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Abstract
In this work, we provide the definition, study properties, and craft new stochastic models for
two dependence indices: the implied correlation index and the herd behavior index (HIX).
In particular, we model and price financial derivatives on the basic implied correlation index
(CIX) as reported by CBOE. Our analysis is the first revealing the presence of heteroscedas-
ticity in the time series of CIX leading to two Correlation Stochastic Volatility (CSV) models.
We describe properties of CSV models and use discretization methods for their simulation. A
partial estimation methodology is implemented on CBOE S& P 500 CIX historical data treat-
ing the stochastic volatility (SV) as a hidden, unobservable process. The impact of the SV
parameters is studied for two types of digital CIX options, both motivated by the usage of CIX
as an indicator of crisis conditions.

Keywords: Implied correlation index, stochastic volatility models
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Chapter 1

Introduction

An interesting phenomenon in financial markets, confirmed by the Great Recession of 2008,
is that numerous stocks crash simultaneously during a crisis. If we consider stock prices as a
vector of lognormal random variable, then we see that these random variables are highly posi-
tively dependent during a crisis period. A professional portfolio manager will prudently select
financial assets to avoid strong positive dependence structures among his portfolio components
because they could jeopardize the benefits of diversification, particularly during a crisis. A
strong positive dependence structure is also called a comonotonic dependence structure, and
was first proposed by [Dhaene and Vyncke, 2002b] and was used to study the distribution
function of financial indices. Due to the importance of correlation in portfolio diversification,
we give a brief overview of the concept of modern portfolio theory as well as the optimal
objective function in a risk minimization problem in Section 1.1. We also summarize some
important definitions and properties of comonotonicity in Section 1.2 by referring to [Dhaene
and Vyncke, 2002b]. For extensive financial applications of comonotonicity, readers can refer
to [Dhaene and Vyncke, 2002a].

The connection between market crisis and assets’ comonotonic dependence structures ex-
plains that, if one can measure the degree of assets’ dependence and model the process of de-
pendence structure, then one would be relatively safe in crisis periods. To be specific, investors
can hedge risk during crises by buying some digital options. These digital options use the de-
gree of dependence as the underlying and will give the holder a benefit (i.e 10 million dollars)
in a crisis. When the degree of dependence is greater than its danger threshold, investors shall
execute the option to receive the benefit. Although investors have to pay a premium for the
option contract, they can reduce loss during a crisis by receiving 10 million dollars benefit. In
this thesis, we design two kinds of digital options for this purpose. But back to where we were,
how can we measure the degree of dependence properly? If we want to measure the degree
of dependence between two financial assets, the natural way is to compute their correlation
coe�cient. As a proxy to the traditional correlation coe�cient, the basic implied correlation
index (CIX) was proposed by [van Emmerich, 2006] to measure the degree of comovement
between two market index components. CIX is defined as the ratio of the sum of the weighted
covariance to that of the weighted variance between underlying assets. CBOE calculates and
daily publishes the S&P 500 Implied Correlation Index. This index has become a measure of
the market’s expectation about the future correlation of the S& P 500 index (SPX) components,
see [Exchange, 2009]. At di↵erent year, CBOE uses symbols KCJ,ICJ and JCJ to name a se-
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2 Chapter 1. Introduction

ries of CIX in rotation. The calculation of KCJ, ICJ and JCJ are same, all of them use SPX
option prices and prices of single-stock option on the 50 largest components of the SPX. The
number behind symbols indicates the expired year of single-stock option. For example, the
calculation of ICJ2010 uses SPX options expiring in December 2009 and single-stock options
expiring in January 2010 (see [Exchange, 2009]). In [van Emmerich, 2006]’s theory, the cal-
culation of CIX in discrete time relies on the at-the-money index option prices. [Linders and
Schoutens, 2014] introduced a general implied correlation index (ICX). Compared with CIX,
the methodology of ICX does not assume that the moneyness of index option equals 1. [Lin-
ders and Schoutens, 2014] regarded [van Emmerich, 2006]’s method as a traditional approach
to determine correlation and stated that this approach would underestimate the correlation for
out-of-the-money index option prices. Instead, [Linders and Schoutens, 2014] proposed a ro-
bust measurement model to determine ICX where ICX minimizes the distance between the
theoretical index option price and the observed option price.

A comonotonic dependence structure also causes herd behaviour. In finance, herd be-
haviour is a relatively new concept that is used to describe how individual assets can act col-
lectively. Herd behaviour also indicates the systemic risk in the market. Researchers have used
herd behaviour to explain financial bubbles and crashes. For example, the 2008 US housing
bubble was caused by herd behaviour and human greed, see [Fenzl and Pelzmann, 2012]. When
the bubble burst, individuals were driven by panic to mimic others in an irrational way, which
led to a dramatic price drop in the market. By using the concept of comonotonicity, [Dhaene
and Vyncke, 2012] proposed the herd behaviour index (HIX) to measure the degree of herd
behaviour among financial assets. Their idea behind HIX is that the market’s expectation on
the degree of herd behaviour in the future should be based on a comparison between the actual
dependence structure and the comonotonic dependence structure among future stock prices.
Thus, HIX in [Dhaene and Vyncke, 2012] is computed as the ratio of an option-based estimate
of the risk-neutral variance of the market index to an option-based estimate of the variance of
the comonotonic index.

In this thesis, we focus on modeling CIX and HIX. Since the degree of comovement and
herd behaviour may change quickly over time in a random manner, we model CIX and HIX us-
ing a continuous-time stochastic process. CIX has the mathematical properties of a correlation
thus we have a natural connection to stochastic correlation processes (SCP). The study of SCP
has attracted attention in mathematical finance but mostly from the perspective of stochastic
covariance models, see [Engle, 2002] and [Gouriéroux, 2006]. The works of [van Emmerich,
2006] and [Ma, 2009] are two of a handful that treats correlation as stand-alone processes in
continuous time.

The main challenge in working with the stochastic di↵erential equation for correlation is
the bounded [�1, 1] domain for the process itself. This bounded domain a↵ects closed-form
analytical solution to key properties like conditional characteristic functions and option prices
due to the non-a�ne nature of the process, but this also impacts the accuracy of the discretiza-
tion as well as simulation exercises. [van Emmerich, 2006] presented an approach to construct
SCP models where the new stochastic process is directly formulated as a convenient function
of Brownian motion. In a similar fashion [Teng et al., 2016] developed a more general SPC by
modeling correlation as a hyperbolic function of the popular mean-reverting process. Their cor-
relation process also satisfies the properties provided in [van Emmerich, 2006]. Although this
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approach benefits from the ease of construction and a better degree of analytical tractability, it
lacks intuitive interpretation. Therefore, [van Emmerich, 2006] introduced a second approach
where the SPC is described by a stochastic di↵erential equation driven by Brownian motion, a
particular case of so-called Jacobi processes. Under this direction, a modified Jacobi process
was proposed in [Ma, 2009], and here bounds for the correlation coe�cient are more flexible
than �1 and 1.

All these models ensure a key stylized fact of stochastic correlations: the mean-reverting
property. However, the volatility in these SCP is assumed constant. In this thesis, we provide
empirical evidence of heteroscedasticity in the time series of the CBOE S&P 500 Implied Cor-
relation Index (CBOE S&P 500 CIX). Therefore we build two Correlation Stochastic Volatility
(CSV) models, which can better describe the evolution of CIX data. One model uses flexible
functions of Ito’s processes and the other goes along the lines of a Jacobi process. In both mod-
els, we assume that the volatility of CIX follows a mean-reverting process, the CIR process for
simplicity. Apart from [van Emmerich, 2006]’s and [Ma, 2009]’s approaches, [Da Fonseca
et al., 2007] introduced the Wishart A�ne Stochastic Correlation (WASC) model, which is a
continuous-time process for stock prices with stochastic covariance. Based on [Da Fonseca
et al., 2007]’s work, we compute the stochastic correlation process implied by the Wishart in
the two asset case. We also display the instantaneous covariance. However, it is not possible
to derive a closed-form, non-SDE representation for the correlation process.

The previous modeling focused on the CIX as this takes values in [�1, 1]. On the other
hand, HIX takes values within the interval [0, 1], where 1 indicates significant herd behav-
ior and no diversification possible. Inspired by [van Emmerich, 2006]’s work, [Dhaene and
Vyncke, 2012] modeled HIX as a combination of a mean-reverting process Xt with an alge-
braic function which can map the domain of definition of X to the unit interval. This method
preserves the mean-reverting property while satisfying the fundamental properties of HIX. In
this thesis, we present four specific HIX models based on the CIR and the Vasicek process.

In this thesis, we also study the impact of the new CSV models on pricing of two types of
derivatives written on the CBOE S& P 500 CIX. Derivatives for correlation processes has been
of interest over the past few years, see [Salvi and Swishchuk, 2014] and [Bossu, 2005]. Al-
though traded over-the-counter, derivatives on CIX are not yet popular. We study and propose
two types of digital CIX options. Assuming that only high rating insurance companies can
issue these options, our options shall help investors hedge risk coming from future crisis in the
market. The first digital CIX option uses the value of CIX at maturity while the second uses the
maximum value of the CIX index over the life of the option. If by maturity the underlying CIX
crosses a dangerously high threshold, indicative of a crisis at play, then investors will execute
the first digital option to obtain nonzero benefit. For the second digital option, investors will
execute it if and only if the maximum value of CIX exceeds the dangerous threshold over the
contract period. Since the second digital CIX option keeps track of the CIX performance, it
o↵ers a higher degree of safety but it is more expensive than the first one. In addition, if CIX
stays safe all the time, both options will not be executed, and investors will only lose their
initial premium which is the total cost of the option.

The main contributions of our thesis are:
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• We summarize stochastic models for the implied correlation index and herd behavior
index, see Sections 4.1, 4.2 and 4.5.

• We detect Heteroscedastic behavior on a series of the CBOE S& P 500 Implied Correla-
tion Index, see Section 5.2.

• We introduce two choices of Correlation Stochastic Volatility (CSV) models for CIX.
The volatility of CIX follows a Cox-Ingersoll-Ross (CIR) process, see Section 4.3.

• We perform the discretization and partial estimation of our CSV models, see Sections
4.3 and 5.2.2.

• We price two digital CIX options and perform a sensitivity analysis. For each option, our
analysis shows that both  (the speed reversion of SV parameter) and & (the volatility of
SV parameter) significantly a↵ect prices for the first CSV model but have minor influence
on prices for the second CSV model, see Section 5.2.3.

This thesis is organized as follows, Chapter 1 provides an overview of the thesis with basic
knowledge of modern portfolio theory, comonotonicity and the Multivariate Black& Scholes
model. Chapter 2 introduces the basic implied correlation index (CIX), two specific types
of CIX (JCJ and ICJ) and the general Implied correlation index (ICX). Chapter 3 expands
the concept of implied correlation index into the herd behavior index (HIX). In addition, we
discuss RHIX in a portfolio of two risky assets at the end of Chapter 3. Chapter 4 focuses on
the stochastic modeling of CIX and HIX. For CIX, we first summarize two approaches for the
stochastic modeling of these bounded objects, then we introduce two choices of CSV models,
together with an algorithm for discretization and some properties of the models. We also adopt
the dynamic of correlation in a Wishart A�ne Stochastic Correlation (WASC) model as an
alternative approach. At the end of Chapter 4, we detail various stochastic models for HIX
with di↵erent mapping functions. Chapter 5 covers applications of the models to the CIX. We
present covariance and correlation swap for two risky asset case and reveal relevant empirical
aspects of CIX data. In particular, we perform an ARCH test with the CBOE 500 CIX data in
Section 5.2.1 and estimate parameters of CSV models in Section 5.2.2. Finally, we price two
digital CIX options and perform a sensitivity analysis to reveal the impact of parameters on
option pricing in Section 5.2.3.

1.1 Modern portfolio theory
In 1952, Markowitz published his paper on portfolio selection providing the foundation for
modern portfolio theory as a mathematical problem. From the single period case, we can see
the importance of correlation parameter in portfolio optimization. Suppose we purchase an
asset with S 0 dollars at time t = 0 and then sell it for S 1 dollars at time t = 1. Then the return
on this asset is defined as

Ri =
S 1,i � S 0,i

S 0,i
(1.1)
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If we consider a portfolio consisting of M risky assets, we have single-period returns R =
[R1,R2, ....,RM]> with following mean and variance

E[R] = µ =

2
6666666664

µ1
...
µM

3
7777777775

(1.2)

Cov[R] = ⌃ =

2
6666666664

⌃1,1 ... ⌃1,M
...
. . .

...
⌃M,1 ... ⌃M,M

3
7777777775

(1.3)

With initial budget ↵0 (dollars), the amount that we wish to assign to asset i is defined by wi↵0,
where wi is a weighting factor for asset i, i = 1, 2, ...,M. The negative weight indicates a short
position in the portfolio. To preserve the budget constraint, weights are required to satisfy the
condition that

PM
i=1 wi = 1. If we use w, a m-vector of weights, to represent the proportion of

total wealth allocated in each asset, the portfolio return Rw = w>R =
Pm

i=1 wiRi is deemed as a
random variable with:

Mean µw = E[Rw] = w>µ

Variance �2
w = Var[Rw] = w>⌃w

(1.4)

By using the mean-variance pair of the portfolio (µw,�2
w) in (1.4), we can evaluate di↵erent

portfolios ⇧w with preferences for higher expected returns µw and lower variance �2
w. In fact,

we have three kinds of problems- risk minimization, expected return maximization and risk
aversion optimization. In order to highlight the importance of correlation and as an example,
we focus in the problem of risk minimization. That is, for a given choice of target mean return
↵1, we choose the portfolio ⇧w that can satisfy the following conditions:

Minimize : 1
2w>⌃w

Subject to : w>µ = ↵1

w>1m = 1

(1.5)

where 1m denoted the m-vector of ones. Here we set 1
2w>⌃w to make the first derivative of

Lagrangian concise. The solution of (1.5) can be achieved by applying the method of Lagrange
multipliers to the convex optimization problem subject to linear constraints. In details, let us
define the Lagrangian first:

L(w, �1, �2) :=
1
2

w>⌃w + �1(↵1 � w>µ) + �2(1 � w>1m) (1.6)

Then, we derive the first-order conditions:
@L
@w = 0m = ⌃w � �1µ � �21m
@L
@�1
= 0 = ↵1 � w>µ

@L
@�2
= 0 = 1 � w>1m

(1.7)

Note that w can be solved as a function of �1, �2:

w⇤ = �1⌃
�1µ + �2⌃

�11m (1.8)
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By substituting for w, we solve for �1, �2 :

↵1 = w⇤>µ = �1(µ>⌃�1µ) + �2(µ>⌃�11m)
1 = w⇤>1m = �1(µ>⌃�11m) + �2(1>m⌃�11m) (1.9)

After using matrix, we have "
�1

�2

#
=

"
a b
b c

#�1 "
↵1

1

#
(1.10)

where a = (µ>⌃�1µ), b = (µ>⌃�11m) and c = (1>m⌃�11m).
Hence, with weight w⇤, our portfolio can achieve the target mean return ↵1 with minimum

variance �⇤2, where

w⇤ = [⌃�1µ,⌃�11m]

2
666666664

(µ>⌃�1µ) (µ>⌃�11m)
(µ>⌃�11m)

