF-1) and Brain 

Derived Neurotropic Factor (BDNF), and these growth factors play a central role in 

regulating exercise dependent neuroplasticity (Fabel et al., 2003; Homolak, Janes, & 

Filipovic, 2015; Murray & Holmes, 2011). These growth factors promote neurogenesis, 

the creation of new neurons from neural progenitor cells, neuron survival, synaptic 

plasticity, and angiogenesis, the formation of new blood vessels from pre-existing ones 

(Homolak et al., 2015; Lopez-Lopez, LeRoith, & Torres-Aleman, 2004; Murray & 
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Holmes, 2011). The effects of exercise on learning and memory tend to be mediated by 

BDNF and IGF-1, whereas VEGF and IGF-1 are responsible for exercise stimulated 

angiogenesis and neurogenesis (Cotman, Berchtold, & Christie, 2007a).  

After exercise, levels of BDNF are found to increase in several areas of the brain; 

however the most significant increases are seen in the hippocampus (Cotman, Berchtold, 

& Christie, 2007a). It therefore follows that many of the benefits associated with 

increased BDNF expression relate to learning and memory formation, processes 

commonly involving the hippocampus. For example, Vaynman and colleagues (2004) 

showed evidence that BDNF is involved in learning and memory formation in rodents by 

using antibodies to the BDNF receptor, TrkB, to block its signalling pathway. When the 

TrkB receptor in the hippocampus was blocked, exercised rats showed significantly 

reduced rates of acquisition and retention on a spatial leaning task compared to the rats 

that were not treated with the TrkB antibody. These rates of acquisition and retention 

were similar to those of their sedentary counterparts, demonstrating evidence that 

exercise mediates increased expression of BDNF, which in turn improves hippocampal-

dependent learning acquisition and memory retention (Vaynman, Ying, & Gomez-Pinilla, 

2004). Interestingly, Ding and colleagues (2006) saw similar effects when an alphaIR3 

antibody was used to block the IGF-1 receptor in the hippocampus during a 5-day 

exercise protocol in rats. Although this treatment did not have any effect on learning 

acquisition on the Morris water maze task, they did find that it significantly reduced the 

benefits of exercise on memory recall (Ding et al., 2006). They further found that when 

the IGF-1 receptor was blocked, the exercise-induced increases in BDNF mRNA and 

protein levels were lost, suggesting that the IGF-1 and BDNF signalling pathways in the 

hippocampus converge (Ding et al., 2006). McCusker and colleagues (2006) were able to 

supplement this finding; they demonstrated that when cortical neurons were treated with 

IGF-1, the expression of the BDNF receptor increased, and this was accompanied by 

amplified BDNF activity, as measured by ERK phosphorylation. Overall, BDNF is a 

growth factor whose expression has been found to mediate several exercise-dependent 

cognitive benefits. However, further research has shown that this growth factor does not 

act in isolation, as there are many other signalling pathways that are involved in its 

expression, and in turn, its downstream effects on learning and memory.  
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More recently, research has been conducted to determine the molecular mechanisms 

underlying the exercise-dependent increased expression of BDNF, and one pathway of 

interest involves the newly discovered hormone Irisin. PGC-1α is a protein whose 

expression can be amplified via exercise in skeletal muscle (Wrann et al., 2013). It is 

involved in many aspects of energy metabolism, including mitochondrial biogenesis and 

respiration, however, lack of PGC-1α expression is associated with neurodegeneration 

(Boström et al., 2012, Wrann et al., 2013). Recently, Boström and colleagues (2012) 

discovered FNDC5, a PGC-1α dependent protein, which is secreted and cleaved into 

Irisin. Irisin has peripheral effects; for example, its ability to induce browning of white 

adipose tissue, although evidence shows its effects extend to the brain (Boström et al., 

2012). Rodents in one study voluntarily ran for 30 days, which resulted in increased 

expression of PGC-1α in skeletal muscle, and increased FNDC5 expression in skeletal 

muscle and the hippocampus (Wrann et al., 2013). They also found that both central and 

peripheral Irisin likely contributed to the positive regulation of BDNF expression in the 

hippocampus. This demonstrates that the activation of the PGC-1α pathway via 

endurance exercise is one mechanism contributing to the augmented expression of BDNF 

(Wrann et al., 2013). However, it is important to note this is not the only exercise related 

pathway inducing BDNF expression. Additionally, Garcia and colleagues (2003) found 

that the effects on BDNF due to 1 week of voluntary wheel running were lost when rats 

had lesions affecting norepinephrine release in the brain, which suggests functional 

norepinephrine release is essential for BDNF expression in the hippocampus. In addition, 

there is evidence showing that elevated levels of peripheral IGF-1 crossing the blood 

brain barrier can induce increased expression of BDNF (Ding et al., 2006). Overall, it is 

likely that there are multiple pathways necessary for exercise-dependent neurotrophin 

expression in the hippocampus and further investigation on how they may interact with 

one another is necessary for understanding how exercise is able to induce neurogenesis 

and neural plasticity.   

Although we have evidence showing that many exercise-dependent cognitive benefits are 

related to increased expression of various growth factors, there is less known about the 

signalling pathways underlying these cognitive changes. Two molecules in particular are 

thought to be involved in hippocampal synaptic plasticity. The first is cAMP-response- 
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element binding (CREB), a transcription factor that regulates neuronal survival and is 

involved in long-term memory (Finkbeiner, 2000). Synapsin I is the other protein of 

interest, as it plays a role in synaptic transmission by maintaining a reserve pool of 

synaptic vesicles and by regulating the kinematics of neurotransmission (Hilfiker et al., 

1999). Vaynman and colleagues (2003) proposed that the signalling pathways underlying 

the increased expression of these proteins involve BDNF. They suggest that as BDNF 

binds to the TrkB receptor, the mitogen-activated protein kinase (MAP-K) cascade is 

activated (Vaynman, Ying, & Gomez-Pinilla, 2003). MAP-K signalling is associated with 

learning and memory formation, which can be attributed to its ability to regulate and 

promote the activity of CREB (Blum et al., 1999; Finkbeiner et al., 1997; Hardingham, 

Arnold, & Bading, 2001). They additionally show that the actions of BDNF are 

dependent on an interaction with the N-methyl-D-aspartate receptor (NMDA-R), which 

itself is involved in the modulation of long-term potentiation, a neural correlate of 

learning and long-term memory (Bliss & Collingridge, 1993; Stuchlik, 2014). Interaction 

with this receptor likely activates calcium/calmodulin protein kinase II, a molecule also 

commonly shown to be involved in learning and short term memory (Yin & Tully, 1996). 

Not only does the CAMKII pathway regulate synapsin I mRNA levels, but it also 

converges on the MAP-K cascade, allowing it to have a role in the regulation of CREB 

mRNA levels (Vaynman, Ying, & Gomez-Pinilla, 2003). Interestingly, their results show 

CAMKII signalling cascade also regulates the mRNA levels of TrkB-R and BDNF itself, 

suggesting BDNF can maintain its effects via a continuous loop (Vaynman, Ying, & 

Gomez-Pinilla, 2003). Thus, although BDNF plays a critical role in exercise-dependent 

neuronal plasticity, there are numerous other molecules, beyond those presented, helping 

to modulate its effects.  

Moreover, there are numerous ways these signalling pathways can be interrupted; 

however, one more recently investigated avenue is chronic systemic inflammation. 

Inflammation is prevalent in those with metabolic syndrome, a condition associated with 

hypertension, hyperlipidemia, abnormal cholesterol and abdominal obesity (Yaffe et al., 

2007). Interestingly, Yaffe and colleagues (2007) showed that those with metabolic 

syndrome are at greater risk for cognitive decline. This effect is augmented when serum 

levels of inflammatory markers are elevated, which demonstrates that these peripheral 
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health conditions have an indirect effect on cognitive health (Yaffe et al., 2007). One 

explanation for the presence of these cognitive health outcomes is that systemic 

inflammation exacerbates inflammation in the central nervous system (CNS; Perry, 

2004). Inflammatory conditions in the CNS, such as those induced via the pro-

inflammatory cytokines TNFα and IL-1β, can impair the signaling of various growth 

factors. For example, IL-1β has been shown to interfere with BDNF signaling, causing 

depressed CREB activity, likely due to neurotrophin resistance (Tong et al., 2008). In 

addition, TNFα has been found to inhibit IGF-1 receptor signaling (Venters et al., 1999). 

These growth factors prevent apoptosis, and when their signaling pathway is interrupted, 

neurons become more susceptible to degeneration. However, exercise has the ability to 

reduce many risk factors associated with metabolic syndrome, and can help minimize the 

inflammation found in patients with obesity, atherosclerosis and insulin resistance 

(Petersen & Pedersen, 2005). Exercise first stimulates the release of IL-6, an anti-

inflammatory myokine, from skeletal muscle into circulation (Petersen & Pedersen, 

2005). IL-6 subsequently stimulates the production of additional anti-inflammatory 

cytokines, IL-1ra and IL-10, and inhibits the production of TNFα (Mizuhara et al., 1994; 

Steensberg et al., 2003). IL-10 further impedes the production of both TNFα and IL-1β 

(Pretolani, 1999). Thus, the protective effects of exercise are not only limited to 

conditions related to cardiovascular disease, but also extend to inflammation throughout 

the body, including the CNS. This evidence shows that exercise can indirectly help 

restore BDNF and IGF signaling that may be lost due to inflammatory conditions, and 

thus prevent cognitive decline by promoting neuron survival and synaptic plasticity. 

Neurotrophins are a class of proteins that are essential for the modifications in neural 

circuitry brought on by exercise. However exercise also supports these alterations by 

modulating metabolic cascades and the vascular structure of the brain. Exercise has been 

shown to alter the levels of various proteins involved in glucose metabolism in the 

hippocampus, including enzymes involved in glycolysis and proteins necessary for 

glutamate turnover ( Ding et al., 2006). This may further the neuroprotective role of 

exercise, as excess glutamate at the synaptic cleft can result in excitotoxicity, which can 

cause damage to neurons. Additionally, in that study there were elevated levels of 

proteins required for both ATP synthesis and the transport of ATP from the mitochondria 
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to sites of utilization; this is suggested as a mechanism of improved energy transduction 

when energy demands are heightened (Ding et al., 2006). Exercise has also been shown 

to impact vascular structure and blood flow in certain regions of the brain. When 

neurogenesis takes place, metabolic demands increase, resulting in the induction of 

angiogenesis (Palmer, Willhoite, & Gage, 2000). Angiogenesis prompts an increase in 

microvascular density in the brain, which in turn increases cerebral blood volume (Cha et 

al., 2003). Following this, Pereira and colleagues (2007) were able to correlate cerebral 

blood volume and exercise-stimulated neurogenesis in the dentate gyrus using imaging in 

mice. Although this same analysis cannot be performed in humans, they found that after 

12 weeks of a cardiovascular exercise regime there was increased blood flow to the 

dentate gyrus, which correlated with improved declarative memory performance (Pereira 

et al., 2007). Their data supports the necessity of increased blood flow to areas 

undergoing neural restructuring, likely because of the associated increased energy 

demands. In support of this, Guiney and colleagues (2015) showed that the relationship 

between physical activity frequency and performance on an inhibitory control task could 

be mediated by cerebrovascular responsiveness, and they concluded that enhanced 

cerebral blood flow regulation may be a possible route by which regular physical exercise 

brings about improvements in cognition. Thus, it is apparent that exercise modulates 

numerous other physiological systems in order to support and maintain the exercise-

dependent alterations in neuronal circuitry that are stimulated by BDNF, IGF-1 and other 

growth factors.   

Although the exact mechanism by which exercise exerts its beneficial effects on neuron 

survival and function is unclear, much research has been done to determine whether these 

neurophysiological changes translate to cognitive enhancements in both animals and 

humans. It has been shown that adults who have higher cardiovascular fitness levels have 

greater white matter integrity and higher gray matter volume in the hippocampus and pre-

frontal cortex, (Erickson et al., 2009; Johnson et al., 2012; Weinstein et al., 2012). As 

well, increases in functional connectivity have been shown in healthy elders in the default 

mode network and hippocampal networks after participation in a long-term aerobic 

training regime (Burdette et al., 2010; Voss et al., 2010), suggesting prolonged 

participation in an exercise regime has beneficial effects on brain structure and function.  
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1.2 Exercise and Cognitive Function  

Many of the neurophysiological changes associated with exercise have been shown to 

have significant effects on cognitive function in both rodents and humans. Various 

studies have shown benefits of voluntary exercise on spatial learning in rodents, most 

notably on the Morris water maze task (van Praag et al., 2005; Vaynman, Ying, & 

Gomez-Pinilla, 2004). Vaynman and colleagues (2004) showed that rodents with 

unrestricted access to a running wheel for one week had better spatial memory 

acquisition and retention on the water maze task than their sedentary counterparts. As 

well, various studies in humans demonstrate positive effects on many cognitive abilities 

after physical activity. There are generally two types of intervention studies used to 

investigate these effects. One focuses on the acute effects of exercise, where measures of 

cognitive performance are completed immediately before and after a single bout of 

exercise, which may last from a few minutes to several hours. The other avenue focuses 

on the effects of chronic exercise. These studies often have sedentary adults participate in 

a novel exercise regime over the course of weeks or months, with cognitive and fitness 

testing occurring before and after the intervention. The literature suggests that both types 

of exercise programs result in small, positive effects on cognition (Chang et al., 2012; 

Colcombe & Kramer, 2003). For instance, in a meta-analysis performed by Chang and 

colleagues (2012), it was concluded that a single bout of exercise has a small, positive 

effect on cognitive performance on a wide range of tasks assessing executive functions, 

attention, reaction time and memory. Similarly, a meta-analysis reviewing long-term 

intervention studies in healthy older adults found improvements in participant’s 

visuospatial processing, but the most notable benefits were found in tasks tapping into 

executive control processes (Colcombe & Kramer, 2003). Despite these parallels, the 

effects of both types of exercise interventions are not uniform and depend on many 

factors, including the demographics of the participant pool.  

There are several different types of exercise that may have contrasting effects on 

cognition, but they are generally classified as either aerobic or resistance exercise. 

Exercise is categorized as aerobic when it raises the heart rate and breathing rate of the 

individual (e.g. brisk walking, jogging, cycling; American College of Cardiology, 2015). 
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Resistance training encapsulates any exercise that focuses on building the strength of 

major muscle groups (e.g. bodybuilding or bodyweight movements; Liu-Ambrose et al., 

2012a; van de Rest et al., 2013) While the link between cognition and these different 

types of exercise has been investigated in different age groups across the lifespan, most 

of this work focuses on the effects of aerobic exercise on cognition in older adults. In this 

cohort, there is evidence to suggest that older adults with greater cardiovascular fitness 

levels tend to experience less severe age related decline in cognitive function (Suominen-

Troyer et al., 2016). Other studies have shown that better cardiovascular fitness is also 

associated with reduced age-related neural degeneration of the prefrontal, parietal and 

temporal cortices, and increased hippocampal volume (Colcombe et al., 2003; Erickson et 

al., 2009). These neural changes are accompanied by superior performance on tasks 

measuring memory (Erickson et al., 2009), executive function, attention (Barnes et al., 

2003), and global intelligence (Aberg et al., 2009). When exercise is introduced as an 

intervention, most studies rely on aerobic exercise, such as walking or jogging. Aerobic 

exercise has been shown to benefit performance on tasks relying on attention, executive 

function and speed of processing in this age group (Burdette et al., 2010; Cha et al., 2003; 

Colcombe & Kramer, 2003; Erickson et al., 2009; Fletcher et al., 1996). Most notably, 

involvement in an aerobic training regimen is associated with improvement in spatial 

memory (Erickson et al., 2011; Moreau, Kirk, & Waldie, 2017; Stroth et al., 2009). For 

instance, Erickson and colleagues (2011) implemented a 1-year walking intervention in 

healthy older adults. The participants in the aerobic intervention experienced a 2% 

increase in hippocampal volume, and they found this volume increase significantly 

correlated with improvements on a spatial memory task. Fewer studies have investigated 

the effects of resistance training on cognition in this group. However, the few studies in 

this area have shown improvements on various memory tasks (Best et al., 2015; Cassilhas 

et al., 2007), but more consistently on tasks assessing executive control (Best et al., 2015; 

Ikudome et al., 2016; Liu-Ambrose et al., 2012a; Liu-Ambrose et al., 2012b). For 

instance, Best and colleagues (2015) found that after involvement in a 1-year resistance 

training program once or twice a week, older adults showed improvements on four 

measures of executive function. These benefits were also present in both groups at the 2-

year follow-up, along with improved memory performance in the group performing 
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resistance training twice per week (Best et al., 2015). In addition, there have been 

numerous studies directly comparing the effects of a long-term aerobic versus resistance 

exercise regime. These studies consistently show that each regime has differential effects 

on various cognitive abilities (Dunsky et al., 2017; Moul, Goldman, & Warren, 1995; 

Smiley-Oyen et al., 2008). Despite these findings, it should also be noted that there are 

studies that have not been able to show any cognitive benefits from participating in an 

aerobic or resistance exercise program. For example, in a study by Blumenthal and 

Madden (1988), two groups of men were subject to either jogging or strength training for 

twelve weeks. Although reaction time on a memory search task was related to the 

participant’s initial level of fitness, there was no performance changes on the task after 

the exercise protocol in either group (Blumenthal & Madden, 1988).  

