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Abstract

For a compact smooth manifold with a torus action, its equivariant cohomology is a finitely

generated module over a polynomial ring encoding information about the space and the action.

To such a module, we can associate a purely algebraic notion called syzygy order. The syzygy

order of equivariant cohomology is closely related to the exactness of Atiyah-Bredon sequence

in equivariant cohomology. In this thesis we study a family of compact orientable manifolds

with torus actions called big polygon spaces. We compute the syzygy orders of their equiv-

ariant cohomologies. The main tool used is a quotient criterion for syzygies in equivariant

cohomology. We also generalize a lacunary principle for Morse-Bott functions to manifolds

with corners in the process of computation. Some applications of the main result are discussed

in the end.

Keywords: Big polygon spaces, equivariant cohomology, syzygy, quotient criterion, man-

ifolds with corners, Morse theory
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Chapter 1

Introduction

The subject of transformation groups is concerned with studying symmetry of spaces. One

particularly interesting aspect of it is the study of manifolds with compact Lie group action.

These spaces appear everywhere in geometry, topology and representation theory. For example,

the action of classical compact Lie groups like orthogonal groups and unitary groups on vector

spaces is an important subject of representation theory. In general, a smooth manifold X with

a smooth action of a compact Lie group G is called a G-manifold.

Equivariant cohomology was introduced into the study of compact Lie group actions on

manifolds by Borel in [5, Chapter IV, §3]. For any compact Lie group G there is a contractible

space EG on which G acts freely. The orbit space of EG is denoted BG and is called a classi-

fying space of G. For a G-manifold X, the Borel construction of the ordinary cohomology of a

constructed space XG:

H∗(XG) (1.1)

where

XG := (EG × X)/G (1.2)

and the group action on EG × X is defined as g(e, x) = (eg−1, gx). Since we will mainly be

concerned with equivariant cohomology with real coefficients in this thesis, we will be taking

1



2 Chapter 1. Introduction

cohomology with real coefficients everywhere.

The case when G is a finite group and X is a point is already very interesting. The equivari-

ant cohomology recovers the group cohomology of the finite group G in this case. In general,

the equivariant cohomology H∗G(X) is a graded H∗(BG)-module with module structure induced

on equivariant cohomology by the following map

XG = (EG × X)/G → EG/G = BG. (1.3)

In general even the cohomology rings H∗(BG) for a disconnected compact Lie group are un-

known. However, the following reduction formula from [21, Chapter III, example 3] shows

that we can first try to study equivariant cohomology for manifolds with actions of compact

connected Lie groups:

H∗G(X) ' H∗G0(X)Γ (1.4)

where G0 is the identity component of G and Γ = G/G0 is a finite group. The right hand side

of the above equation is the fixed elements of the G0-equivariant cohomology of X under a

Γ-action where Γ acts as deck transformation of the covering map XG0 → XG.

There is one more reduction one can do to equivariant cohomology after the above reduc-

tion. Let G be a compact connected Lie group. We have the following reduction formula [21,

Chapter III, Proposition 1]:

H∗G(X) ' H∗T (X)W (1.5)

where T is a maximal torus of G which is a maximal connected abelian subgroup of G. The

finite group W is the Weyl group N(T )/T where N(T ) is the normalizer of T in G. Maximal

tori and Weyl groups play a central role in the representation theory of compact Lie group and

this reduction is analogous to the one in representation theory.

Formulas (1.4) and (1.5) suggest that to understand G-equivariant cohomology for any

compact Lie group G we could first try to study the T -equivariant cohomology where T is
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a maximal torus of the identity component of G. Since the rest of this thesis is all about T -

equivariant cohomology, we will restrict our interest to torus action on manifolds. We will also

assume that the space X is compact from now on.

Let T = (S 1)r be a torus. The classifying space of T can be taken to be (CP∞)r and thus we

have

H∗(BT ) = H∗((CP∞)r) ' R[t1, . . . , tr] (1.6)

where every ti ∈ H2(BT ) is the pullback of the first Chern class of the universal complex line

bundle over CP∞ via the projection map (CP∞)r → CP∞ onto the ith coordinate. This ring

H∗(BT ) will be denoted R.

For a T -manifold X, we have seen that H∗T (X) is a graded module over the polynomial ring

R. One natural task is to study the case when H∗T (X) is free over R. This freeness condition

is equivalent to the condition of equivariant formality proposed in [19]. A neat proof of this

equivalence can be found at [18, Proposition 2.2].

There are various results under the assumption that H∗T (X) is a free R-module. Among

them, the most interesting results for us can be dated back to the work of Chang-Skjelbred [9],

Atiyah [3] and Bredon [6]. Let Xi denote the set of points of X that are fixed by a codimension-

i subtorus of T . Note that X0 is the set of fixed points. Chang and Skjelbred showed that if

H∗T (X) is free over R, then the following sequence is exact:

0→ H∗T (X)→ H∗T (X0)→ H∗+1
T (X1, X0). (1.7)

The nontrivial maps in the above sequence are respectively map induced by the inclusion of

fixed point set and connecting homomorphism in equivariant cohomology for the pair (X1, X0).

Roughly at the same time, under the same freeness condition, Atiyah and Bredon proved

the exactness of the following more general sequence called Atiyah-Bredon sequence which
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will be described in detail in (3.2.4)

0 H∗T (X) H∗T (X0) H∗+1
T (X1, X0) · · · H∗+r

T (Xr, Xr−1) 0. (1.8)

The first four terms and maps between them are exactly the same as in the Chang-Skjelbred

sequence and the rest of the maps are connecting homomorphisms in equivariant cohomology

associated to various triples (Xi+1, Xi, Xi−1).

It turns out that the exactness of the whole Atiyah-Bredon sequence is rather too strong a

condition in most applications. For example, GKM theory proposed in [19, Theorem 1.2.2]

only requires the exactness of the Chang-Skjelbred sequence and that is only the first sev-

eral terms of the Atiyah-Bredon sequence. More precisely, under additional assumptions on

the torus action, the GKM theory makes use of the exact sequence in (1.7) and compute the

equivariant cohomology as the kernel of the map H∗T (X0) → H∗+1
T (X1, X0) which requires only

information on fixed point set and 1-dimensional orbit. That already allows efficient computa-

tion of the equivariant cohomology.

Based on these observations, a question was raised by Allday, Franz and Puppe in [1,

Introduction]: Under what condition is the Atiyah-Bredon sequence exact from the left up to

the i-th position?

They solved this question in [1, Theorem 1.1] by introducing a purely algebraic notion

called syzygy into the study of equivariant cohomology. The notion of syzygy was originally

introduced by Hilbert to study ideals of a polynomial ring. A finitely generated module M

over the polynomial ring R = k[x1, . . . , xr] is defined to be an n-th syzygy if there is an exact

sequence

0→ M → Fn → · · · → F1 (1.9)

where Fi’s are finitely generated free R-modules. The largest integer n such that M is an n-th

syzygy is called the syzygy order of M. We will see later that being a certain kind of syzygy im-

plies certain kind of torsionfreeness. For example, the famous Hilbert syzygy theorem implies
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that being an r-th syzygy is equivalent to being free.

The theorem of Allday, Franz and Puppe states that the exactness of the Atiyah-Bredon se-

quence below a certain position is equivalent to the condition that the equivariant cohomology

H∗T (X) is a certain kind of syzygy. This theorem will be described in Theorem 3.2.2.

While their theorem makes it a purely algebraic criterion for exactness of the Atiyah-

Bredon sequence in equivariant cohomology, it raises new questions on computation of syzygy

order of the equivariant cohomology. The main goal of this thesis is to compute the syzygy

order of equivariant cohomology for the following family of T -spaces.

Definition 1.1 ([16, (1.4)(1.5)]). A vector l = (l1, l2, . . . , lr) ∈ Rr is generic if it cannot be

split into two groups of equal sum. For a generic l and integers a, b ≥ 1, a big polygon space

denoted Xa,b(l) is the subspace of C(a+b)r defined by the following equations:

(u1, . . . , ur, z1, . . . , zr) ∈ C(a+b)r where

u j ∈ C
a, z j ∈ C

b (1 ≤ j ≤ r),

‖u j‖
2 + ‖z j‖

2 = 1,

l1u1 + · · · + lrur = 0.

(1.10)

The torus T = (S 1)r acts on it by scalar multiplication on the variables z j’s as in [16, (1.6)],

(g1, . . . , gr) · (u1, . . . , ur, z1, . . . , zr) = (u1, . . . , ur, g1z1, . . . , grzr). (1.11)

It was proved in [16, Lemma 2.1(i)] that if l is generic, then the space Xa,b(l) is an orientable

compact connected T -manifold. The equivariant cohomology and its syzygy order are also

studied in [16].

The space defined in Definition 1.1 is called a big polygon space because the fixed point set

of it consists exactly of a so-called space of polygons E2a(l) defined in [13] as follows. Given

a generic length vector l = (l1, . . . , lr) as in Definition 1.1 and an integer d ≥ 1, a space of

polygons Ed(l) is the space of all closed n-gons (allowing self-intersection) in Rd with sides
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of lengths |li|’s up to translation in Rd. One can think of a space of polygons as the space

of all configurations of loops of r linked robot arms with lengths given by the length vector

l = (l1, . . . , lr) starting at the origin point 0 ∈ Rd. These spaces are themselves interesting

because they appear in the study of configuration spaces of mechanical linkages. More intuition

and details can be found in [14].

The significance of big polygon spaces in equivariant cohomology lies in the following

corollary of the theorem of Allday-Franz-Puppe.

Corollary 1.2 ([1, Corollary 1.4]). Let X be a compact orientable T-manifold. If H∗T (X) is a

syzygy of order ≥ r/2, then it is a free R-module.

Franz showed in [16, Theorem 1.2] that if r = 2m + 1 and l is the length vector (1, . . . , 1),

then the syzygy order of H∗T (Xa,b(l)) is m and H∗T (Xa,b(l)) is not a free R-module. This example

shows that the lower bound in Corollary 1.2 is sharp.

The syzygy order of equivariant cohomology for a big polygon space Xa,b(l) in general case

was conjectured in [16, Conjecture 6.6] to be an integer depending only on the combinatorial

property of the length vector l. To state the conjecture, we need to introduce this number µ(l).

Definition 1.3. Given a generic length vector l = (l1, . . . , lr), a subset I of {1, . . . , r} is called

short if ∑
i∈I

li <
∑
j∈I{

l j. (1.12)

If the inequality above is reversed, then the subset I is called long. Two generic length vectors

are called equivalent if they induce the same notion of long and short on subsets of {1, . . . , r}.

We define the following number for any subset I ⊆ {1, . . . , r}:

σl(I) := #{ j ∈ I : I − i short} (1.13)
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where # denotes the number of elements in the set. Then we can define

µ(l) := min{σl(I) : I is long and σl(I) > 0}. (1.14)

Our main goal in this thesis is to give a proof of the following conjecture in [16, Conjecture

6.6].

Main result. Assume a, b, r ≥ 1, then we have

syzord H∗T (Xa,b(l)) = µ(l) − 1. (1.15)

This conjecture has been verified for r ≤ 9 using computer with a complete list of nonequiv-

alent length vectors l ∈ Rn for n ≤ 9 in [20] that gives a complete list of equivariant diffeomor-

phism types of big polygon spaces when r ≤ 9. Recently we also verified this conjecture for

r = 10 with a complete list of nonequivalent length vectors l ∈ R10 provided by Dirk Schuetz.

We will prove the conjecture for general r and l.

In general it is not easy to prove that the equivariant cohomology is of a certain kind of

syzygy without computing the equivariant cohomology. Moreover, even if equivariant coho-

mology can be computed explicitly, it is still not clear how to compute the syzygy order. For

example, the equivariant cohomology of big polygon spaces were computed explicitly in [16,

Lemma 4.4, lemma 4.5, proposition 4.6] but the syzygy order of a big polygon space is still

not known in general. Our result is the first attempt to compute the syzygy order of equivari-

ant cohomology for a large family of compact orientable manifolds. To solve this problem, a

new criterion for syzygy order of equivariant cohomology was proposed in [17] by Franz and

will be used in this thesis. The advantage of this new criterion is that it allows computation of

syzygy order of equivariant cohomology without actually computing the equivariant cohomol-

ogy itself. This criterion is called a quotient criterion for syzygies in equivariant cohomology.

Let us briefly introduce the main idea proposed in [17]. Details will be given in Section 3.3.

With some assumptions on the local behavior of the torus action T on manifold X called
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locally standard in Definition 3.3.1, the orbit space X/T has a structure of a smooth manifold

with corners. A smooth manifold with corners of dimension n is locally modelled by open

subsets of (R+)n where R+ is the positive real line including 0. Just like (R+)n, a manifold

with corners has a natural face structure. Based on this face structure, a cochain complex

of real vector spaces B∗(P) for every face P of the orbit space was defined in [17]. This

cochain complex is constructed using homology of faces of the orbit space. The equivariant

cohomology H∗T (X) is a certain kind of syzygy if and only if this new cochain complex is exact

in some degrees for every face P. This is the main result of [17]. Details of the quotient

criterion for syzygies in equivariant cohomology will be stated in Theorem 3.3.2.

We are going to apply this criterion to the T -manifold Xa,b(l) and prove our main result.

As a first example, let us look at the face structure of the orbit space of one big polygon

space X = X1,1((1, 1, 1)), that is, a = b = 1 and length vector l = (1, 1, 1). We will show later

that the orbit space of X has the following face structure

X/T

F1 F2 F3

F12 F13 F23

F123

(1.16)

where FI denotes the following subset of orbits in X/T for I ⊆ {1, 2, 3}:

{(u1, u2, u3, z1, z2, z3) ∈ X : ‖ui‖ = 1 for i ∈ I}/T. (1.17)

In order to apply the quotient criterion, we have to compute homology of every face in (1.16)

and maps between homology induced by this face structure.

In the process of computing the homology of faces of the orbit space, we need a lacunary

principle for Morse-Bott functions on manifolds with corners which can be used to compute

homology of a manifold with corners and thus is of independent interest.
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This thesis is organized in the following way: In Chapter 2 we introduce syzygies and

several equivalent notions. In Chapter 3 we review equivariant cohomology and the theorem

of Allday-Franz-Puppe relating the exactness of the Atiyah-Bredon sequence in equivariant

cohomology to the notion of syzygy in equivariant cohomology. In Chapter 3 we will also

describe the quotient criterion mentioned above in detail. In Chapter 4 we describe some

properties of the big polygon spaces. In Chapter 5 we introduce the machinery we will need

to compute homology of manifolds with corners including a lacunary principle for Morse-Bott

functions on manifolds with corners. The Chapter 6 is where we apply these tools to compute

homology of all the faces of the orbit space Xa,b(l)/T . In Chapter 7 we state the main theorem

and prove the main theorem. In Chapter 8 we include two applications of the result we proved.



Chapter 2

Syzygies

According to [12, Preface], the notion of syzygies originates in astronomy and was first

introduced into mathematics by Sylvester. The word “syzygy” means the alignment of sun,

earth and moon in astronomy. It was then introduced by Hilbert into the studies of graded free

resolutions of graded modules over polynomial rings.

The main goal of this section is to review the notion of an n-th syzygy and several equivalent

notions in commutative algebra. Throughout this section, we assume that R is the polynomial

ring k[t1, . . . , tr] over a field k.

We first define the notion of a syzygy.

Definition 2.1. A finitely generated R-module M is called an n-th syzygy for some n ≥ 0 if

there is an exact sequence of R-modules

0→ M → Fn → Fn−1 → · · · → F1 (2.1)

with Fi’s being finitely generated free modules. The largest such n is called the syzygy order of

M and is denoted syzord M. If the above exact sequence can be infinite, then we set syzord M =

∞.

Remark 2.2. The syzygy order of a finitely generated free module is ∞. For example, for

10
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M = R, the following sequence is exact:

0→ R→ R→ 0→ 0→ · · · . (2.2)

If we let N be the cokernel of the rightmost map in (2.1) and add it to the right end of (2.1),

then (2.1) becomes

0→ M → Fn → Fn−1 · · · → F1 → N → 0. (2.3)

Then M is exactly an n-th syzygy module of the R-module N according to the usual definition

of a syzygy. In particular, a first syzygy M fits into the following exact sequence:

0→ M → F1 → N → 0 (2.4)

where F1 is a finitely generated free module and M represents the relations between a set of

generators of N. Syzygy defined in this way depends on the module N and the free resolution

of N while our definition of syzygy in (2.1) is a property of the module itself. We will see later

that being a certain kind of syzygy implies some useful properties of the module itself.

Perhaps the most important examples of syzygies come from Koszul complex.

Definition 2.3. [7, 1.6] Given a sequence x = x1, . . . , xn in R, the Koszul complex K∗(x) of x

is defined as the following chain complex:

0→
∧n

Rn d(n)

−−→
∧n−1

Rn → · · · →
∧2

Rn d(2)

−−→
∧1

Rn d(1)

−−→ R. (2.5)

With a basis e1, . . . , en of Rn, the differential map d(i) :
∧i Rn →

∧i−1 Rn is defined on generators

{ek1 ∧ · · · ∧ eki}1≤k1<···<ki≤n as

d(i)(ek1 ∧ · · · ∧ eki) :=
i∑

j=1

(−1) j−1xk j · ek1 ∧ · · · êk j ∧ · · · ∧ eki (2.6)

where ê j means that the term is missing in the wedge product.
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Every component in the Koszul complex of a sequence x is a finitely generated free mod-

ule. To introduce a sufficient condition under which K∗(x) is exact, we need the following

definition.

Definition 2.4. For an R-module M, a sequence x = x1, . . . , xn in R is an M-sequence if the

following conditions are satisfied:

(1) (x1, . . . , xn)M , M.

(2) For any 1 ≤ i ≤ n, xi is not a zerodivisor of M/(x1, . . . , xi−1)M.

Proposition 2.5 ([7, Corollary 1.6.14]). If x is an R-sequence, then K∗(x) is a free resolution

of R/(x1, . . . , xn), that is, the sequence (2.5) is exact and the cokernel of the rightmost map in

(2.5) is R/(x1, . . . , xn).

For example, if we let t = t1, . . . tr be the sequence of variables in R = k[t1, . . . , tr], then t

is an R-sequence and the Koszul complex K∗(t) is a free resolution of R/(t1, . . . , tr) = k. Then

by the definition of a syzygy, the image of d( j) is a j-th syzygy. In particular, the maximal ideal

(t1, . . . , tr) is a first syzygy.

We have seen that the first syzygy represents relations between a set of generators of some

finitely generated R-module. In general an n-th syzygy represents relations after n steps in a

free resolution of some R-module. The Hilbert syzygy theorem implies that being a certain

kind of syzygy means something useful about the module itself.

Theorem 2.6 ([7, Corollary 2.2.14(a),(c)]). Every finitely generated graded module over the

polynomial ring R = k[t1, . . . , tr] has a graded free resolution of length ≤ r. In fact, every

finitely generated R-module has a free resolution of length ≤ r, that is, for any finitely generated

R-module N, there is an exact sequence

0→ Fr → Fr−1 → · · · → F1 → N → 0 (2.7)

where Fi’s are finitely generated free R-modules(possibly zero).
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Using Hilbert’s syzygy theorem, one can show that if M is a finitely generated r-th syzygy,

then M is free. Hilbert’s syzygy theorem relates the notion of syzygies to that of freeness. It

turns out that a more general notion of torsionfreeness corresponds exactly to the notion of

syzygies.

Definition 2.7. [8, 16.E] A module M over R is called n-torsionfree if every R-sequence of

length at most n is an M-sequence.

The following proposition of Auslander-Bridger relates the notion of torsionfreeness to that

of syzygies. We use M∗ to denote the dual HomR(M,R) of an R-module M. There is a natural

map hM : M → M∗∗ that sends every m ∈ M to the evaluation at m.

Proposition 2.8 ([4, Chapter 2, Theorem 2.17],[1, Proposition 2.3]). The following are equiv-

alent for any finitely generated R-module M and any n ≥ 1:

(1) M is an n-th syzygy.

(2) M is n-torsionfree.

(3) One of the following conditions holds, depending on n:

a. n = 1: M is torsionless, that is, hM is injective.

b. n = 2: M is reflexive, that is, hM is an isomorphism.

c. n ≥ 3: M is reflexive and Exti
R(M∗,R) = 0 for i = 1, . . . , n − 2.

The above proposition holds for more general rings and modules. For example, one can

consult [8, 16.E].



Chapter 3

Equivariant cohomology

Cohomologies throughout this chapter are assumed to be singular cohomologies with co-

efficients in the real field R.

3.1 Equivariant cohomology

All groups G in this section are assumed to be compact Lie groups.

Definition 3.1.1. A G-space X is a topological space with a G-action such that the following

action map is continuous:

G × X → X (g, x) 7→ g · x. (3.1.1)

If X is a smooth manifold and the map in (3.1.1) is smooth, then X is called a G-manifold.

Definition 3.1.2. Given two G-spaces X and Y , a map f : X → Y is called G-equivariant if the

G-action commutes with the map, that is, we have the following equation:

g · f (x) = f (g · x), ∀g ∈ G, x ∈ X. (3.1.2)

Definition 3.1.3. Let X and Y be two G-spaces. Two G-equivariant continuous maps f , h :

14
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X → Y are G-homotopic to each other if there is a homotopy between f and h

H : X × I → Y (3.1.3)

such that H is G-equivariant in the following sense:

H(g · x, t) = g · H(x, t) ∀g ∈ G, x ∈ X, t ∈ I. (3.1.4)

We define principal G-bundle now.

Definition 3.1.4. [10, I.8] A principal G-bundle over a base space B is a triple (X, B, p) con-

sisting of a G-space X with free G-action called the total space and a surjective continuous map

p : X → B such that

(1) p(g · x) = p(x) ∀x ∈ X, g ∈ G,

(2) For each b ∈ B, there exists an open neighborhood U of b in B and a G-equivariant

homeomorphism φ : p−1(U)→ G × U such that the following diagram commutes.

p−1(U) G × U

U

φ

p prU

(3.1.5)

where prU is the projection onto U.

Remark 3.1.5. Given a principal bundle ξ = (X, B, p) and a continuous map f : B′ → B, one

can construct a principal bundle f ∗(ξ) over B′ called the pullback of ξ by f .

Definition 3.1.6. Two principal G-bundles (X1, B1, p1) and (X2, B2, p2) are isomorphic if there

exists a G-equivariant homeomorphism ψ : X1 → X2.

Definition 3.1.7. [22, Chapter 4, Definition 9.1] An open cover {Ui}i∈S of a topological space

B is called numerable if there exists a locally finite partition of unity {µi}i∈S such that each µi

has support in Ui.
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Remark 3.1.8. [22, Chapter 4, Section 9] A Hausdorff space is paracompact if and only if each

open cover is numerable.

Definition 3.1.9. [22, Chapter 4, Definition 9.2] A principal G-bundle (X, B, p) is called nu-

merable if there is a numerable open cover {Ui}i∈S of B such that for each i ∈ S there is a

G-equivariant homeomorphism φi : p−1(Ui) → G × Ui that makes the diagram (3.1.5) com-

mute with U = Ui.

For every compact Lie group G, Milnor constructed in [26] a principal G-bundle ωG =

(EG, BG, π) with paracompact base space satisfying the following conditions:

(1) [22, Chapter 4, Theorem 12.2] For each numerable principal G-bundle ξ = (X, B, p),

there exists a map f : B → BG such that the two principal bundles ξ and f ∗(ωG) are

isomorphic.

(2) [22, Chapter 4, Theorem 12.4] Let f0, f1 : B → BG be two maps. Then f ∗0 (ωG) and

f ∗1 (ωG) are isomorphic if and only if f0 and f1 are homotopic.

