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Figure 2.5: Dielectric response function (dielectric susceptibility) x(k) of TIP3P water model: 
intermolecular contribution, intramolecular contribution, total response function. The inset 
shows the total response function calculated using Eq. (2.23) (squares) and Eq. (2.19) (circles) 
fo rk  < 1 Â- '.
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where M is the electric dipole moment of the simulation box. Expression (2.41) can be evalu
ated using atoms positions recorded during MD simulation. The resulting macroscopic dielec
tric constant is e(k = 0) = 88.9, which is in a perfect agreement with the value e = 89 obtained 
by the authors who suggested the considered modifed TIP3P water model for simulation with 
Ewald summation [27]. We wish to point out that the authors of [27] performed simulation 
in the isothermal-isobaric ensemble. We repeated our originally NVE simulation with NPT 
ensemble (T  = 25 °C, p  = 1 atm) to ensure that result does not change and obtained e = 90.

The final result for the wavenumber-dependent dielectric function of TIP3P water model 
is shown in Fig. 2.6. The behaviour is qualitatively the same as the one reported for the BJH 
flexible water model [28], [56], The forbidden region from zero to one and the correct limit 
e(k —> oo) = 1 are observed, the nonlocal dielectric function drops from the macroscopic value 
e = 88.9 to a value near 20 then rises to a first divergence point at k\ « 0.53 A , and the 
second divergence point occurs at ki « 14.8 A 1 with the region of negative values between k\ 
and which indicates the overscreening effect. The quantitative difference originates from 
the difference of BJH and TIP3P water models and manifests most notably in the divergence 
points’ positions and macroscopic dielectric constant value.
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tions into account. The functional 0[n] generates the hierarchy of correlation functions:

8<b[n]
C, [n\ r] = p

<5n(r) ’
(3.33)

„ r ,n SCdn;r] d20[n] SCdn; r'] „  r , ,C2[n\ r, r  = = p  = ■ = C2[n; r , r]. (3.34)
Sn(r') n(r)n(r') Sn(r)

Higher order correlation functions are obtained by further functional differentiation of 0[n]. 
The second correlation function C2[n; r, r'] is the Ornstein-Zernike direct correlation function 
of the non-uniform fluid. The representation (3.31) implies that the second functional derivative 
of T[n\ in (3.26) is related to the Ornstein-Zernike direct correlation function. Taking the 
second functional derivative of (3.31) and making use of (3.32) and (3.34) one gets:

„ ô2T [n ] <5(r -  r') „  r
P —  A  = ,_.x -  C2[n\ r,r']. (3.35)

n(r)n(r') n(r)

For a homogeneous system C[n\ r, r'] = C[n; |r  -  r'|] and equation (3.26) can be rewritten as

T[n\ = T [n u] + J 'd r /j(n u)n(r) + ^  drdr’ ~ C2[nu-, |r -  r'|]jn(r)7f(r') + 0(7?).

(3.36)

Let us Fourier transform the second order term in number density deviations n in (3.36):

T[n\ = T [n u] + J ' drfx(nu)n(r) -  ^  {c 2[nu\q ] -  n(q)7i(-q) + 0(7?). (3.37)

We consider only slowly varying number density distributions, which implies that only the 
low q Fourier components are important in the above expansion. Next, we expand the Fourier 
transformed Ornstein-Zernike direct correlation function C2[nu\q] in a Taylor series. Only even 
powers of q survive in this expansion because of the system’s homogeneity and only the first 
few terms are important (see the previous remark about slowly varying densities):

C2[n\ q] = a(nu) + b(nu)q2 + d(nu)q4 + 0(q6),

where the coefficients are

a(nu) = /  drC 2[n\ r], 

b(nu) = - ^ J '  d r r2C2[nu\ r],

(3.38)

(3.39)

(3.40)
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d(nu) = J  dr r4C2[nu\ r\.

Substituting (3.38) into (3.37) and Fourier transforming back, we find 

T[ri\ = T[nu] + J "  drfx(nu)n(r)

~ ^  drn2̂ ) + b(nu) J 'dr(Vn(r))2 + d(nu) J dr(y*n(r)y

(3.41)

+ ()(??). 