One aspect of this literature to consider is the fact that older adults often display a unique, 

and specific, overall health and cognitive profile, which may constrain the role different 

exercise programs have on their cognition. Younger adults on the other hand have more 

stable cognitive functioning. However, since they are generally thought to be at their 

peak cognitive health (Hillman, Erickson, & Kramer, 2008), fewer studies have been 

conducted to investigate the link between exercise and cognitive performance in this 

population. Whether the relationship between different exercise regimes and cognition in 

younger adults parallels the relationship found in older adults is unclear because few 

studies directly compare these two cohorts. However, in studies that do compare these 

age groups, it has been shown that the benefits to cognition tend to be more robust in 

older adults (Hawkins et al., 1992). Of the few studies that perform interventions in 

young adults, it has been shown that high intensity aerobic exercise over a period of 8 

weeks has a positive effect on measures of executive function, such as the Trail Making 

Test and the Stroop Task (Costigan et al., 2016; Hwang et al., 2016). However, very few 

studies have examined the cognitive effects of a chronic resistance exercise regime in 

young adults. Moving forward, studying young adults will be fundamental to 

understanding the relationship between cognitive function and exercise. Because young 

adults are at their peak cognitive health, they can provide important information about 

how exercise affects cognition, without the confounds of age related cognitive decline or 

neurodegenerative disease.  
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In summary, it is difficult to draw conclusions about the relationship between exercise 

and cognition based on the existing literature. This is due in part to the limited overlap 

between studies that combine comparable exercise interventions, the different cognitive 

tests used and populations studied; most of the research in this area is confined to a 

particular population (e.g., older adults), using a single type of exercise (e.g., aerobic 

training), and a limited set of cognitive tasks (e.g., memory tasks). Therefore, the exact 

relationship between the nature of exercise and the accompanying cognitive benefits  

The current study aims to ameliorate these issues by using Cambridge Brain Sciences 

(CBS) to assess cognitive performance. CBS is a set of 12 online tests used to measure 

different aspects of cognitive function. The collection of tests assess aspects of inhibition, 

selective attention, reasoning, verbal short-term memory, spatial working memory, 

planning and cognitive flexibility. Together, the tasks collectively and comprehensively 

assess three cognitive domains: short term memory (STM), reasoning and verbal abilities, 

based on behavioral data (from over 44,000 individuals) and neuroimaging studies that 

have demonstrated that each domain is supported by a separate brain network (Hampshire 

et al., 2012). They have been validated in patients (Owen et al., 1990; Owen et al., 1991; 

Owen et al., 1993) and healthy populations (Owen et al., 1996a; Owen et al., 1996b), and 

have been shown to be sensitive to subtle cognitive changes due to neurodegeneration 

(Owen et al., 1992; Owen et al., 1993) or pharmacological intervention (Lange et al., 

1992; Mehta et al., 2000). In addition, the tests are designed to be engaging to maximize 

participant compliance. Completion of the battery requires between 35 to 45 minutes, 

which is faster and more convenient than many other pen and paper neuropsychological 

batteries. Taken together, the CBS battery is ideal to use in the current study because it is 

easy and fast to complete, can be used to assess even the most subtle changes to cognition 

and the categorization of tasks into latent cognitive domains will help to provide an 

objective definition of exactly which cognitive processes are influenced by physical 

activity. 
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1.3 Objectives and Hypotheses   

The overall aim of this thesis is to provide a general landscape of the relationship 

between exercise and cognition. This will be done across three studies that address this 

relationship in a hierarchical manner. First, in experiment one, I evaluate whether regular 

exercise influences cognitive performance. Participants in this study were asked “How 

often have you exercised, such that you work up a sweat, in the past month”. They could 

select an answer from: everyday, 3 or more times a week, 1-2 times a week, less than 

once a week, and not in the past month. I then determine whether their response has any 

relationship with their performance on the CBS task battery. In experiment two, I explore 

whether measures of cardiovascular fitness and muscle strength are associated with 

cognitive performance in young adults. To test this, I had participants perform all 12 

tasks comprising the CBS battery, in addition to a predictive VO2 Max test, which 

estimates maximal oxygen consumption, and four other measures of strength. Together, 

these physical measures provide an estimation of each participant’s overall fitness level. I 

then evaluate whether any of these measures of fitness are related to cognitive 

performance. Next, to delineate the aspects of cognition that are most influenced by 

different exercise regimes, experiment three was designed to determine which cognitive 

domains are most affected by a long-term aerobic and resistance exercise intervention in 

young adults. Overall, by adopting a comprehensive task battery and by examining 

diverse measures of exercise, I hope to be able to more clearly elucidate the relationship 

between exercise and cognition in humans.  

Although the findings of previous studies tend to show inconsistencies in the 

cognitive effects of exercise, patterns throughout the literature have informed my 

hypotheses for each experiment. Based on the existing literature (e.g. Hillman et al., 2014 

& Liu-Ambrose et al., 2012a), I hypothesize that in experiment one, more frequent 

involvement in exercise will be associated with improved cognitive performance across 

various tasks, but, in particular, those tasks that tap into executive function. In experiment 

two, I hypothesize that there will be a positive association between cognitive 

performance and measures of cardiovascular fitness. More specifically, previous studies 

have revealed an association between aerobic capacity and memory function (Chaddock 
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et al., 2010; Erickson et al., 2009; Schwarb et al., 2017); thus I hypothesize that my 

measure of aerobic capacity will correlate with performance on tasks falling into the 

memory domain. Conversely, in young adults, muscle strength has been shown to be 

associated with lower global intelligence scores (Aberg et al., 2009), and thus I do not 

predict that cognition will be positively correlated with any measures of strength. Lastly, 

in experiment three, past literature has led me to hypothesize that participants in the 

aerobic exercise group will show more improvement on tasks relying on executive 

functions (Costigan et al., 2016; Hillman et al., 2014; Smiley-Oyen et al., 2008; Stroth et 

al., 2009). However, the limited number of studies regarding the effects of resistance 

interventions makes it difficult to predict which cognitive functions will be most 

improved upon. Nonetheless, based on previous work (Liu-Ambrose et al., 2012a; van de 

Rest et al., 2014), I hypothesize that tasks relying on verbal and memory abilities will 

show the most improvement.   
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Chapter 2  

2 Experiment One 

2.1 Introduction  

Many experimental approaches have been used to probe the effects of exercise on 

cognition. A common approach is to run population-based studies, which have many 

strengths; chief among them include aggregating data from very large and diverse groups 

of people across the lifespan. As a consequence, findings emerging from these studies 

have high ecological validity. For instance, the objective of the National Health and 

Nutrition Examination Survey was to garner a better understanding the effects of exercise 

by first characterizing the role of exercise in the daily lives of a large population. 

Between 1999 and 2006, 22,545 participants were asked about their exercise habits, 

including the types and duration of different exercise programs (Dai et al., 2015). The 

results of their study suggested that exercise regimes varied based on demographic 

variables, including age, gender, race and educational attainment. For example, men were 

found to more frequently participate in sports and bicycling, and women more often 

participated in walking/hiking, dancing/aerobics and conditioning exercises; however, the 

amount of exercise for both sexes decreased with age (Dai et al., 2015). In addition, they 

found that for most activities, participation was significantly higher for non-Hispanic 

Caucasians and those with higher education. They also found exercise patterns that were 

true across the population, for example walking was the most common form of physical 

activity (Dai et al., 2015). It is these types of studies that provide valuable insight into 

exercise habits at a population level, which can then be used to guide and promote 

physical activity programs for target populations.  

Observational studies, at the population level, have also been valuable for examining the 

complicated relationship between exercise and cognition. For instance, they do not 

arbitrarily assign an exercise program that may not be ideally suited to a particular group 

of people. As well, the challenging task of having a large number of people engage in the 

same exercise is circumvented. Instead, the idea is to get a general snapshot of reality; 
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these studies evaluate what people regularly do, which presumably reflects real world 

habits. These benefits featured prominently in an investigation by Jedrziewski and 

colleagues (2010), which adopted a large-scale longitudinal approach to determine if 

continuous exercise involvement affects age-related changes in cognition. They used the 

National Long Term Care Survey over a 10-year period to determine if exercise habits 

were associated with the onset of cognitive impairment, as measured by the Mini-Mental 

State Exam (MMSE) and the Short Portable Mental Status Questionnaire (SPMSQ; 

Jedrziewski et al., 2010). Participants were asked about their participation in physical 

activity over the previous two-week period; more specifically, they were asked what 

types of activity they participated in, the number of sessions per week they engaged in the 

activity, and the length of each session. At 5-year (2,488 participants) and 10-year (1,260 

participants) follow-ups they found that participants who engaged in a greater number of 

activities in the first 5-years performed better on the MMSE and had fewer errors on the 

SPMSQ at the 10-year assessment. In addition, they showed that the number of exercise 

sessions lasting at least 20 minutes in the previous two weeks was related to a higher 

MMSE score. These results demonstrate that greater exercise frequency and involvement 

in a greater number of types of exercise is positively related to later onset cognitive 

decline in older adult populations (Jedrziewski et al., 2010).   

However, exercise can influence cognition in various ways across the lifespan. For 

instance, exercise has been shown to improve or maintain the cognitive function of 

children and young adults, whereas in older adults, it is thought to delay age related 

cognitive decline (Hillman et al., 2008). For instance, Hillman and associates (2014) had 

8 and 9 year-old children engage in a 70-minute aerobic physical activity intervention 

everyday after school. Their results followed a dose-response relationship; students with 

a higher attendance rate performed better on tasks assessing cognitive flexibility and 

attentional inhibition (both executive control tasks) than those who attended fewer classes 

(Hillman et al., 2014). In studies focusing on older adults, it is not uncommon for the 

control group to show declines in cognitive performance. Thus, these studies tend to 

focus on the extent to which different exercise regimes can attenuate cognitive decline. 

For example, in a study comparing different amounts of resistance training in senior 

women, Liu-Ambrose and associates (2012a) found that both resistance interventions 
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resulted in improved performance on a test of attentional control; however those in the 

balance and toning control group experienced a small deterioration in performance.   

Age is not the only factor that influences the effects of exercise on cognition; the 

relationship between exercise and sleep, and its subsequent effects on cognition, is also 

important. A meta-analytic review of 66 studies demonstrated a consistent relationship 

between chronic exercise participation and sleep habits. That is, regular exercise had a 

small, but positive effect on total sleep time and sleep efficiency (time spent 

sleeping/time spent in bed x 100%), a small-moderate beneficial effect on sleep onset 

latency and a moderate positive effect on sleep quality (Kredlow et al., 2015). Further 

investigation has revealed that the cognitive benefits of exercise are dependent on sleep. 

Lambiase and colleagues (2014) recorded sleep and physical activity habits of 121 

women over the course of 7 days, as well as performance on various cognitive tasks. 

They showed that exercise involvement mitigates the cognitive deficits associated with 

less sleep; poorer sleep efficiency was associated with worse performance on tasks 

assessing executive function (the Digit Symbol task and the Trail Making Test) in women 

with lower levels of physical activity, but not in those with higher levels (Lambiase et al., 

2014). The relationship between exercise and sleep clearly affects cognitive performance, 

and thus sleep quantity and quality should be considered in experiments investigating the 

connection between exercise and cognition. 

While a lot of research has been done to examine the effects of different exercise regimes 

on cognition, a lot of this work has been done in a piecemeal manner. That is, a common 

issue found across many studies is the use of a narrow cognitive task battery. This results 

in a limited number of cognitive functions being investigated, and makes it more likely 

that some exercise-dependent benefits will go unobserved. Moreover, very few studies 

use a sample that includes a wide age range, which makes it difficult to compare the 

effects of exercise on different age groups. This is important because as we age, our 

ability to perform a certain intensity or type of exercise diminishes. As a consequence 

individual studies must tailor their interventions to the age group under investigation, 

which ultimately limits the generalizability of those findings. These concerns have 

contributed to the difficulty in clearly defining the relationship between exercise 
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involvement and cognition. What is lacking in the literature is a large-scale examination, 

providing a landscape perspective on the effects of exercise on cognition. In this study, I 

sought to resolve this by focusing on exertion rather than specific forms of exercise, by 

assessing various cognitive functions, and by examining how factors such as age and 

sleep may interact with exercise to influence cognition.  

The primary aim of experiment 1 was to use a large and diverse sample to evaluate the 

aspects of cognition that most benefit from various levels of exercise. The secondary aim 

was to determine whether there are any other variables, such as age or sleeping patterns, 

which influence the relationship between exercise and cognition. To do this, I conducted 

a large-scale internet-based study by recruiting just shy of 11,000 participants, each of 

whom completed the 12 tasks that comprise the Cambridge Brain Sciences cognitive task 

battery. Based on the existing literature (e.g. Hillman et al., 2014 & Liu-Ambrose et al., 

2012a), I hypothesized that more frequent involvement in exercise would be associated 

with improved cognitive performance across various tasks, but, in particular, those tasks 

that tap into executive function. 

2.2 Methods  

2.2.1 Participant Demographics and Procedure  

Participants were recruited using Cambridge Brain Sciences, an online cognitive testing 

platform (www.cambridgebrainsciences.com). Before completing the study, participants 

gave informed consent. The Health Sciences Research Ethics Board of the University of 

Western Ontario approved this study.  

This study consisted of two phases. First, participants were asked to complete a 

questionnaire, which included questions about demographic variables (e.g., age, 

handedness, gender, and education) and one question about their exercise habits: “How 

often have you exercised, such that you worked up a sweat, in the past month?” 

(response: “not in the past month”, “less than once a week”, “1-2 times a week”, “more 

than 3 times a week” and “everyday”). After completing the questionnaire, participants 

were able to begin the second phase of the study, which involved completing the 12 

cognitive tasks included in the CBS platform. Collectively, these tasks measure many 
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aspects of cognition, including short-term memory, verbal ability, reasoning, and 

inhibitory control, all of which have been associated with specific patterns of neural 

activity (Hampshire et al., 2012), and have been used to detect subtle changes in 

cognition due to neurodegeneration  (Owen et al., 1992; Owen et al., 1993) or 

pharmacological intervention (Lange et al., 1992; Mehta et al., 2000).  A description of 

each of the 12 tasks can be found in the “Cognitive Measurements” section of this 

chapter. Only participants who completed the questionnaire and all 12 cognitive tasks 

were included in the analysis. In total, 10,985 participants (7011 female, 3885 male, 89 

did not identify as male or female) between the ages of 10 and 87 (M=40.45, SD=14.01) 

were included in this study. Of the 10,985 participants who completed the study, a total 

of 613 reported exercising every day, 2,760 participants reported exercising 3 or more 

times a week, 3,193 participants exercised 1-2 times a week, 2,422 participants reported 

exercising less than once a month and 1,997 participants reported that they had not 

exercised in the past month. Table 1 provides more information on population 

demographics.  

Table 1: Participant Demographics 

Measure	  	  
Percentage	  or	  Mean	  (SD)	   	   	  

	   Everyday	  	   3	  or	  more	  

times	  a	  week	  

1-‐2	  times	  a	  

week	  

Less	  than	  

once	  a	  week	  

Not	  in	  the	  

past	  month	  	  

χ2(df)	  or	  

F(df)	  

p	  

N	   613	   2760	   3193	   2422	   1997	   	   	  

Age	  	   41.0	  (15.4)	   40.7	  (14.2)	   39.6	  (13.7)	   39.7	  (13.72)	   42.2	  (14.0)	   12.30	  (4,	  

10980)	  

<0.001	  

Gender	  	   	   	   	   	   	   63.48	  (4)	   <0.001	  

Female	   52.7%	   61.4%	   63.9%	   65.7%	   68.1%	   	   	  

Male	   46.7%	   38.0%	   35.2%	   33.2%	   30.8%	   	   	  

SES	   	   	   	   	   	   25.52	  (4)	   <0.001	  
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Note. F-test was used to compare age; χ2 was used to compare gender, SES and education.  
Only individuals identifying as male or female were included in the gender analysis.  