Remark 3.1.10. Any numerable principal G-bundle satisfying the two conditions above is

called a universal principal G-bundle and is unique up to G-homotopy in the sense that the

total spaces of two such bundles are G-homotopy equivalent. The total space EG of such

universal principal G-bundle is always contractible. The space BG is called a classifying space

of G and is unique up to homotopy.

Now we can state the Borel’s construction of equivariant cohomology.

Given a G-space X, Borel constructed in [5, Chapter IV, §3] the following space:

XG := EG ×G X = (EG × X)/G (3.1.6)

where the orbit space is taken under the following G-action on EG × X:

g · (e, x) = (e · g−1, g · x) ∀g ∈ G, (e, x) ∈ EG × X. (3.1.7)



3.1. Equivariant cohomology 17

Note that we are assuming that G acts on X from left and G acts on EG from right.

Let G-Top be the category of G-spaces with morphisms being continuous G-equivariant

maps. The above construction gives a functor from the category of G-spaces to the category of

topological spaces.

−G : G-Top→ Top. (3.1.8)

Since a G-homotopy equivalence induces an ordinary homotopy equivalence on the orbit

space, it follows from Remark 3.1.10 that the homotopy type of XG is independent of the

choice of the universal principal G-bundle. So we can define the equivariant cohomology as

the ordinary cohomology of XG

H∗G(X) := H∗(XG). (3.1.9)

Remark 3.1.11. [10, Chapter 3, Section 1] Let us list some of the formal properties of equiv-

ariant cohomology.

(1) A G-equivariant map f : X → Y induces a map ( fG)∗ : H∗G(Y) → H∗G(X). If two G-

equivariant map f , h : X → Y are G-homotopic to each other, then ( fG)∗ = (hG)∗. So the

equivariant cohomology is G-homotopy invariant.

(2) The following map:

X → {pt} (3.1.10)

from a G-space to a point with trivial G-action induces a homogeneous map of graded

R-algebras

H∗(BG) = H∗(ptG)→ H∗(XG) = H∗G(X). (3.1.11)

This makes H∗G(X) into a graded H∗(BG)-algebra.

(3) If Z ⊆ Y ⊆ X is a sequence of inclusions of G-spaces, then we call the triple (X,Y,Z)

a G-triple. If (X,Y,Z) is a G-triple, then we have the inclusion ZG ⊆ YG ⊆ XG and the
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following long exact sequence associated to this G-triple (X,Y,Z):

· · · → Hn
G(X,Y)→ Hn

G(X,Z)→ Hn
G(Y,Z)

∂
−→ Hn+1

G (X,Y)→ · · · (3.1.12)

where the relative equivariant cohomology associated to a G-pair in the above sequence

is defined to be the relative ordinary cohomology associated to the corresponding pair of

the Borel’s construction −G. The map ∂ in the above sequence is called the connecting

homomorphism.

In particular, if Z = ∅, then the sequence in (3.1.12) becomes

· · · → Hn
G(X,Y)→ Hn

G(X)→ Hn
G(Y)

∂
−→ Hn+1

G (X,Y)→ · · · (3.1.13)

Let us give some examples of computations of equivariant cohomology.

Example 3.1.12. [10, Chapter 3, (1.11)] If X is a compact G-manifold and G acts freely on X,

then we have

H∗G(X) ' H∗(X/G) as H∗(BG)-algebra (3.1.14)

where the H∗(BG)-algebra structure on H∗(X/G) is induced by the classifying map X/G → BG

of the principal G-bundle X → X/G.

Example 3.1.13. Let X be a G-space. If G acts trivially on X, then XG = BG × X and by

Künneth formula we have

H∗G(X) ' H∗(BG) ⊗k H∗(X) as H∗(BG)-module. (3.1.15)

3.2 Equivariant cohomology and syzygy

From now one, we will focus on torus actions on smooth manifolds. We assume that

T = (S1)r and R = H∗(BT ) throughout this section. We also assume that all spaces X in this
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section are compact T -manifolds.

Example 3.2.1. [10, Chapter 3, Proposition 2.2] The classifying space BT of a torus T can be

chosen to be (CP∞)r whose cohomology group is

H∗(BT ) = H∗((CP∞)r) ' R[t1, . . . , tr] (3.2.1)

where every ti ∈ H2(BT ) is the pullback of the first Chern class of the universal complex line

bundle over CP∞ via the projection map (CP∞)r → CP∞ onto the i-th coordinate.

For a T -manifold X, there is a filtration by dimension of orbits

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xr−1 ⊆ Xr = X (3.2.2)

where Xi is the set of points in X that are fixed by a subtorus of T of codimension i. For

example, X0 is the set of fixed points and Xr−1 is the set of points that can be fixed by a circle

in T .

Chang-Skjelbred showed in [9] that the following Chang-Skjelbred sequence is exact if the

equivariant cohomology H∗T (X) is free over R = H∗(BT )

0 H∗T (X) H∗T (X0) H∗+1
T (X1, X0). (3.2.3)

The map H∗T (X) → H∗T (X0) is induced by the inclusion of fixed point set. The map H∗T (X0) →

H∗+1
T (X1, X0) is the connecting homomorphism for the T -pair (X1, X0).

Atiyah and Bredon proved in [2] and [6] a stronger result under the same freeness hypothe-

sis on equivariant cohomology. They showed that if the equivariant cohomology H∗T (X) is free
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over R, then the following Atiyah-Bredon sequence AB∗(X) is exact.

0 H∗T (X) H∗T (X0) H∗+1
T (X1, X0) H∗+2

T (X2, X1) · · · H∗+r
T (Xr, Xr−1) 0

0 AB−1(X) AB0(X) AB1(X) AB2(X) · · · ABr(X) 0
(3.2.4)

The first four terms and the maps between them are the same as in (3.2.3). All the other maps

are connecting homomorphisms for T -triples (Xi+1, Xi, Xi−1)’s:

H∗+i
T (Xi, Xi−1)→ H∗+i+1

T (Xi+1, Xi). (3.2.5)

Syzygies were introduced into the study of equivariant cohomology by Allday-Franz-Puppe

to find the condition under which the Atiyah-Bredon sequence is exact. They proved the fol-

lowing theorem in [1, Theorem 1.1].

Theorem 3.2.2 ([1, Theorem 1.1]). Let X be a compact T-manifold and j ≥ 0. Then the

Atiyah-Bredon sequence is exact at all positions i ≤ j − 2 if and only if H∗T (X) is a jth syzygy,

that is, Hi(AB∗(X)) = 0 for i ≤ j − 2 if and only if H∗T (X) is a j-th syzygy.

An immediate corollary of Theorem 3.2.2 and Proposition 2.8 is that the Chang-Skjelbred

sequence is exact if and only if the R-module H∗T (X) is reflexive.

For spaces with Poincaré duality like compact orientable manifolds, if roughly the first half

of the Atiyah-Bredeon sequence is exact, then so is the rest.

Corollary 3.2.3 ([1, Corollary 1.4]). Let X be a compact orientable T-manifold. If H∗T (X) is a

syzygy of order ≥ r/2 where r is the rank of T , then it is free over R.

Franz showed in [16, Theorem 1.2] that this lower bound is sharp for some special cases

of a family of orientable compact T -manifolds called big polygon spaces. These spaces are

defined in Definition 1.1.
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3.3 A quotient criterion for syzygy order of equivariant co-

homology

Franz developed in [17] a criterion for the equivariant cohomology to be a certain kind of

syzygy with some assumptions on the manifolds and actions.

Definition 3.3.1. Two T -manifolds M,N are weakly equivariantly diffeomorphic if there is a

smooth map f : M → N such that under an automorphism of T , f is an equivariant diffeomor-

phism. We say that the T -action on a T -manifold X is locally standard if n = dim X ≥ 2r and

every point of X has an T -invariant neighbourhood U weakly equivariantly diffeomorphic to

an open subset W ⊆ Cr × Rn−2r invariant under the standard T -action on Cr × Rn−2r.

The following assumptions were assumed in [17, Section 4] in order to apply the criterion.

(1) X is non-empty and connected,

(2) H∗(X) is finite-dimensional,

(3) the action is locally standard.

Note that if X is compact, then condition (2) above is satisfied.

The orbit space X/T of a T -manifold X with locally standard T -action is a smooth manifold

with corners which will be defined in detail in Definition 5.1.2. The smooth structure of X/T

is obtained by inducing the functional structure (sheaf of smooth functions) on X/T from that

of X, that is, a function f on X/T is smooth if and only if f ◦ π is smooth on X where π is

the quotient map X → X/T . To state the quotient criterion, we need to introduce briefly some

properties of manifolds with corners. Details will be given in Chapter 5.

Every manifold with corners M admits a natural stratification

M = Σ0(M) ⊇ Σ1(M) ⊇ · · · ⊇ Σn(M) (3.3.1)
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where n = dim M. The set Σk(M) − Σk+1(M) is called the codimension-k stratum of M. An

elementary example is (R+)n where R+ is the positive real line including 0 and the natural

stratification is given by its open faces of various dimensions. The closure of a connected

component of the codimension-k stratum is called a codimension-k face of M.

For a face P of X/T the following cochain complex B∗(P) and differential are defined in

[17].

Bi(P) =
⊕
Q≤P

rank Q=i

H∗(Q) (3.3.2)

where Q ≤ P means that Q is a face contained in P and rank Q is the corank of the common

isotropy group of points in X lying over the interior of Q. Every direct summand H∗(Q) is the

homology group of Q, that is

H∗(Q) =

∞⊕
i=0

Hi(Q). (3.3.3)

For σ ∈ H∗(Q) ⊂ Bi(P), the differential is defined as

dσ =
∑

Q≤O≤P
rank O=i+1

±(ιQO)∗(σ) (3.3.4)

where (ιQO)∗ is the map on homology induced by inclusion ιQO : Q → O and the sign ± is

determined by an ordering of faces and will be made explicit in concrete computation we are

going to work on. We state the main theorem in [17].

Theorem 3.3.2. Let X be a T-manifold with locally standard T-action satisfying assumptions

in the beginning of this section and j ≥ 0. Then H∗T (X) is a j-th syzygy if and only if Hi(B∗(P)) =

0 for all faces P of X/T and all i > max(rank P − j, 0).

Example 3.3.3. Let us look at the example X = X1,1((1, 1, 1)), that is, the big polygon space

mentioned in Definition 1.1 and (1.17) with a = b = 1 and l = (1, 1, 1). We have depicted the

face structure of the orbit space of X in (1.16). If we take a face P = F1 with F1 defined in
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(1.17), then the cochain complex B∗(P) defined in (3.3.2) looks like

0→ H∗(F123)→ H∗(F12) ⊕ H∗(F13)→ H∗(F1)→ 0 (3.3.5)

with arrows all induced by inclusion of faces. If we take P = F12, then the cochain complex

B∗(P) looks like

0→ H∗(F123)→ H∗(F12)→ 0. (3.3.6)

It is actually not hard to compute every term in (3.3.5), (3.3.6) and maps in them. It is also not

hard to show that the rightmost non-zero maps in (3.3.5) and (3.3.6) are surjective. According

to Theorem 3.3.2 this implies that the equivariant cohomology of X is a first syzygy.

This criterion gives us a way to compute the syzygy order of the equivariant cohomology

without computing the equivariant cohomology itself. The main goal of this thesis is to apply

this criterion to the big polygon space in Definition 1.1 and compute its syzygy order.

To compute the syzygy order of H∗T (Xa,b(l)) using Theorem 3.3.2, there are three steps. First

we want to compute H∗(F) for each face F of Xa,b(l)/T . Next we want to understand the maps

ι∗ : H∗(F) → H∗(G) induced by the inclusions F ⊆ G for all faces G containing F. In the end,

we will compute H∗(B∗(F)) for every face F and apply Theorem 3.3.2. These tasks will be

done in Chapter 6 and Chapter 7.



Chapter 4

Properties of big polygon spaces

4.1 Basic properties of big polygon spaces

We are gong to define big polygon spaces and state some properties of them. Almost all

the results stated here come from [16].

Definition 4.1.1. [16] A vector l = (l1, . . . , lr) ∈ Rr is called a generic length vector if it

cannot be split into two groups of equal sum. For a given generic length vector l, a subset I of

[r] = {1, . . . , r} is called short if ∑
i∈I

li <
∑
j∈I{

l j. (4.1.1)

The subset I is called long if the inequality above is reversed. Two generic length vectors l and

l′ are defined to be equivalent and denoted l ∼ l′ if they induce the same notion of ‘long’ and

‘short’ on subsets of [r].

Remark 4.1.2. We can think of a length vector l as a point in Rr. If a length vector l is not

generic, that is, there is I ⊆ [r] such that

∑
i∈I

li =
∑
j∈I{

l j, (4.1.2)

then l is a point on the hyperplane in Rr determined by the above equation. A generic length

24
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vector is a point in the complement of all such hyperplanes. A connected component of the

complement of these hyperplanes is called a chamber in [16] and two length vectors are equiv-

alent if and only if they lie in the same chamber. Note that the number of different such

hyperplanes is 2r−1. So the number of chambers grows very fast when r increases.

For a generic length vector, we can define a space called a big polygon space.

Definition 4.1.3. For a generic length vector l = (l1, . . . , lr) ∈ Rr and a, b ≥ 1, a big polygon

space denoted Xa,b(l) is the subspace of C(a+b)r defined by the equations

(u1, . . . , ur, z1, . . . , zr) ∈ C(a+b)r where

u j ∈ C
a, z j ∈ C

b (1 ≤ j ≤ r),

‖u j‖
2 + ‖z j‖

2 = 1,

l1u1 + · · · + lrur = 0.

(4.1.3)

The torus T = (S1)r acts on Xa,b(l) by scalar multiplication on the variables z j’s as in [16, (1.6)],

(g1, . . . , gr) · (u1, . . . , ur, z1, . . . , zr) = (u1, . . . , ur, g1z1, . . . , grzr). (4.1.4)

Spaces defined in Definition 4.1.3 are called big polygon spaces because the fixed point set

of a big polygon space is a space of polygons E2a(l) defined as follows.

Definition 4.1.4. [15] Let l = (l1, . . . , lr) ∈ Rr be a generic length vector. A space of polygons

is defined as

Ed(l) =
{
(u1, . . . , ur) ∈ Sd−1 :

r∑
i=1

liui = 0
}

(4.1.5)

One can think of a space of polygons as closed n-gons (allowing self-intersection) in Rd

with sides of lengths |l1|, . . . , |lr| up to translation in the Euclidean space. The topology of these

spaces was studied in [15].

We state some properties of a big polygon space.
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Lemma 4.1.5 ([16, Lemma 2.1]). Let a, b, r ≥ 1. Let l and l′ be two generic length vectors in

Rr.

(1) A big polygon space Xa,b(l) is an orientable compact connected T-manifold. Its dimen-

sion is (2a + 2b − 1)r − 2a.

(2) If l′ is obtained from l by changing the sign of some components and/or by permuting

them, then Xa,b(l) and Xa,b(l′) are equivariantly diffeomorphic with respect to the corre-

sponding permutation of components of T , that is under the corresponding permutation

of components of T , Xa,b(l) and Xa,b(l′) are weakly equivariantly diffeomorphic.

(3) If l ∼ l′, then Xa,b(l) and Xa,b(l′) are equivariantly diffeomorphic.

Following [16, Assumption 2.2 and discussion after that], the assumption below is made

throughout the rest of this thesis. We can see from Lemma 4.1.5(2) and (3) that by requiring

this assumption we do not lose any equivariantly diffeomorphic types.

Assumption. We assume that 0 < l1 ≤ l2 ≤ · · · ≤ lr.

In the concrete computation we are going to carry out later, we are going to use a lot the

assumption that li’s are strictly positive.

Since we are going to apply the quotient criterion stated in Theorem 3.3.2, we have to verify

that big polygon spaces satisfy assumptions stated in Section 3.3. We have seen in Lemma 4.1.5

that a big polygon space is a compact connected manifold. So the only thing we have to show

is that a big polygon space is locally standard. However, we are only going to show that the

T -action is locally standard for a subfamily of big polygon spaces, that is, those big polygon

spaces with nonempty fixed point set.

We first need some tools from [17, Section 4] to show that a torus action is locally standard.

Definition 4.1.6. [17, Discussion after lemma 4.1] A characteristic circle for a T -manifold X

is a circle K ⊆ T that occurs as the isotropy group of some x ∈ X. Connected components of
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XK which consists of points fixed by K are called characteristic submanifolds of X. If they are

all of codimension 2, then we say that the T -action on X is regular.

Lemma 4.1.7 ([17, Lemma 4.2]]). Let X be a regular T-manifold such that XT , ∅, then the

T-action is locally standard.

We show in the following lemma that the T -action is locally standard for a subfamily of

big polygon spaces.

Lemma 4.1.8. (1) For a generic length vector l ∈ Rr, if the fixed point set of Xa,b(l) under

the T-action is not empty, then the T-action is locally standard.

(2) The fixed point set of Xa,b(l) is not empty if and only if lr <
∑

i,r li where the sum is over

i ∈ {1, . . . , r − 1}, which means that there is no dominant length.

Proof. Since the torus acts on Xa,b(l) by scalar multiplication on the variables z j’s, a charac-

teristic circle of Xa,b(l) are just coordinate circles of the torus T . Characteristic manifolds are

connected components of those points with one of the z j’s being 0 and they are of codimension

2. Then the first part of the lemma follows from a direct application of Lemma 4.1.7.

Let us prove the second part of the lemma. If r is 1 or 2, then the fixed point set is always

empty since the length vector is generic. The second part of the lemma is trivially true in

these cases. For r ≥ 3, since the fixed point set consists of the space of polygons described in

Definition 4.1.4, it is not empty if and only if lr <
∑

i,r li by [14, Lemma 1.1]. �

4.2 Equivariant cohomology of big polygon spaces

The equivariant cohomology of Xa,b(l) was computed in [16, Lemma 4.5]. For our purpose

we only describe some properties of the syzygy order of the equivariant cohomology. We

briefly review the result of the computation carried out in [16].

Let R = H∗(BT ) = R[t1, . . . , tr] be the polynomial ring. Equivariant homology was defined

in [1, Section 3.3] using the R-dual chain complex of the singular cochain complex of the
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Borel’s construction XT and is an R-module. Note that the equivariant homology defined in

this way is not the homology of the Borel’s construction. For our purpose we can just think of

equivariant homology as an R-module associated to a T -manifold.

In our case, let V = S2a+2b−1 ⊆ Ca × Cb with T -action on Vr given by (4.1.4), there is an

R-module homomorphism

ιT∗ : HT
∗ (Vr − Xa,b(l))→ HT

∗ (Vr). (4.2.1)

The map ιT∗ as a homomorphism between R-modules will be described below. It was shown in

[16, Lemma 4.5] that

(1) HT
∗ (Vr) is a free R-module with basis [VJ]T , J ∈ [r],

(2) HT
∗ (Vr − Xa,b(l)) is a free R-module with basis [VJ]T and [WJ]T for every short subset

J ⊆ [r].

where [VJ]T and [WJ]T are fundamental classes of some subspaces VJ,WJ in Vr. One can find

more details on how [VJ]T and [WJ]T are defined in [16, Lemma 4.5]. For the purpose of this

thesis, it suffices to think of them as free generators of respective equivariant homology. The

map ιT∗ is described in [16, Proposition 4.6] on basis of HT
∗ (Vr − Xa,b(l)) as:

ιT∗ [VJ]T = [VJ]T , (4.2.2)

ιT∗ [WJ]T =
∑
j<J

(−1)[ j:J]tb
j [VJ∪ j]T . (4.2.3)

where t j is a variable in R = R[t1, . . . , tr] and [ j : J] is the number of elements in J that are

strictly less than j.

We have the following exact sequence of graded R-module according to [16, Lemma 4.4]:

0→ (coker ιT∗ )[rd]→ H∗T (Xa,b(l))→ (ker ιT∗ )[rd − 1]→ 0 (4.2.4)
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where [·] means a shifting of degree and d = 2a − 2b − 1. The above exact sequence follows

from a natural Poincaré duality between equivariant cohomology and equivariant homology.

The following result was stated in [16]:

Lemma 4.2.1 ([16, Lemma 6.2]). syzord H∗T (Xa,b(l)) = syzord coker ιT∗ .

An observation can then be drawn from Lemma 4.2.1.

Lemma 4.2.2. The syzygy order of H∗T (Xa,b(l)) is independent of the integer a.

Proof. We can see from Lemma 4.2.1 and the explicit description of ιT∗ before Lemma 4.2.1 that

for a fixed generic length vector l, the domain and codomain of ιT∗ as R-module are independent

of the integer a although as graded R-module they depend on a because of the shifting of

degrees in (4.2.4). Since syzygy order is an invariant of R-module, it is independent of a. From

Lemma 4.2.1 our lemma follows. �



Chapter 5

Preliminaries on manifolds with corners

In this chapter we first collect some basic properties of manifolds with corners and then

generalize a lacunary principle for Morse-Bott functions to manifolds with corners. We will

later use them to compute and find basis of homology for manifolds with corners.

5.1 Basics on manifolds with corners

We start with some basics on manifolds with corners. Many of the following definitions

and theorems are cited from [13, Appendix A].

Definition 5.1.1. An n-dimensional topological manifold with boundary M is a second count-

able Hausdorff space where every point p ∈ M has a neighborhood homeomorphic to an open

subset of Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.

Definition 5.1.2. [13, Section A.1] An n-dimensional manifold with corners M is an n-di-

mensional topological manifold with boundary with a smooth structure given by a C∞-atlas

{(U, φU)} covering M where every U ⊆ M is an open subset and φU : U → φU(U) ⊆ Rn
+ is a

homeomorphism, with φU(U) being an open subset of Rn
+ where

Rn
+ := {(x1, . . . , xn) ∈ Rn : xi ≥ 0 for all i = 1, . . . , n}. (5.1.1)

30
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Any two local charts (U, φU) and (V, φV) are assumed to be C∞-compatible in the sense that the

transition map

φV ◦ φ
−1
U : φU(U ∩ V)→ φV(U ∩ V) (5.1.2)

is C∞ which means that it can be extended to a C∞-map in an open set of Rn containing φU(U∩

V).

We are going to define the tangent space TpM of a manifold with corners M at some point

p ∈ M as the set of derivations on smooth functions on M.

Definition 5.1.3. Given two manifolds with corners M and N of dimension m and n with C∞-

atlases {(U, φU)} and {(V, ψV)}, a map f : M → N is smooth if ψV |V∩ f (U) ◦ f ◦ φ−1
U is smooth

on φU(U) ⊆ Rn
+ for every U,V in the atlas of M,N. A diffeomorphism between two manifolds

with corners is a smooth bijective map between them whose inverse is also smooth.

Definition 5.1.4. Given a manifold with corners M, a smooth function on M is a smooth map

f : M → R with the standard chart on R. The set of smooth functions on M is denoted C∞(M).

Definition 5.1.5. Given a manifold with corners M, an R-linear map X : C∞(M) → R is a

derivation at p ∈ M if it satisfies

X( f g) = f (p)X(g) + g(p)X( f ) for all f , g ∈ C∞(M). (5.1.3)

The set of all derivations at p is a vector space of dimension n. This vector space is called the

tangent space to M at p and denoted TpM. Every element of TpM is called a tangent vector to

M at p.

Definition 5.1.6. Given two manifolds with corners M, N and a smooth map f : M → N,

the differential of f at a point p ∈ M is defined to be the linear map d fp : TpM → T f (p)N as

follows

(d fp(X))(g) = X(g ◦ f ),∀X ∈ TpM, g ∈ C∞(N). (5.1.4)
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We are going to define the cone of tangent directions. It is a subset of the tangent space.

Definition 5.1.7. M is a manifold with corners. A smooth curve starting at a point p ∈ M is a

smooth map γ : [0, 1)→ M such that γ(0) = p.