(3.42)

To compare this result with the original gradient expansion (3.24), let us expand its coefficients 
in Taylor series in the vicinity of nu. Then (3.25) reads:

Tin] J  dr | /o K ) +
dfo(n)
dn(r)

- (r)+  l â 2/o(n)
2 dn2(r) « (r)

nu (3.43)
+ / 2(na)(V7T(r))2 + ^ a)(n J (V ^ (r ))2 + ... + 0(V6) ] . 

Comparing the coefficients of (3.42) and (3.43) we obtain:

dfoin)
dn nu

M"«). (3.44)

d2fo(n) 
dn2

= - p  \a (n u) - l / n u),
rtu

h in u) = ]b(nu),

f f ( n u) = - l-(3-'d{nu).

(3.45)

(3.46)

(3.47)

Equations (3.44) and (3.45) are the well-known thermodynamic relations, and equation (3.46) 
was obtained before in Refs. [10,20]. Equation (3.47) is a new result, which relates the coeffi
cient of the (V2n)2 term in the number density gradient expansion of the free energy density to 
the ^-coefficient in the expansion of the Fourier transformed Omstein-Zemike direct correla
tion function:

Aa)(nu) = J d r r 4c 2[nu; r]. (3.48)

Note that we were not able to determine the coefficients \  AA  in (3.24). In order to match 
them to (3.42) we will likely need to take into account the third and fourth functional derivatives 
of T \n \  in (3.26) and go beyond the linear response theory we are dealing with. As such, we 
will take them to be zero, consistent with linear response.
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Coefficients (3.44)-(3.47) of the gradient expansion (3.24) can be determined from the 
molecular dynamics computer simulation of the fluid we want to study. We do this in the 
next section for liquid water at ambient conditions using the results of our MD simulation of 
TIP3P water model with Ewald summation.

3.2 Determination of the gradient expansion coefficients from 

the MD simulation

We start from the Omstein-Zemike equation for a homogeneous system (see e. g. [64]):

h(r) = C2(r) + n j  dr'h(r')C2Qr -  r'|), (3.49)

where n is the particle (in our case water molecules) number density, h(r) = g(r) -  1 is a pair 
correlation function, and C2(r) is the Omstein-Zemike direct correlation function defined in the 
previous section. Fourier transforming this Omstein-Zemike equation and using the definition 

of the static structure factor Sn(q) [64]:

Sn(q) -  1 = n J  dr (g(r) -  1) ei<ir, (3.50)

we obtain

nC2(q) = 1 "  F T v  (3.5i)
Sn(q)

The water molecules’ static structure factor S„(q) is related to the molecular number density- 
density correlation function and should not be confused with the charge density static structure 
factor S (q) defined in the previous chapter and related to the bound charge density-density cor
relation function. The relation (3.51) allows us to derive C2(q) from Sn(q) known from either 
experiment or computer simulation, and consequently fit the coefficients in the ^-expansion 
of the direct correlation function (3.38), and determine the gradient expansion coefficients via
(3.45)-(3.47). In order to follow this scheme, we first need to relate the water molecules static 
structure factor Sn(q) to the quantities measured in our simulation. Here we make an assump
tion that the water molecule static structure factor Sn(q) is reasonably approximated by the 
oxygen-oxygen static structure factor Sooiq) given by (2.23) with a  = j6 = 2. The validation 
is that the water molecule number density is equal to the one of oxygen atoms, and the oxygen 
atoms are much heavier than the hydrogen ones, so the mass centre of the molecule lies close to 
its oxygen atom and the movement of each molecule can be fairly well traced by the movement
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of its oxygen atom. The influence of the hydrogen atoms and the water molecule structure is 
taken into account in Soo(q) because it is measured in the all-atomic MD simulation of liquid 
water.