 

An analysis of the descriptive statistics revealed there was a greater proportion of males 

in the group that exercised 3 or more times a week compared with those who exercised at 

the lowest frequencies (X2(1)> 11.72, p< 0.001). This was also true for the group that 

exercised everyday (X2(1)> 27.95, p< 0.001). The mean age in the sample was similar 

across the groups; however those exercising <1 a week and 1-2 times a week were 

significantly younger than those who reported the other three levels of exercise (t(873)> 

1.97, p<0.049; t(807)> 2.09, p<0.037). The groups who had not exercised in the past month 

or less than once a week also had a larger proportion of people who grew up in low 

socioeconomic households than those who exercised 3 or more times a week (X2(1)= 

21.25, p<0.001; X2(1)= 8.30, p=0.004 respectively). Finally, the highest proportion of 

participants held a Bachelor degree, followed by those with higher degrees (either a 

Master’s or Doctoral degree), followed by high school graduates and those with no 

education. The groups with the greatest proportion of people holding a Bachelor degree 

were those exercising less than once a week, everyday and 3 or more times a week, with 

a significantly lower proportion in the groups exercising 1-2 times a week (X2(1)= 5.07, 

p= 0.024), or not in the past month (X2(1)= 9.15, p= 0.002). Further information about the 

demographics of the sample can be found in the appendix.  

At	  or	  above	  poverty	  line	  	   92.5%	   94.6%	   92.8%	   92.6%	   91.1%	   	   	  

Education	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  109.14	  (16)	   <0.001	  

None	   3.9	  %	   2.5%	   2.4%	   2.9%	   3.7%	   	   	  

High	  School	   20.0%	   18.9%	   21.9%	   25.1%	   27.7%	   	   	  

Post-‐secondary	  	   43.3%	   42.5%	   41.2%	   44.2%	   39.6%	   	   	  

Master’s	  degree	   21.9%	   23.9%	   23.5%	   18.5%	   20.5%	   	   	  

Doctorate/Professional	  	   10.8%	   12.2%	   10.9%	   9.2%	   8.5%	   	   	  
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2.2.2 Cognitive Measurements 

Spatial Span The spatial span is a task used to measure spatial short-term memory, and 

is based on the Corsi block tapping task (Corsi, 1972). In this task, there is a 4 by 4 grid 

with 16 squares (Figure 1). A random sequence of squares will flash at a rate of 1 square 

every 900ms. The participant must use their cursor to repeat this sequence. If the 

participant correctly recalls the sequence, the following sequence length will increase by 

1, and if not, it will shorten by 1. After 3 errors, the task ends.  

 

Figure 1: Spatial Span Task.  

Token Search This task is based on a non-human primate test used to measure strategy 

during search behavior (Collins et al., 1998). There is an invisible 5 by 5 grid in which 

sets of boxes are displayed in random locations (Figure 2). To begin, the participant is 

instructed to find a token beneath one of the boxes by clicking on each box to reveal their 

contents. Once the token is found, it then becomes hidden beneath a different box and the 

participant must search each of the boxes until the token has been found under each one. 

However, the token will not appear in the same box more than once in each trial. They 

are instructed to not click on a box again after the token has been found underneath it. If 

they search in a box the token has been previously found under, the trial ends and in the 

next trial there will be one less box to search through. If the participant finishes the trial 

with no errors, the next trial will include one more box. After 3 errors, the task ends. 
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Figure 2: Token Search Task. 

 

Monkey Ladder This task has been historically used to measure numerical working 

memory in the primate literature (Inoue & Matsuzawa, 2007). In this task, there is an 

invisible 5 by 5 grid and at the beginning of each trial, there is a set of numbered squares 

that appear in random locations (Figure 3). After a period of time (number of square 

multiplied by 900ms), the numbers on the squares disappear. The participant must 

remember the ascending sequence of numbers and click on the squares in the sequence. If 

the trial is completed without error, the number of squares will increase in the next trial. 

If the participant makes an error, the next sequence has one less square. After 3 errors, 

the task ends. 

 

Figure 3: Monkey Ladder Task. 

 

Paired Associates This task is based on tests that are widely used to assess memory 

impairments in aging clinical populations (Gould et al., 2005). This task consists of an 

invisible 5 by 5 grid. Boxes are displayed at random locations on the grid, and one after 
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another, they open to reveal an image (Figure 4). Following this, the same images are 

presented to the participant in a random order and they must click on the box that was 

shown to contain that image. If the participant successfully pairs all the object-location 

sets, they move on to the next trial, which contains an added pair. If they don’t, the next 

trial contains one less pair. After 3 errors, the task ends. 

  

Figure 4: Paired Associates Task.  

Spatial Planning This task was formulated based on the Tower of London task and is 

used to measure planning abilities (Shallice, 1982). There is a tree shaped frame, which 

has numbered beads positioned along the branches (Figure 5). The goal is for the 

participant to reposition the beads in ascending numerical order, from left to right, from 

the top to the bottom of the tree. Participants have 3 minutes to solve as many problems 

as they can and the goal is complete the problem in as few moves as possible. The 

problems progressively become more difficult as the required total number of moves and 

planning complexity increases. The trial ends if the participant uses more than twice the 

number of moves required to solve the problem. The scoring system rewards efficient 

planning.  
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Figure 5: Spatial Planning Task.  

Spatial Rotations This task measures the ability of the participant to manipulate the 

spatial orientation of objects ‘in their mind’ (Silverman et al., 2000). In this task, there are 

two grids side by side, but one grid is rotated by a multiple of 90 degrees (Figure 6). The 

two grids are either identical, or differ by the position of one square. The participant must 

determine whether or not the grids are identical or not, and solve as many problems as 

they can in 90 seconds. If correct, the score increases by the number of squares in the grid 

and the next trial has more squares. If incorrect, the total score decreases by the number 

of squares in the grid and the next trial has less squares.  

 

Figure 6: Spatial Rotations Task.  

Feature Match Feature search tasks are commonly used to measure attentional 

processing (Treisman & Gelade, 1980). In this task, there are two grids that each contains 

a set of abstract shapes. In half the trials, the grids differ by 1 shape (Figure 7). The 

participant must determine whether or not the grid’s contents are identical or not and they 

have 90 seconds to complete as many trials as possible. If correct, their total score 
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increases by the number of shapes in the grid, and the subsequent grid increases by 1 

shape. If incorrect, their total score decreases by the number of shapes in the grid, and the 

subsequent grid decreases by 1 shape.  

 

Figure 7: Feature Match Task.  

Interlocking polygons This task is based on interlocking pentagons, which is part of a 

battery used to clinically measure the cognitive state of older adults (Folstein, Folstein, & 

McHugh, 1975). Participants are given a pair of interlocking polygons on one side of the 

screen. They are also given a third shape on the other side of the screen, and participants 

are required to indicate whether the shape they are given matches one of the interlocking 

polygons (Figure 8). They are instructed to solve as many problems as they can in 90 

seconds. If their response is correct, the total score increases by the difficulty level and 

the differences between the polygons becomes increasingly subtle. If the response is 

incorrect, the total score decreases by the difficulty level and the difference between the 

polygons become more pronounced.  

 

Figure 8: Interlocking Polygons Task.  
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Odd One Out This task is based on a set of problems from the Cattell Culture Fair 

Intelligence (Cattell & Cattell, 1949). There is a 3 by 3 grid on the screen and each cell 

contains a variable number of copies of a colored shape (Figure 9). The features making 

up the objects in each cell (color, shape, number of copies) are connected throughout the 

grid via a set of rules, and participants must deduce the rules that relate the object 

features and select the one cell whose contents do not correspond to those rules. The 

participant has 90 seconds to complete as many problems as possible. If they respond 

correctly, the total score increases by one point and the next problem is more complex. If 

incorrect, the total score decreases by 1 point. 

 

Figure 9: Odd One Out Task.  

Digit Span This task is a computerized version of a verbal working memory component 

of the Welscher Adult Intelligence Scale – Revised (Welscher et al., 1989). Participants 

will view a sequence of digits on the screen one after another that they need to remember 

and reproduce using their keyboard (Figure 10). If the participant completes the trial 

correctly, the next sequence is one digit longer, and if not, it is one digit shorter. The task 

is complete after 3 errors.  
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Figure 10: Digit Span Task.  

Grammatical Reasoning This task is based upon Alan Baddeley’s 3 minute grammatical 

reasoning task (Baddeley, 1968). Statements appear on the screen with the structure “The 

circle is not encapsulated by the square”. The participant must then indicate whether the 

statement is true or not for a pair of shapes displayed in the center of the screen (Figure 

11). The participant has 90 seconds to complete as many problems as possible. If they 

respond correctly or incorrectly, their score correspondingly increases or decreases by 

one.  

 

Figure 11: Grammatical Reasoning Task.  

Double Trouble This task is a more challenging variant of the Stroop task (Stroop, 

1935). On the screen, a colored word will appear, for instance BLUE written in red ink. 

The colors BLUE and RED will be displayed at the bottom of the screen, and the 

participant must indicate which color the word they are given is written in (Figure 12). 

The color word mappings may be congruent, incongruent, or doubly incongruent, 

depending on whether or not the colors that a given words describes matches the color 

that it is drawn in. The participant has 90 seconds to complete as many problems as 
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possible. If they respond correctly or incorrectly, their score correspondingly increases or 

decreases by one.  

 

Figure 12: Double Trouble Task. 

2.2.3 Statistical Analysis  

 The data were first cleaned in order to remove improbable responses (for example, 

reporting an age greater than 120 years) and outliers on the 12 CBS tasks, in two passes: 

first six, then four standard deviations from the mean. In addition to the 12 CBS tasks, 

three latent cognitive domain scores were included, which reflect short term memory, 

verbal and reasoning abilities (Hampshire et al., 2012). These domain scores were 

calculated by multiplying each participant’s score on the 12 tasks with the Moore-

Penrose pseudoinverse of a set of component weights (factor loadings) that are computed 

from a principle component analysis (PCA) on an independent set of 75,000 participants 

who had completed the same set of CBS tests. Scores on all cognitive tasks and the three 

cognitive domains were all converted to z-scores.   

I first determined whether the frequency of exercise participation had any impact on 

cognitive abilities. More specifically, I investigated whether regular participation in 

exercise offers a cognitive advantage over not exercising at all. To do this, I ran multiple 

linear regressions where I constructed models to predict performance on each of the 12 

CBS tasks, in addition to the three latent domains scores from the frequency of exercise. 

Gender, socioeconomic status (SES), age and level of education were included as 

categorical covariates of no interest with N-1 regressors (where N = the number of 

categories for each variable). Following this, I also examined whether exercise frequency 
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interacts with sleep quantity, quality or age to predict cognitive performance by adding 

the interaction term between exercise and age, and exercise and sleep to the model. All 

results were corrected using a False Discovery Rate (FDR). In addition, to ensure the 

results were not due to differences in sample size, I carried out a 5 (group: exercise 

frequency) x 3 (latent domains) mixed design ANOVA, as well as a 5 (group: exercise 

frequency) x 12 (tasks) mixed design ANOVA, using demographically matched samples.  

2.3 Results   

As both exercise and cognitive performance may be influenced by variables such as age, 

it was important to estimate the contribution of exercise on cognition while controlling 

for these variables. To do this, I constructed two general linear models to predict 

cognitive scores for each of the 12 tasks and the 3 latent cognitive domains. The null 

model included SES, sex, age, and education level as regressors of no interest. The 

second of the two models, termed the full model, included the same set of regressors, plus 

exercise frequency as the explanatory variable. I then compared these two models using 

an F-test to determine if exercise frequency significantly predicted cognitive performance 

beyond what can be explained by the variables of no interest. I found that exercise was 

associated with better performance on token search (F(4, 10969) = 4.03, pFDR = 0.012), 

polygons (F(4, 10969) = 3.18, pFDR = 0.038) and grammatical reasoning tasks (F(4, 10969)= 

7.88, pFDR = 0.003). Of the three cognitive domain scores, I found that exercising 

significantly predicted performance on the reasoning (F(4, 10969) = 3.99, pFDR = 0.012) and 

verbal domains F(4, 10969) = 5.47, pFDR = 0.002), as seen in figure 13. 
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Figure 13: Results of the F-test comparison between the null model, controlling for age, 

SES, gender, education and task type, and the full model, which controlled for the same 

set of regressors and included exercise frequency. Blue squares represent cognitive scores 

where the full model better predicted cognitive performance than the null model (p<0.05; 

n=10,985). All p-values are FDR corrected for multiple comparisons. 

These results indicate that relative to exercising less than once per week in the last month, 

any amount of exercise was associated with better performance on a series of cognitive 

tests that tap into reasoning and verbal abilities. Next, I examined how well each level of 

exercise was associated with the same set of cognitive measures. I found that those who 

exercise less than once a week performed better on the grammatical reasoning, token 

search and rotations tasks, as well as in the reasoning domain, when compared to those 

who did not exercise in the past month (no exercise was set as the intercept in the 

regression analysis; Figure 14). Relative to those who did no exercise in the past month, 

those who exercised 1-2 times a week performed better on the grammatical reasoning, 

token search, spatial span and polygons tasks, as well as in the reasoning and verbal 

domains (Figure 14). Those who exercised 3 or more times a week scored higher than 

those who hadn’t exercised in the past month on the digit span, grammatical reasoning 

and token search tasks, as well as in the verbal domain (Figure 14).  Surprisingly, those 

who exercised everyday did not perform significantly better on any task, or in any 

domain, when compared to those who hadn’t exercise in the previous month (Figure 14). 
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Figure 14: Summary of significant β-values from a multiple linear regression predicting 

cognitive scores from age, SES, gender, education, task type and exercise frequency. 

Blue squares represent the cognitive scores that were significantly better when compared 

to the group that had not exercised in the past month (p<0.05; n=10,985). All p-values are 

FDR corrected for multiple comparisons. 

Although I found that exercise predicted performance in cognition above and beyond the 

covariates of no interest, I was interested in whether age and sleep, which are variables 

shown to have strong links to cognition, interacted with benefits to cognition attributed to 

exercise I just found. To do this I ran two linear regression analyses by adding the 

interaction term between exercise and age, and exercise and sleep, to the full model. I 

found no significant interaction between sleep and exercise (F(4, 10965)=2.3, pFDR=0.55) or 

between age and exercise (F(4, 10965)=3.51, pFDR = 0.084) for any of the cognitive 

measures.  

To be sure the results were not due to large differences in the size of the sample, I 

performed a matched 5 (group: exercise frequency) x 3 (latent domains) mixed design 

ANOVA. That is, I matched 609 participants across all levels of exercise based on age, 

gender and SES. The results of the ANOVA revealed a significant main effect of exercise 
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frequency (F(4, 9120) = 4.00, p =0.003), however there was no main effect of latent domain, 

nor an interaction between the variables (F(2, 9120) = 2.45, p =0.086; F(8, 9120) = 1.12, 

p=0.3444). I similarly performed a matched 5 (group: exercise frequency) x 12 (task) 

mixed design ANOVA, and found a significant main effect of exercise frequency and 

task (F(4, 45600) = 6.00, p <0.001; F(14, 45600) = 16073.42, p < 0.001), as well as a significant 

interaction between the two variables (F(56, 45600) = 1.54, p = 0.006). To isolate which 

tasks interacted with exercise level, I conducted 15 one-way ANOVAs for each cognitive 

measure (12 tasks, plus 3 latent cognitive domains). I found performance on the verbal 

(F(4, 3040) = 3.26, p = 0.011) and reasoning (F(4, 3040) = 2.53, p = 0.039) domains improved 

with exercise; however the memory domain did not show the same effect (F(4, 3040) = 

0.396, p = 0.812). I also found a significant effect of exercise frequency on four of the 

cognitive tasks: double trouble, spatial tree, rotations and grammatical reasoning (F(4, 3040) 

=2.89, p = 0.021; F(4, 3040) = 2.57, p = 0.036; F(4, 3040) = 2.51, p = 0.040; F(4, 3040) = 6.06, 

p<0.001).  

Following these analyses, I next determined which exercise frequencies were 

significantly different from each other on the verbal and reasoning domains, as well as 

the 4 individual tasks; double trouble, spatial tree, rotations and grammatical reasoning. 