Definition 5.1.8. M is a manifold with corners. The velocity vector at p ∈ M of a smooth

curve γ : [0, 1)→ M starting at p is the derivation X ∈ TpM defined by

X( f ) := ( f ◦ γ)′(0) = lim
t→0+

f ◦ γ(t) − f ◦ γ(0)
t

,∀ f ∈ C∞(M). (5.1.5)

Definition 5.1.9. [13, Section A.2] Given a manifold with corners M, the cone of tangent

directions to M at p is denoted CpM and is the subset of TpM defined as follows. A tangent

vector X ∈ TpM belongs to CpM if and only if there exists a smooth curve γ : [0, 1) → M

starting at p ∈ M with X being the velocity vector of γ at p.

Based on the following lemma, we have a natural stratification on a manifold with corners.

Lemma 5.1.10. Assume that 0 ≤ l, s ≤ n. If there is a diffeomorphism

φ : (Rs
+ × R

n−s, 0)
'
−→ (Rl

+ × R
n−l, 0) (5.1.6)

with the standard C∞-atlases on both sides, then s = l.

Proof. We only have to prove that s ≥ l. Let M = Rs
+ × R

n−s and N = Rl
+ × R

n−l. Since φ is a

diffeomorphism, the differential dφ0 : T0M → T0N is an isomorphism of vector spaces.

Furthermore, since φ is a diffeomorphism, any curve in M is mapped to a curve in N

and thus any tangent vector in the cone C0M is mapped to a tangent vector in C0N by dφ0.

Since C0M contains a linear subspace of T0M of dimension n − s, C0N also contains a linear

subspace of T0N of dimension n − s. Since the maximal subspace of T0N contained in C0N is

of dimension n − l, we have s ≥ l. �

Thus we have the following well-defined stratification of a manifold with corners.



5.1. Basics on manifolds with corners 33

Definition 5.1.11. [13, (A.1)] Given a manifold with corners M of dimension n, there is a

canonical stratification

M = Σ0(M) ⊇ Σ1(M) ⊇ · · · ⊇ Σn(M). (5.1.7)

The codimension-s stratum Σs(M)−Σs+1(M) of M consists of all points p ∈ M having a neigh-

borhood U ⊆ M such that the pair (U, p) is diffeomorphic to (Rs
+ × R

n−s, 0). A codimension-s

face of M is the closure of a connected component of Σs(M)−Σs+1(M) in M. A codimension-1

face of M is called a facet of M.

Example 5.1.12. Let M be Rs
+ ×R

n−s with the obvious chart. Then a codimension-k face of M

is described by the following set for some I ⊆ {1, . . . , s} such that |I| = k:

FI := {(x1, · · · , xn) : xi = 0 for i ∈ I}. (5.1.8)

Remark 5.1.13. 1. It follows from the definition of a stratum that every codimension-s

stratum of a manifold with corners of dimension n is a smooth manifold of dimension

n − s.

2. A face of a manifold with corners may not be a manifold with corners itself. One such

example can be found in [13, A.3].

Corollary 5.1.14. A diffeomorphism between manifolds with corners preserves strata and

faces, that is, it maps the codimension-s stratum onto the codimension-s stratum and a codi-

mension-s face onto a codimension-s face.

Proof. The first assertion follows directly from Lemma 5.1.10. Since a diffeomorphism maps

a connected component to a connected component and a face is just the closure of a connected

component of some stratum, the second assertion follows. �

In addition to the notion of tangent space, we have a notion of tangent space to the stratum

of a manifold with corners.
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Definition 5.1.15. Let M be a manifold with corners of dimension n and p ∈ S p := Σs(M) −

Σs+1(M) be a point in the codimension-s stratum S p of M. Since S p is a smooth manifold, the

tangent space TpS p can be defined as the set of derivations on C∞(S p) at p and is a vector space

of dimension n − s. We can identify TpS p as a subspace of TpM in the following sense:

X( f ) := X( f |S p),∀X ∈ TpS p, f ∈ C∞(M). (5.1.9)

This subspace of TpM is called the tangent space to the stratum of M at p and is denoted T S
p M.

Remark 5.1.16. 1. Since every stratum is a smooth manifold, we have for any p ∈ M that

T S
p M ⊆ CpM. (5.1.10)

2. T S
p M is the maximal subspace of TpM contained in CpM.

The next definition is slightly different from the definition in [13, Definition A.4]. The

difference is that there the author only defined neat submanifolds of a subclasses of manifolds

with corners called regular manifolds with corners. But the same definition can be extended to

any manifolds with corners.

Definition 5.1.17. [13, Definition A.4] A subset N of a manifold with corners M is called a

neat submanifold of M of codimension k if each point p ∈ N has a neighborhood U in M

such that (U,U ∩N, p) is diffeomorphic to (Rs
+ ×R

n−s,Rs
+ ×R

n−k−s, 0) for some s depending on

the point p where n = dim M and Rn−k−s is the subspace of Rn−s where the last k coordinates

vanish.

Remark 5.1.18. 1. By this definition, empty set is also a neat submanifold of M.

2. A neat submanifold N of a manifold with corners M is again a manifold with corners

with the obvious local charts given in Definition 5.1.17 and we have

(Σs(M) − Σs+1(M)) ∩ N = Σs(N) − Σs+1(N). (5.1.11)
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3. From definition we can see that locally M looks like N ×Rk so we can define the normal

bundle of N in M as in [13, (A.3)].

We will need the following corollary of [27, Theorem 3]. The original theorem is very

general and we just need this special case of it.

Proposition 5.1.19. Let M be a manifold with corners, N be a smooth manifold without bound-

ary and f : M → N be a smooth map. Fixing a point q ∈ N, if for any point p ∈ f −1(q) we have

d fp(T S
p M) = TqN, then f −1(q) is a neat submanifold of M and the normal bundle of f −1(q) in

M is trivial.

Proof. This is just a special case of [27, Theorem 3]. Since q ∈ N is just a point of N, the

condition of preserving local facets in [27, Theorem 3] is null. Since N is a smooth manifold,

the condition d fp(T S
p M) = TqN implies that d fp(T S

p M) = T S
q N and d fp(TpM) = TqN which in

further is equivalent to the condition in [27, Theorem 3] that f intersects N transversally and

stratum transversally. So f −1(q) is a neat submanifold of M by [27, Theorem 3].

The last assertion follows because the normal bundle of f −1(q) in M is the pullback of the

normal bundle of q in N by f , which is trivial. �

In [13, Appendix B] the author summarized a Morse-Bott theory for a subclass of manifolds

with corners called regular manifolds with corners.

Definition 5.1.20. [13, Proposition A.3] A regular manifold with corners M is a manifold

with corners where for any integer k and s ≥ k, any codimension-k face F ⊆ M and any

p ∈ F∩(Σs(M)−Σs+1(M)), there is a neighborhood U ⊆ M of p such that the triple (U,U∩F, p)

is diffeomorphic to (Rs
+ × R

n−s,Rs−k
+ × Rn−s, 0) where n = dim M and U ∩ F is mapped under

this diffeomorphism onto the subspace of Rs
+ × R

n−s where the first k coordinates vanish.

Remark 5.1.21. 1. The following conditions are equivalent for a manifold with corners M,

cf. [13, Proposition A.3]:

(a) M is regular.
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(b) Every face is a manifold with corners with atlas obtained from M.

(c) Every codimension-k face F has a neighbourhood U ⊆ M such that (U, F) is dif-

feomorphic to (Rk
+ × F, F) by a diffeomorphism identical on F.

2. An example of a manifold with corners that is not regular can be found in [15, Figure

A.2].

Next we introduce another subclass of manifolds with corners and show that it is the same

as the class of regular manifolds with corners.

Definition 5.1.22. A manifold with corners is called nice if every codimension-l face is con-

tained in l different facets.

Proposition 5.1.23. A manifold with corners is regular if and only if it is nice.

We first prove a lemma.

Lemma 5.1.24. Assume that M is a manifold with corners of dimension n and F is a codimen-

sion-k face of M. Let p ∈ F ∩ (Σs(M)− Σs+1(M)) be a point in the codimension-s stratum of M

and φ be a local chart in a neighborhood U of p

φ : (U, p)
'
−→ (Rs

+ × R
n−s, 0). (5.1.12)

Then φ(U ∩ F) is the union of codimension-k faces of Rs
+ × R

n−s. These faces are described in

Example 5.1.12. In particular, if M is regular, then φ(U∩F) is exactly one of the codimension-k

faces of Rs
+ × R

n−s.

Proof. Since U is open, by definition of faces, U ∩ F is the union of several codimension-k

faces of U. Since φ is a diffeomorphism onto φ(U), by Corollary 5.1.14, a codimension-k face

of U is mapped onto a codimension-k face of Rs
+ × R

n−s and thus φ(U ∩ F) is the union of

several codimension-k faces of Rs
+ × R

n−s.
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If M is regular, then F is a manifold with corners of dimension n − k. If φ(U ∩ F) contains

two codimension-k faces of Rs
+ × R

n−s, then we have

φ(U ∩ F) ⊇ FI ∪ FJ (5.1.13)

where FI and FJ are as in Example 5.1.12 for some I, J ⊆ {1, . . . , s}, I , J and |I| = |J| = k.

Since FI and FJ are both manifolds with corners and both T0FI and T0FJ can be identified

as subspaces of T0(Rs
+ × R

n−s) of dimension n − k, the subspace T0φ(U ∩ F) of T0(Rs
+ × R

n−s)

contains T0FI and T0FJ and thus has dimension at least n−k+1, which leads to a contradiction

to the dimension of F. �

Remark 5.1.25. In a neighbourhood U 3 p as in Lemma 5.1.24, a face F of M breaks up into

several faces of U. If M is not regular, then U ∩ F can consist of more than one faces of U.

However, if M is regular, then U ∩ F consists of exactly one face of U. So if M is regular, then

a face of M containing p corresponds to a unique face of U of the same codimension. Since

two different faces of M of the same codimension cannot intersect on the respective interior,

this correspondence is one to one.

Now we can prove Proposition 5.1.23.

Proof of Proposition 5.1.23. (⇒): Let F be a codimension-k face of M which is the closure of

a connected component C of the codimension-k stratum Σk(M) − Σk+1(M). Let us show that C

is contained in k different facets. Since every facet is closed, that will imply that F is contained

in k different facets.

Since M is regular, for any point x ∈ C, it follows from Lemma 5.1.24 that there is a local

chart (Ux, φx) near x such that

φx(Ux ∩ F) = {(x1, . . . , xn) ∈ Rk
+ × R

n−k : x1 = · · · = xk = 0}. (5.1.14)
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If we define for any i ∈ {1, . . . , k} that

Gi := {(x1, . . . , xn) ∈ Rk
+ × R

n−k : xi = 0}, (5.1.15)

then the collection {Gi}
k
i=1 consists of all the facets of Rk

+ × R
n−k and we have

φx(Ux ∩ F) =

k⋂
i=1

Gi (5.1.16)

which implies that φx(Ux ∩ F) is contained in k different facets of Rk
+ × R

n−k.

Now, since M is regular and every Gi is a facet of Rk
+ × R

n−k, by Remark 5.1.25 we can

define

Fi(x) := the facet of M containing φ−1
x (Gi) (5.1.17)

and we have
φ−1

x (Gi) = Ux ∩ Fi(x),

Fi(x) , F j(x) if i , j.
(5.1.18)

It follows from (5.1.16) and (5.1.18) that we have

Ux ∩ F = φ−1
x (

k⋂
i=1

Gi) =

k⋂
i=1

(Ux ∩ Fi(x)) (5.1.19)

which implies that for any x ∈ C, there is a neighborhood of x in F contained in k different

facets of M. What we have shown is that locally a codimension-k face is contained in k different

facets of M. We are going to show that this collection of different facets {Fi(x)}ki=1 remains the

same for any point x ∈ C so that we can extend this local property to the entire C.

Since C is a connected component of Σk(M) − Σk+1(M), we can find a curve γ : [0, 1]→ C

such that γ(0) = p and γ(1) = q. We are going to show that for every t ∈ [0, 1] the collection

of different facets {F1(γ(t)), . . . , Fk(γ(t))} remains the same. To this end, we assume that we

have found 0 = t0 < · · · < tl = 1 such that there are local charts {(Uγ(t j), φγ(t j))}
l
j=0 as in (5.1.14)
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covering γ([0, 1]). Now for any j ∈ {0, . . . , l − 1} we want to show that

{F1(γ(t j)), . . . , Fl(γ(t j))} = {F1(γ(t j+1), . . . , Fl(γ(t j+1))}. (5.1.20)

Since the following map is a diffeomorphism

φ−1
γ(t j+1) ◦ φγ(t j) : Uγ(t j) ∩ Uγ(t j+1) → Uγ(t j) ∩ Uγ(t j+1), (5.1.21)

according to Corollary 5.1.14, a point in the codimension-1 stratum of Uγ(t j)∩Uγ(t j+1) is mapped

to a point in the codimension-1 stratum of itself under this diffeomorphism. Thus we may

assume for any i that there is some i′ such that we have

(Uγ(t j) ∩ Uγ(t j+1) ∩ F̊i(γ(t j))) ∩ (Uγ(t j) ∩ Uγ(t j+1) ∩ F̊i′(γ(t j+1))) , ∅ (5.1.22)

and thus

F̊i(γ(t j)) ∩ F̊i′(γ(t j+1)) , ∅. (5.1.23)

Since both F̊i(γ(t j)) and F̊i′(γ(t j+1)) are connected components of the codimension-1 stratum

of M and they intersect on a nonempty set, we have

F̊i(γ(t j)) = F̊i′(γ(t j+1)) (5.1.24)

and thus

Fi(γ(t j)) = Fi′(γ(t j+1)). (5.1.25)

The left hand side of (5.1.20) is thus a subcollection of the right hand side. We can show the

inverse by looking at φ−1
γ(t j)
◦ φγ(t j+1).

We have shown that for any point x ∈ C, the collection of k different facets in (5.1.17)

remains the same and thus the codimension-k face F is contained in k different facets of M.

We have shown that M is nice.
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(⇐): Assume that M is a nice manifold with corners of dimension n, let us verify Defini-

tion 5.1.20. For a codimension-k face F of M and a point p ∈ F ∩ (Σs(M)− Σs+1(M)) for some

s ≥ k, there is a local chart around p

φ : (U, p)
'
−→ (Rs

+ × R
n−s, 0). (5.1.26)

It follows from Lemma 5.1.24 that φ(U∩F) is the union of a collection of codimension-k faces

of Rs
+×R

n−s. Since M is nice, F is contained in k different facets of M whose intersections with

U are mapped to k different facets of Rs
+ ×R

n−s because two different faces cannot intersect on

the interior. So φ(U ∩ F) is exactly the following codimension-k face of Rs
+ × R

n−s:

{(x1, . . . , xn) ∈ Rs
+ × R

n−s : x1 = · · · = xk = 0}. (5.1.27)

So (U, φ) is the required local chart in Definition 5.1.20.

�

Remark 5.1.26. It is also clear from the proof of ”regular⇒ nice” that a smooth manifold with

corners is nice if and only if every point in a codimension-k stratum is contained in k different

facets.

Lemma 5.1.27. An open subset of a regular manifold with corners is a regular manifold with

corners.

Proof. Since a manifold with corners is regular if and only if it is nice, the assertion follows

clearly from Remark 5.1.26. �

Corollary 5.1.28. If M is a regular manifold with corners and N is a neat submanifold of M,

then N is a regular manifold with corners.

Proof. Since being regular is equivalent to being nice, let us assume that M is a nice manifold

with corners of dimension n and N is a neat submanifold of M of codimension k. Let us show

that N is regular.
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Let f be a codimension-l face of N and p ∈ f ∩ (Σs(M) − Σs+1(M)), then there is a local

chart

φ : (U,U ∩ N, p)
'
−→ (Rs

+ × R
n−s,Rs

+ × R
n−k−s, 0). (5.1.28)

By Lemma 5.1.24, φ(U ∩ f ) is the union of a collection of codimension-l faces of Rs
+ ×

Rn−k−s. It is also clear from Remark 5.1.18(2) that f is contained in a codimension-l face F of

M.

Since M is nice, there are l different facets {F1, . . . , Fl} of M containing F. The intersections

U∩Fi’s are then mapped to distinct facets of Rs
+×R

n−s under φ and the image of the intersection

φ

 l⋂
i=1

(U ∩ Fi)

 ⊇ φ(U ∩ f ) (5.1.29)

is exactly one codimension-l face of Rs
+ × R

n−s which contains only one codimension-l face of

Rs
+×R

n−k−s. So φ(U ∩ f ) is exactly one face of codimension-l of Rs
+×R

n−k−s and (U ∩N, φU∩N)

is the required local chart in Definition 5.1.20. �

Corollary 5.1.29. If M is a regular manifold with corners and F is a face of M, then F is a

regular manifold with corners.

Proof. Similar to Remark 5.1.18(2), for a face F of M of codimension k, we have for any

integer s that

Σs(F) − Σs+1(F) = (Σs+k(M) − Σs+k+1(M)) ∩ F. (5.1.30)

The proof is then similar to that of Corollary 5.1.28. �

Similar to the situation of smooth manifolds, we have the following Thom isomorphism for

homology. We have to define Thom class first.

Definition 5.1.30. [11, 17.9] Let B a topological space and ξ : E → B be a real vector bundle

over B of rank k. Let Fb ∈ E denote the fibre of ξ over a point b ∈ B and F0
b denote Fb−{0}. Let

E0 denote the complement of the image of zero section in E. A Thom class of this vector bundle
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is a cohomology class t ∈ Hk(E, E0;Z) such that the restriction to each fibre tb ∈ Hk(Fb, F0
b;Z)

is a basis of Hk(Fb, F0
b;Z).

Theorem 5.1.31 ([11, Theorem 17.9.4]). Let ξ : E → B be a real vector bundle over a topo-

logical space B. There exists a Thom class of this vector bundle if and only if ξ is orientable.

Proposition 5.1.32. Let B be a topological space and E be an oriented vector bundle over B

of rank k with a metric. Let D(E) and S (E) be the associated disc bundle and sphere bundle.

For any coefficient ring R we have

Hn(D(E), S (E); R) ' Hn−k(B; R). (5.1.31)

The isomorphism is given by transpose of Thom isomorphism in cohomology. Explicitly, let

t ∈ Hk(E, E0;Z) be a Thom class, then the isomorphism is given by:

Hn+k(D(E), S (E); R)
'
−→ Hn(B; R) (5.1.32)

c→ π∗(t ∩ i∗(c)). (5.1.33)

where π is the projection of the vector bundle and i is the inclusion (D(E), S (E))→ (E, E0).

Proof. We have the following chain of maps:

Hn+k(D(E), S (E); R)
i∗
−→ Hn+k(E, E0; R)

t∩
−→ Hn(E; R)

π∗
−→ Hn(B; R), (5.1.34)

Let us show that each map in the above chain is an isomorphism.

Let us look at the first map in (5.1.34). Since the inclusions D(E) → E and S (E) → E0

induce isomorphisms

H∗(D(E); R) ' H∗(E; R) (5.1.35)

H∗(S (E); R) ' H∗(E0; R), (5.1.36)
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it follows from the long exact sequence associated to the pairs (D(E), S (E)) and (E, E0) that

the inclusion i : (D(E), S (E))→ (E, E0) induces an isomorphism

i∗ : Hn(D(E), S (E); R)
'
−→ Hn(E, E0; R). (5.1.37)

It follows from [11, Theorem 18.1.2] that the second map in (5.1.34) is an isomorphism.

The last map in (5.1.34) is isomorphism because B is a deformation retract of E. �

Definition 5.1.33. Let M be a manifold with corners of dimension n and N ⊆ M be a neat

submanifold of M of codimension k. As pointed out in Remark 5.1.18, we can define the

normal bundle of N in M and it is denoted ν(N; M). Since N is second countable, we can

always find a vector bundle metric on ν(N; M) and denote the associated disc and sphere bundle

as DM(N) and S M(N).

It was pointed out in [13, Section A.4] that neat submanifold of a regular manifold with

corners admits a tubular neighborhood. Combining this fact with Proposition 5.1.32 we get

Corollary 5.1.34. Let M be a regular manifold with corners and N be a neat submanifold of

M. If the normal bundle ν(N; M) is orientable, then we have the following isomorphims for

any coefficient ring R:

H∗−k(N; R) ' H∗(DM(N), S M(N); R) ' H∗(M,M − N; R) (5.1.38)

where the first isomorphism is the inverse of the map (5.1.32) and the second isomorphism is

induced by inclusion.

Proof. The first map in (5.1.38) is an isomorphism because of Proposition 5.1.32.

The second map is the composition of the following maps:

H∗(DM(N), S M(N); R)
i∗
−→ H∗(ν(N; M), ν0(N; M); R)→ H∗(M,M − N; R) (5.1.39)
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where i : (DM(N), S M(N))→ (ν(N; M), ν0(N; M)) is the inclusion.

We have shown in the proof of Proposition 5.1.32 that the first map in (5.1.39) is an iso-

morphism. It follows from the embedding of ν(N; M) as a tubular neighborhood of N in M and

excision that the second map in (5.1.39) is an isomorphism. �

5.2 Morse-Bott theory on manifolds with corners

Now we want to compute the homology of a manifold with corners using Morse-Bott the-

ory. In [13, Appendix B] a Morse-Bott theory for manifolds with corners was developed and

we are going to slightly generalize it to prove a lacunary principle for Morse-Bott functions on

manifolds with corners.

First we need a notion of critical points and critical submanifolds as in the usual situation

of Morse-Bott theory for smooth manifolds.

Definition 5.2.1. [13, Definition B.1] Let M be a manifold with corners and f ∈ C∞(M). A

point p ∈ M is called a critical point of f if the cone of tangent direction CpM is disjoint from

{X ∈ TpM : X( f ) < 0}.

Remark 5.2.2. [13, (B.1)] If p is a critical point of f , then

d fp|T S
p M = 0 (5.2.1)

where T S
p M is the tangent space to the stratum defined in Definition 5.1.15.

Next we want to define Hessian of a smooth function on M at a critical point.

Definition 5.2.3. [13, B.3] Let M be a manifold with corners and f ∈ C∞(M). Let p ∈ M be a

critical point of f . The Hessian of f at p is a symmetric bilinear form

Hp( f ) : T S
p M × T S

p M → R (5.2.2)
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defined by

Hp( f )(X,Y) := X(Ỹ( f )) = Y(X̃( f )) (5.2.3)

where X̃ and Ỹ are smooth vector fields defined in a neighborhood of p in the stratum S p

containing p such that X̃(p) = X and Ỹ(p) = Y .

If M is a manifold with corners and N is a neat submanifold of M, then it can be observed

from the definition of a neat submanifold that we have canonical isomorphism

T S
p M/T S

p N ' TpM/TpN = νp(N; M) (5.2.4)

where νp(N; M) is the fibre of the normal bundle of N in M at point p ∈ N. Furthermore, it

was shown in [13, B.4] that if N consists of critical points of a smooth function f ∈ C∞(M),

then the Hessian defined in Definition 5.2.3 induces a linear map

Hp( f ) : T S
p M/T S

p N ⊗ T S
p M/T S

p N → R,∀p ∈ N (5.2.5)

and thus a linear map

Hp( f ) : νp(N; M) ⊗ νp(N; M)→ R (5.2.6)

which depends smoothly on the point p. We will call the following map Hessian of the function

f :

H( f ) : ν(N; M) ⊗ ν(N; M)→ R. (5.2.7)

Definition 5.2.4. [13, Definition B.7] Let M be a regular manifold with corners and f ∈

C∞(M). A neat submanifold N of a face F of M is a nondegenerate critical submanifold

of f if the following three conditions are satisfied

1. All points of N are critical points of f according to Definition 5.2.1.

2. The Hessian H( f ) : ν(N; F)⊗ ν(N; F)→ R of f is nondegenerate, that is, for any p ∈ N,

the Hessian Hp( f ) : νp(N; M) ⊗ νp(N; M)→ R is nondegenerate.
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3. For each point p ∈ N, one has CpM ∩ ker(d fp : TpM → R) = T S
p M, that is, when

restricted to CpM, d fp only vanishes on the tangent space to the stratum.