The Omstein-Zemike direct correlation function for liquid water calculated from (3.51) 
with Sn(q) given by S00(q) as measured in our MD simulation of the TIP3P water model is 
shown in Fig. 3.1. Plotting C2(q) versus q2 and fitting the obtained result by a quadratic poly
nomial in the region of small q, where a gradient expansion is reasonable (see Fig. 3.2), we 

derive the coefficients of the expansion (3.38):

a = -351.309 A3, b = 211.098 A5, d = -32.503 A7. (3.52)

Now we are able to evaluate the second- and fourth-order gradient expansion coefficients

(3.46) , (3.47) and d2f 0(n)ldn2 (3.45) for nu = 0.03333lA~3. Substituting (3.52) into (3.45)-
(3.47) , we obtain the following values:

d2{o(̂  = 225.614 kcalA3/mol, f 2 = -62.4509 kcalA5/mol, /,(a) = 9.61564 kcalA7/mol. 
onz

(3.53)

The nonlocal (wavenumber-dependent) bulk modulus is given by

B{q) = B + n2 (K(2)q2 + K ^q*  + 0(q6) ) , (3.54)

where B = 1 //3 is the macroscopic bulk modulus, ¡3 = (n2d2fo(ri)/dn2)~] is the usual macro
scopic isothermal compressibility, K = 2/2, = 2j$a\  The compressibility we get
from (3.53) is 3.99^ ^  (i.e. 0.57 GPa-1). The experimentally measured compressibility 
of liquid water is 3.14kcâ o| (i.e. 0.46 GPa-1). The compressibility values of the TIP3P wa-

8 3
ter model quoted in the literature and measured by different methods are 1.23^ , - -̂  [65] to 
3.46kca| moi [63]. The range found is symptomatic of the failure to account for the negative 
value of K™ which is important for measurements of small systems.

The first two quantities in (3.53) have been previously measured in the framework of 
the square gradient theory for the TIP3P water model in [63] using a different technique, 
namely by measuring the system’s response to a small periodic force in a linear regime. The 
values obtained by the authors of [63] are the following: d2fo(n)/dn2 = 265 kcalA3/mol, 
A^2) = - 1 1 0  kcal A5/moI (we have = -125 kcalA5/mol), which is satisfactory close to 
our results taking into account the different techniques used. The concern expressed in [63] 
about the negative value of the square-gradient coefficient f 2 implying an ultra-violet diver-
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: The Omstein-Zemike direct correlation function of the TIP3P water model.

Figure 3.2: Fitting the Omstein-Zemike direct correlation function (dotted) with the expansion 
(3.38) (solid line).
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gency of the theory and the consequent need for including the fourth-order term is one of the 
reasons for conducting the present research. Our results (3.53) and their reasonable agreement 
with [63] confirm the negativity of the square gradient coefficient while providing the positive 
value of the fourth-order coefficient, which ensures the stability of the number density gradient 
expansion theory for the free energy density.

3.3 Mapping the TIP3P water model to the electrostatic en 

ergy functional

An electrostatic energy functional was introduced by Maggs and Everaers [9] to describe the 
dielectric response. It was used by the authors to include the nonlocal dielectric effects in im
plicit solvent simulations within a cluster Monte Carlo algorithm for the simulation of dielectric 
media. They showed that the electrostatic energy functional can reasonably reproduce most lin
ear dielectric response phenomena including the overscreening effect. Later the BJH central 
force water model [29] has been mapped to this functional and the Bom solvation energy and 

the dielectric barrier for an ion channel have been calculated with obtained parameters [66]. 
Here we wish to determine the parameters of the electrostatic energy functional by mapping 
the wavevector-dependent dielectric function it generates to the one measured from the MD 
simulation of the TIP3P water model.

The electrostatic energy functional reads [9]

U
- u u

dr (D(r) -  4^P(r))2 + -  rfn/r'P(r)/i:(r,r')P(r'), (3.55)

where D is the dielectric displacement field, P is the electric polarization of the medium, and 
K(r , r ')  is the short-ranged kernel containing all material properties. From the functional 
(3.55), the wavevector-dependent fluctuations of the polarization field can be calculated [9]. 
The longitudinal fluctuations are given by

(¿»P • <5P)/(q)
1

yS (l+ ^(q))’
(3.56)

where Af/(q) is the longitudinal part of the operator K(r, r ')  in q-space. The longitudinal fluctu
ations of the polarization field represent the charge density static structure factor S (q) defined 
in Section 2.4:

S(q) =
(<?P • <5P)/(q) 

*V
<pi>(q)Pè(-q))

<yqi (3.57)
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which is related to the dielectric response function through the classical form of the fluctua
tion dissipation theorem (2.31), so the electrostatic energy functional generates the following 
wavevector-dependent dielectric susceptibility:

= i r | ( 5 ) ' <3'58>

and the corresponding dielectric function is readily obtained from (2.28). We added the sub
script “eef” (i.e. electrostatic energy functional) in order to distinguish response functions 

given by (3.58) from the ones measured in the MD simulation.