Independent t-tests revealed significant differences in performance on the verbal domain 

between those who exercise less than once a month and those who exercise 1-2 times a 

week (t(1215) = 2.85, p(Bonferroni corrected) <0.01; Cohen’s d = 0.163), and between those who 

exercise less than once a month and those exercising 3 or more times a week (t(1215) = 

2.97, p(Bonferroni corrected) <0.01; Cohen’s d = 0.170). After Bonferroni correction, there were 

no significant differences in performance in the reasoning domain between any of the 

levels of exercise. Turning to the individual cognitive tasks, I found those who exercise 

less than once a month performed worse than those who exercise 1-2 and 3 or more times 

a week on the grammatical reasoning task (t(1215) = 4.61, p(Bonferroni corrected) <0.001; 

Cohen’s d = 0.263; t(1212) = 2.99 p (Bonferroni corrected) =0.028; Cohen’s d = 0.171). In 

addition, those who exercised 1-2 times a week performed significantly better than those 

who exercised less than once a week (t(1216) = 3.16, p(Bonferroni corrected) =0.016; Cohen’s 

d=0.181) on the grammatical reasoning task. Moreover, those who exercised 1-2 times a 

week performed significantly better from those who exercised less than once a week 
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(t(1213) = 2.66, p(Bonferroni corrected) =0.043; Cohen’s d = 0.152) on the double trouble task.  

2.4 Discussion    

In this study, I aimed to evaluate how voluntary exercise practices influence cognitive 

function using a large and diverse sample across the lifespan, focusing on physical 

exertion rather than on specific forms of exercise. This way, the relationship between 

exercise and cognition can be compared across different age groups. I found that the 

frequency with which people exercise significantly predicted performance in the 

reasoning and verbal domains, above and beyond what was explained by other 

demographic factors. Specifically, I found any amount of exercise beyond less than once 

monthly was associated with better performance on the polygons, token search and 

grammatical reasoning tasks, as well as the reasoning and verbal domains. However, I 

also found that each level of exercise was associated with improved performance on 

specific tasks compared to those who exercise less than once per month, demonstrating 

that generally, greater frequencies of exercise were associated with improved cognitive 

performance. Moderate levels of exercise were most consistently associated with better 

performance on the grammatical reasoning and token search tasks, in addition to the 

reasoning and verbal domains. However, this relationship did not extend to those who 

exercise everyday; daily exercisers were not found to perform differently than those who 

had not exercised in the past month on any task or latent domain. In addition to these 

findings, I discovered that neither sleep quality, sleep quantity, nor age significantly 

interacted with exercise to better cognitive function. This suggests that exercise is a 

strong predictor of cognitive ability and the effects of exercise on cognition are 

independent of different sleep metrics and age. In other words, exercise is directly 

beneficial to certain aspects of cognition.   

Generally, my results supported my hypothesis; performance on different cognitive 

measures was better as people exercised more frequently. However, I found no 

differences between those who exercise every day and those who exercise less than once 

a month, which was unanticipated. However, there are a few potential explanations for 

this result. First, there may be differences in how participants interpreted the question: 

“How often have you exercised, such that you worked up a sweat, in the past month?” 
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For instance, individuals prone to sweating regularly may consider short bouts of non-

strenuous activity sufficient evidence that they engaged in “exercise”. Contrast this with a 

person who only begins to sweat after a significant amount of exertion. This distinction 

may be different for younger and older participants, which becomes a greater issue when 

these participants are grouped together. Relatedly, I do not have any data to quantify the 

intensity with which people were exercising. Swagerman and colleagues (2015) suggest 

that for exercise to be beneficial to cognition, it needs to be carried out at a moderate to 

vigorous intensity. Thus a possible explanation for my results is that the intensity of 

exercise that allows you to exercise every day is not sufficiently high so as to produce 

detectable benefits to cognitive functioning (Colcombe & Kramer, 2003; Swagerman et 

al., 2015). Conversely, it is also possible that daily exercise is cognitively taxing, as the 

body needs time to rest after moderate-vigorous activity. In addition, I considered the 

possibility that those who exercise most frequently (i.e., everyday) have a lower baseline 

of cognitive abilities. However, after examining the demographics of this group, 

specifically by focusing on factors such as SES and education level, which have been 

shown to be strongly linked to performance across various cognitive measures, I did not 

find patterns that would support this hypothesis. Lastly, this result may reflect a true 

quadratic relationship between the frequency of exercise and cognitive performance, such 

that too little or too much exercise is not beneficial for cognition, but any amount in 

between offers a benefit. Similar results have been found throughout the literature. For 

example, Chang and associates (2015) found that when looking at various durations of 

exercise, 20 minutes of moderate intensity on a stationary bike offers the greatest benefit 

on the Stroop task (Stroop, 1935), whereas there was no improvement on the task after 10 

or 45 minutes of exercise. In addition, in an experiment performed by Chang and Etiner 

(2009), participants completed resistance workouts at 40%, 70% and 100% of their 

maximal effort and they found a significant quadratic trend between exercise intensity 

and performance on executive function tasks. Thus, it would not be unreasonable to 

suggest that a quadratic relationship between exercise frequency and cognitive 

performance could be used to help interpret my results.  

An interesting result emerging from the matched ANOVA analysis is that, across 

multiple comparisons, those who exercise 1-2 or 3 or more times per week consistently 
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outperformed those in the other groups at the grammatical reasoning task, which is likely 

associated with better performance in the verbal domain. While exercise has been shown 

to benefit performance on diverse cognitive tasks, improvements to memory related 

functions are most consistently seen (Chaddock et al., 2011; Erickson et al., 2011; 

Hillman et al., 2008; Vaynman, Ying, & Gomez-Pinilla, 2004). Interestingly, various 

studies have shown the utilization of working memory during sentence verification, 

which happens to align closely to the properties of the grammatical reasoning task (Hitch 

& Baddeley, 1976). Paradoxically, none of the measures of working memory exhibited 

improvements. Nonetheless, exercise-related benefits to grammatical reasoning are a 

novel finding and worthy of future investigation.  

Despite finding an array of tasks associated with exercise involvement, there were also a 

number of tasks whose performance was not related to any of the exercise frequencies. 

This finding echoes the heterogeneity of the literature, and further suggests that not all 

cognitive functions equally benefit from exercise involvement. This trend has been 

identified in a number of studies, but it was initially discovered by Kramer and 

colleagues (1999), who subsequently developed the selective improvement hypothesis. 

Although this hypothesis was suggested with regards to aerobic exercise selectively 

improving various executive functions (Kramer et al., 1999), I believe it may also be 

useful in helping to explain the results I obtained in this experiment. For example, despite 

clusters of tasks falling into the same latent domain, or being classified as relying on the 

same cognitive skills (e.g. executive functions or pattern separation), there were instances 

where some tasks exhibited relationships with exercise that were distinct from the rest of 

the cluster. For example, the digit span was the only task relying on the verbal domain to 

not be associated with any level of exercise. One reason for this may be a difference in 

the exact cognitive mechanisms employed by seemingly similar tasks. Following this, it 

may be the case that the effects of voluntary exercise are localized to specific regions of 

the brain, and the tasks that were shown to have a relationship with exercise recruit 

cognitive mechanisms that rely on these distinct regions (Smiley-Oyen et al., 2008). In 

addition, other researchers have suggested that exercise tends to have the most robust 

effects on timed tasks, compared to those that are non-timed (Chodzko-Zajko & Moore, 

1994; Smiley-Oyen et al., 2008). This could explain the associations I observed between 
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exercise involvement and tasks such as grammatical reasoning, double trouble and 

polygons. Overall, it is unclear exactly why some tasks are more responsive to exercise 

than others, however it may be related to the exact cognitive requirements of each task, 

and in turn, the associated brain regions and their responsiveness to exercise.  

The benefits to cognition that I have found to be associated with moderate levels of 

exercise may arise via various physiological pathways. Exercise has been associated with 

augmented synthesis of growth factors including BDNF, VEGF and IGF-1, which act to 

amplify neurogenesis, synaptic plasticity and angiogenesis in the brain (Homolak et al., 

2015; Lopez-Lopez et al., 2004; Murray & Holmes, 2011). The effects of these growth 

factors are hypothesized to support cognitive enhancements (Borror, 2017). Although, 

numerous molecules and growth factors experience augmented expression following 

exercise, BDNF and its downstream pathways are generally regarded as one of the top 

contenders for moderating the cognitive benefits of physical activity. Increased levels of 

BDNF are commonly found in the hippocampus after exercise, and elevated levels are 

associated with improvements in memory function and learning (Piepmeier & Etnier, 

2015; Vaynman, Ying, & Gomez-Pinilla, 2004; Wrann et al., 2013). However, it is also 

believed that differences in the BDNF gene may contribute to how the protein is 

produced and distributed; the methionine allele of the BDNF Val66Met polymorphism is 

associated with decreased BDNF secretion and poorer memory (Erickson et al., 2013). 

Erickson and colleagues (2013) used a genotyping approach on a sample of 1,032 

participants to further understand the role of this BDNF polymorphism and whether it 

plays any role in moderating the beneficial effects of exercise. Participants filled out the 

Paffenbarger Physical Activity Questionnaire, commonly used to estimate energy 

expenditure, and completed a battery of cognitive tasks. First, they found that greater 

amounts of physical activity, dictated by kilocalorie expenditure, were associated with 

enhanced working memory performance. Additionally, in accordance with their 

hypothesis, they found that on tasks evaluating working memory, specifically different 

variations of the N-back, those with the Met polymorphism benefit more from exercise 

than those who are Val homozygous. This result provides further evidence of the 

significant role BDNF plays in the relationship between exercise and cognition and could 
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help to explain why there is significant variation in the extent to which one benefits 

cognitively from exercise (Erickson et al., 2013).  

In addition to the structural changes induced via growth factors, exercise is associated 

with increased cerebral blood flow (CBF). Greater CBF increases the metabolic capacity 

of the brain due to the increased oxygen and glucose being carried, which could be one 

mechanism contributing to the better performance seen on certain cognitive tasks that I 

observed for those who engage in moderate levels of exercise (Borror, 2017). For 

example, Guiney and colleagues (2015) proposed that improved cerebral blood flow, 

which is associated with greater exercise participation, may also be an avenue by which 

exercise benefits cognition. As well, over time the physiological effects of exercise result 

in structural and functional changes to the brain. For example, those with a greater 

cardiovascular capacity, which is indicative of greater aerobic exercise involvement, have 

been shown to have a larger gray matter volume in the hippocampus and pre-frontal 

cortex and greater functional connectivity in the hippocampus and default mode network 

(Burdette et al., 2010; Küster et al., 2016; Voss et al., 2010; Weinstein et al., 2012). The 

exact mechanisms by which exercise results in cognitive benefits is unknown, however 

performing exercise on a regular basis likely instigates many of these pathways, resulting 

in long-term structural changes to the brain.  

Some of the most notable strengths of the current study include the large and diverse 

sample collected and the battery of outcome measures used, which assesses various 

aspects of cognition. These two elements allowed for the most effective evaluation of the 

cognitive effects of real world exercise regimes. Nevertheless, there were limitations to 

this study that should be addressed in future investigations. The demographic 

questionnaire in the current study was devised to ask a broad set of questions, while being 

succinct. Thus, I chose a single question that would allow me to most valuably compare 

exercise levels across the lifespan. I reasoned that physical abilities adapt with age, and 

while an individual’s ability to exercise at the same level (with respect to type, intensity 

and duration) may change, the frequency of exercise involvement is likely most resistant 

to variation. This allowed for me to compare exercise across all ages. However, in an 

attempt to be brief, I sacrificed certain details that may have added to the understanding 
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of the relationship between voluntary exercise and cognitive function. Thus, in 

subsequent studies it would be valuable to include questions regarding how many years 

one has exercised for, the type of exercise, and the duration and intensity of their exercise 

routine. This would allow me to tease out specific aspects of exercise and their 

potentially differential effects on cognition. Including these factors will not only help to 

further the understanding of the effects of voluntary exercise, but may also give insight 

into the characteristics of exercise regimes that are most beneficial to cognition.  
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Chapter 3  

3 Experiment Two  

3.1 Introduction    

In chapter one, I have outlined the benefits of using large population-based studies to 

address the exercise-cognition relationship. For instance, this approach provides a 

landscape perspective on the effects of diverse exercise habits on different aspects of 

cognition and how this influence may be moderated by various lifestyle factors. 

However, probing specific aspects of exercise and their influence on different cognitive 

processes is difficult using only this approach. As the data are based on self-report and 

provide no direct measure of exercise, this leaves many questions regarding the cognitive 

effects of exercise unanswered. One such question is the link between cognitive 

functioning and specific measures of physical fitness, such as aerobic capacity (measured 

by VO2 Max) and strength. Therefore, the central aim of this chapter is to attempt to link 

those two measures of physical health to different aspects of cognition in order to provide 

a better understanding of the exercise-induced benefits to cognitive function. 

Various physical tests are used to estimate an individual’s overall aerobic endurance, 

however, the VO2 Max test is the gold standard, as it measures maximal oxygen 

consumption (Pereira et al., 2007; Schwarb et al., 2017). While different variations of this 

test are used, the main principle is the same; push an individual to their maximum effort 

while measuring oxygen uptake. Various studies have used this test to estimate 

cardiovascular capacity and have found that it is associated with performance on a 

collection of cognitive tasks. The relationship between VO2 Max and cognition seems to 

be particularly strong in younger participants. For example, in adolescents it was found 

that aerobic capacity, measured by VO2 Max, correlated with relational memory 

performance (Schwarb et al., 2017). Similarly, in pre-adolescents, performance on a 

relational memory task was related to VO2 Max; the higher the VO2 capacity, the better 

the score on the relational memory task (Chaddock et al., 2010). Thus, these studies 
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reveal the trend that a larger VO2 Max is associated with improved performance on tasks 

relying on memory function.  

In addition to links between cardiovascular health and specific cognitive abilities, other 

studies show there are real-world benefits associated with regular physical activity. 

Castelli and colleagues (2007) investigated the relationship between academic 

achievement in grade school and physical fitness. They discovered that aerobic capacity 

in 3rd and 5th grade students was positively associated with achievement in both 

mathematics and reading. Moreover, students who scored higher on different metrics of 

physical fitness – aerobic capacity, measured by the Progressive Aerobic Cardiovascular 

Endurance Run, and various muscular endurance tests – were more likely to score better 

on standardized tests (Castelli et al., 2007).  

As discussed earlier in this thesis, it is not only younger cohorts who appear to show 

exercise related benefits to cognition. These benefits also extend to other age groups, 

most notably in older adults who are susceptible to age-related cognitive decline. In the 

Baltimore Longitudinal Study of Aging, it was found that those with a higher maximal 

oxygen consumption (i.e., VO2 Max) experienced less prospective cognitive decline, 

specifically on visual and verbal memory tasks (Wendell et al., 2014). These trends 

suggest that regular physical activity, which supports a larger cardiovascular capacity, is 

beneficial throughout the lifespan, and is associated with practical cognitive implications.    

Overall, previous research indicates a relationship between cognitive function and 

physical fitness, however the reason for this association is not entirely clear. One possible 

mediator is structural changes in the brain associated with improved aerobic capacity, 

particularly in brain areas associated with performance on memory related tasks. For 

instance, the hippocampus is involved in memory function and has thus been a region of 

interest. In pre-adolescent children, fitter individuals (determined by VO2 Max 

measurements) had greater hippocampal volumes (Chaddock et al., 2010), and performed 

better on relational memory tasks relative to less fit children (Schwarb et al., 2017). 

Erickson and colleagues (2009) confirmed this result in older adults as well, 

demonstrating that individuals with higher aerobic fitness had superior spatial memory 
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performance, and this relationship was mediated by greater hippocampal volume. 

However, volume may not be the only change to the hippocampus that is important to 

produce cognitive improvements after exercise. Despite finding no correlation between 

aerobic fitness and hippocampal volume, Schawrb and colleagues (2017) did find that 

hippocampal viscoelasticity mediated a positive association between cardiovascular 

capacity and relational memory recall. These results collectively demonstrate that the 

association between higher cardiovascular fitness and cognitive functioning may be 

mediated by hippocampal volume, and physical activity may also produce 

microstructural differences in the brain that eventually drive improvements to memory-

related aspects of cognition. 

Aerobic capacity is not the only measure of physical fitness that appears to be associated 

with better cognitive functioning. More recently, the relationship between muscle 

strength and cognition has been studied, and strength appears to also be positively 

associated with cognition in older adults. For instance, using handgrip force as a metric of 

strength, Kobayashi-Cuya and colleagues (2018) discovered a significant correlation 

between grip strength and performance on the Mini Mental State Exam (MMSE), a 

battery used to screen for cognitive decline, in older adults. However, this review 

examined individuals between the ages of 49-100 using the MMSE, and to fully 

understand the role of strength-based exercise on cognition, this relationship must be 

studied across the lifespan, using tasks that assess a variety of cognitive abilities.  