Definition 5.2.5. [13, (B.7)] Let M be a regular manifold with corners and f be a smooth

function on M. Suppose that C is a connected nondegenerate critical submanifold of f which

is a neat submanifold of a face F of M, then the normal bundle of C in F splits naturally as the

Whitney sum of positive and negative subbundles

ν(C; F) = ν+(C; F) ⊕ ν−(C; F). (5.2.8)

We call ν−(C; F) the negative normal bundle of C in F. The rank of ν−(C; F) is called the index

of the critical submanifold C and is denoted ind f (C). Given a metric on the normal bundle, we

can define the disc bundle and sphere bundle associated to the negative normal bundle under

that metric and denote them D(C) and S (C) when there is no ambiguity on the face F.

Definition 5.2.6. [15, Definition 2.1] Let k ≥ 2 be an integer. A manifold with corners C is

called k-lacunary if the homology groups H∗(C;Z) are free abelian groups and are trivial in all

dimensions not divisible by k.

Remark 5.2.7. It follows from a universal coefficient theorem for homology that if C is k-

lacunary for some k ≥ 2, then for any coefficient ring R, the homology groups H∗(C; R) are

free R-modules and are trivial in all dimensions not divisible by k.

Definition 5.2.8. Let M be a regular manifold with corners. A smooth function f : M → R

is called a Morse-Bott function on M if the critical point set of f consists of a collection of

nondegenerate critical submanifolds. The set of connected nondegenerate critical submanifolds

of f is denoted Crit( f ).

We have a lacunary principal for Morse-Bott functions on manifolds with corners similar

to the one developed in [15, Proposition 2.2]. The proof is also similar.
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Proposition 5.2.9 (A lacunary principle for Morse-Bott functions on manifolds with corners).

Let M be a compact regular manifold with corners and k ≥ 2 be an integer. R is any coefficient

ring. Let f be a Morse-Bott function on M. If each C ∈ Crit( f ) is k-lacunary and ind f (C) is

divisible by k, then the Morse-Bott function is perfect, i.e.

H∗(M; R) '
⊕

C∈Crit( f )

H∗−ind f (C)(C; R). (5.2.9)

Now we start proving Proposition 5.2.9. We first need a lemma to prove that there are only

finitely many connected critical submanifolds in order to prove Proposition 5.2.9 by induction.

Lemma 5.2.10. If f is a Morse-Bott function on a manifold with corners M, then the set of

critical points is closed in M.

Proof. Let us prove the lemma by showing that if {pi}
∞
i=1 is a sequence of critical points in M

that accumulate to a point p ∈ M, then p is also a critical point.

Assume that M is a manifold with corners of dimension n and p ∈ Σs(M) − Σs+1(M) for

some s. Then there is a local chart (U, φ) containing p such that

φ : (U, p)
'
−→ (Rs

+ × R
n−s, 0). (5.2.10)

Without loss of generality, we can assume {pi}
∞
i=1 ⊆ U.

Let us verify for p the definiton of a critical point in [13, Definiton B.1]. It is clear from the

local chart (5.2.10) that for any X ∈ Cp(M), there is a vector field X̃ on U such that

X̃(u) ∈ Cu(M),∀u ∈ U and (5.2.11)

X̃(p) = X. (5.2.12)

Since d fu is varying smoothly on u and every pi is a critical point, we have from definition of
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a critical point that

d fp(X) = lim
i→∞

d fpi(X̃(pi)) ≥ 0. (5.2.13)

Since this is true for any X ∈ Cp(M), p is a critical point. �

Corollary 5.2.11. A Morse-Bott function on a compact regular manifold with corners has only

finitely many connected nondegenerate critical submanifolds.

Proof. Let {Ci}i∈I be the collection of all connected critical submanifolds of some Morse-Bott

function f on M. By [13, Corollary B.11], every connected nondegenerate critical submanifold

Ci can be seperated from other connected nondegenerate critical submanifolds by an open set

Ui, that is, there is a collection of open sets {Ui}i∈I such that

Ui ∩C j = ∅ if i , j. (5.2.14)

Let U be the complement of the critical point set. By Lemma 5.2.10, U is open. We now

have a cover of M by open sets.

M =

⋃
i∈I

Ui

 ∪ U. (5.2.15)

Since M is compact, there is a finite cover and thus I is finite. �

We will need a corollary of [13, Theorem B.9] to compute the homology using Morse-Bott

theory. We will use My to denote f −1((−∞, y]) in the next lemma.

Lemma 5.2.12 (A modest generalization of theorem B.9 in [13]). Let M be a regular manifold

with corners and f : M → R be a smooth function. Suppose that a, b ∈ R are regular values

of f , the interval [a, b] contains only one critical value c, f −1([a, b]) is compact and the set of

all critical points in f −1(c) forms finitely many connected nondegenerate critical submanifolds

C1, . . . ,Ck which are neat submanifolds of faces F1, . . . , Fk. Then Mb is homotopy equivalent to

the space obtained from Ma by attaching disk bundles D(Ci) to Ma along S (Ci) for i = 1, . . . , k.
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Proof. Since M is Hausdorff and each Ci is compact, there are open sets Ui’s seperating Ci’s,

that is, there are open sets Ui’s satisfying

Ci ⊆ Ui and (5.2.16)

Ui ∩ U j = ∅ for i , j. (5.2.17)

The rest of the proof is similar to that of [13, B.7, Proof of theorem B.9]. We can further

shrink these Ui’s such that they satisfy the same property as the open set U1 in [13, B.7, Proof

of theorem B.9]. Since Ui’s are disjoint open sets, as in [13, B.7, Proof of theorem B.9] one

can construct a function Φ : M → R such that Φ coincides with f outside
k⋃

i=1
Ui and in each Ui

the function Φ is given by the same formula as in [13, Before assertion 1 in proof of Theorem

B.9].

Then the assertion 1, assertion 2 and assertion 3 in [13, Proof of Theorem B.9] still hold

for this function Φ. The assertion 4 is still true once we substitute the set Mc−ε ∪D(N) there by

Mc−ε ∪

(
k⋃

i=1
D(Ci)

)
. �

With the preparation above, now we can prove Proposition 5.2.9. The proof is essentially

the same as the proof of [15, Proposition 2.2].

proof of Proposition 5.2.9. We suppress the homology coefficient R in the proof.

Since Crit( f ) is finite by Corollary 5.2.11, there are only finitely many critical values. Thus

we can find regular values t0 < t1 < · · · < tk of f such that all critical values lie in (t0, tk) and

each interval (ti, ti+1) contains exactly one critical value of f . Let us denote f −1((−∞, ti]) by Mi

and prove the following statement by induction on i:

H∗(Mi) '
⊕

C∈Crit( f )
f (C)<ti

H∗−ind f (C)(C) (5.2.18)

When i = 1, the critical value c < t1 of f is the minimal value of f on M and thus for

a connected nondegenerate critical submanifold C of some face F with f (C) = c, we have
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ind f (C) = 0 because f can only have value greater than or equal to c in a neighborhood of

C and thus ν−(C; F) has rank 0. It then follows from Lemma 5.2.12 that M1 is homotopy

equivalent to the disjoint union of C ∈ Crit( f ) with f (C) = c. So we have

H∗(M1) '
⊕

C∈Crit( f )
f (C)<t1

H∗(C). (5.2.19)

Let us assume that we have proved (5.2.18) for i − 1 and let us try to prove it for i.

We have the following exact sequence for the pair (Mi,Mi−1):

H∗+1(Mi,Mi−1)→ H∗(Mi−1)→ H∗(Mi)→ H∗(Mi,Mi−1)→ H∗−1(Mi−1). (5.2.20)

Since there is exactly one critical value in the interval (ti−1, ti), it follows from Lemma 5.2.12

and excision that we have

H∗(Mi,Mi−1) '
⊕

C∈Crit( f )
ti−1< f (C)<ti

H∗−ind f (C)(D(C), S (C)) (5.2.21)

where D(C) and S (C) are defind in Definition 5.2.5.

Since every C ∈ Crit( f ) of some face F is k-lacunary with k ≥ 2, we have H1(C) = 0 and

thus the first Stiefel-Whitney class of the ν−(C; F) vanishes. So ν−(C; F) is orientable and we

can apply the isomorphism in Proposition 5.1.32 to get

H∗(Mi,Mi−1) '
⊕

ti−1< f (C)<ti

H∗−ind f (C)(C). (5.2.22)

Now, since by assumption every critical submanifold is k-lacunary and ind f (C) is divisible

by k, every summand on the right hand side of (5.2.22) is concentrated in degrees divisible by

k and thus H∗(Mi,Mi−1) is concentrated in degrees divisible by k. Then in the exact sequence

(5.2.20) with degree ∗ divisible by k, the two terms on both ends vanish and we have the
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following exact sequence for degree ∗ divisible by k:

0→ H∗(Mi−1)→ H∗(Mi)→ H∗(Mi,Mi−1)→ 0. (5.2.23)

Since by definition of k-lacunary and (5.2.21), H∗(Mi,Mi−1) is free and thus the exact sequence

(5.2.23) splits. So we have

H∗(Mi) ' H∗(Mi−1) ⊕ H∗(Mi,Mi−1). (5.2.24)

The induction hypothesis and (5.2.22) then give us (5.2.18). �

We need another proposition similar to [15, Proposition 2.3] to get a homology basis of a

manifold with corners.

We first prove a lemma.

Lemma 5.2.13. Let M be a regular manifold with corners and F is a codimension-s face of

M, then F is a smooth manifold without boundary if and only if F does not intersect Σs+1(M).

Any two such faces of M are disjoint.

Proof. Assume that dim M = n. Let us first show that if F is a smooth manifold without

boundary, then F does not intersect Σs+1(M). Assume that there is p ∈ F ∩ (Σl(M) − Σl+1(M))

for some l > s. Since M is regular, there is local chart

φ : (U, F, p)
'
−→ (Rl

+ × R
n−l,Rl−s

+ × R
n−l+s, 0). (5.2.25)

Since l > s, we can see from the above chart that F is not a smooth manifold without boundary

and that is a contradiction.

Now let us show that if F does not intersect Σs+1(M), then F is a smooth manifold without

boundary. We assume that F is the closure of a connected component N of Σs(M) − Σs+1(M).

We have seen in Remark 5.1.13 that the Σs(M) − Σs+1(M) is a smooth manifold without
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boundary. Thus a connected componenet N of Σs(M) − Σs+1(M) is also a smooth manifold

without boundary. Let us show that N is closed in M.

Let us show that if {pi}
∞
i=1 is a sequence of points in F ∩ (Σs(M)−Σs+1(M)) and it converges

to a point p, then p ∈ F ∩ (Σs(M) − Σs+1(M)). Indeed, assume that p ∈ Σl(M) − Σl+1(M) for

some l, then there is a local chart (U, φ) containing p and we have

φ : (U, p)
'
−→ (Rl

+ × R
m−l, 0). (5.2.26)

Then every point in U belongs to a stratum of codimension less than or equal to l. Since pi’s

accumulate to p and every pi belongs to the stratum of codimension s, we have l ≥ s. Since

F does not intersect Σs+1(M), the point p can only belong to Σs(M) − Σs+1(M) and thus N is

closed.

Since the face F is the closure of N, we have F = N and thus F is a smooth manifold

without boundary. It follows directly from our proof that any two such faces of M are disjoint.

�

Proposition 5.2.14. In addition to the assumption of Proposition 5.2.9, we assume that every

C ∈ Crit( f ) is an orientable submanifold of some face FC such that FC is a smooth manifold

without boundary. We assume in further that for every C ∈ Crit( f ) we have an orientable

closed submanifold WC of FC and a finite collection VC of orientable closed submanifolds of

WC such that the following conditions are satisfied:

1. The restriction f |FC is a perfect Morse-Bott function on FC for every C ∈ Crit( f ).

2. For every C ∈ Crit( f ), we have C ⊆ WC and dim WC = ind f (C) + dim C.

3. The function f |WC is nondegenerate and achieves maximum on C.

4. Each V ∈ VC is transversal to C as a submanifold of WC.

5. The set of homology classes [V ∩C] ∈ H∗(C; R) for all V ∈ VC forms a basis of H∗(C; R)

where [·] denotes the fundamental class.
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Then the set of homology classes [V] ∈ H∗(M; R) for all V ∈ VC and all C ∈ Crit( f ) form a

basis of the free R-module H∗(M; R).

Proof. We suppress the homology and homology coefficient R to simplify the notation.

We are going to prove this proposition as in [15, Proposition 2.3] using induction. As in the

proof of Proposition 5.2.9 we assume that we have regular values t0 < t1 < · · · < tk such that

all critical values lie in (t0, tk) and each interval (ti, ti+1) contains only one critical value of f .

We also denote f −1((−∞, ti]) by Mi. We are going to prove the following statement for every

i = 1, · · · , k:

The set of homology classes [V] ∈ H∗(Mi) for all V ∈ VC and C ∈ Crit( f )

with f (C) < ti forms a basis of the free R-module H∗(Mi).
(*)

Note that WC ⊆ Mi if f (C) < ti because f achieves maximum on C in WC.

For i = 1, the interval (−∞, t1] contains only one critical value c1 of f which is also the

minimal value of f on M. For any C ∈ Crit( f ) such that f (C) = c1, f |WC reaches both minimum

and maximum on C which implies that WC = C and V ⊆ C for any V = VC. Since c1 is the

minimal value of f on M, we have M0 = ∅. By [13, Theorem B.4] the disjoint union

⊔
f (C)=c1

C (5.2.27)

is a deformation retract of M1. Since [V ∩ C] = [V] in this case, it follows from condition(5)

that (*) is true in this case.

Now we assume that the statement holds for i, let us prove it for i + 1. It follows from the

exact sequence (5.2.23) that we only have to show that the image of all [V] ∈ H∗(Mi+1) in (*)

under the map H∗(Mi+1)→ H∗(Mi+1,Mi) form a basis of H∗(Mi+1,Mi).

Let us denote

F :=
⋃

C∈Crit( f )

FC. (5.2.28)
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According to Lemma 5.2.13, F is the disjoint union of several smooth manifolds without

boundary.

We have seen in Definition 5.2.1 and Remark 5.2.2 that critical points of f consist of critical

points of each stratum satisfying some additional condition. Since all critical points of f are in

F which is the disjoint union of several smooth manifolds without boundary, this observation

implies that critical points of f is a subset of critical points of f |F as a function on F. Since

f |FC is also a Morse-Bott function for every C ∈ Crit( f ), we have Crit( f ) ⊆ Crit( f |F) and the

following inclusion map:

⊕
C∈Crit( f )

ti< f (C)<ti+1

H∗−ind f (C)(C) ↪→
⊕

C∈Crit( f |F )
ti< f |F (C)<ti+1

H∗−ind f (C)(C). (5.2.29)

Furthermore, it was proved in [15, Proof of Proposition 2.2] that via Morse-Bott theory on

smooth manifolds, we have the following isomorphism induced by inclusions:

⊕
C∈Crit( f |F )

ti< f |F (C)<ti+1

H∗−ind f (C)(C)
'
−→ H∗(F i+1, F i) (5.2.30)

where F i = Mi ∩ F. Thus we have the following diagram:

⊕
C∈Crit( f |F )

ti< f |F (C)<ti+1

H∗−ind f (C)(C)
⊕

C∈Crit( f )
ti< f (C)<ti+1

H∗−ind f (C)(C)

H∗(F i+1, F i) H∗(Mi+1,Mi).

' '

(5.2.31)

The lower right triangle is trivially commuting. The upper left triangle is commuting because

the embeddings of the disc and sphere bundle of C in F given by the generalized Morse-Bott

lemma in [13, Lemma B.10] is exactly the same as the embeddings given by the usual Morse-

Bott lemma on smooth manifold F. Passing to H∗(C) using Thom isomorphism, we can see

that the upper left triangle in the diagram (5.2.31) commutes.



5.2. Morse-Bott theory on manifolds with corners 55

For any V ∈ VC as in the assumption of this proposition, it was shown in [15, Proof of

Proposition 2.3] that inverse image of [V,V ∩ F i] ∈ H∗(F i+1, F i) under the left vertical map

in (5.2.31) is [V ∩ C] ∈ H∗(C). Thus the inverse image of [V,V ∩ Mi] ∈ H∗(Mi+1,Mi) under

the right horizontal map in (5.2.31) is also [V ∩ C] ∈ H∗(C). By assumption (5) the set of

[V ∩C] ∈ H∗(C) for all V ∈ VC forms a basis of H∗(C). We have shown the claim (*).

�

The lacunary principle we proved works only for compact regular manifolds with corners.

However, the spaces we are going to apply our lacunary principle on are usually non-compact.

A common practice is to deformation retract onto a compact space. To apply lacunary principle

on the deformation retract, we have to show that this deformation retract is a regular manifold

with corners.

For a smooth function f : M → R on a manifold with corners M and a value q ∈ R

satisfying some regularity condition, we first show in the following lemma that the sublevel set

f −1((−∞, q]) is a manifold with corners for any q ∈ R and the level set f −1(q) has a tubular

neighborhood such that f on this tubular neighborhood is exactly a projection map. This local

property of level set is similar to [23, Chapter III, Proposition 5.1].

Lemma 5.2.15. Let M be a manifold with corners and f : M → R be a smooth function on

M. Assume that d fp(T S
p M) = TqR for any p ∈ f −1(q). Then f −1((−∞, q]) is a manifold with

corners. Furthermore, if f −1(q) is compact, then there is a neighborhood U of q in R and

embedding f −1(q) × U → M such that the diagram

f −1(q) × U M

U

j

prU f
(5.2.32)

commutes where prU is the projection onto the component U.

Proof. Since we have d fp(T S
p M) = TqR for any p ∈ f −1(q), it follows from Proposition 5.1.19

that f −1(q) is a neat submanifold of M and its normal bundle in M is trivial. Thus f −1(q) has a
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tubular neighborhood in M that is diffeomorphic to f −1(q) × R with f −1(q) mapped identically

to f −1(q) × {0}. Then an application of [27, Theorem 3] shows that f −1((−∞, q]) is a manifold

with corners.

For the second part of the lemma, the proof is similar to that of [23, Chapter III, Proposition

5.1]. We start with a tubular neighborhood f −1(q) × R of f −1(q) in M. It is enough to show the

following statement similar to [23, Chapter III, Proposition 5.1, statement (*)]:

There is a neighborhood U of q such that for every p ∈ f −1(q) the map f

restricted to Up = f −1(U) ∩ (p × R) is a diffeomorphism of Up onto U.
(*)

To prove (*), we consider the following smooth map between manifolds with corners:

h : f −1(q) × R→ f −1(q) × R (5.2.33)

h(q, v) = (q, f (q, v)). (5.2.34)

Since our f satisfies d fp(T S
p M) = T f (p)R for any p ∈ M, the differential of h has maximal

rank at (p, 0). Furthermore, since a smooth map between manifolds with corners can be locally

extended to a smooth map between local charts that does not involve corners, it follows from

the inverse function theorem that the map h is locally a diffeomorphism. The rest of the proof

is exactly the same as that of [23, Chapter III, Proposition 5.1]. �

Now we show that the sublevel set is a regular manifold with corners.

Corollary 5.2.16. Let M be a regular manifold with corners and f : M → R be a smooth

map of manifolds with corners. Assume that d fp(T S
p M) = TqR for any p ∈ f −1(q). If f −1(q) is

compact, then f −1((−∞, q]) is a regular manifold with corners.

Proof. We have shown in Lemma 5.2.15 that f −1((−∞, q]) is a manifold with corners, we have

to show that it is regular. By Proposition 5.1.23 it suffices to prove that f −1((−∞, q]) is a nice
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manifold with corners. By Remark 5.1.26, we just have to show the following statement.

Every point p of f −1((−∞, q]) in the codimension-k stratum of f −1((−∞, q])

is contained in k different facets of f −1((−∞, q]).
(*)

For p ∈ f −1((−∞, q)), (*) is trivially true because M is regular and f −1((−∞, q)) is an open

subset of M.

Let N = f −1(q). Let us look at the case when p ∈ N. We choose a small enough ε > 0

such that (q − ε, q + ε) is contained in the neighborhood U of q in Lemma 5.2.15. Since the

normal bundle of N in M is trivial by Proposition 5.1.19, f −1((q − ε, q + ε)) is diffeomorphic

to N × (−ε, ε). The set f −1((q − ε, q]) is then diffeomorphic to N × (−ε, 0]. We will identify

f −1((q − ε, q + ε)) with N × (−ε, ε) and f −1((q − ε, q]) with N × (−ε, 0].

Since p ∈ N is in the codimension-k stratum of f −1((−∞, q]), p is in the codimension-(k−1)

stratum of f −1((−∞, q + ε)). Since f −1((−∞, q + ε)) is regular, p is contained in k − 1 different

facets of f −1((−∞, q + ε)). The restriction of these facets to N × (−ε, ε) breaks up to different

facets of N × (−ε, ε). Different facets of N × (−ε, ε) are just the product of different facets of N

and (−ε, ε). So different facets of N × (−ε, 0] are just the product of different facets of N and

(−ε, 0] and they are contained in the restriction of different facets of f −1((−∞, q + ε)). We’ve

got k − 1 different facets of f −1((−∞, q]) that contains p.

We need one more different facet that contains p. Let us show that closure of the connected

component containing p of the codimension-0 stratum in N is a facet of f −1((−∞, q]). It suffices

to show that the codimension-0 stratum in N is disjoint from codimension-1 stratum in M. But

this is obvious because a point in the codimension-0 stratum in N is in the codimension-0

stratum of M. �



Chapter 6

Homologies of faces of the orbit space

In this chapter, we first give some examples of manifolds with corners. These examples

are related to the computation we are going to carry on. Then we start computing homology

of each face of the orbit space of a big polygon space Xa,b(l)/T and the maps connecting them

induced by inclusions of faces. Homologies in this chapter will always be singular homology

with real coefficient.

Before we start the computation, recall that we made the following assumption in Chapter 4:

Assumption. The length vector l = (l1, . . . , lr) satisfies the condition 0 < l1 ≤ l2 ≤ · · · ≤ lr.

Throughout this chapter, we are also going to make the following assumption. The reason

is that in Lemma 4.1.8 we proved that the T -action on Xa,b(l) is locally standard if the fixed

point set is not empty and we only want to work with locally standard actions from now on:

Assumption. We assume that the fixed point set of Xa,b(l) under T-action is not empty. Accord-

ing to Lemma 4.1.8(1), the T-action on Xa,b(l) is locally standard.

6.1 Examples of manifolds with corners

We want to give some examples of manifolds with corners. We will prove that they are

manifolds with corners in Lemma 6.1.3. The reason of giving these examples is that they are
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closely related to the orbit space Xa,b(l)/T . We will construct a manifold with corners F∅ that

has the same face structure as that of Xa,b(l)/T . Furthermore, two corresponding faces of F∅

and Xa,b(l)/T are homeomorphic to each other. So in order to compute the homology of some

face of Xa,b(l)/T we only have to compute homology of the corresponding face of F∅. Note

that we are not going to answer the question that whether the smooth structure of Xa,b(l)/T is

equivalent to that of F∅ because homology is a topological invariant and it suffices to look at

the face structure and topology of each face.

Example 6.1.1. The following subspace of Car has a smooth structure as a manifold with

corners and is denoted F∅.