Applying a Landau-Ginzburg expansion to the second term of the functional (3.55) one 

obtains for a homogeneous system:

U = ^  f  dr (D(r) -  47rP(r))2 + ^  f  dr (kP2 + &,(curl P)2 + kt(div P)2 + a(grad div P)2 + ...),
(3.59)

so the equation (3.58) becomes

Xeefiq) =
An

1 + k +  kiq2 + aq4
+ 0(,q6). (3.60)

Our goal is to determine the parameters of the electrostatic energy functional in the mean field 
theory approximation for the TIP3P water model. We do it by fitting the dielectric response 
function measured in our MD simulation shown in Fig. 2.5 with the expression given by (3.60).

The main features of the response function shown in Fig. 2.5 we wish to reproduce by 
the expression (3.60) are the position and the height of the main maximum and the points at 
which the response function crosses unity (i.e. the divergence points of the dielectric function). 

Interpolating the dielectric response function xiQ) (<? = nqmin, where qmin = 2n/L, n > 1 is 
an integer, L is the size of the simulation box), measured in our MD simulation of the TIP3P 
water model and shown in Fig.2.5, we get:

qmax = 3.02919A \  X {qmax) = 33.8946;

q\ = 0.528954Â"', q2 = 14.7947À- ', *(<?,,2) = 1.

We set&o = 1 +k, y = q2 in (3.60) in order to simplify the analysis. The maximum ofXeef(y) 

occurs at ymax = - k j l a .  Since ymax = ql^x is positive, ki and a  should have different signs. We 
are particularly interested in the case ki < 0, a  > 0, necessary to generate non-trivial behaviour 
while ensuring stability at large wavevectors. So we put kt = -2 a ymax, h  < 0, a  > 0.
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q[A-']

Figure 3.3: Dielectric response function of the TIP3P water model: from electrostatic energy 
functional (solid line) and measured from MD simulation (dotted).

Substituting this into Xeeffy) we obtain the following equation for the points y \, y2 at which 

Xeef(y\.i) = 1:

y2\,2 -  2)W y i ,2 = {An -  ko)/a. (3.62)

We should choose only one point yi or y2 to fix the parameter {An -  ko)/a, then the other 
point is found from the solution of the considered quadratic equation with fixed {An -  ko)/a. 
It is reasonable to select the point yi = q\ to fix {An -  ko)/a because, first, the expression 
(3.60) coming from the Landau-Ginzburg expansion of the electrostatic energy functional is 
the expansion in powers of q2 and is more reliable for small q, and second, we are mostly 
interested in reproducing the long-wavelength behaviour of the nonlocal dielectric function. 

So, k0 -  A n -  a{y2 -  2ymajcy]), where y\ = q2v  and we have only parameter a  left in Xee/(yY-

Xeef(y) =
______________1_____________
1 + ^<J2 -  tymaxy + 2ymaxy ] -  y\)

+ 0 (y3). (3.63)

We require that the function Xeef(y) does not have any real poles which imposes the con
straint a  < An/ (y„ax -  yO2. We fix the parameter a  by fitting Xeeftymax) to the main maximum 
height of the measured response function x(4max)- The resulting values of parameters are: 
a  = 0.15397 A4, kt = -2.82679 A2, k = 12.3452. The obtained response function and di
electric function are shown in Fig. 3.3 and Fig. 3.4 respectively, together with the original ones 
measured from the MD simulation.
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Figure 3.4: Nonlocal dielectric function of the TIP3P water model: from electrostatic energy 
functional (solid line) and measured from MD simulation (dotted).

We see that in the small-# regionXeefiq) reproduces;^#) fairly well, and although the main 

peak in Xeefiq) is narrower than in^(#) and the second satellite peak is not reproduced at all, 
the overall qualitative behaviour is reasonably similar. In the wavenumber range from qmin = 
2n /L  = 0.1685 A ' to q « 4 A ' (which is close to the HH distance in the water molecule) the 
dielectric function is well reproduced by the expression coming from the electrostatic energy 
functional. The main drawbacks in reproducing the dielectric function this way are: first, that 
the second divergence point is shifted towards zero from q = 14.7947 A ' t o  # = 4.252 A 
and second, eeef(q  = 0) does not reproduce the value of the macroscopic dielectric constant of 
the TIP3P water model e «  89; and third, there is no local minimum between q = 0 and the 
first divergence point.