(1>m⌃�11m)

3
777777775

�1 "
↵1

1

#

�⇤2 = w⇤>⌃w⇤

=
(1>m⌃�11m)↵2

1�2(µ>⌃�11m)↵1+(µ>⌃�1µ)
(µ>⌃�1µ)(1>m⌃�11m)�(µ>⌃�11m)2

(1.11)

Now let us define ⇡i as the number of shares held on stock i, then our initial portfolio consisted
in m di↵erent stocks is given by:

⇧w
0 =

Pm
i=1 wi↵0 = ↵0 =

Pm
i=1 ⇡iS 0,i (1.12)

From equation (1.12), we see ⇡i =
wi↵0
S 0,i

where wi↵0 is the amount assigned to stock i. The
expected returns of portfolio is

w>µ =
Pm

i=1 E[wi
S 1,i�S 0,i

S 0,i
]

=
Pm

i=1
wi

S 0,i
E[S 1,i] � 1

= 1
↵0

Pm
i=1 ⇡iE[S 1,i] � 1

= E[⇧1]
↵0
� 1

(1.13)

where the value of portfolio at time t = 1 is ⇧1 =
Pm

i=1 ⇡iS 1,i.
In the search for profits, investors want their portfolio to become more valuable at maturity,

to make this explicit let E[⇧1] = ↵0 + ↵2 > ↵0 = ⇧0 where ↵2 > 0 is the excess return. From
equation (1.13), we see ↵1 =

↵0+↵2
↵0
� 1. Hence, the optimal solution w⇤ in (1.11) depends on

↵0 (initial wealth) via ↵1, ⌃ (variance-covariance matrix) and µ (expected mean return). The
optimal objective function of risk minimization problem is given by:

�⇤2⌃ = f (µ,⌃,↵0,↵2,w⇤) = w⇤>⌃w⇤ (1.14)

Since we are more interested in the role of correlation parameters in portfolio optimization, we
denote the optimal objective function (1.14) with respect to ⌃ . Let ⌃, ⌃C represent variance-
covariance matrix during normal and crisis periods respectively. w⇤⌃ and w⇤

⌃C are their corre-
sponding optimal solutions. If the allocation of investor’s portfolio during crisis is the same as
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the one during a normal period, the variance of the existing portfolio during crisis would be
�2
⌃C = f (µ,⌃C,↵0,↵2,w⇤⌃). Since w⇤⌃ is not an optimal solution of �2

⌃C , �2
⌃C must be greater than

�⇤2
⌃C = f (µ,⌃C,↵0,↵2,w⇤⌃C ) which represents the minimum variance during crisis. In other

words, there is a smaller initial budget ↵⇤ such that

f (µ,⌃C,↵⇤,↵2,w⇤⌃C ) = f (µ,⌃C,↵0,↵2,w⇤⌃) (1.15)

with given values of µ,↵0,↵2,⌃n and ⌃C. From equation (1.15), we see the critical importance
of variance-covariance matrixes in portfolio evaluation and optimization.

1.2 Comonotonicity ([Dhaene and Vyncke, 2002b])
In this section, we will introduce the definition and properties of comonotonicity by referring
to [Dhaene and Vyncke, 2002b].

Consider the sum of dependent random variables s =
Pn

i=1 Xi. The distribution function of
s depends not only on the marginal distribution but also on the joint distribution of X1, X2..., Xn.
In this thesis, we try to find the joint distribution with the given margins such that the sum
s is the largest in the convex order sense. The definition and properties of convex order are
summarized in [Dhaene and Vyncke, 2002b].

For any two n-vectors x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) in Rn, let x  y denote the
componentwise order xi  yi for all i = 1, 2, ..., n. The set A ✓ Rn is called a comonotonic set
if for any x, y 2 A, we have componentwise order x  y (or y  x). In other words, for any two
elements x and y in a comonotonic set, if xi < yi for any i, we must have x  y. Moreover, the
subset of a comonotonic set is also a comonotonic set.

The comonotonic random vector is defined by a comonotonic support. Recall that A ✓ Rn

is called the support of X if P(X 2 A) = 1. Therefore, an n-dimensional random vector
X = (X1, ..., Xn) is called comonotonic if it has a comonotonic support. We see that comono-
tonicity displays strong positive dependence structure between elements of the comonotonic
support. For example, if x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) are possible outcomes of the
comonotonic random vector X, then they must be ordered componentwise.

Theorem 1.2.1 A random vector X is comonotonic if and only if (Xi, Xj) is comonotonic for
all i , j in {1, 2, ..., n}.

The theorem states that comonotonicity of a random vector is equivalent with pairwise
comonotonicity.

In the case of random variables with continuous marginal distributions, we have a simpler
and stronger result.([McNeil et al., 2015])

Corollary 1.2.2 Let X1, ..., Xn be random variables with continuous distribution functions.
They are comonotonic if and only if for every pair (i, j) we have Xj = T ji(Xi) almost surely
for some increasing transformation T j.

There are several properties of comonotonic random variables
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Properties 1 A random vector X = (X1, ..., Xn) is comonotonic if and only if one of the follow-
ing equivalent conditions holds:

1). X has a comonotonic support.
2). For all i , j in {1, 2, ..., n}, the couples (Xi, Xj) are comonotonic.
3). For all x = (x1, x2, ..., xn), we have FX(x) = P(X  x) = min{FX1(x1), ..., FXn(xn)}
4). X can be represented as X D

= (F�1
X1

(U), ..., F�1
XN

(U) where U ⇠ Uni f orm(0, 1) and the

notation D= is used for equal in distribution.
5). X can be represented as X D

= ( f1(Z), f2(Z), ..., fn(Z)) where Z is a random variable and
fi(i = 1, 2, ..., n) are non-decreasing functions fi(i = 1, 2, ..., n)

6). X can be represented as X D
= (g1(Z), g2(Z), ..., gn(Z)) where Z is a random variable and

gi(i = 1, 2, ..., n) are non-increasing functions fi(i = 1, 2, ..., n)

From the second condition in property (1), we see that the comonotonic random vector
indicates the pairwise comonotonicity. For the random vector X = (X1, ..., Xn) with continu-
ous marginal distribution functions, it is comonotonic if and only there exist some increasing
transformation T j such that Xj = T ji(Xi) almost surely for every pair (i, j), i , j. For any ran-
dom vector X = (X1, ..., Xn), the notation XC = (XC

1 , ..., X
C
n ) is used to represent a comonotonic

counterpart with the same margins as (X1, ..., Xn). The outcome of XC = (XC
1 , ..., X

C
n ) is with

probability 1 in the following set

{(F�1
X1

(p), F�1
X2

(p), ..., F�1
Xn

(p))|0 < p < 1} (1.16)

Since the support of XC may not be a connected curve due to all horizontal segments of the
CDF of Xi ,we can create a new comonotonic connected curve in Rn by linking the end points
of consecutive curves with straight lines. This new set is called the connected support of XC. It
can be parameterized as follows:

{(F�1(↵)
X1

(p), F�1(↵)
X2

(p), ..., F�1(↵)
Xn

(p))|0  p  1, 0  ↵  1} (1.17)

where F�1(↵)
X (p) = ↵F�1

X (p) + (1 � ↵)F�1+
X (p), and F�1+

X (p) = sup{x 2 R|FX(x)  p} is a non-
decreasing and right-continuous function. With varying values of ↵, the parameterization is
not unique.

1.2.1 Correlation coe�cient and comonotonicity
The Pearson’s correlation coe�cient for two random variables X and Y is defined by ⇢XY =
Cov(X,Y)
�X�Y

, where �2
X and �2

Y is the variance of random variable X and Y respectively. Cov(X,Y)
is the covariance of X and Y. |⇢XY = 1| means that X and Y are perfectly linearly dependent.
The independence of X and Y imply their zero correlation, not vice versa.

Recall that ⇢XY = 1 if and only if there exist real numbers a > 0 and b such that Y = aX + b
holds with probability 1. (see [Dhaene and Vyncke, 2002b])

Hence,
⇢XY = 1) Pairwise comonotonicity of (X,Y). (1.18)
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Moreover, correlation is invariant under strictly increasing linear transformations (see [McNeil
et al., 2015]). So for a1, a2 > 0, we have

⇢a1X+b1,a2Y+b2 = ⇢X,Y (1.19)

But correlation is not invariant under nonlinear strictly increasing transformations T : R! R.
For two real-valued random variables, we have ⇢T (X),T (Y)) , ⇢XY in general.

Recall that the random vector X has marginal distribution functions FXi that belong to the
same location-scale family, if there exists a random variable Y, positive real constants ai and
real constants bi such that Xi

D
= aiY + bi, for any i = 1, 2, ...., n. In other words, for a random

vector X with marginal CDFs FXi belonging to the same location-scale family, there exists a
CDF FY , positive real constants ai and real constants bi such that FXi(x) = FY((x�bi)/ai) holds
for i = 1, 2, ..., n.

Furthermore, we have

F�1
Xi

(p) = aiF�1
Y (p) + bi, p 2 (0, 1). (1.20)

It is clear that the comonotonic sum has a distribution function that also belongs to the same
location-scale family.

sC = XC
1 + XC

2 + · · · + XC
n
D
=

nX

i=1

aiF�1
Y (U) +

nX

i=1

bi (1.21)

where U is a uniform random variable on (0,1).
From equation (1.18), we have the following theorem:

Theorem 1.2.3 A random vector X with marginal CDFs FXi belonging to the same location-
scale family is comonotonic if and only if ⇢XiX j = 1 for all i, j 2 {1, 2, ..., n}.

If we consider a random vector X with normal marginals FXi: Xi ⇠ N(µi,�2
i ). Since the

marginal distribution functions can be represented as Xi
D
= �iZ + µi, where Z is a standard

normal random variable, we have

F�1
Xi

(p) = �i�
�1(p) + µi, p 2 (0, 1) (1.22)

where � is the standard normal CDF. Hence, X is comonotonic if and only if ⇢XiX j = 1 for all
i, j 2 1, 2, ..., n. We also have that sC = XC

1 + · · ·+ XC
n is normally distributed with mean

Pn
i=1 µi

and variance (
Pn

i=1 �i)2. One should note that if the Xi were independent, we would get the
normal distribution with mean

Pn
i=1 µi and variance

Pn
i=1 �

2
i  (

Pn
i=1 �i)2.

In addition, we have following theorem
Theorem 1.2.4 A random vector X is comonotonic if and only if ⇢XiX j = ⇢XC

i XC
j

(or Var(Xi +

Xj) = Var(XC
i + XC

j )) for all i, j 2 {1, 2, ..., n}.
In fact, comonotonicity is an extension of the concept of positive perfect correlation. In two
dimensions, it is also possible to consider perfect negative dependence between the components
of a random vector. It is called countermonotonicity. Also X1 and X2 are countermonotonic if
and only if (X1, X2) D= (v1(Z), v2(Z)) for some random variable Z with increasing function v1

and decreasing function v2, or vice versa.(see [McNeil et al., 2015] )
We may consider using given univariate distributions F1 and F2 and any correlation value ⇢

in [�1, 1] to construct a joint distribution F. It is always possible if we only focus on elliptically
distributed risk factors, but may be fail in general.
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1.2.2 Attainable correlations
[McNeil et al., 2015] presents the so-called attainable correlations which can form a strict
subset of the interval [�1, 1]. Let (X1, X2) be a random vector with finite-variance marginal
CDF F1, F2 and an unspecified joint CDF; assume also that Var(X1) > 0 and Var(X2) > 0. We
have following properties:

Properties 2 1. The attainable correlations form a closed interval [⇢min, ⇢max] with ⇢min < 0 <
⇢max.

2. The minimum correlation ⇢ = ⇢min is attained if and only if X1 and X2 are countermono-
tonic. The maximum correlation ⇢ = ⇢max is attained if and only if X1 and X2 are comonotonic.

3. ⇢min = �1 if and only if the distribution of X1 and �X2 are from the same location-scale
family, and ⇢max = 1 if and only if the distribution of X1 and X2 are from the same location-scale
family.

An example given by [McNeil et al., 2015] calculated the exact value of ⇢max and ⇢min when
lnX1 ⇠ N(0, 1) and lnX2 ⇠ N(0,�2). For � , 1, the distribution of random variables X1 and X2

do not belong to the same location-scale family so ⇢max < 1. Likewise, the distribution of X1

and �X2 do not belong to the same location-scale family so ⇢min > �1.
Now we calculate the actual boundaries of the attainable interval. Let Z ⇠ N(0, 1) and

observe that if X1 and X2 are comonotonic, then (X1, X2) D= (eZ, e�Z). Clearly, we have ⇢max =

⇢eZ ,e�Z and ⇢min = ⇢eZ ,e��Z . After analytical calculation, we obtain

⇢min =
e�� � 1

p
(e � 1)(e�2 � 1)

(1.23)

⇢max =
e� � 1

p
(e � 1)(e�2 � 1)

(1.24)

[McNeil et al., 2015] displays the attainable correlation interval for di↵erent values of � in
Figure 1.1. The boundaries of the interval both tend rapidly to zero as � increases. This
implies that we can have situations where comonotonic random vectors have very small cor-
relation values. In the Figure 1.1, once the value of � exceeds 4, the maximum and minimum
attainable correlation values are almost equal to zero. Since comonotonicity is the strongest
form of positive dependence, this contradicts the intuition that small correlation implies weak
dependence.

1.2.3 Sums of comonotonic random variables
Recall that (XC

1 , ..., X
C
n ) is the comonotonic counterpart of random vector (X1, ..., Xn). Let sC

represent the sum of the components of random vector (XC
1 , ..., X

C
n ), we have

sC = XC
1 + XC

2 + · · · + XC
n (1.25)

[Dhaene and Vyncke, 2002b] states that the distribution function of s =
Pn

i=1 Xi can be ap-
proximated by the distribution function of the comonotonic sum sC when s precedes sC in the
convex order sense. We can easily determine the distribution function of sC from the marginal
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Figure 1.1: Correlation vs �

distribution of XC
i . [Dhaene and Vyncke, 2002b] proved that the ↵-inverse distribution function

F�1(↵)
sC can be written as the sum of the inverse distribution function of the margins:

F�1(↵)
sC (p) =

nX

i=1

F�1(↵)
Xi

(p), 0 < p < 1, 0  ↵  1. (1.26)

Thus, we have

sC D=

nX

i=1

F�1(↵)
Xi

(U), U ⇠ U(0, 1) (1.27)

and the connected support of sC is given {F�1(↵)
sC (p)|0 < p < 1, 0  ↵  1} = {Pn

i=1 F�1(↵)
Xi

(p)|0 <
p < 1, 0  ↵  1}.