F∅ :=
{
(u1, . . . , ur) ∈ Car :

r∑
i=1

liui = 0; ‖ui‖ ≤ 1,∀i = 1, . . . , r
}
. (6.1.1)

A codimension-k face of F∅ is FI defined by the following equation for some subset I ⊆ [r] of

cardinality k:

FI := {(u1, . . . , ur) ∈ F∅ : ‖ui‖ = 1,∀i ∈ I}. (6.1.2)

Example 6.1.2. The following subspace M∅ of Car is a product of closed unit balls and has a

smooth structure as a manifold with corners.

M∅ := {(u1, . . . , ur) ∈ Car : ‖ui‖ ≤ 1,∀i = 1, . . . , r}. (6.1.3)

A codimension-k face of M∅ is MI defined by the following equation for some subset I ⊆ [r]

of cardinality k:

MI := {(u1, . . . , ur) ∈ M∅ : ‖ui‖ = 1,∀i ∈ I}. (6.1.4)

Note that FI in Example 6.1.1 is a subspace of MI .

We now prove that the examples above are indeed manifolds with corners.

Lemma 6.1.3. For any subset I of [r],
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(a) MI is a regular manifold with corners. A face of MI is MJ for some J ⊇ I.

(b) FI is a neat submanifold of MI . Its normal bundle in MI is trivial.

(c) MI − FI is a regular manifold with corners.

Proof. (a): Every MI is a product of spheres and closed balls. Since every sphere or closed

ball has a standard chart as a manifold with corners, MI with the product of these charts is a

manifold with corners. It is also clear from this chart that MI is regular and a face of MI is MJ

for some J ⊇ I.

(b): Let f : MI → C
a be

f (u) :=
r∑

i=1

liui. (6.1.5)

Then FI is f −1(0). We want to verify the conditions in Proposition 5.1.19 to prove that FI is a

neat submanifold of MI .

Fixing an integer k, a codimension-k stratum S k of MI is of the form

S k =
⋃
|J|=r−k

J⊇I

MJ −
⋃

|K|=r−k+1
K⊇I

MK . (6.1.6)

For a point p ∈ MJ ⊆ S k, the tangent space to the stratum at p is

T S
p MI = {(v1, . . . , vr) ∈ Car : 〈ui, vi〉 = 0, ∀i ∈ J} . (6.1.7)

where the inner product is the usual real inner product on Ca ' R2a.

The differential d fp resticted to T S
p MI is denoted d f S

p . Explicitly, it is

d f S
p (v) =

r∑
i=1

livi, v = (v1, . . . , vr) ∈ T S
p MI . (6.1.8)

We are going to show that for any p ∈ S k we have

d f S
p (T S

p MI) = T0C
a ' Ca (6.1.9)
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as real vector spaces.

If J , [r], then for some integer i ∈ [r] − J and any vector vi ∈ C
a, the following vector

v = (0, . . . , 0, vi, 0, . . . , 0) (6.1.10)

is in T S
p MI and we have

d f S
p (v) = livi. (6.1.11)

So d f S
p is surjective onto T0C

a since li > 0 and vi is arbitrary.

If J = [r], then either u has a zero component or all components of u are non-zero. If

ui = 0, then vi in (6.1.7) can be any vector in Ca, by the same argument as above, we can show

that d f S
p is surjective.

If all coordinates of p are non-zero, then every component vi of v in (6.1.7) is in a hyper-

plane in Ca. Since the length vector l is generic and
∑r

i=1 liui = 0, not all the coordinates of u

are on the same line. Thus there are i, j such that vi and v j are from different hyperplanes. The

linear combination of vectors from these two different hyperplanes generates the whole space

Ca. That proves the surjectivity of d f S
p in this case.

The above argument shows that the assumption of Proposition 5.1.19 is satisfied. So FI is

a neat submanifold of MI and its normal bundle in MI is trivial.

(c): MI −FI is an open subset of MI . With the atlas inherited from MI , it is a manifold with

corners. Since MI is regular, an open subset of it is also regular by Lemma 5.1.27. �

Remark 6.1.4. Note that we didn’t show that a codimension-k face of F∅ is FI for some subset

I ⊆ [r] of cardinality k as claimed in Example 6.1.1. The reason is that it is a little bit tricky

to show that the interior of FI in F∅ is connected which is required by definition of a face. We

will delay the proof of this claim until Corollary 6.2.10.

The ultimate goal of this chapter is to compute the homology of faces of the orbit space

Xa,b(l)/T . We first establish the following homeomorphism.
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Lemma 6.1.5. The map

ψ : (S2a+2b−1)r → M∅ (6.1.12)

(u1, . . . , ur, z1, . . . , zr) 7→ (u1, . . . , ur) (6.1.13)

induces a homeomorphism ψ̄ between the quotient space (S2a+2b−1)r/T and M∅ ⊆ Car with

subspace topology.

Proof. ψ is obviously continuous and induces a continuous bijection between (S2a+2b−1)r/T and

M∅ ⊆ Car. Since (S2a+2b−1)r/T is compact and M∅ is Hausdorff, ψ is a homeomorphism. �

Since Xa,b(l)/T is a subspace of (S2a+2b−1)r/T and the image of Xa,b(l)/T under ψ̄ is F∅,

Xa,b(l)/T is homeomorphic to F∅. We want to show that a face of Xa,b(l)/T is mapped to a face

of F∅ of the same codimension.

Lemma 6.1.6. The homeomorphism ψ̄ induces a bijection between faces of Xa,b(l)/T and faces

of F∅ of the same codimension. Two corresponding faces are homeomorphic to each other

under this map.

Proof. A face of codimension-k is the closure of a connected component of the codimension-k

stratum of Xa,b(l)/T . Since Xa,b(l)/T is homeomorphic to F∅ via ψ̄, we only have to show that ψ̄

maps a point in the codimension-k stratum of Xa,b(l)/T to a point in the codimension-k stratum

of F∅.

The inverse image of a point in the codimension-k stratum of Xa,b(l)/T under the quotient

map consists of points in Xa,b(l) with exactly k vanishing zi coordinates. The image of these

points under ψ are points in F∅ with exactly k of the ui coordinates such that ‖ui‖ = 1 which is

clearly in the codimension-k stratum. Thus a point in the codimension-k stratum of Xa,b(l)/T

is mapped to a point in the codimension-k stratum of F∅. �

To sum up, we have shown the following proposition.
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Proposition 6.1.7. The two manifolds with corners Xa,b(l)/T and F∅ have the same face struc-

ture and the corresponding faces under ψ̄ are homeomorphic.

6.2 Homologies of faces of the orbit space

We want to compute homologies of faces of the orbit space of a big polygon space Xa,b(l)

in this section. According to Proposition 6.1.7, to compute homology of faces of Xa,b(l)/T , it

suffices to compute the homologies of faces of F∅ which are FI’s as described in Example 6.1.1

(Note that we haven’t proved that these FI’s are faces of F∅. The proof will be delayed until

Corollary 6.2.10). To do that, we will first compute the homology of the complement of FI

in MI and then use Corollary 5.1.34 to derive the homology of FI . The computation in this

section is very similar to the computation in [15] and [16]. The difference is that in [15] and

[16] people apply Morse-Bott theory on smooth manifolds and here we are going to apply

Morse-Bott theory on manifolds with corners.

With Proposition 6.1.7 and Lemma 6.1.3, we are now going to apply Morse-Bott theory we

summarized before to MI − FI for every I ⊆ [r]. The theory we are going to use is summarized

in Section 5.2.

Let f (u) := −‖
∑r

i=1 liui‖
2 be a function defined on MI . The face FI is where f reaches

global maximum 0. Although MI − FI is not compact, there is some small regular value ε > 0

such that [−ε, 0) contains no critical value of f and thus MI − FI deformation retracts onto

f −1((−∞,−ε]). Since −ε is a regular value of fI , f −1((−∞,−ε]) is a compact regular manifold

with corners and the set of critical points of f restricted to f −1((−∞,−ε]) agrees with that of

f . So we can apply Morse-Bott theory to f −1((−∞,−ε]) in order to compute the homology of

MI − FI .

We describe the critical submanifolds of f in the following lemma.

Lemma 6.2.1. Let f (u) := −‖
∑r

i=1 liui‖
2 be a function defined on MI − FI . The set of critical
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points of f consists of PK’s for K ⊆ I where

PK := {u : ‖ui‖ = 1, ui = u j = −uk,∀i, j ∈ K, k < K}. (6.2.1)

Every such PJ is a connected critical submanifold of the face M[r] − F[r]. It is diffeomorphic to

a sphere S2a−1 and its Morse-Bott index equals (2a − 1)|K|.

Proof. Assume that p = (u1, . . . , ur) is a point in the codimension-k stratum S k of MI −FI . The

differential d fp restricted to T S
p (MI − FI) is

d fp(v) = −2
〈 r∑

i=1

liui,

r∑
i=1

livi

〉
for v = (v1, . . . , vr) ∈ T S

p (MI − FI). (6.2.2)

Let us locate all the critical points of f .

The first observation is that critical points of f can only appear in the highest stratum

M[r] − F[r]. Indeed, we can write out S k explicitly as described in (6.1.6)

S =
⋃
|K|=k

(MK − FK) −
⋃
|J|=k+1

(MJ − FJ). (6.2.3)

If p is a point in MK − FK for some K in the above union, then we have as in (6.1.7) that

T S
p (MI − FI) =

{
(v1, . . . , vr) ∈ Car : 〈ui, vi〉 = 0,∀i ∈ K

}
. (6.2.4)

If k < r, then K , [r]. For an integer j ∈ [r] − K the following vector

v = (0, . . . , 0, v j, 0, . . . , 0) (6.2.5)

is in T S
p (MI − FI) for any v j ∈ C

a. Since p ∈ MK − FK , we have
∑r

i=1 liui , 0 and thus

d fp(v) =

〈 r∑
i=1

liui,

r∑
j=1

l jv j

〉
=

〈 r∑
i=1

liui, l jv j

〉
(6.2.6)
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is not constantly equal to 0 on T S
p (MI − FI). By Remark 5.2.2, p is not critical.

Thus all the possible critical points are in M[r] − F[r]. Furthermore, Remark 5.2.2 and

Definition 5.2.4(2) implies that a nondegenerate critical submanifold of f has to be a nonde-

generate critical submanifold of the stratum in the sense of smooth manifolds. All such critical

submanifolds were found in [15, Lemma 4.3] to be PK’s for any K ⊆ [r]. These PK’s satisfy

Remark 5.2.2 and Definition 5.2.4(2). So we have to check that among all of these PK’s, what

are those satisfying Definition 5.2.4(1) and (3)?

Let us check Definition 5.2.4(1) first. For a point p ∈ PK ⊆ M[r] − F[r], the tangent cone of

MI − FI at p consists of all the tangent vectors pointing inward MI − FI . Explicitly, they are

Cp(MI − FI) = {(v1, . . . , vr) : 〈ui, vi〉 = 0 for i ∈ I, 〈ui, vi〉 ≤ 0 for i < I}. (6.2.7)

Since all the coordinates of p ∈ PK lie on the same line, let us assume

u j =

e if j ∈ K,
−e if j < K.

(6.2.8)

Then for any v ∈ Cp(MI − FI) we have

d fp(v) = −2
〈 r∑

j=1

l ju j,

r∑
i=1

livi

〉
= −2

〈(∑
j∈K

l j

)
e −

(∑
j<K

l j

)
e,

∑
i∈I

livi +
∑
i<I

livi

〉
by (6.2.8)

= −2
(∑

j∈K

l j −
∑
j<K

l j

)〈
e,

∑
i<I

livi

〉
because 〈e,vi〉=0 for i∈I

by (6.2.7) .

(6.2.9)

Since PK = PK{ , let us assume that K is short without loss of generality. We recall that short

subset is defined in Definition 4.1.1.

If K ⊆ I, then for any v ∈ Cp(MI − FI), we have by (6.2.7) and (6.2.8) that

〈e, vi〉 ≥ 0, ∀i < I. (6.2.10)
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Then (6.2.9) implies that for any v ∈ Cp(MI − FI) we have

d fp(v) = −2
(∑

j∈K

l j −
∑
j<K

l j

)〈
e,

∑
i<I

livi

〉
≥ 0 because K is short

and by (6.2.10) (6.2.11)

and so Cp(MI − FI) ∩ {X ∈ Tp(MI − FI) : d fp(X) < 0} = ∅. Every point in PK with K ⊆ I

satisfies Definition 5.2.4(1) and thus is a critical point.

If K * I, then there is i ∈ K such that i < I. We can take some vi ∈ C
a such that

〈e, vi〉 < 0. (6.2.12)

The vector

v = (0, . . . , vi, . . . , 0) (6.2.13)

is then in the tangent cone by (6.2.7) and

d fp(v) = −2
(∑

j∈K

l j −
∑
j<K

l j

)〈
e,

∑
i<I

livi

〉
= −2

(∑
j∈K

l j −
∑
j<K

l j

)
〈e, vi〉

< 0 because K is short and 〈e, vi〉 < 0.

(6.2.14)

Thus Cp(MI − FI) ∩ {X ∈ Tp(MI − FI) : d fp(X) < 0} , ∅. Every point in PK with K * I does

not satisfy Definition 5.2.4(1) and thus is not a critical point.

We have shown that points in PK satisfy Definition 5.2.4(1) if and only if K is short and

K ⊆ I. To show that such PK’s satisfy Definition 5.2.4(3), let us compute Cp ∩ ker[d fp :

Tp(MI − FI)→ R].

Note that all the PK’s lie in the highest stratum which is

S = M[r] − F[r]. (6.2.15)
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Since K ⊆ I, it follows from (6.2.10) and (6.2.11) that for v ∈ Cp(MI − FI), d fp(v) = 0 if and

only if

〈e, vi〉 = 0,∀i < I. (6.2.16)

Together with (6.2.7), that implies that v ∈ T S
p (MI − FI) because

T S
p (MI − FI) = {(v1, . . . , vr) : 〈ui, vi〉 = 0,∀i}. (6.2.17)

Thus Cp ∩ ker[d fp : Tp(MI − FI)→ R] = T S
p (MI − FI).

The Morse-Bott index of each PJ is defined to be the Morse-Bott index of PK as a subman-

ifold of the face M[r] − F[r] and was computed in [15, Lemma 4.3] to be (2a − 1)|K|. �

Remark 6.2.2. Note that M[r] − F[r] is the stratum of the highest codimension of MI − FI and

thus a smooth manifold. Furthermore, M[r]−F[r] is connected by [15, Proposition 4.4] and thus

a face of the highest codimension in MI − FI .

We have the following corollary to describe a homology basis of MI − FI .

Corollary 6.2.3. Let K ⊆ [r]. Let pt ∈ S2a−1 be any point. Let

WK = {(u1, . . . , ur) ∈ (S2a−1)r : ui = u j,∀i, j < K},

VK = {(u1, . . . , ur) ∈ (S2a−1)r : ui = pt,∀i < K}.
(6.2.18)

Every WK and VK is a product of spheres and thus orientable. Assume a ≥ 2, then H∗(MI − FI)

is concentrated in degrees divisible by (2a − 1). Moreover, H∗(MI − FI) is freely generated by

[WK] and [VK] for all short subsets K of I where [·] denotes the fundamental class fixing an

orientation. To make it clear that it is a basis of H∗(MI − FI), we denote this basis [WK]I and

[VK]I .

Proof. We can choose some ε > 0 small enough such that ε is a regular value of f and there is

no critical value in [−ε, 0). We can further require that f −1([−ε, 0)) does not intersect M[r]−F[r]

because the length vector is generic.
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Since −ε is regular, it is not hard to show that for every p ∈ f −1(−ε), the differential of

f satisifies d fp(T S
p (MI − FI)) = T−εR. Since MI − FI is regular, it then follows from Corol-

lary 5.2.16 that the sublevel set f −1((−∞,−ε]) is a regular manifold with corners. Since −ε

is a regular value of f and f −1(−ε) stays away from M[r] − F[r], the critical point set of f on

f −1((−∞,−ε]) still forms critical submanifolds described in Lemma 6.2.1 and the Morse-Bott

index of each of them remains the same.

By deformation retracting onto the regular manifolds with corners f −1((−∞,−ε]) without

affecting the set of critical points, the compactness assumption in Proposition 5.2.9 is satisi-

fied. From the description of critical submanifolds of f in Lemma 6.2.1, other assumptions of

Proposition 5.2.9 are satisfied.

Furthermore, Let WPK be WK and VPK = {VK ,WK}. The manifold WK is obviously transver-

sal to PK in WK . The manifold VK intersects PK at one point and is transversal to PK because

of the way VK and PK are embedded in WK . So the homology classes [WK ∩ PK] = [PK] and

[VK ∩PK] = {pt} form a basis of the homology of PK which is a sphere. By Proposition 5.2.14,

H∗(MI − FI) is freely generated by [WK]’s and [VK]’s for all short subsets K of I once we fix

orientations of WK’s and VK’s. �

Since both H∗(MI) and H∗(MI −FI) are concentrated in degrees that are divisible by 2a−1,

the long exact sequence associated to the pair (MI ,MI − FI) at degree (2a − 1)k is

0 H(2a−1)k+1(MI ,MI − FI) H(2a−1)k(MI − FI)

H(2a−1)k(MI) H(2a−1)k(MI ,MI − FI) 0.

i∗ (6.2.19)

Remark 6.2.4. Since we will see product of spaces a lot in computations, we want to fix a

standard orientation on the product: Whenever there is a product of oriented spaces indexed by

a set of integers (for example: (S2a−1)K where K ⊆ [r]) or we write the product space explicitly

as M × N, we always orient this product space via the coordinates with ascending indices. We

will call it the standard orientation of the product space.
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In order to compute the map i∗ in (6.2.19), we have to fix a basis of H∗(MI) and H∗(MI−FI).

Since MI is a product of spheres and discs, by Künneth formula, H∗(MI) is concentrated

in degrees divisible by 2a − 1. We fix an orientation of S2a−1 and orient MI according to Re-

mark 6.2.4. The cross products of homology basis of each factor give us a basis of H(2a−1)k(MI).

We denote this basis by {xI
K : K ⊆ I, |K| = k}. Explicitly, xI

K represents the embedding

(S2a−1)K → MI with the standard orientation on the product of spheres mentioned in Re-

mark 6.2.4.

To fix a basis of H∗(MI − FI), we want to fix an orientation on each VK and WK accord-

ing to Remark 6.2.4. Fixing an orientation of S2a−1, we orient VK in Corollary 6.2.3 via the

diffeomorphism (S2a−1)K → VK onto the coordinates with increasing indices in K. We orient

WK in Corollary 6.2.3 via the diffeomorphism S2a−1 × (S2a−1)K → WK where the first copy of

sphere is diagonally mapped to the coordinates with indices not in K and the rest are mapped

to coordinates with increasing indices in K. We take the fundamental classes of VK’s and WK’s

under these orientations.

The map i∗ in (6.2.19) is then described in the following lemma.

Lemma 6.2.5. With the basis of H∗(MI) and H∗(MI−FI) mentioned above, for any short K ⊆ I

we have

i∗[VK]I = xI
K ,

i∗[WK]I =
∑
∀i∈I−K

(−1)[i:K]xI
K∪i

(6.2.20)

where the notation [i : K] for i ∈ [r] and K ⊆ [r] is the number of elements in K that are strictly

less than i.

Proof. The embedding of VK in MI is exactly represented by the homology class xK since both

i∗([VK]I) and xI
K are represented by the same embedding (S2a−1)K → MI .

To compute i∗([WK]I), we decompose the inclusion map

S2a−1 × (S2a−1)K '
−→ WK → MI (6.2.21)
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into two maps

S2a−1 × (S2a−1)K ↪→ (S2a−1)I−K × (S2a−1)K × (D2a)I{ '−→ MI (6.2.22)

where the first map is the cross product of the diagonal map

∆ : S2a−1 → (S2a−1)I−K , (6.2.23)

the identity map

id : (S2a−1)K → (S2a−1)K (6.2.24)

and a map to an arbitrarily chosen point in (D2a)I{ . The second map in (6.2.22) is a permutation

of coordinates.

First observe that

∆∗(x) =
∑

k∈I−K

xk (6.2.25)

where xk ∈ H2a−1((S2a−1)I−K) represents the embedding S2a−1 → (S2a−1)I−K in the k-th coordi-

nate. That is because the composition of ∆ and the projection onto the k-th coordinate gives us

the identity map on S2a−1.

Since Künneth formula is natural with respect to the components in the cross product, we

have

(∆ × id)∗(x × xI
K) =

∑
k∈I−K

xk × xI
K (6.2.26)

where xI
K is the generator of H(2a−1)k((S2a−1)K) given the standard orientation of (S2a−1)K as in

Remark 6.2.4.

The image of xi×xK under the second map in (6.2.22) is (−1)[i:K]xI
K∪i because the orientation

we choose for xi × xK is different from that of xK∪i. Indeed, the orientation that gives xI
K∪i

corresponds to the ordered set K ∪ i of increasing integers while the orientation of xi × xI
K

corresponds to the ordered set with i followed by the set K of increasing integers. One of these
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two orientations is obtained from another by flipping coordinates [i : K] times, which results

in the sign (−1)[i:K].

We have the desired result. �

Lemma 6.2.6. Assume a ≥ 2 and I ⊆ [r], then from the exact sequence (6.2.19) we have

H(2a−1)k+1(MI ,MI − FI) ' ker i∗,

H(2a−1)k(MI ,MI − FI) ' coker i∗
(6.2.27)

and ker i∗ ⊆ H(2a−1)k(MI − FI) is isomorphic to the subspace of H(2a−1)k(MI − FI) consisting of

elements of the form ∑
short K⊆I
|K|=k−1

mK[WK]I (6.2.28)

such that ∑
i∈H

H−i short

(−1)[i:H]mH−i = 0, ∀ long H ⊆ I, |H| = k. (6.2.29)

where notation [i : H] is defined as in Lemma 6.2.5.

Proof. From Corollary 6.2.3, H(2a−1)k(MI − FI) consists of elements of the form

∑
K′

nK′ [VK′ ]
I +

∑
K

mK[WK]I (6.2.30)

where the first sum is over all short subsets K
′

of I with k elements and the second sum is over

all short subsets K of I with k − 1 elements. We will assume these conditions on number of

elements in K and K
′

whenever they appear in the index. We also assume that H is a long

subset of I containing k elements whenever it appears in the index.
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Using Lemma 6.2.5 we can compute the image of such an element under i∗ as

i∗
(∑

K′
nK′ [VK′ ]

I +
∑

K

mK[WK]I
)

=
∑
K′

nK′ x
I
K′ +

∑
K

mK

( ∑
i∈I−K

(−1)[i:K]xI
K∪i

)
=

∑
K′

nK′ x
I
K′ +

∑
K

( ∑
i∈I−K

K∪i short

(−1)[i:K]mK xI
K∪i +

∑
i∈I−K

K∪i long

(−1)[i:K]mK xI
K∪i

)
=

∑
K′

(
nK′ +

∑
i∈K′

(−1)[i:K
′
]mK′−i

)
xI

K′ +
∑

H

( ∑
i<H

H−i short

(−1)[i:H−i]mH−i

)
xI

H

=
∑
K′

(
nK′ +

∑
i∈K′

(−1)[i:K
′
]mK′−i

)
xI

K′ +
∑

H

( ∑
i∈H

H−i short

(−1)[i:H]mH−i

)
xI

H.

(6.2.31)

Thus an element
∑
K′

nK′ [VK′ ]I +
∑
K

mK[WK]I in H(2a−1)k(MI − FI) is in ker i∗ if and only if the

following equations hold:

nK′ = −
(∑

i∈K′
(−1)[i:K

′
]mK′−i

)
, ∀ short K

′

⊆ I

∑
i∈H

H−i short

(−1)[i:H]mH−i = 0, ∀ long H ⊆ I, |H| = k.
(6.2.32)

We can see that coefficients nK′ ’s are completely determined by mK’s, thus we have the desired

result. �

We didn’t give an explicit description of coker d because it is quite tedious to write and we

will see that this part will not contribute to the syzygy order of the big polygon spaces.