We have already commented on the first issue, the reason for it is that we chose to fit 
the first divergence point. The second problem can in principle be overcome by choosing 
a different fitting procedure. For example, we can fit the measured response function with 
the expression (3.60) in which the parameters are fixed as described in [66], i.e. k is fixed 
by setting eeef{q  = 0) = e, k[ = -2 a q 2max from fixing the main maximum position, and 

a  is found by setting XeeMmax) = X(<lmax)- Parameter values, obtained in such a way, are: 
a = 0.146424 A4, k, = -2.68824 A2, k = 11.7093 and the resulting dielectric function is 
shown in Fig. 3.5. This set of parameters is close enough to the aforementioned one, but the 
obtained dielectric function is noticeably different, although the qualitative behaviour is the 
same and agrees also with the behaviour obtained in [66] for the BJH water model. One can
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Figure 3.5: Nonlocal dielectric function of the TIP3P water model: from electrostatic energy 
functional with parameters fitted using the procedure described in [66] (solid line) and mea
sured from MD simulation (dotted).

see that although the macroscopic limit of dielectric function is now observed, the fitting in 
the small-# region is not so good, and there is no local minimum as before. In addition, now 
both divergence points are significantly shifted towards zero, they occur at 0.230926 A 1 and 
4.27855 A 1. Fixing e«./(0), main maximum position and first divergence point position gives 
poorer results. We are investigating other parameterizations.

While including higher-order terms in the Landau-Ginzburg expansion may overcome these 

difficulties, for now it seems reasonable to adopt the first set of parameters which gives good 
fitting (see Fig. 3.4) for a #-range from 0.1685 A ' to 4 A ' and claim that the electrostatic 
energy functional in the Landau-Ginzburg approximation truncated after the grad div term 
with the considered set of parameters in the underlying region is suitable for the description 
of the nonlocal dielectric properties of TIP3P water model. The region of applicability can 
be broadened to include q = 0 by adding this point with correct e(q = 0) and interpolating 
e(q) in the region from zero to qmin, which also allowes to generate the local minimum in this 
region. Essentially it is the way we proceeded when deriving the dielectric function from the 
simulation results: the dielectric function was calculated by using different methods at q = 0 

(Eq. 2.41) and q -  nqmin, (n > 1 is an integer) (Eqs. (2.28), (2.31), (2.34)), and the conclusion 
about the local minimum existence comes from interpolation.
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Applications

Here we consider some applications of the results obtained in Section 2.4. The wavenumber- 
dependent dielectric response function x(k)  (and hence, the dielectric permittivity e{k)) repre
sents the medium with nonlocal dielectric properties. In such media usual electrostatics is not 

applicable.

For example, the potential created by a point charge q in a nonlocal dielectric medium with 

permittivity e(k) is written as [67]:
= ± S (r ) ,  (4.1)

er

where S(r) is the so-called screening factor:

S(r)
_ 2 r °7T Jo dk

e sin(fcr) 
e(k) k

(4.2)

where e is a macroscopic (in the limit k —» 0) dielectric permittivity. At large distances nonlocal 
effects vanish, S (r  -> oo) = 1 , and we recover the usual electrostatics result.

Another phenomenon where nonlocal effects play an important role is the interaction of two 
ions of finite size solvated in the medium with permittivity e(k) [56,66,68]. The interaction 
energy of the ions reads:

W M  = ~~~'Sab(R'). (4.3)
eR

Here the screening factor S ab{R) is given by

Sab(R) = -  r  d k - ^ - ^ ^ p a(k)pb(k), (4.4)
n Jo e(k) k

where R is the distance between the centers of the ions, pa(k), pb(k) are the Fourier transforms 
of ions’ form factors, a and b characterize the sizes of ions, e is a macroscopic dielectric

40
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Figure 4.1: Screening factor for the potential created by a point charge embedded in water.

permittivity, and, again, in the limit of large distances nonlocal effects vanish, S ab(R —> oo) = 1 .