This implies F�1+
sC (0) =

Pn
i=1 F�1+

Xi
(0) and F�1

sC (0) =
Pn

i=1 F�1
Xi

(0).
Hence, the minimal value of the comonotonic sum equals the sum of the minimal values of

each term.
If we consider the random vector X as stock prices at time T with marginal distributions

FXi , i = 1, 2, ..., n, X is comonotonic if and only if

(X1, ..., Xn) D= (F�1
X1

(U), ..., F�1
Xn

(U)), (1.28)

where U is a uniform (0, 1) random variables.
Let S be the weighted sum of X, S =

PN
i=1 wiXi, and S C be the weighted sum of the comono-

tonic vector

S C =

NX

i=1

wiXC
i =

NX

i=1

wiF�1
Xi

(U)
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. We see there are another two equivalent statements for the comonotonicity of X in Proper-
ties1:

6). S D
= S C

7). Var[S ] = Var[S C]



Chapter 2

Implied Correlation Index

The implied correlation index is meant to be a measure of the average level of correlation on
a given portfolio. It is defined as the ratio of the sum of the weighted covariance to that of the
weighted variance between stocks. In this chapter, we introduce the basic implied correlation
index (CIX) by referring to [Skintzi and Refenes, 2005]. Then, we detail two specific CIXs
with S & P 500 historical data. Finally, we learn the general implied correlation index (ICX)
and summarize approaches used to find the value of ICX.

2.1 CIX ([Skintzi and Refenes, 2005])
CIX is first introduced by [Skintzi and Refenes, 2005] to represent implied correlation index.
Its definition, properties and some special types of CIX will be presented in this section.

Assume that a portfolio consists of N assets, the portfolio variance �2
P,t at time t over a

T -day horizon can be calculated as follows:

�2
P,t =

NX

i=1

w2
i,t�

2
i,t + 2

N�1X

i=1

NX

j>i

wi,tw j,t⇢i j,t�i,t� j,t (2.1)

where wi,t is the weight of asset i on the portfolio at time t, �P,t is the portfolio volatility at time
t, �i,t is the volatility of asset i at time t and ⇢i j,t is the pairwise correlation between assets i and
j at time t. One should note that all volatilities and correlations are measured over the same
time horizon (T days).

2.1.1 Definition and properties of CIX
The key assumption in the methodology of CIX is that the correlation between any two assets
is constant at time t rather than having N(N � 1) di↵erent values. We define the correlation
coe�cient by ⇢t. Then we can rewrite the equation 2.1 as:

�2
P,t =

NX

i=1

w2
i,t�

2
i,t + 2⇢t

N�1X

i=1

NX

j>i

wi,tw j,t�i,t� j,t (2.2)

13
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[Skintzi and Refenes, 2005] defines CIX as the coe�cient ⇢t assumed to hold for any pair
of assets in a portfolio. From the portfolio variance equation (2.2), the value of CIX at time t
over a T -day horizon is determined by:

CIXt = ⇢t =
�2

P,t �
PN

i=1 w2
i,t�

2
i,t

2
PN�1

i=1
PN

j>i wi,tw j,t�i,t� j,t
(2.3)

In order to have more accurate measure of future correlation, CIX is computed using the im-
plied volatility �P,t at time t from the portfolio option and the implied volatilities �i,t from
options on each of the portfolio asset i at time t. All implied volatilities should be derived by
at-the-money options with the same time-to-maturity equal to T .

In addition, we can rewrite equation 2.3 as follows:

CIXt =

NX

i=1

X

j>i

ci j,t⇢i j,t where ci j,t =
wi,tw j,t�i,t� j,t

PN
i=1

P
j>i wi,tw j,t�i,t� j,t

(2.4)

Also ⇢i j,t is the pair-wise correlation between assets i and j at time t. ⇢i j,t 2 (�1, 1). From
equation (2.4), we see that CIX can be interpreted as a weighted average of the pair-wise
correlations among the portfolio asset returns.

Moreover, equation (2.3) can be expressed as follows:

CIXt = ⇢t =
�2

P,t � �2
Zero,t

�2
Per f ,t � �2

Zero,t
(2.5)

where �2
Per f ,t is the portfolio variance assuming perfect correlations (⇢i j,t = 1, i, j = 1, ...,N)

between each pair of assets in the portfolio, and �2
Zero,t is the portfolio variance assuming zero

correlations (⇢i j,t = 0, i, j = 1, ...,N, j > i) between each pair of assets in the portfolio. From
equation (2.5), we see that CIX can represent how far lies the portfolio variance between the
minimum portfolio variance assuming zero pair-wise correlations and the maximum portfolio
variance assuming perfect correlations.

Equation (2.5) also interprets the reason why [Skintzi and Refenes, 2005] use index options
to calculate CIX. This value of CIX can provide a measure of the market portfolio diversifi-
cation in the specific market represented by the underlying index. In details, changes to a
correlation index constructed from a stock index option imply changes to the level of portfolio
diversification that can be achieved in the market represented by the index.

We conclude several properties of CIX by referring to [Kim and Ahn, 2013]’s work.

Properties 3 1) Based on the properties of comonotonicity, for any X(t), we can have a wider
range of CIXt:

�
PN

i=1 w2
i,t�

2
i,t

2
PN�1

i=1
P

j>i wi,tw j,t�i,t� j,t
 CIXt 

�2
S C ,t �

PN
i=1 w2

i,t�
2
XC

i ,t

2
PN�1

i=1
P

j>i wi,tw j,t�i,t� j,t
(2.6)

where �S C ,t is the implied volatility of the weighted market index under the comonotonic as-
sumption. �XC

i ,t
is the implied volatility of asset i under the comonotonic assumption.
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2) The lower bound of equation (2.6) is attained if and only if

P

0
BBBBB@

NX

i=1

wiXi(t) = c

1
CCCCCA = 1 for some constant c 2 R (2.7)

3) The upper bound of equation (2.6) is attained if X(t) is comonotonic.
4) If elements of X(t) are pairwise uncorrelated, the CIXt = 0.

By applying their methodology to DJIA index option prices, [Skintzi and Refenes, 2005]
find evidence of the existence of a long-run dependence in correlation and contemporaneous
relationship between the correlation index daily changes and DJIA returns.

2.1.2 Specific CIX - ICJ and JCJ for S&P 500 Index ([Exchange, 2009])
In July 2009, CBOE began disseminating daily values for the CBOE S& P 500 Implied Cor-
relation Index. The calculation of CBOE S& P 500 Implied Correlation Index uses implied
volatilities of SPX option and implied volatilities of single-stock options on the 50 largest
components of S&P 500. These 50 largest components are measured by market capitalization.
According to di↵erent maturities of SPX option and individual stock option (LEAPS), CBOE
name CIX as ICJ and JCJ alternatively. The number behind ICJ or JCJ represents the expiring
year of individual stock LEAPS used in calculation. For example, ICJ 2010 is based on SPX
options expiring in December 2009 and individual stock LEAPS expiring in January 2010. JCJ
2011 is based on SPX options expiring in December 2010 and LEAPS expiring in January
2011. There are overlaps between two close ICJ and JCJ. The time horizon of each ICJ (or
JCJ) is two years.

[Exchange, 2009] used [Skintzi and Refenes, 2005]’s methodology to compute the specific
value of S&P 500 Implied Correlation Index. In this case, the implied variance of portfolio �2

P,t
in equation (2.3), is replaced by the implied variance of SPX and the implied volatilities of 50
index components. The weight of ith index component is defined as follows:

wi =
PiS iP50

i=1 PiS i
(2.8)

where Pi is the price of the ith index component, S i is the float-adjusted shares outstanding of
the ith index component.

Hence, the value of S&P 500 CIX can be calculated via the following equation:

⇢Average =
�2

Index �
PN

i=1 w2
i�

2
i

2
PN�1

i=1
PN

j>i wiwj�i� j
(2.9)

The specific algorithm from [Exchange, 2009] to determine S&P 500 CIX is presented as
follows:

Algorithm 1 (Algorithm for determining S&P 500 CIX) 1) Construct the 50-stock SPX track-
ing basket based on market capitalization (closing price times "float-adjusted shares").
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2) Select the options to be used in the implied correlation calculation; determine the implied
volatility for SPX options,�index, and the implied volatilities for options on the stock comprising
the SPX tracking basket, �i.

For each stock in SPX tracking basket, the put option with a strike price just below and the
call option with a strike price just above the current stock price are selected.

Next, for each option, an implied volatility of put/call pair are then weighted through a
linear interpolation to arrive at a single at-the-money implied volatility for each stock.

The SPX options used to calculate ICJ are the put option with a strike price just below and
the call option with a strike price just above the forward SPX level to the options’ expiration
date. The forward index level is determined using at-the-money SPX option prices, where the
strike price with the smallest absolute di↵erence between the call and put prices is considered
to be the at-the-money strike price. Each option price is deemed to be the average of its bid/
ask quote.

3) Calculate the capitalization weight, wi, of each component in the 50-stock basket.
4) Calculate the implied correlation, ⇢Average, by using equation (2.9).

[Zhou, 2013] states that the implied correlation index can be used to monitor the market’s
overall systematic risk. Systematic risk analysis is important because it cannot be diversified
away by any portfolio optimization methods. [Zhou, 2013] explores the forecasting power of
the ICJ index for S&P 500 Index returns. They implement di↵erent regression in which future
S&P 500 Index returns are regressed on the current information set of ICJ index changes.
The result shows that the ICJ changes, i.e. current weekly change and changes in the past,
are strongly linked to the S&P 500 Index returns in the future, and their model consistently
outperforms the random walk model using the Superior Predictive Ability testing procedure.

2.2 General Implied correlation Index (ICX)([Linders and
Schoutens, 2014])

[Linders and Schoutens, 2014] introduced a concept of general implied correlation index (ICX)
which depends on the value of index option moneyness. CIX introduced in Section 2.1 can
seem as a particular case of ICX when the moneyness equals 1. [Linders and Schoutens, 2014]
summarized [Skintzi and Refenes, 2005]’s methodology as a traditional approach to determine
implied correlation index. They stated that the traditional approach for determining implied
correlation will underestimate the real correlation. The error is more pronounced when some
stock volatilities are large compared to the other volatility levels. Instead of using the traditional
approach, [Linders and Schoutens, 2014] presented a robust measurement model to determine
ICX with application to DJIA.

2.2.1 General framework of ICX
In multivariate Black& Scholes model setting, the put option price on stock i (Pi[K,T ]), call
option price on stock i (Ci[K,T ]) and out-of-money index option price (Q[K,T ]) with strike
price K and maturity T can be derived by Black& Scholes formula. The implied correlation
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(b⇢[⇡]) among components of index S is determined by

Q[K;b�[⇡], b⇢[⇡]] = bQ[K] (2.10)

where
⇡ = K

S (0) is the moneyness of index S, b�[⇡] = (b�1[⇡],b�2[⇡], ...,b�n[⇡]) are the marginal
implied volatilities with moneyness ⇡.

bQ[K] is the observed out-of-the-money index option price with strike K and maturity T.
Q[K;b�[⇡], b⇢[⇡]] is the approximation of the index option price with marginal implied

volatilities b�.
In high-dimensional cases, it is not convenient to compute the actual index option price

Q[K], thus [Linders and Schoutens, 2014] used the approximation of the index option price
in formular 2.10. The authors commented that smaller value of |Q[K] � Q[K]| implies more
accurate estimation of b⇢[⇡].

2.2.2 Traditional approach
The traditional approach calculates the implied correlation index by:

b⇢[⇡] ⇡ b�2[⇡] �Pn
i=1 ew2

i b�2
i [⇡]

Pn
i=1

P
j=1, j,i ewiewjb�i[⇡]b� j[⇡]

. (2.11)

where ⇡ is given moneyness and the weights are determined by ewi =
wiXi(0)

S (0) . The CIX defined
in equation (2.3) is a particular case of equation (2.11) where the moneyness equals 1.

2.2.3 Robust measurement for Implied correlation Index
Since it is hard to find an explicit formula of implied correlation index to make equation (2.10)
holds, [Linders and Schoutens, 2014] presented a robust measurement model where the implied
correlation index is the one minimizes the distance between the approximated theoretical index
option price and the observed index option price:

b⇢[⇡] = arg min
0<⇢<1

|Q[K;b�[⇡], ⇢] � bQ[K]|
bQ[K]

(2.12)

For unavailable strike price K in the market, we choose two traded strike price Kj and Kj+1

such that Kj < K < Kj+1 where j 2 Z and j 2 [�l, h). Their corresponding index option prices
bQ[Kj] and bQ[Kj+1] are reachable in the market so we can use equation (2.12) to compute the
value of b⇢[⇡ j] and b⇢[⇡ j+1] with given moneyness ⇡ j =

K j

S (0) and ⇡ j+1 =
K j+1
S (0) . By interpolation,

ICX with moneyness ⇡ is determined by:

b⇢[⇡] = b⇢[⇡ j]
Kj+1 � K
Kj+1 � Kj

+b⇢[⇡ j+1]
K � Kj

Kj+1 � Kj
(2.13)

With low moneyness ⇡ = K
S (0) , ICX may strictly bigger than 1. To make sure ICX

bounded in [�1, 1], [Linders and Schoutens, 2014] suggested that the moneyness ⇡ should be
larger than 0.75.



Chapter 3

Herd behaviour index

3.1 HIX ([Dhaene and Vyncke, 2012])
[Dhaene and Vyncke, 2012] introduced Herd Behaviour Index (HIX) as the ratio of the risk-
neutral variance of the real market index to the risk-neutral variance of the comonotonic index.
Portfolio managers can use HIX to measure the degree of diversification among portfolio com-
ponents. HIX takes value in [0, 1], where 1 implies no diversification. For any market index,
HIX can be calculated by using a seris of vanilla options which is traded on this index and its
components.

In this section, we first introduce the empirical distributions of real market index compo-
nents as well as approximate variance of the real market index. Then we introduce the concept
of perfect herd behaviour and decompose the empirical comonotonic call/put option prices as
a linear combination of a series of vanilla call/put option prices. Finally, we present the defini-
tion and properties of HIX by using the theory of comonotonicity. Consider a market index S
which is a linear combination of the N underlying assets. Let Xi denote the price of asset i. We
denote the price of the index at time t (0  t  T ) as follows

S (t) =
NX

i=1

wiXi(t) (3.1)

A finite number of traded strike prices for European options written on asset i are denoted
by Ki,0,Ki,1, ....,Ki,mi where 0 = Ki,0 < Ki,1 < ... < Ki,mi < F�1

Xi
(1) and Ki,mi is the maximal value

of Xi. The actual CDF of FXi is not completely specified because of a finite number of traded
strikes. By referring to [Chen and Vanmaele, 2008], the risk-neutral empirical CDF of Xi can
be presented as follows:

bFXi(x) =

8>>>>>>><
>>>>>>>:

0 if x < 0
1 + erT Ci[Ki, j+1]�Ci[Ki, j]

Ki, j+1�Ki, j
if Ki, j  x < Ki, j+1

j = 0, 1, ...,mi

1 if Ki, j+1  x

(3.2)

where Ci[Ki, j] is the European call option price on asset i with strike price Ki, j.

18
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According to put-call parity, we can express bFXi(x) as a function of European put option
prices:

bFXi(x) =

8>>>>>>><
>>>>>>>:

0 if x < 0
erT Pi[Ki, j+1]�Pi[Ki, j]

Ki, j+1�Ki, j
if Ki, j  x < Ki, j+1

j = 0, 1, ...,mi

1 if Ki, j+1  x

(3.3)

where Pi[Ki, j] is the price of European put option on asset i with strike price Ki, j.
From equations (3.2) and (3.3), we see that the empirical distribution can be determined by

a approxmate convex option curve Ci[K] (or Pi[K]) that is the segmented linear convex func-
tion connecting observed points (Ki, j, Ci[Ki, j]) (or (Ki, j, Pi[Ki, j])), j = 0, 1, ...,mi + 1.