Since FI is a neat submanifold of MI and the normal bundle of FI in MI is trivial by

Lemma 6.1.3, the following lemma follows directly from Corollary 5.1.34.

Lemma 6.2.7. Assume I ⊆ [r], a ≥ 1, then we have

H∗−2a(FI) ' H∗(MI ,MI − FI)
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and this isomorphism satisfies the following commuting diagram if J ⊆ I:

H∗−2a(FI) H∗(MI ,MI − FI)

H∗−2a(FJ) H∗(MJ,MJ − FJ).

(6.2.33)

So we have the following commuting diagram for any J ⊆ I ⊆ [r] where the degree ∗ is

(2a − 1)k:

0 H∗−2a+1(FI) H∗(MI − FI) H∗(MI) H∗−2a(FI) 0

0 H∗−2a+1(FJ) H∗(MJ − FJ) H∗(MJ) H∗−2a(FJ) 0.

ιIJ
∗−2a+1 ιIJ

∗

i∗

ιIJ
∗ ιIJ

∗−2a

i∗

(6.2.34)

The map ιIJ
∗ will be described in the following lemma. Note that in (6.2.34) we use the

same notation ιIJ
∗ to denote the three maps H∗(FI)→ H∗(FJ), H∗(MI −FI)→ H∗(MJ −FJ) and

H∗(MI)→ H∗(MJ).

Lemma 6.2.8. Assume that I ⊆ [r] and that K is a short subset of I. Let [WK]I and [VK]I be

as in Corollary 6.2.3. If J ⊆ I, then the map ιIJ
∗ : H∗(MI − FI) → H∗(MJ − FJ) induced by

inclusion map is

ιIJ
∗ ([WK]I) =

[WK]J if K ⊆ J,
0 if K * J,

(6.2.35)

ιIJ
∗ ([VK]I) =

[VK]J if K ⊆ J,
0 if K * J.

(6.2.36)

Similarly, the map ιIJ
∗ : H∗(MI)→ H∗(MJ) induced by inclusion map is

ιIJ
∗ (xI

K) =

xJ
K if K ⊆ J,

0 if K * J.
(6.2.37)

Proof. If K ⊆ J, ιIJ
∗ ([WK]I) is obviously [WK]J ∈ H∗(MJ − FJ).

If K * J, then there is an index k ∈ K − J. Then the inclusion of WK as a product of

spheres into MJ is homotopic to an inclusion of a lower dimensional product of spheres via the



74 Chapter 6. Homologies of faces of the orbit space

following homotopy

H : WK × I → MJ − FJ (6.2.38)

given by the following formula:

H(u, t) := (H1(u, t), . . . ,Hr(u, t)) where

Hi(u, t) =


ui if i , k,

tui if i = k.

(6.2.39)

It is clear that H defined above has image in MJ. We have to show that H has image in

MJ−FJ, that is, the image of H does not intersect FJ. Since K is short, we have ‖
∑
i∈K

Hi(u, t)‖ <

‖
∑
i<K

Hi(u, t)‖ because

∥∥∥∥∑
i∈K

Hi(u, t)
∥∥∥∥ =

∥∥∥∥tuk +
∑

i∈K,i,k

ui

∥∥∥∥ ≤∑
i∈K

li <
∑
i<K

li =
∥∥∥∥∑

i<K

Hi(u, t)
∥∥∥∥ (6.2.40)

and thus ∑
i∈[r]

Hi(u, t) , 0 ∀(u, t) ∈ WK × I. (6.2.41)

So H indeed has image in MJ − FJ. We have shown that ιIJ
∗ ([WK]I) = 0 if K * J.

We can construct the homotopy also for [VK] and xI
K using the same formula above and

show that ιIJ
∗ ([VK]I) = 0 and ιIJ

∗ (xI
K) = 0 if K * J. �

Now we can give a description of H∗(FI) and the map ιIJ
∗ : H∗(FI)→ H∗(FJ) if J ⊆ I.

Proposition 6.2.9. Assume a ≥ 2, J ⊆ I ⊆ [r], then we have

(a) H∗(FI) is concentrated in degrees (2a − 1)k − 1 and (2a − 1)k for integers 0 ≤ k ≤ r − 1.

(b) H(2a−1)k(FI) is isomorphic to the subspace of H(2a−1)(k+1)(MI − FI) consisting of elements

of the form ∑
Kshort,|K|=k

K⊆I

mK[WK]I (6.2.42)
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such that the coefficients mK’s satisfy

∑
i∈H

H−i short

(−1)[i:H]mH−i = 0 ∀ long H ⊆ I, |H| = k + 1 (6.2.43)

where [i : H] is as in Lemma 6.2.5.

For such an element in H(2a−1)k(FI), the map induced by the inclusion FI ⊆ FJ is

ιIJ
(2a−1)k

( ∑
short K⊆I
|K|=k

mK[WK]I
)

=
∑

short K⊆J
|K|=k

mK[WK]J. (6.2.44)

(c) ιIJ
(2a−1)k−1 : H(2a−1)k−1(FI)→ H(2a−1)k−1(FJ) is surjective for any k.

Proof. Since both H∗(MI) and H∗(MI−FI) are concentrated in degrees (2a−1)k and we have the

exact sequence (6.2.19), H∗(MI ,MI −FI) is concentrated in degrees (2a−1)k and (2a−1)k−1.

From Lemma 6.2.7 we get (a).

(b) follows directly from Lemma 6.2.6 and Lemma 6.2.7.

When J ⊆ I, the map H∗(MI) → H∗(MJ) induced by inclusion MI → MJ is surjective.

Since the map H∗(MJ) → H∗−2a(FJ) in (6.2.34) is surjective, the vertical map at the right end

of (6.2.34) is also surjective. (c) follows. �

A corollary of this proposition is a proof of the claim mentioned in Remark 6.1.4.

Corollary 6.2.10. A codimension-k face of F∅ is FI for some subset I ⊆ [r] of cardinality k

such that FI is not empty.

Proof. Since we have shown in Lemma 6.1.3 that F∅ is a neat submanifold of M∅, it follows

from Remark 5.1.18(2) that the codimension-k stratum of F∅ are exactly the intersection of

codimension-k stratum of M∅ and F∅. We have written explicitly the codimension-k stratum

of M∅ in (6.1.6). The codimension-k stratum S k of F∅ is thus of the following form

S k =
⋃
|I|=r−k

(MI ∩ F∅) −
⋃

|K|=r−k+1

(MK ∩ F∅) (6.2.45)
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=
⋃
|I|=r−k

FI −
⋃

|K|=r−k+1

FK (6.2.46)

=
⊔
|I|=r−k

(
FI −

⋃
K⊇I

|K|=r−k+1

FK

)
. (6.2.47)

where the last union is a disjoint union.

Then it suffices to show that every term in the last disjoint union in (6.2.45) is connected.

Note that since FI is a neat submanifold of MI and thus a manifold with corners itself, the

following term in the last disjoint union in (6.2.45)

FI −
⋃
K⊇I

|K|=r−k+1

FK (6.2.48)

is exactly the interior of FI as a manifold with corners. We will show that it is connected by

looking at its 0-th homology.

Since FI is topological manifold with boundary, we have

H∗(F̊I) = H∗(FI) (6.2.49)

from [25, Lemma 11.6] or [17, (5.1)] where F̊I is the interior of FI . Since we have shown in

Proposition 6.2.9(b) that H0(FI) is of dimension 1 if FI is not empty, we conclude that F̊I is

connected. �



Chapter 7

Syzygy order of big polygon spaces

7.1 The main result

It was proved in [16, Proposition 6.3] that the syzygy order of a big polygon space Xa,b(l)

has an upper bound related only to the combinatorial property of the length vector l. To state

this upper bound, we need to define such a number for every generic length vector.

Definition 7.1.1. [16, (6.6)(6.7)] For any subset J ⊆ [r], define

σl(J) := #{ j ∈ J : J − j short} (7.1.1)

where # denotes the number of elements in the set. Then we can define

µ(l) := min{σl(J) : J is long and σl(J) > 0}. (7.1.2)

Remark 7.1.2. Since l is a generic length vector, the complement of a short subset is long.

There is a dual version of σl(J):

σ̃l(J) := #{ j ∈ [r] − J : J ∪ j long}. (7.1.3)

77
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Note that σ̃l(J) is equal to σl(J{).

We also have an equivalent definition of µ(l) in terms of σ̃l.

µ(l) := min{σ̃l(J) : J is short and σ̃l(J) > 0}. (7.1.4)

The following upper bound on the syzygy order of a big polygon space was given in [16,

Proposition 6.3]

Proposition 7.1.3 ([16, Proposition 6.3]). For any a, b, r ≥ 1 and generic length vector l ∈ Rr,

we have

syzord H∗T (Xa,b(l)) ≤ µ(l) − 1. (7.1.5)

We are going to prove that the above inequality is an equality. This was conjectured in [16,

Conjecture 6.6].

Theorem 7.1.4. For any a, b, r ≥ 1 and generic length vector l ∈ Rr, we have

syzord H∗T (Xa,b(l)) = µ(l) − 1. (7.1.6)

We will prove Theorem 7.1.4 in the rest of this chapter. In Section 7.2 we will prove the easy

case of Theorem 7.1.4 when the fixed point set of Xa,b(l) is empty. In Section 7.3-Section 7.7

we will prove the case of Theorem 7.1.4 when the fixed point set of Xa,b(l) is nonempty.

7.2 Proof of Theorem 7.1.4 when the fixed point set is empty

Let us first prove the case of Theorem 7.1.4 when the fixed point set is empty. The reason

to single this case out is that we are not able to show that the T -action on Xa,b(l) is locally

standard in this case. Fortunately, Theorem 7.1.4 still holds in this case.

Lemma 7.2.1 (Theorem 7.1.4 under the assumption that the fixed point set is empty). For any

a, b, r ≥ 1 and generic length vector l ∈ Rr, if the fixed point set of Xa,b(l) under T-action is
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empty, then we have

syzord H∗T (Xa,b(l)) = µ(l) − 1 = 0. (7.2.1)

Proof. Since the fixed point set is empty, the leftmost nontrivial map H∗T (X) → H∗T (X0) in

the Atiyah-Bredon sequence (3.2.4) is a zero map and thus it is not injective. According to

Theorem 3.2.2, that implies:

syzord H∗T (Xa,b(l)) = 0. (7.2.2)

On the other side, since the fixed point set of Xa,b(l) is empty, according to Lemma 4.1.8(2),

we have one dominant length lr. By definition of σl in (7.1.1), we have

σl([r]) = 1. (7.2.3)

Then by definition of µ(l) in (7.1.2) we have

µ(l) = 1. (7.2.4)

We have proved the lemma. �

7.3 A lemma to Theorem 7.1.4 when the fixed point set is

nonempty

When the fixed point set of Xa,b(l) is not empty, we have shown in Lemma 4.1.8(1) that the

T -action on Xa,b(l) is locally standard. Since Xa,b(l) is a compact connected smooth manifold,

all the assumptions in the beginning of Section 3.3 are satisfied. We can then apply the quo-

tient criterion in Theorem 3.3.2 to Xa,b(l). Furthermore, by Lemma 4.2.2 it suffices to prove

Theorem 7.1.4 when a ≥ 2. Also recall that without loss of generality, we can assume that the

length vector is positive and weakly increasing, that is, 0 < l1 ≤ l2 ≤ · · · ≤ lr.

We have seen in Proposition 6.1.7 that there is a homeomorphism F∅ ' Xa,b(l)/T preserving
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face structure. It then suffices to apply Theorem 3.3.2 to F∅. Since all the faces of F∅ are FJ’s

where J ⊂ [r], the cochain complex B∗(P) in (3.3.2) is

Bi(FJ) =
⊕

J⊆I
|I|=r−i

H∗(FI) (7.3.1)

with differential map described in (3.3.4). For σ ∈ H∗(FI) ⊆ Bi(FJ), it is

dσ =
∑

J⊆L⊆I
|L|=r−i−1

±ιIL
∗ (σ) (7.3.2)

where ιIL
∗ is the map induced on homology by the inclusion of faces FI → FL and the signs will

be explained shortly in (7.4.1). One might find it helpful to look at Example 3.3.3 in order to

understand how we are going to apply the quotient criterion. In Chapter 6 we have computed

H∗(Fi)’s, identified basis of them and computed ιIL
∗ ’s explicitly.

Based on the quotient criterion Theorem 3.3.2 and the above discussion, to prove Theo-

rem 7.1.4 in the case when the fixed point set of Xa,b(l) is nonempty, it suffices to prove the

following lemma to Theorem 7.1.4.

Lemma 7.3.1. For a ≥ 2, b, r ≥ 1 and generic length vector l = (l1, · · · , lr) ∈ Rr such that

0 < l1 ≤ l2 ≤ · · · ≤ lr, if the fixed point set of Xa,b(l) is nonempty, then we have

Hi(B∗(FJ)) = 0 (7.3.3)

for all J ⊆ [r] and all i > max(r − |J| − µ(l) + 1, 0).

The rest of this chapter will be devoted to the proof of Lemma 7.3.1.

7.4 A reduction step

The first step toward Lemma 7.3.1 is a reduction lemma analogous to [16, Lemma 6.2].
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Since we are going to explicitly compute the map d in (7.3.2) and construct more cochain

complexes based on that, it is better to make it clear what are these ± signs in (7.3.2).

Assume that I = J ∪ {i1, . . . , in} with i1 < · · · < in, the natural ordering of pairwise distinct

integers i1, . . . , in induces a natural ordering on the set of faces of FJ that contain FI as a facet.

For any σ ∈ H∗(FI), the differential d is

dσ :=
∑

i∈{i1,...,in}

(−1)[i:{i1,...,in}]ιI,I−i
∗ (σ) (7.4.1)

where the notation [i : {i1, . . . , in}] was defined in Lemma 6.2.5.

Since we assume a ≥ 2, for every subset I ⊆ [r], H∗(FI) is concentrated in degrees (2a −

1)k − 1 and (2a − 1)k for integers 0 ≤ k ≤ r − 1 by Proposition 6.2.9(a). So H∗(FI) is the direct

sum of two subspaces as a graded vector space.

H∗(FI) =
( ⊕

0≤k≤r−1

H(2a−1)k−1(FI)
)
⊕

( ⊕
0≤k≤r−1

H(2a−1)k(FI)
)
. (7.4.2)

Since differential d in (7.3.2) preserves homological degree, the cochain complex Bi(FJ)

in (7.3.1) is the direct sum of two cochain subcomplexes with differentials being just those

induced from differential d on each direct summand in (7.3.2). Explicitly, we have

Bi(FJ) =
⊕

0≤k≤r−1

Pi
k(FJ) ⊕

⊕
0≤k≤r−1

Qi
k(FJ) (7.4.3)

where

Pi
k(FJ) :=

⊕
J⊆I
|I|=r−i

H(2a−1)k(FI), (7.4.4)

Qi
k(FJ) :=

⊕
J⊆I
|I|=r−i

H(2a−1)k−1(FI) (7.4.5)

and differentials on P∗k(FJ) and Q∗k(FJ) have exactly the same formula as in (7.4.1).
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As a direct sum of the two cochain subcomplexes, the cochain complex B∗(FJ) is exact at

degree i if and only if for any 0 ≤ k ≤ r − 1, both P∗k(FJ) and Q∗k(FJ) are exact at degree i. We

will see that in order to show that B∗(FJ) is exact at some degree, we only have to show that

P∗k(FJ) is exact at that degree. We first show the following lemma.

Lemma 7.4.1. For i > 0, 0 ≤ k ≤ r − 1 and any J ⊆ [r], P∗k(FJ) is exact at degree i + 2 if and

only if Q∗k(FJ) is exact at degree i.

To prove Lemma 7.4.1, we are going to construct two more cochain complexes B∗k(MJ−FJ)

and B∗k(MJ) for any 0 ≤ k ≤ r. The construction is similar to that in (7.3.1) and (7.3.2):

Bi
k(MJ − FJ) :=

⊕
J⊆I
|I|=r−i

H(2a−1)(k+1)(MI − FI),

Bi
k(MJ) :=

⊕
J⊆I
|I|=r−i

H(2a−1)(k+1)(MI).
(7.4.6)

with differentials given by the same formula as in (7.3.2) and (7.4.1) while the notation ιIL
∗

means, of course, the maps on homology induced by the inclusion of faces MI −FI → ML−FL

and MI → ML.

We can get the following commuting diagram for any integer i and any J ⊆ [r] by summing

over all the necessary summands in (6.2.34):

0 Pi+1
k (FJ) Bi+1

k (MJ − FJ) Bi+1
k (MJ) Qi+1

k (FJ) 0

0 Pi
k(FJ) Bi

k(MJ − FJ) Bi
k(MJ) Qi

k(FJ) 0.

d d d d (7.4.7)

The rows of (7.4.7) are exact because rows of (6.2.34) are exact and rows of (7.4.7) are

just direct sum of the rows of (6.2.34) over 0 ≤ k ≤ r − 1. This diagram (7.4.7) is commuting

because differentials on B∗k(MJ − FJ) and B∗k(MJ) are compatible with differentials on P∗k(FJ)

and Q∗k(FJ).

After these constructions and clarifications, we are going to prove the following lemma:
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Lemma 7.4.2. For any subset J ⊆ [r] and any 0 ≤ k ≤ r − 1, both B∗k(MJ − FJ) and B∗k(MJ)

are exact at all degrees except at degree 0.

Proof. Let us show it for B∗k(MJ − FJ) first. Recall from Corollary 6.2.3 that for any I ⊆ [r],

H∗(MI − FI) is freely generated by [WK]I’s and [VK]I’s for all short subsets K ⊆ I as a vector

space.

Since the boundary map of B∗k(MJ − FJ) is the alternating sum of ιI,I−i
∗ as described in

(6.2.44) and (7.4.1), we can further decompose B∗k(MJ−FJ) into subcomplexes in the following

way:

B∗k(MJ − FJ) =
⊕

K⊆[r] short
|K|=k−1

B∗J([WK]) ⊕
⊕

K⊆[r] short
|K|=k

B∗J([VK]) (7.4.8)

where

Bi
J(WK) =

⊕
I⊃J∪K
|I|=r−i

〈[WK]I〉,

Bi
J(VK) =

⊕
I⊃J∪K
|I|=r−i

〈[VK]I〉

(7.4.9)

and 〈[WK]I〉 (resp. 〈[VK]I〉) denotes the one dimensional real vector subspace spanned by [WK]I

(resp. [VK]I). Differentials on these two complexes are still given by the same formula as in

(7.4.1).

In general, the cochain complex B∗J(WK) has the following form:

0→ 〈[WK][r]〉 →
⊕
I⊃J∪K
|I|=r−1

〈[WK]I〉 → · · · →
⊕
I⊃J∪K

|I|=|J∪K|+1

〈[WK]I〉 → 〈[WK]J∪K〉 → 0. (7.4.10)

We can convert this cochain complex into a chain complex by requiring degree i term in

B∗J(WK) to be in degree r − 1 − |J ∪ K| − i. The resulting chain complex is isomorphic to the

reduced chain complex of a simplicial complex with i-simplices being subsets of [r] − (J ∪ K)

with i + 1 elements. This simplicial complex is just the simplicial complex of one single
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(r − |J ∪ K| − 1)-simplex [r] − (J ∪ K). It has trivial reduced homology if J ∪ K , [r]. If

J ∪ K = [r], then it has nontrivial reduced homology only at degree −1 which corresponds to

degree 0 in the cochain complex (7.4.10).

We can repeat the above proof for B∗(VK) to show that it is exact at all degrees except at

degree 0. So B∗k(MI − FI) is exact at all degrees except at degree 0.

For B∗k(MJ), since B∗k(MJ) is freely generated by [xK]I and boundary map of B∗k(MI) is the

alternating sum of ιI,I−i
∗ as described in (7.4.1), we can decompose B∗k(MJ) as in (7.4.8) and

show that B∗k(MJ) is exact in all degrees except at degree 0. �

Now we can prove Lemma 7.4.1.

Proof of Lemma 7.4.1. We can splice the bottom horizontal exact sequence in (7.4.7) and get

two short exact sequences

0→ P∗k(FJ)→ B∗k(MJ − FJ)→ B∗k(MJ−FJ)/P∗k(FJ)→ 0,

0→ B∗k(MJ−FJ)/P∗k(FJ)→ B∗k(MJ)→ Q∗k(FJ)→ 0.
(7.4.11)

Since both B∗k(MJ−FJ) and B∗k(MJ) are exact at all degrees except at degree 0 by Lemma 7.4.2,

we can infer from the long exact sequences associated to these two short exact sequences that

Hi(P∗k(FJ)) ' Hi−1(B∗k(MJ−FJ)/P∗k(FJ)) for i ≥ 2,

Hi(Q∗k(FJ)) ' Hi+1(B∗k(MJ−FJ)/P∗k(FJ)) for i ≥ 1.
(7.4.12)

So for i > 0, P∗k(FJ) is exact at degree i + 2 if and only if Q∗k(FJ) is exact at degree i. �

Corollary 7.4.3. If a ≥ 2 and i > 0, then

Hi(B∗(FJ)) = 0 (7.4.13)

if and only if Hi(P∗k(FJ)) = 0 for all 0 ≤ k ≤ r − 1 where the complex P∗k(FJ) is defined in

(7.4.4).
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Proof. By Lemma 7.4.1 and the decomposition (7.4.3), for i > 0, Hi(B∗(FJ)) = 0 if and only

if Hi(P∗k(FJ)) = 0 for all 0 ≤ k ≤ r − 1. �

7.5 Outline of the proof of Lemma 7.3.1

We want to give an outline of the proof of Lemma 7.3.1 before we go into the details of the

proof.

According to Corollary 7.4.3, in order to prove Lemma 7.3.1 we have to show the following

statement

Hi(P∗k(FJ)) = 0, ∀J ⊆ [r], i > max(r − |J| − µ(l) + 1, 0) and ∀k. (∗)

Let us fix J, k and have a look at the cochain complex P∗k(FJ) to get a sense of what this

statement means. The cochain complex P∗k(FJ) was defined in (7.4.4) to be the following

cochain complex:

0 H(2a−1)k(F[r])
⊕

i∈[r]−J
H(2a−1)k(F[r]−i) · · ·

⊕
J⊆K

|K|=|J|+2

H(2a−1)k(FK)
⊕
J⊆I

|I|=|J|+1

H(2a−1)k(FI) H(2a−1)k(FJ) 0.

(7.5.1)

Note that according to our grading on this cochain complex, P0
k(FJ) = H(2a−1)k(F[r]) is the left

hand side of this cochain complex and Pr−|J|
k (FJ) = H(2a−1)k(FJ) is the right hand side.

The statement (∗) is saying that P∗k(FJ) is exact at either all degrees greater than 0 or posi-

tions to the right of the (µ(l) − 1)-th position counting from the rightmost term H(2a−1)k(FJ) if

the degree of this position is greater than 0. For example, if µ(l) = 2, then the statement (∗)

says that P∗k(FJ) is exact at the rightmost term H(2a−1)k(FJ), that is, the map to H(2a−1)k(FJ) in

(7.5.1) is surjective as long as J , [r]. If µ(l) = 3, then the statement (∗) says that P∗k(FJ) is

exact at the first and second term from right as long as |J| < r − 1.
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The case when µ(l) = 2 is relatively easy. We just have to show that the map

⊕
J⊆I

|I|=|J|+1

H(2a−1)k(FI)→ H(2a−1)k(FJ) (7.5.2)

is surjective. We will show this in Corollary 7.6.3.

However things get much more complicated when we want to move on to the case µ(l) = 3.