Despite a vast number of studies investigating the relationship between various physical 

fitness measures and different aspects of cognitive function, surprisingly few have 

examined this connection in young adults. However, of the studies that have, the 

relationship between exercise and cognition appears to be mixed in younger participants. 

For instance, Aberg and colleagues (2009) studied this relationship in 18-year old males, 

focusing on four cognitive tasks assessing logical, verbal, technical and visuospatial 

intelligence, in addition to a global intelligence score, which reflects a composite of the 

four tasks. They found that, overall, cardiovascular fitness was associated with global 

intelligence, and this result extended to each of the individual cognitive tasks. More 

recently, this relationship has been extended to relational memory. Healthy young adults 
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who had superior maximal oxygen consumption were shown to also have better 

performance on a spatial reconstruction task (Schwarb et al., 2017). However, physical 

strength and cognition did not show the same positive relationship. Measures of strength, 

including knee and elbow flexion and grip strength, were significantly associated with 

lower global intelligence scores (Aberg et al., 2009). One limitation shared by these 

studies is the lack of variety in the cognitive tests used, and therefore, the relationship 

between physical fitness – in particular strength – and performance on individual tasks 

tapping into various cognitive processes remains unclear in young adults. 

In this experiment, I resolve some of the main issues in the literature by exploring 

whether different measures of cardiovascular fitness and muscle strength are associated 

with different aspects of cognitive functioning in healthy young adults. To test this, 

participants performed a predictive VO2 Max test (the submaximal treadmill test) along 

with push-ups, plank, wall sit, and bicep curls, which serve as measures of muscular 

strength and endurance. Together, performance on these tests was taken as an estimate of 

each individual’s overall fitness level. Alongside the measures of physical fitness, 

participants also completed the set of 12 tasks comprising the Cambridge Brain Sciences 

battery, which tap into various aspects of cognitive functioning. This way, I could better 

examine the true relationship between measures of physical and cognitive health. Based 

on previous work in this area, I hypothesized that there will be a positive association 

between cognitive performance and measures of cardiovascular fitness. More 

specifically, previous studies have revealed an association between aerobic capacity and 

memory function; thus I hypothesized that my measure of aerobic capacity will correlate 

with performance on tasks falling into the memory domain. Conversely, in young adults, 

muscle strength has been shown to be associated with lower global intelligence scores 

(Aberg et al., 2009), and thus I did not predict that cognition would be positively 

correlated with any measures of strength.  

3.2 Methods  

3.2.1 Participant Demographics  

Participants were recruited using flyers posted throughout Western University and the 
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Psychology Research Participant Pool. All participants gave written informed consent, 

and were compensated monetarily for their involvement. Participants were screened 

before participating to ensure they did not meet any exclusion criteria, including: any 

neurological problems or brain injuries, any visual or auditory disorders, poor vision not 

corrected by contact lenses, pregnant, or trying to become pregnant or any condition that 

prohibits moderate physical activity. Participants were also screened via the Physical 

Activity Readiness Questionnaire (PAR-Q+) to ensure they were able to safely perform 

exercise. Four participants were not able to complete all parts of the study, and were thus 

excluded from the analysis. In total, there were 37 participants (26 females, 11 males) 

between the ages of 18 and 34 (M = 22.8, SD = 4.06) who were included in the final 

analysis for the current study. The Health Sciences Research Ethics Board of the 

University of Western Ontario approved this study. 

3.2.2 Procedure  

There were two phases to this study. In the first phase participants completed the set of 

12 cognitive tasks that comprise Cambridge Bain Sciences; all tasks were completed 

twice, in random order to remove practice effects (see the “Cognitive Measurements” 

section of chapter one for a description of each task). Participants were instructed to 

complete the CBS tasks before completing any physical activity that day, or on a separate 

day when they were not exercising (including exercise independent of the study). This 

was to ensure the acute effects of exercise did not influence any of their test scores 

(Chang et al., 2012).  

In the second phase, participants completed a physical fitness assessment, which was 

divided into an aerobic and strength component. They performed the assessment 

unsupervised and in their own time during a routine visit to the gym (see below). In the 

aerobic component, participants performed the single stage submaximal treadmill test, 

which is used to predict maximal oxygen uptake (VO2 Max; Ebbeling et al., 1991). At the 

start of the assessment, participants were strapped with a Polar H7 Heart Rate sensor 

around their chest to ensure an accurate recording of their heart rate (HR). This test 

requires the participant to walk on a treadmill for 4 minutes at 0% incline, at a speed that 

brings their heart-rate between 50-70% of their age-predicted maximum HR. Following 
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this, they continue walking at the same speed, however the incline on the treadmill is 

increased to 5%. They continue walking at this speed and incline for 4 minutes. At the 

end of this period their steady state HR (SSHR), is recorded by taking the average HR 

from the final 30 seconds. The participant’s age, SSHR and walking speed were recorded 

and entered into the following equation (Ebbeling et al., 1991), which was used to 

estimate the participant’s VO2 Max:       

 

For several reasons, the participants were asked to carry out this test on their own and to 

ensure that they were following instructions, they were asked to take a picture of the 

treadmill, which showed their speed and incline achieved. Their steady state heart rate 

was extracted from the polar beat application.  

In the resistance component, there were four strength exercises that participants were 

asked to complete on their own (see below): plank, wall sit, push-ups and bicep curls. For 

both the plank and wall sit, participants were instructed to hold those positions for as long 

as they could; duration was recorded with a stopwatch. They were then asked to complete 

as many push-ups as they were able to without resting and record this number. Lastly, 

they were asked to perform single arm bicep curls using dumbbells. They were asked to 

record the weight they were able to curl for 10 repetitions without rest, and the maximum 

weight they could curl for 1 repetition.  

I wanted to ensure that the physical measures were collected on the participant’s own 

time, and completed without experimenter bias. However, to ensure the numbers 

participants were reporting were reliable and reflected their physical abilities, I randomly 

selected 12 people from our sample (34%) and asked them to come back and perform the 

plank and wall sit in my presence. I then compared their independent data to their verified 

data to ensure there were no differences in performance.  

15.1+ 21.8 (speed in mph)− 0.327 (SSHR in bpm)− 0.263 (speed x age in years)
+0.00504 SSHR x age( )+ 5.98 gender; female = 0, male =1( )
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3.2.3 Statistical Analysis  

Physical measures  

First, I examined whether the verified sample (the physical measures recorded in my 

presence) were similar to the physical measures recorded by participants on their own. To 

do this, I ran an independent samples t-test and Pearson’s correlation on the subset of 

participants who had completed both conditions. Once the data had been validated, I next 

tested whether there was any redundancy in my set of physical measures. Using a 

correlational analysis, I identified sets of similar and dissimilar measures that measure 

distinct aspects of physical fitness. 

Linking physical and cognitive health 

In addition to the test scores on each of the 12 tasks, latent domain scores (reflecting 

working memory, verbal and reasoning abilities) were generated (see Statistical Analysis 

section of Chapter 1 for details on how the latent cognitive domains scores were 

calculated).   

I examined the relationship between performance on 15 measures of cognition (12 tasks 

plus three latent domain scores) and a subset of physical measures of cardiovascular 

health and strength in two ways: first I investigated whether the degree of cardiovascular 

fitness and strength was related to cognitive performance. To do this, participants were 

divided into two groups using a median split: those who scored highest and lowest on the 

three measures of physical health. I then carried out a 2 (high fitness vs. low fitness) x 15 

(cognitive measures) mixed design ANOVA. Second, I correlated performance on the 15 

measures of cognitive ability with the three measures of physical health (based on the 

correlational similarity analysis) to determine whether physical health scaled with 

cognitive performance across various tasks. 

3.3 Results   

To investigate whether performance on the wall sit and plank differed between the 

independent and verified samples, I carried out individual paired t-test’s. Performance 
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was not significantly different between the two samples on either the wall sit (t(11)=0.567, 

p=0.582) or the plank (t(11)=0.04, p=0.968). In addition, I determined that both the 

independent and verified measurements significantly correlated for the plank (r=0.973, 

n=12, p<0.001) and wall sit (r=0.994, n=12, p<0.001). This demonstrated that the 

independent plank and wall sit measurements taken by the participants were reflective of 

their true abilities.  

Having established that the measures recorded by the participants accurately reflected 

their cardiovascular and strength capabilities, I next determined whether I could identify 

a subset of the five measures that encapsulated different aspects of physical health. As 

can be seen in Figure 15 and 16, I found that all measures were positively correlated with 

predicted VO2 Max, aside from the wall sit (r=0.342, n=35, pFDR=0.088). As the 

predicted VO2 Max specifically estimates cardiovascular capacity, this result suggests 

that all measures, but the wall sit, provide a measure of cardiovascular fitness. 

Conversely, the only measure that correlated with the wall sit was the plank (r=0.450, 

n=35, pFDR = 0.027), which was also significantly correlated with predicted VO2 Max 

(r=0.479, n=35, pFDR = 0.0191), suggesting that the plank is a measure that taps into both 

strength and cardiovascular fitness. Taken together, these measures are tapping into three 

distinct aspects of physical health: 1) a cardiovascular measures (predicted VO2 Max), 2) 

strength (wall sit), and 3) a hybrid measure of strength and cardiovascular capacity 

(plank). I used these three measures to determine if there is a relationship between 

physical health and cognition. 
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Figure 15: Correlation matrix between VO2 Max, plank, push-ups, wall sit and bicep 

curls. The scale ranges from Pearson’s r coefficients between 0 and 1. Dark blue 

represents a correlation of r=0.2 and yellow represents a correlation of r=1 (n=35). 

 

Figure 16: Summary of significant Pearson’s r correlations between VO2 Max, plank, 

push-ups, wall sit and bicep curls. Blue squares represent the correlations that were 

significant (p<0.05; n=35). 

Using these metrics of physical health, I divided participants into two groups (using a 
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median split), based on their performance on the predicted VO2 Max, plank, and wall sit, 

to test whether those with better physical fitness measurements differed in their cognitive 

abilities. The groups were labeled as “high fitness” or “low fitness” respectively for each 

exercise. I ran a 2 (high vs. low fitness; the between subjects factor) x 15 (12 CBS tasks 

plus three domain scores; the within subjects factor) mixed design ANOVA for each 

measure of physical health (VO2 Max, plank and wall sit). The results of the ANOVAs 

evaluating whether there were cognitive differences between participants who held the 

wall sit longer and had a higher predictive VO2 Max revealed significant main effects of 

test (F(14, 476)= 2.165, p = 0.008 and F(14, 462) = 2.294, p = 0.005, respectively). However, 

there was no significant effect of group for either the wall sit or predicted VO2 Max 

(F(1,34) = 0.223, p=0.640 and F(1, 33) = 0.308, p = 0.583, respectively), nor an interaction 

between test and group for either (F(14, 476) = 0.930, p = 0.527 and F(14, 462) = 1.232, 

p=0.248, respectively). However, the results of the ANOVA evaluating performance for 

those with long and short plank durations on the 15 cognitive measures showed a main 

effect of group (F(1, 33) = 5.361, p = 0.027) and task (F(14, 462) = 2.260, p = 0.006), but no 

interaction (F(14, 462) = 1.360, p = 0.169). This suggests that the high fitness group 

generally outperformed the low fitness group on the cognitive measures. I further ran 

post-hoc independent t-tests and found that the high fitness group scored significantly 

better on the grammatical reasoning (F(1, 33) = 2.173, p = 0.038), token search (F(1, 33) = 

2.472, p = 0.009) and paired associates (F(1, 33) = 3.056, p = 0.004) tasks, as well as on the 

verbal domain (F(1, 33)= 2.153, p = 0.037; Figure 17), relative to the low fitness group. 
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Figure 17: Mean cognitive performance on 12 cognitive tasks and 3 latent domains of 

high and low exercisers on the plank +/- SEM. Cognitive scores are z-scored. Stars 

represent significant differences in cognitive abilities between the high and low 

exercisers on the plank (p<0.05; n=37). 

I found that those who are in better physical health outperformed those who were not on a 

number of tasks, however I wanted to determine whether the degree of physical fitness 

scales with cognitive performance. That is, is there a linear relationship between the two? 

To test this, I ran a correlation analysis between predicted VO2 Max, plank and wall sit 

duration and performance on each of the 12 cognitive tasks, as well as the three latent 

domains (memory, reasoning and verbal ability). I found muscular strength (the wall sit) 

and aerobic capacity (predictive VO2 Max) did not correlate with performance on any of 

the cognitive tasks or domains. However, the duration one was able to hold a plank 

significantly correlated with performance on the grammatical reasoning (r=0.340, n=37, 

p=0.0458) and paired associates tasks (r=0.444, n=37, p=0.0075), as well as the verbal 

domain (r=0.448, n=37, p=0.007; Figure 18). 
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Figure 18: Figures A-C show the relationship between seconds able to hold an isometric 

plank position and cognitive performance on various tests and domains (n=37). Figure A: 

performance on the grammatical reasoning task versus seconds holding the plank 

(r=0.340, p=0.0458). Figure B: performance on the paired associates task versus seconds 

holding the plank (r=0.444, p=0.0075). Figure C: performance on the verbal domain, 

expressed as a z-score, versus seconds holding the plank (r=0.448, p=0.007). 

3.4 Discussion    

The aim of this study was to explore whether different measures of cardiovascular fitness 

and muscular strength/endurance were associated with different aspects of cognition, 

specifically in young adults. To achieve this aim, I first identified three metrics of 

physical health: 1) cardiovascular fitness (predicted VO2 Max), 2) strength (wall sit) and 



49 

 

3) a hybrid measure encapsulating aspects of both strength and aerobic capacity (plank). 

Predictive VO2 Max served as an indirect measure of aerobic capacity. The only measure 

to be uncorrelated with the predictive VO2 Max was the wall sit, which was designated as 

the measure of muscular strength. The final measure, the plank, reflected a hybrid of both 

muscular strength and cardiovascular capacity. Relying on these three measures, my aim 

was to identify which, if any, metric of physical health is associated with cognitive 

functioning. 

Overall, I found that performance on the plank measurement was consistently related to 

cognitive abilities; that is, high-fitness performers on the plank outperformed the low-

fitness group on the grammatical reasoning, paired associates and token search tasks, as 

well as the verbal latent cognitive domain. I also found the duration an individual can 

hold the plank was significantly correlated with their performance on the grammatical 

reasoning and paired associates tasks, as well as their score on the verbal domain. 

Conversely, I found no significant relationship between cognitive performance and the 

measure of aerobic capacity (predictive VO2 Max) or strength (wall sit). Thus, only the 

hybrid measure, which reflects both strength and cardiovascular fitness, was related to 

specific measures of memory (paired associates and token search tasks) and verbal 

abilities (grammatical reasoning task) in healthy young adults.  

Why is the plank the only measure linked to cognitive performance? The nature of the 

exercise potentially provides some insight. The plank is an exercise where individuals are 

required to isometrically hold a prone position supported by their toes and forearms. This 

exercise improves core stability, which controls the position and motion of the trunk of 

the body and is essential for both everyday mobility and intense exercise (Imai & 

Kaneoka, 2016). The dominant muscles involved in holding a plank are those of the 

lower back, abdomen and hips, but muscles between the sternum and knee are also 

important (Tong, Wu, & Nie, 2014). Although holding the plank requires strength of the 

core muscles, it is also requires muscular endurance if it is held for longer than 30-45 

seconds (Hibbs et al., 2008). In line with our result that the plank reflects a hybrid 

measure of physical health comprising aspects of strength and cardiovascular fitness, 

Imai and colleagues (2016) have shown that the plank is associated with other measures 
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of athletic ability in male high-school soccer players. They find a moderate positive 

correlation between the length of time the plank can be held and the Cooper test 

(assessing running endurance), which supports our finding that the plank is positively 

correlated with predictive VO2 Max. They also find a strong positive correlation between 

the plank and the Yo-Yo intermittent recovery test, which involves repeatedly performing 

high intensity activity while changing directions, confirming greater necessity of core 

stability in tests requiring greater trunk movement (Imai & Kaneoka, 2016). These results 

demonstrate that core stability, as assessed by a plank position, is positively associated 

with aerobic and strength endurance and to a greater extent, aerobic measures involving 

movement of the trunk.  