We calculate both screening factors (4.2), (4.4) for liquid water using e(k) obtained from 
the MD simulation of the TIP3P-Ew water model in Section 2.4 (see Fig. 2.6). Note, that the 
nonlocal dielectric function generated by the electrostatic energy functional [9] with parameters 
determined in Section 3.3 can be used as well. To calculate the interaction energy screening 
factor S ab(R), we use the Bom model of spherical ions, in which the ion of radius a has the 
Fourier transformed form factor given by

Pa(k) =
sin(fca)

ka
(4.5)

Results obtained are shown in Fig. 4.1-4.2. The screening factor for a point charge exhibits 
oscillations around zero (see Fig. 4.1), which indicates an overscreening effect (i.e. charges of 
the same sign may attract each other and vice versa) resulting from the existence of a negative 
value region in the nonlocal dielectric function. However, the potential obtained in such a 
point-charge model is huge compared to both water in the dispersionless limit and vacuum, 
which is obviously an unphysical result and the reason to consider the finite size ions solvated 
in water. Interestingly, negative value regions in the screening factor vanish as we replace the 
point charges with Bom ions of big enough radii (see Fig. 4.2), although regions of metastable 
attraction still appear and for small ions (a = b = 1 A) we observe the overscreening. Both 
calculated interaction energy screening factors have the correct physical limit of unity at large
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Figure 4.2: The interaction energy screening factor Sab(R) for two hydrated Born ions of radii 
a = b = 1 A (above) and a = b = 2 A (below) as a function o i R - a - b ,  where R is a distance 
between the centres of the ions.

distances.

The overscreening effect was first observed for molten salts both theoretically [69] and 
in computer simulations [70]. In water, overscreening was predicted theoretically [67], [71], 
observed in simulations [28], and is considered to be an established feature required to be re
produced by successful phenomenological theories [9,68,72]. Considering the fact that ions 
play a fundamentally important role in solution mediating interactions between charged objects
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in a vast number of biological systems and industrial processes, the overscreening phenomenon 
deserves further detailed study. Although it may be unimportant in dilute salt solutions where 
the ions are far away from each other, overscreening should alter the structure of a condensed 
counterion cloud around strongly charged colloids or polyelectrolytes [73]. The systems of the 
last kind take a central place in the current research in colloid science, soft condensed matter 
physics, and biology (see e.g. [74,75] and references therein). Two important and striking 
examples of experimentally observed and intensively studied phenomena in such systems are 
overcharging (a situation when a macroion is locally covered by a cloud of counterions whose 

global charge overcompensates that of the macroion, so that the effective charge of the com
plex changes sign) [76] and like-charge attraction (effective attraction between two macroions 
having the same electric charge sign) [77]. Counterions’ nature, interactions and correlations 
play crucial role in explanation of these systems’ behaviours.
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Conclusions

In this thesis, we have investigated the nonlocal properties of the TIP3P water model by means 
of molecular dynamics computer simulation. The first object of the present study was the 
wavevector-dependent dielectric function of TIP3P water model. It was extracted from the 
molecular dynamics computer simulation carried out by using the Large-scale Atomic/Mole- 
cular Massively Parallel Simulator (LAMMPS) by employing the classical form of the fluctua
tion dissipation theorem. We mapped the calculated nonlocal dielectric function to the electro
static energy functional which presents a phenomenological theory that is believed to reproduce 
most linear dielectric response phenomena. Also, we used the wavevector-dependent dielectric 
function we obtained to calculate the interaction energy screening factor for two hydrated Bom 
ions. The second part of the present thesis consisted of a determination of the coefficients of the 
number density gradient expansion of the free energy density of liquid water up to the fourth 
order, using the results of the molecular dynamics computer simulation of TIP3P water model. 
The determined values of these coefficients allowed us to calculate the wavevector-dependent 

bulk modulus of TIP3P water model.

In Chapter 1, we reviewed the importance of studying water and aqueous systems, the avail
able water models, and computer simulation techniques used to investigate water properties, 
in particular molecular dynamics simulations, and gave the reasoning for choosing the TIP3P 
water model for the present research, and also provided a brief outline of the thesis.