If we know the index option prices with a series of strike prices, we can determine the
risk neutral variance of the index. Let us denote the strike prices for index put option as
K�i, i = 0, 1, ..., l with K�l < K�l+1 < ... < K�1 < K0  E[S ] and K0 is the first strike price less
than E[S ]. Similarly, we denote the strike prices for index call option as Ki, i = 0, 1, ..., h with
Kh > Kh�1 > ... > K1 > E[S ]. [Dhaene and Vyncke, 2012] estimated the risk-neutral variance
of the index as follows:

Var[S ] ⇡ 2erT
hX

i=�l

�KiQ[Ki] � (E[S ] � K0)2 (3.4)

where �Ki is given by:

�Ki =

8>>><
>>>:

K�l+1 � K�l for the lowest strike K�l
Ki+1+Ki�1

2 for i = �l + 1, ..., h � 1
Kh � Kh�1 for the highest strike Kh

(3.5)

Q[Ki] is the observed index option price denoted by

Q[Ki] =

8>>><
>>>:

P[Ki] if Ki < K0
P[Ki]+C[Ki]

2 if Ki = K0

C[Ki] if Ki > K0

(3.6)

3.1.1 Perfect herd behaviour and comonotonic index option prices
Perfect herd behavior is the extreme situation where stock market is comonotonic. The comono-
tonic index price is a linear combination of comonotonic vector XC:

S C(t) =
NX

i=1

wiXC
i (t) (3.7)

Equation (1.28) in Section 1.2.3 clearly shows that comonotonic risks are driven by a single
source of randomness and exhibits extreme herd behaviour. Since the pricing distributions
FXi , i = 1, ...,N are unknown, [Linders and Vanmaele, 2012] use the inverse of the empirical
distributions bF�1

Xi
to replace F�1

Xi
:

bF�1
Xi

(p) = Ki, j if bFXi(Ki, j�1) < p  bFXi(Ki, j)
j = 0, 1, ...,mi + 1, p 2 (0, 1)

(3.8)
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with Ki,�1 = �1
Therefore, the comonotonic sum based on the empirical marginal distributions is given by:

bS C =

NX

i=1

wibF�1
Xi

(U) (3.9)

[Linders and Vanmaele, 2012] also presented the following algorithm to determine the distri-
bution of the comonotonic sum.

Algorithm 2 (Algorithm for determining FbS C (K)) 1) Using equations (3.2) or (3.3), deter-
mine all elements of the following set:

A = {bFXi(Ki, j)| i = 1, ...,N and j = 0, 1, ...,mi} \ {0} (3.10)

2) With the help of equation (3.8), calculate
PN

i=1 wibF�1
Xi

(p) for all p 2 A.
3) Introducing the following notation:

bF�1+
Xi

(0) = min
j
{Ki, j|bFXi(Ki, j) > 0} (3.11)

For any K 2 (
PN

i=1 wibF�1+
Xi

(0),
PN

i=1 wiKi,mi+1), calculate FbS C (K) from:

FbS C (K) = max{p 2 A|
NX

i=1

wibF�1
Xi

(p)  K} (3.12)

4) For other values of K, FbS C (K) is given by:

FbS C (K) =

8>>>><
>>>>:

0 if K <
PN

i=1 wibF�1+
Xi

(0),
mini bFXi(bF�1+

Xi
(0)) if K =

PN
i=1 wiF

�1+
Xi

(0),
1 if K >

P
i = 1NwiKi,mi+1

(3.13)

In [Linders and Vanmaele, 2012], comonotonic index call and put option prices with strike
price K are given by:

bCC[K] = e�rTE[(bS C � K)+]

bPC[K] = e�rTE[(K � bS C)+]
(3.14)

Starting from equation (3.2), [Chen and Vanmaele, 2008] and [Hobson* et al., 2005] prove
that the comonotonic index call option price bCC[K] can be expressed as follows:

bCC[K] =
X

i2NK

wiCi[Ki, ji] +
X

i2NK

wi(↵KCi[Ki, ji] + (1 � ↵K)Ci[Ki, ji+1] (3.15)

where the coe�cient ↵K , set NK and its complement NK are defined by

↵K = 1 � K�PN
i=1 wiKi, jiP

i2NK
wi(Ki, ji+1�Ki, ji )

NK = {i 2 {1, 2, ...,N}|bFXi(Ki, ji�1) < FbS C (K)  bFXi(Ki, ji)}

NK = {i 2 {1, 2, ...,N}|FbS C (K) = bFXi(Ki, ji)}

(3.16)
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Equation (3.15) holds for any K 2 (
PN

i=1 wibF�1+
Xi

(0),
PN

i=1 wiKi,mi+1) where bF�1+
Xi

(0) is defined in
equation (3.11). In this form, each ji, i = 1, 2, ...,N, depends on K and is defined as the unique
integer in the set 0, 1, ...,mi + 1 with i 2 NK .

Likewise, the comonotonic index put option price bPC[K] is given by:

bPC[K] =
X

i2NK

wiPi[Ki, ji] +
X

i2NK

wi(↵KPi[Ki, ji] + (1 � ↵K)Pi[Ki, ji+1]) (3.17)

where NK , NK and ↵K are defined in equation (3.16). The index ji should satisfy i 2 NK .
Under the condition that E[bS C] = E[S ], the approximate variance of the comonotonic index

price is defined as:

Var[bS C] ⇡ 2erT
hX

i=�l

�Ki bQC[Ki] � (E[S ] � K0)2 (3.18)

where bQC[Ki] is the comonotonic index option price, bQC[Ki]

bQC[Ki] =

8>>>><
>>>>:

bPC[Ki] if Ki < K0
bPC[Ki]+bCC[Ki]

2 if Ki = K0
bCC[Ki] if Ki > K0

(3.19)

3.1.2 Definition and Properties of HIX
[Dhaene and Vyncke, 2012] defines the HIX as the ratio of the variance of real market index
to the variance of comonotonic market index:

HIX[T ] =
Var[S ]

Var[S C]
(3.20)

where HIX[T] is the notation of T -year implied Herd Behaviour Index. [Dhaene and Vyncke,
2012] replaced Var[S C] by its approximation Var[bS c], so the HIX[T] is determined by com-
paring an appropriate linear combination of real index option prices with the same linear com-
bination of corresponding comonotonic index option prices:

HIX[T ] =
Var[S ]

Var[bS C]
=

2erT Ph
i=�l �KiQ[Ki] � (E[S ] � K0)2

2erT Ph
i=�l �Ki bQC[Ki] � (E[S ] � K0)2

(3.21)

where �Ki, Q[Ki] and QC[Ki] are defined by equations (3.5), (3.6) and (3.19) respectively.

Properties 4 (Properties of HIX) 1) Since variance is nonnegative and Var[S ]  Var[S C],

0  HIX[T ]  1 (3.22)

2) Boundaries can be achieved under the following conditions:

HIX[T ] = 0 if and only if S (t) is constant. (3.23)

and
HIX[T ] = 1 if and only if X(t) is comonotonic. (3.24)



Chapter 4

Stochastic Modeling of CIX and HIX

The processes of both CIX and HIX should be characterized in continuous time due to its
frequent trading. In this chapter, we first show two main approaches from [van Emmerich,
2006] and [Teng et al., 2016] to model correlation (CIX). Then, we define our two choices of
Correlation Stochastic Volatility (CSV) models and show some stylized facts. We also discuss
an additional approach which uses the Wishart A�ne Stochastic process to model correlation.
Finally, we present some stochastic models for HIX.

4.1 First approach to model CIX
[van Emmerich, 2006] introduced the first approach to model CIX. In this approach, the cor-
relation (CIX) is a function of a Brownian motion. Moreover, [van Emmerich, 2006] gave the
following properties of their models:

Properties 5 (Properties of CIX model) 1) The model is concentrated on [-1, 1],
2) The model varies around a mean,
3) The probability mass approaches zero in the boundary values,
4) There is a suitable number of parameters to calibrate the model to market data.

Here we describe the modeling approach in detail. Without loss of generality, let us con-
sider a mean-reverting stochastic process Xt,

dXt = a(t, Xt)dt + b(t, Xt)dWt, t , 0, X0 = x0 (4.1)

where W = {Wt, t , 0} is a standard Brownian motion. Next, we consider a function f (x)
which is twice continuously di↵erentiable on R. By applying Ito’s Lemma to Yt = f (Xt), we
have:

dYt = ã(t, Xt)dt + b̃(t, Xt)dWt, (4.2)

where
ã(t, Xt) = a(t, Xt)

@ f
@x

(Xt) +
1
2

b2(t, Xt)
@2 f
@x2 (Xt) (4.3)

b̃(t, Xt) = b(t, Xt)
@ f
@x

(Xt) (4.4)

22
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Since the correlation ⇢t takes value in the interval [�1, 1], the choice of f is restricted to func-
tions that can map the domain of Xt to the interval [�1, 1].

Here we consider two kinds of mean-reverting processes for Xt: Vasicek process and CIR
process. If Xt is assumed to be a Vasicek process, we have:

dXt = (⌘ � Xt)dt + &dWt, Xt 2 (�1,1), (4.5)

If Xt is assumed to be a CIR process, we have:

dXt = (⌘ � Xt)dt + &
p

XtdWt, Xt 2 (0,1), (4.6)

Since the domain of Vasicek process is (�1,1), based on [Teng et al., 2016]’s work, we
use the following mapping functions to model the correlation ⇢t:

f1(x) := tanh(x)
f2(x) := 2

⇡ arctan((⇡/2)x)
f3(x) := 2�(x) � 1,�(x) is the CDF of the standard normal distribution

(4.7)

Functions in (4.7) can map an underlying process Xt in the interval (�1,1) to a stochastic
correlation process ⇢t in the interval (�1, 1). It is clear that all these functions are symmetrical
and measurable. When Xt = 0, the stochastic correlation process ⇢t = 0. As Xt gets large, ⇢t

gets close to 1 but never reaches it. As Xt gets large and negative, ⇢t gets closet to -1 but never
reaches it either. Since perfect correlation rarely occurs in the real market, functions f1, f2 and
f3 are still useful to model the correlation ⇢t.

With the CIR process, the domain of mapping function is (0,1). We consider some new
mapping functions as follows:

f4(x) := �2e�kx + 1, for any k > 0
f5(x) := 2 tanh(x) � 1 (4.8)

Functions in (4.8) can map Xt in (0,1) to ⇢t in (�1, 1). As Xt decreases toward zero, ⇢t with
functions f4(x) or f5(x) approaches �1 but never reach it. Likewise, as Xt tends to positive
infinity, ⇢t approaches 1 but never reach it. Due to the rare occurrences of perfect correlation
in reality, functions f4(x) and f5(x) are still useful to model ⇢t.

In Table 4.1, we display six model specifications by combing the mapping functions (4.7),
(4.8) with a Vasicek and a CIR process. The coe�cients ã(t, Xt) and b̃(t, Xt) are obtained by
plugging functions (4.7), (4.8) to equation (4.2)
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Table 4.1: CIX model specifications

Xt f (Xt) ã(t, Xt) b̃(t, Xt)

Vasicek f1(x) (1 � f1(Xt)2)((⌘ � Xt) � f1(Xt)&2) (1 � f1(Xt)2)&

Vasicek f2(x) ( (⌘�Xt)
1+tan2( f2(Xt)⇡/2) �

⇡&2 tan( f2(Xt)⇡/2)
2(1+tan2( f2(Xt)⇡/2))2 ) &

(1+tan2( f2(Xt)⇡/2))

Vasicek f3(x) 2(⌘�Xt)p
2⇡

e�X2
t /2 � &2 Xtp

2⇡
e�X2

t /2 2&p
2⇡

e�X2
t /2

CIR f4(x) 2(⌘ � Xt)ke�kXt � &2Xtk2e�kXt 2&
p

Xtke�kXt

CIR f5(x) 2sech2(Xt)((⌘ � Xt) � &2Xt tanh(Xt)) 2&
p

Xtsech2(Xt)

4.2 Second approach to model CIX
Although the first approach stands out because of the ease of construction and the high degree
of analytical tractability, it lacks intuitive interpretation. For this reason, [van Emmerich, 2006]
proposed the second approach where the correlation ⇢t is a stochastic process driven by a
Brownian motion.

In details, [van Emmerich, 2006] chose a mean-reverting process with a deterministic
mean:

d⇢t = (✓ � ⇢t)dt +
q
&(1 � ⇢2

t )dWt, ⇢0 2 (�1, 1) (4.9)

where constant  � 0 is the speed of reversion, constant ✓ 2 (�1, 1) is the long term mean level
of ⇢t and & is a positive constant.

Based on [van Emmerich, 2006]’s work, [Teng et al., 2016] improved the second approach,
a more general stochastic correlation process, by modelling correlation as a hyperbolic func-
tion of any mean-reverting process. Their correlation process also satisfies the Properties 5
in Section 4.1. An interesting finding proposed by [Teng et al., 2016] is that the correlation
process (4.9) can be derived as a special case of their models. In fact, [Teng et al., 2016] first
defined a special mean-reverting process, then combined it with the function ⇢t = tanh(Xt).
After applying Ito’s Lemma and redefining the parameters, the authors derived the correlation
process shown in (4.9). Readers can refer to [Teng et al., 2016] for further details.

A modified Jacobi process, which is a general case of the correlation process (4.9), was pro-
posed by [Ma, 2009]. The authors assumed that the correlation ⇢t is a random walk following
a square root process:

d⇢t = �(⇢̄ � ⇢t)dt +
p
⇣(h � ⇢t)(⇢t � f )dWt, 1 � h � f � �1, h > ⇢̄ > f (4.10)

The correlation stochastic process ⇢t is centred around the equilibrium ⇢̄t with the speed of
reversion �. The bound for correlation process (4.10) is h � ⇢t � f . When h = 1, f = �1, the
process (4.10) is exactly the process (4.9).
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According to [Wilmott, ], the parameters of ⇢t should satisfy the following constraints to
make ⇢t never reach its bounds:

�(⇢̄ � f ) > ⇣(h � f )/2
�(h � ⇢̄) > ⇣(h � f )/2 (4.11)

Boundary classifications In [van Emmerich, 2006], the authors discussed the relation
between parameter values and boundary classifications. [van Emmerich, 2006] classified bound-
aries as attractive or unattractive boundaries. The attractive boundaries are further classified as
attainable or unattainable boundaries. The definition of attractive boundaries is presented as
follows:

Consider a stochastic process dYt = a(Yt)dt + b(Yt)dWt, y0 2 R with left bound l and right
bound r. Let m(v) = exp(�

R v
v0

2a(!)
b2(!) d!). v0 2 (l, r) and has no relevance to y0. The left bound l

is called attractive if and only if there is a y⇤ 2 (l, r) such that lima!l
R y⇤

a m(v)dv < 1. Otherwise
it is unattractive.

Similarly, let M(y) =
R y

y0
m(v)dv. The left bound l is attainable if and only if there is a

y⇤ 2 (l, r) such that lima!l
R y⇤

a

R y⇤

v
1

b2(y)m(y)dydM(v) < 1. Otherwise it is unattainable. The
analysis of the right bond are analogous.