The unique combination of cardiovascular capacity and strength that the plank measures 

may be responsible for the cognitive benefits, specifically to memory abilities, I found in 

this study. Aerobic capacity has been linked with greater hippocampal volume and 

viscoelasticity across the lifespan, and these structural changes have been associated with 

improved cognitive performance on tasks relying on memory function (Chaddock et al., 

2010; Erickson et al., 2009; Erickson, Leckie, & Weinstein, 2014; Schwarb et al., 2017). 

Specifically, greater core stability was associated with better performance on the token 

search task, which relies on pattern separation, the ability to discriminate between similar 

instances of the same event (Yassa & Stark, 2011). It has been shown that this ability 

involves the dentate gyrus of the hippocampus, an area associated with neurogenesis, and 

increases in BDNF expression following exercise involvement (Bekinschtein et al., 2013; 

van Praag et al., 2005). In humans, Suwabe and colleagues (2017) have shown 

improvements on a pattern separation task after acute exercise, and suggested that this 

relationship was at least partially mediated by the dentate gyrus. Thus, I may have seen 

improved performance on the token search task in those who demonstrated greater core 

endurance because of exercise and BDNF-dependent effects on the dentate gyrus. 

Similarly, episodic memory, measured by the paired associates task, relies on the 

hippocampus; both the encoding and retrieval phases of the task are dependent on 

overlapping hippocampal areas (Meltzer & Constable, 2005). Accordingly, structural or 

volumetric hippocampal modifications related to plank endurance might account for the 

benefits seen on the paired associates task.  
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Finally, aerobic capacity has also been associated with greater gray matter volume in the 

temporal cortex, and more consistently, the pre-frontal cortex, which may mediate some 

aspects of improved verbal processing (Erickson et al., 2014). The grammatical reasoning 

task is at least partially reliant on the inferior frontal sulcus and the bilateral temporal 

lobes (Hampshire et al., 2012). Due to its relationship with aerobic endurance, greater 

core endurance may be associated with increased volume of the temporal and prefrontal 

cortices, which may be related to the improved performance on the grammatical 

reasoning task I observed. Thus, the structural and volumetric benefits associated with 

greater cardiovascular capacity may have contributed to the superior performance I 

observed on tasks assessing memory and verbal abilities in those with greater plank 

endurance. It would be valuable for future studies to more explicitly link these three 

factors; for instance, by comparing performance on the grammatical reasoning task with 

gray matter volume in the frontal and temporal cortices, and determining whether these 

properties fluctuate with the degree of strength and aerobic capacity. 

Although the performance on the plank (a mark of cardiovascular capacity and core 

endurance; Imai A, Kaneoka, 2016), is related to specific aspects of cognition, perhaps 

paradoxically, I found the predictive VO2 Max metric was not significantly correlated 

with performance on any of the 12 tasks or latent domains. This suggests that the 

cardiovascular endurance aspect of the plank cannot alone explain the differences in 

performance I found on tasks that measure memory and verbal abilities. However, a 

similar trend was found in a study evaluating the effects of an intervention combining 

both aerobic and strength exercises in a group of patients diagnosed with mild to severe 

dementia. Bossers and associates (2015) divided participants into two groups: in group 

one, participants completed an exercise regime focused on a combination of strength and 

aerobic exercises, and group two completed aerobic exercises only. After the 9-week 

intervention, the combination group improved their global cognitive function score, as 

well as performance on tasks testing executive function, and visual and verbal memory. 

However, the aerobic group improved only on executive function tasks, suggesting that a 

regime combining both aerobic and strength exercises produces benefits to a greater set 

of cognitive functions than aerobic exercise only (Bossers et al., 2015). Thus, their 

findings complement my own, and similarly suggest that performing exercise that 
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benefits both strength and cardiovascular capacity improves cognition to a greater extent 

than aerobic exercise alone.  

With this result, there is growing evidence for the importance of resistance exercise and 

core-strength to cognition. However, the mechanisms that mediate this relationship 

remain unclear. One possibility that has been suggested is the role of various growth 

factors. For example, greater muscular strength, as assessed by knee extension, has been 

associated with increased serum IGF-1 concentrations in older women (Cappola et al., 

2001). In addition, a significant increase in serum BDNF concentration was found 

following a 10-week physical therapy intervention in elderly women, which focused on 

resistance exercise suitable for this population (Coelho et al., 2012). Together, these two 

growth factors are associated with neurogenesis, neuron growth and repair, synaptic 

transmission and plasticity, and neuronal survival (Homolak et al., 2015; Murray & 

Holmes, 2011). These neuronal consequences of BDNF and IGF-1 are capable of 

inducing structural changes in the brain, but further research is necessary to determine if 

greater muscular strength is associated with volumetric or microstructural differences. 

Thus, the improved cognitive abilities of those with greater core stability may not only be 

due to structural changes in the hippocampal and frontal areas brought about by aerobic 

activity, but from core strength and endurance training as well.  

Overall, I found a link between general physical fitness and cognitive performance in 

young adults. My initial analyses showed that the plank represents a hybrid measure of 

fitness, encompassing both aspects of strength and cardiovascular capacity. I found that 

those who are able to hold the prone plank position for a greater length of time perform 

better on tasks relying on memory (paired associates and token search tasks) and verbal 

abilities (grammatical reasoning task). However, I found no such relationship with 

measures that tap into only strength or aerobic capacity. Thus, these results suggest that 

in young adults, better core endurance, representing a combination of strength and 

aerobic capacity, is associated with better cognitive function on tests of memory and 

verbal processing. 
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Chapter 4  

4 Experiment Three  

4.1 Introduction 

In my previous two chapters, I relied on cross-sectional designs to determine whether 

exercise habits from a large, diverse sample were associated with cognitive functioning 

(experiment one), and whether different aspects of cognition were related to specific 

measures of physical health (experiment two). In both chapters, I found evidence that 

physical activity is positively associated with various cognitive functions. These results 

align with previous studies that have proposed a number of potential exercise-related 

physiological mechanisms to account for improved cognitive functioning, such as tissue 

volume increases (Chaddock et al., 2010; Erickson et al., 2009), microstructural changes 

(Schwarb et al., 2017), increased oxygenation of the brain (Ide & Secher, 2000; Voss et 

al., 2010) and increased functional connectivity in the default mode network, the frontal 

parietal network and the hippocampus (Burdette et al., 2010; Voss et al., 2010). However, 

based on these studies, I cannot conclude that exercise caused the associated changes to 

cognition. In order to claim a causal relationship between exercise and cognition, it is 

essential to conduct an intervention study.  

 A physical intervention is the ideal design to identify the extent to which exercise affects 

cognition. Although various types of exercise intervention studies have been conducted, 

the vast majority of them have focused on evaluating changes to cognition after 

introducing aerobic exercise. The consensus emerging from this literature is that 

introducing aerobic exercise across the lifespan leads to improved cognitive functioning. 

For example, Hillman and colleagues (2014) recently investigated the effects of a long-

term aerobic exercise intervention in children aged 8-9. Children who routinely engaged 

in various age-appropriate aerobic activities for approximately two hours per day over the 

course of 150 days showed improved behavioral indices of executive control, specifically 

on tasks measuring attentional inhibition and cognitive flexibility (Hillman et al., 2014). 

In adolescents, a similar effect was seen on executive function. That is, after 24 sessions 
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of high intensity interval training centered around aerobic activity, adolescents saw small 

improvements on the Trial Making Task, which assesses executive function (Costigan et 

al., 2016). Interestingly, their intervention lasted only 8-10 minutes per session, much 

shorter than the intervention study for children aged 8-9, demonstrating that interventions 

of different intensities and durations can produce significant benefits to executive 

processing in children and adolescents.   

Similar interventions studies have been carried out in older adults, although justifiably 

less intense exercise interventions have been used. The exercises in these interventions 

commonly involve walking or cycling. In a study conducted by Jonasson and colleagues 

(2017), both types of exercise were employed to probe whether older adults showed 

improved cognition after completing the intervention. After 6 months of a combination of 

cycling and walking, they found improvement on participants’ overall cognitive score, 

which was a composite measure based on performance on tasks tapping into episodic 

memory, updating, processing speed and executive function. Interestingly, they did not 

find improvement on any single task; they concluded that their exercise intervention 

produced general improvements to cognition, rather than to specific cognitive tasks 

(Jonasson et al., 2017). Another type of intervention that has been used in older adults is 

low intensity dancing. Older adults were introduced to Latin dancing for one hour per 

week for 6 months. This group improved specifically on tasks that measure verbal 

processing, such as word recognition, delayed word recall (a measure of memory) and 

verbal fluency (assessing executive function; Kim et al., 2011; Shao et al., 2014). Thus, 

these studies collectively demonstrate that diverse aerobic interventions have a positive 

influence on various cognitive processes in young children and older adults.  

More recently, there has been a growing interest in the effects of resistance exercise on 

cognition. In addition to aerobic exercise, there is evidence to suggest that resistance 

exercise similarly benefits various aspects of cognition. For instance, attention appears to 

be a cognitive skill that is consistently improved after resistance interventions. Van de 

Rest and colleagues (2014), demonstrated improvement on the attention and working 

memory domains of their neuropsychological battery in older adults after completing a 

bodybuilding exercise regime twice weekly for 24 weeks. Likewise, in a study conducted 
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by Liu-Ambrose and colleagues (2012a), older adults completed a resistance regime, 

focused on improving full-body strength, twice a week for one year. They first compared 

performance at the 6 and 12-month mark, and found improvement on the Stroop task 

(Stroop, 1935), a measure of executive function and more specifically, conflict resolution 

and selective attention. However, there were no effects found on working memory, unlike 

in the study by van de Rest et al., (Liu-Ambrose et al., 2012a). Why this discrepancy 

exists between these two studies is unclear as their interventions were very similar, aside 

from the length of the intervention. However, one distinction between these studies is the 

age of the participants; the study by Liu-Ambrose included participants with a mean age 

of 69.6±2.9, whereas the mean age in van de Rest’s study was 79±8. Older adults tend to 

show greater changes to cognition in response to exercise involvement; this may be the 

reason for the more robust changes seen after the intervention in van de Rest’s study.  

Although there are numerous findings indicating that participation in various exercise 

regimes results in improved cognitive functioning, there are also studies showing that not 

all forms of exercise are beneficial to cognition. For instance, middle-aged men 

underwent either a jogging or strength training exercise program over a 12-week period 

(Blumenthal & Madden, 1988). Relative to their performance before the exercise 

program started, reaction times on a memory-search task did not change over this period 

for either training group. Unfortunately, since only reaction time, and not accuracy on the 

task was assessed, it is unknown whether some memory-related functioning was 

improved after involvement in either intervention. Similarly, Smiley-Oyen et al. (2008) 

carried out a randomized control trial assessing the effects of aerobic versus 

strength/flexibility training over a 10-month period. Benefits of the aerobic intervention 

were found on the Stroop task (measuring executive function); however their 

strength/flexibility group demonstrated no improvements on any of the tasks (Smiley-

Oyen et al., 2008). These two sets of results suggest that not all interventions are 

uniformly beneficial to cognition. 

Despite the abundance of studies examining the effects of exercise on cognition (Chang 

et al., 2015; Hwang et al., 2016; Suwabe et al., 2017), there are surprisingly few studies 

using an interventional approach to explore the potential exercise-related benefits to 
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cognitive functioning in younger adults. Moreover, of the limited number of studies that 

have targeted this age group, most of them rely on aerobic exercises and probe cognition 

using a narrow task battery. For example, in a study conducted by Stroth et al. (2009), 

young adults completed an individually tailored running regime 1.5 hours per week, for 

six weeks. Cognitive performance was measured on a battery consisting of three tests of 

memory and concentration, with improvements limited to the visuospatial memory task 

(Stroth et al., 2009). However, without using various tasks that represent different aspects 

of cognition, they are not able to approach the exercise-cognition relationship holistically, 

and thus increase the risk of benefits going undetected.  

Studying young adults will be fundamental to understanding the relationship between 

cognitive function and exercise because they are generally at their peak cognitive health. 

Eliminating the confounds of developmental and ageing related factors that we know 

affect cognition while using a comprehensive task battery, I set out to complete a more 

exhaustive evaluation of the effects on cognition after introducing an exercise regime. 

Specifically, my aim was to delineate the aspects of cognition that are most influenced by 

long-term aerobic and resistance exercise regimes in young adults using the extensive 

Cambridge Brain Sciences cognitive task battery. Based on the existing literature 

discussed above, I hypothesized that participants in the aerobic exercise group would 

show more improvement on tasks relying on executive functions, such as working 

memory (Costigan et al., 2016; Hillman et al., 2014; Smiley-Oyen et al., 2008; Stroth et 

al., 2009). However, the limited number of studies regarding the effects of resistance 

interventions makes it difficult to predict which cognitive functions will be most 

improved upon. Nonetheless, based on the work I describe earlier and the results of 

experiment two, I hypothesized that tasks relying on verbal and memory abilities would 

show the most improvement (Liu-Ambrose et al., 2012a; van de Rest et al., 2014).  

4.2 Methods 

4.2.1 Participant Demographics  

Participants were recruited using flyers posted throughout Western University. Before 

beginning the study, participants first gave informed written consent, and were screened 
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via the Physical Activity Readiness Questionnaire (PAR-Q+) to ensure they were able to 

safely perform the exercises required to complete this study. Participants were also 

screened to ensure they did not meet any exclusion criteria, which included any 

neurological problems or brain injuries, any visual or auditory disorders, pregnant, trying 

to become pregnant or any condition that prohibits moderate physical activity. Because I 

was interested in the effects of exercise on cognition, it was important my participants 

were not actively engaging in any exercise; therefore anyone performing moderate 

physical activity more than 3 times a week, for greater than 30 minutes per day 

consistently for the past 3 months did not meet the inclusion criteria. 

Of the original sample of 35 participants, twelve participants were excluded from the 

final analysis; eleven participants chose to withdraw from the study, and one participant 

withdrew due to a medical condition. Consequently, there were 23 participants (22 

females, 1 male) between the ages of 20 and 28 (M = 23.1, SD = 2.93) included in the 

final analysis for this study. The Health Sciences Research Ethics Board of the University 

of Western Ontario approved this study. Participants were compensated monetarily for 

their involvement. 

4.2.2 Procedure  

There were three phases to this study: the pre-exercise phase, the exercise-training phase 

and the post-exercise phase. During the pre-exercise phase, participants completed all 12 

cognitive tests from the Cambridge Brain Sciences battery in order to establish baseline 

performance scores for each participant (descriptions of all 12 tasks can be found in the 

“Cognitive Measurements” section of chapter one). Participants were instructed to not 

complete the tasks after engaging in any physical activity to ensure the acute effects of 

exercise did not influence their scores (Chang et al., 2012). Each participant also 

completed a physical pre-assessment in order to determine baseline measures of strength 

and aerobic fitness. I used four strength exercises: plank, wall sit, push-ups and bicep 

curls. For both the plank and wall sit, participants were instructed to hold the position for 

as long as they could and record that time. They were then asked to complete as many 

push-ups as they were able to without resting and record this number. Lastly, they were 

asked to perform single arm bicep curls using dumbbells and record the weight they were 
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able to curl for 10 repetitions without rest, and the weight they could curl for 1 repetition. 

In the aerobic component, participants performed the single stage submaximal treadmill 

test, which is used to predict their VO2 Max (Ebbeling et al., 1991). This test begins with 

the participant walking on a treadmill for 4 minutes at 0% incline, at a speed that brings 

their HR between 50-70% of their age-predicted maximum heart-rate (HR; participants 

wore a Polar H7 Heart Rate sensor throughout this test). After the initial 4-minute period, 

they continue walking at the same speed, but increase the incline on the treadmill to 5%. 

They continue walking at this speed and incline for another 4 minutes, and when 

complete they record their steady state HR (SS-HR), which is the average HR from the 

final 30 seconds of the time walking at 5% incline. The participant’s age, SSHR and 

walking speed were recorded and entered into the following equation (Ebbeling et al., 

1991), which was used to estimate the participant’s VO2 Max: 

  

In designing this study, I did consider the difficulties associated with altering VO2 Max 

when selecting how I was going to measure changes in cardiovascular capacity. 

Nevertheless, I went ahead with using predictive VO2 Max for various reasons. First, 

VO2 Max is a common measurement used in the literature, and is considered the gold 

standard for measuring aerobic endurance and cardiovascular fitness (Fletcher et al., 

2013; Vanhees et al., 2005). The predictive VO2 Max measurement was cost-effective 

and non-invasive, which were also important considerations. Lastly, various studies 

examining changes in VO2 Max suggest that although oxygen consumption is difficult to 

alter, the most drastic changes are seen in those beginning with lower VO2 Max 

measurements (Davies & Knibbs, 1971; Wilmore et al., 1970), which I reasoned would 

reflect my sample of sedentary young adults. Taken together, this knowledge led me to 

reason that a sedentary population had the capacity to change their maximal oxygen 

consumption 

In the exercise-training phase, participants were randomized to one of two exercise-

training interventions, one focused on cardiovascular fitness and the other on resistance 

15.1+ 21.8 (speed in mph)− 0.327 (SSHR in bpm)− 0.263 (speed x age in years)
+0.00504 SSHR x age( )+ 5.98 gender; female = 0, male =1( )
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training. The cardiovascular fitness regime involved cycling on a stationary spin bike. 