In this case, in addition to showing the surjectivity of (7.5.2) we have to show the exactness at

the second term to the right in (7.5.1) if |J| < r − 1, that is, the exactness at the middle term in

the following sequence

⊕
J⊆K

|K|=|J|+2

H(2a−1)k(FK)
d
−→

⊕
J⊆I

|I|=|J|+1

H(2a−1)k(FI)
d
−→ H(2a−1)k(FJ). (7.5.3)

Domain and codomain of the first map in (7.5.3) are both direct sums, making it difficult to

verify the exactness condition.

Instead of trying to work directly on (7.5.3), we can first tackle a simplified version. If

x ∈ H(2a−1)k(FI) is in one of the components of the middle term in (7.5.3) and is a cocycle,

then we can try to show that x is a coboundary. That is part of the reason why we want to

prove Lemma 7.6.2. Condition (7.6.2) there is equivalent to the cocycle condition on x and the

properties (a) and (c) are just saying that x is a coboundary.

However the case µ(l) = 3 is not proved by Lemma 7.6.2 because a cocycle in the mid-

dle term of (7.5.3) can be the sum of terms in different components (instead of concentrating

in just one of the components). The main idea behind Proposition 7.7.2 is then to show that

any cocycle (which may involve several terms in different components) is cohomologous to

a cocycle that involves only one term in one of the componenents. With Proposition 7.7.2

and Lemma 7.6.2 we can then prove Lemma 7.3.1 when µ(l) = 3. The generality of Proposi-

tion 7.7.2 and Lemma 7.6.2 then allows us to prove Lemma 7.6.2 for any µ(l).
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Next we want to introduce a different way to think about H∗(FI) and some notation in order

to facilitate our proof. For any subset J ⊆ [r], there is a simplicial complex ∆J (resp. ∆J
−)

consisting of all subsets (resp. short subsets) of J. Let ∆J
+ be the collection of long sets of J.

Note that ∆J
+ is not a subcomplex of ∆J.

Recall that the augmented simplicial chain complex C∗(∆J) with real coefficients associated

to ∆J is defined as the following chain complex in [24, Theorem 3.5.4]:

0← C−1(∆J)
ε
←− C0(∆J)

∂1
←− C1(∆J)

∂2
←− C2(∆J)

∂3
←− · · · (7.5.4)

where each Ck(∆) is a real vector space with a basis consisting of all k-simplices of ∆J, that

is, subsets of J containing k + 1 elements. The left end C−1(∆) is generated by (−1)-simplex

which is the empty set and thus is isomorphic to R as a real vector space.

Let C∗(∆J
+) be the subspace of C∗(∆J) generated by simplices in ∆J

+. It follows from Propo-

sition 6.2.9 that if a ≥ 2, for any integer k we can think of an element in H(2a−1)(k+1)(FJ) as

a cochain in the R-dual of C∗(∆J) that vanishes on Ck(∆J
+) and ∂Ck+1(∆J

+). Let C∗(∆J) be the

R-dual of C∗(∆J). We have the following isomorphism for a ≥ 2:

H(2a−1)(k+1)(FJ) ' {x ∈ Ck(∆J)|x = 0 on Ck(∆J
+) and ∂Ck+1(∆J

+)}. (7.5.5)

The right hand side of (7.5.5) is denoted Ck
−(∆

J). We have the following remark.

Remark 7.5.1. If follows from Proposition 6.2.9(b) that the isomorphism in (7.5.5) gives the

following commuting diagram:

H(2a−1)(k+1)(FJ∪i) Ck
−(∆

J∪i)

H(2a−1)(k+1)(FJ) Ck
−(∆

J)

ιJ∪i,J
∗

'

ι∗J∪i,J

'

(7.5.6)

where the right vertical map is induced by ∆J → ∆J∪i.
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From now on we will always identify a subset of J ∪ i with the chain represented by it in

C∗(∆J∪i). Whenever we write ∂H for some subset H of J ∪ i, we mean the boundary of the

chain H in C∗(∆J∪ j).

7.6 A technical lemma to Lemma 7.3.1

Now we are going to prove a very technical lemma to Lemma 7.3.1. We first need to make

some observation on the combinatorial property of the number µ(l) defined in (7.1.2).

Remark 7.6.1. Assume that µ(l) ≥ p. If one facet of a simplex in ∆J
+ which is a sub-

set of [r] is short, then J contains at least p short facets. In particular, assume that J =

{ j1, . . . , jn,m1, . . . ,mp−2, i} ⊂ [r] is long and contains a short facet where j1 < j2 < · · · < jn,

then J − jn must be short.

Now we are going to prove the following lemma.

Lemma 7.6.2. Assume that a ≥ 2 and that µ(l) ≥ p ≥ 2. Let J be a subset of [r] with

0 ≤ n ≤ r − p + 1 elements. Assume that J = { j1, . . . , jn} where j1 < · · · < jn if n > 0. Let

M be a subset of [r] − J with p − 2 elements. Assume that M = {m1, . . . ,mp−2} if p > 2. Let

i ∈ [r] − (J ∪ M) and k ≥ −1. Furthermore, we define A as

A :=

{K ⊆ J ∪ M ∪ i : K short,|K| = k + 1,M ∪ { jn, i} ⊆ K} if n > 0,
{K ⊆ J ∪ M ∪ i : K short,|K| = k + 1,M ∪ i ⊆ K} if n = 0.

(7.6.1)

For any x ∈ Ck
−(∆

J∪M) such that the following condition is satisfied:

∀m ∈ M, i∗J∪M,(J∪M)−m(x) = 0 (7.6.2)

and any tuple of real numbers (aK)K∈A indexed by elements in A, there is x̃ ∈ Ck
−(∆

J∪M∪i) such

that the following three properties are satisfied:
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(a) i∗J∪M∪i,J∪M(x̃) = x. Explicitly, that means x̃(K) = x(K) for any k-simplex K contained in

J ∪ M.

(b) x̃(K) = aK for any K ∈ A.

(c) i∗J∪M∪i,(J∪M∪i)−m(x̃) = 0 for any m ∈ M. That means x̃(K) = 0 for any K contained in

(J ∪ M ∪ i) − m.

Before proving Lemma 7.6.2, we state a special case of Lemma 7.6.2.

Corollary 7.6.3. Assume that a ≥ 2 and that µ(l) ≥ 2. Let J be a subset of [r] with 0 ≤ n ≤ r−1

elements and i ∈ [r] − J. Then the map

ι∗J∪i,J : Ck
−(∆

J∪i)→ Ck
−(∆

J) (7.6.3)

is surjective.

Proof of Lemma 7.6.2. To avoid unnecessary repetition, whenever we use letter K, we mean a

subset K ⊆ J ∪ M ∪ i containing k + 1 elements.

We first prove the lemma for k = −1. In this case, we have A = ∅. Since by definiton every

C−1(∆I) is generated by the empty set as the (−1)-simplex. We can just set

x̃(∅) = x(∅). (7.6.4)

It is trivial to verify that x̃ has desired properties.

Now we fix k ≥ 0 and p ≥ 2, let us prove the lemma by induction on n. We start with the

base case when 0 ≤ n ≤ max(0, k− p+ 2). To show the lemma in this base case, we have

to consider two cases: k − p + 2 ≥ 0 and k − p + 2 < 0.

(1) If k − p + 2 ≥ 0, then for any n ≤ k − p + 2, we have n + p − 2 < k + 1 and thus J ∪ M

has less than k + 1 elements. The cochain x ∈ Ck
−(∆

J∪M) can only be 0.
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If n < k − p + 2, then we have n − p − 1 < k + 1 and thus J ∪ M ∪ i has less than k + 1

elements. We can set x̃ = 0 and we are done.

If n = k − p + 2, then n + p − 1 = k + 1 which means that J ∪ M ∪ i contains k + 1

elements. Since J ∪ M ∪ i is the only k-simplex of ∆J∪M∪i, we can construct the cochain

x̃ ∈ Ck(∆J∪M∪i) by setting

x̃(M ∪ i) =

aM∪i if J ∪ M ∪ i is short,
0 if J ∪ M ∪ i is long.

(7.6.5)

The constructed x̃ is obviously in Ck
−(∆

J∪M∪i) because J ∪ M ∪ i is the only subset con-

taining k + 1 elements in J ∪ M ∪ i and there is no subset containing k + 2 elements in

J ∪ M ∪ i.

We claim that the constructed x̃ satisfies condition (a), (b) and (c). Condition (a) is null

because there is no k-simplex in J ∪ M.

Since n + p − 2 < k + 1, (J ∪ M ∪ i) −m contains less than k + 1 elements. So condition

(c) is satisfied because Ck(∆(J∪M∪i)−m) = 0 for every m ∈ M.

Condition (b) is satisfied because J ∪ M ∪ i is the only subset containing k + 1 elements

in J ∪ M ∪ i.

We have shown that x̃ has desired properties.

If k− p+2 < 0, then we only have to prove the lemma for n = 0 in the base case, that is, J = ∅.

(2) If k − p + 2 < 0, then we have k + 1 ≤ p − 2 and thus A = ∅.

If k + 1 < p − 2, any x ∈ Ck
−(∆

M) satisfying (7.6.2) can only be 0 because any subset of

M with less than k + 1 elements does not contain the whole M. We can just let x̃ = 0 and

we are done.



7.6. A technical lemma to Lemma 7.3.1 91

If k + 1 = p − 2, then M is the only k-simplex of M. We just set

x̃(M) := x(M),

x̃((M ∪ i) − m) := 0, ∀m ∈ M
(7.6.6)

and this x̃ satisfies all the conditions (a), (b) and (c). We have to show that x̃ ∈ Ck
−(∆

J∪i),

that is, x̃ vanishes on Ck
+(∆M∪i) and ∂Ck+1

+ (∆M∪i).

If M ∪ i is short, then we have x̃ ∈ Ck
−(∆

M∪i) trivially.

If M ∪ i is long, then according to Remark 7.6.1, the set M has to be long and thus

x̃(M) = x(M) = 0. It then follows from (7.6.6) that x̃ = 0 and thus x̃ ∈ Ck
−(∆

M∪i).

Now we assume that the lemma is true for J with n−1 elements where n−1 ≥ max(0, k−

p+ 2). Let us prove it for J with n elements. Note that we have n + p − 2 ≥ k + 1 and n ≥ 1.

For a cochain x ∈ Ck
−(∆

J∪M) satisfying the condition (7.6.2) and a tuple (aK)K∈A as in the

assumptions of the lemma, let us construct x̃ ∈ Ck
−(∆

J∪M∪i) such that conditions (1), (2) and (3)

are satisifed. There are two steps in this construction.

STEP I: First we construct an x̂ ∈ Ck(∆J∪M∪i) instead of in Ck
−(∆

J∪M∪i). To initialize, we set

x̂(K) := x(K), ∀K ⊆ J ∪ M, (7.6.7)

x̂(K) := aK , ∀K ∈ A, (7.6.8)

x̂(K) := 0, ∀ long K ⊆ J ∪ M ∪ i, (7.6.9)

x̂(K) := 0, ∀K ⊆ J ∪ M ∪ i and M * K. (7.6.10)

There is some overlapping between (7.6.7) and (7.6.10) on K ⊆ J ∪M such that M * K. Since

x(K) = 0 for such K by (7.6.2), on this overlapping (7.6.7) and (7.6.10) are compatible with

each other.

If n > 1 (resp. n = 1), then for any short K ⊆ J ∪ M ∪ i containing M ∪ { jn−1, i} (resp. {i})
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but not jn, the value of x̂ on all facets of K ∪ jn except K has been set by (7.6.7) - (7.6.10). So

for every such subset K, we can set x̂(K) such that x̂(∂(K ∪ jn)) = 0. Explicitly, it means

x̂(K) := (−1)[ jn:K∪ jn]+1
∑
k∈K

(−1)[k:K∪ jn] x̂((K − k) ∪ jn). (7.6.11)

If n > 1 (resp. n = 1), the above steps (7.6.7)-(7.6.11) have set x̂(K) for all subsets K ⊆

J ∪ M ∪ i except those short subsets containing i but excluding { jn−1, jn} (resp. { j1}). We are

going to use induction hypothesis to “extend” x̂ to this missing part. Let J̃ := J − jn so that

|J̃| = n − 1. We restrict x to Ck(∆J̃∪M) and by (7.6.2), we have

∀m ∈ M, i∗J̃∪M,(J̃∪M)−m(x|∆J̃∪M ) = 0. (7.6.12)

Since (7.6.11) has set x̂(K) for all short subsets K containing { jn−1, i} (resp. {i}) but excluding

jn, now we have all the ingredient to apply induction hypothesis. By induction hypothesis,

there is x̄ ∈ Ck
−(∆

J̃∪M∪i) such that

x̄(K) = x(K), ∀ short K ⊆ J̃ ∪ M,

x̄(K) = x̂(K), ∀K ⊆ J̃ ∪ M ∪ i containing M ∪ { jn−1, i} (resp.M ∪ i),

i∗J̃∪M∪i,(J̃∪M∪i)−m(x̄) = 0, ∀m ∈ M.

Since values of x̂(K) have been set for all K containing jn, with this x̄ we can complete the

construction of x̂ by setting

∀K ⊆ J̃ ∪ M ∪ i, x̂(K) := x̄(K). (7.6.13)

We can say the above formula “extends” x̂ to a cochain in Ck(∆J∪M∪i) because it does not

change the value we set for x̂ before in (7.6.7) - (7.6.11).
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We summarize the above construction by having the following diagram in mind:

x ∈ Ck
−(∆

J∪M)

Ck
−(∆

(J− jn)∪M) 3 x|∆(J− jn)∪M

∃x̄ ∈ Ck
−(∆

(J− jn)∪M∪i)

(7.6.14)

where the arrows are all restrictions of cochains to subcomplexes. The construction of x̂ goes

like this. We start by requiring (7.6.7), (7.6.8) (7.6.9) and (7.6.10). Then we set x̂(K) for

K containing M ∪ { jn−1, i} (resp. M ∪ {i}) but not jn by (7.6.11). These K’s are simplices

in ∆(J− jn)∪M∪i. With this setup, the restriction of x to ∆(J− jn)∪M can be lifted to an element

x̄ ∈ Ck
−(∆

(J− jn)∪M∪i) using induction hypothesis. Since x̄ and x̂|∆J∪M = x agree on Ck(∆(J− jn)∪M),

we can paste these two cochains to get an element in Ck(∆J∪M∪i). That is our x̂.

STEP II: If n = 1, then x̂ constructed in the first step is already our x̃. We are going to

show that this x̃ has the desired properties later. If n > 1, in this step we are going to change

the value of x̂ on some short sets to get x̃. The reason of doing that is that the x̂ constructed in

STEP I is not yet in Ck
−(∆

J∪M∪i). For example, x̂ is not guaranteed to vanish on a long subset

with k + 2 elements containing M ∪ { jn, i} but excluding jn−1.

We define

Ã :=
{
K ⊆ (J ∪ M ∪ i) − { jn−1, jn} : M ∪ i ⊆ K, K ∪ jn−1 short, K ∪ jn long

}
(7.6.15)

and set

∀K < Ã, x̃(K) := x̂(K). (7.6.16)

For any K ∈ Ã, values of x̃ on all facets of K ∪ jn except K has been set in (7.6.16). We then

set x̃(K) such that x̃(∂(K ∪ jn)) = 0, that is, for any K ∈ Ã, we set

x̃(K) := (−1)[ jn:K∪ jn]+1
∑
k∈K

(−1)[k:K∪ jn] x̃((K − k) ∪ jn) (7.6.17)
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which is exactly the same formula as (7.6.11). We have completed the construction of x̃.

The rest of the proof is to verify that x̃ constructed above satisfies the desired properties.

We first show that x̃ satisfies the condition (a), (b) and (c).

(a): For any simplex K ⊆ J ∪ M, because of (7.6.16) and definition of Ã, we have x̃(K) =

x̂(K). So x̃(K) is equal to x(K) because of (7.6.7). We have shown that x̃ satisifies

condition (a).

(b): For any simplex K ∈ A, x̃(K) = x̂(K) because by (7.6.16) and definition of Ã, x̃(K) =

x̂(K) for any short subset K containing jn. So for any K ∈ A, x̃(K) = aK because of

(7.6.8). We have shown that x̃ satisfies condition (b).

(c): For any simplex K not containing M, x̃(K) = x̂(K) because by (7.6.16) and definition of

Ã, such K is not an element of Ã. Since we require (7.6.10) in the construction of x̂, for

any K not containing M, we have x̃(K) = x̂(K) = 0. x̃ satisfies condition (c).

The rest of the proof is to verify that x̃ ∈ Ck
−(∆

J∪M∪i) which is defined in (7.5.5).

We first show that x̃ vanishes on Ck(∆J∪i
+ ). For any long subset K ⊂ J ∪ M ∪ i, it follows

from (7.6.16) and definition of Ã that x̃(K) = x̂(K). So x̃(K) = 0 because of (7.6.9). We have

shown that x̃ vanishes on Ck(∆J∪i
+ ).

Next we show that x̃ vanishes on ∂Ck+1(∆J∪M∪i
+ ). We assume H ⊆ J ∪M ∪ i is a long subset

containing k + 2 elements from now on.

We have the following observations from the nature of the collection Ã and (7.6.16) in

STEP II. Let K be a face of a long set H. We have x̃(K) = x̂(K) in the following situations:

• M ∪ i * H: Indeed, if M ∪ i * H, then M ∪ i * K and thus K < Ã.

• M ∪ { jn−1, i} ⊆ H: Indeed, if jn−1 ∈ K, then K < Ã. If jn−1 ∈ K, then K ∪ jn−1 = H is long

and thus K < Ã.
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• M ∪ i ⊆ H and { jn−1, jn} ∩ M = ∅: Indeed, if M ∪ i * K, then K < Ã. If M ∪ i ⊆ K, then

K ∪ jn−1 = (H − j) ∪ i for some j ∈ J − { jn−1, jn}. Since jn−1 > j, the set K ∪ jn−1 is long

and thus K * Ã.

Now we show that x̃ vanishes on ∂Ck+1(∆J∪M∪i
+ ) by looking at the following cases:

(1) If M∪i * H, then x̃(∂H) = 0 because of the first observation above and x̂(∂H) = x(∂H) =

0.

(2) If M ∪ i ⊆ H and { jn−1, jn} ∩ H = ∅, then from the third observation above we have

x̃(∂H) = x̂(∂H). Since any face of H does not contain jn, we get x̃(∂H) = x̄(∂H) = 0

from (7.6.13) and the fact that x̄ ∈ Ck
−(∆

(J− jn)∪M∪i).

(3) If H contains M ∪ { jn−1, i} but not jn, then it follows from the second observation above

that x̃(∂H) = x̂(∂H). By (7.6.13) we have x̂(K) = x̄(K) for all K ⊆ H. Since x̄ ∈

Ck
−(∆

(J− jn)∪M∪i), we have ˜∂H = x̄(∂H) = 0.

(4) If M∪{ jn−1, jn, i} ⊆ H, then from the second observation above we have x̃(∂H) = x̂(∂H).

Let us look at x̂(∂H) now. If H − jn is long, then by Remark 7.6.1, all facets of H are

long and thus x̂(∂H) = 0 by (7.6.9). If H − jn is short, then by (7.6.11), x̂(H − jn) is set

such that x̂(∂H) = x̂(∂((H − jn)∪ jn)) = 0. In both cases, x̂(∂H) = 0 and thus x̃(∂H) = 0.

Note that we have shown in (1), (3) and (4) that for any H containing jn−1, we have x̃(∂H) =

0.

(5) If H contains M ∪ { jn, i} but not jn−1, then x̃(∂H) may not be equal to x̂(∂H) anymore

because they may differ on the simplex H − jn afterr STEP II. Instead of focusing on

x̃(H), let us look at the (k + 3)-simplex H ∪ jn−1. If at least one facet of H ∪ jn−1 is short,

then by Remark 7.6.1, (H ∪ jn−1)− jn = (H − jn)∪ jn−1 is short. Since (H − jn)∪ jn = H

is long, by (7.6.15), H ∈ Ã and thus x̃(∂H) = 0 by (7.6.17) in this case.

If all facets of H ∪ jn−1 are long, then we have shown that x̃ vanishes on the boundary

of all facets of H ∪ jn−1 except H because all facets of H ∪ jn−1 except H contains jn−1.
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We can conclude that x̃(H) = 0 from this observation because x̃(∂∂(H ∪ jn−1)) is an

alternating sum of the value of x̃ on boundary of all facets of H ∪ jn−1 and is always 0

because ∂∂(H ∪ jn−1) = 0.

We have completed the proof. �

7.7 Proof of Lemma 7.3.1 and Theorem 7.1.4

Now we prove Lemma 7.3.1. In the end of this section we will complete the proof of

Theorem 7.1.4.

With Corollary 7.4.3, we are only interested in the exactness of the cochain complex P∗k(FJ)

for any 0 ≤ k ≤ r−1 and J ⊆ [r]. Furthermore, with commutativity and horizontal isomorphism

in (7.5.6), for any integer k, we can rewrite the cochain complex P∗k(FJ) as

Pi
k(FJ) =

⊕
M⊆[r]−J
|M|=r−i−|J|

Ck−1
− (∆J∪M) (7.7.1)

where C∗−(∆
J) was defined in (7.5.5).

For any σ ∈ Pi
k(FJ) and any set M ⊇ [r] − J such that |M| = r − i − |J|, we will denote its

component on Ck−1
− (∆J∪M) as σM. We also denote the differential of this cochain complex as

dJ to specify that the differential depends on the subset J. This dJ on each direct summand of

Pi
k(FJ) in (7.7.1) has the following formula:

dJ(σM) =
∑
N⊆M

|N|=r−i−1−|J|

(−1)[M−N,M]ι∗M,N(σM) (7.7.2)

where i∗M,N : Ck−1
− (∆J∪M) → Ck−1

− (∆J∪N) is the cochain map induced by inclusion ∆J∪N ↪→

∆J∪M.

Before we state and prove the main proposition, we want to introduce a filtration on P∗k(FJ).

Let i1 > i2 > · · · > in where n = r − |J| be all the elements in [r] − J. There is a filtration on
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P∗k(FJ):

FnP∗k(FJ) ⊆ Fn−1P∗k(FJ) ⊆ · · · F1P∗k(FJ) ⊆ F0P∗k(FJ) = P∗k(FJ) (7.7.3)

where

F sP∗k(FJ) =
⊕

M=i1,...,is

Ck−1
− (∆J∪M) (7.7.4)

and the direct sum is over M ⊆ [r] − J such that |M| = r − i − |J|. The first several terms of the

filtration look like the following:

F0P∗k(FJ) : · · ·
⊕

i, j∈[r]−J
Ck−1
− (∆J∪{i, j})

⊕
i∈[r]−J

Ck−1
− (∆J∪i) Ck−1

− (∆J)

F1P∗k(FJ) : · · ·
⊕

i, j∈[r]−J
i, j,i1

Ck−1
− (∆J∪{i, j})

⊕
i∈[r]−J

i,i1

Ck−1
− (∆J∪i) Ck−1

− (∆J)

F2P∗k(FJ) : · · ·
⊕

i, j∈[r]−J
i, j,i1,i2

Ck−1
− (∆J∪{i, j})

⊕
i∈[r]−J
i,i1,i2

Ck−1
− (∆J∪i) Ck−1

− (∆J).

=

=

(7.7.5)

Remark 7.7.1. (1) Every F iP∗k(FJ) is indeed a cochain subcomplex with differential inher-

ited from dJ.

(2) The left end of the filtration, that is, Fn
k (FJ) is the following cochain complex centered at

degree r − |J|:

0→ Ck−1
− (∆J)→ 0. (7.7.6)

We can prove the following proposition now.