In process (4.9), the boundaries of ⇢t are �1 and 1. By referring to [van Emmerich, 2006],
we summarized that

1) The left bound �1 is attractive and attainable if 
& (✓ + 1) < 1 otherwise the left bound is

unattractive and unattainable;
2) The right bound 1 is attractive and attainable if 

& (1� ✓) < 1 otherwise the right bound is
unattractive and unattainable;

3) Bounds -1 and 1 are unattainable if  � &
1±✓ ;

4) The behaviour of bounds is symmetric with respect to ✓;
5) Increasing the value of parameter  concentrates the process around the mean.

Transition density [van Emmerich, 2006] used the Fokker-Planck equation to determine
the transition density. Assume that & in process (4.9) equals to 1. The stochastic di↵erential
equation

d⇢t = a(t, ⇢t)dt + b(t, ⇢t)dWt, ⇢0 2 (�1, 1) (4.12)

possesses a transition density '(t, ⇢|⇢0) where ' satisfies the Fokker-Planck equation

@

@t
'(t, ⇢) +

@

@⇢
(a(t, ⇢)'(t, ⇢)) � 1

2
@2

@⇢2 (b(t, ⇢)2'(t, ⇢)) = 0 (4.13)

[van Emmerich, 2006] wants to find the transition density of (4.9) when t goes to infinity. The
' is required to fulfill the following structural conditions:

1)
R 1
�1 '(t, ⇢)d⇢ = 1;

2)
R 1
�1 '(t, ⇢)d⇢! ✓, as t ! 1.

To find a stationary solution '(⇢) = limt!1 '(t, ⇢), [van Emmerich, 2006] first considered
the process (4.9) with ✓ = 0, then extended it to the general case where ✓ , 0. The author
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derived an unique solution

'(⇢) = c(
1 � ⇢
1 + ⇢

)�·✓(1 � ⇢2)�1 (4.14)

with parameter c which makes
R 1
�1 '(⇢) = 1 hold. However, we are not able to compute the

constant c analytically but it can be determined numerically.
[van Emmerich, 2006] also discussed some features of the transition densities:
1) ' is concentrated on [-1,1]
2) ' id symmetric with respect to ✓ in the sense of '✓(⇢) = '�✓(�⇢).
3) If ✓ = 0, the global maximum is attained at ⇢ = 0.
4) The probability mass vanished when getting away from the mean. In particular, it ap-

proaches zero in the boundary values.

4.3 New CSV Models and properties of CIX
In this section, we first define two Correlation Stochastic Volatility (CSV) models for CIXt =

⇢t. Then we will describe an Euler discretization methodology and show some stylized facts.

4.3.1 Two CSV models
Recall that [Teng et al., 2016] specified a stochastic correlation process by combining a Vasicek
process Xt with a mapping function ⇢t = f (Xt) where f (x) = tanh(x) :

d⇢t = (1 � ⇢2
t )

⇣
((⌘ � artanh(⇢t)) � ⇢t&

2)dt + &dWt

⌘
(4.15)

where t � 0, ⇢0 2 (�1, 1), , & > 0, ⌘ 2 R and Wt is a Brownian motion.
Now we consider the process (4.15) with stochastic volatility.

CSV model 1 8>>>>>>>><
>>>>>>>>:

dXt = #(⌘ � Xt)dt +
p
�tdWX

t

d�t = (✓ � �t)dt + &
p
�tdW�

t

dhWX,W�it = ⇠1dt

(4.16)

where Xt is a mean-reverting process. In this thesis, Xt = artanh(CIXt). ⌘ is the long term mean
level of Xt, # is the speed of reversion, and

p
�t is the instantaneous volatility of Xt. ✓ is the

long term mean level of �t,  is the speed of reversion of �t, and & is the volatility of �t. WX
t ,W�

t
are Brownian motions with correlation ⇠1.

Note that if the parameters of volatility satisfy the Feller condition 2✓ > &2, the process �t

is strictly positive. In this thesis, we choose the mapping function f = tanh(x) so we have
⇢t = f (Xt) = tanh(Xt). Also note that f 2 C2(R) and

⇢t = f (Xt) : (�1,1)! (�1, 1) (4.17)
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Recall that [Ma, 2009] developed a modified Jacobi process to model ⇢t,

d⇢t = �(⇢̄ � ⇢t)dt +
p
⇣(h � ⇢t)(⇢t � f )dWt, 1 � h � f � �1, h > ⇢̄ > f (4.18)

where �(⇢̄� ⇢t) is a drift,
p
⇣(h � ⇢t)(⇢t � f ) is a di↵usion. h and f are upper and lower bounds

of ⇢t. The correlation stochastic process ⇢t is centred around the long term mean level, ⇢̄t, with
the speed of reversion, �.

In our CSV model 2, we consider the Jacobi process (4.18) with stochastic volatility.

CSV model 2 8>>>>>>>>><
>>>>>>>>>:

d⇢t = �(⇢̄ � ⇢t)dt +
p
⇣t(h � ⇢t)(⇢t � f )dW⇢

t

d⇣t = (✓ � ⇣t)dt + &
p
⇣tdW⇣

t

dhW⇢,W⇣it = ⇠2dt

(4.19)

where ⇢t is the stochastic correlation process. ⇢̄ is the long term mean level of ⇢t, and
p
⇣t is the

stochastic volatility. h and f are upper and lower bounds of ⇢t. ✓ is the long term mean level
of ⇣,  is the speed of reversion of ⇣, and & is the volatility of volatility. W⇢

t ,W
⇣
t are Brownian

motions with correlation ⇠2.

Feller condition on the volatility process ensures positivity.When h = 1, f = �1, the constraint
used to prevent ⇢t from hitting its bounds is ⇣t < �min{(⇢̄+1), (1� ⇢̄)} (see [Ma, 2009] for more
on this). Since ⇢̄ ⇡ 0.5 and � ⇡ 1.1 in our analysis, the volatility ⇣t is supposed to be smaller
than 0.5. Empirically, the probability of max0t2{⇣t} � 0.5 is almost zero thus the correlation
⇢t rarely hits its bounds.

4.3.2 Discretization and Stylized facts.
In this section we use Euler-Maruyama method to do a discretization of our advanced CSV
models. First we introduce some additional parameters: t0 is the time origin; T is the horizon
of simulation; N is the number of simulation steps; �t = T/N,�t > 0 is the partition size and
partition points are ti = i�t, i = 0, 1, ...,N. �Wti = Wti+1 �Wti , i = 0, 1, ...,N are independent and
identically distributed normal random variables with mean 0 and variance �t. Without loss of
generality, we choose t0 = 0,T = 2,N = 1000 in this thesis.

Discretization of CSV model 1

Since the correlation of WX
t and W�

t is ⇠1, we can rewrite formula (4.16) as follows:

8>><
>>:

dXt = #(⌘ � Xt)dt +
p
�t(⇠1dW�

t +
q

1 � ⇠2
1dW1

t )
d�t = (✓ � �t)dt + &

p
�tdW�

t

(4.20)

where W�
t and W1

t are independent Brownian motions.
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Algorithm 3 (Algorithm for simulation of correlation (4.16)) Based on [Lord et al., 2010]’s
full truncation method, the discretization for the squared volatility process �t in formula (4.20)
is:

�ti+1 = �ti + (✓ �max(0, �ti))�t + &
p

max(0, �ti)�W�
ti , i = 0, 1, ....,N (4.21)

where �W�
ti , i = 0, 1, ....,N are iid normal random variables with mean 0 and variance �t.

Now given the value of , ✓, &, �0, we can use Euler-Maruyama method to obtain nonnega-
tive variance vector over time:

� = (�0, �1, ..., �T ) (4.22)

Further, given the value of #, ⌘, X0, we can use Euler-Maruyama method to simulate the un-
derlying process Xt over [0,T ]:

Xti+1 = Xti + #(⌘ � Xti)�t +
p

max(0, �ti)(⇠1�W�
ti +

q
1 � ⇠2

1�W1
ti ), i = 0, 1, ....,N (4.23)

where �W1
ti , i = 0, 1, ....,N are iid normal random variables with mean 0 and variance �t. �W1

ti
should be independent with �W�

ti .
Applying the mapping function f (x) = tanh(x) to an underlying process Xt, the correlation

process ⇢t is therefore:

⇢ti = f (Xti) = tanh(Xti), i = 0, 1, ....,N (4.24)

where ⇢ti 2 (�1, 1).

For exemplary purposes, we choose the value of parameters , ✓, &, �0 as in [Heston, 1993], see
Table 4.2. Besides, we keep �0 = ✓ for varying ✓ and X0 = ⌘ for varying ⌘ to identify the
mean reversion in our diagrams. Figure 4.1 shows the correlation process with three varying
volatility parameters: Speeds of reversion (), long term mean level (✓) and volatilities of
volatility parameter (&). All other parameters are held constant as shown in Table 4.2. Besides,
we hold �0 = ✓ for di↵erent long-run variances (✓) in the middle panel. To keep consistency,
we use the same black curve in each panel to depict the process of ⇢t with default parameter
values.
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Model Parameter Value

Advanced model 1 Initial volatility
p
�0 = 0.1

Speed of reversion of the squared volatility parameter  = 2

Long term mean level of the squared volatility parameter ✓ = 0.01

Volatility of the squared volatility parameter & = 0.1

Initial value of the underlying process X0 = 0.3

Long term mean level of the underlying process ⌘ = 0.3

Speed of reversion of the underlying process # = 1.1

Correlation of WX
t and W�

t ⇠1 = �0.7

Advanced model 2 Initial volatility
p
⇣0 = 0.1

Speed of reversion of the squared volatility parameter  = 2

Long term mean level of the squared volatility parameter ✓ = 0.01

Volatility of the squared volatility parameter & = 0.1

Initial value of correlation process ⇢0 = 0.3

Long term mean level of the correlation parameter ⇢̄ = 0.3

Speed of reversion of the correlation parameter � = 1.1

Bounds of the correlation parameter h = 1, f = �1

Correlation of W⇢
t and W⇣

t ⇠2 = �0.7

Table 4.2: Default parameters for discretization CSV model 1 & 2

Discretization of CSV model 2

Since the correlation of W⇢
t and W⇣

t is ⇠2, we rewrite formula (4.19) as follows:
8>><
>>:

d⇢t = �(⇢̄ � ⇢t)dt +
p
⇣t(h � ⇢t)(⇢t � f )(⇠2dW⇣

t +
q

1 � ⇠2
2dW2

t )
d⇣t = (✓ � ⇣t)dt + &

p
⇣tdW⇣

t

(4.25)

where W⇣
t and W2

t are independent Brownian motions.

Algorithm 4 (Algorithm for simulation of correlation (4.19)) The discretization for volatil-
ity ⇣ in formula (4.25) is based on [Lord et al., 2010]’s full truncation method:

⇣ti+1 = ⇣ti + (✓ �max(0, ⇣ti))�t + &
p

max(0, ⇣ti)�W⇣
ti , i = 0, 1, ....,N (4.26)

where �W⇣
ti , i = 0, 1, ....,N are iid normal random variables with mean 0 and variance �t.

Given the value of , ✓, &, ⇣0, we can use Euler-Maruyama method to obtain nonnegative
variance vector over time:

⇣ = (⇣0, ⇣1, ..., ⇣T ) (4.27)
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Figure 4.1: Correlation process ⇢t on CSV model 1 for three varying volatility parameters:
Speeds of reversion () is on the left, Long term mean level (✓) is in the middle, and Volatilities
of volatility parameter (&) is on the right.

.

Then, we set the following function to make (h � g(⇢ti))(g(⇢ti) � f ), i = 0, 1, ....,N positive over
[0,T ].

g(⇢ti) =

8>>><
>>>:

�1 if ⇢ti  �1
1 if ⇢ti � 1
⇢ti otherwise

(4.28)

Hence, the correlation process ⇢t in formula (4.25) can be discretized via Euler-Maruyama
method with the given value of h, f , ⇢̄, �, ⇢0. For i = 0, 1, ....,N, we have

⇢ti+1 = g(⇢ti) + �(⇢̄ � g(⇢ti))�t

+
p
⇣ti(h � g(⇢ti))(g(⇢ti) � f )(⇠2�W⇣

ti +
q

1 � ⇠2
2�W2

ti ),
(4.29)

where �W2
ti , i = 0, 1, ....,N are iid normal random variables with mean 0 and variance �t. �W2

ti
is independent with �W⇣

ti

We choose the value of parameters , ✓, &, ⇣0 by referring to [Heston, 1993], see Table 4.2.
⇣0 = ✓ is held for varying ✓, and ⇢0 = ⇢̄ is held for varying ⇢̄ to display the mean reversion in our
diagrams. Figure 4.2 shows the process of correlation with varying , ✓ and & respectively. For
consistency, we use the same black curve in each panel to present the process of the correlation
⇢t with default parameter values.

Even though patterns in Figures 4.1 and 4.2 look similar, there are slight di↵erences be-
tween CIX simulated by these advanced CSV model 1 and CIX simulated by these advanced
CSV model 2. To be specific, the CIX estimated by the CSV model 2 is relative greater than
its counterpart estimated by the CSV model 1, and the di↵erence is up to 3%. However, these
slight di↵erences will be enlarged in pricing, see Figures 5.2, 5.3,5.4 and 5.5.
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Figure 4.2: Correlation process ⇢t on CSV model 2 with three varying volatilities parameters:
Speeds of reversion () is on the left, Long term mean level (✓) is in the middle, and Volatilities
of volatility parameter (&) is on the right. For each panel, all other things being equal, only the
parameter of interest can vary. Besides, we hold ⇣0 = ✓ for varying ✓ in the middle panel.

.

Stylized facts

In this section, we show the volatility of ⇢t, denoted by �⇢t , and the leverage for both models
using Ito’s lemma.