Participants attended 50-minute group spin-classes that were guided by an instructor who 

directed the intensity of the class. The strength regime was comprised of a class focused 

on both upper and lower body strength conditioning using weights tailored to the 

participant’s fitness level. Similarly, the intensity of the class varied during the 50-

minutes based on the instructor’s guidelines. In both regimes, participants wore the Polar 

H7 Heart Rate sensor during each exercise class. The sensor recorded the user’s HR 

every second and participants were instructed to save the HR data from each class to a 

mobile app. Participants were required to complete 15 classes over 40 days. During this 

period, participants also completed the set of 12 cognitive tasks (the same ones they 

completed in the pre-exercise phase) at regular intervals – approximately after every 3 

exercise classes, including after the last exercise class – in order to track the trajectory of 

their cognitive performance.  

During the post-exercise phase, participants again completed the physical assessment, 

exactly as they did in the pre-exercise phase. This was to test whether the exercise 

regimes had the intended effects on the different measures of physical health. Thus, 

throughout the longitudinal study, participants completed the CBS battery a total of six 

times and the aerobic and strength components of the physical fitness assessment twice.   

4.2.3 Control Participants and Procedure  

Participants in the control group were recruited using Mechanical Turk (M-turk), 

Amazon’s online crowdsourcing platform. All participants were over the age of 18, and 

had to be in good health to be included in this study. Informed consent was obtained from 

all participants. Once participants logged onto M-turk and agreed to participate, they 

were provided with information regarding the study and the links required to access the 

CBS website. By following the link provided, participants were directed to the CBS 

webpage where they were required to register using the mock email address given to 

them. Participants were asked to fill out a demographic questionnaire and then were 

instructed to complete all 12 CBS tasks. Participants completed the CBS battery a total of 

five times according to this testing schedule: once per day on days 1, 2, 5, 10 and 20 once 

they started the experiment. I chose this particular sequence to maximize the potential 
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gains from repeatedly completing the tasks. In total, 31 participants (16 females, 15 

males) between the ages of 20 and 57 (M = 34.5, SD=8.82) completed all five trials.  

 

4.2.4 Statistical Analysis  

Considering the high attrition rate I had due to the long-term nature of this study, I first 

examined the number of cognitive testing sessions each participant completed. Overall, 

four participants (2 aerobic and 2 resistance) completed up to testing day 4, six 

participants (2 aerobic and 4 resistance) completed up to testing day 5, and thirteen 

participants (8 aerobic and 5 resistance) completed all 6 days of cognitive testing. 

Because 30% of the aerobic group and 54.5% of the resistance group did not complete 

the final cognitive testing session, I excluded all scores on the CBS tasks from that day 

from further analysis. 

Following this, I compared how much exercise each participant completed throughout the 

intervention, to ensure the amount of exertion was matched in both groups. Subsequently, 

I evaluated whether my exercise regimes were effective in raising the heart rate of those 

in the aerobic condition and the strength of those in the resistance condition. Using the 

data collected from the heart rate sensor, I was able to determine the proportion of time 

each participant spent at or above 70% of their maximum heart rate, the rate at which 

exercise enters an aerobic zone (American College of Cardiology, 2015). I then compared 

the amount of time spent at or above 70% of their maximum HR between the aerobic and 

resistance group. Correspondingly, I compared performance on the measures of physical 

fitness before and after the exercise-training phase was completed, separately for both 

aerobic and resistance conditions.  

I then determined whether engaging in either exercise regime produced changes in 

cognitive functioning. Scores were first converted to z-scores on all tasks. Following this, 

I calculated the slope of performance for each participant on each task and calculated the 

difference in performance between the first and last day of testing, a metric I will refer to 

as delta. I then carried out a 12 (task) x 2 (metric; as the within subject factor) x 2 



61 

 

(intervention group; as the between subject factor) mixed design ANOVA to determine 

whether the different exercise groups (aerobic versus resistance regimes) affected 

performance, as measured by my two metrics of improvement. These were followed up 

with two additional 12 (task) x 2 (metric) x 2 (control versus either the aerobic or 

resistance intervention) ANOVAs to determine if performance of participants in each 

intervention differed from the controls. Lastly, a 12 (task) x 5 (testing day; as the within 

subjects factor) x 2 (aerobic versus resistance exercise; as the between subjects factor) 

mixed design ANOVA was performed in order to determine if there were any patterns in 

performance that were not reflected in the slope or delta measures.  

4.3 Results  

First, I tested whether both groups were exposed to similar amounts of exercise, and 

found that participants in the aerobic group completed an average of 14.2 spin classes 

(n=12, SD=1.58), whereas there was an average of 13.1 classes completed in the 

resistance group (n=11, SD=3.21). The number of classes performed by each group was 

not significantly different (t(21)= 1.034, p=0.313). However, I did find that the number of 

days taken to complete the intervention was significantly less in the resistance group (M= 

24.3 days, SD= 10.8) compared to the aerobic group (M = 37.2 days, SD=5.0; t(21)= 

3.725, p<0.001).  

Next, I set out to examine whether the exercise interventions employed were effective in 

raising the heart rate of the participants. I expected that participants in the aerobic 

exercise regime would spend a greater proportion of time in an aerobic zone. On the other 

hand, the resistance group would spend a smaller portion of time in an aerobic zone, as 

this regime focused on strength-based exercises. I found that the aerobic group spent 

83.5% (SD = 1.01) of their sessions at or above 70% of their maximum HR, whereas the 

resistance group spent only 15.7% (SD = 0.84) at or above it. A between-subjects t-test 

revealed that participants in the aerobic group spent a significantly larger proportion of 

their time at or above 70% of their maximum HR, compared to the resistance group (t(20) 

= 16.825, p<0.001).  
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To determine whether each exercise intervention had an effect on fitness levels, I 

proceeded to perform paired t-tests between pre and post-test for each of the three 

physical measures for each intervention group. I found that the only intervention that had 

an effect on fitness levels was the resistance regime, which produced improvements on 

the wall sit (t(9)= 2.734, p= 0.023). This was also the same measure I found in Chapter 2 

to reflect a pure measure of strength. There were no improvements seen on the plank 

(t(9)= 2.088, p= 0.066) or predictive VO2 Max (t(9)= 1.678, p= 0.128). The spin 

intervention produced no benefits on the wall sit (t(10)= 1.192, p= 0.261), the plank (t(10)= 

0.594, p= 0.566) or predictive VO2 Max (t(9)= 1.192, p= 0.264). Figures 19 A and B 

display performance changes on all three physical measures from pre to post-test.  

A) 
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B) 

 

Figure 19: Mean performance (+/- SEM) on the plank (seconds), wall sit (seconds) and 

VO2 Max (ml.kg-1.min-1) before and after an exercise intervention. Stars represent 

significant differences in physical fitness between pre and post-test (p<0.05). Figure A 

represents performance after a resistance exercise regime (n=11). Figure B represents 

performance after an aerobic exercise regime (n=10). 

I then proceeded to determine whether the different exercise regimes (aerobic versus 

resistance exercise) had differential effects on cognition on two metrics reflecting change 

in performance over time: slope and delta (computed by taking performance on the last 

day and subtracting it from the first day). I ran a 12 (cognitive task) x 2 (metric) x 2 

(aerobic versus resistance intervention) mixed design ANOVA with cognitive task and 

metric as the within subject factor, and exercise group as the between subjects factor. 

Here, I found only a main effect of metric (F(1, 7)=12.679, p=0.009), which reflects the 

difference in scales of the two measurements. None of the other comparisons reached 

significance (F(11, 77)<1.817, p>0.065), including no effects involving the group factor. 

These results suggest that if the exercise intervention affects cognitive function, this 

effect is the same for both exercise regimes. One interpretation is that both exercise 

regimes boost performance on at least some of the tasks; however to explicitly test this 

hypothesis, I compared each exercise group to the controls. To do this I first ran a 12 
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(cognitive task) x 2 (metric) x 2 (aerobic intervention versus controls) mixed design 

ANOVA with cognitive task and metric as the within subject factor, and group as the 

between subjects factor. This similarly revealed a main effect of metric (F(1, 10)= 17.770, 

p= 0.002) once again reflecting the fact that slope and delta fall on different scales, and a 

main effect of task (F(11, 110)=3.164, p<0.001). The results also revealed an interaction 

between task and metric (F(11, 110)=2.916, p=0.002), suggesting that some participants 

performed better on some tasks more than others. Most notably, there were no significant 

effects involving the group factor (F(11, 110)<0.940, p>0.505). This suggests that any 

changes in cognitive function after completing the aerobic exercise intervention were no 

different than the control group. I ran the same analysis comparing the resistance group to 

the controls and found the same pattern of results; there was a main effect of task and 

metric (F(11, 88) = 2.709, p= 0.005; F(1, 8) = 14.162, p= 0.006) and an interaction between 

metric and task (F(11, 88) = 2.588, p= 0.007). Again, there were no effects involving the 

group factor (F(1, 8) < 0.396, p> 0.547). This likewise suggests that any effect of resistance 

exercise on cognitive function is no different than the practice effects demonstrated by 

the control group. Together, these results reveal that not only do both exercise regimes 

have the same effect on cognition, this effect is no different than that produced by just 

doing the tasks repeatedly. 

This was a surprising result and ran counter to what I expected. To test whether the 

exercise groups showed some improvement, I ran a one-samples t-test on both the slope 

and delta measures for both exercise groups. The results of this analysis revealed that 

only 3 tests had a slope significantly above 0 for the aerobic group (t(11)>2.759, p <0.019) 

and 2 tests had a slope significantly above 0 for the resistance group (t(10)>2.694, p 

<0.023). The analysis for the delta metric revealed 3 tests with a difference significantly 

greater than zero for the aerobic group (t(10)>2.239, p <0.049), and 2 tests with a 

difference significantly greater than zero for the resistance group (t(8)>2.535, p<0.035). I 

compared this to the control group, which showed 3 tests with a slope above 0 

(t(30)>2.762, p<0.014) and 3 tests with a difference above 0 (t(30)>2.623, p<0.010). Thus, I 

concluded that much like practice, extensive periods of aerobic and resistance exercise do 

not result in improvements to cognition in healthy sedentary young adults. 



65 

 

One of the strengths of this study is that participants perform cognitive testing on 

multiple occasions throughout the intervention. However, slope and delta are insensitive 

to subtle changes across days, and differences in performance on certain days may have 

gone undetected (see Figure 20 for performance trajectories for each group over the 5-

day testing period). For instance, it could be that the effects of exercise adopt an inverted 

U-shape, where benefits peak during the middle of the exercise program. For this reason, 

I also carried out a 12 (task) x 5 (testing day; as the within subjects factor) x 2 (aerobic 

versus resistance exercise; as the between subjects factor) mixed design ANOVA. I found 

a main effect of task (F(11, 99) = 2.859, p=0.003), and day (F(5, 45) = 5.097, p<0.001) and an 

interaction between task and day (F(55, 495) = 1.529, p=0.011). This suggests that 

performance changes across the testing sessions to a greater extent on some tasks. 

However, because there was no main effect or interaction with group, these changes 

appear to be equivalent across the intervention groups. 
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Figure 20: Mean performance on all 12 cognitive tasks (+/- SEM) across 5 cognitive 

testing sessions for the control (n=31), aerobic (n=12) and resistance (n=11) groups. 

Performance is expressed as a z-score. Black circles represent the aerobic group’s 

performance, white circles represent the control group’s performance and white squares 

represent the resistance group’s performance. 
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4.4 Discussion  

In this experiment, my aim was to determine whether cognitive functioning is affected by 

long-term aerobic and resistance exercise in young adults. First, I examined whether the 

exercise regimes were having the desired effect on different metrics of physical fitness by 

comparing the change in three measures of physical health before and after the 

interventions for each exercise group (aerobic and resistance training). As expected, 

participants in the aerobic group spent a significantly greater amount of time in an 

aerobic zone than those in the resistance intervention, indicating that that the spin class 

was a sufficiently demanding cardiovascular intervention. Despite the consistent increase 

in heart rate and time spent in the aerobic zone, I did not find changes to any of the 

physical fitness measures, including predicted VO2 max, which I expected to improve.  

Although there were no differences in the total amount of exercise performed by each 

intervention group, the only one to show any benefit to physical fitness was the resistance 

regime. Following the resistance regime, participants significantly improved on the wall 

sit measure. As I outlined in Chapter 2, the wall sit represents my only pure measure of 

strength. Thus, this result indicates that the resistance class, which focused on upper and 

lower body conditioning, was successful in improving muscle strength and endurance of 

those in that group. 

Despite having established that the resistance class improved wall sit performance and 

that the spin class raised the HR of participants into an aerobic zone for over 80% of the 

exercise period, my analysis revealed that neither exercise intervention produced 

meaningful improvements to cognitive performance. My initial analysis suggested that 

both exercise interventions boosted performance on at least some tasks. However, after 

further comparing the interventions to the controls, I concluded that any effect of either 

intervention on performance is no different than the practice effects demonstrated by the 

control group. I tested whether there were any effects on performance that were not 

captured by the two improvements metrics. That is, I examined whether performance 

changed on certain days for specific tasks, but found no differences between the 

intervention groups. Thus any trend towards task improvement in either group had 

nothing to do with exercise and reflects the effects of repeated testing.  
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As neither of my interventions facilitated the hypothesized effects on cognition, it is 

necessary to consider the possible reasons for my general lack of findings. First, perhaps 

the lack of change in the VO2 Max measurement for those in the aerobic group suggests 

they did not engage in enough exercise to produce cognitive benefits. While this is a 

possibility, I do not think it is the only factor. For instance, I did find that those in the 

aerobic group were in the aerobic zone for over 80% of the exercise period. Another 

possibility is that VO2 Max is a stable measure that requires more than 14 spin classes 

over 37 days to change, and thus may not have been the ideal measure to use. While, 

changes in VO2 Max are thought to be dependent on frequency, duration and intensity of 

exercise (American College of Sports Medicine, 1993), past research has shown that 

changes in VO2 Max, when present, are small and require working at a high intensity for 

prolonged periods of time, with the frequency of exercise being less significant (Davies 

& Knibbs, 1971). Davies and Knibbs (1971) carried out a study comparing various 

combinations of exercise intensities, durations and frequencies, and found male 

individuals participating in exercise sessions lasting greater than 20 minutes over the 

course of 8 weeks showed the most improvement in VO2 Max. They also found that 

participants working at or below 50% of their VO2 Max showed no improvements in 

maximal oxygen consumption, whereas those working at or above 80% saw small 

benefits (Davies & Knibbs, 1971). In my experiment, I had a young sedentary sample 

who completed nearly 14 sessions lasting approximately one hour, and their HR 

remained in an aerobic zone for nearly 85% of that time, which met all the requirements 

to produce an improvement in VO2 Max (Wilmore et al., 1970). Despite this, I found no 

changes in my predictive VO2 Max measurement in my sample. This result suggests that 

either the participants in the aerobic group did improve their cardiovascular health and 

the predictive VO2 Max measure was not sensitive enough to detect these changes, or 

more likely, transient exercise does not change maximal oxygen consumption because it 

is a relatively stable marker of cardiovascular health that requires prolonged and regular 

exercising to alter. 

In future studies, other measures could be used alongside VO2 Max to estimate changes 

in aerobic capacity. For instance, Stroth and associates (2009) suggest measuring lactate 

concentration to estimate lactate threshold. This is the intensity of exercise at which 
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lactate in the blood can no longer be cleared as fast as it accumulates, and it further 

reflects aerobic capacity. As well, because BDNF is hypothesized to mediate the 

relationship between exercise and cognition, it would be useful to collect peripheral 

BDNF measurements to determine how each regime affects individuals at the protein 

level.  