Proposition 7.7.2. For any k ≥ 0, any J ⊆ [r], if µ(l) ≥ p ≥ 2, then for any q > max(r − |J| −

p + 1, 0) we have

(1) The map between cohomology induced by the cochain map F sP∗k(FJ)→ F s−1P∗k(FJ)

Hq(F sP∗k(FJ))→ Hq(F s−1P∗k(FJ)) (7.7.7)
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is surjective for 1 ≤ s ≤ q.

(2) The cochain complex F sP∗k(FJ) is exact at degree q for 0 ≤ s ≤ q − 1.

Proof. We prove the proposition by induction on p. We start with the base case p = 2.

If J = [r], then r − |J| − p + 1 = −1 < 0. In this case, the cochain complex P∗k(FJ) has only

one nonzero term Ck−1
− (∆[r]) at degree 0. In other words, P∗k(FJ) is

0→ Ck−1
− (∆[r])→ 0. (7.7.8)

So P∗k(FJ) is trivially exact at degrees greater than 0 and thus (1) of the proposition is true in

this case. In this case, since [r] − J = ∅, the filtration in (7.7.3) is trivial and thus (2) of the

proposition is trivially true in this case.

If J , [r], then [r] − J is not empty. Since r − 1 − |J| ≥ 0 when J , [r], the exactness

of F sP∗k(FJ) in degrees q > max(r − |J| − p + 1, 0) = r − 1 − |J| is reduced to the exactness

at degree q = r − |J| which is the right end of F sP∗k(FJ) (diagram in (7.7.5) gives a clearer

picture). For s ≤ q − 1, the summand of F sP∗k(FJ) in degree r − 1 − |J| is not empty, that is, the

second rightmost term in F sP∗k(FJ) in (7.7.5) is not a trivial sum. Part (2) of the proposition

then follows from Corollary 7.6.3. Part (1) of the proposition is trivially true because all the

vertical maps at the right end of (7.7.5) are identity maps. That completes the proof of the base

case.

Let us prove the proposition for p assuming that it holds for p− 1. If J is a subset such that

r − |J| − p + 1 < 0, then we have max(r − |J| − p + 1, 0) = max(r − |J| − p + 2, 0) and we are

done by induction hypothesis. So we can assume that J is a subset such that r− |J| − p + 1 ≥ 0.

By induction hypothesis, we only have to show that (1) and (2) are true for q = r − |J| − p + 2.

Let us show (1) first. We fix an s ≤ q. The following short exact sequence

0→ F sP∗k(FJ)→ F s−1P∗k(FJ)→ F s−1P∗k(FJ)/F sP∗k(FJ)→ 0 (7.7.9)
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induces a long exact sequence

· · · Hq(F sP∗k(FJ)) Hq(F s−1P∗k(FJ)) Hq(F s−1P∗k(FJ)/F sP∗k(FJ)) · · · . (7.7.10)

Let us show that Hq(F s−1P∗k(FJ)/F sP∗k(FJ)) = 0 and that directly implies (1).

Let S be the set {i1, . . . , is}. The quotient cochain complex F s−1P∗k(FJ)/F sP∗k(FJ) has the following

form in degree i: (
F s−1P∗k(FJ)/F sP∗k(FJ)

)i
=

⊕
(S−is)∩M=∅

is∈M

Ck−1
− (∆J∪M) (7.7.11)

where the direct sum is over M ⊆ [r]− J such that |M| = r− i− |J|. Differential on this cochain

complex is induced by dJ.

A closer look at this quotient cochain complex reveals that we have

F s−1Pi
k(FJ)/F sPi

k(FJ) ' F s−1Pi+1
k (FJ∪is) (7.7.12)

as vector spaces, that is, the degree-i term of it is isomorphic to the degree-(i + 1) term of

F s−1P∗k(FJ∪is).

Furthermore, we claim that the differential dJ∪is of F s−1P∗k(FJ∪is) coincides with the differ-

ential dJ of the quotient cochain complex. Indeed, the differential dJ∪is on σ ∈ F s−1Pi+1
k (FJ∪is)

is given by the following formula on the component σM where {i1, . . . , is−1} ∩ M = ∅ and

is ∈ M:

dJ∪is(σM) =
∑
N⊆M
is∈N

(−1)[M−N,M−is]ι∗M,N(σM) (7.7.13)

where the sum is over N with |N| = r−i−1−|J| as in (7.7.2). Since is is the largest element in M

and N contains is, the sign (−1)[M−N,M−is] in front of ι∗M,N(σM) in (7.7.13) is exactly (−1)[M−N,M].

Comparing with (7.7.2) shows our claim.
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We have shown the following isomorphism of cochain complexes:

F s−1P∗k(FJ)/F sP∗k(FJ) ' F s−1P∗k(FJ∪is)[−1] (7.7.14)

where the degree-i term of F s−1P∗k(FJ∪is)[−1] is F s−1Pi+1
k (FJ∪is).

Now it follows from the induction hypothesis that the cochain complex F s−1P∗k(FJ∪is) is

exact at degree r − |J ∪ is| − p + 3 for s − 1 ≤ r − |J ∪ is| − p + 2, that is, degree q + 1 for s ≤ q.

So the quotient complex in (7.7.11) is exact at degree q for any s ≤ q and thus we have

Hq(F s−1P∗k(FJ)/F sP∗k(FJ)) = 0. (7.7.15)

Then (1) follows from the exact sequence (7.7.10).

Let us prove (2) now. By (1) we only have to show that F sP∗k(FJ) is exact at q = r−|J|−p+2

for s = q − 1. We look at the following part of the filtration in (7.7.3):

F sP∗k(FJ) : Ck−1
− (∆[r]−S )

⊕
S∩M=∅
|M|=p−2

Ck−1
− (∆J∪M) · · ·

F s+1P∗k(FJ) : 0 Ck−1
− (∆[r]−(S∪is+1)) · · ·

(7.7.16)

where again, S = {i1, . . . , is}. The two columns of the above diagram in both rows are of degree

q − 1 and q. It follows from a cardinality argument that we have only one term on each entry

of the main diagonal in the above diagram.

Now let us prove that F sP∗k(FJ) is exact at degree q. For a cochain σ ∈ F sPq
k(FJ) in ker dJ,

it follows from (2) that it is cohomologous to an element σ̃ ∈ F s+1Pq
k(FJ) in ker dJ which is

just one single term Ck−1
− (∆[r]−(S∪is+1)) by (7.7.16). Then we are in a situation where we can

apply Lemma 7.6.2. Since σ̃ is in ker dJ, it satisfies the condition (7.6.2). It follows from

Lemma 7.6.2 that there is τ ∈ Ck−1
− (∆[r]−S ) = F sPq−1

k (FJ) such that the following property is
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satisfied:

dJ(τ) = σ̃. (7.7.17)

Indeed, property(c) in Lemma 7.6.2 implies that components of dJ(τ) on Ck−1
− (∆J∪M) are zeros

except when J ∪ M = [r] − (S ∪ is+1). Property(a) in Lemma 7.6.2 then implies (7.7.17).

We have completed our proof. �

Proof of Lemma 7.3.1. By Corollary 7.4.3 it suffices to show that

Hi(P∗k(FJ)) = 0 (7.7.18)

for all J ⊆ [r], 0 ≤ k ≤ r − 1 and i > max(r − |J| − µ(l) + 1, 0). This is the result of

Proposition 7.7.2(2) for s = 0. �

Corollary 7.7.3. Let a ≥ 2, b, r ≥ 1, then for any generic length vector l ∈ Rr we have

syzord H∗T (Xa,b(l)) = µ(l) − 1. (7.7.19)

Proof. The case when the fixed point set is empty was proved in Lemma 7.2.1. The case when

the fixed point set is nonempty was proved in Lemma 7.3.1. �

Now we can complete the proof of Theorem 7.1.4.

Proof of Theorem 7.1.4. The proof follows from Corollary 7.7.3 and Lemma 4.2.2. �



Chapter 8

Applications

In this section, we prove several applications of the main theorem we proved. Our main

theorem says that we can compute the syzygy order of the equivariant cohomology of a big

polygon space Xa,b(l) directly from the combinatorial properties of the length vector l. How-

ever, two big polygon spaces having the same syzygy order may not have the same equivariant

diffeomorphism type. In this section we will see that in certain cases, we can infer the equiv-

ariant diffeomorphism type of a big polygon space from the syzygy order of its equivariant

cohomology.

The significance of our application lies in Remark 4.1.2. According to Remark 4.1.2, the

number of equivariant diffeomorphism types grows fast when r increases. So it will be good if

we can rule out many equivariant diffeomorphism types using syzygy order. Our application

shows that it is possible if we consider syzygy orders that are high enough.

To make it more convenient to read, we will indicate number of elements in a set whenever

is necessary by writing a bracket with number over it.

One immediate application is a new proof of [16, Theorem 1.2].

Corollary 8.1 ([16, Theorem 1.2]). Let a, b ≥ 1,m ≥ 0, and l ∈ Rr be generic with 0 ≤ l1 ≤

· · · ≤ lr.

(1) Assume r = 2m + 1, then syzord H∗T (Xa,b(l)) = m if and only if Xa,b(l) is equivariantly

102



103

diffeomorphic to Xa,b(
2m+1︷  ︸︸  ︷

1, . . . , 1).

(2) Assume r = 2m + 2, then syzord H∗T (Xa,b(l)) = m if and only if Xa,b(l) is equivariantly

diffeomorphic to Xa,b(0,
2m+1︷  ︸︸  ︷

1, . . . , 1).

Let us first prove two lemmas that will be used a lot.

Lemma 8.2. If l ∈ Rr is generic and µ(l) ≥ m, then all the subsets of [r] with less than m

elements are short.

Proof. If M ⊆ [r] has less than m elements and is long, then all the subsets of M have to be

long. Indeed, if the collection of long subsets of M is not empty, then we can take a minimal

such subset because ∅ is always short. On the other hand, a minimal long subset N ⊆ M

satisfies:

σl(N) < m. (8.1)

That contradicts the assumption µ(l) ≥ m because by Definition 7.1.1 we should have µ(l) ≤

σl(N). �

Lemma 8.3. Assume l ∈ Rr is generic, l1 ≤ · · · ≤ lr and µ(l) ≥ m ≥ 2. Let M be a long subset

of [r] and N consists of n largest elements in [r] − M with n ≤ m − 1. Then for any subset

N′ ⊆ M with n elements, the following set

(M − N′) ∪ N (8.2)

is long.

Proof. Let us fix m and do induction on n. When n = 0, it is trivially true.

Assuming the lemma has been proved for n − 1, let us prove it for n. Let

i′ = min N′ and i = min N. (8.3)
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Since |N − i| = n − 1, applying the induction hypothesis to M, N − i and N′ − i′ we can get

M′ := (M − (N′ − i′)) ∪ (N − i) is long. (8.4)

If M′ − i′ is long, then (M − N′) ∪ N = (M′ − i′) ∪ i is long and we are done. If M′ − i′ is

short, then since we have

M′ = (M′ − i′) ∪ i′ is long, (8.5)

it follows from the equivalent definition of µ(l) in Remark 7.1.2 that there are at least m ele-

ments in [r] − (M′ − i′) such that when one of these elements is added to M′ − i′, the resulting

subset is long.

Since N′ has only n ≤ m − 1 elements and i is the largest element in [r] − (M′ − i′) apart

from those in N′, we have

(M′ − i′) ∪ i = (M − N′) ∪ N is long. (8.6)

�

Remark 8.4. (1) Lemma 9.2 allows us to get some information about long and short subsets

of [r] directly from µ(l).

(2) Lemma 9.3 is essentially saying that we can substitute a number of elements in a long set

by the same amount of the largest several elements in the complement to get another long set.

That will be useful when we want to use contradiction to prove that a subset is short.

Proof of Corollary 8.1. The “if” parts of both (1) and (2) follow from the fact that equivariant

cohomology is invariant under equivariant diffeomorphism and the observation that

µ(
2m+1︷  ︸︸  ︷

1, . . . , 1) = µ(0,
2m+1︷  ︸︸  ︷

1, . . . , 1) = m + 1. (8.7)

By Theorem 7.1.4, we have syzord H∗T (Xa,b(l)) = m.

Let us prove the “only if” part for (1) and (2).
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If r = 2m + 1 and syzord H∗T (Xa,b(l)) = m, then by Theorem 7.1.4 we have

µ(l) = m + 1. (8.8)

It follows from Lemma 8.2 that for any J ⊆ [r] we have

|J| ≤ m⇒ J short. (8.9)

Since the complement of a short set is long, the long and short subsets of [r] are described by

the following:

J is


long if |J| ≥ m + 1,

short if |J| ≤ m
(8.10)

and that gives the same long and short subsets as the length vector (
2m+1︷  ︸︸  ︷

1, . . . , 1) which implies that

l ∼ (1, . . . , 1). By Lemma 4.1.5(3), Xa,b(l) is equivariantly diffeomorphic to Xa,b(1, . . . , 1).

If r = 2m + 2, the same argument as above shows that

J is


long if |J| ≥ m + 2,

short if |J| ≤ m.
(8.11)

But we need some more information about subsets containing m + 1 elements. Let us prove

that

|J| = m + 1 and 1 ∈ J ⇒ J short. (8.12)

Indeed, let us show that the following subset with m + 1 elements

{1,
m︷                       ︸︸                       ︷

m + 3,m + 4..., 2m + 2} (8.13)

is short and (8.12) follows from it because (8.13) is the longest subset in [r] with m+1 elements
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containing 1.

Let us prove by contradiction. Assume that (8.13) is long. By Lemma 8.3, we can substitute

{

m︷               ︸︸               ︷
m + 3, ..., 2m + 2} with {

m︷       ︸︸       ︷
3, ...,m + 2} and get the following long subset

{1,
m︷       ︸︸       ︷

3, ...,m + 2}. (8.14)

Then the subset {
m+1︷          ︸︸          ︷

2, 3, ...,m + 2} is also long because we are replacing l1 by a longer l2. That

implies that all subsets of [r] with m + 1 elements not containing 1 are long, and that shows

that (8.13) is short because the complement of a long set is short. We have proved (8.12).

Since the complement of a subset with m+1 elements is another subset with m+1 elements,

if J is a subset with m + 1 elements, then we have

J short ⇐⇒ 1 ∈ J. (8.15)

Combining (8.11) and (8.15) we get a complete description of long and short subsets of [r]:

J is


long if |J| ≥ m + 2 or |J| = m + 1 with 1 < J,

short if |J| ≤ m or |J| = m + 1 with 1 ∈ J.
(8.16)

It is the same as that of the length vector (0,
2m+1︷  ︸︸  ︷

1, . . . , 1). So l ∼ (0, 1, . . . , 1). By Lemma 4.1.5(3)

Xa,b(l) is equivariantly diffeomorphic to Xa,b(0, 1, . . . , 1). �

Another application is to show the following new result.

Corollary 8.5. Let a, b ≥ 1,m ≥ 0 and l ∈ Rr be generic with 0 ≤ l1 ≤ ... ≤ lr.

(1) If r = 2m + 1, then syzord H∗T (Xa,b(l)) = m − 1 if and only if Xa,b(l) is equivariantly

diffeomorphic to Xa,b(0, 0,
2m−1︷      ︸︸      ︷

1, 1, . . . , 1).
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(2) If r = 2m + 2, then syzord H∗T (Xa,b(l)) = m − 1 if and only if Xa,b(l) is equivariantly

diffeomorphic to Xa,b(0, 0, 0,
2m−1︷      ︸︸      ︷

1, 1, . . . , 1) or Xa,b(1, 1, 1,
2m−1︷      ︸︸      ︷

2, 2, . . . , 2).

Proof. For both assertions, syzord H∗T (Xa,b(l)) = m− 1 implies that µ(l) = m by Theorem 7.1.4.

The “if” parts of both assertions follow from Theorem 7.1.4 and the observation that the length

vectors l mentioned in both assertions satisfy µ(l) = m. We only have to prove the “only if”

parts.

Let us prove (1) first. Since µ(l) = m, Lemma 8.2 gives the following partial description of

long and short subsets of [r]:

J is


long if |J| ≥ m + 2,

short if |J| ≤ m − 1.
(8.17)

Now we need to investigate subsets of [r] containing m and m + 1 elements. Let us prove that

if |J| = m, then

J is short ⇐⇒ J ∩ {1, 2} , ∅. (8.18)

We first prove “⇐” by contradiction. Without loss of generality, let us assume the following

subset is long:

J = {2,
m−1︷                          ︸︸                          ︷

m + 3,m + 4, . . . , 2m + 1} (8.19)

because it us the longest subset containing 2 with m elements. By Lemma 8.3, we can substitute

{

m−1︷                       ︸︸                       ︷
m + 3,m + 4..., 2m + 1} with {

m−1︷            ︸︸            ︷
4, 5, . . . ,m + 2} and get the long set

{2,
m−1︷            ︸︸            ︷

4, 5, . . . ,m + 2} (8.20)

with m elements. Thus the set {
m︷            ︸︸            ︷

3, 4, . . . ,m + 2} is long and the complement of this set is
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{1, 2,
m−1︷                          ︸︸                          ︷

m + 3,m + 4, . . . , 2m + 1} and it is short. But

{1, 2,m + 3,m + 4, . . . , 2m + 1} = J ∪ 1 (8.21)

and by assumption, it is long and that is a contradiction. So we have shown “⇐”.

Let us prove “⇒” also by contradiction. Without loss of generality, we can assume that the

subset

J = {

m︷            ︸︸            ︷
3, 4, . . . ,m + 2} (8.22)

is short. Then its complement {1, 2,
m−1︷                          ︸︸                          ︷

m + 3,m + 4, . . . , 2m + 1} is long. It then follows from

Lemma 8.3 that the set

{1, 2,
m−1︷            ︸︸            ︷

4, 5, . . . ,m + 2} (8.23)

is long. If the set

{

m+1︷               ︸︸               ︷
1, 2, 3, . . . ,m + 1} (8.24)

is also long, then all the subsets of m + 1 elements are long because the set (8.23) is the

shortest subset with m + 1 elements. Furthermore, all subsets of m elements are short by taking

complement of a subset of m + 1 elements. But then µ(l) = m + 1, not m. So the set (8.24) has

to be short. However this implies that the long set {1, . . . ,m + 2} with m + 2 elements has a

short subset. Since µ(l) = m, the subset (8.23) has to be short, which is a contradiction.

Combining (8.17) and (8.18) we get complete knowledge on long and short subsets of [r]

and it coincides with that of (0, 0,
2m−1︷  ︸︸  ︷

1, . . . , 1). Part (1) then follows from Lemma 4.1.5(3).

Part (2) follows from the following Lemma 8.6. �

Lemma 8.6. Let a, b,m, l be as in Corollary 8.5(2). We have the following two situations:

(1) If there is a long subset of [r] with m elements, then l ∼ (0, 0, 0,
2m−1︷  ︸︸  ︷

1, . . . , 1).

(2) If there is no long subset of [r] with m elements, then l ∼ (1, 1, 1,
2m−1︷  ︸︸  ︷

2, . . . , 2).
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Proof. Since µ(l) = m, we get the following long and short information of subsets of [r] from

Lemma 8.2:

J is


long if |J| ≥ m + 3,

short if |J| ≤ m − 1.
(8.25)

We need to investigate subsets of [r] containing m, m + 1 and m + 2 elements.

We first prove (1). First we show the following assertion for J with m + 1 elements:

J is short ⇐⇒ |J ∩ {1, 2, 3}| ≥ 2. (8.26)

Without loss of generality we will show that the set {2, 3,
m−1︷                          ︸︸                          ︷

m + 4,m + 5, . . . , 2m + 2} is short

because it is the longest subset satisfying the condition on the right hand side of (8.26). Assume

it is long, then by substituting the subset {
m−1︷                 ︸︸                 ︷

m + 4, . . . , 2m + 2} with {
m−1︷         ︸︸         ︷

5, . . . ,m + 3}, it follows

from Lemma 8.3 that the set

{2, 3,
m−1︷            ︸︸            ︷

5, 6, . . . ,m + 3} = {

m+2︷         ︸︸         ︷
2, . . . ,m + 3} − {4} (8.27)

is long. Since µ(l) = m, it follows from the definition of µ(l) that

{

m+2︷         ︸︸         ︷
2, . . . ,m + 3} has no short subsets with 1 element fewer. (8.28)

However, by assumption of (1), there is a long subset with m elements and thus the shortest

subset with m + 2 elements {1, . . . ,m + 2} has to be short. Then {2, . . . ,m + 2} is short and thus

{2, . . . ,m + 3} has a short subset with 1 element fewer, that is a contradiction to (8.28). So we

have shown (8.26).

Next we investigate sets with m elements. We are going to show that if |J| = m, then we

have

J is long ⇐⇒ J ∩ {1, 2, 3} = ∅. (8.29)
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Let us first observe by contradiction that if |J| = m, then we have

3 ∈ J ⇒ J is short. (8.30)

Without loss of generality we assume that {3,
m−1︷                          ︸︸                          ︷

m + 4,m + 5, . . . , 2m + 2} is long. Then by sub-

stituting {
m−1︷                 ︸︸                 ︷

m + 4, . . . , 2m + 2} with {
m−1︷       ︸︸       ︷

5, ...,m + 3} and applying Lemma 8.3, the resulting set is

{3,
m−1︷            ︸︸            ︷

5, 6, . . . ,m + 3} and it is long. Thus {4, 5, . . . ,m + 3} is long. It implies that the comple-

ment {1, 2, 3,
m−1︷                 ︸︸                 ︷

m + 4, . . . , 2m + 2} is short. However, {1, 2, 3,m + 4, . . . , 2m + 2} is longer than

{3,
m−1︷            ︸︸            ︷

5, 6, . . . ,m + 3} which is already long. That leads to a contradiction. We have shown the

“⇒” part of (8.29).

Next we want to show the “⇐” part of (8.29). Since there is a long set of m elements by

assumption, without loss of generality we can assume {
m︷                 ︸︸                 ︷

m + 3, . . . , 2m + 2} is long. Then by

Lemma 8.3 the set {
m︷         ︸︸         ︷

4, . . . ,m + 3} is long. So the “⇐” part of (8.29) follows.

With (8.29) we also get a description of subsets with m + 2 by taking complement. If

|J| = m + 2, then

J is long ⇐⇒ {1, 2, 3} * J. (8.31)

Combining (8.31) with (8.29) and (8.26), we get a complete description of long and short

subsets of [r] and it coincides with that of (0, 0, 0,
2m−1︷  ︸︸  ︷

1, . . . , 1). We have shown (1).

Now let us prove (2). Again we first prove (8.26) under the assumption of (2). We go

through the same process as before and try to show that the following subset

{2, 3,
m−1︷                          ︸︸                          ︷

m + 4,m + 5, . . . , 2m + 2} (8.32)

is short by contradicting (8.28).

Now we assume that (8.28) is true. Then the set {
m+1︷         ︸︸         ︷

2, . . . ,m + 2} is long. Since the comple-

ment of {2, . . . ,m + 2} is the longest subset with m + 1 elements containing 1, it implies the
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following statement for |J| = m + 1:

J is long ⇐⇒ 1 < J. (8.33)

Furthermore, it follows from the assumption of (2) that

J is


long if |J| ≥ m + 2,

short if |J| ≤ m.
(8.34)

Combined with (8.33) we can conclude that µ(l) = m + 1 just by definition of µ(l) and looking

at long and short sets of [r]. That is a contradiction. So (8.28) can’t be true.

Note that we have shown (8.26) for (2) and thus the subset (8.32) is short. It then follows

that if |J| = m + 1 and |J ∩ {1, 2, 3}| ≥ 2, then J is short because the subset (8.32) is the

longest such subset. By taking complement of such J, it also follows that if |J| = m + 1 and

|J ∩ {1, 2, 3}| ≤ 1, then J is long. So we have proved (8.26).

Combining (8.26) with (8.34), we get a complete description of long and short subsets of

[r] and it coincides with that of (1, 1, 1, 2, ..., 2). We have shown (2). �
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