Stylized Facts of CSV model 1 Since we consider ⇢t = f (Xt) = tanh(Xt) in CSV model
1, a stochastic di↵erential equation for ⇢t can be derived by Ito’s lemma

d⇢t = d tanh(Xt)
= (1 � ⇢2

t )
⇣
(#(⌘ � artanh(⇢t)) � ⇢t�t)dt +

p
�tdWX

t

⌘ (4.30)

From formula (4.30), we obtain �⇢t = (1 � ⇢2
t )
p
�t. By Ito’s lemma,

d�2
⇢t
= d(@ f (Xt)

@Xt

p
�t)2

= �tdm(Xt) + m(Xt)d�t + d�tdm(Xt)
(4.31)

where m(Xt) := (@ f (Xt)
@Xt

)2. Moreover, we have the following lemma:

Lemma 4.3.1

�tdm(Xt) =
✓
@m(Xt)
@Xt

#(⌘ � Xt)�t +
1
2
@2m(Xt)
@X2

t
�2

t

◆
dt + @m(Xt)

@Xt
�3/2

t dWX
t

m(Xt)d�t = (✓ � �t)m(Xt)dt + &
p
�tm(Xt)dW�

t
d�tdm(Xt) = @m(Xt)

@Xt
&⇠1�tdt

(4.32)
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Hence,

d�2
⇢t
=

✓
(✓ � �t)m(Xt) + (&⇠1 + #(⌘ � Xt))@m(Xt)

@Xt
�t +

1
2
@2m(Xt)
@X2

t
�2

t

◆
dt + @m(Xt)

@Xt
�3/2

t dWX
t + &

p
�tm(Xt)dW�

t

= (1 � ⇢2
t )2

⇣
((✓ � �t) � 4⇢t�t(&⇠1 + #(⌘ � artanh(⇢t))) + �2

t (10⇢2
t � 2))dt � 4⇢t�

3/2
t dWX

t + &
p
�tdW�

t

⌘

(4.33)
From equations (4.30) and (4.33), we obtain

dh⇢,�2
⇢it = (�4⇢t�t + &⇠1) (1 � ⇢2

t )3�tdtp
dh⇢it =

p
�t(1 � ⇢2

t )2dtq
dh�2

⇢it =
q⇣

16⇢2
t �

2
t + &

2 � 8⇠1&⇢t�t

⌘
(1 � ⇢2

t )4�tdt
(4.34)

where h, i is quadratic variation (covariation). Therefore, the leverage of CSV model 1 is given
by

Leverage = dh⇢,�2
⇢itp

dh⇢it
p

dh�2
⇢it

= �4⇢t�t+&⇠1p
16⇢2

t �
2
t +&

2�8⇠1&⇢t�t

(4.35)

Stylized Facts of CSV model 2 From formula (4.19),

d⇢t = �(⇢̄ � ⇢t)dt +
p
⇣t(h � ⇢t)(⇢t � f )dW⇢

t (4.36)

the volatility of ⇢t is �⇢t =
p
⇣t(h � ⇢t)(⇢t � f ). For simplicity, we define  (⇢t) := (h�⇢t)(⇢t� f )

such that �2
⇢t
= ⇣t (⇢t). Applying Ito’s lemma to �2

⇢t
, we obtain

d�2
⇢t
= d(⇣t (⇢t))
= ⇣td (⇢t) +  (⇢t)d⇣t + d (⇢t)d⇣t

(4.37)

Next, we consider ⇣td (⇢t),  (⇢t)d⇣t and d (⇢t)d⇣t respectively. Since we have the following
lemma

Lemma 4.3.2

 (⇢t)d⇣t = (✓ � ⇣t) (⇢t)dt + &
p
⇣t (⇢t)dW⇣

t

⇣td (⇢t) =
✓
�(⇢̄ � ⇢t)@ (⇢t)

@⇢t
⇣t +

1
2
@2 (⇢t)
@⇢2

t
 (⇢t)⇣2

t

◆
dt + @ (⇢t)

@⇢t

p
 (⇢t)⇣3/2

t dW⇢
t

d⇣td (⇢t) = (&
p
⇣tdW⇣

t )(@ (⇢t)
@⇢t

p
 (⇢t)⇣tdW⇢

t ) = @ (⇢t)
@⇢t

p
 (⇢t)&⇠2⇣tdt

(4.38)

the stochastic di↵erential equation for �2
⇢t

is given by

d�2
⇢t
=

✓
(✓ � ⇣t) (⇢t) + (&⇠2

p
 (⇢t) + �(⇢̄ � ⇢t))@ (⇢t)

@⇢t
⇣t +

1
2
@2 (⇢t)
@⇢2

t
 (⇢t)⇣2

t

◆
dt

+@ (⇢t)
@⇢t

p
 (⇢t)⇣3/2dW⇢

t + &
p
⇣t (⇢t)dW⇣

t

(4.39)

From equations (4.36) and (4.39), we obtain

dh⇢,�2
⇢it =

⇣
@ (⇢t)
@⇢t

⇣t + ⇠2& 1/2(⇢t)
⌘
 (⇢t)⇣tdtp

dh⇢it =
p
⇣t (⇢t)dtq

dh�2
⇢it =

q⇣
(@ (⇢t)

@⇢t
)2⇣2

t + &
2 (⇢t) + 2⇠2&

@ (⇢t)
@⇢t

⇣t 1/2(⇢t)
⌘
 (⇢t)⇣tdt

(4.40)
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Therefore, the leverage for CSV model 2 is given by

Leverage = dh⇢,�2
⇢itp

dh⇢it
p

dh�2
⇢it

=
@ (⇢t )
@⇢t

⇣t+⇠2& 1/2(⇢t)
q

( @ (⇢t )
@⇢t

)2⇣2
t +&

2 (⇢t)+2⇠2&
@ (⇢t )
@⇢t

⇣t 1/2(⇢t)

(4.41)

See proof of lemma in Appendix.

4.4 Additional approach to model SCP
The Wishart A�ne Stochastic Correlation (WASC) model is a new continuous time process
that can be considered as a multivariate extension of the [Heston, 1993] model, with a more
accurate correlation structure. The framework of this model was introduced in [Gourieroux
and Sufana, 2003]. It relies on the following assumption.

Assumption 1 The evolution of asset returns is conditionally Gaussian while the stochastic
variance -covariance matrix follows a Wishart process.

In formulas, we consider a n-dimensional risky asset S t whose risk-neutral dynamics are
given by

dS t = diag[S t](µdt +
p
⌃tdZt) (4.42)

where µ is the vector of returns and Zt 2 Rn is a vector Brownian motion. The variance-
covariance matrix of the risky assets is denoted by

P
t which is assumed to satisfy the following

dynamics:
d⌃t = (⌦⌦> + M⌃t + ⌃tM>)dt +

p
⌃tdWtQ + Q>(dWt)>

p
⌃t (4.43)

with ⌦,M,Q 2 Mn, ⌦ invertible, and Wt 2 Mn a matrix Brownian motion. In [Da Fonseca
et al., 2014], authors assume that the above dynamics are inferred from observed asset price
time series, hence the stochastic di↵erential equation is written under the historical measure.

(4.43) characterizes the Wishart process introduced by [Bru, 1991]. Note that in terms of
factor analysis, this model not only allows the stochastic evolution of principal components
(eigenvalues of the covariance matrix) but also a stochastic evolution of the factor loadings of
observed factors with respect to latent factors.

In order to ensure the strict positivity and the typical mean-reverting feature of the volatility,
the matrix M is assumed to be negative semi-definite while ⌦ satisfies

⌦⌦> = �⌦>⌦ (4.44)

with the real parameter � > n � 1 ( see [Bru, 1991]).
In full analogy with square-root process, the term ⌦⌦> is related to the expected long-term

variance -covariance matrix ⌃1 through the solution to the following linear equation:

⌦⌦> = M⌃1 + ⌃1M> (4.45)

Moreover, Q is the volatility of the volatility matrix, and its parameters will be crucial in order
to explain some stylized observed e↵ects in equity markets.
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If there is negative correlation between the noise driving the returns and the noise driving
their variance, it is possible to approximately reproduce observed negative skewness within the
[Heston, 1993] model. This is why [Da Fonseca et al., 2007] using the following assumption
to prove the linear relationship among the noises:

Assumption 2 The Brownian motions of the asset returns and those driving the covariance
matrix are linearly correlated.

[Da Fonseca et al., 2007] proved that Assumption 2 leads to the following relation:

dZt = dWt⌘ +
p

1 � ⌘>⌘dBt (4.46)

with dZt = (dZ1, dZ2, ..., dZn)>. B is a vector of independent Brownian motions orthogonal to
W.

[Da Fonseca et al., 2007] and [Da Fonseca et al., 2014] show in the special case of two
assets (n=2), for which the variance- covariance matrix is given by

⌃t =

"
⌃11

t ⌃12
t

⌃12
t ⌃22

t

#
(4.47)

(4.46) is written by:

dZ1
t =

q
1 � (⌘2

1 + ⌘
2
2)dB1

t + (dW11
t ⌘1 + dW12

t ⌘2)

dZ2
t =

q
1 � (⌘2

1 + ⌘
2
2)dB2

t + (dW21
t ⌘1 + dW22

t ⌘2)
(4.48)

The correlation between assets’ returns and their volatilities admit a closed form expression
, highlighting the impact of the ⌘ parameters on its value and positivity:

corr(dlogS 1, d⌃11) = ⌘1Q11+⌘2Q21p
Q2

11+Q2
21

corr(dlogS 2, d⌃22) = ⌘1Q12+⌘2Q22p
Q2

12+Q2
22

(4.49)

where we recall that
p
⌃11 represents the volatility of the first asset. Therefore, the sign and

magnitude of the leverage e↵ects are determined by both the matrix Q and the vector ⌘.
It is well known that in two asset case (n = 2).

⇢12
t =

⌃12
tp
⌃11

t ⌃
22
t

(4.50)

Di↵erentiating ⇢12
t

p
⌃11

t ⌃
22
t = ⌃

12
t we obtain

q
⌃11

t ⌃
22
t d⇢12

t + ⇢
12
t d(

q
⌃11

t ⌃
22
t ) + (.)dt = d⌃12

t (4.51)

and
q
⌃11

t ⌃
22
t d⇢12

t + ⇢
12
t (1/2

s
⌃22

t

⌃11
t

d⌃11
t + 1/2

s
⌃11

t

⌃22
t

d⌃22
t + (.)dt = d⌃12

t (4.52)
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then
d⇢12

t =
1

p
⌃11

t ⌃
22
t

d⌃12
t � 1/2⇢12

t (
1
⌃11

t
d⌃11

t +
1
⌃22

t
d⌃22

t ) + (.)dt (4.53)

d⇢12
t =

1
p
⌃11

t ⌃
22
t

(d⌃12
t �

⇢12
t

2⌃11
t

d⌃11
t �

⇢12
t

2⌃22
t

d⌃22
t + (.)dt (4.54)

By using the covariation among the Wishart elements we have

dh⇢12it = 1
⌃11

t ⌃
22
t

[⌃11
t (Q2

12 + Q2
22) + 2⌃12

t (Q11Q12 + Q21Q22) + ⌃22
t (Q2

11 + Q2
21)]

+(⌃12
t )2( Q2

11+Q2
21

⌃11
t
+

Q2
12+Q2

22
⌃22

t

+2 ⌃12
t

⌃11
t ⌃

22
t

(Q11Q12 + Q21Q22)) � 2⌃
12
t
⌃11

t
(⌃11

t (Q11Q12 + Q21Q22) + ⌃12
t (Q2

11 + Q2
21))

�2⌃
12
t
⌃22

t
(⌃22

t (Q11Q12 + Q21Q22) + ⌃12
t (Q2

12 + Q2
22))dt

(4.55)
which leads to
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Now let us compute the drift of the process ⇢12
t .

We di↵erentiate both sides of the equality ⇢12
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Now we use the formulas of the covariation of the Wishart elements and we arrive to an ex-
pression which can be written as follows:
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From the definition of ⌦ =
p
�Q> and the Gindikin condition we deduce that Bt is negative.

As a by-product, we easily deduce the instantaneous covariation between the Wishart element
⌃11

t and the correlation process:
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[Da Fonseca et al., 2007] also gave the following proposition:

dh⇢12, S (i)it = (
⌃ii

t

⌃
j j
t

(1 � (⇢12)2)Tr[RjQ])dt i, j = 1, 2. (4.61)

where S is the vector of asset price.

4.5 Stochastic modelling of HIX
[Guillaume and Linders, 2015] presented some di↵erent plausible stochastic models for HIX
by referring to [van Emmerich, 2006] and [Teng et al., 2013]. Their HIX models are obtained
by combining some mean-reverting processes with some mapping functions. These functions
can map the domain of a mean-reverting process to an unit interval. The such obtained Ito
processes preserve the mean-reverting trend of the underlying process while satisfying the fun-
damental properties of the HIX index which has [0,1] as domain. Even though the Brownian
motion is not a mean-reverting process, [Guillaume and Linders, 2015] combined it with a
mapping function to take the advantage of an analytical expression for the conditional transi-
tion probability. [Guillaume and Linders, 2015] predicted HIX with parameters inferred from
maximizing the conditional transition density. Another important result in [Guillaume and Lin-
ders, 2015] is that for a given underlying Ito process, the choice of mapping functions does not
really matter. Readers can consult the numerical study in [Guillaume and Linders, 2015] for
more information.

Let us consider an Ito process defined as (4.1) and a mapping function g(x). g(x) is twice
continuously di↵erentiable on R. The Vasicek process and CIR process are defined as process
(4.15) and process (4.6).

g1(x) := tanh(x)
g2(x) := tanh(x)+1

2
g3(x) := 1 � exp(�x)
g4(x) := 1

1+exp(�x)

(4.62)

Combing mapping functions in (4.62) with two mean-reverting processes leads to four model
specifications as shown in Table 4.3. The coe�cients ã(t, Xt) and b̃(t, Xt) are obtained by plug-
ging formula (4.62) to formula (4.2)
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Table 4.3: HIX model specifications

Xt g(Xt) ã(t, Xt) b̃(t, Xt)

Vasicek g2(x) 
2sech2(Xt)(⌘ � Xt) � &2

2 tanh(Xt)sech2(Xt) &
2sech2(Xt)

Vasicek g4(x)  exp(Xt)
(exp(Xt)+1)2 (⌘ � Xsecht) + &2

2
exp(Xt)(1�exp(Xt))

(exp(Xt)+1)3 & exp(Xt)
(exp(Xt)+1)2

CIR g1(x) sech2(Xt)(⌘ � Xt) � ⌘2tanh(Xt)sech2(Xt)Xt &sech2(Xt)
p

Xt

CIR g3(x) exp(�Xt)(⌘ � Xt) � &2

2 exp(�Xt)Xt &exp(�Xt)
p

Xt



Chapter 5

Applications of CIX

In this chapter, we introduce some applications of depended indices. We first give an example
of constructing covariance and correlation swaps for two risky assets. Then we perform an
empirical study by applying our CSV models in Section 4.3 to S&P 500 Implied Correlation
Indexes historical data. Finally, we propose two digital CIX options and price them via Monte
Carlo method.

5.1 Covariance and correlation Swap for two risky assets
[Salvi and Swishchuk, 2014]

Consider a model with two risky assets and a risk free bond. Assuming that the risky assts
satisfy the following stochastic di↵erential equations

dS (1)
t = S (1)

t (µ(1)
t dt + �(1)(xt)dw(1)

t )
dS (2)

t = S (2)
t (µ(2)

t dt + �(2)(xt)dw(2)
t )

(5.1)

where µ(1), µ(2) are deterministic functions of time, and (w(1)
t )t, (w(2)

t )t are Brownian motions
with quadratic covariance given by d < w(1)

t ,w
(2)
t >= ⌘tdt. Note that (w(1)

t )t, (w(2)
t )t are assumed

independent of the Markov process xt. A stochastic process xt is called Markov if P(xtn 
xn|xtn�1 , ..., xt1) = P(xtn  x|xtn�1) for every n and t1 < t2 < ... < tn (see [Papoulis, 1984]).

Covariance swaps and a simple Pricing model A covariance swap is a covariance forward
contract on the realized covariance between two risky assets for which payo↵ at maturity is
equal to

N(CovR(S (1), S (2)) � Kcov) (5.2)

where Kcov is a strike reference value, N is the notional amount and CovR(S (1), S (2)) is the
realized covariance of the two assets S (1) and S (2) defined by

CovR(S (1), S (2)) =
1
T

[lnS (1)
T , lnS (2)

T ] =
1
T

Z T

0
⌘t�

(1)(xt)�(2)(xt)dt (5.3)

38
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The value of a covariance swap for Markov-modulated stochastic volatility is

Pcov(x) = E{e�rT (CovR(S (1), S (2)) � Kcov)} = e�rT { 1
T

Z T

O
⌘tetQ[�(1)(x)�(2)(x)]dt � Kcov} (5.4)

where we assumed that N = 1.