Other potential reasons for not seeing a boost in performance on the various cognitive 

tasks is the possibility that the task battery was not sufficiently sensitive to subtle changes 

in cognition. However, I believe this is unlikely. The double trouble task, a modification 

of the Stroop task, is used regularly in this body of literature, and many studies have 

demonstrated exercise-dependent improvements on this task (Barnes et al., 2003; Liu-

Ambrose et al., 2012a; Weinstein et al., 2012). Tasks such as the digit span and 

grammatical reasoning have also been commonly used to assess cognition and 

correspondingly show exercise-dependent changes ( Cassilhas et al., 2007; Langlois & 

Vu, 2013; Ngandu et al., 2015; Shay & Roth, 1992). Other tasks in this battery, including 

the spatial planning, token search and paired associates tasks, have been used to detect 

subtle changes in cognition due to neurodegeneration or pharmacological intervention 

(Lange et al., 1992; Mehta et al., 2000; Owen et al., 1992; Owen et al., 1993). Thus, the 

lack of changes seen in cognitive function is likely not related to the sensitivity of the 

measures used and is more plausibly related to the exercise regime chosen, or the 

characteristics of the population being studied.  

I may not have observed the anticipated cognitive improvements due to our exercise 

intervention being too short in duration. The exercise intervention crafted for the current 

study was informed by past literature. Various studies have found performance benefits 

of short-term exercise interventions. For example, four weeks of a strength-focused 

exercise circuit improved executive function, episodic memory and processing speed in 

older adults (Nouchi et al., 2014). As well, it was noted in Colcombe and Kramer’s meta-

analysis (2003) that when compared to a null effect, the effect size of interventions 

lasting 1-3 months was greater than that of those lasting 4-6 months in older adults.  

Although there are very few intervention studies in young adults to compare the chosen 

regime to, the intervention adopted by Stroth and colleagues (2009) is similar in duration 
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to my own. Their protocol involved having participants complete 9 hours of aerobic 

exercise over the course of 6 weeks (30 minutes, 3 times a week). When compared to the 

regime I designed, participants completed less exercise in a greater amount of time, yet 

still improved on a measure of visuospatial memory. Thus, although long-term 

interventions tend to have the greatest effect on cognitive function (Colcombe & Kramer, 

2003; Hillman et al., 2014; Ngandu et al., 2015), other investigations of similar duration 

to my own have found benefits to cognition, suggesting my intervention was likely long 

enough to promote cognitive improvements. With that being said, this study examined 

young adults and because this population is already at a high level of cognitive 

functioning, more exercise may be necessary to support cognitive performance 

improvements. Future research should focus on chronic exercise interventions to further 

elucidate the relationship between exercise and cognitive function in a young adult 

population.  

If we assume that participants exercised a sufficient amount, another possible explanation 

for the results obtained is that exercise does not improve cognitive functioning in healthy, 

young adults, even if they live a sedentary lifestyle. Cognition has been shown to peak in 

young adulthood, and thus there may be limited room for cognitive improvement, which 

could preclude this population from exercise-dependent cognitive benefits (Salthouse & 

Davis, 2006). It is consistently shown that older adults benefit to a greater extent from 

exercise involvement than young adults; at the cross sectional level, more fit older adults 

perform better than their less fit counterparts on tasks assessing immediate and delayed 

recall, whereas high and low-fit young adults do not perform differently (Shay & Roth, 

1992). However this may be due to the selective ability of exercise to remediate cognitive 

decline, in this case that associated with age. A recent study demonstrated that exercise 

facilitates improved cognition in young adults with lower level functioning related to 

psychosis (Hallgren et al., 2018). Young to middle age adults participated an aerobic 

training circuit for 12 weeks, completing an average of 13.5 hours of exercise. 

Participants began the intervention with general cognitive deficits in visuospatial 

processing and working memory, but improvements were noted on tasks measuring 

visual learning and attention, and processing speed (Hallgren et al., 2018). Thus, even in 

populations with cognitive deficits unrelated to age, exercise-dependent cognitive 
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improvements are noted. Although interventional research in healthy young adults is 

scarce, Stroth and colleagues (2009) found performance improvements in visuospatial 

memory after 6 weeks of aerobic activity, and Costigan and associates (2016) revealed a 

benefit of high intensity interval training on executive function after 8-weeks. In 

combination with these results, these studies support the theory that exercise has small 

effects on cognitive performance in healthy young adults; however these benefits are not 

as robust as those seen in populations with cognitive deficits. It should be noted that these 

three regimes were short term (less than 8 weeks). Future work should clarify whether 

cognitively healthy young adults require longer duration interventions to observe 

cognitive improvements, or whether robust changes to cognition are unattainable in those 

at peak cognitive health.  

There were numerous strengths to this study, including the use of a large cognitive test 

battery, which allowed me to examine the effects of exercise on a range of cognitive 

functions. I also used a sample consisting of young adults, which is rare in this body of 

literature. Lastly, I compared two distinct exercise regimes, one of which focused on 

resistance exercise. The effects of long-term resistance exercise regimes have not been 

studied in young adults, and thus these results are novel. 

Despite these strengths, this study had limitations that should be addressed in the future. 

The first limitation was the disproportionate number of females that participated in this 

study. Only one male participant was able to complete the entire intervention, which 

results in the trends found being strictly generalizable to young adult females. In addition, 

there was a lack of compliance to the study protocol as many participants did not 

complete all 15 exercise sessions. This could help explain why the expected 

improvements in general fitness were not seen, and consequently, why no exercise-

related cognitive changes were observed. Lastly, I had a large amount of attrition 

throughout the study due to the length of the protocol, and the time commitment required. 

For this reason, the sample size was smaller than anticipated and this could have resulted 

in my study being underpowered for detecting changes in fitness level pre and post-

intervention, as well as changes in cognition throughout the regime.  
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Chapter 5  

5 General Discussion  

This thesis consisted of three experiments, which facilitated a greater understanding of 

the relationship between exercise and cognition. Together, they comprised a hierarchical 

approach to addressing this relationship and each chapter was able to help answer 

questions the previous chapter left unanswered. In chapter one, I used a large and diverse 

sample to evaluate the aspects of cognition that most benefit from various levels of 

exercise. In this study I wanted to examine a wide range of ages, and thus I chose to focus 

on physical exertion, rather than the type of exercise individuals participated in. In 

chapter two, instead of examining self-reported measures of physical activity, I focused 

on the relationship between cognitive function and concrete measures of aerobic capacity 

and muscular strength in young adults. In my third study, I built on this by assessing the 

relationship using an interventional approach; in a young adult population, I examined 

how introducing participants to an aerobic or strength exercise regime affected cognitive 

function. Overall, through my three studies, I was able to gain a better understanding of 

the general landscape of the effects of exercise on cognition. 

The goal of experiment one was to get a general snapshot of reality; I wanted to 

determine the exercise habits of a large, diverse sample and further examine how these 

habits were associated with cognitive performance. Rather than looking at specific 

aspects of exercise or measures of fitness (which I did in chapters two and three), I first 

wanted to determine whether there is a relationship between exercise and cognition at the 

population level after controlling for a set of variables that are often associated with 

exercise. I found that the frequency with which people exercise predicted performance in 

the reasoning and verbal domains. More specifically, I found that those who have not 

exercised in the past month perform worse on the polygons, token search and 

grammatical reasoning tasks, as well as the reasoning and verbal domains, when 

compared to all levels of exercise. However, further analysis showed that moderate levels 

of exercise led to improved performance on specific tasks when compared to participants 

who exercise less than once per month. This result suggested that with the exception of 
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daily exercise, more frequent exercise involvement was associated with improved 

cognitive performance. As well, I found the effects of exercise on cognition were 

independent of different sleep metrics and age. Thus, overall this study revealed that 

exercise is directly beneficial to certain aspects of cognition at the population level.   

After establishing that moderate levels of exercise are positively associated with 

cognition in specific domains, the next step in my hierarchical framework was to assess 

whether higher levels of strength and aerobic fitness were associated with better 

cognition. I first identified three metrics of physical health: 1) cardiovascular fitness 

(predicted VO2 Max), strength (wall sit) and a hybrid measure encapsulating aspects of 

both strength and aerobic capacity (plank). Overall, I found that plank performance was 

consistently related to cognitive abilities. Firstly, high-fitness performers on the plank 

outperformed the low-fitness group on the grammatical reasoning, paired associates, and 

token search tasks, as well as the verbal latent cognitive domain. In addition, the duration 

an individual could hold the plank correlated with their performance on the grammatical 

reasoning and paired associates tasks, as well as their score on the verbal domain. 

However, neither the predicted VO2 Max, nor wall sit measures were associated with 

cognitive function. Overall, the results of this study demonstrated that plank performance, 

my hybrid measure of fitness, was associated with higher levels of cognitive function in 

certain cognitive domains.  

My first two experiments were able to establish strong correlational associations between 

exercise and various cognitive processes. The final step in my hierarchical approach was 

to determine whether introducing an exercise intervention to sedentary, but healthy young 

adults – an often-overlooked population in this literature – led to improvements in 

cognition. My analysis of both slope and delta revealed that neither the aerobic nor the 

resistance exercise intervention produced meaningful improvements in cognitive 

performance, as any effect of either intervention did not differ from the practice effects 

demonstrated by the ‘no exercise’ control group. This lack of improvement may be due to 

various reasons, including the duration of the intervention being too short or the limited 

cognitive plasticity of healthy young adults. Thus, despite the positive relationships found 
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between exercise and cognition in experiments one and two, I did not find any cognitive 

benefits of either exercise intervention implemented in this study.  

Overall, I found that exercise has a positive relationship with cognition. This relationship 

was shown to extend to various different tasks tapping into diverse cognitive functions, 

including memory, reasoning and verbal abilities. However, this appears to only be the 

case if exercise is a consistent part of your life. In both studies one and two, I found that 

my measures of exercise (frequency of exercise involvement and physical fitness 

respectively) were associated with improved performance on the reasoning and verbal 

domains, as well as a small set of memory tasks. My hypothesis is that what we are likely 

observing here is the cognitive effects of habitual exercise. In experiment one, 

participants were asked about their exercise involvement in the past month, which 

presumably reflects real world exercise habits. In line with this, experiment two 

examined physical fitness levels, and superior plank performance is the outcome of 

regular exercise over a prolonged period of time. Thus, it may be the case that 

experiments one and two are similarly tapping into the effects of habitual exercise. 

However, to substantiate this idea, more information is needed regarding the length of 

regular exercise involvement prior to cognitive testing. 

Transient introduction of exercise into the lives of sedentary young adults, independent of 

its aerobic or resistance nature, was not shown to have an effect on cognition. This result 

could have arisen due to various reasons, including the limited cognitive plasticity of 

young adults. However, as is suggested by the previous experiments, this finding also 

may be due to the fact that the introduction of a short-term intervention isn’t enough to 

boost cognitive performance of healthy young adults; exercise needs to be habitual for 

any cognitive benefits to occur. In future studies, there should be a greater focus on long-

term exercise involvement, with interventions lasting as long as 6-months to one year. 

This would not only allow for a better understanding of the effects of introducing a long-

term exercise intervention, but it would also help give insight in to the exercise-

dependent plasticity of the young adult brain.  
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Although the mechanisms that are responsible for mediating exercise-related cognitive 

changes are unclear, rodent experiments have provided insight into the numerous changes 

that occur in the brain following exercise. As previously mentioned, earlier work has 

shown that BDNF is a key protein mediating the effects of exercise on cognition, exerting 

its greatest effects on the hippocampus (Cotman, Berchtold, & Christie, 2007b). 

Increased expression of BDNF is shown to be associated with various factors that are up 

regulated following exercise, including increased levels of Irisin, norepinephrine and 

IGF-1 (Ding et al., 2006; Garcia et al., 2003; Wrann et al., 2013). BDNF is a growth 

factor involved in the growth and differentiation of the nervous system, most notably 

promoting neurogenesis and neuronal plasticity (Murray & Holmes, 2011). BDNF exerts 

these effects via various molecular signaling pathways, including the MAP-K and 

CAMKII pathways, which are both associated with learning and memory (Vaynman et 

al., 2003; Yin & Tully, 1996). Further evidence in rodents has demonstrated the 

relationship between BDNF expression and hippocampal function. For example, after 

blocking the hippocampal BDNF receptor in rodents, rates of acquisition and retention on 

a spatial learning task were significantly reduced (Vaynman, Ying, & Gomez-pinilla, 

2004). This study not only demonstrated that exercise promotes the expression of BDNF, 

but additionally BDNF expression encourages improved hippocampal function, which in 

turn could help explain the results of experiments one and two.  

Although BDNF is a strong contender for explaining the relationship between exercise 

and cognitive function, there are other changes that occur in the brain following exercise 

that may also support improved cognition. For example, exercise adjusts the metabolic 

demand and vascular structure of the brain. Following exercise, proteins necessary for 

ATP synthesis and transport are shown to be elevated, which is necessary to support the 

augmented energy demands associated with BDNF-dependent neurogenesis and synaptic 

plasticity (Ding et al., 2006). In addition, angiogenesis is necessary to support the 

increased metabolic demands associated with neurogenesis (Palmer et al., 2000). 

Angiogenesis in turn increases cerebral blood flow (Cha et al., 2003), which has been 

associated with improved cognitive function in rodents; after 12 weeks of cardiovascular 

exercise, Periera and colleagues (2007) noted increased blood flow to the dentate gyrus, 

which further correlated with performance on a declarative memory task. Although these 
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same experimental designs cannot be carried out in humans, they do provide insight into 

the changes occurring in the brain after exercise.  

Consequentially, these exercise-dependent changes throughout the brain may help to 

explain the performance improvements noted throughout experiments one and two. In 

these experiments, there was overlap between the tasks that showed improved 

performance. In experiment one, I observed an association between exercise frequency 

and verbal and reasoning performance, as well as performance on the token search, 

grammatical reasoning and polygons tasks. Similarly in experiment two, I found an 

association between plank performance and verbal and memory abilities, specifically 

with the grammatical reasoning, paired associates and token search tasks. Token search 

performance is reliant on pattern separation. Pattern separation is a hippocampal function, 

localized to the dentate gyrus (Bekinschtein et al., 2013; Yassa & Stark, 2011). This area 

of the brain is thought to undergo BDNF-dependent neurogenesis after exercise in 

rodents (Pereira et al., 2007) and in humans, it has been shown to partially mediate 

improvement on a pattern separation task after acute exercise (Suwabe et al., 2017). 

Thus, it is plausible that habitual exercise involvement induces changes in BDNF 

expression in the hippocampus. The subsequent neurogenesis and augmented plasticity in 

this region could then in turn support improvement on tasks relying on pattern separation. 

On that note, superior verbal performance, specifically on the grammatical reasoning 

task, was found in both experiments. Aerobic endurance is associated with improved 

verbal capacity, and this is thought to be due to greater gray matter volume in the 

temporal cortex, and more consistently, the pre-frontal cortex (Erickson et al., 2014). 

Habitual exercise may be associated with greater aerobic endurance, which in turn may 

be related to the improved performance on the grammatical reasoning task I observed, as 

this task relies on similar areas of the brain (Hampshire et al., 2012). Thus, there are 

numerous explanations for why these specific tasks were consistently associated with 

exercise in experiments one and two, however their improved performance is likely at 

least partially related to changes in the brain that are the result of long-term exercise 

involvement.   
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In summary, my thesis aimed to use a hierarchical approach to assess the relationship 

between exercise and cognitive function. Experiment one, which observed the exercise 

habits of a large, diverse sample, demonstrated that exercise frequency was positively 

associated with reasoning and verbal performance, as well as performance on specific 

tasks. Further, experiment two was able to show that core endurance was associated with 

a variety of tasks relying on verbal and memory function. However, experiment three 

revealed that the introduction of either an aerobic or resistance exercise intervention had 

no effect on cognitive performance of sedentary young adults. Thus, the combination of 

these results suggests that exercise benefits cognition when it is a regular part of an 

individual’s lifestyle, however the transient introduction of a short-term exercise program 

provides no benefit. These benefits are likely associated with changes in growth factor 

expression in the brain over a long-term period. The increased expression of these growth 

factors instigates further changes to the brain in regards to structure and volume, which 

likely mediates benefits to cognitive function over time.  
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Appendices 

 

Appendix  1: Comparison of age, gender and SES between exercise levels. Red bars 

represent instances where the proportion of males and females significantly differs 

between the exercise levels (p<0.05; n=10,985). Green bars represent the exercise levels 

in which the proportion of participants who grew up below poverty line is significantly 

different from those who grew up at or above the poverty line (p<0.05; n=10,985). Blue 

bars show which exercise levels have significantly different mean ages (p<0.05; 

n=10,985).  
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Appendix  2: Proportion of participants reporting the various education levels within each 

exercise frequency is displayed. Black bars represent the exercise levels with 

significantly different proportions of participants, within an education level (p<0.05; 

n=10,985). 
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