In Chapter 2, we gave a review of the modified TIP3P water model for simulations with 
Ewald summation, described the molecular dynamics computer simulation we performed of 
this model using LAMMPS, presented site-site radial distribution functions and partial static 
structure factors measured in the simulation, and calculated the nonlocal dielectric function of 
the TIP3P water model by employing the fluctuation dissipation theorem and using the results

44
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of the molecular dynamics simulation. The behaviour of the wavevector-dependent dielectric 
function we obtained is qualitatively the same as the one previously reported for the BJH 
flexible water model: the nonlocal dielectric function first drops from the macroscopic value 
corresponding to the known dielectric constant of the TIP3P water model, then rises to its first 
divergence point, after which a region of negative values occurs indicating the overscreening 
effect, then becomes positive again at the second divergence point and monotonically decreases 
to the short-wavelength limit of unity, and the forbidden region from zero to one is observed 
throughout. The fact that the two substantially different water models generate qualitatively the 
same nonlocal dielectric functions suggests that this form of the dielectric function is model- 
independent and able to describe the dielectric properties of real liquid water.

In Chapter 3, we mapped the TIP3P water model to two phenomenological theories: the 
gradient expansion theory and the electrostatic energy functional theory. In Sections 3.1, we 
built the fourth-order number density gradient expansion of a fluid free energy density, and 
in Section 3.2, we determined the coefficients of this expansion for the TIP3P water model 
employing the results of the molecular dynamics simulation. We found that the second-order 
coefficient is negative and its value agrees with the one recently calculated in the framework of 
the square gradient theory, while the fourth-order coefficient is positive and ensures the stability 
of the gradient expansion theory. The theory built in Section 3.1 with the coefficients deter
mined in Section 3.2 was found to reasonably describe the water molecules number density 
fluctuations down to the scales of molecular size. We also derived the wavevector-dependent 
bulk modulus of TIP3P water model based on the considered gradient expansion theory, and its 
macroscopic value is in a reasonable agreement with experimental data. In Section 3.3, we de
termined the parameters of the electrostatic energy functional which was previously suggested 
in order to include nonlocal dielectric effects in implicit solvent simulations and is considered 
to reproduce most linear dielectric response phenomena. The determination was done by com
paring the wavevector-dependent dielectric function calculated from the molecular dynamics 
computer simulation of TIP3P water model with the one generated by the underlying functional 
in the Landau-Ginzburg approximation.

In Chapter 4, we considered some applications of the results obtained in Chapter 2, in par
ticular the interaction of two hydrated Bom ions. The calculated interaction energy screening 
factor exhibits oscillations around zero, which indicates an overscreening effect (i.e. ions of 
the same sign may attract each other and vice versa). Interestingly enough, negative value re
gions in screening factor vanish as the sizes of interacting ions increase, although the regions 
of metastable attraction still appear.
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As one of the possible directions for future work we consider the construction of a phe
nomenological mesoscopic theory that will take into account correlations between the polar
ization field and number density fluctuations. This theory should unify the gradient expansion 

and electrostatic functional theories considered here, and as such, will be able to provide bet
ter quantitative agreement with the simulation and experimental data, and, hopefully, bring a 
better qualitative description and understanding of the studied system’s properties.
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Appendix A

LAMMPS input script

Here we provide the LAMMPS input script of the MD simulation of TIP3P-Ew water model we 
performed. The file data.mywatertip3p is a data file containing information regarding number 
of atoms, bonds and angles, their types and appropriate force field coefficients, simulation box 
boundaries, atom masses and initial coordinates.

# input file for TIP3P water simulation final version

units
atom_style

real
full

pair_style
bond_style
angle_style

lj/cut/coul/long 13
harmonic
harmonic

timestep 1.5

kspace_style pppm 1.8e-7

reacLdata data.mywatertip3p

pair_coeff
pair_coeff
pair_coeff

2 2 8.182 3.188 
1 1 6.8 6.8 
1 2 6.6 6.8

velocity all create 298 87287

neighbor 2.8 bin
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neigh_modify every 1 delay 8 page 18888888 one 1888888

fix 1 all rigid/nve molecule
fix 2 all langevin 298 298 588 48279

the™o 1886

dump 1 all custom 18 dumpmywatertip3p.atom id mol type x y z

run 58666

compute WATERRDF all rdf 388 1 1 1 2 2 2

fix WATERRDFOUTPUT all ave/time 968 1888 1818888 c_WATERRDF 
file tmp.mywatertip3prdf mode vector

run 962866
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