Correlation swaps and a simple Pricing model A correlation swap is a forward contract on
the correlation between the underlying assets S (1), S (2) for which payo↵ at maturity is equal to

N(CorrR(S (1), S (2)) � Kcorr) (5.5)

where Kcorr is a strike reference level, N is the notional amount and CorrR(S (1), S (2)) is the
realized correlation defined by

CorrR(S (1), S (2)) =
CovR(S (1), S (2))

q
�(1)2

R (x)
q
�(2)2

R (x)
(5.6)

where the realized variance is given be

�(i)2

R (x) =
1
T

Z T

0
(�(i)(xt))2dt, i = 1, 2 (5.7)

The price of the correlation swap is the expected present value of the payo↵ in the risk neutral
world

Pcorr(x) = E{e�rT (CorrR(S (1), S (2)) � Kcorr)} (5.8)

where we set N = 1 for simplicity.

5.2 Empirical study
In this section we perform an empirical analysis under CSV models with historical data of S&P
500 Implied Correlation Indices.

5.2.1 Data and properties
The historical data of S&P 500 Implied Correlation Indexes accessed from CBOE website are
displayed in Figure 5.1. We see that KCJ2009 almost exceeds the upper bound 1 because of the
2008 crisis while other CIXs take values within (0, 1). Higher CIX suggests a herd behaviour
during a crisis, which has been discussed in [Dhaene and Vyncke, 2012]. CIX exceeded 0.5
from 2008 to 2016 but fall in 2017. The Table 5.1 displays five summary statistics for CIXs:
median, mean, mode, excess kurtosis and skewness. Most CIXs have positive kurtosis indi-
cating a fat-tailed distribution. The negative skewness indicates that the data distribution is
left-skewed.

We first fit ARMA models to CIX series then perform an ARCH Lagrange multiplier Test
with a lag of 12. The outputs of ARCH test for di↵erent CIXs are shown in Table 5.2. If
p-value is less than 0.05, we reject the null hypothesis and detect ARCH e↵ects. From Table
5.2, we see that all CIX series have ARCH e↵ects except for KCJ 2012.

http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/implied_correlation_hist.csv
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Figure 5.1: S& P 500 Implied Correlation Indexes between 2007-01-03 and 2017-11-17 re-
leased by CBOE. Symbols KCJ,ICJ and JCJ are cycled as time elapses but some of them are
overlapped. KCJ 2009 = 105.93 on 2008-11-20 implies that the CIX on that day was 105.93.
This calculation was based on individual options that expired at Jan.2009

.

CIX Median Mean Mode Kurtosis Skewness

KCJ2009 0.470 0.489 0.401 8.426 2.484

ICJ2010 0.558 0.568 0.535 -1.011 0.254

JCJ2011 0.637 0.648 0.621 6.728 -0.716

KCJ2012 0.654 0.673 0.625 2.112 0.202

ICJE2013 0.661 0.664 0.628 0.108 -0.285

JCJ2014 0.640 0.640 0.833 -0.763 -0.248

KCJ2015 0.565 0.571 0.660 0.802 0.006

ICJ2016 0.592 0.576 0.639 1.563 -1.168

JCJ2017 0.594 0.581 0.642 1.522 -1.121

KCJ2018 0.532 0.494 0.460 -0.341 -0.816

Table 5.1: Table of 5 basic summary statistics for CIXs: median, mean, mode, excess kurtosis
and skewness.
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CIX �2 value degree of freedom P value ARCH e↵ects

KCJ2009 277.01 12 < 2.2 ⇤ 10�16 Y

ICJ2010 52.524 12 5.006 ⇤ 10�7 Y

JCJ2011 29.056 12 0.003866 Y

KCJ2012 13.618 12 0.3258 N

ICJE2013 38.682 12 0.0001187 Y

JCJ2014 79.182 12 5.91 ⇤ 10�12 Y

KCJ2015 183.56 12 < 2.2 ⇤ 10�16 Y

ICJ2016 43.962 12 1.55 ⇤ 10�5 Y

JCJ2017 52.332 12 5.413 ⇤ 10�7 Y

KCJ2018 34.015 12 0.0006708 Y

Table 5.2: Table of ARCH e↵ects for CIXs based on S&P 500 Implied Correlation Indexes
from January 2009 using ArchTest() in R. Y represents ARCH e↵ects while N suggests no
ARCH e↵ects.
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5.2.2 Estimation
Next we estimate some parameters by using an autoregressive representation and the method
of least squares. We are interested in the parameters driving the correlation excluding those
driving the volatility. It should be noted that a full estimation exercise would be quite chal-
lenging due to the non-observability (hidden) nature of the stochastic volatility and the lack
of closed-form expression for moments or Fourier transforms of the underlying. For our first
CSV model, we redo an ARCH Test for Xt = artanh(CIXt). From Table 5.3, we see most of Xt

series has ARCH e↵ects.

Year �2 value degree of freedom P value ARCH e↵ects

2009 118.98 12 < 2.2 ⇤ 10�16 Y

2010 51.235 12 8.465 ⇤ 10�7 Y

2011 44.033 12 1.508 ⇤ 10�5 Y

2012 36.826 12 0.0002384 Y

2013 26.034 12 0.01061 Y

2014 55.965 12 1.214 ⇤ 10�7 Y

2015 168.55 12 < 2.2 ⇤ 10�16 Y

2016 31.31 12 0.001766 Y

2017 79.118 12 6.079 ⇤ 10�12 Y

2018 15.597 12 0.2104 N

Table 5.3: Table of ARCH e↵ects for Xt = artanh(CIXt) using ArchTest() in R. Y represents
ARCH e↵ects while N suggests no ARCH e↵ects.

Due to the varying volatility of correlation, the disturbance variances in linear regression
model is heteroscedastic. Although the disturbance process is unknown, it is similar to an
autoregressive conditionally heteroscedastic (ARCH) process. Therefore, our analysis takes
advantage of ARCH errors that are serial uncorrelated but have time-varying conditional vari-
ance. Since [Pantula, 1988] present the consistency of the ordinary least squares estimators for
a p-th order autoregressive model with ARCH errors, we can use the method of least squares
underlying a regression analysis to estimate the derived parameters even though the model has
ARCH errors. In the following context, the varying volatility of correlation in each model
is assumed to be constant for estimating the parameters of interest. Since we only consider
positive volatilities, we acknowledge that there is bias in the simulation.

Estimating parameters on CSV model 1

Assuming the volatility of underlying process Xt is constant, we write the autoregressive rep-
resentation in formula (4.20) as follows

Xti+1 = #⌘�t + (1 � #�t)Xti +
p
�Zti i = 0, 1, ....,N (5.9)
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where Xt = artanh(CIXt) and
p
� is a constant volatility.

The formula (5.9) can be shown in a general form of Linear Regression:

Y = �01N + �1X(1) + ✏ (5.10)

where 1N is a N-vector of ones, ✏ is an error vector, and

�0 = #⌘�t
�1 = 1 � #�t (5.11)

Y =
h
Xt1 , Xt2 , · · · , XtN

i>

X(1) =
h
Xt0 , Xt1 , · · · , XtN�1

i>

✏ =
hp
�Zt0 ,

p
�Zt1 , · · · ,

p
�ZtN�1

i>
(5.12)

Table 5.4 displays that errors ✏ are ARCH errors. Thus, we have

#̂ = 1��̂1
�t

⌘̂ = �̂0

#̂�t
= �̂0

1��̂1

(5.13)

We take advantage of the constant
p
� to derive the estimated long-run variance ✓̂ as the

squared volatility � follows a mean-reverting process with mean ✓. To be specific, Var(✏),
the squared residuals, is an approximation of ✓�t thus the estimator of long-run variance is
✓̂ = Var(✏)

�t .
The historical dataset shows the time-to-maturity T of CIXs is same equal to 2 years. The

step size �t is set to be 0.004. The estimation of parameters has been shown in Table 5.5.

Year �2 value degree of freedom P value ARCH e↵ects

2009 313.04 12 < 2.2 ⇤ 10�16 Y

2010 52.181 12 5.759 ⇤ 10�7 Y

2011 161.87 12 < 2.2 ⇤ 10�16 Y

2012 81.589 12 2.052 ⇤ 10�12 Y

2013 25.144 12 0.01416 Y

2014 42.939 12 2.312 ⇤ 10�5 Y

2015 210.04 12 < 2.2 ⇤ 10�16 Y

2016 40.602 12 5.71 ⇤ 10�5 Y

2017 68.757 12 5.467 ⇤ 10�10 Y

2018 37.028 12 0.0002211 Y

Table 5.4: Table of ARCH e↵ects for residuals in formula (5.10). Y represents ARCH e↵ects
while N suggests no ARCH e↵ects.
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CIX �̂0 Std. Error (�̂0) �̂1 Std. Error (�̂1) #̂ ⌘̂ ✓̂

KCJ2009 0.311 0.02628 0.448 0.04116 138 0.563 18.496

ICJ2010 0.027 0.008525 0.959 0.012871 10.25 0.659 0.287

JCJ2011 0.091 0.01714 0.882 0.02184 29.5 0.771 0.610

KCJ2012 0.086 0.01701 0.898 0.02010 25.5 0.843 1.26

ICJE2013 0.028 0.01030 0.965 0.01248 8.75 0.8 0.400

JCJ2014 0.018 0.008168 0.977 0.010021 5.75 0.783 0.561

KCJ2015 0.025 0.009272 0.961 0.013979 9.75 0.641 0.245

ICJ2016 0.054 0.01241 0.918 0.01853 20.5 0.659 0.385

JCJ2017 0.027 0.01006 0.958 0.01479 10.5 0.647 0.304

KCJ2018 0.003 0.003909 0.992 0.006627 2 0.375 0.195

Table 5.5: Estimated parameters for CSV model 1 based on S&P 500 index from January 2009
using Multiple Linear Regression where T=2, �t = 0.004
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Estimating parameters on CSV model 2

To make (h�g(⇢ti))(g(⇢ti)� f ) always positive, we define function G(⇢ti) :=
p

(h � g(⇢ti))(g(⇢ti) � f )
with h = 1, f = �1 and set the value of g(⇢ti) :

g(⇢ti) :=

8>>><
>>>:

�0.999 if ⇢ti  �1
0.999 if ⇢ti � 1
⇢ti otherwise

(5.14)

Then, the autoregressive representation in formula (4.25) is given by

⇢ti+1
G(⇢ti )

= (1 � ��t) g(⇢ti )
G(⇢ti )
+ �⇢̄�t

G(⇢ti )
+
p
⇣Zti for i = 0, 1, ....,N (5.15)

where
p
⇣ is the constant volatility of correlation parameter. To be more precise, we rewrite

the formula (5.15) as follows

Y = �1X(1) + �2X(2) + ✏ (5.16)

where ✏ is an error vector, and

�1 = 1 � ��t
�2 = �⇢̄�t (5.17)

Y =
h ⇢t1

G(⇢t1 ) ,
⇢t2

G(⇢t2 ) , · · · ,
⇢tN

G(⇢tN )

i>

X(1) =


g(⇢t0 )
G(⇢t0 ) ,

g(⇢t1 )
G(⇢t1 ) , · · · ,

g(⇢tN�1 )
G(⇢tN�1 )

�>

X(2) =
h 1

G(⇢t0 ) ,
1

G(⇢t1 ) , · · · , 1
G(⇢tN�1 )

i>

✏ =
hp
⇣Zt0 ,

p
⇣Zt1 , · · · ,

p
⇣ZtN�1

i>

(5.18)

Thus,

�̂ = (1 � �̂1)/�t
ˆ̄⇢ = �̂2/(1 � �̂1) (5.19)

Table 5.6 shows that ✏ are ARCH errors. Now we apply the method of least squares to for-
mula (5.16) to estimate the desired parameters. As the errors

p
⇣Zt are iid N(0, ⇣�t) random

variables, the ordinary least squares are linear unbiased consistent estimators of � and ⇢̄. Since
Var(✏) is an approximation of ✓�t, the estimator of long-run variance is given by ✓̂ = Var(✏)

�t .
We estimate the parameters of interest with same historical dataset. The time-to-maturity T

equals to 2 years, and the step size �t is set to be 0.004. The estimates of parameters has been
shown in Table 5.7.
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Year �2 value degree of freedom P value ARCH e↵ects

2009 282.59 12 < 2.2 ⇤ 10�16 Y

2010 49.743 12 1.55 ⇤ 10�6 Y

2011 91.113 12 3.009 ⇤ 10�14 Y

2012 86.133 12 2.756 ⇤ 10�13 Y

2013 27.678 12 0.006163 Y

2014 34.283 12 0.0006085 Y

2015 205.44 12 < 2.2 ⇤ 10�16 Y

2016 43.651 12 1.751 ⇤ 10�5 Y

2017 61.978 12 9.819 ⇤ 10�9 Y

2018 50.269 12 1.253 ⇤ 10�6 Y

Table 5.6: Table of ARCH e↵ects for residuals in formula (5.16). Y represents ARCH e↵ects
while N suggests no ARCH e↵ects.

CIX �̂0 Std. Error (�̂0) �̂1 Std. Error (�̂1) �̂ ˆ̄⇢ ✓̂

KCJ2009 0.551 0.01289 0.217 0.01138 -112.25 0.485 4.914

ICJ2010 0.960 0.012294 0.023 0.007177 10.25 0.561 0.177

JCJ2011 0.879 0.02357 0.078 0.01552 30.25 0.645 0.415

KCJ2012 0.890 0.01827 0.068 0.01274 25.25 0.673 0.575

ICJE2013 0.967 0.012345 0.022 0.008439 8.25 0.667 0.218

JCJ2014 0.981 0.008915 0.012 0.006097 4.75 0.632 0.256

KCJ2015 0.963 0.01366 0.021 0.00797 9.25 0.568 0.158

ICJ2016 0.922 0.01791 0.045 0.01051 19.5 0.577 0.241

JCJ2017 0.960 0.01481 0.023 0.00880 10 0.575 0.202

KCJ2018 0.994 0.006574 0.002 0.003528 1.5 0.333 0.146

Table 5.7: Estimated parameters for CSV model 2 based on S&P 500 index from January 2009
using Multiple Linear Regression where T=2, �t = 0.004
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5.2.3 Pricing
In this section, we design two European style digital CIX options with same time-to-maturity
T, and price them based on our two CSV models (4.16) and (4.19) via Monte Carlo method.
As we know, the correlation between two stocks is relative higher when the market goes down,
see [Guillaume and Linders, 2015]. This characteristic phenomenon is verified in the S& P
500 Implied Correlation Indexes historical dataset, see Figure 5.1. CIX hit its upper bound 1
at the end of 2008, which coincides with the 2008 financial crisis. In fact, the exceptionally
high correlation between two di↵erent stock prices will reduce the benefits of diversification
(see [Linders and Schoutens, 2014]) so that investors will su↵er more losses during crises.
Nevertheless, investors can take advantage of this characteristic for hedging risk. In this thesis,
we design two kinds of digital CIX options. These two digital CIX options use di↵erent values
of CIX as a signal to identify a crisis. To be specific, if the signal value exceeds the pre-
determined dangerous threshold, the financial market is regarded as in crisis. Holders are
supposed to execute the option to earn the nonzero benefit. If the signal value does not exceed
the dangerous threshold, there is no crisis and the option is not executed. In this scenario, option
holders only lose the premium that is used to enter into the contract at time 0. We assume that
the digital CIX option will bring L dollars benefit if the option is executed at maturity. The
dangerous threshold of CIX is set to 0.9 as that is the minimum level only achieved in the 2008
financial crisis (see Figure 5.1). Next, we give the definition of these two kinds of digital CIX
options:

Digital CIX option 1 The Digital CIX option 1 is designed for investors who worry about
the financial crisis happened at maturity T. Thus the signal value of CIX is the value of CIX at
time T. We introduce an indicator function as follows:

1{CIXT�0.9} :=
(

1 if CIXT � 0.9
0 otherwise (5.20)

where r is the risk-free rate and CIXT is the value of CIX at maturity T .
With no arbitrage principle, the premium of digital CIX option 1 is:

Price1 = E(e�rT · L · 1{CIXT�0.9}) (5.21)

Investors pay a premium Price1 at time 0 to enter into the contract. Since CIXT � 0.9 implies a
crisis at time T, holders would execute the option to get L dollars benefit during crisis. CIXT <
0.9 suggests no crisis at time T thus option holders will not execute the option. In this scenario,
investors will have zero benefit and only lose the premium Price1. According to no arbitrage
principle, the price of digital option should be the expectation of the present value of payo↵
which is L1{CIXT�0.9}.

Digital CIX option 2 The second digital CIX option works for investors who worry
about crisis that will arise over the life of the contract. Thus the digital CIX option 2 uses
the maximum of CIX over [0,T] as the signal value to identify a crisis. An indicator function
is defined as follows:

1{CIXT�0.9} :=
(

1 if CIXT � 0.9
0 otherwise (5.22)
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where CIXT = max0tT CIXt is the maximum correlation parameter over the period [0,T ].
With no arbitrage principle, the premium of Digital CIX option 2 is given by:

Price2 = E(e�rT · L · 1{CIXT�0.9}) (5.23)

If CIXt, 0  t  T reaches the dangerous threshold 0.9, option holders would execute the
option to obtain L dollars benefit at time T. Otherwise, there is no crisis during the life of
option. The Digital CIX option 2 will not be executed, and investors will lose the premium
Price2. Following no arbitrage principle, the price of option should be the expectation of the
present value of payo↵ which is L1{CIXT�0.9}.

To compute CIX option prices, we set the risk-free rate r = 0.02, the benefit L = 1000 and
time-to-maturity T = 2. The default values of parameters are shown in Table 5.8. The default
values of &, ⌘ and ✓ in CSV model 1, and the defualt values of �, ⇢̄ and ✓ in CSV model 2
are estimated from same data set -JCJ 2014, see Section 5.2.2. Further we perform a sensitive
analysis on Price1 and Price2 with our two CSV models by Monte Carlo simulation.
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Model Parameter Value

Advanced model 1 Initial squared volatility �0 = 0.56

Speed of reversion of the squared volatility parameter  = 2

Long term mean level of the squared volatility parameter ✓ = 0.56

Volatility of the squared volatility parameter & = 0.1

Initial value of the underlying process X0 = 0.783

Long term mean level of the underlying process ⌘ = 0.783

Speed of reversion of the underlying process # = 5.75

Correlation of WX
t and W�

t ⇠1 = �0.5

Risk free rate r = 0.02

Time to maturity T = 2

Number of simulation steps N = 500

Number of trajectories M = 10000

Benefit (dollars) L = 1000

Advanced model 2 Initial squared volatility ⇣0 = 0.256

Speed of reversion of the squared volatility parameter  = 2

Long term mean level of the squared volatility parameter ✓ = 0.256

Volatility of the squared volatility parameter & = 0.15

Initial value of correlation process ⇢0 = 0.632

Speed of reversion of the correlation parameter � = 4.75

Long term mean level of the correlation parameter ⇢̄ = 0.632

Bounds of correlation parameter h = 1, f = �1

Correlation of W⇢
t and W⇣

t ⇠2 = �0.5

Risk free rate r = 0.02

Time to maturity T = 2

Number of simulation steps N = 500

Number of trajectories M = 10000

Benefit (dollars) L = 1000

Table 5.8: Default parameters for pricing of CSV model 1 & 2

Pricing on CSV model 1

Recall that the level of CIX is a↵ected by two groups of parameters in our CSV model 1, see
formula (4.16). One is embedded in the mean-reverting process Xt consisting of parameters #,
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⌘ and ⇠1. The other is associated with the stochastic volatility including parameters , ✓ and &.
Since we are interested in the independent e↵ect of these parameters on prices, we vary each
parameter in turn. Apart form that, we always keep �0 = ✓ for varying ✓ and X0 = ⌘ for varying
⌘ to identify mean reversion in diagrams, as we did in Section 4.3.2.

Price1 and Price2 with CSV model 1 are plotted with varying , & and ⇠1 in Figure 5.2
respectively. Since the second Digital CIX options provide higher safety, it is reasonable to
observe that Price2 is significantly greater than Price1. From the left hand sides of Figure 5.2,
we observe that  has less e↵ect on Price1 and Price2. As  increases from 2 to 10, the Price2

increases 7%. However, & (the volatility of volatility) has strong e↵ect on prices. As & increases
from 0.01 to 0.25, Price1 falls 44% and Price2 falls 34%. These distinct di↵erences between
pricing with non-zero SV parameters and that without SV parameters suggest the importance of
stochastic volatilities in modelling. Otherwise, the arbitrage opportunity will emerge in trading
CIX options.

Figure 5.3 shows Price1 and Price2 on the y-axis, with the parameters of interest ✓, # and ⌘
on the x-axis. Since ✓ and ⌘ are long term mean levels of �t and Xt, they can have significant
impacts on option prices. More precisely, option price stays around zero when parameters ✓ and
⌘ start growing. Then the price jumps into an obvious value when ✓ exceeds 0.4, or ⌘ exceeds
0.6. Note that Price2 are greater than Price1. We also see that Price1 and Price2 obviously drop
to zero when # exceeds 8.
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Figure 5.2: Price1 (upper row ) and Price2 (lower row) on CSV model 1 with three varying
parameters: the speed of reversion of volatility parameter  (left), the volatility of volatility
parameter & (middle), and the correlation between two Brownian motions ⇠1(right)
.

Figure 5.3: Price1 (upper row) and Price2 (lower row) on CSV model 1 with three varying
parameters: long term mean level of squared volatility ✓ (left), speed of reversion of underlying
process # (middle), and long term mean level of underlying process ⌘ (right)
.
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Pricing on CSV model 2

In CSV model 2, we study the impact of parameters , ✓, ⇠2, &, � and ⇢̄ on prices, see formula
(4.25). Parameters , ✓ and ⇠2 have direct influences on ⇢t while &, � and ⇢̄ a↵ect ⇢t through
stochastic volatilities

p
⇣.

Figures 5.4 and 5.5 show the Price1 (upper row) and Price2 (lower row) on the y-axis with
parameters on the x-axis. All other things being equal, Price2 is always greater than Price1 due
to its higher safety. From the left panel in Figure 5.4, we see that both prices are influenced by
. As  = 10 increases from 2 to 10, Price1 rises 11 %, and Price2 rises 16%. The middle panel
in Figure 5.4 shows that the parameter & has negative e↵ect on prices. As & increases from 0.01
to 0.25, Price1 falls 44% while Price2 falls 31% . From the right panels, we see that Price1 and
Price2 have growth trending as ⇠2 increases from �0.7 to 0.7.

In addition, the long term mean level of squared volatility (✓) and the long term mean level
of correlation process (⇢̄) have significantly positive influences on prices. From Figure 5.5, we
observe that both prices are nearly zero when ✓ and ⇢̄ start increasing but prices rise sharply at
✓ = 0.4, or at ⇢̄ = 0.7. The middle panel in Figure 5.5 suggests that prices significantly drop as
� increases from 2 to 5, but stay around zero when � exceeds 5.

Compared to prices in CSV model 1, CSV model 2 presents triple prices. Recall that we
only have three free parameters in simulation: the speed of reversion of the squared volatility
parameter , the volatility of the squared volatility parameter & and the correlation between
two Brownian motions ⇠1 (⇠2). From Figures 5.2 and 5.4, we see that these free parameters
do not lead to such huge magnitude (300%). Changes on those parameters only cause slight
di↵erences in prices. For unexpected di↵erences in prices between these two models, we will
study this in future research.
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Figure 5.4: Price1 (upper row) and Price2 (lower row) on CSV model 2 with three varying
parameters: the speed of reversion of the squared volatility parameter  (left), the volatility of
the squared volatility parameter & (middle), and the correlation between two Brownian motions
⇠2 (right)
.

Figure 5.5: Price1 (upper row) and Price2 (lower row) on CSV model 2 with three varying
parameters: the long term mean level of squared volatility ✓ (left), the speed of reversion of the
correlation parameter � (middle), and the long term mean level of the correlation parameter ⇢̄
(right)
.



Chapter 6

Conclusions

In this thesis, we have provided definitions, studied properties, and crafted new stochastic
models for two dependence indices: the implied correlation index and the herd behaviour in-
dex (HIX). We modelled the basic implied correlation index (CIX) by considering stochastic
volatility models. We displayed the definition of CIX (see [Skintzi and Refenes, 2005]), and
developed two Correlation Stochastic Volatility (CSV) models for CIX, of which the volatil-
ity follows a CIR process. The first CSV model (4.16) consists of a mean-reverting process
and a proper mapping function. The second CSV model (4.19) is an extension of general Ja-
cobi process. In both models, CIX takes value in (-1,1) and satisfies [van Emmerich, 2006]’s
properties.

Then we presented a definition and properties of HIX (see [Dhaene and Vyncke, 2012]).
Based on [Guillaume and Linders, 2015]’s work, we modelled HIX by combining a mean-
reverting process with some particular mapping functions (i.e tanh(x)). The mapping function
will map the domain of the mean-reverting process to [0, 1] such that HIX always takes value
in [0, 1].

In the empirical study, we analyzed the historical data of CBOE S&P 500 CIX. The ARCH
Test shows that most of the CIX series has heteroscedasticity. Parameters are estimated via
Monte Carlo method. For a given series of CIX, we found that the long term mean level of
squared volatility parameter in the first CSV model was similar to that in the second CSV
model. As we only consider positive volatilities, we acknowledge the bias in simulation.

Finally, we proposed two kinds of digital CIX options and priced them via Monte Carlo
method. The first digital option pricing used the value of CIX at maturity. The second digital
option pricing used the maximum CIX over the life of the option. As the second digital option
reflected a higher risk aversion, all other things being equal, the prices of the second digital
option should be greater than the prices of the first digital option. Our analysis in Section
5.2.3 has confirmed this point. Moreover, we see that option prices are increasing functions of
the long term mean level (✓) and decreasing functions of the volatility of volatility parameter
(#). Since parameters , ✓, and & have significant influence (i.e. 60%) on option pricing, it is
reasonable to use stochastic volatility models to model CIX. In addition, prices in our two CSV
models have slight di↵erences with respect to same values of stochastic volatility parameters
, & and ⇠. The unexpected di↵erences of prices between our two CSV models will be studied
in the future.
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Appendix A

Proofs

A.1 Proof of Lemma 1
At first, we derive the general stochastic di↵erential equation for ⇢t by Ito’s lemma

d⇢t = d f (Xt)

=

 
@ f (Xt)
@Xt

#(⌘ � Xt) +
1
2
@2 f (Xt)
@X2

t
�t

!
dt +

@ f (Xt)
@Xt

p
�tdWX

t

Since f (Xt) = tanh(Xt), we have

@ f (Xt)
@Xt

= sech2(Xt) = 1 � ⇢2
t

@2 f (Xt)
@X2

t
= �2 tanh(Xt) sech2(Xt) = �2⇢t(1 � ⇢2

t )

Hence, d⇢t can be written in the form

d⇢t =
⇣
(1 � ⇢2

t )#(⌘ � artanh(⇢t)) � ⇢t(1 � ⇢2
t )�t

⌘
dt + (1 � ⇢2

t )
p
�tdWX

t

Since m(Xt) := (@ f (Xt)
@Xt

)2, we derive �tdm(Xt), m(Xt)d�t and d�tdm(Xt) respectively. By Ito’s
lemma,

dm(Xt) =
@m(Xt)
@Xt

dXt +
1
2
@2m(Xt)
@X2

t
�tdt

=

 
@m(Xt)
@Xt

#(⌘ � Xt) +
1
2
@2m(Xt)
@X2

t
�t

!
dt +

@m(Xt)
@Xt

p
�tdWX

t
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Then

�tdm(Xt) =
 
@m(Xt)
@Xt

#(⌘ � Xt)�t +
1
2
@2m(Xt)
@X2

t
�2

t
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�3/2
t dWX

t

m(Xt)d�t = (✓ � �t)m(Xt)dt + &
p
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Because the correlation between WX
t and W�

t is ⇠1, we have
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According to the definition of quadric variance, we have

dh⇢it = �t(1 � ⇢2
t )2dt
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A.2 Proof of Lemma 2
From formula (4.25), we have

 (⇢t)d⇣t = (✓ � ⇣t) (⇢t)dt + &

By Ito’s lemma,
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Since the correlation between W⇢
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t is ⇠2, we obtain

d⇣td (⇢t) = (&
p
⇣tdW⇣

t )(
@ (⇢t)
@⇢t

p
 (⇢t)⇣tdW⇢

t ) =
@ (⇢t)
@⇢t

p
 (⇢t)&⇠2⇣tdt



Curriculum Vitae

Name: Lin Fang

Education and Western University
Degrees: London, ON, CA

2016 - 2018 MSc.

Sichuan University
Chengdu, PRC
2012 - 2016 BSc.

Related Work Teaching Assistant/Researching Assistant
Experience: Western University

2016 - 2018

60


	Stochastic modelling of implied correlation index and herd behavior index. Evidence, properties and pricing.
	Recommended Citation

	Certificate of Examination
	Abstract
	List of Figures
	List of Tables
	Introduction
	Modern portfolio theory
	Comonotonicity (dhaene2002concept) 
	Correlation coefficient and comonotonicity
	Attainable correlations
	Sums of comonotonic random variables


	Implied Correlation Index
	CIX (ref1)
	Definition and properties of CIX
	Specific CIX - ICJ and JCJ for S&P 500 Index (exchange2009cboe)

	General Implied correlation Index (ICX)(linders2014framework)
	General framework of ICX
	Traditional approach
	Robust measurement for Implied correlation Index


	Herd behaviour index 
	HIX (dhaene2012herd)
	Perfect herd behaviour and comonotonic index option prices
	Definition and Properties of HIX


	Stochastic Modeling of CIX and HIX
	First approach to model CIX
	Second approach to model CIX
	New CSV Models and properties of CIX
	Two CSV models
	Discretization and Stylized facts.
	Discretization of CSV model 1
	Discretization of CSV model 2
	Stylized facts


	Additional approach to model SCP
	Stochastic modelling of HIX

	Applications of CIX
	Covariance and correlation Swap for two risky assets salvi2014covariance
	Empirical study
	Data and properties
	Estimation
	Estimating parameters on CSV model 1
	Estimating parameters on CSV model 2

	Pricing
	Pricing on CSV model 1
	Pricing on CSV model 2



	Conclusions
	Bibliography
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2

	Curriculum Vitae

